Sample records for heating system designed

  1. The analysis of thermal network of district heating system from investor point of view

    NASA Astrophysics Data System (ADS)

    Takács, Ján; Rácz, Lukáš

    2016-06-01

    The hydraulics of a thermal network of a district heating system is a very important issue, to which not enough attention is often paid. In this paper the authors want to point out some of the important aspects of the design and operation of thermal networks in district heating systems. The design boundary conditions of a heat distribution network and the requirements on active pressure - circulation pump - influencing the operation costs of the centralized district heating system as a whole, are analyzed in detail. The heat generators and the heat exchange stations are designed according to the design heat loads after thermal insulation, and modern boiler units are installed in the heating plant.

  2. Preliminary design activities for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information on the development of solar heating and cooling systems is presented. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities.

  3. Solar heating and cooling systems design and development

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Solar heating and heating/cooling systems were designed for single family, multifamily, and commercial applications. Subsystems considered included solar collectors, heat storage systems, auxiliary energy sources, working fluids, and supplementary controls, piping, and pumps.

  4. System design package for a solar heating and cooling system installed at Akron, Ohio

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Information used to evaluate the design of a solar heating, cooling, and domestic hot water system is given. A conventional heat pump provides summer cooling items as the design data brochure, system performance specification, system hazard analysis, spare parts list, and detailed design drawings. A solar system is installed in a single-family dwelling at Akron, Ohio, and at Duffield, Virginia.

  5. Preliminary design package for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Summarized preliminary design information on activities associated with the development, delivery and support of solar heating and cooling systems is given. These systems are for single family dwellings and commercial applications. The heating/cooling system use a reversible vapor compression heat pump that is driven in the cooling mode by a Rankine power loop, and in the heating mode by a variable speed electric motor. The heating/cooling systems differ from the heating-only systems in the arrangement of the heat pump subsystem and the addition of a cooling tower to provide the heat sink for cooling mode operation.

  6. Systematic approach to optimal design of induction heating installations for aluminum extrusion process

    NASA Astrophysics Data System (ADS)

    Zimin, L. S.; Sorokin, A. G.; Egiazaryan, A. S.; Filimonova, O. V.

    2018-03-01

    An induction heating system has a number of inherent benefits compared to traditional heating systems due to a non-contact heating process. It is widely used in vehicle manufacture, cast-rolling, forging, preheating before rolling, heat treatment, galvanizing and so on. Compared to other heating technologies, induction heating has the advantages of high efficiency, fast heating rate and easy control. The paper presents a new systematic approach to the design and operation of induction heating installations (IHI) in aluminum alloys production. The heating temperature in industrial complexes “induction heating - deformation” is not fixed in advance, but is determined in accordance with the maximization or minimization of the total economic performance during the process of metal heating and deformation. It is indicated that the energy efficient technological complex “IHI – Metal Forming (MF)” can be designed only with regard to its power supply system (PSS). So the task of designing systems of induction heating is to provide, together with the power supply system and forming equipment, the minimum energy costs for the metal retreating.

  7. Handbook of experiences in the design and installation of solar heating and cooling systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, D.S.; Oberoi, H.S.

    1980-07-01

    A large array of problems encountered are detailed, including design errors, installation mistakes, cases of inadequate durability of materials and unacceptable reliability of components, and wide variations in the performance and operation of different solar systems. Durability, reliability, and design problems are reviewed for solar collector subsystems, heat transfer fluids, thermal storage, passive solar components, piping/ducting, and reliability/operational problems. The following performance topics are covered: criteria for design and performance analysis, domestic hot water systems, passive space heating systems, active space heating systems, space cooling systems, analysis of systems performance, and performance evaluations. (MHR)

  8. Solar Heating and Cooling of Residential Buildings: Sizing, Installation and Operation of Systems.

    ERIC Educational Resources Information Center

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    This training course and a companion course titled "Design of Systems for Solar Heating and Cooling of Residential Buildings," are designed to train home designers and builders in the fundamentals of solar hydronic and air systems for space heating and cooling and domestic hot water heating for residential buildings. Each course, organized in 22…

  9. Heat Rejection Concepts for Brayton Power Conversion Systems

    NASA Technical Reports Server (NTRS)

    Siamidis, John; Mason, Lee; Beach, Duane; Yuko, James

    2005-01-01

    This paper describes potential heat rejection design concepts for closed Brayton cycle (CBC) power conversion systems. Brayton conversion systems are currently under study by NASA for Nuclear Electric Propulsion (NEP) applications. The Heat Rejection Subsystem (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Space Brayton conversion system designs tend to optimize at efficiencies of about 20 to 25 percent with radiator temperatures in the 400 to 600 K range. A notional HRS was developed for a 100 kWe-class Brayton power system that uses a pumped sodium-potassium (NaK) heat transport loop coupled to a water heat pipe radiator. The radiator panels employ a sandwich construction consisting of regularly-spaced circular heat pipes contained within two composite facesheets. Heat transfer from the NaK fluid to the heat pipes is accomplished by inserting the evaporator sections into the NaK duct channel. The paper evaluates various design parameters including heat pipe diameter, heat pipe spacing, and facesheet thickness. Parameters were varied to compare design options on the basis of NaK pump pressure rise and required power, heat pipe unit power and radial flux, radiator panel areal mass, and overall HRS mass.

  10. Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive

    NASA Astrophysics Data System (ADS)

    Hendricks, Terry J.; Yee, Shannon; LeBlanc, Saniya

    2016-03-01

    Cost is equally important to power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG) in many transportation and industrial energy recovery applications. In many cases, the system design that minimizes cost (e.g., the /W value) can be very different than the design that maximizes the system's efficiency or power density, and it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent cost analysis work and using more detailed system modeling, an enhanced cost scaling analysis of a waste heat recovery TEG with more detailed, coupled treatment of the heat exchangers has been performed. In this analysis, the effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances that maximize power output are considered. This coupled thermal and thermoelectric (TE) treatment of the exhaust waste heat recovery TEG yields modified cost scaling and design optimization equations, which are now strongly dependent on the heat leakage fraction, exhaust mass flow rate, and heat exchanger effectiveness. This work shows that heat exchanger costs most often dominate the overall TE system costs, that it is extremely difficult to escape this regime, and in order to achieve TE system costs of 1/W it is necessary to achieve heat exchanger costs of 1/(W/K). Minimum TE system costs per watt generally coincide with maximum power points, but preferred TE design regimes are identified where there is little cost penalty for moving into regions of higher efficiency and slightly lower power outputs. These regimes are closely tied to previously identified low cost design regimes. This work shows that the optimum fill factor F opt minimizing system costs decreases as heat losses increase, and increases as exhaust mass flow rate and heat exchanger effectiveness increase. These findings have profound implications on the design and operation of various TE waste heat recovery systems. This work highlights the importance of heat exchanger costs on the overall TEG system costs, quantifies the possible TEG performance-cost domain space based on heat exchanger effects, and provides a focus for future system research and development efforts.

  11. Preliminary design package for residential heating/cooling system: Rankine air conditioner redesign

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A summary of the preliminary redesign and development of a marketable single family heating and cooling system is presented. The interim design and schedule status of the residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities were discussed. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  12. Preliminary design package for solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Two prototype solar heating and hot water systems for use in single-family dwellings or commercial buildings were designed. Subsystems included are: collector, storage, transport, hot water, auxiliary energy, and government-furnished site data acquisition. The systems are designed for Yosemite, California, and Pueblo, Colorado. The necessary information to evaluate the preliminary design for these solar heating and hot water systems is presented. Included are a proposed instrumentation plan, a training program, hazard analysis, preliminary design drawings, and other information about the design of the system.

  13. Stirling heat pump external heat systems: An appliance perspective

    NASA Astrophysics Data System (ADS)

    Vasilakis, A. D.; Thomas, J. F.

    1992-08-01

    A major issue facing the Stirling Engine Heat Pump is system cost, and, in particular, the cost of the External Heat System (EHS). The need for high temperature at the heater head (600 C to 700 C) results in low combustion system efficiencies unless efficient heat recovery is employed. The balance between energy efficiency and use of costly high temperature materials is critical to design and cost optimization. Blower power consumption and NO(x) emissions are also important. A new approach to the design and cost optimization of the EHS system was taken by viewing the system from a natural gas-fired appliance perspective. To develop a design acceptable to gas industry requirements, American National Standards Institute (ANSI) code considerations were incorporated into the design process and material selections. A parametric engineering design and cost model was developed to perform the analysis, including the impact of design on NO(x) emissions. Analysis results and recommended EHS design and material choices are given.

  14. Design package for a complete residential solar space heating and hot water system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information necessary to evaluate the design of a solar space heating and hot water system is reported. System performance specifications, the design data brochure, the system description, and other information pertaining to the design are included.

  15. Mind the gap - Deriving a compatible user mental model of the home heating system to encourage sustainable behaviour.

    PubMed

    Revell, Kirsten M A; Stanton, Neville A

    2016-11-01

    Householders' behaviour with their home heating systems is a considerable contributor to domestic energy consumption. To create a design specification for the 'scaffolding' needed for sustainable behaviour with home heating controls, Norman's (1986) Gulf of Execution and Evaluation was applied to the home heating system. A Home Heating Design Model (DM) was produced with a home heating expert. Norman's (1986) 7 Stages of Activity were considered to derive a Compatible User Mental Model (CUMM) of a typical Heating System. Considerable variation in the concepts needed at each stage was found. Elements that could be derived from the DM supported stages relating to action specification, execution, perception and interpretation, but many are not communicated in the design of typical heating controls. Stages relating to goals, intentions and evaluation required concepts beyond the DM. A systems view that tackles design for sustainable behaviour from a variety of levels is needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The Design and Testing of the LSSIF Advanced Thermal Control System

    NASA Technical Reports Server (NTRS)

    Henson, Robert A.; Keller, John R.

    1995-01-01

    The Life Support Systems Integration Facility (LSSIF) provides a platform to design and evaluate advanced manned space systems at NASA Johnson Space Center (JSC). The LSSIF Early Human Testing Initiative requires the integration of such subsystems to enable human occupancy of the 6 meter chamber for a 90 day closed volume test. The Advanced Thermal Control System (TCS) is an important component of the integrated system by supplying coolant to the subsystems within the chamber, such as the Air Revitalization System. The TCS incorporates an advanced high efficiency, heat pump to reject waste heat from the chamber to an external sink or 'lift' temperature that emulates a Lunar environment. The heat pump is the High Lift Heat Pump, developed by Foster-Miller, Inc., and is the main test article of the TCS. The heat pump prototype utilizes a non-CFC refrigerant in a design where the thermal requirements exceed existing terrestrial technology. These operating requirements provide a unique opportunity to design and test an advanced integrated thermal system and the associated controls. The design, control, and systems integration of the heat pump and the TCS also have terrestrial technology application. This paper addresses the design of the TCS and the heat pump, along with the control scheme to fully test the heat pump. Design approaches utilized in the LSSIF TCS are promoted for implementation in terrestrial thermal systems. The results of the preliminary thermal and fluid analyses used to develop the control of the thermal systems will also be discussed. The paper includes objectives for the 90 day human test and the test setup. Finally, conclusions will be drawn and recommendations for Earth design application are submitted.

  17. The embodiment design of the heat rejection system for the portable life support system

    NASA Technical Reports Server (NTRS)

    Stuckwisch, Sue; Francois, Jason; Laughlin, Julia; Phillips, Lee; Carrion, Carlos A.

    1994-01-01

    The Portable Life Support System (PLSS) provides a suitable environment for the astronaut in the Extravehicular Mobility Unit (EMU), and the heat rejection system controls the thermal conditions in the space suit. The current PLSS sublimates water to the space environment; therefore, the system loses mass. Since additional supplies of fluid must be available on the Space Shuttle, NASA desires a closed heat rejecting system. This document presents the embodiment design for a radiative plate heat rejection system without mass transfer to the space environment. This project will transform the concept variant into a design complete with material selection, dimensions of the system, layouts of the heat rejection system, suggestions for manufacturing, and financial viability.

  18. Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive

    NASA Technical Reports Server (NTRS)

    Hendricks, Terry J.; Yee, Shannon; LeBlanc, Saniya

    2015-01-01

    Cost is equally important to power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG) in many transportation and industrial energy recovery applications. In many cases the system design that minimizes cost (e.g., the $/W value) can be very different than the design that maximizes the system's efficiency or power density, and it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent cost analysis work and using more detailed system modeling, an enhanced cost scaling analysis of a waste heat recovery thermoelectric generator with more detailed, coupled treatment of the heat exchangers has been performed. In this analysis, the effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances that maximize power output are considered. This coupled thermal and thermoelectric treatment of the exhaust waste heat recovery thermoelectric generator yields modified cost scaling and design optimization equations, which are now strongly dependent on the heat leakage fraction, exhaust mass flow rate, and heat exchanger effectiveness. This work shows that heat exchanger costs most often dominate the overall TE system costs, that it is extremely difficult to escape this regime, and in order to achieve TE system costs of $1/W it is necessary to achieve heat exchanger costs of $1/(W/K). Minimum TE system costs per watt generally coincide with maximum power points, but Preferred TE Design Regimes are identified where there is little cost penalty for moving into regions of higher efficiency and slightly lower power outputs. These regimes are closely tied to previously-identified low cost design regimes. This work shows that the optimum fill factor Fopt minimizing system costs decreases as heat losses increase, and increases as exhaust mass flow rate and heat exchanger effectiveness increase. These findings have profound implications on the design and operation of various thermoelectric (TE) waste heat 3 recovery systems. This work highlights the importance of heat exchanger costs on the overall TEG system costs, quantifies the possible TEG performance-cost domain space based on heat exchanger effects, and provides a focus for future system research and development efforts.

  19. Energy Integrated Design of Lighting, Heating, and Cooling Systems, and Its Effect on Building Energy Requirements.

    ERIC Educational Resources Information Center

    Meckler, Gershon

    Comments on the need for integrated design of lighting, heating, and cooling systems. In order to eliminate the penalty of refrigerating the lighting heat, minimize the building non-usable space, and optimize the total energy input, a "systems approach" is recommended. This system would employ heat-recovery techniques based on the ability of the…

  20. Introduction to solar heating and cooling design and sizing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This manual is designed to introduce the practical aspects of solar heating/cooling systems to HVAC contractors, architects, engineers, and other interested individuals. It is intended to enable readers to assess potential solar heating/cooling applications in specific geographical areas, and includes tools necessary to do a preliminary design of the system and to analyze its economic benefits. The following are included: the case for solar energy; solar radiation and weather; passive solar design; system characteristics and selection; component performance criteria; determining solar system thermal performance and economic feasibility; requirements, availability, and applications of solar heating systems; and sources of additional information.more » (MHR)« less

  1. Heat Pipe Powered Stirling Conversion for the Demonstration Using Flattop Fission (DUFF) Test

    NASA Technical Reports Server (NTRS)

    Gibson, Marc A.; Briggs, Maxwell H.; Sanzi, James L.; Brace, Michael H.

    2013-01-01

    Design concepts for small Fission Power Systems (FPS) have shown that heat pipe cooled reactors provide a passive, redundant, and lower mass option to transfer heat from the fuel to the power conversion system, as opposed to pumped loop designs typically associated with larger FPS. Although many systems have been conceptually designed and a few making it to electrically heated testing, none have been coupled to a real nuclear reactor. A demonstration test named DUFF Demonstration Using Flattop Fission, was planned by the Los Alamos National Lab (LANL) to use an existing criticality experiment named Flattop to provide the nuclear heat source. A team from the NASA Glenn Research Center designed, built, and tested a heat pipe and power conversion system to couple to Flattop with the end goal of making electrical power. This paper will focus on the design and testing performed in preparation for the DUFF test.

  2. Stirling heat pump external heat systems - An appliance perspective

    NASA Astrophysics Data System (ADS)

    Vasilakis, Andrew D.; Thomas, John F.

    A major issue facing the Stirling Engine Heat Pump is system cost, and, in particular, the cost of the External Heat System (EHS). The need for high temperature at the heater head (600 C to 700 C) results in low combustion system efficiencies unless efficient heat recovery is employed. The balance between energy efficiency and use of costly high temperature materials is critical to design and cost optimization. Blower power consumption and NO(x) emissions are also important. A new approach to the design and cost optimization of the EHS was taken by viewing the system from a natural gas-fired appliance perspective. To develop a design acceptable to gas industry requirements, American National Standards Institute (ANSI) code considerations were incorporated into the design process and material selections. A parametric engineering design and cost model was developed to perform the analysis, including the impact of design on NO(x) emissions. Analysis results and recommended EHS design and material choices are given.

  3. Preliminary design package for prototype solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A summary is given of the preliminary analysis and design activity on solar heating and cooling systems. The analysis was made without site specific data other than weather; therefore, the results indicate performance expected under these special conditions. Major items include a market analysis, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. Two heating and six heating and cooling units will be delivered for Single Family Residences, Multiple-family Residences and commercial applications.

  4. Preliminary design package for prototype solar heating system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A summary is given of the preliminary analysis and design activity on solar heating systems. The analysis was made without site specific data other than weather; therefore, the results indicate performance expected under these special conditions. Major items include system candidates, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test.

  5. Experimental analysis of direct-expansion ground-coupled heat pump systems

    NASA Astrophysics Data System (ADS)

    Mei, V. C.; Baxter, V. D.

    1991-09-01

    Direct-expansion ground-coil-coupled (DXGC) heat pump systems have certain energy efficiency advantages over conventional ground-coupled heat pump (GCHP) systems. Principal among these advantages are that the secondary heat transfer fluid heat exchanger and circulating pump are eliminated. While the DXGC concept can produce higher efficiencies, it also produces more system design and environmental problems (e.g., compressor starting, oil return, possible ground pollution, and more refrigerant charging). Furthermore, general design guidelines for DXGC systems are not well documented. A two-pronged approach was adopted for this study: (1) a literature survey, and (2) a laboratory study of a DXGC heat pump system with R-22 as the refrigerant, for both heating and cooling mode tests done in parallel and series tube connections. The results of each task are described in this paper. A set of general design guidelines was derived from the test results and is also presented.

  6. Solar-heating and cooling system design package

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Package of information includes design data, performance specifications, drawings, hazard analysis, and spare parts list for commercially produced system installed in single-family dwelling in Akron, Ohio. System uses air flat-plate collectors, 12000 kg rock storage and backup heat pump. Solar portion requires 0.7 kW, and provides 35% of average total heating load including hot water. Information aids persons considering installing solar home-heating systems.

  7. SIMS prototype system 1: Design data brochure. [solar heating system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A prototype solar heating and hot water system using air as the collector fluid and a pebble bed for heat storage was designed for installation into a single family dwelling. The system, subsystem, and installation requirements are described. System operation and performance are discussed, and procedures for sizing the system to a specific site are presented.

  8. Stirling engine external heat system design with heat pipe heater

    NASA Technical Reports Server (NTRS)

    Godett, Ted M.; Ziph, Benjamin

    1986-01-01

    This final report presents the conceptual design of a liquid fueled external heating system (EHS) and the preliminary design of a heat pipe heater for the STM-4120 Stirling cycle engine, to meet the Air Force mobile electric power (MEP) requirement for units in the range of 20 to 60 kW. The EHS design had the following constraints: (1) Packaging requirements limited the overall system dimensions to about 330 mm x 250 mm x 100 mm; (2) Heat flux to the sodium heat pipe evaporator was limited to an average of 100 kW/m and a maximum of 550 kW/m based on previous experience; and (3) The heat pipe operating temperature was specified to be 800 C based on heat input requirements of the STM4-120. An analysis code was developed to optimize the EHS performance parameters and an analytical development of the sodium heat pipe heater was performed; both are presented and discussed. In addition, construction techniques were evaluated and scale model heat pipe testing performed.

  9. Modeling induction heater temperature distribution in polymeric material

    NASA Astrophysics Data System (ADS)

    Sorokin, A. G.; Filimonova, O. V.

    2017-10-01

    An induction heating system has a number of inherent benefits compared to traditional heating systems due to a non-contact heating process. The main interesting area of the induction heating process is the efficiency of the usage of energy, choice of the plate material and different coil configurations based on application. Correctly designed, manufactured and maintained induction coils are critical to the overall efficiency of induction heating solutions. The paper describes how the induction heating system in plastic injection molding is designed. The use of numerical simulation in order to get the optimum design of the induction coil is shown. The purpose of this work is to consider various coil configurations used in the induction heating process, which is widely used in plastic molding. Correctly designed, manufactured and maintained induction coils are critical to the overall efficiency of induction heating solutions. The results of calculation are in the numerical model.

  10. Design of a heat pipe governed thermal control system for the Solar Electric Propulsion Stage /SEPS/

    NASA Technical Reports Server (NTRS)

    Ruttner, L. E.; Wright, J. P.

    1975-01-01

    A 2200-w capacity spacecraft heat rejection system designed for the SEPS and utilizing heat pipe radiator panels has been investigated. The total thermal control system consists of two radiator panels connected to the heat source by variable conductance heat pipes (VCHP's). The system was designed to operate in the 223 to 333 temperature range. The radiators have an emittance of 0.88 at their operational temperature and a fin efficiency of approximately 80 percent. The radiators are thermally isolated from the SEPS and environment by multilayer insulation and thermal shields. Butane was selected as the working fluid for the VCHP because of its low freezing point (135), which is necessary to prevent diffusion freezeout of the liquid during the cold outbond missions. Helium was selected for the control gas. This paper describes the VCHP system, discusses the system design parameters and presents the results of the analyses.

  11. Teaching the design of thermal systems using equation solvers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garimella, S.

    1999-07-01

    Teaching the design of thermal systems requires an integrated approach that treats subjects such as thermodynamics, fluid mechanics, and heat transfer as parts of one interconnected area, in which appropriate solutions to real-life design and analysis problems can be obtained only when all these aspects are considered simultaneously. This approach must be implemented through open-ended homework problems and design project-oriented teaching. Topics related to HVAC and other thermal systems that must be addressed include fluid flow networks, heat exchanger design, design and selection of pumps, fans and compressors, heat recovery systems, psychrometrics, air-conditioning systems, electronic cooling systems, fuels and combustion,more » solar thermal systems, and power plant design. A course that teaches the design of such systems and the wide array of thermal science applications is described in this paper.« less

  12. A Procedure for the Design of Air-Heated Ice-Prevention Systems

    NASA Technical Reports Server (NTRS)

    Neel, C. B.

    1954-01-01

    A procedure proposed for use in the design of air-heated systems for the continuous prevention of ice formation on airplane components is set forth. Required heat-transfer and air-pressure-loss equations are presented, and methods of selecting appropriate meteorological conditions for flight over specified geographical areas and for the calculation of water-drop-impingement characteristics are suggested. In order to facilitate the design, a simple electrical analogue was devised which solves the complex heat-transfer relationships existing in the thermal-system analysis. The analogue is described and an illustration of its application to design is given.

  13. Solar heating system installed at Stamford, Connecticut

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar heating system installed at the Lutz-Sotire Partnership Executive East Office Building, Stamford, Connecticut is described. The Executive East Office Building is of moderate size with 25,000 sq ft of heated space in 2 1/2 stories. The solar system was designed to provide approximately 50 percent of the heating requirements. The system components are described. Appended data includes: the system design acceptance test, the operation and maintenance manual, and as-built drawings and photographs.

  14. Heat Rejection Concepts for Lunar Fission Surface Power Applications

    NASA Technical Reports Server (NTRS)

    Siamidis, John

    2006-01-01

    This paper describes potential heat rejection design concepts for lunar surface Brayton power conversion systems. Brayton conversion systems are currently under study by NASA for surface power applications. Surface reactors may be used for the moon to power human outposts enabling extended stays and closed loop life support. The Brayton Heat Rejection System (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Space Brayton conversion system designs tend to optimize at efficiencies of about 20 to 25 percent with radiator temperatures in the 400 K to 600 K range. A notional HRS was developed for a 100 kWe-class Brayton power system that uses a pumped water heat transport loop coupled to a water heat pipe radiator. The radiator panels employ a tube and fin construction consisting of regularly-spaced circular heat pipes contained within two composite facesheets. The water heat pipes interface to the coolant through curved sections partially contained within the cooling loop. The paper evaluates various design parameters including radiator panel orientation, coolant flow path, and facesheet thickness. Parameters were varied to compare design options on the basis of H2O pump pressure rise and required power, heat pipe unit power and radial flux, radiator area, radiator panel areal mass, and overall HRS mass.

  15. Residential solar-heating system-design package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Design package for modular solar heating system includes performance specifications, design data, installation guidelines, and other information that should be valuable to those interested in system (or similar systems) for projected installation. When installed in insulated "energy saver" home, system can supply large percentage of total energy needs of building.

  16. Large Efficient Intelligent Heating Relay Station System

    NASA Astrophysics Data System (ADS)

    Wu, C. Z.; Wei, X. G.; Wu, M. Q.

    2017-12-01

    The design of large efficient intelligent heating relay station system aims at the improvement of the existing heating system in our country, such as low heating efficiency, waste of energy and serious pollution, and the control still depends on the artificial problem. In this design, we first improve the existing plate heat exchanger. Secondly, the ATM89C51 is used to control the whole system and realize the intelligent control. The detection part is using the PT100 temperature sensor, pressure sensor, turbine flowmeter, heating temperature, detection of user end liquid flow, hydraulic, and real-time feedback, feedback signal to the microcontroller through the heating for users to adjust, realize the whole system more efficient, intelligent and energy-saving.

  17. Design of stationary PEFC system configurations to meet heat and power demands

    NASA Astrophysics Data System (ADS)

    Wallmark, Cecilia; Alvfors, Per

    This paper presents heat and power efficiencies of a modeled PEFC system and the methods used to create the system configuration. The paper also includes an example of a simulated fuel cell system supplying a building in Sweden with heat and power. The main method used to create an applicable fuel cell system configuration is pinch technology. This technology is used to evaluate and design a heat exchanger network for a PEFC system working under stationary conditions, in order to find a solution with high heat utilization. The heat exchanger network in the system connecting the reformer, the burner, gas cleaning, hot-water storage and the PEFC stack will affect the heat transferred to the hot-water storage and thereby the heating of the building. The fuel, natural gas, is reformed to a hydrogen-rich gas within a slightly pressurized system. The fuel processor investigated is steam reforming, followed by high- and low-temperature shift reactors and preferential oxidation. The system is connected to the electrical grid for backup and peak demands and to a hot-water storage to meet the varying heat demand for the building. The procedure for designing the fuel cell system installation as co-generation system is described, and the system is simulated for a specific building in Sweden during 1 year. The results show that the fuel cell system in combination with a burner and hot-water storage could supply the building with the required heat without exceeding any of the given limitations. The designed co-generation system will provide the building with most of its power requirements and would further generate income by sale of electricity to the power grid.

  18. Analysis and Experimental Investigation of Optimum Design of Thermoelectric Cooling/Heating System for Car Seat Climate Control (CSCC)

    NASA Astrophysics Data System (ADS)

    Elarusi, Abdulmunaem; Attar, Alaa; Lee, HoSung

    2018-02-01

    The optimum design of a thermoelectric system for application in car seat climate control has been modeled and its performance evaluated experimentally. The optimum design of the thermoelectric device combining two heat exchangers was obtained by using a newly developed optimization method based on the dimensional technique. Based on the analytical optimum design results, commercial thermoelectric cooler and heat sinks were selected to design and construct the climate control heat pump. This work focuses on testing the system performance in both cooling and heating modes to ensure accurate analytical modeling. Although the analytical performance was calculated using the simple ideal thermoelectric equations with effective thermoelectric material properties, it showed very good agreement with experiment for most operating conditions.

  19. Brayton cycle heat exchanger and duct assembly (HXDA, preliminary design and technology tests

    NASA Technical Reports Server (NTRS)

    Coombs, M. G.; Morse, C. J.; Graves, R. F.; Gibson, J. C.

    1972-01-01

    A preliminary design of the heat exchanger and duct assembly (HXDA) for a 60 kwe, closed loop, Brayton cycle space power system is presented. This system is weight optimized within the constraints imposed by the defined structural and operational requirements. Also presented are the results of several small scale tests, directed to obtaining specific design data and/or the resolution of a design approach for long life Brayton cycle heat exchanger systems.

  20. Preliminary design package for Sunspot Domestic Hot Water Heating System

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design review includes a drawing list, auto-control logic, measurement definitions, and other document pertaining to the solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control transport, auxiliary energy, and site data acquisition.

  1. Heat pipe radiator. [for spacecraft waste heat rejection

    NASA Technical Reports Server (NTRS)

    Swerdling, B.; Alario, J.

    1973-01-01

    A 15,000 watt spacecraft waste heat rejection system utilizing heat pipe radiator panels was investigated. Of the several concepts initially identified, a series system was selected for more in-depth analysis. As a demonstration of system feasibility, a nominal 500 watt radiator panel was designed, built and tested. The panel, which is a module of the 15,000 watt system, consists of a variable conductance heat pipe (VCHP) header, and six isothermalizer heat pipes attached to a radiating fin. The thermal load to the VCHP is supplied by a Freon-21 liquid loop via an integral heat exchanger. Descriptions of the results of the system studies and details of the radiator design are included along with the test results for both the heat pipe components and the assembled radiator panel. These results support the feasibility of using heat pipes in a spacecraft waste heat rejection system.

  2. Membrane-Based Absorption Refrigeration Systems: Nanoengineered Membrane-Based Absorption Cooling for Buildings Using Unconcentrated Solar & Waste Heat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    BEETIT Project: UFL is improving a refrigeration system that uses low quality heat to provide the energy needed to drive cooling. This system, known as absorption refrigeration system (ARS), typically consists of large coils that transfer heat. Unfortunately, these large heat exchanger coils are responsible for bulkiness and high cost of ARS. UFL is using new materials as well as system design innovations to develop nanoengineered membranes to allow for enhanced heat exchange that reduces bulkiness. UFL’s design allows for compact, cheaper and more reliable use of ARS that use solar or waste heat.

  3. Design of a nuclear isotope heat source assembly for a spaceborne mini-Brayton power module.

    NASA Technical Reports Server (NTRS)

    Wein, D.; Gorland, S. H.

    1973-01-01

    Results of a study to develop a feasible design definition of a heat source assembly (HSA) for use in nominal 500-, 1200-, or 2000-W(e) mini-Brayton spacecraft power systems. The HSA is a modular design which is used either as a single unit to provide thermal energy to the 500-W(e) mini-Brayton power module or in parallel with one or two additional HSAs for the 1200- or 2000-W(e) power module systems. Principal components consist of a multihundred watt RTG isotope heat source, a heat source heat exchanger which transfers the thermal energy from the heat source to the mini-Brayton power conversion system, an auxiliary cooling system which provides requisite cooling during nonoperation of the power conversion module and an emergency cooling system which precludes accidental release of isotope fuel in the event of system failure.

  4. Heating and Cooling System Design for a Modern Transportable Container

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Jason E.

    Sandia National Laboratories (SNL) has been tasked with the design of a modern transportable container (MTC) for use in high reliability transportation environments. The container is required to transport cargo capable of generating its own heat and operate under the United States’ climatic extremes. In response to these requirements, active heating and cooling is necessary to maintain a controlled environment inside the container. The following thesis project documents the design of an active heating, active cooling, and combined active heating and cooling system (now referred to as active heating and cooling systems) through computational thermal analyses, scoping of commercial systemmore » options, and mechanical integration with the container’s structure.« less

  5. DEVELOPMENT OF A SOFTWARE DESIGN TOOL FOR HYBRID SOLAR-GEOTHERMAL HEAT PUMP SYSTEMS IN HEATING- AND COOLING-DOMINATED BUILDINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yavuzturk, C. C.; Chiasson, A. D.; Filburn, T. P.

    This project provides an easy-to-use, menu-driven, software tool for designing hybrid solar-geothermal heat pump systems (GHP) for both heating- and cooling-dominated buildings. No such design tool currently exists. In heating-dominated buildings, the design approach takes advantage of glazed solar collectors to effectively balance the annual thermal loads on the ground with renewable solar energy. In cooling-dominated climates, the design approach takes advantage of relatively low-cost, unglazed solar collectors as the heat rejecting component. The primary benefit of hybrid GHPs is the reduced initial cost of the ground heat exchanger (GHX). Furthermore, solar thermal collectors can be used to balance themore » ground loads over the annual cycle, thus making the GHX fully sustainable; in heating-dominated buildings, the hybrid energy source (i.e., solar) is renewable, in contrast to a typical fossil fuel boiler or electric resistance as the hybrid component; in cooling-dominated buildings, use of unglazed solar collectors as a heat rejecter allows for passive heat rejection, in contrast to a cooling tower that consumes a significant amount of energy to operate, and hybrid GHPs can expand the market by allowing reduced GHX footprint in both heating- and cooling-dominated climates. The design tool allows for the straight-forward design of innovative GHP systems that currently pose a significant design challenge. The project lays the foundations for proper and reliable design of hybrid GHP systems, overcoming a series of difficult and cumbersome steps without the use of a system simulation approach, and without an automated optimization scheme. As new technologies and design concepts emerge, sophisticated design tools and methodologies must accompany them and be made usable for practitioners. Lack of reliable design tools results in reluctance of practitioners to implement more complex systems. A menu-driven software tool for the design of hybrid solar GHP systems is provided that is based on mathematically robust, validated models. An automated optimization tool is used to balance ground loads and incorporated into the simulation engine. With knowledge of the building loads, thermal properties of the ground, the borehole heat exchanger configuration, the heat pump peak hourly and seasonal COP for heating and cooling, the critical heat pump design entering fluid temperature, and the thermal performance of a solar collector, the total GHX length can be calculated along with the area of a supplemental solar collector array and the corresponding reduced GHX length. An economic analysis module allows for the calculation of the lowest capital cost combination of solar collector area and GHX length. ACKNOWLEDGMENTS This project was funded by the United States Department of Energy DOE-DE-FOA-0000116, Recovery Act Geothermal Technologies Program: Ground Source Heat Pumps. The lead contractor, The University of Hartford, was supported by The University of Dayton, and the Oak Ridge National Laboratories. All funding and support for this project as well as contributions of graduate and undergraduate students from the contributing institutions are gratefully acknowledged.« less

  6. Solar heating and cooling system design and development

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The progress of the program during the sixth program quarter is reported. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. The William O'Brien single-family heating system was installed and is operational. The New Castle single-family heating residence is under construction. The Kansas University (KU) system is in the final design stages. The 25 ton cooling subsystem for KU is the debugging stage. Pressure drops that were greater than anticipated were encountered. The 3 ton simulation work is being finalized and the design parameters for the Rankine system were determined from simulation output.

  7. A heat receiver design for solar dynamic space power systems

    NASA Technical Reports Server (NTRS)

    Baker, Karl W.; Dustin, Miles O.; Crane, Roger

    1990-01-01

    An advanced heat pipe receiver designed for a solar dynamic space power system is described. The power system consists of a solar concentrator, solar heat receiver, Stirling heat engine, linear alternator and waste heat radiator. The solar concentrator focuses the sun's energy into a heat receiver. The engine and alternator convert a portion of this energy to electric power and the remaining heat is rejected by a waste heat radiator. Primary liquid metal heat pipes transport heat energy to the Stirling engine. Thermal energy storage allows this power system to operate during the shade portion of an orbit. Lithium fluoride/calcium fluoride eutectic is the thermal energy storage material. Thermal energy storage canisters are attached to the midsection of each heat pipe. The primary heat pipes pass through a secondary vapor cavity heat pipe near the engine and receiver interface. The secondary vapor cavity heat pipe serves three important functions. First, it smooths out hot spots in the solar cavity and provides even distribution of heat to the engine. Second, the event of a heat pipe failure, the secondary heat pipe cavity can efficiently transfer heat from other operating primary heat pipes to the engine heat exchanger of the defunct heat pipe. Third, the secondary heat pipe vapor cavity reduces temperature drops caused by heat flow into the engine. This unique design provides a high level of reliability and performance.

  8. Strategy Guideline: HVAC Equipment Sizing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdick, A.

    The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understandingmore » of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.« less

  9. Prototype solar heating and combined heating cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The design and development of eight prototype solar heating and combined heating and cooling systems is discussed. The program management and systems engineering are reported, and operational test sites are identified.

  10. Development and Evaluation of Active Thermal Management System for Lithium-Ion Batteries using Solid-State Thermoelectric Heat Pump and Heat Pipes with Electric Vehicular Applications

    NASA Astrophysics Data System (ADS)

    Parekh, Bhaumik Kamlesh

    Lithium-Ion batteries have become a popular choice for use in energy storage systems in electric vehicles (EV) and Hybrid electric vehicles (HEV) because of high power and high energy density. But the use of EV and HEV in all climates demands for a battery thermal management system (BTMS) since temperature effects their performance, cycle life and, safety. Hence the BTMS plays a crucial role in the performance of EV and HEV. In this paper, three thermal management systems are studied: (a) simple aluminum as heat spreader material, (b) heat pipes as heat spreader, and (c) advanced combined solid state thermoelectric heat pump (TE) and heat pipe system; these will be subsequently referred to as Design A, B and C, respectively. A detailed description of the designs and the experimental setup is presented. The experimental procedure is divided into two broad categories: Cooling mode and Warming-up mode. Cooling mode covers the conditions when a BTMS is responsible to cool the battery pack through heat dissipation and Warming-up mode covers the conditions when the BTMS is responsible to warm the battery pack in a low temperature ambient condition, maintaining a safe operating temperature of the battery pack in both modes. The experimental procedure analyzes the thermal management system by evaluating the effect of each variable like heat sink area, battery heat generation rate, cooling air temperature, air flow rate and TE power on parameters like maximum temperature of the battery pack (T max), maximum temperature difference (DeltaT) and, heat transfer through heat sink/cooling power of TE (Q c). The results show that Design C outperforms Design A and Design B in spite of design issues which reduce its efficiency, but can still be improved to achieve better performance.

  11. THERMAL DESIGN OF THE ITER VACUUM VESSEL COOLING SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbajo, Juan J; Yoder Jr, Graydon L; Kim, Seokho H

    RELAP5-3D models of the ITER Vacuum Vessel (VV) Primary Heat Transfer System (PHTS) have been developed. The design of the cooling system is described in detail, and RELAP5 results are presented. Two parallel pump/heat exchanger trains comprise the design one train is for full-power operation and the other is for emergency operation or operation at decay heat levels. All the components are located inside the Tokamak building (a significant change from the original configurations). The results presented include operation at full power, decay heat operation, and baking operation. The RELAP5-3D results confirm that the design can operate satisfactorily during bothmore » normal pulsed power operation and decay heat operation. All the temperatures in the coolant and in the different system components are maintained within acceptable operating limits.« less

  12. Optimum systems design with random input and output applied to solar water heating

    NASA Astrophysics Data System (ADS)

    Abdel-Malek, L. L.

    1980-03-01

    Solar water heating systems are evaluated. Models were developed to estimate the percentage of energy supplied from the Sun to a household. Since solar water heating systems have random input and output queueing theory, birth and death processes were the major tools in developing the models of evaluation. Microeconomics methods help in determining the optimum size of the solar water heating system design parameters, i.e., the water tank volume and the collector area.

  13. 46 CFR 130.220 - Design of equipment for cooking and heating.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Design of equipment for cooking and heating. 130.220 Section 130.220 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS VESSEL CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Miscellaneous Equipment and Systems § 130.220 Design of equipment for cooking and heating....

  14. 46 CFR 130.220 - Design of equipment for cooking and heating.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Design of equipment for cooking and heating. 130.220 Section 130.220 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS VESSEL CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Miscellaneous Equipment and Systems § 130.220 Design of equipment for cooking and heating....

  15. IEA/SPS 500 kW distributed collector system

    NASA Technical Reports Server (NTRS)

    Neumann, T. W.; Hartman, C. D.

    1980-01-01

    Engineering studies for an International Energy Agency project for the design and construction of a 500 kW solar thermal electric power generation system of the distributed collector system (DCS) type are reviewed. The DCS system design consists of a mixed field of parabolic trough type solar collectors which are used to heat a thermal heat transfer oil. Heated oil is delivered to a thermocline storage tank from which heat is extracted and delivered to a boiler by a second heat transfer loop using the same heat transfer oil. Steam is generated in the boiler, expanded through a steam turbine, and recirculated through a condenser system cooled by a wet cooling tower.

  16. The New S-RAM Air Variable Compressor/Expander for Heat Pump and Waste Heat to Power Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehoff, Ryan R; Jestings, Lee; Conde, Ricardo

    S-RAM Dynamics (S-RAM) has designed an innovative heat pump system targeted for commercial and industrial applications. This new heat pump system is more efficient than anything currently on the market and utilizes air as the refrigerant instead of hydrofluorocarbon (HFC) refrigerants, leading to lower operating costs, minimal environmental costs or concerns, and lower maintenance costs. The heat pumps will be manufactured in the United States. This project was aimed at determining the feasibility of utilizing additive manufacturing to make the heat exchanger device for the new heat pump system. ORNL and S-RAM Dynamics collaborated on determining the prototype performance andmore » subsequently printing of the prototype using additive manufacturing. Complex heat exchanger designs were fabricated using the Arcam electron beam melting (EBM) powder bed technology using Ti-6Al-4V material. An ultrasonic welding system was utilized in order to remove the powder from the small openings of the heat exchanger. The majority of powder in the small chambers was removed, however, the amount of powder remaining in the heat exchanger was a function of geometry. Therefore, only certain geometries of heat exchangers could be fabricated. SRAM Dynamics evaluated a preliminary heat exchanger design. Although the results of the additive manufacturing of the heat exchanger were not optimum, a less complex geometry was demonstrated. A sleeve valve was used as a demonstration piece, as engine designs from S-RAM Dynamics require the engine to have a very high density. Preliminary designs of this geometry were successfully fabricated using the EBM technology.« less

  17. Thermal Storage System for Electric Vehicle Cabin Heating Component and System Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaClair, Tim J; Gao, Zhiming; Abdelaziz, Omar

    Cabin heating of current electric vehicle (EV) designs is typically provided using electrical energy from the traction battery, since waste heat is not available from an engine as in the case of a conventional automobile. In very cold climatic conditions, the power required for space heating of an EV can be of a similar magnitude to that required for propulsion of the vehicle. As a result, its driving range can be reduced very significantly during the winter season, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to themore » EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage from an advanced phase change material (PCM) has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The present paper focuses on the modeling and analysis of this electrical PCM-Assisted Thermal Heating System (ePATHS) and is a companion to the paper Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating. A detailed heat transfer model was developed to simulate the PCM heat exchanger that is at the heart of the ePATHS and was subsequently used to analyze and optimize its design. The results from this analysis were integrated into a MATLAB Simulink system model to simulate the fluid flow, pressure drop and heat transfer in all components of the ePATHS. The system model was then used to predict the performance of the climate control system in the vehicle and to evaluate control strategies needed to achieve the desired temperature control in the cabin. The analysis performed to design the ePATHS is described in detail and the system s predicted performance in a vehicle HVAC system is presented.« less

  18. Simulation of the thermal performance of a hybrid solar-assisted ground-source heat pump system in a school building

    NASA Astrophysics Data System (ADS)

    Androulakis, N. D.; Armen, K. G.; Bozis, D. A.; Papakostas, K. T.

    2018-04-01

    A hybrid solar-assisted ground-source heat pump (SAGSHP) system was designed, in the frame of an energy upgrade study, to serve as a heating system in a school building in Greece. The main scope of this study was to examine techniques to reduce the capacity of the heating equipment and to keep the primary energy consumption low. Simulations of the thermal performance of both the building and of five different heating system configurations were performed by using the TRNSYS software. The results are presented in this work and show that the hybrid SAGSHP system displays the lower primary energy consumption among the systems examined. A conventional ground-source heat pump system has the same primary energy consumption, while the heat pump's capacity is double and the ground heat exchanger 2.5 times longer. This work also highlights the contribution of simulation tools to the design of complex heating systems with renewable energy sources.

  19. Design of a pool boiler heat transport system for a 25 kWe advanced Stirling conversion system

    NASA Technical Reports Server (NTRS)

    Anderson, W. G.; Rosenfeld, J. H.; Noble, J.; Kesseli, J.

    1991-01-01

    The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding a heat transport system to more uniformly supply heat to the heater head tubes. One heat transport system with favorable characteristics is an alkali metal pool boiler. An alkali metal pool boiler heat transport system was designed for a 25-kW advanced Stirling conversion system (ASCS). Solar energy concentrated on the absorber dome boils a eutectic mixture of sodium and potassium. The alkali metal vapors condense on the heater head tubes, supplying the Stirling engine with a uniform heat flux at a constant temperature. Boiling stability is achieved with the use of an enhanced boiling surface and noncondensible gas.

  20. Investigation of Vapor Cooling Enhancements for Applications on Large Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Ameen, Lauren; Zoeckler, Joseph

    2017-01-01

    The need to demonstrate and evaluate the effectiveness of heat interception methods for use on a relevant cryogenic propulsion stage at a system level has been identified. Evolvable Cryogenics (eCryo) Structural Heat Intercept, Insulation and Vibration Evaluation Rig (SHIIVER) will be designed with vehicle specific geometries (SLS Exploration Upper Stage (EUS) as guidance) and will be subjected to simulated space environments. One method of reducing structure-born heat leak being investigated utilizes vapor-based heat interception. Vapor-based heat interception could potentially reduce heat leak into liquid hydrogen propulsion tanks, increasing potential mission length or payload capability. Due to the high number of unknowns associated with the heat transfer mechanism and integration of vapor-based heat interception on a realistic large-scale skirt design, a sub-scale investigation was developed. The sub-project effort is known as the Small-scale Laboratory Investigation of Cooling Enhancements (SLICE). The SLICE aims to study, design, and test sub-scale multiple attachments and flow configuration concepts for vapor-based heat interception of structural skirts. SLICE will focus on understanding the efficiency of the heat transfer mechanism to the boil-off hydrogen vapor by varying the fluid network designs and configurations. Various analyses were completed in MATLAB, Excel VBA, and COMSOL Multiphysics to understand the optimum flow pattern for heat transfer and fluid dynamics. Results from these analyses were used to design and fabricate test article subsections of a large forward skirt with vapor cooling applied. The SLICE testing is currently being performed to collect thermal mechanical performance data on multiple skirt heat removal designs while varying inlet vapor conditions necessary to intercept a specified amount of heat for a given system. Initial results suggest that applying vapor-cooling provides a 50 heat reduction in conductive heat transmission along the skirt to the tank. The information obtained by SLICE will be used by the SHIIVER engineering team to design and implement vapor-based heat removal technology into the SHIIVER forward skirt hardware design.

  1. Subsystem design package for Mod 2 site data acquisition system: Solar heating and cooling

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Mod II Site Data Acquisition Subsystem (SDAS) is designed to collect data from sensors located on residential or commercial buildings using a solar heating and/or cooling system. The SDAS takes the data obtained from sensors located on the solar heating and/or cooling system, processes the data into a suitable format, stores the data for a period of time, and provides the capability for both telephone retrieval by the Central Data Processing System (CDPS) and manual retrieval of the data for transfer to the central site. The unit is designed so it will not degrade the operation of the solar heating/cooling system which it is monitoring.

  2. Study of Thermal Control Systems for orbiting power systems

    NASA Technical Reports Server (NTRS)

    Howell, H. R.

    1981-01-01

    Thermal control system designs were evaluated for the 25 kW power system. Factors considered include long operating life, high reliability, and meteoroid hazards to the space radiator. Based on a cost advantage, the bumpered pumped fluid radiator is recommended for the initial 25 kW power system and intermediate versions up to 50 kW. For advanced power systems with heat rejection rates above 50 kW the lower weight of the advanced heat pipe radiator offsets the higher cost and this design is recommended. The power system payloads heat rejection allocations studies show that a centralized heat rejection system is the most weight and cost effective approach. The thermal interface between the power system and the payloads was addressed and a concept for a contact heat exchanger that eliminates fluid transfer between the power system and the payloads was developed. Finally, a preliminary design of the thermal control system, with emphasis on the radiator and radiator deployment mechanism, is presented.

  3. Preliminary design of a radiator shading device for a lunar outpost

    NASA Technical Reports Server (NTRS)

    Barron, Carlos; Castro, Norma I.; Phillips, Brian

    1991-01-01

    The National Aeronautics and Space Administration is designing a thermal control system for an outpost to be placed permanently on the Moon. One of the functions of the thermal control system is to reject waste heat, which can be accomplished through a radiator. At the lunar equator and during the lunar midday, an unshaded radiator absorbs more heat than it rejects. This problem can be solved by using a shading device to reduce radiation incident on the radiator. The design team was asked to develop concepts for reducing the radiation incident on the radiator and for deploying the radiator and shade system for a 10 kW and a 25 kW heat rejection system. The design team was also asked to develop the best concepts into preliminary design. From the several alternatives developed by the design team, the best one was selected using a decision matrix. Preliminary design of the best concept include support structure, stress analyses, and thermal performance. In addition, the team developed ideas for removing lunar dust from the shading device. The final design solution consisted of a winged radiator shading system with a rail support structure and a scissors mechanism for deployment. The total radiator area required was calculated to be 389 sq m for the 10 kW heat rejection system and 973 sq m for the 25 kW heat rejection system.

  4. Solar hot water space heating system. Technical progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Dam, T

    1979-08-13

    A retrofit solar heating system was installed on Madison Hall at Jordan College, Cedar Springs, Michigan. The system provides heating and domestic water preheating for a campus dormitory. Freeze protection is provided by a draindown system. The building and solar system, construction progress, and design changes are described. Included in appendices are: condensate trap design, structural analysis, pictures of installation, operating instructions, maintenance instructions, and as-built drawings. (MHR)

  5. Optimization of Borehole Thermal Energy Storage System Design Using Comprehensive Coupled Simulation Models

    NASA Astrophysics Data System (ADS)

    Welsch, Bastian; Rühaak, Wolfram; Schulte, Daniel O.; Formhals, Julian; Bär, Kristian; Sass, Ingo

    2017-04-01

    Large-scale borehole thermal energy storage (BTES) is a promising technology in the development of sustainable, renewable and low-emission district heating concepts. Such systems consist of several components and assemblies like the borehole heat exchangers (BHE), other heat sources (e.g. solarthermics, combined heat and power plants, peak load boilers, heat pumps), distribution networks and heating installations. The complexity of these systems necessitates numerical simulations in the design and planning phase. Generally, the subsurface components are simulated separately from the above ground components of the district heating system. However, as fluid and heat are exchanged, the subsystems interact with each other and thereby mutually affect their performances. For a proper design of the overall system, it is therefore imperative to take into account the interdependencies of the subsystems. Based on a TCP/IP communication we have developed an interface for the coupling of a simulation package for heating installations with a finite element software for the modeling of the heat flow in the subsurface and the underground installations. This allows for a co-simulation of all system components, whereby the interaction of the different subsystems is considered. Furthermore, the concept allows for a mathematical optimization of the components and the operational parameters. Consequently, a finer adjustment of the system can be ensured and a more precise prognosis of the system's performance can be realized.

  6. Sensible heat receiver for solar dynamic space power system

    NASA Astrophysics Data System (ADS)

    Perez-Davis, Marla E.; Gaier, James R.; Petrefski, Chris

    A sensible heat receiver is considered which uses a vapor grown carbon fiber-carbon (VGCF/C) composite as the thermal storage medium and which was designed for a 7-kW Brayton engine. This heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver thermal analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The sensible heat receiver compares well with other latent and advanced sensible heat receivers analyzed in other studies, while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The concept also satisfies the design requirements for a 7-kW Brayton engine system. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material.

  7. Sensible heat receiver for solar dynamic space power system

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Gaier, James R.; Petrefski, Chris

    1991-01-01

    A sensible heat receiver considered in this study uses a vapor grown carbon fiber-carbon (VGCF/C) composite as the thermal storage media and was designed for a 7 kW Brayton engine. The proposed heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver thermal analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The sensible heat receiver compares well with other latent and advanced sensible heat receivers analyzed in other studies while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The concept also satisfies the design requirements for a 7 kW Brayton engine system. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material.

  8. Sensible heat receiver for solar dynamic space power system

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Gaier, James R.; Petrefski, Chris

    1991-01-01

    A sensible heat receiver is considered which uses a vapor grown carbon fiber-carbon (VGCF/C) composite as the thermal storage medium and which was designed for a 7-kW Brayton engine. This heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver thermal analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The sensible heat receiver compares well with other latent and advanced sensible heat receivers analyzed in other studies, while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The concept also satisfies the design requirements for a 7-kW Brayton engine system. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material.

  9. Heat source reentry vehicle design study

    NASA Technical Reports Server (NTRS)

    Ryan, R. L.

    1971-01-01

    The design details are presented of a flight-type heat source reentry vehicle and heat exchanger compatible with the isotope Brayton power conversion system. The reference reentry vehicle and heat exchanger were modified, orbital and superorbital capability was assessed, and a complete set of detail design layout drawings were provided.

  10. Liquid belt radiator design study

    NASA Technical Reports Server (NTRS)

    Teagan, W. P.; Fitzgerald, K. F.

    1986-01-01

    The Liquid Belt Radiator (LBR) is an advanced concept developed to meet the needs of anticipated future space missions. A previous study documented the advantages of this concept as a lightweight, easily deployable alternative to present day space heat rejection systems. The technical efforts associated with this study concentrate on refining the concept of the LBR as well as examining the issues of belt dynamics and potential application of the LBR to intermediate and high temperature heat rejection applications. A low temperature point design developed in previous work is updated assuming the use of diffusion pump oil, Santovac-6, as the heat transfer media. Additional analytical and design effort is directed toward determining the impact of interface heat exchanger, fluid bath sealing, and belt drive mechanism designs on system performance and mass. The updated design supports the earlier result by indicating a significant reduction in system specific system mass as compared to heat pipe or pumped fluid radiator concepts currently under consideration (1.3 kg/sq m versus 5 kg/sq m).

  11. System design package for IBM system one: solar heating and domestic hot water

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This report is a collation of documents and drawings that describe a prototype solar heating and hot water system using air as the collector fluid and a pebble bed for heat storage. The system was designed for installation into a single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system was packaged for evaluation of the system with information sufficient to assemble a similar system.

  12. Solar heating and cooling system design and development

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The development of eight prototype solar heating and combined heating and cooling systems is reported. Manufacture, test, installation, maintenance, problem resolution, and monitoring the operation of prototype systems is included. Heating and cooling equipment for single family residential and commercial applications and eight operational test sites (four heating and four heating and cooling) is described.

  13. Helium heater design for the helium direct cycle component test facility. [for gas-cooled nuclear reactor power plant

    NASA Technical Reports Server (NTRS)

    Larson, V. R.; Gunn, S. V.; Lee, J. C.

    1975-01-01

    The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.

  14. Application analysis of solar total energy systems to the residential sector. Volume III, conceptual design. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-07-01

    The objective of the work described in this volume was to conceptualize suitable designs for solar total energy systems for the following residential market segments: single-family detached homes, single-family attached units (townhouses), low-rise apartments, and high-rise apartments. Conceptual designs for the total energy systems are based on parabolic trough collectors in conjunction with a 100 kWe organic Rankine cycle heat engine or a flat-plate, water-cooled photovoltaic array. The ORC-based systems are designed to operate as either independent (stand alone) systems that burn fossil fuel for backup electricity or as systems that purchase electricity from a utility grid for electrical backup.more » The ORC designs are classified as (1) a high temperature system designed to operate at 600/sup 0/F and (2) a low temperature system designed to operate at 300/sup 0/F. The 600/sup 0/F ORC system that purchases grid electricity as backup utilizes the thermal tracking principle and the 300/sup 0/F ORC system tracks the combined thermal and electrical loads. Reject heat from the condenser supplies thermal energy for heating and cooling. All of the ORC systems utilize fossil fuel boilers to supply backup thermal energy to both the primary (electrical generating) cycle and the secondary (thermal) cycle. Space heating is supplied by a central hot water (hydronic) system and a central absorption chiller supplies the space cooling loads. A central hot water system supplies domestic hot water. The photovoltaic system uses a central electrical vapor compression air conditioning system for space cooling, with space heating and domestic hot water provided by reject heat from the water-cooled array. All of the systems incorporate low temperature thermal storage (based on water as the storage medium) and lead--acid battery storage for electricity; in addition, the 600/sup 0/F ORC system uses a therminol-rock high temperature storage for the primary cycle. (WHK)« less

  15. Design and Control of Hydronic Radiant Cooling Systems

    NASA Astrophysics Data System (ADS)

    Feng, Jingjuan

    Improving energy efficiency in the Heating Ventilation and Air conditioning (HVAC) systems in buildings is critical to achieve the energy reduction in the building sector, which consumes 41% of all primary energy produced in the United States, and was responsible for nearly half of U.S. CO2 emissions. Based on a report by the New Building Institute (NBI), when HVAC systems are used, about half of the zero net energy (ZNE) buildings report using a radiant cooling/heating system, often in conjunction with ground source heat pumps. Radiant systems differ from air systems in the main heat transfer mechanism used to remove heat from a space, and in their control characteristics when responding to changes in control signals and room thermal conditions. This dissertation investigates three related design and control topics: cooling load calculations, cooling capacity estimation, and control for the heavyweight radiant systems. These three issues are fundamental to the development of accurate design/modeling tools, relevant performance testing methods, and ultimately the realization of the potential energy benefits of radiant systems. Cooling load calculations are a crucial step in designing any HVAC system. In the current standards, cooling load is defined and calculated independent of HVAC system type. In this dissertation, I present research evidence that sensible zone cooling loads for radiant systems are different from cooling loads for traditional air systems. Energy simulations, in EnergyPlus, and laboratory experiments were conducted to investigate the heat transfer dynamics in spaces conditioned by radiant and air systems. The results show that the magnitude of the cooling load difference between the two systems ranges from 7-85%, and radiant systems remove heat faster than air systems. For the experimental tested conditions, 75-82% of total heat gain was removed by radiant system during the period when the heater (simulating the heat gain) was on, while for air system, 61-63% were removed. From a heat transfer perspective, the differences are mainly because the chilled surfaces directly remove part of the radiant heat gains from a zone, thereby bypassing the time-delay effect caused by the interaction of radiant heat gain with non-active thermal mass in air systems. The major conclusions based on these findings are: 1) there are important limitations in the definition of cooling load for a mixing air system described in Chapter 18 of ASHRAE Handbook of Fundamentals when applied to radiant systems; 2) due to the obvious mismatch between how radiant heat transfer is handled in traditional cooling load calculation methods compared to its central role in radiant cooling systems, this dissertation provides improvements for the current cooling load calculation method based on the Heat Balance procedure. The Radiant Time Series method is not appropriate for radiant system applications. The findings also directly apply to the selection of space heat transfer modeling algorithms that are part of all energy modeling software. Cooling capacity estimation is another critical step in a design project. The above mentioned findings and a review of the existing methods indicates that current radiant system cooling capacity estimation methods fail to take into account incident shortwave radiation generated by solar and lighting in the calculation process. This causes a significant underestimation (up to 150% for some instances) of floor cooling capacity when solar load is dominant. Building performance simulations were conducted to verify this hypothesis and quantify the impacts of solar for different design scenarios. A new simplified method was proposed to improve the predictability of the method described in ISO 11855 when solar radiation is present. The dissertation also compares the energy and comfort benefits of the model-based predictive control (MPC) method with a fine-tuned heuristic control method when applied to a heavyweight embedded surface system. A first order dynamic model of a radiant slab system was developed for implementation in model predictive controllers. A calibrated EnergyPlus model of a typical office building in California was used as a testbed for the comparison. The results indicated that MPC is able to reduce the cooling tower energy consumption by 55% and pumping power consumption by 26%, while maintaining equivalent or even better thermal comfort conditions. In summary, the dissertation work has: (1) provided clear evidence that the fundamental heat transfer mechanisms differ between radiant and air systems. These findings have important implications for the development of accurate and reliable design and energy simulation tools; (2) developed practical design methods and guidance to aid practicing engineers who are designing radiant systems; and (3) outlined future research and design tools need to advance the state-of-knowledge and design and operating guidelines for radiant systems.

  16. Design and Test of a Liquid Oxygen / Liquid Methane Thruster with Cold Helium Pressurization Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Melcher, John C.; Morehead, Robert L.; Atwell, Matthew J.; Hurlbert, Eric A.

    2015-01-01

    A liquid oxygen / liquid methane 2,000 lbf thruster was designed and tested in conjuction with a nozzle heat exchanger for cold helium pressurization. Cold helium pressurization systems offer significant spacecraft vehicle dry mass savings since the pressurant tank size can be reduced as the pressurant density is increased. A heat exchanger can be incorporated into the main engine design to provide expansion of the pressurant supply to the propellant tanks. In order to study the systems integration of a cold-helium pressurization system, a 2,000 lbf thruster with a nozzle heat exchanger was designed for integration into the Project Morpheus vehicle at NASA Johnson Space Center. The testing goals were to demonstrate helium loading and initial conditioning to low temperatures, high-pressure/low temperature storage, expansion through the main engine heat exchanger, and propellant tank injection/pressurization. The helium pressurant tank was an existing 19 inch diameter composite-overwrap tank, and the targert conditions were 4500 psi and -250 F, providing a 2:1 density advantage compared to room tempatrue storage. The thruster design uses like-on-like doublets in the injector pattern largely based on Project Morpheus main engine hertiage data, and the combustion chamber was designed for an ablative chamber. The heat exchanger was installed at the ablative nozzle exit plane. Stand-alone engine testing was conducted at NASA Stennis Space Center, including copper heat-sink chambers and highly-instrumented spoolpieces in order to study engine performance, stability, and wall heat flux. A one-dimensional thermal model of the integrated system was completed. System integration into the Project Morpheus vehicle is complete, and systems demonstrations will follow.

  17. Electrical Space Conditioning.

    ERIC Educational Resources Information Center

    General Electric Co., Cleveland, OH. Large Lamp Dept.

    Integrated systems utilizing the heating potential of lighting equipment are discussed in terms of the implications for design and the methods for evaluation and control. General principles cover heat transfer, heat from lamps and luminaires, and control of lighting heat. Suggested systems include--(1) total control systems, (2) bleed-off systems,…

  18. Thermoelectric Power Generation System for Future Hybrid Vehicles Using Hot Exhaust Gas

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Kook; Won, Byeong-Cheol; Rhi, Seok-Ho; Kim, Shi-Ho; Yoo, Jeong-Ho; Jang, Ju-Chan

    2011-05-01

    The present experimental and computational study investigates a new exhaust gas waste heat recovery system for hybrid vehicles, using a thermoelectric module (TEM) and heat pipes to produce electric power. It proposes a new thermoelectric generation (TEG) system, working with heat pipes to produce electricity from a limited hot surface area. The current TEG system is directly connected to the exhaust pipe, and the amount of electricity generated by the TEMs is directly proportional to their heated area. Current exhaust pipes fail to offer a sufficiently large hot surface area for the high-efficiency waste heat recovery required. To overcome this, a new TEG system has been designed to have an enlarged hot surface area by the addition of ten heat pipes, which act as highly efficient heat transfer devices and can transmit the heat to many TEMs. As designed, this new waste heat recovery system produces a maximum 350 W when the hot exhaust gas heats the evaporator surface of the heat pipe to 170°C; this promises great possibilities for application of this technology in future energy-efficient hybrid vehicles.

  19. Solar powered dispensary in Tibet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, S.F.; Rittelmann, P.R.; Kingman, K.

    1995-11-01

    A solar powered dispensary has been designed in Kastel, Tibet. This area is characterized by cold winters and clear skies. Solar energy systems are designed to provide space heating, water heating and electric power. since sources of auxiliary fuel are scarce, the building has been designed to provide heating by the sun only. Innovative use of daylighting is made to reduce the lighting electricity requirements. The design presented provides a good compromise between performance and the cost of the system.

  20. Design and optimization of the heat rejection system for a liquid cooled thermionic space nuclear reactor power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriarty, M.P.

    1993-01-15

    The heat transport subsystem for a liquid metal cooled thermionic space nuclear power system was modelled using algorithms developed in support of previous nuclear power system study programs, which date back to the SNAP-10A flight system. The model was used to define the optimum dimensions of the various components in the heat transport subsystem subjected to the constraints of minimizing mass and achieving a launchable package that did not require radiator deployment. The resulting design provides for the safe and reliable cooling of the nuclear reactor in a proven lightweight design.

  1. Design and optimization of the heat rejection system for a liquid cooled thermionic space nuclear reactor power system

    NASA Astrophysics Data System (ADS)

    Moriarty, Michael P.

    1993-01-01

    The heat transport subsystem for a liquid metal cooled thermionic space nuclear power system was modelled using algorithms developed in support of previous nuclear power system study programs, which date back to the SNAP-10A flight system. The model was used to define the optimum dimensions of the various components in the heat transport subsystem subjected to the constraints of minimizing mass and achieving a launchable package that did not require radiator deployment. The resulting design provides for the safe and reliable cooling of the nuclear reactor in a proven lightweight design.

  2. Design and operation of a solar heating and cooling system for a residential size building

    NASA Technical Reports Server (NTRS)

    Littles, J. W.; Humphries, W. R.; Cody, J. C.

    1978-01-01

    The first year of operation of solar house is discussed. Selected design information, together with a brief system description is included. The house was equipped with an integrated solar heating and cooling system which uses fully automated state-of-the art. Evaluation of the data indicate that the solar house heating and cooling system is capable of supplying nearly 100 percent of the thermal energy required for heating and approximately 50 percent of the thermal energy required to operate the absorption cycle air conditioner.

  3. Solar heating and cooling demonstration project at the Florida solar energy center

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The retrofitted solar heating and cooling system installed at the Florida Solar Energy Center is described. The system was designed to supply approximately 70 percent of the annual cooling and 100 percent of the heating load. The project provides unique high temperature, nonimaging, nontracking, evacuated tube collectors. The design of the system was kept simple and employs five hydronic loops. They are energy collection, chilled water production, space cooling, space heating and energy rejection. Information is provided on the system's acceptance test results operation, controls, hardware and installation, including detailed drawings.

  4. Solar heating and hot water system installed at Charlotte Memorial Hospital, Charlotte, North Carolina

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Detailed information regarding the design and installation of a heating and hot water system in a commercial application is given. This information includes descriptions of system and building, design philosophy, control logic operation modes, design and installation drawing and a brief description of problems encountered and their solutions.

  5. Heat transfer correlations for multilayer insulation systems

    NASA Astrophysics Data System (ADS)

    Krishnaprakas, C. K.; Badari Narayana, K.; Dutta, Pradip

    2000-01-01

    Multilayer insulation (MLI) blankets are extensively used in spacecrafts as lightweight thermal protection systems. Heat transfer analysis of MLI is sometimes too complex to use in practical design applications. Hence, for practical engineering design purposes, it is necessary to have simpler procedures to evaluate the heat transfer rate through MLI. In this paper, four different empirical models for heat transfer are evaluated by fitting against experimentally observed heat flux through MLI blankets of various configurations, and the results are discussed.

  6. Application of Energy Integration Techniques to the Design of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Levri, Julie; Finn, Cory

    2000-01-01

    Exchanging heat between hot and cold streams within an advanced life support system can save energy. This savings will reduce the equivalent system mass (ESM) of the system. Different system configurations are examined under steady-state conditions for various percentages of food growth and waste treatment. The scenarios investigated represent possible design options for a Mars reference mission. Reference mission definitions are drawn from the ALSS Modeling and Analysis Reference Missions Document, which includes definitions for space station evolution, Mars landers, and a Mars base. For each scenario, streams requiring heating or cooling are identified and characterized by mass flow, supply and target temperatures and heat capacities. The Pinch Technique is applied to identify good matches for energy exchange between the hot and cold streams and to calculate the minimum external heating and cooling requirements for the system. For each pair of hot and cold streams that are matched, there will be a reduction in the amount of external heating and cooling required, and the original heating and cooling equipment will be replaced with a heat exchanger. The net cost savings can be either positive or negative for each stream pairing, and the priority for implementing each pairing can be ranked according to its potential cost savings. Using the Pinch technique, a complete system heat exchange network is developed and heat exchangers are sized to allow for calculation of ESM. The energy-integrated design typically has a lower total ESM than the original design with no energy integration. A comparison of ESM savings in each of the scenarios is made to direct future Pinch Analysis efforts.

  7. Method of Minimizing Size of Heat Rejection Systems for Thermoelectric Coolers to Cool Detectors in Space

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2014-01-01

    A thermal design concept of attaching the thermoelectric cooler (TEC) hot side directly to the radiator and maximizing the number of TECs to cool multiple detectors in space is presented. It minimizes the temperature drop between the TECs and radiator. An ethane constant conductance heat pipe transfers heat from the detectors to a TEC cold plate which the cold side of the TECs is attached to. This thermal design concept minimizes the size of TEC heat rejection systems. Hence it reduces the problem of accommodating the radiator within a required envelope. It also reduces the mass of the TEC heat rejection system. Thermal testing of a demonstration unit in vacuum verified the thermal performance of the thermal design concept.

  8. 10 CFR Appendix A to Part 50 - General Design Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Heat Removal 34 Emergency Core Cooling 35 Inspection of Emergency Core Cooling System 36 Testing of Emergency Core Cooling System 37 Containment Heat Removal 38 Inspection of Containment Heat Removal System 39 Testing of Containment Heat Removal System 40 Containment Atmosphere Cleanup 41 Inspection of...

  9. 10 CFR Appendix A to Part 50 - General Design Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Heat Removal 34 Emergency Core Cooling 35 Inspection of Emergency Core Cooling System 36 Testing of Emergency Core Cooling System 37 Containment Heat Removal 38 Inspection of Containment Heat Removal System 39 Testing of Containment Heat Removal System 40 Containment Atmosphere Cleanup 41 Inspection of...

  10. 24 CFR 200.950 - Building product standards and certification program for solar water heating system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be designed, manufactured, and tested in compliance with Solar Rating and Certification Corporation (SRCC...

  11. 24 CFR 200.950 - Building product standards and certification program for solar water heating system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be designed, manufactured, and tested in compliance with Solar Rating and Certification Corporation (SRCC...

  12. 24 CFR 200.950 - Building product standards and certification program for solar water heating system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be designed, manufactured, and tested in compliance with Solar Rating and Certification Corporation (SRCC...

  13. System design package for SIMS prototype system 4, solar heating and domestic hot water

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The system consisted of a modular designed prepackaged solar unit, containing solar collectors, a rock storage container, blowers, dampers, ducting, air-to-water heat exchanger, DHW preheat tank, piping, and system controls. The system was designed to be installed adjacent to a small single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system were packaged for evaluation.

  14. Instructor's Manual for Teaching and Practical Courses on Design of Systems and Sizing, Installation and Operation of Systems for Solar Heating and Cooling of Residential Buildings.

    ERIC Educational Resources Information Center

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    Presented are guidelines for instructors of two courses in the design, installation, and operation of solar heating and cooling systems. These courses are: (1) Design of Systems, and (2) Sizing, Installation, and Operation of Systems. Limited in scope to active solar systems for residential buildings, these courses place primary emphasis upon…

  15. Preliminary design package for prototype solar heating system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A preliminary design review on the development of a prototype solar heating system for single family dwellings is presented. The collector, storage, transport, control, and site data acquisition subsystems are described.

  16. Modeling and Analysis of Alternative Concept of ITER Vacuum Vessel Primary Heat Transfer System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbajo, Juan J; Yoder Jr, Graydon L; Dell'Orco, Giovanni

    2010-01-01

    A RELAP5-3D model of the ITER (Latin for the way ) vacuum vessel (VV) primary heat transfer system has been developed to evaluate a proposed design change that relocates the heat exchangers (HXs) from the exterior of the tokamak building to the interior. This alternative design protects the HXs from external hazards such as wind, tornado, and aircraft crash. The proposed design integrates the VV HXs into a VV pressure suppression system (VVPSS) tank that contains water to condense vapour in case of a leak into the plasma chamber. The proposal is to also use this water as the ultimatemore » sink when removing decay heat from the VV system. The RELAP5-3D model has been run under normal operating and abnormal (decay heat) conditions. Results indicate that this alternative design is feasible, with no effects on the VVPSS tank under normal operation and with tank temperature and pressure increasing under decay heat conditions resulting in a requirement to remove steam generated if the VVPSS tank low pressure must be maintained.« less

  17. Preliminary design package for solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The preliminary design review on the development of two prototype solar heating and hot water systems is presented. The information contained in this report includes system certification, system functional description, system configuration, system specification, system performance and other documents pertaining to the progress and the design of the system. This system, which is intended for use in the normal single-family residence, consists of the following subsystems: collector, storage, control, transport, and Government-furnished Site Data Acquisition.

  18. Solar energy system performance evaluation report for IBM System 4 at Clinton, Mississippi

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The IBM System 4 Solar Energy System is described and evaluated. The system was designed to provide 35 percent of the space heating and 63 percent of the domestic hot water preheating for a single family residence located within the United States. The system consists of 259 square feet of flat plate air collectors, a rock thermal storage containing 5 1/2 ton of rock, heat exchangers, blowers, a 52 gallon preheat tank, controls, and associated plumbing. In general, the performance of the system did not meet design expectations, since the overall design solar fraction was 48 percent and the measured value was 32 percent. Although the measured space heating solar fraction at 32 percent did agree favorably with the design space heating solar fraction at 35 percent, the hot water measured solar fraction at 33 percent did not agree favorably with the design hot water solar fraction of 63 percent. In particular collector array air leakage, dust covered collectors, abnormal hot water demand, and the preheat tank by pass valve problem are main reasons for the lower performance.

  19. A pumped, two-phase flow heat transport system for orbiting instrument payloads

    NASA Technical Reports Server (NTRS)

    Fowle, A. A.

    1981-01-01

    A pumped two-phase (heat absorption/heat rejection) thermal transport system for orbiting instrument payloads is investigated. The thermofluid characteristics necessary for the system design are discussed. A preliminary design with a series arrangement of four instrument heat stations and six radiators in a single loop is described in detail, and the total mass is estimated to be 134 kg, with the radiators, instrument heat stations, and fluid reservoir accounting for approximately 86, 24, and 12 kg, respectively. The evaluation of preliminary test results shows that the system has potential advantages; however, further research is necessary in the areas of one-g and zero-g heat transfer coefficients/fluid regimes, fluid by-pass temperature control, and reliability of small pumps.

  20. Alkali Metal Heat Pipe Life Issues

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.

    2004-01-01

    One approach to space fission power system design is predicated on the use of alkali metal heat pipes, either as radiator elements, thermal management components, or as part of the core primary heat-transfer system. This synopsis characterizes long-life core heat pipes. References are included where more detailed information can be found. Specifics shown here are for demonstrational purposes and do not necessarily reflect current Project Prometheus point designs.

  1. Modeling and optimization of a typical fuel cell-heat engine hybrid system and its parametric design criteria

    NASA Astrophysics Data System (ADS)

    Zhao, Yingru; Chen, Jincan

    A theoretical modeling approach is presented, which describes the behavior of a typical fuel cell-heat engine hybrid system in steady-state operating condition based on an existing solid oxide fuel cell model, to provide useful fundamental design characteristics as well as potential critical problems. The different sources of irreversible losses, such as the electrochemical reaction, electric resistances, finite-rate heat transfer between the fuel cell and the heat engine, and heat-leak from the fuel cell to the environment are specified and investigated. Energy and entropy analyses are used to indicate the multi-irreversible losses and to assess the work potentials of the hybrid system. Expressions for the power output and efficiency of the hybrid system are derived and the performance characteristics of the system are presented and discussed in detail. The effects of the design parameters and operating conditions on the system performance are studied numerically. It is found that there exist certain optimum criteria for some important parameters. The results obtained here may provide a theoretical basis for both the optimal design and operation of real fuel cell-heat engine hybrid systems. This new approach can be easily extended to other fuel cell hybrid systems to develop irreversible models suitable for the investigation and optimization of similar energy conversion settings and electrochemistry systems.

  2. A leading edge heating array and a flat surface heating array: Final design. [for testing the thermal protection system of the space shuttle

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A heating array is described for testing full-scale sections of the leading edge and lower fuselage surfaces of the shuttle. The heating array was designed to provide a tool for development and acceptance testing of leading edge segments and large flat sections of the main body thermal protection system. The array was designed using a variable length module concept to meet test requirements using interchangeable components from one test configuration in another configuration. Heat generating modules and heat absorbing modules were employed to achieve the thermal gradient around the leading edge. A support was developed to hold the modules to form an envelope around a variety of leading edges; to supply coolant to each module; the support structure and to hold the modules in the flat surface heater configuration. An optical pyrometer system mounted within the array was designed to monitor specimen surface temperatures without altering the test article's surface.

  3. Design and evaluation of a primary/secondary pumping system for a heat pump assisted solar thermal loop

    NASA Astrophysics Data System (ADS)

    Krockenberger, Kyle G.

    A heat pump assisted solar thermal system was designed, commissioned, tested and analyzed over a period of two years. The unique system uses solar energy whenever it is available, but switches to heat pump mode at night or whenever there is a lack of solar energy. The solar thermal energy is added by a variety of flat plat solar collectors and an evacuated tube heat pipe solar collector. The working medium in the entire system is a 50% mixture of propylene glycol and water for freeze protection. During the design and evaluation the primary / secondary pumping system was the focus of the evaluation. Testing within this research focused on the operation modes, pump stability, and system efficiency. It was found that the system was in full operation, the pumps were stable and that the efficiency factor of the system was 1.95.

  4. A capital cost comparison of commercial ground-source heat pump systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafferty, K.

    1994-06-01

    The purpose of the report is to compare capital costs associated with the three designs of ground source heat pumps. Specifically, the costs considered are those associated with the heat source/heat sink or ground source portion of the system. In order to standardize the heat rejection over the three designs, it was assumed that the heat pump loop would operate at a temperature range of 85{degree} (to the heat pumps) to 95{degree} (from the heat pumps) under peak conditions. The assumption of constant loop temperature conditions for all three permits an apples-to-apples comparison of the alternatives.

  5. Engineering design aspects of the heat-pipe power system

    NASA Technical Reports Server (NTRS)

    Capell, B. M.; Houts, M. G.; Poston, D. I.; Berte, M.

    1997-01-01

    The Heat-pipe Power System (HPS) is a near-term, low-cost space power system designed at Los Alamos that can provide up to 1,000 kWt for many space nuclear applications. The design of the reactor is simple, modular, and adaptable. The basic design allows for the use of a variety of power conversion systems and reactor materials (including the fuel, clad, and heat pipes). This paper describes a project that was undertaken to develop a database supporting many engineering aspects of the HPS design. The specific tasks discussed in this paper are: the development of an HPS materials database, the creation of finite element models that will allow a wide variety of investigations, and the verification of past calculations.

  6. Optimal Design of a Thermoelectric Cooling/Heating System for Car Seat Climate Control (CSCC)

    NASA Astrophysics Data System (ADS)

    Elarusi, Abdulmunaem; Attar, Alaa; Lee, Hosung

    2017-04-01

    In the present work, the optimum design of thermoelectric car seat climate control (CSCC) is studied analytically in an attempt to achieve high system efficiency. Optimal design of a thermoelectric device (element length, cross-section area and number of thermocouples) is carried out using our newly developed optimization method based on the ideal thermoelectric equations and dimensional analysis to improve the performance of the thermoelectric device in terms of the heating/cooling power and the coefficient of performance (COP). Then, a new innovative system design is introduced which also includes the optimum input current for the initial (transient) startup warming and cooling before the car heating ventilation and air conditioner (HVAC) is active in the cabin. The air-to-air heat exchanger's configuration was taken into account to investigate the optimal design of the CSCC.

  7. Design Concepts for Optimum Energy Use in HVAC Systems.

    ERIC Educational Resources Information Center

    Electric Energy Association, New York, NY.

    Much of the innovative work in the design and application of heating, ventilating, and air conditioning (HVAC) systems is concentrated on improving the cost effectiveness of such systems through optimizing energy use. One approach to the problem is to reduce a building's HVAC energy demands by designing it for lower heat gains and losses in the…

  8. Solar energy heating system design package for a single-family residence at New Castle, Pennsylvania

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The design of a solar heating and hot water system for a single family dwelling is described. Cost trade studies on the energy conservation and architectural features of the solar house are discussed. The present status of verification for the single family heating system, i.e., proof that the components and the system meet applicable physical and functional requirements, is reported. The system integration drawings, the major subsystems drawings, and the architect's specifications and plans are included.

  9. Preliminary design package for solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The preliminary design review on the development of a multi-family solar heating and domestic hot water prototype system is presented. The report contains the necessary information to evaluate the system. The system consists of the following subsystems: collector, storage, transport, control and Government-furnished site data acquisition.

  10. Design Development Analyses in Support of a Heatpipe-Brayton Cycle Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Steeve, Brian; VanDyke, Melissa; Majumdar, Alok; Nguyen, Dalton; Corley, Melissa; Guffee, Ray M.; Kapernick, Richard J.

    2003-01-01

    One of the power systems under consideration for nuclear electric propulsion or as a planetary surface power source is a heatpipe-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the heatpipes to the Brayton gas via a heat exchanger attached to the heatpipes. This paper discusses the fluid, thermal and structural analyses that were performed in support of the design of the heat exchanger to be tested in the SAFE-100 experimental program at Marshall Space Flight Center. A companion paper, "Mechanical Design and Fabrication of a SAFE-100 Heat Exchanger for use in NASA s Advanced Propulsion Thermal-hydraulic Simulator", presents the fabrication issues and prototyping studies that, together with these analyses, led to the development of this heat exchanger. An important consideration throughout the design development of the heat exchanger was its capability to be utilized for higher power and temperature applications. This paper also discusses this aspect of the design and presents designs for specific applications that are under consideration.

  11. Long titanium heat pipes for high-temperature space radiators

    NASA Technical Reports Server (NTRS)

    Girrens, S. P.; Ernst, D. M.

    1982-01-01

    Titanium heat pipes are being developed to provide light weight, reliable heat rejection devices as an alternate radiator design for the Space Reactor Power System (SP-100). The radiator design includes 360 heat pipes, each of which is 5.2 m long and dissipates 3 kW of power at 775 K. The radiator heat pipes use potassium as the working fluid, have two screen arteries for fluid return, a roughened surface distributive wicking system, and a D shaped cross section container configuration. A prototype titanium heat pipe, 5.5 m long, was fabricated and tested in space simulating conditions. Results from startup and isothermal operation tests are presented. These results are also compared to theoretical performance predictions that were used to design the heat pipe initially.

  12. Long titanium heat pipes for high-temperature space radiators

    NASA Technical Reports Server (NTRS)

    Girrens, S. P.; Ernst, D. M.

    1982-01-01

    Titanium heat pipes are being developed to provide light weight, reliable heat rejection devices as an alternate radiator design for the Space Reactor Power System (SP-100). The radiator design includes 360 heat pipes, each of which is 5.2 m long and dissipates 3 kW of power at 775 K. The radiator heat pipes use potassium as the working fluid, have two screen arteries for fluid return, a roughened surface distributive wicking system, and a D-shaped cross-section container configuration. A prototype titanium heat pipe, 5.5-m long, has been fabricated and tested in space-simulating conditions. Results from startup and isothermal operation tests are presented. These results are also compared to theoretical performance predictions that were used to design the heat pipe initially.

  13. Economical solar-heating for homes

    NASA Technical Reports Server (NTRS)

    Allred, J. W.; Shinn, J. M., Jr.; Kirby, C. E.; Barringer, S. R.

    1977-01-01

    Do-it-yourself supplementary solar-heating system is available for purchase at approximately $2,000. Report describes design, construction, testing, and economic analysis of low-cost solar heating system.

  14. System design package for solar heating and cooling site data acquisition subsystem

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Site Data Acquisition Subsystem (SDAS) designed to collect data from sensors located on residential or commercial buildings using a solar heating and/or cooling system is described. It takes the data obtained from sensors located on the solar system, processes the data into suitable format, stores the data for a period of time, and provides the capability for either telephone retrieval by the central data processing system or manual retrieval of the data for transfer to a central site. The SDAS is also designed so that it will not degrade the operation of the solar heating/cooling system which it is monitoring.

  15. Study of fuel cell powerplant with heat recovery

    NASA Technical Reports Server (NTRS)

    King, J. M.; Grasso, A. P.; Clausi, J. V.

    1975-01-01

    It was shown that heat can be recovered from fuel cell power plants by replacing the air-cooled heat exchangers in present designs with units which transfer the heat to the integrated utility system. Energy availability for a 40-kW power plant was studied and showed that the total usable energy at rated power represents 84 percent of the fuel lower heating value. The effects of design variables on heat availability proved to be small. Design requirements were established for the heat recovery heat exchangers, including measurement of the characteristics of two candidate fuel cell coolants after exposure to fuel cell operating conditions. A heat exchanger test program was defined to assess fouling and other characteristics of fuel cell heat exchangers needed to confirm heat exchanger designs for heat recovery.

  16. Computational Evaluation of a Latent Heat Energy Storage System

    DTIC Science & Technology

    2013-01-01

    alternative to conventional photovoltaic panels paired with electrochemical batteries , has at the core of its design a latent heat based energy...The proposed system, an alternative to conventional photovoltaic panels paired with electrochemical batteries , has at the core of its design a latent...somewhat for certain niches in which material cost is less of a concern. Current latent heat storage systems typically use paraffin compounds or salt

  17. Heat pipe heat rejection system and demonstration model for the nuclear electric propulsion (NEP) spacecraft

    NASA Technical Reports Server (NTRS)

    Ernst, D. M.

    1981-01-01

    The critical evaluation and subsequent redesign of the power conversion subsystem of the spacecraft are covered. As part of that evaluation and redesign, prototype heat pipe components for the heat rejection system were designed fabricated and tested. Based on the results of these tests in conjunction with changing mission requirements and changing energy conversion devices, new system designs were investigated. The initial evaluation and redesign was based on state-of-the-art fabrication and assembly techniques for high temperature liquid metal heat pipes and energy conversion devices. The hardware evaluation demonstrated the validity of several complicated heat pipe geometries and wick structures, including an annular-to-circular transition, bends in the heat pipe, long heat pipe condensers and arterial wicks. Additionally, a heat pipe computer model was developed which describes the end point temperature profile of long radiator heat pipes to within several degrees celsius.

  18. Preliminary design study of an alternate heat source assembly for a Brayton isotope power system

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.

    1978-01-01

    Results are presented for a study of the preliminary design of an alternate heat source assembly (HSA) intended for use in the Brayton isotope power system (BIPS). The BIPS converts thermal energy emitted by a radioactive heat source into electrical energy by means of a closed Brayton cycle. A heat source heat exchanger configuration was selected and optimized. The design consists of a 10 turn helically wound Hastelloy X tube. Thermal analyses were performed for various operating conditions to ensure that post impact containment shell (PICS) temperatures remain within specified limits. These limits are essentially satisfied for all modes of operation except for the emergency cooling system for which the PICS temperatures are too high. Neon was found to be the best choice for a fill gas for auxiliary cooling system operation. Low cycle fatigue life, natural frequency, and dynamic loading requirements can be met with minor modifications to the existing HSA.

  19. Conceptual design of a thermal control system for an inflatable lunar habitat module

    NASA Technical Reports Server (NTRS)

    Gadkari, Ketan; Goyal, Sanjay K.; Vanniasinkam, Joseph

    1991-01-01

    NASA is considering the establishment of a manned lunar base within the next few decades. To house and protect the crew from the harsh lunar environment, a habitat is required. A proposed habitat is an spherical, inflatable module. Heat generated in the module must be rejected to maintain a temperature suitable for human habitation. This report presents a conceptual design of a thermal control system for an inflatable lunar module. The design solution includes heat acquisition, heat transport, and heat rejection subsystems. The report discusses alternative designs and design solutions for each of the three subsystems mentioned above. Alternative subsystems for heat acquisition include a single water-loop, a single air-loop, and a double water-loop. The vapor compression cycle, vapor absorption cycle, and metal hydride absorption cycle are the three alternative transport subsystems. Alternative rejection subsystems include flat plate radiators, the liquid droplet radiator, and reflux boiler radiators. Feasibility studies on alternatives of each subsystem showed that the single water-loop, the vapor compression cycle, and the reflux boiler radiator were the most feasible alternatives. The design team combined the three subsystems to come up with an overall system design. Methods of controlling the system to adapt it for varying conditions within the module and in the environment are presented. Finally, the report gives conclusions and recommendations for further study of thermal control systems for lunar applications.

  20. Solar heating and cooling system design and development

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The progress made in the manufacture, test, evaluation, installation, problem resolution, performance evaluation, and development of eight prototype solar heating and combined heating and cooling systems is described.

  1. Solar heating and cooling system design and development

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The design and development of marketable solar heating and cooling systems for single family and commercial applications is described. The delivery, installation, and monitoring of the prototype systems are discussed. Seven operational test sites are discussed in terms of system performance. Problems encountered with equipment and installation were usually due to lack of skills required for solar system installation.

  2. Design and construction of a new steady-state apparatus for medium thermal conductivity measurement at high temperature.

    PubMed

    Wang, Yong; Xiao, Peng; Dai, Jingmin

    2017-10-01

    A new steady-state apparatus is designed and constructed for the measurement of thermal conductivity (up to 25 W/mK) on a square specimen (300 mm side) with a heating temperature range from 30 °C to 900 °C. A vacuum container, of which the pressure can reach to 1 Pa, is also built for materials which can be easily oxidized. The structure of the facility is different from that of traditional steady-state devices, especially for the design of heating plate and heat sink. To verify the temperature uniformity of the heating plate, a simulation analysis is carried out in this paper. Besides, the heating system, the heat sink, the measuring system, and the vacuum system are presented in detail. In addition, the thermal conductivities of a heat insulation tile, 304L stainless steel, n-docosane, and erythritol are measured by this apparatus. Finally, an uncertainty analysis is discussed depending on different temperatures and materials.

  3. Design and construction of a new steady-state apparatus for medium thermal conductivity measurement at high temperature

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Xiao, Peng; Dai, Jingmin

    2017-10-01

    A new steady-state apparatus is designed and constructed for the measurement of thermal conductivity (up to 25 W/mK) on a square specimen (300 mm side) with a heating temperature range from 30 °C to 900 °C. A vacuum container, of which the pressure can reach to 1 Pa, is also built for materials which can be easily oxidized. The structure of the facility is different from that of traditional steady-state devices, especially for the design of heating plate and heat sink. To verify the temperature uniformity of the heating plate, a simulation analysis is carried out in this paper. Besides, the heating system, the heat sink, the measuring system, and the vacuum system are presented in detail. In addition, the thermal conductivities of a heat insulation tile, 304L stainless steel, n-docosane, and erythritol are measured by this apparatus. Finally, an uncertainty analysis is discussed depending on different temperatures and materials.

  4. A Design of a Modular GPHS-Stirling Power System for a Lunar Habitation Module

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.

    2005-01-01

    Lunar habitation modules need electricity and potentially heat to operate. Because of the low amounts of radiation emitted by General Purpose Heat Source (GPHS) modules, power plants incorporating these as heat sources could be placed in close proximity to habitation modules. A design concept is discussed for a high efficiency power plant based on a GPHS assembly integrated with a Stirling convertor. This system could provide both electrical power and heat, if required, for a lunar habitation module. The conceptual GPHS/Stirling system is modular in nature and made up of a basic 5.5 KWe Stirling convertor/GPHS module assembly, convertor controller/PMAD electronics, waste heat radiators, and associated thermal insulation. For the specific lunar application under investigation eight modules are employed to deliver 40 KWe to the habitation module. This design looks at three levels of Stirling convertor technology and addresses the issues of integrating the Stirling convertors with the GPHS heat sources assembly using proven technology whenever possible. In addition, issues related to the high-temperature heat transport system, power management, convertor control, vibration isolation, and potential system packaging configurations to ensure safe operation during all phases of deployment will be discussed.

  5. Advanced propulsion system for hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  6. Mini-Brayton heat source assembly design study. Volume 1: Space shuttle mission. [feasibility of Brayton isotope power system design

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Conceptual design definitions of a heat source assembly for use in nominal 500 watt electrical (W(e)) 1200 W(e)and 2000 W(e) mini-Brayton isotope power systems are reported. The HSA is an independent package which maintains thermal and nuclear control of an isotope fueled heat source and transfers the thermal energy to a Brayton rotating unit turbine-alternator-compressor power conversion unit.

  7. System Design for a Nuclear Electric Spacecraft Utilizing Out-of-core Thermionic Conversion

    NASA Technical Reports Server (NTRS)

    Estabrook, W. C.; Phillips, W. M.; Hsieh, T.

    1976-01-01

    Basic guidelines are presented for a nuclear space power system which utilizes heat pipes to transport thermal power from a fast nuclear reactor to an out of core thermionic converter array. Design parameters are discussed for the nuclear reactor, heat pipes, thermionic converters, shields (neutron and gamma), waste heat rejection systems, and the electrical bus bar-cable system required to transport the high current/low voltage power to the processing equipment. Dimensions are compatible with shuttle payload bay constraints.

  8. Design and evaluation of fluidized bed heat recovery for diesel engine systems

    NASA Technical Reports Server (NTRS)

    Hamm, J. R.; Newby, R. A.; Vidt, E. J.; Lippert, T. E.

    1985-01-01

    The potential of utilizing fluidized bed heat exchangers in place of conventional counter-flow heat exchangers for heat recovery from adiabatic diesel engine exhaust gas streams was studied. Fluidized bed heat recovery systems were evaluated in three different heavy duty transport applications: (1) heavy duty diesel truck; (2) diesel locomotives; and (3) diesel marine pushboat. The three applications are characterized by differences in overall power output and annual utilization. For each application, the exhaust gas source is a turbocharged-adiabatic diesel core. Representative subposed exhaust gas heat utilization power cycles were selected for conceptual design efforts including design layouts and performance estimates for the fluidized bed heat recovery heat exchangers. The selected power cycles were: organic rankine with RC-1 working fluid, turbocompound power turbine with steam injection, and stirling engine. Fuel economy improvement predictions are used in conjunction with capital cost estimates and fuel price data to determine payback times for the various cases.

  9. Design and development of integral heat pipe/thermal energy storage devices. [used with spacecraft cryocoolers

    NASA Technical Reports Server (NTRS)

    Mahefkey, E. T.; Richter, R.

    1981-01-01

    The major design and performance test subtasks in the development of small (200 to 1,000 whr) integral heat pipe/thermal energy storage devices for use with thermally driven spacecraft cryo-coolers are described. The design of the integral heat pipe/thermal energy storage device was based on a quasi steady resistance heat transfer, lumped capacitance model. Design considerations for the heat pipe and thermal storage annuli are presented. The thermomechanical stress and insulation system design for the device are reviewed. Experimental correlations are described, as are the plans for the further development of the concept.

  10. Design and development of integral heat pipe/thermal energy storage devices

    NASA Astrophysics Data System (ADS)

    Mahefkey, E. T.; Richter, R.

    1981-06-01

    The major design and performance test subtasks in the development of small (200 to 1,000 whr) integral heat pipe/thermal energy storage devices for use with thermally driven spacecraft cryo-coolers are described. The design of the integral heat pipe/thermal energy storage device was based on a quasi steady resistance heat transfer, lumped capacitance model. Design considerations for the heat pipe and thermal storage annuli are presented. The thermomechanical stress and insulation system design for the device are reviewed. Experimental correlations are described, as are the plans for the further development of the concept.

  11. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  12. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1981-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  13. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  14. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  15. Design and experimental study of an integrated vapor chamber-thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Kota, Krishna M.

    Future defense, aerospace and automotive technologies involve electronic systems that release high pulsed waste heat like during high power microwave and laser diode applications in tactical and combat aircraft, and electrical and electronic systems in hybrid electric vehicles, which will require the development of an efficient thermal management system. A key design issue is the need for fast charging so as not to overheat the key components. The goal of this work is to study the fabrication and technology implementation feasibility of a novel high energy storage, high heat flux passive heat sink. Key focus is to verify by theory and experiments, the practicability of using phase change materials as a temporary storage of waste heat for heat sink applications. The reason for storing the high heat fluxes temporarily is to be able to reject the heat at the average level when the heat source is off. Accordingly, a concept of a dual latent heat sink intended for moderate to low thermal duty cycle electronic heat sink applications is presented. This heat sink design combines the features of a vapor chamber with rapid thermal energy storage employing graphite foam inside the heat storage facility along with phase change materials and is attractive owing to its passive operation unlike some of the current thermal management techniques for cooling of electronics employing forced air circulation or external heat exchangers. In addition to the concept, end-application dependent criteria to select an optimized design for this dual latent heat sink are presented. A thermal resistance concept based design tool/model has been developed to analyze and optimize the design for experiments. The model showed that it is possible to have a dual latent heat sink design capable of handling 7 MJ of thermal load at a heat flux of 500 W/cm2 (over an area of 100 cm 2) with a volume of 0.072 m3 and weighing about 57.5 kg. It was also found that with such high heat flux absorption capability, the proposed conceptual design could have a vapor-to-condenser temperature difference of less than 10°C with a volume storage density of 97 MJ/m 3 and a mass storage density of 0.122 MJ/kg. The effectiveness of this heat sink depends on the rapidness of the heat storage facility in the design during the pulse heat generation period of the duty cycle. Heat storage in this heat sink involves transient simultaneous laminar film condensation of vapor and melting of an encapsulated phase change material in graphite foam. Therefore, this conjugate heat transfer problem including the wall inertia effect is numerically analyzed and the effectiveness of the heat storage mechanism of the heat sink is verified. An effective heat capacity formulation is employed for modeling the phase change problem and is solved using finite element method. The results of the developed model showed that the concept is effective in preventing undue temperature rise of the heat source. Experiments are performed to investigate the fabrication and implementation feasibility and heat transfer performance for validating the objectives of the design, i.e., to show that the VCTES heat sink is practicable and using PCM helps in arresting the vapor temperature rise in the heat sink. For this purpose, a prototype version of the VCTES heat sink is fabricated and tested for thermal performance. The volume foot-print of the vapor chamber is about 6"X5"X2.5". A custom fabricated thermal energy storage setup is incorporated inside this vapor chamber. A heat flux of 40 W/cm2 is applied at the source as a pulse and convection cooling is used on the condenser surface. Experiments are done with and without using PCM in the thermal energy storage setup. It is found that using PCM as a second latent system in the setup helps in lowering the undue temperature rise of the heat sink system. It is also found that the thermal resistance between the vapor chamber and the thermal energy storage setup, the pool boiling resistance at the heat source in the vapor chamber, the condenser resistance during heat discharging were key parameters that affect the thermal performance. Some suggestions for future improvements in the design to ease its implementation and enhance the heat transfer of this novel heat sink are also presented.

  16. Thermal energy storage heat exchanger: Molten salt heat exchanger design for utility power plants

    NASA Technical Reports Server (NTRS)

    Ferarra, A.; Yenetchi, G.; Haslett, R.; Kosson, R.

    1977-01-01

    Sizing procedures are presented for latent heat thermal energy storage systems that can be used for electric utility off-peak energy storage, solar power plants and other preliminary design applications.

  17. Development of a nonazeotropic heat pump for crew hygiene water heating

    NASA Technical Reports Server (NTRS)

    Walker, David H.; Deming, Glenn I.

    1991-01-01

    A Phase 2 SBIR Program funded by the NASA Marshall Space Flight Center to develop a Nonazeotropic Heat Pump is described. The heat pump system which was designed, fabricated, and tested in the Foster-Miller laboratory, is capable of providing crew hygiene water heating for future manned missions. The heat pump utilizes a nonazeotropic refrigerant mixture which, in this application, provides a significant Coefficient of Performance improvement over a single-constituent working fluid. In order to take full advantage of the refrigerant mixture, compact tube-in-tube heat exchangers were designed. A high efficiency scroll compressor with a proprietary lubrication system was developed to meet the requirements of operation in zero-gravity. The prototype heat pump system consumes less than 200W of power compared to the alternative of electric cartridge heaters which would require 2 to 5 kW.

  18. Solar heating and cooling systems design and development

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The development and delivery of eight prototype solar heating and cooling systems for installation and operational test was reported. Two heating and six heating and cooling units will be delivered for single family residences, multiple family residences and commercial applications.

  19. Orion Heat Shield Manufacturing Producibility Improvements for the EM-1 Flight Test Program

    NASA Technical Reports Server (NTRS)

    Koenig, William J.; Stewart, Michael; Harris, Richard F.

    2018-01-01

    This paper describes how the ORION program is incorporating improvements in the heat shield design and manufacturing processes reducing programmatic risk and ensuring crew safety in support of NASA's Exploration missions. The approach for the EFT-1 heat shield utilized a low risk Apollo heritage design and manufacturing process using an Avcoat TPS ablator with a honeycomb substrate to provide a one piece heat shield to meet the mission re-entry heating environments. The EM-1 mission will have additional flight systems installed to fly to the moon and return to Earth. Heat shield design and producibility improvements have been incorporated in the EM-1 vehicle to meet deep space mission requirements. The design continues to use the Avcoat material, but in a block configuration to enable improvements in consistant and repeatable application processes using tile bonding experience developed on the Space Shuttle Transportation System Program.

  20. Description and cost analysis of a deluge dry/wet cooling system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiles, L.E.; Bamberger, J.A.; Braun, D.J.

    1978-06-01

    The use of combined dry/wet cooling systems for large base-load power plants offers the potential for significant water savings as compared to evaporatively cooled power plants and significant cost savings in comparison to dry cooled power plants. The results of a detailed engineering and cost study of one type of dry/wet cooling system are described. In the ''deluge'' dry/wet cooling method, a finned-tube heat exchanger is designed to operate in the dry mode up to a given ambient temperature. To avoid the degradation of performance for higher ambient temperatures, water (the delugeate) is distributed over a portion of the heatmore » exchanger surface to enhance the cooling process by evaporation. The deluge system used in this study is termed the HOETERV system. The HOETERV deluge system uses a horizontal-tube, vertical-plate-finned heat exchanger. The delugeate is distributed at the top of the heat exchanger and is allowed to fall by gravity in a thin film on the face of the plate fin. Ammonia is used as the indirect heat transfer medium between the turbine exhaust steam and the ambient air. Steam is condensed by boiling ammonia in a condenser/reboiler. The ammonia is condensed in the heat exchanger by inducing airflow over the plate fins. Various design parameters of the cooling system have been studied to evaluate their impact on the optimum cooling system design and the power-plant/utility-system interface. Annual water availability was the most significant design parameter. Others included site meteorology, heat exchanger configuration and air flow, number and size of towers, fan system design, and turbine operation. It was concluded from this study that the HOETERV deluge system of dry/wet cooling, using ammonia as an intermediate heat transfer medium, offers the potential for significant cost savings compared with all-dry cooling, while achieving substantially reduced water consumption as compared to an evaporatively cooled power plant. (LCL)« less

  1. Development and application of a generic CFD toolkit covering the heat flows in combined solid-liquid systems with emphasis on the thermal design of HiLumi superconducting magnets

    NASA Astrophysics Data System (ADS)

    Bozza, Gennaro; Malecha, Ziemowit M.; Van Weelderen, Rob

    2016-12-01

    The main objective of this work is to develop a robust multi-region numerical toolkit for the modeling of heat flows in combined solid-liquid systems. Specifically heat transfer in complex cryogenic system geometries involving super-fluid helium. The incentive originates from the need to support the design of superconductive magnets in the framework of the HiLumi-LHC project (Brüning and Rossi, 2015) [1]. The intent is, instead of solving heat flows in restricted domains, to be able to model a full magnet section in one go including all relevant construction details as accurately as possible. The toolkit was applied to the so-called MQXF quadrupole magnet design. Parametrisation studies were used to find a compromise in thermal design and electro-mechanical construction constraints. The cooling performance is evaluated in terms of temperature margin of the magnets under full steady state heat load conditions and in terms of maximal sustainable load. We also present transient response to pulse heat loads of varying duration and power and the system response to time-varying cold source temperatures.

  2. Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Mingyu; WolfeIV, Edward; Craig, Timothy

    Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by the traction battery. In very cold climatic conditions, the power required to heat the EV cabin can be of a similar magnitude to that required for propulsion of the vehicle. As a result, the driving range of an EV can be reduced very significantly during winter months, which limits consumer acceptance of EVs and results in increased battery costs tomore » achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The system uses the stored latent heat of an advanced phase change material (PCM) to provide cabin heating. The PCM is melted while the EV is connected to the electric grid for charging of the electric battery, and the stored energy is subsequently transferred to the cabin during driving. To minimize thermal losses when the EV is parked for extended periods, the PCM is encased in a high performance insulation system. The electrical PCM-Assisted Thermal Heating System (ePATHS) was designed to provide enough thermal energy to heat the EV s cabin for approximately 46 minutes, covering the entire daily commute of a typical driver in the U.S.« less

  3. Study of Fluid Cooling Loop System in Chinese Manned Spacecraft

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Xu, Jiwan; Fan, Hanlin; Huang, Jiarong

    2002-01-01

    change. To solve the questions, a fluid cooling loop system must be applied to Chinese manned spacecraft besides other conventional thermal control methods, such as thermal control coatings, multiplayer insulation blankets, heat pipes, electro-heating adjustment temperature devices, and so on. The paper will introduce the thermal design of inner and outer fluid loop including their constitution and fundamental, etc. The capability of heat transportation and the accuracy of control temperature for the fluid loop will be evaluated and analyzed. To insure the air temperature of sealed cabins within 21+/-4, the inlet liquid temperature of condensing heat exchanger needs to be controlled within 9+/-2. To insure this, the inlet liquid temperature of middle heat exchanger needs to be controlled within 8+/-1.8. The inlet temperature point is controlled by a subsidiary loop adjusting: when the computer receives feedbacks of the deviation and the variety rate of deviation from the controlled temperature point. It drives the temperature control valve to adjust the flow flux distribution between the main loop through radiator and the subsidiary loop which isn't through radiator to control the temperature of the mixed fluid within 8+/-1.8. The paper will also introduce thermal designs of key parts in the cooling loop, such as space radiators, heat exchangers and cooling plates. Thermal simulated tests on the ground and flight tests have been performed to verify correctness of thermal designs. rational and the loop system works order. It realizes the circulation of absorbing heat dissipation to the loop and transferring it to radiator then radiating it to space. (2) loop control system controls inlet temperature of middle heat exchanger within 8+/-1.8 under various thermal cases. Thermal design of the middle heat exchanger insures inlet temperature of condensing heat within 9+/-2. Thereby, the air temperature of sealed cabins is controlled within about 21+/-4 accurately. (3) The thermal designs of the key heat exchanging parts (such as radiator, heat exchangers and cooling plates) in the cooling loop are rational and effective, they meet the requirements of heat exchanging and assure the entire system work order.

  4. The design of solar-heating systems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report describes organized approach to design of solar-heating systems. Such parameters as collector area, storage capacity, hardware, and constraints are determined and complete cost-and-performance analysis are made. Report provides practical example by tracing development of several systems sized for single family, multifamily, and commercial buildings in Minneapolis area.

  5. Heat recovery and seed recovery development project: preliminary design report (PDR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arkett, A. H.; Alexander, K. C.; Bolek, A. D.

    1981-06-01

    The preliminary design and performance characteristics are described of the 20 MWt heat recovery and seed recovery (HRSR) system to be fabricated, installed, and evaluated to provide a technological basis for the design of commercial size HRSR systems for coal-fired open-cycle MHD power plants. The system description and heat and material balances, equipment description and functional requirements, controls, interfacing systems, and operation and maintenance are detailed. Appendices include: (1) recommended environmental requirements for compliance with federal and state of Tennessee regulations, (2) channel and diffuser simulator, (3) equipment arrangement drawings, and (4) channel and diffuser simulator barrel drawings. (WHK)

  6. Latent energy storage with salt and metal mixtures for solar dynamic applications

    NASA Technical Reports Server (NTRS)

    Crane, R. A.; Konstantinou, K. S.

    1988-01-01

    This paper examines three design alternatives for the development of a solar dynamic heat receiver as applied to power systems operating in low earth orbit. These include a base line design used for comparison in ongoing NASA studies, a system incorporating a salt energy storage system with the salt dispersed within a metal mesh and a hybrid system incorporating both a molten salt and molten metal for energy storage. Based on a typical low earth orbit condition, designs are developed and compared to determine the effect of resultant conductivity, heat capacity and heat of fusion on system size, weight, temperature gradients, cycle turbine inlet temperature and material utilization.

  7. Solar Assisted Ground Source Heat Pump Performance in Nearly Zero Energy Building in Baltic Countries

    NASA Astrophysics Data System (ADS)

    Januševičius, Karolis; Streckienė, Giedrė

    2013-12-01

    In near zero energy buildings (NZEB) built in Baltic countries, heat production systems meet the challenge of large share domestic hot water demand and high required heating capacity. Due to passive solar design, cooling demand in residential buildings also needs an assessment and solution. Heat pump systems are a widespread solution to reduce energy use. A combination of heat pump and solar thermal collectors helps to meet standard requirements and increases the share of renewable energy use in total energy balance of country. The presented paper describes a simulation study of solar assisted heat pump systems carried out in TRNSYS. The purpose of this simulation was to investigate how the performance of a solar assisted heat pump combination varies in near zero energy building. Results of three systems were compared to autonomous (independent) systems simulated performance. Different solar assisted heat pump design solutions with serial and parallel solar thermal collector connections to the heat pump loop were modelled and a passive cooling possibility was assessed. Simulations were performed for three Baltic countries: Lithuania, Latvia and Estonia.

  8. Solar heating and cooling systems design and development. [prototype development

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The development of twelve prototype solar heating/cooling systems, six heating and six heating and cooling systems, two each for single family, multi-family, and commercial applications, is reported. Schedules and technical discussions, along with illustrations on the progress made from April 1, 1977 through June 30, 1977 are detailed.

  9. River Gardens Intermediate-Care Facility water-to-air heating and air-conditioning demonstration project. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, R.C.

    An integrated system of heat pumps is used to reject heat into or extract heat from circulating water from a shallow well adjacent to the river to demonstrate the efficiency and fuel cost savings of water-to-air heat pumps, without the expense of drilling a deep well. Water is returned unpolluted to the Guadalupe River and is circulated through a five-building complex at River Gardens Intermediate Care Facility for the Mentally Retarded in New Braunfels, Texas. The water is used as a heat source or sink for 122 heat pumps providing space heating and cooling, and for refrigeration and freezer units.more » The system was not installed as designed, which resulted in water pumping loads being higher than the original design. Electrical consumption for pumping water represented 36 to 37% of system electrical consumption. Without the water pumping load, the water-to-air system was an average of 25% more efficient in heating than a comparable air-to-air unit with resistance heating. With water pumping load included, the installed system averaged 17% less efficient in cooling and 19% more efficient in heating than the comparable unit.« less

  10. Space shuttle heat pipe thermal control systems

    NASA Technical Reports Server (NTRS)

    Alario, J.

    1973-01-01

    Heat pipe (HP) thermal control systems designed for possible space shuttle applications were built and tested under this program. They are: (1) a HP augmented cold rail, (2) a HP/phase change material (PCM) modular heat sink and (3) a HP radiating panel for compartment temperature control. The HP augmented cold rail is similar to a standard two-passage fluid cold rail except that it contains an integral, centrally located HP throughout its length. The central HP core helps to increase the local power density capability by spreading concentrated heat inputs over the entire rail. The HP/PCM modular heat sink system consists of a diode HP connected in series to a standard HP that has a PCM canister attached to its mid-section. It is designed to connect a heat source to a structural heat sink during normal operation, and to automatically decouple from it and sink to the PCM whenever structural temperatures are too high. The HP radiating panel is designed to conductively couple the panel feeder HPs directly to a fluid line that serves as a source of waste heat. It is a simple strap-on type of system that requires no internal or external line modifications to distribute the heat to a large radiating area.

  11. Advanced sensible heat solar receiver for space power

    NASA Technical Reports Server (NTRS)

    Bennett, Timothy J.; Lacy, Dovie E.

    1988-01-01

    NASA Lewis, through in-house efforts, has begun a study to generate a conceptual design of a sensible heat solar receiver and to determine the feasibility of such a system for space power applications. The sensible heat solar receiver generated in this study uses pure lithium as the thermal storage medium and was designed for a 7 kWe Brayton (PCS) operating at 1100 K. The receiver consists of two stages interconnected via temperature sensing variable conductance sodium heat pipes. The lithium is contained within a niobium vessel and the outer shell of the receiver is constructed of third generation rigid, fibrous ceramic insulation material. Reradiation losses are controlled with niobium and aluminum shields. By nature of design, the sensible heat receiver generated in this study is comparable in both size and mass to a latent heat system of similar thermal capacitance. The heat receiver design and thermal analysis was conducted through the combined use of PATRAN, SINDA, TRASYS, and NASTRAN software packages.

  12. Advanced sensible heat solar receiver for space power

    NASA Technical Reports Server (NTRS)

    Bennett, Timothy J.; Lacy, Dovie E.

    1988-01-01

    NASA Lewis, through in-house efforts, has begun a study to generate a conceptual design of a sensible heat solar receiver and to determine the feasibility of such a system for space power applications. The sensible heat solar receiver generated in this study uses pure lithium as the thermal storage medium and was designed for a 7 kWe Brayton (PCS) operating at 1100 K. The receiver consists of two stages interconnected via temperature sensing variable conductance sodium heat pipes. The lithium is contained within a niobium vessel and the outer shell of the receiver is constructed of third generation rigid, fibrous ceramic insulation material. Reradiation losses are controlled with niobium and aluminum shields. By nature of design, the sensible heat receiver generated in this study is comparable in both size and mass to a latent heat system of similar thermal capacitance. The heat receiver design and thermal analysis were conducted through the combined use of PATRAN, SINDA, TRASYS, and NASTRAN software packages.

  13. Hybrid sodium heat pipe receivers for dish/Stirling systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laing, D.; Reusch, M.

    1997-12-31

    The design of a hybrid solar/gas heat pipe receiver for the SBP 9 kW dish/Stirling system using a United Stirling AB V160 Stirling engine and the results of on-sun testing in alternative and parallel mode will be reported. The receiver is designed to transfer a thermal power of 35 kW. The heat pipe operates at around 800 C, working fluid is sodium. Operational options are solar-only, gas augmented and gas-only mode. Also the design of a second generation hybrid heat pipe receiver currently developed under a EU-funded project, based on the experience gained with the first hybrid receiver, will bemore » reported. This receiver is designed for the improved SPB/L. and C.-10 kW dish/Stirling system with the reworked SOLO V161 Stirling engine.« less

  14. Progress towards an Optimization Methodology for Combustion-Driven Portable Thermoelectric Power Generation Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Shankar; Karri, Naveen K.; Gogna, Pawan K.

    2012-03-13

    Enormous military and commercial interests exist in developing quiet, lightweight, and compact thermoelectric (TE) power generation systems. This paper investigates design integration and analysis of an advanced TE power generation system implementing JP-8 fueled combustion and thermal recuperation. Design and development of a portable TE power system using a JP-8 combustor as a high temperature heat source and optimal process flows depend on efficient heat generation, transfer, and recovery within the system are explored. Design optimization of the system required considering the combustion system efficiency and TE conversion efficiency simultaneously. The combustor performance and TE sub-system performance were coupled directlymore » through exhaust temperatures, fuel and air mass flow rates, heat exchanger performance, subsequent hot-side temperatures, and cold-side cooling techniques and temperatures. Systematic investigation of this system relied on accurate thermodynamic modeling of complex, high-temperature combustion processes concomitantly with detailed thermoelectric converter thermal/mechanical modeling. To this end, this work reports on design integration of systemlevel process flow simulations using commercial software CHEMCADTM with in-house thermoelectric converter and module optimization, and heat exchanger analyses using COMSOLTM software. High-performance, high-temperature TE materials and segmented TE element designs are incorporated in coupled design analyses to achieve predicted TE subsystem level conversion efficiencies exceeding 10%. These TE advances are integrated with a high performance microtechnology combustion reactor based on recent advances at the Pacific Northwest National Laboratory (PNNL). Predictions from this coupled simulation established a basis for optimal selection of fuel and air flow rates, thermoelectric module design and operating conditions, and microtechnology heat-exchanger design criteria. This paper will discuss this simulation process that leads directly to system efficiency power maps defining potentially available optimal system operating conditions and regimes. This coupled simulation approach enables pathways for integrated use of high-performance combustor components, high performance TE devices, and microtechnologies to produce a compact, lightweight, combustion driven TE power system prototype that operates on common fuels.« less

  15. Solar water heating system for a lunar base

    NASA Technical Reports Server (NTRS)

    Somers, Richard E.; Haynes, R. Daniel

    1992-01-01

    An investigation of the feasibility of using a solar water heater for a lunar base is described. During the investigation, computer codes were developed to model the lunar base configuration, lunar orbit, and heating systems. Numerous collector geometries, orientation variations, and system options were identified and analyzed. The results indicate that the recommended solar water heater could provide 88 percent of the design load and would not require changes in the overall lunar base design. The system would give a 'safe-haven' water heating capability and use only 7 percent to 10 percent as much electricity as an electric heating system. As a result, a fixed position photovoltaic array can be reduced by 21 sq m.

  16. Heat trap - An optimized far infrared field optics system. [for astronomical sources

    NASA Technical Reports Server (NTRS)

    Harper, D. A.; Hildebrand, R. H.; Winston, R.; Stiening, R.

    1976-01-01

    The article deals with the design and performance of a heat trap IR system designed to maximize the concentration and efficient reception of far IR and submillimeter wavelength radiation. The test object is assumed to be extended and/or viewed at wavelengths much longer than the detector, and the entrance aperture is limited to the size of the telescope Airy diffraction disk. The design of lenses, cavity, bolometers, light collectors, and mirrors for the system is discussed. Advantages and feasibility of arrays of heat traps are considered. Beam patterns, flux concentration, and performance variation with wavelength are dealt with. The heat trap is recommended for sensing all types of far IR sources and particularly for extended far IR sources.-

  17. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development & Performance Analysis

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan

    2014-01-01

    ATA-002 Technical Team has successfully designed, developed, tested and assessed the SLS Pathfinder propulsion systems for the Main Base Heating Test Program. Major Outcomes of the Pathfinder Test Program: Reach 90% of full-scale chamber pressure Achieved all engine/motor design parameter requirements Reach steady plume flow behavior in less than 35 msec Steady chamber pressure for 60 to 100 msec during engine/motor operation Similar model engine/motor performance to full-scale SLS system Mitigated nozzle throat and combustor thermal erosion Test data shows good agreement with numerical prediction codes Next phase of the ATA-002 Test Program Design & development of the SLS OML for the Main Base Heating Test Tweak BSRM design to optimize performance Tweak CS-REM design to increase robustness MSFC Aerosciences and CUBRC have the capability to develop sub-scale propulsion systems to meet desired performance requirements for short-duration testing.

  18. Optimization of a heat-pipe-cooled space radiator for use with a reactor-powered Stirling engine

    NASA Technical Reports Server (NTRS)

    Moriarty, Michael P.; French, Edward P.

    1987-01-01

    The design optimization of a reactor-Stirling heat-pipe-cooled radiator is presented. The radiator is a self-deploying concept that uses individual finned heat pipe 'petals' to reject waste heat from a Stirling engine. Radiator optimization methodology is presented, and the results of a parametric analysis of the radiator design variables for a 100-kW(e) system are given. The additional steps of optiminzing the radiator resulted in a net system mass savings of 3 percent.

  19. Preliminary design package for maxi-therm heat exchanger module

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Heat exchangers were developed for use in a solar heating and cooling system installed in a single family dwelling. Each of the three exchangers consisted of a heating and cooling module and a submersed electric water heating element. Information necessary to evaluate the preliminary design of the heat exchanger is presented in terms of the development and verification plans, performance specifications, installation and maintenance, and hazard analysis.

  20. Design Development Analyses in Support of a Heatpipe-Brayton Cycle Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Steeve, Brian E.; Kapernick, Richard J.

    2004-01-01

    One of the power systems under consideration for nuclear electric propulsion or as a planetary surface power source is a heatpipe-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the heatpipes to the Brayton gas via a heat exchanger attached to the heatpipes. This paper discusses the fluid, thermal and structural analyses that were performed in support of the design of the heat exchanger to be tested in the SAFE-100 experimental program at the Marshall Space Flight Center: An important consideration throughout the design development of the heat exchanger w its capability to be utilized for higher power and temperature applications. This paper also discusses this aspect of the design and presents designs for specific applications that are under consideration.

  1. Heat Rejection Systems Utilizing Composites and Heat Pipes: Design and Performance Testing

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Beach, Duane E.; Sanzi, James L.

    2007-01-01

    Polymer matrix composites offer the promise of reducing the mass and increasing the performance of future heat rejection systems. With lifetimes for heat rejection systems reaching a decade or more in a micrometeoroid environment, use of multiple heat pipes for fault tolerant design is compelling. The combination of polymer matrix composites and heat pipes is of particular interest for heat rejection systems operating on the lunar surface. A technology development effort is under way to study the performance of two radiator demonstration units manufactured with different polymer matrix composite face sheet resin and bonding adhesives, along with different titanium-water heat pipe designs. Common to the two radiator demonstration units is the use of high thermal conductivity fibers in the face sheets and high thermal conductivity graphite saddles within a light weight aluminum honeycomb core. Testing of the radiator demonstration units included thermal vacuum exposure and thermal vacuum exposure with a simulated heat pipe failure. Steady state performance data were obtained at different operating temperatures to identify heat transfer and thermal resistance characteristics. Heat pipe failure was simulated by removing the input power from an individual heat pipe in order to identify the diminished performance characteristics of the entire panel after a micrometeoroid strike. Freeze-thaw performance was also of interest. This paper presents a summary of the two radiator demonstration units manufactured to support this technology development effort along with the thermal performance characteristics obtained to date. Future work will also be discussed.

  2. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Lefrois, R. T.; Knowles, G. R.; Mathur, A. K.; Budimir, J.

    1979-01-01

    Active heat exchange concepts for use with thermal energy storage systems in the temperature range of 250 C to 350 C, using the heat of fusion of molten salts for storing thermal energy are described. Salt mixtures that freeze and melt in appropriate ranges are identified and are evaluated for physico-chemical, economic, corrosive and safety characteristics. Eight active heat exchange concepts for heat transfer during solidification are conceived and conceptually designed for use with selected storage media. The concepts are analyzed for their scalability, maintenance, safety, technological development and costs. A model for estimating and scaling storage system costs is developed and is used for economic evaluation of salt mixtures and heat exchange concepts for a large scale application. The importance of comparing salts and heat exchange concepts on a total system cost basis, rather than the component cost basis alone, is pointed out. The heat exchange concepts were sized and compared for 6.5 MPa/281 C steam conditions and a 1000 MW(t) heat rate for six hours. A cost sensitivity analysis for other design conditions is also carried out.

  3. Evaluation of an earth heated bridge deck.

    DOT National Transportation Integrated Search

    1984-04-01

    The design, construction, performance and analysis of the first ground heat pipe : system to heat an entire bridge deck are detailed. Each of the sixty heat pipes in : this system is comprised of a 6 em (2.4") diameter, 31 m (lOO')_long vertical grou...

  4. Heat Recovery System

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Ball Metal's design of ducting and controls for series of roof top heat exchangers was inspired by Tech Briefs. Heat exchangers are installed on eight press and coating lines used to decorate sheet metal. The heat recovery system provides an estimated energy savings of more than $250,000 per year.

  5. Design and Construction of a Thermal Contact Resistance and Thermal Conductivity Measurement System

    DTIC Science & Technology

    2015-09-01

    plate interface resistance control. Numerical heat transfer and uncertainty analyses with applied engineering judgement were extensively used to come... heat transfer issues facing the Department of Defense. 14. SUBJECT TERMS Thermal contact resistance, thermal conductivity, measurement system 15... heat transfer and uncertainty analyses with applied engineering judgement were extensively used to come up with an optimized design and construction

  6. Solar space heating for the Visitors Center, Stephens College, Columbia, Missouri

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy system located at the Visitors' Center on the Stephens College Campus, Columbia, Missouri is discussed. The system is installed in a four-story, 15,000 square foot building. The solar energy system is an integral design of the building and utilizes 176 hydronic flat plate collectors which use a 50 percent water ethylene blycol solution and water-to-water heat exchanger. Solar heated water is stored in a 5,000 gallon water storage tank located in the basement equipment room. A natural gas fired hot water boiler supplies hot water when the solar energy heat supply fails to meet the demand. The designed solar contribution is 71 percent of the heating load.

  7. A Comparison of Coolant Options for Brayton Power Conversion Heat Rejection Systems

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Siamidis, John

    2006-01-01

    This paper describes potential heat rejection design concepts for Brayton power conversion systems. Brayton conversion systems are currently under study by NASA for Nuclear Electric Propulsion (NEP) and surface power applications. The Brayton Heat Rejection Subsystem (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Sodium potassium (NaK) and H2O are two coolant working fluids that have been investigated in the design of a pumped loop and heat pipe space HRS. In general NaK systems are high temperature (300 to 1000 K) low pressure systems, and H2O systems are low temperature (300 to 600 K) high pressure systems. NaK is an alkali metal with health and safety hazards that require special handling procedures. On the other hand, H2O is a common fluid, with no health hazards and no special handling procedures. This paper compares NaK and H20 for the HRS pumped loop coolant working fluid. A detailed Microsoft Excel (Microsoft Corporation, Redmond, WA) analytical model, HRS_Opt, was developed to evaluate the various HRS design parameters. It is capable of analyzing NaK or H2O coolant, parallel or series flow configurations, and numerous combinations of other key parameters (heat pipe spacing, diameter and radial flux, radiator facesheet thickness, fluid duct system pressure drop, system rejected power, etc.) of the HRS. This paper compares NaK against water for the HRS coolant working fluid with respect to the relative mass, performance, design and implementation issues between the two fluids.

  8. A Comparison of Coolant Options for Brayton Power Conversion Heat Rejection Systems

    NASA Technical Reports Server (NTRS)

    Siamidis, John; Mason, Lee S.

    2006-01-01

    This paper describes potential heat rejection design concepts for Brayton power conversion systems. Brayton conversion systems are currently under study by NASA for Nuclear Electric Propulsion (NEP) and surface power applications. The Brayton Heat Rejection Subsystem (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Sodium potassium (NaK) and H2O are two coolant working fluids that have been investigated in the design of a pumped loop and heat pipe space HRS. In general NaK systems are high temperature (300 to 1000 K) low pressure systems, and H2O systems are low temperature (300 to 600 K) high pressure systems. NaK is an alkali metal with health and safety hazards that require special handling procedures. On the other hand, H2O is a common fluid, with no health hazards and no special handling procedures. This paper compares NaK and H2O for the HRS pumped loop coolant working fluid. A detailed Microsoft Excel (Microsoft Corporation, Redmond, WA) analytical model, HRS_Opt, was developed to evaluate the various HRS design parameters. It is capable of analyzing NaK or H2O coolant, parallel or series flow configurations, and numerous combinations of other key parameters (heat pipe spacing, diameter and radial flux, radiator facesheet thickness, fluid duct system pressure drop, system rejected power, etc.) of the HRS. This paper compares NaK against water for the HRS coolant working fluid with respect to the relative mass, performance, design and implementation issues between the two fluids.

  9. A Comparison of Coolant Options for Brayton Power Conversion Heat Rejection Systems

    NASA Astrophysics Data System (ADS)

    Siamidis, John; Mason, Lee

    2006-01-01

    This paper describes potential heat rejection design concepts for Brayton power conversion systems. Brayton conversion systems are currently under study by NASA for Nuclear Electric Propulsion (NEP) and surface power applications. The Brayton Heat Rejection Subsystem (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Sodium potassium (NaK) and H2O are two coolant working fluids that have been investigated in the design of a pumped loop and heat pipe space HRS. In general NaK systems are high temperature (300 to 1000 K) low pressure systems, and H2O systems are low temperature (300 to 600 K) high pressure systems. NaK is an alkali metal with health and safety hazards that require special handling procedures. On the other hand, H2O is a common fluid, with no health hazards and no special handling procedures. This paper compares NaK and H2O for the HRS pumped loop coolant working fluid. A detailed excel analytical model, HRS_Opt, was developed to evaluate the various HRS design parameters. It is capable of analyzing NaK or H2O coolant, parallel or series flow configurations, and numerous combinations of other key parameters (heat pipe spacing, diameter and radial flux, radiator facesheet thickness, fluid duct system pressure drop, system rejected power, etc.) of the HRS. This paper compares NaK against water for the HRS coolant working fluid with respect to the relative mass, performance, design and implementation issues between the two fluids.

  10. Analysis of Thermal Design of Heating Units with Meteorological Climate Peculiarities

    NASA Astrophysics Data System (ADS)

    Seminenko, A. S.; Elistratova, Y. V.; Pererva, M. I.; Moiseev, M. V.

    2018-03-01

    This article is devoted to the analysis of thermal design of heating units, one of the compulsory calculations of heating systems, which ensures their stable and efficient operation. The article analyses the option of a single-pipe heating system with shifted end-capping areas and the overhead supply main; the difference is shown in the calculation results between heat balance equation of the heating unit and calculation of the actual heat flux (heat transfer coefficient) taking into account deviation from the standardized (technical passport) operating conditions. The calculation of the thermal conditions of residential premises is given, the deviation of the internal air temperature is shown taking into account the discrepancy between the calculation results for thermal energy.

  11. Three-In-One D-ESIGN Makes Oil Heat Feasible.

    ERIC Educational Resources Information Center

    College and University Business, 1968

    1968-01-01

    Advantages of a heating system for a women's residence hall are discussed. The compact unit eliminated the need for a sizable prime water storage tank through the principle of indirect firing. Scalefree operation was maintained through three systems--(1) a combustion system, (2) a forced circulation heat-transfer system, and (3) a system for…

  12. General Purpose Heat Source Simulator

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2008-01-01

    The General Purpose Heat Source (GPHS) project seeks to combine the development of an electrically heated, single GPHS module simulator with the evaluation of potential nuclear surface power systems. The simulator is designed to match the form, fit, and function of actual GPHS modules which normally generate heat through the radioactive decay of Pu238. The use of electrically heated modules rather than modules containing Pu238 facilitates the testing of the subsystems and systems without sacrificing the quantity and quality of the test data gathered. Current GPHS activities are centered on developing robust heater designs with sizes and weights which closely match those of actual Pu238 fueled GPHS blocks. Designs are being pursued which will allow operation up to 1100 C.

  13. Passive flow heat exchanger simulation for power generation from solar pond using thermoelectric generators

    NASA Astrophysics Data System (ADS)

    Baharin, Nuraida'Aadilia; Arzami, Amir Afiq; Singh, Baljit; Remeli, Muhammad Fairuz; Tan, Lippong; Oberoi, Amandeep

    2017-04-01

    In this study, a thermoelectric generator heat exchanger system was designed and simulated for electricity generation from solar pond. A thermoelectric generator heat exchanger was studied by using Computational Fluid Dynamics to simulate flow and heat transfer. A thermoelectric generator heat exchanger designed for passive in-pond flow used in solar pond for electrical power generation. A simple analysis simulation was developed to obtain the amount of electricity generated at different conditions for hot temperatures of a solar pond at different flow rates. Results indicated that the system is capable of producing electricity. This study and design provides an alternative way to generate electricity from solar pond in tropical countries like Malaysia for possible renewable energy applications.

  14. Design of Tomato Drying System by Utilizing Brine Geothermal

    NASA Astrophysics Data System (ADS)

    Afuar, W.; Sibarani, B.; Abdurrahman, G.; Hendrarsakti, J.

    2016-09-01

    Cultivation of tomato plants in Indonesia has been started since 1961.Tomatoes generally will rot in three days if left on storage. Moreover, low quality tomatoes have cheaper price. After harvested, tomatoes need to be treated by drying process so it can last longer. Energy for drying tomatoes can be obtained by utilizing heat from geothermal brine. Purpose of this research is to design a tomato drying system by extracting heat of geothermal brine from separator with certain flow rate to heat up water by using a heat exchanger. Furthermore, this water will be used to heat up the surrounding air which is circulated by blower system to heat up the tomatoes chamber. Tomatoes drying process needs temperature range of 50-70°C to evaporate water content from 95.7% to 26%. After that treatment, the tomatoes are expected to have better durability. The objective of this study is to determine the quantity of hot brine which is needed for drying tomatoes and to design a drying system so that tomatoes can last longer.

  15. Multi-Purpose Logistics Module (MPLM) Cargo Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Zampiceni, John J.; Harper, Lon T.

    2002-01-01

    This paper describes the New Shuttle Orbiter's Multi- Purpose Logistics Modulo (MPLM) Cargo Heat Exchanger (HX) and associated MPLM cooling system. This paper presents Heat Exchanger (HX) design and performance characteristics of the system.

  16. Optimal design variable considerations in the use of phase change materials in indirect evaporative cooling

    NASA Astrophysics Data System (ADS)

    Chilakapaty, Ankit Paul

    The demand for sustainable, energy efficient and cost effective heating and cooling solutions is exponentially increasing with the rapid advancement of computation and information technology. Use of latent heat storage materials also known as phase change materials (PCMs) for load leveling is an innovative solution to the data center cooling demands. These materials are commercially available in the form of microcapsules dispersed in water, referred to as the microencapsulated phase change slurries and have higher heat capacity than water. The composition and physical properties of phase change slurries play significant role in energy efficiency of the cooling systems designed implementing these PCM slurries. Objective of this project is to study the effect of PCM particle size, shape and volumetric concentration on overall heat transfer potential of the cooling systems designed with PCM slurries as the heat transfer fluid (HTF). In this study uniform volume heat source model is developed for the simulation of heat transfer potential using phase change materials in the form of bulk temperature difference in a fully developed flow through a circular duct. Results indicate the heat transfer potential increases with PCM volumetric concentration with gradually diminishing returns. Also, spherical PCM particles offer greater heat transfer potential when compared to cylindrical particles. Results of this project will aid in efficient design of cooling systems based on PCM slurries.

  17. Solar Heating and Cooling of Residential Buildings: Design of Systems.

    ERIC Educational Resources Information Center

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    This is the second of two training courses designed to develop the capability of practitioners in the home building industry to design solar heating and cooling systems. The course is organized in 23 modules to separate selected topics and to facilitate learning. Although a compact schedule of one week is shown, a variety of formats can be…

  18. Some potential material supply constraints in solar systems for heating and cooling of buildings and process heat. (A preliminary screening to identify critical materials)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, R.L.; Gurwell, W.E.; Nelson, T.A.

    1979-06-01

    Nine Solar Heating and Cooling of Buildings (SHACOB) designs and three Agricultural and Industrial Process Heat (AIPH) designs have been studied to identify potential future material constraints to their large scale installation and use. The nine SHACOB and three AIPH systems were screened and found to be free of serious future material constraints. The screening was carried out for each individual system design assuming 500 million m/sup 2/ of collector area installed by the year 2000. Also, two mixed design scenarios, containing equal portions of each system design, were screened. To keep these scenarios in perspective, note that a billionmore » m/sup 2/ containing a mixture of the nine SHACOB designs will yield an annual solar contribution of about 1.3 Quads or will displace about 4.2 Quads of fossil fuel used to generate electricity. For AIPH a billion square meters of the mixed designs will yield about 2.8 Quads/year. Three materials were identified that could possibly restrain the deployment of solar systems in the specific scenarios investigated. They are iron and steel, soda lime glass and polyvinyl fluoride. All three of these materials are bulk materials. No raw material supply constraints were found.« less

  19. Thermal Protection System (Heat Shield) Development - Advanced Development Project

    NASA Technical Reports Server (NTRS)

    Kowal, T. John

    2010-01-01

    The Orion Thermal Protection System (TPS) ADP was a 3 1/2 year effort to develop ablative TPS materials for the Orion crew capsule. The ADP was motivated by the lack of available ablative TPS's. The TPS ADP pursued a competitive phased development strategy with succeeding rounds of development, testing and down selections. The Project raised the technology readiness level (TRL) of 8 different TPS materials from 5 different commercial vendors, eventual down selecting to a single material system for the Orion heat shield. In addition to providing a heat shield material and design for Orion on time and on budget, the Project accomplished the following: 1) Re-invigorated TPS industry & re-established a NASA competency to respond to future TPS needs; 2) Identified a potentially catastrophic problem with the planned MSL heat shield, and provided a viable, high TRL alternate heat shield design option; and 3) Transferred mature heat shield material and design options to the commercial space industry, including TPS technology information for the SpaceX Dragon capsule.

  20. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    NASA Technical Reports Server (NTRS)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  1. Energy Savings by Treating Buildings as Systems

    NASA Astrophysics Data System (ADS)

    Harvey, L. D. Danny

    2008-09-01

    This paper reviews the opportunities for dramatically reducing energy use in buildings by treating buildings as systems, rather than focusing on device efficiencies. Systems-level considerations are relevant for the operation of heat pumps (where the temperatures at which heat or coldness are distributed are particularly important); the joint or separate provision of heating, cooling, and ventilation; the joint or separate removal of sensible heat and moisture; and in the operation of fluid systems having pumps. Passive heating, cooling, and ventilation, as well as daylighting (use of sunlight for lighting purposes) also require consideration of buildings as systems. In order to achieve the significant (50-75%) energy savings that are possible through a systems approach, the design process itself has to involve a high degree of integration between the architect and various engineering disciplines (structural, mechanical, electrical), and requires the systematic examination and adjustment of alternative designs using computer simulation models.

  2. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittereder, N.; Poerschke, A.

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHPmore » in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.« less

  3. Flow Distribution Control Characteristics in Marine Gas Turbine Waste- Heat Recovery Systems. Phase 2. Flow Distribution Control in Waste-Heat Steam Generators

    DTIC Science & Technology

    1982-07-01

    waste-heat steam generators. The applicable steam generator design concepts and general design consideration were reviewed and critical problems...a once-through forced-circulation steam generator design should be selected because of stability, reliability, compact- ness and lightweight...consists of three sections and one appendix. In Section I, the applicable steam generator design conccpts and general design * considerations are reviewed

  4. Conceptual design of free-piston Stirling conversion system for solar power units

    NASA Astrophysics Data System (ADS)

    Loktionov, Iu. V.

    A conversion system has been conceptually designed for solar power units of the dish-Stirling type. The main design objectives were to demonstrate the possibility of attaining such performance characteristics as low manufacturing and life cycle costs, high reliability, long life, high efficiency, power output stability, self-balance, automatic (or self-) start-up, and easy maintenance. The system design includes a heat transfer and utilization subsystem with a solar receiver, a free-piston engine, an electric power generation subsystem, and a control subsystem. The working fluid is helium. The structural material is stainless steel for hot elements, aluminum alloys and plastics for others. The electric generation subunit can be fabricated in three options: with an induction linear alternator, with a permanent magnet linear alternator, and with a serial rotated induction generator and a hydraulic drive subsystem. The heat transfer system is based on heat pipes or the reflux boiler principle. Several models of heat transfer units using a liquid metal (Na or Na-K) have been created and demonstrated.

  5. Plant-mimetic Heat Pipes for Operation with Large Inertial and Gravitational Stresses

    DTIC Science & Technology

    2015-08-07

    Pipes (SHLHP), we developed a set of mathematical models and experimental approaches. Our models provide design rules for heat transfer systems that could...number of fronts: 1) Design concepts and modeling tools: We have proposed a new design for loop heat pipes that operates with superheated liquid...and completed a mathematical model of steady state operation of such superheated loop heat pipes (SHLHP). We have also developed a transport theories

  6. Westinghouse Small Modular Reactor passive safety system response to postulated events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M. C.; Wright, R. F.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor. This paper is part of a series of four describing the design and safety features of the Westinghouse SMR. This paper focuses in particular upon the passive safety features and the safety system response of the Westinghouse SMR. The Westinghouse SMR design incorporates many features to minimize the effects of, and in some cases eliminates the possibility of postulated accidents. The small size of the reactor and the low power density limits the potential consequences of an accident relative to a large plant. Themore » integral design eliminates large loop piping, which significantly reduces the flow area of postulated loss of coolant accidents (LOCAs). The Westinghouse SMR containment is a high-pressure, compact design that normally operates at a partial vacuum. This facilitates heat removal from the containment during LOCA events. The containment is submerged in water which also aides the heat removal and provides an additional radionuclide filter. The Westinghouse SMR safety system design is passive, is based largely on the passive safety systems used in the AP1000{sup R} reactor, and provides mitigation of all design basis accidents without the need for AC electrical power for a period of seven days. Frequent faults, such as reactivity insertion events and loss of power events, are protected by first shutting down the nuclear reaction by inserting control rods, then providing cold, borated water through a passive, buoyancy-driven flow. Decay heat removal is provided using a layered approach that includes the passive removal of heat by the steam drum and independent passive heat removal system that transfers heat from the primary system to the environment. Less frequent faults such as loss of coolant accidents are mitigated by passive injection of a large quantity of water that is readily available inside containment. An automatic depressurization system is used to reduce the reactor pressure in a controlled manner to facilitate the passive injection. Long-term decay heat removal is accomplished using the passive heat removal systems augmented by heat transfer through the containment vessel to the environment. The passive injection systems are designed so that the fuel remains covered and effectively cooled throughout the event. Like during the frequent faults, the passive systems provide effective cooling without the need for ac power for seven days following the accident. Connections are available to add additional water to indefinitely cool the plant. The response of the safety systems of the Westinghouse SMR to various initiating faults has been examined. Among them, two accidents; an extended station blackout event, and a LOCA event have been evaluated to demonstrate how the plant will remain safe in the unlikely event that either should occur. (authors)« less

  7. Heat exchanger selection and design analyses for metal hydride heat pump systems

    DOE PAGES

    Mazzucco, Andrea; Voskuilen, Tyler G.; Waters, Essene L.; ...

    2016-01-01

    This paper presents a design analysis for the development of highly efficient heat exchangers within stationary metal hydride heat pumps. The design constraints and selected performance criteria are applied to three representative heat exchangers. The proposed thermal model can be applied to select the most efficient heat exchanger design and provides outcomes generally valid in a pre-design stage. Heat transfer effectiveness is the principal performance parameter guiding the selection analysis, the results of which appear to be mildly (up to 13%) affected by the specific Nusselt correlation used. The thermo-physical properties of the heat transfer medium and geometrical parameters aremore » varied in the sensitivity analysis, suggesting that the length of independent tubes is the physical parameter that influences the performance of the heat exchangers the most. The practical operative regions for each heat exchanger are identified by finding the conditions over which the heat removal from the solid bed enables a complete and continuous hydriding reaction. The most efficient solution is a design example that achieves the target effectiveness of 95%.« less

  8. Solar air heating system: design and dynamic simulation

    NASA Astrophysics Data System (ADS)

    Bououd, M.; Hachchadi, O.; Janusevicius, K.; Martinaitis, V.; Mechaqrane, A.

    2018-05-01

    The building sector is one of the big energy consumers in Morocco, accounting for about 23% of the country’s total energy consumption. Regarding the population growth, the modern lifestyle requiring more comfort and the increase of the use rate of electronic devices, the energy consumption will continue to increase in the future. In this context, the introduction of renewable energy systems, along with energy efficiency, is becoming a key factor in reducing the energy bill of buildings. This study focuses on the design and dynamic simulation of an air heating system for the mean categories of the tertiary sector where the area exceeds 750 m3. Heating system has been designed via a dynamic simulation environment (TRNSYS) to estimate the produced temperature and airflow rate by one system consisting of three essential components: vacuum tube solar collector, storage tank and water-to-air finned heat exchanger. The performances estimation of this system allows us to evaluate its capacity to meet the heating requirements in Ifrane city based on the prescriptive approach according to the Moroccan Thermal Regulation. The simulation results show that in order to maintain a comfort temperature of 20°C in a building of 750m3, the places requires a thermal powers of approximately 21 kW, 29 kW and 32 kW, respectively, for hotels, hospitals, administrative and public-school. The heat generation is ensured by a solar collector areas of 5 m², 7 m² and 10 m², respectively, for hotels, hospitals, administrative and public-school spaces, a storage tank of 2 m3 and a finned heat exchanger with 24 tubes. The finned tube bundles have been modelled and integrated into the system design via a Matlab code. The heating temperature is adjusted via two controllers to ensure a constant air temperature of 20°C during the heating periods.

  9. A Study of Ballast Water Treatment Using Engine Waste Heat

    NASA Astrophysics Data System (ADS)

    Balaji, Rajoo; Yaakob, Omar; Koh, Kho King; Adnan, Faizul Amri bin; Ismail, Nasrudin bin; Ahmad, Badruzzaman bin; Ismail, Mohd Arif bin

    2018-05-01

    Heat treatment of ballast water using engine waste heat can be an advantageous option complementing any proven technology. A treatment system was envisaged based on the ballast system of an existing, operational crude carrier. It was found that the available waste heat could raise the temperatures by 25 °C and voyage time requirements were found to be considerable between 7 and 12 days to heat the high volumes of ballast water. Further, a heat recovery of 14-33% of input energies from exhaust gases was recorded while using a test rig arrangement representing a shipboard arrangement. With laboratory level tests at temperature ranges of around 55-75 °C, almost complete species mortalities for representative phytoplankton, zooplankton and bacteria were observed while the time for exposure varied from 15 to 60 s. Based on the heat availability analyses for harvesting heat from the engine exhaust gases(vessel and test rig), heat exchanger designs were developed and optimized using Lagrangian method applying Bell-Delaware approaches. Heat exchanger designs were developed to suit test rig engines also. Based on these designs, heat exchanger and other equipment were procured and erected. The species' mortalities were tested in this mini-scale arrangement resembling the shipboard arrangement. The mortalities realized were > 95% with heat from jacket fresh water and exhaust gases alone. The viability of the system was thus validated.

  10. RELAP5 Analysis of the Hybrid Loop-Pool Design for Sodium Cooled Fast Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hongbin Zhang; Haihua Zhao; Cliff Davis

    2008-06-01

    An innovative hybrid loop-pool design for sodium cooled fast reactors (SFR-Hybrid) has been recently proposed. This design takes advantage of the inherent safety of a pool design and the compactness of a loop design to improve economics and safety of SFRs. In the hybrid loop-pool design, primary loops are formed by connecting the reactor outlet plenum (hot pool), intermediate heat exchangers (IHX), primary pumps and the reactor inlet plenum with pipes. The primary loops are immersed in the cold pool (buffer pool). Passive safety systems -- modular Pool Reactor Auxiliary Cooling Systems (PRACS) – are added to transfer decay heatmore » from the primary system to the buffer pool during loss of forced circulation (LOFC) transients. The primary systems and the buffer pool are thermally coupled by the PRACS, which is composed of PRACS heat exchangers (PHX), fluidic diodes and connecting pipes. Fluidic diodes are simple, passive devices that provide large flow resistance in one direction and small flow resistance in reverse direction. Direct reactor auxiliary cooling system (DRACS) heat exchangers (DHX) are immersed in the cold pool to transfer decay heat to the environment by natural circulation. To prove the design concepts, especially how the passive safety systems behave during transients such as LOFC with scram, a RELAP5-3D model for the hybrid loop-pool design was developed. The simulations were done for both steady-state and transient conditions. This paper presents the details of RELAP5-3D analysis as well as the calculated thermal response during LOFC with scram. The 250 MW thermal power conventional pool type design of GNEP’s Advanced Burner Test Reactor (ABTR) developed by Argonne National Laboratory was used as the reference reactor core and primary loop design. The reactor inlet temperature is 355 °C and the outlet temperature is 510 °C. The core design is the same as that for ABTR. The steady state buffer pool temperature is the same as the reactor inlet temperature. The peak cladding, hot pool, cold pool and reactor inlet temperatures were calculated during LOFC. The results indicate that there are two phases during LOFC transient – the initial thermal equilibration phase and the long term decay heat removal phase. The initial thermal equilibration phase occurs over a few hundred seconds, as the system adjusts from forced circulation to natural circulation flow. Subsequently, during long-term heat removal phase all temperatures evolve very slowly due to the large thermal inertia of the primary and buffer pool systems. The results clearly show that passive safety PRACS can effectively transfer decay heat from the primary system to the buffer pool by natural circulation. The DRACS system in turn can effectively transfer the decay heat to the environment.« less

  11. New latent heat storage system with nanoparticles for thermal management of electric vehicles

    NASA Astrophysics Data System (ADS)

    Javani, N.; Dincer, I.; Naterer, G. F.

    2014-12-01

    In this paper, a new passive thermal management system for electric vehicles is developed. A latent heat thermal energy storage with nanoparticles is designed and optimized. A genetic algorithm method is employed to minimize the length of the heat exchanger tubes. The results show that even the optimum length of a shell and tube heat exchanger becomes too large to be employed in a vehicle. This is mainly due to the very low thermal conductivity of phase change material (PCM) which fills the shell side of the heat exchanger. A carbon nanotube (CNT) and PCM mixture is then studied where the probability of nanotubes in a series configuration is defined as a deterministic design parameter. Various heat transfer rates, ranging from 300 W to 600 W, are utilized to optimize battery cooling options in the heat exchanger. The optimization results show that smaller tube diameters minimize the heat exchanger length. Furthermore, finned tubes lead to a higher heat exchanger length due to more heat transfer resistance. By increasing the CNT concentration, the optimum length of the heat exchanger decreases and makes the improved thermal management system a more efficient and competitive with air and liquid thermal management systems.

  12. A Conceptual Design Study on the Application of Liquid Metal Heat Transfer Technology to the Solar Thermal Power Plant

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Robertson, C. S.; Ehde, C. L.; Divakaruni, S. M.; Stacy, L. E.

    1979-01-01

    Alkali metal heat transfer technology was used in the development of conceptual designs for the transport and storage of sensible and latent heat thermal energy in distributed concentrator, solar Stirling power conversion systems at a power level of 15 kWe per unit. Both liquid metal pumped loop and heat pipe thermal transport were considered; system configurations included: (1) an integrated, focal mounted sodium heat pipe solar receiver (HPSR) with latent heat thermal energy storage; (2) a liquid sodium pumped loop with the latent heat storage, Stirling engine-generator, pump and valves located on the back side of the concentrator; and (3) similar pumped loops serving several concentrators with more centralized power conversion and storage. The focus mounted HPSR was most efficient, lightest and lowest in estimated cost. Design confirmation testing indicated satisfactory performance at all angles of inclination of the primary heat pipes to be used in the solar receiver.

  13. Two-Phase Cryogenic Heat Exchanger for the Thermodynamic Vent System

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.

    2011-01-01

    A two-phase cryogenic heat exchanger for a thermodynamic vent system was designed and analyzed, and the predicted performance was compared with test results. A method for determining the required size of the Joule-Thomson device was also developed. Numerous sensitivity studies were performed to show that the design was robust and possessed a comfortable capacity margin. The comparison with the test results showed very similar heat extraction performance for similar inlet conditions. It was also shown that estimates for Joule- Thomson device flow rates and exit quality can vary significantly and these need to be accommodated for with a robust system design.

  14. Liquid neon heat transfer as applied to a 30 tesla cryomagnet

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Hendricks, R. C.

    1975-01-01

    Since superconducting magnets cooled by liquid helium are limited to magnetic fields of about 18 teslas, the design of a 30 tesla cryomagnet necessitates forced convection liquid neon heat transfer in small coolant channels. As these channels are too small to handle the vapor flow if the coolant were to boil, the design philosophy calls for suppressing boiling by subjecting the fluid to high pressures. Forced convection heat transfer data are obtained by using a blowdown technique to force the fluid vertically through a resistance-heated instrumented tube. The data are obtained at inlet temperatures between 28 and 34 K and system pressures between 28 to 29 bars. Data correlation is limited to a very narrow range of test conditions, since the tests were designed to simulate the heat transfer characteristics in the coolant channels of the 30 tesla cryomagnet concerned. The results can therefore be applied directly to the design of the magnet system.-

  15. Spacecraft radiators for advanced mission requirements

    NASA Technical Reports Server (NTRS)

    Leach, J. W.

    1980-01-01

    Design requirements for spacecraft heat rejection systems are identified, and their impact on the construction of conventional pumped fluid and hybrid heat pipe/pumped fluid radiators is evaluated. Heat rejection systems to improve the performance or reduce the cost of the spacecraft are proposed. Heat rejection requirements which are large compared to those of existing systems and mission durations which are relatively long, are discussed.

  16. Design methodology and results evaluation of a heating functionality in modular lab-on-chip systems

    NASA Astrophysics Data System (ADS)

    Streit, Petra; Nestler, Joerg; Shaporin, Alexey; Graunitz, Jenny; Otto, Thomas

    2018-06-01

    Lab-on-a-chip (LoC) systems offer the opportunity of fast and customized biological analyses executed at the ‘point-of-need’ without expensive lab equipment. Some biological processes need a temperature treatment. Therefore, it is important to ensure a defined and stable temperature distribution in the biosensor area. An integrated heating functionality is realized with discrete resistive heating elements including temperature measurement. The focus of this contribution is a design methodology and evaluation technique of the temperature distribution in the biosensor area with regard to the thermal-electrical behaviour of the heat sources. Furthermore, a sophisticated control of the biosensor temperature is proposed. A finite element (FE) model with one and more integrated heat sources in a polymer-based LoC system is used to investigate the impact of the number and arrangement of heating elements on the temperature distribution around the heating elements and in the biosensor area. Based on this model, various LOC systems are designed and fabricated. Electrical characterization of the heat sources and independent temperature measurements with infrared technique are performed to verify the model parameters and prove the simulation approach. The FE model and the proposed methodology is the foundation for optimization and evaluation of new designs with regard to temperature requirements of the biosensor. Furthermore, a linear dependency of the heater temperature on the electric current is demonstrated in the targeted temperature range of 20 °C to 70 °C enabling the usage of the heating functionality for biological reactions requiring a steady-state temperature up to 70 °C. The correlation between heater and biosensor area temperature is derived for a direct control through the heating current.

  17. Crawl space assisted heat pump. [using stored ground heat

    NASA Technical Reports Server (NTRS)

    Ternes, M. P.

    1980-01-01

    A variety of experiments and simulations, currently being designed or underway, to determine the feasibility of conditioning the source air of an air to air heat pump using stored ground heat or cool to produce higher seasonal COP's and net energy savings are discussed. The ground would condition ambient air as it is drawn through the crawl space of a house. Tests designed to evaluate the feasibility of the concept, to determine the amount of heat or cool available from the ground, to study the effect of the system on the heating and cooling loads of the house, to study possible mechanisms which could enhance heat flow through the ground, and to determine if diurnal temperature swings are necessary to achieve successful system performance are described.

  18. Development of the ITER ICH Transmission Line and Matching System

    NASA Astrophysics Data System (ADS)

    Rasmussen, D. A.; Goulding, R. H.; Pesavento, P. V.; Peters, B.; Swain, D. W.; Fredd, E. H.; Hosea, J.; Greenough, N.

    2011-10-01

    The ITER Ion Cyclotron Heating (ICH) System is designed to couple 20 MW of heating power for ion and electron heating. Prototype components for the ITER Ion Cyclotron Heating (ICH) transmission line and matching system are being designed and tested. The ICH transmission lines are pressurized 300 mm diameter coaxial lines with water-cooled aluminum outer conductor and gas-cooled and water-cooled copper inner conductor. Each ICH transmission line is designed to handle 40-55 MHz power at up to 6 MW/line. A total of 8 lines split to 16 antenna inputs on two ICH antennas. Industrial suppliers have designed coaxial transmission line and matching components and prototypes will be manufactured. The prototype components will be qualified on a test stand operating at the full power and pulse length needed for ITER. The matching system must accommodated dynamic changes in the plasma loading due to ELMS and the L to H-mode transition. Passive ELM tolerance will be performed using hybrid couplers and loads, which can absorb the transient reflected power. The system is also designed to compensate for the mutual inductances of the antenna current straps to limit the peak voltages on the antenna array elements.

  19. Design and Operation of the RHIC 80-K Cooler

    NASA Astrophysics Data System (ADS)

    Nicoletti, A.; Reuter, A.; Sidi-Yekhlef, A.; Talty, P.; Quimby, E.

    2004-06-01

    A stand-alone cryogenic system designed to maintain the magnets of the Relativistic Heavy Ion Collider (RHIC) at between 80 and 100 K during accelerator shutdown periods has been conceived and designed at Brookhaven National Laboratory and built by PHPK Technologies of Columbus, Ohio. Since most thermal contraction occurs above this temperature, this unit, referred to as the 80-K Cooler, will eliminate the stresses associated with thermal cycling. The cooling system will provide the necessary refrigeration by circulating cooled helium gas at approximately 1500 kPA through the RHIC heat shields and magnets. This helium is cooled by heat exchange with liquid nitrogen and circulated via three cold centrifugal pumps. The nominal delivered cooling capacity required to maintain the magnets at temperature is approximately 36 kW, primarily intercepted at the heat shield. The system also has separate heat exchangers for use as a pre-cooler from room temperature to 82 K. Selection of sextant or sextants for pre-cooling is designed into the RHIC cryogenic distribution system. Topics covered include Cooler design decisions, details of the Cooler as built, integration into the existing RHIC cryogenic system and initial operating experience.

  20. Proposed Design and Operation of a Heat Pipe Reactor using the Sandia National Laboratories Annular Core Test Facility and Existing UZrH Fuel Pins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Steven A.; Lipinski, Ronald J.; Pandya, Tara

    2005-02-06

    Heat Pipe Reactors (HPR) for space power conversion systems offer a number of advantages not easily provided by other systems. They require no pumping, their design easily deals with freezing and thawing of the liquid metal, and they can provide substantial levels of redundancy. Nevertheless, no reactor has ever been operated and cooled with heat pipes, and the startup and other operational characteristics of these systems remain largely unknown. Signification deviations from normal reactor heat removal mechanisms exist, because the heat pipes have fundamental heat removal limits due to sonic flow issues at low temperatures. This paper proposes an earlymore » prototypic test of a Heat Pipe Reactor (using existing 20% enriched nuclear fuel pins) to determine the operational characteristics of the HPR. The proposed design is similar in design to the HOMER and SAFE-300 HPR designs (Elliot, Lipinski, and Poston, 2003; Houts, et. al, 2003). However, this reactor uses existing UZrH fuel pins that are coupled to potassium heat pipes modules. The prototype reactor would be located in the Sandia Annular Core Research Reactor Facility where the fuel pins currently reside. The proposed reactor would use the heat pipes to transport the heat from the UZrH fuel pins to a water pool above the core, and the heat transport to the water pool would be controlled by adjusting the pressure and gas type within a small annulus around each heat pipe. The reactor would operate as a self-critical assembly at power levels up to 200 kWth. Because the nuclear heated HPR test uses existing fuel and because it would be performed in an existing facility with the appropriate safety authorization basis, the test could be performed rapidly and inexpensively. This approach makes it possible to validate the operation of a HPR and also measure the feedback mechanisms for a typical HPR design. A test of this nature would be the world's first operating Heat Pipe Reactor. This reactor is therefore called 'HPR-1'.« less

  1. Study and Development of an Air Conditioning System Operating on a Magnetic Heat Pump Cycle

    NASA Technical Reports Server (NTRS)

    Wang, Pao-Lien

    1991-01-01

    This report describes the design of a laboratory scale demonstration prototype of an air conditioning system operating on a magnetic heat pump cycle. Design parameters were selected through studies performed by a Kennedy Space Center (KSC) System Simulation Computer Model. The heat pump consists of a rotor turning through four magnetic fields that are created by permanent magnets. Gadolinium was selected as the working material for this demonstration prototype. The rotor was designed to be constructed of flat parallel disks of gadolinium with very little space in between. The rotor rotates in an aluminum housing. The laboratory scale demonstration prototype is designed to provide a theoretical Carnot Cycle efficiency of 62 percent and a Coefficient of Performance of 16.55.

  2. Development of the FHR advanced natural circulation analysis code and application to FHR safety analysis

    DOE PAGES

    Guo, Z.; Zweibaum, N.; Shao, M.; ...

    2016-04-19

    The University of California, Berkeley (UCB) is performing thermal hydraulics safety analysis to develop the technical basis for design and licensing of fluoride-salt-cooled, high-temperature reactors (FHRs). FHR designs investigated by UCB use natural circulation for emergency, passive decay heat removal when normal decay heat removal systems fail. The FHR advanced natural circulation analysis (FANCY) code has been developed for assessment of passive decay heat removal capability and safety analysis of these innovative system designs. The FANCY code uses a one-dimensional, semi-implicit scheme to solve for pressure-linked mass, momentum and energy conservation equations. Graph theory is used to automatically generate amore » staggered mesh for complicated pipe network systems. Heat structure models have been implemented for three types of boundary conditions (Dirichlet, Neumann and Robin boundary conditions). Heat structures can be composed of several layers of different materials, and are used for simulation of heat structure temperature distribution and heat transfer rate. Control models are used to simulate sequences of events or trips of safety systems. A proportional-integral controller is also used to automatically make thermal hydraulic systems reach desired steady state conditions. A point kinetics model is used to model reactor kinetics behavior with temperature reactivity feedback. The underlying large sparse linear systems in these models are efficiently solved by using direct and iterative solvers provided by the SuperLU code on high performance machines. Input interfaces are designed to increase the flexibility of simulation for complicated thermal hydraulic systems. In conclusion, this paper mainly focuses on the methodology used to develop the FANCY code, and safety analysis of the Mark 1 pebble-bed FHR under development at UCB is performed.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Z.; Zweibaum, N.; Shao, M.

    The University of California, Berkeley (UCB) is performing thermal hydraulics safety analysis to develop the technical basis for design and licensing of fluoride-salt-cooled, high-temperature reactors (FHRs). FHR designs investigated by UCB use natural circulation for emergency, passive decay heat removal when normal decay heat removal systems fail. The FHR advanced natural circulation analysis (FANCY) code has been developed for assessment of passive decay heat removal capability and safety analysis of these innovative system designs. The FANCY code uses a one-dimensional, semi-implicit scheme to solve for pressure-linked mass, momentum and energy conservation equations. Graph theory is used to automatically generate amore » staggered mesh for complicated pipe network systems. Heat structure models have been implemented for three types of boundary conditions (Dirichlet, Neumann and Robin boundary conditions). Heat structures can be composed of several layers of different materials, and are used for simulation of heat structure temperature distribution and heat transfer rate. Control models are used to simulate sequences of events or trips of safety systems. A proportional-integral controller is also used to automatically make thermal hydraulic systems reach desired steady state conditions. A point kinetics model is used to model reactor kinetics behavior with temperature reactivity feedback. The underlying large sparse linear systems in these models are efficiently solved by using direct and iterative solvers provided by the SuperLU code on high performance machines. Input interfaces are designed to increase the flexibility of simulation for complicated thermal hydraulic systems. In conclusion, this paper mainly focuses on the methodology used to develop the FANCY code, and safety analysis of the Mark 1 pebble-bed FHR under development at UCB is performed.« less

  4. Phase-Change Heat-Storage Module

    NASA Technical Reports Server (NTRS)

    Mulligan, James C.

    1989-01-01

    Heat-storage module accommodates momentary heating or cooling overload in pumped-liquid heat-transfer system. Large heat-storage capacity of module provided by heat of fusion of material that freezes at or near temperature desired to maintain object to be heated or cooled. Module involves relatively small penalties in weight, cost, and size and more than compensates by enabling design of rest of system to handle only average load. Latent heat of fusion of phase-change material provides large heat-storage capacity in small volume.

  5. The development of anti-heat stress clothing for construction workers in hot and humid weather.

    PubMed

    Chan, Albert P C; Guo, Y P; Wong, Francis K W; Li, Y; Sun, S; Han, X

    2016-04-01

    The purpose of this study was to develop anti-heat stress clothing for construction workers in hot and humid weather. Following DeJonge's functional clothing design process, the design situation was explored, including clothing fabric heat/moisture transporting properties and UV protection and the aspects of clothing ergonomic design (mobility, convenience, and safety). The problem structure was derived from the results of the surveys in three local construction sites, which agreed well with the task requirements and observations. Specifications were consequently described and 30 commercially available fabrics were identified and tested. Fabric testing data and design considerations were inputted in S-smart system to predict the thermal functional performance of the clothing. A new uniform prototype was developed and evaluated. The results of all measurements suggest that the new uniform which incorporated fabrics with superior heat/moisture transporting properties and loose-fitting design could reduce the workers' heat stress and improve their comfort and work performance. Practitioner Summary: The construction workers' uniform currently used in Hong Kong during summer was unsatisfactory. Following DeJonge's functional clothing design process, an anti-heat stress uniform was developed by testing 30 fabrics and predicting clothing thermal functional performance using S-smart system. The new uniform could reduce the workers' heat stress and improve their comfort and work performance.

  6. Solar Heating Systems: Instructor's Guide.

    ERIC Educational Resources Information Center

    Green, Joanne; And Others

    This Instructor's Guide for a Solar Heating System Curriculum is designed to accompany the Student Manual and the Progress Checks and Test Manual for the course (see note), in order to facilitate the instruction of classes on solar heating systems. The Instructor's Guide contains a variety of materials used in teaching the courses, including…

  7. Modelling results for the thermal management sub-system of a combined heat and power (CHP) fuel cell system (FCS)

    NASA Astrophysics Data System (ADS)

    Colella, Whitney G.

    Although the fuel cells research and development community has traditionally focused the majority of its efforts on improving the fuel cell stack's voltage (electrical efficiency), combined heat and power (CHP) fuel cell system (FCSs) may achieve a competitive advantage over conventional generators only if the research and development community refocuses its efforts on cultivating other inherent technical qualities of such systems. Based on an analysis of their use within energy markets, these inherent qualities include (1) an ability to vary their electrical load rapidly, (2) an ability to vary their heat to power ratio during operation, and (3) an ability to deliver their waste heat to a useful thermal sink. This article focuses on the last of three design objectives: effectively capturing heat from a CHP FCS. This article (1) delineates the design specifications for a 6 kWe CHP FCS, (2) analyses four possible cooling loop configurations for this system, and (3) concludes which one of these provides the optimal heat recovery performance.

  8. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A solar heating on cooling system is described which is designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 solargenics, series 76, flat plate collectors with a total area of 1,596 square feet. The solar loop circulates an ethylene glyco water solution through the collectors into a hot water system exchanger. The water storage subsystem consists of a heat exchanger, two 2,300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water water fixtures. The building cold water system provides make up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described.

  9. Field testing of two prototype air-source integrated heat pumps for net zero energy home (nZEH) application

    DOE PAGES

    Baxter, Van D.; Munk, Jeffrey D.

    2017-11-08

    By integrating multiple functions into a single system it offers potential efficiency and cost reduction benefits. Oak Ridge National Laboratory (ORNL) and its partners have designed, developed, and tested two air-source heat pump designs that not only provide space heating and cooling, but also water heating, dehumidification, and ventilation functions. Some details on the design, simulated performance, prototype field test, measured performance, and lessons learned are provided.

  10. Field testing of two prototype air-source integrated heat pumps for net zero energy home (nZEH) application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Van D.; Munk, Jeffrey D.

    By integrating multiple functions into a single system it offers potential efficiency and cost reduction benefits. Oak Ridge National Laboratory (ORNL) and its partners have designed, developed, and tested two air-source heat pump designs that not only provide space heating and cooling, but also water heating, dehumidification, and ventilation functions. Some details on the design, simulated performance, prototype field test, measured performance, and lessons learned are provided.

  11. Advanced Design Heat PumpRadiator for EVA Suits

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Passow, Christian; Phillips, Scott; Trevino, Luis

    2009-01-01

    Absorption cooling using a LiCl/water heat pump can enable lightweight and effective thermal control for EVA suits without venting water to the environment. The key components in the system are an absorber/radiator that rejects heat to space and a flexible evaporation cooling garment that absorbs heat from the crew member. This paper describes progress in the design, development, and testing of the absorber/radiator and evaporation cooling garment. New design concepts and fabrication approaches will significantly reduce the mass of the absorber/radiator. We have also identified materials and demonstrated fabrication approaches for production of a flexible evaporation cooling garment. Data from tests of the absorber/radiator s modular components have validated the design models and allowed predictions of the size and weight of a complete system.

  12. Brayton-cycle heat exchanger technology program

    NASA Technical Reports Server (NTRS)

    Killackey, J. J.; Coombs, M. G.; Graves, R. F.; Morse, C. J.

    1976-01-01

    The following five tasks designed to advance this development of heat exchanger systems for close loop Brayton cycle power systems are presented: (1) heat transfer and pressure drop data for a finned tubular heat transfer matrix. The tubes are arranged in a triangular array with copper stainless steel laminate strips helically wound on the tubes to form a disk fin geometry; (2) the development of a modularized waste heat exchanger. Means to provide verified double containment are described; (3) the design, fabrication, and test of compact plate fin heat exchangers representative of full scale Brayton cycle recuperators; (4) the analysis and design of bellows suitable for operation at 1600 F and 200 psia for 1,000 cycles and 50,000 hours creep life; and (5) screening tests used to select a low cost braze alloy with the desirable attributes of a gold base alloy. A total of 22 different alloys were investigated; the final selection was Nicrobraz 30.

  13. Representative shuttle evaporative heat sink

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.

    1978-01-01

    The design, fabrication, and testing of a representative shuttle evaporative heat sink (RSEHS) system which vaporizes an expendable fluid to provide cooling for the shuttle heat transport fluid loop is reported. The optimized RSEHS minimum weight design meets or exceeds the shuttle flash evaporator system requirements. A cold trap which cryo-pumps flash evaporator exhaust water from the CSD vacuum chamber test facility to prevent water contamination of the chamber pumping equipment is also described.

  14. Infrared Heater Used in Qualification Testing of International Space Station Radiators

    NASA Technical Reports Server (NTRS)

    Ziemke, Robert A.

    2004-01-01

    Two heat rejection radiator systems for the International Space Station (ISS) have undergone thermal vacuum qualification testing at the NASA Glenn Research Center (GRC), Plum Brook Station, Sandusky, Ohio. The testing was performed in the Space Power Facility (SPF), the largest thermal vacuum chamber in the world. The heat rejection system radiator was tested first; it removes heat from the ISS crew living quarters. The second system tested was the photovoltaic radiator (PVR), which rejects heat from the ISS photovoltaic arrays and the electrical power-conditioning equipment. The testing included thermal cycling, hot- and cold-soaked deployments, thermal gradient deployments, verification of the onboard heater controls, and for the PVR, thermal performance tests with ammonia flow. Both radiator systems are orbital replacement units for ease of replacement on the ISS. One key to the success of these tests was the performance of the infrared heater system. It was used in conjunction with a gaseous-nitrogen-cooled cryoshroud in the SPF vacuum chamber to achieve the required thermal vacuum conditions for the qualification tests. The heater, which was designed specifically for these tests, was highly successful and easily met the test requirements. This report discusses the heating requirements, the heater design features, the design approach, and the mathematical basis of the design.

  15. System Design Package for SIMS Prototype System 3, Solar Heating and Domestic Hot Water

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A collation of documents and drawings are presented that describe a prototype solar heating and hot water system using liquid flat plate collectors and a gas or electric furnace energy subsystem. The system was designed for installation into a single-family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system are packaged for evaluation of the system with information sufficient to assemble a similar system.

  16. Regenerative Carbonate-Based Thermochemical Energy Storage System for Concentrating Solar Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangwal, Santosh; Muto, Andrew

    Southern Research has developed a thermochemical energy storage (TCES) technology that utilizes the endothermic-exothermic reversible carbonation of calcium oxide (lime) to store thermal energy at high-temperatures, such as those achieved by next generation concentrating solar power (CSP) facilities. The major challenges addressed in the development of this system include refining a high capacity, yet durable sorbent material and designing a low thermal resistance low-cost heat exchanger reactor system to move heat between the sorbent and a heat transfer fluid under conditions relevant for CSP operation (e.g., energy density, reaction kinetics, heat flow). The proprietary stabilized sorbent was developed by Precisionmore » Combustion, Inc. (PCI). A factorial matrix of sorbent compositions covering the design space was tested using accelerated high throughput screening in a thermo-gravimetric analyzer. Several promising formulations were selected for more thorough evaluation and one formulation with high capacity (0.38 g CO 2/g sorbent) and durability (>99.7% capacity retention over 100 cycles) was chosen as a basis for further development of the energy storage reactor system. In parallel with this effort, a full range of currently available commercial and developmental heat exchange reactor systems and sorbent loading methods were examined through literature research and contacts with commercial vendors. Process models were developed to examine if a heat exchange reactor system and balance of plant can meet required TCES performance and cost targets, optimizing tradeoffs between thermal performance, exergetic efficiency, and cost. Reactor types evaluated included many forms, from microchannel reactor, to diffusion bonded heat exchanger, to shell and tube heat exchangers. The most viable design for application to a supercritical CO 2 power cycle operating at 200-300 bar pressure and >700°C was determined to be a combination of a diffusion bonded heat exchanger with a shell and tube reactor. A bench scale reactor system was then designed and constructed to test sorbent performance under more commercially relevant conditions. This system utilizes a tube-in tube reactor design containing approximately 250 grams sorbent and is able to operate under a wide range of temperature, pressure and flow conditions as needed to explore system performance under a variety of operating conditions. A variety of sorbent loading methods may be tested using the reactor design. Initial bench test results over 25 cycles showed very high sorbent stability (>99%) and sufficient capacity (>0.28 g CO 2/g sorbent) for an economical commercial-scale system. Initial technoeconomic evaluation of the proposed storage system show that the sorbent cost should not have a significant impact on overall system cost, and that the largest cost impacts come from the heat exchanger reactor and balance of plant equipment, including compressors and gas storage, due to the high temperatures for sCO 2 cycles. Current estimated system costs are $47/kWhth based on current material and equipment cost estimates.« less

  17. Space nuclear power systems 1989; Proceedings of the 6th Symposium, Albuquerque, NM, Jan. 8-12, 1989. Vols. 1 & 2

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S. (Editor); Hoover, Mark D. (Editor)

    1992-01-01

    The present conference discusses such space nuclear power (SNP) issues as current design trends for SDI applications, ultrahigh heat-flux systems with curved surface subcooled nucleate boiling, design and manufacturing alternatives for low cost production of SNPs, a lightweight radioisotope heater for the Galileo mission, compatible materials for uranium fluoride-based gas core SNPs, Johnson noise thermometry for SNPs, and uranium nitride/rhenium compatibility studies for the SP-100 SNP. Also discussed are system issues in antimatter energy conversion, the thermal design of a heat source for a Brayton cycle radioisotope power system, structural and thermal analyses of an isotope heat source, a novel plant protection strategy for transient reactors, and beryllium toxicity.

  18. Vapor Compression and Thermoelectric Heat Pump Heat Exchangers for a Condensate Distillation System: Design and Experiment

    NASA Technical Reports Server (NTRS)

    Erickson, Lisa R.; Ungar, Eugene K.

    2013-01-01

    Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.

  19. Prototype solar heating and combined heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Schedules and technical progress in the development of eight prototype solar heating and combined solar heating and cooling systems are reported. Particular emphasis is given to the analysis and preliminary design for the cooling subsystem, and the setup and testing of a horizontal thermal energy storage tank configuration and collector shroud evaluation.

  20. Passive rejection of heat from an isotope heat source through an open door

    NASA Technical Reports Server (NTRS)

    Burns, R. K.

    1971-01-01

    The isotope heat-source design for a Brayton power system includes a door in the thermal insulation through which the heat can be passively rejected to space when the power system is not operating. The results of an analysis to predict the heat-source surface temperature and the heat-source heat-exchanger temperature during passive heat rejection as a function of insulation door opening angle are presented. They show that for a door opening angle greater than 20 deg, the temperatures are less than the steady-state temperatures during power system operation.

  1. Long life reliability thermal control systems study

    NASA Technical Reports Server (NTRS)

    Scollon, T. R., Jr.; Killen, R. E.

    1972-01-01

    The results of a program undertaken to conceptually design and evaluate a passive, high reliability, long life thermal control system for space station application are presented. The program consisted of four steps: (1) investigate and select potential thermal system elements; (2) conceive, evaluate and select a thermal control system using these elements; (3) conduct a verification test of a prototype segment of the selected system; and (4) evaluate the utilization of waste heat from the power supply. The result of this project is a conceptual thermal control system design which employs heat pipes as primary components, both for heat transport and temperature control. The system, its evaluation, and the test results are described.

  2. Heat receivers for solar dynamic space power systems

    NASA Astrophysics Data System (ADS)

    Perez-Davis, Marla Esther

    A review of state-of-the-art technology is presented and discussed for phase change materials. Some of the advanced solar dynamic designs developed as part of the Advanced Heat Receiver Conceptual Design Study performed for LeRC are discussed. The heat receivers are analyzed and several recommendations are proposed, including two new concepts. The first concept evaluated the effect of tube geometries inside the heat receiver. It was found that a triangular configuration would provide better heat transfer to the working fluid, although not necessarily with a reduction in receiver size. A sensible heat receiver considered in this study uses vapor grown graphite fiber-carbon (VGCF/C) composite as the thermal storage media and was designed for a 7 kW Brayton engine. The proposed heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The proposed heat receiver compares well with other latent and advanced sensible heat receivers while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material. In addition to the new concepts, the effect of atomic oxygen on several materials is reviewed. A test was conducted for atomic oxygen attack on boron nitride, which experienced a negligible mass loss when exposed to an atomic oxygen fluence of 5 x 10 exp 21 atoms/sq cm. This material could be used to substitute the graphite aperture plate of the heat receiver.

  3. Geothermal Energy Retrofit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachman, Gary

    The Cleary University Geothermal Energy Retrofit project involved: 1. A thermal conductivity test; 2. Assessment of alternative horizontal and vertical ground heat exchanger options; 3. System design; 4. Asphalt was stripped from adjacent parking areas and a vertical geothermal ground heat exchanger system installed; 5. the ground heat exchanger was connected to building; 6. a system including 18 heat pumps, control systems, a manifold and pumps, piping for fluid transfer and ductwork for conditioned air were installed throughout the building.

  4. Membrane-lined foundations for liquid thermal storage

    NASA Astrophysics Data System (ADS)

    Bourne, R. C.

    1981-06-01

    The membrane lined storage (MLS) container which is a spinoff of vinyl-lined swimming pool and waterbed technologies was developed. The state of development of MLS was evaluated and concepts for MLS structural and heat transfer systems were improved. Preferred structural supports were identified and designed for 1500 gal MLS containers for basement, crawl space, and slab-on-grade foundation types. Techniques are developed to provide space heating via forced air through a finned storage jacket for the two preferred structural enclosure designs. Cost effectiveness of the direct air heating technique is evaluated. Alternate free convection domestic water preheaters and a preferred heat exchanger material is selected. Collector and space heat inlet/outlet designs, design concepts for auxiliary heat input to MLS from resistance electric, combustion, and heat pump sources are developed.

  5. Nuclear Design of the HOMER-15 Mars Surface Fission Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, David I.

    2002-07-01

    The next generation of robotic missions to Mars will most likely require robust power sources in the range of 3 to 20 kWe. Fission systems are well suited to provide safe, reliable, and economic power within this range. The goal of this study is to design a compact, low-mass fission system that meets Mars surface power requirements, while maintaining a high level of safety and reliability at a relatively low cost. The Heat pipe Power System (HPS) is one possible approach for producing near-term, low-cost, space fission power. The goal of the HPS project is to devise an attractive spacemore » fission system that can be developed quickly and affordably. The primary ways of doing this are by using existing technology and by designing the system for inexpensive testing. If the system can be designed to allow highly prototypic testing with electrical heating, then an exhaustive test program can be carried out quickly and inexpensively, and thorough testing of the actual flight unit can be performed - which is a major benefit to reliability. Over the past 4 years, three small HPS proof-of-concept technology demonstrations have been conducted, and each has been highly successful. The Heat pipe-Operated Mars Exploration Reactor (HOMER) is a derivative of the HPS designed especially for producing power on the surface of Mars. The HOMER-15 is a 15-kWt reactor that couples with a 3-kWe Stirling engine power system. The reactor contains stainless-steel (SS)-clad uranium nitride (UN) fuel pins that are structurally and thermally bonded to SS/sodium heat pipes. Fission energy is conducted from the fuel pins to the heat pipes, which then carry the heat to the Stirling engine. This paper describes conceptual design and nuclear performance the HOMER-15 reactor. (author)« less

  6. The Solar Energy Notebook.

    ERIC Educational Resources Information Center

    Rankins, William H., III; Wilson, David A.

    This publication is a handbook for the do-it-yourselfer or anyone else interested in solar space and water heating. Described are methods for calculating sun angles, available energy, heating requirements, and solar heat storage. Also described are collector and system designs with mention of some design problems to avoid. Climatological data for…

  7. Space shuttle/food system study. Volume 1: Technical volume, oven study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The baseline space shuttle galley was designed to utilize lightweight rehydratable foods, to be prepared for consumption by rehydration with chilled or hot water. The impact is examined of an extension of food types to include thermostabilized food, at ambient temperature, and frozen foods on the baseline design of the shuttle galley. Weight, volume, and power penalities associated with heating thermostabilized and frozen foods by means of a hot air convection heating system and a conduction heating system are determined along with the impact on crew/galley interface and meal preparation.

  8. Radiative heat transfer enhancement using geometric and spectral control for achieving high-efficiency solar-thermophotovoltaic systems

    NASA Astrophysics Data System (ADS)

    Kohiyama, Asaka; Shimizu, Makoto; Yugami, Hiroo

    2018-04-01

    We numerically investigate radiative heat transfer enhancement using spectral and geometric control of the absorber/emitter. A high extraction of the radiative heat transfer from the emitter as well as minimization of the optical losses from the absorber leads to high extraction and solar thermophotovoltaic (STPV) system efficiency. The important points for high-efficiency STPV design are discussed for the low and high area ratio of the absorber/emitter. The obtained general guideline will support the design of various types of STPV systems.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Information used to evaluate the initial design of the Elcam, Inc., Solar Domestic Hot Water System is presented. Included are such items as the system performance specification, detailed design drawings and other information. Elcam, Inc., has developed two solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished Site Data Acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

  10. Cargo systems manual: Heat Pipe Performance (HPP) STS-66

    NASA Technical Reports Server (NTRS)

    Napp, Robert

    1994-01-01

    The purpose of the cargo systems manual (CSM) is to provide a payload reference document for payload and shuttle flight operations personnel during shuttle mission planning, training, and flight operations. It includes orbiter-to-payload interface information and payload system information (including operationally pertinent payload safety data) that is directly applicable to the Mission Operations Directorate (MOD) role in the payload mission. The primary objectives of the heat pipe performance (HPP) are to obtain quantitative data on the thermal performance of heat pipes in a microgravity environment. This information will increase understanding of the behavior of heat pipes in space and be useful for application to design improvements in heat pipes and associated systems. The purpose of HPP-2 is to establish a complete one-g and zero-g data base for axial groove heat pipes. This data will be used to update and correlate data generated from a heat pipe design computer program called Grooved Analysis Program (GAP). The HPP-2 objectives are to: determine heat transport capacity and conductance for open/closed grooved heat pipes and different Freon volumes (nominal, under, and overcharged) using a uniform heat load; determine heat transport capacity and conductance for single/multiple evaporators using asymmetric heat loads; obtain precise static, spin, and rewicking data points for undercharged pipes; investigate heat flux limits (asymmetric heat loads); and determine effects of positive body force on thermal performance.

  11. West Chester Work Center Solar Space Heating Demonstration Project. Interim test and evaluation report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-07-01

    This document reports on the test and evaluation stage of a solar space heating demonstration project. It describes an integrated system providing solar energy space heating for a 9982 sq ft, newly built, one-story building. The building is located at 966 Matlack Street, West Goshen Township, Chester County, Pennsylvania. Functionally, the building consists of two sections: an office and a storeroom. The office section is heated by solar-assisted water-to-air heat pump units. The storeroom section is heated by an air-handling unit, containing a water-to-air coil. The system design was based on solar energy providing 62% of the heating load, withmore » the balance to be supplied by a back-up electric boiler. The system includes 1900 active (2112 gross) square feet of flat-plate solar collectors, and a 6000 gallon above-ground indoor storage tank. Freeze protection is provided by a gravity drain-down scheme combined with nitrogen pressurization in a closed circuit. System operation during the 1977 to 1978 heating season disclosed some major deficiencies in both the design and installation of the system, which caused the system to freeze and required it to be shut down for prolonged periods. Several major modifications and repairs were undergone during 1978 and are described in detail. System operation during the 1978 to 1979 heating season showed noticeable gradual improvement.« less

  12. Configuring a fuel cell based residential combined heat and power system

    NASA Astrophysics Data System (ADS)

    Ahmed, Shabbir; Papadias, Dionissios D.; Ahluwalia, Rajesh K.

    2013-11-01

    The design and performance of a fuel cell based residential combined heat and power (CHP) system operating on natural gas has been analyzed. The natural gas is first converted to a hydrogen-rich reformate in a steam reformer based fuel processor, and the hydrogen is then electrochemically oxidized in a low temperature polymer electrolyte fuel cell to generate electric power. The heat generated in the fuel cell and the available heat in the exhaust gas is recovered to meet residential needs for hot water and space heating. Two fuel processor configurations have been studied. One of the configurations was explored to quantify the effects of design and operating parameters, which include pressure, temperature, and steam-to-carbon ratio in the fuel processor, and fuel utilization in the fuel cell. The second configuration applied the lessons from the study of the first configuration to increase the CHP efficiency. Results from the two configurations allow a quantitative comparison of the design alternatives. The analyses showed that these systems can operate at electrical efficiencies of ∼46% and combined heat and power efficiencies of ∼90%.

  13. An expert system for the design of heating, ventilating, and air-conditioning systems

    NASA Astrophysics Data System (ADS)

    Camejo, Pedro Jose

    1989-12-01

    Expert systems are computer programs that seek to mimic human reason. An expert system shelf, a software program commonly used for developing expert systems in a relatively short time, was used to develop a prototypical expert system for the design of heating, ventilating, and air-conditioning (HVAC) systems in buildings. Because HVAC design involves several related knowledge domains, developing an expert system for HVAC design requires the integration of several smaller expert systems known as knowledge bases. A menu program and several auxiliary programs for gathering data, completing calculations, printing project reports, and passing data between the knowledge bases are needed and have been developed to join the separate knowledge bases into one simple-to-use program unit.

  14. Sonic limitations and startup problems of heat pipes

    NASA Technical Reports Server (NTRS)

    Deverall, J. E.; Kemme, J. E.; Florschuetz, L. W.

    1972-01-01

    Introduction of small amounts of inert, noncombustible gas aids startup in certain types of heat pipes. When the heat pipe is closely coupled to the heat sink, the startup system must be designed to bring the heat sink on-line slowly.

  15. Radioisotope powered alkali metal thermoelectric converter design for space systems

    NASA Technical Reports Server (NTRS)

    Sievers, R. K.; Bankston, C. P.

    1988-01-01

    The design concept of an alkali-metal thermoelectric converter (AMTEC) for 15-30-percent-efficient conversion of heat from the General Purpose (radioisotope) Heat Source (GPHS) on spacecraft is presented. The basic physical principles of the conversion cycle are outlined; a theoretical model is derived; a modular design is described and illustrated with drawings; and the overall AMTEC/GPHS system design is characterized. Predicted performance data are presented in extensive tables and graphs and discussed in detail.

  16. A thermodynamic analysis of a novel bidirectional district heating and cooling network

    DOE PAGES

    Zarin Pass, R.; Wetter, M.; Piette, M. A.

    2017-11-29

    In this study, we evaluate an ambient, bidirectional thermal network, which uses a single circuit for both district heating and cooling. When in net more cooling is needed than heating, the system circulates from a central plant in one direction. When more heating is needed, the system circulates in the opposite direction. A large benefit of this design is that buildings can recover waste heat from each other directly. We analyze the thermodynamic performance of the bidirectional system. Because the bidirectional system represents the state-of-the-art in design for district systems, its peak energy efficiency represents an upper bound on themore » thermal performance of any district heating and cooling system. However, because any network has mechanical and thermal distribution losses, we develop a diversity criterion to understand when the bidirectional system may be a more energy-efficient alternative to modern individual-building systems. We show that a simple model of a low-density, high-distribution loss network is more efficient than aggregated individual buildings if there is at least 1 unit of cooling energy per 5.7 units of simultaneous heating energy (or vice versa). We apply this criterion to reference building profiles in three cities to look for promising clusters.« less

  17. A thermodynamic analysis of a novel bidirectional district heating and cooling network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarin Pass, R.; Wetter, M.; Piette, M. A.

    In this study, we evaluate an ambient, bidirectional thermal network, which uses a single circuit for both district heating and cooling. When in net more cooling is needed than heating, the system circulates from a central plant in one direction. When more heating is needed, the system circulates in the opposite direction. A large benefit of this design is that buildings can recover waste heat from each other directly. We analyze the thermodynamic performance of the bidirectional system. Because the bidirectional system represents the state-of-the-art in design for district systems, its peak energy efficiency represents an upper bound on themore » thermal performance of any district heating and cooling system. However, because any network has mechanical and thermal distribution losses, we develop a diversity criterion to understand when the bidirectional system may be a more energy-efficient alternative to modern individual-building systems. We show that a simple model of a low-density, high-distribution loss network is more efficient than aggregated individual buildings if there is at least 1 unit of cooling energy per 5.7 units of simultaneous heating energy (or vice versa). We apply this criterion to reference building profiles in three cities to look for promising clusters.« less

  18. Transient Approximation of SAFE-100 Heat Pipe Operation

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Reid, Robert S.

    2005-01-01

    Engineers at Los Alamos National Laboratory (LANL) have designed several heat pipe cooled reactor concepts, ranging in power from 15 kWt to 800 kWt, for both surface power systems and nuclear electric propulsion systems. The Safe, Affordable Fission Engine (SAFE) is now being developed in a collaborative effort between LANL and NASA Marshall Space Flight Center (NASA/MSFC). NASA is responsible for fabrication and testing of non-nuclear, electrically heated modules in the Early Flight Fission Test Facility (EFF-TF) at MSFC. In-core heat pipes must be properly thawed as the reactor power starts. Computational models have been developed to assess the expected operation of a specific heat pipe design during start-up, steady state operation, and shutdown. While computationally intensive codes provide complete, detailed analyses of heat pipe thaw, a relatively simple. concise routine can also be applied to approximate the response of a heat pipe to changes in the evaporator heat transfer rate during start-up and power transients (e.g., modification of reactor power level) with reasonably accurate results. This paper describes a simplified model of heat pipe start-up that extends previous work and compares the results to experimental measurements for a SAFE-100 type heat pipe design.

  19. Engineering Aerothermal Analysis for X-34 Thermal Protection System Design

    NASA Technical Reports Server (NTRS)

    Wurster, Kathryn E.; Riley, Christopher J.; Zoby, E. Vincent

    1998-01-01

    Design of the thermal protection system for any hypersonic flight vehicle requires determination of both the peak temperatures over the surface and the heating-rate history along the flight profile. In this paper, the process used to generate the aerothermal environments required for the X-34 Testbed Technology Demonstrator thermal protection system design is described as it has evolved from a relatively simplistic approach based on engineering methods applied to critical areas to one of detailed analyses over the entire vehicle. A brief description of the trajectory development leading to the selection of the thermal protection system design trajectory is included. Comparisons of engineering heating predictions with wind-tunnel test data and with results obtained using a Navier-Stokes flowfield code and an inviscid/boundary layer method are shown. Good agreement is demonstrated among all these methods for both the ground-test condition and the peak heating flight condition. Finally, the detailed analysis using engineering methods to interpolate the surface-heating-rate results from the inviscid/boundary layer method to predict the required thermal environments is described and results presented.

  20. Engineering Aerothermal Analysis for X-34 Thermal Protection System Design

    NASA Technical Reports Server (NTRS)

    Wurster, Kathryn E.; Riley, Christopher J.; Zoby, E. Vincent

    1998-01-01

    Design of the thermal protection system for any hypersonic flight vehicle requires determination of both the peak temperatures over the surface and the heating-rate history along the flight profile. In this paper, the process used to generate the aerothermal environments required for the X-34 Testbed Technology Demonstrator thermal protection system design is described as it has evolved from a relatively simplistic approach based on engineering methods applied to critical areas to one of detailed analyses over the entire vehicle. A brief description of the trajectory development leading to the selection of the thermal protection system design trajectory is included. Comparisons of engineering heating predictions with wind-tunnel test data and with results obtained using a Navier- Stokes flowfield code and an inviscid/boundary layer method are shown. Good agreement is demonstrated among all these methods for both the ground-test condition and the peak heating flight condition. Finally, the detailed analysis using engineering methods to interpolate the surface-heating-rate results from the inviscid/boundary layer method to predict the required thermal environments is described and results presented.

  1. The design of a solar energy collection system to augment heating and cooling for a commercial office building

    NASA Technical Reports Server (NTRS)

    Basford, R. C.

    1977-01-01

    Analytical studies supported by experimental testing indicate that solar energy can be utilized to heat and cool commercial buildings. In a 50,000 square foot one-story office building at the Langley Research Center, 15,000 square feet of solar collectors are designed to provide the energy required to supply 79 percent of the building heating needs and 52 percent of its cooling needs. The experience gained from the space program is providing the technology base for this project. Included are some of the analytical studies made to make the building design changes necessary to utilize solar energy, the basic solar collector design, collector efficiencies, and the integrated system design.

  2. User's manual for the BNW-I optimization code for dry-cooled power plants. [AMCIRC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, D.J.; Daniel, D.J.; De Mier, W.V.

    1977-01-01

    This appendix provides a listing, called Program AMCIRC, of the BNW-1 optimization code for determining, for a particular size power plant, the optimum dry cooling tower design using ammonia flow in the heat exchanger tubes. The optimum design is determined by repeating the design of the cooling system over a range of design conditions in order to find the cooling system with the smallest incremental cost. This is accomplished by varying five parameters of the plant and cooling system over ranges of values. These parameters are varied systematically according to techniques that perform pattern and gradient searches. The dry coolingmore » system optimized by program AMCIRC is composed of a condenser/reboiler (condensation of steam and boiling of ammonia), piping system (transports ammonia vapor out and ammonia liquid from the dry cooling towers), and circular tower system (vertical one-pass heat exchangers situated in circular configurations with cocurrent ammonia flow in the tubes of the heat exchanger). (LCL)« less

  3. The development of a solar-powered residential heating and cooling system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Efforts to demonstrate the engineering feasibility of utilizing solar power for residential heating and cooling are described. These efforts were concentrated on the analysis, design, and test of a full-scale demonstration system which is currently under construction at the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, Alabama. The basic solar heating and cooling system under development utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating and water heating, and an absorption cycle air conditioner for space cooling.

  4. Evaluation of thermal energy storage for the proposed Twin Cities District Heating system. [using cogeneration heat production and aquifiers for heat storage

    NASA Technical Reports Server (NTRS)

    Meyer, C. F.

    1980-01-01

    The technical and economic feasibility of incorporating thermal energy storage components into the proposed Twin Cities District heating project was evaluated. The technical status of the project is reviewed and conceptual designs of district heating systems with and without thermal energy storage were compared in terms of estimated capital requirements, fuel consumption, delivered energy cost, and environmental aspects. The thermal energy storage system is based on cogeneration and the storage of heat in aquifers.

  5. Measure Guideline. Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, Armin

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  6. Design New Buildings To Save Energy -- and Money

    ERIC Educational Resources Information Center

    Rittelmann, Richard

    1974-01-01

    Buildings should be designed so that energy systems function with maximum efficiency. Re-evaluation of standards for ventilation and lighting is recommended. Heat recovery techniques and topography can reduce heating loads. (MF)

  7. Heat Pipe Systems

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Solar Fundamentals, Inc.'s hot water system employs space-derived heat pipe technology. It is used by a meat packing plant to heat water for cleaning processing machinery. Unit is complete system with water heater, hot water storage, electrical controls and auxiliary components. Other than fans and a circulating pump, there are no moving parts. System's unique design eliminates problems of balancing, leaking, corroding, and freezing.

  8. Solar-energy landmark Building-Columbia, Missouri

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Report includes design, cost, installation, maintenance, and performance details for attractive solar installation which supplies space heating for four-story Visitors Center. 176 hydronic flat-plate collectors, water-to-water heat exchanger, and 5,000-gallon storage tank comprise system which provides 71 percent of building's heat. Natural-gas-fired boiler supplies auxiliary hot water to heating system when necessary.

  9. Solar heating and cooling technical data and systems analysis

    NASA Technical Reports Server (NTRS)

    Christensen, D. L.

    1977-01-01

    The research activities described herein were concentrated on the areas of economics, heating and cooling systems, architectural design, materials characteristics, climatic conditions, educational information packages, and evaluation of solar energy systems and components.

  10. Three-terminal quantum-dot thermal management devices

    NASA Astrophysics Data System (ADS)

    Zhang, Yanchao; Zhang, Xin; Ye, Zhuolin; Lin, Guoxing; Chen, Jincan

    2017-04-01

    We theoretically demonstrate that the heat flows can be manipulated by designing a three-terminal quantum-dot system consisting of three Coulomb-coupled quantum dots connected to respective reservoirs. In this structure, the electron transport between the quantum dots is forbidden, but the heat transport is allowed by the Coulomb interaction to transmit heat between the reservoirs with a temperature difference. We show that such a system is capable of performing thermal management operations, such as heat flow swap, thermal switch, and heat path selector. An important thermal rectifier, i.e., a thermal diode, can be implemented separately in two different paths. The asymmetric configuration of a quantum-dot system is a necessary condition for thermal management operations in practical applications. These results should have important implications in providing the design principle for quantum-dot thermal management devices and may open up potential applications for the thermal management of quantum-dot systems at the nanoscale.

  11. Numerical investigation of effects on blanks for press hardening process during longitudinal flux heating

    NASA Astrophysics Data System (ADS)

    Dietrich, André; Nacke, Bernard

    2018-05-01

    With the induction heating technology, it is possible to heat up blanks for the press hardening process in 20 s or less. Furthermore, the dimension of an induction system is small and easy to control in comparison to conventional heating systems. To bring the induction heating technology to warm forming industry it is necessary to analyze the process under the view of induction. This paper investigates the edge- and end-effects of a batch heated blank. The results facilitate the later design of induction heating systems for the batch process.

  12. Spacecraft Radiator Freeze Protection Using a Regenerative Heat Exchanger with Bypass Setpoint Temperature Control

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.

    2008-01-01

    Spacecraft radiators are sized for their maximum heat load in their warmest thermal environment, but must operate at reduced heat loads and in colder environments. For systems where the radiator environment can be colder than the working fluid freezing temperature, radiator freezing becomes an issue. Radiator freezing has not been a major issue for the Space Shuttle and the International Space Station (ISS) active thermal control systems (ATCSs) because they operate in environments that are warm relative to the freezing point of their external coolants (Freon-21 and ammonia, respectively). For a vehicle that lands at the Lunar South Pole, the design thermal environment is 215K, but the radiator working fluid must also be kept from freezing during the 0 K sink of transit. A radiator bypass flow control design such as those used on the Space Shuttle and ISS requires more than 30% of the design heat load to avoid radiator freezing during transit - even with a very low freezing point working fluid. By changing the traditional ATCS architecture to include a regenerating heat exchanger inboard of the radiator and by using a regenerator bypass flow control valve to maintain system setpoint, the required minimum heat load can be reduced by more than half. This gives the spacecraft much more flexibility in design and operation. The present work describes the regenerator bypass ATCS setpoint control methodology. It includes analytical results comparing the performance of this system to the traditional radiator bypass system. Finally, a summary of the advantages of the regenerator bypass system are presented.

  13. Aerothermodynamic Design of the Mars Science Laboratory Backshell and Parachute Cone

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Dyakonov, Artem A.; Wright, Michael J.; Tang, Chun Y.

    2009-01-01

    Aerothermodynamic design environments are presented for the Mars Science Laboratory entry capsule backshell and parachute cone. The design conditions are based on Navier-Stokes flowfield simulations on shallow (maximum total heat load) and steep (maximum heat flux) design entry trajectories from a 2009 launch. Transient interference effects from reaction control system thruster plumes were included in the design environments when necessary. The limiting backshell design heating conditions of 6.3 W/sq cm for heat flux and 377 J/sq cm for total heat load are not influenced by thruster firings. Similarly, the thrusters do not affect the parachute cover lid design environments (13 W/sq cm and 499 J/sq cm). If thruster jet firings occur near peak dynamic pressure, they will augment the design environments at the interface between the backshell and parachute cone (7 W/sq cm and 174 J/sq cm). Localized heat fluxes are higher near the thruster fairing during jet firings, but these areas did not require additional thermal protection material. Finally, heating bump factors were developed for antenna radomes on the parachute cone

  14. Assessment of solar-assisted gas-fired heat pump systems

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1981-01-01

    As a possible application for the Goldstone Energy Project, the performance of a 10 ton heat pump unit using a hybrid solar gas energy source was evaluated in an effort to optimize the solar collector size. The heat pump system is designed to provide all the cooling and/or heating requirements of a selected office building. The system performance is to be augmented in the heating mode by utilizing the waste heat from the power cycle. A simplified system analysis is described to assess and compute interrrelationships of the engine, heat pump, and solar and building performance parameters, and to optimize the solar concentrator/building area ratio for a minimum total system cost. In addition, four alternative heating cooling systems, commonly used for building comfort, are described; their costs are compared, and are found to be less competitive with the gas solar heat pump system at the projected solar equipment costs.

  15. Solar energy system performance evaluation: Seasonal report for IBM system 1A, Huntsville, Alabama

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The operational and thermal performance of the solar energy system, Sims Prototype System 1A, is described. The system was designed by IBM to provide 50 to 60 percent of the space heating and domestic hot water preheating load to a 2,000 square foot floor space single family residence in the Huntsville area. The load design temperature inside the building was to be maintained at 70 degrees fahrenheit with auxiliary energy for heating supplied by an electric heat pump assisted by an electric resistance strip heater. In general the disappointing operation of this system is attributed to the manner in which it was used. The system was designed for residential application and used to satisfy the demands of an office environment. The differences were: (1) inside temperature was not maintained at 70 F as expected; and (2) hot water usage was much lower than expected. The conclusion is that the solar energy system must be designed for the type of application in which it is used. Misapplication usually will have an adverse affect on system performance.

  16. Modeling Transients and Designing a Passive Safety System for a Nuclear Thermal Rocket Using Relap5

    NASA Astrophysics Data System (ADS)

    Khatry, Jivan

    Long-term high payload missions necessitate the need for nuclear space propulsion. Several nuclear reactor types were investigated by the Nuclear Engine for Rocket Vehicle Application (NERVA) program of National Aeronautics and Space Administration (NASA). Study of planned/unplanned transients on nuclear thermal rockets is important due to the need for long-term missions. A NERVA design known as the Pewee I was selected for this purpose. The following transients were run: (i) modeling of corrosion-induced blockages on the peripheral fuel element coolant channels and their impact on radiation heat transfer in the core, and (ii) modeling of loss-of-flow-accidents (LOFAs) and their impact on radiation heat transfer in the core. For part (i), the radiation heat transfer rate of blocked channels increases while their neighbors' decreases. For part (ii), the core radiation heat transfer rate increases while the flow rate through the rocket system is decreased. However, the radiation heat transfer decreased while there was a complete LOFA. In this situation, the peripheral fuel element coolant channels handle the majority of the radiation heat transfer. Recognizing the LOFA as the most severe design basis accident, a passive safety system was designed in order to respond to such a transient. This design utilizes the already existing tie rod tubes and connects them to a radiator in a closed loop. Hence, this is basically a secondary loop. The size of the core is unchanged. During normal steady-state operation, this secondary loop keeps the moderator cool. Results show that the safety system is able to remove the decay heat and prevent the fuel elements from melting, in response to a LOFA and subsequent SCRAM.

  17. Energy Efficient Waste Heat Recovery from an Engine Exhaust System

    DTIC Science & Technology

    2016-12-01

    targets. Since solar panels and wind turbines will not work for ships; the energy savings must come from making the existing power generation...achieve an approximate solution to the problem . The research for this thesis involved design by analysis of heat exchange in a gas turbine exhaust...effectiveness of a new style of heat exchanger for waste heat recovery. The new design sought to optimize heat recovery from a gas turbine engine exhaust as

  18. DEVELOPMENT OF COLD CLIMATE HEAT PUMP USING TWO-STAGE COMPRESSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Rice, C Keith; Abdelaziz, Omar

    2015-01-01

    This paper uses a well-regarded, hardware based heat pump system model to investigate a two-stage economizing cycle for cold climate heat pump applications. The two-stage compression cycle has two variable-speed compressors. The high stage compressor was modelled using a compressor map, and the low stage compressor was experimentally studied using calorimeter testing. A single-stage heat pump system was modelled as the baseline. The system performance predictions are compared between the two-stage and single-stage systems. Special considerations for designing a cold climate heat pump are addressed at both the system and component levels.

  19. Design of an ammonia two-phase Prototype Thermal Bus for Space Station

    NASA Technical Reports Server (NTRS)

    Brown, Richard F.; Gustafson, Eric; Parish, Richard

    1987-01-01

    The feasibility of two-phase heat transport systems for use on Space Station was demonstrated by testing the Thermal Bus Technology Demonstrator (TBTD) as part of the Integrated Two-Phase System Test in NASA-JSC's Thermal Test Bed. Under contract to NASA-JSC, Grumman is currently developing the successor to the TBTD, the Prototype Thermal Bus System (TBS). The TBS design, which uses ammonia as the working fluid, is intended to achieve a higher fidelity level than the TBTD by incorporating both improvements based on TBTD testing and realistic design margins, and by addressing Space Station issues such as redundancy and maintenance. The TBS is currently being fabricated, with testing scheduled for late 1987/early 1988. This paper describes the TBS design which features fully redundant plumbing loops, five evaporators designed to represent different heat acquisition interfaces, 14 condensers which mate with either space radiators or facility heat exchangers, and several modular components.

  20. Solar project description for Design Construction Association single family dwelling, Big Fork, Montana

    NASA Astrophysics Data System (ADS)

    1980-04-01

    A solar energy system was installed in a 2100 sq ft house located in Big Fork, Montana. The system is designed to provide solar energy for heating and domestic hot water. Solar energy is collected by flat plate collectors with a gross area of 792 square feet. The collector banks are mounted on the roof of the house and face due south at an angle of 45 deg to the horizontal optimizing solar energy collection. Solar energy is transferred from the collector array to a 1500 gallon storage tank. Water is used as the heat collection, transfer and storage medium. Freeze protection is provided by use of a drain down system. Space heating demands are met by circulating hot water from storage through baseboard units in the distribution system of the house. Auxiliary space heating is provided by an electrical heating element in the boiler. Similarly, an electrical heating element in the DHW tank provides energy for water heating. The dwelling was fully instrumented for performance evaluation since October 1977 and the data is integrated into the National Solar Data Network.

  1. Oval gradient coils for an open magnetic resonance imaging system with a vertical magnetic field.

    PubMed

    Matsuzawa, Koki; Abe, Mitsushi; Kose, Katsumi; Terada, Yasuhiko

    2017-05-01

    Existing open magnetic resonance imaging (MRI) systems use biplanar gradient coils for the spatial encoding of signals. We propose using novel oval gradient coils for an open vertical-field MRI. We designed oval gradients for a 0.3T open MRI system and showed that such a system could outperform a traditional biplanar gradient system while maintaining adequate gradient homogeneity and subject accessibility. Such oval gradient coils would exhibit high efficiency, low inductance and resistance, and high switching capability. Although the designed oval Y and Z coils showed more heat dissipation and less cooling capability than biplanar coils with the same gap, they showed an efficient heat-dissipation path to the surrounding air, which would alleviate the heat problem. The performance of the designed oval-coil system was demonstrated experimentally by imaging a human hand. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Heat Exchanger/Humidifier Trade Study and Conceptual Design for the Constellation Space Suit Portable Life Support System Ventilation Subsystem

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Sompayrac, Robert; Conger, Bruce; Chamberlain, Mateo

    2009-01-01

    As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.

  3. Heat Exchanger/Humidifier Trade Study and Conceptual Design for the Constellation Space Suit Portable Life Support System Ventilation Subsystem

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Conger, Bruce; Sompyrac, Robert; Chamberlain, Mateo

    2008-01-01

    As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.

  4. Devise of an exhaust gas heat exchanger for a thermal oil heater in a palm oil refinery plant

    NASA Astrophysics Data System (ADS)

    Chucherd, Panom; Kittisupakorn, Paisan

    2017-08-01

    This paper presents the devise of an exhaust gas heat exchanger for waste heat recovery of the exhausted flue gas of palm oil refinery plant. This waste heat can be recovered by installing an economizer to heat the feed water which can save the fuel consumption of the coal fired steam boiler and the outlet temperature of flue gas will be controlled in order to avoid the acid dew point temperature and protect the filter bag. The decrease of energy used leads to the reduction of CO2 emission. Two designed economizer studied in this paper are gas in tube and water in tube. The gas in tube exchanger refers to the shell and tube heat exchanger which the flue gas flows in tube; this designed exchanger is used in the existing unit. The new designed water in tube refers to the shell and tube heat exchanger which the water flows in the tube; this designed exchanger is proposed for new implementation. New economizer has the overall coefficient of heat transfer of 19.03 W/m2.K and the surface heat transfer area of 122 m2 in the optimized case. Experimental results show that it is feasible to install economizer in the exhaust flue gas system between the air preheater and the bag filter, which has slightly disadvantage effect in the system. The system can raise the feed water temperature from 40 to 104°C and flow rate 3.31 m3/h, the outlet temperature of flue gas is maintained about 130 °C.

  5. Inverse problems and optimal experiment design in unsteady heat transfer processes identification

    NASA Technical Reports Server (NTRS)

    Artyukhin, Eugene A.

    1991-01-01

    Experimental-computational methods for estimating characteristics of unsteady heat transfer processes are analyzed. The methods are based on the principles of distributed parameter system identification. The theoretical basis of such methods is the numerical solution of nonlinear ill-posed inverse heat transfer problems and optimal experiment design problems. Numerical techniques for solving problems are briefly reviewed. The results of the practical application of identification methods are demonstrated when estimating effective thermophysical characteristics of composite materials and thermal contact resistance in two-layer systems.

  6. Thermal Vacuum Test of GLAS Propylene Loop Heat Pipe Development Model

    NASA Technical Reports Server (NTRS)

    Baker, Charles; Butler, Dan; Ku, Jentung; Kaya, Tarik; Nikitkin, Michael

    2000-01-01

    This paper presents viewgraphs on Thermal Vacuum Tests of the GLAS (Geoscience Laser Altimeter System) Propylene Loop Heat Pipe Development Model. The topics include: 1) Flight LHP System (Laser); 2) Test Design and Objectives; 3) DM (Development Model) LHP (Loop Heat Pipe) Test Design; 4) Starter Heater and Coupling Blocks; 5) CC Control Heaters and PRT; 6) Heater Plates (Shown in Reflux Mode); 7) Startup Tests; 8) CC Control Heater Power Tests for CC Temperature Control; and 9) Control Temperature Stability.

  7. Solar heating and cooling systems design and development

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Progress in the development of prototype solar heating/cooling systems is reported. Results obtained from refinement/improvement of the single family, multifamily, and commercial systems configurations and generalized studies on several of the subsystems are presented.

  8. Integrated heat pipe-thermal storage system performance evaluation

    NASA Technical Reports Server (NTRS)

    Keddy, E.; Sena, J. T.; Merrigan, M.; Heidenreich, Gary

    1987-01-01

    An integrated thermal energy storage (TES) system, developed as a part of an organic Rankine cycle solar dynamic power system is described, and the results of the performance verification tests of this TES system are presented. The integrated system consists of potassium heat-pipe elements that incorporate TES canisters within the vapor space, along with an organic fluid heater tube used as the condenser region of the heat pipe. The heat pipe assembly was operated through the range of design conditions from the nominal design input of 4.8 kW to a maximum of 5.7 kW. The performance verification tests show that the system meets the functional requirements of absorbing the solar energy reflected by the concentrator, transporting the energy to the organic Rankine heater, providing thermal storage for the eclipse phase, and allowing uniform discharge from the thermal storage to the heater.

  9. Preliminary design of a solar heat receiver for a Brayton cycle space power system

    NASA Technical Reports Server (NTRS)

    Cameron, H. M.; Mueller, L. A.; Namkoong, D.

    1972-01-01

    The preliminary design of a solar heat receiver for use as a heat source for an earth-orbiting 11-kWe Brayton-cycle engine is described. The result was a cavity heat receiver having the shape of a frustum of a cone. The wall of the cone is formed by 48 heat-transfer tubes, each tube containing pockets of lithium fluoride for storing heat for as much as 38 minutes of fullpower operation in the shade. Doors are provided in order to dump excess heat especially during operation in orbits with full sun exposure. The receiver material is predominantly columbium - 1-percent-zironium (Cb-1Zr) alloy. Full-scale testing of three heat-transfer tubes for more than 2000 hours and 1250 sun-shade cycles verified the design concept.

  10. Overview of NASA's Thermal Control System Development for Exploration Project

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.

    2010-01-01

    NASA's Constellation Program includes the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several sub-elements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles' thermal control system. NASA's Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project. The risks and design challenges are addressed through a rigorous technology development process that culminates with an integrated thermal control system test. The resulting hardware typically has a Technology Readiness Level (TRL) of six. This paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing assessments for thermal control system fluids.

  11. Thermal management of batteries

    NASA Astrophysics Data System (ADS)

    Gibbard, H. F.; Chen, C.-C.

    Control of the internal temperature during high rate discharge or charge can be a major design problem for large, high energy density battery systems. A systematic approach to the thermal management of such systems is described for different load profiles based on: thermodynamic calculations of internal heat generation; calorimetric measurements of heat flux; analytical and finite difference calculations of the internal temperature distribution; appropriate system designs for heat removal and temperature control. Examples are presented of thermal studies on large lead-acid batteries for electrical utility load levelling and nickel-zinc and lithium-iron sulphide batteries for electric vehicle propulsion.

  12. Expert system for the design of heating, ventilating, and air-conditioning systems. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camejo, P.J.

    1989-12-01

    Expert systems are computer programs that seek to mimic human reason. An expert system shelf, a software program commonly used for developing expert systems in a relatively short time, was used to develop a prototypical expert system for the design of heating, ventilating, and air-conditioning (HVAC) systems in buildings. Because HVAC design involves several related knowledge domains, developing an expert system for HVAC design requires the integration of several smaller expert systems known as knowledge bases. A menu program and several auxiliary programs for gathering data, completing calculations, printing project reports, and passing data between the knowledge bases are neededmore » and have been developed to join the separate knowledge bases into one simple-to-use program unit.« less

  13. Flow-Boiling Critical Heat Flux Experiments Performed in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad M.; Mudawar, Issam

    2005-01-01

    Poor understanding of flow boiling in microgravity has recently emerged as a key obstacle to the development of many types of power generation and advanced life support systems intended for space exploration. The critical heat flux (CHF) is perhaps the most important thermal design parameter for boiling systems involving both heatflux-controlled devices and intense heat removal. Exceeding the CHF limit can lead to permanent damage, including physical burnout of the heat-dissipating device. The importance of the CHF limit creates an urgent need to develop predictive design tools to ensure both the safe and reliable operation of a two-phase thermal management system under the reduced-gravity (like that on the Moon and Mars) and microgravity environments of space. At present, very limited information is available on flow-boiling heat transfer and the CHF under these conditions.

  14. Novel Power Electronics Three-Dimensional Heat Exchanger: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, K.; Cousineau, J.; Lustbader, J.

    2014-08-01

    Electric drive systems for vehicle propulsion enable technologies critical to meeting challenges for energy, environmental, and economic security. Enabling cost-effective electric drive systems requires reductions in inverter power semiconductor area. As critical components of the electric drive system are made smaller, heat removal becomes an increasing challenge. In this paper, we demonstrate an integrated approach to the design of thermal management systems for power semiconductors that matches the passive thermal resistance of the packaging with the active convective cooling performance of the heat exchanger. The heat exchanger concept builds on existing semiconductor thermal management improvements described in literature and patents,more » which include improved bonded interface materials, direct cooling of the semiconductor packages, and double-sided cooling. The key difference in the described concept is the achievement of high heat transfer performance with less aggressive cooling techniques by optimizing the passive and active heat transfer paths. An extruded aluminum design was selected because of its lower tooling cost, higher performance, and scalability in comparison to cast aluminum. Results demonstrated a heat flux improvement of a factor of two, and a package heat density improvement over 30%, which achieved the thermal performance targets.« less

  15. A Study of the Effects of Altitude on Thermal Ice Protection System Performance

    NASA Technical Reports Server (NTRS)

    Addy, Gene; Oleskiw, Myron; Broeren, Andy P.; Orchard, David

    2013-01-01

    Thermal ice protection systems use heat energy to prevent a dangerous buildup of ice on an aircraft. As aircraft become more efficient, less heat energy is available to operate a thermal ice protections system. This requires that thermal ice protection systems be designed to more exacting standards so as to more efficiently prevent a dangerous ice buildup without adversely affecting aircraft safety. While the effects of altitude have always beeing taked into account in the design of thermal ice protection systems, a better understanding of these effects is needed so as to enable more exact design, testing, and evaluation of these systems.

  16. Experimental Study on Active Cooling Systems Used for Thermal Management of High-Power Multichip Light-Emitting Diodes

    PubMed Central

    2014-01-01

    The objective of this study was to develop suitable cooling systems for high-power multichip LEDs. To this end, three different active cooling systems were investigated to control the heat generated by the powering of high-power multichip LEDs in two different configurations (30 and 2 × 15 W). The following cooling systems were used in the study: an integrated multi-fin heat sink design with a fan, a cooling system with a thermoelectric cooler (TEC), and a heat pipe cooling device. According to the results, all three systems were observed to be sufficient for cooling high-power LEDs. Furthermore, it was observed that the integrated multifin heat sink design with a fan was the most efficient cooling system for a 30 W high-power multichip LED. The cooling system with a TEC and 46 W input power was the most efficient cooling system for 2 × 15 W high-power multichip LEDs. PMID:25162058

  17. Criterion-Referenced Test (CRT) Items for Air Conditioning, Heating and Refrigeration.

    ERIC Educational Resources Information Center

    Davis, Diane, Ed.

    These criterion-referenced test (CRT) items for air conditioning, heating, and refrigeration are keyed to the Missouri Air Conditioning, Heating, and Refrigeration Competency Profile. The items are designed to work with both the Vocational Instructional Management System and Vocational Administrative Management System. For word processing and…

  18. Development of cryogenic thermal control heat pipes. [of stainless steels

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The development of thermal control heat pipes that are applicable to the low temperature to cryogenic range was investigated. A previous effort demonstrated that stainless steel axially grooved tubing which met performance requirements could be fabricated. Three heat pipe designs utilizing stainless steel axially grooved tubing were fabricated and tested. One is a liquid trap diode heat pipe which conforms to the configuration and performance requirements of the Heat Pipe Experiment Package (HEPP). The HEPP is scheduled for flight aboard the Long Duration Flight Exposure Facility (LDEF). Another is a thermal switch heat pipe which is designed to permit energy transfer at the cooler of the two identical legs. The third thermal component is a hybrid variable conductance heat pipe (VCHP). The design incorporates both a conventional VCHP system and a liquid trap diode. The design, fabrication and thermal testing of these heat pipes is described. The demonstrated heat pipe behavior including start-up, forward mode transport, recovery after evaporator dry-out, diode performance and variable conductance control are discussed.

  19. Design data brochure for CSI series V solar heating system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Generalized information on system configuration, system sizing, and mechanical layout is presented to assist the architect or designer in preparing construction drawings and specifications for the installation of the CSI integrated solar heating systems. Efficiency in space utilization of a full length collector and the importance of proper sizing of the collector array are among the topics discussed. Details of storage and transport subsystems are provided along with drawings and specifications of all components of the CSI system.

  20. Solar cooling system performance, Frenchman's Reef Hotel, Virgin Islands

    NASA Astrophysics Data System (ADS)

    Harber, H.

    1981-09-01

    The operational and thermal performance of a variety of solar systems are described. The Solar Cooling System was installed in a hotel at St. Thomas, U. S. Virgin Islands. The system consists of the evacuated glass tube collectors, two 2500 gallon tanks, pumps, computerized controller, a large solar optimized industrial sized lithium bromide absorption chiller, and associated plumbing. Solar heated water is pumped through the system to the designed public areas such as lobby, lounges, restaurant and hallways. Auxiliary heat is provided by steam and a heat exchanger to supplement the solar heat.

  1. Solar cooling system performance, Frenchman's Reef Hotel, Virgin Islands

    NASA Technical Reports Server (NTRS)

    Harber, H.

    1981-01-01

    The operational and thermal performance of a variety of solar systems are described. The Solar Cooling System was installed in a hotel at St. Thomas, U. S. Virgin Islands. The system consists of the evacuated glass tube collectors, two 2500 gallon tanks, pumps, computerized controller, a large solar optimized industrial sized lithium bromide absorption chiller, and associated plumbing. Solar heated water is pumped through the system to the designed public areas such as lobby, lounges, restaurant and hallways. Auxiliary heat is provided by steam and a heat exchanger to supplement the solar heat.

  2. Space shuttle/food system study. Volume 2: Supporting appendices, oven study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Calculations and data regarding the development of a galley oven for use in the space shuttle are presented. Heat flow, heat transfer, and food heating characteristics are given for various oven designs. A design approach to guarantee structural reliability is also presented, in which the oven closure, door, and basic mounting points are considered.

  3. Optimum design point for a closed-cycle OTEC system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikegami, Yasuyuki; Uehara, Haruo

    1994-12-31

    Performance analysis is performed for optimum design point of a closed-cycle Ocean Thermal Energy Conversion (OTEC) system. Calculations are made for an OTEC model plant with a gross power of 100 MW, which was designed by the optimization method proposed by Uehara and Ikegami for the design conditions of 21 C--29 C warm sea water temperature and 4 C cold sea water temperature. Ammonia is used as working fluid. Plate type evaporator and condenser are used as heat exchangers. The length of the cold sea water pipe is 1,000 m. This model plant is a floating-type OTEC plant. The objectivemore » function of optimum design point is defined as the total heat transfer area of heat exchangers per the annual net power.« less

  4. Scientist Honored by DOE for Outstanding Research Accomplishments,

    Science.gov Websites

    passive design tools. The American Society of Heating, Refrigeration and Air Conditioning Engineer's mixed systems. This accomplishment gave the solar energy design community a direct, verifiable method of design manual, Passive Solar Heating Analysis, is an outgrowth of this method. Dr. Balcomb's involvement

  5. Evaluation of dispersion strengthened nickel-base alloy heat shields for space shuttle application

    NASA Technical Reports Server (NTRS)

    Johnson, R., Jr.; Killpatrick, D. H.

    1975-01-01

    The design, fabrication, and testing of a full-size, full-scale TD Ni-20Cr heat shield test array in simulated mission environments is described along with the design and fabrication of two additional full-size, full-scale test arrays to be tested in flowing gas test facilities at the NASA Langley Research Center. Cost and reusability evaluations of TD Ni-20Cr heat shield systems are presented, and weight estimates of a TD Ni-20Cr heat shield system for use on a shuttle orbiter vehicle are made. Safe-line expectancy of a TD Ni-20Cr heat shield system is assessed. Non-destructive test techniques are evaluated to determine their effectiveness in quality assurance checks of TD Ni-20Cr components such as heat shields, heat shield supports, close-out panels, formed cover strips, and edge seals. Results of tests on a braze reinforced full-scale, subsize panel are included. Results show only minor structural degradation in the main TD Ni-20Cr heat shields of the test array during simulated mission test cycles.

  6. Solar Schematic

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The home shown at right is specially designed to accommodate solar heating units; it has roof planes in four directions, allowing placement of solar collectors for best exposure to the sun. Plans (bottom) and complete working blueprints for the solar-heated house are being marketed by Home Building Plan Service, Portland, Oregon. The company also offers an inexpensive schematic (center) showing how a homeowner only moderately skilled in the use of tools can build his own solar energy system, applicable to new or existing structures. The schematic is based upon the design of a low-cost solar home heating system built and tested by NASA's Langley Research Center; used to supplement a warm-air heating system, it can save the homeowner about 40 percent of his annual heating bill for a modest investment in materials and components. Home Building Plan Service saved considerable research time by obtaining a NASA technical report which details the Langley work. The resulting schematic includes construction plans and simplified explanations of solar heat collection, collectors and other components, passive heat factors, domestic hot water supply and how to work with local heating engineers.

  7. Use of Seawater for Air Conditioning at Waikiki Convention Center

    DTIC Science & Technology

    1994-01-01

    construct heat exchangers of either titanium or zinc-clad aluminum . It is likely that these could be ordered "off the shelf*. Bio-fouling would not be a...Considerations J. Fouling K. Alternative Design: Directional Drilling System Design A. Seawater Heat Exchangers 1. Materials 2. Bio-fouling 3. Design... Heat exchangers are available in a variety of types, sizes and materials . There are standard models available by many manufactures, however, a single

  8. Greenbelt Community Project: Solar energy retrofit for a multi-family dwelling

    NASA Technical Reports Server (NTRS)

    Hymowitz, E. W.; Hannemann, R. J.; Millman, L. L.; Pownell, J. E.

    1978-01-01

    A cooperative project was initiated between Goddard Space Flight Center and the nearby community of Greenbelt, Maryland. The purpose was to design, install and operate an experimental solar heating system on a group of four tandem town houses. The system was successfully developed and is operating. A description is given of the design, installation, system operation and performance as well as the important considerations for judging the economic feasibility of solar heating systems.

  9. Thermal analysis and optimization of the EAST ICRH antenna

    NASA Astrophysics Data System (ADS)

    Qingxi, YANG; Wei, SONG; Qunshan, DU; Yuntao, SONG; Chengming, QIN; Xinjun, ZHANG; Yanping, ZHAO

    2018-02-01

    The ion cyclotron resonance of frequency heating (ICRH) plays an important role in plasma heating. Two ICRH antennas were designed and applied on the EAST tokamak. In order to meet the requirement imposed by high-power and long-pulse operation of EAST in the future, an active cooling system is mandatory to be designed to remove the heat load deposited on the components. Thermal analyses for high heat-load components have been carried out, which presented clear temperature distribution on each component and provided the reference data to do the optimization. Meanwhile, heat pipes were designed to satisfy the high requirement imposed by a Faraday shield and lateral limiter.

  10. PWR-related integral safety experiments in the PKL 111 test facility SBLOCA under beyond-design-basis accident conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, P.; Umminger, K.J.; Schoen, B.

    1995-09-01

    The thermal hydraulic behavior of a PWR during beyond-design-basis accident scenarios is of vital interest for the verification and optimization of accident management procedures. Within the scope of the German reactor safety research program experiments were performed in the volumetrically scaled PKL 111 test facility by Siemens/KWU. This highly instrumented test rig simulates a KWU-design PWR (1300 MWe). In particular, the latest tests performed related to a SBLOCA with additional system failures, e.g. nitrogen entering the primary system. In the case of a SBLOCA, it is the goal of the operator to put the plant in a condition where themore » decay heat can be removed first using the low pressure emergency core cooling system and then the residual heat removal system. The experimental investigation presented assumed the following beyond-design-basis accident conditions: 0.5% break in a cold leg, 2 of 4 steam generators (SGs) isolated on the secondary side (feedwater- and steam line-valves closed), filled with steam on the primary side, cooldown of the primary system using the remaining two steam generators, high pressure injection system only in the two loops with intact steam generators, if possible no operator actions to reach the conditions for residual heat removal system activation. Furthermore, it was postulated that 2 of the 4 hot leg accumulators had a reduced initial water inventory (increased nitrogen inventory), allowing nitrogen to enter the primary system at a pressure of 15 bar and nearly preventing the heat transfer in the SGs ({open_quotes}passivating{close_quotes} U-tubes). Due to this the heat transfer regime in the intact steam generators changed remarkably. The primary system showed self-regulating system effects and heat transfer improved again (reflux-condenser mode in the U-tube inlet region).« less

  11. Performance evaluation of an automotive thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Dubitsky, Andrei O.

    Around 40% of the total fuel energy in typical internal combustion engines (ICEs) is rejected to the environment in the form of exhaust gas waste heat. Efficient recovery of this waste heat in automobiles can promise a fuel economy improvement of 5%. The thermal energy can be harvested through thermoelectric generators (TEGs) utilizing the Seebeck effect. In the present work, a versatile test bench has been designed and built in order to simulate conditions found on test vehicles. This allows experimental performance evaluation and model validation of automotive thermoelectric generators. An electrically heated exhaust gas circuit and a circulator based coolant loop enable integrated system testing of hot and cold side heat exchangers, thermoelectric modules (TEMs), and thermal interface materials at various scales. A transient thermal model of the coolant loop was created in order to design a system which can maintain constant coolant temperature under variable heat input. Additionally, as electrical heaters cannot match the transient response of an ICE, modelling was completed in order to design a relaxed exhaust flow and temperature history utilizing the system thermal lag. This profile reduced required heating power and gas flow rates by over 50%. The test bench was used to evaluate a DOE/GM initial prototype automotive TEG and validate analytical performance models. The maximum electrical power generation was found to be 54 W with a thermal conversion efficiency of 1.8%. It has been found that thermal interface management is critical for achieving maximum system performance, with novel designs being considered for further improvement.

  12. Residential solar-heating/cooling system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Report documents progress of residential solar-heating and cooling system development program at 5-month mark of anticipated 17-month program. System design has been completed, and development and component testing has been initiated. Report includes diagrams, operation overview, optimization studies of subcomponents, and marketing plans for system.

  13. Performance of a hybrid chemical/mechanical heat pump

    NASA Technical Reports Server (NTRS)

    Silvestri, John J.; Scaringe, Robert P.; Grzyll, Lawrence R.

    1990-01-01

    The authors present the design and preliminary results of the performance of a hybrid chemical/mechanical, low-lift (20 C) heat pump. Studies have indicated that this heat pump has several advantages over the traditional single fluid vapor compression (reverse Rankine) heat pump. Included in these benefits are: 1) increased COPc due to the approximation of the cycle to the Lorenz cycle and due to the availability of the heat of solution, along with the heat of vaporization, to provide cooling; and 2) ease of variation in system cooling capacity by changing the fluid composition. The system performance is predicted for a variety of refrigerant-absorbent pairs. Cooling capacity is determined for systems operating with ammonia as the refrigerant and lithium nitrate and sodium thiocyanate as the absorbents and also with water as the refrigerant and magnesium chloride, potassium hydroxide, lithium bromide, sodium hydroxide, and sulfuric acid as the absorbents. Early indications have shown that the systems operating with water as the refrigerant operate at 2-4 times the capacity of the ammonia-refrigerant-based systems. Using existing working fluids in the proposed innovative design, a coefficient-of-performance improvement of 21 percent is possible when compared to the best vapor compression systems analyzed.

  14. Design and testing of a high power spacecraft thermal management system

    NASA Technical Reports Server (NTRS)

    Mccabe, Michael E., Jr.; Ku, Jentung; Benner, Steve

    1988-01-01

    The design and test results are presented of an ammonia hybrid capillary pumped loop thermal control system which could be used for heat acquisition and transport on future large space platforms and attached payloads, such as those associated with the NASA Space Station. The High Power Spacecraft Thermal Management System (HPSTM) can operate as either a passive, capillary pumped two phase thermal control system, or, when additional pressure head is required, as a mechanically pumped loop. Testing has shown that in the capillary mode, the HPSTM evaporators can acquire a total heat load of between 600 W and 24 kW, transported over 10 meters, at a maximum heat flux density of 4.3 W/sq cm. With the mechanical pump circulating the ammonia, a heat acquisition potential of 52 kW was demonstrated for 15 minutes without an evaporator failure. These results represent a significant improvement over the maximum transport capability previously displayed in other capillary systems. The HPSTM system still retains the proven capillary capabilities of heat load sharing and flow control between evaporator plates, rapid power cycling, and nonuniform heating in both the capillary and hybrid operating modes.

  15. Multicriteria optimization approach to design and operation of district heating supply system over its life cycle

    NASA Astrophysics Data System (ADS)

    Hirsch, Piotr; Duzinkiewicz, Kazimierz; Grochowski, Michał

    2017-11-01

    District Heating (DH) systems are commonly supplied using local heat sources. Nowadays, modern insulation materials allow for effective and economically viable heat transportation over long distances (over 20 km). In the paper a method for optimized selection of design and operating parameters of long distance Heat Transportation System (HTS) is proposed. The method allows for evaluation of feasibility and effectivity of heat transportation from the considered heat sources. The optimized selection is formulated as multicriteria decision-making problem. The constraints for this problem include a static HTS model, allowing considerations of system life cycle, time variability and spatial topology. Thereby, variation of heat demand and ground temperature within the DH area, insulation and pipe aging and/or terrain elevation profile are taken into account in the decision-making process. The HTS construction costs, pumping power, and heat losses are considered as objective functions. Inner pipe diameter, insulation thickness, temperatures and pumping stations locations are optimized during the decision-making process. Moreover, the variants of pipe-laying e.g. one pipeline with the larger diameter or two with the smaller might be considered during the optimization. The analyzed optimization problem is multicriteria, hybrid and nonlinear. Because of such problem properties, the genetic solver was applied.

  16. A Continuous Adiabatic Demagnetization Refrigerator for Use with Mechanical Coolers

    NASA Technical Reports Server (NTRS)

    Shirron, P.; Abbondante, N.; Canavan, E.; DiPirro, M.; Grabowski, M.; Hirsch, M.; Jackson, M.; Tuttle, J.

    2000-01-01

    We have begun developing an adiabatic demagnetization refrigerator (ADR) which can produce continuous cooling at temperatures of 50 mK or lower, with high cooling power (goal of 10 PW). The design uses multiple stages to cascade heat from a continuously-cooled stage up to a heat sink. The serial arrangement makes it possible to add stages to extend the operating range to lower temperature, or to raise the heat rejection temperature. Compared to conventional single-shot ADRS, this system achieves higher cooling power per unit mass and is able to reject its heat at a more uniform rate. For operation with a mechanical cryocooler, this latter feature stabilizes the heat sink temperature and allows both the ADR and cryocooler to operate more efficiently. The ADR is being designed to operate with a heat sink as warm as 10-12 K to make it compatible with a wide variety of mechanical coolers as part of a versatile, cryogen-free low temperature cooling system. A two-stage system has been constructed and a proof-of-principle demonstration was conducted at 100 mK. Details of the design and test results, as well as the direction of future work, are discussed.

  17. Medium Deep High Temperature Heat Storage

    NASA Astrophysics Data System (ADS)

    Bär, Kristian; Rühaak, Wolfram; Schulte, Daniel; Welsch, Bastian; Chauhan, Swarup; Homuth, Sebastian; Sass, Ingo

    2015-04-01

    Heating of buildings requires more than 25 % of the total end energy consumption in Germany. Shallow geothermal systems for indirect use as well as shallow geothermal heat storage systems like aquifer thermal energy storage (ATES) or borehole thermal energy storage (BTES) typically provide low exergy heat. The temperature levels and ranges typically require a coupling with heat pumps. By storing hot water from solar panels or thermal power stations with temperatures of up to 110 °C a medium deep high temperature heat storage (MDHTS) can be operated on relatively high temperature levels of more than 45 °C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use for drinking water or other purposes. Permeability is typically also decreasing with greater depth; especially in the crystalline basement therefore conduction becomes the dominant heat transport process. Solar-thermal charging of a MDHTS is a very beneficial option for supplying heat in urban and rural systems. Feasibility and design criteria of different system configurations (depth, distance and number of BHE) are discussed. One system is designed to store and supply heat (300 kW) for an office building. The required boreholes are located in granodioritic bedrock. Resulting from this setup several challenges have to be addressed. The drilling and completion has to be planned carefully under consideration of the geological and tectonical situation at the specific site.

  18. Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A solar heating system designed to supply a major portion of the space and water heating requirements for a restaurant is described. The restaurant has a floor space of approximately 4,650 square feet and requires approximate 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10 to the 6th power Btu/Yr (specified) building heating and hot water heating.

  19. Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas

    NASA Astrophysics Data System (ADS)

    1980-08-01

    A solar heating system designed to supply a major portion of the space and water heating requirements for a restaurant is described. The restaurant has a floor space of approximately 4,650 square feet and requires approximate 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10 to the 6th power Btu/Yr (specified) building heating and hot water heating.

  20. Thin Thermoelectric Generator System for Body Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Settaluri, Krishna T.; Lo, Hsinyi; Ram, Rajeev J.

    2012-06-01

    Wearable thermoelectric generators (TEGs) harvest thermal energy generated by the body to generate useful electricity. The performance of these systems is limited by (1) the small working temperature differential between the body and ambient, (2) the desire to use natural air convection cooling on the cold side of the generator, and (3) the requirement for thin, lightweight systems that are comfortable for long-term use. Our work has focused on the design of the heat transfer system as part of the overall thermoelectric (TE) system. In particular, the small heat transfer coefficient for natural air convection results in a module thermal impedance that is smaller than that of the heat sink. In this heat-sink-limited regime, the thermal resistance of the generator should be optimized to match that of the heat sink to achieve the best performance. In addition, we have designed flat (1 mm thickness) copper heat spreaders to realize performance surpassing splayed pin heat sinks. Two-dimensional (2-D) heat spreading exploits the large surface area available in a wristband and allows patterned copper to efficiently cool the TE. A direct current (DC)/DC converter is integrated on the wristband. The system generates up to 28.5 μW/cm2 before the converter and 8.6 μW/cm2 after the converter, with 30% efficiency. It generates output of 4.15 V with overall thickness under 5 mm.

  1. Heat transfer system

    DOEpatents

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  2. Heat transfer system

    DOEpatents

    McGuire, Joseph C.

    1982-01-01

    A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  3. Solar water heater for NASA's Space Station

    NASA Technical Reports Server (NTRS)

    Somers, Richard E.; Haynes, R. Daniel

    1988-01-01

    The feasibility of using a solar water heater for NASA's Space Station is investigated using computer codes developed to model the Space Station configuration, orbit, and heating systems. Numerous orbit variations, system options, and geometries for the collector were analyzed. Results show that a solar water heater, which would provide 100 percent of the design heating load and would not impose a significant impact on the Space Station overall design is feasible. A heat pipe or pumped fluid radial plate collector of about 10-sq m, placed on top of the habitat module was found to be well suited for satisfying water demand of the Space Station. Due to the relatively small area required by a radial plate, a concentrator is unnecessary. The system would use only 7 to 10 percent as much electricity as an electric water-heating system.

  4. Application of solar energy; Proceedings of the First Southeastern Conference, Huntsville, Ala., March 24-26, 1975

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Christensen, D. L.; Head, R. R.; Whitacre, W. E.

    1975-01-01

    Topics related to architectural and institutional considerations are discussed along with studies of components and subsystems. Subjects in the area of system design and analysis are also explored. Residential and commercial applications are considered, taking into account hot-water usage in a typical single-family residence, solar heating and cooling of mobile homes, aspects of design and performance in the case of a solar heating system using a reflective pyramid optical condenser, solar heating in a Boston school, a performance analysis of solar service hot water systems, comparative performance analyses of three solar heated and cooled buildings, and the use of solar energy in a soybeam processing operation. Applications related to power generation are also examined, giving attention to solar thermal electric power systems and photovoltaic research. Individual items are announced in this issue.

  5. Demonstration of a shape memory alloy torque tube-based morphing radiator

    NASA Astrophysics Data System (ADS)

    Chong, Jorge B.; Walgren, Patrick; Hartl, Darren J.

    2018-03-01

    Long-distance crewed space exploration will require advanced thermal control systems (TCS) with the ability to handle a wide range of thermal loads. The ability of a TCS to adapt to the thermal environment is described by the turndown ratio. Developing radiators with high turndown ratios is critical for improving TCS technology. This paper describes a novel morphing radiator designed to achieve a high turndown ratio by varying its own radiative view factor and effective emissivity through the use of shape memory alloys (SMAs). This radiator features two SMA torque tubes cantilevered to a rigid fixture. The working fluid is transported within the SMA tubes through an annular flow system. In a cold environment, radiator panels fixed to the free ends of the tubes are oriented vertically in a parallel-plate fashion, where the high-emissivity interior faces have restricted views to the environment and heat rejection is minimized. When the system heats up, the tubes actuate by twisting in opposing directions, bringing the panels to a horizontal position with the interior faces exposed to maximize heat rejection. When the system cools down, the tubes twist in reverse, restoring the panels to the vertical orientation where heat rejection is again minimized. This variable heat rejection system has the potential for achieving higher turndown ratios than those of current state-of-the-art systems. A benchtop prototype has been designed and tested to demonstrate actuation and to explore internal heat transfer effects. Prototype design, testing, and results are herein described.

  6. Performance and economics of residential solar space heating

    NASA Astrophysics Data System (ADS)

    Zehr, F. J.; Vineyard, T. A.; Barnes, R. W.; Oneal, D. L.

    1982-11-01

    The performance and economics of residential solar space heating were studied for various locations in the contiguous United States. Common types of active and passive solar heating systems were analyzed with respect to an average-size, single-family house designed to meet or exceed the thermal requirements of the Department of Housing and Urban Development Minimum Property Standards (HUD-MPS). The solar systems were evaluated in seventeen cities to provide a broad range of climatic conditions. Active systems evaluated consist of air and liquid flat plate collectors with single- and double-glazing: passive systems include Trombe wall, water wall, direct gain, and sunspace systems. The active system solar heating performance was computed using the University of Wisconsin's F-CHART computer program. The Los Alamos Scientific Laboratory's Solar Load Ratio (SLR) method was employed to compute solar heating performance for the passive systems. Heating costs were computed with gas, oil, and electricity as backups and as conventional heating system fuels.

  7. Heat pipe solar receiver with thermal energy storage

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.

    1981-01-01

    An HPSR Stirling engine generator system featuring latent heat thermal energy storge, excellent thermal stability and self regulating, effective thermal transport at low system delta T is described. The system was supported by component technology testing of heat pipes and of thermal storage and energy transport models which define the expected performance of the system. Preliminary and detailed design efforts were completed and manufacturing of HPSR components has begun.

  8. Dynamic model of a micro-tubular solid oxide fuel cell stack including an integrated cooling system

    NASA Astrophysics Data System (ADS)

    Hering, Martin; Brouwer, Jacob; Winkler, Wolfgang

    2017-02-01

    A novel dynamic micro-tubular solid oxide fuel cell (MT-SOFC) and stack model including an integrated cooling system is developed using a quasi three-dimensional, spatially resolved, transient thermodynamic, physical and electrochemical model that accounts for the complex geometrical relations between the cells and cooling-tubes. The modeling approach includes a simplified tubular geometry and stack design including an integrated cooling structure, detailed pressure drop and gas property calculations, the electrical and physical constraints of the stack design that determine the current, as well as control strategies for the temperature. Moreover, an advanced heat transfer balance with detailed radiative heat transfer between the cells and the integrated cooling-tubes, convective heat transfer between the gas flows and the surrounding structures and conductive heat transfer between the solid structures inside of the stack, is included. The detailed model can be used as a design basis for the novel MT-SOFC stack assembly including an integrated cooling system, as well as for the development of a dynamic system control strategy. The evaluated best-case design achieves very high electrical efficiency between around 75 and 55% in the entire power density range between 50 and 550 mW /cm2 due to the novel stack design comprising an integrated cooling structure.

  9. Design Factors for Applying Cryogen Storage and Delivery Technology to Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1996-01-01

    Thermodynamic Vent System (TVS) and Multilayer Insulation (MLI) technology, originally developed for long term storage of cryogen propellants in microgravity, is ideally suited for propellant storage and delivery systems for solar thermal propulsion. With this technology the heat-induced pressure rise in the tank provides the propellant delivery pressure without the need for an auxiliary pressurant system, and propellant delivery is used to remove the excess heat to control tank pressure. The factors to consider in designing such a balanced system, are presented. An example of a minimum system design is presented along with examples of laboratory-tested hardware.

  10. Sodium Based Heat Pipe Modules for Space Reactor Concepts: Stainless Steel SAFE-100 Core

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Reid, Robert S.

    2004-01-01

    A heat pipe cooled reactor is one of several candidate reactor cores being considered for advanced space power and propulsion systems to support future space exploration applications. Long life heat pipe modules, with designs verified through a combination of theoretical analysis and experimental lifetime evaluations, would be necessary to establish the viability of any of these candidates, including the heat pipe reactor option. A hardware-based program was initiated to establish the infrastructure necessary to build heat pipe modules. This effort, initiated by Los Alamos National Laboratory and referred to as the Safe Affordable Fission Engine (SAFE) project, set out to fabricate and perform non-nuclear testing on a modular heat pipe reactor prototype that can provide 100 kilowatt from the core to an energy conversion system at 700 C. Prototypic heat pipe hardware was designed, fabricated, filled, closed-out and acceptance tested.

  11. Solar-powered Rankine heat pump for heating and cooling

    NASA Technical Reports Server (NTRS)

    Rousseau, J.

    1978-01-01

    The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.

  12. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    NASA Astrophysics Data System (ADS)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  13. System Design Techniques for Reducing the Power Requirements of Advanced life Support Systems

    NASA Technical Reports Server (NTRS)

    Finn, Cory; Levri, Julie; Pawlowski, Chris; Crawford, Sekou; Luna, Bernadette (Technical Monitor)

    2000-01-01

    The high power requirement associated with overall operation of regenerative life support systems is a critical Z:p technological challenge. Optimization of individual processors alone will not be sufficient to produce an optimized system. System studies must be used in order to improve the overall efficiency of life support systems. Current research efforts at NASA Ames Research Center are aimed at developing approaches for reducing system power and energy usage in advanced life support systems. System energy integration and energy reuse techniques are being applied to advanced life support, in addition to advanced control methods for efficient distribution of power and thermal resources. An overview of current results of this work will be presented. The development of integrated system designs that reuse waste heat from sources such as crop lighting and solid waste processing systems will reduce overall power and cooling requirements. Using an energy integration technique known as Pinch analysis, system heat exchange designs are being developed that match hot and cold streams according to specific design principles. For various designs, the potential savings for power, heating and cooling are being identified and quantified. The use of state-of-the-art control methods for distribution of resources, such as system cooling water or electrical power, will also reduce overall power and cooling requirements. Control algorithms are being developed which dynamically adjust the use of system resources by the various subsystems and components in order to achieve an overall goal, such as smoothing of power usage and/or heat rejection profiles, while maintaining adequate reserves of food, water, oxygen, and other consumables, and preventing excessive build-up of waste materials. Reductions in the peak loading of the power and thermal systems will lead to lower overall requirements. Computer simulation models are being used to test various control system designs.

  14. Characterizing Long-Term Groundwater Conditions and Lithology for the Design of Large-Scale Borehole Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Smith, David Charles

    Construction of large scale ground coupled heat pump (GCHP) systems that operate with hundreds or even thousands of boreholes for the borehole heat exchangers (BHE) has increased in recent years with many coming on line in the past 10 years. Many large institutions are constructing these systems because of their ability to store energy in the subsurface for indoor cooling during the warm summer months and extract that energy for heating during the cool winter months. Despite the increase in GCHP system systems constructed, there have been few long term studies on how these large systems interact with the subsurface. The thermal response test (TRT) is the industry standard for determining the thermal properties of the rock and soil. The TRT is limited in that it can only be used to determine the effective thermal conductivity over the whole length of a single borehole at the time that it is administered. The TRT cannot account for long-term changes in the aquifer saturation, changes in groundwater flow, or characterize different rock and soil units by effectiveness for heat storage. This study established new methods and also the need for the characterization of the subsurface for the purpose of design and long-term monitoring for GCHP systems. These new methods show that characterizing the long-term changes in aquifer saturation and groundwater flow, and characterizing different rock and soil units are an important part of the design and planning process of these systems. A greater understanding of how large-scale GCHP systems interact with the subsurface will result in designs that perform more efficiently over a longer period of time and expensive modifications due to unforeseen changes in system performance will be reduced.

  15. System design package for the solar heating and cooling central data processing system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The central data processing system provides the resources required to assess the performance of solar heating and cooling systems installed at remote sites. These sites consist of residential, commercial, government, and educational types of buildings, and the solar heating and cooling systems can be hot-water, space heating, cooling, and combinations of these. The instrumentation data associated with these systems will vary according to the application and must be collected, processed, and presented in a form which supports continuity of performance evaluation across all applications. Overall software system requirements were established for use in the central integration facility which transforms raw data collected at remote sites into performance evaluation information for assessing the performance of solar heating and cooling systems.

  16. Moorhead district heating, phase 2

    NASA Astrophysics Data System (ADS)

    Sundberg, R. E.

    1981-01-01

    The feasibility of developing a demonstration cogeneration hot water district heating system was studied. The district heating system would use coal and cogenerated heat from the Moorhead power plant to heat the water that would be distributed through underground pipes to customers or their space and domestic water heating needs, serving a substantial portion of the commercial and institutional loads as well as single and multiple family residences near the distribution lines. The technical feasibility effort considered the distribution network, retrofit of the power plant, and conversion of heating systems in customers' buildings to use hot water from the system. The system would be developed over six years. The economic analysis consisted of a market assessment and development of business plans for construction and operation of the system. Rate design methodology, institutional issues, development risk, and the proposal for implementation are discussed.

  17. A computer simulation of the turbocharged turbo compounded diesel engine system: A description of the thermodynamic and heat transfer models

    NASA Technical Reports Server (NTRS)

    Assanis, D. N.; Ekchian, J. E.; Frank, R. M.; Heywood, J. B.

    1985-01-01

    A computer simulation of the turbocharged turbocompounded direct-injection diesel engine system was developed in order to study the performance characteristics of the total system as major design parameters and materials are varied. Quasi-steady flow models of the compressor, turbines, manifolds, intercooler, and ducting are coupled with a multicylinder reciprocator diesel model, where each cylinder undergoes the same thermodynamic cycle. The master cylinder model describes the reciprocator intake, compression, combustion and exhaust processes in sufficient detail to define the mass and energy transfers in each subsystem of the total engine system. Appropriate thermal loading models relate the heat flow through critical system components to material properties and design details. From this information, the simulation predicts the performance gains, and assesses the system design trade-offs which would result from the introduction of selected heat transfer reduction materials in key system components, over a range of operating conditions.

  18. Performance of OSC's initial Amtec generator design, and comparison with JPL's Europa Orbiter goals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schock, A.; Noravian, H.; Or, C.

    1998-07-01

    The procedure for the analysis (with overpotential correction) of multitube AMTEC (Alkali Metal Thermal-to-Electrical Conversion) cells described in Paper IECEC 98-243 was applied to a wide range of multicell radioisotope space power systems. System design options consisting of one or two generators, each with 2, 3, or 4 stacked GPHS (General Purpose Heat Source) modules, identical to those used on previous NASA missions, were analyzed and performance-mapped. The initial generators analyzed by OSC had 8 AMTEC cells on each end of the heat source stack, with five beta-alumina solid electrolyte (BASE) tubes per cell. The heat source and converters inmore » the Orbital generator designs are embedded in a thermal insulation system consisting of Min-K fibrous insulation surrounded by graded-length molybdenum multifoils. Detailed analyses in previous Orbital studies found that such an insulation system could reduce extraneous heat losses to about 10%. For the above design options, the present paper presents the system mass and performance (i.e., the EOM system efficiency and power output and the BOM evaporator and clad temperatures) for a wide range of heat inputs and load voltages, and compares the results with JPL's preliminary goals for the Europa Orbiter mission to be launched in November 2003. The analytical results showed that the initial 16-cell generator designs resulted in either excessive evaporator and clad temperatures and/or insufficient power outputs to meet the JPL-specified mission goals. The computed performance of modified OSC generators with different numbers of AMTEC cells, cell diameters, cell lengths, cell materials, BASE tube lengths, and number of tubes per cell are described in Paper IECEC.98.245 in these proceedings.« less

  19. An out-of-core thermionic-converter system for nuclear space power

    NASA Technical Reports Server (NTRS)

    Breitwieser, R.

    1972-01-01

    Design of the nuclear thermionic space power system, 40 50 70 Kw(e) power range, are given. The design configuration (1) meets the constraints of readily available launch vehicles; (2) allows for off-design operation including startup, shutdown, and possible emergency conditions; (3) provides tolerance of failure by extensive use of modular, redundant elements; (4) incorporates and uses heat pipes in a fashion that reduces the need for extensive in-pile testing of system components; and (5) uses thermionic converters, nuclear fuel elements, and heat transfer devices in a geometrical form adapted from existing incore thermionic system designs. Designs and in some cases performance data for elements and groups of the elements of the system are included. Benefits of the highly modular system approach to reliability, safety, economy of development, and flexibility are discussed.

  20. Preliminary design review package for the solar heating and cooling central data processing system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Central Data Processing System (CDPS) is designed to transform the raw data collected at remote sites into performance evaluation information for assessing the performance of solar heating and cooling systems. Software requirements for the CDPS are described. The programming standards to be used in development, documentation, and maintenance of the software are discussed along with the CDPS operations approach in support of daily data collection and processing.

  1. Performance of a Heating Block System Designed for Studying the Heat Resistance of Bacteria in Foods

    NASA Astrophysics Data System (ADS)

    Kou, Xiao-Xi; Li, Rui; Hou, Li-Xia; Huang, Zhi; Ling, Bo; Wang, Shao-Jin

    2016-07-01

    Knowledge of bacteria’s heat resistance is essential for developing effective thermal treatments. Choosing an appropriate test method is important to accurately determine bacteria’s heat resistances. Although being a major factor to influence the thermo-tolerance of bacteria, the heating rate in samples cannot be controlled in water or oil bath methods due to main dependence on sample’s thermal properties. A heating block system (HBS) was designed to regulate the heating rates in liquid, semi-solid and solid foods using a temperature controller. Distilled water, apple juice, mashed potato, almond powder and beef were selected to evaluate the HBS’s performance by experiment and computer simulation. The results showed that the heating rates of 1, 5 and 10 °C/min with final set-point temperatures and holding times could be easily and precisely achieved in five selected food materials. A good agreement in sample central temperature profiles was obtained under various heating rates between experiment and simulation. The experimental and simulated results showed that the HBS could provide a sufficiently uniform heating environment in food samples. The effect of heating rate on bacterial thermal resistance was evaluated with the HBS. The system may hold potential applications for rapid and accurate assessments of bacteria’s thermo-tolerances.

  2. Building integration of photovoltaic systems in cold climates

    NASA Astrophysics Data System (ADS)

    Athienitis, Andreas K.; Candanedo, José A.

    2010-06-01

    This paper presents some of the research activities on building-integrated photovoltaic (BIPV) systems developed by the Solar and Daylighting Laboratory at Concordia University. BIPV systems offer considerable advantages as compared to stand-alone PV installations. For example, BIPV systems can play a role as essential components of the building envelope. BIPV systems operate as distributed power generators using the most widely available renewable source. Since BIPV systems do not require additional space, they are especially appropriate for urban environments. BIPV/Thermal (BIPV/T) systems may use exterior air to extract useful heat from the PV panels, cooling them and thereby improving their electric performance. The recovered thermal energy can then be used for space heating and domestic hot water (DHW) heating, supporting the utilization of BIVP/T as an appropriate technology for cold climates. BIPV and BIPV/T systems are the subject of several ongoing research and demonstration projects (in both residential and commercial buildings) led by Concordia University. The concept of integrated building design and operation is at the centre of these efforts: BIPV and BIPV/T systems must be treated as part of a comprehensive strategy taking into account energy conservation measures, passive solar design, efficient lighting and HVAC systems, and integration of other renewable energy systems (solar thermal, heat pumps, etc.). Concordia Solar Laboratory performs fundamental research on heat transfer and modeling of BIPV/T systems, numerical and experimental investigations on BIPV and BIPV/T in building energy systems and non-conventional applications (building-attached greenhouses), and the design and optimization of buildings and communities.

  3. NASA Crew Exploration Vehicle, Thermal Protection System, Lessons Learned

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Reuther, James

    2008-01-01

    The Orion (CEV) thermal protection system (TPS) advanced development project (ADP) was initiated in late 2006 to reduce developmental risk by significant investment in multiple heat shield architectural solutions that can meet the needs both the Low Earth orbit (LEO) and Lunar return missions. At the same time, the CEV TPS ADP was also charged with developing a preliminary design for the heat shield to meet the PDR requirement and at the time of the PDR, transfer the design to Lockheed- Martin, the prime contractor. We reported on the developmental activities of the first 18 months at the IPPW5 in Bordeaux, France, last summer. In June 08, at the time of the IPPW6, the CEV TPS ADP would have nearly completed the preparation for the Orion PDR and would be close to the original three-year mark. We plan to report on the progress at the Atlanta workshop. In the past year, Orion TPS ADP investment in TPS Technology, especially in PICA ablative Heat-shield design, development, testing and engineering (DDTE) has paid off in enabling MSL mission to switch from SLA 561 V heat shield to PICA heat shield. CEV TPS ADP considered SLA 561 V as a candidate for LEO missions and our testing identified failure modes in SLA and as a result, we dropped SLA for further evaluation. This close synergy between two projects is a highly visible example of how investment in technology areas can and does benefit multiple missions. In addition, CEV TPS ADP has been able to revive the Apollo ablative system namely AVCOAT honeycomb architecture as an alternate to the baseline PICA architecture and we plan to report the progress we have made in AVCOAT. CEV TPS ADP has invested considerable resources in developing analytical models for PICA and AVCOAT, material property measurements that is essential to the design of the heat-shield, in arcjet testing, in understanding the differences between different arc jet facilities, namely NASA Ames, NASA JSC and Air Force's AEDC, and in Non-Destructive Evaluation (NDE), and in integration of and manufacturing heat shield as a system. The capabilities of the two heat shield systems including failure modes via testing and analysis, once established, can serve the Probe Community and future mission designers to inner and outer planetary exploration very well. For example, missions to Venus, Mars and Titan can use either one of the system by selecting the mission design parameters that utilizes the full characteristics of these system to make use of system efficiency that will result in reduced heat shield mass, system robustness that will enhance mission success and cost. We plan to present significant progresses of the past three years and highlight the significant contributions CEV TPS ADP Project has made to advance the state of the art in Thermal Protection System technology that has and will continue to benefit future entry probe missions.

  4. A thermal control approach for a solar electric propulsion thrust subsystem

    NASA Technical Reports Server (NTRS)

    Maloy, J. E.; Oglebay, J. C.

    1979-01-01

    A thrust subsystem thermal control design is defined for a Solar Electric Propulsion System (SEPS) proposed for the comet Halley Flyby/comet Tempel 2 rendezvous mission. A 114 node analytic model, developed and coded on the systems improved numerical differencing analyzer program, was employed. A description of the resulting thrust subsystem thermal design is presented as well as a description of the analytic model and comparisons of the predicted temperature profiles for various SEPS thermal configurations that were generated using this model. It was concluded that: (1) a BIMOD engine system thermal design can be autonomous; (2) an independent thrust subsystem thermal design is feasible; (3) the interface module electronics temperatures can be controlled by a passive radiator and supplementary heaters; (4) maintaining heat pipes above the freezing point would require an additional 322 watts of supplementary heating power for the situation where no thrusters are operating; (5) insulation is required around the power processors, and between the interface module and the avionics module, as well as in those areas which may be subjected to solar heating; and (6) insulation behind the heat pipe radiators is not necessary.

  5. Thermal energy storage for industrial waste heat recovery

    NASA Technical Reports Server (NTRS)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    Thermal energy storage systems designed for energy conservation through the recovery, storage, and reuse of industrial process waste heat are reviewed. Consideration is given to systems developed for primary aluminum, cement, the food processing industry, paper and pulp, and primary iron and steel. Projected waste-heat recovery and energy savings are listed for each category.

  6. A Practical Application of Microcomputers to Control an Active Solar System.

    ERIC Educational Resources Information Center

    Goldman, David S.; Warren, William

    1984-01-01

    Describes the design and implementation of a microcomputer-based model active solar heating system. Includes discussions of: (1) the active solar components (solar collector, heat exchanger, pump, and fan necessary to provide forced air heating); (2) software components; and (3) hardware components (in the form of sensors and actuators). (JN)

  7. Solar-Heated Office Building -- Dallas, Texas

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Solar heating system designed to supply 87 percent of space heating and 100 percent of potable hot-water needs of large office building in Dallas, Texas. Unique feature of array serves as roofing over office lobby and gives building attractive triangular appearance. Report includes basic system drawings, test data, operating procedures, and maintenance instructions.

  8. ANL/RBC: A computer code for the analysis of Rankine bottoming cycles, including system cost evaluation and off-design performance

    NASA Technical Reports Server (NTRS)

    Mclennan, G. A.

    1986-01-01

    This report describes, and is a User's Manual for, a computer code (ANL/RBC) which calculates cycle performance for Rankine bottoming cycles extracting heat from a specified source gas stream. The code calculates cycle power and efficiency and the sizes for the heat exchangers, using tabular input of the properties of the cycle working fluid. An option is provided to calculate the costs of system components from user defined input cost functions. These cost functions may be defined in equation form or by numerical tabular data. A variety of functional forms have been included for these functions and they may be combined to create very general cost functions. An optional calculation mode can be used to determine the off-design performance of a system when operated away from the design-point, using the heat exchanger areas calculated for the design-point.

  9. Analysis of economic and environmental benefits of a new heat pump air conditioning system with a heat recovery device

    NASA Astrophysics Data System (ADS)

    Li, lingxue

    2017-08-01

    The paper designs a new wind-water cooling and heating water conditioner system, connects cooling tower with heat recovery device, which uses cooling water to completely remove the heat that does not need heat recollection, in order to ensure that the system can work efficiently with higher performance coefficient. After the test actual engineering operation, the system’s maximum cooling coefficient of performance can reach 3.5. Its maximum comprehensive coefficient of performance can reach 6.5. After the analysis of its economic and environmental, we conclude that the new system can save 89822 kw per year. It reflects energy-saving and environmental benefits of the cold and hot water air conditioning system.

  10. Integrated Cabin and Fuel Cell System Thermal Management with a Metal Hydride Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hovland, V.

    2004-12-01

    Integrated approaches for the heating and cooling requirements of both the fuel cell (FC) stack and cabin environment are critical to fuel cell vehicle performance in terms of stack efficiency, fuel economy, and cost. An integrated FC system and cabin thermal management system would address the cabin cooling and heating requirements, control the temperature of the stack by mitigating the waste heat, and ideally capture the waste heat and use it for useful purposes. Current work at the National Renewable Energy Laboratory (NREL) details a conceptual design of a metal hydride heat pump (MHHP) for the fuel cell system andmore » cabin thermal management.« less

  11. Better Gas-Gap Thermal Switches For Sorption Compressors

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Rodriguez, Jose

    1995-01-01

    Gas-gap thermal switches associated with sorption compressors of some heat pumps and cryogenic systems designed for higher performance, according to proposal, by introducing controlled turbulent flows into gas gaps. Utilizes convection in turbulent flow to transfer heat at greater rate. Design takes advantage of flow of working fluid. Working fluid also serve as heat transfer medium in gas gap.

  12. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1980-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  13. Heat Pipes and Heat Rejection Component Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Sanzi, James L.; Jaworske, Donald A.

    2012-01-01

    Titanium-water heat pipes are being evaluated for use in the heat rejection system for space fission power systems. The heat rejection syst em currently comprises heat pipes with a graphite saddle and a composite fin. The heat input is a pumped water loop from the cooling of the power conversion system. The National Aeronautics and Space Administration has been life testing titanium-water heat pipes as well as eval uating several heat pipe radiator designs. The testing includes thermal modeling and verification of model, material compatibility, frozen startup of heat pipe radiators, and simulating low-gravity environments. Future thermal testing of titanium-water heat pipes includes low-g ravity testing of thermosyphons, radiation testing of heat pipes and fin materials, water pump performance testing, as well as Small Busine ss Innovation Research funded deliverable prototype radiator panels.

  14. Design, development and test of a capillary pump loop heat pipe

    NASA Technical Reports Server (NTRS)

    Kroliczek, E. J.; Ku, J.; Ollendorf, S.

    1984-01-01

    The development of a capillary pump loop (CPL) heat pipe, including computer modeling and breadboard testing, is presented. The computer model is a SINDA-type thermal analyzer, combined with a pressure analyzer, which predicts the transients of the CPL heat pipe during operation. The breadboard is an aluminum/ammonia transport system which contains multiple parallel evaporator and condenser zones within a single loop. Test results have demonstrated the practicality and reliability of such a design, including heat load sharing among evaporators, liquid inventory/temperature control feature, and priming under load. Transport capability for this system is 65 KW-M with individual evaporator pumps managing up to 1.7 KW at a heat flux of 15 W/sq cm. The prediction of the computer model for heat transport capabilities is in good agreement with experimental results.

  15. The application of exergy to human-designed systems

    NASA Astrophysics Data System (ADS)

    Hamilton, P.

    2012-12-01

    Exergy is the portion of the total energy of a system that is available for conversion to useful work. Exergy takes into account both the quantity and quality of energy. Heat is the inevitable product of using any form of high-quality energy such as electricity. Modern commercial buildings and industrial facilities use large amounts of electricity and so produce huge amounts of heat. This heat energy typically is treated as a waste product and discharged to the environment and then high-quality energy sources are consumed to satisfy low-quality energy heating and cooling needs. Tens of thousands of buildings and even whole communities could meet much of their heating and cooling needs through the capture and reuse of heat energy. Yet the application of exergy principles often faces resistance because it challenges conventions about how we design, construct and operate human-engineered systems. This session will review several exergy case studies and conclude with an audience discussion of how exergy principles may be both applied and highlighted in formal and informal education settings.

  16. Foundation Heat Exchanger Final Report: Demonstration, Measured Performance, and Validated Model and Design Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Patrick; Im, Piljae

    2012-04-01

    Geothermal heat pumps, sometimes called ground-source heat pumps (GSHPs), have been proven capable of significantly reducing energy use and peak demand in buildings. Conventional equipment for controlling the temperature and humidity of a building, or supplying hot water and fresh outdoor air, must exchange energy (or heat) with the building's outdoor environment. Equipment using the ground as a heat source and heat sink consumes less non-renewable energy (electricity and fossil fuels) because the earth is cooler than outdoor air in summer and warmer in winter. The most important barrier to rapid growth of the GSHP industry is high first costmore » of GSHP systems to consumers. The most common GSHP system utilizes a closed-loop ground heat exchanger. This type of GSHP system can be used almost anywhere. There is reason to believe that reducing the cost of closed-loop systems is the strategy that would achieve the greatest energy savings with GSHP technology. The cost premium of closed-loop GSHP systems over conventional space conditioning and water heating systems is primarily associated with drilling boreholes or excavating trenches, installing vertical or horizontal ground heat exchangers, and backfilling the excavations. This project investigates reducing the cost of horizontal closed-loop ground heat exchangers by installing them in the construction excavations, augmented when necessary with additional trenches. This approach applies only to new construction of residential and light commercial buildings or additions to such buildings. In the business-as-usual scenario, construction excavations are not used for the horizontal ground heat exchanger (HGHX); instead the HGHX is installed entirely in trenches dug specifically for that purpose. The potential cost savings comes from using the construction excavations for the installation of ground heat exchangers, thereby minimizing the need and expense of digging additional trenches. The term foundation heat exchanger (FHX) has been coined to refer exclusively to ground heat exchangers installed in the overcut around the basement walls. The primary technical challenge undertaken by this project was the development and validation of energy performance models and design tools for FHX. In terms of performance modeling and design, ground heat exchangers in other construction excavations (e.g., utility trenches) are no different from conventional HGHX, and models and design tools for HGHX already exist. This project successfully developed and validated energy performance models and design tools so that FHX or hybrid FHX/HGHX systems can be engineered with confidence, enabling this technology to be applied in residential and light commercial buildings. The validated energy performance model also addresses and solves another problem, the longstanding inadequacy in the way ground-building thermal interaction is represented in building energy models, whether or not there is a ground heat exchanger nearby. Two side-by-side, three-level, unoccupied research houses with walkout basements, identical 3,700 ft{sup 2} floor plans, and hybrid FHX/HGHX systems were constructed to provide validation data sets for the energy performance model and design tool. The envelopes of both houses are very energy efficient and airtight, and the HERS ratings of the homes are 44 and 45 respectively. Both houses are mechanically ventilated with energy recovery ventilators, with space conditioning provided by water-to-air heat pumps with 2 ton nominal capacities. Separate water-to-water heat pumps with 1.5 ton nominal capacities were used for water heating. In these unoccupied research houses, human impact on energy use (hot water draw, etc.) is simulated to match the national average. At House 1 the hybrid FHX/HGHX system was installed in 300 linear feet of excavation, and 60% of that was construction excavation (needed to construct the home). At House 2 the hybrid FHX/HGHX system was installed in 360 feet of excavation, 50% of which was construction excavation. There are six pipes in all excavations (three parallel circuits - out and back), and the multiple instances of FHX and/or HGHX are all connected in series. The working fluid is 20% by weight propylene glycol in water. Model and design tool development was undertaken in parallel with constructing the houses, installing instrumentation, and monitoring performance for a year. Several detailed numerical models for FHX were developed as part of the project. Essentially the project team was searching for an energy performance model accurate enough to achieve project objectives while also having sufficient computational efficiency for practical use in EnergyPlus. A 3-dimensional, dual-coordinate-system, finite-volume model satisfied these criteria and was included in the October 2011 EnergyPlus Version 7 public release after being validated against measured data.« less

  17. Efficient and lightweight current leads

    NASA Astrophysics Data System (ADS)

    Bromberg, L.; Dietz, A. J.; Michael, P. C.; Gold, C.; Cheadle, M.

    2014-01-01

    Current leads generate substantial cryogenic heat loads in short length High Temperature Superconductor (HTS) distribution systems. Thermal conduction, as well as Joule losses (I2R) along the current leads, comprises the largest cryogenic loads for short distribution systems. Current leads with two temperature stages have been designed, constructed and tested, with the goal of minimizing the electrical power consumption, and to provide thermal margin for the cable. We present the design of a two-stage current lead system, operating at 140 K and 55 K. This design is very attractive when implemented with a turbo-Brayton cycle refrigerator (two-stage), with substantial power and weight reduction. A heat exchanger is used at each temperature station, with conduction-cooled stages in-between. Compact, efficient heat exchangers are challenging, because of the gaseous coolant. Design, optimization and performance of the heat exchangers used for the current leads will be presented. We have made extensive use of CFD models for optimizing hydraulic and thermal performance of the heat exchangers. The methodology and the results of the optimization process will be discussed. The use of demountable connections between the cable and the terminations allows for ease of assembly, but require means of aggressively cooling the region of the joint. We will also discuss the cooling of the joint. We have fabricated a 7 m, 5 kA cable with second generation HTS tapes. The performance of the system will be described.

  18. Closed cycle electric discharge laser design investigation

    NASA Technical Reports Server (NTRS)

    Baily, P. K.; Smith, R. C.

    1978-01-01

    Closed cycle CO2 and CO electric discharge lasers were studied. An analytical investigation assessed scale-up parameters and design features for CO2, closed cycle, continuous wave, unstable resonator, electric discharge lasing systems operating in space and airborne environments. A space based CO system was also examined. The program objectives were the conceptual designs of six CO2 systems and one CO system. Three airborne CO2 designs, with one, five, and ten megawatt outputs, were produced. These designs were based upon five minute run times. Three space based CO2 designs, with the same output levels, were also produced, but based upon one year run times. In addition, a conceptual design for a one megawatt space based CO laser system was also produced. These designs include the flow loop, compressor, and heat exchanger, as well as the laser cavity itself. The designs resulted in a laser loop weight for the space based five megawatt system that is within the space shuttle capacity. For the one megawatt systems, the estimated weight of the entire system including laser loop, solar power generator, and heat radiator is less than the shuttle capacity.

  19. Analysis of hybrid interface cooling system using air ventilation and nanofluid

    NASA Astrophysics Data System (ADS)

    Rani, M. F. H.; Razlan, Z. M.; Bakar, S. A.; Desa, H.; Wan, W. K.; Ibrahim, I.; Kamarrudin, N. S.; Bin-Abdun, Nazih A.

    2017-09-01

    The hybrid interface cooling system needs to be designed for maintaining the electric vehicle's battery cell temperature at 25°C. The hybrid interface cooling system is a combination of two individual systems, where the primary cooling system (R-134a) and the secondary cooling system (CuO + Water) will be used to absorb the heat generated by the battery cells. The ventilation system is designed using air as the medium to transfer the heat from the batteries to the refrigeration system (R-134a). Research will focus on determining the suitable compressor displacement, the heat exchanger volume and the expansion valve resistance value. The analysis for the secondary cooling system is focused on the cooling coil where low temperature nanofluid is passing through each interval of the battery cells. For analysing purposes, the thermal properties of the mixture of 50 grams, Copper (II) Oxide and the base fluid have been determined. The hybrid interface cooling system are able to achieve 57.82% increments in term of rate of heat transfer as compared to the individual refrigeration system.

  20. Design, fabrication, testing, and delivery of a solar energy collector system for residential heating and cooling

    NASA Technical Reports Server (NTRS)

    Holland, T. H.; Borzoni, J. T.

    1976-01-01

    A low cost flat plate solar energy collector was designed for the heating and cooling of residential buildings. The system meets specified performance requirements, at the desired system operating levels, for a useful life of 15 to 20 years, at minimum cost and uses state-of-the-art materials and technology. The rationale for the design method was based on identifying possible material candidates for various collector components and then selecting the components which best meet the solar collector design requirements. The criteria used to eliminate certain materials were: performance and durability test results, cost analysis, and prior solar collector fabrication experience.

  1. Optimization and thermoeconomics research of a large reclaimed water source heat pump system.

    PubMed

    Zhang, Zi-ping; Du, Fang-hui

    2013-01-01

    This work describes a large reclaimed water source heat pump system (RWSHPS) and elaborates on the composition of the system and its design principles. According to the characteristics of the reclaimed water and taking into account the initial investment, the project is divided into two stages: the first stage adopts distributed heat pump heating system and the second adopts the combination of centralized and decentralized systems. We analyze the heating capacity of the RWSHPS, when the phase II project is completed, the system can provide hydronic heating water with the supply and return water temperature of 55°C/15°C and meet the hydronic heating demand of 8 million square meters of residential buildings. We make a thermal economics analysis by using Thermal Economics theory on RWSHPS and gas boiler system, it is known that the RWSHPS has more advantages, compared with the gas boiler heating system; both its thermal efficiency and economic efficiency are relatively high. It provides a reference for future applications of the RWSHPS.

  2. IR window design for hypersonic missile seekers: thermal shock and cooling systems

    NASA Astrophysics Data System (ADS)

    Hingst, Uwe; Koerber, Stefan

    2001-10-01

    Infra-red (IR) seekers on missiles at high Mach-numbers in the lower tier air defence often suffer from degradation in performance due to aerothermodynamic effects. The kind and rate of degradation depends on the geometric design (shape) and location of the IR-window. Optimal design may reduce those effects but still misses to totally withstand the imposed thermal stresses (thermal shock). Proper thermal protection systems and/or window cooling systems will be needed. The first part of this paper deals particularly with passive IR- window design features to reduce the thermal stresses. A series of wind-tunnel testings focused on the thermal shock behavior of different IR-window shapes under critical flight conditions. The variation of typical design parameters demonstrates the available features to reduce thermal shock by passive ways. The second part presents active thermal stress reduction devices, e.g. an active cooling system. Among others the most efficient reduction of thermal heating is based on three components: A partial coverage of the IR-dome to protect most parts against heating effects, a rotating system bearing the IR-dome and a liquid spray-cooling system in the gap between the cover and the IR-dome. The hemispherical or pyramidal dome can be located either midways in the missile nose section or sideways on the structure. The liquid spray cooling system combines both, a heat exchange by fluid evaporation and a heat transfer by fluid and gas cross flow (convection), causing a low fluid consumption. Such a cooling system along with their driving parameters and the resulting analytical performance will be presented.

  3. Sandwich Core Heat-Pipe Radiator for Power and Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gibson, Marc; Sanzi, James; Locci, Ivan

    2013-01-01

    Next-generation heat-pipe radiator technologies are being developed at the NASA Glenn Research Center to provide advancements in heat-rejection systems for space power and propulsion systems. All spacecraft power and propulsion systems require their waste heat to be rejected to space in order to function at their desired design conditions. The thermal efficiency of these heat-rejection systems, balanced with structural requirements, directly affect the total mass of the system. Terrestrially, this technology could be used for thermal control of structural systems. One potential use is radiant heating systems for residential and commercial applications. The thin cross section and efficient heat transportability could easily be applied to flooring and wall structures that could evenly heat large surface areas. Using this heat-pipe technology, the evaporator of the radiators could be heated using any household heat source (electric, gas, etc.), which would vaporize the internal working fluid and carry the heat to the condenser sections (walls and/or floors). The temperature could be easily controlled, providing a comfortable and affordable living environment. Investigating the appropriate materials and working fluids is needed to determine this application's potential success and usage.

  4. Brayton heat exchange unit development program

    NASA Technical Reports Server (NTRS)

    Morse, C. J.; Richard, C. E.; Duncan, J. D.

    1971-01-01

    A Brayton Heat Exchanger Unit (BHXU), consisting of a recuperator, a heat sink heat exchanger and a gas ducting system, was designed, fabricated, and tested. The design was formulated to provide a high performance unit suitable for use in a long-life Brayton-cycle powerplant. A parametric analysis and design study was performed to establish the optimum component configurations to achieve low weight and size and high reliability, while meeting the requirements of high effectiveness and low pressure drop. Layout studies and detailed mechanical and structural design were performed to obtain a flight-type packaging arrangement. Evaluation testing was conducted from which it is estimated that near-design performance can be expected with the use of He-Xe as the working fluid.

  5. Conceptual design of liquid droplet radiator shuttle-attached experiment

    NASA Technical Reports Server (NTRS)

    Pfeiffer, Shlomo L.

    1989-01-01

    The conceptual design of a shuttle-attached liquid droplet radiator (LDR) experiment is discussed. The LDR is an advanced, lightweight heat rejection concept that can be used to reject heat from future high-powered space platforms. In the LDR concept, submillimeter-sized droplets are generated, pass through space, radiate heat before they are collected, and recirculated back to the heat source. The LDR experiment is designed to be attached to the shuttle longeron and integrated into the shuttle bay using standard shuttle/experiment interfaces. Overall power, weight, and data requirements of the experiment are detailed. The conceptual designs of the droplet radiator, droplet collector, and the optical diagnostic system are discussed in detail. Shuttle integration and safety design issues are also discussed.

  6. Brayton heat exchanger unit development program (alternate design)

    NASA Technical Reports Server (NTRS)

    Duncan, J. D.; Gibson, J. C.; Graves, R. F.; Morse, C. J.; Richard, C. E.

    1973-01-01

    A Brayton Heat Exchanger Unit Alternate Design (BHXU-Alternate) consisting of a recuperator, a heat sink heat exchanger, and a gas ducting system, was designed and fabricated. The design was formulated to provide a high performance unit suitable for use in a long-life Brayton-cycle powerplant. Emphasis was on double containment against external leakage and leakage of the organic coolant into the gas stream. A parametric analysis and design study was performed to establish the optimum component configurations to achieve low weight and size and high reliability, while meeting the requirements of high effectiveness and low pressure drop. Layout studies and detailed mechanical and structural design were performed to obtain a flight-type packaging arrangement, including the close-coupled integration of the BHXU-Alternate with the Brayton Rotating Unit (BRU).

  7. ERTS-C (Landsat 3) cryogenic heat pipe experiment definition

    NASA Technical Reports Server (NTRS)

    Brennan, P. J.; Kroliczek, E. J.

    1975-01-01

    A flight experiment designed to demonstrate current cryogenic heat pipe technology was defined and evaluated. The experiment package developed is specifically configured for flight aboard an ERTS type spacecraft. Two types of heat pipes were included as part of the experiment package: a transporter heat pipe and a thermal diode heat pipe. Each was tested in various operating modes. Performance data obtained from the experiment are applicable to the design of cryogenic systems for detector cooling, including applications where periodic high cooler temperatures are experienced as a result of cyclic energy inputs.

  8. Thermostructural applications of heat pipes

    NASA Technical Reports Server (NTRS)

    Peeples, M. E.; Reeder, J. C.; Sontag, K. E.

    1979-01-01

    The feasibility of integrating heat pipes in high temperature structure to reduce local hot spot temperature was evaluated for a variety of hypersonic aerospace vehicles. From an initial list of twenty-two potential applications, the single stage to orbit wing leading edge showed the greatest promise and was selected for preliminary design of an integrated heat pipe thermostructural system. The design consisted of a Hastelloy X assembly with sodium heat pipe passages aligned normal to the wing leading edge. A d-shaped heat pipe cross section was determined to be optimum from the standpoint of structural weight.

  9. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 2, technologies 1: Reactors, heat transport, integration issues

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.

    1988-01-01

    The objectives of the Megawatt Class Nuclear Space Power System (MCNSPS) study are summarized and candidate systems and subsystems are described. Particular emphasis is given to the heat rejection system and the space reactor subsystem.

  10. Status of the Development of Low Cost Radiator for Surface Fission Power - II

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Maxwell, Taylor; Anderson, William G.; Wagner, Corey; Wrosch, Matthew; Briggs, Maxwell H.

    2016-01-01

    NASA Glenn Research Center (GRC) is developing fission power system technology for future Lunar and Martian surface power applications. The systems are envisioned in the 10 to 100kWe range and have an anticipated design life of 8 to 15 years with no maintenance. NASA GRC is currently setting up a 55 kWe non-nuclear system ground test in thermal-vacuum to validate technologies required to transfer reactor heat, convert the heat into electricity, reject waste heat, process the electrical output, and demonstrate overall system performance. The paper reports on the development of the heat pipe radiator to reject the waste heat from the Stirling convertors. Reducing the radiator mass, size, and cost is essential to the success of the program. To meet these goals, Advanced Cooling Technologies, Inc. (ACT) and Vanguard Space Technologies, Inc. (VST) are developing a single facesheet radiator with heat pipes directly bonded to the facesheet. The facesheet material is a graphite fiber reinforced composite (GFRC) and the heat pipes are titanium/water Variable Conductance Heat Pipes (VCHPs). By directly bonding a single facesheet to the heat pipes, several heavy and expensive components can be eliminated from the traditional radiator design such as, POCO"TM" foam saddles, aluminum honeycomb, and a second facesheet. As mentioned in previous papers by the authors, the final design of the waste heat radiator is described as being modular with independent GFRC panels for each heat pipe. The present paper reports on test results for a single radiator module as well as a radiator cluster consisting of eight integral modules. These tests were carried out in both ambient and vacuum conditions. While the vacuum testing of the single radiator module was performed in the ACT's vacuum chamber, the vacuum testing of the eight heat pipe radiator cluster took place in NASA GRC's vacuum chamber to accommodate the larger size of the cluster. The results for both articles show good agreement with the predictions and are presented in the paper.

  11. Heat pump study: Tricks of the trade that can pump up efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, V.

    Two years ago, many homeowners in an area near Auburn, California were unhappy with their heat pumps. The local utility, Pacific Gas Electric (PG E), received unusually large numbers of complaints from them of high electricity bills and poor system operation. PG E wanted to know whether correctable mechanical problems were to blame. It hired John Proctor, then of Building Resources Management Corp., to design and implement a study to address the heat pump customers' complaints. The Pacific Gas Electric Heat Pump Efficiency and Super Weatherization Pilot Project was the result. The first objective of the Pilot Project was tomore » identify the major problems and their prevalence in the existing residential heat pump installations. The second was to design a correction strategy that would cost PG E $400 or less per site. Participating homeowners would also share some of the costs. Project goals were improved homeowner comfort and satisfaction, increased energy efficiency of mechanical systems, and 10-20% space heating energy savings. By improving system operations, the project wished to increase customer acceptance of heat pumps in general.« less

  12. Effect of inert cover gas on performance of radioisotope Stirling space power system

    NASA Astrophysics Data System (ADS)

    Carpenter, R.; Kumar, V.; Or, C.; Schock, A.

    2001-02-01

    This paper describes an updated Orbital design of a radioisotope Stirling power system and its predicted performance at the beginning and end of a six-year mission to the Jovian moon Europa. The design is based on General Purpose Heat Source (GPHS) modules identical to those previously developed and safety-qualified by the Department of Energy (DOE) which were successfully launched on missions to Jupiter and Saturn by the Jet Propulsion Laboratory (JPL). In each generator, the heat produced by the decay of the Pu-238 isotope is converted to electric power by two free-piston Stirling engines and linear alternators developed by Stirling Technology Company (STC), and their rejected waste heat is transported to radiators by heat pipes. The principal difference between the proposed system design and previous Orbital designs (Or et al., 2000) is the thermal insulation between the heat source and the generator's housing. Previous designs had employed multifoil insulation, whereas the design described here employs Min-K-1800 thermal insulation. Such insulation had been successfully used by Teledyne and GE in earlier RTGs (Radioisotope Thermoelectric Generators). Although Min-K is a much poorer insulator than multifoil in vacuum and requires a substantially greater thickness for equivalent performance, it offers compensating advantages. Specifically it makes it possible to adjust the generator's BOM temperatures by filling its interior volume with inert cover gas. This makes it possible to meet the generator's BOM and EOM performance goals without exceeding its allowable temperature at the beginning of the mission. .

  13. Internship Progress Summary: Fall 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ralph S.; Valencia, Matthew John

    2016-12-13

    This fall I had the opportunity to work at Los Alamos National Laboratory for the Technology Applications engineering group. I assisted two main projects during my appointment, both related to the Lab’s mission statement: “To solve national security challenges through scientific excellence.” My first project, a thermal source transfer unit, involved skills such as mechanical design, heat transfer simulation, and design analysis. The goal was to create a container that could protect a heat source and regulate its temperature during transit. I generated several designs, performed heat transfer simulations, and chose a design for prototyping. The second project was amore » soil drying unit for use in post blast sample analysis. To ensure fast and accurate sample processing, agents in the field wanted a system that could process wet dirt and turn it into dry powder. We designed a system of commercially available parts, and we tested the systems to determine the best methods and processes.« less

  14. Thermal Vacuum Testing of Swift XRT Ethane Heat Pipes

    NASA Technical Reports Server (NTRS)

    Kobel, Mark; Ku, Jentung

    2003-01-01

    This paper presents the results obtained from a recent ethane heat pipe program. Three identical ethane heat pipes were tested individually, and then two selected heat pipes were tested collectively in their system configuration. Heat transport, thermal conductance, and non-condensable gas tests were performed on each heat pipe. To gain insight into the reflux operation as seen at spacecraft level ground testing, the test fixture was oriented in a vertical configuration. The system level test included a computer-controlled heater designed to emulate the heat load generated at the thermoelectric cooler interface. The system performance was successfully characterized for a wide range of environmental conditions while staying within the operating limits.

  15. Development of an engineering model traveling wave tube amplifier for space communication systems

    NASA Technical Reports Server (NTRS)

    Eallonardo, C. M.; Songli, J.; Basiulis, A.

    1972-01-01

    A design has been made of a 100 watt traveling-wave tube amplifier for use in space communication applications. The features of very high overall efficiency and heat rejection of waste heat at low thermal densities were predominant in the design concept. The design concept was proven by building a series of tubes, operating at efficiencies up to 50%. These tubes utilized heat pipe cooling and heat distribution such that 150 watts of waste heat was rejected at a density of less than 1.5 watts per square inch. A power supply to convert a 28 volt primary line of the needs of the TWT was built and operated at 85% efficiency.

  16. Development of control systems for solar water and solar space heating equipment. Choice of heat conducting fluid. Testing

    NASA Astrophysics Data System (ADS)

    Meyer, H.

    1981-11-01

    Flat plate collector systems suitable for hot water supply, swimming pool heating, and auxiliary space heating were developed. A control and ready made packaged pipe assembly, adapted to synthetic fluid, was developed. A heat transfer fluid was selected, pumps, safety devices, armatures and seals were tested for their long term performance. External heat exchangers for simple and cascade arrangement of the hot water tanks were tested. It is found that the channel design of a roll bonded absorber has only limited effect on collector performance if the channel width approximates the space between the plates. Systems already installed work satisfactorily.

  17. Solar energy system demonstration project at Wilmington Swim School, New Castle, Delaware

    NASA Astrophysics Data System (ADS)

    1980-07-01

    A solar energy system located at the Wilmington Swim School, New Castle, Delaware is described. The system was designed for a 40 percent heating and a 30 percent hot water solar contribution serving the heat loads in the following order: space heat - new addition, domestic water - entire facility, and pool heating - entire facility. On a cost basis for 2920 hours of operation, the heat reclaimed would cost $969.66 annually if provided by gas at 3.79 per million Btu's. At 5.5 centers per kwh, heat recovery costs of $481.80 percent a net savings of $487.86 annually.

  18. Solar energy system demonstration project at Wilmington Swim School, New Castle, Delaware

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A solar energy system located at the Wilmington Swim School, New Castle, Delaware is described. The system was designed for a 40 percent heating and a 30 percent hot water solar contribution serving the heat loads in the following order: space heat - new addition, domestic water - entire facility, and pool heating - entire facility. On a cost basis for 2920 hours of operation, the heat reclaimed would cost $969.66 annually if provided by gas at 3.79 per million Btu's. At 5.5 centers per kwh, heat recovery costs of $481.80 percent a net savings of $487.86 annually.

  19. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    NASA Astrophysics Data System (ADS)

    Chu, X. X.; Zhang, M. M.; Zhang, D. X.; Xu, D.; Qian, Y.; Liu, W.

    2014-01-01

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H2 from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H2 in helium recycle gas are less than 1 ppb.

  20. Employing ISRU Models to Improve Hardware Design

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.

    2010-01-01

    An analytical model for hydrogen reduction of regolith was used to investigate the effects of several key variables on the energy and mass performance of reactors for a lunar in-situ resource utilization oxygen production plant. Reactor geometry, reaction time, number of reactors, heat recuperation, heat loss, and operating pressure were all studied to guide hardware designers who are developing future prototype reactors. The effects of heat recuperation where the incoming regolith is pre-heated by the hot spent regolith before transfer was also investigated for the first time. In general, longer reaction times per batch provide a lower overall energy, but also result in larger and heavier reactors. Three reactors with long heat-up times results in similar energy requirements as a two-reactor system with all other parameters the same. Three reactors with heat recuperation results in energy reductions of 20 to 40 percent compared to a three-reactor system with no heat recuperation. Increasing operating pressure can provide similar energy reductions as heat recuperation for the same reaction times.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The model is designed to enable decision makers to compare the economics of geothermal projects with the economics of alternative energy systems at an early stage in the decision process. The geothermal engineering and economic feasibility computer model (GEEF) is written in FORTRAN IV language and can be run on a mainframe or a mini-computer system. An abbreviated version of the model is being developed for usage in conjunction with a programmable desk calculator. The GEEF model has two main segments, namely (i) the engineering design/cost segment and (ii) the economic analysis segment. In the engineering segment, the model determinesmore » the numbers of production and injection wells, heat exchanger design, operating parameters for the system, requirement of supplementary system (to augment the working fluid temperature if the resource temperature is not sufficiently high), and the fluid flow rates. The model can handle single stage systems as well as two stage cascaded systems in which the second stage may involve a space heating application after a process heat application in the first stage.« less

  2. Design Report for the ½ Scale Air-Cooled RCCS Tests in the Natural convection Shutdown heat removal Test Facility (NSTF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisowski, D. D.; Farmer, M. T.; Lomperski, S.

    The Natural convection Shutdown heat removal Test Facility (NSTF) is a large scale thermal hydraulics test facility that has been built at Argonne National Laboratory (ANL). The facility was constructed in order to carry out highly instrumented experiments that can be used to validate the performance of passive safety systems for advanced reactor designs. The facility has principally been designed for testing of Reactor Cavity Cooling System (RCCS) concepts that rely on natural convection cooling for either air or water-based systems. Standing 25-m in height, the facility is able to supply up to 220 kW at 21 kW/m 2 tomore » accurately simulate the heat fluxes at the walls of a reactor pressure vessel. A suite of nearly 400 data acquisition channels, including a sophisticated fiber optic system for high density temperature measurements, guides test operations and provides data to support scaling analysis and modeling efforts. Measurements of system mass flow rate, air and surface temperatures, heat flux, humidity, and pressure differentials, among others; are part of this total generated data set. The following report provides an introduction to the top level-objectives of the program related to passively safe decay heat removal, a detailed description of the engineering specifications, design features, and dimensions of the test facility at Argonne. Specifications of the sensors and their placement on the test facility will be provided, along with a complete channel listing of the data acquisition system.« less

  3. Prototype solar heating and combined heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Designs were completed, hardware was received, and hardware was shipped to two sites. A change was made in the heat pump working fluid. Problem investigation of shroud coatings for the collector received emphasis.

  4. Design and construction of Thermoelectric Footwear Heating System for illness feet.

    PubMed

    Işik, Hakan

    2005-12-01

    In this study, a Thermoelectric Footwear Heating System is developed to use in cold weather conditions. The temperature is controlled by an analog electronic control system. Thermoelectric module is used to heat the bottom of the foot. A negative temperature coefficient (NTC) temperature sensor is used to sense the temperature and the temperature is controlled by an electronic circuit proportionally. A 3.5 V, 5000 mAh rechargeable battery is used as the power source. The temperature range of the system is between +15 degrees C and +50 degrees C. Developed footwear heating system is tested against various temperature conditions, and offer better results in the case of heating the illness feet.

  5. Multi-Purpose Thermal Hydraulic Loop: Advanced Reactor Technology Integral System Test (ARTIST) Facility for Support of Advanced Reactor Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. O'Brien; Piyush Sabharwall; SuJong Yoon

    2001-11-01

    Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water.more » Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed« less

  6. An Experimental Test Facility to Support Development of the Fluoride Salt Cooled High Temperature Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoder Jr, Graydon L; Aaron, Adam M; Cunningham, Richard Burns

    2014-01-01

    The need for high-temperature (greater than 600 C) energy exchange and delivery systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The Fluoride Salt-Cooled High-Temperature Reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during themore » development process. The experimental facility described here has been constructed to support the development of the Fluoride Salt Cooled High Temperature Reactor concept. The facility is capable of operating at up to 700 C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system; trace heating system; and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride salt heat transfer inside a heated pebble bed similar to that used for the core of the pebble bed advanced high-temperature reactor. This document describes the details of the loop design, auxiliary systems used to support the facility, the inductive heating system, and facility capabilities.« less

  7. An applied methodology for assessment of the sustainability of biomass district heating systems

    NASA Astrophysics Data System (ADS)

    Vallios, Ioannis; Tsoutsos, Theocharis; Papadakis, George

    2016-03-01

    In order to maximise the share of biomass in the energy supplying system, the designers should adopt the appropriate changes to the traditional systems and become more familiar with the design details of the biomass heating systems. The aim of this study is to present the development of methodology and its associated implementation in software that is useful for the design of biomass thermal conversion systems linked with district heating (DH) systems, taking into consideration the types of building structures and urban settlement layout around the plant. The methodology is based on a completely parametric logic, providing an impact assessment of variations in one or more technical and/or economic parameters and thus, facilitating a quick conclusion on the viability of this particular energy system. The essential energy parameters are presented and discussed for the design of biomass power and heat production system which are in connection with DH network, as well as for its environmental and economic evaluation (i.e. selectivity and viability of the relevant investment). Emphasis has been placed upon the technical parameters of biomass logistics, energy system's design, the economic details of the selected technology (integrated cogeneration combined cycle or direct combustion boiler), the DH network and peripheral equipment (thermal substations) and the greenhouse gas emissions. The purpose of this implementation is the assessment of the pertinent investment financial viability taking into account the available biomass feedstock, the economical and market conditions, and the capital/operating costs. As long as biomass resources (forest wood and cultivation products) are available and close to the settlement, disposal and transportation costs of biomass, remain low assuring the sustainability of such energy systems.

  8. Brayton advanced heat receiver development program

    NASA Technical Reports Server (NTRS)

    Heidenreich, G. R.; Downing, R. S.; Lacey, Dovie E.

    1989-01-01

    NASA Lewis Research Center is managing an advanced solar dynamic (ASD) space power program. The objective of the ASD program is to develop small and lightweight solar dynamic systems which show significant improvement in efficiency and specific mass over the baseline design derived from the Space Station Freedom technology. The advanced heat receiver development program is a phased program to design, fabricate and test elements of a 7-kWe heat-receiver/thermal-energy-storage subsystem. Receivers for both Brayton and Stirling heat engines are being developed under separate contracts. Phase I, described here, is the current eighteen month effort to design and perform critical technology experiments on innovative concepts designed to reduce mass without compromising thermal efficiency and reliability.

  9. Spaceborne power systems preference analyses. Volume 2: Decision analysis

    NASA Technical Reports Server (NTRS)

    Smith, J. H.; Feinberg, A.; Miles, R. F., Jr.

    1985-01-01

    Sixteen alternative spaceborne nuclear power system concepts were ranked using multiattribute decision analysis. The purpose of the ranking was to identify promising concepts for further technology development and the issues associated with such development. Four groups were interviewed to obtain preference. The four groups were: safety, systems definition and design, technology assessment, and mission analysis. The highest ranked systems were the heat-pipe thermoelectric systems, heat-pipe Stirling, in-core thermionic, and liquid-metal thermoelectric systems. The next group contained the liquid-metal Stirling, heat-pipe Alkali Metal Thermoelectric Converter (AMTEC), heat-pipe Brayton, liquid-metal out-of-core thermionic, and heat-pipe Rankine systems. The least preferred systems were the liquid-metal AMTEC, heat-pipe thermophotovoltaic, liquid-metal Brayton and Rankine, and gas-cooled Brayton. The three nonheat-pipe technologies selected matched the top three nonheat-pipe systems ranked by this study.

  10. Radiatively coupled thermionic and thermoelectric power system concept

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Ewell, R.

    1981-01-01

    The study presented showed that the large power systems (about 100 kW) utilizing radiatively coupled thermionic or thermoelectric converters could be designed so that the power subsystem could be contained in a Space Shuttle bay as a part of an electrically propelled spacecraft. The radiatively coupled system requires a large number of individual converters since the transferred heat is smaller than with the conductively coupled system, but the advantages of the new system indicates merit for further study. The advantages are (1) good electrical isolation between converters and the heat source, (2) physical separation of converters from the heat source (making the system fabrication manageable), and (3) elimination of radiator heat pipes, which are required in an all-heat-pipe power system. In addition, the specific weight of the radiatively coupled power systems favorably compares with that of the all-heat-pipe systems.

  11. Operating experiences with rotary air-to-air heat exchangers: hospitals, schools, nursing homes, swimming pools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearson, R.J.

    1976-01-01

    Systems utilizing rotary air-to-air heat exchangers are discussed. Basic considerations of use (fresh air requirements, system configurations, cost considerations), typical system layout/design considerations, and operating observations by engineers, staff and maintenance personnel are described.

  12. Heating, Ventilation and Air-Conditioning Systems, Part of Indoor Air Quality Design Tools for Schools

    EPA Pesticide Factsheets

    The main purposes of a Heating, Ventilation, and Air-Conditioning system are to help maintain good indoor air quality through adequate ventilation with filtration and provide thermal comfort. HVAC systems are among the largest energy consumers in schools.

  13. Prototype Vent Gas Heat Exchanger for Exploration EVA - Performance and Manufacturing Characteristics

    NASA Technical Reports Server (NTRS)

    Quinn, Gregory J.; Strange, Jeremy; Jennings, Mallory

    2013-01-01

    NASA is developing new portable life support system (PLSS) technologies, which it is demonstrating in an unmanned ground based prototype unit called PLSS 2.0. One set of technologies within the PLSS provides suitable ventilation to an astronaut while on an EVA. A new component within the ventilation gas loop is a liquid-to-gas heat exchanger to transfer excess heat from the gas to the thermal control system s liquid coolant loop. A unique bench top prototype heat exchanger was built and tested for use in PLSS 2.0. The heat exchanger was designed as a counter-flow, compact plate fin type using stainless steel. Its design was based on previous compact heat exchangers manufactured by United Technologies Aerospace Systems (UTAS), but was half the size of any previous heat exchanger model and one third the size of previous liquid-to-gas heat exchangers. The prototype heat exchanger was less than 40 cubic inches and weighed 2.57 lb. Performance of the heat exchanger met the requirements and the model predictions. The water side and gas side pressure drops were less 0.8 psid and 0.5 inches of water, respectively, and an effectiveness of 94% was measured at the nominal air side pressure of 4.1 psia.

  14. High Efficiency Heat Exchanger for High Temperature and High Pressure Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sienicki, James J.; Lv, Qiuping; Moisseytsev, Anton

    CompRex, LLC (CompRex) specializes in the design and manufacture of compact heat exchangers and heat exchange reactors for high temperature and high pressure applications. CompRex’s proprietary compact technology not only increases heat exchange efficiency by at least 25 % but also reduces footprint by at least a factor of ten compared to traditional shell-and-tube solutions of the same capacity and by 15 to 20 % compared to other currently available Printed Circuit Heat Exchanger (PCHE) solutions. As a result, CompRex’s solution is especially suitable for Brayton cycle supercritical carbon dioxide (sCO2) systems given its high efficiency and significantly lower capitalmore » and operating expenses. CompRex has already successfully demonstrated its technology and ability to deliver with a pilot-scale compact heat exchanger that was under contract by the Naval Nuclear Laboratory for sCO2 power cycle development. The performance tested unit met or exceeded the thermal and hydraulic specifications with measured heat transfer between 95 to 98 % of maximum heat transfer and temperature and pressure drop values all consistent with the modeled values. CompRex’s vision is to commercialize its compact technology and become the leading provider for compact heat exchangers and heat exchange reactors for various applications including Brayton cycle sCO2 systems. One of the limitations of the sCO2 Brayton power cycle is the design and manufacturing of efficient heat exchangers at extreme operating conditions. Current diffusion-bonded heat exchangers have limitations on the channel size through which the fluid travels, resulting in excessive solid material per heat exchanger volume. CompRex’s design allows for more open area and shorter fluid proximity for increased heat transfer efficiency while sustaining the structural integrity needed for the application. CompRex is developing a novel improvement to its current heat exchanger design where fluids are directed to alternating channels so that each fluid is fully surrounded by the opposing fluid. As compared to similar existing compact heat exchangers, the new design converts most secondary surface area to primary surface area, eliminating fin inefficiencies. CompRex requests that all technical information about the heat exchanger designs be protected as proprietary information. To honor that request, only non-proprietay summaries are included in this report.« less

  15. 5-kWe Free-piston Stirling Engine Convertor

    NASA Technical Reports Server (NTRS)

    Chapman, Peter A.; Vitale, Nicholas A.; Walter, Thomas J.

    2008-01-01

    The high reliability, long life, and efficient operation of Free-Piston Stirling Engines (FPSEs) make them an attractive power system to meet future space power requirements with less mass, better efficiency, and less total heat exchanger area than other power convertor options. FPSEs are also flexible in configuration as they can be coupled with many potential heat sources and various heat input systems, heat rejection systems, and power management and distribution systems. Development of a 5-kWe Stirling Convertor Assembly (SCA) is underway to demonstrate the viability of an FPSE for space power. The design is a scaled-down version of the successful 12.5-kWe Component Test Power Converter (CTPC) developed under NAS3-25463. The ultimate efficiency target is 25% overall convertor efficiency (electrical power out over heat in). For the single cylinder prototype now in development, cost and time constraints required use of economical and readily available materials (steel versus beryllium) and components (a commercially available linear alternator) and thus lower efficiency. The working gas is helium at 150 bar mean pressure. The design consists of a displacer suspended on internally pumped gas bearings and a power piston/alternator supported on flexures. Non-contacting clearance seals are used between internal volumes. Heat to and from the prototype convertor is done via pumped liquid loops passing through shell and tube heat exchangers. The preliminary and detail designs of the convertor, controller, and support systems (heating loop, cooling loop, and helium supply system) are complete and all hardware is on order. Assembly and test of the prototype at Foster- Miller is planned for early 2008, when work will focus on characterizing convertor dynamics and steady-state operation to determine maximum power output and system efficiency. The device will then be delivered to Auburn University where assessments will include start-up and shutdown characterization and transient response to temperature and load variations. Future activities may include testing at NASA GRC.

  16. Computer simulation of thermal and fluid systems for MIUS integration and subsystems test /MIST/ laboratory. [Modular Integrated Utility System

    NASA Technical Reports Server (NTRS)

    Rochelle, W. C.; Liu, D. K.; Nunnery, W. J., Jr.; Brandli, A. E.

    1975-01-01

    This paper describes the application of the SINDA (systems improved numerical differencing analyzer) computer program to simulate the operation of the NASA/JSC MIUS integration and subsystems test (MIST) laboratory. The MIST laboratory is designed to test the integration capability of the following subsystems of a modular integrated utility system (MIUS): (1) electric power generation, (2) space heating and cooling, (3) solid waste disposal, (4) potable water supply, and (5) waste water treatment. The SINDA/MIST computer model is designed to simulate the response of these subsystems to externally impressed loads. The computer model determines the amount of recovered waste heat from the prime mover exhaust, water jacket and oil/aftercooler and from the incinerator. This recovered waste heat is used in the model to heat potable water, for space heating, absorption air conditioning, waste water sterilization, and to provide for thermal storage. The details of the thermal and fluid simulation of MIST including the system configuration, modes of operation modeled, SINDA model characteristics and the results of several analyses are described.

  17. Method and device for predicting wavelength dependent radiation influences in thermal systems

    DOEpatents

    Kee, Robert J.; Ting, Aili

    1996-01-01

    A method and apparatus for predicting the spectral (wavelength-dependent) radiation transport in thermal systems including interaction by the radiation with partially transmitting medium. The predicted model of the thermal system is used to design and control the thermal system. The predictions are well suited to be implemented in design and control of rapid thermal processing (RTP) reactors. The method involves generating a spectral thermal radiation transport model of an RTP reactor. The method also involves specifying a desired wafer time dependent temperature profile. The method further involves calculating an inverse of the generated model using the desired wafer time dependent temperature to determine heating element parameters required to produce the desired profile. The method also involves controlling the heating elements of the RTP reactor in accordance with the heating element parameters to heat the wafer in accordance with the desired profile.

  18. Solar energy system performance evaluation: Seasonal report for fern, Tunkhannock, Pennsylvania

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The operational and thermal performance of a variety of solar systems installed in operational test sites are described. The analysis is based on instrumented system data monitored and collected for at least one full season of operation. The long-term field performance of the installed system is reported, and technical contributions to the definition of techniques and requirements for solar energy system design are made. The solar energy system was designed to supply space heating and domestic hot water for single-family residences. The system consists of air flat plate collectors, storage tank, pumps, heat exchangers, associated plumbing, and controls.

  19. Extended development of a sodium hydroxide thermal energy storage module

    NASA Technical Reports Server (NTRS)

    Rice, R. E.; Rowny, P. E.; Cohen, B. M.

    1980-01-01

    The post-test evaluation of a single heat exchanger sodium hydroxide thermal energy storage module for use in solar electric generation is reported. Chemical analyses of the storage medium used in the experimental model are presented. The experimental verification of the module performance using an alternate heat transfer fluid, Caloria HT-43, is described. Based on these results, a design analysis of a dual heat exchanger concept within the storage module is presented. A computer model and a reference design for the dual system (storage working fluid/power cycle working fluid) were completed. The dual system is estimated to have a capital cost of approximately one half that of the single heat exchanger concept.

  20. Guidebook for solar process-heat applications

    NASA Astrophysics Data System (ADS)

    Fazzolare, R.; Mignon, G.; Campoy, L.; Luttmann, F.

    1981-01-01

    The potential for solar process heat in Arizona and some of the general technical aspects of solar, such as insolation, siting, and process analysis are explored. Major aspects of a solar plant design are presented. Collectors, storage, and heat exchange are discussed. Reducing hardware costs to annual dollar benefits is also discussed. Rate of return, cash flow, and payback are discussed as they relate to solar systems. Design analysis procedures are presented. The design cost optimization techniques using a yearly computer simulation of a solar process operation is demonstrated.

  1. Solar dynamic heat rejection technology. Task 2: Heat pipe radiator development

    NASA Technical Reports Server (NTRS)

    League, Mark; Alario, Joe

    1988-01-01

    This report covers the design, fabrication, and test of several dual slot heat pipe engineering development units. The following dual-slot heat pipes were fabricated and tested: two 6-ft. aluminum heat pipes; a 20-ft. aluminum heat pipe; and a 20-ft. aluminum heat pipe with a four-leg evaporator section. The test results of all four test articles are presented and compared to the performance predicted by the design software. Test results from the four-leg article are incomplete. The methodology for fabricating stainless steel dual slot heat pipes was also studied by performing a tool life test with different single point cutters, and these results are also presented. Although the dual-slot heat pipe has demonstrated the potential to meet the requirements for a high capacity radiator system, uncertainties with the design still exist. The startup difficulties with the aluminum test articles must be solved, and a stainless steel/methanol heat pipe should be built and tested.

  2. ASME code considerations for the compact heat exchanger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nestell, James; Sham, Sam

    2015-08-31

    The mission of the U.S. Department of Energy (DOE), Office of Nuclear Energy is to advance nuclear power in order to meet the nation's energy, environmental, and energy security needs. Advanced high temperature reactor systems such as sodium fast reactors and high and very high temperature gas-cooled reactors are being considered for the next generation of nuclear reactor plant designs. The coolants for these high temperature reactor systems include liquid sodium and helium gas. Supercritical carbon dioxide (sCO₂), a fluid at a temperature and pressure above the supercritical point of CO₂, is currently being investigated by DOE as a workingmore » fluid for a nuclear or fossil-heated recompression closed Brayton cycle energy conversion system that operates at 550°C (1022°F) at 200 bar (2900 psi). Higher operating temperatures are envisioned in future developments. All of these design concepts require a highly effective heat exchanger that transfers heat from the nuclear or chemical reactor to the chemical process fluid or the to the power cycle. In the nuclear designs described above, heat is transferred from the primary to the secondary loop via an intermediate heat exchanger (IHX) and then from the intermediate loop to either a working process or a power cycle via a secondary heat exchanger (SHX). The IHX is a component in the primary coolant loop which will be classified as "safety related." The intermediate loop will likely be classified as "not safety related but important to safety." These safety classifications have a direct bearing on heat exchanger design approaches for the IHX and SHX. The very high temperatures being considered for the VHTR will require the use of very high temperature alloys for the IHX and SHX. Material cost considerations alone will dictate that the IHX and SHX be highly effective; that is, provide high heat transfer area in a small volume. This feature must be accompanied by low pressure drop and mechanical reliability and robustness. Classic shell and tube designs will be large and costly, and may only be appropriate in steam generator service in the SHX where boiling inside the tubes occurs. For other energy conversion systems, all of these features can be met in a compact heat exchanger design. This report will examine some of the ASME Code issues that will need to be addressed to allow use of a Code-qualified compact heat exchanger in IHX or SHX nuclear service. Most effort will focus on the IHX, since the safety-related (Class A) design rules are more extensive than those for important-to-safety (Class B) or commercial rules that are relevant to the SHX.« less

  3. Building America Case Study: Simplified Air Distribution, Desuperheaters, and Sub-Slab Geothermal Heat Exchangers, Pittsburgh, Pennsylvania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab.

  4. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Appendix B: Liquid rocket booster acoustic and thermal environments

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The ascent thermal environment and propulsion acoustic sources for the Martin-Marietta Corporation designed Liquid Rocket Boosters (LRB) to be used with the Space Shuttle Orbiter and External Tank are described. Two designs were proposed: one using a pump-fed propulsion system and the other using a pressure-fed propulsion system. Both designs use LOX/RP-1 propellants, but differences in performance of the two propulsion systems produce significant differences in the proposed stage geometries, exhaust plumes, and resulting environments. The general characteristics of the two designs which are significant for environmental predictions are described. The methods of analysis and predictions for environments in acoustics, aerodynamic heating, and base heating (from exhaust plume effects) are also described. The acoustic section will compare the proposed exhaust plumes with the current SRB from the standpoint of acoustics and ignition overpressure. The sections on thermal environments will provide details of the LRB heating rates and indications of possible changes in the Orbiter and ET environments as a result of the change from SRBs to LRBs.

  5. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    NASA Astrophysics Data System (ADS)

    Scarlat, Raluca Olga

    This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling approach to the PB-FHR annular pebble bed core cooled by fluoride salt mixtures generated a model that is called Pod. Pod. was used to show the resilience of the PB-FHR core to generation of hot spots or cold spots, due to the effect of buoyancy on the flow and temperature distribution in the packed bed. Pod. was used to investigate the PB-FHR response to ATWS transients. Based on the functional requirements for the core, Pod. was used to generate an optimized design of the flow distribution in the core. An analysis of natural circulation loops cooled by single-phase Boussinesq fluids is presented here, in the context of reactor design that relies on natural circulation decay heat removal, and design of scaled experiments. The scaling arguments are established for a transient natural circulation loop, for loops that have long fluid residence time, and negligible contribution of fluid inertia to the momentum equation. The design of integral effects tests for the loss of forced circulation (LOFC) for PB-FHR is discussed. The special case of natural circulation decay heat removal from a pebble bed reactor was analyzed. A way to define the Reynolds number in a multi-dimensional pebble bed was identified. The scaling methodology for replicating pebble bed friction losses using an electrically resistance heated annular pipe and a needle valve was developed. The thermophysical properties of liquid fluoride salts lead to design of systems with low flow velocities, and hence long fluid residence times. A comparison among liquid coolants for the performance of steady state natural circulation heat removal from a pebble bed was performed. Transient natural circulation experimental data with simulant fluids for fluoride salts is given here. The low flow velocity and the relatively high viscosity of the fluoride salts lead to low Reynolds number flows, and a low Reynolds number in conjunction with a sufficiently high coefficient of thermal expansion makes the system susceptible to local buoyancy effects Experiments indicate that slow exchange of stagnant fluid in static legs can play a significant role in the transient response of natural circulation loops. The effect of non-linear temperature profiles on the hot or cold legs or other segments of the flow loop, which may develop during transient scenarios, should be considered when modeling the performance of natural circulation loops. The data provided here can be used for validation of the application of thermal-hydraulic systems codes to the modeling of heat removal by natural circulation with liquid fluoride salts and its simulant fluids.

  6. Internal heat gain from different light sources in the building lighting systems

    NASA Astrophysics Data System (ADS)

    Suszanowicz, Dariusz

    2017-10-01

    EU directives and the Construction Law have for some time required investors to report the energy consumption of buildings, and this has indeed caused low energy consumption buildings to proliferate. Of particular interest, internal heat gains from installed lighting affect the final energy consumption for heating of both public and residential buildings. This article presents the results of analyses of the electricity consumption and the luminous flux and the heat flux emitted by different types of light sources used in buildings. Incandescent light, halogen, compact fluorescent bulbs, and LED bulbs from various manufacturers were individually placed in a closed and isolated chamber, and the parameters for their functioning under identical conditions were recorded. The heat flux emitted by 1 W nominal power of each light source was determined. Based on the study results, the empirical coefficients of heat emission and energy efficiency ratios for different types of lighting sources (dependent lamp power and the light output) were designated. In the heat balance of the building, the designated rates allow for precise determination of the internal heat gains coming from lighting systems using various light sources and also enable optimization of lighting systems of buildings that are used in different ways.

  7. Solar energy system performance evaluation. Seasonal report for SEECO Lincoln, Lincoln, Nebraska

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Solar Engineering and Equipment Company (SEECO) Lincoln solar energy system, designed for space heating only, is described and its operational performance for a 12 month period from April 1979 through March 1980 is evaluated. The system met 27 percent of the space heating load; however, system losses into the heated space from the storage bin and ductwork were significant. Reducing these losses would add appreciably to the system's efficiency. Net fossil energy savings were 11.31 million BTUs.

  8. System design and installation for RS600 programmable control system for solar heating and cooling

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Procedures for installing, operating, and maintaining a programmable control system which utilizes a F8 microprocessor to perform all timing, control, and calculation functions in order to customize system performance to meet individual requirements for solar heating, combined heating and cooling, and/or hot water systems are described. The manual discusses user configuration and options, displays, theory of operation, trouble-shooting procedures, and warranty and assistance. Wiring lists, parts lists, drawings, and diagrams are included.

  9. Design of Remote Heat-Meter System Based on Trusted Technology

    NASA Astrophysics Data System (ADS)

    Yu, Changgeng; Lai, Liping

    2018-03-01

    This article presents a proposal of a heat meter and remote meter reading system for the disadvantages of the hackers very easily using eavesdropping, tampering, replay attack of traditional remote meter reading system. The system selects trusted technology such as, the identity authentication, integrity verifying, and data protection. By the experiments, it is proved that the remote meter reading system of the heat meter can be used to verify the feasibility of the technology, and verify the practicability and operability of data protection technology.

  10. Space LOX vent system. [for space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Erickson, R. C.

    1975-01-01

    This is the final report summarizing the work completed under contract NAS8-26972. Concept selection, design, fabricating and testing of a prototype compact heat exchanger thermodynamic vent system are discussed. The system is designed to operate in a 2.7m (9 foot) spherical liquid oxygen tank with a heating rate of 32.2 - 35.2 watts (110-120 Btu/hr) and to control pressure to 310 + or - 13.8 kN/sq m (45 + or - 2.0 psia.) the design mission is of 2,590 ks (30 days) duration on board a space shuttle orbiter.

  11. Design package for instrumentation of the Decade 80 house in Tucson, Arizona

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A design package covering instrumentation and system design for the Decade 80 House in Tucson, Arizona is presented. The solar house is instrumented for the purpose of gathering data to determine the solar heating and cooling system performance. The use of copper in the construction of the house is a first choice construction material because it conducts heat and resists corrosion better than other materials and therefore provides a more efficient and economical system. Equipment and site specifications are reported, along with floor plans showing the location of the site instrumentation hardware.

  12. Conceptual designs and cost estimates of mechanical draft wet/dry and natural draft dry cooling systems using Curtiss-Wright integral fin-tube heat exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haberski, R.J.; Bentz, J.C.

    1979-04-01

    This study was performed to establish a conceptual design and cost evaluation of an advanced technology mechanical draft wet/dry and natural draft dry cooling systems for large electric power plants using a high performance integral fin-tube heat transfer surface. This study was part of an overall DOE program to develop and demonstrate advanced concept cooling systems for large electric power plants. The results obtained show significant economic advantages compared to results previously published for conventional cooling systems. These advantages are due to the higher heat transfer and lower pressure loss which occur with the use of the selected multi-port integralmore » fin-tubes.« less

  13. Solar heating and hot water system installed at Southeast of Saline, Unified School District 306, Mentor, Kansas

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar system, installed in a new building, was designed to provide 52 percent of the estimated annual space heating load and 84 percent of the estimated annual potable hot water requirement. The liquid flat plate collectors are ground-mounted and cover a total area of 5125 square feet. The system will provide supplemental heat for the school's closed-loop water-to-air heat pump system and domestic hot water. The storage medium is water inside steel tanks with a capacity of 11,828 gallons for space heating and 1,600 gallons for domestic hot water. The solar heating facility is described and drawings are presented of the completed system which was declared operational in September 1978, and has functioned successfully since.

  14. Inverse problem and variation method to optimize cascade heat exchange network in central heating system

    NASA Astrophysics Data System (ADS)

    Zhang, Yin; Wei, Zhiyuan; Zhang, Yinping; Wang, Xin

    2017-12-01

    Urban heating in northern China accounts for 40% of total building energy usage. In central heating systems, heat is often transferred from heat source to users by the heat network where several heat exchangers are installed at heat source, substations and terminals respectively. For given overall heating capacity and heat source temperature, increasing the terminal fluid temperature is an effective way to improve the thermal performance of such cascade heat exchange network for energy saving. In this paper, the mathematical optimization model of the cascade heat exchange network with three-stage heat exchangers in series is established. Aim at maximizing the cold fluid temperature for given hot fluid temperature and overall heating capacity, the optimal heat exchange area distribution and the medium fluids' flow rates are determined through inverse problem and variation method. The preliminary results show that the heat exchange areas should be distributed equally for each heat exchanger. It also indicates that in order to improve the thermal performance of the whole system, more heat exchange areas should be allocated to the heat exchanger where flow rate difference between two fluids is relatively small. This work is important for guiding the optimization design of practical cascade heating systems.

  15. Design and test of a pumped two-phase mounting plate. [for spacecraft thermal control systems

    NASA Technical Reports Server (NTRS)

    Grote, M. G.; Swanson, T. D.

    1985-01-01

    The design, fabrication, and testing of the full-scale development unit of a pumped two-phase mounting plate (TPMP) used in advanced two-phase spacecraft thermal control systems are described. The mounting plate is tested with R-11 in the evaporator mode for total heat loads of over 3000 watts and local heat fluxes over 4 W/sq cm, and in the condenser mode with condenser loads from 60 to 400 watts and inlet qualities from 8 to 94 percent. The calculated heat-transfer coefficients are between 0.66 and 1.0 W/sq cm/C and are nearly independent of the flow rate and heat load except at very low heat loads. It is shown that the TPMP can be run with inlet conditions down to 22 C subcooling without any significant gradients in the plate and that it performs well with nonuniform heat fluxes.

  16. Modeling and design of a high efficiency hybrid heat pump clothes dryer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TeGrotenhuis, Ward; Butterfield, Andrew; Caldwell, Dustin

    Computational modeling is used to design a hybrid heat pump clothes dryer capable of saving 50% of the energy used by residential clothes dryers with comparable drying times. The model represents the various stages of a drying cycle from warm-up through constant drying rate and falling drying rate phases and finishing with a cooldown phase. The model is fit to data acquired from a U.S. commercial standard vented electric dryer, and when a hybrid heat pump system is added, the energy factor increases from 3.0 lbs/kWh to 5.7-6.0 lbs/kWh, depending on the increase in blower motor power. The hybrid heatmore » pump system is designed from off-the-shelf components and includes a recuperative heat exchanger, an electric element, and an R-134a vapor compression heat pump. Parametric studies of element power and heating element use show a trade-off between energy savings and cycle time. Results show a step-change in energy savings from heat pump dryers currently marketed in the U.S. based on performance represented by Enery Star from standardized DOE testing.« less

  17. Aerothermodynamic Design of the Mars Science Laboratory Heatshield

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Dyakonov, Artem A.; Wright, Michael J.; Tang, Chun Y.

    2009-01-01

    Aerothermodynamic design environments are presented for the Mars Science Laboratory entry capsule heatshield. The design conditions are based on Navier-Stokes flowfield simulations on shallow (maximum total heat load) and steep (maximum heat flux, shear stress, and pressure) entry trajectories from a 2009 launch. Boundary layer transition is expected prior to peak heat flux, a first for Mars entry, and the heatshield environments were defined for a fully-turbulent heat pulse. The effects of distributed surface roughness on turbulent heat flux and shear stress peaks are included using empirical correlations. Additional biases and uncertainties are based on computational model comparisons with experimental data and sensitivity studies. The peak design conditions are 197 W/sq cm for heat flux, 471 Pa for shear stress, 0.371 Earth atm for pressure, and 5477 J/sq cm for total heat load. Time-varying conditions at fixed heatshield locations were generated for thermal protection system analysis and flight instrumentation development. Finally, the aerothermodynamic effects of delaying launch until 2011 are previewed.

  18. Design and Characterization of a High Resolution Microfluidic Heat Flux Sensor with Thermal Modulation

    PubMed Central

    Nam, Sung-Ki; Kim, Jung-Kyun; Cho, Sung-Cheon; Lee, Sun-Kyu

    2010-01-01

    A complementary metal-oxide semiconductor-compatible process was used in the design and fabrication of a suspended membrane microfluidic heat flux sensor with a thermopile for the purpose of measuring the heat flow rate. The combination of a thirty-junction gold and nickel thermoelectric sensor with an ultralow noise preamplifier, a low pass filter, and a lock-in amplifier can yield a resolution 20 nW with a sensitivity of 461 V/W. The thermal modulation method is used to eliminate low-frequency noise from the sensor output, and various amounts of fluidic heat were applied to the sensor to investigate its suitability for microfluidic applications. For sensor design and analysis of signal output, a method of modeling and simulating electro-thermal behavior in a microfluidic heat flux sensor with an integrated electronic circuit is presented and validated. The electro-thermal domain model was constructed by using system dynamics, particularly the bond graph. The electro-thermal domain system model in which the thermal and the electrical domains are coupled expresses the heat generation of samples and converts thermal input to electrical output. The proposed electro-thermal domain system model is in good agreement with the measured output voltage response in both the transient and the steady state. PMID:22163568

  19. Closeout Report for the Refractory Metal Accelerated Heat Pipe Life Test Activity

    NASA Technical Reports Server (NTRS)

    Martin, J.; Reid, R.; Stewart, E.; Hickman, R.; Mireles, O.

    2013-01-01

    With the selection of a gas-cooled reactor, this heat pipe accelerated life test activity was closed out and its resources redirected. The scope of this project was to establish the long-term aging effects on Mo-44.5%Re sodium heat pipes when subjected to space reactor temperature and mass fluences. To date, investigators have demonstrated heat pipe life tests of alkali metal systems up to .50,000 hours. Unfortunately, resources have not been available to examine the effect of temperature, mass fluence, or impurity level on corrosion or to conduct post-test forensic examination of heat pipes. The key objective of this effort was to establish a cost/time effective method to systematically test alkali metal heat pipes with both practical and theoretical benefits. During execution of the project, a heat pipe design was established, a majority of the laboratory test equipment systems specified, and operating and test procedures developed. Procurements for the heat pipe units and all major test components were underway at the time the stop work order was issued. An extremely important outcome was the successful fabrication of an annular wick from Mo-5%Re screen (the single, most difficult component to manufacture) using a hot isostatic pressing technique. This Technical Publication (TP) includes specifics regarding the heat pipe calorimeter water-cooling system, vendor design for the radio frequency heating system, possible alternative calorimeter designs, and progress on the vanadium equilibration technique. The methods provided in this TP and preceding project documentation would serve as a good starting point to rapidly implement an accelerated life test. Relevant test data can become available within months, not years, and destructive examination of the first life test heat pipe might begin within 6 months of test initiation. Final conclusions could be drawn in less than a quarter of the mission duration for a long-lived, fission-powered, deep space probe.

  20. NaK Variable Conductance Heat Pipe for Radioisotope Stirling Systems

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Anderson, William G.; Walker, Kara

    2008-01-01

    In a Stirling radioisotope power system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides most of this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending use of that convertor for the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling convertor. In the design of the VCHP for the Advanced Stirling Radioisotope Generator, the VCHP reservoir temperature can vary between 40 and 120 C. While sodium, potassium, or cesium could be used as the working fluid, their melting temperatures are above the minimum reservoir temperature, allowing working fluid to freeze in the reservoir. In contrast, the melting point of NaK is -12 C, so NaK can't freeze in the reservoir. One potential problem with NaK as a working fluid is that previous tests with NaK heat pipes have shown that NaK heat pipes can develop temperature non-uniformities in the evaporator due to NaK's binary composition. A NaK heat pipe was fabricated to measure the temperature non-uniformities in a scale model of the VCHP for the Stirling Radioisotope system. The temperature profiles in the evaporator and condenser were measured as a function of operating temperature and power. The largest delta T across the condenser was 2S C. However, the condenser delta T decreased to 16 C for the 775 C vapor temperature at the highest heat flux applied, 7.21 W/ square cm. This decrease with increasing heat flux was caused by the increased mixing of the sodium and potassium in the vapor. This temperature differential is similar to the temperature variation in this ASRG heat transfer interface without a heat pipe, so NaK can be used as the VCHP working fluid.

  1. Startup thaw concept for the SP-100 space reactor power system

    NASA Technical Reports Server (NTRS)

    Kirpich, A.; Das, A.; Choe, H.; Mcnamara, E.; Switick, D.; Bhandari, P.

    1990-01-01

    A thaw concept for a space reactor power system which employs lithium as a circulant for both the heat-transport and the heat-rejection fluid loops is presented. An exemplary thermal analysis for a 100-kWe (i.e., SP-100) system is performed. It is shown that the design of the thaw system requires a thorough knowledge of the various physical states of the circulant throughout the system, both spatially and temporally, and that the design has to provide adequate margins for the system to avoid a structural or thermally induced damage.

  2. Silicon Chemical Vapor Deposition Process Using a Half-Inch Silicon Wafer for Minimal Manufacturing System

    NASA Astrophysics Data System (ADS)

    Li, Ning; Habuka, Hitoshi; Ikeda, Shin-ichi; Hara, Shiro

    A chemical vapor deposition reactor for producing thin silicon films was designed and developed for achieving a new electronic device production system, the Minimal Manufacturing, using a half-inch wafer. This system requires a rapid process by a small footprint reactor. This was designed and verified by employing the technical issues, such as (i) vertical gas flow, (ii) thermal operation using a highly concentrated infrared flux, and (iii) reactor cleaning by chlorine trifluoride gas. The combination of (i) and (ii) could achieve a low heating power and a fast cooling designed by the heat balance of the small wafer placed at a position outside of the reflector. The cleaning process could be rapid by (iii). The heating step could be skipped because chlorine trifluoride gas was reactive at any temperature higher than room temperature.

  3. Isotope heat source simulator for testing of space power systems

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Smith, R. B.

    1973-01-01

    A reliable isotope heat source simulator was designed for use in a Brayton power system. This simulator is composed of an electrically heated tungsten wire which is wound around a boron nitride core and enclosed in a graphite jacket. Simulator testing was performed at the expected operating temperature of the Brayton power system. Endurance testing for 5012 hours was followed by cycling the simulator temperature. The integrity of this simulator was maintained throughout testing. Alumina beads served as a diffusion barrier to prevent interaction between the tungsten heater and boron nitride core. The simulator was designed to maintain a surface temperature of 1311 to 1366 K (1900 to 2000 F) with a power input of approximately 400 watts. The design concept and the materials used in the simulator make possible man different geometries. This flexibility increases its potential use.

  4. Installation package - SIMS prototype system 1A

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This report consists of details for the installation, operation and maintenance of a prototype heating and hot water system, designed for residential or light commercial applications. This system consists of the following subsystems: air type collectors, pebble bed thermal storage, air handling unit, air to water heat exchanger, hot water preheat tank, auxiliary energy, ducting system.

  5. System design impacts on optimization of the advanced radioisotope power system (ARPS) AMTEC cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, T.J.; Huang, C.

    1998-07-01

    Several NASA deep space missions require Advanced Radioisotope Power Systems (ARPS) to supply spacecraft power for various internal functions and mission instruments and experiments. AMTEC (Alkali-Metal Thermal-Electric Conversion) power conversion is the DOE-selected technology for an advanced, next- generation RPS to power these spacecraft. Advanced Modular Power Systems, Inc. (AMPS) has begun investigating the design of an AMTEC-based ARPS using the General Purpose Heat Source (GPHS) and the latest PX-5 AMTEC cell technology with refractory materials in critical components. This paper presents and discusses the system design methodology, and results of important system design tradeoffs and system design impacts onmore » the ARPS AMTEC cell design. This work investigated dual 2-GPHS system configurations and 4-GPHS system configurations with 16 side-mounted AMTEC cells operating at beginning-of-mission (BOM) and end-of-mission (EOM) GPHS heat dissipation conditions. Current design studies indicate using a refractory material AMTEC cell with 8-BASE tubes, 5.0 inches long, and 1.75 inches diameter in the 4-GPHS system configuration is the strongest design candidate to satisfy system performance requirements.« less

  6. Corrosion and scaling in solar heating systems

    NASA Astrophysics Data System (ADS)

    Foresti, R. J., Jr.

    1981-12-01

    Corrosion, as experienced in solar heating systems, is described in simplistic terms to familiarize designers and installers with potential problems and their solutions. The role of a heat transfer fluid in a solar system is briefly discussed, and the choice of an aqueous solution is justified. The complexities of the multiple chemical and physical reactions are discussed in order that uncertainties of corrosion behavior can be anticipated. Some basic theories of corrosion are described, aggressive environments for some common metals are identified, and the role of corrosion inhibitors is delineated. The similarities of thermal and material characteristics of a solor system and an automotive cooling system are discussed. Based on the many years of experience with corrosion in automotive systems, it is recommended that similar antifreezes and corrosion inhibitors should be used in solar systems. The importance of good solar system design and fabrication is stressed and specific characteristics that affect corrosion are identified.

  7. Fluidized-Bed Heat Transfer Modeling for the Development of Particle/Supercritical-CO2 Heat Exchanger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Zhiwen; Martinek, Janna G

    Concentrating solar power (CSP) technology is moving toward high-temperature and high-performance design. One technology approach is to explore high-temperature heat-transfer fluids and storage, integrated with a high-efficiency power cycle such as the supercritical carbon dioxide (s-CO2) Brayton power cycle. The s-CO2 Brayton power system has great potential to enable the future CSP system to achieve high solar-to-electricity conversion efficiency and to reduce the cost of power generation. Solid particles have been proposed as a possible high-temperature heat-transfer medium that is inexpensive and stable at high temperatures above 1,000 degrees C. The particle/heat exchanger provides a connection between the particles andmore » s-CO2 fluid in the emerging s-CO2 power cycles in order to meet CSP power-cycle performance targets of 50% thermal-to-electric efficiency, and dry cooling at an ambient temperature of 40 degrees C. The development goals for a particle/s-CO2 heat exchanger are to heat s-CO2 to =720 degrees C and to use direct thermal storage with low-cost, stable solid particles. This paper presents heat-transfer modeling to inform the particle/s-CO2 heat-exchanger design and assess design tradeoffs. The heat-transfer process was modeled based on a particle/s-CO2 counterflow configuration. Empirical heat-transfer correlations for the fluidized bed and s-CO2 were used in calculating the heat-transfer area and optimizing the tube layout. A 2-D computational fluid-dynamics simulation was applied for particle distribution and fluidization characterization. The operating conditions were studied from the heat-transfer analysis, and cost was estimated from the sizing of the heat exchanger. The paper shows the path in achieving the cost and performance objectives for a heat-exchanger design.« less

  8. Thermodynamic and economic analysis of heat pumps for energy recovery in industrial processes

    NASA Astrophysics Data System (ADS)

    Urdaneta-B, A. H.; Schmidt, P. S.

    1980-09-01

    A computer code has been developed for analyzing the thermodynamic performance, cost and economic return for heat pump applications in industrial heat recovery. Starting with basic defining characteristics of the waste heat stream and the desired heat sink, the algorithm first evaluates the potential for conventional heat recovery with heat exchangers, and if applicable, sizes the exchanger. A heat pump system is then designed to process the residual heating and cooling requirements of the streams. In configuring the heat pump, the program searches a number of parameters, including condenser temperature, evaporator temperature, and condenser and evaporator approaches. All system components are sized for each set of parameters, and economic return is estimated and compared with system economics for conventional processing of the heated and cooled streams (i.e., with process heaters and coolers). Two case studies are evaluated, one in a food processing application and the other in an oil refinery unit.

  9. Solar Water-Heater Design and Installation

    NASA Technical Reports Server (NTRS)

    Harlamert, P.; Kennard, J.; Ciriunas, J.

    1982-01-01

    Solar/Water heater system works as follows: Solar--heated air is pumped from collectors through rock bin from top to bottom. Air handler circulates heated air through an air-to-water heat exchanger, which transfers heat to incoming well water. In one application, it may reduce oil use by 40 percent.

  10. Stirling Engine External Heat System Design with Heat Pipe Heater.

    DTIC Science & Technology

    1986-07-01

    Figure 10. However, the evaporator analysis is greatly simplified by making the conservative assumption of constant heat flux. This assumption results in...number Cold Start Data * " ROM density of the metal, gr/cm 3 CAPM specific heat of the metal, cal./gr. K ETHG effective gauze thickness: the

  11. Conceptual design study of geothermal district heating of a thirty-house subdivision in Elko, Nevada, using existing water-distribution systems, Phase III. Final technical report, October 1, 1979-September 30, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitts, D.R.

    1980-09-30

    A conceptual design study for district heating of a 30-home subdivision located near the southeast extremity of the city of Elko, Nevada is presented. While a specific residential community was used in the study, the overall approach and methodologies are believed to be generally applicable for a large number of communities where low temperature geothermal fluid is available. The proposed district heating system utilizes moderate temperature, clean domestic water and existing community culinary water supply lines. The culinary water supply is heated by a moderate temperature geothermal source using a single heat exchanger at entry to the subdivision. The heatedmore » culinary water is then pumped to the houses in the community where energy is extracted by means of a water supplied heat pump. The use of heat pumps at the individual houses allows economic heating to result from supply of relatively cool water to the community, and this precludes the necessity of supplying objectionably hot water for normal household consumption use. Each heat pump unit is isolated from the consumptive water flow such that contamination of the water supply is avoided. The community water delivery system is modified to allow recirculation within the community, and very little rework of existing water lines is required. The entire system coefficient of performance (COP) for a typical year of heating is 3.36, exclusive of well pumping energy.« less

  12. Experiments Demonstrate Geothermal Heating Process

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    When engineers design heat-pump-based geothermal heating systems for homes and other buildings, they can use coil loops buried around the perimeter of the structure to gather low-grade heat from the earth. As an alternative approach, they can drill well casings and store the summer's heat deep in the earth, then bring it back in the winter to warm…

  13. Thermion: Verification of a thermionic heat pipe in microgravity

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The design and development is examined of a small excore heat pipe thermionic space nuclear reactor power system (SEHPTR). The need was identified for an in-space flight demonstration of a solar powered, thermionic heat pipe element. A demonstration would examine its performance and verify its operation in microgravity. The design of a microsatellite based technology demonstration experiment is proposed to measure the effects of microgravity on the performance of an integrated thermionic heat pipe device in low earth orbit. The specific objectives are to verify the operation of the liquid metal heat pipe and the cesium reservior in the space environment. Two design configurations are described; THERMION-I and THERMION-II. THERMION-I is designed for a long lifetime study of the operations of the thermionic heat pipe element in low earth orbit. Heat input to the element is furnished by a large mirror which collects solar energy and focuses it into a cavity containing the heat pipe device. THERMION-II is a much simpler device which is used for short term operation. This experiment remains attached to the Delta II second stage and uses energy from 500 lb of alkaline batteries to supply heat energy to the heat pipe device.

  14. Design and evaluation of aircraft heat source systems for use with high-freezing point fuels

    NASA Technical Reports Server (NTRS)

    Pasion, A. J.

    1979-01-01

    The objectives were the design, performance and economic analyses of practical aircraft fuel heating systems that would permit the use of high freezing-point fuels on long-range aircraft. Two hypothetical hydrocarbon fuels with freezing points of -29 C and -18 C were used to represent the variation from current day jet fuels. A Boeing 747-200 with JT9D-7/7A engines was used as the baseline aircraft. A 9300 Km mission was used as the mission length from which the heat requirements to maintain the fuel above its freezing point was based.

  15. Design and analysis of aerospace structures at elevated temperatures. [aircraft, missiles, and space platforms

    NASA Technical Reports Server (NTRS)

    Chang, C. I.

    1989-01-01

    An account is given of approaches that have emerged as useful in the incorporation of thermal loading considerations into advanced composite materials-based aerospace structural design practices. Sources of structural heating encompass not only propulsion system heat and aerodynamic surface heating at supersonic speeds, but the growing possibility of intense thermal fluxes from directed-energy weapons. The composite materials in question range from intrinsically nonheat-resistant polymer matrix systems to metal-matrix composites, and increasingly to such ceramic-matrix composites as carbon/carbon, which are explicitly intended for elevated temperature operation.

  16. Thermal Performance of High Temperature Titanium-Water Heat Pipes by Multiple Heat Pipe Manufacturers

    NASA Technical Reports Server (NTRS)

    Sanzi, James L.

    2007-01-01

    Titanium-water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity-aided, in the horizontal position and at elevations against gravity at 450 and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.

  17. Thermal Performance of High Temperature Titanium -- Water Heat Pipes by Multiple Heat Pipe Manufacturers

    NASA Technical Reports Server (NTRS)

    Sanzi, James L.

    2007-01-01

    Titanium - water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity-aided, in the horizontal position and at elevations against gravity at 450 K and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.

  18. User's manual for the Heat Pipe Space Radiator design and analysis Code (HEPSPARC)

    NASA Technical Reports Server (NTRS)

    Hainley, Donald C.

    1991-01-01

    A heat pipe space radiatior code (HEPSPARC), was written for the NASA Lewis Research Center and is used for the design and analysis of a radiator that is constructed from a pumped fluid loop that transfers heat to the evaporative section of heat pipes. This manual is designed to familiarize the user with this new code and to serve as a reference for its use. This manual documents the completed work and is intended to be the first step towards verification of the HEPSPARC code. Details are furnished to provide a description of all the requirements and variables used in the design and analysis of a combined pumped loop/heat pipe radiator system. A description of the subroutines used in the program is furnished for those interested in understanding its detailed workings.

  19. Advanced Heat/Mass Exchanger Technology for Geothermal and Solar Renewable Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greiner, Miles; Childress, Amy; Hiibel, Sage

    2014-12-16

    Northern Nevada has abundant geothermal and solar energy resources, and these renewable energy sources provide an ample opportunity to produce economically viable power. Heat/mass exchangers are essential components to any energy conversion system. Improvements in the heat/mass exchange process will lead to smaller, less costly (more efficient) systems. There is an emerging heat transfer technology, based on micro/nano/molecular-scale surface science that can be applied to heat/mass exchanger design. The objective is to develop and characterize unique coating materials, surface configurations and membranes capable of accommodating a 10-fold increase in heat/mass exchanger performance via phase change processes (boiling, condensation, etc.) andmore » single phase convective heat/mass transfer.« less

  20. Low-Cost Control System Built Upon Consumer-Based Electronics For Supervisory Control Of A Gas-Operated Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetherington Jr, G Randall; Vineyard, Edward Allan; Mahderekal, Isaac

    A preliminary evaluation of the performance of a consumer-based control system was conducted by the Oak Ridge National Laboratory (ORNL) and Southwest Gas as part of a cooperative research and development agreement (CRADA) authorized by the Department of Energy (DOE) (Mahderekal et al. (2013). The goal of the research was to evaluate the low-cost approach as a solution for implementing a supervisory control system for a residential gas-operated heat pump. The design incorporated two consumer-based micro-controllers; the Arduino Mega-2650 and the BeagleBone (white). Ten five-ton heat pump systems were designed, fabricated, and operationally tested in the Las Vega NV region.more » A robust data set was produced that allowed detailed assessment of the reliability and the operational perfromance of the newly developed control system. Experiences gained from the test provided important points of improvement for subsequent evolution of the heat pump technology.« less

  1. Design, construction and evaluation of a system of forced solar water heating.

    NASA Astrophysics Data System (ADS)

    Hernández, E.; Bautista, G. A.; Ortiz, I. L.

    2016-07-01

    The main purpose of this project was to design, construct and evaluate a system of forced solar water heating for domestic consumption, at the Universidad Pontificia Bolivariana-Bucaramanga, Colombia; using solar energy. This is a totally system independent of the electrical grid and an important characteristic is the heating water doesn't mix with the consumption water. The system receives the solar radiation through a flat-plate collector, which it transmits the heat to the water that it flow with impulse from the centrifugal pump of 12VDC, the water circulates toward helical serpentine it is inside of the tank of the storage whose capacity is 100 liters of water. The temperature of the tank is regulated with a controller in such a way that de-energized the pump when it gets the temperature required. The performance thermal or efficiency of the system was evaluated like a relationship between the delivered energy to the water in storage tank and the incident energy in the flat-plate collector.

  2. Strain measurement of objects subjected to aerodynamic heating using digital image correlation: experimental design and preliminary results.

    PubMed

    Pan, Bing; Jiang, Tianyun; Wu, Dafang

    2014-11-01

    In thermomechanical testing of hypersonic materials and structures, direct observation and quantitative strain measurement of the front surface of a test specimen directly exposed to severe aerodynamic heating has been considered as a very challenging task. In this work, a novel quartz infrared heating device with an observation window is designed to reproduce the transient thermal environment experienced by hypersonic vehicles. The specially designed experimental system allows the capture of test article's surface images at various temperatures using an optical system outfitted with a bandpass filter. The captured images are post-processed by digital image correlation to extract full-field thermal deformation. To verify the viability and accuracy of the established system, thermal strains of a chromiumnickel austenite stainless steel sample heated from room temperature up to 600 °C were determined. The preliminary results indicate that the air disturbance between the camera and the specimen due to heat haze induces apparent distortions in the recorded images and large errors in the measured strains, but the average values of the measured strains are accurate enough. Limitations and further improvements of the proposed technique are discussed.

  3. NaOH-based high temperature heat-of-fusion thermal energy storage device

    NASA Technical Reports Server (NTRS)

    Cohen, B. M.; Rice, R. E.

    1978-01-01

    A material called Thermkeep, developed as a low-cost method for the storage of thermal energy for solar electric power generating systems is discussed. The storage device consists of an insulated cylinder containing Thermkeep in which coiled tubular heat exchangers are immersed. A one-tenth scale model of the design contains 25 heat-exchanger tubes and 1500 kg of Thermkeep. Its instrumentation includes thermocouples to measure internal Thermkeep temperatures, vessel surface, heated shroud surface, and pressure gauges to indicate heat-exchanger pressure drops. The test-circuit design is presented and experimental results are discussed.

  4. Solar hot water system installed at Day's Inn Motel, Dallas, Texas (Valley View)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar system was designed to provide 65 percent of the total domestic hot water (DHW) demand. A liquid (water) flat plate collector (1,000 square feet) system automatically drains into the 1,000 gallon steel storage tank when the solar pump is not running. Heat is transferred from the DHW tanks through a shell and tube heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up standby losses. All pumps are controlled by differential temperature controllers.

  5. Solar hot water system installed at Days Inn Motel, Jacksonville, Florida

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar system was designed to provide 65 percent of the hot water demand. Water in the liquid flat plate collector (900 square feet) system automatically drains into the 1000 gallon lined and vented steel storage tank when the pump is not running. Heat is transferred from storage to Domestic Hot Water (DHW) tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up DHW standby losses. All pumps are controlled by differential temperature.

  6. Microsystem process networks

    DOEpatents

    Wegeng, Robert S [Richland, WA; TeGrotenhuis, Ward E [Kennewick, WA; Whyatt, Greg A [West Richland, WA

    2006-10-24

    Various aspects and applications of microsystem process networks are described. The design of many types of microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having exergetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.

  7. Microsystem process networks

    DOEpatents

    Wegeng, Robert S [Richland, WA; TeGrotenhuis, Ward E [Kennewick, WA; Whyatt, Greg A [West Richland, WA

    2010-01-26

    Various aspects and applications or microsystem process networks are described. The design of many types of microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having energetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.

  8. Microsystem process networks

    DOEpatents

    Wegeng, Robert S.; TeGrotenhuis, Ward E.; Whyatt, Greg A.

    2007-09-18

    Various aspects and applications of microsystem process networks are described. The design of many types of Microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having energetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.

  9. Tunable biasing magnetic field design of ferrite tuner for ICRF heating system in EAST

    NASA Astrophysics Data System (ADS)

    Manman, XU; Yuntao, SONG; Gen, CHEN; Yanping, ZHAO; Yuzhou, MAO; Guang, LIU; Zhen, PENG

    2017-11-01

    Ion cyclotron range of frequency (ICRF) heating has been used in tokamaks as one of the most successful auxiliary heating tools and has been adopted in the EAST. However, the antenna load will fluctuate with the change of plasma parameters in the ICRF heating process. To ensure the steady operation of the ICRF heating system in the EAST, fast ferrite tuner (FFT) has been carried out to achieve real-time impedance matching. For the requirements of the FFT impedance matching system, the magnet system of the ferrite tuner (FT) was designed by numerical simulations and experimental analysis, where the biasing magnetic circuit and alternating magnetic circuit were the key researched parts of the ferrite magnet. The integral design goal of the FT magnetic circuit is that DC bias magnetic field is 2000 Gs and alternating magnetic field is ±400 Gs. In the FTT, E-type magnetic circuit was adopted. Ferrite material is NdFeB with a thickness of 30 mm by setting the working point of NdFeB, and the ampere turn of excitation coil is 25 through the theoretical calculation and simulation analysis. The coil inductance to generate alternating magnetic field is about 7 mH. Eddy-current effect has been analyzed, while the magnetic field distribution has been measured by a Hall probe in the medium plane of the biasing magnet. Finally, the test results show the good performance of the biasing magnet satisfying the design and operating requirements of the FFT.

  10. A Liquid-Liquid Thermoelectric Heat Exchanger as a Heat Pump for Testing Phase Change Material Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Sheth, Rubik B.; Makinen, Janice; Le, Hung V.

    2016-01-01

    The primary objective of the Phase Change HX payload on the International Space Station (ISS) is to test and demonstrate the viability and performance of Phase Change Material Heat Exchangers (PCM HX). The system was required to pump a working fluid through a PCM HX to promote the phase change material to freeze and thaw as expected on Orion's Multipurpose Crew Vehicle. Due to limitations on ISS's Internal Thermal Control System, a heat pump was needed on the Phase Change HX payload to help with reducing the working fluid's temperature to below 0degC (32degF). This paper will review the design and development of a TEC based liquid-liquid heat exchanger as a way to vary to fluid temperature for the freeze and thaw phase of the PCM HX. Specifically, the paper will review the design of custom coldplates and sizing for the required heat removal of the HX.

  11. A new formal graphic language for the representation of complex energy distribution systems

    NASA Astrophysics Data System (ADS)

    Benes, E.; Viehboeck, F. P.

    A schematic notation system for the representation in design and analysis of multi-component heating systems is presented. This graphic language is clear and rigorous and allows quick changes between two basic levels of abstraction, as shown by two examples: a swimming pool with combined solar/electric heating system and the low temperature heating system of the Institute of Molecular Biology in Salzburg, Austria. The notation's 'energy path graphs' are more adequate for judging the relative merits of alternative system configurations than commonly used simplified installation schemes.

  12. Development and application of a specially designed heating system for temperature-programmed high-performance liquid chromatography using subcritical water as the mobile phase.

    PubMed

    Teutenberg, T; Goetze, H-J; Tuerk, J; Ploeger, J; Kiffmeyer, T K; Schmidt, K G; Kohorst, W gr; Rohe, T; Jansen, H-D; Weber, H

    2006-05-05

    A specially designed heating system for temperature-programmed HPLC was developed based on experimental measurements of eluent temperature inside a stainless steel capillary using a very thin thermocouple. The heating system can be operated at temperatures up to 225 degrees C and consists of a preheating, a column heating and a cooling unit. Fast cycle times after a temperature gradient can be realized by an internal silicone oil bath which cools down the preheating and column heating unit. Long-term thermal stability of a polybutadiene-coated zirconium dioxide column has been evaluated using a tubular oven in which the column was placed. The packing material was stable after 50h of operation at 185 degrees C. A mixture containing four steroids was separated at ambient conditions using a mobile phase of 25% acetonitrile:75% deionized water and a mobile phase of pure deionized water at 185 degrees C using the specially designed heating system and the PBD column. Analysis time could be drastically reduced from 17 min at ambient conditions and a flow rate of 1 mL/min to only 1.2 min at 185 degrees C and a flow rate of 5 mL/min. At these extreme conditions, no thermal mismatch was observed and peaks were not distorted, thus underlining the performance of the developed heating system. Temperature programming was performed by separating cytostatic and antibiotic drugs with a temperature gradient using only water as the mobile phase. In contrast to an isocratic elution of this mixture at room temperature, overall analysis time could be reduced two-fold from 20 to 10 min.

  13. Advanced Coupled Simulation of Borehole Thermal Energy Storage Systems and Above Ground Installations

    NASA Astrophysics Data System (ADS)

    Welsch, Bastian; Rühaak, Wolfram; Schulte, Daniel O.; Bär, Kristian; Sass, Ingo

    2016-04-01

    Seasonal thermal energy storage in borehole heat exchanger arrays is a promising technology to reduce primary energy consumption and carbon dioxide emissions. These systems usually consist of several subsystems like the heat source (e.g. solarthermics or a combined heat and power plant), the heat consumer (e.g. a heating system), diurnal storages (i.e. water tanks), the borehole thermal energy storage, additional heat sources for peak load coverage (e.g. a heat pump or a gas boiler) and the distribution network. For the design of an integrated system, numerical simulations of all subsystems are imperative. A separate simulation of the borehole energy storage is well-established but represents a simplification. In reality, the subsystems interact with each other. The fluid temperatures of the heat generation system, the heating system and the underground storage are interdependent and affect the performance of each subsystem. To take into account these interdependencies, we coupled a software for the simulation of the above ground facilities with a finite element software for the modeling of the heat flow in the subsurface and the borehole heat exchangers. This allows for a more realistic view on the entire system. Consequently, a finer adjustment of the system components and a more precise prognosis of the system's performance can be ensured.

  14. Comparison of Stirling engines for use with a 25-kW disk-electric conversion system

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.

    1987-01-01

    Heat engines were evaluated for terrestrial solar heat receivers. The Stirling Engine was identified as one of the most promising engines for terrestrial applications. The potential to meet the Department of Energy (DOE) goals for performance and cost can be met by the free-piston Stirling engine. NASA Lewis is providing technical management for an Advanced Stirling Conversion System (ASCS) through a cooperative interagency agreement with DOE. Parallel contracts were awarded for conceptual designs of an ASCS. Each design will feature a free-piston Stirling engine, a liquid-metal heat pipe receiver, and a means to provide about 25 kW of electric power to a utility grid while meeting long-term performance and goals. The Mechanical Technology, Ins. (MTI) design incorporates a linear alternator to directly convert the solar energy to electricity while the Stirling Technology Company (STC) generates electrical power indirectly by using a hydraulic output to a ground-bases hydraulic pump/motor coupled to a rotating alternator. Both designs use technology which can reasonably be expected to be available in the 1980's. The ASCS designs using a free-piston Stirling engine, a heat transport system, a receiver, and the methods of providing electricity to the utility grid will be discussed.

  15. Thermal Vacuum Testing of a Novel Loop Heat Pipe Design for the Swift BAT Instrument

    NASA Technical Reports Server (NTRS)

    Ottenstein, Laura; Ku, Jentung; Feenan, David

    2003-01-01

    An advanced thermal control system for the Burst Alert Telescope on the Swift satellite has been designed and an engineering test unit (ETU) has been built and tested in a thermal vacuum chamber. The ETU assembly consists of a propylene loop heat pipe, two constant conductance heat pipes, a variable conductance heat pipe (VCHP), which is used for rough temperature control of the system, and a radiator. The entire assembly was tested in a thermal vacuum chamber at NASA/GSFC in early 2002. Tests were performed with thermal mass to represent the instrument and with electrical resistance heaters providing the heat to be transferred. Start-up and heat transfer of over 300 W was demonstrated with both steady and variable condenser sink temperatures. Radiator sink temperatures ranged from a high of approximately 273 K, to a low of approximately 83 K, and the system was held at a constant operating temperature of 278 K throughout most of the testing. A novel LHP temperature control methodology using both temperature-controlled electrical resistance heaters and a small VCHP was demonstrated. This paper describes the system and the tests performed and includes a discussion of the test results.

  16. Scale Resistant Heat Exchanger for Low Temperature Geothermal Binary Cycle Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hays, Lance G.

    2014-11-18

    Phase 1 of the investigation of improvements to low temperature geothermal power systems was completed. The improvements considered were reduction of scaling in heat exchangers and a hermetic turbine generator (eliminating seals, seal system, gearbox, and lube oil system). A scaling test system with several experiments was designed and operated at Coso geothermal resource with brine having a high scaling potential. Several methods were investigated at the brine temperature of 235 ºF. One method, circulation of abradable balls through the brine passages, was found to substantially reduce scale deposits. The test heat exchanger was operated with brine outlet temperatures asmore » low as 125 ºF, which enables increased heat input available to power conversion systems. For advanced low temperature cycles, such as the Variable Phase Cycle (VPC) or Kalina Cycle, the lower brine temperature will result in a 20-30% increase in power production from low temperature resources. A preliminary design of an abradable ball system (ABS) was done for the heat exchanger of the 1 megawatt VPC system at Coso resource. The ABS will be installed and demonstrated in Phase 2 of this project, increasing the power production above that possible with the present 175 ºF brine outlet limit. A hermetic turbine generator (TGH) was designed and manufacturing drawings produced. This unit will use the working fluid (R134a) to lubricate the bearings and cool the generator. The 200 kW turbine directly drives the generator, eliminating a gearbox and lube oil system. Elimination of external seals eliminates the potential of leakage of the refrigerant or hydrocarbon working fluids, resulting in environmental improvement. A similar design has been demonstrated by Energent in an ORC waste heat recovery system. The existing VPC power plant at Coso was modified to enable the “piggyback” demonstration of the TGH. The existing heat exchanger, pumps, and condenser will be operated to provide the required process conditions for the TGH demonstration. Operation of the TGH with and without the ABS system will demonstrate an increase in geothermal resource productivity for the VPC from 1 MW/(million lb) of brine to 1.75 MW/(million lb) of brine, a 75% increase.« less

  17. Alternative Natural Energy Sources in Building Design.

    ERIC Educational Resources Information Center

    Davis, Albert J.; Schubert, Robert P.

    This publication provides a discussion of various energy conserving building systems and design alternatives. The information presented here covers alternative space and water heating systems, and energy conserving building designs incorporating these systems and other energy conserving techniques. Besides water, wind, solar, and bio conversion…

  18. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, X. X.; Zhang, D. X.; Qian, Y.

    2014-01-29

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H{sub 2} from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H{sub 2} in heliummore » recycle gas are less than 1 ppb.« less

  19. Solar heating and domestic hot water system installed at Kansas City, Fire Station, Kansas City, Missouri. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-07-01

    This document is the final report of the solar energy heating and hot water system installed at the Kansas City Fire Station, Number 24, 2309 Hardesty Street, Kansas City, Missouri. The solar system was designed to provide 47 percent of the space heating, 8800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1428 cubic feet of 1/2 inch diameter pebbles weighing 71 1/2 tons, a DHW preheat tank, blowers, pumps, heatmore » exchangers, air ducting, controls and associated plumbing. Two 120-gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30-kilowatt electric unit heaters. There are six modes of system operation. This project is part of the Department of Energy PON-1 Solar Demonstration Program with DOE cost sharing $154,282 of the $174,372 solar system cost. The Final Design Review was held March 1977, the system became operational March 1979 and acceptance test was completed in September 1979.« less

  20. Optimization and Thermoeconomics Research of a Large Reclaimed Water Source Heat Pump System

    PubMed Central

    Zhang, Zi-ping; Du, Fang-hui

    2013-01-01

    This work describes a large reclaimed water source heat pump system (RWSHPS) and elaborates on the composition of the system and its design principles. According to the characteristics of the reclaimed water and taking into account the initial investment, the project is divided into two stages: the first stage adopts distributed heat pump heating system and the second adopts the combination of centralized and decentralized systems. We analyze the heating capacity of the RWSHPS, when the phase II project is completed, the system can provide hydronic heating water with the supply and return water temperature of 55°C/15°C and meet the hydronic heating demand of 8 million square meters of residential buildings. We make a thermal economics analysis by using Thermal Economics theory on RWSHPS and gas boiler system, it is known that the RWSHPS has more advantages, compared with the gas boiler heating system; both its thermal efficiency and economic efficiency are relatively high. It provides a reference for future applications of the RWSHPS. PMID:24089607

  1. Advanced thermionic energy conversion

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Developments towards space and terrestrial applications of thermionic energy conversion are presented. Significant accomplishments for the three month period include: (1) devised a blade-type distributed lead design with many advantages compared to the stud-type distributed lead; (2) completed design of Marchuk tube test apparatus; (3) concluded, based on current understanding, that residual hydrogen should not contribute to a negative space charge barrier at the collector; (4) modified THX design program to include series-coupled designs as well as inductively-coupled designs; (5) initiated work on the heat transfer technology, THX test module, output power transfer system, heat transfer system, and conceptual plant design tasks; and (6) reached 2200 hours of operation in JPL-5 cylindrical converter envelope test.

  2. Effect of Inert Cover Gas on Performance of Radioisotope Stirling Space Power System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Robert; Kumar, V; Ore, C

    2001-01-01

    This paper describes an updated Orbital design of a radioisotope Stirling power system and its predicted performance at the beginning and end of a six-year mission to the Jovian moon Europa. The design is based on General Purpose Heat Source (GPHS) modules identical to those previously developed and safety-qualified by the Department of Energy (DOE) which were successfully launched to Jupiter and Saturn by the Jet Propulsion Laboratory (JPL). In each generator, the heat produced by the decay of the Pu-238 isotope is converted to electric power by two free-piston Stirling engines and linear alternators developed by Stirling Technology Companymore » (STC), and their rejected waste heat is transported to radiators by heat pipes. The principal difference between the proposed system design and previous Orbital designs (Or et al. 2000) is the thermal insulation between the heat source and the generator's housing. Previous designs had employed multifoil insulation, whereas the design described here employs Min-K-1800 thermal insulation. Such insulation had been successfully used by Teledyne and GE in earlier RTGs (Radioisotope Thermoelectric Generators). Although Min-K is a much poorer insulator than multifoil in vacuum and requires a substantially greater thickness for equivalent performance, it offers compensating advantages. Specifically it makes it possible to adjust the generator's BOM temperatures by filling its interior volume with inert cover gas. This makes it possible to meet the generator's BOM and EOM performance goals without exceeding its allowable temperature at the beginning of the mission.« less

  3. Municipal water-based heat pump heating and/or cooling systems: Findings and recommendations. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloomquist, R.G.; Wegman, S.

    1998-04-01

    The purpose of the present work was to determine if existing heat pump systems based on municipal water systems meet existing water quality standards, to analyze water that has passed through a heat pump or heat exchanger to determine if corrosion products can be detected, to determine residual chlorine levels in municipal waters on the inlet as well as the outlet side of such installations, to analyses for bacterial contaminants and/or regrowth due to the presence of a heat pump or heat exchanger, to develop and suggest criteria for system design and construction, to provide recommendations and specifications for materialmore » and fluid selection, and to develop model rules and regulations for the installation, operation, and monitoring of new and existing systems. In addition, the Washington State University (WSU) has evaluated availability of computer models that would allow for water system mapping, water quality modeling and system operation.« less

  4. Dish stirling solar receiver combustor test program

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Back, L. H.

    1981-01-01

    The operational and energy transfer characteristics of the Dish Stirling Solar Receiver (DSSR) combustor/heat exchanger system was evaluated. The DSSR is designed to operate with fossil fuel augmentation utilizing a swirl combustor and cross flow heat exchanger consisting of a single row of 4 closely spaced tubes that are curved into a conical shape. The performance of the combustor/heat exchanger system without a Stirling engine was studied over a range of operating conditions and output levels using water as the working fluid. Results show that the combustor may be started under cold conditions, controlled safety, and operated at a constant air/fuel ratio (10 percent excess air) over the required range of firing rates. Furthermore, nondimensional heat transfer coefficients based on total heat transfer are plotted versus Reynolds number and compared with literature data taken for single rows of closely spaced tubes perpendicular to cross flow. The data show enhanced heat transfer for the present geometry and test conditions. Analysis of the results shows that the present system meets specified thermal requirements, thus verifying the feasibility of the DSSR combustor design for final prototype fabrication.

  5. Elements de conception d'un systeme geothermique hybride par optimisation financiere

    NASA Astrophysics Data System (ADS)

    Henault, Benjamin

    The choice of design parameters for a hybrid geothermal system is usually based on current practices or questionable assumptions. In fact, the main purpose of a hybrid geothermal system is to maximize the energy savings associated with heating and cooling requirements while minimizing the costs of operation and installation. This thesis presents a strategy to maximize the net present value of a hybrid geothermal system. This objective is expressed by a series of equations that lead to a global objective function. Iteratively, the algorithm converges to an optimal solution by using an optimization method: the conjugate gradient combined with a combinatorial method. The objective function presented in this paper makes use of a simulation algorithm for predicting the fluid temperature of a hybrid geothermal system on an hourly basis. Thus, the optimization method selects six variables iteratively, continuous and integer type, affecting project costs and energy savings. These variables are the limit temperature at the entry of the heat pump (geothermal side), the number of heat pumps, the number of geothermal wells and the distance in X and Y between the geothermal wells. Generally, these variables have a direct impact on the cost of the installation, on the entering water temperature at the heat pumps, the cost of equipment, the thermal interference between boreholes, the total capacity of geothermal system, on system performance, etc. On the other hand, the arrangement of geothermal wells is variable and is often irregular depending on the number of selected boreholes by the algorithm. Removal or addition of one or more borehole is guided by a predefined order dicted by the designer. This feature of irregular arrangement represents an innovation in the field and is necessary for the operation of this algorithm. Indeed, this ensures continuity between the number of boreholes allowing the use of the conjugate gradient method. The proposed method provides as outputs the net present value of the optimal solution, the position of the vertical boreholes, the number of installed heat pumps, the limits of entering water temperature at the heat pumps and energy consumption of the hybrid geothermal system. To demonstrate the added value of this design method, two case studies are analyzed, for a commercial building and a residential. The two studies allow to conclude that: the net present value of hybrid geothermal systems can be significantly improved by the choice of right specifications; the economic value of a geothermal project is strongly influenced by the number of heat pumps and the number of geothermal wells or the temperature limit in heating mode; the choice of design parameters should always be driven by an objective function and not by the designer; peak demand charges favor hybrid geothermal systems with a higher capacity. Then, in order to validate the operation, this new design method is compared to the standard sizing method which is commonly used. By designing the hybrid geothermal system according to standard sizing method and to meet 70% of peak heating, the net present value over 20 years for the residential project is negative, at -61,500 while it is 43,700 for commercial hybrid geothermal system. Using the new design method presented in this thesis, the net present values of projects are respectively 162,000 and 179,000. The use of this algorithm is beneficial because it significantly increases the net present value of projects. The research presented in this thesis allows to optimize the financial performance of hybrid geothermal systems. The proposed method will allow industry stakeholders to increase the profitability of their projects associated with low temperature geothermal energy.

  6. Study of active cooling for supersonic transports

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.

    1975-01-01

    The potential benefits of using the fuel heat sink of hydrogen fueled supersonic transports for cooling large portions of the aircraft wing and fuselage are examined. The heat transfer would be accomplished by using an intermediate fluid such as an ethylene glycol-water solution. Some of the advantages of the system are: (1) reduced costs by using aluminum in place of titanium, (2) reduced cabin heat loads, and (3) more favorable environmental conditions for the aircraft systems. A liquid hydrogen fueled, Mach 2.7 supersonic transport aircraft design was used for the reference uncooled vehicle. The cooled aircraft designs were analyzed to determine their heat sink capability, the extent and location of feasible cooled surfaces, and the coolant passage size and spacing.

  7. Investigation of heat exchangers for energy conversion systems of megawatt-class space power plants

    NASA Astrophysics Data System (ADS)

    Ilmov, D. N.; Mamontov, Yu. N.; Skorohodov, A. S.; Smolyarov, V. A.; Filatov, N. I.

    2016-01-01

    The specifics of operation (high temperatures in excess of 1000 K and large pressure drops of several megapascals between "hot" and "cold" coolant paths) of heat exchangers in the closed circuit of a gasturbine power converter operating in accordance with the Brayton cycle with internal heat recovery are analyzed in the context of construction of space propulsion systems. The design of a heat-exchange matrix made from doubly convex stamped plates with a specific surface relief is proposed. This design offers the opportunity to construct heat exchangers with the required parameters (strength, rigidity, weight, and dimensions) for the given operating conditions. The diagram of the working area of a test bench is presented, and the experimental techniques are outlined. The results of experimental studies of heat exchange and flow regimes in the models of heat exchangers with matrices containing 50 and 300 plates for two pairs of coolants (gas-gas and gas-liquid) are detailed. A criterion equation for the Nusselt number in the range of Reynolds numbers from 200 to 20 000 is proposed. The coefficients of hydraulic resistance for each coolant path are determined as functions of the Reynolds number. It is noted that the pressure in the water path in the "gas-liquid" series of experiments remained almost constant. This suggests that no well-developed processes of vaporization occurred within this heat-exchange matrix design even when the temperature drop between gas and water was as large as tens or hundreds of degrees. The obtained results allow one to design flight heat exchangers for various space power plants.

  8. Refrigeration Playbook. Heat Reclaim; Optimizing Heat Rejection and Refrigeration Heat Reclaim for Supermarket Energy Conservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reis, Chuck; Nelson, Eric; Armer, James

    The purpose of this playbook and accompanying spreadsheets is to generalize the detailed CBP analysis and to put tools in the hands of experienced refrigeration designers to evaluate multiple applications of refrigeration waste heat reclaim across the United States. Supermarkets with large portfolios of similar buildings can use these tools to assess the impact of large-scale implementation of heat reclaim systems. In addition, the playbook provides best practices for implementing heat reclaim systems to achieve the best long-term performance possible. It includes guidance on operations and maintenance as well as measurement and verification.

  9. Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors

    DOE PAGES

    Bartel, N.; Chen, M.; Utgikar, V. P.; ...

    2015-04-04

    A comparative evaluation of alternative compact heat exchanger designs for use as the intermediate heat exchanger in advanced nuclear reactor systems is presented in this article. Candidate heat exchangers investigated included the Printed circuit heat exchanger (PCHE) and offset strip-fin heat exchanger (OSFHE). Both these heat exchangers offer high surface area to volume ratio (a measure of compactness [m2/m3]), high thermal effectiveness, and overall low pressure drop. Helium–helium heat exchanger designs for different heat exchanger types were developed for a 600 MW thermal advanced nuclear reactor. The wavy channel PCHE with a 15° pitch angle was found to offer optimummore » combination of heat transfer coefficient, compactness and pressure drop as compared to other alternatives. The principles of the comparative analysis presented here will be useful for heat exchanger evaluations in other applications as well.« less

  10. Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartel, N.; Chen, M.; Utgikar, V. P.

    A comparative evaluation of alternative compact heat exchanger designs for use as the intermediate heat exchanger in advanced nuclear reactor systems is presented in this article. Candidate heat exchangers investigated included the Printed circuit heat exchanger (PCHE) and offset strip-fin heat exchanger (OSFHE). Both these heat exchangers offer high surface area to volume ratio (a measure of compactness [m2/m3]), high thermal effectiveness, and overall low pressure drop. Helium–helium heat exchanger designs for different heat exchanger types were developed for a 600 MW thermal advanced nuclear reactor. The wavy channel PCHE with a 15° pitch angle was found to offer optimummore » combination of heat transfer coefficient, compactness and pressure drop as compared to other alternatives. The principles of the comparative analysis presented here will be useful for heat exchanger evaluations in other applications as well.« less

  11. Temperature dependency of the thermal conductivity of porous heat storage media

    NASA Astrophysics Data System (ADS)

    Hailemariam, Henok; Wuttke, Frank

    2018-04-01

    Analyzing the variation of thermal conductivity with temperature is vital in the design and assessment of the efficiency of sensible heat storage systems. In this study, the temperature variation of the thermal conductivity of a commercial cement-based porous heat storage material named - Füllbinder L is analyzed in saturated condition in the temperature range between 20 to 70°C (water based storage) with a steady state thermal conductivity and diffusivity meter. A considerable decrease in the thermal conductivity of the saturated sensible heat storage material upon increase in temperature is obtained, resulting in a significant loss of system efficiency and slower loading/un-loading rates, which when unaccounted for can lead to the under-designing of such systems. Furthermore, a new empirical prediction model for the estimation of thermal conductivity of cement-based porous sensible heat storage materials and naturally occurring crystalline rock formations as a function of temperature is proposed. The results of the model prediction are compared with the experimental results with satisfactory results.

  12. Gas engine heat recovery unit

    NASA Astrophysics Data System (ADS)

    Kubasco, A. J.

    1991-07-01

    The objective of Gas Engine Heat Recovery Unit was to design, fabricate, and test an efficient, compact, and corrosion resistant heat recovery unit (HRU) for use on exhaust of natural gas-fired reciprocating engine-generator sets in the 50-500 kW range. The HRU would be a core component of a factory pre-packaged cogeneration system designed around component optimization, reliability, and efficiency. The HRU uses finned high alloy, stainless steel tubing wound into a compact helical coil heat exchanger. The corrosion resistance of the tubing allows more heat to be taken from the exhaust gas without fear of the effects of acid condensation. One HRU is currently installed in a cogeneration system at the Henry Ford Hospital Complex in Dearborn, Michigan. A second unit underwent successful endurance testing for 850 hours. The plan was to commercialize the HRU through its incorporation into a Caterpillar pre-packaged cogeneration system. Caterpillar is not proceeding with the concept at this time because of a downturn in the small size cogeneration market.

  13. Thermal Management Architecture for Future Responsive Spacecraft

    NASA Astrophysics Data System (ADS)

    Bugby, D.; Zimbeck, W.; Kroliczek, E.

    2009-03-01

    This paper describes a novel thermal design architecture that enables satellites to be conceived, configured, launched, and operationally deployed very quickly. The architecture has been given the acronym SMARTS for Satellite Modular and Reconfigurable Thermal System and it involves four basic design rules: modest radiator oversizing, maximum external insulation, internal isothermalization and radiator heat flow modulation. The SMARTS philosophy is being developed in support of the DoD Operationally Responsive Space (ORS) initiative which seeks to drastically improve small satellite adaptability, deployability, and design flexibility. To illustrate the benefits of the philosophy for a prototypical multi-paneled small satellite, the paper describes a SMARTS thermal control system implementation that uses: panel-to-panel heat conduction, intra-panel heat pipe isothermalization, radiator heat flow modulation via a thermoelectric cooler (TEC) cold-biased loop heat pipe (LHP) and maximum external multi-layer insulation (MLI). Analyses are presented that compare the traditional "cold-biasing plus heater power" passive thermal design approach to the SMARTS approach. Plans for a 3-panel SMARTS thermal test bed are described. Ultimately, the goal is to incorporate SMARTS into the design of future ORS satellites, but it is also possible that some aspects of SMARTS technology could be used to improve the responsiveness of future NASA spacecraft. [22 CFR 125.4(b)(13) applicable

  14. Automated Simulation For Analysis And Design

    NASA Technical Reports Server (NTRS)

    Cantwell, E.; Shenk, Tim; Robinson, Peter; Upadhye, R.

    1992-01-01

    Design Assistant Workstation (DAWN) software being developed to facilitate simulation of qualitative and quantitative aspects of behavior of life-support system in spacecraft, chemical-processing plant, heating and cooling system of large building, or any of variety of systems including interacting process streams and processes. Used to analyze alternative design scenarios or specific designs of such systems. Expert system will automate part of design analysis: reason independently by simulating design scenarios and return to designer with overall evaluations and recommendations.

  15. Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors

    DOE PAGES

    Cheng, Lap-Yan; Wei, Thomas Y. C.

    2009-01-01

    The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs) is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR) in a GEN IV direct-cycle gas-cooled fast reactor (GFR) which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow weremore » evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.« less

  16. Conceptual studies for a mercury target circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigg, B.

    1996-06-01

    For the now favored target design of the European Spallation Source project, i.e. the version using mercury as target material, a basic concept of the primary system has been worked out. It does not include a detailed design of the various components of the target circuit, but tries to outline a feasible solution for the system. Besides the removal of the thermal power of about 3MW produced in the target by the proton beam, the primary system has to satisfy a number of other requirements related to processing, safety, and operation. The basic proposal uses an electromagnetic pump and amore » mercury-water intermediate heat excanger, but other alternatives are also being discussed. Basic safety requirements, i.e. protection against radiation and toxic mercury vapours, are satisfied by a design using an air-tight primary system containment, double-walled tubes in the intermediate heat exchanger, a fail-safe system for decay heat removal, and a remote handling facility for the active part of the system. Much engineering work has still to be done, because many details of the design of the mercury and gas processing systems remain to be clarified, the thermal-hydraulic components need further optimisation, the system for control and instrumentation is only known in outline and a through safety analysis will be required.« less

  17. DEVELOPMENT OF A LINEAR COMPRESSOR FOR AIR CONDITIONERS AND HEAT PUMPS

    EPA Science Inventory

    The report discusses the design, building, testing, and delivering to the Environmental Protection Agency of a linear compressor for operation in a 3.0- ton (10.5 kW) residential air-conditioning and heat pumping system. The compressor design evolved from a linear resonant piston...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. Mittereder, A. Poerschke

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab.

  19. Geothermal space/water heating for City of Mammoth Lakes, California. Draft final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sims, A.V.; Racine, W.C.

    1977-09-01

    The results of a study to determine the technical, economic and environmental feasibility of geothermal district heating for Mammoth Lakes Village, California are presented. The geothermal district heating system selected is technically feasible and uses existing technology in its design and operation. During a preliminary environmental assessment, no potential adverse environmental impacts could be identified of sufficient consequence to preclude the construction and operation of the proposed district heating system. A follow-on program aimed at implementing district heating in Mammoth is outlined.

  20. Variable Emissivity Through MEMS Technology

    NASA Technical Reports Server (NTRS)

    Darrin, Ann Garrison; Osiander, Robert; Champion, John; Swanson, Ted; Douglas, Donya; Grob, Lisa M.; Powers, Edward I. (Technical Monitor)

    2000-01-01

    This paper discusses a new technology for variable emissivity (vari-e) radiator surfaces, which has significant advantages over traditional radiators and promises an alternative design technique for future spacecraft thermal control systems. All spacecraft rely on radiative surfaces to dissipate waste heat. These radiators have special coatings, typically with a low solar absorptivity and a high infrared-red emissivity, that are intended to optimize performance under the expected heat load and thermal sink environment. The dynamics of the heat loads and thermal environment make it a challenge to properly size the radiator and often require some means of regulating the heat rejection rate of the radiators in order to achieve proper thermal balance. Specialized thermal control coatings, which can passively or actively adjust their emissivity offer an attractive solution to these design challenges. Such systems would allow intelligent control of the rate of heat loss from a radiator in response to heat load and thermal environmental variations. Intelligent thermal control through variable emissivity systems is well suited for nano and pico spacecraft applications where large thermal fluctuations are expected due to the small thermal mass and limited electric resources. Presently there are three different types of vari-e technologies under development: Micro ElectroMechanical Systems (MEMS) louvers, Electrochromic devices, and Electrophoretic devices. This paper will describe several prototypes of micromachined (MEMS) louvers and experimental results for the emissivity variations measured on theses prototypes. It will further discuss possible actuation mechanisms and space reliability aspects for different designs. Finally, for comparison parametric evaluations of the thermal performances of the new vari-e technology and standard thermal control systems are presented in this paper.

  1. KSC-2014-2830

    NASA Image and Video Library

    2014-05-30

    CAPE CANAVERAL, Fla. -- Lockheed Martin technicians and engineers attach the heat shield to the Orion crew module inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. Technicians have installed more than 200 instrumentation sensors on the heat shield for Exploration Flight Test-1, or EFT-1. The flight test will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  2. KSC-2014-2831

    NASA Image and Video Library

    2014-05-30

    CAPE CANAVERAL, Fla. -- Lockheed Martin technicians and engineers attach the heat shield to the Orion crew module inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. Technicians have installed more than 200 instrumentation sensors on the heat shield for Exploration Flight Test-1, or EFT-1. The flight test will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  3. Design and implementation of an improved chilled water glycol system for NICI array electronics thermal enclosure

    NASA Astrophysics Data System (ADS)

    Gausachs, Gaston

    2008-07-01

    The Near Infrared Chronographic Imager (NICI) being commissioned at Gemini was upgraded with a more powerful Chilled Water Glycol System to address early overheating problems. The previous system was replaced with a completely new design favoring improved airflow and increased heat transfer capabilities. The research leading to this upgrade showed a significant lack of cooling power of the original design. The solution was a combination of commercial heat exchanger and fans and a custom built enclosure. As a prime infrared telescope facility, Gemini is very much interested in maintaining the least amount of heat dissipated to the ambient air. The results obtained through the implementation of this solution will be helpful in understanding the state of other existing electronics enclosures as well as those for new instruments to come. With the advent of electronic intensive AO systems, future electronics enclosures must take full advantage of improved cooling. This paper describes the design and implementation phases of the project. The results under maximum operating capacity proved to be within the expected theoretical values and were deemed successful.

  4. Solar heating and hot water system installed at Alderson Broaddus College, Philippi, West Virginia

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Data needed necessary to evaluate the design and operation of a solar energy heating and hot water system installed in a commercial application are presented. The information includes system descriptions, acceptance test data, schematics, as built drawing, problems encountered, all solutions and photographs of the system at various stages of completion.

  5. Solar-Energy System for a Commercial Building--Topeka, Kansas

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Report describes a solar-energy system for space heating, cooling and domestic hot water at a 5,600 square-foot (520-square-meter) Topeka, Kansas, commercial building. System is expected to provide 74% of annual cooling load, 47% of heating load, and 95% of domestic hot-water load. System was included in building design to maximize energy conservation.

  6. Solar heating system installed at Blakedale Professional Center, Greenwood, South Carolina

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Information on the solar heating system installed at the Blakedale Professional Center, in Greenwood, South Carolina is presented. The information consists of site and building description, solar system description, performance evaluation, system problems and installation drawings. The solar system was designed to provide approximately 85 percent of the building's heating requirements. The system was installed concurrently with building construction and heats 4,440 square feet of the building. There are 954 square feet of liquid flat plate collectors that are proof-mounted and have a drain-down system to protect the collectors from freezing. A 5,000 gallon steel, polyurethane insulated tank buried underground provides storage. The system was fully instrumented for performance evaluation and integrated into the National Solar Data Network.

  7. Consideration of Thermoelectric Power Generation by Using Hot Spring Thermal Energy or Industrial Waste Heat

    NASA Astrophysics Data System (ADS)

    Sasaki, Keiichi; Horikawa, Daisuke; Goto, Koichi

    2015-01-01

    Today, we face some significant environmental and energy problems such as global warming, urban heat island, and the precarious balance of world oil supply and demand. However, we have not yet found a satisfactory solution to these problems. Waste heat recovery is considered to be one of the best solutions because it can improve energy efficiency by converting heat exhausted from plants and machinery to electric power. This technology would also prevent atmospheric temperature increases caused by waste heat, and decrease fossil fuel consumption by recovering heat energy, thus also reducing CO2 emissions. The system proposed in this research generates electric power by providing waste heat or unharnessed thermal energy to built-in thermoelectric modules that can convert heat into electric power. Waste heat can be recovered from many places, including machinery in industrial plants, piping in electric power plants, waste incineration plants, and so on. Some natural heat sources such as hot springs and solar heat can also be used for this thermoelectric generation system. The generated power is expected to be supplied to auxiliary machinery around the heat source, stored as an emergency power supply, and so on. The attributes of this system are (1) direct power generation using hot springs or waste heat; (2) 24-h stable power generation; (3) stand-alone power system with no noise and no vibration; and (4) easy maintenance attributed to its simple structure with no moving parts. In order to maximize energy use efficiency, the temperature difference between both sides of the thermoelectric (TE) modules built into the system need to be kept as large as possible. This means it is important to reduce thermal resistance between TE modules and heat source. Moreover, the system's efficiency greatly depends on the base temperature of the heat sources and the material of the system's TE modules. Therefore, in order to make this system practical and efficient, it is necessary to choose the heat source first and then design the most appropriate structure for the source by applying analytical methods. This report describes how to design a prototype of a thermoelectric power generator using the analytical approach and the results of performance evaluation tests carried out in the field.

  8. No Sweat.

    ERIC Educational Resources Information Center

    Strickland, Gary

    2001-01-01

    Explains how changes in school design in the last 10 years have caused heating, ventilation, and cooling system (HVAC) designers to reexamine their choice of classroom unit ventilators (UV). The influence of indoor lighting systems, insulation, indoor air quality, energy code compliance, and HVAC system design on UV decision making are also…

  9. Performance Analysis of a Ground Source Heat Pump System Using Mine Water as Heat Sink and Source

    DOE PAGES

    Liu, Xiaobing; Malhotra, Mini; Walburger, Adam; ...

    2016-06-01

    This paper summarizes a case study of an innovative ground source heat pump (GSHP) system that uses flooded mines as a heat source and heat sink. This GSHP system provides space conditioning to a 56,000 sq ft 2(5,203 m 2) newly constructed research facility, in conjunction with supplementary existing steam heating and air-cooled chiller systems. Heat transfer performance and overall efficiency of the GSHP system were analysed using the available measured data from January through July 2014. The performance analysis identified some issues with using mine water for cooling and the integration of the GSHP system with the existing steammore » heating system. Recommendations were made to improve the control and operation of the GSHP system. These recommendations, in conjunction with the available measured data, were used to predict the annual energy use of the system. Finally, the energy and cost savings and CO 2 emission reduction potential of the GSHP system were estimated by comparing with a baseline scenario. This case study provides insights into the performance of and potential issues with the mine-water source heat pump system, which is relatively under-explored compared to other GSHP system designs and configurations.« less

  10. Experimental evaluation of a breadboard heat and product-water removal system for a space-power fuel cell designed with static water removal and evaporative cooling

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.; Prokipius, P. R.

    1977-01-01

    A test program was conducted to evaluate the design of a heat and product-water removal system to be used with fuel cell having static water removal and evaporative cooling. The program, which was conducted on a breadboard version of the system, provided a general assessment of the design in terms of operational integrity and transient stability. This assessment showed that, on the whole, the concept appears to be inherently sound but that in refining this design, several facets will require additional study. These involve interactions between pressure regulators in the pumping loop that occur when they are not correctly matched and the question of whether an ejector is necessary in the system.

  11. Invisibility problem in acoustics, electromagnetism and heat transfer. Inverse design method

    NASA Astrophysics Data System (ADS)

    Alekseev, G.; Tokhtina, A.; Soboleva, O.

    2017-10-01

    Two approaches (direct design and inverse design methods) for solving problems of designing devices providing invisibility of material bodies of detection using different physical fields - electromagnetic, acoustic and static are discussed. The second method is applied for solving problems of designing cloaking devices for the 3D stationary thermal scattering model. Based on this method the design problems under study are reduced to respective control problems. The material parameters (radial and tangential heat conductivities) of the inhomogeneous anisotropic medium filling the thermal cloak and the density of auxiliary heat sources play the role of controls. A unique solvability of direct thermal scattering problem in the Sobolev space is proved and the new estimates of solutions are established. Using these results, the solvability of control problem is proved and the optimality system is derived. Based on analysis of optimality system, the stability estimates of optimal solutions are established and numerical algorithms for solving particular thermal cloaking problem are proposed.

  12. Development of a prototype two-phase thermal bus system for Space Station

    NASA Technical Reports Server (NTRS)

    Myron, D. L.; Parish, R. C.

    1987-01-01

    This paper describes the basic elements of a pumped two-phase ammonia thermal control system designed for microgravity environments, the development of the concept into a Space Station flight design, and design details of the prototype to be ground-tested in the Johnson Space Center (JSC) Thermal Test Bed. The basic system concept is one of forced-flow heat transport through interface heat exchangers with anhydrous ammonia being pumped by a device expressly designed for two-phase fluid management in reduced gravity. Control of saturation conditions, and thus system interface temperatures, is accomplished with a single central pressure regulating valve. Flow control and liquid inventory are controlled by passive, nonelectromechanical devices. Use of these simple control elements results in minimal computer controls and high system reliability. Building on the basic system concept, a brief overview of a potential Space Station flight design is given. Primary verification of the system concept will involve testing at JSC of a 25-kW ground test article currently in fabrication.

  13. Effect of Tube Diameter on The Design of Heat Exchanger in Solar Drying system

    NASA Astrophysics Data System (ADS)

    Husham Abdulmalek, Shaymaa; Khalaji Assadi, Morteza; Al-Kayiem, Hussain H.; Gitan, Ali Ahmed

    2018-03-01

    The drying of agriculture product consumes a huge fossil fuel rates that demand to find an alternative source of sustainable environmental friendly energy such as solar energy. This work presents the difference between using solar heat source and electrical heater in terms of design aspect. A circular-finned tube bank heat exchanger is considered against an electrical heater used as a heat generator to regenerate silica gel in solar assisted desiccant drying system. The impact of tube diameter on the heat transfer area was investigated for both the heat exchanger and the electrical heater. The fin performance was investigated by determining fin effectiveness and fin efficiency. A mathematical model was developed using MATLAB to describe the forced convection heat transfer between hot water supplied by evacuated solar collector with 70 °C and ambient air flow over heat exchanger finned tubes. The results revealed that the increasing of tube diameter augments the heat transfer area of both heat exchanger and electrical heater. The highest of fin efficiency was around 0.745 and the lowest was around 0.687 while the fin effectiveness was found to be around 0.998.

  14. Climate Fundamentals for Solar Heating.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    The design of any solar heating system is influenced heavily by climate; in this bulletin, information on climate as related to solar heating is as related to solar heating is provided. Topics discussed include: (1) solar radiation; (2) degree days; (3) climate and calculations which make use of solar radiation and degree days; and (4)…

  15. 46 CFR 129.550 - Power for cooking and heating.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Power for cooking and heating. 129.550 Section 129.550... INSTALLATIONS Miscellaneous Electrical Systems § 129.550 Power for cooking and heating. (a) Equipment for cooking and heating must be suitable for marine use. Equipment designed and installed to comply with ABYC...

  16. Potential Application of a Thermoelectric Generator in Passive Cooling System of Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Wang, Dongqing; Liu, Yu; Jiang, Jin; Pang, Wei; Lau, Woon Ming; Mei, Jun

    2017-05-01

    In the design of nuclear power plants, various natural circulation passive cooling systems are considered to remove residual heat from the reactor core in the event of a power loss and maintain the plant's safety. These passive systems rely on gravity differences of fluids, resulting from density differentials, rather than using an external power-driven system. Unfortunately, a major drawback of such systems is their weak driving force, which can negatively impact safety. In such systems, there is a temperature difference between the heat source and the heat sink, which potentially offers a natural platform for thermoelectric generator (TEG) applications. While a previous study designed and analyzed a TEG-based passive core cooling system, this paper considers TEG applications in other passive cooling systems of nuclear power plants, after which the concept of a TEG-based passive cooling system is proposed. In such a system, electricity is produced using the system's temperature differences through the TEG, and this electricity is used to further enhance the cooling process.

  17. A 1050 K Stirling space engine design

    NASA Technical Reports Server (NTRS)

    Penswick, L. Barry

    1988-01-01

    As part of the NASA CSTI High Capacity Power Program on Conversion Systems for Nuclear Applications, Sunpower, Inc. completed for NASA Lewis a reference design of a single-cylinder free-piston Stirling engine that is optimized for the lifetimes and temperatures appropriate for space applications. The NASA effort is part of the overall SP-100 program which is a combined DOD/DOE/NASA project to develop nuclear power for space. Stirling engines have been identified as a growth option for SP-100 offering increased power output and lower system mass and radiator area. Superalloy materials are used in the 1050 K hot end of the engine; the engine temperature ratio is 2.0. The engine design features simplified heat exchangers with heat input by sodium heat pipes, hydrodynamic gas bearings, a permanent magnet linear alternator, and a dynamic balance system. The design shows an efficiency (including the alternator) of 29 percent and a specific mass of 5.7 kg/kW. This design also represents a significant step toward the 1300 K refractory Stirling engine which is another growth option of SP-100.

  18. Transient modeling of the thermohydraulic behavior of high temperature heat pipes for space reactor applications

    NASA Technical Reports Server (NTRS)

    Hall, Michael L.; Doster, Joseph M.

    1986-01-01

    Many proposed space reactor designs employ heat pipes as a means of conveying heat. Previous researchers have been concerned with steady state operation, but the transient operation is of interest in space reactor applications due to the necessity of remote startup and shutdown. A model is being developed to study the dynamic behavior of high temperature heat pipes during startup, shutdown and normal operation under space environments. Model development and preliminary results for a hypothetical design of the system are presented.

  19. Design, operation and performance of a ground coupled heat pump system in a cold climate

    NASA Astrophysics Data System (ADS)

    Metz, P. D.

    An antifreeze filled serpentine earth coil was designed to just meet heating needs of a small, well insulated house with an average brine temperature never less than 7 C (20 F). The 155 m (507 ft) long, 1.2 m (4 ft) coil made from nominal size 1-1/2 in medium density polyethylene pipe was installed by a local plumbing contractor using two different chain driven trenchers. A commercially available water to air heat pump was used with minor modifications. System performance was monitored using kilowat hour meters, a Btu meter, and a datalogger microcomputer data acquisition system. The house temperature was kept between 21 and 23 C (70 and 74 F) all winter despite outdoor temperature as low as 24 C (-11 F). During a period when the outdoor temperature averaged -2 C (28 F), the system extracted approximately 10.2 x 10 to the 9th power 3 (9.7 x 10 to the 6th power Btu) from the ground with an almost constant heat pump COP (coefficient of performance) averaging about 2.3 and a system COP of 2.2. No resistance heating was used.

  20. Design, Fabrication, and Testing of an Auxiliary Cooling System for Jet Engines

    NASA Technical Reports Server (NTRS)

    Leamy, Kevin; Griffiths, Jim; Andersen, Paul; Joco, Fidel; Laski, Mark; Balser, Jeffrey (Technical Monitor)

    2001-01-01

    This report summarizes the technical effort of the Active Cooling for Enhanced Performance (ACEP) program sponsored by NASA. It covers the design, fabrication, and integrated systems testing of a jet engine auxiliary cooling system, or turbocooler, that significantly extends the use of conventional jet fuel as a heat sink. The turbocooler is designed to provide subcooled cooling air to the engine exhaust nozzle system or engine hot section. The turbocooler consists of three primary components: (1) a high-temperature air cycle machine driven by engine compressor discharge air, (2) a fuel/ air heat exchanger that transfers energy from the hot air to the fuel and uses a coating to mitigate fuel deposits, and (3) a high-temperature fuel injection system. The details of the turbocooler component designs and results of the integrated systems testing are documented. Industry Version-Data and information deemed subject to Limited Rights restrictions are omitted from this document.

  1. A Data Acquisition System for Water Heating and Cooling Experiments

    ERIC Educational Resources Information Center

    Perea Martins, J. E. M.

    2017-01-01

    This work presents a simple analogue waterproof temperature probe design and its electronic interfacing with a computer to compose a data acquisition system for water temperature measurement. It also demonstrates the system usage through an experiment to verify the water heating period with an electric heater and another to verify the Newton's law…

  2. Solar heating for a restaurant--North Little Rock, Arkansas

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Hot water consumption of large building affects solar-energy system design. Continual demand for hot water at restaurant makes storage less important than at other sites. Storage capacity of system installed in December 1979 equals estimated daily hot-water requirement. Report describes equipment specifications and modifications to existing building heating and hot water systems.

  3. Design and Development of a Sub-Zero Fluid System for Demonstration of Orion's Phase Change Material Heat Exchangers on ISS

    NASA Technical Reports Server (NTRS)

    Sheth, Rubik B.; Ahlstrom, Thomas D.; Le, Hung V.

    2016-01-01

    NASA's Orion Multipurpose Crew Vehicle's Exploration Mission 2 is expected to loiter in Lunar orbit for a relatively long period of time. In low Lunar orbit (LLO) the thermal environment is cyclic - extremely cold in the eclipse and relatively hot near the subsolar point. Phase change material heat exchangers (PCM HXs) are the best option for long term missions in these environments. A PCM HX allows a vehicle to store excess waste energy by thawing a phase change material such as n-pentadecane wax. During portions of the orbit that are extremely cold, the excess energy is rejected, resolidifying the wax. Due to the inherent risk of compromising the heat exchanger during multiple freeze and thaw cycles, a unique payload was designed for the International Space Station to test and demonstration the functions of a PCM HX. The payload incorporates the use of a pumped fluid system and a thermoelectric heat exchanger to promote the freezing and thawing of the PCM HX. This paper shall review the design and development undertaken to build such a system.

  4. The design of a multimegawatt heat pipe radiator for an inertial fusion rocket powered manned Mars mission

    NASA Technical Reports Server (NTRS)

    Murray, K. A.

    1988-01-01

    A system of heat pipe radiators has been designed to provide waste heat rejection for an inertial fusion powered spacecraft capable of manned missions to other planets. The radiators are arrays of unfinned, arterial heat pipes operating at 1500 and 900 K. Liquid metal coolant carries up to 8000 MW of waste heat through feed pipes from on-board components (laser drivers and coil shield). The radiators do not rely on armor for protection from micrometeoroid penetration. An armored radiator design for this application with a 99 percent survivability would have a specific mass of 0.06 to 0.11 kg/kW at 1500 K. Instead, a segmentation of heat pipes is used, and bumpers are utilized to protect the feed pipes. This design reduces the specific mass to 0.015 to 0.04 kg/kW for the coil shield radiator (1500 K) and 0.06 to 0.12 kg/kW for the laser driver radiator (900 K).

  5. Design and Preliminary Thermal Performance of the Mars Science Laboratory Rover Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Mastropietro, A. J.; Beatty, John; Kelly, Frank; Birur, Gajanana; Bhandari, Pradeep; Pauken, Michael; Illsley, Peter; Liu, Yuanming; Bame, David; Miller, Jennifer

    2010-01-01

    The challenging range of proposed landing sites for the Mars Science Laboratory Rover requires a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 degrees Centigrade and as warm as 38 degrees Centigrade, the Rover relies upon a Mechanically Pumped Fluid Loop (MPFL) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 degrees Centigrade to 50 degrees Centigrade range. The MPFL also manages significant waste heat generated from the Rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG). The MMRTG produces 110 Watts of electrical power while generating waste heat equivalent to approximately 2000 Watts. Two similar Heat Exchanger (HX) assemblies were designed to both acquire the heat from the MMRTG and radiate waste heat from the onboard electronics to the surrounding Martian environment. Heat acquisition is accomplished on the interior surface of each HX while heat rejection is accomplished on the exterior surface of each HX. Since these two surfaces need to be at very different temperatures in order for the MPFL to perform efficiently, they need to be thermally isolated from one another. The HXs were therefore designed for high in-plane thermal conductivity and extremely low through-thickness thermal conductivity by using aerogel as an insulator inside composite honeycomb sandwich panels. A complex assembly of hand welded and uniquely bent aluminum tubes are bonded onto the HX panels and were specifically designed to be easily mated and demated to the rest of the Rover Heat Recovery and Rejection System (RHRS) in order to ease the integration effort. During the cruise phase to Mars, the HX assemblies serve the additional function of transferring heat from the Rover MPFL to the separate Cruise Stage MPFL so that heat generated deep inside the Rover can be dissipated via the Cruise Stage radiators. Significant fabrication challenges had to be overcome in order to make the HX design a reality. The cruise phase thermal performance of the Rover HXs was verified in the cruise phase system level thermal vacuum test that was performed at JPL in January of 2009. The Rover HXs were modeled in I-DEAS TMG and predictions are compared to actual data from the test.

  6. Modelling and simulation of a heat exchanger

    NASA Technical Reports Server (NTRS)

    Xia, Lei; Deabreu-Garcia, J. Alex; Hartley, Tom T.

    1991-01-01

    Two models for two different control systems are developed for a parallel heat exchanger. First by spatially lumping a heat exchanger model, a good approximate model which has a high system order is produced. Model reduction techniques are applied to these to obtain low order models that are suitable for dynamic analysis and control design. The simulation method is discussed to ensure a valid simulation result.

  7. Solar space and water heating system at Stanford University, Central Food Services Building

    NASA Astrophysics Data System (ADS)

    1980-05-01

    This active hydronic domestic hot water and space heating system was 840 sq ft of single-glazed, liquid, flat plate collectors and 1550 gal heat storage tanks. The following are discussed: energy conservation, design philosophy, operation, acceptance testing, performance data, collector selection, bidding, costs, economics, problems, and recommendations. An operation and maintenance manual and as-built drawings are included in appendices.

  8. Experimental and numerical investigation of a scalable modular geothermal heat storage system

    NASA Astrophysics Data System (ADS)

    Nordbeck, Johannes; Bauer, Sebastian; Beyer, Christof

    2017-04-01

    Storage of heat will play a significant role in the transition towards a reliable and renewable power supply, as it offers a way to store energy from fluctuating and weather dependent energy sources like solar or wind power and thus better meet consumer demands. The focus of this study is the simulation-based design of a heat storage system, featuring a scalable and modular setup that can be integrated with new as well as existing buildings. For this, the system can be either installed in a cellar or directly in the ground. Heat supply is by solar collectors, and heat storage is intended at temperatures up to about 90°C, which requires a verification of the methods used for numerical simulation of such systems. One module of the heat storage system consists of a helical heat exchanger in a fully water saturated, high porosity cement matrix, which represents the heat storage medium. A lab-scale storage prototype of 1 m3 volume was set up in a thermally insulated cylinder equipped with temperature and moisture sensors as well as flux meters and temperature sensors at the inlet and outlet pipes in order to experimentally analyze the performance of the storage system. Furthermore, the experimental data was used to validate an accurate and spatially detailed high-resolution 3D numerical model of heat and fluid flow, which was developed for system design optimization with respect to storage efficiency and environmental impacts. Three experiments conducted so far are reported and analyzed in this work. The first experiment, consisting of cooling of the fully loaded heat storage by heat loss across the insulation, is designed to determine the heat loss and the insulation parameters, i.e. heat conductivity and heat capacity of the insulation, via inverse modelling of the cooling period. The average cooling rate experimentally found is 1.2 °C per day. The second experiment consisted of six days of thermal loading up to a storage temperature of 60°C followed by four days of heat extraction. The experiment was performed for the determination of heat losses during a complete thermal loading and extraction cycle. The storage could be charged with 54 kWh of heat energy during thermal loading. 36 kWh could be regained during the extraction period, which translates to a heat loss of 33% during the 10 days of operation. Heat exchanger fluid flow rates and supply temperature were measured during the experiment and used as input for the 3D finite element model. Numerically simulated temperature distribution in the storage, return temperature and heat balances were compared to the measured data and showed that the 3D model accurately reflects the storage behavior. Also the third experiment, consisting of six days of cyclic operation after five days of continuous thermal loading, a good agreement between observed and modelled heat storage behavior is found. In addition to determining the storage performance during cyclic operation, the experiment will also be used to further validate the numerical model. This abstract will present the laboratory setup as well as the experimental data obtained from the experiment. It will also present the modelling approach chosen for the numerical representation of the experiment and give a comparison between measured and modelled temperatures and heat balances for the modular heat storage system.

  9. Solar energy system performance evaluation report for Solaron-Duffield, Duffield, Virginia

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Solaron Duffield Solar Energy System was designed to provide 51 percent of the space heating, and 49 percent of the domestic hot water (DHW) to a two story 1940 square foot area residence using air as the transport medium. The system consists of a 429 square foot collector array, a 265 cubic foot rock thermal storage bin, heat exchangers, an 80 gallon DHW preheat tank, pumps, blowers, controls, air ducting and associated plumbing. A air-to-liquid heat pump coupled with a 1,000gallon water storage tank provides for auxiliary space heating and can also be used for space cooling. A 52 gallon electric DHW tank using the solar preheated water provides domestic hot water to the residence. The solar system, which became operational July 1979, has the following modes of operation: First Stage: (1) collector to storage and DHW; (2)collector to space heating; (3) storage to load. Second Stage: (4) heat pump auxiliary direct; (5) auxiliary heat from heat pump storage. Third Stage: (6) electrical resistance (strip) heat.

  10. Feasibility of geothermal space/water heating for Mammoth Lakes Village, California. Final report, September 1976--September 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sims, A.V.; Racine, W.C.

    1977-12-01

    Results of a study to determine the technical, economic, and environmental feasibility of geothermal district heating for Mammoth Lakes Village, California are reported. The geothermal district heating system selected is technically feasible and will use existing technology in its design and operation. District heating can provide space and water heating energy for typical customers at lower cost than alternative sources of energy. If the district heating system is investor owned, lower costs are realized after five to six years of operation, and if owned by a nonprofit organization, after zero to three years. District heating offers lower costs than alternativesmore » much sooner in time if co-generation and/or DOE participation in system construction are included in the analysis. During a preliminary environmental assessment, no potential adverse environmental impacts could be identified of sufficient consequence to preclude the construction and operation of the proposed district heating system. A follow-on program aimed at implementing district heating in Mammoth is outlined.« less

  11. Studies of Phase Change Materials and a Latent Heat Storage Unit Used for a Natural Circulation Cooling/Latent Heat Storage System

    NASA Astrophysics Data System (ADS)

    Sakitani, Katsumi; Honda, Hiroshi

    Experiments were performed to investigate feasibility of using organic materials as a PCM for a latent heat storage unit of a natural circulation cooling/latent heat storage system. This system was designed to cool a shelter accommodating telecommunication equipment located in subtropical deserts or similar regions without using a power source. Taking into account practical considerations and the results of various experiments regarding the thermodynamic properties, thermal degradation, and corrosiveness to metals, lauric acid and iron was selected for the PCM and the latent heat storage unit material, respectively. Cyclic heating and cooling of the latent heat storage unit undergoing solid-liquid phase change was repeated for more than 430 days. The results showed that the heating-cooling curve was almost unchanged between the early stage and the 1,870th cycle. It was concluded that the latent heat storage unit could be used safely for more than ten years as a component of the cooling system.

  12. Solar energy system performance evaluation report for Solaron-Duffield, Duffield, Virginia

    NASA Astrophysics Data System (ADS)

    1980-07-01

    The Solaron Duffield Solar Energy System was designed to provide 51 percent of the space heating, and 49 percent of the domestic hot water (DHW) to a two story 1940 square foot area residence using air as the transport medium. The system consists of a 429 square foot collector array, a 265 cubic foot rock thermal storage bin, heat exchangers, an 80 gallon DHW preheat tank, pumps, blowers, controls, air ducting and associated plumbing. A air-to-liquid heat pump coupled with a 1,000gallon water storage tank provides for auxiliary space heating and can also be used for space cooling. A 52 gallon electric DHW tank using the solar preheated water provides domestic hot water to the residence. The solar system, which became operational July 1979, has the following modes of operation: First Stage: (1) collector to storage and DHW; (2)collector to space heating; (3) storage to load. Second Stage: (4) heat pump auxiliary direct; (5) auxiliary heat from heat pump storage. Third Stage: (6) electrical resistance (strip) heat.

  13. Low Thermal Loss Cryogenic Transfer Line with Magnetic Suspension

    NASA Astrophysics Data System (ADS)

    Shu, Quan-Sheng; Cheng, Guangfeng; Yu, Kun; Hull, John R.; Demko, Jonathan A.; Britcher, Colin P.; Fesmire, James E.; Augustynowicz, Stan D.

    2004-06-01

    An energy efficient, cost effective cryogenic distribution system (up to several miles) is crucial for spaceport and in-space cryogenic systems. The conduction heat loss from the supports that connect the cold inner lines to the warm support structure is ultimately the most serious heat leak after thermal radiation has been minimized. The use of magnetic levitation by permanent magnets and high temperature superconductors provides support without mechanical contact and thus, the conduction part of the heat leak can be reduced to zero. A stop structure is carefully designed to hold the center tube when the system is warm. The novel design will provide the potential of extending many missions by saving cryogens, or reducing the overall launch mass.

  14. Solidification of high temperature molten salts for thermal energy storage systems

    NASA Technical Reports Server (NTRS)

    Sheffield, J. W.

    1981-01-01

    The solidification of phase change materials for the high temperature thermal energy storage system of an advanced solar thermal power system has been examined theoretically. In light of the particular thermophysical properties of candidate phase change high temperature salts, such as the eutectic mixture of NaF - MgF2, the heat transfer characteristics of one-dimensional inward solidification for a cylindrical geometry have been studied. The Biot number for the solidified salt is shown to be the critical design parameter for constant extraction heat flux. A fin-on-fin design concept of heat transfer surface augmentation is proposed in an effort to minimize the effects of the salt's low thermal conductivity and large volume change upon fusing.

  15. Solar heating and domestic hot water system installed at Kansas City, Fire Stations, Kansas City, Missouri

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar system was designed to provide 47 percent of the space heating, 8,800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2,808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1,428 cubic feet of 0.5 inch diameter pebbles weighing 71.5 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120 gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30 kilowatt electric unit heaters. There are six modes of system operation.

  16. Design and Implementation of a Discrete-Time Proportional Integral (PI) Controller for the Temperature Control of a Heating Pad.

    PubMed

    Khan, Pathan Fayaz; Sengottuvel, S; Patel, Rajesh; Gireesan, K; Baskaran, R; Mani, Awadhesh

    2018-05-01

    Contact heat evoked potentials (CHEPs) are recorded from the brain by giving thermal stimulations through heating pads kept on the surface of the skin. CHEP signals have crucial diagnostic implications in human pain activation studies. This work proposes a novel design of a digital proportional integral (PI) controller based on Arduino microcontroller with a view to explore the suitability of an electric heating pad for use as a thermode in a custom-made, cost-effective CHEP stimulator. The purpose of PI controller is to set, regulate, and deliver desired temperatures on the surface of the heating pad in a user-defined pattern. The transfer function of the heating system has been deduced using the parametric system identification method, and the design parameters of the controller have been identified using the root locus technique. The efficiency of the proposed PI controller in circumventing the well-known integrator windup problem (error in the integral term builds excessively, leading to large transients in the controller output) in tracking the reference input and the controller effort (CE) in rejecting output disturbances to maintain the set temperature of the heating pad have been found to be superior compared with the conventional PI controller and two of the existing anti-windup models.

  17. Heat pump centered integrated community energy systems: system development. Georgia Institute of Technology final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wade, D.W.; Trammell, B.C.; Dixit, B.S.

    1979-12-01

    Heat Pump Centered-Integrated Community Energy Systems (HP-ICES) show the promise of utilizing low-grade thermal energy for low-quality energy requirements such as space heating and cooling. The Heat Pump - Wastewater Heat Recovery (HP-WHR) scheme is one approach to an HP-ICES that proposes to reclaim low-grade thermal energy from a community's wastewater effluent. This report develops the concept of an HP-WHR system, evaluates the potential performance and economics of such a system, and examines the potential for application. A thermodynamic performance analysis of a hypothetical system projects an overall system Coefficient of Performance (C.O.P.) of from 2.181 to 2.264 for waste-watermore » temperatures varying from 50/sup 0/F to 80/sup 0/F. Primary energy source savings from the nationwide implementation of this system is projected to be 6.0 QUADS-fuel oil, or 8.5 QUADS - natural gas, or 29.7 QUADS - coal for the period 1980 to 2000, depending upon the type and mix of conventional space conditioning systems which could be displaced with the HP-WHR system. Site-specific HP-WHR system designs are presented for two application communities in Georgia. Performance analyses for these systems project annual cycle system C.O.P.'s of 2.049 and 2.519. Economic analysis on the basis of a life cycle cost comparison shows one site-specific system design to be cost competitive in the immediate market with conventional residential and light commercial HVAC systems. The second site-specific system design is shown through a similar economic analysis to be more costly than conventional systems due mainly to the current low energy costs for natural gas. It is anticipated that, as energy costs escalate, this HP-WHR system will also approach the threshold of economic viability.« less

  18. Air-liquid solar collector for solar heating, combined heating and cooling, and hot water subsystems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A collection of quarterly reports consisting of the installation and layout design of the air collector system for commercial applications, completion of the preliminary design review, detailed design efforts, and preparation of the verification test plan are given. Performance specifications and performance testing of a prototype model of a two manifold, 144 tube air collector array is presented.

  19. Study of the Polarization Strategy for Electron Cyclotron Heating Systems on HL-2M

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Huang, M.; Xia, D. H.; Song, S. D.; Wang, J. Q.; Huang, B.; Wang, H.

    2016-06-01

    As important components integrated in transmission lines of electron cyclotron heating systems, polarizers are mainly used to obtain the desired polarization for highly efficient coupling between electron cyclotron waves and plasma. The polarization strategy for 105-GHz electron cyclotron heating systems of HL-2M tokamak is studied in this paper. Considering the polarizers need high efficiency, stability, and low loss to realize any polarization states, two sinusoidal-grooved polarizers, which include a linear polarizer and an elliptical polarizer, are designed with the coordinate transformation method. The parameters, the period p and the depth d, of two sinusoidal-grooved polarizers are optimized by a phase difference analysis method to achieve an almost arbitrary polarization. Finally, the optimized polarizers are manufactured and their polarization characteristics are tested with a low-power test platform. The experimental results agree well with the numerical calculations, indicating that the designed polarizers can meet the polarization requirements of the electron cyclotron heating systems of HL-2M tokamak.

  20. System Analysis for Decay Heat Removal in Lead-Bismuth-Cooled Natural-Circulation Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Takaaki; Enuma, Yasuhiro; Iwasaki, Takashi

    2004-03-15

    Decay heat removal analyses for lead-bismuth-cooled natural-circulation reactors are described in this paper. A combined multidimensional plant dynamics code (MSG-COPD) has been developed to conduct the system analysis for the natural-circulation reactors. For the preliminary study, transient analysis has been performed for a 300-MW(thermal) lead-bismuth-cooled reactor designed by Argonne National Laboratory. In addition, decay heat removal characteristics of a 400-MW(electric) lead-bismuth-cooled natural-circulation reactor designed by the Japan Nuclear Cycle Development Institute (JNC) has been evaluated by using MSG-COPD. The primary reactor auxiliary cooling system (PRACS) is prepared for the JNC concept to get sufficient heat removal capacity. During 2000 smore » after the transient, the outlet temperature shows increasing tendency up to the maximum temperature of 430 deg. C because the buoyancy force in a primary circulation path is temporarily reduced. However, the natural circulation is recovered by the PRACS system, and the outlet temperature decreases successfully.« less

Top