Science.gov

Sample records for heavily fluorine doped

  1. Charge neutrality in heavily doped emitters

    SciTech Connect

    del Alamo, J.A.

    1981-09-01

    The applicability of the quasineutrality approximation to modern emitters of solar cells is analytically reviewed. It is shown that this approximation is fulfilled in more than 80% of the depth of a typical solar-cell emitter, being particularly excellent in the heavily doped regions beneath the surface where most of the heavy doping effects arise. Our conclusions are in conflict with Redfield's recent affirmations.

  2. Heavily Doped PBSE with High Thermoelectric Performance

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey (Inventor); Wang, Heng (Inventor); Pei, Yanzhong (Inventor)

    2015-01-01

    The present invention discloses heavily doped PbSe with high thermoelectric performance. Thermoelectric property measurements disclosed herein indicated that PbSe is high zT material for mid-to-high temperature thermoelectric applications. At 850 K a peak zT (is) greater than 1.3 was observed when n(sub H) approximately 1.0 X 10(exp 20) cm(exp -3). The present invention also discloses that a number of strategies used to improve zT of PbTe, such as alloying with other elements, nanostructuring and band modification may also be used to further improve zT in PbSe.

  3. Heavily doped polysilicon-contact solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Neugroschel, A.; Arienzo, M.; Iles, P. A.

    1985-01-01

    The first use of a (silicon)/heavily doped polysilicon)/(metal) structure to replace the conventional high-low junction or back-surface-field (BSF) structure of silicon solar cells is reported. Compared with BSF and back-ohmic-contact (BOC) control samples, the polysilicon-back solar cells show improvements in red spectral response (RSR) and open-circuit voltage. Measurement reveals that a decrease in effective surface recombination velocity S is responsible for this improvement. Decreased S results for n-type (Si:As) polysilicon, consistent with past findings for bipolar transistors, and for p-type (Si:B) polysilicon, reported here for the first time. Though the present polysilicon-back solar cells are far from optimal, the results suggest a new class of designs for high efficiency silicon solar cells. Detailed technical reasons are advanced to support this view.

  4. Transit time and charge storage measurements in heavily doped emitters

    NASA Technical Reports Server (NTRS)

    Neugroschel, A.; Park, J. S.; Hwang, B. Y.

    1986-01-01

    A first direct measurement of the minority-carrier transit time in a transparent heavily doped emitter layer is reported. The value was obtained by a high-frequency conductance method recently developed and used for low-doped Si. The transit time coupled with the steady-state current enables the determination of the quasi-static charge stored in the emitter and the quasi-static emitter capacitance. Using a transport model, from the measured transit time, the value for the minority-carrier diffusion coefficient and mobility is estimated. The measurements were done using a heavily doped emitter of the Si p(+)-n-p bipolar transistor. The new result indicates that the position-averaged minority-carrier diffusion coefficients may be much smaller than the corresponding majority-carrier values for emitters having a concentration ranging from about 3 x 10 to the 19th per cu cm to 10 to the 20th per cu cm.

  5. Oxygen precipitation behavior in heavily arsenic doped silicon crystals

    NASA Astrophysics Data System (ADS)

    Haringer, Stephan; Gambaro, Daniela; Porrini, Maria

    2017-01-01

    Silicon crystals containing different levels of arsenic concentration and oxygen content were grown, and samples were taken at various positions along the crystal, to study the influence of three main factors, i.e. the initial oxygen content, the dopant concentration and the thermal history, on the nucleation of oxygen precipitates during crystal growth and cooling in the puller. The crystal thermal history was reconstructed by means of computer modeling, simulating the temperature distribution in the crystal at several growth stages. The oxygen precipitation was characterized after a thermal cycle of 4 h at 800 °C for nuclei stabilization +16 h at 1000 °C for nuclei growth. Oxygen precipitates were counted under microscope on the cleaved sample surface after preferential etching. Lightly doped silicon samples were also included, as reference. Our results show that even in heavily arsenic doped silicon the oxygen precipitation is a strong function of the initial oxygen concentration, similar to what has been observed for lightly doped silicon. In addition, a precipitation retardation effect is observed in the arsenic doped samples when the dopant concentration is higher than 1.7×1019 cm-3 compared to lightly doped samples with the same initial oxygen content and crystal thermal history. Finally, a long permanence time of the crystal in the temperature range between 450 °C and 750 °C enhances the oxygen precipitation, showing that this is an effective temperature range for oxygen precipitation nucleation in heavily arsenic doped silicon.

  6. Fluorine compounds for doping conductive oxide thin films

    DOEpatents

    Gessert, Tim; Li, Xiaonan; Barnes, Teresa M; Torres, Jr., Robert; Wyse, Carrie L

    2013-04-23

    Methods of forming a conductive fluorine-doped metal oxide layer on a substrate by chemical vapor deposition are described. The methods may include heating the substrate in a processing chamber, and introducing a metal-containing precursor and a fluorine-containing precursor to the processing chamber. The methods may also include adding an oxygen-containing precursor to the processing chamber. The precursors are reacted to deposit the fluorine-doped metal oxide layer on the substrate. Methods may also include forming the conductive fluorine-doped metal oxide layer by plasma-assisted chemical vapor deposition. These methods may include providing the substrate in a processing chamber, and introducing a metal-containing precursor, and a fluorine-containing precursor to the processing chamber. A plasma may be formed that includes species from the metal-containing precursor and the fluorine-containing precursor. The species may react to deposit the fluorine-doped metal oxide layer on the substrate.

  7. Improved thermoelectric properties in heavily doped FeGa3

    NASA Astrophysics Data System (ADS)

    Ponnambalam, V.; Morelli, Donald T.

    2015-12-01

    FeGa3, a hybridization gap semiconductor, has been substituted with an n-type dopant Ge to form a series of compositions FeGa3-xGex. Electrical and thermal transport properties of these compositions have been studied. Change in carrier density (n) is evident from the Hall measurements. The carrier density (n) can be as high as ˜1021 cm-3 in these compositions. In order to study the role of heavy doping on the thermoelectric properties of FeGa3, an alloy series Fe1-yCoyGa3-xGex has also been synthesized with higher concentrations of Ge (x = 0.1-0.35) and Co (y = 0.1-0.5). From resistivity and Seebeck coefficient measurements, it appears that heavy doping is accomplished by the simultaneous substitutions of Ge and Co. The systematic change in both resistivity (ρ) and Seebeck coefficient (α) is possibly due to change in the carrier density (n). The power factor (PF) α2/ρ improves steadily with increasing carrier density and the best PF ˜1.1 mW/m K2 is observed for the heavily doped compositions at 875 K. In the alloy series Fe1-yCoyGa3-xGex, thermal conductivity is also reduced substantially due to point defect scattering. Due to higher power factors, the figure of merit ZT improves to 0.25 at 875 K for the heavily doped compositions.

  8. Measurement of surface recombination velocity on heavily doped indium phosphide

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Ghalla-Goradia, Manju; Faur, Mircea; Faur, Maria; Bailey, Sheila

    1990-01-01

    Surface recombination velocity (SRV) on heavily doped n-type and p-type InP was measured as a function of surface treatment. For the limited range of substrates and surface treatments studied, SRV and surface stability depend strongly on the surface treatment. SRVs of 100,000 cm/sec in both p-type and n-type InP are obtainable, but in n-type the low-SRV surfaces were unstable, and the only stable surfaces on n-type had SRVs of more than 10to the 6th cm/sec.

  9. Near-infrared free carrier absorption in heavily doped silicon

    SciTech Connect

    Baker-Finch, Simeon C.; McIntosh, Keith R.; Yan, Di; Fong, Kean Chern; Kho, Teng C.

    2014-08-14

    Free carrier absorption in heavily doped silicon can have a significant impact on devices operating in the infrared. In the near infrared, the free carrier absorption process can compete with band to band absorption processes, thereby reducing the number of available photons to optoelectronic devices such as solar cells. In this work, we fabricate 18 heavily doped regions by phosphorus and boron diffusion into planar polished silicon wafers; the simple sample structure facilitates accurate and precise measurement of the free carrier absorptance. We measure and model reflectance and transmittance dispersion to arrive at a parameterisation for the free carrier absorption coefficient that applies in the wavelength range between 1000 and 1500 nm, and the range of dopant densities between ∼10{sup 18} and 3 × 10{sup 20} cm{sup −3}. Our measurements indicate that previously published parameterisations underestimate the free carrier absorptance in phosphorus diffusions. On the other hand, published parameterisations are generally consistent with our measurements and model for boron diffusions. Our new model is the first to be assigned uncertainty and is well-suited to routine device analysis.

  10. Chemical vapor deposition of fluorine-doped zinc oxide

    DOEpatents

    Gordon, Roy G.; Kramer, Keith; Liang, Haifan

    2000-06-06

    Fims of fluorine-doped zinc oxide are deposited from vaporized precursor compounds comprising a chelate of a dialkylzinc, such as an amine chelate, an oxygen source, and a fluorine source. The coatings are highly electrically conductive, transparent to visible light, reflective to infrared radiation, absorbing to ultraviolet light, and free of carbon impurity.

  11. Measurement of minority carrier lifetime, mobility and diffusion length in heavily doped silicon

    NASA Technical Reports Server (NTRS)

    Swirhun, S. E.; Swanson, R. M.

    1986-01-01

    Carrier transport and recombination parameters in heavily doped silicon were examined. Data were presented for carrier diffusivity in both p- and n-type heavily doped silicon covering a broad range of doping concentrations from 10 to the 15th power to 10 to the 20th power atoms/cu cm. One of the highlights of the results showed that minority carrier diffusivities are higher by a factor of 2 in silicon compared to majority carrier diffusivities.

  12. Measurement of carrier transport and recombination parameter in heavily doped silicon

    NASA Technical Reports Server (NTRS)

    Swanson, Richard M.

    1986-01-01

    The minority carrier transport and recombination parameters in heavily doped bulk silicon were measured. Both Si:P and Si:B with bulk dopings from 10 to the 17th and 10 to the 20th power/cu cm were studied. It is shown that three parameters characterize transport in bulk heavily doped Si: the minority carrier lifetime tau, the minority carrier mobility mu, and the equilibrium minority carrier density of n sub 0 and p sub 0 (in p-type and n-type Si respectively.) However, dc current-voltage measurements can never measure all three of these parameters, and some ac or time-transient experiment is required to obtain the values of these parameters as a function of dopant density. Using both dc electrical measurements on bipolar transitors with heavily doped base regions and transients optical measurements on heavily doped bulk and epitaxially grown samples, lifetime, mobility, and bandgap narrowing were measured as a function of both p and n type dopant densities. Best fits of minority carrier mobility, bandgap narrowing and lifetime as a function of doping density (in the heavily doped range) were constructed to allow accurate modeling of minority carrier transport in heavily doped Si.

  13. Measurement of minority carrier transport parameters in heavily doped n-type silicon

    NASA Technical Reports Server (NTRS)

    Delalamo, J.; Swanson, R. M.

    1985-01-01

    Measurement of minority transport parameters in heavily doped silicon is covered. The basic transport equations were used to define two independent parameters. Use of special vertical and lateral transistor test devices permitted the measurement of both parameters. Prior studies were normalized to show excellent agreement over the heavy doping region.

  14. Thermophotovoltaic energy conversion system having a heavily doped n-type region

    DOEpatents

    DePoy, David M.; Charache, Greg W.; Baldasaro, Paul F.

    2000-01-01

    A thermophotovoltaic (TPV) energy conversion semiconductor device is provided which incorporates a heavily doped n-type region and which, as a consequence, has improved TPV conversion efficiency. The thermophotovoltaic energy conversion device includes an emitter layer having first and second opposed sides and a base layer in contact with the first side of the emitter layer. A highly doped n-type cap layer is formed on the second side of the emitter layer or, in another embodiment, a heavily doped n-type emitter layer takes the place of the cap layer.

  15. Enhanced diffusion of oxygen depending on Fermi level position in heavily boron-doped silicon

    SciTech Connect

    Torigoe, Kazuhisa Fujise, Jun; Ono, Toshiaki; Nakamura, Kozo

    2014-11-21

    The enhanced diffusivity of oxygen in heavily boron doped silicon was obtained by analyzing oxygen out-diffusion profile changes found at the interface between a lightly boron-doped silicon epitaxial layer and a heavily boron-doped silicon substrate by secondary ion mass spectrometry. It was found that the diffusivity is proportional to the square root of boron concentration in the range of 10{sup 18 }cm{sup −3}–10{sup 19 }cm{sup −3} at temperatures from 750 °C to 950 °C. The model based on the diffusion of oxygen dimers in double positive charge state could explain the enhanced diffusion. We have concluded that oxygen diffusion enhanced in heavily boron-doped silicon is attributed to oxygen dimers ionized depending on Fermi level position.

  16. Determination of surface recombination velocity in heavily doped silicon

    NASA Technical Reports Server (NTRS)

    Watanabe, M.; Gatos, H. C.; Actor, G.

    1976-01-01

    A method was developed and successfully tested for the determination of the effective surface recombination velocity of silicon layers doped by diffusion of phosphorus to a level of 10 to the 19th to 10 to the 21st per cu cm. The effective recombination velocity was obtained from the dependence of the electron-beam-induced current on the penetration of the electron beam of a scanning electron microscope. A special silicon diode was constructed which permitted the collection at the p-n junction of the carriers excited by the electron beam. This diode also permitted the study of the effects of surface preparation on the effective surface recombination velocity.

  17. Mid-infrared plasmonic resonances exploiting heavily-doped Ge on Si

    NASA Astrophysics Data System (ADS)

    Biagioni, P.; Sakat, E.; Baldassarre, L.; Calandrini, E.; Samarelli, A.; Gallacher, K.; Frigerio, J.; Isella, G.; Paul, D. J.; Ortolani, M.

    2015-03-01

    We address the behavior of mid-infrared localized plasmon resonances in elongated germanium antennas integrated on silicon substrates. Calculations based on Mie theory and on the experimentally retrieved dielectric constant allow us to study the tunability and the figures of merit of plasmon resonances in heavily-doped germanium and to preliminarily compare them with those of the most established plasmonic material, gold.

  18. Comparison of the thermal degradation of heavily Nb-doped and normal PZT thin films.

    PubMed

    Yang, Jeong-Suong; Kang, Yunsung; Kang, Inyoung; Lim, Seungmo; Shin, Seung-Joo; Lee, Jungwon; Hur, Kangheon

    2017-01-04

    The degradation of Niobium-doped lead zirconate titanate (PZT) and two types of PZT thin films were investigated. Undoped PZT, 2-step PZT and heavily Nb-doped PZT (PNZT) around the morphotropic phase boundary (MPB) were in-situ deposited under optimum condition by RF-magnetron sputtering. All 2 μm thick films had dense perovskite columnar grain structure and self-polarized (100) dominant orientation. PZT thin films were deposited on Pt/TiOx bottom electrode on Si wafer, and Nb doped PZT thin film was on Ir/TiW electrode with help of orientation control. Sputtered PZT films formed on MEMS gyroscope, and the degradation rates were compared at different temperatures. Nb-doped PZT showed the best resistance to the thermal degradation, followed by 2-step PZT. To clarify the effect of oxygen vacancies for the degradation of the film at high temperature, photo-luminescence (PL) measurement was conducted. It confirmed that oxygen vacancy rate was the lowest in heavily Nb-doped PZT. Nb-doping PZT thin films suppressed the oxygen deficit and made high imprint with self-polarization. This defect distribution and high internal field allowed Nb-doped PZT thin film to make the piezoelectric sensors more stable and reliable at high temperature, such as reflow process of micro-electromechanical system (MEMS) packaging.

  19. Surface recombination velocity and diffusion length of minority carriers in heavily doped silicon layers

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Watanabe, M.; Actor, G.

    1977-01-01

    Quantitative analysis of the electron beam-induced current and the dependence of the effective diffusion length of the minority carriers on the penetration depth of the electron beam were employed for the analysis of the carrier recombination characteristics in heavily doped silicon layers. The analysis is based on the concept of the effective excitation strength of the carriers which takes into consideration all possible recombination sources. Two dimensional mapping of the surface recombination velocity of P-diffused Si layers will be presented together with a three dimensional mapping of minority carrier lifetime in ion implanted Si. Layers heavily doped with As exhibit improved recombination characteristics as compared to those of the layers doped with P.

  20. Temperature-independent spin relaxation in heavily doped n -type germanium

    NASA Astrophysics Data System (ADS)

    Fujita, Y.; Yamada, M.; Yamada, S.; Kanashima, T.; Sawano, K.; Hamaya, K.

    2016-12-01

    We experimentally study the spin relaxation mechanism in heavily doped n -type germanium (Ge) layers by electrically detecting pure spin current transport. The spin diffusion length (λGe) in heavily doped n -type Ge layers at 125 K is less than 0.7 μ m , much shorter than that expected in the recent study by Dushenko et al. We find that the spin relaxation time τs is independent of temperature in the range of 8 to 125 K, which can be interpreted by the recent theory by Song et al. This study clarifies that the spin-relaxation mechanism at low temperatures in degenerate Ge is dominated by extrinsic scattering with impurities.

  1. Clustering-induced nonsaturable absorption phenomenon in heavily erbium-doped silica fibers

    NASA Astrophysics Data System (ADS)

    Maurice, Eric; Monnom, Gérard; Dussardier, Bernard; Ostrowsky, D. B.

    1995-12-01

    Nonsaturable absorption experiments in heavily erbium-doped fibers demonstrate that the behavior of the absorption with pump power cannot be interpreted with an ion-pair model but requires that the presence of larger clusters be taken into account. Numerical modeling permits the determination of the percentage of ions organized in clusters, as much as 52% of the dopants in the tested fiber, and the intracluster transfer rate, up to 2 \\times 106s -1 .

  2. Large linear magnetoresistance in heavily-doped Nb:SrTiO3 epitaxial thin films.

    PubMed

    Jin, Hyunwoo; Lee, Keundong; Baek, Seung-Hyub; Kim, Jin-Sang; Cheong, Byung-Ki; Park, Bae Ho; Yoon, Sungwon; Suh, B J; Kim, Changyoung; Seo, S S A; Lee, Suyoun

    2016-10-05

    Interaction between electrons has long been a focused topic in condensed-matter physics since it has led to the discoveries of astonishing phenomena, for example, high-Tc superconductivity and colossal magnetoresistance (CMR) in strongly-correlated materials. In the study of strongly-correlated perovskite oxides, Nb-doped SrTiO3 (Nb:SrTiO3) has been a workhorse not only as a conducting substrate, but also as a host possessing high carrier mobility. In this work, we report the observations of large linear magnetoresistance (LMR) and the metal-to-insulator transition (MIT) induced by magnetic field in heavily-doped Nb:STO (SrNb0.2Ti0.8O3) epitaxial thin films. These phenomena are associated with the interplay between the large classical MR due to high carrier mobility and the electronic localization effect due to strong spin-orbit coupling, implying that heavily Nb-doped Sr(Nb0.2Ti0.8)O3 is promising for the application in spintronic devices.

  3. Large linear magnetoresistance in heavily-doped Nb:SrTiO3 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Jin, Hyunwoo; Lee, Keundong; Baek, Seung-Hyub; Kim, Jin-Sang; Cheong, Byung-Ki; Park, Bae Ho; Yoon, Sungwon; Suh, B. J.; Kim, Changyoung; Seo, S. S. A.; Lee, Suyoun

    2016-10-01

    Interaction between electrons has long been a focused topic in condensed-matter physics since it has led to the discoveries of astonishing phenomena, for example, high-Tc superconductivity and colossal magnetoresistance (CMR) in strongly-correlated materials. In the study of strongly-correlated perovskite oxides, Nb-doped SrTiO3 (Nb:SrTiO3) has been a workhorse not only as a conducting substrate, but also as a host possessing high carrier mobility. In this work, we report the observations of large linear magnetoresistance (LMR) and the metal-to-insulator transition (MIT) induced by magnetic field in heavily-doped Nb:STO (SrNb0.2Ti0.8O3) epitaxial thin films. These phenomena are associated with the interplay between the large classical MR due to high carrier mobility and the electronic localization effect due to strong spin-orbit coupling, implying that heavily Nb-doped Sr(Nb0.2Ti0.8)O3 is promising for the application in spintronic devices.

  4. Large linear magnetoresistance in heavily-doped Nb:SrTiO3 epitaxial thin films

    PubMed Central

    Jin, Hyunwoo; Lee, Keundong; Baek, Seung-Hyub; Kim, Jin-Sang; Cheong, Byung-ki; Park, Bae Ho; Yoon, Sungwon; Suh, B. J.; Kim, Changyoung; Seo, S. S. A.; Lee, Suyoun

    2016-01-01

    Interaction between electrons has long been a focused topic in condensed-matter physics since it has led to the discoveries of astonishing phenomena, for example, high-Tc superconductivity and colossal magnetoresistance (CMR) in strongly-correlated materials. In the study of strongly-correlated perovskite oxides, Nb-doped SrTiO3 (Nb:SrTiO3) has been a workhorse not only as a conducting substrate, but also as a host possessing high carrier mobility. In this work, we report the observations of large linear magnetoresistance (LMR) and the metal-to-insulator transition (MIT) induced by magnetic field in heavily-doped Nb:STO (SrNb0.2Ti0.8O3) epitaxial thin films. These phenomena are associated with the interplay between the large classical MR due to high carrier mobility and the electronic localization effect due to strong spin-orbit coupling, implying that heavily Nb-doped Sr(Nb0.2Ti0.8)O3 is promising for the application in spintronic devices. PMID:27703222

  5. Tunability of the dielectric function of heavily doped germanium thin films for mid-infrared plasmonics

    NASA Astrophysics Data System (ADS)

    Frigerio, Jacopo; Ballabio, Andrea; Isella, Giovanni; Sakat, Emilie; Pellegrini, Giovanni; Biagioni, Paolo; Bollani, Monica; Napolitani, Enrico; Manganelli, Costanza; Virgilio, Michele; Grupp, Alexander; Fischer, Marco P.; Brida, Daniele; Gallacher, Kevin; Paul, Douglas J.; Baldassarre, Leonetta; Calvani, Paolo; Giliberti, Valeria; Nucara, Alessandro; Ortolani, Michele

    2016-08-01

    Heavily doped semiconductor thin films are very promising for application in mid-infrared plasmonic devices because the real part of their dielectric function is negative and broadly tunable in the 5 to 50 μ m wavelength range at least. In this work, we investigate the electrodynamics of heavily n -type-doped germanium epilayers at infrared frequencies beyond the assumptions of the Drude model. The films are grown on silicon and germanium substrates, are in situ doped with phosphorous in the 1017 to 1019 cm-3 range, then screened plasma frequencies in the 100 to 1200 cm-1 range were observed. We employ infrared spectroscopy, pump-probe spectroscopy, and dc transport measurements to determine the tunability of the plasma frequency. Although no plasmonic structures have been realized in this work, we derive estimates of the decay time of mid-infrared plasmons and of their figures of merit for field confinement and for surface plasmon propagation. The average electron scattering rate increases almost linearly with excitation frequency, in agreement with quantum calculations based on a model of the ellipsoidal Fermi surface at the conduction band minimum of germanium accounting for electron scattering with optical phonons and charged impurities. Instead, we found weak dependence of plasmon losses on neutral impurity density. In films where a transient plasma was generated by optical pumping, we found significant dependence of the energy relaxation times in the few-picosecond range on the static doping level of the film, confirming the key but indirect role played by charged impurities in energy relaxation. Our results indicate that underdamped mid-infrared plasma oscillations are attained in n -type-doped germanium at room temperature.

  6. Fluorine contamination in yttrium-doped barium zirconate film deposited by atomic layer deposition

    SciTech Connect

    An Jihwan; Beom Kim, Young; Sun Park, Joong; Hyung Shim, Joon; Guer, Turgut M.; Prinz, Fritz B.

    2012-01-15

    The authors have investigated the change of chemical composition, crystallinity, and ionic conductivity in fluorine contaminated yttrium-doped barium zirconate (BYZ) fabricated by atomic layer deposition (ALD). It has been identified that fluorine contamination can significantly affect the conductivity of the ALD BYZ. The authors have also successfully established the relationship between process temperature and contamination and the source of fluorine contamination, which was the perfluoroelastomer O-ring used for vacuum sealing. The total removal of fluorine contamination was achieved by using all-metal sealed chamber instead of O-ring seals.

  7. Preparation, characterization and electrical properties of fluorine-doped tin dioxide nanocrystals.

    PubMed

    Wu, Shanshan; Yuan, Shuai; Shi, Liyi; Zhao, Yin; Fang, Jianhui

    2010-06-01

    Fluorine-doped tin dioxide (FTO) nanocrystals were prepared with a sol-gel process followed by a hydrothermal treatment using SnCl(4) and NH(4)F as SnO(2) and fluorine dopant, respectively. The nanostructure and composition were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), zeta potential analysis, electrochemical measurement technology and X-ray photoelectron spectroscopy (XPS) respectively. The diameter of the fluorine doped SnO(2) nanocrystal in rutile-type structure is about 10nm. Compared to the pure SnO(2) nanocrystals, the fluorine doped SnO(2) nanocrystals can be dispersed homogeneously in H(2)O, forming transparent sol with high stability. The powder of fluorine doped SnO(2) nanocrystals could be obtained by removing the solvent, and the electrical resistivity properties were measured by a four-point probe measurement. The results show that sheet resistances (Rs) of fluorine doped SnO(2) decrease with the increasing NH(4)F/Sn molar ratio in the range from 0 to 2. However, further increase of NH(4)F/Sn molar ratio from 2 to 5 leads to higher sheet resistance. The F/Sn molar ratio of fluorine doped SnO(2) measured by XPS is about 0.18 when NH(4)F/Sn molar ratio is equal to 2, and the sheet resistance of fluorine doped SnO(2) powder is 110Ω/□.

  8. Electronic properties of single-crystal diamonds heavily doped with boron

    SciTech Connect

    Buga, S. G.; Blank, V. D.; Terent'ev, S. A.; Kuznetsov, M. S.; Nosukhin, S. A.; Kulbachinskii, V. A. Krechetov, A. V.; Kytin, V. G.; Kytin, G. A.

    2007-04-15

    Single-crystal diamonds with characteristic sizes of 2-7 mm doped with boron in the concentration range 10{sup 19}-10{sup 20} cm{sup -3} have been grown by the temperature gradient method at high static pressures. The temperature dependence of the resistance R of the synthesized single crystals has been measured in the range 0.5 K < T < 297 K. An activated dependence R(T) with an activation energy of about 50 meV is observed in the range from room temperature to T {approx} 200 K. At temperatures below approximately 50 K, the temperature dependence of the conductivity for heavily doped crystals is proportional to T{sup 1/2}, which is characteristic of degenerate semiconductors with a high number of defects.

  9. Infrared absorption and visible transparency in heavily doped p-type BaSnO3

    NASA Astrophysics Data System (ADS)

    Li, Yuwei; Sun, Jifeng; Singh, David J.

    2017-01-01

    The recent experimental work shows that perovskite BaSnO3 can be heavily doped by K to become a stable p-type semiconductor. Here, we find that p-type perovskite BaSnO3 retains transparency for visible light while absorbing strongly in the infrared below 1.5 eV. The origin of the remarkable optical transparency even with heavy doping is that the interband transitions that are enabled by empty states at the top of the valence band are concentrated mainly in the energy range from 0.5 to 1.5 eV, i.e., not extending past the near IR. In contrast to n-type, the Burstein-Moss shift is slightly negative, but very small reflecting the heavier valence bands relative to the conduction bands.

  10. High critical currents in heavily doped (Gd,Y)Ba2Cu3Ox superconductor tapes

    DOE PAGES

    Selvamanickam, V.; Gharahcheshmeh, M. Heydari; Xu, A.; ...

    2015-01-20

    REBa2Cu3Ox superconductor tapes with moderate levels of dopants have been optimized for high critical current density in low magnetic fields at 77 K, but they do not exhibit exemplary performance in conditions of interest for practical applications, i.e., temperatures less than 50 K and fields of 2–30 T. Heavy doping of REBCO tapes has been avoided by researchers thus far due to deterioration in properties. Here, we report achievement of critical current densities (Jc) above 20 MA/cm2 at 30 K, 3 T in heavily doped (25 mol. % Zr-added) (Gd,Y)Ba2Cu3Ox superconductor tapes, which is more than three times higher thanmore » the Jc typically obtained in moderately doped tapes. Pinning force levels above 1000 GN/m3 have also been attained at 20 K. A composition map of lift factor in Jc (ratio of Jc at 30 K, 3 T to the Jc at 77 K, 0 T) has been developed which reveals the optimum film composition to obtain lift factors above six, which is thrice the typical value. A highly c-axis aligned BaZrO3 (BZO) nanocolumn defect density of nearly 7 × 1011 cm–2 as well as 2–3nm sized particles rich in Cu and Zr have been found in the high Jc films.« less

  11. High critical currents in heavily doped (Gd,Y)Ba2Cu3Ox superconductor tapes

    SciTech Connect

    Selvamanickam, V; Gharahcheshmeh, MH; Xu, A; Galstyan, E; Delgado, L; Cantoni, C

    2015-01-19

    REBa2Cu3Ox ((REBCO), RE = rare earth) superconductor tapes with moderate levels of dopants have been optimized for high critical current density in low magnetic fields at 77 K, but they do not exhibit exemplary performance in conditions of interest for practical applications, i.e., temperatures less than 50K and fields of 2-30 T. Heavy doping of REBCO tapes has been avoided by researchers thus far due to deterioration in properties. Here, we report achievement of critical current densities (J(c)) above 20 MA/cm(2) at 30 K, 3 T in heavily doped (25 mol.% Zr-added) (Gd,Y)Ba2Cu3Ox superconductor tapes, which is more than three times higher than the J(c) typically obtained in moderately doped tapes. Pinning force levels above 1000 GN/m(3) have also been attained at 20 K. A composition map of lift factor in J(c) (ratio of J(c) at 30 K, 3 T to the J(c) at 77 K, 0 T) has been developed which reveals the optimum film composition to obtain lift factors above six, which is thrice the typical value. A highly c-axis aligned BaZrO3 (BZO) nanocolumn defect density of nearly 7 x 10(11) cm(-2) as well as 2-3 nm sized particles rich in Cu and Zr have been found in the high J(c) films. (C) 2015 AIP Publishing LLC.

  12. Mechanism of insulator-to-metal transition in heavily Nb doped anatase TiO2

    NASA Astrophysics Data System (ADS)

    Tao, Junguang; Pan, H.; Wong, Lai Mun; Wong, Ten It; Chai, J. W.; Pan, Jisheng; Wang, S. J.

    2014-03-01

    Heavily Nb-doped anatase TiO2 (TNO) thin films were prepared by pulsed dc magnetron sputtering using an Nb-doped TiO2 target. The as-grown films exhibit high resistivity whose resistance decreases by ˜2 × 104-fold upon vacuum annealing. The ˜40% Nb-doped anatase TiO2 film shows a low resistivity of 5.7 × 10-4 Ω cm and a high electron concentration of 3.07 × 1021 cm-3. Combined in situ x-ray photoelectron spectroscopy (XPS) measurement and density-functional theory (DFT) calculations show that oxygen interstitial (Oint) and Nb interstitial (Nbint) defect clusters introduce localized shallow p-type accepter states that trap the electrons and reduce the conductivity. These defect clusters can be eliminated by vacuum annealing which is companied by outward diffusion of Nb. As a result, the trapped electrons backfill the Ti sites which are delocalized to promote conductivity.

  13. Spin relaxation through lateral spin transport in heavily doped n -type silicon

    NASA Astrophysics Data System (ADS)

    Ishikawa, M.; Oka, T.; Fujita, Y.; Sugiyama, H.; Saito, Y.; Hamaya, K.

    2017-03-01

    We experimentally study temperature-dependent spin relaxation including lateral spin diffusion in heavily doped n -type silicon (n+-Si ) layers by measuring nonlocal magnetoresistance in small-sized CoFe/MgO/Si lateral spin-valve (LSV) devices. Even at room temperature, we observe large spin signals, 50-fold the magnitude of those in previous works on n+-Si . By measuring spin signals in LSVs with various center-to-center distances between contacts, we reliably evaluate the temperature-dependent spin diffusion length (λSi) and spin lifetime (τSi). We find that the temperature dependence of τSi is affected by that of the diffusion constant in the n+-Si layers, meaning that it is important to understand the temperature dependence of the channel mobility. A possible origin of the temperature dependence of τSi is discussed in terms of the recent theories by Dery and co-workers.

  14. Diameter-driven crossover in resistive behaviour of heavily doped self-seeded germanium nanowires

    PubMed Central

    Connaughton, Stephen; Koleśnik-Gray, Maria; Hobbs, Richard; Lotty, Olan; Holmes, Justin D

    2016-01-01

    Summary The dependence of the resistivity with changing diameter of heavily-doped self-seeded germanium nanowires was studied for the diameter range 40 to 11 nm. The experimental data reveal an initial strong reduction of the resistivity with diameter decrease. At about 20 nm a region of slowly varying resistivity emerges with a peak feature around 14 nm. For diameters above 20 nm, nanowires were found to be describable by classical means. For smaller diameters a quantum-based approach was required where we employed the 1D Kubo–Greenwood framework and also revealed the dominant charge carriers to be heavy holes. For both regimes the theoretical results and experimental data agree qualitatively well assuming a spatial spreading of the free holes towards the nanowire centre upon diameter reduction. PMID:27826502

  15. Synthesis of fluorine-doped α-Fe2O3 nanorods toward enhanced lithium storage capability

    NASA Astrophysics Data System (ADS)

    Wang, Chundong; Zhang, Yi; Li, Yi; Liu, Jiabin; Wu, Qi-Hui; Jiang, Jianjun; Li, Yang Yang; Lu, Jian

    2017-02-01

    Nanostructured fluorine-doped α-Fe2O3 nanorods were synthesized based on a one-step low temperature hydrothermal method. The XPS results verified that fluorine has been successfully incorporated into the hematite lattice. The delivered lithium capacity was effectively improved owing to the fluorine doping comparing with the pristine α-Fe2O3. The increase in electrochemical capacity of fluorine-doped α-Fe2O3 was then studied from the pointviews of nanostructure, electronic properties, and magnetic characteristics.

  16. Tunable light filtering by a Bragg mirror/heavily doped semiconducting nanocrystal composite.

    PubMed

    Kriegel, Ilka; Scotognella, Francesco

    2015-01-01

    Tunable light filters are critical components for many optical applications in which light in-coupling, out-coupling or rejection is crucial, such as lasing, sensing, photovoltaics and information and communication technology. For this purpose, Bragg mirrors (band-pass filters with high reflectivity) represent good candidates. However, their optical characteristics are determined during the fabrication stage. Heavily doped semiconductor nanocrystals (NCs), on the other hand, deliver a high degree of optical tunability through the active modulation of their carrier density, ultimately influencing their plasmonic absorption properties. Here, we propose the design of an actively tunable light filter composed of a Bragg mirror and a layer of plasmonic semiconductor NCs. We demonstrate that the filtering properties of the coupled device can be tuned to cover a wide range of frequencies from the visible to the near infrared (vis-NIR) spectral region when employing varying carrier densities. As the tunable component, we implemented a dispersion of copper selenide (Cu2-xSe) NCs and a film of indium tin oxide (ITO) NCs, which are known to show optical tunablility with chemical or electrochemical treatments. We utilized the Mie theory to describe the carrier-dependent plasmonic properties of the Cu2-x Se NC dispersion and the effective medium theory to describe the optical characteristics of the ITO film. The transmission properties of the Bragg mirror have been modelled with the transfer matrix method. We foresee ease of experimental realization of the coupled device, where filtering modulation is achieved upon chemical and electrochemical post-fabrication treatment of the heavily doped semiconductor NC component, eventually resulting in tunable transmission properties of the coupled device.

  17. Tunable light filtering by a Bragg mirror/heavily doped semiconducting nanocrystal composite

    PubMed Central

    Kriegel, Ilka

    2015-01-01

    Summary Tunable light filters are critical components for many optical applications in which light in-coupling, out-coupling or rejection is crucial, such as lasing, sensing, photovoltaics and information and communication technology. For this purpose, Bragg mirrors (band-pass filters with high reflectivity) represent good candidates. However, their optical characteristics are determined during the fabrication stage. Heavily doped semiconductor nanocrystals (NCs), on the other hand, deliver a high degree of optical tunability through the active modulation of their carrier density, ultimately influencing their plasmonic absorption properties. Here, we propose the design of an actively tunable light filter composed of a Bragg mirror and a layer of plasmonic semiconductor NCs. We demonstrate that the filtering properties of the coupled device can be tuned to cover a wide range of frequencies from the visible to the near infrared (vis–NIR) spectral region when employing varying carrier densities. As the tunable component, we implemented a dispersion of copper selenide (Cu2−xSe) NCs and a film of indium tin oxide (ITO) NCs, which are known to show optical tunablility with chemical or electrochemical treatments. We utilized the Mie theory to describe the carrier-dependent plasmonic properties of the Cu2−x Se NC dispersion and the effective medium theory to describe the optical characteristics of the ITO film. The transmission properties of the Bragg mirror have been modelled with the transfer matrix method. We foresee ease of experimental realization of the coupled device, where filtering modulation is achieved upon chemical and electrochemical post-fabrication treatment of the heavily doped semiconductor NC component, eventually resulting in tunable transmission properties of the coupled device. PMID:25671163

  18. Synthesis, characterization and photocatalytic activity of fluorine doped TiO2 nanoflakes synthesized using solid state reaction method.

    PubMed

    Umadevi, M; Parimaladevi, R; Sangari, M

    2014-01-01

    Fluorine doped TiO2 were synthesized by solid state reaction method. Optical and structural properties of fluorine doped TiO2 were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, UV-vis diffusion reflectance spectroscopy and scanning electron microscopic techniques. The prepared fluorine doped TiO2 was smaller in size with respect to pure TiO2 and it is tetragonal in crystalline structure. Nanoflakes like structure of pure and fluorine doped TiO2 was confirmed from SEM image. Fluorine doped TiO2 shows smaller band gap, high strain and dislocation density when compared to pure TiO2. It also has higher photocatalytic activity with respect to pure TiO2.

  19. Raman spectra of lithium niobate crystals heavily doped with zinc and magnesium

    NASA Astrophysics Data System (ADS)

    Sidorov, N. V.; Palatnikov, M. N.

    2016-12-01

    We have examined the Raman spectra of heavily doped lithium niobate single crystals (at close-to-threshold concentrations of doping cations): LiNbO3:Zn (4.5 mol % ZnO), LiNbO3:Mg (5.01 mol %):Fe (0.005 mol %), LiNbO3:Mg (5.1 mol %), and LiNbO3:Mg (5.3 mol % MgO). Low-intensity lines with frequencies at 209, 230, 298, 694, and 880 cm-1 have been revealed for the first time. Analysis of the data from the literature on lattice dynamics calculations from first principles (ab initio) does not make it possible to unambiguously state that these lines correspond to fundamental vibrations of the A2 symmetry species, which are forbidden for the C3 V 6 ( R3c) space group. At the same time, ab initio calculations unambiguously indicate that the experimentally observed low-intensity "superfluous" lines with the frequencies at 104 and 119 cm-1 cannot correspond to vibrations of the A2 symmetry species. It is most likely that they correspond to two-particle states of acoustic phonons with a total wave vector equal to zero.

  20. Absence of superconductivity in fluorine-doped neptunium pnictide NpFeAsO.

    PubMed

    Walters, A C; Walker, H C; Springell, R; Krisch, M; Bosak, A; Hill, A H; Zvorişte-Walters, C E; Colineau, E; Griveau, J-C; Bouëxière, D; Eloirdi, R; Caciuffo, R; Klimczuk, T

    2015-08-19

    X-ray diffraction, specific heat, magnetic susceptibility and inelastic x-ray scattering measurements on the transurarium oxypnictides NpFeAsO and NpFeAsO0.85F0.15 are presented. No superconductivity down to 2 K was observed upon fluorine doping, contrary to the structurally analogous rare-earth pnictides. No modification of the phonon density of states was observed upon doping with fluorine. We discuss our results in light of the latest experimental and theoretical studies on the role of phonons in the superconducting pnictide compounds.

  1. Absence of superconductivity in fluorine-doped neptunium pnictide NpFeAsO

    NASA Astrophysics Data System (ADS)

    Walters, A. C.; Walker, H. C.; Springell, R.; Krisch, M.; Bosak, A.; Hill, A. H.; Zvorişte-Walters, C. E.; Colineau, E.; Griveau, J.-C.; Bouëxière, D.; Eloirdi, R.; Caciuffo, R.; Klimczuk, T.

    2015-08-01

    X-ray diffraction, specific heat, magnetic susceptibility and inelastic x-ray scattering measurements on the transurarium oxypnictides NpFeAsO and NpFeAsO0.85F0.15 are presented. No superconductivity down to 2 K was observed upon fluorine doping, contrary to the structurally analogous rare-earth pnictides. No modification of the phonon density of states was observed upon doping with fluorine. We discuss our results in light of the latest experimental and theoretical studies on the role of phonons in the superconducting pnictide compounds.

  2. Electrical resistivity, Debye temperature, and connectivity in heavily doped bulk MgB2 superconductors

    NASA Astrophysics Data System (ADS)

    Susner, M. A.; Bhatia, M.; Sumption, M. D.; Collings, E. W.

    2009-05-01

    The measured transport critical current densities, Jc, of MgB2 superconductors fall short of their intrinsic Jcs on account of the grain boundary blockage, sausaging, and porosity seen in most powder-processed wire samples. Hence, it becomes important to understand and to be able to measure the degree of what can be referred to as "connectivity" in order to be able to assess the highest attainable Jc in a given class of samples. In this paper connectivity is determined with the aid of normal state resistivity in an extension of the model originally proposed by Rowell. The normal-state resistivity temperature dependence is fitted to a standard Bloch-Grüneisen (B-G) equation in the range 50-300 K. Such an approach leads not only to a connectivity parameter but also to other useful data: the actual intragrain residual resistivity (indirectly related to the upper critical field) and a resistively determined Debye temperature, θR. The latter quantity, coupled to the transition temperature, Tc, provides a measure (by way of the McMillan formula) of the electron-phonon coupling constant, usually designated λ. The B-G-based connectivity model was applied to our own experimental data on binary and heavily doped MgB2 samples as well as published resistivity data. To complete the study, low temperature specific heat measurements, performed on binary and doped bulk samples provided calorimetrically determined Debye temperatures, θD, for comparison to the resistively determined values and excellent agreement was found. Calorimetric measurements also probed the homogeneity of the doped samples in terms of the roundness of the electronic specific heat jump near Tc.

  3. Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding.

    PubMed

    Dong, Liang; McKay, Hugh A; Fu, Libin; Ohta, Michiharu; Marcinkevicius, Andrius; Suzuki, Shigeru; Fermann, Martin E

    2009-05-25

    All glass leakage channel fibers have been demonstrated to be a potential practical solution for power scaling in fiber lasers beyond the nonlinear limits in conventional large mode area fibers. The all glass nature with absence of any air holes is especially useful for allowing the fibers to be used and fabricated much like conventional fibers. Previously, double clad active all glass leakage channel fibers used low index polymer as a pump guide with the drawbacks of being less reliable at high pump powers and not being able to change fiber outer diameter independent of pump guide dimension. In this work, we demonstrate, for the first time, ytterbium-doped double clad all glass leakage channel fibers with highly fluorine-doped silica as pump cladding. The new all glass leakage channel fibers have no polymer in the pump path and have independent control of fiber outer diameters and pump cladding dimension, and, therefore, enable designs with smaller pump guide for high pump absorption and, at the same time, with large fiber diameters to minimize micro and macro bending effects, a much desired features for large core fibers where intermodal coupling can be an issue due to a much increased mode density. An ytterbium-doped double clad PM fiber with core diameter of 80 microm is also reported, which can be coiled in 76 cm diameter coils.

  4. A Frequency-Independent Vibrational Energy Harvester using Symmetrically Charged Comb-Drive Electrodes with Heavily Doped Ion Electrets

    NASA Astrophysics Data System (ADS)

    Mitsuya, H.; Ashizawa, H.; Ishibashi, K.; Homma, H.; Ataka, M.; Hashiguchi, G.; Fujita, H.; Toshiyoshi, H.

    2016-11-01

    An energy harvester has been developed to efficiently earn energy from both cyclic and impulse vibrations by using a symmetric pair of comb-electrodes that are heavily doped with potassium-ions to form electrets. By equalizing the electromechanical forces on the opposing comb-drives, energy conversion efficiency is enhanced for both impulses and broad-frequency harmonic vibrations.

  5. Effect of fluorine doped TiO2 on the property of perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Zhang, X. Q.; Wu, Y. P.; Huang, Y.; Zhou, Z. H.; Shen, S.

    2017-03-01

    Anatase TiO2 nanoparticles with different amounts of fluorine doping were synthesized by a hydrothermal method using hydrogen titanate nanotubes as a precursor and applied as mesoporous layer for preparing perovskite solar cell. The morphology and structures were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD), meanwhile, the properties and performances were tested by photoluminescence spectrum (PL) and current density and voltage (J-V) curve. It was found that doping fluorine into TiO2 made the photoelectric conversion efficiency (PCE) of perovskite solar cell (PSC) to be improved. The best PCE of PSC based on a F-doped TiO2 was 13.06% and increased by 51% compared to an un-doped TiO2. The study provided a direction for the exploration of high performance electron transport layer of perovskite solar cell.

  6. Interaction of surface plasmon polaritons in heavily doped GaN microstructures with terahertz radiation

    NASA Astrophysics Data System (ADS)

    Melentev, G. A.; Shalygin, V. A.; Vorobjev, L. E.; Panevin, V. Yu.; Firsov, D. A.; Riuttanen, L.; Suihkonen, S.; Korotyeyev, V. V.; Lyaschuk, Yu. M.; Kochelap, V. A.; Poroshin, V. N.

    2016-03-01

    We present the results of experimental and theoretical studies of the surface plasmon polariton excitations in heavily doped GaN epitaxial layers. Reflection and emission of radiation in the frequency range of 2-20 THz including the Reststrahlen band were investigated for samples with grating etched on the sample surface, as well as for samples with flat surface. The reflectivity spectrum for p-polarized radiation measured for the sample with the surface-relief grating demonstrates a set of resonances associated with excitations of different surface plasmon polariton modes. Spectral peculiarities due to the diffraction effect have been also revealed. The characteristic features of the reflectivity spectrum, namely, frequencies, amplitudes, and widths of the resonance dips, are well described theoretically by a modified technique of rigorous coupled-wave analysis of Maxwell equations. The emissivity spectra of the samples were measured under epilayer temperature modulation by pulsed electric field. The emissivity spectrum of the sample with surface-relief grating shows emission peaks in the frequency ranges corresponding to the decay of the surface plasmon polariton modes. Theoretical analysis based on the blackbody-like radiation theory well describes the main peculiarities of the observed THz emission.

  7. Slow magnetic fluctuations and superconductivity in fluorine-doped NdFeAsO

    NASA Astrophysics Data System (ADS)

    Lamura, G.; Shiroka, T.; Bonfà, P.; Sanna, S.; De Renzi, R.; Putti, M.; Zhigadlo, N. D.; Katrych, S.; Khasanov, R.; Karpinski, J.

    2015-01-01

    Among the widely studied superconducting iron-pnictide compounds belonging to the Ln1111 family (with Ln a lanthanide), a systematic investigation of the crossover region between the superconducting and the antiferromagnetic phase for the Ln = Nd case has been missing. We fill this gap by focusing on the intermediate doping regime of NdFeAsO1 -xFx by means of dc-magnetometry and muon-spin spectroscopy (μ SR ) measurements. The long-range order we detect at low fluorine doping is replaced by short-range magnetic interactions at x =0.08 , where also superconductivity appears. In this case, longitudinal-field μ SR experiments show clear evidence of slow magnetic fluctuations that disappear at low temperatures. This fluctuating component is ascribed to the glassy-like character of the magnetically ordered phase of NdFeAsO at intermediate fluorine doping.

  8. Fluorine doping effects on the magnetic and electric properties of BiFeO3

    NASA Astrophysics Data System (ADS)

    Hu, Y. C.; Jiang, Z. Z.; Gao, K. G.; Cheng, G. F.; Ge, J. J.; Lv, X. M.; Wu, X. S.

    2012-05-01

    Electron-doping introduced fluorine (F) replacement of the oxygen in BiFeO3 (BFO) can be compensated by the valence change of iron from Fe3+ to Fe2+. We successfully incorporate F in BFO by sol-gel method. F-doping is found to significantly enhance the ferromagnetism up to nearly two order for x = 0.25 compared with x = 0. This study provides direct evidence that the multiferroic characteristics of BiFeO3 are sensitive to the anion doping, such as F, providing a convenient alternative to manipulate the magnetization and electric polarization in multiferroic oxides.

  9. Energy-gap reduction in heavily doped silicon: Causes and consequences

    NASA Astrophysics Data System (ADS)

    Pantelides, Sokrates T.; Selloni, Annabella; Car, Roberto

    1985-02-01

    The authors review briefly the existing theoretical treatments of the various effects that contribute to the reduction of the energy gap in heavily doped Si, namely electron-electron and electron-impurity interactions and the effect of disorder in the impurity distribution. They then turn to the longstanding question why energy-gap reductions extracted from three different types of experiments have persistently produced values with substantial discrepancies, making it impossible to compare with theoretical values. First, they demonstrate that a meaningful comparison between theory and experiment can indeed be made if theoretical calculations are carried out for actual quantities that experiments measure, e.g. luminescence spectra, as recently done by Selloni and Pantelides. Then, they demonstrate that, independent of any theoretical calculations, the optical absorption spectra are fully consistent with the luminescence spectra and that the discrepancies in the energy-gap reductions extracted from the two sets of spectra are caused entirely by the curve-fitting procedures used in analyzing optical-absorption data. Finally, they show explicitly that, as already believed by many authors, energy-gap reductions extracted from electrical measurements on transistors do not correspond to true gap reductions. They identify two corrections that must be added to the values extracted from the electrical data in order to arrive at the true gap reductions and show that the resulting values are in good overall agreement with luminescence and absorption data. They, therefore, demonstrate that the observed reduction in emitter injection efficiency in bipolar transistors is not strictly due to a gap reduction, as generally believed, but to three very different effects.

  10. Investigation of fluorine adsorption on nitrogen doped MgAl2O4 surface by first-principles

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Xu, Zhenming; Li, Jie; Chen, Jiangan; Liu, Qingsheng

    2016-07-01

    The nature of fluorine adsorption on pure and N doped MgAl2O4 surface has been investigated by first-principles calculations based on the density functional theory. Calculated results indicate that MgAl2O4 surface is fluorine-loving, not hydrophilic. Nitrogen doped MgAl2O4 (100) surface shows the highest fluorine adsorption performance and fluorine atom preferentially adsorbs on the Mg-Al bridge site. The fluorine adsorption intensity follow this order: Nitrogen doped MgAl2O4 (100) > Al2O3 (0001) > MgAl2O4 (100) > MgO (100). In-depth PDOS analysis suggested that 2p orbitals of F atom strongly hybridized with 3s- and 3p-orbitals of Al atom contribute to its high adsorption intensity. According to the analysis of Hirshfeld charge, the excellent fluorine adsorption performance of nitrogen doped MgAl2O4 attributes to the electron compensation effect of nitrogen atom and strong electrostatic interactions. All these evidences demonstrate a fact nitrogen doped MgAl2O4 is a promising candidate for fluorine removal.

  11. Pairing mechanism of heavily electron doped FeSe systems: dynamical tuning of the pairing cutoff energy

    NASA Astrophysics Data System (ADS)

    Bang, Yunkyu

    2016-11-01

    We studied the pairing mechanism of the heavily electron doped FeSe (HEDIS) systems, which commonly have one incipient hole band—a band top below the Fermi level by a finite energy distance ε b —at Γ point and ordinary electron bands at M points in Brillouin zone (BZ). We found that the system allows two degenerate superconducting solutions with the exactly same T c in clean limit: the incipient {s}{he}+/- -gap ({{{Δ }}}h-\

  12. Investigation on the magnetic and electrical properties of fluorine-doped magnetites

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Li, Ran; Chen, Qianwang

    2012-08-01

    A fluorine-doped magnetite was synthesized using ferroferric oxide (Fe3O4) powder and ammonium fluoride (NH4F) as starting materials by a hydrothermal method and by subsequently annealing in vacuum atmosphere at 1450 °C. The content of fluorine dopants was measured by x-ray electron spectroscopy. When an oxygen atom was replaced by a fluorine atom, it would introduce one excess electron to reduce an Fe3+ ion to an Fe2+ ion in a tetrahedral A site for charge compensation, leading to a large variation in magnetic and electrical properties. The appearance of Fe2+ ions in the tetrahedral A sites caused a decrease in the spin magnetic moment, resulting in an increase in the Landé g-factor between 110 and 200 K, and the magnetic susceptibility in the range 10-350 K. At the same time, the electrons of the Fe2+ ions in A sites may escape and turn into new carriers in the presence of an electrical bias field, resulting in a reduction in the resistance of the fluorine-doped magnetite from 30 to 292 K.

  13. Superconductivity in fluorine and yttrium co-doped SmFeAsO

    NASA Astrophysics Data System (ADS)

    Lai, K. T.; Kwong, F. L.; Ng, Dickon H. L.

    2012-05-01

    Polycrystalline fluorine and yttrium co-doped SmFeAsO samples are synthesized by solid state sintering and their physical properties are studied. The lattice parameters of the Sm1-yYyFeAsO0.8F0.2 samples decrease with the increasing y due to the smaller Y ions and the stiffness of the Y-O bond. The maximum critical temperature Tc of the samples is at y = 0.05. This may be due to the fact that the strong interaction between Sm and Fe of the Fe-As bond is being re-disturbed by the doped Y ions.

  14. Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass

    NASA Astrophysics Data System (ADS)

    Koike, Akio; Sugimoto, Naoki

    2006-02-01

    Temperature dependences of optical path length (dS/dT; calculated using the equation, dS/dT = dn/dT + na, where a is coefficient of thermal expansion, n is refractive index and dn/dT is temperature coefficient of refractive index) in various oxide glasses were investigated. The dS/dT is generally difficult to adjust by change of glass composition because dn/dT and a are interrelated. However, low dS/dT materials are desired for optical applications such as athermal devices, and high dS/dT materials can be used for thermo-optic devices. Pure silica glass is well-known as a typical low dS/dT material but still not sufficient. Fluorine-doped silica glass showed a lower dS/dT than that of pure silica glass. By fluorine-doping in silica glass, refractive index and dn/dT decreased but a near room temperature stayed at the same level. As a result, the dS/dT decreased with increasing fluorine concentration. On the other hand, bismuthate glass showed the highest dS/dT in this study. Most glasses having high a such as tellurite glass showed negative dn/dT. However, bismuthate glasses showed positive dn/dT in spite of high a. As a result, bismuthate glasses showed quite high dS/dT. These results indicate that dS/dT of the glass can be controllable and that fluorine doped silica glass and bismuthate glass are appropriate candidate materials for optical applications.

  15. Preparation of silica coatings heavily doped with spiropyran using perhydropolysilazane as the silica source and their photochromic properties.

    PubMed

    Yamano, Akihiro; Kozuka, Hiromitsu

    2009-04-30

    Silica coatings doped with spiropyran (SP) were prepared using xylene solutions of perhydropolysilazane (PHPS) as the silica source, where the SP-doped PHPS coatings were prepared by spin-coating and the PHPS-to-silica conversion was achieved by exposing the coatings to the vapor from aqueous ammonia at room temperature. The films could be heavily doped with SP at SP/(SP + PHPS) mass ratio as high as 0.2. The as-deposited SP-doped PHPS films were transparent and light-yellow, which turned to red as the PHPS-to-silica conversion proceeded, where the absorbance at 500 nm increased. When the films were stored in air in the dark for 73 h after the exposure treatment, the absorbance at 500 nm further increased, where the film turned from red to dark red. The SP-doped silica coatings thus obtained showed reversible photochromic reaction, where the absorbance at 500 nm decreased and increased when the films were irradiated with visible and ultraviolet light, respectively. The pencil hardness of the films was higher than 9H at a load of 1 kg, while significant amount of SP was leached out when the films were soaked in xylene.

  16. Current-voltage spectroscopy of dopant-induced quantum-dots in heavily n-doped junctionless nanowire transistors

    SciTech Connect

    Wang, Hao; Han, Weihua Ma, Liuhong; Li, Xiaoming; Hong, Wenting; Yang, Fuhua

    2014-03-31

    We demonstrate current-voltage spectroscopy of dopant-induced quantum dots in heavily n-doped junctionless nanowire transistors (JNTs) at low temperatures. The similar multiple-split current peak features for both single-channel and multiple-channel JNTs are found at the initial stage of conduction below the temperature of 75 K. The temperature stability of the pinch-off voltage, affected by activated electrons from defects and donor ionization, has been effectively improved by the 20 nm-width nanowires. The transition temperature for single electron tunneling to thermal activated transport is dependent on the ionization energy of dopants.

  17. Tunable doping and band gap of graphene on functionalized hexagonal boron nitride with hydrogen and fluorine.

    PubMed

    Tang, Shaobin; Yu, Jianping; Liu, Liangxian

    2013-04-14

    First-principles calculations have been used to investigate the structural and electronic properties of graphene supported on functionalized hexagonal boron nitride (h-BN) with hydrogen and fluorine atoms. Our results show that the hydrogenation and fluorination of the h-BN substrate modify the electronic properties of graphene. Interactions of graphene with fully hydrogenated or fully fluorinated h-BN and half-hydrogenated and half-fluorinated h-BN with H at N sites and F at the B sites can lead to n- or p-type doping of graphene. The different doping effect may be attributed to the significant charge transfer from graphene to the substrate. Interestingly, when graphene is supported on the functionalized h-BN with H at B sites and F at N sites (G/HBNF), a finite band gap of 79 meV in graphene is opened due to the equivalence breaking of two sublattices of graphene, and can be effectively modulated by changing the interlayer spacing, increasing the number of functionalized BN layers, and applying an external electric field. More importantly, the modification of the band gap in G/HBNF with a functionalized BN bilayer by the electric field is more pronounced than that of the single-layer h-BN, which is increased to 408 meV with 0.8 V Å(-1). Thus, graphene on chemically modified h-BN with a tunable and sizeable band gap may provide a novel way for fabricating high-performance graphene-based nanodevices.

  18. Features of the band structure and conduction mechanisms of n-HfNiSn semiconductor heavily Lu-doped

    SciTech Connect

    Romaka, V. A.; Rogl, P.; Romaka, V. V.; Kaczorowski, D.; Stadnyk, Yu. V.; Korzh, R. O.; Krayovskyy, V. Ya.; Kovbasyuk, T. M.

    2015-03-15

    The crystal and electronic structures, energy, kinetic, and magnetic characteristics of n-HfNiSn semiconductor heavily doped with a Lu acceptor impurity in the ranges T = 80–400 K and N{sub A}{sup Lu} ≈ 1.9 × 10{sup 20}−1.9 × 10{sup 21} cm{sup −3} (x = 0.01–0.10) at H ≤ 10 kG is studied. The nature of the structural-defect generation mechanism leading to changes in the band gap and the degree of semiconductor compensation is determined. Its essence is the simultaneous reduction and elimination of donor-type structural defects due to the displacement of ∼1% of Ni atoms from the Hf (4a) site, the generation of acceptor-type structural defects by substituting Ni atoms with Lu atoms at the 4c site, and the generation of donor-type defects such as vacancies at the Sn (4b) site. The results of calculations of the electronic structure of Hf{sub 1−x}Lu{sub x}NiSn are in agreement with experimental data. The results are discussed within the model of a heavily doped and compensated Shklovskii-Efros semiconductor.

  19. Features of the band structure and conduction mechanisms in the n-HfNiSn semiconductor heavily doped with Ru

    SciTech Connect

    Romaka, V. A.; Rogl, P.; Romaka, V. V.; Stadnyk, Yu. V.; Korzh, R. O.; Krayovskyy, V. Ya.; Horyn, A. M.

    2014-12-15

    The crystal and electronic structure and energy and kinetic properties of the n-HfNiSn semiconductor heavily doped with a Ru acceptor impurity are investigated in the temperature and Ru concentration ranges T = 80–400 K and N{sub A}{sup Ru} ≈ 9.5 × 10{sup 19}−5.7 × 10{sup 20} cm{sup −3} (x = 0–0.03), respectively. The mechanism of structural-defect generation is established, which changes the band gap and degree of compensation of the semiconductor and consists in the simultaneous concentration reduction and elimination of donor structural defects by means of the displacement of ∼1% of Ni atoms from the Hf (4a) positions, the generation of acceptor structural defects upon the substitution of Ru atoms for Ni atoms in the 4c positions, and the generation of donor defects in the form of vacancies in the Sn (4b) positions. The calculated electronic structure of HfNi{sub 1−x}Ru{sub x}Sn is consistent with the experiment. The results obtained are discussed within the Shklovsky-Efros model for a heavily doped and compensated semiconductor.

  20. Toward deep blue nano hope diamonds: heavily boron-doped diamond nanoparticles.

    PubMed

    Heyer, Steffen; Janssen, Wiebke; Turner, Stuart; Lu, Ying-Gang; Yeap, Weng Siang; Verbeeck, Jo; Haenen, Ken; Krueger, Anke

    2014-06-24

    The production of boron-doped diamond nanoparticles enables the application of this material for a broad range of fields, such as electrochemistry, thermal management, and fundamental superconductivity research. Here we present the production of highly boron-doped diamond nanoparticles using boron-doped CVD diamond films as a starting material. In a multistep milling process followed by purification and surface oxidation we obtained diamond nanoparticles of 10-60 nm with a boron content of approximately 2.3 × 10(21) cm(-3). Aberration-corrected HRTEM reveals the presence of defects within individual diamond grains, as well as a very thin nondiamond carbon layer at the particle surface. The boron K-edge electron energy-loss near-edge fine structure demonstrates that the B atoms are tetrahedrally embedded into the diamond lattice. The boron-doped diamond nanoparticles have been used to nucleate growth of a boron-doped diamond film by CVD that does not contain an insulating seeding layer.

  1. Poor fluorinated graphene sheets carboxymethylcellulose polymer composite mode locker for erbium doped fiber laser

    NASA Astrophysics Data System (ADS)

    Mou, Chengbo; Arif, Raz; Lobach, Anatoly S.; Khudyakov, Dmitry V.; Spitsina, Nataliya G.; Kazakov, Valery A.; Turitsyn, Sergei; Rozhin, Aleksey

    2015-02-01

    We report poor fluorinated graphene sheets produced by thermal exfoliation embedding in carboxymethylcellulose polymer composite (GCMC) as an efficient mode locker for erbium doped fiber laser. Two GCMC mode lockers with different concentration have been fabricated. The GCMC based mode locked fiber laser shows stable soliton output pulse shaping with repetition rate of 28.5 MHz and output power of 5.5 mW was achieved with the high concentration GCMC, while a slightly higher output power of 6.9 mW was obtained using the low concentration GCMC mode locker.

  2. Poor fluorinated graphene sheets carboxymethylcellulose polymer composite mode locker for erbium doped fiber laser

    SciTech Connect

    Mou, Chengbo E-mail: a.rozhin@aston.ac.uk; Turitsyn, Sergei; Rozhin, Aleksey E-mail: a.rozhin@aston.ac.uk; Arif, Raz; Lobach, Anatoly S.; Spitsina, Nataliya G.; Khudyakov, Dmitry V.; Kazakov, Valery A.

    2015-02-09

    We report poor fluorinated graphene sheets produced by thermal exfoliation embedding in carboxymethylcellulose polymer composite (GCMC) as an efficient mode locker for erbium doped fiber laser. Two GCMC mode lockers with different concentration have been fabricated. The GCMC based mode locked fiber laser shows stable soliton output pulse shaping with repetition rate of 28.5 MHz and output power of 5.5 mW was achieved with the high concentration GCMC, while a slightly higher output power of 6.9 mW was obtained using the low concentration GCMC mode locker.

  3. Investigation of fluorine-doped tin oxide based optically transparent E-shaped patch antenna for terahertz communications

    SciTech Connect

    Anand, S. E-mail: darak.mayur@gmail.com Darak, Mayur Sudesh E-mail: darak.mayur@gmail.com Kumar, D. Sriram E-mail: darak.mayur@gmail.com

    2014-10-15

    In this paper, a fluorine-doped tin oxide based optically transparent E-shaped patch antenna is designed and its radiation performance is analyzed in the 705 – 804 GHz band. As optically transparent antennas can be mounted on optical display, they facilitate the reduction of overall system size. The proposed antenna design is simulated using electromagnetic solver - Ansys HFSS and its characteristics such as impedance bandwidth, directivity, radiation efficiency and gain are observed. Results show that the fluorine-doped tin oxide based optically transparent patch antenna overcomes the conventional patch antenna limitations and thus the same can be used for solar cell antenna used in satellite systems.

  4. Heavily-doped ZnO:Al thin films prepared by using magnetron Co-sputtering: Optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Moon, Eun-A.; Jun, Young-Kil; Kim, Nam-Hoon; Lee, Woo-Sun

    2016-07-01

    Photovoltaic applications require transparent conducting-oxide (TCO) thin films with high optical transmittance in the visible spectral region (380 - 780 nm), low resistivity, and high thermal/chemical stability. The ZnO thin film is one of the most common alternatives to the conventional indium-tin-oxide (ITO) thin film TCO. Highly transparent and conductive ZnO thin films can be prepared by doping with group III elements. Heavily-doped ZnO:Al (AZO) thin films were prepared by using the RF magnetron co-sputtering method with ZnO and Al targets to obtain better characteristics at a low cost. The RF sputtering power to each target was varied to control the doping concentration in fixed-thickness AZO thin films. The crystal structures of the AZO thin films were analyzed by using X-ray diffraction. The morphological microstructure was observed by using scanning electron microscopy. The optical transmittance and the band gap energy of the AZO thin films were examined with an UV-visible spectrophotometer in the range of 300 - 1800 nm. The resistivity and the carrier concentration were examined by using a Hall-effect measurement system. An excellent optical transmittance > 80% with an appropriate band gap energy (3.26 - 3.27 eV) and an improved resistivity (~10 -1 Ω·cm) with high carrier concentration (1017 - 1019 cm -3) were demonstrated in 350-nm-thick AZO thin films for thin-film photovoltaic applications.

  5. X-ray absorption fine structure study of heavily P doped (111) and (001) diamond

    NASA Astrophysics Data System (ADS)

    Shikata, Shinichi; Yamaguchi, Koji; Fujiwara, Akihiko; Tamenori, Yusuke; Yahiro, Jumpei; Kunisu, Masahiro; Yamada, Takatoshi

    2017-02-01

    X-ray absorption fine structure (XANES) measurements were carried out for P doped (111) and (001) diamond films, and the results were compared with those from simulations. For the (111) spectrum, the main strong peak observed at 2147.0 eV and three broad peaks centered at 2150 eV, 2157 eV, and 2165 eV were observed. The assignment with the estimation by the simulation of the XANES peaks showed the interstitial sites additional to the substitutional site. The Extended X-ray Absorption Fine Structure (EXAFS) result of the P doped (111) diamond showed that the first and second neighboring peaks are observed at 1.21 A and 2.0 A, respectively. The assignment with the estimation by the simulation of the EXAFS peaks also showed the interstitial sites additional to the substitutional site. Overall, P in diamonds presumably has dopant sites in both the substitutional and interstitial sites.

  6. Fluorine-doped antiperovskite electrolyte for all-solid-state Lithium-ion batteries

    SciTech Connect

    Li, Yutao; Zhou, Weidong; Xin, Sen; Li, Shuai; Zhu, Jinlong; Lu, Xujie; Cui, Zhiming; Jia, Quanxi; Zhou, Jianshi; Zhao, Yusheng; Goodenough, John B.

    2016-06-30

    A fluorine-doped antiperovskite Li-ion conducto Li2(OH)X (X=Cl, Br) is shown to be a promising candidat for a solid electrolyte in an all-solid-state Li-ion rechargeabl battery. Substitution of F¯ for OH¯ transforms orthorhombi Li2OHCl to a room-temperature cubic phase, which show electrochemical stability to 9 V versus Li+/Li and two orders o magnitude higher Li-ion conductivity than that of orthorhombi Li2OHCl. As a result, an all-solid-state Li/LiFePO4 with F-dope Li2OHCl as the solid electrolyte showed good cyclability an a high coulombic efficiency over 40 charge/discharge cycles

  7. Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries.

    PubMed

    Li, Yutao; Zhou, Weidong; Xin, Sen; Li, Shuai; Zhu, Jinlong; Lü, Xujie; Cui, Zhiming; Jia, Quanxi; Zhou, Jianshi; Zhao, Yusheng; Goodenough, John B

    2016-08-16

    A fluorine-doped antiperovskite Li-ion conductor Li2 (OH)X (X=Cl, Br) is shown to be a promising candidate for a solid electrolyte in an all-solid-state Li-ion rechargeable battery. Substitution of F(-) for OH(-) transforms orthorhombic Li2 OHCl to a room-temperature cubic phase, which shows electrochemical stability to 9 V versus Li(+) /Li and two orders of magnitude higher Li-ion conductivity than that of orthorhombic Li2 OHCl. An all-solid-state Li/LiFePO4 with F-doped Li2 OHCl as the solid electrolyte showed good cyclability and a high coulombic efficiency over 40 charge/discharge cycles.

  8. Fluorine-doped antiperovskite electrolyte for all-solid-state Lithium-ion batteries

    DOE PAGES

    Li, Yutao; Zhou, Weidong; Xin, Sen; ...

    2016-06-30

    A fluorine-doped antiperovskite Li-ion conducto Li2(OH)X (X=Cl, Br) is shown to be a promising candidat for a solid electrolyte in an all-solid-state Li-ion rechargeabl battery. Substitution of F¯ for OH¯ transforms orthorhombi Li2OHCl to a room-temperature cubic phase, which show electrochemical stability to 9 V versus Li+/Li and two orders o magnitude higher Li-ion conductivity than that of orthorhombi Li2OHCl. As a result, an all-solid-state Li/LiFePO4 with F-dope Li2OHCl as the solid electrolyte showed good cyclability an a high coulombic efficiency over 40 charge/discharge cycles

  9. Fluorine doping into diamond-like carbon coatings inhibits protein adsorption and platelet activation.

    PubMed

    Hasebe, Terumitsu; Yohena, Satoshi; Kamijo, Aki; Okazaki, Yuko; Hotta, Atsushi; Takahashi, Koki; Suzuki, Tetsuya

    2007-12-15

    The first major event when a medical device comes in contact with blood is the adsorption of plasma proteins. Protein adsorption on the material surface leads to the activation of the blood coagulation cascade and the inflammatory process, which impair the lifetime of the material. Various efforts have been made to minimize protein adsorption and platelet adhesion. Recently, diamond-like carbon (DLC) has received much attention because of their antithrombogenicity. We recently reported that coating silicon substrates with fluorine-doped diamond-like carbon (F-DLC) drastically suppresses platelet adhesion and activation. Here, we evaluated the protein adsorption on the material surfaces and clarified the relationship between protein adsorption and platelet behaviors, using polycarbonate and DLC- or F-DLC-coated polycarbonate. The adsorption of albumin and fibrinogen were assessed using a colorimetric protein assay, and platelet adhesion and activation were examined using a differential interference contrast microscope. A higher ratio of albumin to fibrinogen adsorption was observed on F-DLC than on DLC and polycarbonate films, indicating that the F-DLC film should prevent thrombus formation. Platelet adhesion and activation on the F-DLC films were more strongly suppressed as the amount of fluorine doping was increased. These results show that the F-DLC coating may be useful for blood-contacting devices.

  10. Surface functionalization of fluorine-doped tin oxide samples through electrochemical grafting.

    PubMed

    Lamberti, F; Agnoli, S; Brigo, L; Granozzi, G; Giomo, M; Elvassore, N

    2013-12-26

    Transparent conductive oxides are emerging materials in several fields, such as photovoltaics, photoelectrochemistry, and optical biosensing. Their high chemical inertia, which ensured long-term stability on one side, makes challenging the surface modification of transparent conductive oxides; long-term robust modification, high yields, and selective surface modifications are essential prerequisite for any further developments. In this work, we aim at inducing chemical functionality on fluorine-doped tin oxide surfaces (one of the most inexpensive transparent conductive oxide) by means of electrochemical grafting of aryl diazonium cations. The grafted layers are fully characterized by photoemission spectroscopy, cyclic voltammetry, and atomic force microscopy showing linear correlation between surface coverage and degree of modification. The electrochemical barrier effect of modified surfaces was studied at different pH to characterize the chemical nature of the coating. We showed immuno recognition of biotin complex built onto grafted fluorine-doped tin oxides, which opens the perspective of integrating FTO samples with biological-based devices.

  11. Electronic transport in heavily doped Ag/n-Si composite films

    NASA Astrophysics Data System (ADS)

    Bates, Clayton W.; Zhang, Chichang

    2013-10-01

    Hall measurements characterized Ag/n-Si composite films 1 micron thick produced by magnetron co-sputtering onto high resistivity Si (111) substrates at 550°C. The targets were Ag and n-type Si doped with 3 × 1019/cm3 of antimony. Films were prepared with 13, 16 and 22 at. % Ag and measured over a temperature range 77-500°K. Conduction takes place at low temperatures by variable rang hopping in localized states at the Fermi level and by thermal activation over grain boundaries at higher temperatures. The Log Resistivity vs 1/kT curves for the three Ag concentrations vary in a similar manner, but decrease in magnitude with increasing Ag due to the smaller number of grain boundaries between Ag nanoparticles occurring with increasing Ag concentration. At low temperatures Hall mobilities are essentially independent of temperature as the carrier densities for the three Ag concentrations are constant from 77 to slightly under 300°K with resistivities varying by small amounts. The mobilities at all Ag concentrations increase with temperature and approach each other as the effects of grain boundaries become less important. This work presents for the first time the effects of metal particles embedded in a semiconductor on the transport properties of carriers in the semiconductor. Though these effects are for a given average particle size most of the results are expected to hold over a range of particle sizes. Free electrons produced in films containing 13 and 16 at. % Ag result in concentrations of 1.5 × 1019/cm3, one half the antimony doping, while those with 22 at. % Ag, the carrier concentrations are three orders of magnitude higher. These constant carrier concentrations are due to the metal-insulator transition that occurs in doped crystalline and polycrystalline silicon for carrier densities nc >3.9 × 1018/cm3. The three orders of magnitude higher carrier concentration produced in films with 22 at. % Ag is argued to be due to doping of the Si matrix by the Ag

  12. Crystal Lattice Defects in MBE Grown Si Layers Heavily Doped with Er

    NASA Astrophysics Data System (ADS)

    Zakharov, N. D.; Werner, P.; Vdovin, V. I.; Denisov, D. V.; Sobolev, N. A.; Gösele, U.

    The main types of crystal structure defects in [Er]>2×1019 doped layers are: (i) spherical Er and (ii) ellipsoidal ErSi precipitates, as well as (iii) ErSi2 platelets on {111} planes. In the sample with [Er]=4x1019, small complexes consisting of tiny Er precipitates and four petals of ErSi2 platelets have been found additionally. The layer with [Er]= 8×1018 cm-3 was defect free. The formation of silicides from a supersaturated solid solution and Er precipitates is accompanied by the emission of vacancies V resulting in the formation of pores, V-V and V-Er complexes.

  13. Design Considerations for Heavily-Doped Cryogenic Schottky Diode Varactor Multipliers

    NASA Technical Reports Server (NTRS)

    Schlecht, E.; Maiwald, F.; Chattopadhyay, G.; Martin, S.; Mehdi, I.

    2001-01-01

    Diode modeling for Schottky varactor frequency multipliers above 500 GHz is presented with special emphasis placed on simple models and fitted equations for rapid circuit design. Temperature- and doping-dependent mobility, resistivity, and avalanche current multiplication and breakdown are presented. Next is a discussion of static junction current, including the effects of tunneling as well as thermionic emission. These results have been compared to detailed measurements made down to 80 K on diodes fabricated at JPL, followed by a discussion of the effect on multiplier efficiency. Finally, a simple model of current saturation in the undepleted active layer suitable for inclusion in harmonic balance simulators is derived.

  14. Characterization of the heavily doped emitter and junction regions of silicon solar cells using an electron beam

    NASA Technical Reports Server (NTRS)

    Luke, K. L.; Cheng, L.-J.

    1986-01-01

    Heavily doped emitter and junction regions of silicon solar cells are investigated by means of the electron-beam-induced-current (EBIC) technique. Although the experimental EBIC data are collected under three-dimensional conditions, it is analytically demonstrated with two numerical examples that the solutions obtained with one-dimensional numerical modeling are adequate. EBIC data for bare and oxide-covered emitter surfaces are compared with theory. The improvement in collection efficiency when an emitter surface is covered with a 100-A SiO2 film varies with beam energy; for a cell with a junction depth of 0.35 microns, the improvement is about 54 percent at 2 keV.

  15. Local Structure Around Te in Heavily Doped GaAs:Te using X-Ray Absorption Fine Structure

    SciTech Connect

    Pietnoczka, A.; Bacewicz, R.; Slupinski, T.; Antonowicz, J.; Wei, Su-Huai

    2012-04-01

    The annealing of heavily doped GaAs:Te can significantly change the free electron concentration in a reversible manner. These changes of electrical properties are accompanied by the structural changes of GaAs:Te solid solution. We used X-ray Absorption Fine Structure at K-edge of tellurium to determine local changes around Te atoms for different states of the GaAs:Te crystals caused by the annealing corresponding to different electron concentrations. The best EXAFS fit for the samples with high electron concentration was obtained for the substitutional Te{sub As} model with elongated Te-Ga bonds (as compared to the As-Ga distance). For the samples in the low concentration state the best fit was for the pairs of Te atoms forming a rhombohedral symmetry double-DX centre, with the proportional admixture of the substitutional tellurium.

  16. Electron transport behaviors through donor-induced quantum dot array in heavily n-doped junctionless nanowire transistors

    SciTech Connect

    Ma, Liuhong; Han, Weihua Wang, Hao; Hong, Wenting; Lyu, Qifeng; Yang, Xiang; Yang, Fuhua

    2015-01-21

    We investigated single electron tunneling through a phosphorus donor-induced quantum dot array in heavily n-doped junctionless nanowire transistor. Seven subpeaks splitting in current oscillations are clearly observed due to the coupling of quantum dot array under the bias voltage below 1.0 mV at the temperature of 6 K. The conduction system can be well described by a two-band Hubbard model. The activation energy of phosphorus donors is tuned by the gate voltage to be 7.0 meV for the lower Hubbard band and 4.4 meV for the upper Hubbard band due to the localization effects below threshold voltage. The evolution of electron behaviors in the quantum dots is identified by adjusting the gate voltage from quantum-dot regime to one-dimensional regime.

  17. The H+ related defects involved in domain reversal for both near-stoichiometric and heavily Mg-doped lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Yan, W.; Kong, Y.; Shi, L.; Yao, J.; Chen, S.; Sun, L.; Zhao, D.; Xu, J.; Zhang, G.

    2005-02-01

    Domain reversal was performed on both near-stoichiometric and heavily Mg-doped lithium niobate crystals. H+ related defect structures in these two types of crystals were studied through the infrared absorption spectra. It is found that the intensity of some decomposed peaks of absorption band change apparently during domain reversal for near-stoichiometric lithium niobate crystals but not for heavily Mg-doped lithium niobate crystals. According to these experimental results, distinct models about H+ related defect structure in LiNbO3 lattice were supposed for them. Nb4+Li and Mg3-Nb were considered as the centers of H+ related defect complex for near-stoichiometric and heavily Mg-doped lithium niobate crystals respectively. Different behavior of them was used to explain the difference of infrared absorption spectra during domain reversal between two types of crystals.

  18. Optical properties of heavily doped GaAs nanowires and electroluminescent nanowire structures.

    PubMed

    Lysov, A; Offer, M; Gutsche, C; Regolin, I; Topaloglu, S; Geller, M; Prost, W; Tegude, F-J

    2011-02-25

    We present GaAs electroluminescent nanowire structures fabricated by metal organic vapor phase epitaxy. Electroluminescent structures were realized in both axial pn-junctions in single GaAs nanowires and free-standing nanowire arrays with a pn-junction formed between nanowires and substrate, respectively. The electroluminescence emission peak from single nanowire pn-junctions at 10 K was registered at an energy of around 1.32 eV and shifted to 1.4 eV with an increasing current. The line is attributed to the recombination in the compensated region present in the nanowire due to the memory effect of the vapor-liquid-solid growth mechanism. Arrayed nanowire electroluminescent structures with a pn-junction formed between nanowires and substrate demonstrated at 5 K a strong electroluminescence peak at 1.488 eV and two shoulder peaks at 1.455 and 1.519 eV. The main emission line was attributed to the recombination in the p-doped GaAs. The other two lines correspond to the tunneling-assisted photon emission and band-edge recombination in the abrupt junction, respectively. Electroluminescence spectra are compared with the micro-photoluminescence spectra taken along the single p-, n- and single nanowire pn-junctions to find the origin of the electroluminescence peaks, the distribution of doping species and the sharpness of the junctions.

  19. Explicit continuous charge-based compact model for long channel heavily doped surrounding-gate MOSFETs incorporating interface traps and quantum effects

    NASA Astrophysics Data System (ADS)

    Hamzah, Afiq; Hamid, Fatimah A.; Ismail, Razali

    2016-12-01

    An explicit solution for long-channel surrounding-gate (SRG) MOSFETs is presented from intrinsic to heavily doped body including the effects of interface traps and fixed oxide charges. The solution is based on the core SRGMOSFETs model of the Unified Charge Control Model (UCCM) for heavily doped conditions. The UCCM model of highly doped SRGMOSFETs is derived to obtain the exact equivalent expression as in the undoped case. Taking advantage of the undoped explicit charge-based expression, the asymptotic limits for below threshold and above threshold have been redefined to include the effect of trap states for heavily doped cases. After solving the asymptotic limits, an explicit mobile charge expression is obtained which includes the trap state effects. The explicit mobile charge model shows very good agreement with respect to numerical simulation over practical terminal voltages, doping concentration, geometry effects, and trap state effects due to the fixed oxide charges and interface traps. Then, the drain current is obtained using the Pao-Sah's dual integral, which is expressed as a function of inversion charge densities at the source/drain ends. The drain current agreed well with the implicit solution and numerical simulation for all regions of operation without employing any empirical parameters. A comparison with previous explicit models has been conducted to verify the competency of the proposed model with the doping concentration of 1× {10}19 {{cm}}-3, as the proposed model has better advantages in terms of its simplicity and accuracy at a higher doping concentration.

  20. Effect of Sb composition on the conduction type and photoluminescence of heavily Sn-doped GaAs1-xSbx

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Jinbo, Y.; Uchitomi, N.

    2006-09-01

    Heavily Sn-doped GaAs1-xSbx epitaxial films were grown on SI-GaAs (001) substrates by solid source molecular beam epitaxy. A 5 nm-thick AlSb buffer layer was employed to relax the lattice mismatch between the epilayer and the substrate. X-ray diffraction (XRD), Hall effect measurements and photoluminescence measurements were performed to characterize the epitaxial films. The heavily Sn-doped GaAs1-xSbx / AlSb films with x 0.24 indicated n-type conduction while the epitaxial films with x 0.43 indicated p-type conduction.

  1. Optical absorption by free holes in heavily doped GaAs

    NASA Technical Reports Server (NTRS)

    Huberman, M. L.; Ksendzov, A.; Larsson, A.; Terhune, R.; Maserjian, J.

    1991-01-01

    Optical absorption in p-type GaAs with hole concentrations between 10 exp 19 and 10 exp 20/cu cm has been measured for wavelengths between 2 and 20 microns and compared with results of theoretical calculations. In contrast to previous measurements at lower doping levels, the occupied hole states are far from the zone center, where the heavy- and light-hole bands become parallel. This gives rise to a large joint density of states for optical transitions. It is found that the overall magnitude of the observed absorption is explained correctly by the theory, with both the free-carrier (indirect) and the inter-valence-band (direct) transitions contributing significantly to the total absorption. The strength of the absorption (a about 20,000/cm for N(A) = 5 x 10 exp 19/cu cm) is attractive for long-wavelength infrared-detector applications.

  2. Nitrogen-fluorine co-doped titania inverse opals for enhanced solar light driven photocatalysis.

    PubMed

    Rahul, T K; Sandhyarani, N

    2015-11-21

    Three dimensionally ordered nitrogen-fluorine (N-F) co-doped TiO2 inverse opals (IOs) were fabricated by templating with polystyrene (PS) colloidal photonic crystals (CPCs) by infiltration. During preparation, the TiO2 precursor was treated with a mixture of nitric acid and trifluoroacetic acid to facilitate N-F co-doping into the TiO2 lattice. Enhanced solar light absorption was observed in the samples as a consequence of the red shift in the electronic band gap of TiO2 due to N-F co-doping. The photonic band gap (PBG) of these TiO2 IO films was tuned by varying the sphere size of the PS CPC templates. The as-prepared N-F co-doped TiO2 IO films were used as photocatalysts for the degradation of Rhodamine B (RhB) dye under solar light irradiation. A significant enhancement in the photocatalytic activity was observed in N-F co-doped TiO2 IO films prepared using PS spheres of 215 nm as a template, with the red edge of the PBG closer to the electronic band gap (EBG) of TiO2. 100% of the dye molecules were degraded within 2 minutes under direct solar irradiation, which is one of the fastest reaction times ever reported for RhB degradation in the presence of TiO2 photocatalysts. The N-F co-doped TiO2 IO film prepared using PS of 460 nm with its PBG centered at 695 nm also showed good photocatalytic activity. It was found that the IO films displayed improved photocatalytic activity in comparison to ordinary nanocrystalline (nc)-TiO2 films. The enhancement could be attributed to the bandgap scattering effect and the slow photon effect, leading to a significant improvement in solar light harvesting.

  3. Nitrogen-fluorine co-doped titania inverse opals for enhanced solar light driven photocatalysis

    NASA Astrophysics Data System (ADS)

    Rahul, T. K.; Sandhyarani, N.

    2015-10-01

    Three dimensionally ordered nitrogen-fluorine (N-F) co-doped TiO2 inverse opals (IOs) were fabricated by templating with polystyrene (PS) colloidal photonic crystals (CPCs) by infiltration. During preparation, the TiO2 precursor was treated with a mixture of nitric acid and trifluoroacetic acid to facilitate N-F co-doping into the TiO2 lattice. Enhanced solar light absorption was observed in the samples as a consequence of the red shift in the electronic band gap of TiO2 due to N-F co-doping. The photonic band gap (PBG) of these TiO2 IO films was tuned by varying the sphere size of the PS CPC templates. The as-prepared N-F co-doped TiO2 IO films were used as photocatalysts for the degradation of Rhodamine B (RhB) dye under solar light irradiation. A significant enhancement in the photocatalytic activity was observed in N-F co-doped TiO2 IO films prepared using PS spheres of 215 nm as a template, with the red edge of the PBG closer to the electronic band gap (EBG) of TiO2. 100% of the dye molecules were degraded within 2 minutes under direct solar irradiation, which is one of the fastest reaction times ever reported for RhB degradation in the presence of TiO2 photocatalysts. The N-F co-doped TiO2 IO film prepared using PS of 460 nm with its PBG centered at 695 nm also showed good photocatalytic activity. It was found that the IO films displayed improved photocatalytic activity in comparison to ordinary nanocrystalline (nc)-TiO2 films. The enhancement could be attributed to the bandgap scattering effect and the slow photon effect, leading to a significant improvement in solar light harvesting.

  4. Doping effects of fluorinated organic dyes on the open-circuit voltage of bulk-heterojunction photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Watanabe, Tomoki; Yamashita, Kenichi

    2015-08-01

    We have investigated photovoltaic properties of bulk-heterojunction (BHJ) organic absorption layer doped with fluorinated Coumarin dyes. By dilute doping of a fluorinated Coumarin dye, Coumarin 307, into poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) BHJ absorption layer, the open-circuit voltage of photovoltaic device increased by ∼90 mV without the significant degradation in the short-circuit current density. On the other hand, the doping of non-fluorinated Coumarin dye such as Coumarin 2 did not induce such the enhancement effect in the open-circuit voltage. In ultraviolet photoelectron spectroscopies, the doping of Coumarin 307 was found to have no impact on P3HT, but the density of state of PCBM was significantly modified by the doping. The change in the density of state was confirmed also in ultraviolet absorption measurement. Possible explanations for the enhancement in the open-circuit voltage are discussed from the experimental results, and a shift of the vacuum level by the doping can be considered as a direct origin.

  5. Effect of Heat Treatment Under Nitrogen Atmosphere on Sprayed Fluorine Doped In2O3 Thin Films

    NASA Astrophysics Data System (ADS)

    Beji, Nasreddine; Ajili, Mejda; Turki, Najoua Kamoun

    2016-07-01

    Fluorine-doped indium oxide thin films (In2O3:F) were prepared at 500°C for different fluorine concentrations (0 at.%, 2 at.%, 6 at.% and 10 at.%) using the chemical spray pyrolysis technique. Structure and surface morphology of these films were characterized by x-ray diffraction (XRD) and atomic force microscopy (AFM). XRD analysis revealed that fluorine doped In2O3 thin films exhibit a centered cubic structure with the (400) preferential orientation. The change of the preferential reflection plane from (222) to (400) was found after doping. The doping optimum concentration of thin film crystal structure is obtained witha fluorine ratio equal to 2 at.%. The crystallinity improvement of In2O3:F (2 at.%) film is detected after annealing at 200°C, 300°C, and 400°C in nitrogen gas for 45 min. Transmission and reflection spectra measurements were performed over the wavelength range of 250-2500 nm. The band gap energy increase from 3.10 eV to 3.45 eV was detected after treatment at 400°C. In parallel, the electrical resistivity, deduced from Hall effect measurements, decreases from 428.90 × 10-4 Ω cm to 6.58 × 10-4 Ω cm.

  6. Thermodynamic and kinetic studies of laser thermal processing of heavily boron-doped amorphous silicon using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Liguo; Clancy, Paulette; Thompson, Michael O.; Murthy, Cheruvu S.

    2002-09-01

    Laser thermal processing (LTP) has been proposed as a means to avoid unwanted transient enhanced diffusion and deactivation of dopants, especially boron and arsenic, during the formation of ultrashallow junctions. Although experimental studies have been carried out to determine the efficacy of LTP for pure Si and lightly B-doped junctions, the effects of high concentrations of dopants (above 2% B) on the thermodynamic and kinetic properties of the regrown film are unknown. In this study, a classical interatomic potential model [Stillinger-Weber (SW)] is used with a nonequilibrium molecular dynamics computer simulation technique to study the laser thermal processing of heavily B-doped Si in the range 2-10 at. % B. We observe only a small effect of boron concentration on the congruent melting temperature of the B:Si alloy, and thus the narrowing of the "process window" for LTP is predicted to be small. No significant tendency for boron to segregate was observed at either the regrowth front or the buried c-Si interface during fast regrowth. The B-doped region regrew as defect-free crystal with full activation of the boron atoms at low boron concentrations (2%), in good agreement with experiments. As the concentration of boron increased, the number of intrinsic Si defects and boron interstitials in the regrown materials increased, with a minor amount of boron atoms in clusters (<2%). An instability limit for crystal regrowth was observed at around 8%-10% boron atoms during fast regrowth; systems with 10% B showed partial amorphization during regrowth. Comparison with tight-binding quantum mechanical calculations showed that the SW model gives similar diffusivities in the liquid and tendency to cluster, but the lifetimes of the SW clusters are considerably too long (>150 ps, compared to 5 ps in tight binding). The importance of adequate system size is discussed.

  7. Physicochemical characterization of point defects in fluorine doped tin oxide films

    SciTech Connect

    El Akkad, Fikry; Joseph, Sudeep

    2012-07-15

    The physical and chemical properties of spray deposited FTO films are studied using FESEM, x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), electrical and optical measurements. The results of XRD measurements showed that the films are polycrystalline (grain size 20-50 nm) with Rutile structure and mixed preferred orientation along the (200) and (110) planes. An angular shift of the XRD peaks after F-doping is observed and interpreted as being due to the formation of substitutional fluorine defects (F{sub O}) in presence of high concentration of oxygen vacancies (V{sub O}) that are electrically neutral. The electrical neutrality of oxygen vacancies is supported by the observation that the electron concentration n is two orders of magnitude lower than the V{sub O} concentration calculated from chemical analyses using XPS measurements. It is shown that an agreement between XPS, XRD, and Hall effect results is possible provided that the degree of deviation from stoichiometry is calculated with the assumption that the major part of the bulk carbon content is involved in O-C bonds. High temperature thermal annealing is found to cause an increase in the F{sub O} concentration and a decrease in both n and V{sub O} concentrations with the increase of the annealing temperature. These results could be interpreted in terms of a high temperature chemical exchange reaction between the SnO{sub 2} matrix and a precipitated fluoride phase. In this reaction, fluorine is released to the matrix and Sn is trapped by the fluoride phase, thus creating substitutional fluorine F{sub O} and tin vacancy V{sub Sn} defects. The enthalpy of this reaction is determined to be approximately 2.4 eV while the energy of formation of a V{sub Sn} through the migration of Sn{sub Sn} host atom to the fluoride phase is approximately 0.45 eV.

  8. Hydrothermal synthesis and characterization of fluorine & manganese co-doped PZT based cuboidal shaped powder

    NASA Astrophysics Data System (ADS)

    Nawaz, H.; Shuaib, M.; Saleem, M.; Rauf, A.; Aleem, A.

    2016-08-01

    Cuboidal shaped PZT powder particles based composition Pb0.89(Ba, Sr)0.11(Zr0.52Ti0.48)O3 co- doped with 1 mol% manganese and 2 mol% fluorine was prepared through hydrothermal route. 200-250nm size cuboidal particles were observed under FE-SEM. XRD technique revealed that the perovskite type ceramic structure has a dominant rhombohedral phase. The resultant powder particles were then spray dried, uniaxially pressed and sintered at different temperatures to achieve maximum theoretical density. 98% density was obtained in the pellets at a sintering temperature of 1190°C with an average grain size of 1-3um. The electrical properties of sintered samples were also measured before and after poling to evaluate the effect of dopants on piezoelectric properties.

  9. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres.

    PubMed

    Zhou, Junshuang; Lian, Jie; Hou, Li; Zhang, Junchuan; Gou, Huiyang; Xia, Meirong; Zhao, Yufeng; Strobel, Timothy A; Tao, Lu; Gao, Faming

    2015-09-29

    Highly porous nanostructures with large surface areas are typically employed for electrical double-layer capacitors to improve gravimetric energy storage capacity; however, high surface area carbon-based electrodes result in poor volumetric capacitance because of the low packing density of porous materials. Here, we demonstrate ultrahigh volumetric capacitance of 521 F cm(-3) in aqueous electrolytes for non-porous carbon microsphere electrodes co-doped with fluorine and nitrogen synthesized by low-temperature solvothermal route, rivaling expensive RuO2 or MnO2 pseudo-capacitors. The new electrodes also exhibit excellent cyclic stability without capacitance loss after 10,000 cycles in both acidic and basic electrolytes at a high charge current of 5 A g(-1). This work provides a new approach for designing high-performance electrodes with exceptional volumetric capacitance with high mass loadings and charge rates for long-lived electrochemical energy storage systems.

  10. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres

    NASA Astrophysics Data System (ADS)

    Zhou, Junshuang; Lian, Jie; Hou, Li; Zhang, Junchuan; Gou, Huiyang; Xia, Meirong; Zhao, Yufeng; Strobel, Timothy A.; Tao, Lu; Gao, Faming

    2015-09-01

    Highly porous nanostructures with large surface areas are typically employed for electrical double-layer capacitors to improve gravimetric energy storage capacity; however, high surface area carbon-based electrodes result in poor volumetric capacitance because of the low packing density of porous materials. Here, we demonstrate ultrahigh volumetric capacitance of 521 F cm-3 in aqueous electrolytes for non-porous carbon microsphere electrodes co-doped with fluorine and nitrogen synthesized by low-temperature solvothermal route, rivaling expensive RuO2 or MnO2 pseudo-capacitors. The new electrodes also exhibit excellent cyclic stability without capacitance loss after 10,000 cycles in both acidic and basic electrolytes at a high charge current of 5 A g-1. This work provides a new approach for designing high-performance electrodes with exceptional volumetric capacitance with high mass loadings and charge rates for long-lived electrochemical energy storage systems.

  11. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres

    PubMed Central

    Zhou, Junshuang; Lian, Jie; Hou, Li; Zhang, Junchuan; Gou, Huiyang; Xia, Meirong; Zhao, Yufeng; Strobel, Timothy A.; Tao, Lu; Gao, Faming

    2015-01-01

    Highly porous nanostructures with large surface areas are typically employed for electrical double-layer capacitors to improve gravimetric energy storage capacity; however, high surface area carbon-based electrodes result in poor volumetric capacitance because of the low packing density of porous materials. Here, we demonstrate ultrahigh volumetric capacitance of 521 F cm−3 in aqueous electrolytes for non-porous carbon microsphere electrodes co-doped with fluorine and nitrogen synthesized by low-temperature solvothermal route, rivaling expensive RuO2 or MnO2 pseudo-capacitors. The new electrodes also exhibit excellent cyclic stability without capacitance loss after 10,000 cycles in both acidic and basic electrolytes at a high charge current of 5 A g−1. This work provides a new approach for designing high-performance electrodes with exceptional volumetric capacitance with high mass loadings and charge rates for long-lived electrochemical energy storage systems. PMID:26415838

  12. Effects of process parameters on sheet resistance uniformity of fluorine-doped tin oxide thin films.

    PubMed

    Hudaya, Chairul; Park, Ji Hun; Lee, Joong Kee

    2012-01-05

    An alternative indium-free material for transparent conducting oxides of fluorine-doped tin oxide [FTO] thin films deposited on polyethylene terephthalate [PET] was prepared by electron cyclotron resonance - metal organic chemical vapor deposition [ECR-MOCVD]. One of the essential issues regarding metal oxide film deposition is the sheet resistance uniformity of the film. Variations in process parameters, in this case, working and bubbler pressures of ECR-MOCVD, can lead to a change in resistance uniformity. Both the optical transmittance and electrical resistance uniformity of FTO film-coated PET were investigated. The result shows that sheet resistance uniformity and the transmittance of the film are affected significantly by the changes in bubbler pressure but are less influenced by the working pressure of the ECR-MOCVD system.

  13. Self-Assembled Formation of Well-Aligned Cu-Te Nano-Rods on Heavily Cu-Doped ZnTe Thin Films

    NASA Astrophysics Data System (ADS)

    Liang, Jing; Cheng, Man Kit; Lai, Ying Hoi; Wei, Guanglu; Yang, Sean Derman; Wang, Gan; Ho, Sut Kam; Tam, Kam Weng; Sou, Iam Keong

    2016-11-01

    Cu doping of ZnTe, which is an important semiconductor for various optoelectronic applications, has been successfully achieved previously by several techniques. However, besides its electrical transport characteristics, other physical and chemical properties of heavily Cu-doped ZnTe have not been reported. We found an interesting self-assembled formation of crystalline well-aligned Cu-Te nano-rods near the surface of heavily Cu-doped ZnTe thin films grown via the molecular beam epitaxy technique. A phenomenological growth model is presented based on the observed crystallographic morphology and measured chemical composition of the nano-rods using various imaging and chemical analysis techniques. When substitutional doping reaches its limit, the extra Cu atoms favor an up-migration toward the surface, leading to a one-dimensional surface modulation and formation of Cu-Te nano-rods, which explain unusual observations on the reflection high energy electron diffraction patterns and apparent resistivity of these thin films. This study provides an insight into some unexpected chemical reactions involved in the heavily Cu-doped ZnTe thin films, which may be applied to other material systems that contain a dopant having strong reactivity with the host matrix.

  14. Doping Evolution of the Superconducting Gap Structure in Heavily Hole-Doped Ba1-xKxFe2As2: a Heat Transport Study

    NASA Astrophysics Data System (ADS)

    Hong, Xiao-Chen; Wang, Ai-Feng; Zhang, Zhen; Pan, Jian; He, Lan-Po; Luo, Xi-Gang; Chen, Xian-Hui; Li, Shi-Yan

    2015-12-01

    We performed systematic thermal conductivity measurements on heavily hole-doped Ba$_{1-x}$K$_x$Fe$_2$As$_2$ single crystals with 0.747 $\\leq x \\leq$ 0.974. At $x$ = 0.747, the $\\kappa_0/T$ is negligible, indicating nodeless superconducting gap. A small residual linear term $\\kappa_0/T$ ($\\approx$ 0.035 mW/K$^2$ cm) appears at $x$ = 0.826, and it increases slowly up to $x$ = 0.974, followed by a drastic increase of more than 20 times to the pure KFe$_2$As$_2$ ($x$ = 1.0). This doping dependence of $\\kappa_0/T$ clearly shows that the nodal gap appears near $x = 0.8$, likely associated with the change of Fermi surface topology. The small values of $\\kappa_0/T$ from $x$ = 0.826 to 0.974 support a "$\\curlyvee$"-shaped nodal $s$-wave gap recently revealed by angle-resolved photoemission spectroscopy experiments at $x$ = 0.9. Furthermore, the drastic increase of $\\kappa_0/T$ from $x$ = 0.974 to 1.0 is inconsistent with a symmetry-imposed $d$-wave gap in KFe$_2$As$_2$, and the possible nodal gap structure in KFe$_2$As$_2$ is discussed.

  15. [Study on the absorption spectrum properties of flexible black silicon doped with sulfur and fluorine based on first-principles].

    PubMed

    Wei, Wei; Zhu, Yong; Lin, Cheng; Tian, Li; Xu, Zu-Wen; Nong, Jin-Peng

    2014-04-01

    It is quite urgent to need a flexible photodetector in the ultraviolet-visible-near infrared region for building a miniaturization broadband spectrometer. In the present paper, one kind of flexible black silicon doped with sulfur and fluorine was proposed and the optical absorption spectrum was investigated in broadband region. Firstly, the electronic structure, band structure and the optical absorption properties of the flexible black silicon doped with sulfur and fluoride were calculated using the first-principles pseudo potential calculations based on density-functional theory. Then, the absorption spectrum model of the flexible black silicon was built based on both the first-principles and finite domain time difference method. The results show that the cut-off wavelength has a red shift as the band gap of doped material becomes narrower. The higher the doping concentration is, the higher the optical absorption coefficient is obtained. The absorption coefficient of flexible black silicon doped with 50% sulfur is 8.3 times higher than that of 1.5% sulfur doping sample at the wavelength of 1 500 nm while the ratio turns to be 3 times when doped with 50% and 1.5% fluoride. The black silicon with small-size surface microstructure has the highest absorptance in the near-infrared region at the same doping concentration of 50%. Finally, a sample of flexible black silicon was fabricated by the femtosecond laser auto scanning system. The test results indicate that the absorptance of the sample is higher than 95% both in the ultraviolet and visible region and is fluctuated from 70% to 80% in the near-infrared region. It shows that as a novel light-absorbing material in broadband region the flexible black silicon doped with Sulfur and Fluorine has an potential application in exploring miniaturization broadband spectroscopy.

  16. Improvement of epitaxial channel quality on heavily arsenic- and boron-doped Si surfaces and impact on performance of tunnel field-effect transistors

    NASA Astrophysics Data System (ADS)

    Morita, Yukinori; Mori, Takahiro; Migita, Shinji; Mizubayashi, Wataru; Fukuda, Koichi; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shin-ichi; Liu, Yongxun; Masahara, Meishoku; Ota, Hiroyuki

    2015-11-01

    We evaluate the impact of tunnel junction quality on the performance of tunnel field-effect transistors (TFETs). The interface between epitaxially grown channel and source surface was used as tunnel junctions. Performing a sequential surface cleaning procedure prior to epitaxial channel growth for heavily arsenic- and boron-doped Si surfaces improved the interface quality both for p- and n-TFETs. Simultaneously, the subthreshold swing (SS) values of the TFETs improved step-by-step with interface quality.

  17. High Thermoelectric Performance by Convergence of Bands in IV-VI Semiconductors, Heavily Doped PbTe, and Alloys/Nanocomposites

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey (Inventor); Pei, Yanzhong (Inventor)

    2015-01-01

    The present invention teaches an effective mechanism for enhancing thermoelectric performance through additional conductive bands. Using heavily doped p-PbTe materials as an example, a quantitative explanation is disclosed, as to why and how these additional bands affect the figure of merit. A high zT of approaching 2 at high temperatures makes these simple, likely more stable (than nanostructured materials) and Tl-free materials excellent for thermoelectric applications.

  18. Heavily doped n-type PbSe and PbS nanocrystals using ground-state charge transfer from cobaltocene

    DOE PAGES

    Koh, Weon-kyu; Koposov, Alexey Y.; Stewart, John T.; ...

    2013-06-18

    Colloidal nanocrystals (NCs) of lead chalcogenides are a promising class of tunable infrared materials for applications in devices such as photodetectors and solar cells. Such devices typically employ electronic materials in which charge carrier concentrations are manipulated through “doping;” however, persistent electronic doping of these NCs remains a challenge. In this paper, we demonstrate that heavily doped n-type PbSe and PbS NCs can be realized utilizing ground-state electron transfer from cobaltocene. This allows injecting up to eight electrons per NC into the band-edge state and maintaining the doping level for at least a month at room temperature. Doping is confirmedmore » by inter- and intra-band optical absorption, as well as by carrier dynamics. In conclusion, FET measurements of doped NC films and the demonstration of a p-n diode provide additional evidence that the developed doping procedure allows for persistent incorporation of electrons into the quantum-confined NC states.« less

  19. Heavily doped n-type PbSe and PbS nanocrystals using ground-state charge transfer from cobaltocene

    SciTech Connect

    Koh, Weon-kyu; Koposov, Alexey Y.; Stewart, John T.; Pal, Bhola N.; Robel, Istvan; Pietryga, Jeffrey M.; Klimov, Victor I.

    2013-06-18

    Colloidal nanocrystals (NCs) of lead chalcogenides are a promising class of tunable infrared materials for applications in devices such as photodetectors and solar cells. Such devices typically employ electronic materials in which charge carrier concentrations are manipulated through “doping;” however, persistent electronic doping of these NCs remains a challenge. In this paper, we demonstrate that heavily doped n-type PbSe and PbS NCs can be realized utilizing ground-state electron transfer from cobaltocene. This allows injecting up to eight electrons per NC into the band-edge state and maintaining the doping level for at least a month at room temperature. Doping is confirmed by inter- and intra-band optical absorption, as well as by carrier dynamics. In conclusion, FET measurements of doped NC films and the demonstration of a p-n diode provide additional evidence that the developed doping procedure allows for persistent incorporation of electrons into the quantum-confined NC states.

  20. Optoelectrochemical biorecognition by optically transparent highly conductive graphene-modified fluorine-doped tin oxide substrates.

    PubMed

    Lamberti, F; Brigo, L; Favaro, M; Luni, C; Zoso, A; Cattelan, M; Agnoli, S; Brusatin, G; Granozzi, G; Giomo, M; Elvassore, N

    2014-12-24

    Both optical and electrochemical graphene-based sensors have gone through rapid development, reaching high sensitivity at low cost and with fast response time. However, the complex validating biochemical operations, needed for their consistent use, currently limits their effective application. We propose an integration strategy for optoelectrochemical detection that overcomes previous limitations of these sensors used separately. We develop an optoelectrochemical sensor for aptamer-mediated protein detection based on few-layer graphene immobilization on selectively modified fluorine-doped tin oxide (FTO) substrates. Our results show that the electrochemical properties of graphene-modified FTO samples are suitable for complex biological detection due to the stability and inertness of the engineered electrodic interface. In addition, few-layer immobilization of graphene sheets through electrostatic linkage with an electrochemically grafted FTO surface allows obtaining an optically accessible and highly conductive platform. As a proof of concept, we used insulin as the target molecule to reveal in solution. Because of its transparency and low sampling volume (a few microliters), our sensing unit can be easily integrated in lab-on-a-chip cell culture systems for effectively monitoring subnanomolar concentrations of proteins relevant for biomedical applications.

  1. Fluorine-doped zinc oxide thin films: influence of precursor flow rate on violet luminescence

    NASA Astrophysics Data System (ADS)

    Muthukumar, Anusha; Dakshnamoorthy, Arivuoli

    2015-06-01

    Fluorine-doped zinc oxide (FZO) thin films were deposited by the aerosol-assisted chemical vapor deposition method with variable precursor flow rates (0.5-2.5 ml/min). X-ray diffraction patterns revealed the polycrystalline hexagonal wurtzite structure of the derived FZO nanocrystalline thin films. Extensive crystallinity analysis of the film deposited at 1 ml/min was done by grazing incidence X-ray diffraction. Field emission scanning electron microscope images apparent the gradual evolution from spherical grains and hexagonal platelet like surface morphology with increased flow rate. Optical transparency and photoluminescence (PL) are strongly influenced by flow rate. PL intensity and transparency increase with decreased flow rate. The optical bandgap was tuned significantly by increase in flow rate and especially tuned the PL emission from violet to UV. High intense violet PL observed at flow rate of 1 ml/min and radiative transition of electrons from zinc vacancies level to the conduction band were found. Crystallinity, growth rate and roughness increase with increased flow rate.

  2. Effect of solvent ratio on the optoelectronic properties of fluorine doped tin oxide thin films

    SciTech Connect

    Karthick, P.; Divya, V.; Sridharan, M.; Jeyadheepan, K.

    2015-06-24

    Fluorine doped tin oxide (FTO) thin films were deposited on to the well cleaned microscopic glass substrates using nebulized-spray pyrolysis (n-SP) technique by varying the water to ethanol solvent proportion. The deposited thin films were characterized by X-ray diffraction (XRD), UV-Vis-NIR spectroscopy, field emission scanning electron microscopy and Hall measurements to study the structural, optical, surface morphological and electrical properties of the films, respectively. Results of the analyzes show that the films are polycrystalline, having tetragonal structure with the preferred orientation along (110) plane. The grain size varies between 7 to 20 nm. The optimized films exhibit the optical transparency of 85 % at the wavelength of 580 nm. The optical bandgap lies in the range of 3.94 to 4 eV. The optimized films, deposited with 40 % of ethanol proportion are having the mean resistivity 4.72×10{sup −3} Ω-cm, carrier concentration 1.79×10{sup 20} cm{sup 3} and the mobility 7 cm{sup 2}/Vs.

  3. Electron scattering mechanisms in fluorine-doped SnO{sub 2} thin films

    SciTech Connect

    Rey, G. Consonni, V.; Bellet, D.; Ternon, C.; Mescot, X.

    2013-11-14

    Polycrystalline fluorine-doped SnO{sub 2} (FTO) thin films have been grown by ultrasonic spray pyrolysis on glass substrate. By varying growth conditions, several FTO specimens have been deposited and the study of their structural, electrical, and optical properties has been carried out. By systematically investigating the mobility as a function of carrier density, grain size, and crystallite size, the contribution of each physical mechanism involved in the electron scattering has been derived. A thorough comparison of experimental data and calculations allows to disentangle these different mechanisms and to deduce their relative importance. In particular, the roles of extended structural defects such as grain or twin boundaries as revealed by electron microscopy or x-ray diffraction along with ionized impurities are discussed. As a consequence, based on the quantitative analysis presented here, an experimental methodology leading to the improvement of the electro-optical properties of FTO thin films is reported. FTO thin films assuming an electrical resistivity as low as 3.7 · 10{sup −4} Ω cm (square sheet resistance of 8 Ω/◻) while retaining good transmittance up to 86% (including substrate effect) in the visible range have been obtained.

  4. Nitrogen, Phosphorus, and Fluorine Tri-doped Graphene as a Multifunctional Catalyst for Self-Powered Electrochemical Water Splitting.

    PubMed

    Zhang, Jintao; Dai, Liming

    2016-10-10

    Electrocatalysts are required for clean energy technologies (for example, water-splitting and metal-air batteries). The development of a multifunctional electrocatalyst composed of nitrogen, phosphorus, and fluorine tri-doped graphene is reported, which was obtained by thermal activation of a mixture of polyaniline-coated graphene oxide and ammonium hexafluorophosphate (AHF). It was found that thermal decomposition of AHF provides nitrogen, phosphorus, and fluorine sources for tri-doping with N, P, and F, and simultaneously facilitates template-free formation of porous structures as a result of thermal gas evolution. The resultant N, P, and F tri-doped graphene exhibited excellent electrocatalytic activities for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The trifunctional metal-free catalyst was further used as an OER-HER bifunctional catalyst for oxygen and hydrogen gas production in an electrochemical water-splitting unit, which was powered by an integrated Zn-air battery based on an air electrode made from the same electrocatalyst for ORR. The integrated unit, fabricated from the newly developed N, P, and F tri-doped graphene multifunctional metal-free catalyst, can operate in ambient air with a high gas production rate of 0.496 and 0.254 μL s(-1) for hydrogen and oxygen gas, respectively, showing great potential for practical applications.

  5. N-type Self-Doping of Fluorinate Conjugated Polyelectrolytes for Polymer Solar Cells: Modulation of Dipole, Morphology, and Conductivity.

    PubMed

    Liu, Huimin; Huang, Liqiang; Cheng, Xiaofang; Hu, Aifeng; Xu, Haitao; Chen, Lie; Chen, Yiwang

    2017-01-11

    For the conjugated polyelectrolytes (CPEs) interlayers, many studies focus on the modulation of interfacial dipoles in the polymer solar cells (PSCs) by altering the side polar groups but usually ignore the functions of conjugated backbone engineering (CBE) through the delicate design to improve their functions. Herein, novel alcohol-soluble CPEs by incorporation of fluorinate benzene onto the backbone, namely PFf1B and PFf4B, have been synthesized to modulate the interfacial dipoles and charge mobility. A favorable bidipole composed of ion-induced dipole and F hydrogen bond-induced dipole was discovered to be responsible for the tunable work function of indium tin oxide (ITO) electrode. Moreover, a desirable nanowires morphology of the upper active layer has also been obtained with the help of the self-assembly of fluorinated CPEs. More intriguingly, an unusual n-type doping favored by fluorine-induced electron transfer (FIET) was observed in these CPEs, leading to the improvement in the electron mobility. As a consequence, these fluorinated CPEs were demonstrated with a general application in the PSCs based on various active layers. Note that PFf4B with the highest loading of F atoms can work efficiently in a thickness of up to 31.8 nm, which broke the thickness limitation of most reported CPEs interlayer.

  6. Temperature behavior of sound velocity of fluorine-doped vitreous silica thin films studied by picosecond ultrasonics

    NASA Astrophysics Data System (ADS)

    Nagakubo, A.; Ogi, H.; Ishida, H.; Hirao, M.; Yokoyama, T.; Nishihara, T.

    2015-07-01

    Vitreous silica (v-SiO2) shows anomalous temperature dependence of velocity, including positive temperature coefficient of velocity (TCV) and velocity minimum around 70 K. The former characteristic allows its application in acoustic-resonator devices as a temperature compensating material. In this paper, we study the temperature dependence of velocity of fluorine-doped v-SiO2 (v-SiO2-xFx) thin films using picosecond ultrasonic spectroscopy. To correct the temperature increase caused by irradiation with light pulses, we calculated the steady temperature increase in the measuring volume with a finite volume method, considering the temperature dependence of thermal conductivity, and find that temperature in the measurement region remains high even when the back surface is cryogenically cooled. Using the corrected temperature, we determine TCV of v-SiO2-xFx thin films for 0 < x < 0.264 , which increases as x increases and is smaller than reported bulk values by a factor of 0.5 - 0.7 . The velocity minimum is absent for the film with x = 0, but it is clearly observed at 70 K for the film with the highest fluorine concentration of x = 0.264. These temperature behaviors are attributed to the change in the Si-O-Si bond angle caused by the fluorine doping.

  7. Solid-state chemical synthesis of rod-like fluorine-doped β-Bi2O3 and their enhanced photocatalytic property under visible light

    NASA Astrophysics Data System (ADS)

    Liang, Zhiting; Cao, Yali; Li, Yizhao; Xie, Jing; Guo, Nana; Jia, Dianzeng

    2016-12-01

    The pure β-Bi2O3 and fluorine-doped β-Bi2O3 rod-like microstructures were successfully prepared by a facile solid-state chemical reaction process. The composition, structure and morphology of the samples were determined by XRD, EDS, SEM, TEM, HRTEM, XPS and PL. Photocatalytic activities of all samples were investigated via the degradation of methyl orange (MO) under the irradiation of visible light. The fluorine-doped β-Bi2O3 rods exhibited higher photocatalytic activities than the pure β-Bi2O3 rod-like structures and commercial sample. The 82% MO can be degraded by the fluorine-doped β-Bi2O3 rods after irradiation for 2 h under visible light, which is 2-3 times higher than that of counterparts. The enhanced properties of the fluorine-doped samples attribute to their higher separation efficiency of electron-hole pairs and strong oxidation potential of valance band holes. The results show that the as-prepared rod-like fluorine-doped β-Bi2O3 materials are potential candidates for photocatalysts irradiated by visible light.

  8. Enhanced violet photoemission of nanocrystalline fluorine doped zinc oxide (FZO) thin films

    NASA Astrophysics Data System (ADS)

    Anusha, Muthukumar; Arivuoli, D.; Manikandan, E.; Jayachandran, M.

    2015-09-01

    Highly stable fluorine doped nanocrystalline zinc oxide thin films were prepared on corning glass substrates by aerosol assisted chemical vapor deposition (AACVD) at variable deposition temperature of 360 °C, 380 °C and 420 °C. Especially, the optimum deposition temperature was investigated for high intense violet emission. The film crystallinity improved with the increasing deposition temperature and highly textured film was obtained at 420 °C. The films exhibited surface morphology variation from spherical to platelets due to deposition temperature effect, analyzed by field emission scanning electron microscope (FE-SEM). Higher growth rate observed at 420 °C which leads larger grains and lowest resistivity of ∼5.77 Ω cm among the deposited films which may be due to reduction in zinc vacancies and grain boundary area. Zinc vacancies are acts as electron killer centres. UV-visible spectra indicated higher transmittance (83-90%) in the visible region. Red shift of optical absorption edges associated with the increase in particle size consistent well with the XRD results. Reduced E2(high) intensity was observed in Raman spectra, for the film deposited at 380 °C which indicates decreased oxygen incorporation confirmed by PL spectra. Especially, enhanced violet emission observed at 3.06 eV for the films deposited at 380 °C due to electronic transition from the defect level of zinc vacancies to the conduction band, probably attributed to enhanced incorporation of 'F' into 'O' sites associated with increased Zn vacancies and also decreased oxygen incorporation consistent with the electrical and Raman analyses.

  9. Surface and bulk electronic structures of heavily Mg-doped InN epilayer by hard X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Imura, Masataka; Tsuda, Shunsuke; Nagata, Takahiro; Banal, Ryan G.; Yoshikawa, Hideki; Yang, AnLi; Yamashita, Yoshiyuki; Kobayashi, Keisuke; Koide, Yasuo; Yamaguchi, Tomohiro; Kaneko, Masamitsu; Uematsu, Nao; Wang, Ke; Araki, Tsutomu; Nanishi, Yasushi

    2017-03-01

    To evaluate the polarity, energy band diagram, and oxygen (O) distribution of a heavily Mg-doped InN (InN:Mg+) epilayer with a Mg concentration of 1.0 ± 0.5 × 1020 cm-3, the core-level and valence band (VB) photoelectron spectra are investigated by angle-resolved soft and hard X-ray photoelectron spectroscopies. The InN:Mg+ epilayers are grown by radio-frequency plasma-assisted molecular beam epitaxy. In this doping level, the polarity inversion from In-polar to N-polar occurs with the increase in the Mg flow rate under the same growth conditions, and the VB spectrum clearly indicates the direction of polarity of InN:Mg+, which is N-polar. The energy band diagram is considered to exhibit a two-step downward bending structure due to the coexistence of the n+ surface electron accumulation layer and heavily Mg-doped p+ layer formed in the bulk. The O concentration rapidly increases until ˜4 nm with respect to the surface, which is deduced to be one of the reasons of the formation of the anomalous two-step energy band profile.

  10. Effect of hydrostatic pressure and alloy composition on sulfur- and selenium-related impurity states in heavily doped n-type GaxIn1-xSb

    NASA Astrophysics Data System (ADS)

    Zitouni, K.; Kadri, A.; Aulombard, R. L.

    1986-08-01

    The properties of sulfur- and selenium-related impurity states have been studied as a function of pressure and composition in heavily doped GaxIn1-xSb. Hall-coefficient and electrical-resistivity measurements were made under hydrostatic pressures of up to 25 kbar, in the alloy composition range 0.30<~x<~0.78 and in the temperature range 77 K<~T<~300 K. In both S-doped and Se-doped samples, the results show the existence of an impurity level forming a localized resonance in the Γ1c band continuum. At x=0.78 and P=0 kbar, the resonance lay ~130+/-10 meV and ~180+/-10 meV above the Γ1c band edge in S-doped and Se-doped samples, respectively. As x decreased, the resonance remained almost fixed with respect to the top of the valence band. As the pressure increased, the impurity level was driven into the fundamental gap, independently of nearby band edges, thus demonstrating ``deep-level behavior.'' Furthermore, the pressure-induced occupation of this impurity level led to time-dependent effects at T<~110 K. The activated thermal electron emission over a potential barrier gave clear evidence for a large lattice relaxation around the impurity centers. These results show the dominant effect of the local non-Coulombic component of the impurity potential, suggesting the complex nature of the impurity centers.

  11. Enhancing the photocatalytic activity of nanocrystalline TiO{sub 2} by co-doping with fluorine and yttrium

    SciTech Connect

    Zhang, Huarong; Miao, Guashuai; Ma, Xingping; Wang, Bei; Zheng, Haiwu

    2014-07-01

    Highlights: • (F, Y)-codoped TiO{sub 2} nanoparticles were prepared by a simple sol–gel method. • The highest photocatalytic activity (15 times of that over the pure TiO{sub 2}) was exhibited in the codoped TiO{sub 2} with 0.05% Y doping level. • The Y doping induced oxygen vancancies played a duel role on the photocatalyic activity of the codoped TiO{sub 2}. • The photocatalytic reactive oxygen species are critical to the photocatalytic degradation processes. - Abstract: Fluorine and yttrium codoped TiO{sub 2} nanoparticles were prepared using a simple sol–gel method. The products were characterized with various spectroscopic and analytical techniques to determine their structural, morphological, optical absorption and photocatalytic properties. The results reveal that neither F nor Y doping causes obvious absorption edge shift in TiO{sub 2}. Photoluminescence (PL) emission spectra present that the PL signal is enhanced, suggesting a decrease of photo-generated charge carrier separation efficiency, after the F or Y doping. The synergistic action by the F and Y doping leads to the highest photocatalytic activity for the degradation of methylene blue solution in the 0.05% (F, Y)-codoped sample (15 times of that over the pure TiO{sub 2}). With the increase of Y doping level, the photocatalytic performance in the codoped samples increases firstly and then decreases. The photocatalytic activity variations after the F and Y doping were interpreted by the formation of photocatalytic reactive oxygen species induced by the dopings.

  12. Effects of annealing on the microstructures and photoactivity of fluorinated N-doped TiO2.

    PubMed

    Liu, Shengwei; Yu, Jiaguo; Wang, Wenguang

    2010-10-14

    We investigated the effects of annealing in air on fluorinated N-doped TiO(2) (F/N-TiO(2)) photocatalysts prepared by hydrothermal process. The textural properties (specific surface areas) and surface properties (surface defect density, surface [triple bond]Ti-F density) were significantly modified upon annealing. In contrast, due to the shielding effect of surface fluorination, the phase transformation from anatase to rutile as well as removal of N-dopants during annealing was greatly inhibited. The evolution of the chemical nature of doped nitrogen species upon annealing in air was investigated and correlated with the generation and annihilation of oxygen deficiency. The defect density dominated the visible-light absorption and production of active ˙OH. The textural properties and the surface characteristics were crucial for UV-light photocatalytic performance, while the visible-light photocatalytic activity was mainly associated with the defect density. The 300 °C-annealed F/N-TiO(2) sample showed considerable photocatalytic activity under both UV and visible-light irradiation.

  13. Photoluminescence study on heavily donor and acceptor impurity doped GaAs layers grown by molecular-beam epitaxy

    SciTech Connect

    Islam, A. Z. M. Touhidul; Jung, D. W.; Noh, J. P.; Otsuka, N.

    2009-05-01

    Gallium arsenide layers doped with high concentrations of Be and Si by molecular-beam epitaxy are studied by photoluminescence (PL) spectroscopy. PL peaks from doped layers are observed at energies significantly lower than the band-gap of GaAs. The growth and doping conditions suggest that the origin of these peaks is different from that of low energy PL peaks, which were observed in earlier studies and attributed to impurity-vacancy complexes. The dependence of the peak energy on the temperature and the annealing is found to differ from that of the peaks attributed to impurity-vacancy complexes. On the basis of these observations, it is suggested that the low energy peaks are attributed to short range ordered arrangements of impurity ions. This possibility is examined by calculations of the PL spectra with models of pairs of acceptor and donor delta-doped layers and PL experiments of a superlattice of pairs of Be and Si delta-doped layers.

  14. Heavily boron-doped Si layers grown below 700 C by molecular beam epitaxy using a HBO2 source

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Fathauer, R. W.; Grunthaner, P. J.

    1989-01-01

    Boron doping in Si layers grown by molecular beam epitaxy (MBE) at 500-700 C using an HBO2 source has been studied. The maximum boron concentration without detectable oxygen incorporation for a given substrate temperature and Si growth rate has been determined using secondary-ion mass spectrometry analysis. Boron present in the Si MBE layers grown at 550-700 C was found to be electrically active, independent of the amount of oxygen incorporation. By reducing the Si growth rate, highly boron-doped layers have been grown at 600 C without detectable oxygen incorporation.

  15. Solution-Processed Flexible Fluorine-doped Indium Zinc Oxide Thin-Film Transistors Fabricated on Plastic Film at Low Temperature

    PubMed Central

    Seo, Jin-Suk; Jeon, Jun-Hyuck; Hwang, Young Hwan; Park, Hyungjin; Ryu, Minki; Park, Sang-Hee Ko; Bae, Byeong-Soo

    2013-01-01

    Transparent flexible fluorine-doped indium zinc oxide (IZO:F) thin-film transistors (TFTs) were demonstrated using the spin-coating method of the metal fluoride precursor aqueous solution with annealing at 200°C for 2 hrs on polyethylene naphthalate films. The proposed thermal evolution mechanism of metal fluoride aqueous precursor solution examined by thermogravimetric analysis and Raman spectroscopy can easily explain oxide formation. The chemical composition analysed by XPS confirms that the fluorine was doped in the thin films annealed below 250°C. In the IZO:F thin films, a doped fluorine atom substitutes for an oxygen atom generating a free electron or occupies an oxygen vacancy site eliminating an electron trap site. These dual roles of the doped fluorine can enhance the mobility and improve the gate bias stability of the TFTs. Therefore, the transparent flexible IZO:F TFT shows a high mobility of up to 4.1 cm2/V·s and stable characteristics under the various gate bias and temperature stresses. PMID:23803977

  16. Improved visible light photocatalytic activity of fluorine and nitrogen co-doped TiO2 with tunable nanoparticle size

    NASA Astrophysics Data System (ADS)

    Cheng, Junyang; Chen, Jin; Lin, Wei; Liu, Yandong; Kong, Yan

    2015-03-01

    Fluorine and nitrogen co-doped TiO2 (F-N-TiO2) photocatalysts with enhanced photocatalytic activities were facilely synthesized by a simple one-step hydrothermal method using Ti(SO4)2 as an economical precursor, and hydrofluoric acid and ammonia as F and N source, respectively. The structure, morphology, and optical properties of produced nanoparticles were characterized by X-ray diffraction (XRD), N2 adsorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectra (FT-IR) methods. The synergistic effects of F and N doping were systematically examined by changing the molar ratio of F/N. Compared with the un-doped F or N mono-doped TiO2, the co-doped samples exhibited significantly improved photocatalytic performance due to their synergistic effects under visible light. It was shown that F dopant promoted the crystal growth and crystallinity of samples, while N dopant hindered it to some extent, which resulted in the tunable particle size of obtained F-N-TiO2 materials. The effects of F and N dopants on the enhanced photocatalytic activity of modified TiO2 materials were also discussed. The degradation rate of methylene blue (MB) was achieved at 97.31% after 5 h reaction under visible light over the optimized sample of FN3.5T. The materials also showed excellent stability according to the recycling tests of the photodegradation of MB.

  17. Structural, mechanical and hydrophobic properties of fluorine-doped diamond-like carbon films synthesized by plasma immersion ion implantation and deposition (PIII?D)

    NASA Astrophysics Data System (ADS)

    Yao, Zh. Q.; Yang, P.; Huang, N.; Sun, H.; Wang, J.

    2004-05-01

    Fluorine-doped diamond-like carbon (a-C:F) films with different fluorine content were fabricated on Si wafer by plasma immersion ion implantation and deposition (PIII-D). Film composition and structure were characterized by X-ray photoelectron spectroscopy (XPS) and Raman scattering spectroscopy. Surface morphology and roughness were analyzed by atomic force microscopy (AFM). Hardness and scratch resistance were measured by nano-indentation and nano-scratch, respectively. Water contact angles were measured by sessile drop method. With the increase of the CF 4 flux, fluorine content was gradually increased to the film. Raman spectra indicates that these films have a diamond-like structure. The addition of fluorine to diamond-like carbon films had a critical influence on the film properties. The film surface becomes more smoother due to the etching behavior of F +. Hardness was significantly reduced, while the scratch resistance results show that these films have a fairly good adhesion to the substrate. Evident improvements of the hydrophobicity have been made to these films, with contact angles of double-stilled water approaching that of polytetrafluoroethylene (PTFE). Our study suggests that broad application regions of the fluorine-doped amorphous carbon films with diamond-like structure, synthesized by PIII-D, can be extended by combining the non-wetting properties and mechanical properties which are far superior to those of PTFE.

  18. On the variations of optical property and electronic structure in heavily Al-doped ZnO films during double-step growth process

    SciTech Connect

    Hu, Q. C.; Ding, K. Zhang, J. Y.; Yan, F. P.; Pan, D. M.; Huang, F.; Chiou, J. W.

    2014-01-13

    We have investigated the variations of optical property and electronic structure in heavily Al-doped ZnO (AZO) films during the growth process, which were formed by first creating Zn vacancies in O{sub 2}-rich atmosphere and second filling the vacancies with Zn atoms in Zn-vapor atmosphere. After the first step, the high-resistance AZO films have the same optical bandgap with nominally undoped ZnO, indicating that negligible variations in the fundamental bandgap happened to the AZO films although Al atom was incorporated into the ZnO lattice. After the second step, once free electrons were brought into the lattice by Zn-filling, the optical transition energy blueshifts due to the band-filling effect. X-ray absorption fine structure measurements suggest that Zn-filling process decreased the unoccupied states of the conduction band, but not raised the conduction band minimum.

  19. Direct identification of interstitial Mn in heavily p-type doped GaAs and evidence of its high thermal stability

    SciTech Connect

    Pereira, L. M. C.; Wahl, U.; Correia, J. G.; Decoster, S.; Vantomme, A.; Silva, M. R. da; Araujo, J. P.

    2011-05-16

    We report on the lattice location of Mn in heavily p-type doped GaAs by means of {beta}{sup -} emission channeling from the decay of {sup 56}Mn. The majority of the Mn atoms substitute for Ga and up to 31% occupy the tetrahedral interstitial site with As nearest neighbors. Contrary to the general belief, we find that interstitial Mn is immobile up to 400 deg. C, with an activation energy for diffusion of 1.7-2.3 eV. Such high thermal stability of interstitial Mn has significant implications on the strategies and prospects for achieving room temperature ferromagnetism in Ga{sub 1-x}Mn{sub x}As.

  20. Superconductivity below 20 K in heavily electron-doped surface layer of FeSe bulk crystal.

    PubMed

    Seo, J J; Kim, B Y; Kim, B S; Jeong, J K; Ok, J M; Kim, Jun Sung; Denlinger, J D; Mo, S-K; Kim, C; Kim, Y K

    2016-04-06

    A superconducting transition temperature (Tc) as high as 100 K was recently discovered in one monolayer FeSe grown on SrTiO3. The discovery ignited efforts to identify the mechanism for the markedly enhanced Tc from its bulk value of 8 K. There are two main views about the origin of the Tc enhancement: interfacial effects and/or excess electrons with strong electron correlation. Here, we report the observation of superconductivity below 20 K in surface electron-doped bulk FeSe. The doped surface layer possesses all the key spectroscopic aspects of the monolayer FeSe on SrTiO3. Without interfacial effects, the surface layer state has a moderate Tc of 20 K with a smaller gap opening of 4.2 meV. Our results show that excess electrons with strong correlation cannot induce the maximum Tc, which in turn reveals the need for interfacial effects to achieve the highest Tc in one monolayer FeSe on SrTiO3.

  1. Superconductivity below 20 K in heavily electron-doped surface layer of FeSe bulk crystal

    PubMed Central

    Seo, J. J.; Kim, B. Y.; Kim, B. S.; Jeong, J. K.; Ok, J. M.; Kim, Jun Sung; Denlinger, J. D.; Mo, S. -K.; Kim, C.; Kim, Y. K.

    2016-01-01

    A superconducting transition temperature (Tc) as high as 100 K was recently discovered in one monolayer FeSe grown on SrTiO3. The discovery ignited efforts to identify the mechanism for the markedly enhanced Tc from its bulk value of 8 K. There are two main views about the origin of the Tc enhancement: interfacial effects and/or excess electrons with strong electron correlation. Here, we report the observation of superconductivity below 20 K in surface electron-doped bulk FeSe. The doped surface layer possesses all the key spectroscopic aspects of the monolayer FeSe on SrTiO3. Without interfacial effects, the surface layer state has a moderate Tc of 20 K with a smaller gap opening of 4.2 meV. Our results show that excess electrons with strong correlation cannot induce the maximum Tc, which in turn reveals the need for interfacial effects to achieve the highest Tc in one monolayer FeSe on SrTiO3. PMID:27050161

  2. Empirical determination of the energy band gap narrowing in p{sup +} silicon heavily doped with boron

    SciTech Connect

    Yan, Di Cuevas, Andres

    2014-11-21

    In the analysis of highly doped silicon, energy band gap narrowing (BGN) and degeneracy effects may be accounted for separately, as a net BGN in conjunction with Fermi-Dirac statistics, or lumped together in an apparent BGN used with Boltzmann statistics. This paper presents an experimental study of silicon highly doped with boron, with the aim of evaluating the applicability of previously reported BGN models. Different boron diffusions covering a broad range of dopant densities were prepared, and their characteristic recombination current parameters J{sub 0} were measured using a contactless photoconductance technique. The BGN was subsequently extracted by matching theoretical simulations of carrier transport and recombination in each of the boron diffused regions and the measured J{sub 0} values. An evaluation of two different minority carrier mobility models indicates that their impact on the extraction of the BGN is relatively small. After considering possible uncertainties, it can be concluded that the BGN is slightly larger in p{sup +} silicon than in n{sup +} silicon, in qualitative agreement with theoretical predictions by Schenk. Nevertheless, in quantitative terms that theoretical model is found to slightly underestimate the BGN in p{sup +} silicon. With the two different parameterizations derived in this paper for the BGN in p{sup +} silicon, both statistical approaches, Boltzmann and Fermi-Dirac, provide a good agreement with the experimental data.

  3. Luminescent properties of fluorine phosphate glasses doped with PbSe and PbS quantum dots

    NASA Astrophysics Data System (ADS)

    Kolobkova, Elena; Lipatova, Zhanna; Abdrshin, Albert; Nikonorov, Nikolay

    2017-03-01

    Optical properties of the PbS/PbSe molecular clusters (MCs) and PbS/PbSe quantum dots (QDs) in fluorine phosphate glasses were studied. Luminescence of MCs (excited by UV radiation) was obtained in visible spectral region and it's absolute quantum yield was up to 10%. It was found, that PbS QDs with sizes 3 nm, 3.5 nm and 4.9 nm demonstrate strong luminescence at 970, 1300 and 1500 nm with Stokes shift 80 -50 meV. PbSe QDs with sizes 2.5, 2.6, 3.0, 3,7 and 5.1 nm have strong luminescence at 1050, 1100, 1300, 1500 and 1650 nm with Stokes shift 355-60 meV. Glasses doped with PbS(Se) QDs provide potential as robust materials for broadband optic amplifiers.

  4. Fano interference of the Raman phonon in heavily boron-doped diamond films grown by chemical vapor deposition

    SciTech Connect

    Ager, J.W. III; Walukiewicz, W.; McCluskey, M. ); Plano, M.A.; Landstrass, M.I. )

    1995-01-30

    A series of boron-doped polycrystalline diamond films grown by direct current and microwave plasma deposition was studied with Raman and infrared (IR) absorption spectroscopy. A Fano line shape is observed in the Raman spectra for films with a boron concentration in a narrow range near 10[sup 21] cm[sup [minus]3]. The appearance of the Fano line shape is correlated with the disappearance of discrete electronic transitions of the boron acceptor observed in the IR spectrum and the shift of the broadened peak to lower energy. The Fano interaction is attributed to a quantum mechanical interference between the Raman phonon (0.165 eV) and transitions from the broadened impurity band to continuum states composed of excited acceptor and valence band states.

  5. Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror

    PubMed Central

    Shen, Yanlong; Wang, Yishan; Luan, Kunpeng; Huang, Ke; Tao, Mengmeng; Chen, Hongwei; Yi, Aiping; Feng, Guobin; Si, Jinhai

    2016-01-01

    A diode-cladding pumped mid-infrared passively Q-switched Er3+-doped ZBLAN fiber laser with an average output power of watt-level based on a semiconductor saturable absorber mirror (SESAM) is demonstrated. Stable pulse train was produced at a slope efficiency of 17.8% with respect to launched pump power. The maximum average power of 1.01 W at a repetition rate of 146.3 kHz was achieved with a corresponding pulse energy of 6.9 μJ, from which the maximum peak power was calculated to be 21.9 W. To the best of our knowledge, the average power and the peak power are the highest in 3 μm region passively Q-switched fiber lasers. The influence of gain fiber length on the operation regime of the fiber laser has been investigated in detail. PMID:27225029

  6. Estimation of free carrier concentrations in high-quality heavily doped GaN:Si micro-rods by photoluminescence and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Mohajerani, M. S.; Khachadorian, S.; Nenstiel, C.; Schimpke, T.; Avramescu, A.; Strassburg, M.; Hoffmann, A.; Waag, A.

    2016-03-01

    The controlled growth of highly n-doped GaN micro rods is one of the major challenges in the fabrication of recently developed three-dimensional (3D) core-shell light emitting diodes (LEDs). In such structures with a large active area, higher electrical conductivity is needed to achieve higher current density. In this contribution, we introduce high quality heavily-doped GaN:Si micro-rods which are key elements of the newly developed 3D core-shell LEDs. These structures were grown by metal-organic vapor phase epitaxy (MOVPE) using selective area growth (SAG). We employed spatially resolved micro-Raman and micro-photoluminescence (PL) in order to directly determine a free-carrier concentration profile in individual GaN micro-rods. By Raman spectroscopy, we analyze the low-frequency branch of the longitudinal optical (LO)-phonon-plasmon coupled modes and estimate free carrier concentrations from ≍ 2.4 × 1019 cm-3 up to ≍ 1.5 × 1020 cm-3. Furthermore, free carrier concentrations are determined by estimating Fermi energy level from the near band edge emission measured by low-temperature PL. The results from both methods reveal a good consistency.

  7. Optical and photocatalytic properties of heavily F(-)-doped SnO2 nanocrystals by a novel single-source precursor approach.

    PubMed

    Kumar, Vinod; Govind, A; Nagarajan, R

    2011-06-20

    Heavily F-doped SnO(2) nanocrystals were successfully prepared by a novel synthetic approach involving low-temperature oxidation of a Sn(2+)-containing fluoride complex KSnF(3) as the single-source precursor with H(2)O(2). The F-doped SnO(2) powder was characterized by powder X-ray diffraction, TG-MS, BET surface area, diffuse reflectance spectroscopy, XPS, PL, FTIR spectroscopy, Raman spectroscopy, EPR spectroscopy, SEM, and TEM. Broadening of the diffracted peaks, signifying the low crystallite size of the products, was quite evident in the powder X-ray diffraction pattern of SnO(2) obtained from KSnF(3). It was indexed in a tetragonal unit cell with lattice constants a = 4.7106 (1) Å and c = 3.1970 (1) Å. Agglomeration of particles, with an average diameter of 5-7 nm, was observed in the TEM images whose spotwise EDX analysis indicated the presence of fluoride ions. In the core level high-resolution F 1s spectrum, the peak observed at 685.08 eV was fitted by the Gaussian profile yielding the fluoride ion concentration to be 21.23% in the SnO(2) lattice. Such a high fluoride ion concentration is reported for the first time in powders. SnO(2):F nanocrystals showed greater thermal stability up to 300 °C when heated in a thermobalance under flowing helium, after which generation of small quantities of HF was observed in the TG coupled mass spectrometry analysis. The band gap value, estimated from the Kubelka-Munk function, showed a large shift from 3.52 to 3.87 eV on fluoride ion doping, as observed in the diffuse reflectance spectrum. Such a large shift was corroborated to the overdoped situation due to the Moss-Burstein effect with an increase in the carrier concentration. In the photoluminescence (PL) spectrum, SnO(2):F nanocrystals exhibited a broad green emission arising from the singly ionized oxygen vacancies created due to higher dopant concentration. The evidence for singly ionized vacancies was arrived from the presence of a signal with a g value of 1

  8. Characterization of Heavily Doped ALUMINUM(X)GALLIUM(1 -X)ARSENIDE:TELLURIUM Grown on Semi-Insulating Gallium-Arsenide

    NASA Astrophysics Data System (ADS)

    Malloy, Kevin John

    The ability to dope a semiconductor into near metallic conduction widens its usefulness as a material and thereby permits the construction of new devices. Aluminum Gallium Arsenide is no exception. Heavily doped n-type Aluminum Gallium Arsenide has important device applications in tandem junction solar cells and in high electron mobility transistors. Aluminum Gallium Arsenide heavily doped with Tellurium was grown on semi-insulating Gallium Arsenide using liquid phase epitaxy. It was found that the addition of 0.4 atomic percent Tellurium to the melt reduced the Aluminum content of solid Aluminum Gallium Arsenide by up to 20 percent. A model was offered for this behavior involving a differential in the degree of association between Aluminum-Tellurium and Gallium-Tellurium in the liquid phase epitaxial melt. The electrical properties of n-type Aluminum Gallium Arsenide grown on semi-insulating Gallium Arsenide were modeled as a two sheet conductor. The two conductors consisted of the epitaxial n-type Aluminum Gallium Arsenide layer and the induced two dimensional electron gas present at the n-type Aluminum Gallium Arsenide-Gallium Arsenide heterojunction. This model showed the two dimensional electron gas as responsible for the constant low temperature carrier concentration observed experimentally. It also successfully explained the observation of a slope equal to the donor ionization potential instead of the donor ionization potential divided by two in the plot of the log of the carrier concentration versus reciprocal temperature. Because of the chemically independent nature of the deep donor ionization potential in Aluminum Gallium Arsenide, a minima interaction model was introduced to describe the donor level. The major matrix elements were determined to be V(,LX) = 4mV (+OR-) 1mV and V(,LL) = 40mV (+OR-) 10mV. These minima interaction matrix elements were an order of magnitude larger than suggested by theory, thus indicating the possible non-coulombic nature of

  9. High critical currents in heavily doped (Gd,Y)Ba2Cu3Ox superconductor tapes

    SciTech Connect

    Selvamanickam, V.; Gharahcheshmeh, M. Heydari; Xu, A.; Galstyan, E.; Delgado, L.; Cantoni, C.

    2015-01-20

    REBa2Cu3Ox superconductor tapes with moderate levels of dopants have been optimized for high critical current density in low magnetic fields at 77 K, but they do not exhibit exemplary performance in conditions of interest for practical applications, i.e., temperatures less than 50 K and fields of 2–30 T. Heavy doping of REBCO tapes has been avoided by researchers thus far due to deterioration in properties. Here, we report achievement of critical current densities (Jc) above 20 MA/cm2 at 30 K, 3 T in heavily doped (25 mol. % Zr-added) (Gd,Y)Ba2Cu3Ox superconductor tapes, which is more than three times higher than the Jc typically obtained in moderately doped tapes. Pinning force levels above 1000 GN/m3 have also been attained at 20 K. A composition map of lift factor in Jc (ratio of Jc at 30 K, 3 T to the Jc at 77 K, 0 T) has been developed which reveals the optimum film composition to obtain lift factors above six, which is thrice the typical value. A highly c-axis aligned BaZrO3 (BZO) nanocolumn defect density of nearly 7 × 1011 cm–2 as well as 2–3nm sized particles rich in Cu and Zr have been found in the high Jc films.

  10. Orbital and Pauli limiting effects in heavily doped Ba0.05K0.95Fe2As2

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Singh, Y. P.; Huang, X. Y.; Chen, X. J.; Dzero, M.; Almasan, C. C.

    We investigated the thermodynamic properties of the Fe-based lightly-disordered superconductor Ba0.05K0.95Fe2As2 in external magnetic field H applied along the FeAs layers (H||ab planes). The superconducting (SC) transition temperature for this doping level is Tc = 6.6 K. Our analysis of the specific heat C(T,H) measured for T

  11. Impact of carbon-fluorine doped titanium dioxide in the performance of an electrochemical sensing of dopamine and rosebengal sensitized solar cells

    NASA Astrophysics Data System (ADS)

    C, Abinaya; Dinesh, Bose; Sangari, M.; Ramar, A.; Umadevi, M.; Mayandi, J.

    2015-01-01

    The role of Fluorine and Carbon as dopants in the TiO2 based electrochemical sensor and DSSC were presented in this work. A series of Carbon nano-cones and disc doped TiO2 (TC), Fluorine doped TiO2 (FT) and C & F co-doped TiO2 (CFT) powdered samples were prepared via solid state synthesis. The CFT film showed excellent electrochemical sensitivity to the oxidation of dopamine in aqueous solution and could be employed as a dopamine sensor. The proposed sensor exhibited good linear response in the range of 10-820 μM with a detection limit of 3.6 μM under optimum conditions. The photovoltaic performances of Rose Bengal sensitized solar cells were assessed through I-V measurements. The CFT based DSSC shows a short-circuit current density and a power conversion efficiency (η) of 0.908 mA/cm2 and 0.163% respectively, which is 35% and 38% greater than the performance of other PT based cells. The characterization studies such as UV-Visible spectroscopy, Photoluminescence, TEM and EPR spectroscopy were utilized for further investigation, which helps us to understand how fluorine and carbon play a part in dopamine sensing and solar energy conversion.

  12. A facile one-step electrochemical strategy of doping iron, nitrogen, and fluorine into titania nanotube arrays with enhanced visible light photoactivity.

    PubMed

    Hua, Zulin; Dai, Zhangyan; Bai, Xue; Ye, Zhengfang; Gu, Haixin; Huang, Xin

    2015-08-15

    Highly ordered iron, nitrogen, and fluorine tri-doped TiO2 (Fe, (N, F)-TiO2) nanotube arrays were successfully synthesized by a facile one-step electrochemical method in an NH4F electrolyte containing Fe ions. The morphology, structure, composition, and photoelectrochemical property of the as-prepared nanotube arrays were characterized by various methods. The photoactivities of the samples were evaluated by the degradation of phenol in an aqueous solution under visible light. Tri-doped TiO2 showed higher photoactivities than undoped TiO2 under visible light. The optimum Fe(3+) doping amount at 0.005M exhibited the highest photoactivity and exceeded that of undoped TiO2 by a factor of 20 times under visible light. The formation of N 2p level near the valence band (VB) contributed to visible light absorption. Doping fluorine and appropriate Fe(3+) ions reduced the photogenerated electrons-holes recombination rate and enhanced visible light photoactivity. The X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) results indicated the presence of synergistic effects in Fe, N, and F tri-doped TiO2, which enhanced visible light photoactivity. The Fe, (N, F)-TiO2 photocatalyst exhibited high stability.

  13. Identification of donor deactivation centers in heavily As-doped Si using time-of-flight medium-energy ion scattering spectroscopy

    SciTech Connect

    Min, Won Ja; Park, Kyungsu; Yu, Kyu-Sang; Joo, Sungjung; Kim, Yong-Sung; Moon, Dae Won

    2015-10-07

    Electrically-inactive arsenic (As) complexes in silicon are investigated using time-of-flight medium-energy ion scattering spectroscopy. In heavily As-doped Si, the As atoms that are segregated in the Si interface region just below the SiO{sub 2} are found to be in interstitial forms (As{sub i}), while the As atoms in the bulk Si region are found to be in the substitutional form (As{sub Si}). Despite the substitutional form of As, most of the As are found to be electrically inactive in the bulk region, and we identify the As to be in the form of a 〈111〉-oriented As{sub Si}-Si-vacancy (As{sub Si}-V{sub Si}) complex. The As{sub i} atoms in the interface Si region are found to exist together with Si-interstitial atoms (Si{sub i}), suggesting that the As{sub i} atoms in the interface Si region accompany the Si{sub i} atoms.

  14. The effect of laser patterning parameters on fluorine-doped tin oxide films deposited on glass substrates

    NASA Astrophysics Data System (ADS)

    Tseng, Shih-Feng; Hsiao, Wen-Tse; Huang, Kuo-Cheng; Chiang, Donyau

    2011-08-01

    The purpose of this study is to pattern the fluorine-doped tin oxide thin film deposited on the soda-lime glass substrates for touch screen applications by ultraviolet laser. The patterned film structures provide the electrical isolation and prevent the electrical contact from each region for various touch screens. The surface morphology, edge quality, three-dimensional topography, and profile of isolated lines and electrode structures after laser patterning were measured by a confocal laser scanning microscope. Moreover, a four-point probe instrument was used to measure the sheet resistance before and after laser patterning on film surfaces and also to discuss the electrical property at different laser spot overlaps. After laser patterning, a high overlapping area of laser spot was used to pattern the electrode layer on film surfaces that could obtain an excellent machined quality of edge profile. All sheet resistance values of film surfaces near the isolated line edge were larger than the original ones. Moreover, the sheet resistance values increased with increasing laser spot overlapping area.

  15. Low Temperature Synthesis of Fluorine-Doped Tin Oxide Transparent Conducting Thin Film by Spray Pyrolysis Deposition.

    PubMed

    Ko, Eun-Byul; Choi, Jae-Seok; Jung, Hyunsung; Choi, Sung-Churl; Kim, Chang-Yeoul

    2016-02-01

    Transparent conducting oxide (TCO) is widely used for the application of flat panel display like liquid crystal displays and plasma display panel. It is also applied in the field of touch panel, solar cell electrode, low-emissivity glass, defrost window, and anti-static material. Fluorine-doped tin oxide (FTO) thin films were fabricated by spray pyrolysis of ethanol-added FTO precursor solutions. FTO thin film by spray pyrolysis is very much investigated and normally formed at high temperature, about 500 degrees C. However, these days, flexible electronics draw many attentions in the field of IT industry and the research for flexible transparent conducting thin film is also required. In the industrial field, indium-tin oxide (ITO) film on polymer substrate is widely used for touch panel and displays. In this study, we investigated the possibility of FTO thin film formation at relatively low temperature of 250 degrees C. We found out that the control of volume of input precursor and exhaust gases could make it possible to form FTO thin film with a relatively low electrical resistance, less than 100 Ohm/sq and high optical transmittance about 88%.

  16. Optimization of the deposition and annealing conditions of fluorine-doped indium oxide films for silicon solar cells

    SciTech Connect

    Untila, G. G. Kost, T. N.; Chebotareva, A. B.; Timofeyev, M. A.

    2013-03-15

    Fluorine-doped indium oxide (IFO) films are deposited onto (pp{sup +})Si and (n{sup +}nn{sup +})Si structures made of single-crystal silicon by ultrasonic spray pyrolysis. The effect of the IFO deposition time and annealing time in an argon atmosphere with methanol vapor on the IFO chemical composition, the photovoltage and fill factor of the Illumination-U{sub oc} curves of IFO/(pp{sup +})Si structures, and the sheet resistance of IFO/(n{sup +}nn{sup +})Si structures, correlating with the IFO/(n{sup +})Si contact resistance, is studied. The obtained features are explained by modification of the properties of the SiO{sub x} transition layer at the IFO/Si interface during deposition and annealing. Analysis of the results made it possible to optimize the fabrication conditions of solar cells based on IFO/(pp{sup +})Si heterostructures and to increase their efficiency from 17% to a record 17.8%.

  17. Growth mechanism and optical properties of Ti thin films deposited onto fluorine-doped tin oxide glass substrate

    SciTech Connect

    Einollahzadeh-Samadi, Motahareh; Dariani, Reza S.

    2015-03-15

    In this work, a detailed study of the influence of the thickness on the morphological and optical properties of titanium (Ti) thin films deposited onto rough fluorine-doped tin oxide glass by d.c. magnetron sputtering is carried out. The films were characterized by several methods for composition, crystallinity, morphology, and optical properties. Regardless of the deposition time, all the studied Ti films of 400, 1500, 2000, and 2500 nm in thickness were single crystalline in the α-Ti phase and also very similar to each other with respect to composition. Using the atomic force microscopy (AFM) technique, the authors analyzed the roughness evolution of the Ti films characteristics as a function of the film thickness. By applying the dynamic scaling theory to the AFM images, a steady growth roughness exponent α = 0.72 ± 0.02 and a dynamic growth roughness exponent β = 0.22 ± 0.02 were determined. The value of α and β are consistent with nonlinear growth model incorporating random deposition with surface diffusion. Finally, measuring the reflection spectra of the samples by a spectrophotometer in the spectral range of 300–1100 nm allowed us to investigate the optical properties. The authors observed the increments of the reflection of Ti films with thickness, which by employing the effective medium approximation theory showed an increase in thickness followed by an increase in the volume fraction of metal.

  18. Corrosion behavior and biocompatibility of strontium and fluorine co-doped electrodeposited hydroxyapatite coatings

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Ding, Qiongqiong; Pang, Xiaofeng; Han, Shuguang; Yan, Yajing

    2013-10-01

    To improve the corrosion resistance and biocompatibility of biomedical titanium, strontium (Sr) and fluorine (F) were simultaneously incorporated in hydroxyapatite (HAp) to form SrFHAp coating on titanium (Ti) via electrodeposition. The microstructure, phase composition, corrosion resistance, and cytocompatibility of the films were studied. Results revealed that by incorporating F- and Sr2+ ions in HAp, the density of the coating markedly increased, i.e., a lower porosity than common HAp coating. The SrFHAp layer was dense and uniform, with nano-needle-like crystals of apatite, which aligned vertically to the substrate. The SrFHAp crystals were calcium-deficient apatite, and Sr2+ ions and F- ions were homogeneously distributed in the coating. The SrFHAp coating showed lower dissolution rate than HA coating. Potentiodynamic polarization test manifested that the SrFHAp-coated titanium exhibited superior corrosion resistance than HAp single-coated sample. In addition, osteoblasts cellular tests revealed that the SrFHAp coating was more effective to improve the in vitro biocompatibility of Ti compared with HAp coating.

  19. Synthesis and characterization of one-dimensional nanostructured fluorine-doped tin dioxide thin films

    NASA Astrophysics Data System (ADS)

    Murakami, Kenji; Bandara, Ajith; Okuya, Masayuki; Shimomura, Masaru; Rajapakse, R. M. G.

    2016-09-01

    This paper describes preparation and characterization of the optically-transparent and electrically conducting thin films of fluoride-doped tin dioxide (FTO) one-dimensional nanostructures and features of the purpose-built, novel and advanced version of spray pyrolysis technique, known as Rotational, Pulsed and Atomized Spray Pyrolysis. This technique allows perfect and simple control of morphology of the nanostructures of FTO layer by adjusting the spray conditions. Effect of the different additives on crystal morphology and texture of the 1-dimensional (1-D) nanostructured FTO thin films is studied. Vertically aligned and well separated nanotubes are easily fabricated using propanone and ethanol as additives. We suggest that propanone additive plays a role to form vertically aligned nanotubes with (101) preferential orientation while (110) face is the predominant plane of well separated nanotubes with ethanol additive. The conductivity of the 1-D nanostructured thin films are also enhanced using the commercial FTO glasses as a substrate.

  20. Visible light-driven photocatalytic degradation of the organic pollutant methylene blue with hybrid palladium-fluorine-doped titanium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Lázaro-Navas, Sonia; Prashar, Sanjiv; Fajardo, Mariano; Gómez-Ruiz, Santiago

    2015-02-01

    The synthesis of mesoporous aggregates of titanium oxide nanoparticles (F0) is described using a very cheap and simple synthetic protocol. This consists of the reaction of titanium tetraisopropoxide and a solution of HNO3 in water (pH 2.0) and subsequent filtration. In addition, fluorine-doped titanium oxides (F1, F2, F5 and F10) were synthesized using the same method, adding increasing amounts of NaF to the reaction mixture (avoiding the use of expensive reagents such as NH4F or trifluoroacetic acid). The resulting materials were calcined at different temperatures (500, 600 and 650 °C) giving particles sized between 10 and 20 nm. Furthermore, a hybrid F-doped TiO2 with supported palladium nanoparticles of ca. 20 nm (F5-500-Pd1) was synthesized by grafting an organometallic palladium(II) salt namely [Pd(cod)Cl2] (cod = 1,5-cyclooctadiene). Photocatalytic studies of the degradation of methylene blue (MB) were carried out under UV light using all the synthesized material (non-doped an F-doped TiO2), observing that the increase in the quantity of fluorine has a positive effect on the photocatalytic activity. F5-500 is apparently the material which has the most convenient structural properties (in terms of surface area and anatase/rutile ratio) and thus a higher photocatalytic activity. The hybrid material F-doped TiO2-Pd nanoparticles (F5-500-Pd1) has a lower band gap value than F5-500, and thus photocatalytic degradation of MB under LED visible light was achieved using F5-500-Pd1 as photocatalyst.

  1. Full solution-processed synthesis of all metal oxide-based tree-like heterostructures on fluorine-doped tin oxide for water splitting.

    PubMed

    Yin, Zongyou; Wang, Zheng; Du, Yaping; Qi, Xiaoying; Huang, Yizhong; Xue, Can; Zhang, Hua

    2012-10-09

    Well-ordered tree-like functional heterostructures, composed of the environmentally friendly oxides ZnO, TiO(2) , and CuO, on a fluorine-doped tin oxide substrate are realized by a practical, cost-effective, solution-processable strategy. The heterostructures are demonstrated to be an efficient light-harvesting medium in a photo-electrochemical cell to split water for hydrogen-gas generation, and the developed strategy provides a highly promising, cheap, green way to fabricate multifunctional hierarchically branched structures for many potential applications.

  2. Water Oxidation and Oxygen Monitoring by Cobalt-Modified Fluorine-Doped Tin Oxide Electrodes

    SciTech Connect

    Kent, CA; Concepcion, JJ; Dares, CJ; Torelli, DA; Rieth, AJ; Miller, AS; Hoertz, PG; Meyer, TJ

    2013-06-12

    Electrocatalytic water oxidation occurs at fluoride-doped tin oxide (FTO) electrodes that have been surface-modified by addition of Co(II). On the basis of X-ray photoelectron spectroscopy and transmission electron microscopy measurements, the active surface site appears to be a single site or small-molecule assembly bound as Co(II), with no evidence for cobalt oxide film or cluster formation. On the basis of cyclic voltammetry measurements, surface-bound Co(II) undergoes a pH-dependent 1e(-)/1H(+) oxidation to Co(III), which is followed by pH-dependent catalytic water oxidation. O-2 reduction at FTO occurs at -0.33 V vs NHE, allowing for in situ detection of oxygen as it is formed by water oxidation on the surface. Controlled-potential electrolysis at 1.61 V vs NHE at pH 7.2 resulted in sustained water oxidation catalysis at a current density of 0.16 mA/cm(2) with 29 000 turnovers per site over an electrolysis period of 2 h. The turnover frequency for oxygen production per Co site was 4 s(-1) at an overpotential of 800 mV at pH 7.2. Initial experiments with Co(II) on a mesoporous, high-surface-area nanoFTO electrode increased the current density by a factor of similar to 5

  3. Low temperature red luminescence of a fluorinated Mn-doped zinc selenite.

    PubMed

    Orive, Joseba; Balda, Rolindes; Fernández, Joaquín; Lezama, Luis; Arriortua, María I

    2013-09-14

    M2(SeO3)F2 (M = Zn (1), Mn (2)) stoichiometric phases together with the Zn2-xMnx(SeO3)F2 compound doped at various concentrations (x = 0.002-0.2) were synthesized by employing mild hydrothermal conditions. These compounds have been characterized by scanning electron microscopy (SEM), Rietveld refinement of the X-ray powder diffraction patterns, ICP-Q-MS, thermogravimetric and thermodiffractometric analyses, and IR, UV/vis and electron paramagnetic resonance (EPR) spectroscopies. Compounds 1 and 2 crystallize in the orthorhombic Pnma space group with lattice parameters: a = 7.27903(4), b = 10.05232(6) and c = 5.26954(3) Å for the zinc species and a = 7.50848(9), b = 10.3501(12) and c = 5.47697(6) Å for the manganese phase, with Z = 4. The crystal structures of these compounds are isotypic and are built up from a 3D framework constructed by (010) sheets of [MO3F3] octahedra linked up by [SeO3] building units. Luminescence measurements of Mn2(SeO3)F2 were performed at different temperatures between 10 and 150 K. At 10 K, the emission spectrum consists of a broad band peaked at around 660 nm related to the (4)T1g→(6)A1g transition in octahedrically coordinated Mn(2+). Moreover, the influence of temperatures up to 295 K and the Mn concentration on the luminescent properties of the Zn2-xMnx(SeO3)F2 system were systematically studied. Magnetic measurements of 2 show antiferromagnetic coupling as the major interactions exhibiting a spin canting at low temperature.

  4. Electrical conduction behavior of organic light-emitting diodes using fluorinated self-assembled monolayer with molybdenum oxide-doped hole transporting layer.

    PubMed

    Park, Sang-Geon; Mori, Tatsuo

    2015-06-01

    The electrical conductivity behavior of a fluorinated self-assembled monolayer (FSAM) of a molybdenum oxide (MoOx)-doped α-naphthyl diamine derivative (α-NPD) in organic light-emitting diodes (OLEDs) was investigated. The current density of the MoOx-doped α-NPD/FSAM device was proportional to its voltage owing to smooth carrier injection through the FSAM and the high carrier density of its bulk. The temperature-dependent characteristics of this device were investigated. The current density-voltage characteristics at different temperatures were almost the same owing to its very low activation energy. The activation energy of the device was estimated to be 1.056 × 10(-2) [eV] and was very low due to the inelastic electron tunneling of FSAM molecules.

  5. Fluorine-doped nanocrystalline SnO{sub 2} powders prepared via a single molecular precursor method as anode materials for Li-ion batteries

    SciTech Connect

    Ha, Hyung-Wook; Kim, Keon . E-mail: kkim@korea.ac.kr; Borniol, Mervyn de; Toupance, Thierry . E-mail: t.toupance@lcoo.u-bordeaux1.fr

    2006-03-15

    Fluorine-doped nanocrystalline tin dioxide materials (F:SnO{sub 2}) have been successfully prepared by the sol-gel process from a single molecular precursor followed by a thermal treatment at 450-650 deg. C. The resulting materials were characterized by FTIR spectroscopy, powder X-ray diffraction, nitrogen adsorption porosimetry (BET) and transmission electron microscopy (TEM). The mean particle size increased from 5 to 20 nm and the specific surface area decreased from 123 to 37 m{sup 2}/g as the temperature of heat treatment was risen from 450 to 650 deg. C. Fluorine-doped nanocrystalline SnO{sub 2} exhibited capacity of 560, 502, and 702 mA h/g with 48%, 50%, and 40% capacity retention after 25 cycles between 1.2 V and 50 mV at the rate of 25 mA/g, respectively. In comparison, commercial SnO{sub 2} showed an initial capacity of 388 mA h/g, with only 23% capacity retention after 25 cycles.

  6. Preparation of fluorine-doped, carbon-encapsulated hollow Fe3O4 spheres as an efficient anode material for Li-ion batteries.

    PubMed

    Geng, Hongbo; Zhou, Qun; Pan, Yue; Gu, Hongwei; Zheng, Junwei

    2014-04-07

    Herein we report the design and synthesis of fluorine-doped, carbon-encapsulated hollow Fe3O4 spheres (h-Fe3O4@C/F) through mild heating of polyvinylidene fluoride (PVDF)-coated hollow Fe3O4 spheres. The spheres exhibit enhanced cyclic and rate performances. The as-prepared h-Fe3O4@C/F shows significantly improved electrochemical performance, with high reversible capacities of over 930 mA h g(-1) at a rate of 0.1 C after 70 cycles, 800 mA h g(-1) at a rate of 0.5 C after 120 cycles and 620 mA h g(-1) at a rate of 1 C after 200 cycles. This improved lithium storage performance is mainly ascribed to the encapsulation of the spheres with fluorine-doped carbon, which not only improves the reaction kinetics and stability of the solid electrolyte interface film but also prevents aggregation and drastic volume change of the Fe3O4 particles. These spheres thus represent a promising anode material in lithium-ion battery applications.

  7. Effect of solvent volume on the physical properties of undoped and fluorine doped tin oxide films deposited using a low-cost spray technique

    NASA Astrophysics Data System (ADS)

    Muruganantham, G.; Ravichandran, K.; Saravanakumar, K.; Ravichandran, A. T.; Sakthivel, B.

    2011-12-01

    Undoped and fluorine doped tin oxide films were deposited from starting solutions having different values of solvent volume (10-50 ml) by employing a low cost and simplified spray technique using perfume atomizer. X-ray diffraction studies showed that there was a change in the preferential orientation from (2 1 1) plane to (1 1 0) plane as the volume of the solvent was increased. The sheet resistance ( Rsh) of undoped SnO 2 film was found to be minimum (13.58 KΩ/□) when the solvent volume was lesser (10 ml) and there was a sharp increase in Rsh for higher values of solvent volume. Interestingly, it was observed that while the Rsh increases sharply with the increase in solvent volume for undoped SnO 2 films, it decreases gradually in the case of fluorine doped SnO 2 films. The quantitative analysis of EDAX confirmed that the electrical resistivity of the sprayed tin oxide film was mainly governed by the number of oxygen vacancies and the interstitial incorporation of Sn atoms which in turn was governed by the impinging flux on the hot substrate. The films were found to have good optical characteristics suitable for opto-electronic devices.

  8. Heavily nickel-doped zinc oxide nanostructures prepared by hydrothermal oxidation of electro-deposited alloy films and their photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Rehman, Naeem-ur-; Mehmood, Mazhar; Ali, Farhat; Rasheed, Muhammad Asim; Younas, Muhammad; Ling, Francis C. C.; Ali, Syed Mansoor

    2014-11-01

    Wurtzite ZnO nanostructures doped with up to 17 at% Ni have been formed by hydrothermal oxidation of electrodeposited Zn-Ni alloy films. The wire diameter decreases with Ni content, up to about 20-50 nm for the Zn0.83Ni0.17O nanowires formed in NaCl solution. A strong ultra-violet emission is seen in the photoluminescence spectra obtained at 10 K and room temperature. A substantial visible emission exhibited by un-doped ZnO nanostructures formed in pure water becomes negligible by nickel doping and almost completely vanishes for the samples prepared in chloride solution, due to higher crystalline quality.

  9. Nitrogen plasma treatment of fluorine-doped tin oxide for enhancement of photo-carrier collection in amorphous Si solar cells

    NASA Astrophysics Data System (ADS)

    Baik, Seung Jae; Lim, Koeng Su

    2011-04-01

    Nitrogen plasma treatment was performed on fluorine-doped tin oxide (SnO2:F) front electrodes, and its impact on the performance of pin type amorphous Si (a-Si) solar cells was investigated. Nitrogen plasma treatment reverses the surface band bending of SnO2:F from accumulation to depletion, thus in turn reversing the band bending of the p type amorphous silicon carbide (p-a-SiC) window layer. The reversal of band bending leads to the collection of carriers generated in p-a-SiC, and quantum efficiency in the short wavelength regime is thereby enhanced. On the other hand, surface depletion of SnO2:F causes a reduction of the diode built-in voltage and increased series resistance, which could degrade the open circuit voltage (Voc) and fill factor (FF), the degradation of which is strongly affected by the deposition time of p-a-SiC.

  10. High-T sub c fluorine-doped YBa2Cu3O(y) films on ceramic substrates by screen printing

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1991-01-01

    Thick films of fluorine-doped YBa2Cu3O(y) were screen printed on highly polished alumina, magnesia spinel, strontium titanate, and yttria-stabilized zirconia (YSZ) substrates. They were annealed at 1000 C and soaked in oxygen at 450 C, followed by slow cooling to room temperature. The films were characterized by electrical resistivity measurements as a function of temperature and x-ray diffraction. The film on YSZ showed the best characteristics with a T sub c (onset) of 91 K, T sub c (R equals 0) of 88.2 K, and a transition width, delta T sub c (10-90 percent), of approximately 1.7 K. The film adhesion, probably controlled by interdiffusion of cations between the film and the substrate, was good in all cases except on strontium titanate where the film completely detached from the substrate.

  11. Photoelectrochemical characteristics of TiO2 nanorod arrays grown on fluorine doped tin oxide substrates by the facile seeding layer assisted hydrothermal method

    NASA Astrophysics Data System (ADS)

    Sui, Mei-rong; Han, Cui-ping; Gu, Xiu-quan; Wang, Yong; Tang, Lu; Tang, Hui

    2016-05-01

    TiO2 nanorod arrays (NRAs) were prepared on fluorine doped tin oxide (FTO) substrates by a facile two-step hydrothermal method. The nanorods were selectively grown on the FTO regions which were covered with TiO2 seeding layer. It took 5 h to obtain the compact arrays with the nanorod length of ~2 μm and diameter of ~50 nm. The photoelectrochemical (PEC) properties of TiO2 NRAs are also investigated. It is demonstrated that the TiO2 NRAs indicate the good photoelectric conversion ability with an efficiency of 0.22% at a full-wavelength irradiation. A photocurrent density of 0.21 mA/cm2 is observed at 0.7 V versus the saturated calomel electrode (SCE). More evidences suggest that the charge transferring resistance is lowered at an irradiation, while the flat-band potential ( V fb) is shifted towards the positive side.

  12. Ionization potentials of transparent conductive indium tin oxide films covered with a single layer of fluorine-doped tin oxide nanoparticles grown by spray pyrolysis deposition

    SciTech Connect

    Fukano, Tatsuo; Motohiro, Tomoyoshi; Ida, Takashi; Hashizume, Hiroo

    2005-04-15

    Indium tin oxide (ITO) films deposited with single layers of monodispersive fluorine-doped tin oxide (FTO) nanoparticles of several nanometers in size were grown on glass substrates by intermittent spray pyrolysis deposition using conventional atomizers. These films have significantly higher ionization potentials than the bare ITO and FTO films grown using the same technique. The ITO films covered with FTO particles of 7 nm in average size show an ionization potential of 5.01 eV, as compared with {approx}4.76 and {approx}4.64 eV in ITO and FTO films, respectively, which decreases as the FTO particle size increases. The ionization potentials are practically invariant against oxidation and reduction treatments, promising a wide application of the films to transparent conducting oxide electrodes in organic electroluminescent devices and light-emitting devices of high efficiencies.

  13. Fluorine doping: a feasible solution to enhancing the conductivity of high-resistance wide bandgap Mg0.51Zn0.49O active components

    PubMed Central

    Liu, Lishu; Mei, Zengxia; Hou, Yaonan; Liang, Huili; Azarov, Alexander; Venkatachalapathy, Vishnukanthan; Kuznetsov, Andrej; Du, Xiaolong

    2015-01-01

    N-type doping of high-resistance wide bandgap semiconductors, wurtzite high-Mg-content MgxZn1–xO for instance, has always been a fundamental application-motivated research issue. Herein, we report a solution to enhancing the conductivity of high-resistance Mg0.51Zn0.49O active components, which has been reliably achieved by fluorine doping via radio-frequency plasma assisted molecular beam epitaxial growth. Fluorine dopants were demonstrated to be effective donors in Mg0.51Zn0.49O single crystal film having a solar-blind 4.43 eV bandgap, with an average concentration of 1.0 × 1019 F/cm3.The dramatically increased carrier concentration (2.85 × 1017 cm−3 vs ~1014 cm−3) and decreased resistivity (129 Ω · cm vs ~106 Ω cm) indicate that the electrical properties of semi-insulating Mg0.51Zn0.49O film can be delicately regulated by F doping. Interestingly, two donor levels (17 meV and 74 meV) associated with F were revealed by temperature-dependent Hall measurements. A Schottky type metal-semiconductor-metal ultraviolet photodetector manifests a remarkably enhanced photocurrent, two orders of magnitude higher than that of the undoped counterpart. The responsivity is greatly enhanced from 0.34 mA/W to 52 mA/W under 10 V bias. The detectivity increases from 1.89 × 109 cm Hz1/2/W to 3.58 × 1010 cm Hz1/2/W under 10 V bias at room temperature.These results exhibit F doping serves as a promising pathway for improving the performance of high-Mg-content MgxZn1-xO-based devices. PMID:26489958

  14. Method for sputtering a PIN microcrystalline/amorphous silicon semiconductor device with the P and N-layers sputtered from boron and phosphorous heavily doped targets

    DOEpatents

    Moustakas, Theodore D.; Maruska, H. Paul

    1985-04-02

    A silicon PIN microcrystalline/amorphous silicon semiconductor device is constructed by the sputtering of N, and P layers of silicon from silicon doped targets and the I layer from an undoped target, and at least one semi-transparent ohmic electrode.

  15. Smooth and selective photo-electrochemical etching of heavily doped GaN:Si using a mode-locked 355 nm microchip laser

    NASA Astrophysics Data System (ADS)

    Lee, SeungGeun; Mishkat-Ul-Masabih, Saadat; Leonard, John T.; Feezell, Daniel F.; Cohen, Daniel A.; Speck, James S.; Nakamura, Shuji; DenBaars, Steven P.

    2017-01-01

    We investigate the photo-electrochemical (PEC) etching of Si-doped GaN samples grown on nonpolar GaN substrates, using a KOH/K2S2O8 solution and illuminated by a Xe arc lamp or a Q-switched 355 nm laser. The etch rate with the arc lamp decreased as the doping concentration increased, and the etching stopped for concentrations above 7.7 × 1018 cm-3. The high peak intensity of the Q-switched laser extended the etchable concentration to 2.4 × 1019 cm-3, with an etch rate of 14 nm/min. Compositionally selective etching was demonstrated, with an RMS surface roughness of 1.6 nm after etching down to an n-Al0.20Ga0.80N etch stop layer.

  16. Film growth of BaZrO3-doped YBa2Cu3O7-δ by using fluorine-free metal-organic deposition

    NASA Astrophysics Data System (ADS)

    Lu, F.; Kametani, F.; Hellstrom, E. E.

    2012-01-01

    In this study, BaZrO3 (BZO)-doped YBCO films were fabricated on SrTiO3(100) single-crystal substrates by a fluorine-free metal-organic deposition (MOD) process. We added extra Ba and Zr organic salts, which formed well-dispersed ˜10-25 nm sized BaZrO3 nanoparticles in the YBCO films. The in-field critical current density (Jc) and the peak pinning force (Fp) were greatly enhanced in the BZO-doped sample at 77 K relative to pure YBCO films. The optimal BZO content that gave the highest peak pinning force of ˜10 GN m-3 in a ˜180 nm thick film was found to be x = 0.10 for YBCO + xBZO films, where x is moles of BZO per 1 mol of YBCO. The angular dependence of in-field Jc measurements shows the BZO nanoparticles increased Jc over the entire angular range and also reduced the angular anisotropy measured at 4 T at 77 K.

  17. Facile green synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin nanocomposite in the dual acting fluorine-containing ionic liquid medium for bone substitute applications

    NASA Astrophysics Data System (ADS)

    Jegatheeswaran, S.; Selvam, S.; Sri Ramkumar, V.; Sundrarajan, M.

    2016-05-01

    A novel green route has approached for the synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin composite by the assistance of fluorine-based ionic liquid. The selected [BMIM]BF4 ionic liquid for this work plays a dual role as fluoride source and templating agent. It helps to improve the crystalline structures and the shape of the composites. The crystallinity, surface morphology, topographical studies of the synthesized composite were validated. The XRD results of the composite show typical Ag reflection peaks at 38.1°, 44.2° and 63.4°. The ionic liquid assisted composite displayed the hexagonal shaped HA particles, which are surrounded by spherical nano-Ag particles and these particles are uniformly dispersed in the β-cyclodextrin matrix in both horizontal and cross sections from surface morphology observations. The Ionic liquid assisted silver doped fluor-hydroxyapatite/β-cyclodextrin composite exhibited very good antibacterial activities against Escherichia coli, Salmonella typhi, Klebsiella pneumonia and Serratia liquefaciens pathogens. The antibacterial proficiencies were established using Confocal Laser Scanning Microscopic developed biofilms images and bacterial growth curve analysis. The cytotoxicity results of the ionic liquid assisted composite analyzed by cell proliferation in vitro studies using human osteosarcoma cell line (MG-63) and this study has shown excellent biocompatibility.

  18. High-beam quality, high-efficiency laser based on fiber with heavily Yb(3+)-doped phosphate core and silica cladding.

    PubMed

    Egorova, O N; Semjonov, S L; Medvedkov, O I; Astapovich, M S; Okhrimchuk, A G; Galagan, B I; Denker, B I; Sverchkov, S E; Dianov, E M

    2015-08-15

    We have fabricated and tested a composite fiber with an Yb(3+)-doped phosphate glass core and silica cladding. Oscillation with a slope efficiency of 74% was achieved using core pumping at 976 nm with fiber lengths of 48-90 mm in a simple laser configuration, where the cavity was formed by a high-reflectivity Bragg grating and the cleaved fiber end. The measured M(2) factors were as low as 1.05-1.22 even though the fiber was multimode at the lasing wavelength.

  19. Faraday rotation and photoluminescence in heavily Tb(3+)-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics.

    PubMed

    Gao, Guojun; Winterstein-Beckmann, Anja; Surzhenko, Oleksii; Dubs, Carsten; Dellith, Jan; Schmidt, Markus A; Wondraczek, Lothar

    2015-03-10

    We report on the magneto-optical (MO) properties of heavily Tb(3+)-doped GeO2-B2O3-Al2O3-Ga2O3 glasses towards fiber-integrated paramagnetic MO devices. For a Tb(3+) ion concentration of up to 9.7 × 10(21) cm(-3), the reported glass exhibits an absolute negative Faraday rotation of ~120 rad/T/m at 632.8 nm. The optimum spectral ratio between Verdet constant and light transmittance over the spectral window of 400-1500 nm is found for a Tb(3+) concentration of ~6.5 × 10(21) cm(-3). For this glass, the crystallization stability, expressed as the difference between glass transition temperature and onset temperature of melt crystallization exceeds 100 K, which is a prerequisite for fiber drawing. In addition, a high activation energy of crystallization is achieved at this composition. Optical absorption occurs in the NUV and blue spectral region, accompanied by Tb(3+) photoluminescence. In the heavily doped materials, a UV/blue-to-green photo-conversion gain of ~43% is achieved. The lifetime of photoluminescence is ~2.2 ms at a stimulated emission cross-section σem of ~1.1 × 10(-21) cm(2) for ~ 5.0 × 10(21) cm(-3) Tb(3+). This results in an optical gain parameter σem*τ of ~2.5 × 10(-24) cm(2)s, what could be of interest for implementation of a Tb(3+) fiber laser.

  20. Growth and barium zirconium oxide doping study on superconducting M-barium copper oxide (M = yttrium, samarium) films using a fluorine-free metal organic decomposition process

    NASA Astrophysics Data System (ADS)

    Lu, Feng

    We present a fluorine-free metal organic deposition (F-free MOD) process - which is possibly a rapid and economic alternative to commercial trifluoroacetates metal organic deposition (TFA-MOD) and metal organic chemical vapor deposition (MOCVD) processes - for the fabrication of high quality epitaxial high temperature superconducting YBa2Cu3O7-x (YBCO) films on both Rolling-Assisted Biaxially Textured Substrates (RABiTS) and single crystal substrates. We first studied the growth of YBCO and SmBCO films, and their resulting microstructure and superconducting properties. We produced epitaxial c-axis YBCO films with high critical current density (Jc) in excess of 106 A/cm2 at 77K in self field at the thickness of ˜1 mum. Because industrial applications demand high quality YBCO films with very high Jc, we investigated introducing BaZrO3 (BZO) nano-pinning sites in HTS thin films by our F-free MOD technique to improve Jc and the global pinning force (Fp). BZO-doped YBCO films were fabricated by adding extra Ba and Zr in the precursor solutions, according to the molar formula 1 YBCO + x BZO. We found the BZO content affects the growth of YBCO films and determined the optimum BZO content which leads to the most effective pinning enhancement and the least YBCO degradation. We achieved the maximum pinning force of ˜ 10 GN/m3 for x = 0.10 BZO-doped, 200 nm thick YBCO film on SrTiO3 single crystal substrates by modifying the pyrolysis from a one-step to a two-plateau decomposition during the F-free MOD process. For growing optimum BZO-doped YBCO films on RABiTS substrates, the F-free MOD process was also optimized by adjusting the maximum growth temperature and growth time to achieve stronger pinning forces. Through-process quenching studies indicate that BZO form 10--25 nm nanoparticles at the early stage of the process and are stable during the following YBCO growth, demonstrating that chemically doping YBCO films with BZO using the F-free MOD process is a very effective

  1. Preparation of high-quality palladium nanocubes heavily deposited on nitrogen-doped graphene nanocomposites and their application for enhanced electrochemical sensing.

    PubMed

    Shen, Yu; Rao, Dejiang; Bai, Wushuang; Sheng, Qinglin; Zheng, Jianbin

    2017-04-01

    A nanocomposite of high-quality palladium nanocubes (PdNCs) decorated nitrogen-doped graphene (NGE/PdNC) was successfully prepared by using bromide ion as a capping agent and polyvinyl pyrrolidone as a stabilizer. The morphology and composition of NGE/PdNC nanocomposites were characterized by field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD) and Raman spectra. To explore the application of NGE/PdNC nanocomposites in electrochemistry, the electrocatalytic response to nitrite at a NGE/PdNC-based electrode was investigated. Thus, a highly sensitive and selective electrochemical sensor for the detection of nitrite was constructed based on a glassy carbon electrode modified with the NGE/PdNC nanocomposites. The electrochemical behavior of this nanocomposites was studied by electrochemical impedance spectroscopy, cyclic voltammetry and chronoamperometry. The electrochemical investigations proved that the NGE/PdNC nanocomposites exhibited good electrocatalytic performance for the oxidation of nitrite, including a wide linear range from 5.0×10(-7) to 1.51×10(-3)molL(-1), a high sensitivity of 342.4μAmM(-1)cm(-2) and a low detection limit of 0.11μmolL(-1) at the signal-to-noise ratio of 3 (S/N=3). This non-enzymatic sensor also showed a good reproducibility and stability. The obtained NGE/PdNC nanocomposites may be a potential composite for applying in the field of other electrochemical sensing, catalysis and optics.

  2. Highly improved photo-induced bias stability of sandwiched triple layer structure in sol-gel processed fluorine-doped indium zinc oxide thin film transistor

    NASA Astrophysics Data System (ADS)

    Kim, Dongha; Park, Hyungjin; Bae, Byeong-Soo

    2016-03-01

    In order to improve the reliability of TFT, an Al2O3 insulating layer is inserted between active fluorine doped indium zinc oxide (IZO:F) thin films to form a sandwiched triple layer. All the thin films were fabricated via low-cost sol-gel process. Due to its large energy bandgap and high bonding energy with oxygen atoms, the Al2O3 layer acts as a photo-induced positive charge blocking layer that effectively blocks the migration of both holes and V o2+ toward the interface between the gate insulator and the semiconductor. The inserted Al2O3 triple layer exhibits a noticeably low turn on voltage shift of -0.7 V under NBIS as well as the good TFT performance with a mobility of 10.9 cm2/V ṡ s. We anticipate that this approach can be used to solve the stability issues such as NBIS, which is caused by inescapable oxygen vacancies.

  3. Annealing effect of fluorine-doped SnO2/WO3 core-shell inverse opal nanoarchitecture for photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Cho, Seo Yoon; Kang, Soon Hyung; Yun, Gun; Balamurugan, Maheswari; Ahn, Kwang-Soon

    2017-01-01

    Fluorine-doped SnO2 inverse opal (FTO IO) was developed on a polystyrene bead template with a size of 350 nm (± 20 nm) by using the sol-gel-assisted spin-coating method. The resulting FTO IO film exhibited a pore diameter of 270 nm (± 5 nm), and a WO3 layer was electrodeposited with a constant charge of 400 mC/cm2, followed by a high-temperature annealing process (400, 475, and 550 °C) to increase the crystallinity of the IO films. The annealing temperature affected the morphology and the overall resistance of the thin film, thus significantly affecting the photoelectrochemical performance. In particular, the FTO/WO3 IO film annealed at 475 °C exhibited a photocurrent density of 2.9 mA/cm2 at 1.23 V versus normal hydrogen electrode, showing more than a three times higher photocurrent density in comparison with the other samples (550 °C), which is attributed to the large surface area and low resistance for the charge transport. Therefore, the annealing temperature significantly affects the morphological and the photoelectrochemical features of the FTO/WO3 IO films.

  4. Reductive Electropolymerization of a Vinyl-containing Poly-pyridyl Complex on Glassy Carbon and Fluorine-doped Tin Oxide Electrodes

    PubMed Central

    Harrison, Daniel P.; Carpenter, Logan S.; Hyde, Jacob T.

    2015-01-01

    Controllable electrode surface modification is important in a number of fields, especially those with solar fuels applications. Electropolymerization is one surface modification technique that electrodeposits a polymeric film at the surface of an electrode by utilizing an applied potential to initiate the polymerization of substrates in the Helmholtz layer. This useful technique was first established by a Murray-Meyer collaboration at the University of North Carolina at Chapel Hill in the early 1980s and utilized to study numerous physical phenomena of films containing inorganic complexes as the monomeric substrate. Here, we highlight a procedure for coating electrodes with an inorganic complex by performing reductive electropolymerization of the vinyl-containing poly-pyridyl complex onto glassy carbon and fluorine doped tin oxide coated electrodes. Recommendations on electrochemical cell configurations and troubleshooting procedures are included. Although not explicitly described here, oxidative electropolymerization of pyrrole-containing compounds follows similar procedures to vinyl-based reductive electropolymerization but are far less sensitive to oxygen and water. PMID:25741745

  5. Novel nanostructure zinc zirconate, zinc oxide or zirconium oxide pastes coated on fluorine doped tin oxide thin film as photoelectrochemical working electrodes for dye-sensitized solar cell.

    PubMed

    Hossein Habibi, Mohammad; Askari, Elham; Habibi, Mehdi; Zendehdel, Mahmoud

    2013-03-01

    Zinc zirconate (ZnZrO(3)) (ZZ), zinc oxide (ZnO) (ZO) and zirconium oxide (ZrO(2)) (ZRO) nano-particles were synthesized by simple sol-gel method. ZZ, ZO and ZRO nano-particles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-Vis diffuse reflectance spectrum (DRS). Nanoporous ZZ, ZO and ZRO thin films were prepared doctor blade technique on the fluorine-doped tin oxide (FTO) and used as working electrodes in dye sensitized solar cells (DSSC). Their photovoltaic behavior were compared with standard using D35 dye and an electrolyte containing [Co(bpy)(3)](PF(6))(2), [Co(pby)(3)](PF(6))(3), LiClO(4), and 4-tert-butylpyridine (TBP). The properties of DSSC have been studied by measuring their short-circuit photocurrent density (Jsc), open-circuit voltage (VOC) and fill factor (ff). The application of ZnZrO(3) as working electrode produces a significant improvement in the fill factor (ff) of the dye-sensitized solar cells (ff=56%) compared to ZnO working electrode (ff=40%) under the same condition.

  6. Fluorine-Doped Tin Oxide Nanocrystal/Reduced Graphene Oxide Composites as Lithium Ion Battery Anode Material with High Capacity and Cycling Stability.

    PubMed

    Xu, Haiping; Shi, Liyi; Wang, Zhuyi; Liu, Jia; Zhu, Jiefang; Zhao, Yin; Zhang, Meihong; Yuan, Shuai

    2015-12-16

    Tin oxide (SnO2) is a kind of anode material with high theoretical capacity. However, the volume expansion and fast capability fading during cycling have prevented its practical application in lithium ion batteries. Herein, we report that the nanocomposite of fluorine-doped tin oxide (FTO) and reduced graphene oxide (RGO) is an ideal anode material with high capacity, high rate capability, and high stability. The FTO conductive nanocrystals were successfully anchored on RGO nanosheets from an FTO nanocrystals colloid and RGO suspension by hydrothermal treatment. As the anode material, the FTO/RGO composite showed high structural stability during the lithiation and delithiation processes. The conductive FTO nanocrystals favor the formation of stable and thin solid electrolyte interface films. Significantly, the FTO/RGO composite retains a discharge capacity as high as 1439 mAhg(-1) after 200 cycles at a current density of 100 mAg(-1). Moreover, its rate capacity displays 1148 mAhg(-1) at a current density of 1000 mAg(-1).

  7. Electrochemical serotonin monitoring of poly(ethylenedioxythiophene):poly(sodium 4-styrenesulfonate)-modified fluorine-doped tin oxide by predeposition of self-assembled 4-pyridylporphyrin.

    PubMed

    Song, Min-Jung; Kim, Sangsig; Ki Min, Nam; Jin, Joon-Hyung

    2014-02-15

    A 5,10,15,20-tetrakis(4-pyridyl)-21H,23H-porphyrin (TPyP)-modified self-assembled functional layer was prepared on a fluorine-doped tin oxide (FTO) substrate. We employed a bifunctional molecule, 3-iodopropionate (3IP), to covalently bind TPyP to the FTO substrate. The 3IP-monolayered FTO and the TPyP-3IP-bilayered FTO electrodes were characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and Fourier transform-infrared spectroscopy. Compared to conventional electropolymerized poly(ethylenedioxythiophene):poly(sodium 4-styrenesulfonate) (PEDOT:PSS) film on bare FTO, the PEDOT:PSS film on the TPyP-3IP-bilayered FTO showed better sensitivity and selectivity in monitoring serotonin in the presence of high concentrations of interfering agents such as ascorbic acid, urea, D-(+)-glucose, epinephrine, and L-3,4-dihydroxyphenylalanine. Both PEDOT:PSS films on the bare FTO and the TPyP-3IP-bilayered FTO showed electrocatalytic effects in serotonin detection, and only the TPyP-3IP-based PEDOT:PSS film acted as a pH resistant buffer layer in the selective detection of serotonin.

  8. High performance dye-sensitized solar cells using graphene modified fluorine-doped tin oxide glass by Langmuir–Blodgett technique

    SciTech Connect

    Roh, Ki-Min; Jo, Eun-Hee; Chang, Hankwon; Han, Tae Hee; Jang, Hee Dong

    2015-04-15

    Since the introduction of dye-sensitized solar cells (DSSCs) with low fabrication cost and high power conversion efficiency, extensive studies have been carried out to improve the charge transfer rate and performance of DSSCs. In this paper, we present DSSCs that use surface modified fluorine-doped tin oxide (FTO) substrates with reduced graphene oxide (r-GO) sheets prepared using the Langmuir–Blodgett (LB) technique to decrease the charge recombination at the TiO{sub 2}/FTO interface. R-GO sheets were excellently attached on FTO surface without physical deformations such as wrinkles; effects of the surface coverage of r-GO on the DSSC performance were also investigated. By using graphene modified FTO substrates, the resistance at the interface of TiO{sub 2}/FTO was reduced and the power conversion efficiency was increased to 8.44%. - Graphical abstract: DSSCs with graphene modified FTO glass were fabricated with the Langmuir Blodgett technique. GO sheets were transferred to FTO at various surface pressures in order to change the surface density of graphene and the highest power conversion efficiency of the DSSC was 8.44%. - Highlights: • By LB technique, r-GO sheets were coated on FTO without physical deformation. • DSSCs were fabricated with, r-GO modified FTO substrates. • With surface modification by r-GO, the interface resistance of DSSC decreased. • Maximum PCE of the DSSC was increased up to 8.44%.

  9. Enhanced superconductivity of SmFeAsO co-doped by Scandium and Fluorine to increase chemical inner pressure

    NASA Astrophysics Data System (ADS)

    Chen, Haijie; Zheng, Ming; Fang, Aihua; Yang, Jianhua; Huang, Fuqiang; Xie, Xiaoming; Jiang, Mianheng

    2012-10-01

    Sm1-x/3Scx/3FeAsO1-xFx (x=0.09-0.27) were synthesized by the mechanical alloying and subsequent low temperature rapid sintering (2 h at 950 °C). The superconducting transition temperature (Tc) increased with the doping level of x. The optimal doping achieved a Tc up to 53.5 K in Sm0.93Sc0.07FeAsO0.79F0.21. The higher Tc value was attributed to the increased chemical inner pressure from local lattice distortion induced by smaller-size dopants, which was further confirmed by Sm1-xScxFeAsO0.88F0.12 (x=0.04, 0.08, 0.12). Accordingly, larger lattice distortion can enhance the superconductivity below the doping limit. Similar phenomenon was also observed in the La1-xYxFeAsO0.8F0.2 (x=0.4, 0.5, 0.6).

  10. Fabrication and enhanced visible light photocatalytic activity of fluorine doped TiO2 by loaded with Ag.

    PubMed

    Lin, Xiaoxia; Rong, Fei; Ji, Xiang; Fu, Degang; Yuan, Chunwei

    2011-11-01

    F-doped TiO2 loaded with Ag (Ag/F-TiO2) was prepared by sol-gel process combined with photoreduction method. The physical and chemical properties of the prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM), UV-Vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL). XPS analysis indicated Ag species existed as Ag0 in the structure of Ag/F-TiO2 samples. UV-Vis diffuse reflectance spectra showed that the light absorption of Ag/F-TiO2 in the visible region had a significant enhancement compared with the F-doped TiO2 (F-TiO2). PL analysis indicated that the electron-hole recombination rate had been effectively inhibited when Ag loaded on the surface of F-TiO2. The photocatalytic activities of the samples were evaluated for the degradation of X-3B (Reactive Brilliant Red dye, C.I. reactive red 2) under visible light (lambda > 420 nm) irradiation. Compared with F-TiO2, the sample of 0.50 Ag/F-TiO2 showed the highest photocatalytic activity. The interaction between F species and metallic Ag was responsible for improving the visible light photocatalytic activity.

  11. Enhanced photoelectrochemical water oxidation via atomic layer deposition of TiO2 on fluorine-doped tin oxide nanoparticle films

    NASA Astrophysics Data System (ADS)

    Cordova, Isvar A.; Peng, Qing; Ferrall, Isa L.; Rieth, Adam J.; Hoertz, Paul G.; Glass, Jeffrey T.

    2015-04-01

    TiO2 is an exemplary semiconductor anode material for photoelectrochemical (PEC) water-splitting electrodes due to its functionality, long-term stability in corrosive environments, nontoxicity, and low cost. In this study, TiO2 photoanodes with enhanced photocurrent density were synthesized by atomic layer deposition (ALD) of TiO2 onto a porous, transparent, and conductive fluorine-doped tin oxide nanoparticle (nanoFTO) scaffold fabricated by solution processing. The simplicity and disordered nature of the nanoFTO nanostructure combined with the ultrathin conformal ALD TiO2 coatings offers advantages including decoupling charge carrier diffusion length from optical penetration depth, increased photon absorption probability through scattering, complimentary photon absorption, and favorable interfaces for charge separation and transfer across the various junctions. We examine the effects of porosity of the nanoFTO scaffold and thickness of the TiO2 coating on PEC performance and achieve an optimal photocurrent of 0.7 mA cm-2 at 0 V vs. Ag/AgCl under 100 mW cm-2 AM 1.5 G irradiation in a 1 M KOH aqueous electrolyte. Furthermore, the fundamental mechanisms behind the improvements are characterized via cyclic voltammetry, incident photon-to-current efficiency, transient photocurrent spectroscopy, and electrochemical impedance spectroscopy and are contrasted with those of single crystal rutile TiO2 nanowires. The strategies employed in this work highlight the opportunities inherent to these types of heteronanostructures, where the lessons may be applied to improve the PEC conversion efficiencies of other promising semiconductors, such as hematite (α-Fe2O3) and other materials more sensitive to visible light.TiO2 is an exemplary semiconductor anode material for photoelectrochemical (PEC) water-splitting electrodes due to its functionality, long-term stability in corrosive environments, nontoxicity, and low cost. In this study, TiO2 photoanodes with enhanced photocurrent

  12. Deposition of nanostructured fluorine-doped hydroxyapatite-polycaprolactone duplex coating to enhance the mechanical properties and corrosion resistance of Mg alloy for biomedical applications.

    PubMed

    Bakhsheshi-Rad, H R; Hamzah, E; Kasiri-Asgarani, M; Jabbarzare, S; Iqbal, N; Abdul Kadir, M R

    2016-03-01

    The present study addressed the synthesis of a bi-layered nanostructured fluorine-doped hydroxyapatite (nFHA)/polycaprolactone (PCL) coating on Mg-2Zn-3Ce alloy via a combination of electrodeposition (ED) and dip-coating methods. The nFHA/PCL composite coating is composed of a thick (70-80 μm) and porous layer of PCL that uniformly covered the thin nFHA film (8-10 μm) with nanoneedle-like microstructure and crystallite size of around 70-90 nm. Electrochemical measurements showed that the nFHA/PCL composite coating presented a high corrosion resistance (R(p)=2.9×10(3) kΩ cm(2)) and provided sufficient protection for a Mg substrate against galvanic corrosion. The mechanical integrity of the nFHA/PCL composite coatings immersed in SBF for 10 days showed higher compressive strength (34% higher) compared with the uncoated samples, indicating that composite coatings can delay the loss of compressive strength of the Mg alloy. The nFHA/PCL coating indicted better bonding strength (6.9 MPa) compared to PCL coating (2.2 MPa). Immersion tests showed that nFHA/PCL composite-coated alloy experienced much milder corrosion attack and more nucleation sites for apatite compared with the PCL coated and uncoated samples. The bi-layered nFHA/PCL coating can be a good alternative method for the control of corrosion degradation of biodegradable Mg alloy for implant applications.

  13. Method for fluorinating coal

    DOEpatents

    Huston, John L.; Scott, Robert G.; Studier, Martin H.

    1978-01-01

    Coal is fluorinated by contact with fluorine gas at low pressure. After pial fluorination, when the reaction rate has slowed, the pressure is slowly increased until fluorination is complete, forming a solid fluorinated coal of approximate composition CF.sub.1.55 H.sub.0.15. The fluorinated coal and a solid distillate resulting from vacuum pyrolysis of the fluorinated coal are useful as an internal standard for mass spectrometric unit mass assignments from about 100 to over 1500.

  14. Mutual relation among lattice distortion, Hall effect property and band edge cathodoluminescence of heavily-boron-doped microwave-plasma CVD diamond films homoepitaxially grown on vicinal (001) high-pressure/high-temperature-synthesized Ib substrates

    NASA Astrophysics Data System (ADS)

    Mori, Reona; Maida, Osamu; Ito, Toshimichi

    2015-04-01

    We have investigated properties of heavily-B-doped diamond (HBD) films homoepitaxially grown with boron-to-carbon (B/C) mole ratios ranging from 1000 to 5000 ppm in the source gas mainly by using X-Ray diffraction (XRD), cathodoluminescence (CL), and Hall effect measurements. Each HBD layer was deposited on a vicinal (001) substrate of high-pressure/high-temperature synthesized Ib-type diamond with 5° misorientation angle by means of high-power-density microwave-plasma chemical-vapor-deposition method with a source gas composed of 4% CH4 in H2 and H2-diluted B(CH3)3. XRD data indicated that the lattice constant of the B-doped layer slightly decreased for the B/C ratios≤3000 ppm while slightly increasing for that of 5000 ppm, suggesting that for the latter HBD sample a part of the incorporated B atoms behaved differently from the remaining other B atoms. By contrast the Hall data indicated that all the HBD samples had a degenerate feature only at temperatures well below room temperature (RT), above which a semiconducting feature was evident, and that the density of the degenerate holes steeply increased from 1.3×1019 to 1.2×1021 cm-3 with increases in the incorporated B density, [B], from 1.2×1020 to 5.9×1020 cm-3. This drastic change in the hole density strongly suggested the presence of a [B]-dependent impurity band. Their evident near-band-edge CL spectra taken at RT and 85 K demonstrated that radiative transition features in the HBD layers considerably varied for the B/C ratios studied. The CL peaks were consistently assigned by assuming both the presence of an impurity band and a slight bandgap shrinkage. These observed features are discussed in relation to the energy separation between the low-mobility impurity band assumed and the valence band in the high-quality HBD layer which are not merged in energy.

  15. Quantification of low levels of fluorine content in thin films

    NASA Astrophysics Data System (ADS)

    Ferrer, F. J.; Gil-Rostra, J.; Terriza, A.; Rey, G.; Jiménez, C.; García-López, J.; Yubero, F.

    2012-03-01

    Fluorine quantification in thin film samples containing different amounts of fluorine atoms was accomplished by combining proton-Rutherford Backscattering Spectrometry (p-RBS) and proton induced gamma-ray emission (PIGE) using proton beams of 1550 and 2330 keV for p-RBS and PIGE measurements, respectively. The capabilities of the proposed quantification method are illustrated with examples of the analysis of a series of samples of fluorine-doped tin oxides, fluorinated silica, and fluorinated diamond-like carbon films. It is shown that this procedure allows the quantification of F contents as low as 1 at.% in thin films with thicknesses in the 100-400 nm range.

  16. The effect of exceptionally high fluorine doping on the anisotropy of single crystalline SmFeAsO1-xFx

    NASA Astrophysics Data System (ADS)

    Fujioka, Masaya; Denholme, Saleem J.; Tanaka, Masashi; Takeya, Hiroyuki; Yamaguchi, Takahide; Takano, Yoshihiko

    2014-09-01

    We prepared single crystalline SmFeAsO1-xFx with an exceptionally high fluorine concentration by using a CsCl flux method. Comparing to conventional flux methods, this method can introduce about double the amount of fluorine into the oxygen site. The obtained single crystal shows the highest superconducting transition temperature (Tc = 57.5 K) in single crystalline iron pnictides. In addition, the residual resistivity ratio is almost three times as large as that of previously reported single crystals. This suggests that our single crystals are suitable for investigation of the intrinsic superconducting properties, since they have few defects and impurities. Using both the Werthamer-Helfand-Hohenberg model and the effective mass model, we demonstrated that a higher fluorine concentration suppresses the anisotropic superconductivity of SmFeAsO1-xFx.

  17. Fluorine disposal

    NASA Technical Reports Server (NTRS)

    Rakow, A.

    1983-01-01

    A preliminary design of an F2 dispoal system for HELSTF is presented along with recommendations on operational policy and identification of potential operational problems. The analysis is based on sizing a system to handle two different modes of the HELSTF Fluorine Flow System (one operational and one catastrophic). This information should serve both as a guide to a final detailed design for HELSTF as well as a reference for subsequent monitoring and/or modification of the system which consists of a charcoal reactor followed by a dry soda lime scrubber.

  18. FLUORINATION PROCESS

    DOEpatents

    McMillan, T.S.

    1957-10-29

    A process for the fluorination of uranium metal is described. It is known that uranium will react with liquid chlorine trifluoride but the reaction proceeds at a slow rate. However, a mixture of a halogen trifluoride together with hydrogen fluoride reacts with uranium at a significantly faster rate than does a halogen trifluoride alone. Bromine trifluoride is suitable for use in the process, but chlorine trifluoride is preferred. Particularly suitable is a mixture of ClF/sub 3/ and HF having a mole ratio (moles

  19. Improved organic p-i-n type solar cells with n-doped fluorinated hexaazatrinaphthylene derivatives HATNA-F{sub 6} and HATNA-F{sub 12} as transparent electron transport material

    SciTech Connect

    Selzer, Franz Falkenberg, Christiane Leo, Karl Riede, Moritz; Hamburger, Manuel Baumgarten, Martin Müllen, Klaus

    2014-02-07

    We study new electron transport materials (ETM) to replace the reference material C{sub 60} in p-i-n type organic solar cells. A comprehensive material characterization is performed on two fluorinated hexaazatrinaphthylene derivatives, HATNA-F{sub 6} and HATNA-F{sub 12}, to identify the most promising material for the application in devices. We find that both HATNA derivatives are equally able to substitute C{sub 60} as ETM as they exhibit large optical energy gaps, low surface roughness, and sufficiently high electron mobilities. Furthermore, large electron conductivities of 3.5×10{sup −5} S/cm and 2.0×10{sup −4} S/cm are achieved by n-doping with 4 wt. % W{sub 2}(hpp){sub 4}. HOMO levels of (7.72 ± 0.05) eV and (7.73 ± 0.05) eV are measured by ultraviolet photoelectron spectroscopy and subsequently used for estimating LUMO values of (4.2 ± 0.8) eV and (4.3 ± 0.8) eV. Both fluorinated HATNA derivatives are successfully applied in p-i-n type solar cells. Compared to identical reference devices comprising the standard material C{sub 60}, the power conversion efficiency (PCE) can be increased from 2.1 % to 2.4 % by using the new fluorinated HATNA derivatives.

  20. Doping directed at the oxygen sites in Y1Ba2Cu3O(7-delta) - The effect of sulfur, fluorine, and chlorine

    NASA Technical Reports Server (NTRS)

    Bansal, N. P.; Boyne, D.; Farrell, D. E.

    1988-01-01

    The effect of three dopants directed at the oxygen sites in Y1Ba2Cu3O(7-delta) have been investigated: sulfur, fluorine, and chlorine. Single-phase material has been obtained up to a (nominal) replacement of about 1 percent of the oxygen. Although the lattice parameters are unchanged, all dopants raise Tc (very slightly), sharpen the resistive transition, reduce the normal state resistivity, and very substantially increase the (magnetically determined) fraction of the material that is superconducting. All of these results differ qualitatively from those obtained with dopants directed at other locations in the 123 structure, and it is suggested that small additions of sulfur, fluorine, or chlorine may help to stabilize the ideal 123 stoichiometry.

  1. Nephelometric determination of fluorine

    USGS Publications Warehouse

    Stevens, R.E.

    1936-01-01

    Fluorine in minerals may be determined with the nephelometer to about 1 per cent of the fluorine. The determination is made on an aliquot of the sodium chloride solution of the fluorine, obtained by the Berzelius method of extraction. The fluorine is precipitated as colloidal calcium fluoride in alcoholic solution, gelatin serving as a protective colloid. Arsenates, sulfates, and phosphates, which interfere with the determination, must be removed.

  2. Fluorine in medicinal chemistry.

    PubMed

    Swallow, Steven

    2015-01-01

    Since its first use in the steroid field in the late 1950s, the use of fluorine in medicinal chemistry has become commonplace, with the small electronegative fluorine atom being a key part of the medicinal chemist's repertoire of substitutions used to modulate all aspects of molecular properties including potency, physical chemistry and pharmacokinetics. This review will highlight the special nature of fluorine, drawing from a survey of marketed fluorinated pharmaceuticals and the medicinal chemistry literature, to illustrate key concepts exploited by medicinal chemists in their attempts to optimize drug molecules. Some of the potential pitfalls in the use of fluorine will also be highlighted.

  3. Lunar mining of oxygen using fluorine

    NASA Technical Reports Server (NTRS)

    Burt, Donald M.

    1992-01-01

    An important aspect of lunar mining will be the extraction of volatiles, particularly oxygen, from lunar rocks. Thermodynamic data show that oxygen could readily be recovered by fluorination of abundant lunar anorthite, CaAl2Si2O8. Fluorine is the most reactive element, and the only reagent able to extract 100 percent of the oxygen from any mineral, yet it can safely be stored or reacted in nickel or iron containers. The general fluorination reaction, mineral + 2F2 = mixed fluorides = O2, has been used for more than 30 years at a laboratory scale by stable-isotope geochemists. For anorthite, metallic Al and Si may be recovered from the mixed fluorides by Na-reduction, and CaO via exchange with Na2O; the resulting NaF may be recycled into F2 and Na by electrolysis, using lanthanide-doped CaF2 as the inert anode.

  4. Lunar mining of oxygen using fluorine

    NASA Astrophysics Data System (ADS)

    Burt, Donald M.

    1992-09-01

    An important aspect of lunar mining will be the extraction of volatiles, particularly oxygen, from lunar rocks. Thermodynamic data show that oxygen could readily be recovered by fluorination of abundant lunar anorthite, CaAl2Si2O8. Fluorine is the most reactive element, and the only reagent able to extract 100 percent of the oxygen from any mineral, yet it can safely be stored or reacted in nickel or iron containers. The general fluorination reaction, mineral + 2F2 = mixed fluorides = O2, has been used for more than 30 years at a laboratory scale by stable-isotope geochemists. For anorthite, metallic Al and Si may be recovered from the mixed fluorides by Na-reduction, and CaO via exchange with Na2O; the resulting NaF may be recycled into F2 and Na by electrolysis, using lanthanide-doped CaF2 as the inert anode.

  5. Optimization of a fluorine-free metal-organic deposition to fabricate BaZrO3-doped YBa2Cu3O7-δ film on RABiTS substrates

    NASA Astrophysics Data System (ADS)

    Lu, F.; Kametani, F.; Hellstrom, E. E.

    2013-04-01

    In this study, we used a systematic route to optimize the fluorine-free MOD process to achieve a high critical current density (Jc) in BaZrO3 (BZO)-doped YBCO films on RABiTS substrates. The BZO content is given by 1 YBCO+x BZO films, where x is moles of BZO per 1 mole of YBCO. We found x = 0.10 to be the optimal BZO content and ˜795-805 °C to be the optimal growth temperature window with 60-90 min processing time. TEM studies show the BZO nanoparticles are ˜20 nm in size and spaced ˜50-100 nm apart. The in-field Jc and the peak pinning force (Fp) of the film grown at the optimal conditions were greatly increased at 77 K relative to pure YBCO films, achieving ˜6.7 GN m-3 at 77 K, H ‖ c in a ˜800 nm thick x = 0.10 film. The angular dependence of in-field Jc measurements also shows greatly reduced angular anisotropy at 1 and 4 T at 77 K due to isotropic pinning by BZO nanoparticles.

  6. Fluorination process using catalyst

    DOEpatents

    Hochel, Robert C.; Saturday, Kathy A.

    1985-01-01

    A process for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3, AgF.sub.2 and NiF.sub.2, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3 and AgF.sub.2, whereby the fluorination is significantly enhanced.

  7. Fluorination process using catalysts

    DOEpatents

    Hochel, R.C.; Saturday, K.A.

    1983-08-25

    A process is given for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/, AgF/sub 2/ and NiF/sub 2/, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/ and AgF/sub 2/, whereby the fluorination is significantly enhanced.

  8. Fluorine separation and generation device

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.; Stefan, Constantin I.

    2010-03-02

    A process and apparatus for the electrolytic separation of fluorine from a mixture of gases is disclosed. Also described is the process and apparatus for the generation of fluorine from fluorine/fluoride containing solids, liquids or gases.

  9. Fluorine separation and generation device

    SciTech Connect

    The Regents of the University of California

    2008-12-23

    A process and apparatus for the electrolytic separation of fluorine from a mixture of gases is disclosed. Also described is the process and apparatus for the generation of fluorine from fluorine/fluoride containing solids, liquids or gases.

  10. Fluorine separation and generation device

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.; Stefan, Constantin I.

    2006-08-15

    A process and apparatus for the electrolytic separation of fluorine from a mixture of gases is disclosed. Also described is the process and apparatus for the generation of fluorine from fluorine/fluoride containing solids, liquids or gases.

  11. Fluorinated elastomeric materials

    DOEpatents

    Lagow, Richard J.; Dumitru, Earl T.

    1990-02-13

    This invention relates to a method of making perfluorinated elastomeric materials, and to materials made by such methods. In the full synthetic scheme, a partially fluorinated polymeric compound, with moieties to prevent crystallization, is created. It is then crosslinked to a desired degree, then perfluorinated. Various intermediate materials, such as partially fluorinated crosslinked polymers, have useful properties, and are or may become commercially available. One embodiment of this invention therefore relates to perfluorination of a selected partially fluorinated, crosslinked material, which is one step of the full synthetic scheme.

  12. Fluorinated elastomeric materials

    DOEpatents

    Lagow, Richard J.; Dumitru, Earl T.

    1986-11-04

    This invention relates to a method of making perfluorinated elastomeric materials, and to materials made by such methods. In the full synthetic scheme, a partially fluorinated polymeric compound, with moieties to prevent crystallization, is created. It is then crosslinked to a desired degree, then perfluorinated. Various intermediate materials, such as partially fluorinated crosslinked polymers, have useful properties, and are or may become commercially available. One embodiment of this invention therefore relates to perfluorination of a selected partially fluorinated, crosslinked material, which is one step of the full synthetic scheme.

  13. Cumulative effect of transition metals on nitrogen and fluorine co-doped graphite nanofibers: an efficient and highly durable non-precious metal catalyst for the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Peera, S. Gouse; Arunchander, A.; Sahu, A. K.

    2016-07-01

    Nitrogen and fluorine co-doped graphite nanofibers (N/F-GNF) and their cumulative effect with Fe and Co have been developed as an alternative non-precious metal catalyst for efficient oxygen reduction reaction (ORR) in acidic media. The synergistic effect between the doped hetero atoms and the co-ordinated Fe and Co towards ORR activity and durability of the catalyst is deeply investigated. A high ORR onset potential comparable with commercial Pt/C catalyst is observed with the Fe-Co/NF-GNF catalyst, which indicates that this catalyst is a potential alternative to Pt/C. A fivefold increase in mass activity is achieved by the Fe-Co/NF-GNF catalyst compared to the simple N/F-GNF catalyst, which endorses the significant role of transition metal atoms in enhancing ORR activity. The advanced Fe-Co/NF-GNF catalyst also exhibits complete tolerance to CH3OH and CO. The Fe-Co/NF-GNF catalyst also exhibits excellent durability towards the ORR with only a 10 mV negative shift in its half wave potential after a 10 000 repeated potential cycling test, whereas in the case of a commercial Pt/C catalyst there was an ~110 mV negative shift under similar environmental conditions. More stringent corrosive test cycles were also performed by maintaining the cell as high as 1.4 V with a later decrease to 0.6 V vs. RHE for 300 cycles, which showed the excellent durability of the Fe-Co/NF-GNF catalyst in comparison with the Pt/C catalyst. XPS analysis of the Fe-Co/NF-GNF catalyst presents the ORR active chemical states of N (pyridinic-N and graphitic-N) and F (semi-ionic-F) and the co-ordinated sites of Fe and Co species with the dopants. The excellent performance and durability of the Fe-Co/NF-GNF catalyst is due to the synergistic effect between the hetero atoms dopants (N and F) and strong co-ordinating bonds of M-N-C, which protect the graphene layers around the metallic species and greatly mitigates the leaching of Co and Fe during the long term cycling test. The high activity and

  14. A flourish of fluorine

    NASA Astrophysics Data System (ADS)

    Roesky, Herbert W.

    2010-03-01

    Herbert Roesky relates how the small, highly electronegative fluorine atom unveiled the chemical reactivity of noble gases and found many practical applications. but it can also render organic compounds highly toxic or pollutants.

  15. Highly fluorinated polymers

    NASA Technical Reports Server (NTRS)

    Trischler, F. D.; Hollander, J. (Inventor)

    1971-01-01

    A description is given of hydroxy containing polyethers which are prepared by the base polymerization of 2-hydro-perhaloisopropyl alcohols having the formula CF3 CH(OH)CH2X, where X is fluorine, chlorine, bromine or iodine.

  16. NIGMS Fluorine Detection

    NASA Technical Reports Server (NTRS)

    Chen, Philip T.; Benna, Mehdi

    2015-01-01

    Please note that these charts were not presented at the CCMPP July 2015 Workshop; however, we would like to include these charts in the Workshop Proceedings.These charts present an overview of the NGIMS fluorine evaluation conducted for the MAVEN mission. The charts show that fluorine may be generated by the following mechanisms:-Reaction with water-Elevated temperature-Radiation, atomic oxygen, ultraviolet, spacecraft charging, and vacuum-Space environmental synergy

  17. Improving Photoconductance of Fluorinated Donors with Fluorinated Acceptors

    SciTech Connect

    Garner, Logan E.; Larson, Bryon; Oosterhout, Stefan; Owczarczyk, Zbyslaw; Olson, Dana C.; Kopidakis, Nikos; Boltalina, Olga V.; Strauss, Steven H.; Braunecker, Wade A.

    2016-11-21

    This work investigates the influence of fluorination of both donor and acceptor materials on the generation of free charge carriers in small molecule donor/fullerene acceptor BHJ OPV active layers. A fluorinated and non-fluorinated small molecule analogue were synthesized and their optoelectronic properties characterized. The intrinsic photoconductance of blends of these small molecule donors was investigated using time-resolved microwave conductivity. Blends of the two donor molecules with a traditional non-fluorinated fullerene (PC70BM) as well as a fluorinated fullerene (C60(CF3)2-1) were investigated using 5% and 50% fullerene loading. We demonstrate for the first time that photoconductance in a 50:50 donor:acceptor BHJ blend using a fluorinated fullerene can actually be improved relative to a traditional non-fluorinated fullerene by fluorinating the donor molecule as well.

  18. The hollow-cathode helium-fluorine laser

    NASA Technical Reports Server (NTRS)

    Crane, J. K.; Verdeyen, J. T.

    1980-01-01

    It is possible to obtain uniform stable long-pulse excitation (in excess of 100 microsec) in gas mixtures involving highly electronegative constituents (SF6, CCl4, NF3, and I2). Such a system was used to investigate the atomic fluorine laser. In the hollow cathode, lasing on fluorine transitions in the doublet system lasted for up to 80 microsec with no signs of the self-termination as reported previously in positive-column devices. The excitation process of the laser appears to depend heavily upon the fluorine donor utilized. For instance, a single-step process is involved when NF3 is used whereas a two-step process is evident for SF6. The details are discussed.

  19. DETERMINATION OF FLUORINE IN HIGH FLUORINE CONTENT ORGANIC MATERIALS.

    DTIC Science & Technology

    FLUORINE COMPOUNDS, *CHEMICAL ANALYSIS), ABSORPTION, OXYGEN, LANTHANUM COMPOUNDS, VOLUMETRIC ANALYSIS, ACETIC ACID , FLUORIDES, ELECTROCHEMISTRY, MAGNESIUM, ETHYLENEDINITRILO TETRAACETATES, ELECTRODES

  20. Volcanogenic fluorine in rainwater around active degassing volcanoes: Mt. Etna and Stromboli Island, Italy.

    PubMed

    Bellomo, S; D'Alessandro, W; Longo, M

    2003-01-01

    Many studies have assessed the strong influence of volcanic activity on the surrounding environment. This is particularly true for strong gas emitters such as Mt. Etna and Stromboli volcanoes. Among volcanic gases, fluorine compounds are potentially very harmful. Fluorine cycling through rainwater in the above volcanic areas was studied analysing more than 400 monthly bulk samples. Data indicate that only approximately 1% of fluorine emission through the plume is deposited on the two volcanic areas by meteoric precipitations. Although measured bulk rainwater fluorine fluxes are comparable to and sometimes higher than in heavily polluted areas, their influence on the surrounding vegetation is limited. Only annual crops, in fact, show some damage that could be an effect of fluorine deposition, indicating that long-living endemic plant species or varieties have developed some kind of resistance.

  1. Fluorine in psychedelic phenethylamines.

    PubMed

    Trachsel, Daniel

    2012-01-01

    The so-called psychedelic phenethylamines represent a class of drugs with a large range of psychoactive properties in humans, ranging from naturally occurring mescaline to amphetamine analogues and homologues. The interest in many of these compounds, occasionally referred to as designer-drugs, is widely dispersed across popular culture and political and scientific communities. In recent decades, fluorine has become a powerful and important tool in medicinal chemistry. In addition, fluorine-containing compounds and medicines can be found in numerous commercially successful pharmaceuticals that have gained a market share of some 5-15%. One might anticipate this trend to increase in the future. As far as fluorinated phenethylamines are concerned, much less is known about their chemistry and pharmacology. This paper provides an overview regarding the biological properties of over 60 fluorinated phenethylamines and discusses both historical and recent chemistry-related developments. It was shown that the introduction of fluorine into the phenethylamine nucleus can impact greatly on psychoactivity of these compounds, ranging from marked loss to enhancement and prolongation of effects. For example, in contrast to the psychoactive escaline (70), it was observed that its fluoroescaline (76) counterpart was almost devoid of psychoactive effects. Difluoroescaline (77), on the other hand, retained, and trifluoroescaline (78) showed increased human potency of escaline (70). Difluoromescaline (72) and trifluoromescaline (73) increasingly surpassed human potency and duration of mescaline (22) effects.

  2. DRY FLUORINE SEPARATION METHOD

    DOEpatents

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1959-05-19

    Preparation and separation of U/sup 233/ by irradiation of ThF/sub 4/ is described. During the neutron irradiation to produce Pa/sup 233/ a fluorinating agent such as HF, F/sub 2/, or HF + F/sub 2/ is passed through the ThF/sub 4/ powder to produce PaF/sub 5/. The PaF/sub 5/, being more volatile, is removed as a gas and allowed to decay radioactively to U/sup 233/ fluoride. A batch procedure in which ThO/sub 2/ or Th metal is irradiated and fluorinated is suggested. Some Pa and U fluoride volatilizes away. Then the remainder is fluorinated with F/sub 2/ to produce very volatile UF/sub 6/ which is recovered. (T.R.H.)

  3. Fluorinated silica microchannel surfaces

    DOEpatents

    Kirby, Brian J.; Shepodd, Timothy Jon

    2005-03-15

    A method for surface modification of microchannels and capillaries. The method produces a chemically inert surface having a lowered surface free energy and improved frictional properties by attaching a fluorinated alkane group to the surface. The coating is produced by hydrolysis of a silane agent that is functionalized with either alkoxy or chloro ligands and an uncharged C.sub.3 -C.sub.10 fluorinated alkane chain. It has been found that the extent of surface coverage can be controlled by controlling the contact time from a minimum of about 2 minutes to a maximum of 120 minutes for complete surface coverage.

  4. Fluorine (soluble fluoride)

    Integrated Risk Information System (IRIS)

    Fluorine ( soluble fluoride ) ; CASRN 7782 - 41 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for No

  5. Fluorination methods in drug discovery.

    PubMed

    Yerien, Damian E; Bonesi, Sergio; Postigo, Al

    2016-09-28

    Fluorination reactions of medicinal and biologically-active compounds will be discussed. Late stage fluorination strategies of medicinal targets have recently attracted considerable attention on account of the influence that a fluorine atom can impart to targets of medicinal importance, such as modulation of lipophilicity, electronegativity, basicity and bioavailability, the latter as a consequence of membrane permeability. Therefore, the recourse to late-stage fluorine substitution on compounds with already known and relevant biological activity can provide the pharmaceutical industry with new leads with improved medicinal properties. The fluorination strategies will take into account different fluorinating reagents, either of nucleophilic or electrophilic, and of radical nature. Diverse families of organic compounds such as (hetero)aromatic rings, and aliphatic substrates (sp(3), sp(2), and sp carbon atoms) will be studied in late-stage fluorination reaction strategies.

  6. Plasma fluorination of vertically aligned carbon nanotubes: functionalization and thermal stability

    PubMed Central

    Struzzi, Claudia; Scardamaglia, Mattia; Hemberg, Axel; Petaccia, Luca; Colomer, Jean-François; Snyders, Rony

    2015-01-01

    Summary Grafting of fluorine species on carbon nanostructures has attracted interest due to the effective modification of physical and chemical properties of the starting materials. Various techniques have been employed to achieve a controlled fluorination yield; however, the effect of contaminants is rarely discussed, although they are often present. In the present work, the fluorination of vertically aligned multiwalled carbon nanotubes was performed using plasma treatment in a magnetron sputtering chamber with fluorine diluted in an argon atmosphere with an Ar/F2 ratio of 95:5. The effect of heavily diluted fluorine in the precursor gas mixture is investigated by evaluating the modifications in the nanotube structure and the electronic properties upon plasma treatment. The existence of oxygen-based grafted species is associated with background oxygen species present in the plasma chamber in addition to fluorine. The thermal stability and desorption process of the fluorine species grafted on the carbon nanotubes during the fluorine plasma treatment were evaluated by combining different spectroscopic techniques. PMID:26734518

  7. Defect formation and annealing behaviors of fluorine-implanted GaN layers revealed by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, M. J.; Yuan, L.; Cheng, C. C.; Beling, C. D.; Chen, K. J.

    2009-02-01

    Defect formation and annealing behaviors of fluorine-implanted, unintentionally doped GaN layers were studied by positron annihilation spectroscopy (PAS). Single Ga vacancies (VGa) were identified as the main vacancy-type defects detected by PAS after fluorine implantation at 180 keV with a dose of 1×1015 cm-2. Implantation-induced VGa tend to aggregate and form vacancy clusters after postimplantation annealing in N2 ambient at 600 °C. Fluorine ions tend to form F-vacancy complexes quickly after thermal annealing, which is consistent with the proposed diffusion model that predicts the behaviors of fluorine in GaN.

  8. Fluorinated Nanocarbons Cytotoxicity.

    PubMed

    Teo, Wei Zhe; Chua, Chun Kiang; Sofer, Zdenek; Pumera, Martin

    2015-09-07

    As the research in nanotechnology progresses, there will eventually be an influx in the number of commercial products containing different types of nanomaterials. This phenomenon might damage our health and environment if the nanomaterials used are found to be toxic and they are released into the waters when the products degrade. In this study, we investigated the cytotoxicity of fluorinated nanocarbons (CXFs), a group of nanomaterials which can find applications in solid lubricants and lithium primary batteries. Our cell viability findings indicated that the toxicological effects induced by the CXF are dependent on the dose, size, shape, and fluorine content of the CXF. In addition, we verified that CXFs have insignificant interactions with the cell viability assays-methylthiazolyldiphenyl-tetrazolium bromide (MTT) and water-soluble tetrazolium salt (WST-8), thus suggesting that the cytotoxicity data obtained are unlikely to be affected by CXF-induced artifacts and the results will be reliable.

  9. Fluorine-containing polyformals

    NASA Technical Reports Server (NTRS)

    Trischler, F. D. (Inventor)

    1968-01-01

    A fluorine-containing polymeric polyformals is described which has the repeating unit O CH2 O CH2 (CF2) sub n CH2 wherein n is an integer of from about 3 to about 6 prepared by reacting trioxane with a diol having the formula HO CH2 (CF2) sub n CH2 OH. These polymeric polyformals are useful directly for impervious coatings on metals and the like.

  10. Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence

    SciTech Connect

    Vaccaro, L.; Cannas, M.; Alessi, A.; Boscaino, R.; Girard, S.; Boukenter, A.; Ouerdane, Y.; Morana, A.

    2013-05-21

    The distribution of Non-Bridging Oxygen Hole Centers (NBOHCs) in fluorine doped optical fibers was investigated by confocal microluminescence spectroscopy, monitoring their characteristic 1.9 eV luminescence band. The results show that these defects are generated by the fiber drawing and their concentration further increases after {gamma} irradiation. The NBOHC concentration profile along the fiber provides evidence for an exponential decay with the fluorine content. This finding agrees with the role of fluorine in the fiber resistance and is discussed, from the microscopic point of view, by looking at the conversion mechanisms from strained bonds acting as precursors.

  11. The influences of fluorine and process variations on polysilicon film stress and MOSFET hot carrier effects

    NASA Technical Reports Server (NTRS)

    Lowry, Lynn E.; Macwilliams, Kenneth P.; Isaac, Mary

    1991-01-01

    The use of fluorinated gate oxides may provide an improvement in nMOSFET reliability by enhancing hot carrier resistance. In order to clarify the mechanisms by which polysilicon processing and fluorination influence the oxide behavior, a matrix of nMOSFET structures was prepared using various processing, doping, and implantation strategies. These structures were evaluated for crystalline morphology and chemical element distribution. Mechanical stress measurements were taken on the polysilicon films from room temperature to cryogenic temperature. These examinations showed that fluorination of a structure with randomly oriented polysilicon can reduce residual mechanical stress and improve hot carrier resistance at room temperature.

  12. Incubational domain characterization in lightly doped ceria

    SciTech Connect

    Li Zhipeng; Mori, Toshiyuki; John Auchterlonie, Graeme; Zou Jin; Drennan, John

    2012-08-15

    Microstructures of both Gd- and Y-doped ceria with different doping level (i.e., 10 at% and 25 at%) have been comprehensively characterized by means of high resolution transmission electron microscopy and selected area electron diffraction. Coherent nano-sized domains can be widely observed in heavily doped ceria. Nevertheless, it was found that a large amount of dislocations actually exist in lightly doped ceria instead of heavily doped ones. Furthermore, incubational domains can be detected in lightly doped ceria, with dislocations located at the interfaces. The interactions between such linear dislocations and dopant defects have been simulated accordingly. As a consequence, the formation mechanism of incubational domains is rationalized in terms of the interaction between intrinsic dislocations of doped ceria and dopant defects. This study offers the insights into the initial state and related mechanism of the formation of nano-sized domains, which have been widely observed in heavily rare-earth-doped ceria in recent years. - Graphical abstract: Interactions between dislocations and dopants lead to incubational domain formation in lightly doped ceria. Highlights: Black-Right-Pointing-Pointer Microstructures were characterized in both heavily and light Gd-/Y-doped ceria. Black-Right-Pointing-Pointer Dislocations are existed in lightly doped ceria rather than heavily doped one. Black-Right-Pointing-Pointer Interactions between dislocations and dopant defects were simulated. Black-Right-Pointing-Pointer Formation of dislocation associated incubational domain is rationalized.

  13. Sonochemical fabrication of fluorinated mesoporous titanium dioxide microspheres

    SciTech Connect

    Yu Changlin; Yu, Jimmy C.; Chan Mui

    2009-05-15

    A sonochemical-hydrothermal method for preparing fluorinated mesoporous TiO{sub 2} microspheres was developed. Formation of mesoporous TiO{sub 2} and doping of fluorine was achieved by sonication and then hydrothermal treatment of a solution containing titanium isopropoxide, template, and sodium fluoride. The as-synthesized TiO{sub 2} microspheres were characterized by X-ray diffraction (XRD), Fourier translation infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, photoluminescence spectroscopy (PL), and BET surface areas. The P123 template was removed completely during the hydrothermal and washing steps, which was different from the conventional calcination treatment. The as- synthesized TiO{sub 2} microspheres had good crystallinity and high stability. Results from the photocatalytic degradation of methylene blue (MB) showed that fluorination could remarkably improve the photocatalytic activity of titanium dioxide. - Graphical abstract: A novel method for preparing fluorinated mesoporous TiO{sub 2} microspheres was developed by a combined ultrasonic and hydrothermal treatment. The fluorinated TiO{sub 2} microspheres show high crystallinity, stability and enhanced photocatalytic activity.

  14. Dynamic polarization of ZF in a fluorinated alcohol

    SciTech Connect

    Hill, D.; Kasprzyk, T.; Jarmer, J.J.; Penttilae, S.; Krumpolc, M.; Hoffmann, G.W.; Purcell, M.

    1988-01-01

    We have studied microwave dynamic cooling of ZF and H nuclei in mixtures of 1,1,1,3,3,3-hexafluoro-2-propanol and water, doped with Cr(V) complex. Equal spin temperatures of the two nuclei are produced, and the highest spin polarizations (/approximately/80%) are found in mixtures near the eutectic ratio. The high fluorine content and polarization make this a suitable material for polarized nuclear scattering experiments. 11 refs., 3 figs., 1 tab.

  15. Special tool kit aids heavily garmented workers

    NASA Technical Reports Server (NTRS)

    Holmes, A. E.

    1966-01-01

    Triangular aluminum tool kit, filled with polyurethane is constructed to receive various tools and hold them in a snug but quick-release fit as an aid to heavily gloved workers. The kit is designed to allow mounting within easily accessable reach and to provide protection of the tools during storage.

  16. Improved heterogeneous electron transfer kinetics of fluorinated graphene derivatives

    NASA Astrophysics Data System (ADS)

    Boopathi, Sidhureddy; Narayanan, Tharangattu N.; Senthil Kumar, Shanmugam

    2014-08-01

    Though graphitic carbons are commercially available for various electrochemical processes, their performance is limited in terms of various electrochemical activities. Recent experiments on layered carbon materials, such as graphene, demonstrated an augmented performance of these systems in all electrochemical activities due to their unique electronic properties, enhanced surface area, structure and chemical stabilities. Moreover, flexibility in controlling electronic, as well as electrochemical activities by heteroatom doping brings further leverage in their practical use. Here, we study the electron transfer kinetics of fluorinated graphene derivatives, known as fluorinated graphene oxide (FGO) and its reduced form, RFGO. Enhanced electron transfer kinetics (heterogeneous electron transfer (HET)) is observed from these fluorinated systems in comparison to their undoped systems such as graphene oxide (GO) and reduced GO. A detailed study has been conducted using standard redox probes and biomolecules revealing the enhanced electro-catalytic activities of FGO and RFGO, and electron transfer rates are simulated theoretically. This study reveals that fluorine not only induces defects in graphitic lattice leading to an enhanced HET process but also can modify the electronic structure of graphene surface.Though graphitic carbons are commercially available for various electrochemical processes, their performance is limited in terms of various electrochemical activities. Recent experiments on layered carbon materials, such as graphene, demonstrated an augmented performance of these systems in all electrochemical activities due to their unique electronic properties, enhanced surface area, structure and chemical stabilities. Moreover, flexibility in controlling electronic, as well as electrochemical activities by heteroatom doping brings further leverage in their practical use. Here, we study the electron transfer kinetics of fluorinated graphene derivatives, known as

  17. Process for preparing fluorine-18

    DOEpatents

    Winchell, Harry S.; Wells, Dale K.; Lamb, James F.; Beaudry, Samuel B.

    1976-09-21

    An improved process for preparation of fluorine-18 by a neon (deuteron, alpha particle) fluorine-18 nuclear reaction in a non-reactive enclosed reaction zone wherein a ultrapure product is recovered by heating the reaction zone to a high temperature and removing the product with an inert gas.

  18. 21 CFR 177.1615 - Polyethylene, fluorinated.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyethylene, fluorinated. 177.1615 Section 177... Contact Surfaces § 177.1615 Polyethylene, fluorinated. Fluorinated polyethylene, identified in paragraph... prescribed conditions: (a) Fluorinated polyethylene food-contact articles are produced by modifying...

  19. Reversible Changes in Resistance of Perovskite Nickelate NdNiO3 Thin Films Induced by Fluorine Substitution.

    PubMed

    Onozuka, Tomoya; Chikamatsu, Akira; Katayama, Tsukasa; Hirose, Yasushi; Harayama, Isao; Sekiba, Daiichiro; Ikenaga, Eiji; Minohara, Makoto; Kumigashira, Hiroshi; Hasegawa, Tetsuya

    2017-03-08

    Perovskite nickel oxides are of fundamental as well as technological interest because they show large resistance modulation associated with phase transition as a function of the temperature and chemical composition. Here, the effects of fluorine doping in a perovskite nickelate NdNiO3 epitaxial thin films are investigated through a low-temperature reaction with polyvinylidene fluoride as the fluorine source. The fluorine content in the fluorinated NdNiO3-xFx films is controlled with precision by varying the reaction time. The fully fluorinated film (x ≈ 1) is highly insulating and has a bandgap of 2.1 eV, in contrast to NdNiO3, which exhibits metallic transport properties. Hard X-ray photoelectron and soft X-ray absorption spectroscopies reveal the suppression of the density of states at the Fermi level as well as the reduction of nickel ions (valence state changes from 3+ to 2+) after fluorination, suggesting that the strong Coulombic repulsion in the Ni 3d orbitals associated with the fluorine substitution drives the metal-to-insulator transition. In addition, the resistivity of the fluorinated films recovers to the original value for NdNiO3 after annealing in an oxygen atmosphere. By applying the reversible fluorination process to transition-metal oxides, the search for resistance-switching materials could be accelerated.

  20. Chronology of heavily cratered terrains on Mercury

    NASA Astrophysics Data System (ADS)

    Marchi, S.; Chapman, C. R.

    2012-12-01

    Imaging of Mercury by Mariner 10 revealed a planet with more extensive plains units than on the Moon. Even in heavily cratered terrain, there is a lack of craters <40 km in diameter, relative to the size-frequency distribution on the Moon, a result attributed to resurfacing by the formation of widespread "intercrater plains". MESSENGER imaging has revealed that the more recent smooth plains are generally the result of widespread volcanism (rather than fluidized impact basin ejecta) and that at least localized volcanism may have persisted until comparatively recent times, despite the crustal contraction evidenced by the numerous lobate scarps. The older intercrater plains may also be volcanic. Here we address the ages of the oldest, most heavily cratered regions on Mercury that may predate most of the visible intercrater plains. We scale to Mercury the lunar crater chronology recently developed by Morbidelli et al., [1] in order to interpret new crater counts on these terrains. We find that these craters are probably not saturated but may have been in equilibrium with a rapid resurfacing process, presumably volcanism that formed the earliest recognized intercrater plains. The crater retention age for this terrain, which contains the oldest large craters on Mercury, is surprisingly young, perhaps hundreds of millions of years younger than the heavily cratered pre-Nectarian terrains on the Moon [2]. These results are important for understanding the early geological and geophysical evolution of Mercury. References: [1] Morbidelli A., Marchi S., Bottke W.F., and Kring D.A. 2012. A sawtooth timeline for the first billion years of the lunar bombardment. Earth and Planetary Science Letters, in press. [2] Marchi S., Bottke W.F., Kring D.A., and Morbidelli A. 2012. The onset of the lunar cataclysm as recorded in its ancient crater populations. Earth and Planetary Science Letters 325, 27-38.

  1. 77 FR 32146 - Safety Evaluation Report, International Isotopes Fluorine Products, Inc., Fluorine Extraction...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-31

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Safety Evaluation Report, International Isotopes Fluorine Products, Inc., Fluorine Extraction...) is considering the issuance of a license to International Isotopes Fluorine Products, Inc., (IIFP...

  2. Compare of the electronic structures of F- and Ir-doped SmFeAsO

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Cheng, C. H.; Chen, Y. L.; Cui, Y. J.; You, W. G.; Zhang, H.; Zhao, Y.

    2010-11-01

    The electronic structures of Fe-based superconductor SmFeAsO1-xFx and SmFe1-yIryAsO are compared through X-ray photoemission spectroscopy in this study. With fluorine or iridium doping, the electronic structure and chemical environment of the SmFeAsO system were changed. The fluorine was doped at an oxygen site which introduced electrons to a reservoir Sm-O layer. The iridium was doped at an Fe site which introduced electrons to a conduction Fe-As layer directly. In a parent material SmFeAsO, the magnetic ordering corresponding to Fe3d in the low-spin state is suppressed by both fluorine and iridium doping through suppressing the magnetism of 3d itinerant electrons. Compared to fluorine doping, iridium doping affected superconductivity more significantly due to an iridium-induced disorder in FeAs layers.

  3. Thermal NF3 fluorination/oxidation of cobalt, yttrium, zirconium, and selected lanthanide oxides

    SciTech Connect

    Scheele, Randall D.; McNamara, Bruce K.; Casella, Andrew M.; Kozelisky, Anne E.; Neiner, Doinita

    2013-02-01

    This paper presents results of our continuing investigation on the use of nitrogen trifluoride as a fluorination or fluorination/oxidation agent for separating valuable constituents from used nuclear fuels by exploiting the different volatilities of the constituent fission product and actinide fluorides. This article focuses on fission products that do not have volatile fluorides or oxyfluorides at expected operations temperatures. Our thermodynamic calculations show that nitrogen trifluoride has the potential to completely fluorinate fission product oxides to their fluorides. Simultaneous thermogravimetric and differential thermal analyses show that the oxides of cobalt, zirconium, and the lanthanides are fluorinated but do not form volatile fluorides when treated with nitrogen trifluoride at temperatures up to 550°C. Our studies of gadolinium-doped commercial nuclear fuel indicate that nitrogen trifluoride can extract uranium from the non-volatile gadolinium.

  4. Assessment of DFT functionals with fluorine-fluorine coupling constants

    NASA Astrophysics Data System (ADS)

    García de la Vega, J. M.; San Fabián, J.

    2015-07-01

    Density functional theory (DFT) calculations of nuclear magnetic resonance (NMR) spin-spin coupling constants (SSCCs) provide an important contribution for understanding experimentally observed values. It is known that calculated SSCCs using DFT methods correlate well with those experimentally measured. Unlike most of SSCCs, in fluorine compounds, fluorine-fluorine SSCC JFF shows that the Fermi contact (FC) term is not dominant, particularly for JFF in polyfluorinated organic molecules. In order to devise a DFT approach that would correctly reproduce the variation of SSCCs within a series of fluorine compounds, we test several DFT-based approaches, using different exchange and correlation functionals. Isotropic contributions to NMR fluorine-fluorine coupling constants (FC, spin-dipolar, SD, paramagnetic spin-orbit, PSO, and diamagnetic spin-orbit, DSO) have been calculated. Results show that DFT methods give appropriate values for nJFF (n = 4 to 7), while for geminal and vicinal JFF present large deviations from experimental values. For the latter SSCCs (2JFF and 3JFF), the four contributions (FC, SD, PSO and DSO) are analysed as a function of the local and nonlocal exchange in 1,1- and 1,2-difluoroethylene. Although FC term is not dominant for these SSCCs, the variation of this contribution with exchange is remarkable. On the other hand, SD and PSO contributions can be suitably computed without and with exact exchange, respectively. This article is dedicated to the memory of Prof. N. C. Handy, whose contributions to the development of Theoretical Chemistry have been widely recognized.

  5. FLUORINATION OF OXIDIC NUCLEAR FUEL

    DOEpatents

    Mecham, W.J.; Gabor, J.D.

    1963-07-23

    A process of volatilizing fissionable material away from fission products, present together in neutron-bombarded uranium oxide, by reaction with an oxygen-fluorine mixture at 350 to 500 deg C is described. (AEC)

  6. Modulating NHC catalysis with fluorine.

    PubMed

    Rey, Yannick P; Gilmour, Ryan

    2013-01-01

    Fluorination often confers a range of advantages in modulating the conformation and reactivity of small molecule organocatalysts. By strategically introducing fluorine substituents, as part of a β-fluoroamine motif, in a triazolium pre-catalyst, it was possible to modulate the behaviour of the corresponding N-heterocyclic carbene (NHC) with minimal steric alterations to the catalyst core. In this study, the effect of hydrogen to fluorine substitution was evaluated as part of a molecular editing study. X-ray crystallographic analyses of a number of derivatives are presented and the conformations are discussed. Upon deprotonation, the fluorinated triazolium salts generate catalytically active N-heterocyclic carbenes, which can then participate in the enantioselective Steglich rearrangement of oxazolyl carbonates to C-carboxyazlactones (e.r. up to 87.0:13.0).

  7. The characterization of fluorinated graphite

    SciTech Connect

    Hagaman, E.W.; Gakh, A.A.; Annis, B.K.

    1995-12-31

    The characterization of solid fossil fuels by chemical and spectroscopic methods requires extensive modelling in less complex systems for chemical proof of principle and technique development. In previous work coal was fluorinated with dilute, elemental fluorine under conditions that were expected to lead to materials that contain only fluoromethine moieties. The solid state, cross polarization/magic angle spinning (CP/MAS) {sup 13}C NMR spectra of the fluorinated coal are complex, indicating more chemical modification than originally anticipated. Our goal in the coal derivatization was to sequentially increase the severity of the fluorination and observe by {sup 19}F and {sup 13}C NMR the type and concentration of fluorine functional groups created in the coal milieu. This requires the ability to discriminate between C, CF, CF{sub 2}, and CF, moieties in the coal matrix. The task can be accomplished by implementing the spectral editing technique of Wu and Zilm which distinguishes different kinds of carbon resonances, especially CH and CH{sub 2} resonances. These experiments utilize cross polarization (CP) and polarization inversion (PI) to effect the discrimination. Our version of this experiment is a triple resonance experiment that incorporates {sup 19}F-{sup 13}C CP, PI, and simultaneous {sup 1}H and {sup 19}F dipolar decoupling. In order to evaluate the elemental fluorine chemistry in a matrix simpler than coal, fluorinated graphite was prepared. X-ray photoelectron spectroscopy (XPS) was used to characterize the surface species, i.e., count CF, CF{sub 2} and CF{sub 3} species. These well-characterized samples are the models we will use to test the NIVIR editing experiments. The XPS and atomic force microscopy (AFM) data on the first fluorinated graphites we have prepared are reported in this paper.

  8. Heavy doping considerations and measurements in high-efficiency cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F.

    1985-01-01

    Theoretical work on heavily doped silicon was described. Heavily doped polysilicon was used as a back-surface passivant replacing the usual back-surface field (BSF). Very good first results were achieved and there is the promise of a simple, low temperature deposition process. Short-circuit current-decay measurement methods were also covered.

  9. PRODUCTION OF FLUORINE-CONTAINING HYDROCARBON

    DOEpatents

    Sarsfield, N.F.

    1949-08-01

    This patent relates to improvements in the production of fluorine- containing hydrocarbon derivatives. The process for increasing the degree of fluorination of a fluorochlorohydrocarbon comprises subjecting a highly fluorinated fluorochlorohydrocarbon to the action of a dehydrochlorinating agent, and treating the resulting unsaturated body with fluorine, cobalt trifluoride, or silver difluoride. A number of reagents are known as dehydrochlorinaling agents, including, for example, the caustic alkalies, either in an anhydrous condition or dissolved in water or a lower aliphatic alcohol.

  10. FLUORINE IN COLORADO OIL SHALE.

    USGS Publications Warehouse

    Dyni, John R.; ,

    1985-01-01

    Oil shale from the lower part of the Eocene Green River Formation in the Piceance Creek Basin, Colorado, averages 0. 13 weight percent fluorine, which is about twice that found in common shales, but is the same as the average amount found in some oil shales from other parts of the world. Some fluorine may reside in fluorapatite; however, limited data suggest that cryolite may be quantitatively more important. To gain a better understanding of the detailed distribution of fluorine in the deeper nahcolite-bearing oil shales, cores were selected for study from two exploratory holes drilled in the northern part of the Piceance Creek Basin where the oil shales reach their maximum thickness and grade.

  11. Method of preparing pure fluorine gas

    DOEpatents

    Asprey, Larned B.

    1976-01-01

    A simple, inexpensive system for purifying and storing pure fluorine is described. The method utilizes alkali metal-nickel fluorides to absorb tank fluorine by forming nickel complex salts and leaving the gaseous impurities which are pumped away. The complex nickel fluoride is then heated to evolve back pure gaseous fluorine.

  12. 21 CFR 177.1615 - Polyethylene, fluorinated.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene, fluorinated. 177.1615 Section 177... Components of Single and Repeated Use Food Contact Surfaces § 177.1615 Polyethylene, fluorinated. Fluorinated polyethylene, identified in paragraph (a) of this section, may be safely used as food-contact articles...

  13. 21 CFR 177.1615 - Polyethylene, fluorinated.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyethylene, fluorinated. 177.1615 Section 177... Components of Single and Repeated Use Food Contact Surfaces § 177.1615 Polyethylene, fluorinated. Fluorinated polyethylene, identified in paragraph (a) of this section, may be safely used as food-contact articles...

  14. 21 CFR 177.1615 - Polyethylene, fluorinated.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene, fluorinated. 177.1615 Section 177... Components of Single and Repeated Use Food Contact Surfaces § 177.1615 Polyethylene, fluorinated. Fluorinated polyethylene, identified in paragraph (a) of this section, may be safely used as food-contact articles...

  15. 21 CFR 177.1615 - Polyethylene, fluorinated.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyethylene, fluorinated. 177.1615 Section 177... Components of Single and Repeated Use Food Contact Surfaces § 177.1615 Polyethylene, fluorinated. Fluorinated polyethylene, identified in paragraph (a) of this section, may be safely used as food-contact articles...

  16. Properties of Fluorinated Graphene Films

    DTIC Science & Technology

    2010-04-01

    Gonze, X.; Michenaud, J. P. Phys. Rev. B 1993, 47 (24), 16162. (12) Zajac, A.; Pelikán, P.; Minár, J.; Noga, J.; Straka, M.; Banacký, P.; Biskupic , S...Report (SAR) 18. NUMBER OF PAGES 5 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b . ABSTRACT unclassified c. THIS PAGE unclassified...FIGURE 1. Optical changes of graphene upon fluorination. Optical micrograph (A) before and ( B ) after single-side fluorination on SiO2 (SiO2 thickness

  17. Excellent electrical conductivity of the exfoliated and fluorinated hexagonal boron nitride nanosheets

    NASA Astrophysics Data System (ADS)

    Xue, Yafang; Liu, Qian; He, Guanjie; Xu, Kaibing; Jiang, Lin; Hu, Xianghua; Hu, Junqing

    2013-01-01

    The insulator characteristic of hexagonal boron nitride limits its applications in microelectronics. In this paper, the fluorinated hexagonal boron nitride nanosheets were prepared by doping fluorine into the boron nitride nanosheets exfoliated from the bulk boron nitride in isopropanol via a facile chemical solution method with fluoboric acid; interestingly, these boron nitride nanosheets demonstrate a typical semiconductor characteristic which were studied on a new scanning tunneling microscope-transmission electron microscope holder. Since this property changes from an insulator to a semiconductor of the boron nitride, these nanosheets will be able to extend their applications in designing and fabricating electronic nanodevices.

  18. Excellent electrical conductivity of the exfoliated and fluorinated hexagonal boron nitride nanosheets.

    PubMed

    Xue, Yafang; Liu, Qian; He, Guanjie; Xu, Kaibing; Jiang, Lin; Hu, Xianghua; Hu, Junqing

    2013-01-24

    The insulator characteristic of hexagonal boron nitride limits its applications in microelectronics. In this paper, the fluorinated hexagonal boron nitride nanosheets were prepared by doping fluorine into the boron nitride nanosheets exfoliated from the bulk boron nitride in isopropanol via a facile chemical solution method with fluoboric acid; interestingly, these boron nitride nanosheets demonstrate a typical semiconductor characteristic which were studied on a new scanning tunneling microscope-transmission electron microscope holder. Since this property changes from an insulator to a semiconductor of the boron nitride, these nanosheets will be able to extend their applications in designing and fabricating electronic nanodevices.

  19. C-H fluorination: U can fluorinate unactivated bonds

    NASA Astrophysics Data System (ADS)

    Neumann, Constanze N.; Ritter, Tobias

    2016-09-01

    Introducing C-F bonds into organic molecules is a challenging task, particularly through C-H activation methods. Now, a uranium-based photocatalyst turns traditional selectivity rules on their heads and fluorinates unfunctionalized alkane Csp3-H bonds, even in the presence of C-H bonds that are typically more reactive.

  20. Direct search for a ferromagnetic phase in a heavily overdoped nonsuperconducting copper oxide.

    PubMed

    Sonier, J E; Kaiser, C V; Pacradouni, V; Sabok-Sayr, S A; Cochrane, C; MacLaughlin, D E; Komiya, S; Hussey, N E

    2010-10-05

    The doping of charge carriers into the CuO(2) planes of copper oxide Mott insulators causes a gradual destruction of antiferromagnetism and the emergence of high-temperature superconductivity. Optimal superconductivity is achieved at a doping concentration p beyond which further increases in doping cause a weakening and eventual disappearance of superconductivity. A potential explanation for this demise is that ferromagnetic fluctuations compete with superconductivity in the overdoped regime. In this case, a ferromagnetic phase at very low temperatures is predicted to exist beyond the doping concentration at which superconductivity disappears. Here we report on a direct examination of this scenario in overdoped La(2-x)Sr(x)CuO(4) using the technique of muon spin relaxation. We detect the onset of static magnetic moments of electronic origin at low temperature in the heavily overdoped nonsuperconducting region. However, the magnetism does not exist in a commensurate long-range ordered state. Instead it appears as a dilute concentration of static magnetic moments. This finding places severe restrictions on the form of ferromagnetism that may exist in the overdoped regime. Although an extrinsic impurity cannot be absolutely ruled out as the source of the magnetism that does occur, the results presented here lend support to electronic band calculations that predict the occurrence of weak localized ferromagnetism at high doping.

  1. Fluorine, fluorite, and fluorspar in central Colorado

    USGS Publications Warehouse

    Wallace, Alan R.

    2010-01-01

    Fluorine (F) is a widespread element that was deposited in a variety of rocks, minerals, and geologic environments in central Colorado. It occurs as a trace element, as a major component of the mineral fluorite (CaFs), and as a major economic source of fluorine in fluorspar deposits, which are massive concentrations of fluorite. This study has compiled available geochemical analyses of rocks, both unmineralized and mineralized, to determine the distribution of fluorine in specific age-lithologic categories, ranging from 1.8-giga-annum (Ga) metamorphic rocks to modern soils, throughout central Colorado. It also draws upon field studies of fluorine-rich mineral deposits, including fluorspar deposits, to decipher the nearly two-billion-year-long geologic history of fluorine in the study area, with implications for mineral-resource evaluations and exploration. The resulting compilation provides an important inventory of the naturally occurring levels and sources of fluorine that ultimately weather, erode, and become part of surface waters that are used for domestic water supplies in densely populated areas along the Colorado Front Range. Most commonly, fluorine is a trace element in virtually all rocks in the region. In the 3,798 unmineralized rocks that were analyzed for fluorine in the study area, the average fluorine content was 1,550 parts per million (ppm). The median was 640 ppm, nearly identical to the average crustal abundance of 650 ppm, and some high-fluorine rocks in the Pikes Peak area skewed the average to a value much greater than the median. Most unmineralized age-lithologic rock suites, including Proterozoic metamorphic rocks, 1.7- and 1.4-Ga granitic batholiths, Cambrian igneous rocks, Phanerozoic sedimentary rocks, and Laramide and Tertiary igneous rocks, had median fluorine values of 400 to 740 ppm fluorine. In all suites, however, a small number of analyzed samples contained more than 1 percent (10,000 ppm) fluorine. The 1.1-Ga plutonic rocks

  2. Storing Fluorine In Graphitelike Carbon Fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1995-01-01

    Fluorine stored in graphite or graphitelike carbon fibers for later release and/or use in chemical reactions. Storage in carbon fibers eliminates difficulty and risk of using high-pressure tanks and pipes to hold corrosive gas. Storage in carbon fibers makes fluorine more readily accessible than does storage as constituent of metal fluoride. Carbon fibers heated to release stored fluorine, which draws away to vessel where reacts with material to be fluorinated, possibly at temperature other than release temperature. Alternatively, material to be fluorinated mixed or otherwise placed in contact with fibers and entire mass heated to or beyond release temperature.

  3. Fluorinated Polyhedral Oligosilsesquioxane Surfaces and Superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Iacono, Scott T.; Peloquin, Andrew J.; Smith, Dennis W.; Mabry, Joseph M.

    Fluorinated compounds are a logical choice for hydrophobic applications owing to their generally low surface energy. Polyhedral molecules may also improve hydrophobicity by increasing material surface roughness. There have been many recent attempts to synthesize and characterize various types of fluorinated polyhedra. These reports include the fluorination or fluoroalkylation of C60 [1,2]. Unfortunately, C60F48 (fluorinated buckminsterfullerene) cannot be used as a hydrophobic material, since it is metastable and is hydrolyzed by water [3]. However, the perfluorocarborane species, perfluoro-deca-β-methyl-para-carborane, shows remarkable hydrolytic and oxidative stability [4]. Fluorinated carbon nanotubes and nanofibers have also been produced [5]. Many of these fluorinated polyhedral compounds may be useful in hydrophobic applications, but they are generally hazardous to prepare, require air and moisture sensitive manipulations, and have limited economies of scale. For these reasons, alternative fluorinated polyhedra, such as Polyhedral Oligomeric SilSesquioxanes (POS) are highly desired (Figure 6.1).

  4. The Abundance of Interstellar Fluorine

    NASA Technical Reports Server (NTRS)

    Lauroesch, James T.

    2005-01-01

    The primary objective of this program was to obtain FUSE observations of the interstellar absorption lines of F I at 951 and 954 Angstroms to derive the abundance of fluorine toward the star HD 164816. The nucleosynthetic source(s) of fluorine are still a matter of debate - the present day abundance of fluorine can potentially constrain models for pulsationally driven dredge-up in asymptotic giant branch stars. An accurate measure for the depletion behavior of fluorine will determine whether it may be detectable in QSO absorption line systems - an unambiguous detection of fluorine at suitably high redshifts would provide the best evidence to date for the neutrino process in massive stars. Furthermore, due to its extreme reactivity, measurement of the gas-phase interstellar fluorine abundance is important for models of grain chemistry. Despite the importance of measuring the interstellar fluorine abundance, at the time of our proposal only one previous detection has been made due to the low relative abundance of fluorine, the lack of lines outside the far-UV, and the blending of the available F I transitions with lines of Hz. The star HD 164816 is associated with the Lagoon nebula (M8), and at a distance of approximately 1.5 kpc probes both distant and local gas. Beginning April 8th, 2004 FUSE FP-Split observations of the star HD 164816 were obtained for this program. This data became available in the FUSE data archive May 21, 2004, and these observations were then downloaded and we began our analysis. Our analysis procedure has involved (1) fitting stellar models to the FUSE spectra, (2) using the multiple lines of Hz and N I at other wavelengths in the FUSE bandpass to derive column densities for the lines of H2 and N I which are blended with the F I features at 951 and 954 angstroms (3) the measurement of the column densities of F I and the species O I and C1 I which are important species for the dis-entangling of dust and nucleosynthetic effects. As discussed in

  5. Physical Mechanism Behind Enhanced Photoelectrochemical and Photocatalytic Properties of Superhydrophilic Assemblies of 3D-TiO2 Microspheres with Arrays of Oriented, Single-Crystalline TiO2 Nanowires as Building Blocks Deposited on Fluorine-Doped Tin Oxide.

    PubMed

    Sadhu, Subha; Gupta, Preeti; Poddar, Pankaj

    2017-03-29

    In comparison to the one-dimensional (1D) semiconductor nanostructures, the hierarchical, three-dimensional (3D) microstructures, composed of the arrays of 1D nanostructures as building blocks, show quite unique physicochemical properties due to efficient photon capture and enhanced surface to volume ratio, which aid in advancing the performance of various optoelectronic devices. In this contribution, we report the fabrication of surfactant-free, radially assembled, 3D titania (rutile-phase) microsphere arrays (3D-TMSAs) composed of bundles of single-crystalline titania nanowires (NWs) directly on fluorine-doped conducting oxide (FTO) substrates with tunable architecture. The effects of growth parameters on the morphology of the 3D-TMSAs have been studied thoroughly. The 3D-TMSAs grown on the FTO-substrate showed superior photon-harvesting owing to the increase in light-scattering. The photocatalytic and photon to electron conversion efficiency of dye-sensitized solar cells (DSSC), where the optimized 3D-TMSAs were used as an anode, showed around 44% increase in the photoconversion efficiency compared to that of Degussa P-25 as a result of the synergistic effect of higher surface area and enhanced photon scattering probability. The TMSA film showed superhydrophilicity without any prior UV irradiation. In addition, the presence of bundles of almost parallel NWs led to the formation of arrays of microcapacitors, which showed stable dielectric performance. The fabrication of single-crystalline, oriented, self-assembled TMSAs with bundles of titania nanowires as their building blocks deposited on transparent conducting oxide (TCO) substrates has vast potential in the area of photoelectrochemical research.

  6. Fluorinated benzalkylsilane molecular rectifiers

    PubMed Central

    Lamport, Zachary A.; Broadnax, Angela D.; Harrison, David; Barth, Katrina J.; Mendenhall, Lee; Hamilton, Clayton T.; Guthold, Martin; Thonhauser, Timo; Welker, Mark E.; Jurchescu, Oana D.

    2016-01-01

    We report on the synthesis and electrical properties of nine new alkylated silane self-assembled monolayers (SAMs) – (EtO)3Si(CH2)nN = CHPhX where n = 3 or 11 and X = 4-CF3, 3,5-CF3, 3-F-4-CF3, 4-F, or 2,3,4,5,6-F, and explore their rectification behavior in relation to their molecular structure. The electrical properties of the films were examined in a metal/insulator/metal configuration, with a highly-doped silicon bottom contact and a eutectic gallium-indium liquid metal (EGaIn) top contact. The junctions exhibit high yields (>90%), a remarkable resistance to bias stress, and current rectification ratios (R) between 20 and 200 depending on the structure, degree of order, and internal dipole of each molecule. We found that the rectification ratio correlates positively with the strength of the molecular dipole moment and it is reduced with increasing molecular length. PMID:27897250

  7. Fluorinated benzalkylsilane molecular rectifiers

    NASA Astrophysics Data System (ADS)

    Lamport, Zachary A.; Broadnax, Angela D.; Harrison, David; Barth, Katrina J.; Mendenhall, Lee; Hamilton, Clayton T.; Guthold, Martin; Thonhauser, Timo; Welker, Mark E.; Jurchescu, Oana D.

    2016-11-01

    We report on the synthesis and electrical properties of nine new alkylated silane self-assembled monolayers (SAMs) – (EtO)3Si(CH2)nN = CHPhX where n = 3 or 11 and X = 4-CF3, 3,5-CF3, 3-F-4-CF3, 4-F, or 2,3,4,5,6-F, and explore their rectification behavior in relation to their molecular structure. The electrical properties of the films were examined in a metal/insulator/metal configuration, with a highly-doped silicon bottom contact and a eutectic gallium-indium liquid metal (EGaIn) top contact. The junctions exhibit high yields (>90%), a remarkable resistance to bias stress, and current rectification ratios (R) between 20 and 200 depending on the structure, degree of order, and internal dipole of each molecule. We found that the rectification ratio correlates positively with the strength of the molecular dipole moment and it is reduced with increasing molecular length.

  8. Quantum mechanical study of atomic hydrogen interaction with a fluorinated boron-substituted coronene radical.

    PubMed

    Zhang, Hong; Smith, Sean C; Nanbu, Shinkoh; Nakamura, Hiroki

    2009-04-08

    In this work we study the transmission of atomic hydrogen across a fluorinated boron-substituted coronene radical (C(19)H(12)BF(6)) as a model for partially fluorinated and boron-doped nanotubes or fullerenes. Complete active space self-consistent field (CASSCF) and multi-reference configuration interaction (MRCI) methods are employed to calculate the potential energy surfaces for both ground and excited electronic states, and one-dimensional R-matrix propagation is utilized to investigate the transmission/reflection dynamics of atomic hydrogen, through the central six-member ring of the fluorinated boron-substituted coronene radical. The quantum scattering includes resonance effects as well as non-adiabatic transitions between the ground and excited electronic states. Within the sudden approximation, both centre and off-centre approach trajectories have been investigated. Implications for atomic hydrogen encapsulation by carbon nanotube and fullerene are discussed.

  9. Vicinal fluorine-fluorine coupling constants: Fourier analysis

    NASA Astrophysics Data System (ADS)

    San Fabián, J.; Westra Hoekzema, A. J. A.

    2004-10-01

    Stereochemical dependences of vicinal fluorine-fluorine nuclear magnetic resonance coupling constants (3JFF) have been studied with the multiconfigurational self-consistent field in the restricted active space approach, with the second-order polarization propagator approximation (SOPPA), and with density functional theory. The SOPPA results show the best overall agreement with experimental couplings. The relationship with the dihedral angle between the coupled fluorines has been studied by Fourier analysis, the result is very different from that of proton-proton couplings. The Fourier coefficients do not resemble those of a typical Karplus equation. The four nonrelativistic contributions to the coupling constants of 1,2-difluoroethane configurations have been studied separately showing that up to six Fourier coefficients are required to reproduce the calculated values satisfactorily. Comparison with Fourier coefficients for matching hydrogen fluoride dimer configurations suggests that the higher order Fourier coefficients (Cn⩾3) originate mainly from through-space Fermi contact interaction. The through-space interaction is the main reason 3JFF do not follow the Karplus equation.

  10. The standardisation of fluorine-18.

    PubMed

    van der Gaast, H A

    1995-12-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) maintains and disseminates the Australian standards of activity measurement. The standards include all nuclear medicine gamma-emitters and pure positron emitters. Calibration factors for the ANSTO 4 pi ionisation chamber for pure positron emitters have been traditionally determined from primary standardisations of cobalt-60 and sodium-22. Activity estimates of pure beta emitters have been previously determined by using 4 pi beta-gamma coincidence (efficiency tracer) counting. This method was adapted to test activity estimates of short-lived pure positron emitters made using the 4 pi ionisation chamber. Detailed are methods whereby the activity of fluorine-18 can be measured. The first method is an efficiency tracing method developed in this work. The method directly tests 4 pi ionisation chamber fluorine-18 activity estimates. The gamma-gamma method was carried out to confirm this.

  11. Research in Inorganic Fluorine Chemistry.

    DTIC Science & Technology

    1987-03-01

    Corporation , Canoga Park, California 91304 (U.S.A.) SUMMARY A new synthesis of FOC1O 3 was discovered involving the fluorination of C10 4 with C1F 6 + An... Corporation . Canoga Park. Califoriai 91304 * Gas-Phase Shtrutre of Azidotrifluoromdmaae. Am Electron Diffractio. Microwave Spectroscopy, sold NormaI...hexafluorobenzene as start- GG-4 N 7 ~ 4,476,3378 Nll materials. All reacted gradually at, or near, m76nt 3 temperaturae . All solutions and products were

  12. Extreme Modulation Properties of Aromatic Fluorine

    SciTech Connect

    Burnett, Michael N; Gakh, Andrei A

    2011-01-01

    Thorough examination of the current literature as well as publicly available databases allowed us to qualify aromatic fluorine as a unique modulator of biological properties of organic compounds. In some rare cases, introduction of fluorine increased biological activity 100,000 times and even higher. We have also identified several examples where aromatic fluorine substantially reduced biological activity. Selected individual cases of extreme modulation are presented and discussed in the paper.

  13. Silver-catalyzed late-stage fluorination.

    PubMed

    Tang, Pingping; Furuya, Takeru; Ritter, Tobias

    2010-09-01

    Carbon-fluorine bond formation by transition metal catalysis is difficult, and only a few methods for the synthesis of aryl fluorides have been developed. All reported transition-metal-catalyzed fluorination reactions for the synthesis of functionalized arenes are based on palladium. Here we present silver catalysis for carbon-fluorine bond formation. Our report is the first example of the use of the transition metal silver to form carbon-heteroatom bonds by cross-coupling catalysis. The functional group tolerance and substrate scope presented here have not been demonstrated for any other fluorination reaction to date.

  14. Copolymers of fluorinated polydienes and sulfonated polystyrene

    DOEpatents

    Mays, Jimmy W.; Gido, Samuel P.; Huang, Tianzi; Hong, Kunlun

    2009-11-17

    Copolymers of fluorinated polydienes and sulfonated polystyrene and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization.

  15. 4. EAST VIEW OF HEAVILY DETERIORATED SECTION OF SEA WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. EAST VIEW OF HEAVILY DETERIORATED SECTION OF SEA WALL LOOKING ACROSS ERODED EASTERN CORNER OF PEA PATCH ISLAND. BUILDING FOUNDATION REMAINS IN FOREGROUND. - Fort Delaware, Sea Wall, Pea Patch Island, Delaware City, New Castle County, DE

  16. Heavy doping effects in high efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1984-01-01

    Several of the key parameters describing the heavily doped regions of silicon solar cells are examined. The experimentally determined energy gap narrowing and minority carrier diffusivity and mobility are key factors in the investigation.

  17. The role of fluorine in medicinal chemistry.

    PubMed

    Shah, Poonam; Westwell, Andrew D

    2007-10-01

    The small and highly electronegative fluorine atom can play a remarkable role in medicinal chemistry. Selective installation of fluorine into a therapeutic or diagnostic small molecule candidate can enhance a number of pharmacokinetic and physicochemical properties such as improved metabolic stability and enhanced membrane permeation. Increased binding affinity of fluorinated drug candidates to target protein has also been documented in a number of cases. A further emerging application of the fluorine atom is the use of 18F as a radiolabel tracer atom in the exquisitely sensitive technique of Positron Emission Tomography (PET) imaging. This short review aims to bring together these various aspects of the use of fluorine in medicinal chemistry applications, citing selected examples from across a variety of therapeutic and diagnostic settings. The increasingly routine incorporation of fluorine atom(s) into drug candidates suggests a bright future for fluorine in drug discovery and development. A major challenge moving forward will be how and where to install fluorine in a rational sense to best optimise molecular properties.

  18. Xenon fluoride solutions effective as fluorinating agents

    NASA Technical Reports Server (NTRS)

    Hyman, H. H.; Quarterman, L. A.; Sheft, I.

    1967-01-01

    Solutions of xenon fluorides in anhydrous hydrogen fluoride have few disruptive effects and leave a residue consisting of gaseous xenon, which can be recovered and refluorinated. This mild agent can be used with materials which normally must be fluorinated with fluorine alone at high temperatures.

  19. Special applications of fluorinated organic compounds.

    PubMed

    Lewandowski, Grzegorz; Meissner, Egbert; Milchert, Eugeniusz

    2006-08-25

    The applications of fluorinated organic compounds (FOCs) as finishing agent for fabrics, components of extinguishing agents, electroplating bathes, lubricating oils, oxygen carriers in blood substitutes have been discussed. Recent achievements in methods of the fluorination and general principles of the synthesis of useful perfluorinated organic compounds are given as well.

  20. Fluorine-Hydrazine Propulsion Technology update

    NASA Technical Reports Server (NTRS)

    Bond, D. L.; Appel, M. A.; Kruger, G. W.

    1980-01-01

    The current status of the fluorine hydrazine propulsion system development is discussed. Progress on the components, rocket engine, and system design is presented. A detailed look at a fluorine hydrazine system as a potential propulsion option for the Galileo Project (Jupiter orbiter) is delineated and the results of safety and technical reviews which were accomplished to verify the feasibility of this option are summarized.

  1. Electrical activation of nitrogen heavily implanted 3C-SiC(1 0 0)

    NASA Astrophysics Data System (ADS)

    Li, Fan; Sharma, Yogesh; Shah, Vishal; Jennings, Mike; Pérez-Tomás, Amador; Myronov, Maksym; Fisher, Craig; Leadley, David; Mawby, Phil

    2015-10-01

    A degenerated wide bandgap semiconductor is a rare system. In general, implant levels lie deeper in the band-gap and carrier freeze-out usually takes place at room temperature. Nevertheless, we have observed that heavily doped n-type degenerated 3C-SiC films are achieved by nitrogen implantation level of ∼6 × 1020 cm-3 at 20 K. According to temperature dependent Hall measurements, nitrogen activation rates decrease with the doping level from almost 100% (1.5 × 1019 cm-3, donor level 15 meV) to ∼12% for 6 × 1020 cm-3. Free donors are found to saturate in 3C-SiC at ∼7 × 1019 cm-3. The implanted film electrical performances are characterized as a function of the dopant doses and post implantation annealing (PIA) conditions by fabricating Van der Pauw structures. A deposited SiO2 layer was used as the surface capping layer during the PIA process to study its effect on the resultant film properties. From the device design point of view, the lowest sheet resistivity (∼1.4 mΩ cm) has been observed for medium doped (4 × 1019 cm-3) sample with PIA 1375 °C 2 h without a SiO2 cap.

  2. Experimental study of electrochemical fluorination of trichloroethylene

    NASA Technical Reports Server (NTRS)

    Polisena, C.; Liu, C. C.; Savinell, R. F.

    1982-01-01

    The electrochemical fluorination of trichloroethylene in anhydrous hydrogen fluoride at 0 C and at constant cell potential was investigated. A microprocessor-aided electrochemical fluorination reactor system that yields highly reproducible results was utilized. The following major two-carbon-chain products were observed: CHCl2-CCl2F, CHCl2-CClF2, CHClF-CCl2F, and CCl2F-CClF2. The first step in the reaction sequence was determined to be fluorine addition to the double bond, followed by replacement of first hydrogen and then chlorine by fluorine. Polymerization reactions yielded higher molecular weight or possible ring-type chlorofluorohydrocarbons. A comparison of the reaction products of electrochemical and chemical fluorinations of trichloroethylene is also discussed.

  3. Energetics of defects on graphene through fluorination.

    PubMed

    Xiao, Jie; Meduri, Praveen; Chen, Honghao; Wang, Zhiguo; Gao, Fei; Hu, Jianzhi; Feng, Ju; Hu, Mary; Dai, Sheng; Brown, Suree; Adcock, Jamie L; Deng, Zhiqun; Liu, Jun; Graff, Gordon L; Aksay, Ilhan A; Zhang, Ji-Guang

    2014-05-01

    Functionalized graphene sheets (FGSs) comprise a unique member of the carbon family, demonstrating excellent electrical conductivity and mechanical strength. However, the detailed chemical composition of this material is still unclear. Herein, we take advantage of the fluorination process to semiquantitatively probe the defects and functional groups on graphene surface. Functionalized graphene sheets are used as substrate for low-temperature (<150 °C) direct fluorination. The fluorine content has been modified to investigate the formation mechanism of different functional groups such as C-F, CF2, O-CF2 and (C=O)F during fluorination. The detailed structure and chemical bonds are simulated by density functional theory (DFT) and quantified experimentally by nuclear magnetic resonance (NMR). The electrochemical properties of fluorinated graphene are also discussed extending the use of graphene from fundamental research to practical applications.

  4. Applications of Fluorine in Medicinal Chemistry.

    PubMed

    Gillis, Eric P; Eastman, Kyle J; Hill, Matthew D; Donnelly, David J; Meanwell, Nicholas A

    2015-11-12

    The role of fluorine in drug design and development is expanding rapidly as we learn more about the unique properties associated with this unusual element and how to deploy it with greater sophistication. The judicious introduction of fluorine into a molecule can productively influence conformation, pKa, intrinsic potency, membrane permeability, metabolic pathways, and pharmacokinetic properties. In addition, (18)F has been established as a useful positron emitting isotope for use with in vivo imaging technology that potentially has extensive application in drug discovery and development, often limited only by convenient synthetic accessibility to labeled compounds. The wide ranging applications of fluorine in drug design are providing a strong stimulus for the development of new synthetic methodologies that allow more facile access to a wide range of fluorinated compounds. In this review, we provide an update on the effects of the strategic incorporation of fluorine in drug molecules and applications in positron emission tomography.

  5. Energetics of Defects on Graphene through Fluorination

    SciTech Connect

    Xiao, Jie; Meduri, Praveen; Chen, Honghao; Wang, Zhiguo; Gao, Fei; Hu, Jian Z.; Feng, Ju; Hu, Mary Y.; Dai, Sheng; Brown, Suree; Adcock, Jamie L.; Deng, Zhiqun; Liu, Jun; Graff, Gordon L.; Aksay, Ilhan A.; Zhang, Jiguang

    2014-04-01

    In the present study, we used FGS[5] as the substrate and implemented low temperature (<=150 oC) direct fluorination on graphene sheets. The fluorine content has been modulated to investigate the formation mechanism of different functional groups such as C-F, CF2, O-CF2 and (C=O)F during the fluorination process. The detailed structure and chemical bonds were simulated theoretically and quantified experimentally by using density function theory (DFT) calculations and NMR techniques, respectively. The adjustable power/energy ratio from fluorinated graphene as cathode for primary lithium batteries is also discussed. From a combination of NMR spectroscopy and theoretical calculation, we conclude that the topological defects without oxygen containing groups provide most of the reactive sites to react with F. FGS also contain a small number of COOH groups which contribute for the fluorination reaction. Hydroxyl or epoxy groups contribute to another fraction of the reaction products.

  6. Oxygen vacancies versus fluorine at CeO2(111): a case of mistaken identity?

    PubMed

    Kullgren, J; Wolf, M J; Castleton, C W M; Mitev, P; Briels, W J; Hermansson, K

    2014-04-18

    We propose a resolution to the puzzle presented by the surface defects observed with STM at the (111) surface facet of CeO 2 single crystals. In the seminal paper of Esch et al. [Science 309, 752 (2005)] they were identified with oxygen vacancies, but the observed behavior of these defects is inconsistent with the results of density functional theory (DFT) studies of oxygen vacancies in the literature. We resolve these inconsistencies via DFT calculations of the properties of both oxygen vacancies and fluorine impurities at CeO2(111), the latter having recently been shown to exist in high concentrations in single crystals from a widely used commercial source of such samples. We find that the simulated filled-state STM images of surface-layer oxygen vacancies and fluorine impurities are essentially identical, which would render problematic their experimental distinction by such images alone. However, we find that our theoretical results for the most stable location, mobility, and tendency to cluster, of fluorine impurities are consistent with experimental observations, in contrast to those for oxygen vacancies. Based on these results, we propose that the surface defects observed in STM experiments on CeO2 single crystals reported heretofore were not oxygen vacancies, but fluorine impurities. Since the similarity of the simulated STM images of the two defects is due primarily to the relative energies of the 2p states of oxygen and fluorine ions, this confusion might also occur for other oxides which have been either doped or contaminated with fluorine.

  7. Fluorinated Azobenzenes for Shape-Persistent Liquid Crystal Polymer Networks.

    PubMed

    Iamsaard, Supitchaya; Anger, Emmanuel; Aßhoff, Sarah Jane; Depauw, Alexis; Fletcher, Stephen P; Katsonis, Nathalie

    2016-08-16

    Liquid crystal polymer networks respond with an anisotropic deformation to a range of external stimuli. When doped with molecular photoswitches, these materials undergo complex shape modifications under illumination. As the deformations are reversed when irradiation stops, applications where the activated shape is required to have thermal stability have been precluded. Previous attempts to incorporate molecular switches into thermally stable photoisomers were unsuccessful at photogenerating macroscopic shapes that are retained over time. Herein, we show that to preserve photoactivated molecular deformation on the macroscopic scale, it is important not only to engineer the thermal stability of the photoswitch but also to adjust the cross-linking density in the polymer network and to optimize the molecular orientations in the material. Our strategy resulted in materials containing fluorinated azobenzenes that retain their photochemical shape for more than eight days, which constitutes the first demonstration of long-lived photomechanical deformation in liquid-crystal polymer networks.

  8. Synthetic biology approaches to fluorinated polyketides

    PubMed Central

    Thuronyi, Benjamin W.; Chang, Michelle C. Y.

    2016-01-01

    Conspectus The catalytic diversity of living systems offers a broad range of opportunities for developing new methods to produce small molecule targets such as fuels, materials, and pharmaceuticals. In addition to providing cost-effective and renewable methods for large-scale commercial processes, the exploration of the unusual chemical phenotypes found in living organisms can also enable the expansion of chemical space for discovery of novel function by combining orthogonal attributes from both synthetic and biological chemistry. In this context, we have focused on the development of new fluorine chemistry using synthetic biology approaches. While fluorine has become an important feature in compounds of synthetic origin, the scope of biological fluorine chemistry in living systems is limited, with fewer than 20 organofluorine natural products identified to date. In order to expand the diversity of biosynthetically accessible organofluorines, we have begun to develop methods for the site-selective introduction of fluorine into complex natural products by engineering biosynthetic machinery to incorporate fluorinated building blocks. To gain insight into how both enzyme active sites and metabolic pathways can be evolved to manage and select for fluorinated compounds, we have studied one of the only characterized natural hosts for organofluorine biosynthesis, the soil microbe Streptomyces cattleya. This information provides a template for designing engineered organofluorine enzymes, pathways, and hosts and has allowed us to initiate construction of enzymatic and cellular pathways for the production of fluorinated polyketides. PMID:25719427

  9. Passivation of fluorinated activated charcoal

    SciTech Connect

    Del Cul, G.D.; Trowbridge, L.D.; Simmons, D.W.; Williams, D.F.; Toth, L.M.

    1997-10-01

    The Molten Salt Reactor Experiment (MSRE), at the Oak Ridge National Laboratory has been shut down since 1969 when the fuel salt was drained from the core into two Hastelloy N tanks at the reactor site. In 1995, a multiyear project was launched to remediate the potentially hazardous conditions generated by the movement of fissile material and reactive gases from the storage tanks into the piping system and an auxiliary charcoal bed (ACB). The top 12 in. of the ACB is known by gamma scan and thermal analysis to contain about 2.6 kg U-233. According to the laboratory tests, a few feet of fluorinated charcoal are believed to extend beyond the uranium front. The remainder of the ACB should consist of unreacted charcoal. Fluorinated charcoal, when subjected to rapid heating, can decompose generating gaseous products. Under confined conditions, the sudden exothermic decomposition can produce high temperatures and pressures of near-explosive characteristics. Since it will be necessary to drill and tap the ACB to allow installation of piping and instrumentation for remediation and recovery activities, it is necessary to chemically convert the reactive fluorinated charcoal into a more stable material. Ammonia can be administered to the ACB as a volatile denaturing agent that results in the conversion of the C{sub x}F to carbon and ammonium fluoride, NH{sub 4}F. The charcoal laden with NH{sub 4}F can then be heated without risking any sudden decomposition. The only consequence of heating the treated material will be the volatilization of NH{sub 4}F as a mixture of NH{sub 3} and HF, which would primarily recombine as NH{sub 4}F on surfaces below 200 C. The planned scheme for the ACB denaturing is to flow diluted ammonia gas in steps of increasing NH{sub 3} concentration, 2% to 50%, followed by the injection of pure ammonia. This report summarizes the planned passivation treatment scheme to stabilize the ACB and remove the potential hazards. It also includes basic information

  10. Hydration dynamics at fluorinated protein surfaces.

    PubMed

    Kwon, Oh-Hoon; Yoo, Tae Hyeon; Othon, Christina M; Van Deventer, James A; Tirrell, David A; Zewail, Ahmed H

    2010-10-05

    Water-protein interactions dictate many processes crucial to protein function including folding, dynamics, interactions with other biomolecules, and enzymatic catalysis. Here we examine the effect of surface fluorination on water-protein interactions. Modification of designed coiled-coil proteins by incorporation of 5,5,5-trifluoroleucine or (4S)-2-amino-4-methylhexanoic acid enables systematic examination of the effects of side-chain volume and fluorination on solvation dynamics. Using ultrafast fluorescence spectroscopy, we find that fluorinated side chains exert electrostatic drag on neighboring water molecules, slowing water motion at the protein surface.

  11. Hydration dynamics at fluorinated protein surfaces

    PubMed Central

    Kwon, Oh-Hoon; Yoo, Tae Hyeon; Othon, Christina M.; Van Deventer, James A.; Tirrell, David A.; Zewail, Ahmed H.

    2010-01-01

    Water-protein interactions dictate many processes crucial to protein function including folding, dynamics, interactions with other biomolecules, and enzymatic catalysis. Here we examine the effect of surface fluorination on water-protein interactions. Modification of designed coiled-coil proteins by incorporation of 5,5,5-trifluoroleucine or (4S)-2-amino-4-methylhexanoic acid enables systematic examination of the effects of side-chain volume and fluorination on solvation dynamics. Using ultrafast fluorescence spectroscopy, we find that fluorinated side chains exert electrostatic drag on neighboring water molecules, slowing water motion at the protein surface. PMID:20855583

  12. Super-hydrophobic fluorine containing aerogels

    DOEpatents

    Coronado, Paul R.; Poco, John F.; Hrubesh, Lawrence W.

    2007-05-01

    An aerogel material with surfaces containing fluorine atoms which exhibits exceptional hydrophobicity, or the ability to repel liquid water. Hydrophobic aerogels are efficient absorbers of solvents from water. Solvents miscible with water are separated from it because the solvents are more volatile than water and they enter the porous aerogel as a vapor across the liquid water/solid interface. Solvents that are immisicble with water are separated from it by selectively wetting the aerogel. The hydrophobic property is achieved by formulating the aerogel using fluorine containing molecules either directly by addition in the sol-gel process, or by treating a standard dried aerogel using the vapor of fluorine containing molecules.

  13. RECOVERY OF Pu VALUES BY FLUORINATION AND FRACTIONATION

    DOEpatents

    Brown, H.S.; Webster, D.S.

    1959-01-20

    A method is presented for the concentration and recovery of plutonium by fluorination and fractionation. A metallic mass containing uranium and plutonium is heated to 250 C and contacted with a stream of elemental fluorine. After fluorination of the metallic mass, the rcaction products are withdrawn and subjected to a distillation treatment to separate the fluorination products of uranium and to obtain a residue containing the fluorination products of plutonium.

  14. Fluorination utilizing thermodynamically unstable fluorides and fluoride salts thereof

    DOEpatents

    Bartlett, Neil; Whalen, J. Marc; Chacon, Lisa

    2000-12-12

    A method for fluorinating a carbon compound or cationic carbon compound utilizes a fluorination agent selected from thermodynamically unstable nickel fluorides and salts thereof in liquid anhydrous hydrogen fluoride. The desired carbon compound or cationic organic compound to undergo fluorination is selected and reacted with the fluorination agent by contacting the selected organic or cationic organic compound and the chosen fluorination agent in a reaction vessel for a desired reaction time period at room temperature or less.

  15. The Electrochemical Fluorination of Organosilicon Compounds

    NASA Technical Reports Server (NTRS)

    Seaver, Robert E.

    1961-01-01

    The electrochemical fluorination of tetramethylsilane, hexamethyl-disiloxane, diethyldichlorosilane, amyltrichlorosilane, and phenyltri-chlorosilane was conducted in an Inconel cell equipped with nickel electrodes. A potential of approximately 5.0 volts and a current of approximately 1.0 ampere were used for the electrolysis reaction. In all cases the fluorinations resulted in considerable scission of the carbon-silicon bonds yielding hydrogen and the various fluorinated decomposition products; no fluoroorganosilicon compounds were identified. The main decomposition products were silicon tetrafluoride, the corresponding fluorinated carbon compounds, and the various organofluorosilanes. It is suggested that this is due to the nucleophilic attack of the fluoride ion (or complex fluoride ion) on the carbon-silicon bond.

  16. Opening a bandgap in graphene by fluorination

    NASA Astrophysics Data System (ADS)

    Wang, Bei; Cooley, B. J.; Cheng, S.-H.; Zou, K.; Hao, Q. Z.; Okino, F.; Sofo, J.; Samarth, N.; Zhu, J.

    2010-03-01

    The zero bandgap of graphene underpins many of its unique electronic properties. A band gap is desirable, however, for many electronic and optical applications. Chemical modifications of the graphene sheet can drastically change its conductivity. Following this strategy, both oxygenation and hydrogenation of graphene have been demonstrated. In this study, we present a reversible method of modifying the band structure of graphene through fluorination. Reacting graphite with fluorine gas at high temperature results in nearly 100% fluorinated graphite fluoride, where each carbon atom is covalently bonded to a fluorine atom. Remarkably, the layered structure and hexagonal in-plane crystalline order are preserved in graphite fluoride. We obtain few-layer graphene fluoride through stamping method and report the optical and transport properties of this extremely insulating 2D compound, which is expected to be a wide band gap semiconductor.

  17. 18. A VIEW EAST, SHOWING THE HEAVILY WOODED BANKS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. A VIEW EAST, SHOWING THE HEAVILY WOODED BANKS OF THE ST. JOSEPH RIVER. THIS IS TYPICAL OF THE RIVERSIDE ENVIRONMENT OF THE BRIDGE. - County Line Bridge, Spanning St. Joseph River at State Route 219, 0.6 mile south of U.S. Route 20, Osceola, St. Joseph County, IN

  18. Reactivity of simulated lunar material with fluorine

    NASA Technical Reports Server (NTRS)

    Odonnell, P. M.

    1972-01-01

    Simulated lunar surface material was caused to react with fluorine to determine the feasibility of producing oxygen by this method. The maximum total fluorine pressure used was 53.3 kilonewtons per square meter (400 torr) at temperatures up to 523 K (250 C). Postreaction analysis of both the gas and solid phases indicated that the reaction is feasible but that the efficiency is only about 4 percent of that predicted by theory.

  19. A New Approach to Highly Fluorinated Lubricants.

    DTIC Science & Technology

    1987-10-30

    DSIM gmi C1L) KPT OF CNEHISTRY UR MS ET .. 30 OCT 37 RFOSR-TR-S?-1762 IULSES FIDS3424SS4F/O 11/ . EEiI EEEEEEm.’...omo S13,6 U L6 &0-2. 11111s~ MA IL...treated these with fluorine, diluted with nitrogen, and cooled to -800C. However, we found it difficult to control the fluorination of these materials

  20. Fluorinated graphene suspension for inkjet printed technologies.

    PubMed

    Nebogatikova, N A; Antonova, I V; Kurkina, I I; Soots, R A; Vdovin, V I; Timofeev, V B; Smagulova, S A; Prinz, V Ya

    2016-05-20

    The possibility to control the size of the flakes of graphene suspension in the course of their fluorination in an aqueous hydrofluoric acid solution was demonstrated. The effect of the suspension composition, the fluorination time, temperature and thermal stress on the fragmentation process was investigated. The corrugation of suspension flakes, which occurs at fluorination due to a difference in the constants of graphene and fluorographene lattices, leads to the appearance of nonuniform mechanical stresses. The fact that the flake size after fragmentation is determined by the size of corrugation allows the assumption that the driving force of fragmentation is this mechanical stress. This assumption is confirmed by the break of the corrugated layers from flakes under thermal stress. Moreover, fluorination treatment at elevated temperatures (∼70 °C) significantly accelerates the fragmentation process. Suspensions of fluorinated graphene with nanometer size flakes are of interest for the development of 2D ink-jet printing technologies and production of thermally and chemically stable dielectric films for nanoelectronics. The printed fluorinated graphene films on silicon and flexible substrates have been demonstrated and the charges in metal-insulator-semiconductor structures have been estimated as the ultra low values of (0.5-2) × 10(10) cm(-2).

  1. Fluorinated graphene suspension for inkjet printed technologies

    NASA Astrophysics Data System (ADS)

    Nebogatikova, N. A.; Antonova, I. V.; Kurkina, I. I.; Soots, R. A.; Vdovin, V. I.; Timofeev, V. B.; Smagulova, S. A.; Prinz, V. Ya

    2016-05-01

    The possibility to control the size of the flakes of graphene suspension in the course of their fluorination in an aqueous hydrofluoric acid solution was demonstrated. The effect of the suspension composition, the fluorination time, temperature and thermal stress on the fragmentation process was investigated. The corrugation of suspension flakes, which occurs at fluorination due to a difference in the constants of graphene and fluorographene lattices, leads to the appearance of nonuniform mechanical stresses. The fact that the flake size after fragmentation is determined by the size of corrugation allows the assumption that the driving force of fragmentation is this mechanical stress. This assumption is confirmed by the break of the corrugated layers from flakes under thermal stress. Moreover, fluorination treatment at elevated temperatures (˜70 °C) significantly accelerates the fragmentation process. Suspensions of fluorinated graphene with nanometer size flakes are of interest for the development of 2D ink-jet printing technologies and production of thermally and chemically stable dielectric films for nanoelectronics. The printed fluorinated graphene films on silicon and flexible substrates have been demonstrated and the charges in metal-insulator-semiconductor structures have been estimated as the ultra low values of (0.5-2) × 1010 cm-2.

  2. 40 CFR 415.400 - Applicability; description of the fluorine production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fluorine production subcategory. 415.400 Section 415.400 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Fluorine Production Subcategory § 415.400 Applicability; description of the fluorine production... fluorine by the liquid hydrofluoric acid electrolysis process....

  3. 40 CFR 415.400 - Applicability; description of the fluorine production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fluorine production subcategory. 415.400 Section 415.400 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Fluorine Production Subcategory § 415.400 Applicability; description of the fluorine production... fluorine by the liquid hydrofluoric acid electrolysis process....

  4. 40 CFR 415.400 - Applicability; description of the fluorine production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fluorine production subcategory. 415.400 Section 415.400 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Fluorine Production Subcategory § 415.400 Applicability; description of the fluorine production... fluorine by the liquid hydrofluoric acid electrolysis process....

  5. 40 CFR 415.400 - Applicability; description of the fluorine production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fluorine production subcategory. 415.400 Section 415.400 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Fluorine Production Subcategory § 415.400 Applicability; description of the fluorine production... fluorine by the liquid hydrofluoric acid electrolysis process....

  6. 40 CFR 415.400 - Applicability; description of the fluorine production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fluorine production subcategory. 415.400 Section 415.400 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Fluorine Production Subcategory § 415.400 Applicability; description of the fluorine production... fluorine by the liquid hydrofluoric acid electrolysis process....

  7. Transition metal catalysis and nucleophilic fluorination.

    PubMed

    Hollingworth, Charlotte; Gouverneur, Véronique

    2012-03-21

    Transition metal catalyzed transformations using fluorinating reagents have been developed extensively for the preparation of synthetically valuable fluorinated targets. This is a topic of critical importance to facilitate laboratory and industrial chemical synthesis of fluorine containing pharmaceuticals and agrochemicals. Translation to (18)F-radiochemistry is also emerging as a vibrant research field because functional imaging based on Positron Emission Tomography (PET) is increasingly used for both diagnosis and pharmaceutical development. This review summarizes how fluoride sources have been used for the catalytic nucleophilic fluorination of various substrates inclusive of aryl triflates, alkynes, allylic halides, allylic esters, allylic trichloroacetimidates, benzylic halides, tertiary alkyl halides and epoxides. Until recently, progress in this field of research has been slow in part because of the challenges associated with the dual reactivity profile of fluoride (nucleophile or base). Despite these difficulties, some remarkable breakthroughs have emerged. This includes the demonstration that Pd(0)/Pd(II)-catalyzed nucleophilic fluorination to access fluoroarenes from aryl triflates is feasible, and the first examples of Tsuji-Trost allylic alkylation with fluoride using either allyl chlorides or allyl precursors bearing O-leaving groups. More recently, allylic fluorides were also made accessible under iridium catalysis. Another reaction, which has been greatly improved based on careful mechanistic work, is the catalytic asymmetric hydrofluorination of meso epoxides. Notably, each individual transition metal catalyzed nucleophilic fluorination reported to date employs a different F-reagent, an observation indicating that this area of research will benefit from a larger pool of nucleophilic fluoride sources. In this context, a striking recent development is the successful design, synthesis and applications of a fluoride-derived electrophilic late stage

  8. A reactive flow model for heavily aluminized cyclotrimethylene-trinitramine

    SciTech Connect

    Kim, Bohoon; Lee, Kyung-Cheol; Yoh, Jack J.; Park, Jungsu

    2014-07-14

    An accurate and reliable prediction of reactive flow is a challenging task when characterizing an energetic material subjected to an external shock impact as the detonation transition time is on the order of a micro second. The present study aims at investigating the size effect behavior of a heavily aluminized cyclotrimethylene-trinitramine (RDX) which contains 35% of aluminum by using a detonation rate model that includes ignition and growth mechanisms for shock initiation and subsequent detonation. A series of unconfined rate stick tests and two-dimensional hydrodynamic simulations are conducted to construct the size effect curve which represents the relationship between detonation velocity and inverse radius of the charge. A pressure chamber test is conducted to further validate the reactive flow model for predicting the response of a heavily aluminized high explosive subjected to an external impact.

  9. An Efficient and Accurate Method of Estimating Substrate Noise Coupling in Heavily Doped Substrates

    DTIC Science & Technology

    2005-08-24

    αij values obtained from the original contact sizes. The αij calculated using the model is the same for both the cases. The error from this model is...substrate resistances in large circuits,” in Proc. European Design and Test Conference, March 1996, pp. 560-565. [5] E. Charbon , R. Gharpurey, P. Miliozzi...and E. Charbon , “Substrate coupling: modeling, simulation and design perspectives,” in Proc. of Quality Electronic Design, March 2004, pp. 283-290. [8

  10. Ionized dopant concentrations at the heavily doped surface of a silicon solar cell

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Broder, J. D.; Mazaris, G. A., Jr.; Hsu, L.

    1978-01-01

    Data are combined with concentrations obtained by a bulk measurement method using successive layer removal with measurements of Hall effect and resistivity. From the MOS (metal-oxide-semiconductor) measurements it is found that the ionized dopant concentration N has the value (1.4 + or - 0.1) x 10 to the 20th power/cu cm at distances between 100 and 220 nm from the n(+) surface. The bulk measurement technique yields average values of N over layers whose thickness is 2000 nm. Results show that, at the higher concentrations encountered at the n(+) surface, the MOS C-V technique, when combined with a bulk measurement method, can be used to evaluate the effects of materials preparation methodologies on the surface and near surface concentrations of silicon cells.

  11. Heavily doped transparent-emitter regions in junction solar cells, diodes, and transistors

    NASA Technical Reports Server (NTRS)

    Shibib, M. A.; Lindholm, F. A.; Therez, F.

    1979-01-01

    The paper presents an analytical treatment of transparent-emitter devices, particularly solar cells, that is more complete than previously available treatments. The proposed approach includes the effects of bandgap narrowing, Fermi-Dirac statistics, built-in field due to impurity profile, and a finite surface recombination velocity at the emitter surface. It is demonstrated that the transparent-emitter model can predict experimental values of Voc observed on n(plus)-p thin diffused junction silicon solar cells made on low-resistivity (0.1 ohm-cm) substrates. A test is included for the self-consistent validity of the transparent-emitter model. This test compares the calculated transit time of minority carriers across the emitter with the Auger-impact minority-carrier lifetime within the emitter region.

  12. 2-DE using hemi-fluorinated surfactants.

    PubMed

    Starita-Geribaldi, Mireille; Thebault, Pascal; Taffin de Givenchy, Elisabeth; Guittard, Frederic; Geribaldi, Serge

    2007-07-01

    The synthesis of hemi-fluorinated zwitterionic surfactants was realized and assessed for 2-DE, a powerful separation method for proteomic analysis. These new fluorinated amidosulfobetaine (FASB-p,m) were compared to their hydrocarbon counterparts amidosulfobetaine (ASB-n) characterized by a hydrophilic polar head, a hydrophobic and lipophilic tail, and an amido group as connector. The tail of these FASB surfactants was in part fluorinated resulting in the modulation of its lipophilicity (or oleophobicity). Their effect on the red blood cell (RBC) membrane showed a specific solubilization depending on the length of the hydrophobic part. A large number of polypeptide spots appeared in the 2-DE patterns by using FASB-p,m. The oleophobic character of these surfactants was confirmed by the fact that Band 3, a highly hydrophobic transmembrane protein, was not solubilized by these fluorinated structures. The corresponding pellet was very rich in Band 3 and could then be solubilized by using a strong detergent such as amidosulfobetaine with an alkyl tail containing 14 carbon atoms (ASB-14). Thus, these hemi-fluorinated surfactants appeared as powerful tools when used at the first step of a two-step solubilization strategy using a hydrocarbon homologous surfactant in the second step.

  13. Fluorinating hexagonal boron nitride into diamond-like nanofilms with tunable band gap and ferromagnetism.

    PubMed

    Zhang, Zhuhua; Zeng, Xiao Cheng; Guo, Wanlin

    2011-09-21

    Cubic boron nitride (c-BN) possesses a number of extreme properties rivaling or surpassing those of diamond. Especially, owing to the high chemical stability, c-BN is desired for fabricating electronic devices that can stand up to harsh environments. However, realization of c-BN-based functional devices is still a challenging task due largely to the subtlety in the preparation of high-quality c-BN films with uniform thickness and controllable properties. Here, we present a simple synthetic strategy by surface fluorination of few-layered hexagonal boron nitride (h-BN) sheets to produce thermodynamically favorable F-terminated c-BN nanofilms with an embedded N-N bond layer and strong inbuilt electric polarization. Due to these specific features, the fluorinated c-BN nanofilms have controllable band gap by thickness or inbuilt and applied electric fields. Especially, the produced nanofilms can be tuned into substantial ferromagnetism through electron doping within a reasonable level. The electron-doping-induced deformation ratio of the c-BN nanofilms is found to be 1 order of magnitude higher than those of carbon nanotubes and graphene. At sufficient high doping levels, the nanofilm can be cleaved peculiarly along the N-N bond layer into diamond-like BN films. As the proposed synthesis strategy of the fluorinated c-BN nanofilms is well within the reach of current technologies, our results represent an extremely cost-effective approach for producing high-quality c-BN nanofilms with tunable electronic, magnetic, and electromechanical properties for versatile applications.

  14. Electrokinetic remediation of fluorine-contaminated soil: conditioning of anolyte.

    PubMed

    Kim, Do-Hyung; Jeon, Chil-Sung; Baek, Kitae; Ko, Sung-Hwan; Yang, Jung-Seok

    2009-01-15

    The feasibility of anolyte conditioning on electrokinetic remediation of fluorine-contaminated soil was investigated with a field soil. The initial concentration of fluorine, pH and water content in the soil were 414mg/kg, 8.91 and 15%, respectively. Because the extraction of fluorine generally increased with the soil pH, the pH of the anode compartment was controlled by circulating strong alkaline solution to enhance the extraction of fluorine during electrokinetic remediation. The removal of fluorine increased with the concentration of the alkaline solution and applied current density and fluorine removed up to 75.6% within 14 days. Additionally, anolyte conditioning sharply increased the electro-osmotic flow, which enhanced the removal of fluorine in this study. In many respects, anolyte conditioning in electrokinetic remediation of fluorine-contaminated soil will be a promising technology.

  15. Short and efficient synthesis of fluorinated δ-lactams.

    PubMed

    Cogswell, Thomas J; Donald, Craig S; Long, De-Liang; Marquez, Rodolfo

    2015-01-21

    The diastereoselective synthesis of fluorinated δ-lactams has been achieved through an efficient five step process. The route can tolerate a range of functionalities, and provides a quick route for the generation of new fluorinated medicinal building blocks.

  16. The rare fluorinated natural products and biotechnological prospects for fluorine enzymology.

    PubMed

    Chan, K K Jason; O'Hagan, David

    2012-01-01

    Nature has hardly evolved a biochemistry of fluorine although there is a low-level occurrence of fluoroacetate found in selected tropical and subtropical plants. This compound, which is generally produced in low concentrations, has been identified in the plants due to its high toxicity, although to date the biosynthesis of fluoroacetate in plants remains unknown. After that, fluorinated entities in nature are extremely rare, and despite increasingly sophisticated screening and analytical methods applied to natural product extraction, it has been 25 years since the last bona fide fluorinated natural product was identified from an organism. This was the reported isolation of the antibiotic 4-fluorothreonine and the toxin fluoroacetate in 1986 from Streptomyces cattleya. This bacterium has proven amenable to biochemical investigation, the fluorination enzyme (fluorinase) has been isolated and characterized, and the biosynthetic pathway to these bacterial metabolites has been elucidated. Also the fluorinase gene has been cloned into a host bacterium (Salinispora tropica), and this has enabled the de novo production of a bioactive fluorinated metabolite from fluoride ion, by genetic engineering. Biotechnological manipulation of the fluorinase offers the prospects for the assembly of novel fluorinated metabolites by fermentation technology. This is particularly attractive, given the backdrop that about 15-20% of pharmaceuticals licensed each year (new chemical entities) contain a fluorine atom.

  17. Radiosyntheses using Fluorine-18: the Art and Science of Late Stage Fluorination

    PubMed Central

    Cole, Erin L.; Stewart, Megan N.; Littich, Ryan; Hoareau, Raphael; Scott, Peter J. H.

    2014-01-01

    Positron (β+) emission tomography (PE) is a powerful, noninvasive tool for the in vivo, three-dimensional imaging of physiological structures and biochemical pathways. The continued growth of PET imaging relies on a corresponding increase in access to radiopharmaceuticals (biologically active molecules labeled with short-lived radionuclides such as fluorine-18). This unique need to incorporate the short-lived fluorine-18 atom (t1/2 = 109.77 min) as late in the synthetic pathway as possible has made development of methodologies that enable rapid and efficient late stage fluorination an area of research within its own right. In this review we describe strategies for radiolabeling with fluorine-18, including classical fluorine-18 radiochemistry and emerging techniques for late stage fluorination reactions, as well as labeling technologies such as microfluidics and solid-phase radiochemistry. The utility of fluorine-18 labeled radiopharmaceuticals is showcased through recent applications of PET imaging in the healthcare, personalized medicine and drug discovery settings. PMID:24484425

  18. Method for fluorination of uranium oxide

    DOEpatents

    Petit, George S.

    1987-01-01

    Highly pure uranium hexafluoride is made from uranium oxide and fluorine. The uranium oxide, which includes UO.sub.3, UO.sub.2, U.sub.3 O.sub.8 and mixtures thereof, is introduced together with a small amount of a fluorine-reactive substance, selected from alkali chlorides, silicon dioxide, silicic acid, ferric oxide, and bromine, into a constant volume reaction zone. Sufficient fluorine is charged into the zone at a temperature below approximately 0.degree. C. to provide an initial pressure of at least approximately 600 lbs/sq. in. at the ambient atmospheric temperature. The temperature is then allowed to rise in the reaction zone until reaction occurs.

  19. Efficient fluorinating agent through topochemical fluorination of Co-Fe layered double hydroxides.

    PubMed

    Louvain, Nicolas; Peyroux, Jérémy; Dubois, Marc; Simond, Wikenson; Leroux, Fabrice

    2014-01-21

    Mixed-metal inorganic fluoride, Co0.60Fe0.40F3, solid solutions are obtained through topochemical reactions of Co2FeCl(OH)6·2H2O LDH with molecular fluorine, F2, at temperatures as low as 100 °C. This solid solution possesses interesting F(•)-releasing ability, and its efficiency as a solid-state fluorinating agent is demonstrated on a commercial polyethylene film. (19)F solid state NMR and contact angle measurements underline the efficient fluorination of this polymer.

  20. Experience with fluorine and its safe use as a propellant

    NASA Technical Reports Server (NTRS)

    Bond, D. L.; Guenther, M. E.; Stimpson, L. D.; Toth, L. R.; Young, D. L.

    1979-01-01

    The industrial and the propulsion experience with fluorine and its derivatives is surveyed. The hazardous qualities of fluorine and safe handling procedures for the substance are emphasized. Procedures which fulfill the safety requirements during ground operations for handling fluorinated propulsion systems are discussed. Procedures to be implemented for use onboard the Space Transportation System are included.

  1. Fluorine photochemistry in the stratosphere. [effect on ozone

    NASA Technical Reports Server (NTRS)

    Stolarski, R. S.; Rundel, R. D.

    1975-01-01

    The photochemistry of fluorine in the stratosphere is surveyed in order to estimate the effect on ozone of fluorine atoms released by the breakdown of chlorofluoromethanes. The catalytic efficiency for ozone destruction by fluorine is found to be less than .0001 that of chlorine in the altitude range from 25 to 50 km.

  2. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fluorinated acrylic copolymer (generic... Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical substance... fluorinated acrylic copolymer (PMN P-95-1208) is subject to reporting under this section for the...

  3. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fluorinated acrylic copolymer (generic... Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical substance... fluorinated acrylic copolymer (PMN P-95-1208) is subject to reporting under this section for the...

  4. Does fluorine participate in halogen bonding?

    PubMed

    Eskandari, Kiamars; Lesani, Mina

    2015-03-16

    When R is sufficiently electron withdrawing, the fluorine in the R-F molecules could interact with electron donors (e.g., ammonia) and form a noncovalent bond (F⋅⋅⋅N). Although these interactions are usually categorized as halogen bonding, our studies show that there are fundamental differences between these interactions and halogen bonds. Although the anisotropic distribution of electronic charge around a halogen is responsible for halogen bond formations, the electronic charge around the fluorine in these molecules is spherical. According to source function analysis, F is the sink of electron density at the F⋅⋅⋅N BCP, whereas other halogens are the source. In contrast to halogen bonds, the F⋅⋅⋅N interactions cannot be regarded as lump-hole interactions; there is no hole in the valence shell charge concentration (VSCC) of fluorine. Although the quadruple moment of Cl and Br is mainly responsible for the existence of σ-holes, it is negligibly small in the fluorine. Here, the atomic dipole moment of F plays a stabilizing role in the formation of F⋅⋅⋅N bonds. Interacting quantum atoms (IQA) analysis indicates that the interaction between halogen and nitrogen in the halogen bonds is attractive, whereas it is repulsive in the F⋅⋅⋅N interactions. Virial-based atomic energies show that the fluorine, in contrast to Cl and Br, stabilize upon complex formation. According to these differences, it seems that the F⋅⋅⋅N interactions should be referred to as "fluorine bond" instead of halogen bond.

  5. Oxygen extraction from lunar soil by fluorination

    NASA Technical Reports Server (NTRS)

    Seboldt, W.; Lingner, S.; Hoernes, S.; Grimmeisen, W.

    1991-01-01

    Mining and processing of lunar material could possibly lead to more cost-efficient scenarios for permanent presence of man in space and on the Moon. Production of oxygen for use as propellant seems especially important. Different candidate processes for oxygen-extraction from lunar soil were proposed, of which the reduction of ilmenite by hydrogen was studied most. This process, however, needs the concentration of ilmenite from lunar regolith to a large extent and releases oxygen only with low efficiency. Another possibility - the fluorination method - which works with lunar bulk material as feedstock is discussed. Liberation of oxygen from silicate or oxide materials by fluorination methods has been applied in geoscience since the early sixties. The fact that even at moderate temperatures 98 to 100 percent yields can be attained, suggests that fluorination of lunar regolith could be an effective way of propellant production. Lunar soil contains about 50 percent oxygen by weight which is gained nearly completely through this process as O2 gas. The second-most element Si is liberated as gaseous SiF4. It could be used for production of Si-metal and fluorine-recycling. All other main elements of lunar soil will be converted into solid fluorides which also can be used for metal-production and fluorine-recycling. Preliminary results of small scale experiments with different materials are discussed, giving information on specific oxygen-yields and amounts of by-products as functions of temperature. These experiments were performed with an already existing fluorine extraction and collection device at the University of Bonn, normally used for determination of oxygen-isotopic abundances. Optimum conditions, especially concerning energy consumption, are investigated. Extrapolation of the experimental results to large industrial-type plants on the Moon is tried and seems to be promising at first sight. The recycling of the fluorine is, however, crucial for the process. It

  6. Lunar mining of oxygen using fluorine

    NASA Technical Reports Server (NTRS)

    Burt, Donald M.; Tyburczy, James A.; Roberts, Jeffery J.; Balasubramanian, Rajan

    1992-01-01

    Experiments during the first year of the project were directed towards generating elemental fluorine via the electrolysis of anhydrous molten fluorides. Na2SiF6 was dissolved in either molten NaBF4 or a eutectic (minimum-melting) mixture of KF-LiF-NaF and electrolyzed between 450 and 600 C to Si metal at the cathode and F2 gas at the anode. Ar gas was continuously passed through the system and F2 was trapped in a KBr furnace. Various anode and cathode materials were investigated. Despite many experimental difficulties, the capability of the process to produce elemental fluorine was demonstrated.

  7. Photoredox Activation of SF6 for Fluorination.

    PubMed

    McTeague, T Andrew; Jamison, Timothy F

    2016-11-21

    We report the first practical use of SF6 as a fluorinating reagent in organic synthesis. Photoredox catalysis enables the in situ conversion of SF6 , an inert gas, into an active fluorinating species by using visible light. Under these conditions, deoxyfluorination of allylic alcohols is effected with high chemoselectivity and is tolerant of a wide range of functional groups. Application of the methodology in a continuous-flow setup achieves comparable yields to those obtained with a batch setup, while providing drastically increased material throughput of valuable allylic fluoride products.

  8. Crystal structure analysis and first principle investigation of F doping in LiFePO4

    NASA Astrophysics Data System (ADS)

    Milović, Miloš; Jugović, Dragana; Cvjetićanin, Nikola; Uskoković, Dragan; Milošević, Aleksandar S.; Popović, Zoran S.; Vukajlović, Filip R.

    2013-11-01

    This work presents the synthesis of F-doped LiFePO4/C composite by the specific modification of the recently suggested synthesis procedure based on an aqueous precipitation of precursor material in molten stearic acid, followed by a high temperature treatment. Besides the lattice parameters and the primitive cell volume reductions, compared to the undoped sample synthesized under the same conditions, the Rietveld refinement also shows that fluorine ions preferably occupy specific oxygen sites. Particularly, the best refinement is accomplished when fluorine ions occupy O(2) sites exclusively. By means of up-to-date electronic structure and total energy calculations this experimental finding is theoretically confirmed. Such fluorine doping also produces closing of the gap in the electronic structure and consequently better conductivity properties of the doped compound. In addition, the morphological and electrochemical performances of the synthesized powder are fully characterized.

  9. Heavily Obscured Star-Forming Regions in the LVL Galaxies

    NASA Astrophysics Data System (ADS)

    Dale, Daniel A.; Aller, K.; Staudaher, S.

    2009-01-01

    We use data from the Spitzer Local Volume Legacy to study the infrared and optical properties of star forming regions in galaxies on 300pc scales. Our main goal is to determine the fraction of heavily-obscured star-forming regions. Here we study 908 regions within 55 galaxies. The median attenuation in Hα is 0.69 mag, and only a small fraction is highly obscured (Aα> 2). There is very little variation in the median attenuation over scales of 200pc to 1000pc.

  10. Electrochemical fluorination of trichloroethylene and N, N-dimethyltrifluoroacetamide

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.

    1979-01-01

    Fluorination of trichloroethylene and N, N-dimethyltrifluoroacetamide was carried out on a laboratory scale in an advanced Simons type electrochemical apparatus which could be operated automatically from ambient to 50 psi pressure. A variety of fluorine-substituted products are formed, depending upon electrolysis conditions and concentrations of reactant relative to the NaF, KF, HF electrolyte. A new reaction mechanism of electrochemical fluorination of trichloroethylene is proposed. The solvency-to-fluorine content relationship of fluorinated N, N-dimethyltrifluoroacetamide is described.

  11. Electrochemical fluorination of trichloroethylene and N, N-dimethyltrifluoroacetamide

    NASA Technical Reports Server (NTRS)

    Hsu, L.-C.

    1979-01-01

    The paper presents the results of experiments concerning the fluorination of trichloroethylene and N, N-dimethyltrifluoroacetamide carried out on a laboratory scale in an advanced 'Simons' type electrochemical apparatus which could be operated automatically from ambient to 50 psi pressure. It is shown that a variety of fluorine-substituted products are formed, depending upon electrolysis conditions and concentrations of reactant relative to the NaF, KF, HF electrolyte. A new reaction mechanism of electrochemical fluorination of trichloroethylene is proposed. Finally, the solvency-to-fluorine content relationship of fluorinated N, N-dimethyltrifluoroacetamide is described.

  12. Decarboxylative Fluorination Strategies for Accessing Medicinally-relevant Products

    PubMed Central

    Qiao, Yupu; Zhu, Lingui; Ambler, Brett R.

    2014-01-01

    Fluorinated organic compounds have a long history in medicinal chemistry, and synthetic methods to access target fluorinated compounds are undergoing a revolution. One powerful strategy for the installation of fluorine-containing functional groups includes decarboxylative reactions. Benefits of decarboxylative approaches potentially include: 1) readily available substrates or reagents 2) mild reaction conditions; 3) simplified purification. This focus review highlights the applications of decarboxylation strategies for fluorination reactions to access compounds with biomedical potential. The manuscript highlights on two general strategies, fluorination by decarboxylative reagents and by decarboxylation of substrates. Where relevant, examples of medicinally useful compounds that can be accessed using these strategies are highlighted. PMID:24484421

  13. Controlled Defects of Fluorine-incorporated ZnO Nanorods for Photovoltaic Enhancement

    PubMed Central

    Lee, Hock Beng; Ginting, Riski Titian; Tan, Sin Tee; Tan, Chun Hui; Alshanableh, Abdelelah; Oleiwi, Hind Fadhil; Yap, Chi Chin; Jumali, Mohd Hafizuddin Hj.; Yahaya, Muhammad

    2016-01-01

    Anion passivation effect on metal-oxide nano-architecture offers a highly controllable platform for improving charge selectivity and extraction, with direct relevance to their implementation in hybrid solar cells. In current work, we demonstrated the incorporation of fluorine (F) as an anion dopant to address the defect-rich nature of ZnO nanorods (ZNR) and improve the feasibility of its role as electron acceptor. The detailed morphology evolution and defect engineering on ZNR were studied as a function of F-doping concentration (x). Specifically, the rod-shaped arrays of ZnO were transformed into taper-shaped arrays at high x. A hypsochromic shift was observed in optical energy band gap due to the Burstein-Moss effect. A substantial suppression on intrinsic defects in ZnO lattice directly epitomized the novel role of fluorine as an oxygen defect quencher. The results show that 10-FZNR/P3HT device exhibited two-fold higher power conversion efficiency than the pristine ZNR/P3HT device, primarily due to the reduced Schottky defects and charge transfer barrier. Essentially, the reported findings yielded insights on the functions of fluorine on (i) surface –OH passivation, (ii) oxygen vacancies (Vo) occupation and (iii) lattice oxygen substitution, thereby enhancing the photo-physical processes, carrier mobility and concentration of FZNR based device. PMID:27587295

  14. Bacterial adherence on fluorinated carbon based coatings deposited on polyethylene surfaces

    NASA Astrophysics Data System (ADS)

    Terriza, A.; Del Prado, G.; Ortiz Pérez, A.; Martínez, M. J.; Puértolas, J. A.; Molina Manso, D.; González-Elipe, A. R.; Yubero, F.; Gómez Barrena, E.; Esteban, J.

    2010-11-01

    Development of intrinsically antibacterial surfaces is of key importance in the context of prostheses used in orthopaedic surgery. In this work we present a thorough study of several plasma based coatings that may be used with this functionality: diamond like carbon (DLC), fluorine doped DLC (F-DLC) and a high fluorine content carbon-fluor polymer (CFX). The study correlates the surface chemistry and hydrophobicity of the coating surfaces with their antibacterial performance. The coatings were deposited by RF-plasma assisted deposition at room temperature on ultra high molecular weight polyethylene (UHMWPE) samples. Fluorine content and relative amount of C-C and C-F bond types was monitored by X-ray photoelectron spectroscopy and hydrophobicity by water contact angle measurements. Adherence of Staphylococcus aureus and Staphylococcus epidermidis to non-coated and coated UHMWPE samples was evaluated. Comparisons of the adherence performance were evaluated using a paired t test (two materials) and a Kruskall Wallis test (all the materials). S. aureus was statistically significant (p< 0.001) less adherent to DLC and F -DLC surfaces than S. epidermidis. Both bacteria showed reduction of adherence on DLC/UHMWPE. For S. aureus, reduction of bacterial adherence on F-DLC/UHMWPE was statistically significant respect to all other materials.

  15. Controlled Defects of Fluorine-incorporated ZnO Nanorods for Photovoltaic Enhancement

    NASA Astrophysics Data System (ADS)

    Lee, Hock Beng; Ginting, Riski Titian; Tan, Sin Tee; Tan, Chun Hui; Alshanableh, Abdelelah; Oleiwi, Hind Fadhil; Yap, Chi Chin; Jumali, Mohd Hafizuddin Hj.; Yahaya, Muhammad

    2016-09-01

    Anion passivation effect on metal-oxide nano-architecture offers a highly controllable platform for improving charge selectivity and extraction, with direct relevance to their implementation in hybrid solar cells. In current work, we demonstrated the incorporation of fluorine (F) as an anion dopant to address the defect-rich nature of ZnO nanorods (ZNR) and improve the feasibility of its role as electron acceptor. The detailed morphology evolution and defect engineering on ZNR were studied as a function of F-doping concentration (x). Specifically, the rod-shaped arrays of ZnO were transformed into taper-shaped arrays at high x. A hypsochromic shift was observed in optical energy band gap due to the Burstein-Moss effect. A substantial suppression on intrinsic defects in ZnO lattice directly epitomized the novel role of fluorine as an oxygen defect quencher. The results show that 10-FZNR/P3HT device exhibited two-fold higher power conversion efficiency than the pristine ZNR/P3HT device, primarily due to the reduced Schottky defects and charge transfer barrier. Essentially, the reported findings yielded insights on the functions of fluorine on (i) surface –OH passivation, (ii) oxygen vacancies (Vo) occupation and (iii) lattice oxygen substitution, thereby enhancing the photo-physical processes, carrier mobility and concentration of FZNR based device.

  16. Electrochemical Decontamination of Painted and Heavily Corroded Metals

    SciTech Connect

    Marczak, S.; Anderson, J.; Dziewinski, J.

    1998-09-08

    The radioactive metal wastes that are generated from nuclear fuel plants and radiochemical laboratories are mainly contaminated by the surface deposition of radioactive isotopes. There are presently several techniques used in removing surface contamination involving physical and chemical processes. However, there has been very little research done in the area of soiled, heavily oxidized, and painted metals. Researchers at Los Alamos National Laboratory have been developing electrochemical procedures for the decontamination of bare and painted metal objects. These methods have been found to be effective on highly corroded as well as relatively new metals. This study has been successful in decontaminating projectiles and shrapnel excavated during environmental restoration projects after 40+ years of exposure to the elements. Heavily corroded augers used in sampling activities throughout the area were also successfully decontaminated. This process has demonstrated its effectiveness and offers several advantages over the present metal decontamination practices of media blasting and chemical solvents. These advantages include the addition of no toxic or hazardous chemicals, low operating temperature and pressure, and easily scaleable equipment. It is in their future plans to use this process in the decontamination of gloveboxes destined for disposal as TRU waste.

  17. Kinetics of the fluorination of zinc

    NASA Technical Reports Server (NTRS)

    Odonnell, P. M.

    1975-01-01

    The reaction between zinc metal and fluorine gas can be described by a parabolic rate law. This reaction is both temperature and pressure dependent. Simple kinetics are complicated by the considerable vaporization rate for zinc at temperatures above 300 C (573 K).

  18. Fluorinated diamond bonded in fluorocarbon resin

    DOEpatents

    Taylor, Gene W.

    1982-01-01

    By fluorinating diamond grit, the grit may be readily bonded into a fluorocarbon resin matrix. The matrix is formed by simple hot pressing techniques. Diamond grinding wheels may advantageously be manufactured using such a matrix. Teflon fluorocarbon resins are particularly well suited for using in forming the matrix.

  19. Dry-etch resistance of fluorine functionalized polymers

    NASA Astrophysics Data System (ADS)

    Koh, Meiten; Ishikawa, Takuji; Araki, Takayuki; Aoyama, Hirokazu; Yamashita, Tsuneo; Yamazaki, Tamio; Watanabe, Hiroyuki; Toriumi, Minoru; Itani, Toshiro

    2002-07-01

    The reactive ion etch (RIE) properties of fluorine funtionalized polymers in which fluorine atoms were incorporated in the main chain were examined. There was a tendency that the etching rates of these polymers were higher as lower the fluorine contents. The existing four models such as the Ohnishi model, the Kunz model, the Ohfuji model and the Kishimura model were applied to explain the correlation between the etching rates and the polymer compositions or structures, but the errors were too large to explain the relationship. A new model has developed to explain the effect of the fluorine incorporation to the dry etch resistance. The model assumed that there would be a correlation between the number of main chain fluorine atoms and the dry etch resistance, and the main chain fluorine incorporation would increase the dry etch resistance. The model could explain the dry etch resistance of the main chain fluorine incorporated polymers with adequate accuracy.

  20. Synthesis of Fluorinated Polymers and Evaluation of Wettability.

    PubMed

    Kimura, Tamami; Kasuya, Maria Carmelita; Hatanaka, Kenichi; Matsuoka, Koji

    2016-03-17

    Two kinds of fluorinated polymers were synthesized: an acrylate polymer having a fluorinated triethylene glycol as a pendant group (2a) and a fluoroalkyl acrylate polymer (2b). The contact angle of these fluorinated polymers against water, non-fluorinated alcohols and fluorinated alcohols were evaluated. As compared with the fluoroalkyl polymer (2b), fluoroethylene glycol polymer (2a) showed smaller contact angle against water and non-fluorinated alcohols. This supports the proposition that changing the alkyl chain into the ethylene glycol-type chain gave some interaction between etheric oxygen and water or non-fluorinated alcohols. In addition, fluoroalkyl acrylate polymer (2b) showed remarkably low values of critical surface tension.

  1. Controlled in situ boron doping of short silicon nanowires grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Das Kanungo, Pratyush; Zakharov, Nikolai; Bauer, Jan; Breitenstein, Otwin; Werner, Peter; Goesele, Ulrich

    2008-06-01

    Epitaxial silicon nanowires (NWs) of short heights (˜280nm) on Si ⟨111⟩ substrate were grown and doped in situ with boron on a concentration range of 1015-1019cm-3 by coevaporation of atomic Si and B by molecular beam epitaxy. Transmission electron microscopy revealed a single-crystalline structure of the NWs. Electrical measurements of the individual NWs confirmed the doping. However, the low doped (1015cm-3) and medium doped (3×1016 and 1×1017cm-3) NWs were heavily depleted by the surface states while the high doped (1018 and 1019cm-3) ones showed volume conductivities expected for the corresponding intended doping levels.

  2. Doping dependence of electronic charge transfer on Si(1 0 0)

    NASA Astrophysics Data System (ADS)

    Vaquila, I.; Rabalais, J. W.; Wolfgang, J.; Nordlander, P.

    2001-08-01

    The ion fractions of 4 keV Ne + scattered from intrinsic and heavily n-doped and p-doped Si(1 0 0)-(2×1) surfaces have been measured using time-of-flight scattering and recoiling spectrometry. The ion fractions depend strongly on azimuthal angle, varying from 28-36% for n-doped and 36-44% for p-doped. The pronounced dependency on substrate doping is correlated with surface electronic structure and ion neutralization probability. The observed behavior can be explained by the difference in band bending on intrinsic and n- and p-doped semiconductor surfaces.

  3. Study of the low-pressure chemical-vapor-deposited tungsten-silicon interface: Interfacial fluorine

    SciTech Connect

    Carlisle, J.A.; Chopra, D.R.; Dillingham, T.R.; Gnade, B.; Smith, G.

    1989-03-15

    Single-crystal silicon <100> substrates uniformly doped at approx. >12 ..cap omega.. cm with boron were deposited with approx.800 A of low-pressure chemically vapor deposited W in a hot-quartz-walled (Anicon) system at a deposition temperature of 300 /sup 0/C. The samples studied include an as-deposited sample and two others which were post-deposition annealed at 600 /sup 0/C in Ar for 15 min each. X-ray photoelectron spectroscopy (XPS) coupled with an Ar/sup +/ ion sputter profiling technique was employed to investigate these structures as a function of depth. Particular emphasis was placed on the depth distribution, content, and chemical state of the fluorine present. Rutherford backscattering spectrometry and x-ray diffraction were used to corroborate the XPS data. Results show that, for the as-deposited and 600 /sup 0/C annealed sample, the maximum concentration of fluorine (0.6--0.8 at. %) is observed, not at the W/Si interface, but rather at the W (H/sub 2/ reduction)/W (Si displacement) interface. For the sample annealed at 850 /sup 0/C, WSi/sub 2/ is formed in the overlayer, and the peak in the F profile corresponds to the position of the WSi/sub 2//Si interface. The maximum concentration of fluorine is reduced by approximately 75% to 0.23 at. % in this sample. From the XPS spectra of the F 1s region, the chemical species of fluorine present in these samples have been identified as WF/sub 6/, WF/sub 5/, and WF/sub 4/.

  4. Tidal changes in a heavily modified coastal wetland

    NASA Astrophysics Data System (ADS)

    Ferrarin, Christian; Tomasin, Alberto; Bajo, Marco; Petrizzo, Antonio; Umgiesser, Georg

    2015-06-01

    Changes in tidal regime in the heavily modified Venice Lagoon, Italy, are investigated using long-term observations and numerical modelling. The amplitudes of the major tidal constituents exhibit a significant increase over the last century. Analysis of tide gauge data in the adjacent Adriatic Sea reveals that these changes could be only partially attributed to the rise of the mean sea level. Numerical experiments confirm that natural and anthropogenic morphological changes are responsible for the alteration of tidal regime inside the lagoon. Temporal and spatial changes in tidal asymmetry highlight the complex impacts of human interventions on tidal changes and long-term morphodynamics. Our results suggest that over time the lagoon became more and more an ebb-dominant system. Moreover, in Venice the tidal modulations are significantly impacting the frequency with which high water level thresholds are exceeded. Occurrence of flooding events is therefore influenced by sea level rise and secondarily by the increase in amplitude of principal tidal waves.

  5. Microbial removal of toxic metals from a heavily polluted soil

    NASA Astrophysics Data System (ADS)

    Nicolova, Marina; Spasova, Irena; Georgiev, Plamen; Groudev, Stoyan

    2015-04-01

    Samples of a leached cinnamonic forest soil heavily polluted with uranium and some toxic heavy metals (mainly copper, zinc and cadmium) were subjected to cleaning by means of bioleaching with acidophilic chemolithotrophic bacteria. The treatment was carried out in a green house in which several plots containing 150 kg of soil each were constructed. The effect of some essential environmental factors such as pH, humidity, temperature and contents of nutrients on the cleaning process was studied. It was found that under optimal conditions the content of pollutants were decreased below the relevant permissible levels within a period of 170 days. The soil cleaned in this way was characterized by a much higher production of biomass of different plants (alfalfa, clover, red fescue, vetch) than the untreated polluted soil.

  6. Fluorination of epitaxial oxides: Creating ferrite and nickelate oxyfluoride films

    NASA Astrophysics Data System (ADS)

    May, Steven; Moon, Eun; Xie, Yujun; Keavney, David; Goebel, Justin; Laird, Eric; Li, Christopher

    2013-03-01

    In ABO3 perovskites, the physical properties are directly coupled to the nominal valence state of the B-site cation. In epitaxial thin films, the dominant strategy to control B-site valence is through the selection of a di- or trivalent cation on the A-site. However, this approach is limited, particularly when electron doping on the B-site is desired. Here we report a simple method for realizing oxyfluoride films, where the substitution of F for O is expected to reduce the B-site valence, providing a new means to tune electronic, optical and magnetic properties in thin films. Fluorination is achieved by spin coating an oxygen deficient film with poly(vinylidene fluoride). The film/polymer bilayer is then annealed, promoting the diffusion of F into the film. We have used this method to synthesize SrFeO3-δFδ and LaNiO3-δFδ (δ ? 0.5) films, as confirmed by x-ray photoemission spectroscopy and x-ray absorption spectroscopy. This work is supported by the U. S. Army Research Office under grant number W911NF-12-1-0132. Work at the Advanced Photon Source is supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences under contract DE-AC02-06CH11357.

  7. Electrolytes including fluorinated solvents for use in electrochemical cells

    DOEpatents

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan

    2015-07-07

    Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include ion-supplying salts and fluorinated solvents capable of maintaining single phase solutions with the salts at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and increase safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Fluorinated salts, such as fluoroalkyl-substituted LiPF.sub.6, fluoroalkyl-substituted LiBF.sub.4 salts, linear and cyclic imide salts as well as methide salts including fluorinated alkyl groups, may be used due to their solubility in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene or, more specifically, a cyclic phosphazene and/or one or more ionic liquids.

  8. Fluorinated graphenes as advanced biosensors - effect of fluorine coverage on electron transfer properties and adsorption of biomolecules

    NASA Astrophysics Data System (ADS)

    Urbanová, Veronika; Karlický, František; Matěj, Adam; Šembera, Filip; Janoušek, Zbyněk; Perman, Jason A.; Ranc, Václav; Čépe, Klára; Michl, Josef; Otyepka, Michal; Zbořil, Radek

    2016-06-01

    Graphene derivatives are promising materials for the electrochemical sensing of diverse biomolecules and development of new biosensors owing to their improved electron transfer kinetics compared to pristine graphene. Here, we report complex electrochemical behavior and electrocatalytic performance of variously fluorinated graphene derivatives prepared by reaction of graphene with a nitrogen-fluorine mixture at 2 bars pressure. The fluorine content was simply controlled by varying the reaction time and temperature. The studies revealed that electron transfer kinetics and electrocatalytic activity of CFx strongly depend on the degree of fluorination. The versatility of fluorinated graphene as a biosensor platform was demonstrated by cyclic voltammetry for different biomolecules essential in physiological processes, i.e. NADH, ascorbic acid and dopamine. Importantly, the highest electrochemical performance, even higher than pristine graphene, was obtained for fluorinated graphene with the lowest fluorine content (CF0.084) due to its high conductivity and enhanced adsorption properties combining π-π stacking interaction with graphene regions with hydrogen-bonding interaction with fluorine atoms.Graphene derivatives are promising materials for the electrochemical sensing of diverse biomolecules and development of new biosensors owing to their improved electron transfer kinetics compared to pristine graphene. Here, we report complex electrochemical behavior and electrocatalytic performance of variously fluorinated graphene derivatives prepared by reaction of graphene with a nitrogen-fluorine mixture at 2 bars pressure. The fluorine content was simply controlled by varying the reaction time and temperature. The studies revealed that electron transfer kinetics and electrocatalytic activity of CFx strongly depend on the degree of fluorination. The versatility of fluorinated graphene as a biosensor platform was demonstrated by cyclic voltammetry for different biomolecules

  9. Catalytic control of enzymatic fluorine specificity

    PubMed Central

    Weeks, Amy M.; Chang, Michelle C. Y.

    2012-01-01

    The investigation of unique chemical phenotypes has led to the discovery of enzymes with interesting behaviors that allow us to explore unusual function. The organofluorine-producing microbe Streptomyces cattleya has evolved a fluoroacetyl-CoA thioesterase (FlK) that demonstrates a surprisingly high level of discrimination for a single fluorine substituent on its substrate compared with the cellularly abundant hydrogen analog, acetyl-CoA. In this report, we show that the high selectivity of FlK is achieved through catalysis rather than molecular recognition, where deprotonation at the Cα position to form a putative ketene intermediate only occurs on the fluorinated substrate, thereby accelerating the rate of hydrolysis 104-fold compared with the nonfluorinated congener. These studies provide insight into mechanisms of catalytic selectivity in a native system where the existence of two reaction pathways determines substrate rather than product selection. PMID:23150553

  10. Doping induced structural changes in colloidal semiconductor nanowires.

    PubMed

    Kandel, Krishna Prasad; Pietsch, Ullrich; Li, Zhen; Oztürk, Ozgül Kurtulus

    2013-03-28

    Undoped and Mn(2+)-doped CdSe nanowires (NWs) grown by a solution-liquid-solid (SLS) method using Bi nanocatalysts have been studied by X-ray powder diffraction measurements. Except for heavily doped nanowires no measurable changes in nanowire lattice parameters were observed. The lattice parameter of heavily doped nanowires shrinks by about 0.5% compared with the undoped ones, which corresponds to a doping concentration of 1.6%. For the other samples no change in lattice parameter is measured referring to a doping level much below 1%. Real structural parameters of nanowires were found to vary as a function of doping level, such as the zinc blende to wurtzite ratio, the static Debye-Waller factor, axial strain, and the number of stacking faults. Compared with the undoped nanowires the overall perfection is slightly improved for low doping but deteriorates drastically for higher doping. Our results highlight the importance of controlling the dopant concentration during the preparation of doped nanostructures.

  11. Muon-fluorine entanglement in fluoropolymers.

    PubMed

    Lancaster, T; Pratt, F L; Blundell, S J; McKenzie, I; Assender, H E

    2009-08-26

    We present the results of muon spin relaxation measurements on the fluoropolymers polytetrafluoroethylene (PTFE), poly(vinylidene fluoride) (PVDF) and poly(vinyl fluoride) (PVF). Entanglement between the muon spin and the spins of the fluorine nuclei in the polymers allows us to identify the different muon stopping states that occur in each of these materials and provides a method of probing the local environment of the muon and the dynamics of the polymer chains.

  12. Fluorination of 6-methyluracil and its nlcleosides.

    PubMed Central

    Cech, D; Herrmann, G; Holy, A

    1977-01-01

    6-Methyluracil and its perbenzoylated 1-(beta-D-ribofuranosyl) and 1-(2-deoxy-beta-D-ribofuranosyl) derivatives afford on treatment with elemental fluorine in acetic acid solutions, the corresponding derivatives of 5-fluoro-6-methyluracil and 5-fluoro-6-fluoromethyluracil. The free nucleosides have been obtained from the protected derivatives by methanolysis. The CH2F linkage in 5-fluoro-6-fluoromethyluracil derivatives is stable towards hydrolysis and nucleophilic agents. PMID:909805

  13. Spectrophotometric determination of fluorine in silicate rocks

    USGS Publications Warehouse

    Peck, L.C.; Smith, V.C.

    1964-01-01

    The rock powder is sintered with a sodium carbonate flux containing zinc oxide and magnesium carbonate, the sinter-cake leached with water and the resulting solution filtered. Fluorine is separated from the acidified filtrate by steam distillation and determined spectrophotometrically by means of a zirconium-SPADNS reagent. If a multiple-unit distillation apparatus is used, 12 determinations can be completed per man-day. ?? 1964.

  14. Fluorinated Polyhedral Oligomeric Silsesquioxanes (F-POSS)

    DTIC Science & Technology

    2010-02-01

    as their polymer composites, will be discussed. 1. INTRODUCTION Fluorinated compounds are a logical choice for hydrophobic applications due to...grabbing software coupled to a CCD camera operating at the optimized zoom and contrast. The contact angles were determined via the software suite...A. Gakh, A. A. Tuinman, J. L. Adcock, R. A. Sachleben, R. N. Compton , Am. Chem. Soc. J., 116, 819 (1994). 2. P. J. Fagan, P. J. Krusic, C. N. McEwen

  15. Fluorinated Polyhedral Oligomeric Silsesquioxanes (FluoroPOSS)

    DTIC Science & Technology

    2004-04-01

    Fluorodecyl(8T8), Contact Angle of Water on Fluorodecyl POSS Surface, Contact Angle of Mercury on Fluorodecyl POSS Surface, AFM Image of Spin-Cast...Fluorodecyl(8T8) Surface, Surface Energy of Fluorosiloxanes, Contact Angle and Chain Length, POSS Polymer Incorporation, Importance of R groups: Affect...compatibility with polymer matrix, PVDF/Fluoroocytl(8T8) POSS,PVDF/Fluoroocytl(nTn) POSS, Fluorinated Ethylene/Propylene, Poly(chlorotrifluoroethylene), Amorphous FEP, Water Contact Angle .

  16. Phenomena Simulation for Heavy Doping and Surface Recombination Velocity

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1985-01-01

    The theoretical models now available that characterize heavily doped (highly conducting) regions in silicon are survyed. Analytical and numerical approaches that determine the influence of such regions on the conversion efficiency of solar cells are examined. Although dilutely doped silicon is well characterized except for some disagreement about optical absorption coefficients, what exists now for heavily doped silicon and its interplay with adjoining regions is an incomplete theory in which not all contributers to transport, recombination, generation, and trapping are defined. Further, the parameters relating to these mechanisms and their values as determined by experiment are subject to various interpretations. The characterization of heavily doped silicon is treated not as a theory but rather as an imperfectly articulated and incompletely formalized body of experience. This view is intended to help point the way toward the attainment of a more complete of heavily doped silicon and thereby toward more informed designs of solar cells. Because computer programs constitute tools both for design and for estimating performance limits, the review includes some remarks pertinent to existing and developing programs.

  17. Synthesis of F-18 labeled resazurin by direct electrophilic fluorination

    PubMed Central

    Kachur, Alexander V.; Arroyo, Alejandro D.; Popov, Anatoliy V.; Saylor, Sarah J.; Delikatny, E. James

    2015-01-01

    We present the synthesis and characterization of F18-labeled fluorinated derivatives of resazurin, a probe for cell viability. The compounds were prepared by direct fluorination of resazurin with diluted [F18]-F2 gas under acidic conditions. The fluorination occurs into the ortho-positions to the hydroxyl group producing various mono-, di-, and trifluorinated derivatives. The properties of the fluorinated resazurins are similar to the parent compound with the addition of fluorine leading to decreased pKa values and a bathochromic shift of the absorption maxima. The fluorinated resazurin derivatives can be used as probes for observation of cell viability in various cells, tissues and organs using a combination of positron emission tomography and direct optical imaging of Cerenkov luminescence. PMID:26504251

  18. A Nuclear Reaction Analysis study of fluorine uptake in flint

    SciTech Connect

    Jin, Jian-Yue; Weathers, D. L.; Picton, F.; Hughes, B. F.; Duggan, J. L.; McDaniel, F. D.; Matteson, S.

    1999-06-10

    Nuclear Reaction Analysis (NRA) using the {sup 19}F(p,{alpha}{gamma}){sup 16}O resonance reaction is a powerful method of fluorine depth profiling. We have used this method to study the fluorine uptake phenomenon in mineral flint, which could potentially develop into a method of dating archeological flint artifacts. Flint samples cut with a rock saw were immersed in aqueous fluoride solutions for different times for the uptake study. The results suggest that fluorine uptake is not a simple phenomenon, but rather a combination of several simultaneous processes. Fluorine surface adsorption appears to play an important role in developing the fluorine profiles. The surface adsorption was affected by several parameters such as pH value and fluorine concentration in the solution, among others. The problem of surface charging for the insulator materials during ion bombardment is also reported.

  19. UV-laser-assisted liquid phase fluorination of PMMA

    NASA Astrophysics Data System (ADS)

    Wochnowski, C.; Di Ferdinando, M.; Giolli, C.; Vollertsen, F.; Bardi, U.

    2007-10-01

    Polymethylmethacrylate (PMMA) substrate was covered with liquid 1,2,3,5-tetrafluorobenzene by spin coating. Then the sample was irradiated by a KrF-excimer laser ( λ = 248 nm). Thus, fluorine is released from the fluorine-containing precursor diffusing into the polymeric substrate material where it is expected to substitute the hydrogen atoms of the polymeric molecule and form a water-repellent (hydrophobic) fluorinated polymer. After drying out the polymeric substrate, the sample surface was investigated by SEM, EDX, XPS and contact angle measurement method in order to determine the fluorine content and the wettability of the treated polymeric surface as well as the substitution sites inside the polymeric molecule. The measurements indicate some chemically bonded fluorine at the top of the sample layer. A UV-photochemical fluorination mechanism is proposed based on the XPS spectra evaluation.

  20. Fluorine in coal and coal by-products

    SciTech Connect

    Robertson, J.D.; Wong, A.S.; Hower, J.C.

    1994-12-31

    Fluorine occurs in awe amounts in most coals. It is typically associated with minerals of the apatite group, principally fluorapatite and clays, and with fluorite, tourmaline, topaz, amphiboles and micas. The average fluorine content of US coal is, according to the tabulation of Swanson, 74 {mu}g/g. In the United States, the lowest average fluorine concentration of 30 {mu}g/g is found in coals from Eastern Kentucky and the highest average value of 160 {mu}g/g is found in coals from Wyoming and New Mexico. The concentration range of fluorine in European coals is similar to that found in the US while the average fluorine content of Australian coals ranges from 15 to 500 {mu}g/g. We have determined the fluorine content in coal and fly ash standards by proton-induced gamma ray emission analysis (PIGE).

  1. Simple Synthesis of Fluorinated Graphene: Thermal Exfoliation of Fluorographite.

    PubMed

    Jankovský, Ondřej; Mazánek, Vlastimil; Klímová, Kateřina; Sedmidubský, David; Kosina, Jiří; Pumera, Martin; Sofer, Zdeněk

    2016-12-05

    Fluorinated graphene can be prepared directly by thermal exfoliation of fluorographite. The exfoliation was performed in a dynamic nitrogen atmosphere at various temperatures and the exfoliation products were analysed in detail by GC-MS. The structure and properties of all prepared fluorinated graphenes with various contents of fluorine were characterized by a number of analytical techniques. The results show both the dependence of fluorine concentration on exfoliation temperature and the suitability of this method for the synthesis of graphene with controlled concentration of fluorine. The high-temperature exfoliated fluorographite exhibits a high heterogeneous electron transfer rate and excellent catalytic properties towards the oxygen reduction reaction. These synthetic procedures can open a simple way for the synthesis of fluorinated graphene-based devices with tailored properties.

  2. Tuneable Rheological Properties of Fluorinated Pickering Emulsions

    NASA Astrophysics Data System (ADS)

    Chacon Orellana, Laura Andreina; Riechers, Birte; Caen, Ouriel; Baret, Jean-Christophe

    Pickering emulsions are an appealing approach to stabilize liquid-liquid dispersions without surfactants. Recently, amphiphilic silica nanoparticles have been proposed as an alternative to surfactants for droplet microfluidics applications, where aqueous drops are stabilized in fluorinated oils. This system, proved to be effective in preventing the leakage of resorufin, a model dye that was known to leak in surfactant-stabilized drops. The overall capabilities of droplet-based microfluidics technology is highly dependent on the dynamic properties of droplets, interfaces and emulsions. Therefore, fluorinated pickering emulsions dynamic properties need to be characterized, understood and controlled to be used as a substitute of already broadly studied emulsions for droplet microfluidics applications. In this study, fluorinated pickering emulsions have been found to behave as a Herschel Bulkley fluid, representing a challenge for common microfluidic operations as re-injection and sorting of droplets. We found that this behavior is controlled by the interaction between the interfacial properties of the particle-laden interface and the bulk properties of the two phases

  3. Fluorine Abundances in the Milky Way Bulge

    NASA Astrophysics Data System (ADS)

    Cunha, Katia; Smith, Verne V.; Gibson, Brad K.

    2008-05-01

    Fluorine (19F) abundances are derived in a sample of six bulge red giants in Baade's window. These giants span a factor of 10 in metallicity, and this is the first study to define the behavior of 19F with metallicity in the bulge. The bulge results show an increase in F/O with increasing oxygen. This trend overlaps what is found in the disk at comparable metallicities, with the most oxygen-rich bulge target extending the disk trend. The increase in F/O in the disk arises from 19F synthesis in both asymptotic giant branch (AGB) stars and metal-rich Wolf-Rayet (WR) stars through stellar winds. The lack of an s-process enhancement in the most fluorine-rich bulge giant in this study suggests that WR stars represented a larger contribution than did AGB stars to 19F production in the bulge, when compared to the disk. If this result for fluorine is combined with the previously published overall decline in the O/Mg abundance ratios in metal-rich bulge stars, it suggests that WR winds played a role in shaping chemical evolution in the bulge. One star in this study exhibits a very low value of F/O while having a large O abundance; this chemical mixture can be understood if this star formed from gas that was enriched by metal-poor core-collapse supernovae, and it may indicate that chemical evolution in the bulge was inhomogeneous.

  4. Superconducting properties in heavily overdoped Ba(Fe0.86Co0.14)2As2 single crystals

    DOE PAGES

    Kim, Jeehoon; Haberkorn, N.; Gofryk, K.; ...

    2014-10-05

    Here, we report the intrinsic superconducting parameters in a heavily overdoped Ba(Fe1-xCox)2As2 (x=0.14) single crystal and their influence in the resulting vortex dynamics. We also find a bulk superconducting critical temperature of 9.8 K, magnetic penetration depth λab (0)=660 ± 50 nm, coherence length ζab (0)=6.4 ± 0.2 nm, and the upper critical field anisotropy γT→ Tc approximate to 3.7. The vortex phase diagram, in comparison with the optimally doped compound, presents a narrow collective creep regime. Furthermore, the intrinsic pinning energy plays an important role in the resulting vortex dynamics as compared with similar pinning landscape and comparable intrinsicmore » thermal fluctuations.« less

  5. Efficient Fluorinating Agent through Topochemical Fluorination of Co-Fe Layered Double Hydroxides

    SciTech Connect

    Louvain, Nicolas; Peyroux, Jérémy; Dubois, Marc; Simond, Wikenson; Leroux, Fabrice

    2014-02-13

    Mixed-metal inorganic fluoride, Co0.60Fe0.40F3, solid solutions are obtained through topochemical reactions of Co2FeCl(OH)6·2H2O LDH with molecular fluorine, F2, at temperatures as low as 100 °C. This solid solution possesses interesting F-releasing ability, and its efficiency as a solid-state fluorinating agent is demonstrated on a commercial polyethylene film. 19F solid state NMR and contact angle measurements underline the efficient fluorination of this polymer.

  6. Taenia taeniaeformis: colonic hyperplasia in heavily infected rats.

    PubMed

    Lagapa, Jose Trinipil; Oku, Yuzaburo; Kamiya, Masao

    2008-12-01

    Only one study previously mentioned the involvement of colon during Taenia taeniaeformis larvae infection in rats with inconsistent occurrence of lesions. Present study aimed to determine the consistency of histopathologic changes in colonic epithelia, and the proliferation of mucosal cells through BrdU and PCNA immunohistochemistry. Results demonstrated that crypt hyperplasia of the colon was found in all infected rats, although variable in degree even in a single tissue section. Cystic cavities were frequently seen in severely hyperplastic mucosa. Proliferative zone lengths were significantly increased and PCNA positive cells were observed throughout the colonic crypt lengths at 9 but not at 6 weeks post infection. Cell proliferation involving the major types of cells in the epithelial colon was also increased in infected rats at 9 weeks post infection, with labeling indices significantly greater than the control rats throughout the BrdU time course labeling. Findings suggested that massive increases in epithelial cells and depth of colonic crypts were due to a remarkable increase in cell proliferation. The study concluded that enteropathy in the colon during T. taeniaeformis infection could be consistently observed in heavily infected rats.

  7. Isolation of gibberellin precursors from heavily pigmented tissues.

    PubMed

    Metzger, J D; Hazebroek, J P

    1989-12-01

    The kauranoid precursors of gibberellins are difficult to isolate from heavily pigmented plant tissues. In this paper, we describe relatively simple and efficient procedures for the purification of these compounds from tissues containing chlorophyll and other high molecular weight pigments. Extracts of shoots from Thlaspi arvense L. were subjected first to size exclusion chromatography using ethyl acetate as the eluting solvent. This procedure resulted in the separation of kauranoids as a class of compounds from chlorophyll. Typically, a 90% reduction in mass of the kauranoid enriched-fraction was observed. This fraction was subjected to reverse phase high performance liquid chromatography and individual fractions analyzed by combined gas chromatography-mass spectrometry. Five kauranoids were identified in shoot extracts of T. arvense: ent-kaur-16-ene, ent-kaur-16-en-19-ol, ent-kaur-16-en-19-oic acid, trachylobanoic acid, and 7beta, 13-dihydroxykaurenolide. The metabolic relationships of these compounds to the gibberellins previously identified in this species (JD Metzger, MC Mardaus [1986] Plant Physiol 80: 396-402) are discussed. In addition, the utility of size exclusion chromatography in preparative situations is demonstrated by the purification of ent-kaurenoic acid in milligram quantities from the florets of Helianthus annuus L.

  8. 77 FR 53236 - Proposed International Isotopes Fluorine Extraction Process and Depleted Uranium Deconversion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ... COMMISSION Proposed International Isotopes Fluorine Extraction Process and Depleted Uranium Deconversion... International Isotopes Fluorine Extraction Process and Depleted Uranium Deconversion Plant (INIS) in Lea County, New Mexico. On December 30, 2009, International Isotopes Fluorine Products, Inc. (IIFP), a...

  9. Fluorine-proton correlation from isolated trifluoromethyl groups using unresolved J-couplings.

    PubMed

    Howe, Peter W A

    2012-10-01

    Fluorine-containing compounds are rare in biological systems, so fluorine NMR spectroscopy can selectively detect and quantify fluorinated xenobiotics in crude biological extracts. The high sensitivity of fluorine NMR allows the detection of compounds containing isolated trifluoromethyl groups at nanogramme levels. However, it only provides limited structural information about trifluoromethyl-containing compounds owing to the difficulty of interpreting fluorine chemical shifts and the low sensitivity of HOESY experiments used to correlate fluorine nuclei with protons in the same compound. This paper demonstrates that long-range fluorine-proton J-couplings can be used to correlate isolated trifluoromethyl groups with nearby protons with significantly higher sensitivity than HOESY. Fluorine-observe fluorine-proton HMQC can even give correlations when the fluorine-proton J-couplings are less than the observed fluorine resonance linewidth, so it provides a useful alternative source of structural information about fluorinated xenobiotics.

  10. Airplane dopes and doping

    NASA Technical Reports Server (NTRS)

    Smith, W H

    1919-01-01

    Cellulose acetate and cellulose nitrate are the important constituents of airplane dopes in use at the present time, but planes were treated with other materials in the experimental stages of flying. The above compounds belong to the class of colloids and are of value because they produce a shrinking action on the fabric when drying out of solution, rendering it drum tight. Other colloids possessing the same property have been proposed and tried. In the first stages of the development of dope, however, shrinkage was not considered. The fabric was treated merely to render it waterproof. The first airplanes constructed were covered with cotton fabric stretched as tightly as possible over the winds, fuselage, etc., and flying was possible only in fine weather. The necessity of an airplane which would fly under all weather conditions at once became apparent. Then followed experiments with rubberized fabrics, fabrics treated with glue rendered insoluble by formaldehyde or bichromate, fabrics treated with drying and nondrying oils, shellac, casein, etc. It was found that fabrics treated as above lost their tension in damp weather, and the oil from the motor penetrated the proofing material and weakened the fabric. For the most part the film of material lacked durability. Cellulose nitrate lacquers, however were found to be more satisfactory under varying weather conditions, added less weight to the planes, and were easily applied. On the other hand, they were highly inflammable, and oil from the motor penetrated the film of cellulose nitrate, causing the tension of the fabric to be relaxed.

  11. Flow microreactor synthesis in organo-fluorine chemistry

    PubMed Central

    Nagaki, Aiichiro

    2013-01-01

    Summary Organo-fluorine compounds are the substances of considerable interest in various industrial fields due to their unique physical and chemical properties. Despite increased demand in wide fields of science, synthesis of fluoro-organic compounds is still often faced with problems such as the difficulties in handling of fluorinating reagents and in controlling of chemical reactions. Recently, flow microreactor synthesis has emerged as a new methodology for producing chemical substances with high efficiency. This review outlines the successful examples of synthesis and reactions of fluorine-containing molecules by the use of flow microreactor systems to overcome long-standing problems in fluorine chemistry. PMID:24367443

  12. Two-Dimensional Fluorinated Graphene: Synthesis, Structures, Properties and Applications.

    PubMed

    Feng, Wei; Long, Peng; Feng, Yiyu; Li, Yu

    2016-07-01

    Fluorinated graphene, an up-rising member of the graphene family, combines a two-dimensional layer-structure, a wide bandgap, and high stability and attracts significant attention because of its unique nanostructure and carbon-fluorine bonds. Here, we give an extensive review of recent progress on synthetic methods and C-F bonding; additionally, we present the optical, electrical and electronic properties of fluorinated graphene and its electrochemical/biological applications. Fluorinated graphene exhibits various types of C-F bonds (covalent, semi-ionic, and ionic bonds), tunable F/C ratios, and different configurations controlled by synthetic methods including direct fluorination and exfoliation methods. The relationship between the types/amounts of C-F bonds and specific properties, such as opened bandgap, high thermal and chemical stability, dispersibility, semiconducting/insulating nature, magnetic, self-lubricating and mechanical properties and thermal conductivity, is discussed comprehensively. By optimizing the C-F bonding character and F/C ratios, fluorinated graphene can be utilized for energy conversion and storage devices, bioapplications, electrochemical sensors and amphiphobicity. Based on current progress, we propose potential problems of fluorinated graphene as well as the future challenge on the synthetic methods and C-F bonding character. This review will provide guidance for controlling C-F bonds, developing fluorine-related effects and promoting the application of fluorinated graphene.

  13. Analysis of fluorine addition to the vanguard first stage

    NASA Technical Reports Server (NTRS)

    Tomazic, William A; Schmidt, Harold W; Tischler, Adelbert O

    1957-01-01

    The effect of adding fluorine to the Vanguard first-stage oxidant was anlyzed. An increase in specific impulse of 5.74 percent may be obtained with 30 percent fluorine. This increase, coupled with increased mass ratio due to greater oxidant density, gave up to 24.6-percent increase in first-stage burnout energy with 30 percent fluorine added. However, a change in tank configuration is required to accommodate the higher oxidant-fuel ratio necessary for peak specific impulse with fluorine addition.

  14. Comparison of the tribological properties of fluorinated cokes and graphites

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1988-01-01

    The friction, wear, endurance life, and surface morphology of rubbed (burnished) fluorinated graphite and fluorinated coke materials were studied. Two different coke powders, a graphitic carbon powder, and a graphite powder were fluorinated and then tribologically investigated. In addition, one of the coke powders was reduced in size before fluorinating to evaluate the effect of a finer particle size on the tribological properties. For comparison, graphite and coke powders which were not fluorinated were also tribologically evaluated. Elemental analysis by emission spectroscopy was performed on each sample to determine the impurity content and X-ray diffraction analysis was performed to determine the crystallinity. Coke was found to have very little lubricating ability, but fluorinated coke did possess good lubricating properties. However, the fluorinated graphite and fluorinated graphitic carbon (which gave equivalent results) gave superior results to those obtained with the fluorinated cokes. No tribological benefit was found for using small versus a larger particle size of coke, at least when evaluated as a rubbed film.

  15. Comparison of the tribological properties of fluorinated cokes and graphites

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1987-01-01

    The friction, wear, endurance life, and surface morphology of rubbed (burnished) fluorinated graphite and fluorinated coke materials were studied. Two different coke powders, a graphitic carbon powder, and a graphite powder were fluorinated and then tribologically investigated. In addition, one of the coke powders was reduced in size before fluorinating to evaluate the effect of a finer particle size on the tribological properties. For comparison, graphite and coke powders which were not fluorinated were also tribologically evaluated. Elemental analysis by emission spectroscopy was performed on each sample to determine the impurity content and X-ray diffraction analysis was performed to determine the crystallinity. Coke was found to have very little lubricating ability, but fluorinated coke did possess good lubricating properties. However, the fluorinated graphite and fluorinated graphitic carbon (which gave equivalent results) gave superior results to those obtained with the fluorinated cokes. No tribological benefit was found for using small versus a larger particle size of coke, at least when evaluated as a rubbed film.

  16. Comparison of topotactic fluorination methods for complex oxide films

    SciTech Connect

    Moon, E. J. Choquette, A. K.; Huon, A.; Kulesa, S. Z.; May, S. J.; Barbash, D.

    2015-06-01

    We have investigated the synthesis of SrFeO{sub 3−α}F{sub γ} (α and γ ≤ 1) perovskite films using topotactic fluorination reactions utilizing poly(vinylidene fluoride) as a fluorine source. Two different fluorination methods, a spin-coating and a vapor transport approach, were performed on as-grown SrFeO{sub 2.5} films. We highlight differences in the structural, compositional, and optical properties of the oxyfluoride films obtained via the two methods, providing insight into how fluorination reactions can be used to modify electronic and optical behavior in complex oxide heterostructures.

  17. Photoreactivity of. cap alpha. -fluorinated phenyl alkyl ketones

    SciTech Connect

    Wagner, P.J.; Thomas, M.J.; Puchalski, A.E.

    1986-11-26

    The photoreactivities of the mono-, di-, and tri-..cap alpha..-fluorinated acetophenones have been compared to that of acetophenone itself. All four ketones have similar triplet excitation energies; the three fluorinated ketones have reduction potentials 0.5-0.7 eV lower than that of acetophenone. Triplet reactivity toward alkylbenzenes keeps increasing with fluorine substitution, since the rate-determining step becomes charge-transfer complexation as the ketone reduction potential decreases. The primary/tertiary C-H selectivity toward p-cymene increases with the number of fluorines. Triplet reactivity toward cyclopentane also is increased by fluorination but peaks at two fluorines, since the lowest triplet switches from n,..pi..* to ..pi..,..pi..* with two or three fluorines and ..pi..,..pi..* triplets are unreactive in simple hydrogen atom abstraction. In contrast, ..cap alpha..-fluorination of valerophenone does not significantly increase the rate of triplet ..gamma..-hydrogen abstraction. The inductive effect on reactivity apparently is offset by a conformational effect. The ..cap alpha..-fluorinated phenones give predominantly cyclobutanols instead of Norrish type II elimination. ..cap alpha..-Fluoroacetophenone forms predominantly acetophenone and HF when irradiated with 2-propanol, in what appears to be a short chain process involving electron transfer to ketone followed by fluoride ion loss. Finally, the radical coupling products in these reactions are formed in varying yields, depending on solvent and additives.

  18. Enhanced Structural Organization in Covalent Organic Frameworks Through Fluorination.

    PubMed

    Alahakoon, Sampath B; McCandless, Gregory T; Karunathilake, Arosha A K; Thompson, Christina M; Smaldone, Ronald A

    2017-01-30

    Here, we report a structure-function study of imine covalent organic frameworks (COFs) comparing a series of novel fluorine-containing monomers to their non-fluorinated analogues. We found that the fluorine-containing monomers produced 2D-COFs with not only greatly improved surface areas (over 2000 m(2)  g(-1) compared to 760 m(2)  g(-1) for the non-fluorinated analogue), but also with improved crystallinity and larger, more defined pore diameters. We then studied the formation of these COFs under varying reaction times and temperatures to obtain a greater insight into their mechanism of formation.

  19. Doping Profiles for Indium Antimonide Magnetoresistors

    NASA Astrophysics Data System (ADS)

    Partin, D. L.; Heremans, J.; Thrush, C. M.

    1997-03-01

    Indium antimonide is of interest for magnetoresistors in position sensors. These sensors are fabricated as thin film elements in order to increase the device impedance. The InSb is doped n-type to stabilize the electron density against temperature changes. This involves tradeoffs, since ionized donors scatter electrons, reducing their mobility and hence reducing the device sensitivity to a magnetic field. Optimizing the sensitivity involved three steps. The InSb is undoped for the first 10 to 20 percent of the film thickness, forming a buffer from the lattice mismatched substrate. The doping in the middle layer of the film has a doping gradient. Finally, a thin contact layer is more heavily doped to reduce contact resistance.

  20. [Fluorine as a factor in premature aging].

    PubMed

    Machoy-Mokrzyńska, Anna

    2004-01-01

    The use of fluorine compounds in various areas of medicine, particularly in dentistry, as well as in agriculture and industry became very popular in the second half of the 20th century. Fluorine owed this widespread acceptance to observations that its compounds stimulate ossification processes and reduce the prevalence of caries. Unfortunately, growing expectations overshadowed the truth regarding interactions of fluoride on the molecular level. The fact was often ignored that fluoride is toxic, even though laboratory data stood for a careful approach to the benefits of usage. Excessive exposure to fluoride may lead to acute poisoning, hyperemia, cerebral edema, and degeneration of the liver and kidneys. Acute intoxication through the airways produces coughing, choking, and chills, followed by fever and pulmonary edema. Concentrated solutions of fluorine compounds produce difficult to heal necrotic lesions. In spite of these dramatic symptoms, acute intoxications are relatively rare; the more common finding is chronic intoxication attributable to the universal presence of fluorine compounds in the environment. The first noticeable signs of excessive exposure to fluoride in contaminated water, air, and food products include discolorations of the enamel. Dental fluorosis during tooth growth and loss of dentition in adulthood are two consequences of chronic intoxication with fluorine compounds. Abnormalities in mineralization processes affect by and large the osteoarticular system and are associated with changes in the density and structure of the bone presenting as irregular mineralization of the osteoid. Fluorine compounds also act on the organic part of supporting tissues, including collagen and other proteins, and on cells of the connective tissue. These interactions reduce the content of collagen proteins, modify the structure and regularity of collagen fibers, and induce mineralization of collagen. Interactions with cells produce transient activation of

  1. Synthesis of novel enantiopure fluorinated building blocks from acyclic chiral allylsilanes.

    PubMed

    Tredwell, Matthew; Tenza, Kenny; Pacheco, Ma Carmen; Gouverneur, Véronique

    2005-09-29

    [reaction: see text] Homochiral beta-fluorinated gamma,delta-unsaturated carboxylic acids with an allylic fluorinated stereogenic center are available from the corresponding enantiopure allylsilanes. The key step for introduction of the fluorine substituent is an electrophilic fluorodesilylation reaction carried out in the presence of Selectfluor. Reduction of the resulting beta-fluorinated pentenoic acid into the corresponding fluorinated alcohol was also performed leading to the formation of an enantiopure second-generation fluorinated building block.

  2. Synthesis, characterization, photocatalysis, and varied properties of TiO2 cosubstituted with nitrogen and fluorine.

    PubMed

    Kumar, Nitesh; Maitra, Urmimala; Hegde, Vinay I; Waghmare, Umesh V; Sundaresan, A; Rao, C N R

    2013-09-16

    TiO2 (anatase) codoped with nitrogen and fluorine, synthesized by a simple solid state route, using urea and ammonium fluoride as sources of nitrogen and fluorine, respectively, as well as by decomposition of (NH4)2TiF6 for comparison, has been characterized by various techniques. XPS analysis shows the composition to be TiO1.7N0.18F0.12 for urea-based method (N, F-TiO2-urea) and TiO1.9N0.04F0.06 for complex decomposition method (N, F-TiO2-complex). Both the materials are defect-free as revealed by photoluminescence spectroscopy. Thus, N, F-TiO2-urea exhibits smaller defect-induced magnetization compared to the nitrogen-doped sample. Cosubstitution of N and F is accompanied with an enhancement of the absorption of light in the visible region giving rise to yellow color and with a band gap of ∼2.2 eV in the case of N, F-TiO2-urea. It exhibits enhanced photocatalytic activity and also significant hydrogen evolution (400 μmol/g) on interaction with visible light in the absence of any cocatalyst, which is much higher compared to N, F-TiO2-complex and N-TiO2. First-principles calculations show significant local distortions on codoping TiO2 with N and F and a lowering of energy by 1.93 eV per N, F pair. With virtual negative and positive charges on nitrogen and fluorine, respectively, the dopants prefer pairwise clustering. Our calculations predict a reduction in the band gap in TiO2 cosubstituted with nitrogen and fluorine. The calculated band structure shows that nitrogen 2p states form a separate subband just above the valence band which is enhanced on incorporation of fluorine. Our calculations also indicate anomalous Born effective charges in N, F-TiO2 and predict enhanced photocatalytic activity on codoping of TiO2 by N and F.

  3. Effect of nitrogen and fluorine on mechanical properties and bioactivity in two series of bioactive glasses.

    PubMed

    Bachar, Ahmed; Mercier, Cyrille; Tricoteaux, Arnaud; Hampshire, Stuart; Leriche, Anne; Follet, Claudine

    2013-07-01

    Bioactive glasses are able to bond to bone through formation of carbonated hydroxyapatite in body fluids, and fluoride-releasing bioactive glasses are of interest for both orthopaedic and, in particular, dental applications for caries inhibition. However, because of their poor strength their use is restricted to non-load-bearing applications. In order to increase their mechanical properties, doping with nitrogen has been performed on two series of bioactive glasses: series (I) was a "bioglass" composition (without P2O5) within the quaternary system SiO2-Na2O-CaO-Si3N4 and series (II) was a simple substitution of CaF2 for CaO in series (I) glasses keeping the Na:Ca ratio constant. The objective of this work was to evaluate the effect of the variation in nitrogen and fluorine content on the properties of these glasses. The density, glass transition temperature, hardness and elastic modulus all increased linearly with nitrogen content which indicates that the incorporation of nitrogen stiffens the glass network because N is mainly in 3-fold coordination with Si atoms. Fluorine addition significantly decreases the thermal property values but the mechanical properties of these glasses remain unchanged with fluorine. The combination of both nitrogen and fluorine in oxyfluoronitride glasses gives better mechanical properties at much lower melting temperatures since fluorine reduces the melting point, allows higher solubility of nitrogen and does not affect the higher mechanical properties arising from incorporation of nitrogen. The characterization of these N and F substituted bioactive glasses using (29)Si MAS NMR has shown that the increase in rigidity of the glass network can be explained by the formation of SiO3N, SiO2N2 tetrahedra and Q(4) units with extra bridging anions at the expense of Q(3) units. Bioactivity of the glasses was investigated in vitro by examining apatite formation on the surface of glasses treated in acellular simulated body fluid (SBF) with ion

  4. Q-switching of a thulium-doped fibre laser using a holmium-doped fibre saturable absorber

    SciTech Connect

    Sadovnikova, Ya E; Kamynin, V A; Kurkov, A S; Medvedkov, O I; Marakulin, A V; Minashina, L A

    2014-01-31

    We have proposed and demonstrated a new passively Q-switched thulium-doped fibre laser configuration. A distinctive feature of this configuration is the use of a heavily holmium-doped fibre for Q-switching. Lasing was obtained at 1.96 μm, with a pulse energy of 3 μJ and pulse duration of 600 ns. The highest pulse repetition rate was 80 kHz. (control of laser radiation parameters)

  5. Fractionation of fluorine, chlorine and other trace elements during differentiation of a tholeiitic magma.

    NASA Technical Reports Server (NTRS)

    Greenland, L.; Lovering, J. F.

    1966-01-01

    Fluorine, chlorine and other trace elements determined through differentiated tholeiitic dolerite sill from Tasmania using statistical techniques, showing hydroxyl lattice sites by chlorine and fluorine

  6. Synergetic effects in novel hydrogenated F-doped TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Samsudin, Emy Marlina; Abd Hamid, Sharifah Bee; Juan, Joon Ching; Basirun, Wan Jefrey; Centi, Gabriele

    2016-05-01

    The synergistic effect between fluorine and hydrogen in hydrogenated F-doped TiO2 photocatalysts is evaluated for the photocatalytic degradation of atrazine. The interaction between fluorine and hydrogen species in hydrogenated F-doped TiO2 overcomes the limitations of individual F-doped TiO2 and hydrogenated TiO2 photocatalyst properties. Hydrogenated F-doped TiO2 is photo-active under UV, visible and infrared light illumination with efficient electrons and holes separations. The optimized concentration of surface vacancies and Ti3+ centers coupled with enhanced surface hydrophilicity facilitates the production of surface-bound and free hydroxyl radicals. The surface of the catalyst contains dbnd Tisbnd F, dbnd Tisbnd OH, dbnd Tisbnd Ovacancy and dbnd Tisbnd H bonds as evidenced by XPS, Raman, FTIR and HR-TEM analysis. This combination also triggers the formation of new Ti3+ occupied states under the conduction band of hydrogenated F-doped TiO2. Moreover, the change in the pore structure from cylindrical to slits and larger surface area facilitates surface charge interactions. The thermal stability is also enhanced and a single anatase phase is obtained. The size of the particles of hydrogenated F-doped TiO2 is also uniform with defined and homogeneous crystal structure. This synergetic effect between fluorine and hydrogen opens up new alternatives in improving the properties of TiO2 and its photocatalytic activity.

  7. Context of Carbonate Rocks in Heavily Eroded Martian Terrain

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The color coding on this composite image of an area about 20 kilometers (12 miles) wide on Mars is based on infrared spectral information interpreted as evidence of various minerals present. Carbonate, which is indicative of a wet and non-acidic history, occurs in very small patches of exposed rock appearing green in this color representation, such as near the lower right corner.

    The scene is heavily eroded terrain to the west of a small canyon in the Nili Fossae region of Mars. It was one of the first areas where researchers on the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) science team detected carbonate in Mars rocks. The spectral information comes from infrared imaging by CRISM, one of six science instruments on NASA's Mars Reconnaissance Orbiter. That coloring is overlaid on a grayscale image from the same orbiter's Context Camera.

    The uppermost capping rock unit (purple) is underlain successively by banded olivine-bearing rocks (yellow) and rocks bearing iron-magnesium smectite clay (blue). Where the olivine is a greenish hue, it has been partially altered by interaction with water. The carbonate and olivine occupy the same level in the stratigraphy, and it is thought that the carbonate formed by aqueous alteration of olivine. The channel running from upper left to lower right through the image and eroding into the layers of bedrock testifies to the past presence of water in this region. That some of the channels are closely associated with carbonate (lower right) indicates that waters interacting with the carbonate were neutral to alkaline because acidic waters would have dissolved the carbonate.

    Information for the color coding came from CRISM images catalogued as FRT0000B438, FRT0000A4FC, and FRT00003E12. This composite was made using 2.38-micrometer-wavelenghth data as red, 1.80 micrometer as green and 1.15 micrometer as blue.

    The base black-and-white image, acquired at a resolution of 5 meters (16 feet) per

  8. Late-Stage Fluorination: From Fundamentals to Application

    PubMed Central

    2015-01-01

    In this brief account, we review work from our lab with a focus on late-stage introduction of fluorine and fluorinated functional groups into small molecules. We attempt to highlight practical developments, which we believe may have potential for industrial applications, and critically reflect on developments that may not yet meet the bar for practical use. PMID:25838756

  9. Cu-Catalyzed Fluorination of Diaryliodonium Salts with KF

    PubMed Central

    Ichiishi, Naoko; Canty, Allan J.; Yates, Brian F.

    2014-01-01

    A mild Cu-catalyzed nucleophilic fluorination of unsymmetrical diaryliodonium salts with KF is described. This protocol preferentially fluorinates less sterically hindered aromatic rings. The reaction exhibits a broad substrate scope and proceeds with high chemoselectivity and functional group tolerance. DFT calculations implicate a CuI/CuIII catalytic cycle. PMID:24063629

  10. Two‐Dimensional Fluorinated Graphene: Synthesis, Structures, Properties and Applications

    PubMed Central

    Long, Peng; Feng, Yiyu; Li, Yu

    2016-01-01

    Fluorinated graphene, an up‐rising member of the graphene family, combines a two‐dimensional layer‐structure, a wide bandgap, and high stability and attracts significant attention because of its unique nanostructure and carbon–fluorine bonds. Here, we give an extensive review of recent progress on synthetic methods and C–F bonding; additionally, we present the optical, electrical and electronic properties of fluorinated graphene and its electrochemical/biological applications. Fluorinated graphene exhibits various types of C–F bonds (covalent, semi‐ionic, and ionic bonds), tunable F/C ratios, and different configurations controlled by synthetic methods including direct fluorination and exfoliation methods. The relationship between the types/amounts of C–F bonds and specific properties, such as opened bandgap, high thermal and chemical stability, dispersibility, semiconducting/insulating nature, magnetic, self‐lubricating and mechanical properties and thermal conductivity, is discussed comprehensively. By optimizing the C–F bonding character and F/C ratios, fluorinated graphene can be utilized for energy conversion and storage devices, bioapplications, electrochemical sensors and amphiphobicity. Based on current progress, we propose potential problems of fluorinated graphene as well as the future challenge on the synthetic methods and C‐F bonding character. This review will provide guidance for controlling C–F bonds, developing fluorine‐related effects and promoting the application of fluorinated graphene. PMID:27981018

  11. Fluoroalkyl containing salts combined with fluorinated solvents for electrolytes

    DOEpatents

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Erickson, Michael Jason

    2015-04-21

    Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte may include a fluoroalkyl-substituted LiPF.sub.6 salt or a fluoroalkyl-substituted LiBF.sub.4 salt. In some embodiments, at least one fluorinated alkyl of the salt has a chain length of from 1 to 8 or, more specifically, between about 2 and 8. These fluorinated alkyl groups, in particular, relatively large fluorinated alkyl groups improve solubility of these salts in fluorinated solvents that are less flammable than, for example, conventional carbonate solvents. At the same time, the size of fluoroalkyl-substituted salts should be limited to ensure adequate concentration of the salt in an electrolyte and low viscosity of the electrolyte. In some embodiments, the concentration of a fluoroalkyl-substituted salt is at least about 0.5M. Examples of fluorinated solvents include various fluorinated esters, fluorinated ethers, and fluorinated carbonates, such a 1-methoxyheptafluoropropane, methyl nonafluorobutyl ether, ethyl nonafluorobutyl ether, 1,1,1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-(trifluoromethyl)-pentane, 3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-trifluoromethyl-hexane, and 1,1,1,2,3,3-hexafluoro-4-(1,1,2,3,3,3-hexafluoropropoxy)-pentane.

  12. Fluorine-Rich Planetary Environments as Possible Habitats for Life

    PubMed Central

    Budisa, Nediljko; Kubyshkin, Vladimir; Schulze-Makuch, Dirk

    2014-01-01

    In polar aprotic organic solvents, fluorine might be an element of choice for life that uses selected fluorinated building blocks as monomers of choice for self-assembling of its catalytic polymers. Organofluorine compounds are extremely rare in the chemistry of life as we know it. Biomolecules, when fluorinated such as peptides or proteins, exhibit a “fluorous effect”, i.e., they are fluorophilic (neither hydrophilic nor lipophilic). Such polymers, capable of creating self-sorting assemblies, resist denaturation by organic solvents by exclusion of fluorocarbon side chains from the organic phase. Fluorous cores consist of a compact interior, which is shielded from the surrounding solvent. Thus, we can anticipate that fluorine-containing “teflon”-like or “non-sticking” building blocks might be monomers of choice for the synthesis of organized polymeric structures in fluorine-rich planetary environments. Although no fluorine-rich planetary environment is known, theoretical considerations might help us to define chemistries that might support life in such environments. For example, one scenario is that all molecular oxygen may be used up by oxidation reactions on a planetary surface and fluorine gas could be released from F-rich magma later in the history of a planetary body to result in a fluorine-rich planetary environment. PMID:25370378

  13. 21 CFR 170.45 - Fluorine-containing compounds.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Fluorine-containing compounds. 170.45 Section 170.45 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES Specific Administrative Rulings and Decisions § 170.45 Fluorine-containing...

  14. Catalytic enantioselective cyclization and C3-fluorination of polyenes.

    PubMed

    Cochrane, Nikki A; Nguyen, Ha; Gagne, Michel R

    2013-01-16

    (Xylyl-phanephos)Pt(2+) in combination with XeF(2) mediates the consecutive diastereoselective cation-olefin cyclization/fluorination of polyene substrates. Isolated yields were typically in the 60-69% range while enantioselectivities reached as high as 87%. The data are consistent with a stereoretentive fluorination of a P(2)Pt-alkyl cation intermediate.

  15. Supernova neutrinos, neutral currents and the origin of fluorine

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.; Haxton, W. C.

    1988-01-01

    An argument is made for the existence of a significant role for neutrinos in the nuclear chemistry of an exploding supernova. Emphasis is given to the neutrino-induced nucleosynthesis of fluorine. It is shown that fluorine's solar abundance constrains the temperature of muon and tauon neutrinos to values near what is expected from the standard model.

  16. 40 CFR 721.10524 - Fluorinated alkylsulfonamidol urethane polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polymer (generic). 721.10524 Section 721.10524 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10524 Fluorinated alkylsulfonamidol urethane polymer (generic). (a... generically as fluorinated alkylsulfonamidol urethane polymer (PMN P-11-384) is subject to reporting...

  17. 40 CFR 721.10146 - Partially fluorinated condensation polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polymer (generic). 721.10146 Section 721.10146 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10146 Partially fluorinated condensation polymer (generic). (a) Chemical... as partially fluorinated condensation polymer (PMN P-07-87) is subject to reporting under...

  18. 40 CFR 721.10146 - Partially fluorinated condensation polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polymer (generic). 721.10146 Section 721.10146 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10146 Partially fluorinated condensation polymer (generic). (a) Chemical... as partially fluorinated condensation polymer (PMN P-07-87) is subject to reporting under...

  19. 40 CFR 721.10146 - Partially fluorinated condensation polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polymer (generic). 721.10146 Section 721.10146 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10146 Partially fluorinated condensation polymer (generic). (a) Chemical... as partially fluorinated condensation polymer (PMN P-07-87) is subject to reporting under...

  20. 40 CFR 721.10146 - Partially fluorinated condensation polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polymer (generic). 721.10146 Section 721.10146 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10146 Partially fluorinated condensation polymer (generic). (a) Chemical... as partially fluorinated condensation polymer (PMN P-07-87) is subject to reporting under...

  1. 40 CFR 721.10524 - Fluorinated alkylsulfonamidol urethane polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polymer (generic). 721.10524 Section 721.10524 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10524 Fluorinated alkylsulfonamidol urethane polymer (generic). (a... generically as fluorinated alkylsulfonamidol urethane polymer (PMN P-11-384) is subject to reporting...

  2. 40 CFR 721.10146 - Partially fluorinated condensation polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polymer (generic). 721.10146 Section 721.10146 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10146 Partially fluorinated condensation polymer (generic). (a) Chemical... as partially fluorinated condensation polymer (PMN P-07-87) is subject to reporting under...

  3. [Sequential extraction experiments applied to study chemical mobility of fluorine in rocks].

    PubMed

    Xu, Li-Rong; Liang, Han-Dong; Luo, Kun-Li; Feng, Fu-Jian; Tan, Jian-An

    2006-11-01

    Sequential extraction experiments were used to study the chemical mobility of fluorine in rocks. The results show that there are quite big differences in chemical mobility of fluorine in rocks of different types. Fluorine in carbonate rock is very active, in which the proportion of leachable fluorine is generally more than 75%. Fluorine in black rocks of Lower Cambrian is closely related to their different metamorphosed grades, in which fluorine in black carbonaceous slate with higher metamorphosed grade mostly has lower leachability than black shale and black siliceous rock. Generally speaking, the leachable percentage of fluorine is high in phosphorite rocks and low in phyllite. The leachable fluorine in diabase is in direct proportion to its fluorine concentration. There are some differences in chemical mobility of fluorine in stone coal of different ages. Fluorine in stone coal of Silurian has higher leachability than stone coal of Cambrian.

  4. Fluorine-Based DRIE of Fused Silica

    NASA Technical Reports Server (NTRS)

    Yee, Karl; Shcheglov, Kirill; Li, Jian; Choi, Daniel

    2007-01-01

    A process of deep reactive-ion etching (DRIE) using a fluorine-based gas mixture enhanced by induction-coupled plasma (ICP) has been demonstrated to be effective in forming high-aspect-ratio three-dimensional patterns in fused silica. The patterns are defined in part by an etch mask in the form of a thick, high-quality aluminum film. The process was developed to satisfy a need to fabricate high-aspect-ratio fused-silica resonators for vibratory microgyroscopes, and could be used to satisfy similar requirements for fabricating other fused-silica components.

  5. Fluorine (19F) MRS and MRI in biomedicine

    PubMed Central

    Ruiz-Cabello, Jesús; Barnett, Brad P.; Bottomley, Paul A.; Bulte, Jeff W.M.

    2011-01-01

    Shortly after the introduction of 1H MRI, fluorinated molecules were tested as MR-detectable tracers or contrast agents. Many fluorinated compounds, which are nontoxic and chemically inert, are now being used in a broad range of biomedical applications, including anesthetics, chemotherapeutic agents, and molecules with high oxygen solubility for respiration and blood substitution. These compounds can be monitored by fluorine (19F) MRI and/or MRS, providing a noninvasive means to interrogate associated functions in biological systems. As a result of the lack of endogenous fluorine in living organisms, 19F MRI of ‘hotspots’ of targeted fluorinated contrast agents has recently opened up new research avenues in molecular and cellular imaging. This includes the specific targeting and imaging of cellular surface epitopes, as well as MRI cell tracking of endogenous macrophages, injected immune cells and stem cell transplants. PMID:20842758

  6. Determination of small and large amounts of fluorine in rocks

    USGS Publications Warehouse

    Grimaldi, F.S.; Ingram, B.; Cuttitta, F.

    1955-01-01

    Gelatinous silica and aluminum ions retard the distillation of fluorine in the Willard and Winter distillation method. A generally applicable, simple method for the determination of fluorine in rocks containing aluminum or silicon or both as major constituents was desired. In the procedure developed, the sample is fused with a mixture of sodium carbonate and zinc oxide, leached with water, and filtered. The residue is granular and retains nearly all of the silica. The fluorine in the filtrate is distilled directly from a perchloric acid-phosphoric acid mixture. Phosphoric acid permits the quantitative distillation of fluorine in the presence of much aluminum at the usual distillation temperature and without the collection of large volumes of distillate. The fluorine is determined either by microtitration with thorium nitrate or colorimetrically with thoron. The procedure is rapid and has yielded excellent results on silicate rocks and on samples from the aluminum phosphate (leached) zone of the Florida phosphate deposits.

  7. Method for producing fluorinated diamond-like carbon films

    DOEpatents

    Hakovirta, Marko J.; Nastasi, Michael A.; Lee, Deok-Hyung; He, Xiao-Ming

    2003-06-03

    Fluorinated, diamond-like carbon (F-DLC) films are produced by a pulsed, glow-discharge plasma immersion ion processing procedure. The pulsed, glow-discharge plasma was generated at a pressure of 1 Pa from an acetylene (C.sub.2 H.sub.2) and hexafluoroethane (C.sub.2 F.sub.6) gas mixture, and the fluorinated, diamond-like carbon films were deposited on silicon <100>substrates. The film hardness and wear resistance were found to be strongly dependent on the fluorine content incorporated into the coatings. The hardness of the F-DLC films was found to decrease considerably when the fluorine content in the coatings reached about 20%. The contact angle of water on the F-DLC coatings was found to increase with increasing film fluorine content and to saturate at a level characteristic of polytetrafluoroethylene.

  8. Global and local superconductivity in boron-doped granular diamond.

    PubMed

    Zhang, Gufei; Turner, Stuart; Ekimov, Evgeny A; Vanacken, Johan; Timmermans, Matias; Samuely, Tomás; Sidorov, Vladimir A; Stishov, Sergei M; Lu, Yinggang; Deloof, Bart; Goderis, Bart; Van Tendeloo, Gustaaf; Van de Vondel, Joris; Moshchalkov, Victor V

    2014-04-02

    Strong granularity-correlated and intragrain modulations of the superconducting order parameter are demonstrated in heavily boron-doped diamond situated not yet in the vicinity of the metal-insulator transition. These modulations at the superconducting state (SC) and at the global normal state (NS) above the resistive superconducting transition, reveal that local Cooper pairing sets in prior to the global phase coherence.

  9. Boron-doped diamond nanograss array for electrochemical sensors.

    PubMed

    Wei, Min; Terashima, Chiaki; Lv, Mei; Fujishima, Akira; Gu, Zhong-Ze

    2009-06-28

    A novel BDD nanograss array has been prepared simply on a heavily doped BDD film by reactive ion etching for use as an electrochemical sensor, which improved the reactive site, promoted the electrocatalytic activity, accelerated the electron transfer, and enhanced the selectivity.

  10. Distribution and formation of high-fluorine groundwater in China

    NASA Astrophysics Data System (ADS)

    Fuhong, Ren; Shuqin, Jiao

    1988-08-01

    In China, high-fluorine groundwater, which contains more than 1.0 mg/l fluorine, is mainly distributed in shallow aquifers of unconsolidated deposits in some arid and semiarid areas, deep aquifers of unconsolidated deposits in semiarid areas, as well as in hot springs of bed rock mountainous area and aquifers of fluorite-mine area. Its formation is controlled by regional climate factors, seepage conditions of groundwater, as well as the hydrogeochemical environment. The physicochemical properties of soil mass of the aeration zone play an important role in fluorine concentration in shallow groundwater. In the coastal plain areas, where groundwater is mainly recharged and discharged vertically, and its regime type belongs to the type of infiltration—evaporation, the grain size of soil mass of aeration zone directly influences the amount of fluorine transferred from solid medium into water; and the chemical constituents of the soil mass of aeration zone controls the chemical characteristics of the shallow groundwater, consequently influencing the concentration condition of fluorine in water. Fluorine ion in groundwater continuously migrates and concentrates under the comprehensive influence of many factors. High-fluorine groundwater exceeding the sanitary standard (1.0 mg/l) has an obvious zonality in regional distribution in China. Based on current statistics, there are roughly 50 million people (Zheng Qifu 1986) who have consumed water which exceeds standards in China. In highfluorine groundwater areas, endemic fluorine-poisoning often arises to different extents, affecting human health seriously. At the end of 1983, over 20 million patients were suffering from fluorine-poisoning diseases in China (Xu Guozhang, unpublished data). Therefore, research of the distribution feature and formation mechanism of fluorine ion in groundwater has become an important task.

  11. The organometallic fluorine chemistry of palladium and rhodium: studies toward aromatic fluorination.

    PubMed

    Grushin, Vladimir V

    2010-01-19

    Although springing from two established fields, organometallic chemistry and fluorine chemistry, organometallic fluorine chemistry is still in its early stages. However, developments in this area are expected to provide new tools for the synthesis of selectively fluorinated organic compounds that have been in high demand. Selectively fluorinated organic molecules currently account for up to 40% of all agrochemicals and 20% of all pharmaceuticals on the market. Our research efforts have been focused on the development of new organometallic and catalytic methods for the selective introduction of fluorine and the CF(3) group into the aromatic ring. Monofluorinated and trifluoromethylated aromatic compounds are still made by the old technologies that employ stoichiometric quantities of hazardous and costly materials. In this Account, we describe our studies toward the development of safe, catalytic alternatives to these methods. We have synthesized, characterized, and studied the reactivity of the first aryl palladium(II) fluoride complexes. We have demonstrated for the first time that a Pd-F bond can be formed in a soluble and isolable molecular complex: this bond is more stable than previously thought. Toward the goal of fluoroarene formation via Ar-F reductive elimination, we have studied a number of sigma-aryl Pd(II) fluorides stabilized by various P, N, and S ligands. It has been established that numerous conventional tertiary phosphine ligands, most popular in Pd catalysis, are unlikely to be useful for the desired C-F bond formation at the metal center because of the competing, kinetically preferred P-F bond-forming reaction. A metallophosphorane mechanism has been demonstrated for the P-F bond-forming processes at Rh(I) and Pd(II), which rules out the possibility of controlling these reactions by varying the amount of phosphine in the system, a most common and often highly efficient technique in homogeneous catalysis. The novel F/Ph rearrangement of the fluoro

  12. Morphology and Doping Engineering of Sn-Doped Hematite Nanowire Photoanodes.

    PubMed

    Li, Mingyang; Yang, Yi; Ling, Yichuan; Qiu, Weitao; Wang, Fuxin; Liu, Tianyu; Song, Yu; Liu, Xiaoxia; Fang, Pingping; Tong, Yexiang; Li, Yat

    2017-04-12

    High-temperature activation has been commonly used to boost the photoelectrochemical (PEC) performance of hematite nanowires for water oxidation, by inducing Sn diffusion from fluorine-doped tin oxide (FTO) substrate into hematite. Yet, hematite nanowires thermally annealed at high temperature suffer from two major drawbacks that negatively affect their performance. First, the structural deformation reduces light absorption capability of nanowire. Second, this "passive" doping method leads to nonuniform distribution of Sn dopant in nanowire and limits the Sn doping concentration. Both factors impair the electrochemical properties of hematite nanowire. Here we demonstrate a silica encapsulation method that is able to simultaneously retain the hematite nanowire morphology even after high-temperature calcination at 800 °C and improve the concentration and uniformity of dopant distribution along the nanowire growth axis. The capability of retaining nanowire morphology allows tuning the nanowire length for optimal light absorption. Uniform distribution of Sn doping enhances the donor density and charge transport of hematite nanowire. The morphology and doping engineered hematite nanowire photoanode decorated with a cobalt oxide-based oxygen evolution reaction (OER) catalyst achieves an outstanding photocurrent density of 2.2 mA cm(-2) at 0.23 V vs Ag/AgCl. This work provides important insights on how the morphology and doping uniformity of hematite photoanodes affect their PEC performance.

  13. Low-fluorine Stockwork Molybdenite Deposits

    USGS Publications Warehouse

    Ludington, Steve; Hammarstrom, Jane; Piatak, Nadine M.

    2009-01-01

    Low-fluorine stockwork molybdenite deposits are closely related to porphyry copper deposits, being similar in their tectonic setting (continental volcanic arc) and the petrology (calc-alkaline) of associated igneous rock types. They are mainly restricted to the Cordillera of western Canada and the northwest United States, and their distribution elsewhere in the world may be limited. The deposits consist of stockwork bodies of molybdenite-bearing quartz veinlets that are present in and around the upper parts of intermediate to felsic intrusions. The deposits are relatively low grade (0.05 to 0.2 percent Mo), but relatively large, commonly >50 million tons. The source plutons for these deposits range from granodiorite to granite in composition; the deposits primarily form in continental margin subduction-related magmatic arcs, often concurrent with formation of nearby porphyry copper deposits. Oxidation of pyrite in unmined deposits or in tailings and waste rock during weathering can lead to development of acid-rock drainage and limonite-rich gossans. Waters associated with low-fluorine stockwork molybdenite deposits tend to be nearly neutral in pH; variable in concentrations of molybdenum (10,000 ug/L); below regulatory guidelines for copper, iron, lead, zinc, and mercury; and locally may exceed guidelines for arsenic, cadmium, and selenium.

  14. Assessing the ability of a short fluorinated antifreeze glycopeptide and a fluorinated carbohydrate derivative to inhibit ice recrystallization.

    PubMed

    Chaytor, Jennifer L; Ben, Robert N

    2010-09-01

    A short fluorinated antifreeze glycopeptide (2) was synthesized and evaluated for ice recrystallization inhibition (IRI) activity. The activity of 2 was compared to native biological antifreeze AFGP 8 and a rationally designed C-linked AFGP analogue (OGG-Gal, 1). In addition, a simple fluorinated galactose derivative was prepared and its IRI activity was compared to non-fluorinated compounds. The results from this study suggest that the stereochemistry at the anomeric position in the carbohydrate plays a role in imparting ice recrystallization inhibition activity and that incorporation of hydrophobic groups such as fluorine atoms cause a decrease in IRI activity. These observations are consistent with the theory that fluorine atoms increase ordering of bulk water resulting in a decrease of IRI activity, supporting our previously proposed mechanism of ice recrystallization inhibition.

  15. Boron-doped nanodiamonds as possible agents for local hyperthermia

    NASA Astrophysics Data System (ADS)

    Vervald, A. M.; Burikov, S. A.; Vlasov, I. I.; Ekimov, E. A.; Shenderova, O. A.; Dolenko, T. A.

    2017-04-01

    In this work, the effective heating of surrounding water by heavily-boron-doped nanodiamonds (NDs) under laser irradiation of visible wavelength was found. Using Raman scattering spectroscopy of aqueous suspensions of boron-doped NDs, it was found that this abnormally high heating results in the weakening of hydrogen bonds much more so (2–5 times stronger) than for undoped NDs. The property of boron-doped NDs to heat a solvent under the influence of laser radiation (1–5 W cm‑2) opens broad prospects for their use to create nanoagents for medical oncology and local hyperthermia.

  16. [Anolyte enhanced electrokinetic remediation of fluorine-contaminated soils].

    PubMed

    Zhu, Shu-Fa; Yan, Chun-Li; Dong, Tie-You; Tang, Hong-Yan

    2009-07-15

    An experimental study was carried out in order to determine the characteristics of migration and its influencing factor of soil fluorine in the electrokinetic process under different applied voltage and concentration of anolyte. The feasibility of anolyte enhanced on electrokinetic remediation of fluorine-contaminated soil was analyzed. The results show that when deionized water is used as anolyte with the 1.0 V/cm voltage gradient, the cumulative mass of fluorine in catholyte and anolyte are 8.2 mg and 47.7 mg respectively and the removal rate of fluorine is only 8.8%. Anolyte enhanced electrokinetic process can promote effectively the migration of fluoride in soil. When 0.02 mol/L NaOH solutionis employed as the anolyte, the removal rates are 25.9%, 31.2% and 47.3% with 1.0, 1.5 and 2.0 V/cm voltage gradient respectively. As the concentration of anolyte increased to 0.1 mol/L, the removal rates are 55.4%, 61.1% and 73.0%. The electromigration is the main transport mechanism and the electroosmotic flow has an effect on the migration of fluorine in soil. The voltage gradient and the concentration of anolyte are the main factors influencing the removal rate of fluorine in soil. Appropriate anolyte enhanced electrokinetic method can be applied to remediate fluorine from contaminated soil.

  17. Method for directly recovering fluorine from gas streams

    DOEpatents

    Orlett, Michael J.; Saraceno, Anthony J.

    1981-01-01

    This invention is a process for the direct recovery of gaseous fluorine from waste-gas streams or the like. The process comprises passing the gas stream through a bed of anhydrous K.sub.3 NiF.sub.6 pellets to fluorinate the same to K.sub.3 NiF.sub.7 and subsequently desorbing the fluorine by heating the K.sub.3 NiF.sub.7 pellets to a temperature re-converting them to K.sub.3 NiF.sub.6. The efficiency of the fluorine-absorption step is maximized by operating in a selected and conveniently low temperature. The desorbed fluorine is highly pure and is at a pressure of several atmospheres. Preferably, the K.sub.3 NiF.sub.6 pellets are prepared by a method including the steps of forming agglomerates of hydrated K.sub.3 NiF.sub.5, sintering the agglomerates to form K.sub.3 NiF.sub.5 pellets of enhanced reactivity with respect to fluorine, and fluorinating the sintered pellets to K.sub.3 NiF.sub.6.

  18. Thermal diffusion boron doping of single-crystal natural diamond

    NASA Astrophysics Data System (ADS)

    Seo, Jung-Hun; Wu, Henry; Mikael, Solomon; Mi, Hongyi; Blanchard, James P.; Venkataramanan, Giri; Zhou, Weidong; Gong, Shaoqin; Morgan, Dane; Ma, Zhenqiang

    2016-05-01

    With the best overall electronic and thermal properties, single crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into useful semiconductors requires overcoming doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstrating that electrically activated, substitutional doping in SCD without inducing graphitization transition or lattice damage can be readily realized with thermal diffusion at relatively low temperatures by using heavily doped Si nanomembranes as a unique dopant carrying medium. Atomistic simulations elucidate a vacancy exchange boron doping mechanism that occurs at the bonded interface between Si and diamond. We further demonstrate selectively doped high voltage diodes and half-wave rectifier circuits using such doped SCD. Our new doping strategy has established a reachable path toward using SCDs for future high voltage power conversion systems and for other novel diamond based electronic devices. The novel doping mechanism may find its critical use in other wide bandgap semiconductors.

  19. Dietary High Fluorine Alters Intestinal Microbiota in Broiler Chickens.

    PubMed

    Luo, Qin; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Liu, Juan; Deng, Yubing

    2016-10-01

    This study investigated the effects of dietary high fluorine on ileal and cecal microbiota in broiler chickens. Two hundred eighty 1-day-old broiler chickens were randomly assigned to four groups and raised for 42 days. The control group was fed a corn-soybean basal diet (fluorine 22.6 mg/kg). The other three groups were fed the same basal diet, but supplemented with 400, 800, and 1200 mg/kg fluorine (high fluorine groups I, II, and III), administered in the form of sodium fluoride. The microbiota of ileal and cecal digesta was assessed with plate counts and polymerase chain reaction-based denaturing gradient gel electrophoresis (PCR-DGGE). It was found that, compared with those in the control group, the counts of Lactobacillus spp. and Bifidobacterium spp. were markedly decreased (P < 0.01 or P < 0.05), whereas the counts of Escherichia coli and Enterococcus spp. were significantly increased (P < 0.01 or P < 0.05) in the high fluorine groups II and III. PCR-DGGE analysis showed that the number of DGGE bands, similarity, and Shannon index of ileal and cecal bacteria were markedly reduced in the high fluorine groups II and III from 21 to 42 days. Sequencing analysis revealed that the composition of the intestinal microbiota was altered in the high fluorine groups. In conclusion, dietary fluorine in the range of 800-1200 mg/kg obviously altered the bacterial counts, and the diversity and composition of intestinal microbiota in broiler chickens, a finding which implies that dietary high fluorine can disrupt the natural balance and structure of the intestinal microbiota.

  20. Heavy doping effects in high efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Neugroschel, A.

    1986-01-01

    The temperature dependence of the emitter saturation current for bipolar devices was studied by varying the surface recombination velocity at the emitter surface. From this dependence, the value was derived for bandgap narrowing that is in better agreement with other determinations that were obtained from the temperature dependence measure on devices with ohmic contacts. Results of the first direct measurement of the minority-carrier transit time in a transparent heavily doped emitter layer were reported. The value was obtained by a high-frequency conductance method recently developed and used for doped Si. Experimental evidence is presented for significantly greater charge storage in highly excited silicon near room temperature than conventional theory would predict. These data are compared with various data for delta E sub G in heavily doped silicon.

  1. Method for selectively removing fluorine and fluorine-containing contaminants from gaseous UF.sub.6

    DOEpatents

    Jones, Robert L.; Otey, Milton G.; Perkins, Roy W.

    1982-01-01

    This invention is a method for effecting preferential removal and immobilization of certain gaseous contaminants from gaseous UF.sub.6. The contaminants include fluorine and fluorides which are more reactive with CaCO.sub.3 than is UF.sub.6. The method comprises contacting the contaminant-carrying UF.sub.6 with particulate CaCO.sub.3 at a temperature effecting reaction of the contaminant and the CaCO.sub.3.

  2. Stereoselectively fluorinated N-heterocycles: a brief survey.

    PubMed

    Hu, Xiang-Guo; Hunter, Luke

    2013-11-29

    The stereoselective incorporation of fluorine atoms into N-heterocycles can lead to dramatic changes in the molecules' physical and chemical properties. These changes can be rationally exploited for the benefit of diverse fields such as medicinal chemistry and organocatalysis. This brief review will examine some of the effects that fluorine substitution can have in N-heterocycles, including changes to the molecules' stability, their conformational behaviour, their hydrogen bonding ability, and their basicity. Finally, some methods for the synthesis of stereoselectively fluorinated N-heterocycles will also be reviewed.

  3. Fluorine-Free Anti-Smudge Polyurethane Coatings.

    PubMed

    Rabnawaz, Muhammad; Liu, Guojun; Hu, Heng

    2015-10-19

    Conventionally, low-surface-tension fluorinated reagents are incorporated into anti-smudge (oil- and water-repellent) coatings for oil repellency. However, fluorinated compounds are expensive and an environmental concern because of their high stability and bioaccumulation. These factors limit their widespread application. We report herein the development of fluorine-free anti-smudge polyurethane coatings that are clear at thicknesses up to tens of micrometers and are able to sustain extensive surface damage. We demonstrate that these coatings can be applied readily onto a diverse range of substrates.

  4. Phonons in Potassium-doped Graphene: The Effects of Electron-phonon Interactions, Dimensionality, and Adatom Ordering

    SciTech Connect

    Dean M. P.; Howard, C.A.; Withers, F.

    2011-12-19

    Graphene phonons are measured as a function of electron doping via the addition of potassium adatoms. In the low doping regime, the in-plane carbon G peak hardens and narrows with increasing doping, analogous to the trend seen in graphene doped via the field effect. At high dopings, beyond those accessible by the field effect, the G peak strongly softens and broadens. This is interpreted as a dynamic, nonadiabatic renormalization of the phonon self-energy. At dopings between the light and heavily doped regimes, we find a robust inhomogeneous phase where the potassium coverage is segregated into regions of high and low density. The phonon energies, linewidths, and tunability are notably very similar for one- to four-layer potassium-doped graphene, but significantly different to bulk potassium-doped graphite.

  5. Impacts of Conformational Geometries in Fluorinated Alkanes

    NASA Astrophysics Data System (ADS)

    Brandenburg, Tim; Golnak, Ronny; Nagasaka, Masanari; Atak, Kaan; Sreekantan Nair Lalithambika, Sreeju; Kosugi, Nobuhiro; Aziz, Emad F.

    2016-08-01

    Research of blood substitute formulations and their base materials is of high scientific interest. Especially fluorinated microemulsions based on perfluorocarbons, with their interesting chemical properties, offer opportunities for applications in biomedicine and physical chemistry. In this work, carbon K-edge absorption spectra of liquid perfluoroalkanes and their parent hydrocarbons are presented and compared. Based on soft X-ray absorption, a comprehensive picture of the electronic structure is provided with the aid of time dependent density functional theory. We have observed that conformational geometries mainly influence the chemical and electronic interactions in the presented liquid materials, leading to a direct association of conformational geometries to the dissolving capacity of the presented perfluorocarbons with other solvents like water and possibly gases like oxygen.

  6. Development of partially fluorinated resin apex seals

    NASA Technical Reports Server (NTRS)

    Green, H. E.; Chang, G. E. C.; Powell, S. H.; Yates, K.

    1984-01-01

    Partially fluorinated polyimides were prepared and molded in the form of discs and pins for test as potential apex seal materials for advanced rotary combustion engines. The polyimides were formulated from the diamine 2,2-bis 4-(4-aminophenoxy)phenyl hexafluoropropane (4-BDAF) and the dianhydrides of pyromellitic acid (PMDA) and benzophenonetetracarboxylic acid (BTDA). Tribological testing was performed at sliding speeds of 0.31 to 11.6 m/s and at temperatures of from 298K to 573K. It is shown that the carbon fiber filled polyimides, particularly the 80/20 compositions, have an excellent balance of wear/friction at 573K. The unfilled, 80/20 and 60/40 compositions indicate an unusual combination of high friction and low wear which may be advantageous in such applications as brakes and traction drives.

  7. Superhydrophobic behavior of fluorinated carbon nanofiber arrays

    NASA Astrophysics Data System (ADS)

    Hsieh, Chien-Te; Fan, Wen-Syuan

    2006-06-01

    Superhydrophobic behavior of fluorinated carbon nanofiber (CNF) arrays, prepared by a template-assisted synthesis, has been investigated. A thermal chemical vapor method, using perfluorohexane as the precursor, was used to coat fluorocarbon on the surface of the CNFs, thus lowering their surface tension. The F-coated CNFs exhibited a good water-repellent behavior, i.e., the highest value of contact angle ˜166°. The superhydrophobicity of water droplets on the arrays can be well predicted by a modified Cassie-Baxter model, incorporating the pore size distributions determined from the density functional theory method. This satisfactory result would shed one light on how the variation of opened sizes would induce the superhydrophobicity of nanostructured surfaces.

  8. Impacts of Conformational Geometries in Fluorinated Alkanes

    PubMed Central

    Brandenburg, Tim; Golnak, Ronny; Nagasaka, Masanari; Atak, Kaan; Sreekantan Nair Lalithambika, Sreeju; Kosugi, Nobuhiro; Aziz, Emad F.

    2016-01-01

    Research of blood substitute formulations and their base materials is of high scientific interest. Especially fluorinated microemulsions based on perfluorocarbons, with their interesting chemical properties, offer opportunities for applications in biomedicine and physical chemistry. In this work, carbon K-edge absorption spectra of liquid perfluoroalkanes and their parent hydrocarbons are presented and compared. Based on soft X-ray absorption, a comprehensive picture of the electronic structure is provided with the aid of time dependent density functional theory. We have observed that conformational geometries mainly influence the chemical and electronic interactions in the presented liquid materials, leading to a direct association of conformational geometries to the dissolving capacity of the presented perfluorocarbons with other solvents like water and possibly gases like oxygen. PMID:27527753

  9. Search for improved fluorinated stationary phases for separation of fluorine-containing pharmaceuticals from their desfluoro analogs.

    PubMed

    Regalado, Erik L; Makarov, Alexey A; McClain, Ray; Przybyciel, Matthew; Welch, Christopher J

    2015-02-06

    Evaluation of a several fluorine-containing stationary phases for the chromatographic separation of fluorine-containing pharmaceuticals from their corresponding desfluoro analogs revealed a number of perfluoroaryl and perfluoroalky stationary phases that afford good separations. These fluorous stationary phases exhibit greater retention for the fluorine-containing compounds relative to the H-containing analogs, consistent with a fluorophilic retention mechanism. While both perfluoroalkyl and perfluoroaryl stationary phases afford adequate resolution, the perfluoroaryl columns generally exhibit superior separation factor (α) and peak efficiency (N), resulting in faster baseline separations, with the Hypersil Gold PFP and Poroshell 120 PFP columns providing the best overall performance for the test group studied.

  10. Effect of band gap engineering in anionic-doped TiO2 photocatalyst

    NASA Astrophysics Data System (ADS)

    Samsudin, Emy Marlina; Abd Hamid, Sharifah Bee

    2017-01-01

    A simple yet promising strategy to modify TiO2 band gap was achieved via dopants incorporation which influences the photo-responsiveness of the photocatalyst. The mesoporous TiO2 was successfully mono-doped and co-doped with nitrogen and fluorine dopants. The results indicate that band gap engineering does not necessarily requires oxygen substitution with nitrogen or/and fluorine, but from the formation of additional mid band and Ti3+ impurities states. The formation of oxygen vacancies as a result of modified color centres and Ti3+ ions facilitates solar light absorption and influences the transfer, migration and trapping of the photo-excited charge carriers. The synergy of dopants in co-doped TiO2 shows better optical properties relative to single N and F doped TiO2 with c.a 0.95 eV band gap reduction. Evidenced from XPS, the synergy between N and F in the co-doped TiO2 uplifts the valence band towards the conduction band. However, the photoluminescence data reveals poorer electrons and holes separation as compared to F-doped TiO2. This observation suggests that efficient solar light harvesting was achievable via N and F co-doping, but excessive defects could act as charge carriers trapping sites.

  11. Finding the perfect spot for fluorine: improving potency up to 40-fold during a rational fluorine scan of a Bruton's Tyrosine Kinase (BTK) inhibitor scaffold.

    PubMed

    Lou, Yan; Sweeney, Zachary K; Kuglstatter, Andreas; Davis, Dana; Goldstein, David M; Han, Xiaochun; Hong, Junbae; Kocer, Buelent; Kondru, Rama K; Litman, Renee; McIntosh, Joel; Sarma, Keshab; Suh, Judy; Taygerly, Joshua; Owens, Timothy D

    2015-01-15

    A rational fluorine scan based on co-crystal structures was explored to increase the potency of a series of selective BTK inhibitors. While fluorine substitution on a saturated bicyclic ring system yields no apparent benefit, the same operation on an unsaturated bicyclic ring can increase HWB activity by up to 40-fold. Comparison of co-crystal structures of parent molecules and fluorinated counterparts revealed the importance of placing fluorine at the optimal position to achieve favorable interactions with protein side chains.

  12. Microwave spectra of some chlorine and fluorine compounds. [spectroscopic analysis

    NASA Technical Reports Server (NTRS)

    White, W. F.

    1975-01-01

    A computer-controlled microwave spectrometer was used to catalog reference spectra for chemical analysis. Tables of absorption frequencies, peak absorption intensities, and integrated intensities are shown for 21 organic compounds which contain chlorine, fluorine, or both.

  13. High-power CW laser using hydrogen-fluorine reaction

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.

    1975-01-01

    Continuous-wave laser has been proposed based on reaction of hydrogen and fluorine. Hydrogen is produced by dissociation of hydrazine, which can be stored as liquid in light containers at room temperature.

  14. Thermophysical properties of fluorinated acrylate homopolymers: Mixing and phase separation

    NASA Astrophysics Data System (ADS)

    Roussel, F.; Saidi, S.; Guittard, F.; Geribaldi, S.

    2002-06-01

    The thermophysical properties of fluorinated acrylate homopolymers are investigated by differential scanning calorimetry (DSC) and optical microscopy and discussed in terms of relative lengths of the fluorinated chain and the hydrocarbon spacer between the acrylate moiety and the fluorinated chain. These compounds exhibit an intrinsic microphase-separation (Isotropic+Isotropic morphology) occurring between the fluorinated chains and the acrylate polymer backbone. It is shown that the enthalpy of mixing is a function of the length of the lateral fluorocarbon chains. The thermophysical behaviour of these materials may be regarded as demixed systems exhibiting an Upper Critical Solution Temperature. The photopolymerization process of one of the monomer is studied by isothermal photocalorimetry. High acrylate double-bond conversion and fast curing rates were obtained thus demonstrating the promising use of these materials for coating and film processing applications using UV-curing techniques.

  15. Growth of rare-earth monolayers on synthetic fluorine mica

    NASA Astrophysics Data System (ADS)

    Tsui, F.; Han, P. D.; Flynn, C. P.

    1993-05-01

    We have grown single-crystal rare-earth films on cleaved faces of synthetic fluorine mica fluorophlogopite by molecular-beam-epitaxy techniques. This has made it possible to measure material properties such as magnetism in monolayer structures.

  16. Fluorination of amorphous thin-film materials with xenon fluoride

    DOEpatents

    Weil, R.B.

    1987-05-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  17. Fluorination of amorphous thin-film materials with xenon fluoride

    DOEpatents

    Weil, Raoul B.

    1988-01-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  18. Synthesis of fluorinated organic compounds using oxygen difluoride

    NASA Technical Reports Server (NTRS)

    Toy, M. S.

    1971-01-01

    Oxygen difluoride synthesis is a much simpler, higher-yield procedure than reactions originally followed to synthesize various fluorinated organic compounds. Extreme care is taken in working with oxygen difluoride as its reactions present severe explosion hazard.

  19. Palladium-catalyzed allylic C-H fluorination.

    PubMed

    Braun, Marie-Gabrielle; Doyle, Abigail G

    2013-09-04

    The first catalytic allylic C-H fluorination reaction using a nucleophilic fluoride source is reported. Under the influence of a Pd/Cr cocatalyst system, simple olefin substrates undergo fluorination with Et3N·3HF in good yields with high branched:linear regioselectivity. The mild conditions and broad scope make this reaction a powerful alternative to established methods for the preparation of allylic fluorides from prefunctionalized substrates.

  20. Molecular Dynamics Simulations of Responsive Semi-Fluorinated Interfaces

    NASA Astrophysics Data System (ADS)

    Pierce, Flint

    2010-03-01

    Responsive polymeric thin films with controlled surface energies, dielectric constants and structure are critical for a variety of emerging nano and micro-scale technologies including fluidics, electro-optical devices and biotechnology. Introducing nanometer sized fluorinated segments offers a means to tune the polymer properties while significantly enhancing chemical and thermal stability. The interfacial structure and dynamics of multiblock semi fluorinated copolymers at their liquid/vapor interface and at interfaces with water and protonated alkanes has been studied using explicit atom molecular dynamic simulations. For semifluorinated diblocks H3C(CH2)n-1(CF2)m-1CF3 of varying fluorine content, fluorinated groups proliferate and reside longer at the liquid/vapor interface as expected for the lower surface tension components. Aqueous interfaces of these diblocks are sharp and well defined with an enhanced density of protonated groups owing to their reduced hydrophobicity in comparison to fluorinated groups. The enhancement increases with temperature. Protonated alkanes are found to be mutually miscible with the semifluorinated diblock copolymers. Similar surface behavior is observed in semifluorinated multiblock copolymers of the form H-[(CH2)n (CF2)n]m-F where m varies from 3 to 48 with nxm=48. The fluorine enhancement at the liquid-vapor interface depends on both the temperature and block length, with the longest blocks showing the greatest enhancement. Due to mutual phobicity of protonated and fluorinated groups, nm-scale fluorine and hydrogen rich regions occur at the surfaces of these materials, with sizes that also depend on block length and temperature. Work in collaboration with Dvora Perahia and Gary S. Grest.

  1. Late-stage formation of carbon-fluorine bonds.

    PubMed

    Campbell, Michael G; Ritter, Tobias

    2014-06-01

    In this account, we review work from our lab on the development of methods for carbon-fluorine bond formation, with an emphasis on late-stage fluorination of functionalized small molecules and synthesis of (18) F-labeled molecules for potential use as tracers in positron emission tomography (PET). We attempt to highlight reactions that we feel are of particular practical relevance, as well as areas of research where there is still significant room for advancement.

  2. Fluorinated Silsesquioxanes: Structure, Solubility, and Wetting (Briefing charts)

    DTIC Science & Technology

    2015-08-01

    Charts 3. DATES COVERED (From - To) July 2015-July 2015 4. TITLE AND SUBTITLE FLUORINATED SILSESQUIOXANES: STRUCTURE , SOLUBILITY, AND WETTING...FLUORINATED SILSESQUIOXANES: STRUCTURE , SOLUBILITY, AND WETTING Joseph Mabry, Andrew Guenthner, Scott Iacono, Raymond Campos, Sean Ramirez, Brian Moore...Fluorohexyl: Rf = -CH2CH2(CF2)3CF3 Fluoropropyl: Rf = -CH2CH2CF3 Linear disiloxane resin (M2) Structure of candidate molecules ACS AMI, 2010 15DISTRIBUTION

  3. 40 CFR Table I-2 to Subpart I of... - Examples of Fluorinated GHGs and Fluorinated Heat Transfer Fluids Used by the Electronics Industry

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fluorinated Heat Transfer Fluids Used by the Electronics Industry I Table I-2 to Subpart I of Part 98... GREENHOUSE GAS REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table I-2 Table I-2 to Subpart I of Part 98—Examples of Fluorinated GHGs and Fluorinated Heat Transfer Fluids Used by the Electronics...

  4. 40 CFR Table I-2 to Subpart I - Examples of Fluorinated GHGs and Fluorinated Heat Transfer Fluids Used by the Electronics Industry

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fluorinated Heat Transfer Fluids Used by the Electronics Industry I Table I-2 to Subpart I Protection of... REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table I-2 Table I-2 to Subpart I—Examples of Fluorinated GHGs and Fluorinated Heat Transfer Fluids Used by the Electronics Industry Product...

  5. The emission of fluorine gas during incineration of fluoroborate residue.

    PubMed

    Feng, Yuheng; Jiang, Xuguang; Chen, Dezhen

    2016-05-05

    The emission behaviors of wastes from fluorine chemical industry during incineration have raised concerns because multiple fluorine products might danger human health. In this study, fluorine emission from a two-stage incineration system during the combustion of fluoroborate residue was examined. In a TG-FTIR analysis BF3, SiF4 and HF were identified as the initial fluorine forms to be released, while fluorine gases of greenhouse effect such as CF4 and SF6 were not found. Below 700 °C, NaBF4 in the sample decomposed to generate BF3. Then part of BF3 reacted with SiO2 in the system to form SiF4 or hydrolyzed to HF. At higher temperatures, the NaF left in the sample was gradually hydrolyzed to form HF. A lab-scale two-stage tube furnace is established to simulate the typical two-stage combustion chamber in China. Experimental tests proved that HF was the only fluorine gas in the flue gas, and emissions of BF3 and SiF4 can be negligible. Thermodynamic equilibrium model predicted that all SiF4 would be hydrolyzed at 1100 °C in the secondary-chamber, which agreed well with the experimental results.

  6. Molecular Packing of Functionalized Fluorinated Lipids in Langmuir Monolayers

    SciTech Connect

    Landsberg, Michael J.; Ruggles, Jeremy L.; Hussein, Waleed M.; McGeary, Ross P.; Gentle, Ian R.; Hankamer, Ben

    2012-01-20

    Fluorinated amphipaths are a fascinating class of compounds, which, despite significant challenges associated with their syntheses, have found use across a number of areas of biotechnology. Applications range from the in vitro stabilization of membrane proteins to the development of enhanced stability intravenous drug and gene delivery systems. More recently, monolayer-forming fluorinated lipids have found use in the 2D crystallization of detergent-solubilized hydrophobic or partially hydrophobic proteins at the air-water interface. In this study, we investigate the surface properties of a novel suite of monolayer forming, partially fluorinated lipids. These modular lipid structures contain a densely fluorinated insertion in the hydrocarbon tail and a synthetically modifiable headgroup. Analyses of surface-pressure area isotherms and X-ray reflectometry profiles reveal that the lipids spread into fluid monolayers and are more compressible than their non-fluorinated counterparts. Furthermore, the data support a model whereby the partially fluorinated chains of the lipid tails form a film which is fundamentally incompatible with detergents and other destabilizing amphipaths.

  7. Prismatic modifications of single-walled carbon nanotubes and their electronic properties: Regular adsorption of fluorine atoms on graphene surfaces of nanotubes

    NASA Astrophysics Data System (ADS)

    Tomilin, O. B.; Stankevich, I. V.; Muryumin, E. E.; Lesin, S. A.; Syrkina, N. P.

    2011-01-01

    The regular adsorption of fluorine atoms on surfaces of single-walled carbon nanotubes along their axes can lead to a modification of cylindrical carbon cores of these single-walled carbon nanotubes to carbon cores that have a nearly prismatic shape (prismatic modification). In faces of these modified single-walled carbon nanotubes, there can arise quasi-one-dimensional isolated carbon conjugated subsystems (tracks) with different structures. It has been established that the main characteristics of the single-walled carbon nanotubes thus modified are rather close to the corresponding characteristics of the related isostructural polymer conjugated systems (such as cis-polyenes, polyphenylenes, poly(periacenes), or polyphenantrenes). Fragments of model nanotubes of the ( n, n) and ( n, 0) types that contain up to 360 carbon atoms and their derivatives doped with fluorine atoms have been calculated using the semiempirical parametric method 3.

  8. Fluorinated Diluents - New Possibilities For Radiochemical Technology

    SciTech Connect

    Babain, V.A.

    2007-07-01

    A variety of extraction mixtures for recovery of one or several hazardous radionuclides has been proposed to treat high-level radioactive wastes (HLW) generated in PUREX-process. Extraction methods for spent fuel reprocessing and waste treatment are considered in many reviews. Such compounds as di-phosphine dioxides, carbamoyl-methylene-phosphine oxides, crown-ethers, chlorinated cobalt dicarbollide, diamides of malonic acid, diamides of di-glycolic acid, different calixarenes, zirconium salts of organophosphorus acids are offered as extractants. The majority of these extractants are polar compounds, since they are poorly dissolved in saturated hydrocarbons, in particular their complexes with metals. Despite this fact, it is mainly proposed to use them in hydrocarbon diluents. For some extractants like diamides of malonic or di-glycolic acids it has been possible to find some compounds containing rather long alkyl radicals which are readily dissolved in saturated hydrocarbons. The drawback of such approach is concerned with hazardous occurrence of high-molecular decomposition products which are not removed from organic phase. Besides, this approach does not permit to attain high solubility of such extractant classes as dicarbollides, carbamoyl-phosphine oxides, di-phosphine dioxides etc. To provide the solubility of carbamoyl-phosphine oxides or crown-ethers in saturated hydrocarbons, one can use some modifiers, i.e. polar compounds like tributyl phosphate; to afford the solubility of malonamides or diamides of di-glycolic acid, monoamides of carboxylic acids are used; in the case of crown-ethers octanol is applied. To provide the higher solubility of calix[4]arene-bis-(tertoctylbenzo- crown-6) - BOBCalixC6 in hydrocarbon diluent Isopar L, 0.750 M of fluorinated modifier Cs-7SB were added at cesium extraction from alkaline solutions (CSSX-process), as well as at combined extraction of Cs and Sr by FPEX-process (Fission Product Extraction). Adding a modifier

  9. Very high carbon delta -doping concentration in AlxGa1 - xAs grown by metalorganic vapor phase epitaxy using trimethylaluminum as a doping precursor

    NASA Astrophysics Data System (ADS)

    Li, G.; Petravić, M.; Jagadish, C.

    1996-04-01

    Using trimethylaluminum (TMAl) or trimethylgallium (TMGa) as a doping precursor, carbon δ-doped AlxGa1-xAs has been grown in metalorganic vapor phase epitaxy. Compared to TMGa, TMAl exhibits very high carbon δ-doping efficiency. The best hole profile of carbon δ-doped Al0.3Ga0.7As grown at 580 °C using TMAl as a doping precursor has a peak hole density of 1.6×1019 cm-3 for a full width at half-maximum of 85 Å with most of the incorporated carbon atoms being electrically active. When TMGa is used as the doping precursor, the hole density of carbon δ-doped AlxGa1-xAs significantly increases with an increase of the Al mole fraction. By comparison, the use of TMAl almost induces independence of the hole density on the Al mole fraction. The hole density of carbon δ-doped Al0.3Ga0.7As weakly increases when reducing the δ-doping temperature regardless of the doping precursors. The hole density of carbon δ-doped Al0.3Ga0.7As grown at 580 °C is proportionally associated with the moles of TMGa or TMAl totally input during a δ-doping step. Using heavily carbon δ-doped layers in Al0.3Ga0.7As, a carbon δ-doped pipi doping superlattice possessing a bulk-doped-like hole profile with an average hole density of 1.1×1019 cm-3 is therefore demonstrated as an alternative with unique advantages over other conventional carbon bulk-doping approaches.

  10. Eu/Tb codoped spindle-shaped fluorinated hydroxyapatite nanoparticles for dual-color cell imaging.

    PubMed

    Ma, Baojin; Zhang, Shan; Qiu, Jichuan; Li, Jianhua; Sang, Yuanhua; Xia, Haibing; Jiang, Huaidong; Claverie, Jerome; Liu, Hong

    2016-06-02

    Lanthanide doped fluorinated hydroxyapatite (FAp) nanoparticles are promising cell imaging nanomaterials but they are excited at wavelengths which do not match the light sources usually found in a commercial confocal laser scanning microscope (CLSM). In this work, we have successfully prepared spindle-shaped Eu/Tb codoped FAp nanoparticles by a hydrothermal method. Compared with single Eu doped FAp, Eu/Tb codoped FAp can be excited by a 488 nm laser, and exhibit both green and red light emission. By changing the amounts of Eu and Tb peaks, the emission in the green region (500-580 nm) can be decreased to the benefit of the emission in the red region (580-720 nm), thus reaching a balanced dual color emission. Using MC3T3-E1 cells co-cultured with Eu/Tb codoped FAp nanoparticles, it is observed that the nanoparticles are cytocompatible even at a concentration as high as 800 μg ml(-1). The Eu/Tb codoped FAp nanoparticles are located in the cytoplasm and can be monitored by dual color-green and red imaging with a single excitation light at 488 nm. At a concentration of 200 μg ml(-1), the cytoplasm is saturated in 8 hours, and Eu/Tb codoped FAp nanoparticles retain their fluorescence for at least 3 days. The cytocompatible Eu/Tb codoped FAp nanoparticles with unique dual color emission will be of great use for cell and tissue imaging.

  11. High temperature oxidation resistance of fluorine-treated TiAl alloys: Chemical vs. ion beam fluorination techniques

    NASA Astrophysics Data System (ADS)

    Neve, Sven; Masset, Patrick J.; Yankov, Rossen A.; Kolitsch, Andreas; Zschau, Hans-Eberhard; Schütze, Michael

    2010-11-01

    The modification of the alloy surface by halogens significantly improves their oxidation behaviour at high temperature. It corresponds to the preferential reaction of the aluminium with the applied fluorine at the oxide/alloy interface and it promotes the growth of an adherent and stable alumina layer. Well-defined fluorine profiles beneath the surface of the material can be achieved by either fluorine beam line ion implantation (BLI 2) or plasma immersion ion implantation (PI 3). As an alternative to the implantation-based approach, chemical fluorination techniques such as gas-phase treatment and dipping in F-based solutions were also investigated. The fluorine depth-profiles were measured before and after oxidation at 900 °C using non destructive ion beam analyses: Proton Induced Gamma-ray Emission (PIGE), Rutherford Backscattering Spectroscopy (RBS) as well as Elastic Recoil Detection Analysis (ERDA). It enables to control and to optimise the fluorination conditions of technical TiAl alloys for an industrial application.

  12. Global Fluorine Flux Associated with Submarine Hydrothermal Fluids

    NASA Astrophysics Data System (ADS)

    Kagoshima, T.; Sano, Y.

    2015-12-01

    We estimated a fluorine flux associated with hydrothermal fluid emission at mid-ocean ridges (MOR) based on vent fluid chemistry and MORB vesicle compositions. Multiplication of fluorine concentrations in submarine hydrothermal fluids and the vent fluid flux at MOR may give us an estimate of fluorine flux at MOR. A worldwide vent chemistry research [1] suggested that submarine vent fluids are depleted in fluorine (<0.74 ppm F) relative to seawater (1.29 ppm F). The global flux of submarine hydrothermal fluids of (8.0+/-2.1)x1015 g/y was calculated using a numerical Bayesian inversion procedure to explain the relationship between compositions of high-temperature hydrothermal fluids and altered sheeted dikes, which enables us to estimate fluorine flux to be less than (3.1+/-0.8)x108 mol/y. This value is almost comparable with fluorine flux of (7.1+/-2.8)x108 mol/y estimated using F/3He ratios in MORB vesicles and the known 3He flux at MOR [3]. This flux calculation is based on preferentially degassed components from the magma as a form of MORB vesicle, thus may be related to fluorine flux associated with hydrothermal fluid emission. However, this flux should be overestimated because seawater incursion was not considered for the calculation. The average of the two different fluxes was calculated to be (5.1+/-2.0)x108 mol/y, which may be the maximum value of fluorine flux associated with hydrothermal fluid emission at MOR. It should be noted that this flux is much lower than the one estimated using the F/CO2 ratio in the MORB source and the known CO2 flux from the mantle [4] because the most of fluorine resides in the melt and should not be released immediately after formation of oceanic crust. Comparing MOR and arc fluxes, the global cycle of fluorine will be discussed in the presentation. [1] German & Von Damm (2006) Treatise On Geochemistry 6 (eds Holland & Turekian) 181-222 (Elsevier, London). [2] Coogan & Dosso (2012) EPSL 323-324, 92-101. [3] Kagoshima et al

  13. Aromatic fluorine compounds. XI. Replacement of chlorine by fluorine in halopyridines

    USGS Publications Warehouse

    Finger, G.C.; Starr, L.D.; Dickerson, D.R.; Gutowsky, H.S.; Hamer, J.

    1963-01-01

    The ??-halogenated pyridines react with potassium fluoride in various solvents to give replacement of the ??-halogen by fluorine. A 50% yield of 2-fluoropyridine was obtained from 2-chloropyridine by heating with potassium fluoride in dimethyl sulfone or tetramethylene sulfone for twenty-one days; 2-bromopyridine gave a similar yield with a heating period of only seven days. The ??-halogens of the polyhalopyridines undergo the exchange reaction more readily than do the halogens of the ??-monohalopyridines. The proposed structures of the fluoropyridines are supported by alternate syntheses and by n.m.r. studies.

  14. Aromatic fluorine compounds. VI. Displacement of aryl fluorine in diazonium salts

    USGS Publications Warehouse

    Finger, G.C.; Oesterling, R.E.

    1956-01-01

    Several chlorofluorobenzenes have been isolated from the Schiemann synthesis of fluorobenzenes. These have been shown to be the products of two side reactions occurring during thermal decomposition of the dry benzenediazonium fluoborate salt containing coprecipitated sodium chloride, an unavoidable contaminant in large preparations involving the use of hydrochloric acid and sodium fluoborate. The major side reaction and its chloro product were unexpected; a unique displacement of fluorine ortho to the diazonium group was observed. Replacement of the diazo group with chlorine was the predicted side reaction which proved to be minor. Conditions causing the side reactions and the isolation and identification of the products are described.

  15. Low Temperature Fluorination of Aerosol and Condensed Phase Sol Suspensions of Hydrocarbons Utilizing Elemental Fluorine.

    DTIC Science & Technology

    1980-10-01

    of acetone:ethylene glycol to reflux over L-4A molecular sieve in the presence of paratoluene sulfonic acid for several days. The filtered liquid was...fluorination method developed by Simons 2𔃽 𔃾 𔃿 works very well for amines some carboxylic and sulfonic acids but rearrange- ments and $-cleavage...group hydrogens in the order CH3 >CH 2 F>CHF. Data also shows that HF produced in the reactor does not solvolyse acid sensitive groups. S/N 0102-LF

  16. Highly conducting and crystalline doubly doped tin oxide films fabricated using a low-cost and simplified spray technique

    NASA Astrophysics Data System (ADS)

    Ravichandran, K.; Muruganantham, G.; Sakthivel, B.

    2009-11-01

    Doubly doped (simultaneous doping of antimony and fluorine) tin oxide films (SnO 2:Sb:F) have been fabricated by employing an inexpensive and simplified spray technique using perfume atomizer from aqueous solution of SnCl 2 precursor. The structural studies revealed that the films are highly crystalline in nature with preferential orientation along the (2 0 0) plane. It is found that the size of the crystallites of the doubly doped tin oxide films is larger (69 nm) than that (27 nm) of their undoped counterparts. The dislocation density of the doubly doped film is lesser (2.08×10 14 lines/m 2) when compared with that of the undoped film (13.2×10 14 lines/m 2), indicating the higher degree of crystallinity of the doubly doped films. The SEM images depict that the films are homogeneous and uniform. The optical transmittance in the visible range and the optical band gap of the doubly doped films are 71% and 3.56 eV respectively. The sheet resistance (4.13 Ω/□) attained for the doubly doped film in this study is lower than the values reported for spray deposited fluorine or antimony doped tin oxide films prepared from aqueous solution of SnCl 2 precursor (without using methanol or ethanol).

  17. Specific heat investigation for line nodes in heavily overdoped Ba1-xKxFe2As2

    DOE PAGES

    Kim, J. S.; Stewart, G. R.; Liu, Yong; ...

    2015-06-10

    Previous research has found that the pairing symmetry in the iron-based superconductor Ba1-xKxFe2As2 changes from nodeless s-wave near optimally doped, x≈0.4-0.55 and Tc>30 K, to nodal (either d-wave or s-wave) at the pure endpoint, x=1 and Tc<4 K. Intense theoretical interest has been focused on this possibility of changing pairing symmetry, where in the transition region both order parameters would be present and time reversal symmetry would be broken. Here we report specific heat measurements in zero and applied magnetic fields down to 0.4 K of three individual single crystals, free of low temperature magnetic anomalies, of heavily overdoped Ba1-xKxFe2As2,more » x= 0.91, 0.88, and 0.81. The values for Tcmid are 5.6, 7.2 and 13 K and for Hc2≈ 4.5, 6, and 20 T respectively. Furthermore, the data can be analyzed in a two gap scenario, Δ2/Δ1 ≈ 4, with the magnetic field dependence of γ (=C/T as T→0) showing an anisotropic ‘S-shaped’ behavior vs H, with the suppression of the lower gap by 1 T and γ ≈ H1/2 overall. Although such a non-linear γ vs H is consistent with deep minima or nodes in the gap structure, it is not clear evidence for one, or both, of the gaps being nodal in these overdoped samples. Thus, following the established theoretical analysis of the specific heat of d-wave cuprate superconductors containing line nodes, we present the specific heat normalized by H1/2 plotted vs T/H1/2 of these heavily overdoped Ba1-xKxFe2As2 samples which – thanks to the absence of magnetic impurities in our sample - convincingly shows the expected scaling for line node behavior for the larger gap for all three compositions. There is however no clear observation of the nodal behavior C ∝ αT2 in zero field at low temperatures, with α ≤ 2 mJ/molK3 being consistent with the data. Together with the scaling, this leaves open the possibility of extreme anisotropy in a nodeless larger gap, Δ2, such that the scaling works for fields above 0.25 – 0

  18. Synthesis of Regiospecifically Fluorinated Conjugated Dienamides

    PubMed Central

    Chowdhury, Mohammad; Mandal, Samir K.; Banerjee, Shaibal; Zajc, Barbara

    2015-01-01

    Modular synthesis of regiospecifically fluorinated 2,4-diene Weinreb amides, with defined stereochemistry at both double bonds, was achieved via two sequential Julia-Kocienski olefinations. In the first step, a Z-α-fluorovinyl Weinreb amide unit with a benzothiazolylsulfanyl substituent at the allylic position was assembled. This was achieved via condensation of two primary building blocks, namely 2-(benzo[d]thiazol-2-ylsulfonyl)-2-fluoro-N-methoxy-N-methylacetamide (a Julia-Kocienski olefination reagent) and 2-(benzo[d]thiazol-2-ylthio)acetaldehyde (a bifunctional building block). This condensation was highly Z-selective and proceeded in a good 76% yield. Oxidation of benzothiazolylsulfanyl moiety furnished a second-generation Julia-Kocienski olefination reagent, which was used for the introduction of the second olefinic linkage via DBU-mediated condensations with aldehydes, to give (2Z,4E/Z)-dienamides in 50%–74% yield. Although olefinations were 4Z-selective, (2Z,4E/Z)-2-fluoro-2,4-dienamides could be readily isomerized to the corresponding 5-substituted (2Z,4E)-2-fluoro-N-methoxy-N-methylpenta-2,4-dienamides in the presence of catalytic iodine. PMID:24727415

  19. Liquid fluorine/hydrazine rhenium thruster update

    NASA Technical Reports Server (NTRS)

    Appel, M. A.; Kaplan, R. B.; Tuffias, R. H.

    1983-01-01

    The status of a fluorine/hydrazine thruster development program is discussed. A solid rhenium metal sea-level thrust chamber was successfully fabricated and tested for a total run duration of 1075 s with 17 starts. Rhenium fabrication methods are discussed. A test program was conducted to evaluate performance and chamber cooling. Acceptable performance was reached and cooling was adequate. A flight-type injector was fabricated that achieved an average extrapolated performance value of 3608 N-s/kg (368 lbf-s/lbm). Altitude thrust chambers were fabricated. One chamber incorporates a rhenium combustor and nozzle with an area ratio of 15:1, and a columbium nozzle extension with area ratios from 15:1 to 60:1. The other chamber was fabricated completely with a carbon/carbon composite. Because of the attributes of rhenium for use in high-temperature applications, a program to provide the materials and processes technology needed to reliably fabricate and/or repair vapor-deposited rhenium parts of relatively large size and complex shape is recommended.

  20. Microstructures and improved J c-H characteristics of Cl-containing YBCO thin films prepared by the fluorine-free MOD method

    NASA Astrophysics Data System (ADS)

    Motoki, Takanori; Shimoyama, Jun-ichi; Ogino, Hiraku; Kishio, Kohji; Roh, Jiyoung; Tohei, Tetsuya; Ikuhara, Yuichi; Horii, Shigeru; Doi, Toshiya; Honda, Genki; Nagaishi, Tatsuoki

    2016-01-01

    Undoped, Cl-doped, (Cl, Hf) co-doped and (Cl, Sn) co-doped YBa2Cu3O y (YBCO) thin films have been prepared by the fluorine-free metal-organic decomposition (FF-MOD) method on SrTiO3(100) single-crystalline substrates. Cross-sectional microstructures of these films were investigated in detail using scanning transmission electron microscopy (STEM). Rectangular-shaped oxychloride precipitates (Ba2Cu3O4Cl2) and fine particles (BaSnO3) were clearly observed in the (Cl, Sn) co-doped films. The magnetic angular dependence of the critical current density (J c-H-θ) of these films was evaluated. The existence of c-axis-correlated type pinning centers was suggested in Cl-containing YBCO films, whereas this type of pinning is not common in MOD-processed films. J c values were enhanced by Cl doping and further by (Cl, Sn) co-doping in all magnetic field directions at 77 K. This improved J c-H-θ property with c-axis-correlated pinning sites is the first report in FF-MOD-processed YBCO films.

  1. Superstructures in cubic A{sup II}B{sup VI} crystals heavily doped with Ni and V ions

    SciTech Connect

    Maksimov, V. I. Dubinin, S. F.; Surkova, T. P.

    2016-01-15

    Specific features of the crystal structure of bulk sphalerite-type Zn{sub 0.9}Ni{sub 0.1}S, Zn{sub 0.9}V{sub 0.1}Se, and Zn{sub 0.997}Ni{sub 0.003}Te crystals have been investigated in detail by thermal-neutron diffraction at room temperature. Fine effects (indicative of the existence of distortion microdomains, nucleation of long- and short-wavelength modulations, and tendencies toward local lowering of the symmetry based on the initial cubic structure) can be observed in the obtained scattering patterns. Various states preceding the fcc ↔ hcp phase transition have been revealed in these crystals. They depend on the elemental composition and are formed upon the reaction of the initial lattice to perturbations induced by foreign ions with an incomplete 3d shell.

  2. Selective-area growth of heavily n-doped GaAs nanostubs on Si(001) by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Chang, Yoon Jung; Simmonds, Paul J.; Beekley, Brett; Goorsky, Mark S.; Woo, Jason C. S.

    2016-04-01

    Using an aspect ratio trapping technique, we demonstrate molecular beam epitaxy of GaAs nanostubs on Si(001) substrates. Nanoholes in a SiO2 mask act as a template for GaAs-on-Si selective-area growth (SAG) of nanostubs 120 nm tall and ≤100 nm in diameter. We investigate the influence of growth parameters including substrate temperature and growth rate on SAG. Optimizing these parameters results in complete selectivity with GaAs growth only on the exposed Si(001). Due to the confined-geometry, strain and defects in the GaAs nanostubs are restricted in lateral dimensions, and surface energy is further minimized. We assess the electrical properties of the selectively grown GaAs nanostubs by fabricating heterogeneous p+-Si/n+-GaAs p-n diodes.

  3. Effect of annealing on the structural and optical properties of heavily carbon-doped ZnO

    NASA Astrophysics Data System (ADS)

    Huang, He; Deng, Z. W.; Li, D. C.; Barbir, E.; Y Jiang, W.; Chen, M. X.; Kavanagh, K. L.; Mooney, P. M.; Watkins, S. P.

    2010-04-01

    ZnO films grown by metalorganic vapor phase epitaxy (MOVPE) at low temperatures (~500 °C) exhibit very high levels of carbon incorporation in the range of up to several percent. Such large levels of carbon incorporation significantly affect the structural properties of the thin films resulting in broadening of symmetric (0 0 2) rocking curves as well as broadened (1 0 1) pole figures compared with films grown at high temperature. Annealing of the films under air ambient at temperatures between 800 and 1100 °C results in dramatic sharpening of symmetric (0 0 2) rocking curves, indicating improved crystal alignment along the c-axes. (1 0 1) pole figure scans also show significant sharpening in the azimuthal axis, indicating similar improvements in the in-plane crystal alignment perpendicular to the c-axis. Raman spectra for as-grown ZnO at 500 °C show strong D and G peaks at 1381 and 1578 cm-1 due to sp2 carbon clusters. Annealing at 1000 °C results in the elimination of these bands, indicating that post-growth annealing treatment is a useful method to reduce the concentration of sp2 carbon clusters.

  4. Structural and luminescence properties of heavily doped radio-frequency-sputtered ZnTe:Cu thin films

    SciTech Connect

    El Akkad, Fikry Mathai, Maneesh

    2015-09-07

    We report on the structural and luminescence properties of ZnTe:Cu films containing Cu concentrations up to 12 at. % and prepared using rf magnetron sputtering. The lattice parameters of the various crystalline phases prevailing at different Cu concentrations (cubic, hexagonal, and orthorhombic) are calculated and compared with literature results on films prepared using other techniques. Study of the steady state photoluminescence and excitation spectra revealed the presence of three donor impurities involved in the well-known band at ∼1.70 eV (peak L) attributed to self-activated transition. One of these donors is merging partially with the conduction band and the two others have mutually overlapping density of states with maxima at 0.29 eV and 0.45 eV below the conduction band edge. Another donor that is resonant with the conduction continuum is responsible for a higher energy emission band (peak H). The density of states of this donor has a maximum at 0.57 eV above the conduction band edge for a copper concentration of 8.2 at. %. The emission peak H undergoes a blue shift and its intensity increases sharply relative to the intensity of the L peak with the increase of Cu concentration. Moreover, the H emission extends to photon energies higher than the band gap. A possible interpretation of the behaviour of the peak H in terms of recombination involving the resonant states is suggested.

  5. Paramagnetic fluorinated nanoemulsions for sensitive cellular fluorine-19 magnetic resonance imaging

    PubMed Central

    Kislukhin, Alexander A.; Xu, Hongyan; Adams, Stephen R.; Narsinh, Kazim H.; Tsien, Roger Y.; Ahrens, Eric T.

    2016-01-01

    Fluorine-19 magnetic resonance imaging (19F MRI) probes enable quantitative in vivo detection of cell therapies and inflammatory cells. Here, we describe the formulation of perfluorocarbon-based nanoemulsions with improved sensitivity for cellular MRI. Reduction of the 19F spin-lattice relaxation time (T1) enables rapid imaging and an improved signal-to-noise ratio, thereby improving cell detection sensitivity. We synthesized metal-binding β-diketones conjugated to linear perfluoropolyether (PFPE), formulated these fluorinated ligands as aqueous nanoemulsions, and then metalated them with various transition and lanthanide ions in the fluorous phase. Iron(III) tris-β-diketonate ('FETRIS') nanoemulsions with PFPE have low cytotoxicity (<20%) and superior MRI properties. Moreover, the 19F T1 can readily be reduced by an order of magnitude and tuned by stoichiometric modulation of the iron concentration. The resulting 19F MRI detection sensitivity is enhanced by 3-to-5 fold over previously used tracers at 11.7 T, and is predicted to increase by at least 8-fold at clinical field strength of 3 T. PMID:26974409

  6. A new solar fluorine abundance and a fluorine determination in the two open clusters M67 and NGC 6404

    SciTech Connect

    Maiorca, E.; Randich, S.; Magrini, L.; Uitenbroek, H.; Uttenthaler, S.; Busso, M.

    2014-06-20

    We present a new determination of the solar fluorine abundance together with abundance measurements of fluorine in two Galactic open clusters. We analyzed a sunspot spectrum, observed by L. Wallace and W. Livingston with the Fourier Transform Spectrometer at the McMath/Pierce Solar Telescope situated on Kitt Peak, and spectra of four giants in the old cluster M67 (∼4.5 Gyr) and three giants in the young cluster NGC 6404 (∼0.5 Gyr), obtained with the CRIRES spectrograph at the Very Large Telescope. Fluorine was measured through the synthesis of the available HF lines. We adopted the recent set of experimental molecular parameters of HF delivered by the HITRAN database, and found a new solar fluorine abundance of A(F) = 4.40 ± 0.25, in good agreement with the M67 average fluorine abundance of A(F) = 4.49 ± 0.20. The new solar abundance is in a very good agreement with the meteoritic value. The modern spectrosynthesis tools used and the agreement with the meteoritic value and with the results in open cluster M67, known to be a solar analogue, make our solar determination very robust. At the same time, the fluorine measurement in the above-mentioned open clusters is the first step toward understanding its evolution during the last ∼10 Gyr in the Galactic disk. In order to develop this project, a larger sample of open clusters is required, in order to allow us to trace the evolution of fluorine as a function of time and, in turn, to better understand its origin.

  7. [New methods of constructing fluorinated organic compounds and their application].

    PubMed

    Kirihara, M

    2000-04-01

    This review summarizes several effective synthetic methods of fluorinated organic compounds developed by our group. Two topics have been described in this review. The first topic describes novel fluorinations using diethylaminosulfur trifluoride (DAST). The treatment of tertiary cyclopropyl silyl ethers with DAST caused ring opening and produced allylic fluorides. The reaction of DAST with a tertiary cyclobutanol provided a fluorocyclobutane, a (fluoromethyl)cyclopropane or a homoallylic fluoride. DAST reacted with cyclic ketoximes bearing substituent(s) that can stabilize a carbocation to cause the fluorinative fragmentation which produces fluorinated carbonitrile. The second topic describes the novel syntheses of organic compounds containing the difluoromethylene moiety using fluorinated building blocks. The indium-mediated coupling of aldehydes with 3-bromo-3,3-difluoropropene gives alpha,alpha-difluorohomoallylic alcohols in high yields. alpha,alpha-Difluorohomopropargylic alcohols were also obtained from the indium-mediated coupling of aldehydes with alpha-bromo-alpha,alpha-difluoropropargyl compounds. In the presence of a palladium(0) catalyst, several nucleophiles regioselectively reacted with 3-bromo-3,3-difluoropropene at its gamma-position, and reacted with 1-substituted-3-bromo-3,3-difluoropropenes at their alpha-position. (+)-(R)-1-Amino-2,2-difluorocyclopropane-1-carboxylic acid was synthesized via the lipase-catalyzed asymmetric acetylation of a pro-chiral diol as a key step.

  8. Inert fluorinated gas MRI: a new pulmonary imaging modality.

    PubMed

    Couch, Marcus J; Ball, Iain K; Li, Tao; Fox, Matthew S; Ouriadov, Alexei V; Biman, Birubi; Albert, Mitchell S

    2014-12-01

    Fluorine-19 ((19)F) MRI of the lungs using inhaled inert fluorinated gases can potentially provide high quality images of the lungs that are similar in quality to those from hyperpolarized (HP) noble gas MRI. Inert fluorinated gases have the advantages of being nontoxic, abundant, and inexpensive compared with HP gases. Due to the high gyromagnetic ratio of (19)F, there is sufficient thermally polarized signal for imaging, and averaging within a single breath-hold is possible due to short longitudinal relaxation times. Therefore, the gases do not need to be hyperpolarized prior to their use in MRI. This eliminates the need for an expensive polarizer and expensive isotopes. Inert fluorinated gas MRI of the lungs has been previously demonstrated in animals, and more recently in healthy volunteers and patients with lung diseases. The ongoing improvements in image quality demonstrate the potential of (19)F MRI for visualizing the distribution of ventilation in human lungs and detecting functional biomarkers. In this brief review, the development of inert fluorinated gas MRI, current progress, and future prospects are discussed. The current state of HP noble gas MRI is also briefly discussed in order to provide context to the development of this new imaging modality. Overall, this may be a viable clinical imaging modality that can provide useful information for the diagnosis and management of chronic respiratory diseases.

  9. Photoemission studies of fluorine functionalized porous graphitic carbon

    SciTech Connect

    Ganegoda, Hasitha; Olive, Daniel; Cheng, Lidens; Segre, Carlo U.; Terry, Jeff; Jensen, David S.; Linford, Matthew R.

    2012-03-01

    Porous graphitic carbon (PGC) has unique properties desirable for liquid chromatography applications when used as a stationary phase. The polar retention effect on graphite (PREG) allows efficient separation of polar and non-polar solutes. Perfluorinated hydrocarbons however lack polarizabilty and display strong lipo- and hydrophobicity, hence common lipophilic and hydrophilic analytes have low partition coefficiency in fluorinated stationary phases. Attractive interaction between fluorinated stationary phase and fluorinated analytes results in strong retention compared to non-fluorinated analytes. In order to change the selectivities of PGC, it is necessary to develop a bonded PGC stationary phase. In this study, we have synthesized perfluorinated, PGC using hepatadecafluoro-1-iodooctane, under different temperature conditions. Surface functionalization of the raw material was studied using photoelectron spectroscopy (PES). Results indicate the existence of fluorine containing functional groups, -CF, -CF{sub 2} along with an intercalated electron donor species. Multiple oxygen functional groups were also observed, likely due to the presence of oxygen in the starting material. These oxygen species may be responsible for significant modifications to planer and tetrahedral carbon ratios.

  10. Reduced fouling of ultrafiltration membranes via surface fluorination

    SciTech Connect

    Sedath, R.H.; Yates, S.F.; Li, N.N.

    1993-03-01

    Surface fluorination can affect significantly the performance of an ultrafiltration membrane used to concentrate a food-related stream. Membranes fluorinated and tested as flat sheets exhibit higher initial fluxes, and do not foul as rapidly as untreated membranes. This improvement is linked to increased surface hydrophilicity, as shown in decreased contact angle with water. This increased hydrophilicity, in turn, is linked to the addition of fluorine and oxygen to the surface. The pilot plant study did-not show the difference in membrane flux and fouling observed in the flat sheet study. Instead, fluorinated and unfluorinated modules behaved similarly. Fouling by potato waste feed was severe and resulted in formation of an extensive gel layer within the module on the membrane surface. XPS, SEM and FTIR indicate that buildup of organic material occurred on both fluorinated and unfluorinated membranes, but SEM indicates that a fibrous mat of material was observed only on the nonfluorinated membrane. We conclude that in the pilot study, membrane fouling and gel formation were so extensive that the surface interaction effect was overwhelmed.

  11. Highly doped silicon nanowires by monolayer doping.

    PubMed

    Veerbeek, Janneke; Ye, Liang; Vijselaar, Wouter; Kudernac, Tibor; van der Wiel, Wilfred G; Huskens, Jurriaan

    2017-02-23

    Controlling the doping concentration of silicon nanostructures is challenging. Here, we investigated three different monolayer doping techniques to obtain silicon nanowires with a high doping dose. These routes were based on conventional monolayer doping, starting from covalently bound dopant-containing molecules, or on monolayer contact doping, in which a source substrate coated with a monolayer of a carborane silane was the dopant source. As a third route, both techniques were combined to retain the benefits of conformal monolayer formation and the use of an external capping layer. These routes were used for doping fragile porous nanowires fabricated by metal-assisted chemical etching. Differences in porosity were used to tune the total doping dose inside the nanowires, as measured by X-ray photoelectron spectroscopy and secondary ion mass spectrometry measurements. The higher the porosity, the higher was the surface available for dopant-containing molecules, which in turn led to a higher doping dose. Slightly porous nanowires could be doped via all three routes, which resulted in highly doped nanowires with (projected areal) doping doses of 10(14)-10(15) boron atoms per cm(2) compared to 10(12) atoms per cm(2) for a non-porous planar sample. Highly porous nanowires were not compatible with the conventional monolayer doping technique, but monolayer contact doping and the combined route resulted for these highly porous nanowires in tremendously high doping doses up to 10(17) boron atoms per cm(2).

  12. Contribution of selected perfluoroalkyl and polyfluoroalkyl substances to the adsorbable organically bound fluorine in German rivers and in a highly contaminated groundwater.

    PubMed

    Willach, Sarah; Brauch, Heinz-Jürgen; Lange, Frank T

    2016-02-01

    Due to the lack of analytical standards the application of surrogate parameters for organofluorine detection in the aquatic environment is a complementary approach to single compound target analysis of perfluoroalkyl and polyfluoroalkyl chemicals (PFASs). The recently developed method adsorbable organically bound fluorine (AOF) is based on adsorption of organofluorine chemicals to activated carbon followed by combustion ion chromatography. This AOF method was further simplified to enable measurement of larger series of environmental samples. The limit of quantification (LOQ) was 0.77 μg/L F. The modified protocol was applied to 22 samples from German rivers, a municipal wastewater treatment plant (WWTP) effluent, and four groundwater samples from a fire-fighting training site. The WWTP effluent (AOF = 1.98 μg/L F) and only three river water samples (AOF between 0.88 μg/L F and 1.47 μg/L F) exceeded the LOQ. The AOF levels in a PFASs plume at a heavily contaminated site were in the range of 162 ± 3 μg/L F to 782 ± 43 μg/L F. In addition to AOF 17 PFASs were analyzed by high performance liquid chromatography-tandem mass spectrometry. 32-51% of AOF in the contaminated groundwater samples were explained by individual PFASs wheras in the surface waters more than 95% remained unknown. Organofluorine of two fluorinated pesticides, one pesticide metabolite and three fluorinated pharmaceuticals was recovered as AOF by >50% from all four tested water matrices. It is suggested that in the diffusely contaminated water bodies such fluorinated chemicals and not monitored PFASs contribute significantly to AOF.

  13. PHYSICAL PROPERTIES OF FLUORINATED PROPANE AND BUTANE DERIVATIVES AS ALTERNATIVE REFRIGERANTS

    EPA Science Inventory

    Physical property measurements are presented for 24 fluorinated propane and butane derivatives and one fluorinated ether. These measurements include melting point, boiling point, vapor pressure below the boiling point, heat of vaporization at the boiling point, critical propertie...

  14. A New Fluorinated Tyrosinase Inhibitor from a Chemically Engineered Essential Oil.

    PubMed

    García, Paula; Salazar, Mario O; Ramallo, I Ayelen; Furlan, Ricardo L E

    2016-06-13

    The generation of fluorinated essential oils as a source of bioactive compounds is described. Most of the components of the natural mixtures were altered, leading to the discovery of a new fluorinated tyrosinase inhibitor.

  15. Organic light-emitting diodes containing fluorinated asymmetrical europium cored beta-diketone complexes

    NASA Astrophysics Data System (ADS)

    Phelan, Gregory D.; Carlson, Brenden; Jiang, Xuezhong; Jen, Alex K. Y.; Dalton, Larry R.

    2003-03-01

    Novel luminescent materials based on europium-cored complexes have been synthesized and incorporated into light emitting diodes using poly (N-vinyl-carbazole) and poly (vinyl naphthalene) blends as doping hosts. The complexes consists of fluorinated β-diketone ligands chelated to europium. Excitation of the ligands and efficient transfer of energy from the excited ligands to the metal core results in the emission of optically pure red light. The ligands were designed such that they include a polycyclic aromatic compound, phenanthrene, and a second substituent to improve processibility. Phenanthrene is used to so that the ligand energy will match with the energy of the metal center. Partially fluorinated substituents were also used to help improve the efficiency and charge transfer capability of the resulting metal complex. The complex consisted of one equivalent of europium and three equivalents of the ligand. One equivalent of either 1,10-phenanthroline or 4,7-diphenyl-1,10-phenanthroline was also chelated to enhance the stability of the complex. Double and triple layer devices were synthesized with the configuration of ITO/BTPD-PFCB/Europium complex in a polymer blend/Ca/Ag for the double layer device and ITO/BTPD-PFCB/Europium complex in a polymer blend/PBD/Ca/Ag for the triple layer device. The double layer devices made with a polymer blend of PVN outperformed the devices made from PVK as the emission bands of the PVN better match the absorption bands of the ligands. A maximum brightness of 178 cd/m2 with a maximum external quantum efficiency of 0.45% was measured for the double layer device.

  16. Compilation of Requirements for Safe Handling of Fluorine and Fluorine-Containing Products of Uranium Hexafluoride Conversion

    SciTech Connect

    Ferrada, J.J.

    2000-04-03

    Public Law (PL) 105-204 requires the U.S. Department of Energy to develop a plan for inclusion in the fiscal year 2000 budget for conversion of the Department's stockpile of depleted uranium hexafluoride (DUF{sub 6}) to a more stable form over an extended period. The conversion process into a more stable form will produce fluorine compounds (e.g., elemental fluorine or hydrofluoric acid) that need to be handled safely. This document compiles the requirements necessary to handle these materials within health and safety standards, which may apply in order to ensure protection of the environment and the safety and health of workers and the public. Fluorine is a pale-yellow gas with a pungent, irritating odor. It is the most reactive nonmetal and will react vigorously with most oxidizable substances at room temperature, frequently with ignition. Fluorine is a severe irritant of the eyes, mucous membranes, skin, and lungs. In humans, the inhalation of high concentrations causes laryngeal spasm and broncospasms, followed by the delayed onset of pulmonary edema. At sublethal levels, severe local irritation and laryngeal spasm will preclude voluntary exposure to high concentrations, unless the individual is trapped or incapacitated. A blast of fluorine gas on the shaved skin of a rabbit causes a second degree burn. Lower concentrations cause severe burns of insidious onset, resulting in ulceration, similar to the effects produced by hydrogen fluoride. Hydrofluoric acid is a colorless, fuming liquid or gas with a pungent odor. It is soluble in water with release of heat. Ingestion of an estimated 1.5 grams produced sudden death without gross pathological damage. Repeated ingestion of small amounts resulted in moderately advanced hardening of the bones. Contact of skin with anhydrous liquid produces severe burns. Inhalation of AHA or aqueous hydrofluoric acid mist or vapors can cause severe respiratory tract irritation that may be fatal. Based on the extreme chemical

  17. Gene doping.

    PubMed

    Azzazy, Hassan M E

    2010-01-01

    Gene doping abuses the legitimate approach of gene therapy. While gene therapy aims to correct genetic disorders by introducing a foreign gene to replace an existing faulty one or by manipulating existing gene(s) to achieve a therapeutic benefit, gene doping employs the same concepts to bestow performance advantages on athletes over their competitors. Recent developments in genetic engineering have contributed significantly to the progress of gene therapy research and currently numerous clinical trials are underway. Some athletes and their staff are probably watching this progress closely. Any gene that plays a role in muscle development, oxygen delivery to tissues, neuromuscular coordination, or even pain control is considered a candidate for gene dopers. Unfortunately, detecting gene doping is technically very difficult because the transgenic proteins expressed by the introduced genes are similar to their endogenous counterparts. Researchers today are racing the clock because assuring the continued integrity of sports competition depends on their ability to develop effective detection strategies in preparation for the 2012 Olympics, which may mark the appearance of genetically modified athletes.

  18. Friction Properties of Surface-Fluorinated Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Wal, R. L. Vander; Miyoshi, K.; Street, K. W.; Tomasek, A. J.; Peng, H.; Liu, Y.; Margrave, J. L.; Khabashesku, V. N.

    2005-01-01

    Surface modification of the tubular or sphere-shaped carbon nanoparticles through chemical treatment, e.g., fluorination, is expected to significantly affect their friction properties. In this study, a direct fluorination of the graphene-built tubular (single-walled carbon nanotubes) structures has been carried out to obtain a series of fluorinated nanotubes (fluoronanotubes) with variable C(n)F (n =2-20) stoichiometries. The friction coefficients for fluoronanotubes, as well as pristine and chemically cut nanotubes, were found to reach values as low as 0.002-0.07, according to evaluation tests run in contact with sapphire in air of about 40% relative humidity on a ball-on-disk tribometer which provided an unidirectional sliding friction motion. These preliminary results demonstrate ultra-low friction properties and show a promise in applications of surface modified nanocarbons as a solid lubricant.

  19. Increased negatively charged nitrogen-vacancy centers in fluorinated diamond

    SciTech Connect

    Cui, Shanying; Hu, Evelyn L.

    2013-07-29

    We investigated the effect of fluorine-terminated diamond surface on the charged state of shallow nitrogen vacancy defect centers (NVs). Fluorination is achieved with CF{sub 4} plasma, and the surface chemistry is confirmed with x-ray photoemission spectroscopy. Photoluminescence of these ensemble NVs reveals that fluorine-treated surfaces lead to a higher and more stable negatively charged nitrogen vacancy (NV{sup −}) population than oxygen-terminated surfaces. NV{sup −} population is estimated by the ratio of negative to neutral charged NV zero-phonon lines. Surface chemistry control of NV{sup −} density is an important step towards improving the optical and spin properties of NVs for quantum information processing and magnetic sensing.

  20. Determination of fluorine in organic compounds: Microcombustion method

    USGS Publications Warehouse

    Clark, H.S.

    1951-01-01

    A reliable and widely applicable means of determining fluorine in organic compounds has long been needed. Increased interest in this field of research in recent years has intensified the need. Fluorine in organic combinations may be determined by combustion at 900?? C. in a quartz tube with a platinum catalyst, followed by an acid-base titration of the combustion products. Certain necessary precautions and known limitations are discussed in some detail. Milligram samples suffice, and the accuracy of the method is about that usually associated with the other halogen determinations. Use of this method has facilitated the work upon organic fluorine compounds in this laboratory and it should prove to be equally valuable to others.

  1. [Fluorine removal efficiency of organic-calcium during coal combustion].

    PubMed

    Liu, Jing; Liu, Jian-Zhong; Zhou, Jun-Hu; Xiao, Hai-Ping; Cen, Ke-Fa

    2006-08-01

    Effectiveness of calcium magnesium acetate (CMA) and calcium acetate(CA) as feasible HF capture were studied by means of fixed bed tube furnaces. The effects of temperature, particle diameter and Ca/S molar ratio on the fluorine removal efficiency were studied. By contract with CaCO3 at the same condition, we find that the HF capture effectiveness of those sorbents is superior to CaCO3, especially at high temperature. At 1 000 - 1 100 degrees C, the efficiency of fluorine removal during coal combustion of CMA is 1.68 - 1.74 times as that of CaCO3; the efficiency of fluorine removal during coal combustion of CA is 1.28 - 1.37 times as that of CaCO3.

  2. 40 CFR 721.10515 - Partially fluorinated alcohol substituted glycols (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Partially fluorinated alcohol... New Uses for Specific Chemical Substances § 721.10515 Partially fluorinated alcohol substituted... substances identified generically as partially fluorinated alcohol substituted glycols (PMN P-10-58,...

  3. Natural chlorine and fluorine in the atmosphere, water and precipitation

    NASA Technical Reports Server (NTRS)

    Friend, James P.

    1990-01-01

    The geochemical cycles of chlorine and fluorine are surveyed and summarized as framework for the understanding of the global natural abundances of these species in the atmosphere, water, and precipitation. In the cycles the fluxes into and out of the atmosphere can be balanced within the limits of our knowledge of the natural sources and sinks. Sea salt from the ocean surfaces represent the predominant portion of the source of chlorine. It is also an important source of atmospheric fluorine, but volcanoes are likely to be more important fluorine sources. Dry deposition of sea salt returns about 85 percent of the salt released there. Precipitation removes the remainder. Most of the sea salt materials are considered to be cyclic, moving through sea spray over the oceans and either directly back to the oceans or deposited dry and in precipitation on land, whence it runs off into rivers and streams and returns to the oceans. Most of the natural chlorine in the atmosphere is in the form of particulate chloride ion with lesser amounts as gaseous inorganic chloride and methyl chloride vapor. Fluorine is emitted from volcanoes primarily as HF. It is possible that HF may be released directly form the ocean surface but this has not been confirmed by observation. HCl and most likely HF gases are released into the atmosphere by sea salt aerosols. The mechanism for the release is likely to be the provision of protons from the so-called excess sulfate and HNO3. Sea salt aerosol contains fluorine as F(-), MgF(+), CaF(+), and NaF. The concentrations of the various species of chlorine and fluorine that characterize primarily natural, unpolluted atmospheres are summarized in tables and are discussed in relation to their fluxes through the geochemical cycle.

  4. [Adsorption Properties of Fluorine onto Fulvic Acid-Bentonite Complex].

    PubMed

    Fang, Dun; Tian, Hua-jing; Ye, Xin; He, Ci-li; Dan, You-meng; Wei, Shi-yong

    2016-03-15

    Fulvic Acid-Bentonite (FA-BENT) complex was prepared using coprecipitation method, and basic properties of the complex and sorption properties of fluorine at different environmental conditions were studied. XRD results showed that the d₀₀₁ spacing of FA- BENT complex had no obvious change compared with the raw bentonite, although the diffraction peak intensity of smectite in FA-BENT complex reduced, and indicated that FA mainly existed as a coating on the external surface of bentonite. Some functional groups (such as C==O, −OH, etc. ) of FA were observed in FA-BENT FTIR spectra, thus suggesting ligand exchange-surface complexation between FA and bentonite. Higher initial pH values of the reaction system were in favor of the adsorption of fluorine onto FA-BENT, while the equilibrium capacity decreased with the increase of pH at initial pH ≥ 4.50. The adsorption of fluorine onto FA-BENT was also affected by ionic strength, and the main reason might be the "polarity" effect. The adsorption of fluorine onto FA-BENT followed pseudo-second-order kinetic model and was controlled by chemical process ( R² = 0.999 2). Compared with the Freundlich model, Langmuir model was apparently of a higher goodness of fit (R² > 0.994 9) for absorption of fluorine onto FA-BENT. Thermodynamic parameters indicated that the adsorption process of fluorine was an spontaneously endothermic reaction, and was an entropy-driven process (ΔH 32.57 kJ · mol⁻¹, ΔS 112.31 J · (mol · K)⁻¹, ΔG −0.65- −1.76 kJ · mol⁻¹).

  5. [Assessment of Soil Fluorine Pollution in Jinhua Fluorite Ore Areas].

    PubMed

    Ye, Qun-feng; Zhou, Xiao-ling

    2015-07-01

    The contents of. soil total fluorine (TF) and water-soluble fluorine (WF) were measured in fluorite ore areas located in Jinhua City. The single factor index, geoaccumulation index and health risk assessment were used to evaluate fluorine pollution in soil in four fluorite ore areas and one non-ore area, respectively. The results showed that the TF contents in soils were 28. 36-56 052. 39 mg.kg-1 with an arithmetic mean value of 8 325.90 mg.kg-1, a geometric mean of 1 555. 94 mg.kg-1, and a median of 812. 98 mg.kg-1. The variation coefficient of TF was 172. 07% . The soil WF contents ranged from 0. 83 to 74. 63 mg.kg-1 with an arithmetic mean value of 16. 94 mg.kg-1, a geometric mean of 10. 59 mg.kg-1, and a median of 10. 17 mg.kg-1. The variation coefficient of WF was 100. 10%. The soil TF and WF contents were far higher than the national average level of the local fluorine epidemic occurrence area. The fluoride pollution in soil was significantly affected by human factors. Soil fluorine pollution in Yangjia, Lengshuikeng and Huajie fluorite ore areas was the most serious, followed by Daren fluorite ore area, and in non-ore area there was almost no fluorine pollution. Oral ingestion of soils was the main exposure route. Sensitivity analysis of model parameters showed that children's weight exerted the largest influence over hazard quotient. Furthermore, a significant positive correlation was found among the three kinds of evaluation methods.

  6. Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections

    NASA Astrophysics Data System (ADS)

    Leyland, Nigel S.; Podporska-Carroll, Joanna; Browne, John; Hinder, Steven J.; Quilty, Brid; Pillai, Suresh C.

    2016-04-01

    Bacterial infections are a major threat to the health of patients in healthcare facilities including hospitals. One of the major causes of patient morbidity is infection with Staphylococcus aureus. One of the the most dominant nosocomial bacteria, Methicillin Resistant Staphylococcus aureus (MRSA) have been reported to survive on hospital surfaces (e.g. privacy window glasses) for up to 5 months. None of the current anti-bacterial technology is efficient in eliminating Staphylococcus aureus. A novel transparent, immobilised and superhydrophilic coating of titanium dioxide, co-doped with fluorine and copper has been prepared on float glass substrates. Antibacterial activity has demonstrated (by using Staphylococcus aureus), resulting from a combination of visible light activated (VLA) photocatalysis and copper ion toxicity. Co-doping with copper and fluorine has been shown to improve the performance of the coating, relative to a purely fluorine-doped VLA photocatalyst. Reductions in bacterial population of log10 = 4.2 under visible light irradiation and log10 = 1.8 in darkness have been achieved, compared with log10 = 1.8 under visible light irradiation and no activity, for a purely fluorine-doped titania. Generation of reactive oxygen species from the photocatalytic coatings is the major factor that significantly reduces the bacterial growth on the glass surfaces.

  7. Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections

    PubMed Central

    Leyland, Nigel S.; Podporska-Carroll, Joanna; Browne, John; Hinder, Steven J.; Quilty, Brid; Pillai, Suresh C.

    2016-01-01

    Bacterial infections are a major threat to the health of patients in healthcare facilities including hospitals. One of the major causes of patient morbidity is infection with Staphylococcus aureus. One of the the most dominant nosocomial bacteria, Methicillin Resistant Staphylococcus aureus (MRSA) have been reported to survive on hospital surfaces (e.g. privacy window glasses) for up to 5 months. None of the current anti-bacterial technology is efficient in eliminating Staphylococcus aureus. A novel transparent, immobilised and superhydrophilic coating of titanium dioxide, co-doped with fluorine and copper has been prepared on float glass substrates. Antibacterial activity has demonstrated (by using Staphylococcus aureus), resulting from a combination of visible light activated (VLA) photocatalysis and copper ion toxicity. Co-doping with copper and fluorine has been shown to improve the performance of the coating, relative to a purely fluorine-doped VLA photocatalyst. Reductions in bacterial population of log10 = 4.2 under visible light irradiation and log10 = 1.8 in darkness have been achieved, compared with log10 = 1.8 under visible light irradiation and no activity, for a purely fluorine-doped titania. Generation of reactive oxygen species from the photocatalytic coatings is the major factor that significantly reduces the bacterial growth on the glass surfaces. PMID:27098010

  8. Controlled in situ boron doping of short silicon nanowires grown by molecular beam epitaxy

    SciTech Connect

    Das Kanungo, Pratyush; Zakharov, Nikolai; Bauer, Jan; Breitenstein, Otwin; Werner, Peter; Goesele, Ulrich

    2008-06-30

    Epitaxial silicon nanowires (NWs) of short heights ({approx}280 nm) on Si <111> substrate were grown and doped in situ with boron on a concentration range of 10{sup 15}-10{sup 19} cm{sup -3} by coevaporation of atomic Si and B by molecular beam epitaxy. Transmission electron microscopy revealed a single-crystalline structure of the NWs. Electrical measurements of the individual NWs confirmed the doping. However, the low doped (10{sup 15} cm{sup -3}) and medium doped (3x10{sup 16} and 1x10{sup 17} cm{sup -3}) NWs were heavily depleted by the surface states while the high doped (10{sup 18} and 10{sup 19} cm{sup -3}) ones showed volume conductivities expected for the corresponding intended doping levels.

  9. Pyridine radical cation and its fluorine substituted derivatives

    USGS Publications Warehouse

    Bondybey, V.E.; English, J.H.; Shiley, R.H.

    1982-01-01

    The spectra and relaxation of the pyridine cation and of several of its fluorinated derivatives are studied in low temperature Ne matrices. The ions are generated by direct photoionization of the parent compounds. Of the compounds studied, laser induced → and → fluorescence is observed only for the 2, 6‐difluoropyridine cation. The analysis of the spectrum indicates that the ion is planar both in the and states. The large variety in the spectroscopic and relaxation behavior of fluoropyridine radical cations is explained in terms of their electronic structure and of the differential shifts of the individual electronic states caused by the fluorine substitution.

  10. Fluorinated epoxy resins with high glass transition temperatures

    NASA Technical Reports Server (NTRS)

    Griffith, James R.

    1991-01-01

    Easily processed liquid resins of low dielectric constants and high glass transition temperatures are useful for the manufacture of certain composite electronic boards. That combination of properties is difficult to acquire when dielectric constants are below 2.5, glass transition temperatures are above 200 C and processability is of conventional practicality. A recently issued patent (US 4,981,941 of 1 Jan. 1991) teaches practical materials and is the culmination of 23 years of research and effort and 15 patents owned by the Navy in the field of fluorinated resins of several classes. In addition to high fluorine content, practical utility was emphasized.

  11. Synthesis of fluorinated β-aminophosphonates and γ-lactams.

    PubMed

    Alonso, Concepción; González, María; Fuertes, María; Rubiales, Gloria; Ezpeleta, Jose María; Palacios, Francisco

    2013-04-19

    The functionalized polyfluorophosphorylated 1-azadienes I have been prepared by a Wittig reaction of ethyl glyoxalate and perfluorophosphorylated conjugated phosphoranes, obtained by reaction of phosphazenes and fluorinated acetylenic phosphonates. Subsequent reduction of both carbon-carbon and carbon-nitrogen double bonds of these 1-azadienes I affords the fluorine-containing β-aminophosphonates II, with the syn β-aminophosphonate being obtained as the major diastereoisomer. Base-mediated cyclocondensation of a diastereomeric mixture of aminophosphonates II leads exclusively to a new type of functionalized trans-γ-lactams III in a diastereoselective way. A computational study has also been used to explain the observed diastereoselectivity of these reactions.

  12. Laser-plasma spectra of highly ionized fluorine

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Doschek, G. A.; Nagel, D. J.; Behring, W. E.; Cowan, R. D.

    1974-01-01

    Lines between 11.3 and 17.2 A of lithium-like, helium-like, and hydrogen-like fluorine have been observed in spectra of laser-produced plasmas. These lines include nine members of the Lyman series of F IX; eight members of the principal series of F VIII; and satellite lines arising from doubly excited configurations of F VII and F VIII. Similar satellite lines of the abundant solar elements have been identified in soft X-ray spectra of solar flares. A wavelength list of fluorine lines is given, and physical conditions in the plasma are discussed.

  13. Fluorine Implantation and Residual Stresses in Polysilicon Films

    NASA Technical Reports Server (NTRS)

    Lowery, Lynn; Zschack, Paul; Angelis, Robert De

    1994-01-01

    As microelectronic device dimensions are reduced below one micron, the hot carrier effect is a major barrier to continued scaling and VLSI reliability. Several reports have shown that fluorine diffusion into the device gate greatly enhances the resistance to hot carriers. There has been some disagreement as to the mechanism of influence; however, several reports have suggested that the polysilicon is physically modified by the fluorine implant and that the beneficial effects are at least in part due to stress relaxation in the polysilicon.

  14. Triphilic Ionic-Liquid Mixtures: Fluorinated and Non-fluorinated Aprotic Ionic-Liquid Mixtures

    PubMed Central

    Hollóczki, Oldamur; Macchiagodena, Marina; Weber, Henry; Thomas, Martin; Brehm, Martin; Stark, Annegret; Russina, Olga; Triolo, Alessandro; Kirchner, Barbara

    2015-01-01

    We present here the possibility of forming triphilic mixtures from alkyl- and fluoroalkylimidazolium ionic liquids, thus, macroscopically homogeneous mixtures for which instead of the often observed two domains—polar and nonpolar—three stable microphases are present: polar, lipophilic, and fluorous ones. The fluorinated side chains of the cations indeed self-associate and form domains that are segregated from those of the polar and alkyl domains. To enable miscibility, despite the generally preferred macroscopic separation between fluorous and alkyl moieties, the importance of strong hydrogen bonding is shown. As the long-range structure in the alkyl and fluoroalkyl domains is dependent on the composition of the liquid, we propose that the heterogeneous, triphilic structure can be easily tuned by the molar ratio of the components. We believe that further development may allow the design of switchable, smart liquids that change their properties in a predictable way according to their composition or even their environment. PMID:26305804

  15. Photocatalytic degradation and antimicrobial applications of F-doped MWCNTs/TiO2 composites

    NASA Astrophysics Data System (ADS)

    Sangari, M.; Umadevi, M.; Mayandi, J.; Pinheiro, Jean Patrick

    2015-03-01

    Multi-walled carbon nanotubes-fluorine-co-doped TiO2 composite was synthesized by the solid state method. The prepared photocatalysts were characterized by using XRD, FTIR and FE-SEM. In addition, the samples were evaluated for antimicrobial activity and photocatalytic activity. The composites exhibited enhanced absorption properties in the UV light range compared to pure TiO2. The MWCNTS-F-co-doped TiO2 composites showed significant photocatalytic activity in the generation of oxygen.

  16. Improved stability of highly fluorinated phospholipid-based vesicles in the presence of bile salts.

    PubMed

    Gadras, C; Santaella, C; Vierling, P

    1999-01-04

    The stability of fluorinated phospholipid-based vesicles in terms of detergent-induced release of encapsulated carboxyfluorescein has been evaluated. The fluorinated liposomes are substantially more resistant towards the lytic action of sodium taurocholate than conventional DSPC or even DSPC/CH 1/1 liposomes. Concerning structure/permeability relationships, the larger the fluorination degree of the membrane, the higher the resistance of the fluorinated liposomes to their destruction by the detergent. These results show that fluorinated liposomes have a promising potential as drug carrier and delivery systems for oral administration.

  17. Becoming a Heavily Tattooed Young Body: From a Bodily Experience to a Body Project

    ERIC Educational Resources Information Center

    Ferreira, Vitor Sérgio

    2014-01-01

    Why some young people start to tattoo their bodies? And why some of them keep going on with this practice, until having all body tattooed? What doing so means to them? These are some of the questions that underlie a qualitative research project carried out in Portugal on heavily tattooed young people. In this article, the author discusses their…

  18. A multi-step transmission electron microscopy sample preparation technique for cracked, heavily damaged, brittle materials.

    PubMed

    Weiss Brennan, Claire V; Walck, Scott D; Swab, Jeffrey J

    2014-12-01

    A new technique for the preparation of heavily cracked, heavily damaged, brittle materials for examination in a transmission electron microscope (TEM) is described in detail. In this study, cross-sectional TEM samples were prepared from indented silicon carbide (SiC) bulk ceramics, although this technique could also be applied to other brittle and/or multiphase materials. During TEM sample preparation, milling-induced damage must be minimized, since in studying deformation mechanisms, it would be difficult to distinguish deformation-induced cracking from cracking occurring due to the sample preparation. The samples were prepared using a site-specific, two-step ion milling sequence accompanied by epoxy vacuum infiltration into the cracks. This technique allows the heavily cracked, brittle ceramic material to stay intact during sample preparation and also helps preserve the true microstructure of the cracked area underneath the indent. Some preliminary TEM results are given and discussed in regards to deformation studies in ceramic materials. This sample preparation technique could be applied to other cracked and/or heavily damaged materials, including geological materials, archaeological materials, fatigued materials, and corrosion samples.

  19. Boron-doped cobalt oxide thin films and its electrochemical properties

    NASA Astrophysics Data System (ADS)

    Kerli, S.

    2016-09-01

    The cobalt oxide and boron-doped cobalt oxide thin films were produced by spray deposition method. All films were obtained onto glass and fluorine-doped tin oxide (FTO) substrates at 400∘C and annealed at 550∘C. We present detailed analysis of the morphological and optical properties of films. XRD results show that boron doping disrupts the structure of the films. Morphologies of the films were investigated by using a scanning electron microscopy (SEM). Optical measurements indicate that the band gap energies of the films change with boron concentrations. The electrochemical supercapacitor performance test has been studied in aqueous 6 M KOH electrolyte and with scan rate of 5 mV/s. Measurements show that the largest capacitance is obtained for 3% boron-doped cobalt oxide film.

  20. Single-polarization optical low-noise pre-amplified receiver for heavily coded optical communications links

    NASA Astrophysics Data System (ADS)

    Roth, Jeffrey M.; Masurkar, Amrita; Scalesse, Vincent; Minch, Jeffrey R.; Walther, Frederick G.; Savage, Shelby J.; Ulmer, Todd G.

    2015-03-01

    We report a single-polarization, optical low-noise pre-amplfier (SP-OLNA) that enhances the receiver sensitivity of heavily-coded 1.55-μm optical communication links. At channel bit-error ratios of approximately 10%, the erbium-doped SP-OLNA provides an approximately 1.0-dB receiver sensitivity enhancement over a conventional two-polarization pre-amplfier. The SP-OLNA includes three gain stages, each followed by narrow-band athermal fiber Bragg gratings. This cascaded fiter is matched to a return-to-zero, 2.88-Gb/s, variable burst-mode, differential phase shift keying (DPSK) waveform. The SP-OLNA enhancement of approximately 1.0 dB is demonstrated over a range of data rates, from the full 2.88-Gb/s (non-burst) data rate, down to a 1/40th burst rate (72 Mb/s). The SP-OLNA'sfirst stage of ampli_cation is a single-polarization gain block constructed from polarization-maintaining (PM) fiber components, PM erbium gain fiber, and a PM integrated pump coupler and polarizer. This first stage sets the SP-OLNA's noise figure, measured at 3.4 dB. Two subsequent non-PM gain stages allow the SP-OLNA to provide an overall gain of 78 dB to drive a DPSK demodulator receiver. This receiver is comprised of a delay-line interferometer and balanced photo-receiver. The SP-OLNA is packaged into a compact, 5"x7"x1.6" volume, which includes an electronic digital interface to control and monitor pump lasers, optical switches, and power monitors.

  1. Fluorine Compounds and Dental Health: Applications of General Chemistry Topics

    ERIC Educational Resources Information Center

    Pinto, Gabriel

    2009-01-01

    An example about the use of everyday phenomena in teaching general chemistry is given. Students have a greater appreciation of the principles of chemistry if they can see the relevance to their lives. Fluorine compounds in dental applications (as topical or as systemic use) provide an excellent context in which to review core content of general…

  2. Pd-catalyzed C-H fluorination with nucleophilic fluoride.

    PubMed

    McMurtrey, Kate B; Racowski, Joy M; Sanford, Melanie S

    2012-08-17

    The palladium-catalyzed C-H fluorination of 8-methylquinoline derivatives with nucleophilic fluoride is reported. This transformation involves the use of AgF as the fluoride source in combination with a hypervalent iodine oxidant. Both the scope and mechanism of the reaction are discussed.

  3. Nitroimidazoles, Quinolones and Oxazolidinones as Fluorine Bearing Antitubercular Clinical Candidates.

    PubMed

    Patel, Rahul V; Keum, Young-Soo; Park, Se Won

    2015-01-01

    Tuberculosis is a leading killer of lives worldwide and the global curse of multi-drug resistant tuberculosis is attaining really dangerous levels. Synergistic interaction of HIV and TB is the twin epidemics in resource-limited countries as each potentiate progression of the other. The increasing emergence of MDR-TB and XDR-TB place an immense burden for the treatment of TB with currently available drugs. The situation urgently demands for the discovery of new drugs with novel mode of action and differs in structural features in order to overcome resistance appears in conventional TB therapeutics. The present report covers the discovery of three classes of antituberculosis drugs, Nitroimidazoles, Quinolones and Oxazolidinones, undergoing clinical development with fluorine atom in their structures. Highly electronegative fluorine atom plays a signature role in advancing medicinal innovations as it existence in the drug compounds critically influences metabolic stability and lipophilicity thereby delaying its elimination by the body which results into a long term in vivo efficiency of the drug. Presence of fluorine atom(s) in the drug structures described in this report, has been associated with the several fold increase in the overall potency of the compound as demonstrated since the early discoveries. 6 Fluorinated derivatives from these three classes as pretomanid, delamanid, moxifloxacin, gatifloxacin, linezolid and sutezolid have been discussed with their antituberculosis effects, mode of action, chemical synthetic routes and results of clinical studies.

  4. Preparation of high purity copper fluoride by fluorinating copper hydroxyfluoride

    NASA Technical Reports Server (NTRS)

    King, R. B.; Lundquist, J. R.

    1969-01-01

    Copper fluoride containing no more than 50 ppm of any contaminating element was prepared by the fluorination of copper hydroxyfluoride. The impurity content was obtained by spark source mass spectrometry. High purity copper fluoride is needed as a cathode material for high energy density batteries.

  5. RECOVERY OF Pu FROM CERIUM TRIFLUORIDE BY FLUORINATION

    DOEpatents

    Brown, H.S.; Bohlmann, E.G.

    1959-02-10

    An improved process is prcsented for selectively recovering plutonium from a solution containing fission products comprising precipitating cerium trifluoride in the solution for effccting carrier precipitation of plutonium. The resulting carrier precipitate is dried and subjected to fluorination at about 600 C. The plutonium forms a volatile fiuoridc and is so separated from the nonvolatile cerium fluoride.

  6. Improved Arene Fluorination Methodology for I(III) Salts

    PubMed Central

    Wang, Bijia; Qin, Linlin; Neumann, Kiel D.; Uppaluri, ShriHarsha; Cerny, Ronald L.; DiMagno, Stephen G.

    2010-01-01

    The use of low polarity aromatic solvents (benzene or toluene) and/or the removal of inorganic salts results in dramatically improved yields of fluorinated arenes from diaryliodonium salts. This methodology is shown to “scale down” to the conditions used typically for radiotracer synthesis. PMID:20617820

  7. Hydrogen and fluorine in the surfaces of lunar samples

    NASA Technical Reports Server (NTRS)

    Leich, D. A.; Goldberg, R. H.; Burnett, D. S.; Tombrello, T. A.

    1974-01-01

    The resonant nuclear reaction F-19(p, alpha gamma)O-16 has been used to perform depth-sensitive analyses for both fluorine and hydrogen in lunar samples. The resonance at 0.83 MeV (center-of-mass) in this reaction has been applied to the measurement of the distribution of trapped solar protons in lunar samples to depths up to 0.45 microns. These results are interpreted in terms of terrestrial H2O surface contamination and of a redistribution of the implanted solar H which has been influenced by heavy radiation damage in the surface region. Results are also presented for an experiment to test the penetration of H2O into laboratory glass samples which have been irradiated with O-16 to simulate the radiation-damaged surfaces of lunar glasses. Fluorine determinations have been performed in a 1-micron surface layer on lunar samples using the same F-19(p, alpha gamma)O-16 resonance. The data are discussed from the standpoint that observed fluorine concentrations are a mixture of true lunar fluorine and Teflon contamination.

  8. Fluorinated polyphenylenevinylene (PPV) block co-polymers for nanophotonics

    NASA Astrophysics Data System (ADS)

    Sun, Sam-Shajing; Nguyen, Thuong; Brooks, Jaleesa

    2013-09-01

    Polymer based optoelectronic materials and thin film devices exhibit great potential in future space applications due to their flexibility, light weight, large light absorption coefficient, and promising radiation tolerance in space environment as compared to their inorganic semiconductor counterparts. Since carbon-fluorine (C-F) chemical bonds are much stronger than the carbon-hydrogen (C-H) bonds, fluorinated polymer films offer great potential for space applications due their expected resistance to oxidation, thermal stability, excellent wear properties, and low coefficients of friction. Their use in a space environment is extremely attractive since they are expected to retain their lubricating characteristics in vacuum, unlike many solid lubricants. Current existing polymer photovoltaic materials and devices suffer low photoelectric power conversion efficiencies due to a number factors including poor morphologies at nano scale that hinder the charge separation and transport. This paper reports our recent work on a fluorinated DBfA type block copolymer system where the donor (D) block contains a donor substituted and hydrocarbon based polyphenylenevinylene (PPV), acceptor (fA) block contains a fluorinated and a sulfone acceptor substituted polyphenylenevinylene (f-PPV), and B is a non-conjugated and flexible bridge unit. Preliminary studies reveal DBfA exhibits better nano phase morphologies and over 100 times more efficient optoelectronic conversion efficiencies as compared to D/fA blend.

  9. Heterogeneous Nucleation of Protein Crystals on Fluorinated Layered Silicate

    PubMed Central

    Ino, Keita; Udagawa, Itsumi; Iwabata, Kazuki; Takakusagi, Yoichi; Kubota, Munehiro; Kurosaka, Keiichi; Arai, Kazuhito; Seki, Yasutaka; Nogawa, Masaya; Tsunoda, Tatsuo; Mizukami, Fujio; Taguchi, Hayao; Sakaguchi, Kengo

    2011-01-01

    Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface. PMID:21818343

  10. Enhanced spin-orbit coupling in dilute fluorinated graphene

    NASA Astrophysics Data System (ADS)

    Avsar, Ahmet; Lee, Jong Hak; Koon, Gavin Kok Wai; Özyilmaz, Barbaros

    2015-12-01

    The preservation and manipulation of a spin state mainly depends on the strength of the spin-orbit interaction. For pristine graphene, the intrinsic spin-orbit coupling (SOC) is only in the order of few μeV, which makes it almost impossible to be used as an active element in future electric field controlled spintronics devices. This stimulates the development of a systematic method for extrinsically enhancing the SOC of graphene. In this letter, we study the strength of SOC in weakly fluorinated graphene devices. We observe high non-local signals even without applying any external magnetic field. The magnitude of the signal increases with increasing fluorine adatom coverage. From the length dependence of the non-local transport measurements, we obtain SOC values of ˜5.1 meV and ˜9.1 meV for the devices with ˜0.005% and ˜0.06% fluorination, respectively. Such a large enhancement, together with the high charge mobility of fluorinated samples (μ ˜ 4300 cm2 V-1 s-1-2700 cm2 V-1 s-1), enables the detection of the spin Hall effect even at room temperature.

  11. Fluorine in the Solar Neighborhood: No Evidence for the Neutrino Process

    NASA Astrophysics Data System (ADS)

    Jönsson, H.; Ryde, N.; Spitoni, E.; Matteucci, F.; Cunha, K.; Smith, V.; Hinkle, K.; Schultheis, M.

    2017-01-01

    Asymptotic giant branch (AGB) stars are known to produce “cosmic” fluorine, but it is uncertain whether these stars are the main producers of fluorine in the solar neighborhood or if any of the other proposed formation sites, Type II supernovae (SNe II) and/or Wolf-Rayet (W-R) stars, are more important. Recent articles have proposed both AGB stars and SNe II as the dominant sources of fluorine in the solar neighborhood. In this paper we set out to determine the fluorine abundance in a sample of 49 nearby, bright K giants for which we previously have determined the stellar parameters, as well as alpha abundances homogeneously from optical high-resolution spectra. The fluorine abundance is determined from a 2.3 μm HF molecular line observed with the spectrometer Phoenix. We compare the fluorine abundances with those of alpha-elements mainly produced in SNe II and find that fluorine and the alpha-elements do not evolve in lockstep, ruling out SNe II as the dominating producers of fluorine in the solar neighborhood. Furthermore, we find a secondary behavior of fluorine with respect to oxygen, which is another evidence against the SNe II playing a large role in the production of fluorine in the solar neighborhood. This secondary behavior of fluorine will put new constraints on stellar models of the other two suggested production sites: AGB stars and W-R stars.

  12. A fluoride-derived electrophilic late-stage fluorination reagent for PET imaging.

    PubMed

    Lee, Eunsung; Kamlet, Adam S; Powers, David C; Neumann, Constanze N; Boursalian, Gregory B; Furuya, Takeru; Choi, Daniel C; Hooker, Jacob M; Ritter, Tobias

    2011-11-04

    The unnatural isotope fluorine-18 ((18)F) is used as a positron emitter in molecular imaging. Currently, many potentially useful (18)F-labeled probe molecules are inaccessible for imaging because no fluorination chemistry is available to make them. The 110-minute half-life of (18)F requires rapid syntheses for which [(18)F]fluoride is the preferred source of fluorine because of its practical access and suitable isotope enrichment. However, conventional [(18)F]fluoride chemistry has been limited to nucleophilic fluorination reactions. We report the development of a palladium-based electrophilic fluorination reagent derived from fluoride and its application to the synthesis of aromatic (18)F-labeled molecules via late-stage fluorination. Late-stage fluorination enables the synthesis of conventionally unavailable positron emission tomography (PET) tracers for anticipated applications in pharmaceutical development as well as preclinical and clinical PET imaging.

  13. Fluorine redistribution in a chemical vapor deposited tungsten/polycrystalline silicon gate structure during heat treatment

    NASA Astrophysics Data System (ADS)

    Eriksson, Th.; Carlsson, J.-O.; Keinonen, J.; Petersson, C. S.

    1988-09-01

    Fluorine redistribution during heat treatment of chemical vapor deposited tungsten/polycrystalline silicon gate structures was analyzed by the nuclear resonance broadening technique. The tungsten layer was deposited from a hydrogen/tungsten hexafluoride gas mixture. Upon heat treatment in the temperature range 1020-1325-K tungsten disilicide formation was observed using Rutherford backscattering spectrometry. In the as-deposited sample, the fluorine was accumulated at the tungsten/polycrystalline silicon interface. After silicide formation the fluorine was observed at the tungsten disilicide/polycrystalline silicon interface. At temperatures above 1120 K fluorine starts to diffuse through the polycrystalline silicon layer. A variation in the total fluorine content between the samples was also observed. The origin of the fluorine redistribution as well as the variation in the total fluorine content is discussed in connection to conceivable mechanisms.

  14. Fluorine redistribution in a chemical vapor deposited tungsten/polycrystalline silicon gate structure during heat treatment

    SciTech Connect

    Eriksson, T.; Carlsson, J.; Keinonen, J.; Petersson, C.S.

    1988-09-15

    Fluorine redistribution during heat treatment of chemical vapor deposited tungsten/polycrystalline silicon gate structures was analyzed by the nuclear resonance broadening technique. The tungsten layer was deposited from a hydrogen/tungsten hexafluoride gas mixture. Upon heat treatment in the temperature range 1020--1325-K tungsten disilicide formation was observed using Rutherford backscattering spectrometry. In the as-deposited sample, the fluorine was accumulated at the tungsten/polycrystalline silicon interface. After silicide formation the fluorine was observed at the tungsten disilicide/polycrystalline silicon interface. At temperatures above 1120 K fluorine starts to diffuse through the polycrystalline silicon layer. A variation in the total fluorine content between the samples was also observed. The origin of the fluorine redistribution as well as the variation in the total fluorine content is discussed in connection to conceivable mechanisms.

  15. Eu/Tb codoped spindle-shaped fluorinated hydroxyapatite nanoparticles for dual-color cell imaging

    NASA Astrophysics Data System (ADS)

    Ma, Baojin; Zhang, Shan; Qiu, Jichuan; Li, Jianhua; Sang, Yuanhua; Xia, Haibing; Jiang, Huaidong; Claverie, Jerome; Liu, Hong

    2016-06-01

    Lanthanide doped fluorinated hydroxyapatite (FAp) nanoparticles are promising cell imaging nanomaterials but they are excited at wavelengths which do not match the light sources usually found in a commercial confocal laser scanning microscope (CLSM). In this work, we have successfully prepared spindle-shaped Eu/Tb codoped FAp nanoparticles by a hydrothermal method. Compared with single Eu doped FAp, Eu/Tb codoped FAp can be excited by a 488 nm laser, and exhibit both green and red light emission. By changing the amounts of Eu and Tb peaks, the emission in the green region (500-580 nm) can be decreased to the benefit of the emission in the red region (580-720 nm), thus reaching a balanced dual color emission. Using MC3T3-E1 cells co-cultured with Eu/Tb codoped FAp nanoparticles, it is observed that the nanoparticles are cytocompatible even at a concentration as high as 800 μg ml-1. The Eu/Tb codoped FAp nanoparticles are located in the cytoplasm and can be monitored by dual color--green and red imaging with a single excitation light at 488 nm. At a concentration of 200 μg ml-1, the cytoplasm is saturated in 8 hours, and Eu/Tb codoped FAp nanoparticles retain their fluorescence for at least 3 days. The cytocompatible Eu/Tb codoped FAp nanoparticles with unique dual color emission will be of great use for cell and tissue imaging.Lanthanide doped fluorinated hydroxyapatite (FAp) nanoparticles are promising cell imaging nanomaterials but they are excited at wavelengths which do not match the light sources usually found in a commercial confocal laser scanning microscope (CLSM). In this work, we have successfully prepared spindle-shaped Eu/Tb codoped FAp nanoparticles by a hydrothermal method. Compared with single Eu doped FAp, Eu/Tb codoped FAp can be excited by a 488 nm laser, and exhibit both green and red light emission. By changing the amounts of Eu and Tb peaks, the emission in the green region (500-580 nm) can be decreased to the benefit of the emission in the

  16. Fluorine in a Carbon-enhanced Metal-poor Star

    NASA Astrophysics Data System (ADS)

    Schuler, Simon C.; Cunha, Katia; Smith, Verne V.; Sivarani, Thirupathi; Beers, Timothy C.; Lee, Young Sun

    2007-09-01

    The fluorine abundance of the carbon-enhanced metal-poor (CEMP) star HE 1305+0132 has been derived by analysis of the molecular HF (1-0) R9 line at 2.3357 μm in a high-resolution (R=50,000) spectrum obtained with the Phoenix spectrometer and Gemini-South telescope. Our abundance analysis makes use of a CNO-enhanced ATLAS12 model atmosphere characterized by a metallicity and CNO enhancements determined utilizing medium-resolution (R=3000) optical and near-IR spectra. The effective iron abundance is found to be [Fe/H]=-2.5, making HE 1305+0132 the most Fe-deficient star, by more than an order of magnitude, for which the abundance of fluorine has been measured. Using spectral synthesis, we derive a supersolar fluorine abundance of A(19F)=4.96+/-0.21, corresponding to a relative abundance of [F/Fe]=+2.90. A single line of the Phillips C2 system is identified in our Phoenix spectrum, and along with multiple lines of the first-overtone vibration-rotation CO (3-1) band head, C and O abundances of A(12C)=8.57+/-0.11 and A(16O)=7.04+/-0.14 are derived. We consider the striking fluorine overabundance in the framework of the nucleosynthetic processes thought to be responsible for the C-enhancement of CEMP stars and conclude that the atmosphere of HE 1305+0132 was polluted via mass transfer by a primary companion during its asymptotic giant branch phase. This is the first study of fluorine in a CEMP star, and it demonstrates that this rare nuclide can be a key diagnostic of nucleosynthetic processes in the early Galaxy.

  17. Synthesis and characterization of oleophobic fluorinated polyester films

    NASA Astrophysics Data System (ADS)

    Demir, Tugba

    The study presented in this dissertation is dedicated to the synthesis and characterization of oleophobic fluorinated polyester films. Specifically, the blending of oleophilic polyethylene terephthalate (PET) with low surface energy materials such as fluorinated polyesters has been used in order to fabricate oleophobic PET films. First, fluorinated polyesters (P(PF-oate-R)) possessing different end-groups (-COOH, -OH and -CF3) are synthesized via polycondensation reaction of isophthaloyl chloride with perfluoro ether alcohols. Then, they are solvent-blended with PET at various concentrations to obtain oleophobic polyester films of different compositions. In addition, the films are annealed to investigate the effect of annealing on surface properties of the films. The results show that the obtained PET/P(PF-oate-R) polyester films demonstrate low wettability that depended on the polyester end-groups, film compositions, and annealing. It is found that PET blended with fluorinated polyesters terminated with CF3 groups exhibit higher contact angle (CA) with water and oils than other polyesters. In addition, CA increases with increasing P(PF-oate-R) polyester content in blends. To facilitate the oleophobicity of PET films, the fluorinated polyesters terminated with -CF3 groups with two different Mw were synthesized and blended with PET. The results reveal that at low concentrations, low molecular weight polyesters migrate to the surface easily, resulting in higher surface coverage. Thus, it leads to higher water and oil repellency. On the other hand, when they are used at high concentrations, higher molecular weight polyesters in blends reduce the wettability of the surface to the higher level. It is found that the wettability of the PET film surface depends on not only the Mw of polyesters, but also on annealing protocol. To this end, the effects of the annealing temperature on surface wettability are also examined.

  18. THE PHASE BEHAVIOR OF FLUORINATED DIOLS, DIVINYL ADIPATE, AND A FLUORINATED POLYESTER IN SUPERCRITICAL CARBON DIOXIDE. (R828131)

    EPA Science Inventory

    The use of supercritical carbon dioxide as a reaction medium for polyester synthesis is hindered by the low solubility of diols in CO2. However, it has been previously demonstrated that fluorinated compounds can exhibit greater miscibility with carbon dioxide than t...

  19. Origin of enhanced photocatalytic activity of F-doped CeO2 nanocubes

    NASA Astrophysics Data System (ADS)

    Miao, Hui; Huang, Gui-Fang; Liu, Jin-Hua; Zhou, Bing-Xin; Pan, Anlian; Huang, Wei-Qing; Huang, Guo-Fang

    2016-05-01

    CeO2 nanoparticles are synthesized using a low-temperature solution combustion method and subsequent heat treatment in air. It is found that F-doping leads to smaller particle size and the formation of CeO2 nanocubes with higher percentage of reactive facets exposed. The band gap is estimated to be 3.16 eV and 2.88 eV, for pure CeO2 and fluorine doped CeO2 (F-doped CeO2) nanocubes, respectively. The synthesized F-doped CeO2 nanocubes exhibit much higher photocatalytic activities than commercial TiO2 and spherical CeO2 for the degradation of MB dye under UV and visible light irradiation. The apparent reaction rate constant k of MB decomposition over the optimized F-doped CeO2 nanocubes is 9.5 times higher than that of pure CeO2 and 2.2 times higher than that of commercial TiO2. The enhanced photocatalytic activity of F-doped CeO2 nanocubes originates from the fact that F-doping induces the small size, the highly reactive facets exposed, the intense absorption in the UV-vis range and the narrowing of the band gap. This research provides some new insights for the synthesis of the doping of the foreign atoms into photocatalyst with controlled morphology and enhanced photocatalytic activity.

  20. Ionic liquid assisted chemical strategy to TiO2 hollow nanocube assemblies with surface-fluorination and nitridation and high energy crystal facet exposure for enhanced photocatalysis.

    PubMed

    Yu, Shengli; Liu, Baocang; Wang, Qin; Gao, Yuxi; Shi, Ying; Feng, Xue; An, Xiaoting; Liu, Lixia; Zhang, Jun

    2014-07-09

    Realization of anionic nonmetal doping and high energy crystal facet exposure in TiO2 photocatalysts has been proven to be an effective approach for significantly improving their photocatalytic performance. A facile strategy of ionic liquid assisted etching chemistry by simply hydrothermally etching hollow TiO2 spheres composed of TiO2 nanoparticles with an ionic liquid of 1-butyl-3-methylimidazolium tetrafluoroborate without any other additives is developed to create highly active anatase TiO2 nanocubes and TiO2 nanocube assemblies. With this one-pot ionic liquid assisted etching process, the surface-fluorination and nitridation and high energy {001} crystal facets exposure can be readily realized simultaneously. Compared with the benchmark materials of P25 and TiO2 nanostructures with other hierarchical architectures of hollow spheres, flaky spheres, and spindles synthesized by hydrothermally etching hollow TiO2 spheres with nonionic liquid of NH4F, the TiO2 nanocubes and TiO2 nanocube assemblies used as efficient photocatalysts show super high photocatalytic activity for degradation of methylene blue, methyl orange, and rhodamine B, due to their surface-fluorination and nitridation and high energy crystal facet exposure. The ionic liquid assisted etching chemistry is facile and robust and may be a general strategy for synthesizing other metal oxides with high energy crystal facets and surface doping for improving photocatalytic activity.