Science.gov

Sample records for heavy ga-doped zno

  1. Effect of Ga doping and point defect on magnetism of ZnO

    NASA Astrophysics Data System (ADS)

    Hou, Qingyu; Zhao, Chunwang; Jia, Xiaofang; Qu, Lingfeng

    2017-02-01

    The combined influence mechanism of Ga doping and Zn vacancy or O vacancy on magnetism of ZnO is studied using the first-principle calculation. The coexistence of Ga doping and Zn vacancy can achieve a Curie temperature higher than room temperature and the Ga doped ZnO system is a p-type diluted degenerate semiconductor with metalized ferromagnetism. The magnetism of the doping system of Ga doping and Zn vacancy is mainly contributed by double-exchange interaction through the holes of Zn vacancy taking carrier as medium. However, the system of Ga doping and O vacancy is non-magnetic. In the coexistence of Ga doping and Zn vacancy or O vacancy, a close relative distance between doping and vacancy will reduce the formation energy of the doping system but increase the easiness of doping and vacancy, as well as enhance the stability of the doping system.

  2. Growth of Ga-doped ZnO nanowires by two-step vapor phase method

    SciTech Connect

    Xu, C.; Kim, M.; Chun, J.; Kim, D.

    2005-03-28

    A two-step route is presented to dope Ga into ZnO nanowires and also fabricate heterostructures of Ga-doped ZnO nanowires on ZnO. The content of Ga in ZnO nanowires is about 7 at. % from energy-dispersive x-ray analysis. The single crystal Ga doped ZnO nanowires with the diameter of 40 nm and the length of 300-500 nm are well aligned on the ZnO bulk. The growth direction is along [001]. Raman scattering analysis shows that the doping of Ga into ZnO nanowires depresses Raman E{sub 1L} mode of ZnO, manifesting that Ga sites in ZnO are Zn sites (Ga{sub Zn}). The formation mechanism of Zn{sub 1-x}Ga{sub x}O nanowires/ZnO heterostructures is proposed.

  3. Fabrication and characterization of Ga-doped ZnO / Si heterojunction nanodiodes

    NASA Astrophysics Data System (ADS)

    Akgul, Guvenc; Akgul, Funda Aksoy

    2017-02-01

    In this study, temperature-dependent electrical properties of n-type Ga-doped ZnO thin film / p-type Si nanowire heterojunction diodes were reported. Metal-assisted chemical etching (MACE) process was performed to fabricate Si nanowires. Ga-doped ZnO films were then deposited onto nanowires through chemical bath deposition (CBD) technique to build three-dimensional nanowire-based heterojunction diodes. Fabricated devices revealed significant diode characteristics in the temperature range of 220 - 360 K. Electrical measurements shown that diodes had a well-defined rectifying behavior with a good rectification ratio of 103 ±3 V at room temperature. Ideality factor (n) were changed from 2.2 to 1.2 with increasing temperature.

  4. Effect of gallium concentrations on the morphologies, structural and optical properties of Ga-doped ZnO nanostructures.

    PubMed

    Algarni, H; El-Gomati, M M; Al-Assiri, M S

    2014-07-01

    The effect of gallium ion concentrations (0.5 and 2%) on the morphologies, structural and optical properties of Ga-doped ZnO nanostructures are presented. Ga-doped ZnO nanostructures were synthesized on silicon substrates by simple thermal evaporation process using metallic zinc and Ga powders in the presence of oxygen. Interestingly, it was observed that Ga-ions incorporation in ZnO nanomaterials play an important role on the growth kinetics and hence on the morphologies of as-grown Ga-doped ZnO nanostructures. It was seen that at low Ga-concentration, needle-shaped Ga-doped ZnO nanostructures are formed, presumably by subsequent stacking of hexagonal plates. However, when increasing the Ga-concentration, multipods of Ga-doped ZnO were grown. In addition to the morphologies, incorporating Ga-ions into ZnO also affect the room-temperature photoluminescence properties. Therefore, at lower Ga-ion concentration, an intense UV emission was observed while at high Ga-concentration a deep level emission was seen in the room-temperature photoluminescence spectra. This research demonstrates that by controlling the Ga-ion concentration the morphologies and optical properties of ZnO nanomaterials can be tailored.

  5. Effect of Ga-doping on the properties of ZnO nanowire

    SciTech Connect

    Ishiyama, Takeshi Nakane, Takaya Fujii, Tsutomu

    2015-02-27

    Arrays of single-crystal zinc oxide (ZnO) nanowires have been synthesized on silicon substrates by vapor-liquid-solid growth techniques. The effect of growth conditions including substrate temperature and Ar gas flow rate on growth properties of ZnO nanowire arrays were studied. Structural and optical characterization was performed using scanning electron microscopy (SEM) and photoluminescence (PL) spectroscopy. SEM images of the ZnO nanowire arrays grown at various Ar gas flow rates indicated that the alignment and structural features of ZnO nanowires were affected by the gas flow rate. The PL of the ZnO nanowire arrays exhibited strong ultraviolet (UV) emission at 380 nm and green emission around 510 nm. Moreover, the green emission reduced in Ga-doped sample.

  6. Impurity complexes and conductivity of Ga-doped ZnO

    NASA Astrophysics Data System (ADS)

    Demchenko, Denis

    2012-02-01

    Using hybrid functional theory compared with experimental measurements, we investigate the in?uence of gallium impurities and their complexes on electrical properties of ZnO. In contrast to the behavior of isolated Ga impurities and native defects, the calculated formation energies of Ga complexes are consistent with experimental data. We show that for high levels of Ga doping the acceptor behavior of (GaZn-VZn) and (GaZn-Oi) complexes explains the conductivity measurements and compensation levels in ZnO. The computed binding energies of these complexes are in agreement with the binding energies obtained from the measurements of the temperature dependence of carrier mobility. The binding energy dependence on the Fermi level, as well as the computed barrier heights for the formation of complexes are also consistent with the latest experiments on annealing of Ga doped ZnO samples. Our results show that the formation of defect complexes is essential for capturing the physics Ga defects in ZnO.

  7. Wavelength-Tunable Electroluminescent Light Sources from Individual Ga-Doped ZnO Microwires.

    PubMed

    Jiang, Mingming; He, Gaohang; Chen, Hongyu; Zhang, Zhenzhong; Zheng, Lingxia; Shan, Chongxin; Shen, Dezhen; Fang, Xiaosheng

    2017-03-07

    Electrically driven wavelength-tunable light emission from biased individual Ga-doped ZnO microwires (ZnO:Ga MWs) is demonstrated. Single crystalline ZnO:Ga MWs with different Ga-doping concentrations have been synthesized using a one-step chemical vapor deposition method. Strong electrically driven light emission from individual ZnO:Ga MW based devices is realized with tunable colors, and the emission region is localized toward the center of the wires. Increasing Ga-doping concentration in the MWs can lead to the redshift of electroluminescent emissions in the visible range. Interestingly, owing to the lack of rectification characteristics, relevant electrical measurement results show that the alternating current-driven light emission functions excellently on the ZnO:Ga MWs. Consequently, individual ZnO:Ga MWs, which can be analogous to incandescent sources, offer unique possibilities for future electroluminescence light sources. This typical multicolor emitter can be used to rival and complement other conventional semiconductor devices in displays and lighting.

  8. Demonstration of hyperbolic metamaterials at telecommunication wavelength using Ga-doped ZnO.

    PubMed

    Kalusniak, Sascha; Orphal, Laura; Sadofev, Sergey

    2015-12-14

    Hyperbolic metamaterials (HMMs) have attracted much attention because they allow for broadband enhancement of spontaneous emission and imaging below the diffraction limit. However, HMMs with traditional metals as metallic component are not suitable for applications in the infrared spectral range. Using Ga-doped ZnO, we demonstrate monolithic HMMs operating at infrared wavelengths. We identify the material's hyperbolic character by various optical measurements in combination with theoretical calculations. In particular, negative refraction of the extraordinary wave and propagation of light with wave vector values exceeding that of free-space are demonstrated in the entire telecommunication window. These findings reveal a considerable potential for creating novel functional elements at telecommunication wavelengths.

  9. Enhanced non-enzymatic glucose biosensor of Ga-doped ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Peng, Wan-Chan; Wang, Zi-Hao; Yang, Chih-Chiang; Huang, Chien-Sheng; Su, Yan-Kuin; Ruan, Jian-Long

    2017-04-01

    In this work gallium (Ga)-Doped ZnO nanorods (GZO NRs) successfully applied for the development of enzyme free glucose. GZO NRs synthesized by using the hydrothermal on ZnO seed layer was subsequently deposited onto the glass substrate. The GZO NRs electrode has peak currents increasing from 620 to 941μA with glucose concentration (6, 8 and 10 mM) in cyclic voltammograms. GZO NRs electrode sensitivity of the sensor to glucose oxidation was 33.4 (μA/mM-cm2). The GZO NRs modified electrode showed a greatly enhanced electrocatalytic property toward glucose oxidation, as well as an excellent anti-interference and a good stability.

  10. Impurity complexes and conductivity of Ga-doped ZnO

    NASA Astrophysics Data System (ADS)

    Demchenko, D. O.; Earles, B.; Liu, H. Y.; Avrutin, V.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H.

    2011-08-01

    Using hybrid functional theory together with experimental measurements, we investigate the influence of gallium impurities and their complexes on electrical properties of ZnO. In contrast to the behavior of isolated Ga impurities and native defects, the calculated formation energies of Ga complexes are consistent with our experimental data. We show that for high levels of Ga doping the acceptor behavior of GaZn-VZn and GaZn-Oi complexes explains the conductivity measurements and compensation levels in ZnO. The computed binding energies of these complexes are also consistent with the binding energies obtained from the measurements of the temperature dependence of carrier mobility. Our results show that the formation of defect complexes, often overlooked by theory, can be indispensable in capturing the defect physics.

  11. Fabrication and characterization of pristine and annealed Ga doped ZnO thin films using sputtering

    SciTech Connect

    Mishra, Abhisek Gouda, Himanshu Sekhar; Mohapatra, Saswat; Singh, Udai P.

    2016-05-06

    ZnO is a wide-band gap, transparent, polar semiconductor with unparalleled optoelectronic, piezoelectric, thermal and transport properties, which make it the material of choice for a wide range of applications such as blue/UV optoelectronics, energy conversion, transparent electronics, spintronic, plasmonic and sensor devices. We report, three sets of Ga doped Zinc Oxide (GZO) were fabricated in different sputtering power (100 watt, 200 watt and 300 watt). Thereafter films were annealed in nitrogen ambient for 30 minutes at 400° C. From the optical absorption spectroscopy it was found that pristine films are showing a 75% transmittance in the visible region of light and it increases after the annealing. However, for 300 W grown sample opposite trend has been achieved for the post annealed sample. X-ray diffraction pattern of all the pristine and annealed films showed a preferable growth orientation at (002) phase. Some other weak peaks were also appeared in different angle which indicates that films are polycrystalline in nature. XRD data also reveals that crystallite size increases with sputtering power up to 200 W and thereafter it decreases with the deposition power. It also noted that the crystallite size of the annealed film increases with compare to the non annealed films. At room temperature an enhancement in electrical properties of Ga doped ZnO thin films was noted for the annealed ZnO films except for the film deposited at 300 watt. More significantly, it was found that annealed thin films showed the resistivity in the range of 10{sup −3} ∼ 10{sup −4} ohm-cm. Such a high optical transmittance and conducting zinc-oxide thin film can be used as a window layer in solar cell.

  12. Fabrication and characterization of pristine and annealed Ga doped ZnO thin films using sputtering

    NASA Astrophysics Data System (ADS)

    Mishra, Abhisek; Mohapatra, Saswat; Gouda, Himanshu Sekhar; Singh, Udai P.

    2016-05-01

    ZnO is a wide-band gap, transparent, polar semiconductor with unparalleled optoelectronic, piezoelectric, thermal and transport properties, which make it the material of choice for a wide range of applications such as blue/UV optoelectronics, energy conversion, transparent electronics, spintronic, plasmonic and sensor devices. We report, three sets of Ga doped Zinc Oxide (GZO) were fabricated in different sputtering power (100 watt, 200 watt and 300 watt). Thereafter films were annealed in nitrogen ambient for 30 minutes at 400° C. From the optical absorption spectroscopy it was found that pristine films are showing a 75% transmittance in the visible region of light and it increases after the annealing. However, for 300 W grown sample opposite trend has been achieved for the post annealed sample. X-ray diffraction pattern of all the pristine and annealed films showed a preferable growth orientation at (002) phase. Some other weak peaks were also appeared in different angle which indicates that films are polycrystalline in nature. XRD data also reveals that crystallite size increases with sputtering power up to 200 W and thereafter it decreases with the deposition power. It also noted that the crystallite size of the annealed film increases with compare to the non annealed films. At room temperature an enhancement in electrical properties of Ga doped ZnO thin films was noted for the annealed ZnO films except for the film deposited at 300 watt. More significantly, it was found that annealed thin films showed the resistivity in the range of 10-3 ˜ 10-4 ohm-cm. Such a high optical transmittance and conducting zinc-oxide thin film can be used as a window layer in solar cell.

  13. Ga-doped ZnO thin film surface characterization by wavelet and fractal analysis

    NASA Astrophysics Data System (ADS)

    Jing, Chenlei; Tang, Wu

    2016-02-01

    The change in roughness of various thicknesses Ga-doped ZnO (GZO) thin films deposited by magnetron reactive sputtering on glass substrates at room temperature was measured by atomic force microscopy (AFM). Multi-resolution signal decomposition based on wavelet transform and fractal geometry was applied to process surface profiles, to evaluate the roughness trend of relevant frequency resolution. The results give a six-level decomposition and the results change with deposited time and surface morphology. Also, it is found that fractal dimension is closely connected to the underside diameter (grain size) and the distance between adjacent grains that affect the change rate of surface and the increase of the defects such as abrupt changes lead to a larger value of fractal dimension.

  14. A computational study on the experimentally observed sensitivity of Ga-doped ZnO nanocluster toward CO gas

    NASA Astrophysics Data System (ADS)

    Derakhshandeh, Maryam; Anaraki-Ardakani, Hossein

    2016-10-01

    Metal doped ZnO nanostructures have attracted extensive attention as chemical sensors for toxic gases. An experimental study has previously shown that Ga-doped ZnO nanostructures significantly show a higher electronic response than the undoped sample toward CO gas. Here, the electronic sensitivity of pristine and Ga-doped ZnO nanoclusters to CO gas is explored using density functional theory computations (at B3LYP, PBE, M06-2X, and ωB97XD levels). Our results reproduce and clarify the electrical behavior which has been observed experimentally from the ZnO nanoparticles after the exposure to CO gas. We showed that the calculated change of HOMO-LUMO gap may be a proper index for the change of electrical conductance which is measurable experimentally. It was found that, in contrast to the pristine ZnO nanocluster, the electronic properties of Ga-doped cluster are sharply sensitive to the presence of CO gas which is in good accordance with the results of the experimental study.

  15. Growth behavior and electrical performance of Ga-doped ZnO nanorod/p-Si heterojunction diodes prepared using a hydrothermal method.

    PubMed

    Park, Geun Chul; Hwang, Soo Min; Lim, Jun Hyung; Joo, Jinho

    2014-01-01

    The incorporation of foreign elements into ZnO nanostructures is of significant interest for tuning the structure and optical and electrical properties in nanoscale optoelectronic devices. In this study, Ga-doped 1-D ZnO nanorods were synthesized using a hydrothermal route, in which the doping content of Ga was varied from 0% to 10%. The pn heterojunction diodes based on the n-type Ga-doped ZnO nanorod/p-type Si substrates were constructed, and the effect of the Ga doping on the morphology, chemical bonding structure, and optical properties of the ZnO nanorods was systematically investigated as well as the diode performance. With increasing Ga content, the average diameter of the ZnO nanorods was increased, whereas the amount of oxygen vacancies was reduced. In addition, the Ga-doped ZnO nanorod/p-Si diodes showed a well-defined rectifying behavior in the I-V characteristics and an improvement in the electrical conductivity (diode performance) by the Ga doping, which was attributed to the increased charge carrier (electron) concentration and the reduced defect states in the nanorods by incorporating Ga. The results suggest that Ga doping is an effective way to tailor the morphology, optical, electronic, and electrical properties of ZnO nanorods for various applications such as field-effect transistors (FETs), light-emitting diodes (LEDs), and laser diodes (LDs).

  16. Electrical and optical study of ultrasonic-assisted hydrothermal synthesized Ga doped ZnO nanorods for polymer solar cell application

    NASA Astrophysics Data System (ADS)

    Ahmadi, M.; Rashidi Dafeh, S.

    2016-08-01

    Ga doped ZnO nanorods with homogeneous morphology grown by ultrasonic-assisted hydrothermal method on ITO substrate. The effect of hydrothermal growth times 30, 60, 90 and 120 min on the characteristics of ZnO nanorods was examined. The samples were analyzed by X-ray diffraction, scanning electron microscopy, UV-Vis spectrometer and conductivity measurement. With the optimization of the growth times (60 min), we employed Ga doped ZnO nanorods with diverse dopant concentration in fabrication of polymer solar cell. By comparing the effect of Ga doped ZnO thin films with various dopant ratio (0, 0.5, 1.0 and 2 %) on the performance of Ga doped ZnO thin films, 0.5 % Ga doped ZnO was found as the most effective doping level among the selected doping concentrations. Also using 0.5 % Ga doped ZnO thin film, Jsc of 7.54 mA/cm2, Voc of 0.541 V, and fill factor of 64.81 % were achieved, which led to power conversion efficiency of 2.64 %.

  17. Hot-electron energy relaxation time in Ga-doped ZnO films

    SciTech Connect

    Šermukšnis, E. Liberis, J.; Ramonas, M.; Matulionis, A.; Toporkov, M.; Liu, H. Y.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2015-02-14

    Hot-electron energy relaxation time is deduced for Ga-doped ZnO epitaxial layers from pulsed hot-electron noise measurements at room temperature. The relaxation time increases from ∼0.17 ps to ∼1.8 ps when the electron density increases from 1.4 × 10{sup 17 }cm{sup −3} to 1.3 × 10{sup 20 }cm{sup −3}. A local minimum is resolved near an electron density of 1.4 × 10{sup 19 }cm{sup −3}. The longest energy relaxation time (1.8 ps), observed at the highest electron density, is in good agreement with the published values obtained by optical time-resolved luminescence and absorption experiments. Monte Carlo simulations provide a qualitative interpretation of our observations if hot-phonon accumulation is taken into account. The local minimum of the electron energy relaxation time is explained by the ultrafast plasmon-assisted decay of hot phonons in the vicinity of the plasmon–LO-phonon resonance.

  18. The electrical properties of low pressure chemical vapor deposition Ga doped ZnO thin films depending on chemical bonding configuration

    NASA Astrophysics Data System (ADS)

    Jung, Hanearl; Kim, Doyoung; Kim, Hyungjun

    2014-04-01

    The electrical and chemical properties of low pressure chemical vapor deposition (LP-CVD) Ga doped ZnO (ZnO:Ga) films were systematically investigated using Hall measurement and X-ray photoemission spectroscopy (XPS). Diethylzinc (DEZ) and O2 gas were used as precursor and reactant gas, respectively, and trimethyl gallium (TMGa) was used as a Ga doping source. Initially, the electrical properties of undoped LP-CVD ZnO films depending on the partial pressure of DEZ and O2 ratio were investigated using X-ray diffraction (XRD) by changing partial pressure of DEZ from 40 to 140 mTorr and that of O2 from 40 to 80 mTorr. The resistivity was reduced by Ga doping from 7.24 × 10-3 Ω cm for undoped ZnO to 2.05 × 10-3 Ω cm for Ga doped ZnO at the TMG pressure of 8 mTorr. The change of electric properties of Ga doped ZnO with varying the amount of Ga dopants was systematically discussed based on the structural crystallinity and chemical bonding configuration, analyzed by XRD and XPS, respectively.

  19. Effect of Ga doping concentration on the luminescence efficiency of GaN light-emitting diodes with Ga-doped ZnO contacts

    NASA Astrophysics Data System (ADS)

    Kim, Chang Oh; Kim, Sung; Shin, Dong Hee; Shin, Dong Yeol; Choi, Suk-Ho; Hwang, Sung Won; Cha, Nam-Goo; Kang, Sammook

    2012-11-01

    P-n junction GaN light-emitting diodes (LEDs) were fabricated using Ga-doped ZnO (GZO) films as electrical contacts and characterized by electroluminescence (EL) and current-voltage (I-V) measurements. GaN p-n epilayers with a total thickness of ~6 μm were grown on c-plane (0001) sapphire substrates by metal-organic chemical vapor deposition. Half region of the p-GaN layer was etched until the n-GaN layer was exposed, and 100-nm-thick GZO contacts were deposited on the p- and n-GaN layers by RF sputtering with varying Ga concentration ( n G ) from 1 to 5 mol%. Based on the results of Hall effect, photoluminescence (PL), and X-ray diffraction (XRD), the GZO films were expected to act as best electrical contacts for the LEDs at n G = 2 mol%. Under forward-bias conditions, the I-V curves showed diode characteristics except n G = 5 mol%, and the leakage current was minimized at n G = 2 mol%. Two dominant EL peaks of ultraviolet and yellow emissions were observed at ~376 and ~560 nm, and attributed to near-band-edge- and defect-related radiative transitions, respectively. At n G = 2 mol%, the UV EL showed markedly large intensities for all injection currents, consistent with the results of Hall effect, PL, I-V, and XRD.

  20. Structure and Properties of Al and Ga- Doped ZnO

    NASA Astrophysics Data System (ADS)

    Temizer, Namik Kemal

    Recently there is tremendous interest in Transparent conducting oxide (TCO) research due to the unlimited and exciting application areas. Current research is mostly focused on finding alternative low cost and sustainable materials in order to replace indium tin oxide (ITO), which caused serious concern due to the increasing cost of indium and chemical stability issues of ITO. The primary aim of this research is to develop alternative TCO materials with superior properties in order to increase the efficiency in optoelectronic applications, as well as to study the properties of these materials to fully characterize them. We have grown Al and Ga-doped ZnO films with an optimized composition under different deposition conditions in order to understand the effect of processing parameters on the film properties. We report a detailed investigation on the structure-property correlations in Ga and Al codoped ZnO films on c-sapphire substrates where the thin film microstructure varies from nanocrystalline to single crystal. We have achieved highly epitaxial films with very high optical transmittance (close to 90%) and low resistivity (˜110muO-cm) values. The films grown in an ambient oxygen partial pressure (PO2 ) of 50 mTorr and at growth temperatures from room temperature to 600°C showed semiconducting behavior, whereas samples grown at a Po2 of 1 mTorr showed metallic nature. The most striking feature is the occurrence of resistivity minima at relatively high temperatures around 110 K in films deposited at high temperatures. The structure-property correlations reveal that point defects play an important role in modifying the structural, optical, electrical and magnetic properties and such changes in physical properties are controlled predominantly by the defect content. To gain a better understanding of the conduction processes in doped ZnO thin films, we have studied the temperature variation of resistivity of some selected samples that showed some interesting behavior

  1. Impurity distribution and microstructure of Ga-doped ZnO films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kvit, A. V.; Yankovich, A. B.; Avrutin, V.; Liu, H.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H.; Voyles, P. M.

    2012-12-01

    We report microstructural characterization of heavily Ga-doped ZnO (GZO) thin films on GaN and sapphire by aberration-corrected scanning transmission electron microscopy. Growth under oxygen-rich and metal-rich growth conditions leads to changes in the GZO polarity and different extended defects. For GZO layers on sapphire, the primary extended defects are voids, inversion domain boundaries, and low-angle grain boundaries. Ga doping of ZnO grown under metal-rich conditions causes a switch from pure oxygen polarity to mixed oxygen and zinc polarity in small domains. Electron energy loss spectroscopy and energy dispersive spectroscopy spectrum imaging show that Ga is homogeneous, but other residual impurities tend to accumulate at the GZO surface and at extended defects. GZO grown on GaN on c-plane sapphire has Zn polarity and no voids. There are misfit dislocations at the interfaces between GZO and an undoped ZnO buffer layer and at the buffer/GaN interface. Low-angle grain boundaries are the only threading microstructural defects. The potential effects of different extended defects and impurity distributions on free carrier scattering are discussed.

  2. First principle study of structural stability, electronic structure and optical properties of Ga doped ZnO with different concentrations

    NASA Astrophysics Data System (ADS)

    Berrezoug, H. I.; Merad, A. E.; Aillerie, M.; Zerga, A.

    2017-03-01

    Structural, electronic and optical properties of pure and Ga doped ZnO (GZO), with different concentrations (x  =  6.25%, 12.5% and 25%) are investigated by the ab initio full-potential linearized augmented plane wave (FP-LAPW) method, using the exchange and correlation potential within the generalized gradient approximation and the modified Becke–Johnson (mBJ) exchange potential. In the present work, some electronic properties, such as the band structure and the density of states as well as some optical properties, such as the dielectric function ε(ω), the refractive index n(ω), the reflectivity R(ω) and the electron energy-loss L(ω) were improved. The calculated lattice constants and the optical band gap (3.27 eV) of pure ZnO were found to be in good agreement with the experimental results. We have shown that the increase of the Ga concentration in ZnO creates shallow donor states Ga-4s in the minimum of the conduction band around the Fermi level, increasing the optical band gap and the conductivity. The absorption edge, presents in the imaginary part of the dielectric function, moves to higher energy levels with increasing Ga concentration. The static refractive index and the reflectivity of GZO increased with the increasing Ga concentrations. The L(ω) spectrum shows a single metal property for pure ZnO, and two peaks were observed for GZO, a small one around 2 eV originated from Ga doping and a second moved to higher energies indicating that the metallic character is more present in GZO than in pure ZnO.

  3. Synthesis of nano-dimensional ZnO and Ga doped ZnO thin films by vapor phase transport and study as transparent conducting oxide.

    PubMed

    Ghosh, S; Saurav, M; Pandey, B; Srivastava, P

    2008-05-01

    We report synthesis of polycrystalline ZnO and Ga doped ZnO (ZnO:Ga) thin films (approximately 80 nm) on Si and quartz substrates in a non-vacuum muffle furnace, a simple and cost-effective route, without any catalyst/reactive carrier gases, at relatively low processing temperature of 550 degrees C. The crystalline phases of the films are identified by grazing angle X-ray diffraction (GAXRD). The growth of ZnO films is examined with scanning electron microscope (SEM) as a function of deposition time. An optical transmission of approximately 90% is observed for pure ZnO film having a resistivity of approximately 2.1 Omega-cm as measured by van der Pauw technique. Doping with Ga results in single phase ZnO:Ga films, retaining an optical transmission of about 80% and three orders of magnitude decrease in resistivity as compared to pure ZnO film.

  4. ZnO nanowires array grown on Ga-doped ZnO single crystal for dye-sensitized solar cells.

    PubMed

    Hu, Qichang; Li, Yafeng; Huang, Feng; Zhang, Zhaojun; Ding, Kai; Wei, Mingdeng; Lin, Zhang

    2015-06-23

    High quality ZnO nanowires arrays were homoepitaxial grown on Ga-doped ZnO single crystal (GZOSC), which have the advantages of high conductivity, high carrier mobility and high thermal stability. When it was employed as a photoanode in the DSSCs, the cell exhibited a 1.44% power-conversion efficiency under the illumination of one sun (AM 1.5G). The performance is superior to our ZnO nanowires/FTO based DSSCs under the same condition. This enhanced performance is mainly attributed to the perfect interface between the ZnO nanowires and the GZOSC substrate that contributes to lower carrier scattering and recombination rates compared with that grown on traditional FTO substrate.

  5. ZnO nanowires array grown on Ga-doped ZnO single crystal for dye-sensitized solar cells

    PubMed Central

    Hu, Qichang; Li, Yafeng; Huang, Feng; Zhang, Zhaojun; Ding, Kai; Wei, Mingdeng; Lin, Zhang

    2015-01-01

    High quality ZnO nanowires arrays were homoepitaxial grown on Ga-doped ZnO single crystal (GZOSC), which have the advantages of high conductivity, high carrier mobility and high thermal stability. When it was employed as a photoanode in the DSSCs, the cell exhibited a 1.44% power-conversion efficiency under the illumination of one sun (AM 1.5G). The performance is superior to our ZnO nanowires/FTO based DSSCs under the same condition. This enhanced performance is mainly attributed to the perfect interface between the ZnO nanowires and the GZOSC substrate that contributes to lower carrier scattering and recombination rates compared with that grown on traditional FTO substrate. PMID:26099568

  6. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Structural and Electrical Properties of Single Crystalline Ga-Doped ZnO Thin Films Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Lu, Zhong-Lin; Zou, Wen-Qin; Xu, Ming-Xiang; Zhang, Feng-Ming; Du, You-Wei

    2009-11-01

    High-quality Ga-doped ZnO (ZnO:Ga) single crystalline films with various Ga concentrations are grown on a-plane sapphire substrates using molecular-beam epitaxy. The site configuration of doped Ga atoms is studied by means of x-ray absorption spectroscopy. It is found that nearly all Ga can substitute into ZnO lattice as electrically active donors, a generating high density of free carriers with about one electron per Ga dopant when the Ga concentration is no more than 2%. However, further increasing the Ga doping concentration leads to a decrease of the conductivity due to partial segregation of Ga atoms to the minor phase of the spinel ZnGa2O4 or other intermediate phase. It seems that the maximum solubility of Ga in the ZnO single crystalline film is about 2 at.% and the lowest resistivity can reach 1.92 × 10-4 Ω·cm at room temperature, close to the best value reported. In contrast to ZnO:Ga thin film with 1% or 2% Ga doping, the film with 4% Ga doping exhibits a metal semiconductor transition at 80 K. The scattering mechanism of conducting electrons in single crystalline ZnO:Ga thin film is discussed.

  7. Electronic structure of Al- and Ga-doped ZnO films studied by hard X-ray photoelectron spectroscopy

    SciTech Connect

    Gabás, M.; Ramos Barrado, José R.; Torelli, P.; Barrett, N. T.

    2014-01-01

    Al- and Ga-doped sputtered ZnO films (AZO, GZO) are semiconducting and metallic, respectively, despite the same electronic valence structure of the dopants. Using hard X-ray photoelectron spectroscopy we observe that both dopants induce a band in the electronic structure near the Fermi level, accompanied by a narrowing of the Zn 3d/O 2p gap in the valence band and, in the case of GZO, a substantial shift in the Zn 3d. Ga occupies substitutional sites, whereas Al dopants are in both substitutional and interstitial sites. The latter could induce O and Zn defects, which act as acceptors explaining the semiconducting character of AZO and the lack of variation in the optical gap. By contrast, mainly substitutional doping is consistent with the metallic-like behavior of GZO.

  8. Enhancing the Performance of Quantum Dot Light-Emitting Diodes Using Room-Temperature-Processed Ga-Doped ZnO Nanoparticles as the Electron Transport Layer.

    PubMed

    Cao, Sheng; Zheng, Jinju; Zhao, Jialong; Yang, Zuobao; Li, Chengming; Guan, Xinwei; Yang, Weiyou; Shang, Minghui; Wu, Tom

    2017-05-10

    Colloidal ZnO nanoparticle (NP) films are recognized as efficient electron transport layers (ETLs) for quantum dot light-emitting diodes (QD-LEDs) with good stability and high efficiency. However, because of the inherently high work function of such films, spontaneous charge transfer occurs at the QD/ZnO interface in such a QD-LED, thus leading to reduced performance. Here, to improve the QD-LED performance, we prepared Ga-doped ZnO NPs with low work functions and tailored band structures via a room-temperature (RT) solution process without the use of bulky organic ligands. We found that the charge transfer at the interface between the CdSe/ZnS QDs and the doped ZnO NPs was significantly weakened because of the incorporated Ga dopants. Remarkably, the as-assembled QD-LEDs, with Ga-doped ZnO NPs as the ETLs, exhibited superior luminances of up to 44 000 cd/m(2) and efficiencies of up to 15 cd/A, placing them among the most efficient red-light QD-LEDs ever reported. This discovery provides a new strategy for fabricating high-performance QD-LEDs by using RT-processed Ga-doped ZnO NPs as the ETLs, which could be generalized to improve the efficiency of other optoelectronic devices.

  9. Structural optical and electronic properties of Fe and Ga doped ZnO thin films grown using pulsed laser deposition technique

    NASA Astrophysics Data System (ADS)

    Singh, Karmvir; Shukla, D. K.; Majid, S.; Dhar, R.; Choudhary, R. J.; Phase, D. M.

    2016-10-01

    Band gap engineering in ZnO thin films have been subject of intensive studies. The thin films of 2 wt % Fe and 2 wt % Ga doped ZnO and undoped ZnO were deposited on glass substrate by pulse laser deposition technique. Structural, optical and electronic structure properties of these thin films were investigated by X- Ray diffraction (XRD), UV-Vis spectroscopy and X-ray absorption spectroscopy (XAS), respectively. XRD studies show that all the thin films are highly oriented along the c-axis and maintain the wurtzite structure. Out of plane lattice parameter in Ga doped is smaller while in Fe doped is larger, compared to undoped ZnO. The band gaps of doped films have been found to increase due to doping of the Ga and Fe ions. XAS studies across O K edges of doped thin films show that the conduction band edge structure probed via oxygen 1s to 2p transitions have modified significantly in Ga doped sample.

  10. Influence of Substrate Temperature and Post-Deposition Annealing on Material Properties of Ga-Doped ZnO Prepared by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Scott, Robin C.; Leedy, Kevin D.; Bayraktaroglu, Burhan; Look, David C.; Smith, David J.; Ding, Ding; Lu, Xianfeng; Zhang, Yong-Hang

    2011-04-01

    Ga-doped ZnO films were prepared at 10 mTorr of oxygen over a broad temperature range using pulsed laser deposition. The carrier concentration of as-deposited films decreased monotonically with deposition temperature over a temperature range of 25°C to 450°C. Post-deposition annealing of as-deposited films in forming gas (5% H2 in argon) or vacuum resulted in a substantial increase in both carrier concentration and electron mobility. The figure of merit was highest for films deposited at 250°C then annealed in forming gas at 400°C. The optical transmittance was near 90% throughout the visible and near-infrared spectral regions. These results indicate that Ga-doped ZnO is a viable alternative to transparent indium-based conductive oxides.

  11. Optoelectronic Properties and the Electrical Stability of Ga-Doped ZnO Thin Films Prepared via Radio Frequency Sputtering

    PubMed Central

    Jen, Shien-Uang; Sun, Hui; Chiang, Hai-Pang; Chen, Sheng-Chi; Chen, Jian-Yu; Wang, Xin

    2016-01-01

    In this work, Ga-doped ZnO (GZO) thin films were deposited via radio frequency sputtering at room temperature. The influence of the Ga content on the film’s optoelectronic properties as well as the film’s electrical stability were investigated. The results showed that the film’s crystallinity degraded with increasing Ga content. The film’s conductivity was first enhanced due to the replacement of Zn2+ by Ga3+ before decreasing due to the separation of neutralized gallium atoms from the ZnO lattice. When the Ga content increased to 15.52 at %, the film’s conductivity improved again. Furthermore, all films presented an average transmittance exceeding 80% in the visible region. Regarding the film’s electrical stability, GZO thermally treated below 200 °C exhibited no significant deterioration in electrical properties, but such treatment over 200 °C greatly reduced the film’s conductivity. In normal atmospheric conditions, the conductivity of GZO films remained very stable at ambient temperature for more than 240 days. PMID:28774108

  12. Optoelectronic Properties and the Electrical Stability of Ga-Doped ZnO Thin Films Prepared via Radio Frequency Sputtering.

    PubMed

    Jen, Shien-Uang; Sun, Hui; Chiang, Hai-Pang; Chen, Sheng-Chi; Chen, Jian-Yu; Wang, Xin

    2016-12-06

    In this work, Ga-doped ZnO (GZO) thin films were deposited via radio frequency sputtering at room temperature. The influence of the Ga content on the film's optoelectronic properties as well as the film's electrical stability were investigated. The results showed that the film's crystallinity degraded with increasing Ga content. The film's conductivity was first enhanced due to the replacement of Zn(2+) by Ga(3+) before decreasing due to the separation of neutralized gallium atoms from the ZnO lattice. When the Ga content increased to 15.52 at %, the film's conductivity improved again. Furthermore, all films presented an average transmittance exceeding 80% in the visible region. Regarding the film's electrical stability, GZO thermally treated below 200 °C exhibited no significant deterioration in electrical properties, but such treatment over 200 °C greatly reduced the film's conductivity. In normal atmospheric conditions, the conductivity of GZO films remained very stable at ambient temperature for more than 240 days.

  13. Etching Characteristics and Mechanism of ZnO and Ga-Doped ZnO Thin Films in Inductively Coupled HBr/Ar/CHF3 Plasma

    NASA Astrophysics Data System (ADS)

    Ham, Yong-Hyun; Efremov, Alexander; Lee, Hyun-Woo; Yun, Sun Jin; Min, Nam Ki; Kim, Kwangsoo; Kwon, Kwang-Ho

    2010-08-01

    The etching characteristics and mechanisms of ZnO and Ga-doped ZnO (Ga-ZnO) thin films in a HBr/Ar/CHF3 inductively coupled plasma were investigated. The etching rate of ZnO was measured as a function of the CHF3 mixing ratio in the range of 0-15% in a HBr:Ar = 5:2 plasma at a fixed gas pressure (6 mTorr), input power (700 W), bias power (200 W), and total gas flow rate (50 sccm). The plasma chemistry was analyzed by a combination of the global (zero-dimensional) plasma model, Langmuir probe diagnostics (LP) and quadrupole mass spectrometer (QMS) analysis. It was found that the densities of both HBr and Br are significantly affected by the reactions with the CHF3 dissociation products, while both the ZnO and Ga-ZnO etching rates follow the behavior of the Br atom density and flux. This suggests that the ZnO and Ga-ZnO etching processes are not limited by the ion-surface interaction kinetics and appear in the reaction-rate-limited etching regime.

  14. High performance of Ga-doped ZnO transparent conductive layers using MOCVD for GaN LED applications.

    PubMed

    Horng, Ray-Hua; Shen, Kun-Ching; Yin, Chen-Yang; Huang, Chiung-Yi; Wuu, Dong-Sing

    2013-06-17

    High performance of Ga-doped ZnO (GZO) prepared using metalorganic chemical vapor deposition (MOCVD) was employed in GaN blue light-emitting diodes (LEDs) as transparent conductive layers (TCL). By the post-annealing process, the annealed 800°C GZO films exhibited a high transparency above 97% at wavelength of 450 nm. The contact resistance of GZO decreased with the annealing temperature increasing. It was attributed to the improvement of the GZO crystal quality, leading to an increase in electron concentration. It was also found that some Zn atom caused from the decomposition process diffused into the p-GaN surface of LED, which generated a stronger tunneling effect at the GZO/p-GaN interface and promoted the formation of ohmic contact. Moreover, contrast to the ITO-LED, a high light extraction efficiency of 77% was achieved in the GZO-LED at injection current of 20 mA. At 350 mA injection current, the output power of 256.51 mW of GZO-LEDs, corresponding to a 21.5% enhancement as compared to ITO-LEDs was obtained; results are promising for the development of GZO using the MOCVD technique for GaN LED applications.

  15. Mechanical and transparent conductive properties of ZnO and Ga-doped ZnO films sputtered using electron-cyclotron-resonance plasma on polyethylene naphtalate substrates

    SciTech Connect

    Akazawa, Housei

    2014-03-15

    Transparent conductive ZnO and Ga-doped ZnO (GZO) films were deposited on polyethylene naphtalate (PEN) sheet substrates using electron cyclotron resonance plasma sputtering. Both ZnO and GZO films were highly adhesive to the PEN substrates without inserting an intermediate layer in the interface. When compared at the same thickness, the transparent conductive properties of GZO films on PEN substrates were only slightly inferior to those on glass substrates. However, the carrier concentration of ZnO films on PEN substrates was 1.5 times that of those on glass substrates, whereas their Hall mobility was only 60% at a thickness of 300 nm. The depth profile of elements measured by secondary ion mass spectroscopy revealed the diffusion of hydrocarbons out of the PEN substrate into the ZnO film. Hence, doped carbons may act as donors to enhance carrier concentration, and the intermixing of elements at the interface may deteriorate the crystallinity, resulting in the lower Hall mobility. When the ZnO films were thicker than 400 nm, cracks became prevalent because of the lattice mismatch strain between the film and the substrate, whereas GZO films were free of cracks. The authors investigated how rolling the films around a cylindrical pipe surface affected their conductive properties. Degraded conductivity occurred at a threshold pipe radius of 10 mm when tensile stress was applied to the film, but it occurred at a pipe radius of 5 mm when compressive stress was applied. These values are guidelines for bending actual devices fabricated on PEN substrates.

  16. Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films.

    PubMed

    Jun, Min-Chul; Park, Sang-Uk; Koh, Jung-Hyuk

    2012-11-22

    We have investigated the influences of aluminum and gallium dopants (0 to 2.0 mol%) on zinc oxide (ZnO) thin films regarding crystallization and electrical and optical properties for application in transparent conducting oxide devices. Al- and Ga-doped ZnO thin films were deposited on glass substrates (corning 1737) by sol-gel spin-coating process. As a starting material, AlCl3⋅6H2O, Ga(NO3)2, and Zn(CH3COO)2⋅2H2O were used. A lowest sheet resistance of 3.3 × 103 Ω/□ was obtained for the GZO thin film doped with 1.5 mol% of Ga after post-annealing at 650°C for 60 min in air. All the films showed more than 85% transparency in the visible region. We have studied the structural and microstructural properties as a function of Al and Ga concentrations through X-ray diffraction and scanning electron microscopy analysis. In addition, the optical bandgap and photoluminescence were estimated.

  17. Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films

    PubMed Central

    2012-01-01

    We have investigated the influences of aluminum and gallium dopants (0 to 2.0 mol%) on zinc oxide (ZnO) thin films regarding crystallization and electrical and optical properties for application in transparent conducting oxide devices. Al- and Ga-doped ZnO thin films were deposited on glass substrates (corning 1737) by sol–gel spin-coating process. As a starting material, AlCl3⋅6H2O, Ga(NO3)2, and Zn(CH3COO)2⋅2H2O were used. A lowest sheet resistance of 3.3 × 103 Ω/□ was obtained for the GZO thin film doped with 1.5 mol% of Ga after post-annealing at 650°C for 60 min in air. All the films showed more than 85% transparency in the visible region. We have studied the structural and microstructural properties as a function of Al and Ga concentrations through X-ray diffraction and scanning electron microscopy analysis. In addition, the optical bandgap and photoluminescence were estimated. PMID:23173885

  18. Influence of Al-doped ZnO and Ga-doped ZnO substrates on third harmonic generation of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kityk, I. V.; AlZayed, N. S.; Kobayashi, Kei; Chen, Xiaomei; Oyama, Munetaka; El-Naggar, A. M.; Albassam, A. A.

    2015-07-01

    Principal role of substrate types on the nonlinear optical properties of Au NP was investigated. Third harmonic generation (THG) studies were carried out for Au NP deposited on the Al-doped ZnO (AuNP/AZO) and Ga-doped ZnO (AuNP/GZO) substrates at fundamental wavelength of 20 ns Er:glass laser (generating at 1540 nm wavelength) during photostimulation by the 532 nm 15 ns laser pulses. Sizes of Au NP were 5 nm, 10 nm, 20 nm, and 30 nm. The output signal was registered at 513 nm. The photoinduced power density was increased from 0 up to 800 MW/cm2. So in our work we explore the role of the substrate on the optically stimulated non-linear optical properties during simultaneous photo stimulation near the inter-band transition. The results were studied depending on the type of substrate and the sizes of the deposited nanoparticles. The analysis was done within a framework of interaction between the photoinduced light and SPR wavelengths. Control of the photoinduced temperature was done.

  19. Removal of Micrometer Size Morphological Defects and Enhancement of Ultraviolet Emission by Thermal Treatment of Ga-Doped ZnO Nanostructures

    PubMed Central

    Manzoor, Umair; Kim, Do K.; Islam, Mohammad; Bhatti, Arshad S.

    2014-01-01

    Mixed morphologies of Ga-doped Zinc Oxide (ZnO) nanostructures are synthesized by vapor transport method. Systematic scanning electron microscope (SEM) studies of different morphologies, after periodic heat treatments, gives direct evidence of sublimation. SEM micrographs give direct evidence that morphological defects of nanostructures can be removed by annealing. Ultra Violet (UV) and visible emission depends strongly on the annealing temperatures and luminescent efficiency of UV emission is enhanced significantly with each subsequent heat treatment. X-Ray diffraction (XRD) results suggest that crystal quality improved by annealing and phase separation may occur at high temperatures. PMID:24489725

  20. Removal of micrometer size morphological defects and enhancement of ultraviolet emission by thermal treatment of Ga-doped ZnO nanostructures.

    PubMed

    Manzoor, Umair; Kim, Do K; Islam, Mohammad; Bhatti, Arshad S

    2014-01-01

    Mixed morphologies of Ga-doped Zinc Oxide (ZnO) nanostructures are synthesized by vapor transport method. Systematic scanning electron microscope (SEM) studies of different morphologies, after periodic heat treatments, gives direct evidence of sublimation. SEM micrographs give direct evidence that morphological defects of nanostructures can be removed by annealing. Ultra Violet (UV) and visible emission depends strongly on the annealing temperatures and luminescent efficiency of UV emission is enhanced significantly with each subsequent heat treatment. X-Ray diffraction (XRD) results suggest that crystal quality improved by annealing and phase separation may occur at high temperatures.

  1. Fast response ultraviolet photoconductive detectors based on Ga-doped ZnO films grown by radio-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Liu, Feng-Juan; Huang, Hai-Qin; Zhao, Jian-Wei; Hu, Zuo-Fu; Zhang, Xi-Qing; Wang, Yong-Sheng

    2010-11-01

    A metal-semiconductor-metal photoconductive detector was fabricated on c-axis preferred oriented Ga-doped ZnO (ZnO:Ga) thin film prepared on quartz by radio-frequency magnetron sputtering. With a 10 V bias, a responsivity of about 2.6 A/W at 370 nm was obtained in the ultraviolet region. The photocurrent increases linearly with incident power density for more than two orders of magnitude. The transient response measurement revealed photoresponse with a rise time of 10 ns and a fall time of 960 ns, respectively. The results are much faster than those reported in photoconductive detectors based on unintentionally doped n-type ZnO films.

  2. Ga-doped ZnO transparent electrodes with TiO2 blocking layer/nanoparticles for dye-sensitized solar cells

    PubMed Central

    2012-01-01

    Ga-doped ZnO [GZO] thin films were employed for the transparent electrodes in dye-sensitized solar cells [DSSCs]. The electrical property of the deposited GZO films was as good as that of commercially used fluorine-doped tin oxide [FTO]. In order to protect the GZO and enhance the photovoltaic properties, a TiO2 blocking layer was deposited on the GZO surface. Then, TiO2 nanoparticles were coated on the blocking layer, and dye was attached for the fabrication of DSSCs. The fabricated DSSCs with the GZO/TiO2 glasses showed an enhanced conversion efficiency of 4.02% compared to the devices with the normal GZO glasses (3.36%). Furthermore, they showed better characteristics even than those using the FTO glasses, which can be attributed to the reduced charge recombination and series resistance. PMID:22222148

  3. Stress-induced anomalous shift of optical band gap in Ga-doped ZnO thin films: Experimental and first-principles study

    SciTech Connect

    Wang, Yaqin; Tang, Wu E-mail: lan.zhang@mail.xjtu.edu.cn; Liu, Jie; Zhang, Lan E-mail: lan.zhang@mail.xjtu.edu.cn

    2015-04-20

    In this work, highly c-axis oriented Ga-doped ZnO thin films have been deposited on glass substrates by RF magnetron sputtering under different sputtering times. The optical band gap is observed to shift linearly with the electron concentration and in-plane stress. The failure of fitting the shift of band gap as a function of electron concentration using the available theoretical models suggests the in-plane stress, instead of the electron concentration, be regarded as the dominant cause to this anomalous redshift of the optical band gap. And the mechanism of stress-dependent optical band gap is supported by the first-principles calculation based on density functional theory.

  4. Synthesis and characterization of one-dimensional Ag-doped ZnO/Ga-doped ZnO coaxial nanostructure diodes.

    PubMed

    Chiu, Hsien-Ming; Chang, Yu-Tsui; Wu, Wen-Wei; Wu, Jenn-Ming

    2014-04-09

    In the pursuit of high injection current diode nanodevices, entire one-dimensional (1D) ZnO coaxial nanostructures with p-n homojunctions is one of the ideal structures. In this study, we synthesized entire 1D ZnO-based coaxial homojunction diodes with p-type Ag-doped ZnO (SZO) nanostructure shells covering n-type Ga-doped ZnO (GZO) nanopagoda (NPG) cores by a metal-organic chemical vapor deposition (MOCVD) technique. The entire 1D SZO-GZO and SZO-ZnO coaxial nanostructures exhibit better diode characteristics, such as lower threshold voltage, better rectification ratios, and better ideality factor n, than that reported for either 2D or 2D-1D p-n heterojunction and/or homojunction diodes. The binding energies of Ga and Ag were evaluated by low-temperature and temperature-dependent photoluminescence. In comparison, the SZO-GZO coaxial p-n nanostructures display better diode performance than the SZO-ZnO ones.

  5. Combinatorial characterization of transparent conductive properties of Ga-doped ZnO films cosputtered from electron cyclotron resonance and rf magnetron plasma sources

    SciTech Connect

    Akazawa, Housei

    2010-03-15

    The simultaneous sputtering of ZnO and Ga{sub 2}O{sub 3} by electron cyclotron resonance and rf magnetron plasma sources produced Ga-doped ZnO (GZO) films with continuously varying Ga concentration over the substrate surface. Combinatorial evaluation of electrical and optical properties of GZO film grown on silica glass substrate without heater annealing enabled identification of minimum resistivity (0.5 m{Omega} cm) at a Ga{sub 2}O{sub 3} content of 5.5 wt % with an optical transmittance of 90% in the visible wavelength. The monotonically decreasing mobility that was associated with increasing carrier concentration as Ga{sub 2}O{sub 3} content was increased indicated that conduction was governed by ionized impurity scattering. Above the critical Ga{sub 2}O{sub 3} content (6 wt %), carrier concentration decreased since excess Ga atoms that were incorporated beyond the solubility limit at Zn sites hindered large crystalline domains from forming. The ZnO (002) x-ray diffraction peak was suppressed and peaks assigned to Ga{sub 2}O{sub 3} were observed at high Ga{sub 2}O{sub 3} content. The optimum Ga{sub 2}O{sub 3} content shifted to 3.5 wt % at a deposition temperature of 200 deg. C and 2.5 wt % at 300 deg. C, and the minimum resistivity was further decreased to 0.28 m{Omega} cm at 200 deg. C. However, the resistivities at these elevated temperatures were incredibly high both at the lower and higher side of the optimum Ga{sub 2}O{sub 3} content.

  6. Hydrogen induced electric conduction in undoped ZnO and Ga-doped ZnO thin films: Creating native donors via reduction, hydrogen donors, and reactivating extrinsic donors

    SciTech Connect

    Akazawa, Housei

    2014-09-01

    The manner in which hydrogen atoms contribute to the electric conduction of undoped ZnO and Ga-doped ZnO (GZO) films was investigated. Hydrogen atoms were permeated into these films through annealing in an atmospheric H{sub 2} ambient. Because the creation of hydrogen donors competes with the thermal annihilation of native donors at elevated temperatures, improvements to electric conduction from the initial state can be observed when insulating ZnO films are used as samples. While the resistivity of conductive ZnO films increases when annealing them in a vacuum, the degree of increase is mitigated when they are annealed in H{sub 2}. Hydrogenation of ZnO crystals was evidenced by the appearance of OH absorption signals around a wavelength of 2700 nm in the optical transmittance spectra. The lowest resistivity that was achieved by H{sub 2} annealing was limited to 1–2 × 10{sup −2} Ω cm, which is one order of magnitude higher than that by native donors (2–3 × 10{sup −3} Ω cm). Hence, all native donors are converted to hydrogen donors. In contrast, GZO films that have resistivities yet to be improved become more conductive after annealing in H{sub 2} ambient, which is in the opposite direction of GZO films that become more resistive after vacuum annealing. Hydrogen atoms incorporated into GZO crystals should assist in reactivating Ga{sup 3+} donors.

  7. Optical, electrical and mechanical properties of Ga-doped ZnO thin films under different sputtering powers

    NASA Astrophysics Data System (ADS)

    Chang, Sheng Hsiung; Cheng, Hsin-Ming; Tien, Chuen-Lin; Lin, Shih-Chin; Chuang, Kie-Pin

    2014-12-01

    We present the optical, electrical and mechanical properties of Ga-doped zinc oxide (GZO) thin films prepared by radio-frequency (RF) magnetron sputtering at room temperature under different RF powers (80-180 W). The thickness, electron concentration, and electron mobility of the GZO thin film were determined by fitting the visible-to-near-infrared transmittance spectrum of GZO film/glass using the transfer matrix method. The bending force per unit width was measured by a home-made Twyman-Green interferometer with the fast Fourier transform method. The obtained results show that the optical, electrical and mechanical properties of GZO thin film are subject to the RF power. At an RF power of 140 W, the local minimum of bending force per unit width corresponds to the highest electron mobility in GZO thin film. This study demonstrates that the optical, electrical and mechanical properties of GZO thin film can be fully resolved by non-contact optical methods.

  8. Growth Behavior of Ga-Doped ZnO Thin Films Deposited on Au/SiN/Si(001) Substrates by Radio Frequency Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Seo, Seon Hee; Kang, Hyon Chol

    2013-11-01

    This paper reports the growth behavior of Ga-doped ZnO (ZnO:Ga) thin films deposited on Au/SiN/Si(001) substrates by radio-frequency magnetron sputtering. The microstructures of the overgrown ZnO:Ga thin films were investigated by performing X-ray diffraction, scanning electron microcopy, and transmission electron microscopy analyses. It was confirmed that the growth process proceeds through three stages. In the first stage, nano-scale ZnO:Ga islands were grown on the SiN layer, while a fairly continuous flat structure was formed on the Au nanoparticles (NPs). In the second stage of the growth process, ZnO:Ga domains with different growth orientations, depending strongly on the crystalline planes of the host Au NPs, were nucleated. These domains then grew at different rates, resulting in a change in the morphology from the initial shape reflecting that of the Au NPs to a sunflower-type shape. In the final stage, columnar growth with a preferred (0002) orientation along the surface normal direction became dominant.

  9. Change of scattering mechanism and annealing out of defects on Ga-doped ZnO films deposited by radio-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Nulhakim, Lukman; Makino, Hisao

    2016-06-01

    This study examines the change of carrier scattering mechanism and defects states in Ga-doped ZnO (GZO) thin films deposited by radio-frequency magnetron sputtering as a function of the substrate temperature (Ts) during deposition. The GZO films deposited at room temperature exhibited a high defect density that resulted in a lower carrier concentration, lower Hall mobility, and optical absorption in visible wavelength range. Such defects were created by ion bombardment and were eliminated by increasing the Ts. The defects related to the optical absorption disappeared at a Ts of 125 °C. The defects responsible for the suppression of the carrier concentration gradually decreased with increasing Ts up to 200 °C. As a result, the carrier concentration and in-grain carrier mobility gradually increased. The Hall mobility was also influenced by film structural properties depending on the Ts. In addition to the c-axis preferred orientation, other oriented grains such as the (10 1 ¯ 1 ) plane parallel to the substrate surface appeared below 150 °C. This orientation of the (10 1 ¯ 1 ) plane significantly reduced the Hall mobility via grain boundary scattering. The films deposited at a Ts higher than 175 °C exhibited perfect c-axis orientation and grain boundary scattering was thus negligible in these films. The appearance of the 10 1 ¯ 1 peak in x-ray diffraction profile was correlated with the contribution of grain boundary scattering in heavily doped GZO films.

  10. High power GaN-based LEDs with nano-structured Ga-doped ZnO (GZO) transparent conductive layer (TCL)

    NASA Astrophysics Data System (ADS)

    Jia, Weiqing; Fan, Bingfeng; Jiang, Hao; Liu, Yang; Zhang, Baijun; Xian, Yulun; Huang, Shanjing; Zheng, Zhiyuan; Wu, Zhisheng; Tong, Keny; Wong, Raymond; Wang, Gang

    2010-12-01

    High power GaN-based LEDs with nano-structured Ga-doped ZnO (GZO) transparent conductive layer (TCL) were fabricated by using metal-organic chemical vapor deposition (MOCVD) method. Compared with the conventional LED with Ni/Au or ITO process, the saturation current in the LEDs with GZO TCL approximately increased up to more than 14 % and 13 %, and the light output intensity up to 57.5 % and 30.1 %, respectively. This improvement was attributed to the high carrier concentration of GZO TCL and the planar structure at the TCL bottom, which improved the electrical conductivity, and therefore promoted current spreading. The refractive index of GZO is similar to GaN (n ~ 2) and thereby results in the reduction of the reflection loss between GaN and TCL interface. In addition, the nano-structure of GZO TCL increased the light output critical angle and enhanced surface light emitting while reducing the lateral light loss and consequently improved light extraction efficiency of LEDs.

  11. Band alignment and photon extraction studies of Na-doped MgZnO/Ga-doped ZnO heterojunction for light-emitter applications

    SciTech Connect

    Pandey, Sushil Kumar; Awasthi, Vishnu; Sengar, Brajendra Singh; Garg, Vivek; Sharma, Pankaj; Mukherjee, Shaibal; Kumar, Shailendra; Mukherjee, C.

    2015-10-28

    Ultraviolet photoelectron spectroscopy is carried out to measure the energy discontinuity at the interface of p-type Na-doped MgZnO (NMZO)/n-type Ga-doped ZnO (GZO) heterojunction grown by dual ion beam sputtering. The offset values at valence band and conduction band of NMZO/GZO heterojunction are calculated to be 1.93 and −2.36 eV, respectively. The p-type conduction in NMZO film has been confirmed by Hall measurement and band structure. Moreover, the effect of Ar{sup +} ion sputtering on the valence band onset values of NMZO and GZO thin films has been investigated. This asymmetric waveguide structure formed by the lower refractive index of GZO than that of NMZO indicates that easy extraction of photons generated in GZO through the NMZO layer into free space. The asymmetric waveguide structure has potential applications to produce ZnO-based light emitters with high extraction efficiency.

  12. Degradation of transparent conductive properties of undoped ZnO and Ga-doped ZnO films left in atmospheric ambient for several years and trials to recover initial conductance

    SciTech Connect

    Akazawa, Housei

    2014-03-15

    This study evaluated the long-term stability of the transparent conductive properties of undoped ZnO and Ga-doped ZnO (GZO) films that had been left in an atmospheric ambient environment for 5 to 6 yr. When ZnO films are stored in a clean room with a controlled temperature and humidity of 23 °C and 45%, respectively, throughout the year, the increases in sheet resistance are less than 5% of their initial value. The ZnO films stored in a non-air-conditioned laboratory room, whose temperature varies between 5 and 35 °C and humidity varies between 30% and 70% per year, suffer from increases in the sheet resistance by almost 13%, which is associated with a slight rise in the near-infrared transmittance level. Postannealing of these degraded ZnO films at 150–200 °C recovers the initial conductance by removing the H{sub 2}O molecules that have penetrated the film. One hour of irradiation with electron cyclotron resonance Ar plasma effectively restores the conductive surfaces while maintaining a temperature below 70 °C. The GZO films containing a few weight percent of Ga{sub 2}O{sub 3} are stable even when stored in a non-air-conditioned laboratory room, with changes in the sheet resistance of less than 3%. The GZO films with a Ga{sub 2}O{sub 3} content larger than 10 wt. %, however, exhibit serious degradation probably due to the strong affinity of segregated Ga{sub 2}O{sub 3} domains with H{sub 2}O vapor molecules. Neither postannealing nor Ar plasma irradiation can recover the initial sheet resistance of these GZO films.

  13. Near-IR (1 - 4 μm) control of plasmonic resonance wavelength in Ga-doped ZnO

    NASA Astrophysics Data System (ADS)

    Look, David C.; Leedy, Kevin D.; Grzybowski, Gordon J.; Claflin, Bruce B.

    2017-03-01

    The plasmonic resonance wavelength λres in ZnO doped with 3wt%Ga2O3 can be controlled over the range 1 - 4 μm by simple furnace annealing in flowing Ar. For each annealing temperature TA, the reflectance Rm and transmittance Tm are measured over a wavelength range, λ = 185 - 3200 nm, (energy range, E = 6.7 - 0.387 eV), and the reflectance coefficient R is calculated from Rm and Tm. The value of λres is then determined from a Drude-theory analysis of R vs E that yields fitting parameters nopt (optical carrier concentration), μopt (optical mobility), high-frequency dielectric constant ɛ∞, and thickness d, at each annealing temperature TA. The validity of this process is confirmed by comparison of ɛ∞ with literature values, and comparison of nopt and μopt with analogous quantities n and μH measured by the Hall-effect.

  14. Effect of RF power on the optical, electrical, mechanical and structural properties of sputtering Ga-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Tien, Chuen-Lin; Yu, Kuo-Chang; Tsai, Tsung-Yo; Liu, Ming-Chung

    2015-11-01

    We present the influences of radio-frequency (RF) power on the optical, electrical, mechanical, and structural properties of Ga-doped zinc oxide (GZO) thin films by RF magnetron sputtering at room temperature. GZO thin films were grown on unheated glass and silicon substrates using radio-frequency (RF) magnetron sputtering method with different RF powers (from 60 W to 160 W). The optical properties of the GZO thin film were determined by a UV-vis spectrophotometer. The residual stress in GZO films were measured by a home-made Twyman-Green interferometer with the fast Fourier transform (FFT) method. The surface roughness of GZO films were measured by a microscopic interferometry. The microstructure, composition and crystal orientation of the GZO films were determined by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). This paper revealed that the optical, electrical, mechanical, and structural properties of GZO thin film are subject to the RF power. For the optical spectrum measurement, an average optical transmittance in the visible region of the spectra of 85% was obtained. For the characteristic measurements, all the GZO thin films deposited by RF magnetron sputtering have compressive stress at different RF powers. A minimum residual stress of 0.24 GPa is found at the RF power of 140 W. A four-point probe method was used to measure the resistivity of the GZO thin films with different powers, the results indicate that the resistivity increases with increasing of RF power. In addition, the root-mean-square (RMS) surface roughness of GZO thin films slightly increases as the RF power is increasing. We have also compared the results with the relevant literatures.

  15. Growth of Cu{sub 2}O on Ga-doped ZnO and their interface energy alignment for thin film solar cells

    SciTech Connect

    Wong, L. M.; Chiam, S. Y.; Wang, S. J.; Pan, J. S.; Huang, J. Q.; Chim, W. K.

    2010-08-15

    Cu{sub 2}O thin films are deposited by direct current reactive magnetron sputtering on borofloat glass and indium tin oxide (ITO) coated glass at room temperature. The effect of oxygen partial pressure on the structures and properties of Cu{sub 2}O thin films are investigated. We show that oxygen partial pressure is a crucial parameter in achieving pure phases of CuO and Cu{sub 2}O. Based on this finding, we fabricate heterojunctions of p-type Cu{sub 2}O with n-type gallium doped ZnO (GZO) on ITO coated glass substrates by pulsed laser deposition for GZO thin films. The energy band alignment for thin films of Cu{sub 2}O/GZO on ITO glass is characterized using high-resolution x-ray photoelectron spectroscopy. The energy band alignment for the Cu{sub 2}O/GZO heterojunctions is determined to be type II with a valence band offset of 2.82 eV and shows negligible effects of variation with gallium doping. The higher conduction band of the Cu{sub 2}O relative to that of GZO in the obtained band alignment shows that the heterojunctions are suitable for solar cell application based on energy levels consideration.

  16. Near-infrared (1 to 4 μm) control of plasmonic resonance wavelength in Ga-doped ZnO

    NASA Astrophysics Data System (ADS)

    Look, David C.; Leedy, Kevin D.; Grzybowski, Gordon J.; Claflin, Bruce B.

    2017-05-01

    The plasmonic resonance wavelength λres in ZnO doped with 3 wt.% Ga2O3 can be controlled over the range 1 to 4 μm by simple furnace annealing in flowing Ar. For each annealing temperature TA, the reflectance Rm and transmittance Tm are measured over a wavelength range, λ=185 to 3200 nm, (energy range, E=6.7 to 0.387 eV), and the reflectance coefficient R is calculated from Rm and Tm. The value of λres is then determined from a Drude-theory analysis of R versus E that yields fitting parameters nopt (optical carrier concentration), μopt (optical mobility), high-frequency dielectric constant ɛ∞, and thickness d at each annealing temperature TA. The validity of this process is confirmed by comparison of ɛ∞ with literature values and comparison of nopt and μopt with analogous quantities n and μH measured by the Hall effect.

  17. Photoluminescence of Ga-doped ZnO film grown on c-Al2O3 (0001) by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Park, H. C.; Byun, D.; Angadi, B.; Hee Park, D.; Choi, W. K.; Choi, J. W.; Jung, Y. S.

    2007-10-01

    High quality gallium doped ZnO (Ga:ZnO) thin films were grown on c-Al2O3(1000) by plasma-assisted molecular beam epitaxy, and Ga concentration NGa was controlled in the range of 1×1018-2.5×1020/cm3 by adjusting/changing the Ga cell temperature. From the low-temperature photoluminescence at 10K, the donor bound exciton I8 related to Ga impurity was clearly observed and confirmed by comparing the calculated activation energy of 16.8meV of the emission peak intensity with the known localization energy, 16.1meV. Observed asymmetric broadening with a long tail on the lower energy side in the photoluminescence (PL) emission line shape could be fitted by the Stark effect and the compensation ratio was approximately 14-17% at NGa⩾1×1020/cm3. The measured broadening of photoluminescence PL emission is in good agreement with the total thermal broadening and potential fluctuations caused by random distribution of impurity at NGa lower than the Mott critical density.

  18. Sb-doped p-ZnO /Ga-doped n-ZnO homojunction ultraviolet light emitting diodes

    NASA Astrophysics Data System (ADS)

    Chu, S.; Lim, J. H.; Mandalapu, L. J.; Yang, Z.; Li, L.; Liu, J. L.

    2008-04-01

    ZnO p-n homojunction light emitting diodes were fabricated based on p-type Sb-doped ZnO /n-type Ga-doped ZnO thin films. Low resistivity Au /NiO and Au /Ti contacts were formed on top of p-type and n-type ZnO layers, respectively. Au /NiO contacts on p-type ZnO exhibited a low specific resistivity of 7.4×10-4Ωcm2. The light emitting diodes yielded strong near-band-edge emissions in temperature-dependent and injection current-dependent electroluminescence measurements.

  19. Effects of post-annealing on the structural and nanomechanical properties of Ga-doped ZnO thin films deposited on glass substrate by rf-magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Szu-Ko; Lin, Ting-Chun; Jian, Sheng-Rui; Juang, Jenh-Yih; Jang, Jason S.-C.; Tseng, Jiun-Yi

    2011-11-01

    In this study, the effects of post-annealing on the structure, surface morphology and nanomechanical properties of ZnO thin films doped with a nominal concentration of 3 at.% Ga (ZnO:Ga) are investigated using X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM) and nanoindentation techniques. The ZnO:Ga thin films were deposited on the glass substrates at room temperature by radio frequency magnetron sputtering. Results revealed that the as-deposited ZnO:Ga thin films were polycrystalline albeit the low deposition temperature. Post-annealing carried out at 300, 400 and 500 °C, respectively, has resulted in progressive increase in both the average grain size and the surface roughness of the ZnO:Ga thin film, in addition to the improved thin films crystallinity. Moreover, the hardness and Young's modulus of ZnO:Ga thin films are measured by a Berkovich nanoindenter operated with the continuous contact stiffness measurements (CSM) option. The hardness and Young's modulus of ZnO:Ga thin films increased as the annealing temperature increased from 300 to 500 °C, with the best results being obtained at 500 °C.

  20. Sensitized ZnO nanorod assemblies to detect heavy metal contaminated phytomedicines: spectroscopic and simulation studies.

    PubMed

    Bagchi, Damayanti; Maji, Tuhin Kumar; Sardar, Samim; Lemmens, Peter; Bhattacharya, Chinmoy; Karmakar, Debjani; Pal, Samir Kumar

    2017-01-18

    The immense pharmacological relevance of the herbal medicine curcumin including anti-cancer and anti-Alzheimer effects, suggests it to be a superior alternative to synthesised drugs. The diverse functionalities with minimal side effects intensify the use of curcumin not only as a dietary supplement but also as a therapeutic agent. Besides all this effectiveness, some recent literature reported the presence of deleterious heavy metal contaminants from various sources in curcumin leading to potential health hazards. In this regard, we attempt to fabricate ZnO based nanoprobes to detect metal conjugated curcumin. We have synthesized and structurally characterized the ZnO nanorods (NR). Three samples namely curcumin (pure), Zn-curcumin (non-toxic metal attached to curcumin) and Hg-curcumin (toxic heavy metal attached to curcumin) were prepared for consideration. The samples were electrochemically deposited onto ZnO surfaces and the attachment was confirmed by cyclic voltammetry experiments. Moreover, to confirm a molecular level interaction picosecond-resolved PL-quenching of ZnO NR due to Förster Resonance Energy Transfer (FRET) from donor ZnO NR to the acceptor curcumin moieties was employed. The attachment proximity of ZnO NR and curcumin moieties depends on the size of metals. First principles analysis suggests a variance of attachment sites and heavy metal Hg conjugated curcumin binds through a peripheral hydroxy group to NR. We fabricated a facile photovoltaic device consisting of ZnO NR as the working electrode with Pt counter electrode and iodide-triiodide as the electrolyte. The trend in photocurrent under visible light illumination suggests an enhancement in the case of heavy metal ions due to long range interaction and greater accumulation of charge at the active electrode. Our results provide a detailed physical insight into interfacial processes that are crucial for detecting heavy-metal attached phytomedicines and are thus expected to find vast

  1. Effects of Al, Ga-DOPING on Transparent Conducting Properties of Amorphous ZnO-SnO2 Films

    NASA Astrophysics Data System (ADS)

    Moriga, Toshihiro; Nishimura, Yusuke; Suketa, Hiroshi; Murai, Kei-Ichiro; Nogami, Kazuhiro; Tominaga, Kikuo; Nakabayashi, Ichiro

    ZnOSnO2 thin films were deposited on glass substrates (Corning#1737) by DC magnetron sputtering. In this works, we examined a doping effect on a ZnO target on transparent conducting properties. ZnO:Al(4wt%), and ZnO:Ga(6wt%) targets were used for a dopant-free ZnO target. Substrate temperature was held at 250°C. The current ratio δ was defined as IZn/IZ+ISn (ZnO target current divided by the sum of ZnO and SnO2 target currents). Compositions of as-deposited films were changed with the current ratio δ. In the ZnO-SnO2 system, amorphous transparent films appeared over the range of 0.33≤δ≤0.73. On the other hand, in the ZnO:Al(4wt%)-SnO2 and ZnO:Ga(6wt%)-SnO2 systems, they appeared over the range of 0.20≤δ≤0.80 and 0.33≤δ≤0.80, ≤δ≤ respectively. The minimum resistivity of amorphous films was about 3.0×10-2 Ωcm for all the systems. Al, Ga doping effect on film resistivity was not clear very much. But optical transparencies were 80-90% in visible region, 10% higher than those of ZnO-SnO2 system at average. Optical band gap for the films with the same current ratio δ also was enhanced by the Al, Ga doping.

  2. The impact of heavy Ga doping on superconductivity in germanium

    NASA Astrophysics Data System (ADS)

    Skrotzki, R.; Herrmannsdörfer, T.; Heera, V.; Fiedler, J.; Mücklich, A.; Helm, M.; Wosnitza, J.

    2011-10-01

    We report new experimental results on how superconductivity in gallium-doped germanium (Ge:Ga) is influenced by hole concentration and microstructure. Ion implantation and subsequent flash-lamp annealing at various temperatures have been utilized to prepare highly p-doped thin films consisting of nanocrystalline and epitaxially grown sublayers with Ga-peak concentrations of up to 8 at. %. Successive structural investigations were carried out by means of Rutherford-backscattering spectrometry in combination with ion channeling, secondary-ion-mass spectrometry, and high-resolution cross-sectional transmission electron microscopy. Hole densities of 1.8.1020 to 5.3.1020 cm-3 (0.4 to 1.2 at. %) were estimated via Hall-effect measurements revealing that only a fraction of the incorporated gallium has been activated electrically to generate free charge carriers. The coincidence of a sufficiently high hole and Ga concentration is required for the formation of a superconducting condensate. Our data reflect a critical hole concentration of around 0.4 at. %. Higher concentrations lead to an increase of Tc from 0.24 to 0.43 K as characterized by electrical-transport measurements. A short mean-free path indicates superconductivity in the dirty limit. In addition, small critical-current densities of max. 20 kA/m2 point to a large impact of the microstructure.

  3. Study of spin momentum density in Ga doped cobalt ferrite

    SciTech Connect

    Bapna, Komal Sharma, Arvind; Mund, H. S.; Ahuja, B. L.; Sakurai, Y.; Itou, M.

    2016-05-23

    We have studied spin dependent electron momentum density in CoGa{sub 0.3}Fe{sub 1.7}O{sub 4} at 300 K using magnetic Compton spectroscopy. It is observed that major contribution to total spin moment mainly arises from Co ions while itinerant electrons show negative polarization. Orbital contribution has been deduced by comparing the magnetic Compton spectroscopy with the magnetization data. It is revealed that the anisotropy in magnetization in the system increases with the Ga doping.

  4. Magnetic properties of Ga doped cobalt ferrite: Compton scattering study

    SciTech Connect

    Sharma, Arvind Mund, H. S.; Ahuja, B. L.; Sahariya, Jagrati; Itou, M.; Sakurai, Y.

    2014-04-24

    We present the spin momentum density of Ga doped CoFe{sub 2}O{sub 4} at 100 K using magnetic Compton scattering. The measurement has been performed using circularly polarized synchrotron radiations of 182.65 keV at SPring8, Japan. The experimental profile is decomposed into its constituent profile to determine the spin moment at individual sites. Co atom has the maximum contribution (about 58%) in the total spin moment of the doped CoFe{sub 2}O{sub 4}.

  5. Combinatorial sputtering of Ga-doped (Zn,Mg)O for contact applications in solar cells

    DOE PAGES

    Rajbhandari, Pravakar P.; Bikowski, Andre; Perkins, John D.; ...

    2016-09-20

    In this study, the development of tunable contact materials based on environmentally friendly chemical elements using scalable deposition approaches is necessary for existing and emerging solar energy conversion technologies. In this paper, the properties of ZnO alloyed with magnesium (Mg), and doped with gallium (Ga) are studied using combinatorial thin film experiments. As a result of these studies, the optical band gap of the sputtered Zn1-xMgxO thin films was determined to vary from 3.3 to 3.6 eV for a compositional spread of Mg content in the 0.04 < x < 0.17 range. Depending on whether or not Ga dopants weremore » added, the electron concentrations were on the order of 1017 cm-3 or 1020 cm-3, respectively. Based on these results and on the Kelvin Probe work function measurements, a band diagram was derived using basic semiconductor physics equations. The quantitative determination of how the energy levels of Ga-doped (Zn, Mg)O thin films change as a function of Mg composition presented here, will facilitate their use as optimized contact layers for both Cu2ZnSnS4 (CZTS), Cu(In, Ga)Se2 (CIGS) and other solar cell absorbers.« less

  6. Combinatorial sputtering of Ga-doped (Zn,Mg)O for contact applications in solar cells

    SciTech Connect

    Rajbhandari, Pravakar P.; Bikowski, André; Perkins, John D.; Dhakal, Tara P.; Zakutayev, Andriy

    2017-01-01

    Development of tunable contact materials based on environmentally friendly chemical elements using scalable deposition approaches is necessary for existing and emerging solar energy conversion technologies. In this paper, the properties of ZnO alloyed with magnesium (Mg), and doped with gallium (Ga) are studied using combinatorial thin film experiments. As a result of these studies, the optical band gap of the sputtered Zn1-xMgxO thin films was determined to vary from 3.3 to 3.6 eV for a compositional spread of Mg content in the 0.04 < x < 0.17 range. Depending on whether or not Ga dopants were added, the electron concentrations were on the order of 1017 cm-3 or 1020 cm-3, respectively. Based on these results and on the Kelvin Probe work function measurements, a band diagram was derived using basic semiconductor physics equations. The quantitative determination of how the energy levels of Ga-doped (Zn, Mg)O thin films change as a function of Mg composition presented here, will facilitate their use as optimized contact layers for both Cu2ZnSnS4 (CZTS), Cu(In, Ga)Se2 (CIGS) and other solar cell absorbers.

  7. Combinatorial sputtering of Ga-doped (Zn,Mg)O for contact applications in solar cells

    SciTech Connect

    Rajbhandari, Pravakar P.; Bikowski, Andre; Perkins, John D.; Dhakal, Tara P.; Zakutayev, Andriy

    2016-09-20

    In this study, the development of tunable contact materials based on environmentally friendly chemical elements using scalable deposition approaches is necessary for existing and emerging solar energy conversion technologies. In this paper, the properties of ZnO alloyed with magnesium (Mg), and doped with gallium (Ga) are studied using combinatorial thin film experiments. As a result of these studies, the optical band gap of the sputtered Zn1-xMgxO thin films was determined to vary from 3.3 to 3.6 eV for a compositional spread of Mg content in the 0.04 < x < 0.17 range. Depending on whether or not Ga dopants were added, the electron concentrations were on the order of 1017 cm-3 or 1020 cm-3, respectively. Based on these results and on the Kelvin Probe work function measurements, a band diagram was derived using basic semiconductor physics equations. The quantitative determination of how the energy levels of Ga-doped (Zn, Mg)O thin films change as a function of Mg composition presented here, will facilitate their use as optimized contact layers for both Cu2ZnSnS4 (CZTS), Cu(In, Ga)Se2 (CIGS) and other solar cell absorbers.

  8. Swift heavy ion irradiation of ZnO nanoparticles embedded in silica: Radiation-induced deoxidation and shape elongation

    SciTech Connect

    Amekura, H.; Tsuya, D.; Mitsuishi, K.; Nakayama, Y.; Okubo, N.; Ishikawa, N.; Singh, U. B.; Khan, S. A.; Avasthi, D. K.; Mohapatra, S.

    2013-11-11

    ZnO nanoparticles (NPs) embedded in amorphous SiO{sub 2} were irradiated with 200 MeV Xe{sup 14+} swift heavy ions (SHIs) to a fluence of 5.0 × 10{sup 13} ions/cm{sup 2}. Optical linear dichroism was induced in the samples by the irradiation, indicating shape transformation of the NPs from spheres to anisotropic ones. Transmission electron microscopy observations revealed that some NPs were elongated to prolate shapes; the elongated NPs consisted not of ZnO but of Zn metal. The SHI irradiation induced deoxidation of small ZnO NPs and successive shape elongation of the deoxidized metal NPs.

  9. Ga doping to significantly improve the performance of all-electrochemically fabricated Cu2O-ZnO nanowire solar cells.

    PubMed

    Xie, Jiale; Guo, Chunxian; Li, Chang Ming

    2013-10-14

    Cu2O-ZnO nanowire solar cells have the advantages of light weight and high stability while possessing a large active material interface for potentially high power conversion efficiencies. In particular, electrochemically fabricated devices have attracted increasing attention due to their low-cost and simple fabrication process. However, most of them are "partially" electrochemically fabricated by vacuum deposition onto a preexisting ZnO layer. There are a few examples made via all-electrochemical deposition, but the power conversion efficiency (PCE) is too low (0.13%) for practical applications. Herein we use an all-electrochemical approach to directly deposit ZnO NWs onto FTO followed by electrochemical doping with Ga to produce a heterojunction solar cell. The Ga doping greatly improves light utilization while significantly suppressing charge recombination. A 2.5% molar ratio of Ga to ZnO delivers the best performance with a short circuit current density (Jsc) of 3.24 mA cm(-2) and a PCE of 0.25%, which is significantly higher than in the absence of Ga doping. Moreover, the use of electrochemically deposited ZnO powder-buffered Cu2O from a mixed Cu(2+)-ZnO powder solution and oxygen plasma treatment could reduce the density of defect sites in the heterojunction interface to further increase Jsc and PCE to 4.86 mA cm(-2) and 0.34%, respectively, resulting in the highest power conversion efficiency among all-electrochemically fabricated Cu2O-ZnO NW solar cells. This approach offers great potential for a low-cost solution-based process to mass-manufacture high-performance Cu2O-ZnO NW solar cells.

  10. Enhanced Thermoelectric Properties of Cu2ZnSnSe4 with Ga-doping

    DOE PAGES

    Wei, Kaya; Beauchemin, Laura; Wang, Hsin; ...

    2015-08-10

    Gallium doped Cu2ZnSnSe4 quaternary chalcogenides with and without excess Cu were synthesized by elemental reaction and densified using hot pressing in order to investigate their high temperature thermoelectric properties. The resistivity, , and Seebeck coefficient, S, for these materials decrease with increased Ga-doping while both mobility and effective mass increase with Ga doping. The power factor (S2/ρ) therefore increases with Ga-doping. The highest thermoelectric figure of merit (ZT = 0.39 at 700 K) was obtained for the composition that had the lowest thermal conductivity. Our results suggest an approach to achieving optimized thermoelectric properties and are part of the continuingmore » effort to explore different quaternary chalcogenide compositions and structure types, as this class of materials continues to be of interest for thermoelectrics applications.« less

  11. Write-once memory effects observed in Ga-doped ZnO/organic semiconductor/MoO3/Au structures

    NASA Astrophysics Data System (ADS)

    Hasegawa, Junya; Nagase, Takashi; Kobayashi, Takashi; Naito, Hiroyoshi

    2016-03-01

    Electrical switching phenomena in a device configuration of inverted organic light-emitting diodes have been observed. The device structure was Ga-doped ZnO (GZO)/N,N‧-dicarbazolyl-3,5-benzene (m-CP)/MoO3 (10 nm)/Au (50 nm) fabricated by solution coating. The devices are write-once-read-many-times (WORM) memory devices with low switching voltage (<3 V) and long retention time (>700 h). Equivalent circuits in OFF and ON states are determined from the Cole-Cole plots measured by impedance spectroscopy. The switching phenomena and nonvolatile memory behavior are attributable to the formation conductive Au filaments in the m-CP layer of the ON state.

  12. Highly transparent low resistance Ga doped ZnO/Cu grid double layers prepared at room temperature

    NASA Astrophysics Data System (ADS)

    Jang, Cholho; Zhizhen, Ye; Jianguo, Lü

    2015-12-01

    Ga doped ZnO (GZO)/Cu grid double layer structures were prepared at room temperature (RT). We have studied the electrical and optical characteristics of the GZO/Cu grid double layer as a function of the Cu grid spacing distance. The optical transmittance and sheet resistance of the GZO/Cu grid double layer are higher than that of the GZO/Cu film double layer regardless of the Cu grid spacing distance and increase as the Cu grid spacing distance increases. The calculated values for the transmittance and sheet resistance of the GZO/Cu grid double layer well follow the trend of the experimentally observed transmittance and sheet resistance ones. For the GZO/Cu grid double layer with a Cu grid spacing distance of 1 mm, the highest figure of merit (ΦTC = 6.19 × 10-3 Ω-1) was obtained. In this case, the transmittance, resistivity and filling factor (FF) of the GZO/Cu grid double layer are 83.74%, 1.10 × 10-4 Ω·cm and 0.173, respectively. Project supported by the Key Project of the National Natural Science Foundation of China (No. 91333203), the Program for Innovative Research Team in University of Ministry of Education of China (No. IRT13037), the National Natural Science Foundation of China (No. 51172204), and the Zhejiang Provincial Department of Science and Technology of China (No. 2010R50020).

  13. Excellent low-field magnetoresistance effect in Ga-doped MnZn ferrites

    SciTech Connect

    Kim, Hyo-Jin; Yoo, Sang-Im

    2014-12-15

    An excellent low field magnetoresistance (LFMR) property was achieved from the Ga-doped (Mn{sub 0.8}Zn{sub 0.2})Fe{sub 2}O{sub 4} (MnZn) ferrites at room temperature (RT). For this study, undoped and Ga-doped MnZn ferrites with the nominal compositions of (Mn{sub 0.8}Zn{sub 0.2}){sub 1−x}Ga{sub x}Fe{sub 2}O{sub 4} (x = 0 ∼ 0.1) were prepared by the conventional solid state reaction at 1400°C for 2 h in air. From the magneto-transport measurements, Ga-doped MnZn ferrites were found to have not only much lower resistivity values but also greatly improved LFMR ratios in comparison with undoped sample. The highest maximum LFMR ratio of 2.5% at 290 K in 0.5 kOe was achievable from 2 mol% Ga-doped MnZn ferrite. This large LFMR effect is attributable to an increase in spin electrons by Ga{sup 3+} ion substitution for the (Mn, Zn){sup 2+} site.

  14. Excellent low-field magnetoresistance effect in Ga-doped MnZn ferrites

    NASA Astrophysics Data System (ADS)

    Kim, Hyo-Jin; Yoo, Sang-Im

    2014-12-01

    An excellent low field magnetoresistance (LFMR) property was achieved from the Ga-doped (Mn0.8Zn0.2)Fe2O4 (MnZn) ferrites at room temperature (RT). For this study, undoped and Ga-doped MnZn ferrites with the nominal compositions of (Mn0.8Zn0.2)1-xGaxFe2O4 (x = 0 ˜ 0.1) were prepared by the conventional solid state reaction at 1400°C for 2 h in air. From the magneto-transport measurements, Ga-doped MnZn ferrites were found to have not only much lower resistivity values but also greatly improved LFMR ratios in comparison with undoped sample. The highest maximum LFMR ratio of 2.5% at 290 K in 0.5 kOe was achievable from 2 mol% Ga-doped MnZn ferrite. This large LFMR effect is attributable to an increase in spin electrons by Ga3+ ion substitution for the (Mn, Zn)2+ site.

  15. The effect of ZnO nanoparticles on improved oil recovery in spontaneous imbibition mechanism of heavy oil production

    NASA Astrophysics Data System (ADS)

    Tajmiri, M.; Ehsani, M. R.; Mousavi, S. M.; Roayaei, E.; Emadi, A.

    2015-07-01

    Spontaneous imbibition (SI) gets a controversial subject in oil- wet carbonate reservoirs. The new concept of nanoparticles applications in an EOR area have been recently raised by researches about oil viscosity reduction and generate emulsion without surfactant. But a lot of questions have been remained about which nanoparticles can alter wettability from oil- wet to water- wet to improve oil recovery. This study introduces the new idea of adding ZnO nanoparticles (0.2%wt concentration) by experimental work on oil recovery. The main goals of this research were to prove that ZnO nanoparticles have the ability to reduce viscosity and also alter wettability. The ultimate objective was to determine the potential of these nanoparticles to imbibe into and displace oil. Through the use of Amott- cell, laboratory tests were conducted in two experiments on four cylindrical core samples (three sandstones and one carbonate) were taken from real Iranian heavy oil reservoir. In the first experiment, core samples were saturated by crude oil and in the second experiment, nanoparticles were flooding into core samples and then saturated by crude oil for about two weeks and after that they were immersed in distilled water and the amount of recovery was monitored during 30 days for both tests. We expected that ZnO nanoparticles decreased the surface tension which reduced the capillary forces through SI and wettability alteration took place towards a more water-wet system and caused the oil relative permeability to increase which dominated the gravitational forces to pull out the oil. Our results proved this expectation from ZnO nanoparticles clearly because carbonate core was oil- wet and the capillary pressure was high and negative to push water into the core so the original oil in place (OOIP) was zero whereas by adding ZnO nanoparticles OOIP was increased to 8.89%. SI yielded recovery values from 17.3, 2 and 15 without nanoparticles to 20.68, 17.57 and 36.2 % OOIP with

  16. Electrically pumped ultraviolet ZnO diode lasers on Si

    NASA Astrophysics Data System (ADS)

    Chu, Sheng; Olmedo, Mario; Yang, Zheng; Kong, Jieying; Liu, Jianlin

    2008-11-01

    Electrically pumped ZnO quantum well diode lasers are reported. Sb-doped p-type ZnO/Ga-doped n-type ZnO with an MgZnO/ZnO/MgZnO quantum well embedded in the junction was grown on Si by molecular beam epitaxy. The diodes emit lasing at room temperature with a very low threshold injection current density of 10 A/cm2. The lasing mechanism is exciton-related recombination and the feedback is provided by close-loop scattering from closely packed nanocolumnar ZnO grains formed on Si.

  17. Swift heavy ion induced optical and structural modifications in RF sputtered nanocrystalline ZnO thin film

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Singhal, R.; Vishnoi, R.; Kumar, V. V. S.; Kulariya, P. K.

    2017-01-01

    In the present study, 100 MeV Ag7+ ion beam-induced structural and optical modifications of nanocrystalline ZnO thin films are investigated. The nanocrystalline ZnO thin films are grown using radio frequency magnetron sputtering and irradiated at fluences of 3 × 1012, 1 × 1013 and 3 × 1013 ions/cm2. The incident swift heavy ions induced change in the crystallinity together with the preferential growth of crystallite size along the c axis (002) orientation. The average crystallite size is found to be increased from 10.8 ± 0.7 to 20.5 ± 0.3 nm with increasing the ion fluence. The Atomic force microscopy analysis confirms the variation in the surface roughness by varying the incident ion fluences. The UV-visible spectroscopy shows the decrement in transmittance of the film with ion irradiation. The micro-Raman spectra of ZnO thin films are investigated to observe ion-induced modifications which support the increased lattice defects with higher fluence. The variation in crystallinity indicates that ZnO-based devices can be used in piezoelectric transduction mechanism.

  18. Swift heavy ion induced optical and structural modifications in RF sputtered nanocrystalline ZnO thin film

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Singhal, R.; Vishnoi, R.; Kumar, V. V. S.; Kulariya, P. K.

    2017-05-01

    In the present study, 100 MeV Ag7+ ion beam-induced structural and optical modifications of nanocrystalline ZnO thin films are investigated. The nanocrystalline ZnO thin films are grown using radio frequency magnetron sputtering and irradiated at fluences of 3 × 1012, 1 × 1013 and 3 × 1013 ions/cm2. The incident swift heavy ions induced change in the crystallinity together with the preferential growth of crystallite size along the c axis (002) orientation. The average crystallite size is found to be increased from 10.8 ± 0.7 to 20.5 ± 0.3 nm with increasing the ion fluence. The Atomic force microscopy analysis confirms the variation in the surface roughness by varying the incident ion fluences. The UV-visible spectroscopy shows the decrement in transmittance of the film with ion irradiation. The micro-Raman spectra of ZnO thin films are investigated to observe ion-induced modifications which support the increased lattice defects with higher fluence. The variation in crystallinity indicates that ZnO-based devices can be used in piezoelectric transduction mechanism.

  19. First-principle study on Ag-2N heavy codoped of p-type graphene-like ZnO nanosheet

    NASA Astrophysics Data System (ADS)

    Zhang, W. X.; Li, T.; He, C.; Wu, X. L.; Duan, L.; Li, H.; Xu, L.; Gong, S. B.

    2015-02-01

    In this article, two different Ag-2N heavy codoped of graphene-like ZnO nanosheets have been investigated based on first-principles density-functional theory. The geometric optimization, Density of States (DOS) and Band structure (BS) for all models are calculated, respectively. The results indicate that Ag substituted on the cation site (AgZn) exhibit a strong attractive interaction with a nitrogen acceptor located at the nearest-neighbor oxygen site, forming passive Ag-N complex. This study can be a theoretical guidance to improve the electrical conductivity of p-type graphene-like ZnO nanosheet by heavy codoping.

  20. Adsorption of gas molecules on Ga-doped graphene and effect of applied electric field: A DFT study

    NASA Astrophysics Data System (ADS)

    Liang, Xiong-Yi; Ding, Ning; Ng, Siu-Pang; Wu, Chi-Man Lawrence

    2017-07-01

    Density functional theory calculations have been carried out to study the adsorption of varous gas molecules (H2O, NH3, CO, NO2 and NO) on pristine graphene and Ga-doped graphene in order to explore the feasibility of Ga-doped graphene based gas sensor. For each gas molecule, various adsorption positions and orientations were considered. The most stable configuration was determined and the adsorption energies with van der Waals interactions were calculated. Further, electronic properties such as electron density, density of states, charge transfer and band structure were investigated to understand the mechanism of adsorption. The results showed that the gas molecules studied were only weakly adsorbed on pristine graphene with small adsorption energies. On the other hand, the adsorption energies of all gas molecules on Ga-doped graphene increased by various amounts. Adsorption of gas molecules on Ga-doped graphene can open a relatively large band gap ranging from 0.267 to 0.397 eV. NO2 was found to be very sensitive to Ga-doped graphene with adsorption energy of -1.928 eV due to strong orbital hybridization and large charge transfer. Furthermore, our study suggests that the affinity and electronic properties of NO2 on Ga-doped graphene can be dramatically changed by an external electric field. A negative electric field enhances the adsorption of NO2 on Ga-doped graphene as reflected in the increase in adsorption energy. In contrast, the interaction will be weakened under a positive electric field. The results of the DFT calculation indicates the potential application of Ga-doped graphene in gas sensing for NO2 detection, and the advantage to use external electric field to tune the sensitivity for NO2.

  1. Electrical properties of individual ZnO nanowires.

    PubMed

    Sakurai, M; Wang, Y G; Uemura, T; Aono, M

    2009-04-15

    The electrical properties of individual ZnO nanowires were investigated for two methods of fabricating nanowire-electrode junctions. The number of carriers in the nanowires was increased by electrostatically doping them by applying a gate voltage. The nanowires were chemically doped by introducing impurities during growth. The Ga-doped nanowires had a linear current-voltage relationship over a wide voltage region. The nanowire-electrode junctions were formed either by using lithography to form electrodes on the nanowire or by using an AFM probe to move a nanowire onto prepared electrodes. With both methods, electrodes made of Ga-doped ZnO were found to make better electrical contact with the nanowire than those made of Ti/Au.

  2. Influence of Ga doping ratio on the saturable absorption mechanism in Ga doped ZnO thin solid films processed by sol-gel spin coating technique

    NASA Astrophysics Data System (ADS)

    Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.; Byrappa, K.

    2017-03-01

    In the present study, the nonlinear optical properties of sol-gel spin coated gallium doped zinc oxide (GZO) thin solid films are explored with nanosecond laser pulses using the z-scan technique. The higher doping ratios of Ga result in a large redshift of the energy gap (0.38 eV) due to the existence of enhanced grain boundary defects in GZO films. A positive nonlinear absorption coefficient is observed in undoped 1 at.wt.% GZO and 2 at.wt.% GZO films, and a negative nonlinear absorption coefficient in 3 at.wt.% GZO film. Fewer defects in undoped 1% GZO and 2% GZO films resulted in reverse saturable absorption (RSA), whereas a saturable absorption (SA) mechanism is observed in 3% GZO films and is attributed to the enhanced defect concentration in the band structure of GZO. However, all the films showed a self-defocusing mechanism, derived by a closed aperture z-scan technique. The present work sheds light on the defect mechanism involved in the observed nonlinear properties of GZO films.

  3. Theoretical investigation of the effects of doping on the electronic structure and thermoelectric properties of ZnO nanowires.

    PubMed

    Wang, Chao; Wang, Yuanxu; Zhang, Guangbiao; Peng, Chengxiao; Yang, Gui

    2014-02-28

    The effects of doping ZnO nanowires with Al, Ga and Sb on their electronic structure and thermoelectric properties are investigated by first-principles calculations. We find that the band gap of ZnO nanowires is narrowed after doping with Al and Ga, while band gap broadening is observed in Sb doped ZnO nanowires. The lattice thermal conductivity of ZnO nanowires is obtained based on the Debye-Callaway model. The thermoelectric properties of ZnO nanowires were calculated using the BoltzTraP code. The results show that there exists an optimal carrier concentration yielding the maximum value of ZT for Al, Ga and Sb doped ZnO nanowires at room temperature. The maximum value of ZT, 0.147, is obtained for Ga doped ZnO nanowires, when the carrier concentration is 3.62 × 10(19) cm(-3). The figure of merit ZT of Sb doped ZnO nanowires is higher than that of Ga doped ZnO nanowires when the temperature is between 400 K and 1200 K. We also find that Al doped ZnO nanowires always have poor thermoelectric properties, which means that the Al dopant may not be the optimal choice for ZnO nanowires in thermoelectric applications.

  4. Use of Ga Doping to Suppress Optical Damage in Near-Stoichiometric LiNbO3 Crystals

    NASA Astrophysics Data System (ADS)

    Nakamura, Masaru; Takekawa, Shunji; Liu, Yuowen; Kitamura, Kenji

    2009-02-01

    We investigated the effect of Ga doping on optical damage (photorefractive damage) in near-stoichiometric LiNbO3 (SLN) crystals. SLN crystals doped with Ga (Ga:SLN) were grown from a Li-rich solution by a top-seeded solution growth method. The optical damage resistance of the crystals was investigated at 532 nm. Crystals with a Ga doping concentration of at least 0.49 mol % showed no optical damage. The Ga doping shifted the OH- absorption peak position from 2.88 to 2.85 µm for crystals with a 0.49 mol % concentration. This concentration is lower than the 1 mol % Mg doping concentration required to suppress optical damage in SLN crystals. This attractive optical damage resistance characteristic makes Ga:SLN crystals another candidate as an optical damage resistant material, in addition to Sc-doped SLN crystals, for applications such as electrooptic devices and quasi-phase-matched frequency converters.

  5. Enhanced Thermoelectric Properties of Cu2ZnSnSe4 with Ga-doping

    SciTech Connect

    Wei, Kaya; Beauchemin, Laura; Wang, Hsin; Porter, Wallace D.; Martin, Joshua; Nolas, George S.

    2015-08-10

    Gallium doped Cu2ZnSnSe4 quaternary chalcogenides with and without excess Cu were synthesized by elemental reaction and densified using hot pressing in order to investigate their high temperature thermoelectric properties. The resistivity, , and Seebeck coefficient, S, for these materials decrease with increased Ga-doping while both mobility and effective mass increase with Ga doping. The power factor (S2/ρ) therefore increases with Ga-doping. The highest thermoelectric figure of merit (ZT = 0.39 at 700 K) was obtained for the composition that had the lowest thermal conductivity. Our results suggest an approach to achieving optimized thermoelectric properties and are part of the continuing effort to explore different quaternary chalcogenide compositions and structure types, as this class of materials continues to be of interest for thermoelectrics applications.

  6. LETTER TO THE EDITOR: Magnetron sputtering growth and characterization of high quality single crystal Ga-doped n-ZnO thin films

    NASA Astrophysics Data System (ADS)

    Kim, Tae-hwan; Jeong, Sang-Hun; Kim, Il-Soo; Kim, Sang Sub; Lee, Byung-Teak

    2005-09-01

    Ga-doped n-type ZnO (ZnO:Ga) films were grown on sapphire substrates by rf magnetron sputtering and their structural, electrical and optical properties were characterized in detail. It was observed that high quality single crystal ZnO:Ga films are obtained, containing up to 1 wt% of Ga. The ZnO:Ga (1 wt%) films grown at 700 °C in pure O2 showed sharp and intense photoluminescence (PL) and high resolution x-ray diffraction (XRD) peaks, with full-width-at-half-maximum values of 150 meV (room temperature PL), 24 meV (12 K PL) and 380 arcsec (XRD), which is slightly better than or comparable with corresponding values from the previously reported ZnO:Ga films. Electrical properties of ZnO:Ga films significantly improved after the rapid thermal processing, resulting in 2.6 × 1019 cm-3 free electron density and 47 cm2 V-1 s-1 mobility after annealing at 900 °C in the case of 1 wt% film. The intensity of the PL peaks was also enhanced by the heat treatment.

  7. Adsorption of sugars on Al- and Ga-doped boron nitride surfaces: A computational study

    NASA Astrophysics Data System (ADS)

    Darwish, Ahmed A.; Fadlallah, Mohamed M.; Badawi, Ashraf; Maarouf, Ahmed A.

    2016-07-01

    Molecular adsorption on surfaces is a key element for many applications, including sensing and catalysis. Non-invasive sugar sensing has been an active area of research due to its importance to diabetes care. The adsorption of sugars on a template surface study is at the heart of matter. Here, we study doped hexagonal boron nitride sheets (h-BNNs) as adsorbing and sensing template for glucose and glucosamine. Using first principles calculations, we find that the adsorption of glucose and glucosamine on h-BNNs is significantly enhanced by the substitutional doping of the sheet with Al and Ga. Including long range van der Waals corrections gives adsorption energies of about 2 eV. In addition to the charge transfer occurring between glucose and the Al/Ga-doped BN sheets, the adsorption alters the size of the band gap, allowing for optical detection of adsorption. We also find that Al-doped boron nitride sheet is better than Ga-doped boron nitride sheet to enhance the adsorption energy of glucose and glucosamine. The results of our work can be potentially utilized when designing support templates for glucose and glucosamine.

  8. On the recombination centers of iron-gallium pairs in Ga-doped silicon

    NASA Astrophysics Data System (ADS)

    Nærland, Tine Uberg; Bernardini, Simone; Haug, Halvard; Grini, Sigbjørn; Vines, Lasse; Stoddard, Nathan; Bertoni, Mariana

    2017-08-01

    Gallium (Ga) doped silicon (Si) is becoming a relevant player in solar cell manufacturing thanks to its demonstrated low light-induced degradation, yet little is known about Ga-related recombination centers. In this paper, we study iron (Fe)-related recombination centers in as-grown, high quality, directionally solidified, monocrystalline Ga-doped Si. While no defect states could be detected by deep level transient spectroscopy, lifetime spectroscopy analysis shows that the minority carrier lifetime in as-grown wafers is dominated by low levels of FeGa related defect complexes. FeGa pairs have earlier been shown to occur in two different structural configurations. Herein, we show that in terms of recombination strength, the orthorhombic pair-configuration is dominant over the trigonal pair-configuration for FeGa. Furthermore, the defect energy level in the band gap for the orthorhombic defect center is determined to be EV + 0.09 eV, and the capture cross-section ratio of the same defect center is determined to be 220.

  9. Dominant ultraviolet light emissions in packed ZnO columnar homojunction diodes

    NASA Astrophysics Data System (ADS)

    Kong, Jieying; Chu, Sheng; Olmedo, Mario; Li, Lin; Yang, Zheng; Liu, Jianlin

    2008-09-01

    The growth of Sb-doped p-type ZnO /Ga-doped n-type ZnO homojunction on Si (100) substrate by molecular beam epitaxy led to closely packed vertical ZnO columns with lateral diameters ranging from 100to400nm. Mesa structures were defined and Ohmic contact of both n-type ZnO and p-type ZnO was realized with Au /Ti and Au /NiO, respectively. I-V and C-V curves present typical electrical properties of a diode, indicating that reliable p-type ZnO was formed. Electroluminescence shows dominant ultraviolet emissions with insignificant deep-level related yellow/green band emissions at different drive currents from 60to100mA at room temperature.

  10. Photovoltaic performance of Gallium-doped ZnO thin film/Si nanowires heterojunction diodes

    NASA Astrophysics Data System (ADS)

    Akgul, Guvenc; Aksoy Akgul, Funda; Emrah Unalan, Husnu; Turan, Rasit

    2016-04-01

    In this work, photovoltaic performance of Ga-doped ZnO thin film/Si NWs heterojunction diodes was investigated. Highly dense and vertically well-aligned Si NW arrays were successfully synthesised on a p-type (1 0 0)-oriented Si wafer through cost-effective metal-assisted chemical etching technique. Ga-doped ZnO thin films were deposited onto Si NWs via radio frequency magnetron sputtering to construct three-dimensional heterostructures. Photovoltaic characteristics of the fabricated diodes were determined with current density (J)-voltage (V) measurements under simulated solar irradiation of AM 1.5 G. The optimal open-circuit voltage, short-circuit current density, fill factor and power conversion efficiency were found to be 0.37 V, 3.30 mA cm-2, 39.00 and 0.62%, respectively. Moreover, photovoltaic diodes exhibited relatively high external quantum efficiency over the broadband wavelengths between 350 and 1100 nm interval of the spectrum. The observed photovoltaic performance in this study clearly indicates that the investigated device structure composed of Ga-doped ZnO thin film/Si NWs heterojunctions could facilitate an alternative pathway for optoelectronic applications in future, and be a promising alternative candidate for high-performance low-cost new-generation photovoltaic diodes.

  11. Adsorption of cyanogen chloride over Al- and Ga-doped BN nanotubes

    NASA Astrophysics Data System (ADS)

    Soltani, Alireza; Baei, Mohammad T.; Ghasemi, A. S.; Tazikeh Lemeski, E.; Amirabadi, Komail Hosseni

    2014-11-01

    Density functional theory (DFT) studies were performed to evaluate the ability of the pristine (8, 0) and (10, 0) BN nanotubes as sensor for cyanogen chloride (CNCl). The adsorption of CNCl reacting with BN nanotubes are studied at B3LYP 6-31G* level of theory. Compared with carbon nanotube, (8, 0) BN nanotubes can strongly adsorb the CNCl molecule (about -0.22 eV) with -9.31% change in the energy gap. Our results reveal that the length and diameter of tube have not significant effect upon the adsorption process. In contrast with Ga-doped BN nanotube, the Al-doped BN nanotube has a significant change in the energy gap (about -21.44%) with the adsorption energy of -1.01 eV. Therefore, Al doping BN nanotubes can be utilized as a sensor for toxic CNCl.

  12. First-principles study of (Ga, Al)-codoped ZnO for optoelectronic device application

    NASA Astrophysics Data System (ADS)

    Jain, Praveen K.; Salim, Mohammad

    2017-07-01

    The relative stability, electronic structure, and optical properties of (Ga-Al)-codoped ZnO were investigated by first-principles calculations based on density functional theory (DFT). To study the doping effects, ZnO supercells with 32 atoms were built. The results were obtained by using Material Studios 8.0 provided by Accelrys. Ab initio spin-polarized all-electron DFT computations have been performed for substitution. The results indicate that the energy band shifts towards the higher-energy region for Al- and/or Ga-doped ZnO, which endorsed the doping of Al and/or Ga. It has been observed that the preparation of (Ga-Al)-codoped ZnO is difficult compared to Al/Ga-doped ZnO due to the considerably larger formation energy required. The imaginary part of the dielectric function ɛ 2(ω), reflectivity R(ω), absorption coefficient α(ω), and refractive index n(ω) were calculated. The contribution of different density of states in the formation of the conduction and valence band has been analyzed for different configurations of ZnO.

  13. Ga-doped and antisite double defects enhance the sensitivity of boron nitride nanotubes towards Soman and Chlorosoman

    NASA Astrophysics Data System (ADS)

    Javan, Masoud Bezi; Soltani, Alireza; Ghasemi, A. S.; Lemeski, E. Tazikeh; Gholami, Niloofar; Balakheyli, Hanzaleh

    2017-07-01

    Adsorption of Soman and Chlorosoman over the outer surface of boron nitride nanotube (BNNT) was studied using density functional theory (DFT) calculations to consider its sensitivity toward mentioned nerve agents. Then, we studied the sensitivity of Ga-doped BNNT and double-antisite defective BNNT (d-BNNT) effects towards adsorbed molecule resulting in eye-catching sensitivity of defected adsorbents representing strong chemical adsorption on the Ga-doped BNNT, while they are mainly physisorbed on the pure BNNT with negligible electronic properties. Density of states (DOSs) was analyzed for further understanding of electronic properties of the applied configurations. Charges were moved from BNNT to the single molecules while in case of Ga-doped and d-BNNT; the charges were transferred from single molecules to the defected adsorbents. These along with outcomes of quantum molecular descriptors, difference in energy gap (Eg), and dipole moments clearly reveal that the d-BNNT is a promising sensor material for the detection of these nerve agents.

  14. An Sb-doped p-type ZnO nanowire based random laser diode.

    PubMed

    Bashar, Sunayna B; Suja, Mohammad; Morshed, Muhammad; Gao, Fan; Liu, Jianlin

    2016-02-12

    An electrically pumped Sb-doped ZnO nanowire/Ga-doped ZnO p-n homojunction random laser is demonstrated. Catalyst-free Sb-doped ZnO nanowires were grown on a Ga-doped ZnO thin film on a Si substrate by chemical vapor deposition. The morphology of the as-grown titled nanowires was observed by scanning electron microscopy. X-ray photoelectron spectroscopy results indicated the incorporation of Sb dopants. Shallow acceptor states of Sb-doped nanowires were confirmed by photoluminescence measurements. Current-voltage measurements of ZnO nanowire structures assembled from p- and n-type materials showed a typical p-n diode characteristic with a threshold voltage of about 7.5 V. Very good photoresponse was observed in the UV region operated at 0 V and different reverse biases. Random lasing behavior with a low-threshold current of around 10 mA was demonstrated at room temperature. The output power was 170 nW at 30 mA.

  15. An Sb-doped p-type ZnO nanowire based random laser diode

    NASA Astrophysics Data System (ADS)

    Bashar, Sunayna B.; Suja, Mohammad; Morshed, Muhammad; Gao, Fan; Liu, Jianlin

    2016-02-01

    An electrically pumped Sb-doped ZnO nanowire/Ga-doped ZnO p-n homojunction random laser is demonstrated. Catalyst-free Sb-doped ZnO nanowires were grown on a Ga-doped ZnO thin film on a Si substrate by chemical vapor deposition. The morphology of the as-grown titled nanowires was observed by scanning electron microscopy. X-ray photoelectron spectroscopy results indicated the incorporation of Sb dopants. Shallow acceptor states of Sb-doped nanowires were confirmed by photoluminescence measurements. Current-voltage measurements of ZnO nanowire structures assembled from p- and n-type materials showed a typical p-n diode characteristic with a threshold voltage of about 7.5 V. Very good photoresponse was observed in the UV region operated at 0 V and different reverse biases. Random lasing behavior with a low-threshold current of around 10 mA was demonstrated at room temperature. The output power was 170 nW at 30 mA.

  16. Gallium doping in transparent conductive ZnO thin films prepared by chemical spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Babar, A. R.; Deshamukh, P. R.; Deokate, R. J.; Haranath, D.; Bhosale, C. H.; Rajpure, K. Y.

    2008-07-01

    Zinc oxide (ZnO) and ZnO : Ga films have been deposited by the spray pyrolysis method onto preheated glass substrates using zinc acetate and gallium nitrate as precursors for Zn and Ga ions, respectively. The effect of Ga doping on the structural, morphological, optical and electrical properties of sprayed ZnO thin films were investigated using x-ray diffraction (XRD), scanning electron microscopy, optical absorption, photoluminescence (PL) and Hall effect techniques. XRD studies reveal that films are polycrystalline with hexagonal (wurtzite) crystal structure. The thin films were oriented along the (0 0 2) plane. Room temperature PL measurements indicate that the deposited films exhibit proper doping of Ga in ZnO lattice. The average transparency in the visible range was around ~85-95% for typical thin film deposited using 2 at% gallium doping. The optical band gap increased from 3.31 to 3.34 eV with Ga doping of 2 at%. The addition of gallium induces a decrease in electrical resistivity of the ZnO : Ga films up to 2 at% gallium doping. The highest figure of merit observed in this present study was 3.09 × 10-3 cm2 Ω-1.

  17. Conduction band position tuning and Ga-doping in (Cd,Zn)S alloy thin films

    DOE PAGES

    Baranowski, Lauryn L.; Christensen, Steven; Welch, Adam W.; ...

    2017-02-13

    In recent years, the number of novel photovoltaic absorber materials under exploration has rapidly increased. However, to reap the most benefit from these new absorbers, alternative device structures and components must also be considered. In particular, the choice of a heterojunction partner, or contact layer, is critical to device optimization. In this work, we explore alternative n-type contact layer candidates that could be widely applicable to a variety of new absorbers. We use theory to calculate the band edge tuning provided by a variety of II-VI alloy systems, and select the (Cd,Zn)S system as one that affords a wide rangemore » of conduction band tuning. The synthesis of (Cd,Zn)S alloys is explored using atomic layer deposition, which afforded precise compositional control and produced crystalline thin films. The predicted tuning of the band gap and conduction band minimum is confirmed through X-ray photoelectron spectroscopy and optical absorption measurements. In addition, we investigated Ga-doping in Cd0.6Zn0.4S films to decrease their series resistance when used as contact layers in photovoltaic devices. In conclusion, this study provides a framework for exploring and optimizing alternative contact layer materials, which will prove critical to the success of new PV absorbers.« less

  18. The enhanced spontaneous dielectric polarization in Ga doped CuFeO{sub 2}

    SciTech Connect

    Shi, Liran; Wei, Meng; Huang, Junwei; Chen, Borong; Shang, Cui; Xia, Zhengcai Long, Zhuo; Ouyang, Zhongwen; Xia, Nianming

    2014-11-07

    The magnetic and dielectric polarization properties of the single crystal samples of CuFe{sub 1−x}Ga{sub x}O{sub 2} (x = 0 and 0.02) are investigated. Experimental results show that the magnetization and dielectric polarizations are anisotropy and coupled together. Compared with pure CuFeO{sub 2}, in the case with the magnetic field parallel to the c axis, a field-induced phase transition with a hysteresis is clearly observed between the five-sublattice (5SL) and three-sublattice (3SL) phases. Specially, an obvious spontaneous dielectric polarization is observed in CuFe{sub 0.98}Ga{sub 0.02}O{sub 2} in a lower magnetic field region, indicating that the Ga doping has an effect on the enhancement of spontaneous dielectric polarization. Based on the dilution effect, change of exchange interaction, and partial release of the spin frustration due to the structural modulation of the Ga ion dopant, the origin of the magnetization, and spontaneous polarization characteristics are discussed and the complete dielectric polarization diagrams are assumed.

  19. Adsorption of Sugars on Al- and Ga-doped Boron Nitride Surfaces: A Computational Study

    NASA Astrophysics Data System (ADS)

    Darwish, Ahmed A.; Fadlallah, Mohamed M.; Badawi, Ashraf; Maarouf, Ahmed A.

    2015-12-01

    Molecular adsorption on surfaces is a key element for many applications, including sensing and catalysis. Non-invasive sugar sensing has been an active area of research due to its importance to diabetes care. The adsorption of sugars on a template surface study is at the heart of matter. Here, we study doped hexagonal boron nitride sheets ($h$-BNNs) as adsorbing and sensing template for glucose and glucosamine. Using first principles calculations, we find that the adsorption of glucose and glucosamine on $h$-BNNs is significantly enhanced by the substitutional doping of the sheet with Al and Ga. Including long range van der Waals corrections gives adsorption energies of about 2 eV. In addition to the charge transfer occurring between glucose and the Al/Ga-doped BN sheets, the adsorption alters the size of the band gap, allowing for optical detection of adsorption. We also find that Al-doped boron nitride sheet is better than Ga-nitride sheet to enhance the adsorption energy of glucose and glucosamine. The results of our work can be potentially utilized when designing support templates for glucose and glucosamine.

  20. Effect of deposition times on structure of Ga-doped ZnO thin films as humidity sensor

    SciTech Connect

    Khalid, Faridzatul Shahira; Awang, Rozidawati

    2014-09-03

    Gallium doped zinc oxide (GZO) has good electrical property. It is widely used as transparent electrode in photovoltaic devices, and sensing element in gas and pressure sensors. GZO thin film was prepared using magnetron sputtering. Film deposition times were set at 10, 15, 20, 25 and 30 minutes to get samples of different thickness. X-ray diffraction (XRD) was used to determine the structure of GZO thin films. Structure for GZO thin film is hexagonal wurtzite structure. Morphology and thickness of GZO thin films was observed from FESEM micrographs. Grain size and thickness of thin films improved with increasing deposition times. However, increasing the thickness of thin films occur below 25 minutes only. Electrical properties of GZO thin films were studied using a four-point probe technique. The changes in the structure of the thin films lead to the changed of their electrical properties resulting in the reduction of the film resistance. These thin films properties significantly implying the potential application of the sample as a humidity sensor.

  1. Aging effects of the precursor solutions on the properties of spin coated Ga-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Serrao, Felcy Jyothi; Dharmaprakash, S. M.

    2015-06-01

    In this study, gallium doped zinc oxide thin films (GZO) were grown on a glass substrate by a simple sol-gel process and spin coating technique using zinc acetate and gallium nitrate (3at%) as precursors for Zn and Ga ions respectively. The effects of aging time of the precursor solution on the structural and optical properties of the GZO films were investigated. The surface morphology, grain size, film thickness and optical properties of the GZO films were found to depend directly on the sol aging time. XRD studies reveal that the films are polycrystalline with a hexagonal wurtzite structure and show the c-axis grain orientation. Optical transmittance spectra of all the films exhibited transmittance higher than about 82% within the visible wavelength region. A sharp fundamental absorption edge with a slight blue shifting was observed with an increase in sol aging time which can be explained by Burstein-Moss effect. The result indicates that an appropriate aging time of the sol is important for the improvement of the structural and optical properties of GZO thin films derived from sol-gel method.

  2. Aging effects of the precursor solutions on the properties of spin coated Ga-doped ZnO thin films

    SciTech Connect

    Serrao, Felcy Jyothi Dharmaprakash, S. M.

    2015-06-24

    In this study, gallium doped zinc oxide thin films (GZO) were grown on a glass substrate by a simple sol-gel process and spin coating technique using zinc acetate and gallium nitrate (3at%) as precursors for Zn and Ga ions respectively. The effects of aging time of the precursor solution on the structural and optical properties of the GZO films were investigated. The surface morphology, grain size, film thickness and optical properties of the GZO films were found to depend directly on the sol aging time. XRD studies reveal that the films are polycrystalline with a hexagonal wurtzite structure and show the c-axis grain orientation. Optical transmittance spectra of all the films exhibited transmittance higher than about 82% within the visible wavelength region. A sharp fundamental absorption edge with a slight blue shifting was observed with an increase in sol aging time which can be explained by Burstein-Moss effect. The result indicates that an appropriate aging time of the sol is important for the improvement of the structural and optical properties of GZO thin films derived from sol-gel method.

  3. Model-free determination of optical constants: application to undoped and Ga-doped ZnO

    NASA Astrophysics Data System (ADS)

    Look, David C.; Wang, Buguo; Leedy, Kevin D.

    2017-03-01

    For single slabs of uniform material, such as bulk semiconductors, we derive closed-form expressions for absorption and reflection coefficients, and R, respectively, in terms of measured reflectance and transmittance, Rm and Tm. The formula for α can replace the several commonly used approximations for as a function of Tm, and in particular does not require d >> 1, where d is the thickness. Thus, it can be applied to weak impurity absorptions, such as Fe absorption in Fe-doped GaN. Finally, the real (η) and imaginary (κ) parts of the index of refraction (n = η + iκ) can be obtained from and R and agree well with η and κ results obtained from other experiments. For multi-layer structures, "effective" values of , R, η, and κ are obtained, but they can often be assigned to a particular layer. This new technique has been successfully applied to many bulk and layered structures.

  4. Model-free determination of optical constants: application to undoped and Ga-doped ZnO

    NASA Astrophysics Data System (ADS)

    Look, David C.; Wang, Buguo; Leedy, Kevin D.

    2017-03-01

    For single slabs of uniform material, such as bulk semiconductors, we derive closed-form expressions for absorption and reflection coefficients, α and R, respectively, in terms of measured reflectance and transmittance, Rm and Tm. The formula for α can replace the several commonly used approximations for α as a function of Tm and in particular does not require αd≫1, where d is the thickness. Thus, it can be applied to weak impurity absorptions, such as Fe absorption in Fe-doped GaN. Finally, the real (η) and imaginary (κ) parts of the index of refraction (n=η+iκ) can be obtained from α and R and agree well with η and κ results obtained from other experiments. For multilayer structures, "effective" values of α, R, η, and κ are obtained, but they can often be assigned to a particular layer. This technique has been successfully applied to many bulk and layered structures.

  5. Effects of deposition temperature on the effectiveness of hydrogen doping in Ga-doped ZnO thin films

    SciTech Connect

    Kim, Dong-Ho; Lee, Sung-Hun; Lee, Gun-Hwan; Kim, Hyun-Bum; Kim, Kwang Ho; Lee, Yoon-Gyu; Yu, Tae-Hwan

    2010-07-15

    Gallium-doped zinc oxide thin films were prepared on glass substrates by dc magnetron sputtering under various hydrogen contents in sputtering ambient. The carrier concentration of the films deposited at low-temperatures (80 and 160 deg. C) was increased due to the incorporation of hydrogen atoms, acting as shallow donors. A low resistivity of 4.0x10{sup -4} {Omega} cm was obtained for the film grown at 160 deg. C with H{sub 2} 10%, which has a carrier concentration of 8.2x10{sup 20}/cm{sup 3}. The beneficial effect of hydrogen doping was not observed for the films deposited at 270 deg. C. Both carrier concentration and mobility were decreased by the addition of hydrogen gas in the sputtering ambient. Variations in the electrical transport properties upon vacuum annealing showed that the difference is attributed to the thermal stability of interstitial hydrogen atoms in the films. The hydrogen incorporation was found to induce the lattice expansion and the free carrier absorption in near infrared range. The investigation of the structural and optical properties of the films upon annealing also revealed that the incorporated hydrogen atoms are unstable at high temperature, which is consistent with the results obtained in the electrical properties.

  6. Enhancement of magnetocaloric properties near room temperature in Ga-doped Ni50Mn34.5In15.5 Heusler-type alloy

    NASA Astrophysics Data System (ADS)

    Takeuchi, A. Y.; Guimarães, C. E.; Passamani, E. C.; Larica, C.

    2012-05-01

    A martensitic Ni50Mn34.5In15.5 Heusler-type alloy doped with Ga was studied by x-ray diffractometry and magnetization measurements. Ga-doping does not affect the austenitic phase transition but shifts the martensitic phase transformation towards room temperature, producing an enhancement of the magnetic entropy change (ΔSM) in that temperature region. Large ΔSM-values in the Ga-doped samples are attained for an applied field of 30 kOe as opposed to the field of 50 kOe commonly found for the un-doped cases. These effects (enhancement of ΔSM-values, shift to temperatures close to 300 K, and large ΔSM-values at lower applied fields) make the Ga-doped Ni50Mn34.5In15.5 Heusler-type alloys good candidates for technological applications as a solid refrigerant.

  7. Investigation of thermal resistance and power consumption in Ga-doped indium oxide (In{sub 2}O{sub 3}) nanowire phase change random access memory

    SciTech Connect

    Jin, Bo; Lee, Jeong-Soo E-mail: ljs6951@postech.ac.kr; Lim, Taekyung; Ju, Sanghyun; Latypov, Marat I.; Pi, Dong-Hai; Seop Kim, Hyoung; Meyyappan, M. E-mail: ljs6951@postech.ac.kr

    2014-03-10

    The resistance stability and thermal resistance of phase change memory devices using ∼40 nm diameter Ga-doped In{sub 2}O{sub 3} nanowires (Ga:In{sub 2}O{sub 3} NW) with different Ga-doping concentrations have been investigated. The estimated resistance stability (R(t)/R{sub 0} ratio) improves with higher Ga concentration and is dependent on annealing temperature. The extracted thermal resistance (R{sub th}) increases with higher Ga-concentration and thus the power consumption can be reduced by ∼90% for the 11.5% Ga:In{sub 2}O{sub 3} NW, compared to the 2.1% Ga:In{sub 2}O{sub 3} NW. The excellent characteristics of Ga-doped In{sub 2}O{sub 3} nanowire devices offer an avenue to develop low power and reliable phase change random access memory applications.

  8. Electrical properties and stability of p-type ZnO film enhanced by alloying with S and heavy doping of Cu

    SciTech Connect

    Pan, H. L.; Yang, T.; Xu, Y.; Yao, B.; Zhang, B. Y.; Liu, W. W.; Shen, D. Z.

    2010-10-04

    Single wurtzite p-type Zn{sub 1-y}Cu{sub y}O{sub 1-x}S{sub x} alloy films with 0.081{<=}x{<=}0.186 and 0.09{<=}y{<=}0.159 were grown on quartz reproducibly by magnetron sputtering. The alloys show very stable p-type conductivity with a hole concentration of 4.31-5.78x10{sup 19} cm{sup -3}, a resistivity of 0.29-0.34 {Omega} cm and a mobility of 0.32-0.49 cm{sup 2} V{sup -1} s{sup -1}. The p-type conductivity is attributed to substitution of Cu{sup +1} for the Zn site, and the ionization energy of the Cu{sup +1} acceptor is measured to be 53 meV, much less than that of Cu-doped ZnO reported previously. The small ionization energy is due to Cu heavy doping and increase in valence band maximum of ZnO induced by alloying with S.

  9. Enhancement of photo sensor properties of nanocrystalline ZnO thin film by swift heavy ion irradiation

    SciTech Connect

    Mahajan, S. V.; Upadhye, D. S.; Bagul, S. B.; Shaikh, S. U.; Birajadar, R. B.; Siddiqui, F. Y.; Huse, N. P.; Sharma, R. B. E-mail: rps.phy@gmail.com

    2015-06-24

    Nanocrystalline Zinc Oxide (ZnO) thin film prepared by Low cost Successive Ionic Layer Adsorption and Reaction (SILAR) method. This film was irradiated by 120 MeV Ni{sup 7+} ions with the fluence of 5x10{sup 12}ions/cm{sup 2}. The X-ray diffraction study was shows polycrystalline nature with wurtzite structure. The optical properties as absorbance were determined using UV-Spectrophotometer and band gap was also calculated. The Photo Sensor nature was calculated by I-V characteristics with different sources of light 40W, 60W and 100W.

  10. Enhanced role of Al or Ga-doped graphene on the adsorption and dissociation of N2O under electric field.

    PubMed

    Lv, Yong-an; Zhuang, Gui-lin; Wang, Jian-guo; Jia, Ya-bo; Xie, Qin

    2011-07-21

    To find an effective strategy for the capture and decomposition of nitrous oxide (N(2)O) is very important in order to protect the ozone layer and control the effects of global warming. Based on first-principles calculations, such a strategy is proposed by the systemic study of N(2)O interaction with pristine and Al (or Ga)-doped graphene, and N(2)O dissociation on the surface of Al (or Ga)-doped graphene in an applied electric field. The calculated adsorption energy value shows the N(2)O molecule more firmly adsorbs on the surface of Al (or Ga)-doped graphene than that of pristine graphene, deriving from a stronger covalent bond between the N(2)O molecule and the Al (or Ga) atom. Furthermore, our study suggests that N(2)O molecules can be easily decomposed to N(2) and O(2) with the appropriate electric field, which reveals that Al-doped graphene may be a new candidate for control of N(2)O. This journal is © the Owner Societies 2011

  11. Effects of Annealing Temperature on Properties of Ti-Ga–Doped ZnO Films Deposited on Flexible Substrates

    PubMed Central

    Chen, Tao-Hsing; Chen, Ting-You

    2015-01-01

    An investigation is performed into the optical, electrical, and microstructural properties of Ti-Ga–doped ZnO films deposited on polyimide (PI) flexible substrates and then annealed at temperatures of 300 °C, 400 °C, and 450 °C, respectively. The X-ray diffraction (XRD) analysis results show that all of the films have a strong (002) Ga doped ZnO (GZO) preferential orientation. As the annealing temperature is increased to 400 °C, the optical transmittance increases and the electrical resistivity decreases. However, as the temperature is further increased to 450 °C, the transmittance reduces and the resistivity increases due to a carbonization of the PI substrate. Finally, the crystallinity of the ZnO film improves with an increasing annealing temperature only up to 400 °C and is accompanied by a smaller crystallite size and a lower surface roughness.

  12. 100 MeV Ni+7 swift heavy ion induced magnetism in cobalt doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Kumar, Ravi; Singh, D. P.

    2014-04-01

    Zn0.90Co0.10O thin films were prepared using Sol-Gel spin coating method. Films were irradiated with 100 MeV Ni+7 Swift Heavy Ions (SHI) with fluences 1× 1013 ions/cm2 using 15 UD tandem accelerator at IUAC New Delhi and its effect were studied on the structural, optical and magnetic properties of irradiated thin films. X-ray diffraction studies show single phase films with preferred c-axis orientation after irradiation. Ultraviolet-visible absorption spectroscopy shows red shift in the band gap of irradiated thin films. Magnetic field dependence of magnetization reveals weak ferromagnetism in irradiated thin films. AFM studies shows significant increase in the grain size and the surface roughness of the films after irradiation.

  13. P-type ZnO by Sb doping for PN-junction photodetectors

    NASA Astrophysics Data System (ADS)

    Liu, J. L.; Xiu, F. X.; Mandalapu, L. J.; Yang, Z.

    2006-02-01

    Sb-doped p-type ZnO films were grown on n-Si (100) by electron cyclotron resonance (ECR)-assisted molecular-beam epitaxy (MBE). Room temperature Hall effect measurements reveal that a heavily Sb-doped ZnO sample exhibits a low resistivity of 0.2 Ω cm, high hole concentration of 1.7×1018 cm -3, and high mobility of 20.0 cm2/V s. Low-temperature photoluminescence (PL) measurements show an Sb-associated acceptor-bound exciton (A °X) emission exists at 3.358 eV at 8.5 K. The acceptor energy level of the Sb dopant is estimated to be 0.14 eV above the valence band. Based on these electrical and optical properties, p-n hetero- and homojunction photodetectors employing Sb-doped p-type ZnO films were designed and fabricated. The heterojunction photodiode consists of Sb-doped p-type ZnO grown on n-Si (100) substrate. An Sb-doped p-type ZnO layer with an n-type Ga-doped ZnO layer was grown on a p-Si (111) substrate to form the homojunction. Current-Voltage (I-V) characterizations reveal rectifying characteristics. Good photoresponse to UV light has been demonstrated for both hetero and homojunction photodetectors.

  14. Plasmon generation in sputtered Ga-doped MgZnO thin films for solar cell applications

    SciTech Connect

    Awasthi, Vishnu; Garg, Vivek; Sengar, Brajendra S.; Sharma, Pankaj; Mukherjee, Shaibal; Pandey, Sushil Kumar; Kumar, Shailendra; Mukherjee, C.

    2016-06-21

    The crystalline, electrical, morphological, optical properties and plasmonic behaviour of Ga doped MgZnO (GMZO) thin films grown at different substrate temperatures (200–600 °C) by a dual ion beam sputtering (DIBS) system are investigated. Transmittance value of more than ∼94% in 400–1000 nm region is observed for all GMZO films. The particle plasmon features can be detected in the absorption coefficient spectra of GMZO grown at 500 and 600 °C in the form of a peak at ∼4.37 eV, which corresponds to a plasmon resonance peak of nanoclusters formed in GMZO. The presence of such plasmonic features is confirmed by ultraviolet photoelectron spectroscopy measurements. The values of particle plasmon resonance energy of various nanoclusters are in the range of solar spectrum, and these can easily be tuned and excited at the desirable wavelengths while optimizing the efficiency of solar cells (SCs) by simple alteration of DIBS growth temperature. These nanoclusters are extremely promising to enhance the optical scattering and trapping of the incident light, which increases the optical path length in the absorber layer of cost-effective SCs and eventually increases its efficiency.

  15. Synthesis of Ga-doped Ge-based apatites: Effect of dopant and cell symmetry on oxide ion conductivity

    SciTech Connect

    Kendrick, E.; Slater, P.R.

    2008-12-01

    Apatite-type rare earth silicates/germanates are attracting significant interest as a new class of oxide ion conductors. For the germanates, La{sub 9.33+x}(GeO{sub 4}){sub 6}O{sub 2+3x/2}, it has been shown that, depending on composition, the cell can be either hexagonal or triclinic, with evidence for reduced low temperature conductivities for the latter, attributed to increased defect trapping in this lower symmetry cell. In this paper the effect of Ga doping on the cell symmetry and conductivity is reported, with the observation of triclinic cells across the series La{sub 10}(GeO{sub 4}){sub 6-x}(GaO{sub 4}){sub x}O{sub 3-x/2}. Through co-doping with Y on the La site, i.e. La{sub 8}Y{sub 2}(GeO{sub 4}){sub 6-x}(GaO{sub 4}){sub x}O{sub 3-x/2}, it is shown that hexagonal cells are obtained, and the dependence of the conductivity on oxygen content/Ga content is discussed. In particular it is shown that the stabilisation of the hexagonal cell through Y doping enhances the low temperature conductivity.

  16. Effects of annealing temperature on the properties of Ga-doped In2O3 Thin Films

    NASA Astrophysics Data System (ADS)

    Cho, Shinho

    2015-10-01

    Ga-doped In2O3 (GIO) thin films were deposited on glass substrates at a growth temperature of 300 °C by using radio-frequency magnetron sputtering. The deposited films were then subjected to rapid thermal annealing (RTA) at various temperatures. The annealed films were characterized by using X-ray diffraction (XRD), ultraviolet-visible spectrophotometry, scanning electron microscopy, and Hall-effect measurements. The optical bandgap, electrical resistivity, and figure of merit of the GIO thin films were found to depend significantly on the RTA temperature. The XRD patterns of the films indicated that all the films had a body-centered cubic structure, with the primary peak being the (222) diffraction peak. The average optical transmittance of the GIO thin films for wavelengths of 500 - 1100 nm increased from 44.5% before annealing to 87.2% after annealing at 450 °C; the figure of merit was also the highest after annealing at this temperature. These results indicate that the properties of GIO thin films can be varied by controlling the RTA temperature.

  17. The mechanical response of turbostratic carbon nanotubes filled with Ga-doped ZnS: II. Slenderness ratio and crystalline filling effects

    NASA Astrophysics Data System (ADS)

    Costa, Pedro M. F. J.; Cachim, Paulo B.; Gautam, Ujjal K.; Bando, Yoshio; Golberg, Dmitri

    2009-10-01

    Using a sample holder with an integrated force sensor, a collection of carbon nanotubes filled with Ga-doped ZnS, and spanning a broad window of lengths and diameters, has been mechanically studied inside a transmission electron microscope. The successful evaluation of the filled nanostructures was seen to depend on their slenderness ratio. Upon controlled removal of the encapsulated sulfide, the system considerably changed its response to uniaxial compressive stress. This report follows part 1 of the study which was instrument-focused and laid the ground to achieve consistent results with a novel type of nanomechanics setup for one-dimensional nanostructures (Costa et al 2009 Nanotechnology 40 405706).

  18. Electrically Driven Ultraviolet Lasing From ZnO Nano/Microwire Based Devices

    NASA Astrophysics Data System (ADS)

    Bashar, Sunayna Binte

    Electrically driven optoelectronic devices based on ZnO nano/microstructures have been presented in this dissertation. First, an electrically pumped Sb-doped ZnO nanowire/Ga-doped ZnO p-n homojunction random laser is demonstrated. Catalyst-free Sb-doped ZnO nanowires were grown on a Ga-doped ZnO thin film on a Si substrate by chemical vapor deposition. The morphology of the as-grown titled nanowires was observed by scanning electron microscopy. X-ray photoelectron spectroscopy results indicated the incorporation of Sb dopants. Shallow acceptor states of Sb-doped nanowires were confirmed by photoluminescence measurements. Current-voltage measurements of ZnO nanowire structures assembled from p- and n-type materials showed a typical p-n diode characteristic with a threshold voltage of about 7.5 V. Very good photoresponse was observed in the UV region operated at 0 V and different reverse biases. Random lasing behavior with a low-threshold current of around 10 mA was demonstrated at room temperature. The output power was 170 nW at 30 mA. In chapter 4, Au/ZnO microwire Schottky diode lasers are discussed. The devices exhibit typical Schottky diode I-V behavior with a turn-on voltage of about 0.72 V. The hexagonal ZnO microwires act as whispering gallery mode (WGM) lasing microcavities. Under forward bias, a three-microwire device exhibits WGM ultraviolet lasing spectra with a quality factor of about 1287. Output power of the laser has been measured at various injection currents, indicating threshold behavior with a threshold current of about 59 mA. Due to limited hole injection in the operation of Schottky diode, the lasing is a result of an excitonic recombination within the WGM cavity. Finally, in Chapter 5, an electrically pumped ultraviolet random laser based on an Au-ZnO nanowire Schottky junction on top of a SiO 2/SiNx distributed Bragg reflector (DBR) has been fabricated. Electrical characterization shows typical Schottky diode current-voltage characteristics

  19. Long-Wavelength Infrared Surface Plasmons on Ga-Doped ZnO Films Excited via 2D Hole Arrays for Extraordinary Optical Transmission (Preprint)

    DTIC Science & Technology

    2013-10-01

    wavelength infrared regime. EOT is facilitated by the excitation of surface plasmon polaritons (SPPs) and can be tuned utilizing the physical...facilitated by the excitation of surface plasmon polaritons (SPPs) and can be tuned utilizing the physical structure size such as period. Pulse laser deposited...plasmonics, infrared, EOT, doped zinc oxides. 1. INTRODUCTION Surface plasmon polaritons (SPPs) are a means of real-time, label-free biosensing

  20. Characteristics of Ga-Rich Cu(In, Ga)Se2 Solar Cells Grown on Ga-Doped ZnO Back Contact.

    PubMed

    Sun, Qian; Kim, Kyoung-Bo; Jeon, Chan-Wook

    2016-05-01

    Wide bandgap Cu(In,Ga)Se2 (CIGS) thin films were deposited on Ga-rich Ga:ZnO (GZO) or MoN/GZO by single-stage co-evaporation. CIGS/TCO interface phases, such as resistive n-type Ga2O3, which are likely to have formed during the high temperature growth of Ga-rich CIGS, can deteriorate the solar cell performance. Although some Ga accumulation was observed in both of the CIGS/GZO and CIGS/MoN/GZO interfaces formed at 520 degrees C, the Ga oxide layer was absent. On the other hand, their current-voltage characteristics showed strong roll-over behavior regardless of the MoN diffusion barrier. The strong Schottky barrier formation at the CLGS/GZO junction due to the low work function of GZO, was attributed to current blocking at a high forward bias.

  1. Significant mobility enhancement in extremely thin highly doped ZnO films

    SciTech Connect

    Look, David C.; Heller, Eric R.; Yao, Yu-Feng; Yang, C. C.

    2015-04-13

    Highly Ga-doped ZnO (GZO) films of thicknesses d = 5, 25, 50, and 300 nm, grown on 160-nm ZnO buffer layers by molecular beam epitaxy, had 294-K Hall-effect mobilities μ{sub H} of 64.1, 43.4, 37.0, and 34.2 cm{sup 2}/V-s, respectively. This extremely unusual ordering of μ{sub H} vs d is explained by the existence of a very high-mobility Debye tail in the ZnO, arising from the large Fermi-level mismatch between the GZO and the ZnO. Scattering theory in conjunction with Poisson analysis predicts a Debye-tail mobility of 206 cm{sup 2}/V-s at the interface (z = d), falling to 58 cm{sup 2}/V-s at z = d + 2 nm. Excellent fits to μ{sub H} vs d and sheet concentration n{sub s} vs d are obtained with no adjustable parameters.

  2. Sb-doped p-type ZnO and its application on light emitting devices

    NASA Astrophysics Data System (ADS)

    Chu, Sheng; Leela, Leelaprasanna J.; Yang, Zheng; Lim, Jae Hong; Li, Lin; Liu, Jianlin

    2008-03-01

    Reliable Sb-doped p-type ZnO on silicon substrate was grown by molecular beam epitaxy. The hole concentrations up to 10^19/cm^3 were achieved by tuning the Sb cell temperature. The results from XPS and photoluminescence spectrum confirmed the theoretical prediction that the Sb doping mechanism in ZnO is the formation of complex shallow acceptor SbZn+2VZn, with a low ionization energy of about 150meV. Then ZnO p-n homojunction light emitting diodes (LED) were fabricated based on the p-type Sb-doped layer, and the Ga-doped n-type ZnO layer. Low specific resistivity Au/NiO and Au/Ti contacts were deposited on top of the p-type and n-type layers, respectively, and the contacts were annealed to obtain ohmic conduction. Electroluminescence measurements were performed on the devices under different temperatures and injection currents. Strong near-band edge emissions were clearly observed at room and low temperatures. The device exhibited dominant UV peak at 3.31eV over the deep level emissions at 9K, which is the result from the large build in potential in the junction and the good film quality.

  3. Direct measurement of defect and dopant abruptness at high electron mobility ZnO homojunctions

    NASA Astrophysics Data System (ADS)

    Foster, G. M.; Faber, G.; Yao, Y.-F.; Yang, C. C.; Heller, E. R.; Look, D. C.; Brillson, L. J.

    2016-10-01

    Due to a strong Fermi-level mismatch, about 10% of the electrons in a 5-nm-thick highly Ga-doped ZnO (GZO) layer grown by molecular beam epitaxy at 250 °C on an undoped ZnO buffer layer transfer to the ZnO (Debye leakage), causing the measured Hall-effect mobility (μH) of the GZO/ZnO combination to remarkably increase from 34 cm2/V s, in thick GZO, to 64 cm2/V s. From previous characterization of the GZO, it is known that ND = [Ga] = 1.04 × 1021 and NA = [VZn] = 1.03 × 1020 cm-3, where ND, NA, and [VZn] are the donor, acceptor, and Zn-vacancy concentrations, respectively. In the ZnO, ND = 3.04 × 1019 and NA = 8.10 × 1018 cm-3. Assuming the interface is abrupt, theory predicts μH = 61 cm2/V s, with no adjustable parameters. The assumption of abruptness in [Ga] and [VZn] profiles is confirmed directly with a differential form of depth-resolved cathodoluminescence spectroscopy coupled with X-ray photoelectron spectroscopy. An anneal in Ar at 500 °C for 10 min somewhat broadens the profiles but causes no appreciable degradation in μH and other electrical properties.

  4. Stable highly conductive ZnO via reduction of Zn vacancies

    SciTech Connect

    Look, D. C.; Droubay, T. C.; Chambers, S. A.

    2012-01-01

    Growth of Ga-doped ZnO by pulsed laser deposition at 200 °C in an ambient of Ar and H2 produces a resistivity of ~ 1.5 x 10-4 Ω-cm, stable to 500 °C. Annealing on Zn foil reduces to ~ 1.2 x 10-4 Ω-cm, one of the lowest values ever reported. The key is reducing the Zn-vacancy acceptor concentration NA to 5 x 1019, only 3% of the Ga-donor concentration ND of 1.6 x 1021 cm-3, with ND and NA determined from a degenerate mobility theory. The plasmonic wavelength is 1060 nm, further bridging the gap between metals and semiconductors.

  5. Interfacial structure and electrical properties of transparent conducting ZnO thin films on polymer substrates.

    PubMed

    Lim, Young Soo; Kim, Dae Wook; Kang, Jong-Ho; Seo, Seul Gi; Kim, Bo Bae; Choi, Hyoung-Seuk; Seo, Won-Seon; Cho, Yong Soo; Park, Hyung-Ho

    2013-08-01

    The effects of polymer substrates on the interfacial structure and the thermal stability of Ga-doped ZnO (GZO) thin films were investigated. The GZO thin films were deposited on polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) substrates by rf-magnetron sputtering at room temperature, and thermal stability tests of the GZO thin films on the polymer substrates were performed at 150°C up to 8 h in air. Electrical and structural characterizations of the GZO thin films on the PET and the PEN substrates were carried out, and the origins of the stable interfacial structure and the improved thermal stability of the GZO thin film on the PEN substrate were discussed.

  6. Large and reversible elastocaloric effect near room temperature in a Ga-doped Ni-Mn-In metamagnetic shape-memory alloy

    NASA Astrophysics Data System (ADS)

    Camarillo, Juan-Pablo; Aguilar-Ortiz, Christian-Omar; Flores-Zúñiga, Horacio; Ríos-Jara, David; Soto-Parra, Daniel-Enrique; Stern-Taulats, Enric; Mañosa, Lluís; Planes, Antoni

    We report a giant elastocaloric effect near room temperature in a polycrystalline Ga-doped Ni-Mn-In ferromagnetic shape-memory alloy. The elastocaloric effect has been quantified by measuring both isothermal stress-induced entropy changes and adiabatic stress-induced temperature changes. A reproducible maximum entropy change, ΔSrev≃ 25 JṡK‑1ṡkg‑1, upon cycling across the martensitic transition was obtained by application of a compressive stress of 100MPa. The corresponding maximum amount of cooling, ΔTadi≃‑4.9K, was measured when this stress was rapidly removed. These values are comparable with those reported for giant magnetocaloric materials, which are induced by application and release of a high magnetic field. Therefore, the studied material is a good candidate to be used in solid-state refrigeration devices based on the elastocaloric effect.

  7. Access to residual carrier concentration in ZnO nanowires by calibrated scanning spreading resistance microscopy

    SciTech Connect

    Wang, L. Brémond, G.; Chauveau, J. M.; Brenier, R.; Sallet, V.; Jomard, F.; Sartel, C.

    2016-03-28

    Scanning spreading resistance microscopy (SSRM) was performed on non-intentionally doped (nid) ZnO nanowires (NWs) grown by metal-organic chemical vapor deposition in order to measure their residual carrier concentration. For this purpose, an SSRM calibration profile has been developed on homoepitaxial ZnO:Ga multilayer staircase structures grown by molecular beam epitaxy. The Ga density measured by SIMS varies in the 1.7 × 10{sup 17 }cm{sup −3} to 3 × 10{sup 20 }cm{sup −3} range. From measurements on such Ga doped multi-layers, a monotonic decrease in SSRM resistance with increasing Ga density was established, indicating SSRM being a well-adapted technique for two dimensional dopant/carrier profiling on ZnO at nanoscale. Finally, relevant SSRM signal contrasts were detected on nid ZnO NWs, and the residual carrier concentration is estimated in the 1–3 × 10{sup 18 }cm{sup −3} range, in agreement with the result from four-probe measurements.

  8. Feasibility study of ZnO nanowire made accelerometer

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Chan; Ko, Hyun-U.; Song, Sangho; Yun, Youngmin; Kim, Jaehwan

    2016-04-01

    Vertically aligned arrays of ZnO nanowire can be used for many applications such as energy harvesters, UV sensors and mechanical sensors. Here we report the feasibility of a miniaturized accelerometer made with ZnO nanowire. For improving the sensitivity of miniaturized piezoelectric accelerometer, size of piezoelectric ceramic should be large which results in heavy accelerometer and low resonance frequency. To resolve the problem for the miniaturized accelerometer fabrication, ZnO nanowire is chosen. ZnO nanowire, which has piezoelectric property with Wurtzite structure. Since it has high aspect ratio, the use of ZnO nanowire leads to increase deformation and piezoelectric response output. The vertically ZnO nanowire array is grown on a copper substrate by hydrothermal synthesis process. Detail Fabrication process of the miniaturized accelerometer is illustrated. To prove the feasibility of the fabricated accelerometer, dynamic response test is performed in comparison with a commercial accelerometer.

  9. Spatial resistivity distribution of transparent conducting impurity-doped ZnO thin films deposited on substrates by dc magnetron sputtering

    SciTech Connect

    Minami, Tadatsugu; Oda, Jun-ichi; Nomoto, Jun-ichi; Miyata, Toshihiro

    2010-07-15

    In transparent conducting impurity-doped ZnO thin films prepared by a conventional dc magnetron sputtering deposition (dc-MSD), the key factors in the deposition conditions that are necessary for practical use in transparent electrode applications were investigated. It was found that impurity-doped ZnO targets with a resistivity higher than approximately 3 m{Omega} cm are unsuitable for practical use in the preparation of transparent conducting Al-doped ZnO and Ga-doped ZnO thin films by conventional dc-MSD. Improvements of both the resulting resistivity distribution and resistivity can be sufficiently obtained only by using targets with a resistivity lower than about 0.5 m{Omega} cm. Using a low oxygen content target having a lower resistivity was found to reduce both the amount of oxygen in the chamber and the amount of oxygen reaching the substrate surface. As a result, it was demonstrated that sintered impurity-doped ZnO targets optimized for the preparation of thin films with lower resistivity as well as more uniform resistivity distribution on the substrate surface tended to exhibit a resistivity lower than about 0.5 m{Omega} cm.

  10. Effect of the microstructural characteristics of a Ga-doped TiO2 hole block layer on an inverted structure organic solar cell

    NASA Astrophysics Data System (ADS)

    Lee, Eun Ju; Ryu, Sang Ouk

    2016-09-01

    Inverted-structure organic solar cells (OSCs) were fabricated using atomic-layer-deposition (ALD) processed Ga-doped TiO2 as hole blocking layer (HBL). Measured photovoltaic efficiencies were greatly related to the crystallinity of the TiO2 films. However, the efficiencies of the OSCs and the crystallinity of the HBL did not show a linear relationship. The HBL was fully crystallized at a deposition temperature of 200 °C or above, and the power conversion efficiency was measured to be 2.7% with for the HBL processed at 200 °C, but the efficiency decreased to 2.4% for the HBL processed at 250 °C. On the other hand, the surface roughness of the crystallized films was found be increased to two fold in the studied temperature range. Once the HBL had been fully crystallized, the major factor that determined the overall performance of OSCs was the surface roughness of the HBL.

  11. 100 MeV Ni{sup +7} swift heavy ion induced magnetism in cobalt doped ZnO thin films

    SciTech Connect

    Kumar, Sunil Singh, D. P.; Kumar, Ravi

    2014-04-24

    Zn{sub 0.90}Co{sub 0.10}O thin films were prepared using Sol-Gel spin coating method. Films were irradiated with 100 MeV Ni{sub +7} Swift Heavy Ions (SHI) with fluences 1× 10{sup 13} ions/cm{sup 2} using 15 UD tandem accelerator at IUAC New Delhi and its effect were studied on the structural, optical and magnetic properties of irradiated thin films. X-ray diffraction studies show single phase films with preferred c-axis orientation after irradiation. Ultraviolet-visible absorption spectroscopy shows red shift in the band gap of irradiated thin films. Magnetic field dependence of magnetization reveals weak ferromagnetism in irradiated thin films. AFM studies shows significant increase in the grain size and the surface roughness of the films after irradiation.

  12. Sol-gel derived Al-Ga co-doped transparent conducting oxide ZnO thin films

    SciTech Connect

    Serrao, Felcy Jyothi; Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2016-05-23

    Transparent conducting ZnO doped with Al, Ga and co-doped Al and Ga (1:1) (AGZO) thin films were grown on glass substrates by cost effective sol-gel spin coating method. The XRD results showed that all the films are polycrystalline in nature and highly textured along the (002) plane. Enhanced grain size was observed in the case of AGZO thin films. The transmittance of all the films was more than 83% in the visible region of light. The electrical properties such as carrier concentration and mobility values are increased in case of AGZO compared to that of Al and Ga doped ZnO thin films. The minimum resistivity of 2.54 × 10{sup −3} Ω cm was observed in AGZO thin film. The co-doped AGZO thin films exhibited minimum resistivity and high optical transmittance, indicate that co-doped ZnO thin films could be used in transparent electronics mainly in display applications.

  13. Optical and electrical properties of transparent conducting B-doped ZnO thin films prepared by various deposition methods

    SciTech Connect

    Nomoto, Jun-ichi; Miyata, Toshihiro; Minami, Tadatsugu

    2011-07-15

    B-doped ZnO (BZO) thin films were prepared with various thicknesses up to about 500 nm on glass substrates at 200 deg. C by dc or rf magnetron sputtering deposition, pulsed laser deposition (PLD), and vacuum arc plasma evaporation (VAPE) methods. Resistivities of 4-6 x 10{sup -4}{Omega} cm were obtained in BZO thin films prepared with a B content [B/(B + Zn) atomic ratio] around 1 at. % by PLD and VAPE methods: Hall mobilities above 40 cm{sup 2}/Vs and carrier concentrations on the order of 10{sup 20} cm{sup -3}. All 500-nm-thick-BZO thin films prepared with a resistivity on the order of 10{sup -3}-10{sup -4}{Omega} cm exhibited an averaged transmittance above 80% in the wavelength range of 400-1100 nm. The resistivity in BZO thin films prepared with a thickness below about 500 nm was found to increase over time with exposure to various high humidity environments. In heat-resistance tests, the resistivity stability of BZO thin films was found to be nearly equal to that of Ga-doped ZnO thin films, so these films were judged suitable for use as a transparent electrode for thin-film solar cells.

  14. Effects of rapid thermal annealing on properties of Ga-doped Mg{sub x}Zn{sub 1−x}O films and Ga-doped Mg{sub x}Zn{sub 1−x}O/AlGaN heterojunction diodes

    SciTech Connect

    Hsueh, Kuang-Po E-mail: kphsueh@mail.vnu.edu.tw; Cheng, Po-Wei

    2014-08-14

    This study investigated the thermal annealing effects of Ga-doped Mg{sub x}Zn{sub 1−x}O (GMZO) films and GMZO/AlGaN heterojunction diodes. GMZO films were deposited using a radio-frequency magnetron sputtering system with a 4-in. ZnO/MgO/Ga{sub 2}O{sub 3} target. In addition, the Hall results, X-ray diffraction, transparent performance, and X-ray photoelectron spectroscopy (XPS) spectra were measured. The as-grown GMZO film deposited in this study exhibited a high transparency with transmittances over 95% in the visible region (360–700 nm) and a sharp absorption edge in the UV region (275–350 nm). The phenomenon of phase separation in the GMZO films was investigated based on the XPS spectra, revealing that an increase in the O-Zn signal accompanied a decline in the O-Ga signal after the thermal annealing. Moreover, the current-voltage (I-V) characteristics of the GMZO/AlGaN n-p junction diodes were examined at different annealing temperatures. The light emission derived from the forward-biased junction and near-ultraviolet (near-UV) light emission was evident at all p-n junctions. The n-GMZO/p-AlGaN diode annealed at 800 °C exhibited a brighter near-UV emission compared with the other diodes. In addition, the spectrum of diode annealed at 800 °C exhibited a broad peak at 474 nm (2.62 eV) and a tail of the emission spectrum extending to 850 nm. Based on these findings, the GMZO films are suitable for forming transparent contact layers in optoelectronic devices, and the n-GMZO/p-AlGaN junction diode is a feasible alternative in near-UV light emission devices.

  15. Evaluation of the band alignment and valence plasmonic features of a DIBS grown Ga-doped Mg0.05Zn0.95O/CIGSe heterojunction by photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Awasthi, Vishnu; Pandey, Sushil Kumar; Kumar, Shailendra; Mukherjee, C.; Gupta, Mukul; Mukherjee, Shaibal

    2015-12-01

    The bandgap alignment of a Ga-doped MgZnO (GMZO)/CIGSe heterojunction exposed to short duration Ar+  ion beam sputtering has been investigated by ultraviolet photoelectron spectroscopy measurement. The offset values at the valence and conduction band of the GMZO/CIGSe hetrojunction are calculated to be 2.69 and  -0.63 eV, respectively. Moreover, the valence band onsets of GMZO and CIGSe thin films before and after few minutes Ar+ ion sputtering have been investigated. The presented study demonstrates the photoelectron-induced generation of resonant valence bulk and surface plasmonic features of various metal and metal oxide nanoclusters embedded within a GMZO matrix. The presence of such nanoclusters is proven to be beneficial in realizing cost-effective, ultra-thin, and high-performance photovoltaics based on the heterojunction.

  16. Efficiencies of Eu{sup 3+} ions and hydrogen atoms as donors in ZnO thin films

    SciTech Connect

    Akazawa, Housei

    2016-09-15

    The donor efficiencies of Eu{sup 3+} ions and hydrogen atoms in ZnO crystalline films were investigated with reference to that of Ga{sup 3+} ions. It was found that Eu{sup 3+} ions acted as extrinsic donors in ZnO:Eu films, yielding a resistivity of 1.8 × 10{sup −3} Ω cm at a doping level of 1 at. %. This value is comparable to one for intrinsic donors in undoped ZnO films. The conductivity was maintained as the deposition temperature was increased to 200 °C, and this is evidence for the contribution of extrinsic donors. Deposition of Ga-doped and Eu-doped ZnO films in an H{sub 2}O gas flow produced oxyhydrogenated ZnO:(Ga, H) and ZnO:(Eu, H) films in which the Ga{sup 3+} and Eu{sup 3+} donors were deactivated by oxidization. Nevertheless, hydrogen donors contributed to electrical conduction yielding a resistivity of 1 × 10{sup −2} Ω cm. Postannealing in an H{sub 2} gas ambient alleviated the excessive oxidization of the films and thereby reactivated the donor action of Ga{sup 3+} and Eu{sup 3+} ions, causing the resistivity to recover to 10{sup −3} Ω cm for ZnO:(Ga, H) and 10{sup −2} Ω cm for ZnO:(Eu, H). In contrast, vacuum annealing of ZnO:(Ga, H) and ZnO:(Eu, H) films increased resistivity through removal of hydrogen donors while not affecting the oxidized condition of the samples.

  17. High-Hall-Mobility Al-Doped ZnO Films Having Textured Polycrystalline Structure with a Well-Defined (0001) Orientation.

    PubMed

    Nomoto, Junichi; Makino, Hisao; Yamamoto, Tetsuya

    2016-12-01

    Five hundred-nanometer-thick ZnO-based textured polycrystalline films consisting of 490-nm-thick Al-doped ZnO (AZO) films deposited on 10-nm-thick Ga-doped ZnO (GZO) films exhibited a high Hall mobility (μ H) of 50.1 cm(2)/Vs with a carrier concentration (N) of 2.55 × 10(20) cm(-3). Firstly, the GZO films were prepared on glass substrates by ion plating with dc arc discharge, and the AZO films were then deposited on the GZO films by direct current magnetron sputtering (DC-MS). The GZO interface layers with a preferential c-axis orientation play a critical role in producing AZO films with texture development of a well-defined (0001) orientation, whereas 500-nm-thick AZO films deposited by only DC-MS showed a mixture of the c-plane and the other plane orientation, to exhibit a μ H of 38.7 cm(2)/Vs with an N of 2.22 × 10(20) cm(-3).

  18. High-Hall-Mobility Al-Doped ZnO Films Having Textured Polycrystalline Structure with a Well-Defined (0001) Orientation

    NASA Astrophysics Data System (ADS)

    Nomoto, Junichi; Makino, Hisao; Yamamoto, Tetsuya

    2016-06-01

    Five hundred-nanometer-thick ZnO-based textured polycrystalline films consisting of 490-nm-thick Al-doped ZnO (AZO) films deposited on 10-nm-thick Ga-doped ZnO (GZO) films exhibited a high Hall mobility ( μ H) of 50.1 cm2/Vs with a carrier concentration ( N) of 2.55 × 1020 cm-3. Firstly, the GZO films were prepared on glass substrates by ion plating with dc arc discharge, and the AZO films were then deposited on the GZO films by direct current magnetron sputtering (DC-MS). The GZO interface layers with a preferential c-axis orientation play a critical role in producing AZO films with texture development of a well-defined (0001) orientation, whereas 500-nm-thick AZO films deposited by only DC-MS showed a mixture of the c-plane and the other plane orientation, to exhibit a μ H of 38.7 cm2/Vs with an N of 2.22 × 1020 cm-3.

  19. A-site compositional effects in Ga-doped hollandite materials of the form BaxCsyGa2x+yTi8−2x−yO16: implications for Cs immobilization in crystalline ceramic waste forms

    PubMed Central

    Xu, Yun; Wen, Yi; Grote, Rob; Amoroso, Jake; Shuller Nickles, Lindsay; Brinkman, Kyle S.

    2016-01-01

    The hollandite structure is a promising crystalline host for Cs immobilization. A series of Ga-doped hollandite BaxCsyGa2x+yTi8−2x−yO16 (x = 0, 0.667, 1.04, 1.33; y = 1.33, 0.667, 0.24, 0) was synthesized through a solid oxide reaction method resulting in a tetragonal hollandite structure (space group I4/m). The lattice parameter associated with the tunnel dimension was found to increases as Cs substitution in the tunnel increased. A direct investigation of cation mobility in tunnels using electrochemical impedance spectroscopy was conducted to evaluate the ability of the hollandite structure to immobilize cations over a wide compositional range. Hollandite with the largest tunnel size and highest aspect ratio grain morphology resulting in rod-like microstructural features exhibited the highest ionic conductivity. The results indicate that grain size and optimized Cs stoichiometry control cation motion and by extension, the propensity for Cs release from hollandite. PMID:27273791

  20. Fabrication of a transparent ultraviolet detector by using n-type Ga2O3 and p-type Ga-doped SnO2 core-shell nanowires.

    PubMed

    Hsu, Cheng-Liang; Lu, Ying-Ching

    2012-09-21

    This study investigates the feasibility of synthesizing high-density transparent Ga(2)O(3)/SnO(2):Ga core-shell nanowires on a sapphire substrate at 1000 °C by VLS. The doping Ga concentrations are 0.46, 1.07, 2.30 and 17.53 atomic%. The XRD spectrum and HR-TEM reveal Ga(2)O(3) and SnO(2) as having monoclinic and tetragonal rutile structures, respectively. Experimental results indicate that the XRD peak shift of SnO(2) to a larger angle increases with the increasing amount of Ga doping. According to the CL spectrum, SnO(2) and Ga(2)O(3) peak at approximately 528-568 nm and 422-424 nm, respectively. The maximum quantum efficiency of Ga(2)O(3)/SnO(2):Ga core-shell nanowires is around 0.362%. The UV light on-off current contrast ratio of Ga(2)O(3)/SnO(2):Ga core-shell nanowires is around 1066.7 at a bias of 5 V. Moreover, the dynamic response of Ga(2)O(3)/SnO(2):Ga core-shell nanowires has an on-off current contrast ratio of around 16. Furthermore, the Ga(2)O(3) region functions similar to a capacitor and continues to accumulate SnO(2):Ga excited electrons under UV light exposure.

  1. Low-Temperature PLD-Growth of Ultrathin ZnO Nanowires by Using Zn x Al1-x O and Zn x Ga1-x O Seed Layers.

    PubMed

    Shkurmanov, Alexander; Sturm, Chris; Franke, Helena; Lenzner, Jörg; Grundmann, Marius

    2017-12-01

    ZnO nanowires (NWs) are used as building blocks for a wide range of different devices, e.g. light emitters, resonators, and sensors. Integration of the NWs into such structures requires a high level of NWs' diameter control. Here, we present that the doping concentration of Zn x Al1-x O and Zn x Ga1-x O seed layers has a strong impact on the NW growth and allows to tune the diameter of the NWs by two orders of magnitude down to less than 7 nm. These ultrathin NWs exhibit a well-oriented vertical growth and thus are promising for the investigation of quantum effects. The doping of the ZnO seed layers has also an impact on the deposition temperature which can be reduced down to T≈400(∘)C. This temperature is much smaller than those typically used for the fabrication of NWs by pulsed laser deposition. A comparison of the NWs indicates a stronger impact of the Ga doping on the NW growth than for the Al doping which we attribute to an impact of the size of the dopants. The optical properties of the NWs were investigated by cathodoluminescence spectroscopy which revealed a high crystalline quality. For the thin nanowires, the emission characteristic is mainly determined by the properties of the surface near region.

  2. Low-Temperature PLD-Growth of Ultrathin ZnO Nanowires by Using Zn x Al1- x O and Zn x Ga1- x O Seed Layers

    NASA Astrophysics Data System (ADS)

    Shkurmanov, Alexander; Sturm, Chris; Franke, Helena; Lenzner, Jörg; Grundmann, Marius

    2017-02-01

    ZnO nanowires (NWs) are used as building blocks for a wide range of different devices, e.g. light emitters, resonators, and sensors. Integration of the NWs into such structures requires a high level of NWs' diameter control. Here, we present that the doping concentration of Zn x Al1- x O and Zn x Ga1- x O seed layers has a strong impact on the NW growth and allows to tune the diameter of the NWs by two orders of magnitude down to less than 7 nm. These ultrathin NWs exhibit a well-oriented vertical growth and thus are promising for the investigation of quantum effects. The doping of the ZnO seed layers has also an impact on the deposition temperature which can be reduced down to T≈400∘C. This temperature is much smaller than those typically used for the fabrication of NWs by pulsed laser deposition. A comparison of the NWs indicates a stronger impact of the Ga doping on the NW growth than for the Al doping which we attribute to an impact of the size of the dopants. The optical properties of the NWs were investigated by cathodoluminescence spectroscopy which revealed a high crystalline quality. For the thin nanowires, the emission characteristic is mainly determined by the properties of the surface near region.

  3. ZnO nanowire lasers.

    PubMed

    Vanmaekelbergh, Daniël; van Vugt, Lambert K

    2011-07-01

    The pathway towards the realization of optical solid-state lasers was gradual and slow. After Einstein's paper on absorption and stimulated emission of light in 1917 it took until 1960 for the first solid state laser device to see the light. Not much later, the first semiconductor laser was demonstrated and lasing in the near UV spectral range from ZnO was reported as early as 1966. The research on the optical properties of ZnO showed a remarkable revival since 1995 with the demonstration of room temperature lasing, which was further enhanced by the first report of lasing by a single nanowire in 2001. Since then, the research focussed increasingly on one-dimensional nanowires of ZnO. We start this review with a brief description of the opto-electronic properties of ZnO that are related to the wurtzite crystal structure. How these properties are modified by the nanowire geometry is discussed in the subsequent sections, in which we present the confined photon and/or polariton modes and how these can be investigated experimentally. Next, we review experimental studies of laser emission from single ZnO nanowires under different experimental conditions. We emphasize the special features resulting from the sub-wavelength dimensions by presenting our results on single ZnO nanowires lying on a substrate. At present, the mechanism of lasing in ZnO (nanowires) is the subject of a strong debate that is considered at the end of this review.

  4. Impurity-doped ZnO Thin Films Prepared by Physical Deposition Methods Appropriate for Transparent Electrode Applications in Thin-film Solar Cells

    NASA Astrophysics Data System (ADS)

    Minami, Tadatsugu; Miyata, Toshihiro; Nomoto, Jun-ichi

    2012-04-01

    This paper describes the development of transparent conducting impurity-doped ZnO thin films that would be appropriate for applications as transparent electrodes in thin-film solar cells. Transparent conducting Al-, B- and Ga-doped ZnO (AZO, BZO and GZO) thin films were prepared in a thickness range from 500 to 2000 nm on glass substrates at 200°C using various physical deposition methods: BZO films with vacuum arc plasma evaporation, AZO and GZO films with different types of magnetron sputtering depositions (MSDs) and all films with pulsed laser deposition (PLD). The suitability and stability of the electrical properties and, in addition, the suitability of the light scattering characteristics and surface texture formation were investigated in the prepared thin films. In particular, the suitability and stability evaluation was focused on the use of AZO, BZO and GZO thin films prepared by doping each impurity at an appropriate content to attain the lowest resistivity. The higher Hall mobility obtained in impurity-doped ZnO thin films with a resistivity on the order of 10-4 Ωcm was related more to the content, i.e., the obtained carrier concentration, rather than the kind of impurity doped into the films. The stability of resistivity of the BZO thin films in long-term moisture-resistance tests (in air at 85% relative humidity and 85°C) was found to be lower than that of the AZO and GZO thin films. The surface texture formation was carried out by wet-chemical etching (in a 0.1% HCl solution at 25°C) conducted either before or after being heat-treated either with rapid thermal annealing (RTA) or without RTA. The suitability of the light scattering characteristics and the surface texture formation obtainable by wet-chemical etching (for use in transparent electrode applications) was considerably dependent on the deposition method used as well as whether the wet-chemical etching was conducted with or without RTA. A significant improvement of both transmittance and

  5. A Comparison of ZnO and ZnO(-)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Arnold, James (Technical Monitor)

    1998-01-01

    Ab initio electronic structure calculations are performed to support and to help interpret the experimental work reported in the proceeding manuscript. The CCSD(T) approach, in conjunction with a large basis set, is used to compute spectroscopic constants for the X(exp 1)Epsilon(+) and (3)II states of ZnO and the X(exp 2)Epsilon(+) state of ZnO(-). The spectroscopic constants, including the electron affinity, are in good agreement with experiment. The ZnO EA is significantly larger than that of O, thus relative to the atomic ground state asymptotes, ZnO(-) has a larger D(sub o) than the (1)Epsilon(+) state, despite the fact that the extra electron goes into an antibonding orbital. The changes in spectroscopic constants can be understood in terms of the X(exp 1)Epsilon(+) formally dissociating to Zn (1)S + O (1)D while the (3)II and (2)Epsilon(+) states dissociate to Zn (1)S + O (3)P and Zn (1) and O(-) (2)P, respectively.

  6. Acceptors in ZnO

    SciTech Connect

    McCluskey, Matthew D. Corolewski, Caleb D.; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. Grant; Harrison, Kale W.; Ha, Su

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence indicates these point defects have acceptor levels 3.2, 1.4, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO{sub 2} contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals is attributed to an acceptor, which may involve a Zn vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g{sub ⊥} = 2.0015 and g{sub //} = 2.0056, along with an isotropic center at g = 2.0035.

  7. Acceptors in ZnO

    SciTech Connect

    Mccluskey, Matthew D.; Corolewski, Caleb; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. G.; Harrison, Kale W.; Ha, Su Y.

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence shows that these point defects have acceptor levels 3.2, 1.5, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO2 contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals has been attributed to an acceptor, which may involve a zinc vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g = 2.0033 and g = 2.0075, along with an isotropic center at g = 2.0053.

  8. Homoepitaxial ZnO Film Growth

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C-H; Lehoczky, S. L.; Harris, M. T.; Callahan, M. J.; McCarty, P.; George, M. A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    ZnO films have high potential for many applications, such as surface acoustic wave filters, UV detectors, and light emitting devices due to its structural, electrical, and optical properties. High quality epitaxial films are required for these applications. The Al2O3 substrate is commonly used for ZnO heteroepitaxial growth. Recently, high quality ZnO single crystals are available for grow homoepitaxial films. Epitaxial ZnO films were grown on the two polar surfaces (O-face and Zn-face) of (0001) ZnO single crystal substrates using off-axis magnetron sputtering deposition. As a comparison, films were also deposited on (0001) Al2O3 substrates. It was found that the two polar ZnO surfaces have different photoluminescence (PL) spectrum, surface structure and morphology, which strongly influence the epitaxial film growth. The morphology and structure of homoepitaxial films grown on the ZnO substrates were different from heteroepitaxial films grown on the Al2O3. An interesting result shows that high temperature annealing of ZnO single crystals will improve the surface structure on the O-face surface rather than the opposite surface. The measurements of PL, low-angle incident x-ray diffraction, and atomic force microscopy of ZnO films indicate that the O-terminated surface is better for ZnO epitaxial film growth.

  9. Homoepitaxial ZnO Film Growth

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C-H; Lehoczky, S. L.; Harris, M. T.; Callahan, M. J.; McCarty, P.; George, M. A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    ZnO films have high potential for many applications, such as surface acoustic wave filters, UV detectors, and light emitting devices due to its structural, electrical, and optical properties. High quality epitaxial films are required for these applications. The Al2O3 substrate is commonly used for ZnO heteroepitaxial growth. Recently, high quality ZnO single crystals are available for grow homoepitaxial films. Epitaxial ZnO films were grown on the two polar surfaces (O-face and Zn-face) of (0001) ZnO single crystal substrates using off-axis magnetron sputtering deposition. As a comparison, films were also deposited on (0001) Al2O3 substrates. It was found that the two polar ZnO surfaces have different photoluminescence (PL) spectrum, surface structure and morphology, which strongly influence the epitaxial film growth. The morphology and structure of homoepitaxial films grown on the ZnO substrates were different from heteroepitaxial films grown on the Al2O3. An interesting result shows that high temperature annealing of ZnO single crystals will improve the surface structure on the O-face surface rather than the opposite surface. The measurements of PL, low-angle incident x-ray diffraction, and atomic force microscopy of ZnO films indicate that the O-terminated surface is better for ZnO epitaxial film growth.

  10. Preparation of new morphological ZnO and Ce-doped ZnO

    SciTech Connect

    Chelouche, A.; Djouadi, D.; Aksas, A.

    2013-12-16

    ZnO micro-tori and cerium doped hexangulars ZnO have been prepared by the sol-gel method under methanol hypercritical conditions of temperature and pressure. X-ray diffraction (XRD) measurement has revealed the high crystalline quality and the nanometric size of the samples. Scanning electron microscopy (SEM) has shown that the ZnO powder has a torus-like shape while that of ZnO:Ce has a hexangular-like shape, either standing free or inserted into the cores of ZnO tori. Transmission electron microscopy (TEM) has revealed that the ZnO particles have sizes between 25 and 30 nm while Ce-doped ZnO grains have diameters ranging from 75 nm to 100 nm. Photoluminescence spectra at room temperature of the samples have revealed that the introduction of cerium in ZnO reduces the emission intensity lines, particularly the ZnO red and green ones.

  11. Heavy Flavors

    NASA Astrophysics Data System (ADS)

    Cox, B.; Soni, A.

    This is a summary report of the working group on Heavy Flavors. Discussions at the workshop were centered on B physics and on the signals for heavy quarks and leptons at the SSC. The Working Group Members were: V. Barger, H.-U. Bengtsson, C. Buchanan, I. Bigi, M. Block, B. Cox, N. Glover, J. Hewett, W.Y. Keung, B. Margolis, T. Rizzo, M. Suzuki, A. Soni, D. Stork, and S. Willenbrock.

  12. Hydrothermal growth of ZnO nanostructures

    PubMed Central

    Baruah, Sunandan; Dutta, Joydeep

    2009-01-01

    One-dimensional nanostructures exhibit interesting electronic and optical properties due to their low dimensionality leading to quantum confinement effects. ZnO has received lot of attention as a nanostructured material because of unique properties rendering it suitable for various applications. Amongst the different methods of synthesis of ZnO nanostructures, the hydrothermal method is attractive for its simplicity and environment friendly conditions. This review summarizes the conditions leading to the growth of different ZnO nanostructures using hydrothermal technique. Doping of ZnO nanostructures through hydrothermal method are also highlighted. PMID:27877250

  13. One-dimensional ZnO nanostructures.

    PubMed

    Jayadevan, K P; Tseng, T Y

    2012-06-01

    The wide-gap semiconductor ZnO with nanostructures such as nanoparticle, nanorod, nanowire, nanobelt, nanotube has high potential for a variety of applications. This article reviews the fundamentals of one-dimensional ZnO nanostructures, including processing, structure, property, application and their processing-microstructure-property correlation. Various fabrication methods of the ZnO nanostructures including vapor-liquid-solid process, vapor-solid growth, solution growth, solvothermal growth, template-assisted growth and self-assembly are introduced. The characterization and properties of the ZnO nanostructures are described. The possible applications of these nanostructures are also discussed.

  14. Gold coated ZnO nanorod biosensor for glucose detection

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Anuradha; Jain, Chhavi; Rao, V. Padmanapan; Banerjee, S.

    2012-06-01

    Gold coated ZnO nanorod based biosensor has been fabricated for its glucose detecting abilities and compared with that of ZnO nanorod based biosensor. SEM images of electrochemically grown ZnO nanorods show hexagonally grown ZnO nanorods on an ITO substrate. Electrochemical analysis show that gold coated ZnO based biosensors have higher sensitivity, lower limit of detection and a wider linear range for glucose detection. The results demonstrate that gold coated ZnO nanorod based biosensors are a promising material for biosensor applications over single component ZnO nanorod based biosensor.

  15. Stability studies of commercial ZnO engineered nanoparticles in domestic wastewater

    NASA Astrophysics Data System (ADS)

    Chaúque, E. F. C.; Zvimba, J. N.; Ngila, J. C.; Musee, N.

    Most wastewater treatment plants (WWTPs) employ activated sludge processes to treat wastewater. The bacteria found in these systems degrade organic matter but are very sensitive to toxic compounds such as heavy metals, among others. The impact of emerging contaminants, such as engineered nanoparticles (ENPs) on the treatment efficiency of WWTPs is yet to be fully elucidated. The effects of physicochemical parameters; the pH and ionic strength on ZnO ENPs in domestic wastewater were investigated to establish their fate and behavior in wastewater treatment systems, as well as potential release into the environment if they pass untreated. Our findings showed a decrease in zinc concentration in the filtrate as pH and ionic strength increased which indicated its possible removal through the abiotic, biosorption, and biosolid settling mechanisms. This phenomenon was further confirmed by transmission electron microscopy (TEM) images which showed agglomerates of ZnO ENPs in wastewater compared with de-ionized water. The dynamic light scattering (DLS) analysis of ZnO ENPs suspension in the wastewater showed their stability over a period of 2 h, with energy dispersive X-ray (EDS) analysis showing the presence of zinc on the sludge surface, while X-ray diffraction (XRD) analysis confirmed the presence of ZnO ENPs in the sludge over typical wastewater pH ranges. The results of this study will inform the integrated water management on the impact of nanotechnology based industries and the best approach in handling wastewater treatment products.

  16. ZnO based light emitting diodes growth and fabrication

    NASA Astrophysics Data System (ADS)

    Pan, M.; Rondon, R.; Cloud, J.; Rengarajan, V.; Nemeth, W.; Valencia, A.; Gomez, J.; Spencer, N.; Nause, J.

    2006-02-01

    ZnO and N-doped ZnO thin films were grown by MOCVD on sapphire and ZnO substrates. Diethyl zinc and O II were used as sources for Zn and O, respectively. A specially designed plasma system was employed to produce atomic N dopant for in-situ doping. Proper disk rotation speeds were found for ZnO growth on different size wafers. High crystal quality N-doped ZnO films were grown based on optimized growth conditions. Wet chemical etch of ZnO was investigated by using NH 4Cl, and etch activation energy was calculated to be 463meV. Ohmic contact on N-doped ZnO film was achieved by using Ni/Au/Al multiple layers. ZnO based p-n junction has demonstrated rectification. Electroluminescence at about 384nm was obtained from ZnO based LED.

  17. Growth and characterization of thin-film ZnO and Cu(In,Ga)Se(2) for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Zafar, Syed Arif

    Thin films of impurity doped ZnO are deposited on soda-lime glass substrates by reactive magnetron sputtering from a zinc target. ZnO:Al films with resistivities as low as 1.7× 10sp{-4}\\ Omega-cm can be achieved but at the cost of diminishing optical properties. At a substrate temperature of 350sp°C doping efficiencies approaching 100% are obtained. However, at doping levels above 4× 10sp{20} cmsp{-3} ionized impurity scattering affects mobility and free-carrier absorption increases which lowers optical transmittance. Hence, these fundamental mechanisms set the limits for the overall performance. ZnO:Ga films show higher conductivity as a result of improved microstructure when compared with ZnO:Al. Resistivity as low as 1.1× 10sp{-4}\\ Omega-cm can be achieved but is accompanied by the usual optical losses. F has not been found to be a better dopant for any set of deposition conditions. The high deposition rates from a metal target for Al or Ga doped films combined with good uniformity over the 4 inch-square substrate makes this process attractive for large-volume production applications. Cu(In,Ga)Sesb2 films are fabricated in a simple two-step process. A slightly In and Ga rich precursor is first formed at 275sp°C by depositing Cu/Ga sequentially and co-evaporating In and Se. This is followed by a second step during which the precursor is exposed to high Se flux (16 A/s) at 550sp°C for selenization. Se flux is then gradually lowered to remove excess In and Ga from the surface by forming volatile species (Insb2Se and Gasb2Se). Solar cells made from these films show good photovoltaic properties with conversion efficiencies of 10%. Removing excess In and Ga in step two causes complexities in processing. Another approach involves depositing a second Cu layer during selenization to form additional CIGS from excess In and Ga on the surface. Solar cells obtained from this process show significant improvement in the device parameters, resulting in conversion

  18. Optical properties of ZnO nanostructures.

    PubMed

    Djurisić, Aleksandra B; Leung, Yu Hang

    2006-08-01

    We present a review of current research on the optical properties of ZnO nanostructures. We provide a brief introduction to different fabrication methods for various ZnO nanostructures and some general guidelines on how fabrication parameters (temperature, vapor-phase versus solution-phase deposition, etc.) affect their properties. A detailed discussion of photoluminescence, both in the UV region and in the visible spectral range, is provided. In addition, different gain (excitonic versus electron hole plasma) and feedback (random lasing versus individual nanostructures functioning as Fabry-Perot resonators) mechanisms for achieving stimulated emission are described. The factors affecting the achievement of stimulated emission are discussed, and the results of time-resolved studies of stimulated emission are summarized. Then, results of nonlinear optical studies, such as second-harmonic generation, are presented. Optical properties of doped ZnO nanostructures are also discussed, along with a concluding outlook for research into the optical properties of ZnO.

  19. Growth of vertically aligned ZnO nanorods using textured ZnO films

    PubMed Central

    2011-01-01

    A hydrothermal method to grow vertical-aligned ZnO nanorod arrays on ZnO films obtained by atomic layer deposition (ALD) is presented. The growth of ZnO nanorods is studied as function of the crystallographic orientation of the ZnO films deposited on silicon (100) substrates. Different thicknesses of ZnO films around 40 to 180 nm were obtained and characterized before carrying out the growth process by hydrothermal methods. A textured ZnO layer with preferential direction in the normal c-axes is formed on substrates by the decomposition of diethylzinc to provide nucleation sites for vertical nanorod growth. Crystallographic orientation of the ZnO nanorods and ZnO-ALD films was determined by X-ray diffraction analysis. Composition, morphologies, length, size, and diameter of the nanorods were studied using a scanning electron microscope and energy dispersed x-ray spectroscopy analyses. In this work, it is demonstrated that crystallinity of the ZnO-ALD films plays an important role in the vertical-aligned ZnO nanorod growth. The nanorod arrays synthesized in solution had a diameter, length, density, and orientation desirable for a potential application as photosensitive materials in the manufacture of semiconductor-polymer solar cells. PACS 61.46.Hk, Nanocrystals; 61.46.Km, Structure of nanowires and nanorods; 81.07.Gf, Nanowires; 81.15.Gh, Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.) PMID:21899743

  20. Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires

    NASA Astrophysics Data System (ADS)

    He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho

    2017-06-01

    In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g-1 at a scan rate of 20 mV s-1, which is almost twice that of ZnO NWs (191.5 F g-1). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g-1 at a current density of 1.33 A g-1 with an energy density of 25.2 W h kg-1 at the power density of 896.44 W kg-1. In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.

  1. Morphology engineering of ZnO nanostructures for high performance supercapacitors: Enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires.

    PubMed

    He, Xiaoli; Yoo, Joung; Lee, Min; Bae, Joonho

    2017-04-06

    In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kind of electrodes in three electrode cell confirms that ZnO NCs exhibit high specific capacitance of 378.5 F g-1 at a scan rate of 20 mV s-1, which is almost twice that of ZnO NWs (191.5 F g-1). The charge-discharge and EIS measurements also clearly results in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric spuercapacitors are fabricated using activated carbon (AC) as negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC//AC can deliver a maximum specific capacitance of 126 F g-1 at a current density of 1.33 A g-1 with an energy density of 25.2 W h kg-1 at the power density of 896.44 W kg-1. In contrast, ZnO NW//AC displays 63% of capacitance obtained from ZnO NC//AC supercapacitor. The enhanced performances of NCs are attributed to higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.

  2. Synthesis and antibacterial properties of ZnO brush pens

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Zhang, Rong; Li, Yilin; Weng, Yuan; Liang, Weiquan; Zhang, Wenfeng; Zheng, Weitao; Hu, Haimei

    2015-12-01

    In this paper, ZnO with a novel hierarchical nanostructure has been synthesized by a new solution method. The novel hierarchical structure is named a ‘brush pen’. The biocompatibility and antibacterial properties of ZnO brush pens have been evaluated. The results demonstrate that ZnO brush pens show good antibacterial activity against Staphylococcus aureus.

  3. Complex and oriented ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Tian, Zhengrong R.; Voigt, James A.; Liu, Jun; McKenzie, Bonnie; McDermott, Matthew J.; Rodriguez, Mark A.; Konishi, Hiromi; Xu, Huifang

    2003-12-01

    Extended and oriented nanostructures are desirable for many applications, but direct fabrication of complex nanostructures with controlled crystalline morphology, orientation and surface architectures remains a significant challenge. Here we report a low-temperature, environmentally benign, solution-based approach for the preparation of complex and oriented ZnO nanostructures, and the systematic modification of their crystal morphology. Using controlled seeded growth and citrate anions that selectively adsorb on ZnO basal planes as the structure-directing agent, we prepared large arrays of oriented ZnO nanorods with controlled aspect ratios, complex film morphologies made of oriented nanocolumns and nanoplates (remarkably similar to biomineral structures in red abalone shells) and complex bilayers showing in situ column-to-rod morphological transitions. The advantages of some of these ZnO structures for photocatalytic decompositions of volatile organic compounds were demonstrated. The novel ZnO nanostructures are expected to have great potential for sensing, catalysis, optical emission, piezoelectric transduction, and actuations.

  4. Dye-Sensitization Of Nanocrystalline ZnO Thin Films

    SciTech Connect

    Ajimsha, R. S.; Tyagi, M.; Das, A. K.; Misra, P.; Kukreja, L. M.

    2010-12-01

    Nannocrystalline and nanoporus thin films of ZnO were synthesized on glass substrates by using wet chemical drop casting method. X-ray diffraction measurements on these samples confirmed the formation of ZnO nanocrystallites in hexagonal wurtzite phase with mean size of {approx}20 nm. Photo sensitization of these nanostructured ZnO thin films was carried out using three types of dyes Rhodamine 6 G, Chlorophyll and cocktail of Rhodamine 6 G and Chlorophyll in 1:1 ratio. Dye sensitized ZnO thin films showed enhanced optical absorption in visible spectral region compared to the pristine ZnO thin films.

  5. ZnO: material, physics and applications.

    PubMed

    Klingshirn, C

    2007-04-23

    ZnO is presently experiencing a research boom with more than 2000 ZnO-related publications in 2005. This phenomenon is triggered, for example, by hope to use ZnO as a material for blue/UV optoelectronics as an alternative to GaN, as a cheap, transparent, conducting oxide, as a material for electronic circuits that are transparent in the visible or for semiconductor spintronics. Currently, however, the main problem is to achieve high, reproducible and stable p-doping. Herein, we critically review aspects of the material growth, fundamental properties of ZnO and ZnO-based nanostructures and doping as well as present and future applications with emphasis on the electronic and optical properties including stimulated emission.

  6. Systematic synthesis of ZnO nanostructures.

    PubMed

    Li, Peng; Wang, Dingsheng; Wei, Zhe; Peng, Qing; Li, Yadong

    2013-03-11

    In this study, we report a simple solution-phase method to prepare ZnO nanostructures with controllable morphologies. By using oleylamine (OAm) and dodecanol (DDL) as solvents, zinc oxide nanocrystals with tunable sizes and diverse shapes (hexagonal pyramids, bulletlike, and pencil-like shapes) have been obtained under mild conditions. At the same time, the introduction of presynthesized gold nanocrystals can also lead to the hybrid nanostructures of gold-zinc oxide hexagonal nanopyramids. In addition, the possible formation mechanism of the as-prepared ZnO nanostructures has been investigated. Notably, the unique optical properties of the ZnO nanostructures with different sizes and shapes have also been discussed. We hope that this strategy will be a general and effective method for fabricating other metal oxide nanocrystals.

  7. Miniaturized accelerometer made with ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Song, Sangho; Kim, Jeong Woong; Kim, Hyun Chan; Yun, Youngmin; Kim, Jaehwan

    2017-04-01

    Miniaturized accelerometer is required in many applications, such as, robotics, haptic devices, gyroscopes, simulators and mobile devices. ZnO is an essential semiconductor material with wide direct band gap, thermal stability and piezoelectricity. Especially, well aligned ZnO nanowire is appropriate for piezoelectric applications since it can produce high electrical signal under mechanical load. To miniaturize accelerometer, an aligned ZnO nanowire is adopted to implement active piezoelectric layer of the accelerometer and copper is chosen for the head mass. To grow ZnO nanowire on the copper head mass, hydrothermal synthesis is conducted and the effect of ZnO nanowire length on the accelerometer performance is investigated. Refresh hydrothermal synthesis can increase the length of ZnO nanowire. The performance of the fabricated ZnO accelerometers is compared with a commercial accelerometer. Sensitivity and linearity of the fabricated accelerometers are investigated.

  8. Heavy Rescue - Course Outline.

    DTIC Science & Technology

    1980-11-01

    used during heavy rescue operations . Methods and procedures for utilizing heavy rescue equipment. 4 Methods of developing improvised rescue equipment...utilizing available materials. A simulated exercise utilizing various rescue operations and techniques. Methods and procedures for the maintenance and...HEAVY RESCUE CONSIDERATIONS LEVEL I PERFORMANCE GOALS: 1 Hour GIVEN: 1. Summary of blocked access considerations during heavy rescue operations 2

  9. Superhydrophobicity of Hierarchical and ZNO Nanowire Coatings

    DTIC Science & Technology

    2014-01-01

    constructed by growing various lengths of ZnO nanowires on micro- scale Si pyramids produced by chemical etching. The nano-size effect on wettability of...Chemistry A PAPER Pu bl is he d on 1 8 D ec em be r 20 13 . D ow nl oa de d by A ir F or ce B as e R es ea rc h L ab or at or y (A FR L ) D...The nano-size effect on wettability of nano/micro complex structures has been investigated by adjusting the ZnO nanowire length. As the nanowire

  10. Nanofabrication on ZnO nanowires

    SciTech Connect

    Zhan Jinhua; Bando, Yoshio; Hu, Junqing; Golberg, Dmitri

    2006-12-11

    ZnO nanowires were subjected to convergent electron beam irradiation in a 300 kV transmission electron microscope. The size of perforated hexagonal pores generated by irradiation can vary with the beam size. An irradiated area is denuded layer by layer via removal of Zn and O atoms. The polar ZnO surfaces have a higher resistance to irradiation than the unpolar ones. Ultrathin nanobridges, {approx}1 nm thick or less, were generated through deliberate removal of Zn and O atomic monolayers.

  11. Magnetic properties of ZnO nanoparticles.

    PubMed

    Garcia, M A; Merino, J M; Fernández Pinel, E; Quesada, A; de la Venta, J; Ruíz González, M L; Castro, G R; Crespo, P; Llopis, J; González-Calbet, J M; Hernando, A

    2007-06-01

    We experimentally show that it is possible to induce room-temperature ferromagnetic-like behavior in ZnO nanoparticles without doping with magnetic impurities but simply inducing an alteration of their electronic configuration. Capping ZnO nanoparticles ( approximately 10 nm size) with different organic molecules produces an alteration of their electronic configuration that depends on the particular molecule, as evidenced by photoluminescence and X-ray absorption spectroscopies and altering their magnetic properties that varies from diamagnetic to ferromagnetic-like behavior.

  12. ZnO wide bandgap semiconductors preparation for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Ramelan, A. H.; Wahyuningsih, S.; Munawaroh, H.; Narayan, R.

    2017-02-01

    ZnO nanoparticles were successfully synthesized by sol-gel method. According to unique structural and optical properties of ZnO semiconductor material, there are many potential important applications based on that material, including as an anti-reflection coating (ARC) in solar cells. Antireflective coatings (ARC) made of ZnO on top to improve the optical properties of the coating. TiO2 layer have been coated on a ZnO nanoparticle layer. ZnO nanoparticle was characterized by X-ray diffraction (XRD), Scanning electron Microscopy (SEM) and UV-Vis spectroscopy. ZnO annealed at a temperature of 600 °C have the greatest crystalinity and crystal size than that at a temperature of 400 °C and 500 °C. SEM images of ZnO shown agglomeration and grain size increases with increasing annealed temperature. While, the optical properties of ZnO increase with increasing annealed temperature. The optical transmittance spectra of the ZnO are shown that the increasing annealing temperature had effectively improved the optical transmittance of the films. While, reflectance (%R) properties shows that, the higher annealing temperature of ZnO preparations can decrease of %R value of ZnO thin layer. The difference properties of ZnO are due to differences of light scattering resulting from the crystal size effect. The ZnO prepared by annealed at 600 °C gain a good performance of the lowest reflectance value and highest size crystal. By the addition of ARC ZnO 600 °C we have been capable improve cell performance so that that cells achieve an efficiency of 0.27%.

  13. Intrinsic and extrinsic doping of ZnO and ZnO alloys

    NASA Astrophysics Data System (ADS)

    Ellmer, Klaus; Bikowski, André

    2016-10-01

    In this article the doping of the oxidic compound semiconductor ZnO is reviewed with special emphasis on n-type doping. ZnO naturally exhibits n-type conductivity, which is used in the application of highly doped n-type ZnO as a transparent electrode, for instance in thin film solar cells. For prospective application of ZnO in other electronic devices (LEDs, UV photodetectors or power devices) p-type doping is required, which has been reported only minimally. Highly n-type doped ZnO can be prepared by doping with the group IIIB elements B, Al, Ga, and In, which act as shallow donors according to the simple hydrogen-like substitutional donor model of Bethe (1942 Theory of the Boundary Layer of Crystal Rectifiers (Boston, MA: MIT Rad Lab.)). Group IIIA elements (Sc, Y, La etc) are also known to act as shallow donors in ZnO, similarly explainable by the shallow donor model of Bethe. Some reports showed that even group IVA (Ti, Zr, Hf) and IVB (Si, Ge) elements can be used to prepare highly doped ZnO films—which, however, can no longer be explained by the simple hydrogen-like substitutional donor model. More probably, these elements form defect complexes that act as shallow donors in ZnO. On the other hand, group V elements on oxygen lattice sites (N, P, As, and Sb), which were viewed for a long time as typical shallow acceptors, behave instead as deep acceptors, preventing high hole concentrations in ZnO at room temperature. Also, ‘self’-compensation, i.e. the formation of a large number of intrinsic donors at high acceptor concentrations seems to counteract the p-type doping of ZnO. At donor concentrations above about 1020 cm-3, the electrical activation of the dopant elements is often less than 100%, especially in polycrystalline thin films. Reasons for the electrical deactivation of the dopant atoms are (i) the formation of dopant-defect complexes, (ii) the compensation of the electrons by acceptors (Oi, VZn) or (iii) the formation of secondary phases, for

  14. Heavy-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Kanai, Tatsuaki

    2000-11-01

    Heavy-ion radiotherapy using high-energy carbon beams has been performed at the National Institute of Radiological Sciences, Japan. The physical frame works for heavy-ion radiotherapy are established using physical understandings of radiation physics. In order to increase the accuracy of heavy-ion radiotherapy, many physical problems should be solved. Unsolved problems, such as the depth dose distributions, range of heavy-ion in patients and heavy-ion dosimetry in the radiation therapy, are discussed. .

  15. Fabrication and characterization of ZnO and Li doped ZnO by a sol-gel method

    NASA Astrophysics Data System (ADS)

    Fadillah, L.; Soegijono, B.; Budiawanti, S.; Mudzakir, I.

    2017-07-01

    The substitution of group-I and or group V elements on Zn-site and O-site respectively are challenge that needs to be overcome for the realization of the most ZnO based application materials. The process of fabrication to obtain high quality crystal samples in various structures should be handled carefully with precaution. ZnO and Li doped ZnO have been fabricated via sol-gel method. The samples have been observed by means of X-ray diffractometer, Thermal gravimetry analyzer (TGA), and FTIR. The characterization results show similar to commercial powder for undoped ZnO while Li doped ZnO show a shifting in crystallographic properties. It concludes that fabrication of high quality ZnO and Li doped ZnO was accomplished.

  16. Growth of vertically aligned one-dimensional ZnO nanowire arrays on sol-gel derived ZnO thin films

    NASA Astrophysics Data System (ADS)

    Kitazawa, Nobuaki; Aono, Masami; Watanabe, Yoshihisa

    2014-11-01

    Vertically aligned one-dimensional ZnO nanowire arrays have been synthesized by a hydrothermal method on sol-gel derived ZnO films. Sol-gel derived ZnO films and corresponding ZnO nanowire arrays have been characterized by X-ray diffraction and field-emission scanning electron microscopy. The effect of sol-gel derived ZnO film surface on the morphology of ZnO nanowire arrays has been investigated. The authors suggest from our investigation that sol-gel derived ZnO films affect the growth of one-dimensional ZnO nanostructures. Not only crystalline ZnO films but also amorphous ones can act as a scaffold for ZnO nucleus. Tilted ZnO micro-rods are grown on ZnO gel films, whereas vertically aligned ZnO nanowire arrays are grown on nanometer-sized ZnO grains. The average diameter of ZnO nanowire arrays are correlated strongly with the grain size of sol-gel derived ZnO films.

  17. Hierarchically assembled ZnO nanoparticles on high diffusion coefficient ZnO nanowire arrays for high efficiency dye-sensitized solar cells.

    PubMed

    Chen, Liang-Yih; Yin, Yu-Tung

    2013-03-07

    In this study, ZnO nanoparticles (ZnO NPs) were conformally covered on the surfaces of ZnO nanowires (ZnO NWs) with high diffusion coefficient (1.2 × 10(-2) cm(2) s(-1)) to make a composite photoanode. By using N719 to sensitize the composite photoanode, the conversion efficiency can reach 7.14%.

  18. Growth of a Novel Nanostructured ZnO Urchin: Control of Cytotoxicity and Dissolution of the ZnO Urchin.

    PubMed

    Imani, Roghayeh; Drašler, Barbara; Kononenko, Veno; Romih, Tea; Eleršič, Kristina; Jelenc, Janez; Junkar, Ita; Remškar, Maja; Drobne, Damjana; Kralj-Iglič, Veronika; Iglič, Aleš

    2015-12-01

    The applications of zinc oxide (ZnO) nanowires (NWs) in implantable wireless devices, such as diagnostic nanobiosensors and nanobiogenerators, have recently attracted enormous attention due to their unique properties. However, for these implantable nanodevices, the biocompatibility and the ability to control the behaviour of cells in contact with ZnO NWs are demanded for the success of these implantable devices, but to date, only a few contrasting results from their biocompatibility can be found. There is a need for more research about the biocompatibility of ZnO nanostructures and the adhesion and viability of cells on the surface of ZnO nanostructures. Here, we introduce synthesis of a new nature-inspired nanostructured ZnO urchin, with the dimensions of the ZnO urchin's acicula being controllable. To examine the biocompatibility and behaviour of cells in contact with the ZnO urchin, the Madin-Darby canine kidney (MDCK) epithelial cell line was chosen as an in vitro experimental model. The results of the viability assay indicated that, compared to control, the number of viable cells attached to the surface of the ZnO urchin and its surrounding area were reduced. The measurements of the Zn contents of cell media confirmed ZnO dissolution, which suggests that the ZnO dissolution in cell culture medium could lead to cytotoxicity. A purposeful reduction of ZnO cytotoxicity was achieved by surface coating of the ZnO urchin with poly(vinylidene fluorid-co-hexafluoropropylene) (PVDF-HFP), which changed the material matrix to slow the Zn ion release and consequently reduce the cytotoxicity of the ZnO urchin without reducing its functionality.

  19. Growth of a Novel Nanostructured ZnO Urchin: Control of Cytotoxicity and Dissolution of the ZnO Urchin

    NASA Astrophysics Data System (ADS)

    Imani, Roghayeh; Drašler, Barbara; Kononenko, Veno; Romih, Tea; Eleršič, Kristina; Jelenc, Janez; Junkar, Ita; Remškar, Maja; Drobne, Damjana; Kralj-Iglič, Veronika; Iglič, Aleš

    2015-11-01

    The applications of zinc oxide (ZnO) nanowires (NWs) in implantable wireless devices, such as diagnostic nanobiosensors and nanobiogenerators, have recently attracted enormous attention due to their unique properties. However, for these implantable nanodevices, the biocompatibility and the ability to control the behaviour of cells in contact with ZnO NWs are demanded for the success of these implantable devices, but to date, only a few contrasting results from their biocompatibility can be found. There is a need for more research about the biocompatibility of ZnO nanostructures and the adhesion and viability of cells on the surface of ZnO nanostructures. Here, we introduce synthesis of a new nature-inspired nanostructured ZnO urchin, with the dimensions of the ZnO urchin's acicula being controllable. To examine the biocompatibility and behaviour of cells in contact with the ZnO urchin, the Madin-Darby canine kidney (MDCK) epithelial cell line was chosen as an in vitro experimental model. The results of the viability assay indicated that, compared to control, the number of viable cells attached to the surface of the ZnO urchin and its surrounding area were reduced. The measurements of the Zn contents of cell media confirmed ZnO dissolution, which suggests that the ZnO dissolution in cell culture medium could lead to cytotoxicity. A purposeful reduction of ZnO cytotoxicity was achieved by surface coating of the ZnO urchin with poly(vinylidene fluorid-co-hexafluoropropylene) (PVDF-HFP), which changed the material matrix to slow the Zn ion release and consequently reduce the cytotoxicity of the ZnO urchin without reducing its functionality.

  20. ZnO quantum dots-decorated ZnO nanowires for the enhancement of antibacterial and photocatalytic performances

    NASA Astrophysics Data System (ADS)

    Wu, Jyh Ming; Tsay, Li-Yi

    2015-10-01

    We demonstrate highly antibacterial activities for killing off Staphylococcus aureus and Escherichia coli using ZnO nanowires decorated with ZnO quantum dots (so-called ZnO QDs/NWs) under visible-light irradiation and dark conditions. The average size of the ZnO QDs is in the range of 3-5 nm; these were uniformly dispersed on the ZnO nanowires’ surface to form the ZnO QDs/NWs. A significant blue-shift effect was observed using photoluminescence (PL) spectra. The size of the ZnO QDs is strongly dependent on the material’s synthesis time. The ZnO QDs/NWs exhibited an excellent photocatalytic activity under visible-light irradiation. The ZnO QDs’ active sites (i.e. the O-H bond and Zn2+) accelerate the photogenerated-carrier migration from the QDs to the NWs. As a consequence, the electrons reacted with the dissolved oxygen to form oxygen ions and produced hydroperoxyl radicals to enhance photocatalytic activity. The antibacterial activities (as indicated by R-factor-inhibiting activity) of the ZnO QDs/NWs for killing off Staphylococcus aureus and Escherichia coli is around 4.9 and 5.5 under visible-light irradiation and dark conditions, respectively. The hydroxyl radicals served as an efficient oxidized agent for decomposing the organic dye and microorganism species. The antibacterial activities of the ZnO QDs/NWs in the dark may be attributed to the Zn2+ ions that were released from the ZnO QDs and infused into the microbial solution against the growth of bacteria thus disrupting the microorganism. The highly antibacterial and photocatalytic activity of the ZnO QDs/NWs can be well implanted on a screen window, thus offering a promising solution to inhibit the spread of germs under visible-light and dark conditions.

  1. Synthesis and characterization of ZnO thin films

    SciTech Connect

    Anilkumar, T. S.; Girija, M. L.; Venkatesh, J.

    2016-05-06

    Zinc oxide (ZnO) Thin films were deposited on glass substrate using Spin coating method. Zinc acetate dehydrate, Carbinol and Mono-ethanolamine were used as the precursor, solvent and stabilizer respectively to prepare ZnO Thin-films. The molar ratio of Monoethanolamine to Zinc acetate was maintained as approximately 1. The thickness of the films was determined by Interference technique. The optical properties of the films were studied by UV Vis-Spectrophotometer. From transmittance and absorbance curve, the energy band gap of ZnO is found out. Electrical Conductivity measurements of ZnO are carried out by two probe method and Activation energy for the electrical conductivity of ZnO are found out. The crystal structure and orientation of the films were analyzed by XRD. The XRD patterns show that the ZnO films are polycrystalline with wurtzite hexagonal structure.

  2. Synthesis and characterization of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Anilkumar T., S.; Girija M., L.; Venkatesh, J.

    2016-05-01

    Zinc oxide (ZnO) Thin films were deposited on glass substrate using Spin coating method. Zinc acetate dehydrate, Carbinol and Mono-ethanolamine were used as the precursor, solvent and stabilizer respectively to prepare ZnO Thin-films. The molar ratio of Monoethanolamine to Zinc acetate was maintained as approximately 1. The thickness of the films was determined by Interference technique. The optical properties of the films were studied by UV Vis-Spectrophotometer. From transmittance and absorbance curve, the energy band gap of ZnO is found out. Electrical Conductivity measurements of ZnO are carried out by two probe method and Activation energy for the electrical conductivity of ZnO are found out. The crystal structure and orientation of the films were analyzed by XRD. The XRD patterns show that the ZnO films are polycrystalline with wurtzite hexagonal structure.

  3. Growing ZnO crystals on magnetite nanoparticles.

    PubMed

    Turgeman, Rachel; Tirosh, Shay; Gedanken, Aharon

    2004-04-02

    We report herein on the oriented growth of ZnO crystals on magnetite nanoparticles. The ZnO crystals were grown by hydrolyzing a supersaturated aqueous solution of zinc nitrate. The seeds for the growth were magnetite nanoparticles with a diameter of 5.7 nm and a narrow size distribution. Hollowed ZnO hexagons of 0.15 microm width and 0.5 microm length filled with Fe(3)O(4) particles were obtained. HR-TEM (high-resolution transmission electron microscopy) and selected-area EDS (energy-dispersive spectroscopy) show that the nanoparticles are homogenously spread in the ZnO tubes. Zeta potential measurements were employed to understand the relationship between the nanoparticles and the oriented growth of the ZnO crystals. The results show that the surfactants induced the directional growth of the ZnO crystals.

  4. Substrate Preparations in Epitaxial ZnO Film Growth

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C.-H.; Lehoczky, S. L.; Harris, M. T.; Callahan, M. J.; George, M. A.

    2000-01-01

    Epitaxial ZnO films were grown on the two polar surfaces (O-face and Zn-face) of (0001) ZnO single crystal substrates using off-axis magnetron sputtering deposition. Annealing-temperature dependence of ZnO substrates was studied. ZnO films grown on sapphire substrates have also been investigated for comparison purposes and the annealing temperature of A1203 substrates is 1000 C. Substrates and films were characterized using photoluminescence (PL) spectrum, x-ray diffraction, atomic force microscope, energy dispersive spectrum, and electric transport measurements. It has been found that the ZnO film properties were different when films were grown on the two polarity surfaces of ZnO substrates and the A1203 substrates. An interesting result shows that high temperature annealing of ZnO single crystals will improve the surface structure on the O-face surface rather than the opposite surface. The measurements of homoepitaxial ZnO films indicate that the O-terminated surface is better for ZnO epitaxial film growth.

  5. Development of latent fingerprint by ZnO deposition.

    PubMed

    Yu, I-Heng; Jou, Shyankay; Chen, Chin-Min; Wang, Kuang-Chuan; Pang, Lei-Jang; Liao, Jeh Shane

    2011-04-15

    Vacuum metal deposition (VMD) utilizing sequential Au and Zn depositions has been an effective technique to develop latent fingerprint on plastic surfaces. A simplified vacuum deposition process was conducted to develop fingerprint in this study. While pure ZnO was thermally evaporated in a vacuum system, ZnO could condense on polyethylene terephthalate (PET) surface. Direct deposition of ZnO, without applying Au seeding, yielded normal development of latent fingerprint. The development of aged fingerprint by ZnO deposition was more effective than that by Au/Zn VMD. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. Strong circular photogalvanic effect in ZnO epitaxial films

    SciTech Connect

    Zhang, Q.; Wang, X. Q.; Yin, C. M.; Shen, B.; Chen, Y. H.; Chang, K.; Ge, W. K.

    2011-12-23

    A strong circular photogalvanic effect (CPGE) in ZnO epitaxial films was reported under interband excitation. It was observed that CPGE current is as large as 100 nA/W in ZnO, which is about one order in magnitude higher than that in InN film while the CPGE currents in GaN films are not detectable. The possible reasons for the above observations are the strong spin orbit coupling in ZnO or the inversed valence band structure of ZnO.

  7. Strong circular photogalvanic effect in ZnO epitaxial films

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Wang, X. Q.; Yin, C. M.; Shen, B.; Chen, Y. H.; Chang, K.; Ge, W. K.

    2011-12-01

    A strong circular photogalvanic effect (CPGE) in ZnO epitaxial films was reported under interband excitation. It was observed that CPGE current is as large as 100 nA/W in ZnO, which is about one order in magnitude higher than that in InN film while the CPGE currents in GaN films are not detectable. The possible reasons for the above observations are the strong spin orbit coupling in ZnO or the inversed valence band structure of ZnO.

  8. Strong circular photogalvanic effect in ZnO epitaxial films

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Wang, X. Q.; Yin, C. M.; Xu, F. J.; Tang, N.; Shen, B.; Chen, Y. H.; Chang, K.; Ge, W. K.; Ishitani, Y.; Yoshikawa, A.

    2010-07-01

    We report a strong circular photogalvanic effect (CPGE) in ZnO epitaxial films under interband excitation. It is observed that CPGE current is as large as 100 nA/W in ZnO, which is about one order in magnitude higher than that in InN film while the CPGE currents in GaN films are not detectable. The possible reasons for the above observations are the strong spin orbit coupling in ZnO or the inversed valence band structure of ZnO.

  9. Photophysics and photochemistry of quantized ZnO colloids

    SciTech Connect

    Kamat, P.V.; Patrick, B.

    1992-08-06

    The photophysical and photochemical behavior of quantized ZnO colloids in ethanol has been investigated by time-resolved transient absorption and emission measurements. Trapping of electrons at the ZnO surface resulted in broad absorption in the red region. The green emission of ZnO colloids was readily quenched by hole scavengers such as SCN{sup -} and I{sup -}. The photoinduced charge transfer to these hole scavengers was studied by laser flash photolysis. The yield of oxidized product increased considerably when ZnO colloids were coupled with ZnSe. 36 refs., 11 figs., 1 tab.

  10. Enhanced thermoelectric performance in graphitic ZnO (0001) nanofilms

    NASA Astrophysics Data System (ADS)

    Li, Yan-Li; Fan, Zheyong; Zheng, Jin-Cheng

    2013-02-01

    We investigate the thermoelectric properties of ultrathin graphitic ZnO (0001) nanofilms based on first-principles calculations and Boltzmann transport theory. Staircase-like densities of states induced by quantum confinement in the nanofilms give rise to improved Seebeck coefficients and electrical conductivities. The optimized figure of merit for the single-layer graphitic ZnO (0001) nanofilm is estimated to be 0.6 at 300 K, which is about 120 times larger than that of bulk ZnO (0.005). Our results suggest that the graphitic ZnO (0001) nanofilms can be designed for high performance thermoelectric applications.

  11. UV response of cellulose ZnO hybrid nanocomposite

    NASA Astrophysics Data System (ADS)

    Mun, Seongcheol; Ko, Hyun-U.; Min, Seung-Ki; Kim, Hyun-Chan; Kim, Jaehwan

    2016-04-01

    ZnO nanorods grown cellulose film is a fascinating inorganic-organic hybrid nanocomposite in terms of synergistic properties with semiconductive functionality of ZnO and renewability and flexibility of cellulose film. This paper reports the fabrication and evaluation of cellulose ZnO hybrid nanocomposite (CEZOHN). ZnO nanorod is well grown on a cellulose film by simple chemical reaction with direct seeding and hydrothermal growing. CEZOHN has unique electric, electro-mechanical and photo-electrical behaviors. The performance of CEZOHN is estimated by measuring induced photocurrent under UV exposure. Mechanism of UV sensing and its possible applications for flexible and wearable UV sensor are addressed.

  12. Process for fabricating ZNO-based varistors

    SciTech Connect

    Lauf, R. J.

    1985-04-09

    The invention is a process for producing ZnO-based varistors incorporating a metal oxide dopant. In one form, the invention comprises providing a varistor powder mix of colloidal particles of ZnO and metal-oxide dopants including Bi/sub 2/O/sub 3/. The mix is hot-pressed to form a compact at temperatures below 850/sup 0/ C. and under conditions effecting reduction of the ZnO to sub-stoichiometric oxide. This promotes densification while restricting liquid formation and grain growth. The compact then is heated under conditions restoring the zinc oxide to stoichiometric composition, thus improving the varistor properties of the compact. The process produces fine-grain varistors characterized by a high actual breakdown voltage and a high average breakdown voltage per individual grain boundary.

  13. Sodium doping in ZnO crystals

    SciTech Connect

    Parmar, N. S. Lynn, K. G.

    2015-01-12

    ZnO bulk single crystals were doped with sodium by thermal diffusion. Positron annihilations spectroscopy confirms the filling of zinc vacancies, to >6 μm deep in the bulk. Secondary-ion mass spectrometry measurement shows the diffusion of sodium up to 8 μm with concentration (1–3.5) × 10{sup 17 }cm{sup −3}. Broad photoluminescence excitation peak at 3.1 eV, with onset appearance at 3.15 eV in Na:ZnO, is attributed to an electronic transition from a Na{sub Zn} level at ∼(220–270) meV to the conduction band. Resistivity in Na doped ZnO crystals increases up to (4–5) orders of magnitude at room temperature.

  14. ZnO ratio-induced photocatalytic behavior of TiO2-ZnO nanocomposite

    NASA Astrophysics Data System (ADS)

    Jlassi, M.; Chorfi, H.; Saadoun, M.; Bessaïs, B.

    2013-10-01

    The aim of this study is to examine the photocatalytic activity of TiO2 (P25)-ZnO nanocomposite. The precursors of the TiO2-ZnO nanocomposite were deposited on a low cost ceramic substrate using the simple roll-coating method. We seek to improve the photocatalytic performance and the mechanical adherence of the TiO2 nanoparticles by adding ZnO. The photocatalytic properties of the nanocomposite were tested through the bleaching of polluted water. These properties were optimized by varying the composition of the nanocomposite precursors, deposition conditions and temperature annealing. A systematic study of the nanocomposites was made using ultraviolet-visible spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). These characterizations allowed us to establish a relationship between the photocatalytic performances and the ZnO ratio using an azo-dye (methyl orange). It was found that the kinetic degradation increases with the increasing of the ZnO ratio. The Photodegradation of the dye using the sole ZnO was found to be more efficient than the P25 TiO2 and the TiO2-ZnO nanocomposite itself. The discussions were based on the mobility and lifetime of the charge carriers generated in the ZnO or in TiO2-ZnO nanocomposite.

  15. Preparation, structural and optical characterization of ZnO, ZnO: Al nanopowder

    SciTech Connect

    Mohan, R. Raj; Rajendran, K.; Sambath, K.

    2014-01-28

    In this paper, ZnO and ZnO:Al nanopowders have been synthesized by low cost hydrothermal method. Zinc nitrate, hexamethylenetetramine (HMT) and aluminium nitrate are used as precursors for ZnO and AZO with different molar ratios. The structural and optical characterization of doped and un-doped ZnO powders have been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDAX), photoluminescence (PL) and ultra violet visible (UV-Vis) absorption studies. The SEM results show that the hydrothermal synthesis can be used to obtain nanoparticles with different morphology. It is observed that the grain size of the AZO nanoparticles increased with increasing of Al concentration. The PL measurement of AZO shows that broad range of green emission around 550nm with high intensity. The green emission resulted mainly because of intrinsic defects.

  16. Preparation, structural and optical characterization of ZnO, ZnO: Al nanopowder

    NASA Astrophysics Data System (ADS)

    Mohan, R. Raj; Rajendran, K.; Sambath, K.

    2014-01-01

    In this paper, ZnO and ZnO:Al nanopowders have been synthesized by low cost hydrothermal method. Zinc nitrate, hexamethylenetetramine (HMT) and aluminium nitrate are used as precursors for ZnO and AZO with different molar ratios. The structural and optical characterization of doped and un-doped ZnO powders have been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDAX), photoluminescence (PL) and ultra violet visible (UV-Vis) absorption studies. The SEM results show that the hydrothermal synthesis can be used to obtain nanoparticles with different morphology. It is observed that the grain size of the AZO nanoparticles increased with increasing of Al concentration. The PL measurement of AZO shows that broad range of green emission around 550nm with high intensity. The green emission resulted mainly because of intrinsic defects.

  17. Photoluminescence lineshape of ZnO

    NASA Astrophysics Data System (ADS)

    Ullrich, Bruno; Singh, Akhilesh K.; Bhowmick, Mithun; Barik, Puspendu; Ariza-Flores, David; Xi, Haowen; Tomm, Jens W.

    2014-12-01

    The merger of the absorption coefficient dispersion, retrieved from transmission by the modified Urbach rule introduced by Ullrich and Bouchenaki [Jpn. J. Appl. Phys. 30, L1285, 1991], with the extended Roosbroeck-Shockley relation reveals that the optical absorption in ZnO distinctively determines the photoluminescence lineshape. Additionally, the ab initio principles employed enable the accurate determination of the carrier lifetime without further specific probing techniques.

  18. Optically Active Nanostructured ZnO Films.

    PubMed

    Duan, Yingying; Han, Lu; Zhang, Jialiang; Asahina, Shunsuke; Huang, Zhehao; Shi, Lin; Wang, Bo; Cao, Yuanyuan; Yao, Yuan; Ma, Liguo; Wang, Cui; Dukor, Rina K; Sun, Lu; Jiang, Chun; Tang, Zhiyong; Nafie, Laurence A; Che, Shunai

    2015-12-07

    Inorganic nanomaterials endowed with hierarchical chirality could open new horizons in physical theory and applications because of their fascinating properties. Here, we report chiral ZnO films coated on quartz substrates with a hierarchical nanostructure ranging from atomic to micrometer scale. Three levels of hierarchical chirality exist in the ZnO films: helical ZnO crystalline structures that form primary helically coiled nanoplates, secondary helical stacking of these nanoplates, and tertiary nanoscale circinate aggregates formed by several stacked nanoplates. These films exhibited optical activity (OA) at 380 nm and in the range of 200-800 nm and created circularly polarized luminescence centered at 510 nm and Raman OA at 50-1400 cm(-1) , which was attributed to electronic transitions, scattering, photoluminescent emission, and Raman scattering in a dissymmetric electric field. The unprecedented strong OA could be attributed to multiple light scattering and absorption-enhanced light harvesting in the hierarchical structures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. ZnO - Defects and Doping

    NASA Astrophysics Data System (ADS)

    Hofmann, Detlev M.

    2002-03-01

    Due to its large (3.37 eV) and direct bandgap ZnO is a potential competitor for up to now GaN-based light-emitting devices in the blue spectral range. However, like for other wide bandgap semiconductors controlled p-type doping is a problem, as grown undoped ZnO is n-type conducting. To achieve the desired p-type conduction requires to suppress the residual donors and to avoid any deep level defects which hinder the activity of the potential p-type dopants. On this way a clear atomistic identification of the electrical active species in the material is helpful. In the past Electron Paramagnetic Resonance (EPR) and Electron Nuclear Double Resonance (ENDOR) spectroscopy were used successfully to identify shallow donor dopants such as Indium in ZnO. Our recent investigations show that also unintentionally present Hydrogen forms a shallow donor with a thermal activation energy of 35 meV, i.e. it is smaller than the effective mass value of about 50 meV. Annealing experiments give evidence that the H-donors can be removed from the material in the temperature range from 850 K to 1050 K which is accompanied by a destruction of the I4 excitons at 3.364 eV. The presence of deep level defects in ZnO is evident from broad unstructured emission bands located in the visible spectral range (2.75 eV - 2.25 eV). With the help of the Optically Detected Magnetic Resonance (ODMR) we are able to separate these frequently superimposed recombinations and to distinguish between the bands originating from Cu, Oxygen-vacancies, and Li and Na related defects. As potential p-type dopant Nitrogen is in the discussion. The observation of N-related local vibrational modes by Raman spectroscopy confirms that nitrogen can be incorporated in the lattice of ZnO. However, a strong correlation to unintentionally present Hydrogen is found, which suggests a passivation of the N-acceptors.

  20. Role of ZnO thin film in the vertically aligned growth of ZnO nanorods by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Son, Nguyen Thanh; Noh, Jin-Seo; Park, Sungho

    2016-08-01

    The effect of ZnO thin film on the growth of ZnO nanorods was investigated. ZnO thin films were sputter-deposited on Si substrate with varying the thickness. ZnO nanorods were grown on the thin film using a chemical bath deposition (CBD) method at 90 °C. The ZnO thin films showed granular structure and vertical roughness on the surface, which facilitated the vertical growth of ZnO nanorods. The average grain size and the surface roughness of ZnO film increased with an increase in film thickness, and this led to the increase in both the average diameter and the average length of vertically grown ZnO nanorods. In particular, it was found that the average diameter of ZnO nanorods was very close to the average grain size of ZnO thin film, confirming the role of ZnO film as a seed layer for the vertical growth of ZnO nanorods. The CBD growth on ZnO seed layers may provide a facile route to engineering vertically aligned ZnO nanorod arrays.

  1. Fast synthesize ZnO quantum dots via ultrasonic method.

    PubMed

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Magnetism in dopant-free ZnO nanoplates.

    PubMed

    Hong, Jung-Il; Choi, Jiil; Jang, Seung Soon; Gu, Jiyeong; Chang, Yangling; Wortman, Gregory; Snyder, Robert L; Wang, Zhong Lin

    2012-02-08

    It is known that bulk ZnO is a nonmagnetic material. However, the electronic band structure of ZnO is severely distorted when the ZnO is in the shape of a very thin plate with its dimension along the c-axis reduced to a few nanometers while keeping the bulk scale sizes in the other two dimensions. We found that the chemically synthesized ZnO nanoplates exhibit magnetism even at room temperature. First-principles calculations show a growing asymmetry in the spin distribution within the distorted bands formed from Zn (3d) and O (2p) orbitals with the reduction of thickness of the ZnO nanoplates, which is suggested to be responsible for the observed magnetism. In contrast, reducing the dimension along the a- or b-axes of a ZnO crystal does not yield any magnetism for ZnO nanowires that grow along c-axis, suggesting that the internal electric field produced by the large {0001} polar surfaces of the nanoplates may be responsible for the distorted electronic band structures of thin ZnO nanoplates.

  3. Ultrasonic synthesis of fern-like ZnO nanoleaves and their enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ma, Qing Lan; Xiong, Rui; Zhai, Bao-gai; Huang, Yuan Ming

    2015-01-01

    Two-dimensional fern-like ZnO nanoleaves were synthesized by ultrasonicating zinc microcrystals in water. The morphology, crystal structure, optical property and photocatalytic activity of the fern-like ZnO nanoleaves were characterized with scanning electron microscopy, X-ray diffraction, transmission electron microscopy, photoluminescence spectroscopy and ultraviolet-visible spectroscopy, respectively. It is found that one fern-like ZnO nanoleaf is composed of one ZnO nanorod as the central trunk and a number of ZnO nanoplates as the side branches in opposite pairs along the central ZnO nanorod. The central ZnO nanorod in the fern-like nanoleaves is about 1 μm long while the side-branching ZnO nanoplates are about 100 nm long and 20 nm wide. Further analysis has revealed that ZnO nanocrystals are the building blocks of the central ZnO nanorod and the side-branching ZnO nanoplates. Under identical conditions, fern-like ZnO nanoleaves exhibit higher photocatalytic activity in photodegrading methyl orange in aqueous solution than spherical ZnO nanocrystals. The first-order photocatalytic rate constant of the fern-like ZnO nanoleaves is about four times as large as that of the ZnO nanoparticles. The branched architecture of the hierarchical nanoleaves is suggested be responsible for the enhanced photocatalytic activity of the fern-like ZnO nanoleaves.

  4. Liquid crystal alignment on ZnO nanostructure films

    NASA Astrophysics Data System (ADS)

    Chung, Yueh-Feng; Chen, Mu-Zhe; Yang, Sheng-Hsiung; Jeng, Shie-Chang

    2016-03-01

    The study of liquid crystal (LC) alignment is important for fundamental researches and industrial applications. The tunable pretilt angles of liquid crystal (LC) molecules aligned on the inorganic zinc oxide (ZnO) nanostructure films with controllable surface wettability are demonstrated in this work. The ZnO nanostructure films are deposited on the ITO- glass substrates by the two-steps hydrothermal process, and their wettability can be modified by annealing. Our experimental results show that the pretilt angles of LCs on ZnO nanostructure films can be successfully adjusted over a wide range from ~90° to ~0° as the surface energy on the ZnO nanostructure films changes from ~30 to ~70 mJ/m. Finally we have applied this technique to fabricate a no-bias optically-compensated bend (OCB) LCD with ZnO nanostructure films annealed at 235 °C.

  5. Enhanced photocatalytic activity of ZnO nanotetrapods

    NASA Astrophysics Data System (ADS)

    Wan, Q.; Wang, T. H.; Zhao, J. C.

    2005-08-01

    The photocatalytic characteristics of the tetrapod-branched ZnO nanostructures synthesized by thermal evaporation method are investigated. The fitting of absorbance maximum plot versus time indicates an exponential decay, suggesting the photodegradation of Rhodamine B catalyzed by the ZnO nanotetrapod is a pseudo first-order reaction. These results demonstrate that the photocatalytic activity of ZnO nanotetrapod is much better than that of P25 TiO2 and ZnO powders. The slow electron/hole recombine rate due to the abundant surface states, as well as the high surface-to-volume ratio will effectively enhance the photocatalytic activity of the ZnO nanotetrapod.

  6. Atomic layer deposition of ZnO: a review

    NASA Astrophysics Data System (ADS)

    Tynell, Tommi; Karppinen, Maarit

    2014-04-01

    Due to the unique set of properties possessed by ZnO, thin films of ZnO have received more and more interest in the last 20 years as a potential material for applications such as thin-film transistors, light-emitting diodes and gas sensors. At the same time, the increasingly stringent requirements of the microelectronics industry, among other factors, have led to a dramatic increase in the use of atomic layer deposition (ALD) technique in various thin-film applications. During this time, the research on ALD-grown ZnO thin films has developed from relatively simple deposition studies to the fabrication of increasingly intricate nanostructures and an understanding of the factors affecting the fundamental properties of the films. In this review, we give an overview of the current state of ZnO ALD research including the applications that are being considered for ZnO thin films.

  7. Fabrication and Performance Study on Individual Zno Nanowires Based Bioelectrode

    NASA Astrophysics Data System (ADS)

    Zhao, Yanguang; Yan, Xiaoqin; Kang, Zhuo; Lin, Pei

    2012-08-01

    One-dimensional zinc oxide nanowires (ZnO NWs) have unique advantages for use in biosensors as follows: oxide stable surface, excellent biosafety, high specific surface area, high isoelectric point (IEP = 9.5). In this work, we have prepared a kind of electrochemical bioelectrode based on individual ZnO NWs. Here, ZnO NWs with high quality were successfully synthesized by CVD method, which were characterized by scanning electron microscopy, X-ray diffraction and photoluminescence. Then the Raman spectra and electrical characterization demonstrated the adsorption of uricase on ZnO wires. At last, a series of electrochemical measurements were carried out by using an electrochemical workstation with a conventional three-electrode system to obtain the cyclic voltammetry characteristics of the bioelectrodes. The excellent performance of the fabricated bioelectrode implies the potential application for single ZnO nanowire to construct electrochemical biosensor for the detection of uric acid.

  8. Humidity sensors based on ZnO Colloidal nanocrystal clusters

    NASA Astrophysics Data System (ADS)

    Si, Shufeng; Li, Shuo; Ming, Zhengqiu; Jin, Linpei

    2010-06-01

    High pure ZnO Colloidal nanocrystal clusters (CNCs) were synthesized by a modified hydrolyzation method. The diameters of as-prepared ZnO crystalline were between 20 and 40 nm, however, the ZnO CNCs arrived at 400-800 nm. The ZnO CNCs sensor were found to have high sensitivity and fast response/recovery time to humidity, and their resistance changed approximately three orders of magnitude from about 1.58 × 10 9 Ω in dry air (10 RH%) to 1.65 × 10 6 Ω in 93 RH% air. Furthermore, the ZnO CNCs sensors were relatively stable to humidity for a long time.

  9. Low temperature synthesis of fluorescent ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Khan, Yaqoob; Durrani, S. K.; Mehmood, Mazhar; Ahmad, Jamil; Khan, M. Riaz; Firdous, Shamraz

    2010-12-01

    Fluorescent ZnO nanoparticles have been prepared by mixing aqueous solutions of zinc nitrate and ammonium carbonate in the presence of a non-ionic surfactant, Tween-80. Increased concentrations of the surfactant were found to affect both the morphology and purity of the synthesized ZnO nanoparticles. XRD, SEM, FTIR, TGA and Confocal laser scanning microscopy were employed to characterize the as-prepared samples. ZnO nanoparticles ranging in particle size from 11 to 15 nm were formed at the reaction temperature of 70-80 °C. The results of FTIR and TGA analysis indicate the self assembly of Tween molecules on the surface of ZnO nanoparticles. A bright emission in the visible region from the as-prepared ZnO nanoparticles was recorded using confocal laser scanning microscopy. This property of the as-prepared nanoparticles may find potential application in bio-imaging.

  10. Strain sensor based on cellulose ZnO hybrid nanocomposite

    NASA Astrophysics Data System (ADS)

    Ko, Hyun-U.; Yun, Gyu-Young; Kim, Joo Hyung; Kim, Jaehwan

    2014-04-01

    ZnO is well known semiconductor material with high band gap as well as piezoelectricity. Because of its high performance of electromechanical behavior, ZnO based piezoelectric devices have taken great attention from many research groups. However, ZnO should be grown on a flexible substrate so as to allow its flexibility. Since cellulose is renewable, flexible and biocompatible, ZnO is grown on cellulose by hydrothermal process, then a novel flexible piezoelectric material. We report the fabrication and strain sensor behavior of cellulose ZnO hybrid nanocomposite(CEZOHN) In this research, simple piezoelectric strain sensor based on CEZOHN is made by directly stretching it and by boding it on a cantilever. Its performance is measured in terms of longitudinal and bending strain. This strain sensor shows a good linearity.

  11. Heavy quark masses

    NASA Technical Reports Server (NTRS)

    Testa, Massimo

    1990-01-01

    In the large quark mass limit, an argument which identifies the mass of the heavy-light pseudoscalar or scalar bound state with the renormalized mass of the heavy quark is given. The following equation is discussed: m(sub Q) = m(sub B), where m(sub Q) and m(sub B) are respectively the mass of the heavy quark and the mass of the pseudoscalar bound state.

  12. Production of heavy water

    DOEpatents

    Spencer, Larry S.; Brown, Sam W.; Phillips, Michael R.

    2017-06-06

    Disclosed are methods and apparatuses for producing heavy water. In one embodiment, a catalyst is treated with high purity air or a mixture of gaseous nitrogen and oxygen with gaseous deuterium all together flowing over the catalyst to produce the heavy water. In an alternate embodiment, the deuterium is combusted to form the heavy water. In an alternate embodiment, gaseous deuterium and gaseous oxygen is flowed into a fuel cell to produce the heavy water. In various embodiments, the deuterium may be produced by a thermal decomposition and distillation process that involves heating solid lithium deuteride to form liquid lithium deuteride and then extracting the gaseous deuterium from the liquid lithium deuteride.

  13. Twinning-induced kinking of Sb-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Li, Su; Zhang, Xiaozhong; Zhang, Lihuan; Gao, Min

    2010-10-01

    Sb-doped ZnO nanowires with kinking structures have been synthesized by a catalyst-free thermal evaporation method with the addition of Sb2O3. Transmission electron microscopy (TEM) observations revealed that the kinks of the nanowires are induced by twinning structures. \\{01\\bar {1}1\\} , \\{01\\bar {1}3\\} twins and heavy stacking faults in the (0001) plane were observed in these kinked nanowires. High-resolution TEM and energy dispersive x-ray spectroscopy showed that there exists an Sb-rich segregation layer in the twin boundaries of some nanowires. A formation mechanism of the kinked nanowires was proposed. The optical property of the synthesized nanowires was investigated by room-temperature photoluminescence.

  14. Twinning-induced kinking of Sb-doped ZnO nanowires.

    PubMed

    Li, Su; Zhang, Xiaozhong; Zhang, Lihuan; Gao, Min

    2010-10-29

    Sb-doped ZnO nanowires with kinking structures have been synthesized by a catalyst-free thermal evaporation method with the addition of Sb(2)O(3). Transmission electron microscopy (TEM) observations revealed that the kinks of the nanowires are induced by twinning structures. [0111], [0113] twins and heavy stacking faults in the (0001) plane were observed in these kinked nanowires. High-resolution TEM and energy dispersive x-ray spectroscopy showed that there exists an Sb-rich segregation layer in the twin boundaries of some nanowires. A formation mechanism of the kinked nanowires was proposed. The optical property of the synthesized nanowires was investigated by room-temperature photoluminescence.

  15. Growth of Homoepitaxial ZnO Semiconducting Films

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Harris, M. T.; George, Michael A.; McCarty, P.

    1999-01-01

    As a high temperature semiconductor, ZnO has been used for many applications such as wave-guide, solar cells, and surface acoustic wave devices. Since the ZnO material has an energy gap of 3.3 eV at room temperature and an excitonic binding energy (60 meV) that is possible to make excitonic lasering at room temperature a recent surge of interest is to synthesize ZnO films for electro-optical devices. These applications require films with a smooth surface, good crystal quality, and low defect density. Homoepitaxial films have been studied in terms of morphology, crystal structure, and electrical and optical properties. ZnO single crystals are grown by the hydrothermal method. Substrates are mechanically polished and annealed in air for four hours before deposited films. The annealing temperature-dependence of ZnO substrates is studied. Films are synthesized by the off-axis reactive sputtering deposition. The films have very smooth surface with a roughness ZnO films grown of (0001) ZnO and (0001) sapphire substrates will be also compared and discussed in the presentation.

  16. Gold as an intruder in ZnO nanowires.

    PubMed

    Méndez-Reyes, José M; Monroy, B Marel; Bizarro, Monserrat; Güell, Frank; Martínez, Ana; Ramos, Estrella

    2015-09-07

    Several techniques for obtaining ZnO nanowires (ZnO NWs) have been reported in the literature. In particular, vapour-liquid-solid (VLS) with Au as a catalyst is widely used. During this process, Au impurities in the ZnO NWs can be incorporated accidentally, and for this reason we named these impurities as intruders. It is thought that these intruders may produce interesting alterations in the electronic characteristics of nanowires. In the experiment, it is not easy to detect either Au atoms in these nanowires, or the modification that intruders produce in different electrical, optical and other properties. For this reason, in this density functional theory investigation, the effect of Au intruders on ZnO NWs is analysed. Au extended (thread) and point defects (atoms replacing Zn or O, or Au interstitials) are used to simulate the presence of gold atoms. Optimised geometries, band-gaps and density of states indicate that the presence of small amounts of Au drastically modifies the electronic states of ZnO NWs. The results reported here clearly indicate that small amounts of Au have a strong impact on the electronic properties of ZnO NWs, introducing states in the band edges that may promote transitions in the visible spectral region. The presence of Au as an intruder in ZnO NWs enhances the potential use of this system for photonic and photovoltaic applications.

  17. Second harmonic generation from ZnO films and nanostructures

    NASA Astrophysics Data System (ADS)

    Larciprete, Maria Cristina; Centini, Marco

    2015-09-01

    Zinc oxide ZnO is a n-type semiconductor having a wide direct band gap (3.37 eV) as well as a non-centrosymmetric crystal structure resulting from hexagonal wurtzite phase. Its wide transparency range along with its second order nonlinear optical properties make it a promising material for efficient second harmonic generation processes and nonlinear optical applications in general. In this review, we present an extensive analysis of second harmonic generation from ZnO films and nanostructures. The literature survey on ZnO films will include some significant features affecting second harmonic generation efficiency, as crystalline structure, film thickness, surface contributes, and doping. In a different section, the most prominent challenges in harmonic generation from ZnO nanostructures are discussed, including ZnO nanowires, nanorods, and nanocrystals, to name a few. Similarly, the most relevant works regarding third harmonic generation from ZnO films and nanostructures are separately addressed. Finally, the conclusion part summarizes the current standing of published values for the nonlinear optical coefficients and for ZnO films and nanostructures, respectively.

  18. Superhydrophobic ZnO networks with high water adhesion

    PubMed Central

    2014-01-01

    ZnO structures were deposited using a simple chemical bath deposition technique onto interdigitated electrodes fabricated by a conventional photolithography method on SiO2/Si substrates. The X-ray diffraction studies show that the ZnO samples have a hexagonal wurtzite crystalline structure. The scanning electron microscopy observations prove that the substrates are uniformly covered by ZnO networks formed by monodisperse rods. The ZnO rod average diameter and length were tuned by controlling reactants' concentration and reaction time. Optical spectroscopy measurements demonstrate that all the samples display bandgap values and emission bands typical for ZnO. The electrical measurements reveal percolating networks which are highly sensitive when the samples are exposed to ammonia vapors, a variation in their resistance with the exposure time being evidenced. Other important characteristics are that the ZnO rod networks exhibit superhydrophobicity, with water contact angles exceeding 150° and a high water droplet adhesion. Reproducible, easily scalable, and low-cost chemical bath deposition and photolithography techniques could provide a facile approach to fabricate such ZnO networks and devices based on them for a wide range of applications where multifunctionality, i.e., sensing and superhydrophobicity, properties are required. PACS 81.07.-b; 81.05.Dz; 68.08.Bc PMID:25136286

  19. Self-standing particle-binding ZnO film.

    PubMed

    Masuda, Yoshitake; Kato, Kazumi

    2009-01-01

    Self-standing particle-binding ZnO film was fabricated by combination of crystallization in aqueous solution and annealing on FTO (SnO2:F) coated glass substrate. Multi-needle ZnO particles crystallized in a solution of zinc nitrate hexahydrate and ethylenediamine at 60 degrees C. Crystalline particles having an ultrafine surface relief structure were gradually deposited on the substrate to form thick particulate film. The film was then annealed at 950 degrees C for 1 h in air. The ZnO particles formed necks to connect to each other. The glass substrate deformed into a dome shape generating stress between the ZnO film and substrate; on the other hand, FTO layers retained their uneven surface during annealing. ZnO particulate film was successfully peeled off from the substrate as self-standing film. Deformation of glass substrate and FTO joint-insulating layer supported peeling-off of the film. The connected ZnO particles formed continuous white porous film having many spaces and continuous open pores surrounded by multi-needle ZnO particles. The film can be used as self-standing film and be pasted on substrate such as polymer film, metal or paper for application to flexible lightweight devices.

  20. Polarized Raman scattering of single ZnO nanorod

    SciTech Connect

    Yu, J. L. Lai, Y. F. Wang, Y. Z.; Cheng, S. Y.

    2014-01-21

    Polarized Raman scattering measurement on single wurtzite c-plane (001) ZnO nanorod grown by hydrothermal method has been performed at room temperature. The polarization dependence of the intensity of the Raman scattering for the phonon modes A{sub 1}(TO), E{sub 1}(TO), and E{sub 2}{sup high} in the ZnO nanorod are obtained. The deviations of polarization-dependent Raman spectroscopy from the prediction of Raman selection rules are observed, which can be attributed to the structure defects in the ZnO nanorod as confirmed by the comparison of the transmission electron microscopy, photoluminescence spectra as well as the polarization dependent Raman signal of the annealed and unannealed ZnO nanorod. The Raman tensor elements of A{sub 1}(TO) and E{sub 1}(TO) phonon modes normalized to that of the E{sub 2}{sup high} phonon mode are |a/d|=0.32±0.01, |b/d|=0.49±0.02, and |c/d|=0.23±0.01 for the unannealed ZnO nanorod, and |a/d|=0.33±0.01, |b/d|=0.45±0.01, and |c/d|=0.20±0.01 for the annealed ZnO nanorod, which shows strong anisotropy compared to that of bulk ZnO epilayer.

  1. Visible tunable lighting system based on polymer composites embedding ZnO and metallic clusters: from colloids to thin films

    PubMed Central

    Truong, Thai Giang; Dierre, Benjamin; Grasset, Fabien; Saito, Noriko; Saito, Norio; Nguyen, Thi Kim Ngan; Takahashi, Kohsei; Uchikoshi, Tetsuo; Amela-Cortes, Marian; Molard, Yann; Cordier, Stéphane; Ohashi, Naoki

    2016-01-01

    Abstract The development of phosphor devices free of heavy metal or rare earth elements is an important issue for environmental reasons and energy efficiency. Different mixtures of ZnO nanocrystals with Cs2Mo6I8(OOC2F5)6 cluster compound (CMIF) dispersed into polyvinylpyrrolidone matrix have been prepared by very simple and low cost solution chemistry. The resulting solutions have been used to fabricate highly transparent and luminescent films by dip coating free of heavy metal or rare earth elements. The luminescence properties of solution and dip-coated films were investigated. The luminescence of such a system is strongly dependent on the ratios between ZnO and CMIF amounts, the excitation wavelength and the nature of the system. By varying these two parameters (ratio and wavelength), a large variety of colors, from blue to red as well as white, can be achieved. In addition, differences in the luminescence properties have been observed between solutions and thin films as well as changes of CMIF emission band maximum wavelength. This may suggest some possible interactions between the different luminophore centers, such as energy transfer or ligands exchange on the Mo6 clusters. PMID:27877895

  2. Visible tunable lighting system based on polymer composites embedding ZnO and metallic clusters: from colloids to thin films.

    PubMed

    Truong, Thai Giang; Dierre, Benjamin; Grasset, Fabien; Saito, Noriko; Saito, Norio; Nguyen, Thi Kim Ngan; Takahashi, Kohsei; Uchikoshi, Tetsuo; Amela-Cortes, Marian; Molard, Yann; Cordier, Stéphane; Ohashi, Naoki

    2016-01-01

    The development of phosphor devices free of heavy metal or rare earth elements is an important issue for environmental reasons and energy efficiency. Different mixtures of ZnO nanocrystals with Cs2Mo6I8(OOC2F5)6 cluster compound (CMIF) dispersed into polyvinylpyrrolidone matrix have been prepared by very simple and low cost solution chemistry. The resulting solutions have been used to fabricate highly transparent and luminescent films by dip coating free of heavy metal or rare earth elements. The luminescence properties of solution and dip-coated films were investigated. The luminescence of such a system is strongly dependent on the ratios between ZnO and CMIF amounts, the excitation wavelength and the nature of the system. By varying these two parameters (ratio and wavelength), a large variety of colors, from blue to red as well as white, can be achieved. In addition, differences in the luminescence properties have been observed between solutions and thin films as well as changes of CMIF emission band maximum wavelength. This may suggest some possible interactions between the different luminophore centers, such as energy transfer or ligands exchange on the Mo6 clusters.

  3. Role of grain boundaries in ZnO

    NASA Astrophysics Data System (ADS)

    Sato, Yukio; Ikuhara, Yuichi

    2014-03-01

    ZnO is used in a wide variety of applications owing to the electrical properties. Polycrystalline ZnO ceramics have long been used such as varistor, and ZnO films are currently intensively studied for transparent conductor applications. Grain boundary (GB) in ZnO varistor is believed to be the origin of nonlinear current-voltage characteristics, and GB in ZnO films possibly affects the electrical conductivity. It is therefore important to understand the role of ZnO GB on the electrical properties, which should be closely related with the structure in atomic scale. With these viewpoints, we have studied the atomistic structure of ZnO GBs, where the orientation relations of adjacent crystals are well defined. Single GBs studied were obtained by fabricating ZnO bicrystals and the GBs were characterized by scanning transmission electron microscopy (STEM) and theoretical calculations. It is found that coordination number of ions change in ZnO GBs; there are underfold or overfold coordinated ions that are unusual in bulk inside. It is calculated that these atomistic structures alters the electronic structure but would not create deep states in the band gap. On the other hand, when praseodymium (Pr), which is known to be a key dopant element to obtain nonlinear (I-V) characteristics, is added to the GBs, Pr strongly localizes to the GBs and occupies specific atomic sites. Pr facilitates the formation of the acceptorlike defects such as zinc vacancies, which we think that is an important role of Pr on generation of nonlinear (I-V) characteristics. Furthermore, atomic arrangement and localization behavior of Pr are studied for several GBs to obtain fundamental understanding about GB structure formation.

  4. Green emission in carbon doped ZnO films

    SciTech Connect

    Tseng, L. T.; Yi, J. B. Zhang, X. Y.; Xing, G. Z.; Luo, X.; Li, S.; Fan, H. M.; Herng, T. S.; Ding, J.; Ionescu, M.

    2014-06-15

    The emission behavior of C-doped ZnO films, which were prepared by implantation of carbon into ZnO films, is investigated. Orange/red emission is observed for the films with the thickness of 60–100 nm. However, the film with thickness of 200 nm shows strong green emission. Further investigations by annealing bulk ZnO single crystals under different environments, i.e. Ar, Zn or C vapor, indicated that the complex defects based on Zn interstitials are responsible for the strong green emission. The existence of complex defects was confirmed by electron spin resonance (ESR) and low temperature photoluminescence (PL) measurement.

  5. Hierarchical structures of ZnO spherical particles synthesized solvothermally

    NASA Astrophysics Data System (ADS)

    Saito, Noriko; Haneda, Hajime

    2011-12-01

    We review the solvothermal synthesis, using a mixture of ethylene glycol (EG) and water as the solvent, of zinc oxide (ZnO) particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i) EG restricts the growth of ZnO microcrystals, (ii) EG promotes the self-assembly of small crystallites into spheroidal particles and (iii) the high water content of EG results in hollow spheres.

  6. ZnO Nanocoral Structures for Photoelectrochemical Cells

    SciTech Connect

    Ahn, K. S.; Yan, Y.; Shet, S.; Jones, K.; Deutsch, T.; Turner, J.; Al-Jassim, M.

    2008-01-01

    We report on synthesis of a uniform and large area of a new form of ZnO nanocorals. These nanostructures can provide suitable electrical pathways for efficient carrier collection as well as large surface areas for the photoelectrochemical (PEC) cells. PEC devices made from these ZnO nanocoral structures demonstrate significantly enhanced photoresponse as compared to ZnO compact and nanorod films. Our results suggest that the nanocoral structures could be an excellent choice for nanomaterial-based applications such as dye-sensitized solar cells, electrochromic windows, and batteries.

  7. Preparation, characterization and properties of ZnO nanomaterials

    NASA Astrophysics Data System (ADS)

    Luo, Jiaolian; Zhang, Xiaoming; Chen, Ruxue; Wang, Xiaohui; Zhu, Ji; Wang, Xiaomin

    2017-06-01

    In this paper, using the hydrothermal synthesis method, NaOH, Zn(NO3)2, anhydrous ethanol, deionized water as raw material to prepare ZnO nanomaterial, and by X ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL) on the synthesis of nano materials, surface morphology and phase luminescence characterization. The results show that the nano materials synthesized for single-phase ZnO, belonging to the six wurtzite structure; material surface shaped, arranged evenly distributed, and were the top six party structure; ZnO nano materials synthesized with strong emission spectra, emission peak is located at 394nm.

  8. Scintillation of Un-doped ZnO Single Crystals

    SciTech Connect

    Colosimo, A. M.; Ji, Jianfeng; Stepanov, P. S.; Boatner, L. A.; Selim, F. A.

    2016-01-07

    In this paper, scintillation properties are often studied by photo-luminescence (PL) and scintillation measurements. In this work, we combine X-ray-induced luminescence (XRIL) spectroscopy [Review of Scientific Instruments 83, 103112 (2012)] with PL and standard scintillation measurements to give insight into the scintillation properties of un-doped ZnO single crystals. XRIL revealed that ZnO luminescence proportionally increases with X-ray power and exhibits excellent linearity - indicating the possibility of developing radiation detectors with good energy resolution. Finally, by coupling ZnO crystals to fast photomultiplier tubes and monitoring the anode signal, rise times as fast as 0.9 ns were measured.

  9. High pressure and high temperature behaviour of ZnO

    SciTech Connect

    Thakar, Nilesh A.; Bhatt, Apoorva D.; Pandya, Tushar C.

    2014-04-24

    The thermodynamic properties with the wurtzite (B4) and rocksalt (B1) phases of ZnO under high pressures and high temperatures have been investigated using Tait's Equation of state (EOS). The effects of pressures and temperatures on thermodynamic properties such as bulk modulus, thermal expansivity and thermal pressure are explored for both two structures. It is found that ZnO material gradually softens with increase of temperature while it hardens with the increment of the pressure. Our predicted results of thermodynamics properties for both the phases of ZnO are in overall agreement with the available data in the literature.

  10. Surface-diffusion induced growth of ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Kim, D. S.; Gösele, U.; Zacharias, M.

    2009-05-01

    The growth rate of ZnO nanowires grown epitaxially on GaN/sapphire substrates is studied. An inverse proportional relation between diameter and length of the nanowires is observed, i.e., nanowires with smaller diameters grow faster than larger ones. This unexpected result is attributed to surface diffusion of ZnO admolecules along the sidewalls of the nanowires. In addition, the unique c-axis growth of ZnO nanowires, which does not require a catalytic particle at the tip of the growing nanowires is discussed by taking into account polarity, surface free energy, and ionicity. Activation energies of the nanowire growth are determined as well.

  11. Hierarchical structures of ZnO spherical particles synthesized solvothermally

    PubMed Central

    Saito, Noriko; Haneda, Hajime

    2011-01-01

    We review the solvothermal synthesis, using a mixture of ethylene glycol (EG) and water as the solvent, of zinc oxide (ZnO) particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i) EG restricts the growth of ZnO microcrystals, (ii) EG promotes the self-assembly of small crystallites into spheroidal particles and (iii) the high water content of EG results in hollow spheres. PMID:27877457

  12. Electron paramagnetic resonance study of ZnO varistor material.

    PubMed

    Baraki, Raschid; Zierep, Paul; Erdem, Emre; Weber, Stefan; Granzow, Torsten

    2014-03-19

    Matsuoka-type zinc oxide (ZnO) varistor material was synthesized using a conventional solid-state reaction method. X-band electron paramagnetic resonance (EPR) data revealed that Mn ions substitute in the ZnO lattice with a 2+ paramagnetic state. Co ions with either 3+ or 2+ oxidation states are only detectable at cryogenic temperatures. A Cr(3+) EPR signal was strongly suppressed or masked by a Mn(2+) signal. Photoluminescence and electrical results indicated that the varistor sample has fewer intrinsic defects and much higher resistivity as compared to undoped and metal-ion doped ZnO.

  13. Morphology Dependent Photocatalytic Properties of ZnO Nanostructures

    NASA Astrophysics Data System (ADS)

    Ranjith, K. S.; Kumar, R. T. Rajendra

    2011-07-01

    ZnO nanostructures of different morphology (Rods, spindles, stars, buds) were successfully synthesized by co-precipitation method. The prepared ZnO nanostructures were systematically characterized by X-ray diffraction, Scanning electron microscopy (SEM). XRD results show the prepared nanostructures were in the hexagonal wurtzite structure. The photocatalytic degradation of methylene blue (MB) in aqueous solution under UV-irradiation was investigated with different ZnO nanostructures. The photocatalytic experiments reveal that spindle like nanostructures showed fast photocatalytic activity compared to the other rods, stars and buds like nanostructures.

  14. ZnO nanowire-based UV photodetector.

    PubMed

    Lu, Chien-Yuan; Chang, Sheng-Po; Chang, Shoou-Jinn; Hsu, Cheng-Liang; Chiou, Yu-Zung; Chen, I-Cherng

    2010-02-01

    ZnO nanowire-based ultraviolet (UV) photodetector was proposed and fabricated by depositing interdigitated Au film on vertically well aligned ZnO nanowires. It was found that the deposited Au film form good ohmic contact with the underneath ZnO nanowires. Upon UV irradiation, it was found that the detector current was increased by more than 2.5 times. It was also found that the corresponding time constant for turn-on transient was tau(on) = 3.125 ms while that for turn-off transient was tau(off) = 36.92 ms.

  15. Heavy-ion dosimetry

    SciTech Connect

    Schimmerling, W.

    1980-03-01

    This lecture deals with some of the more important physical characteristics of relativistic heavy ions and their measurement, with beam delivery and beam monitoring, and with conventional radiation dosimetry as used in the operation of the BEVALAC biomedical facility for high energy heavy ions (Lyman and Howard, 1977; BEVALAC, 1977). Even so, many fundamental aspects of the interaction of relativistic heavy ions with matter, including important atomic physics and radiation chemical considerations, are not discussed beyond the reminder that such additional understanding is required before an adequte perspective of the problem can be attained.

  16. Spectroscopic studies on photoelectron transfer from 2-(furan-2-yl)-1-phenyl-1H-phenanthro[9,10-d]imidazole to ZnO, Cu-doped ZnO and Ag-doped ZnO.

    PubMed

    Thanikachalam, V; Arunpandiyan, A; Jayabharathi, J; Karunakaran, C; Ramanathan, P

    2014-09-01

    The 2-(furan-2-yl)-1-phenyl-1H-phenanthro[9,10-d]imidazole [FPI] has been designed and synthesized as fluorescent sensor for nanoparticulate ZnO. The present work investigates the photoelectron transfer (PET) from FPI to ZnO, Cu-doped ZnO and Ag- doped ZnO nanoparticles using electronic and life time spectral measurements. Broad absorption along with red shift indicates the formation of charge-transfer complex [FPI-Nanoparticles]. The photophysical studies indicate lowering of HOMO and LUMO energy levels of FPI on adsorption on ZnO due to FPI- ZnO interaction. The obtained binding constant implies that the binding of FPI with nanoparticles was influenced by the surface modification of ZnO nanoparticles with Cu and Ag.

  17. Direct observation of voltage barriers in ZnO varistors

    NASA Technical Reports Server (NTRS)

    Krivanek, O. L.; Williams, P.; Lin, Y.-C.

    1979-01-01

    Voltage barriers in a ZnO varistor have been imaged by voltage-contrast scanning electron microscopy. They are due to grain boundaries and are capable of supporting voltage differences of up to about 4 V.

  18. Nanostructured ZnO Films for Room Temperature Ammonia Sensing

    NASA Astrophysics Data System (ADS)

    Dhivya Ponnusamy; Sridharan Madanagurusamy

    2014-09-01

    Zinc oxide (ZnO) thin films have been deposited by a reactive dc magnetron sputtering technique onto a thoroughly cleaned glass substrate at room temperature. X-ray diffraction revealed that the deposited film was polycrystalline in nature. The field emission scanning electron micrograph (FE-SEM) showed the uniform formation of a rugby ball-shaped ZnO nanostructure. Energy dispersive x-ray analysis (EDX) confirmed that the film was stoichiometric and the direct band gap of the film, determined using UV-Vis spectroscopy, was 3.29 eV. The ZnO nanostructured film exhibited better sensing towards ammonia (NH3) at room temperature (˜30°C). The fabricated ZnO film based sensor was capable of detecting NH3 at as low as 5 ppm, and its parameters, such as response, selectivity, stability, and response/recovery time, were also investigated.

  19. Nanowire Array Gratings with ZnO Combs

    SciTech Connect

    Pan, Zhengwei; Mahurin, Shannon Mark; Dai, Sheng; Lowndes, Douglas H

    2005-01-01

    Diffraction gratings are mainly manufactured by mechanical ruling, interference lithography, or resin replication, which generally require expensive equipment, complicated procedures, and a stable environment. We describe the controlled growth of self-organized microscale ZnO comb gratings by a simple one-step thermal evaporation and condensation method. The ZnO combs consist of an array of very uniform, perfectly aligned, evenly spaced and long single-crystalline ZnO nanowires or nanobelts with periods in the range of 0.2 to 2 {mu}m. Diffraction experiments show that the ZnO combs can function as a tiny three-beam divider that may find applications in miniaturized integrated optics such as three-beam optical pickup systems.

  20. Pressure-dependent photoluminescence study of ZnO nanowires

    SciTech Connect

    Shan, W.; Walukiewicz, W.; Ager III, J.W.; Yu, K.M.; Zhang, Y.; Mao, S.S.; Kling, R.

    2004-09-13

    The pressure dependence of the photoluminescence (PL) transition associated with the fundamental band gap of ZnO nanowires has been studied at pressures up to 15 GPa. ZnO nanowires are found to have a higher structural phase transition pressure around 12 GPa as compared to 9.0 GPa for bulk ZnO. The pressure-induced energy shift of the near band-edge luminescence emission yields a linear pressure coefficient of 29.6 meV/GPa with a small sublinear term of -0.43 meV/GPa{sup 2}. An effective hydrostatic deformation potential -3.97 eV for the direct band gap of the ZnO nanowires is derived from the result.

  1. Synthesis, characterization, and green luminescence in ZnO nanocages.

    PubMed

    Snure, Michael; Tiwari, Ashutosh

    2007-02-01

    In this paper, we report the synthesis, characterization and observation of green luminescence in ZnO nanocages. A novel low temperature solution-based technique has been developed for growing highly porous ZnO nano-cages from coarse ZnO precursor powders. Various samples, prepared in this study, were characterized using several different characterization tools such as X-ray diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, Raman, Photoluminescence and Optical Transmission Spectroscopy. It has been shown that ZnO nanocages exhibit green luminescence, with PL data showing a broad green peak at 510 nm. The shift and broadening in the luminescence peaks are understood to arise because of the onset of deep level defects in the system.

  2. Nanogenerator made of ZnO nanosheet networks

    NASA Astrophysics Data System (ADS)

    Zhang, Renyun; Hummelgård, Magnus; Olsen, Martin; Örtegren, Jonas; Olin, Håkan

    2017-05-01

    The piezoelectricity of nanomaterials attracts a great deal of attention due to its broad application, including the harvesting of ambient mechanical energy to power small electronics devices. We report here a simple method to fabricate piezoelectric nanogenerators consisting of networks of ZnO nanosheets grown on aluminum (Al) foils, where the Al acts as both a substrate for growth and as an electrode contacting the ZnO network. A second, top electrode was tapped, rolled, or rubbed against the ZnO to generate piezoelectricity. This second electrode was either a copper foil or fluorine doped tin oxide (FTO) glass. A piezo voltage of up to 0.924 V was detected during rolling and 6 μA was the highest current observed when rubbing the ZnO film with a FTO glass. Due to its simplicity, this nanogenerator fabrication method has the potential to be scaled up for the industrial production of piezoelectric energy harvesting devices.

  3. Direct observation of voltage barriers in ZnO varistors

    NASA Technical Reports Server (NTRS)

    Krivanek, O. L.; Williams, P.; Lin, Y.-C.

    1979-01-01

    Voltage barriers in a ZnO varistor have been imaged by voltage-contrast scanning electron microscopy. They are due to grain boundaries and are capable of supporting voltage differences of up to about 4 V.

  4. Percolation effects in dc degradation of ZnO varistors

    NASA Astrophysics Data System (ADS)

    Tonkoshkur, A. S.; Glot, A. B.; Ivanchenko, A. V.

    2015-03-01

    For quantitative estimation of the degree of electrical disorder (electrical inhomogeneity) in ZnO varistor ceramics caused by a variation in the barrier height at different grain boundaries in a sample, the comparison of threshold electric fields (onsets of highly nonlinear current-voltage characteristics) in ceramics and single grain boundary (GB) is suggested and approved. At dc degradation similar behavior of the current-voltage characteristics of ZnO varistor ceramics and single GB is observed. The percolation model of Shklovskii-De Gennes is applicable for the description of a disorder in ZnO varistor ceramics. The degree of the disorder in ZnO varistor ceramics is not dependent on the duration of dc degradation at least at degradation time below 60 h. At voltages close to the onset of a highly nonlinear region of current-voltage characteristic the correlation radius of infinite cluster is ˜ 5 times greater than the average grain size.

  5. Biomimetic hierarchical ZnO structures with superhydrophobic property

    NASA Astrophysics Data System (ADS)

    Saidin, N. U.; Kok, K. Y.; Ng, I. K.; Bustamam, F. K. Ahmad

    2012-11-01

    A simple electrochemical deposition method was developed for the fabrication of ZnO-based hierarchical dual structures on micro and nano scales. A layer of c-axis wellaligned and translucent ZnO micro/nanostructures was deposited on ITO glass substrate from different aqueous electrolytes with systematically varied conditions. Surface morphologies and orientations of the ZnO coatings were characterized using Scanning Electron Microscopy (SEM). The resulting ZnO-modified surface was found to exhibit water contact angle as high as 170°, a superhydrophobic property found on lotus leaf. Results show that the electrochemical deposition potential, electrolyte concentration, deposition temperature and time are the critical factors controlling the growth and formation of ZnO micro/nanostructures. Such biomimetic ZnO structures have potential for self-cleaning applications.

  6. Li doped ZnO thin films for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Sandeep, K. M.; Bhat, Shreesha; Serrao, F. J.; Dharmaprakash, S. M.

    2016-05-01

    We have prepared undoped (ZnO) and Li doped ZnO (LZO) thin films using cost effective sol gel spin coating method.The structural properties were analyzed by X-ray diffraction, and it showed that Li ions occupied interstitial positions in the LZO film. The optical properties like band bending effect, absorption length, band edge sharpness, which have direct impact on solar cell performance has been calculated. The room temperature photoluminescence spectra of the films showed dominant blue emission with CIE coordinate numbers (0.1384, 0.0836) for ZnO and (0.1356, 0.0910) for LZO. The dominating wavelength of the blue emission is present at 470.9 nm and 472.3 nm for ZnO and LZO films respectively. The structural and optical parameters determined in the present study could be used in LED applications.

  7. Li doped ZnO thin films for optoelectronic applications

    SciTech Connect

    Sandeep, K. M. Bhat, Shreesha; Serrao, F. J.; Dharmaprakash, S. M.

    2016-05-23

    We have prepared undoped (ZnO) and Li doped ZnO (LZO) thin films using cost effective sol gel spin coating method.The structural properties were analyzed by X-ray diffraction, and it showed that Li ions occupied interstitial positions in the LZO film. The optical properties like band bending effect, absorption length, band edge sharpness, which have direct impact on solar cell performance has been calculated. The room temperature photoluminescence spectra of the films showed dominant blue emission with CIE coordinate numbers (0.1384, 0.0836) for ZnO and (0.1356, 0.0910) for LZO. The dominating wavelength of the blue emission is present at 470.9 nm and 472.3 nm for ZnO and LZO films respectively. The structural and optical parameters determined in the present study could be used in LED applications.

  8. Vapor Transport of ZnO in Closed Ampoules

    NASA Technical Reports Server (NTRS)

    Palosz, Witold

    2005-01-01

    Vapor transport of ZnO by PVT and CVT using carbon, carbon monoxide, and hydrogen as the transport agents was studied. Theoretical calculations of the mass flux were based on equilibrium thermodynamics and 1-D diffusional mass transport. Experimental results were found to be consistent with theoretical predictions. NO apparent kinetic limitations to sublimation were observed. Slow reaction of carbon with ZnO source was found.

  9. Photoluminescence of sequential infiltration synthesized ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Ocola, Leonidas E.; Gosztola, David J.; Yanguas-Gil, Angel; Suh, Hyo-Seon; Connolly, Aine

    2016-02-01

    For the past several years there have been ongoing efforts to incorporate zinc oxide (ZnO) inside polymethyl methacrylate (PMMA), in the form of nanoparticles or quantum dots, to combine their optical properties for multiple applications. We have investigated a variation of atomic layer deposition (ALD), called sequential infiltration synthesis (SiS), as an alternate method to incorporate ZnO and other oxides inside the polymer. PMMA is a well-known ebeam resist. We can expose and develop patterns useful for photonics or sensing applications first, and then convert them afterwards into a hybrid oxide material with enhanced photonic, or sensing, properties. This is much easier than micromachining films of ZnO or other similar oxides because they are difficult to etch. The amount of ZnO formed inside the polymer film is magnitudes higher than equivalent amount deposited on a flat 2D surface, and the intensity of the photoemission suggests there is an enhancement created by the polymer-ZnO interaction. Photoemission from thin films exhibit photoemission similar to intrinsic ZnO with oxygen vacancies. These vacancies can be removed by annealing the sample at 500°C in an oxygen rich environment. SiS ZnO exhibits unusual photoemission properties for thick polymer films, emitting at excitations wavelengths not found in bulk or standard ZnO. Finally we have shown that patterning the polymer and then doing SiS ZnO treatment afterwards allows modifying or manipulating the photoemission spectra. This opens the doors to novel photonic applications.

  10. Quantum Confined ZnO Nanoparticles: Structural and Optical Studies

    NASA Astrophysics Data System (ADS)

    Dey, S.; Mishra, A. K.; Das, D.; Mukherjee, S.

    2011-07-01

    Single phase ZnO nanocrystals have been prepared by a wet chemical route. Structure and morphology of prepared ZnO nanocrystals has been investigated with XRD and SEM. The significant role of surfactants in controlling the particle size has been observed with the help of UV-vis spectroscopy. The changes in the UV peak with varied concentration of the surfactants have shown the effect of quantum confinement in the samples. These results have also been corroborated by photoluminescence studies.

  11. Heavy Menstrual Bleeding

    MedlinePlus

    ... to pregnancy, such as ectopic pregnancy and miscarriage . Pelvic inflammatory disease also can cause heavy menstrual bleeding. Sometimes, the ... A physical examination of a woman’s reproductive organs. Pelvic Inflammatory Disease: An infection of the uterus, fallopian tubes, and ...

  12. Heavy fermion quantum criticality.

    PubMed

    Nazario, Zaira; Santiago, David I

    2008-09-26

    During the last few years, investigations of rare-earth materials have made clear that heavy fermion quantum criticality exhibits novel physics not fully understood. In this work, we write for the first time the effective action describing the low energy physics of the system. The f fermions are replaced by a dynamical scalar field whose nonzero expected value corresponds to the heavy fermion phase. The effective theory is amenable to numerical studies as it is bosonic, circumventing the fermion sign problem. Via effective action techniques, renormalization group studies, and Callan-Symanzik resummations, we describe the heavy fermion criticality and predict the heavy fermion critical dynamical susceptibility and critical specific heat. The specific heat coefficient exponent we obtain (0.39) is in excellent agreement with the experimental result at low temperatures (0.4).

  13. ESB Heavy Lift Requirements

    DTIC Science & Technology

    2006-01-01

    capacity, cross-country travel ability, and redundancy than the three axles and twelve tires found on the M870 trailer.13,14 In fact, this...equates to an organic ability to move approximately twenty- three percent of the battalion’s heavy equipment that requires prime movers in one lift...Truck Tractor manufactured by Oshkosh Truck Corporation and the M1000 Heavy Equipment Transporter semi-trailer manufactured by Systems

  14. Cytotoxicity of ZnO Nanowire Arrays on Excitable Cells.

    PubMed

    Wang, Yongchen; Wu, Yu; Quadri, Farhan; Prox, Jordan D; Guo, Liang

    2017-04-07

    Zinc oxide (ZnO) nanowires have been widely studied for their applications in electronics, optics, and catalysts. Their semiconducting, piezoelectric, fluorescent, and antibacterial properties have also attracted broad interest in their biomedical applications. Thus, it is imperative to evaluate the biosafety of ZnO nanowires and their biological effects. In this study, the cellular level biological effects of ZnO nanowire arrays are specifically tested on three types of excitable cells, including NG108-15 neuronal cell line, HL-1 cardiac muscle cell line, and neonatal rat cardiomyocytes. Vertically aligned and densely packed ZnO nanowire arrays are synthesized using a solution-based method and used as a substrate for cell culture. The metabolism levels of all three types of cells cultured on ZnO nanowire arrays are studied using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays of a full factorial design. Under the studied settings, the results show statistically significant inhibitory effects of ZnO nanowire arrays on the metabolism of NG108-15 and HL-1 cells in comparison to gold, glass, and polystyrene substrates, and on the metabolism of cardiomyocytes in comparison to gold substrate.

  15. High efficient ZnO nanowalnuts photocatalyst: A case study

    SciTech Connect

    Yan, Feng; Zhang, Siwen; Liu, Yang; Liu, Hongfeng; Qu, Fengyu; Cai, Xue; Wu, Xiang

    2014-11-15

    Highlights: • Walnut-like ZnO nanostructures are synthesized through a facile hydrothermal method. • Morphologies and microstructures of the as-obtained ZnO products were investigated. • The photocatalytic results demonstrate that methyl orange (MO) aqueous solution can be degraded over 97% after 45 min under UV light irradiation. - Abstract: Walnut-like ZnO nanostructures are successfully synthesized through a facile hydrothermal method. The structure and morphology of the as-synthesized products were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The photocatalytic properties of ZnO nanowalnuts are investigated by photodegradating several organic dyes, such as Congo red (CR), methyl orange (MO) and eosin red aqueous solutions under UV irradiation, respectively. The results demonstrate that methyl orange (MO) aqueous solution can be degraded over 97% after 45 min under UV light irradiation. In addition, eosin red and Congo red (CR) aqueous solution degradation experiments are also conducted in the same condition, respectively. It showed that ZnO nanowalnuts represent high photocatalytic activities with a degradation efficiency of 87% for CR with 115 min of irradiation and 97% for eosin red with 55 min of irradiation. The reported ZnO products may be promising candidates as the photocatalysts in waste water treatment.

  16. Applicability check of ZnO crystals for device applications

    NASA Astrophysics Data System (ADS)

    Bhowmick, Mithun; Ullrich, Bruno; Ariza, David; Xi, Haowen

    2014-03-01

    There has always been vital interest in wide-band gap semiconductors for their applicability in short-wavelength photonic devices and in electronic devices operating in high frequency regime. Historically, ZnO was never favored as a potential material for the above applications primarily because of difficulty in growing it. This situation, however, has improved drastically in the past decade thereby renewing the attention on this material system. Hence, ZnO is being proposed for potential light emitting devices in the blue and UV regions of electromagnetic spectrum. ZnO single crystals are also being considered for high power transistors. In this work, we present investigations of optical properties of pure (99.99%) ZnO performing transmittance, reflectance, Raman, and photoluminescence measurements. The ZnO single crystals employed in this work, were obtained commercially. We present detailed analysis of the measured data through theoretical calculations. Our results identify the state-of-the-art application potential of commercially available ZnO, revealing its advantages and limitations when compared to similar materials such as GaN.

  17. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles.

    PubMed

    Janaki, A Chinnammal; Sailatha, E; Gunasekaran, S

    2015-06-05

    The utilization of various plant resources for the bio synthesis of metallic nano particles is called green technology and it does not utilize any harmful protocols. Present study focuses on the green synthesis of ZnO nano particles by Zinc Carbonate and utilizing the bio-components of powder extract of dry ginger rhizome (Zingiber officinale). The ZnO nano crystallites of average size range of 23-26 nm have been synthesized by rapid, simple and eco friendly method. Zinc oxide nano particles were characterized by using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectroscopy (EDX). FTIR spectra confirmed the adsorption of surfactant molecules at the surface of ZnO nanoparticles and the presence of ZnO bonding. Antimicrobial activity of ZnO nano particles was done by well diffusion method against pathogenic organisms like Klebsiella pneumonia, Staphylococcus aureus and Candida albicans and Penicillium notatum. It is observed that the ZnO synthesized in the process has the efficient antimicrobial activity.

  18. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Janaki, A. Chinnammal; Sailatha, E.; Gunasekaran, S.

    2015-06-01

    The utilization of various plant resources for the bio synthesis of metallic nano particles is called green technology and it does not utilize any harmful protocols. Present study focuses on the green synthesis of ZnO nano particles by Zinc Carbonate and utilizing the bio-components of powder extract of dry ginger rhizome (Zingiber officinale). The ZnO nano crystallites of average size range of 23-26 nm have been synthesized by rapid, simple and eco friendly method. Zinc oxide nano particles were characterized by using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectroscopy (EDX). FTIR spectra confirmed the adsorption of surfactant molecules at the surface of ZnO nanoparticles and the presence of ZnO bonding. Antimicrobial activity of ZnO nano particles was done by well diffusion method against pathogenic organisms like Klebsiella pneumonia, Staphylococcus aureus and Candida albicans and Penicillium notatum. It is observed that the ZnO synthesized in the process has the efficient antimicrobial activity.

  19. Effect of silver doping on ZnO nanocrystals

    SciTech Connect

    Gawai, U. P.; Dole, B. N.; Khawal, H. A.; Bodke, M. R.

    2016-05-06

    Ag doped ZnO nanocrystals were synthesized by co-precipitation method with the nominal compositions (x=0.00, 0.02, 0.04, 0.06). The as-synthesized Ag doped ZnO nanocrystals were characterized by X-ray diffraction (XRD), FTIR and UV-Vis. From XRD patterns samples shows hexagonal structure. The average crystallite size is in the range of 41-47 nm. All as synthesized Zn{sub 1−x}Ag{sub x}O nanocrystals are highly textured, with wurtzite structure along the (101) growth direction. The energy band gap of pure and Ag doped ZnO were calculated from UV-Vis spectra. FTIR spectra were confirmed that Ag substituted into ZnO. Chemical species of the samples were detected using FTIR spectra An increase in the hexagonal lattice parameters of ZnO is observed on increasing the Ag concentration. An optical absorption study shows an increment in the band gap with increasing Ag content. From optical study the samples determines blue shift. Atomic packing fraction (APF) and c/a ratio were calculated using XRD data. It confirms the formation of ZnO with the stretching vibrational mode around at 506 to 510 cm{sup −1}.

  20. Process for removing heavy metal compounds from heavy crude oil

    DOEpatents

    Cha, Chang Y.; Boysen, John E.; Branthaver, Jan F.

    1991-01-01

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  1. Defect properties of ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Stehr, J. E.; Devika, M.; Reddy, N. Koteeswara; Tu, C. W.; Chen, W. M.; Buyanova, I. A.

    2014-02-01

    In this work we examined optical and defect properties of as-grown and Ni-coated ZnO nanowires (NWs) grown by rapid thermal chemical vapor deposition by means of optically detected magnetic resonance (ODMR). Several grown-in defects are revealed by monitoring visible photoluminescence (PL) emissions and are attributed to Zn vacancies, O vacancies, a shallow (but not effective mass) donor and exchange-coupled pairs of a Zn vacancy and a Zn interstitial. It is also found that the same ODMR signals are detected in the as-grown and Ni-coated NWs, indicating that metal coatings does not significantly affect formation of the aforementioned defects and that the observed defects are located in the bulk of the NWs.

  2. Thermoluminescence properties of sintered ZnO

    NASA Astrophysics Data System (ADS)

    Borbón-Nuñez, H. A.; Cruz-Vázquez, C.; Bernal, R.; Kitis, G.; Furetta, C.; Castaño, V. M.

    2014-11-01

    New pellet-shaped ZnO phosphors were synthesized using a controlled chemical reaction. Some samples were sintered at 1123, 1173 or 1223 K during 24 h in air, and then exposed to beta particle irradiation in the dose range from 25 to 800 Gy to investigate their thermoluminescence (TL) properties. By considering their sensitivity, reproducibility, and fading features, samples sintered at 1173 K exhibit the best dosimetric characteristics. From computerized glow curve deconvolution that was carried out using a general order equation, the kinetics parameters were computed, and it was found that the glow curves are composed by six individual TL peaks with kinetics order ranging from 1.2 to 1.8.

  3. Defect engineering of ZnO

    NASA Astrophysics Data System (ADS)

    Weber, M. H.; Selim, F. A.; Solodovnikov, D.; Lynn, K. G.

    2008-10-01

    The defect responsible for the transparent to red color change of nominally undoped ZnO bulk single crystals is investigated. Upon annealing in the presence of metallic Zn as reported by Halliburton et al. and also Ti and Zr a native defect forms with an energy level about 0.7 eV below the conduction band. This change is reversible upon annealing in oxygen. Optical transmission data along with positron depth profiles and annealing studies are combined to identify the defect as oxygen vacancies. Vacancy clustering occurs at about 500 °C if isolated zinc and oxygen vacancies. In the absence of zinc vacancies, clusters form at about 800 °C.

  4. Microwave synthesis and photocatalytic activities of ZnO bipods with different aspect ratios

    SciTech Connect

    Sun, Fazhe; Zhao, Zengdian; Qiao, Xueliang; Tan, Fatang; Wang, Wei

    2016-02-15

    Highlights: • We synthesized linked ZnO nanorods by a facile microwave method. • The effect of reaction parameters on ZnO was investigated. • ZnO bipods with different aspect ratios were prepared. • The photocatalytic performance of ZnO bipods was evaluated. - Abstract: Linked ZnO nanorods have been successfully prepared via a facile microwave method without any post-synthesis treatment. The X-ray diffraction (XRD) patterns indicated the precursor had completely transformed into the pure ZnO crystal. The images of field emitting scanning electron microscope (FESEM) and transmission electron microscope (TEM) showed that linked ZnO nanorods consisted predominantly of ZnO bipods. The formation process of the ZnO bipods was clearly discussed. ZnO bipods with different aspect ratios have been obtained by tuning the concentrations of reagents and microwave power. Moreover, the photocatalytic performance of ZnO bipods with different aspect ratios for degradation of methylene blue was systematically evaluated. The results of photocatalytic experiments showed that the photocatalytic activity increased with the aspect ratios of ZnO bipods increased. The reason is that ZnO bipods with larger aspect ratio have higher surface area, which can absorb more MB molecules to react with ·OH radicals.

  5. Comparative toxicity of nano ZnO and bulk ZnO towards marine algae Tetraselmis suecica and Phaeodactylum tricornutum.

    PubMed

    Li, Jiji; Schiavo, Simona; Rametta, Gabriella; Miglietta, Maria Lucia; La Ferrara, Vera; Wu, Changwen; Manzo, Sonia

    2017-01-10

    The wide use of ZnO nanoparticles in a number of products implies an increasing release into the marine environment, resulting in the need to evaluate the potential effects upon organisms, and particularly phytoplankton, being at the base of the throphic chain. To this aim, dose-response curves for the green alga Tetraselmis suecica and the diatom Phaeodactylum tricornutum derived from the exposure to nano ZnO (100 nm) were evaluated and compared with those obtained for bulk ZnO (200 nm) and ionic zinc. The toxic effects to both algae species were reported as no observable effect concentration (NOEC) of growth inhibition and as 1, 10, and 50% effect concentrations (EC1, EC10, and EC50). The toxicity decreased in the order nano ZnO > Zn(2+) > bulk ZnO. EC50 values for nano ZnO were 3.91 [3.66-4.14] mg Zn/L towards the green microalgae and 1.09 [0.96-1.57] mg Zn/L towards the diatom, indicating a higher sensitivity of P. tricornutum. The observed diverse effects can be ascribed to the interaction occurring between different algae and ZnO particles. Due to algae motility, ZnO particles were intercepted in different phases of aggregation and sedimentation processes, while algae morphology and size can influence the level of entrapment by NP aggregates.This underlines the need to take into account the peculiarity of the biological system in the assessment of NP toxicity.

  6. Structural, optical, and LED characteristics of ZnO and Al doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2017-05-01

    ZnO (pristine) and Al doped ZnO (AZO) films were prepared using sol-gel spin coating method. The XRD analysis showed the enhanced compressive stress in AZO film. The presence of extended states below the conduction band edge in AZO accounts for the redshift in optical bandgap. The PL spectra of AZO showed significant blue emission due to the carrier recombination from defect states. The TRPL curves showed the dominant DAP recombination in ZnO film, whereas defect related recombination in Al doped ZnO film. Color parameters viz: the dominant wavelength, color coordinates (x,y), color purity, luminous efficiency and correlated color temperature (CCT) of ZnO and AZO films are calculated using 1931 (CIE) diagram. Further, a strong blue emission with color purity more than 96% is observed in both the films. The enhanced blue emission in AZO significantly increased the luminous efficiency (22.8%) compared to ZnO film (10.8%). The prepared films may be used as blue phosphors in white light generation.

  7. Self-assembled ZnO nanoparticles on ZnO microsheet: ultrafast synthesis and tunable photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Brahma, Sanjaya; Khatei, Jayakrishna; Sunkara, S.; Lo, K.-Y.; Shivashankar, S. A.

    2015-06-01

    We report on the tunable photoluminescence characteristics of porous ZnO microsheets fabricated within 1-5 min of microwave irradiation in the presence of a capping agent such as citric acid, and mixture of citric acid with polyvinylpyrrolidone (PVP). The UV emission intensity reduces to 60% and visible emission increases tenfold when the molar concentration of citric acid is doubled. Further diminution of the intensity of UV emission (25%) is observed when PVP is mixed with citric acid. The addition of nitrogen donor ligands to the parent precursor leads to a red shift in the visible luminescence. The deep level emission covers the entire visible spectrum and gives an impression of white light emission from these ZnO samples. The detailed luminescence mechanism of our ZnO samples is described with the help of a band diagram constructed by using the theoretical models that describe the formation energy of the defect energy levels within the energy band structure. Oxygen vacancies play the key role in the variation of the green luminescence in the ZnO microsheets. Our research findings provide an insight that it is possible to retain the microstructure and simultaneously introduce defects into ZnO. The growth of the ZnO microsheets may be due to the self assembly of the fine sheets formed during the initial stage of nucleation.

  8. Characterization of heavy metal particles embedded in tire dust.

    PubMed

    Adachi, Kouji; Tainosho, Yoshiaki

    2004-10-01

    Tire dust is a significant pollutant, especially as a source of zinc in the urban environment. This study characterizes the morphology and chemical composition of heavy metal particles embedded in tire dust and traffic-related materials (brake dust, yellow paint, and tire tread) as measured by a field emission scanning electron microscope equipped with an energy dispersive X-ray spectrometer (FESEM/EDX). In 60 samples of tire dust, we detected 2288 heavy metal particles, which we classified into four groups using cluster analysis according to the following typical elements: cluster 1: Fe, cluster 2: Cr/Pb, cluster 3: multiple elements (Ti, Cr, Fe, Cu, Zn, Sr, Y, Zr, Sn, Sb, Ba, La, Ce, Pb), cluster 4: ZnO. According to their morphologies and chemical compositions, the possible sources of each cluster were as follows: (1) brake dust (particles rich in Fe and with trace Cu, Sb, and Ba), (2) yellow paint (CrPbO(4) particles), (3) brake dust (particulate Ti, Fe, Cu, Sb, Zr, and Ba) and heavy minerals (Y, Zr, La, and Ce), (4) tire tread (zinc oxide). When the chemical composition of tire dust was compared to that of tire tread, the tire dust was found to have greater concentrations of heavy metal elements as well as mineral or asphalt pavement material characterized by Al, Si, and Ca. We conclude that tire dust consists not only of the debris from tire wear but also of assimilated heavy metal particles emitted from road traffic materials such as brake lining and road paint.

  9. Synergistic toxicity of zno nanoparticles and dimethoate in mice: Enhancing their biodistribution by synergistic binding of serum albumin and dimethoate to zno nanoparticles.

    PubMed

    Yan, Xincheng; Xu, Xiaolong; Guo, Mingchun; Wang, Shasha; Gao, Shang; Zhu, Shanshan; Rong, Rui

    2017-04-01

    The extensive applications of ZnO nanoparticles (nano ZnO) and dimethoate (DM) have increased the risk of humans' co-exposure to nano ZnO and DM. Here, we report the synergistic effect of nano ZnO and DM on their biodistribution and subacute toxicity in mice. Nano ZnO and DM had a synergistic toxicity in mice. In contrast, bulk ZnO and DM did not cause an obvious synergistic toxicity in mice. Although nano ZnO was low toxic to mice, coexposure to nano ZnO and DM significantly enhanced DM-induced oxidative damage in the liver. Coadministration of nano ZnO with DM significantly increased Zn accumulation by 30.9 ± 1.9% and DM accumulation by 45.6 ± 2.2% in the liver, respectively. The increased accumulations of DM and Zn in the liver reduced its cholinesterase activity from 5.65 ± 0.32 to 4.37 ± 0.49 U/mg protein and induced hepatic oxidative stress. Nano ZnO had 3-fold or 2.4-fold higher binding capability for serum albumin or DM, respectively, than bulk ZnO. In addition, serum albumin significantly increased the binding capability of nano ZnO for DM by approximately four times via the interaction of serum albumin and DM. The uptake of serum albumin- and DM-bound nano ZnO by the macrophages significantly increased DM accumulation in mice. Serum albumins play an important role in the synergistic toxicity of nano ZnO and DM. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1202-1212, 2017.

  10. Size-controllable growth of ZnO nanorods on Si substrate

    NASA Astrophysics Data System (ADS)

    Yu, Zhentao; Li, Hui; Qiu, Yining; Yang, Xu; Zhang, Wu; Xu, Ning; Sun, Jian; Wu, Jiada

    2017-01-01

    Here we report a simple two-step chemical-solution-based method to grow highly oriented and size-controllable ZnO nanorods on ZnO-seeded Si substrate. The morphology of the grown ZnO nanorods was examined by field emission scanning electron microscopy. The structure was characterized by X-ray diffraction and Raman scattering spectrum. Photoluminescence spectra were measured at room temperature and low temperatures to evaluate the photoluminescence properties of the ZnO nanorods. The grown ZnO nanorods are structured with hexagonal wurtzite. The diameter and length of ZnO nanorods can be controlled by varying the crystal quality of the underlying ZnO seed layers. The crystal quality of the seed layers gets improved as the deposition time and annealing temperature for ZnO seed layers are increased. The effects of annealing on the ZnO nanorods were also studied.

  11. Fabrication and photovoltaic properties of ZnO nanorods/perovskite solar cells

    SciTech Connect

    Shirahata, Yasuhiro; Tanaike, Kohei; Akiyama, Tsuyoshi; Fujimoto, Kazuya; Suzuki, Atsushi; Balachandran, Jeyadevan; Oku, Takeo

    2016-02-01

    ZnO nanorods/perovskite solar cells with different lengths of ZnO nanorods were fabricated. The ZnO nanorods were prepared by chemical bath deposition and directly confirmed to be hexagon-shaped nanorods. The lengths of the ZnO nanorads were controlled by deposition condition of ZnO seed layer. Photovoltaic properties of the ZnO nanorods/CH{sub 3}NH{sub 3}PbI{sub 3} solar cells were investigated by measuring current density-voltage characteristics and incident photon to current conversion efficiency. The highest conversion efficiency was obtained in ZnO nanorods/CH{sub 3}NH{sub 3}PbI{sub 3} with the longest ZnO nanorods.

  12. Luminance behavior of lithium-doped ZnO nanowires with p-type conduction characteristics.

    PubMed

    Ko, Won Bae; Lee, Jun Seok; Lee, Sang Hyo; Cha, Seung Nam; Sohn, Jung Inn; Kim, Jong Min; Park, Young Jun; Kim, Hyun Jung; Hong, Jin Pyo

    2013-09-01

    The present study describes the room-temperature cathodeluminescence (CL) and temperature-dependent photoluminescence (PL) properties of p-type lithium (Li)-doped zinc oxide (ZnO) nanowires (NWs) grown by hydrothermal doping and post-annealing processes. A ZnO thin film was used as a seed layer in NW growth. The emission wavelengths and intensities of undoped ZnO NWs and p-type Li-doped ZnO NWs were analyzed for comparison. CL and PL observations of post-annealed p-type Li-doped ZnO NWs clearly exhibited a dominant sharp band-edge emission. Finally, a n-type ZnO thin film/p-type annealed Li-doped ZnO NW homojunction diode was prepared to confirm the p-type conduction of annealed Li-doped ZnO NWs as well as the structural properties measured by transmission electron microscopy.

  13. Electrochemical Sensing, Photocatalytic and Biological Activities of ZnO Nanoparticles: Synthesis via Green Chemistry Route

    NASA Astrophysics Data System (ADS)

    Yadav, L. S. Reddy; Archana, B.; Lingaraju, K.; Kavitha, C.; Suresh, D.; Nagabhushana, H.; Nagaraju, G.

    2016-05-01

    In this paper, we have successfully synthesized ZnO nanoparticles (Nps) via solution combustion method using sugarcane juice as the novel fuel. The structure and morphology of the synthesized ZnO Nps have been analyzed using various analytical tools. The synthesized ZnO Nps exhibit excellent photocatalytic activity for the degradation of methylene blue dye, indicating that the ZnO Nps are potential photocatalytic semiconductor materials. The synthesized ZnO Nps also show good electrochemical sensing of dopamine. ZnO Nps exhibit significant bactericidal activity against Klebsiella aerogenes, Pseudomonas aeruginosa, Eschesichia coli and Staphylococcus aureus using agar well diffusion method. Furthermore, the ZnO Nps show good antioxidant activity by potentially scavenging 1-diphenyl-2-picrylhydrazyl (DPPH) radicals. The above studies clearly demonstrate versatile applications of ZnO synthesized by simple eco-friendly route.

  14. Heavy-atom derivatization.

    PubMed

    Garman, Elspeth; Murray, James W

    2003-11-01

    Most of the standard methods of solving macromolecular structures involve producing a protein crystal that is derivatized by an anomalous scatterer or heavy atom (MIR, SIRAS, MAD, SAD etc.). The theoretical methodology which underpins the extraction of phase information from such derivatives is widely available in the literature. In addition, there are comprehensive sources of information on the chemistry of heavy-atom compounds and the ligands with which they are known to interact, as well as the Heavy Atom Databank accessible on the World Wide Web. This contribution therefore aims to provide some information on the less well documented practical problems of firstly deciding on an overall strategy for derivatization and secondly performing the physical manipulations involved in producing heavy-atom derivatives from native protein crystals and then cryocooling them. Ways to optimize the chances of isomorphous unit cells are suggested. Methods of determining whether or not the heavy atom is bound are outlined, including the powerful technique of PIXE (particle-induced X-ray emission).

  15. Hierarchical Carbon Fibers with ZnO Nanowires for Volatile Sensing in Composite Curing (Postprint)

    DTIC Science & Technology

    2014-07-01

    AFRL-RX-WP-JA-2014-0171 HIERARCHICAL CARBON FIBERS WITH ZnO NANOWIRES FOR VOLATILE SENSING IN COMPOSITE CURING (POSTPRINT) Gregory...REPORT TYPE Interim 3. DATES COVERED (From – To) 16 April 2012 – 02 June 2014 4. TITLE AND SUBTITLE HIERARCHICAL CARBON FIBERS WITH ZnO NANOWIRES ...needed to demonstrate the use of Zinc Oxide (ZnO) nanowire coated carbon fibers as a volatile sensor. ZnO nanowires are demonstrated to function as

  16. Effects of Chromium Dopant on Ultraviolet Photoresponsivity of ZnO Nanorods

    NASA Astrophysics Data System (ADS)

    Mokhtari, S.; Safa, S.; Khayatian, A.; Azimirad, R.

    2017-02-01

    Structural and optical properties of bare ZnO nanorods, ZnO-encapsulated ZnO nanorods, and Cr-doped ZnO-encapsulated ZnO nanorods have been investigated. Encapsulated ZnO nanorods were grown using a simple two-stage method in which ZnO nanorods were first grown on a glass substrate directly from a hydrothermal bath, then encapsulated with a thin layer of Cr-doped ZnO by dip coating. Comparative study of x-ray diffraction patterns showed that Cr was successfully incorporated into the shell layer of ZnO nanorods. Moreover, energy-dispersive x-ray spectroscopy confirmed presence of Cr in this sample. It was observed that the thickness of the shell layer around the core of the ZnO nanorods was at least about 20 nm. Transmission electron microscopy of bare ZnO nanorods revealed single-crystalline structure. Based on optical results, both the encapsulation process and addition of Cr dopant decreased the optical bandgap of the samples. Indeed, the optical bandgap values of Cr-doped ZnO-encapsulated ZnO nanorods, ZnO-encapsulated ZnO nanorods, and bare ZnO nanorods were 2.89 eV, 3.15 eV, and 3.34 eV, respectively. The ultraviolet (UV) parameters demonstrated that incorporation of Cr dopant into the shell layer of ZnO nanorods considerably facilitated formation and transportation of photogenerated carriers, optimizing their performance as a practical UV detector. As a result, the photocurrent of the Cr-doped ZnO-encapsulated ZnO nanorods was the highest (0.6 mA), compared with ZnO-encapsulated ZnO nanorods and bare ZnO nanorods (0.21 mA and 0.06 mA, respectively).

  17. Effects of Chromium Dopant on Ultraviolet Photoresponsivity of ZnO Nanorods

    NASA Astrophysics Data System (ADS)

    Mokhtari, S.; Safa, S.; Khayatian, A.; Azimirad, R.

    2017-07-01

    Structural and optical properties of bare ZnO nanorods, ZnO-encapsulated ZnO nanorods, and Cr-doped ZnO-encapsulated ZnO nanorods have been investigated. Encapsulated ZnO nanorods were grown using a simple two-stage method in which ZnO nanorods were first grown on a glass substrate directly from a hydrothermal bath, then encapsulated with a thin layer of Cr-doped ZnO by dip coating. Comparative study of x-ray diffraction patterns showed that Cr was successfully incorporated into the shell layer of ZnO nanorods. Moreover, energy-dispersive x-ray spectroscopy confirmed presence of Cr in this sample. It was observed that the thickness of the shell layer around the core of the ZnO nanorods was at least about 20 nm. Transmission electron microscopy of bare ZnO nanorods revealed single-crystalline structure. Based on optical results, both the encapsulation process and addition of Cr dopant decreased the optical bandgap of the samples. Indeed, the optical bandgap values of Cr-doped ZnO-encapsulated ZnO nanorods, ZnO-encapsulated ZnO nanorods, and bare ZnO nanorods were 2.89 eV, 3.15 eV, and 3.34 eV, respectively. The ultraviolet (UV) parameters demonstrated that incorporation of Cr dopant into the shell layer of ZnO nanorods considerably facilitated formation and transportation of photogenerated carriers, optimizing their performance as a practical UV detector. As a result, the photocurrent of the Cr-doped ZnO-encapsulated ZnO nanorods was the highest (0.6 mA), compared with ZnO-encapsulated ZnO nanorods and bare ZnO nanorods (0.21 mA and 0.06 mA, respectively).

  18. Heteroepitaxial Growth and Doping of ZnO for Optoelectronic Applications

    DTIC Science & Technology

    2005-08-19

    synthesis and characterization of highly monodisperse transition metal doped ZnO nanoparticles," S.P. Singh, 0. Prealez...presented in MRS fall meeting, Nov.29-Dec.3, (2004). 9. " Synthesis and characterization of ZnO and Mn- ZnO nanocrystals for spintronic applications... synthesis of Mn doped ZnO was performed by a solution process at room temperature. This route is based on dehydration properties of

  19. Growth of Homoepitaxial ZnO Semiconducting Films

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C.-H.; Lehoczky, S. L.; Harris, M. T.; George, M. A.; McCarty, P.

    1999-01-01

    As a high temperature wide-band-gap (3.3 eV at room temperature) semiconductor, ZnO has been used for many applications such as wave-guides, solar cells, and surface acoustic wave devices, Since ZnO has a 60 meV excitonic binding energy that makes it possible to produce excitonic lasing at room temperature, a recent surge of interest is to synthesize ZnO films for UV/blue/green laser diodes. These applications require films with a smooth surface, good crystal quality, and low defect density. Thus, homoepitaxial film growth is the best choice. Homoepitaxial films have been studied in terms of morphology, crystal structure, and electrical and optical properties. ZnO single crystal substrates grown by the hydrothermal method are mechanically polished and annealed in air for four hours before the films are deposited. The annealing temperature-dependence on ZnO substrate morphology and electrical properties is investigated. Films are synthesized by off-axis reactive sputtering deposition. This produces films that have very smooth surfaces with roughness less than or equal to 5 nm on a 5 microns x 5 microns area. The full width at half maximum of film theta rocking curves measured by the x-ray diffraction is slightly larger than that of the crystal substrate. Films are also characterized by measuring resistivity, optical transmittance, and photoluminescence. The properties of ZnO films grown on (0001) ZnO and (0001) sapphire substrates will also be compared and discussed.

  20. Tuning magnetism by biaxial strain in native ZnO.

    PubMed

    Peng, Chengxiao; Wang, Yuanxu; Cheng, Zhenxiang; Zhang, Guangbiao; Wang, Chao; Yang, Gui

    2015-07-07

    Magnetic ZnO, one of the most important diluted magnetic semiconductors (DMS), has attracted great scientific interest because of its possible technological applications in optomagnetic devices. Magnetism in this material is usually delicately tuned by the doping level, dislocations, and local structures. The rational control of magnetism in ZnO is a highly attractive approach for practical applications. Here, the tuning effect of biaxial strain on the d(0) magnetism of native imperfect ZnO is demonstrated through first-principles calculations. Our calculation results show that strain conditions have little effect on the defect formation energy of Zn and O vacancies in ZnO, but they do affect the magnetism significantly. For a cation vacancy, increasing the compressive strain will obviously decrease its magnetic moment, while tensile strain cannot change the moment, which remains constant at 2 μB. For a singly charged anion vacancy, however, the dependence of the magnetic moment on strain is opposite to that of the Zn vacancy. Furthermore, the ferromagnetic state is always present, irrespective of the strain type, for ZnO with two zinc vacancies, 2VZns. A large tensile strain is favorable for improving the Curie temperature and realizing room temperature ferromagnetism for ZnO-based native semiconductors. For ZnO with two singly charged oxygen vacancies, 2Vs, no ferromagnetic ordering can be observed. Our work points the way to the rational design of materials beyond ZnO with novel non-intrinsic functionality by simply tuning the strain in a thin film form.

  1. Investigation and characterization of ZnO single crystal microtubes

    SciTech Connect

    Al-Naser, Qusay A.H.; Zhou, Jian; Liu, Guizhen; Wang, Lin

    2016-04-15

    Morphological, structural, and optical characterization of microwave synthesized ZnO single crystal microtubes were investigated in this work. The structure and morphology of the ZnO microtubes are characterized using X-ray diffraction (XRD), single crystal diffraction (SCD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The results reveal that the as-synthesized ZnO microtube has a highly regular hexagonal cross section and smooth surfaces with an average length of 650–700 μm, an average outer diameter of 50 μm and wall thickness of 1–3 μm, possessing a single crystal wurtzite hexagonal structure. Optical properties of ZnO single crystal microtubes were investigated by photoluminescence (PL) and ultraviolet-visible (UV-vis) absorption techniques. Room-temperature PL spectrum of the microtube reveal a strong UV emission peak at around 375.89 nm and broad and a weak visible emission with a main peak identified at 577 nm, which was assigned to the nearest band-edge emission and the deep-level emission, respectively. The band gap energy of ZnO microtube was found to be 3.27 eV. - Highlights: • ZnO microtube length of 650–700 μm, diameter of 50 μm, wall thickness of 1–3 μm • ZnO microtube possesses a single crystal wurtzite hexagonal structure. • The crystal system is hexahedral oriented along a-axis with indices of (100). • A strong and sharp UV emission at 375.89 nm (3.29 eV) • One prominent absorption band around 378.88 nm (3.27 eV)

  2. ZnO nanoflowers: novel biogenic synthesis and enhanced photocatalytic activity.

    PubMed

    Tripathi, R M; Bhadwal, Akhshay Singh; Gupta, Rohit Kumar; Singh, Priti; Shrivastav, Archana; Shrivastav, B R

    2014-12-01

    We demonstrate a novel, unprecedented and eco-friendly mode for the biosynthesis of zinc oxide (ZnO) nanoflowers at ambient room temperature using Bacillus licheniformis MTCC 9555 and assessed their photocatalytic activity. The photocatalytic degradation of methylene blue (MB) dye was analyzed under UV-irradiation. An enhanced photocatalytic activity of ZnO nanoflowers was obtained compared to the earlier reports on ZnO nanostructures and other photocatalytic materials. The mechanism behind the enhanced photocatalytic activity was illustrated with diagrammatic representation. It is assumed that due to larger content of oxygen vacancy ZnO nanoflowers shows enhanced photocatalytic activity. Photostability of ZnO nanoflowers was analyzed for consecutive 3 cycles. The size and morphology of ZnO nanoflowers have been characterized by SEM, TEM and found to be in the size range of 250 nm to 1 μm with flower like morphology. It was found that ZnO nanoflowers was formed by agglomeration of ZnO nanorods. Further the EDX established the presence of the elemental signal of the Zn and O. XRD spectrum of ZnO nanoflowers confirmed 2θ values analogous to the ZnO nanocrystal. FTIR analysis was carried to determine the probable biomolecules responsible for stabilization of ZnO nanoflowers. The plausible mechanism behind the synthesis of ZnO nanoflowers by Bacillus licheniformis MTCC 9555 was also discussed with diagram representation.

  3. Catalytic epitaxy of ZnO whiskers via the vapor-crystal mechanism

    NASA Astrophysics Data System (ADS)

    Muslimov, A. E.; Butashin, A. V.; Kanevsky, V. M.; Babaev, V. A.; Ismailov, A. M.

    2017-05-01

    A model of oriented growth of (0001) ZnO whiskers on sapphire substrates via the vapor-crystal mechanism using the catalytic properties of gold islands is proposed. The morphological transition from the primary pyramidal ZnO structures to hexagonal ZnO whiskers is described in terms of the minimization of the free energy density of three-dimensional heteroepitaxial islands.

  4. Preparation of electron buffer layer with crystalline ZnO nanoparticles in inverted organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Lee, Donghwan; Kang, Taeho; Choi, Yoon-Young; Oh, Seong-Geun

    2017-06-01

    Zinc oxide (ZnO) nanoparticles synthesized through sol-gel method were used to fabricate the electron buffer layer in inverted organic photovoltaic cells (OPVs) after thermal treatment. To investigate the effect of thermal treatment on the formation of crystalline ZnO nanoparticles, the amorphous ZnO nanoparticles were treated via hydrothermal method. The crystalline phase of ZnO with well-ordered structure could be obtained when the amorphous phase of ZnO was processed under hydrothermal treatment at 170 °C. The crystalline structure of ZnO thin film in inverted organic solar cell could be obtained under relatively low annealing temperature by using thermally treated ZnO nanoparticles. The OPVs fabricated by using crystalline ZnO nanoparticles for electron buffer layer exhibited higher efficiency than the conventional ZnO nanoparticles. The best power conversion efficiency (PCE) was achieved for 7.16% through the ZnO film using the crystalline ZnO nanoparticles. The proposed method to prepared ZnO nanoparticles (NPs) could effectively reduce energy consumption during the fabrication of OPVs, which would greatly contribute to advantages such as lower manufacturing costs, higher productivity and application on flexible substrates.

  5. Gd{sup 3+} incorporated ZnO nanoparticles: A versatile material

    SciTech Connect

    Kumar, Surender Sahare, P.D.

    2014-03-01

    Graphical abstract: - Highlights: • Chemically synthesized Gd{sup 3+} doped ZnO nanoparticles. • The broad visible emission of the ZnO is dependent on the surface defects and can be tailored by Gd{sup 3+} doing. • PL and magnetic properties are modified by Gd{sup 3+} doping. • Photocatalysis experiment reveals that the ZnO: Gd{sup 3+} degrades the Rh B dye faster than the undoped ZnO. - Abstract: Gd{sup 3+} doped ZnO nanoparticles are synthesized by wet chemical route method and investigated through structural, optical, magnetic and photocatalytic properties. Transmission Electron Microscopy technique has been performed on undoped and Gd{sup 3+} doped ZnO nanoparticles. X-ray diffraction, X-ray photoelectron spectroscopy and Raman analyses are carried out in order to examine the desired phase formation and substitution of Gd{sup 3+} in the ZnO matrix. Gd{sup 3+} doped ZnO nanoparticles show enhanced photoluminescent and ferromagnetic properties as compared to undoped ZnO. The broad visible emission of ZnO is found to be largely dependent on the surface defects and these surface defects can be tailored by Gd{sup 3+} doping concentration. Furthermore, Gd{sup 3+} doped ZnO nanoparticles also show improved photocatalytic properties as compared with undoped ZnO nanoparticles under ultraviolet irradiation.

  6. One-pot synthesis of ZnO2/ZnO composite with enhanced photocatalytic performance for organic dye removal.

    PubMed

    Liu, Wei; Wang, Mingliang; Xu, Chunxiang; Chen, Shifu; Fu, Xianliang

    2013-01-01

    The ZnO2/ZnO photocatalysts with various ZnO2 contents were prepared by one-pot synthesis method using ZnO and H2O2 as raw materials. The photocatalysts were characterized by XRD, UV-vis DRS, SEM, EDS, FT-IR spectra, fluorescence emission spectra, and BET specific area. The photocatalytic performance of the photocatalyst was evaluated by photocatalytic degradation of methyl orange (MO) and rhodamine B (RhB). The results showed that the photocatalytic activity of the ZnO2/ZnO was much higher than that of single-phase ZnO or ZnO2. The optimum ZnO2 content was 1.0 wt.%. The maximal degradation rate constant of MO and RhB was 4.1 times and 2.2 times that observed for pure ZnO, respectively. The stability of the prepared photocatalyst in the photocatalytic process was also investigated. The active species in dye degradation were examined by adding a series of scavengers. The possible mechanisms involved in the photocatalytic degradation of dye were also discussed.

  7. Effects of Sb addition on ZnO grain growth and the electrical characteristics of Ba-added-Bi-based ZnO varistors

    NASA Astrophysics Data System (ADS)

    Fukumori, A.; Kubota, A.; Sato, Y.; Yoshikado, S.

    2012-01-01

    The varistor voltage increases as the number of ZnO grain boundaries between electrodes increases. Therefore, in order to fabricate varistors with low varistor voltages, it is necessary to reduce the number of ZnO grain boundaries between electrodes. The present study uses this method for increasing the ZnO grain size. With the goal of fabricating varistors with low varistor voltages, the effect on the ZnO grain size of adding Sb to Bi- Ba-Co-Mn-added ZnO varistors was investigated. Ba was added in order to increase the ZnO grain size, and Sb was added in order to achieve a uniform ZnO grain size without reducing the grain size. The addition of a small amount of Sb reduced the formation of ZnO grains having a smaller grain size, and the addition of 0.02 mol% Sb to the 0.5-mol%-Bi- and 0.5 mol% Ba added ZnO varistor exhibited a low varistor voltage of approximately 31 V/mm and the highest resistance to electrical degradation, because compounds containing both Ba and Mn do not form at grain boundaries between ZnO grains.

  8. Heavy exotic molecules

    NASA Astrophysics Data System (ADS)

    Liu, Yizhuang; Zahed, Ismail

    We briefly review the formation of pion-mediated heavy-light exotic molecules with both charm and bottom, under the general structures of chiral and heavy quark symmetries. The charm isosinglet exotic molecules with JPC = 1++ binds, which we identify as the reported neutral X(3872). The bottom isotriplet exotic with JPC = 1+- binds, and is identified as a mixed state of the reported charged exotics Zb+(10610) and Zb+(10650). The bound bottom isosinglet molecule with JPC = 1++ is a possible neutral Xb(10532) to be observed.

  9. Heavy exotic molecules

    NASA Astrophysics Data System (ADS)

    Liu, Yizhuang; Zahed, Ismail

    We briefly review the formation of pion-mediated heavy-light exotic molecules with both charm and bottom, under the general structures of chiral and heavy quark symmetries. The charm isosinglet exotic molecules with JPC = 1++ binds, which we identify as the reported neutral X(3872). The bottom isotriplet exotic with JPC = 1+1 binds, and is identified as a mixed state of the reported charged exotics Zb+(10610) and Zb-(10650). The bound bottom isosinglet molecule with JPC = 1++ is a possible neutral Xb(10532) to be observed.

  10. Al-doped ZnO seed layer-dependent crystallographic control of ZnO nanorods by using electrochemical deposition

    SciTech Connect

    Son, Hyo-Soo; Choi, Nak-Jung; Kim, Kyoung-Bo; Kim, Moojin; Lee, Sung-Nam

    2016-10-15

    Highlights: • Polar and semipolar ZnO NRs were successfully achieved by hydrothermal synthesis. • Semipolar and polar ZnO NRs were grown on ZnO and AZO/m-sapphire, respectively. • Al % of AZO/m-sapphire enhanced the lateral growth rate of polar ZnO NRs. - Abstract: We investigated the effect of an Al-doped ZnO film on the crystallographic direction of ZnO nanorods (NRs) using electrochemical deposition. From high-solution X-ray diffraction measurements, the crystallographic plane of ZnO NRs grown on (1 0 0) ZnO/m-plane sapphire was (1 0 1). The surface grain size of the (100) Al-doped ZnO (AZO) film decreased with increasing Al content in the ZnO seed layer, implying that the Al dopant accelerated the three-dimensional (3D) growth of the AZO film. In addition, it was found that with increasing Al doping concentration of the AZO seed layer, the crystal orientation of the ZnO NRs grown on the AZO seed layer changed from [1 0 1] to [0 0 1]. With increasing Al content of the nonpolar (1 0 0) AZO seed layer, the small surface grains with a few crystallographic planes of the AZO film changed from semipolar (1 0 1) ZnO NRs to polar (0 0 1) ZnO NRs due to the increase of the vertical [0 0 1] growth rate of the ZnO NRs owing to excellent electrical properties.

  11. ZnO Thin Film Electronics for More than Displays

    NASA Astrophysics Data System (ADS)

    Ramirez, Jose Israel

    Zinc oxide thin film transistors (TFTs) are investigated in this work for large-area electronic applications outside of display technology. A constant pressure, constant flow, showerhead, plasma-enhanced atomic layer deposition (PEALD) process has been developed to fabricate high mobility TFTs and circuits on rigid and flexible substrates at 200 °C. ZnO films and resulting devices prepared by PEALD and pulsed laser deposition (PLD) have been compared. Both PEALD and PLD ZnO films result in densely packed, polycrystalline ZnO thin films that were used to make high performance devices. PEALD ZnO TFTs deposited at 300 °C have a field-effect mobility of ˜ 40 cm2/V-s (and > 20 cm2/V-S deposited at 200 °C). PLD ZnO TFTs, annealed at 400 °C, have a field-effect mobility of > 60 cm2/V-s (and up to 100 cm2/V-s). Devices, prepared by either technique, show high gamma-ray radiation tolerance of up to 100 Mrad(SiO2) with only a small radiation-induced threshold voltage shift (VT ˜ -1.5 V). Electrical biasing during irradiation showed no enhanced radiation-induced effects. The study of the radiation effects as a function of material stack thicknesses revealed the majority of the radiation-induced charge collection happens at the semiconductor-passivation interface. A simple sheet-charge model at that interface can describe the radiation-induced charge in ZnO TFTs. By taking advantage of the substrate-agnostic process provided by PEALD, due to its low-temperature and excellent conformal coatings, ZnO electronics were monolithically integrated with thin-film complex oxides. Application-based examples where ZnO electronics provide added functionality to complex oxide-based devices are presented. In particular, the integration of arrayed lead zirconate titanate (Pb(Zr, Ti)O3 or PZT) thin films with ZnO electronics for microelectromechanical systems (MEMs) and deformable mirrors is demonstrated. ZnO switches can provide voltage to PZT capacitors with fast charging and slow

  12. Controlling Au Photodeposition on Large ZnO Nanoparticles.

    PubMed

    Fernando, Joseph F S; Shortell, Matthew P; Noble, Christopher J; Harmer, Jeffrey R; Jaatinen, Esa A; Waclawik, Eric R

    2016-06-08

    This study investigated how to control the rate of photoreduction of metastable AuCl2(-) at the solid-solution interface of large ZnO nanoparticles (NPs) (50-100 nm size). Band-gap photoexcitation of electronic charge in ZnO by 370 nm UV light yielded Au NP deposition and the formation of ZnO-Au NP hybrids. Au NP growth was observed to be nonepitaxial, and the patterns of Au photodeposition onto ZnO NPs observed by high-resolution transmission electron microscopy were consistent with reduction of AuCl2(-) at ZnO facet edges and corner sites. Au NP photodeposition was effective in the presence of labile oleylamine ligands attached to the ZnO surface; however, when a strong-binding dodecanethiol ligand coated the surface, photodeposition was quenched. Rates of interfacial electron transfer at the ZnO-solution interface were adjusted by changing the solvent, and these rates were observed to strongly depend on the solvent's permittivity (ε) and viscosity. From measurements of electron transfer from ZnO to the organic dye toluidine blue at the ZnO-solution interface, it was confirmed that low ε solvent mixtures (ε ≈ 9.5) possessed markedly higher rates of photocatalytic interfacial electron transfer (∼3.2 × 10(4) electrons·particle(-1)·s(-1)) compared to solvent mixtures with high ε (ε = 29.9, ∼1.9 × 10(4) electrons·particle(-1)·s(-1)). Dissolved oxygen content in the solvent and the exposure time of ZnO to band-gap, near-UV photoexcitation were also identified as factors that strongly affected Au photodeposition behavior. Production of Au clusters was favored under conditions that caused electron accumulation in the ZnO-Au NP hybrid. Under conditions where electron discharge was rapid (such as in low ε solvents), AuCl2(-) precursor ions photoreduced at ZnO surfaces in less than 5 s, leading to deposition of several small, isolated ∼6 nm Au NP on the ZnO host instead.

  13. Comparative study of ZnO optical dispersion laws

    NASA Astrophysics Data System (ADS)

    Bouzourâa, M.-B.; Battie, Y.; Dalmasso, S.; Zaïbi, M.-A.; Oueslati, M.; Naciri, A. En

    2017-04-01

    We report a comparative study between Forouhi-Bloomer, Tauc-Lorentz and Tanguy dispersion laws for determining the reliable dielectric function of crystallized ZnO. ZnO layers were prepared by sol-gel method and deposited on crystalline silicon (c-Si) by spin coating. Spectroscopic ellipsometry (SE) was performed on ZnO/c-Si and each dispersion law was considered in the physical model for fitting SE experimental data. A best agreement was found between measurements and model. This applies in particular to the Tanguy dispersion. The physical parameters such as excitonic energy, optical gap, damping factor, real and imaginary parts of dielectric function were determined and analyzed. The temperature-dependent photoluminescence spectroscopy (PL) measurements were also used to approve the adequate dispersion law for ZnO material. We found by SE and PL measurements that Tanguy law dispersion can be considered as the most appropriate one for a correct description of ZnO optical dielectric function and for the interpretation of the absorption tail band and for the excitonic band of crystallized ZnO. The band-gap energy, excitonic energy and damping factor parameter are determined and analyzed. Their values (3.37 eV, 48 meV and 39 meV, respectively) extracted from ellipsometry are in good agreement with those obtained by PL measurements.

  14. Theoretical investigation of ZnO and its doping clusters.

    PubMed

    Wang, Chunlei; Xu, Shuhong; Ye, Lihua; Lei, Wei; Cui, Yiping

    2011-05-01

    Four clusters of ZnO, O-Zn-SR (-SR = ligand) and doping ZnO structures (with Cr, Cu, Al atoms) were investigated using density functional theory at theB3LYP/Lanl2dz level. The characteristics of Zn(3)O(3) and Zn(4)O(4) structures, which are the units of experimental wurtzite and zinc blende structures, were found to be similar to those of experimental ZnO nanocrystals. Moreover, the calculated Raman and IR spectra of ZnO clusters were almost consistent with experimental results. Raman spectra were observed to shift to higher frequencies with decreasing numbers of atoms. Both ligands and solvent make the wavelength of absorption peaks shift to blue. All transitions of absorption peaks for these pure clusters were from d to p orbitals. Finally, doping clusters and experimental doping nanocrystals were similar in character. The doping of metal changed the orbital of ZnO nanocrystals. The transitions in doping clusters (Cr-ZnO, Cu-ZnO) are from d to d orbitals, while Al-ZnO clusters have s-p transitions.

  15. ZnO nanorod electrodes for hydrogen evolution and storage

    NASA Astrophysics Data System (ADS)

    Harinipriya, S.; Usmani, B.; Rogers, D. J.; Sandana, V. E.; Teherani, F. Hosseini; Lusson, A.; Bove, P.; Drouhin, H.-J.; Razeghi, M.

    2012-02-01

    Due to the attractive combination of a relatively high specific heat of combustion with a large specific energy capacity, molecular hydrogen (H2) is being investigated for use as an alternative to fossil fuels. Energy-efficient H2 production and safe storage remain key technical obstacles to implementation of an H2 based economy, however. ZnO has been investigated for use as an alternative photocatalytic electrode to TiO2 for solarpowered photo-electro-chemical (PEC) electrolysis, in which H2 is generated by direct water splitting in a cell with a metal cathode and a semiconducting anode. In this investigation, ZnO NR grown on Si (100) substrates by pulsed laser deposition were investigated for use as electrodes in the Hydrogen Evolution Reaction (HER). The electrochemical potential and Fermi energy of the ZnO NR were estimated from the electrochemical current density in acid and alkaline solutions via phenomenological thermodynamic analysis. As well as acting as an effective electrocalytic cathode, the ZnO NR appear to operate as a hydrogen reservoir. These results indicate that the ZnO NR have excellent potential for the storage of evolved H2.

  16. Efficient nitrogen incorporation in ZnO nanowires

    PubMed Central

    Stehr, Jan E.; Chen, Weimin M.; Reddy, Nandanapalli Koteeswara; Tu, Charles W.; Buyanova, Irina A.

    2015-01-01

    One-dimensional ZnO nanowires (NWs) are a promising materials system for a variety of applications. Utilization of ZnO, however, requires a good understanding and control of material properties that are largely affected by intrinsic defects and contaminants. In this work we provide experimental evidence for unintentional incorporation of nitrogen in ZnO NWs grown by rapid thermal chemical vapor deposition, from electron paramagnetic resonance spectroscopy. The incorporated nitrogen atoms are concluded to mainly reside at oxygen sites (NO). The NO centers are suggested to be located in proximity to the NW surface, based on their reduced optical ionization energy as compared with that in bulk. This implies a lower defect formation energy at the NW surface as compared with its bulk value, consistent with theoretical predictions. The revealed facilitated incorporation of nitrogen in ZnO nanostructures may be advantageous for realizing p-type conducting ZnO via N doping. The awareness of this process can also help to prevent such unintentional doping in structures with desired n-type conductivity. PMID:26299157

  17. EPR, thermo and photoluminescence properties of ZnO nanopowders.

    PubMed

    Jagannatha Reddy, A; Kokila, M K; Nagabhushana, H; Rao, J L; Shivakumara, C; Nagabhushana, B M; Chakradhar, R P S

    2011-10-15

    Nanocrystalline ZnO powders have been synthesized by a low temperature solution combustion method. The photoluminescence (PL) spectrum of as-formed and heat treated ZnO shows strong violet (402, 421, 437, 485 nm) and weak green (520 nm) emission peaks respectively. The PL intensities of defect related emission bands decrease with calcinations temperature indicating the decrease of Zn(i) and V(o)(+) caused by the chemisorptions of oxygen. The results are correlated with the electron paramagnetic resonance (EPR) studies. Thermoluminescence (TL) glow curves of gamma irradiated ZnO nanoparticles exhibit a single broad glow peak at ∼343°C. This can be attributed to the recombination of charge carriers released from the surface states associated with oxygen defects, mainly interstitial oxygen ion centers. The trapping parameters of ZnO irradiated with various γ-doses are calculated using peak shape method. It is observed that the glow peak intensity increases with increase of gamma dose without changing glow curve shape. These two characteristic properties such as TL intensity increases with gamma dose and simple glow curve structure is an indication that the synthesized ZnO nanoparticles might be used as good TL dosimeter for high temperature application.

  18. EPR, thermo and photoluminescence properties of ZnO nanopowders

    NASA Astrophysics Data System (ADS)

    Jagannatha Reddy, A.; Kokila, M. K.; Nagabhushana, H.; Rao, J. L.; Shivakumara, C.; Nagabhushana, B. M.; Chakradhar, R. P. S.

    2011-10-01

    Nanocrystalline ZnO powders have been synthesized by a low temperature solution combustion method. The photoluminescence (PL) spectrum of as-formed and heat treated ZnO shows strong violet (402, 421, 437, 485 nm) and weak green (520 nm) emission peaks respectively. The PL intensities of defect related emission bands decrease with calcinations temperature indicating the decrease of Zn i and V o+ caused by the chemisorptions of oxygen. The results are correlated with the electron paramagnetic resonance (EPR) studies. Thermoluminescence (TL) glow curves of gamma irradiated ZnO nanoparticles exhibit a single broad glow peak at ˜343 °C. This can be attributed to the recombination of charge carriers released from the surface states associated with oxygen defects, mainly interstitial oxygen ion centers. The trapping parameters of ZnO irradiated with various γ-doses are calculated using peak shape method. It is observed that the glow peak intensity increases with increase of gamma dose without changing glow curve shape. These two characteristic properties such as TL intensity increases with gamma dose and simple glow curve structure is an indication that the synthesized ZnO nanoparticles might be used as good TL dosimeter for high temperature application.

  19. Genomic DNA binding to ZnO microrods

    NASA Astrophysics Data System (ADS)

    Guzmán-Embús, D. A.; Cardozo, M. Orrego; Vargas-Hernández, C.

    2015-08-01

    In this work, ZnO microrods were produced by hydrothermal synthesis. DNA was extracted from pork spleen cells by cellular lysis, deproteinization and precipitation. The analysis of the DNA binding to the ZnO was performed using Raman spectroscopy a technique that allowed for the evaluation of the effect that the presence of the ZnO in the complex has on the DNA structure. Vibrational spectral bands from the DNA molecule and hexagonal wurtzite ZnO were observed and classified as E2(M), A1(TO), E2(High), E1(LO) and 2LO. The Raman signals from the vibrational bands corresponding to the phosphodiester bond 5‧-C-O-P-O-C-3‧ and bond stretching of the PO2- group, as well as ring vibrations of the nitrogenous bases of the DNA, were enhanced by the presence of the ZnO microrods. The bands from the modes corresponding to the C-O and Odbnd Psbnd O- molecules of the DNA backbone were observed to exhibit larger spectral shifts due to the compression and tensile stresses generated at the ZnO/DNA interface, respectively. In addition, the relative vibrational mode intensities of the nitrogenous bases increased.

  20. The sprayed ZnO films: nanostructures and physical parameters

    NASA Astrophysics Data System (ADS)

    Benhaliliba, M.; Tiburcio-Silver, A.; Avila-Garcia, A.; Tavira, A.; Ocak, Y. S.; Aida, M. S.; Benouis, C. E.

    2015-08-01

    We synthesized the pure and indium-doped (IZO) ZnO films with a facile composition control spray pyrolysis route. The substrate temperature (Ts) and In-doping effects on the properties of as-grown films are investigated. The X-ray pattern confirms that the as-synthesized ZnO phase is grown along a (002) preferential plane. It is revealed that the crystalline structure is improved with a substrate temperature of 350 °C. Moreover, the morphology of as-grown films, analyzed by AFM, shows nanostructures that have grown along the c-axis. The (3 × 3 μm2) area scanned AFM surface studies give the smooth film surface RMS < 40 nm. The UV-VIS-IR measurements reveal that the sprayed films are highly transparent in the visible and IR bands. The photoluminescence analysis shows that the strong blue and yellow luminescences of 2.11 and 2.81 eV are emitted from ZnO and IZO films with a slight shift in photon energy caused by In-doping. The band gap is a bit widened by In-doping, 3.21 eV (ZnO) and 3.31 eV (IZO) and the resistivity is reduced from 385 to 8 Ω·m. An interesting result is the resistivity linear dependence on the substrate temperature of pure ZnO films.

  1. Regulation of membrane fixation and energy production/conversion for adaptation and recovery of ZnO nanoparticle impacted Nitrosomonas europaea.

    PubMed

    Wu, Junkang; Lu, Huijie; Zhu, Guangcan; Chen, Lianghui; Chang, Yan; Yu, Ran

    2017-04-01

    The ZnO nanoparticle (NP) effects on typical ammonia-oxidizing bacteria, Nitrosomonas europaea in a chemostat bioreactor, and the cells' toxicity adaptation and recovery potentials were explored. Hardly any inhibition was observed when the NP concentration was high up to 10 mg/L. The cells exposed to 50 mg/L ZnO NPs displayed time-dependent impairment and recovery potentials in terms of cell density, membrane integrity, nitrite production rate, and ammonia monooxygenase activity. The 6-h NP stress impaired cells were nearly completely restored during a 12-h recovery incubation, while the longer exposure time would cause irretrievable cell damage. Microarray analysis further indicated the transcriptional adaptation of N. europaea to NP stress. The regulations of genes encoding for membrane permeability or osmoprotectant, membrane integrity preservation, and inorganic ion transport during NP exposure and cell recovery revealed the importance of membrane fixation and the associated metabolisms for cells' self-protection and the following recovery from NP stress. The oxidative phosphorylation, carbon assimilation, and tricarboxylic acid (TCA) cycling pathways involved in the cells' antitoxicity activities and would promote the energy production/conversion efficiency for cell recovery. The heavy metal resistance, histidine metabolism, toxin-antitoxin defense, glycolysis, and sulfate reduction pathways were also suggested to participate in the cell detoxication and recovery processes. All these findings provided valuable insights into the mechanisms of cell-mediated ZnO NP cytotoxicity and their potential impacts on wastewater nitrogen removal system.

  2. Interfacially Al-doped ZnO nanowires: greatly enhanced near band edge emission through suppressed electron-phonon coupling and confined optical field.

    PubMed

    Wu, Yiming; Dai, Yanmeng; Jiang, Shenlong; Ma, Chao; Lin, Yue; Du, Dongxue; Wu, Yukun; Ding, Huaiyi; Zhang, Qun; Pan, Nan; Wang, Xiaoping

    2017-04-05

    Aluminium (Al)-doped zinc oxide (ZnO) nanowires (NWs) with a unique core-shell structure and a Δ-doping profile at the interface were successfully grown using a combination of chemical vapor deposition re-growth and few-layer AlxOy atomic layer deposition. Unlike the conventional heavy doping which degrades the near-band-edge (NBE) luminescence and increases the electron-phonon coupling (EPC), it was found that there was an over 20-fold enhanced NBE emission and a notably-weakened EPC in this type of interfacially Al-doped ZnO NWs. Further experiments revealed a greatly suppressed nonradiative decay process and a much enhanced radiative recombination rate. By comparing the finite-difference time-domain simulation with the experimental results from intentionally designed different NWs, this enhanced radiative decay rate was attributed to the Purcell effect induced by the confined and intensified optical field within the interfacial layer. The ability to manipulate the confinement, transport and relaxation dynamics of ZnO excitons can be naturally guaranteed with this unique interfacial Δ-doping strategy, which is certainly desirable for the applications using ZnO-based nano-photonic and nano-optoelectronic devices.

  3. Solubility of Co clusters in Co-implanted ZnO thin films by 200 MeV Ag15+ ions irradiation

    NASA Astrophysics Data System (ADS)

    Wasi Khan, M.; Kumar, Ravi; Majeed Khan, M. A.; Angadi, Basavaraj; Jung, Y. S.; Choi, W. K.; Srivastava, J. P.

    2009-09-01

    We have investigated the structural, electrical resistivity, pink noise (1/f noise) and magnetic properties of 200 MeV Ag15+ ions (fluence ~1 × 1012 ions cm-2) irradiated Co-implanted ZnO thin films. The ZnO films were grown on Al2O3 substrate by the PA-MBE technique and 80 keV Co ion implantation with 1 × 1016 ions cm-2 dose value. The structural studies of an unirradiated film show the presence of Co clusters, which dissolve in the ZnO matrix on swift heavy ion (SHI) irradiation. The temperature-dependent electrical resistivity plots of pristine (unirradiated) and irradiated films demonstrated semiconducting nature. The resistivity data were fitted in the Mott's variable range hopping (VRH) model and the activation energies were estimated. The magnitude of normalized noise SV/V2 increases with decrease in temperature and estimated Hooge's parameters have higher values as compared to other semiconductors. We observe a clear magnetic hysteresis loop with coercivity ~65 Oe for both the films at room temperature, establishing the ferromagnetic nature. The correlation between the electrical transport and magnetic properties in the present system formulates it to be a potential aspirant for the spintronics-oriented devices.

  4. Dolly For Heavy Towbar

    NASA Technical Reports Server (NTRS)

    Soper, Terry A.

    1992-01-01

    Proposed lightweight dolly enables operator to cart heavy towbar to remote site over unpaved roads or rough terrain. Acts as simple, lightweight towed vehicle to support rear of towbar. Removed quickly at point of use. Saves labor, and eliminates need for truck and forklift.

  5. Resonances in heavy systems

    SciTech Connect

    Betts, R.R.

    1983-01-01

    The experimental situation for the study of resonances in heavy-ion collisions is reviewed, with emphasis on the heaviest systems. New data are presented which show some of the systematics of this phenomenon. The narrow resonance structures are established as a feature of the nuclear structure of the composite system rather than a purely entrance channel effect.

  6. Heavy Vehicle Systems

    SciTech Connect

    Sid Diamond; Richard Wares; Jules Routbort

    2000-04-11

    Heavy Vehicle (HV) systems are a necessary component of achieving OHVT goals. Elements are in place for a far-ranging program: short, intermediate, and long-term. Solicitation will bring industrial input and support. Future funding trend is positive, outlook for HV systems is good.

  7. STAR heavy flavor tracker

    NASA Astrophysics Data System (ADS)

    Qiu, Hao

    2014-11-01

    Hadrons containing heavy quarks are a clean probe of the early dynamic evolution of the dense and hot medium created in high-energy nuclear collisions. To explore heavy quark production at RHIC, the Heavy Flavor Tracker (HFT) for the STAR experiment was built and installed in time for RHIC Run 14. The HFT consists of four layers of silicon detectors. The two outermost layers are silicon strip detectors and the two innermost layers are made from state-of-the-art ultra-thin CMOS Monolithic Active Pixel Sensors (MAPS). This is the first application of a CMOS MAPS detector in a collider experiment. The use of thin pixel sensors plus the use of carbon fiber supporting material limits the material budget to be only 0.4% radiation length per pixel detector layer, enabling the reconstruction of low pT heavy flavor hadrons. The status and performance of the HFT in the RHIC 200 GeV Au + Au run in 2014 are reported. Very good detector efficiency, hit residuals and track resolution (DCAs) were observed in the cosmic ray data and in the Au + Au data.

  8. Heavy Quark Fluorescence

    SciTech Connect

    Torres-Rincon, Juan M.; Llanes-Estrada, Felipe J.

    2010-07-09

    Heavy hadrons containing heavy quarks (for example, {Upsilon} mesons) feature a scale separation between the heavy-quark mass and the QCD scale that controls the effective masses of lighter constituents. As in ordinary molecules, the deexcitation of the lighter, faster degrees of freedom leaves the velocity distribution of the heavy quarks unchanged, populating the available decay channels in qualitatively predictable ways. Automatically an application of the Franck-Condon principle of molecular physics explains several puzzling results of {Upsilon}(5S) decays as measured by the Belle Collaboration, such as the high rate of B{sub s}*B{sub s}* versus B{sub s}*B{sub s} production, the strength of three-body B{sup *}B{pi} decays, or the dip in B momentum shown in these decays. We argue that the data show the first Sturm-Liouville zero of the {Upsilon}(5S) quantum-mechanical squared wave function and provide evidence for a largely bb composition of this meson.

  9. Heavy menstrual bleeding.

    PubMed

    Pearce, Lynne

    2016-10-05

    Essential facts Heavy menstrual bleeding (HMB) is defined as excessive menstrual blood loss that interferes with a woman's physical, emotional, social or material quality of life. In England and Wales, around 80,000 women a year will be referred for the first time to secondary care, with 30,000 requiring surgical treatment.

  10. Heavy-ion radiography and heavy-ion computed tomography

    SciTech Connect

    Fabrikant, J.I.; Holley, W.R.; McFarland, E.W.; Tobias, C.a.

    1982-02-01

    Heavy-ion projection and CT radiography is being developed into a safe, low-dose, noninvasive radiological procedure that can quantitate and image small density differences in human tissues. The applications to heavy-ion mammography and heavy-ion CT imaging of the brain in clinical patients suggest their potential value in cancer diagnosis.

  11. Fabrication of ZnO and doped ZnO waveguides deposited by Spin Coating

    NASA Astrophysics Data System (ADS)

    Mohan, Rosmin Elsa; R, Neha P.; T, Shalu; C, Darshana K.; Sreelatha, K. S.

    2015-02-01

    In this paper, the synthesis of ZnO and doped Zn1-xAgxO (where x=0.03) nanoparticles by co- precipitation is reported. The precursors used were Zinc Nitrate and Potassium hydroxide pellets. For doping, 3% AgNO3 in ZnNO3 was considered as a separate buffer solution. The prepared nanoparticles were subsequently spin coated onto silica glass substrates at a constant chuck rate of 3000 rpm. The substrate acts as the lower cladding of a waveguide structure. The upper cladding is assumed to be air in the present investigation. The nanostructures of the ZnO powders in the doped and undoped cases were studied using X-ray Diffraction patterns. There was a decrease in the grain size with doping which increase the tunability of the powders to be used as photoluminescent devices. The optical characteristics of the sample were also investigated using UV-Visible spectrophotometer at 200-900 nm wavelengths. The photoluminescence peaks also report a dramatic increase in intensity at the same wavelength for the doped case compared to the undoped one.

  12. Heavy Flavor Dynamics in Relativistic Heavy-ion Collisions

    NASA Astrophysics Data System (ADS)

    Cao, Shanshan

    Heavy flavor hadrons serve as valuable probes of the transport properties of the quark-gluon plasma (QGP) created in relativistic heavy-ion collisions. In this dissertation, we introduce a comprehensive framework that describes the full-time evolution of heavy flavor in heavy-ion collisions, including its initial production, in-medium evolution inside the QGP matter, hadronization process from heavy quarks to their respective mesonic bound states and the subsequent interactions between heavy mesons and the hadron gas. The in-medium energy loss of heavy quarks is studied within the framework of a Langevin equation coupled to hydrodynamic models that simulate the space-time evolution of the hot and dense QGP matter. We improve the classical Langevin approach such that, apart from quasi-elastic scatterings between heavy quarks and the medium background, radiative energy loss is incorporated as well by treating gluon radiation as a recoil force term. The subsequent hadronization of emitted heavy quarks is simulated via a hybrid fragmentation plus recombination model. The propagation of produced heavy mesons in the hadronic phase is described using the ultra-relativistic quantum molecular dynamics (UrQMD) model. Our calculation shows that while collisional energy loss dominates the heavy quark motion inside the QGP in the low transverse momentum (p T) regime, contributions from gluon radiation are found to be significant at high pT. The recombination mechanism is important for the heavy flavor meson production at intermediate energies. The hadronic final state interactions further enhance the suppression and the collective flow of heavy mesons we observe. Within our newly developed framework, we present numerical results for the nuclear modification and the elliptic flow of D mesons, which are consistent with measurements at both the CERN Large Hadron Collider (LHC) and the BNL Relativistic Heavy-Ion Collider (RHIC); predictions for B mesons are also provided. In

  13. Stability, bioavailability, and bacterial toxicity of ZnO and iron-doped ZnO nanoparticles in aquatic media.

    PubMed

    Li, Minghua; Pokhrel, Suman; Jin, Xue; Mädler, Lutz; Damoiseaux, Robert; Hoek, Eric M V

    2011-01-15

    The stability and bioavailability of nanoparticles is governed by the interfacial properties that nanoparticles acquire when immersed in a particular aquatic media as well as the type of organism or cell under consideration. Herein, high-throughput screening (HTS) was used to elucidate ZnO nanoparticle stability, bioavailability, and antibacterial mechanisms as a function of iron doping level (in the ZnO nanoparticles), aquatic chemistry, and bacterial cell type. ζ-Potential and aggregation state of dispersed ZnO nanoparticles was strongly influenced by iron doping in addition to electrolyte composition and dissolved organic matter; however, bacterial inactivation by ZnO nanoparticles was most significantly influenced by Zn(2+) ions dissolution, cell type, and organic matter. Nanoparticle IC(50) values determined for Bacillus subtilis and Escherichia coli were on the order of 0.3-0.5 and 15-43 mg/L (as Zn(2+)), while the IC(50) for Zn(2+) tolerant Pseudomonas putida was always >500 mg/L. Tannic acid decreased toxicity of ZnO nanoparticles more than humic, fulvic, and alginic acid, because it complexed the most free Zn(2+) ions, thereby reducing their bioavailability. These results underscore the complexities and challenges regulators face in assessing potential environmental impacts of nanotechnology; however, the high-throughput and combinatorial methods employed promise to rapidly expand the knowledge base needed to develop an appropriate risk assessment framework.

  14. Synthesis of ZnO Nanocrystals and Application in Inverted Polymer Solar Cells

    NASA Astrophysics Data System (ADS)

    Dong, Jing-Jing; Wu, Jian; Hao, Hui-Ying; Xing, Jie; Liu, Hao; Gao, Hua

    2017-09-01

    Controllable synthesis of various ZnO nanocrystals was achieved via a simple and cost-effective hydrothermal process. The morphology evolution of the ZnO nanostructures was well monitored by tuning hydrothermal growth parameters, such as solution concentration, reaction temperature, and surfactant. As-obtained ZnO nanocrystals with different morphologies, e.g., ZnO nanorods, nanotetrapods, nanoflowers, and nanocubes, were further introduced into the organic bulk heterojunction solar cells as the electron transport channel. It was found that the device performance was closely related to the morphology of the ZnO nanocrystals.

  15. Effect of bath temperature on surface morphology and photocatalytic activity of ZnO nanorods

    SciTech Connect

    Sriharan, N.; Senthil, T. S.; Muthukumarasamy, N.

    2016-05-06

    ZnO nanorods were prepared by using simple hydrothermal method using four different bath temperatures. All the prepared ZnO nanorods are annealed at 450°C and are characterized by using various techniques such as X-ray diffraction, UV spectra and scanning electron microscopy. Photocatalytic activity of the prepared ZnO nanorods is analyzed. A novel photocatalytic reactor designed with ZnO nanorods prepared at 90°C shows enhanced catalytic efficiency. The role of light irradiation time, bath temperature and surface morphology of the ZnO nanorods on the performance of photocatalytic reaction is analyzed.

  16. Structural and electrical properties of electric field assisted spray deposited pea structured ZnO film

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Neha; Swami, Sanjay Kumar; Dutta, Viresh

    2016-05-01

    Spray deposition of ZnO film was carried out. The uneven growth of ZnO nanostructures is resulted for spray deposited ZnO film. Application of DC voltage (1000V) during spray deposition provides formation of pea like structures with uniform coverage over the substrate. Electric field assisted spray deposition provides increased crystallinity with reduced resistivity and improved mobility of the ZnO film as compared to spray deposited ZnO film without electric field. This with large area deposition makes the process more efficient than other techniques.

  17. Synthesis of ZnO Nanocrystals and Application in Inverted Polymer Solar Cells.

    PubMed

    Dong, Jing-Jing; Wu, Jian; Hao, Hui-Ying; Xing, Jie; Liu, Hao; Gao, Hua

    2017-09-09

    Controllable synthesis of various ZnO nanocrystals was achieved via a simple and cost-effective hydrothermal process. The morphology evolution of the ZnO nanostructures was well monitored by tuning hydrothermal growth parameters, such as solution concentration, reaction temperature, and surfactant. As-obtained ZnO nanocrystals with different morphologies, e.g., ZnO nanorods, nanotetrapods, nanoflowers, and nanocubes, were further introduced into the organic bulk heterojunction solar cells as the electron transport channel. It was found that the device performance was closely related to the morphology of the ZnO nanocrystals.

  18. Growth and characterization of periodically polarity-inverted ZnO structures on sapphire substrates

    SciTech Connect

    Park, Jinsub; Yao, Takafumi

    2012-10-15

    We report on the fabrication and characterization of periodically polarity inverted (PPI) ZnO heterostructures on (0 0 0 1) Al{sub 2}O{sub 3} substrates. For the periodically inverted array of ZnO polarity, CrN and Cr{sub 2}O{sub 3} polarity selection buffer layers are used for the Zn- and O-polar ZnO films, respectively. The change of polarity and period in fabricated ZnO structures is evaluated by diffraction patterns and polarity sensitive piezo-response microscopy. Finally, PPI ZnO structures with subnanometer scale period are demonstrated by using holographic lithography and regrowth techniques.

  19. Preparation, characterization and photocatalytic properties of Ho doped ZnO nanostructures synthesized by sonochemical method

    NASA Astrophysics Data System (ADS)

    Phuruangrat, Anukorn; Yayapao, Oranuch; Thongtem, Titipun; Thongtem, Somchai

    2014-03-01

    The three-dimensional flowerlike undoped and Ho doped ZnO microstructure was successfully synthesized by a sonochemical method. The morphologies and structures of the phase were characterized by the analyses of XRD, SEM and TEM. The flower-like structure composed of numerous one-dimensional hexagonal nanoprisms ZnO and Ho doped ZnO were revealed as hexagonal crystal structure with exposure (0 0 1) facet. The Ho doped ZnO exhibited a relatively higher photocatalytic activity than the pure ZnO in the degradation of methylene blue under UV light.

  20. Effect of gamma irradiation on DC electrical conductivity of ZnO nanoparticles

    SciTech Connect

    Swaroop, K.; Somashekarappa, H. M.; Naveen, C. S.; Jayanna, H. S.

    2015-06-24

    The temperature dependent dc electrical conductivity of gamma irradiated Zinc oxide (ZnO) nanoparticles is presented in this paper. The X-ray diffraction (XRD) pattern shows hexagonal wurtzite structure of ZnO. Fourier Transform Infrared Spectroscopy (FTIR) confirms Zn-O stretching vibrations. UV-Visible spectroscopy studies show that the energy band gap (E{sub g}) of the prepared ZnO nanoparticles increases with respect to gamma irradiation dose, which can be related to room temperature dc electrical conductivity. The result shows significant variation in the high temperature dc electrical conductivity of ZnO nanoparticles due to gamma irradiation.

  1. Heavy quarks and lattice QCD

    SciTech Connect

    Andreas S. Kronfeld

    2003-11-05

    This paper is a review of heavy quarks in lattice gauge theory, focusing on methodology. It includes a status report on some of the calculations that are relevant to heavy-quark spectroscopy and to flavor physics.

  2. Structural defects and photoluminescence studies of sol-gel prepared ZnO and Al-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2016-11-01

    ZnO and Al-doped ZnO (AZO) films were synthesized using sol-gel spin-coating method. The powder XRD analysis revealed the stress relaxation mechanism upon Al doping in ZnO film. The reduction in the imaginary part of the dielectric constant and suppression of deep level acceptor type octahedral oxygen interstitial defects account for the reduction in carrier concentration in AZO with respect to ZnO. Electrical conductivity measurements and grain boundary conduction model are used to quantify the carrier concentration. From the Commission Internationale d'Eclairge diagram of ZnO and AZO, color parameters like dominant wavelength, color purity and luminosity are determined and reported for the first time. The prepared ZnO and AZO films show considerable blue emission. These films can be used for white light generation.

  3. Assembly of ordered ZnO porous thin films by cooperative assembly method using polystyrene spheres and ultrafine ZnO particles

    SciTech Connect

    Liu Zhifeng; Jin Zhengguo . E-mail: zhgjin@tju.edu.cn; Li Wei; Qiu Jijun

    2006-01-05

    Ordered ZnO porous thin films were fabricated by cooperative assembly method using polystyrene sphere (PS) and ultrafine ZnO particles, in which ultrafine ZnO particles were directly assembled in the voids of PS while the template was being assembled by capillary forces. The influence of experimental parameters, such as evaporation temperature, ZnO concentration and the concentration ratio of PS/ZnO on morphology of the porous structure was mainly studied. The results showed that an ordered porous structure could be obtained by this method. X-ray diffraction (XRD) spectra indicated the porous ZnO thin film was wurtzite structure. The transmissivity decreased with the decrease of wavelength, but still kept above 80% beyond the wavelength of 550 nm. Optical band gap of the ZnO thin film was 3.13 eV.

  4. Resistive switching characteristics of a compact ZnO nanorod array grown directly on an Al-doped ZnO substrate

    NASA Astrophysics Data System (ADS)

    Yoo, E. J.; Shin, J. Y.; Yoon, T. S.; Kang, C. J.; Choi, Y. J.

    2016-07-01

    ZnO’s resistive switching properties have drawn much attention because ZnO has a simple chemical composition and is easy to manipulate. The propulsion mechanism for resistive switching in ZnO is based on a conducting filament that consists of oxygen vacancies. In the case of film structure, the random formation of the conducting filaments occasionally leads to unstable switching characteristics. Limiting the direction in which the conducting filaments are formed is one way to solve this problem. In this study, we demonstrate reliable resistive switching behavior in a device with an Au/compact ZnO nanorod array/Al-doped ZnO structure with stable resistive switching over 105 cycles and a long retention time of 104 s by confining conducting filaments along the boundaries between ZnO nanorods. The restrictive formation of conducting filaments along the boundaries between ZnO nanorods is observed directly using conductive atomic force microscopy.

  5. Electrical Property of Conventionally Sintered ZnO

    NASA Astrophysics Data System (ADS)

    Tak, S. K.; Shekhwat, M. S.; Mangal, R.

    ZnO powder was synthesized by solid state reaction method. The synthesized powder was granulated and pressed using uni-axial press for preparing the pallets. The prepared pellets were sintered in conventional furnace at different temperatures (900-1300° C). The phase study was done by powder X-ray diffraction and it was found that the there is no other phase present in the synthesized material but the peak intensity is increasing with temperature. The crystallite size of the synthesized ZnO powder was found to be increase with temperature. The effect of sintering on grain growth is investigated by scanning electron microscopy (SEM). SEM revels that the average grain size is increases with increase in sintering temperature. AC impedance of these samples was decreased markedly with increased sintering temperature. In present work the effect of sintering temperatures and hold time on micro structural and electrical properties of ZnO ceramics is carried out.

  6. Novel Devices Using Multifunctional ZnO and Its Nanostructures

    DTIC Science & Technology

    2008-12-01

    Army CERDEC Fort Monmouth, NJ 07703 ABTRACT Zinc oxide (ZnO) is a promising wide band gap semiconductor. It has a direct energy band gap, Eg...of 3.3eV at room temperature. ZnO can be alloyed with CdO and MgO to form the ternaries CdxZn1-xO and MgxZn1-xO, extending the direct energy band...as it has a direct energy band gap (Eg) of approximately 3.3eV at room temperature, and also a free exciton binding energy of ≈60 meV. ZnO is more

  7. Effect of Water on Ethanol Conversion over ZnO

    SciTech Connect

    Rahman, Muhammad Mahfuzur; Davidson, Stephen D.; Sun, Junming; Wang, Yong

    2015-10-01

    This work focuses on understanding the role of water on ethanol conversion over zinc oxide (ZnO). It was found that a competitive adsorption between ethanol and water occurs on ZnO, which leads to the blockage of the strong Lewis acid site by water on ZnO. As a result, both dehydration and dehydrogenation reactions are inhibited. However, the extent of inhibition for dehydration is orders of magnitude higher than that for dehydrogenation, leading to the shift of reaction pathway from ethanol dehydration to dehydrogenation. In the secondary reactions for acetaldehyde conversion, water inhibits the acetaldehyde aldol-condensation to crotonaldehyde, favoring the oxidation of acetaldehyde to acetic acid, and then to acetone via ketonization at high temperature (i.e., 400 °C).

  8. ZnO Thin Film Ga s Sensor for CO

    SciTech Connect

    Manap, Y. A.; Ismail, B.; Yusuf, M. N. M.; Shamsuri, W. N. W.; Wahab, Y.; Othaman, Z.

    2010-03-11

    ZnO thin films were deposited onto corning glass substrates by rf magnetron sputtering system using ZnO targets. Films were deposited under rf power of 80 W at various deposition time. The distance between the target and substrate was held at 45 cm. A mixed Ar and O{sub 2} gas was introduced into the chamber at 4x10{sup -2} Torr. The structure of the deposited ZnO films was investigated by Scanning electron miscroscopy. The gas sensing properties were evaluated at various operation temperatures by measuring the changes of resistance of the sensor in air and in CO gas respectively using the gas sensing characterization system. The grain size was increased as the film thickness was increased during deposition. The sensor with 233 nm film thickness exhibited the highest sensitivity for CO gas.

  9. Mobility of indium on the ZnO(0001) surface

    NASA Astrophysics Data System (ADS)

    Heinhold, R.; Reeves, R. J.; Williams, G. T.; Evans, D. A.; Allen, M. W.

    2015-02-01

    The mobility of indium on the Zn-polar (0001) surface of single crystal ZnO wafers was investigated using real-time x-ray photoelectron spectroscopy. A sudden transition in the wettability of the ZnO(0001) surface was observed at ˜520 °C, with indium migrating from the ( 000 1 ¯ ) underside of the wafer, around the non-polar ( 1 1 ¯ 00 ) and ( 11 2 ¯ 0 ) sidewalls, to form a uniform self-organized (˜20 Å) adlayer. The In adlayer was oxidized, in agreement with the first principles calculations of Northrup and Neugebauer that In2O3 precipitation can only be avoided under a combination of In-rich and Zn-rich conditions. These findings suggest that unintentional In adlayers may form during the epitaxial growth of ZnO on indium-bonded substrates.

  10. Enhanced Photoluminescence in Acetylene-Treated ZnO Nanorods.

    PubMed

    Jäppinen, Luke; Jalkanen, Tero; Sieber, Brigitte; Addad, Ahmed; Heinonen, Markku; Kukk, Edwin; Radevici, Ivan; Paturi, Petriina; Peurla, Markus; Shahbazi, Mohammad-Ali; Santos, Hélder A; Boukherroub, Rabah; Santos, Hellen; Lastusaari, Mika; Salonen, Jarno

    2016-12-01

    Zinc oxide (ZnO) nanorods were manufactured using the aqueous chemical growth (ACG) method, and the effect of thermal acetylene treatment on their morphology, chemical composition, and optical properties was investigated. Changes in the elemental content of the treated rods were found to be different than in previous reports, possibly due to the different defect concentrations in the samples, highlighting the importance of synthesis method selection for the process. Acetylene treatment resulted in a significant improvement of the ultraviolet photoluminescence of the rods. The greatest increase in emission intensity was recorded on ZnO rods treated at the temperature of 825 °C. The findings imply that the changes brought on by the treatment are limited to the surface of the ZnO rods.

  11. Electrically pumped waveguide lasing from ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Chu, Sheng; Wang, Guoping; Zhou, Weihang; Lin, Yuqing; Chernyak, Leonid; Zhao, Jianze; Kong, Jieying; Li, Lin; Ren, Jingjian; Liu, Jianlin

    2011-08-01

    Ultraviolet semiconductor lasers are widely used for applications in photonics, information storage, biology and medical therapeutics. Although the performance of gallium nitride ultraviolet lasers has improved significantly over the past decade, demand for lower costs, higher powers and shorter wavelengths has motivated interest in zinc oxide (ZnO), which has a wide direct bandgap and a large exciton binding energy. ZnO-based random lasing has been demonstrated with both optical and electrical pumping, but random lasers suffer from reduced output powers, unstable emission spectra and beam divergence. Here, we demonstrate electrically pumped Fabry-Perot type waveguide lasing from laser diodes that consist of Sb-doped p-type ZnO nanowires and n-type ZnO thin films. The diodes exhibit highly stable lasing at room temperature, and can be modelled with finite-difference time-domain methods.

  12. Electrically pumped waveguide lasing from ZnO nanowires.

    PubMed

    Chu, Sheng; Wang, Guoping; Zhou, Weihang; Lin, Yuqing; Chernyak, Leonid; Zhao, Jianze; Kong, Jieying; Li, Lin; Ren, Jingjian; Liu, Jianlin

    2011-07-03

    Ultraviolet semiconductor lasers are widely used for applications in photonics, information storage, biology and medical therapeutics. Although the performance of gallium nitride ultraviolet lasers has improved significantly over the past decade, demand for lower costs, higher powers and shorter wavelengths has motivated interest in zinc oxide (ZnO), which has a wide direct bandgap and a large exciton binding energy. ZnO-based random lasing has been demonstrated with both optical and electrical pumping, but random lasers suffer from reduced output powers, unstable emission spectra and beam divergence. Here, we demonstrate electrically pumped Fabry-Perot type waveguide lasing from laser diodes that consist of Sb-doped p-type ZnO nanowires and n-type ZnO thin films. The diodes exhibit highly stable lasing at room temperature, and can be modelled with finite-difference time-domain methods.

  13. Al-doped cellulose ZnO hybrid nanocomposite

    NASA Astrophysics Data System (ADS)

    Mun, Seongcheol; Kim, Hyun-Chan; Ko, Hyun-U.; Yun, Youngmin; Kim, Jaehwan

    2017-04-01

    Cellulose based inorganic-organic hybrid nanocomposite was fabricated by growing ZnO nanorods on a transparent and flexible cellulose film. To improve its electrical and electromechanical properties, Al doping to ZnO was achieved during the ZnO nanorod growing by a hydrothermal synthesis with different ratio of Al and Zn derivative chemicals. As increasing the Al dopant ratio, the morphology changes from nanorod to the nanoplate. The Al dopant ratio also influences the electrical properties of the hybrid nanocomposite. 1.2% of Al/Zn molality ratio is found to be a critical value that changes the morphology and improves the electrical and electromechanical properties. Detail phenomenon and possible mechanism around the critical value of Al/Zn molarity ratio is discussed.

  14. Identification of hydrogen molecules in ZnO.

    PubMed

    Lavrov, E V; Herklotz, F; Weber, J

    2009-05-08

    Hydrogen molecules in ZnO are identified by their local vibrational modes. In a Raman study, interstitial H2, HD, and D2 species were found to exhibit local vibrational modes at frequencies 4145, 3628, and 2985 cm-1, respectively. After thermal treatment of vapor phase grown ZnO samples in hydrogen atmosphere, most hydrogen forms shallow donors at the bond-centered site (HBC). Subsequently, HBC migrates through the crystal and forms electrically inactive H2. These results imply that the "hidden" hydrogen in ZnO [G. A. Shi et al., Appl. Phys. Lett. 85, 5601 (2004)10.1063/1.1832736] occurs in the form of interstitial H2.

  15. Thermal Conductivity of ZnO Single Nanowire.

    PubMed

    Yuldashev, Sh U; Yalishev, V Sh; Cho, H D; Kang, T W

    2016-02-01

    The thermal conductivity of a single ZnO nanowire with diameter of ~150 nm was measured using a four-point-probe 3omega method over a temperature range of 140-300 K. The measured ther- mal conductivity of ZnO nanowire is strongly reduced compared to bulk ZnO crystal due to the enhanced phonon-boundary and impurity (isotope) scattering. The maximum of the thermal conductivity is shifted to a higher temperature than that of bulk counterpart. Temperature dependent measurements show that beyond the low-temperature maximum, the thermal conductivity decreases with temperature as T(-1.5) indicating strong impurity (isotope) scattering at intermediate and high temperatures.

  16. High mobility ZnO nanowires for terahertz detection applications

    SciTech Connect

    Liu, Huiqiang; Peng, Rufang E-mail: chusheng@mail.sysu.edu.cn; Chu, Shijin; Chu, Sheng E-mail: chusheng@mail.sysu.edu.cn

    2014-07-28

    An oxide nanowire material was utilized for terahertz detection purpose. High quality ZnO nanowires were synthesized and field-effect transistors were fabricated. Electrical transport measurements demonstrated the nanowire with good transfer characteristics and fairly high electron mobility. It is shown that ZnO nanowires can be used as building blocks for the realization of terahertz detectors based on a one-dimensional plasmon detection configuration. Clear terahertz wave (∼0.3 THz) induced photovoltages were obtained at room temperature with varying incidence intensities. Further analysis showed that the terahertz photoresponse is closely related to the high electron mobility of the ZnO nanowire sample, which suggests that oxide nanoelectronics may find useful terahertz applications.

  17. Quantum Efficiency of ZnO Nanowire Nanolasers

    SciTech Connect

    Zhang, Yanfeng; Russo, Richard E.; Mao, Samuel S.

    2005-03-28

    Crystalline ZnO nanowires were grown on sapphire and silicon substrates using pulsed-laser deposition. The optical properties of nanowire nanolasers, including their absolute light emission intensity and external and internal quantum efficiencies were experimentally determined. The external differential quantum efficiency was measured to be as high as 60% for lasing ZnO nanowires of 7.5 {micro}m in length, compared to a value of approximately 10% for photoluminescence. The absolute light emission intensity for individual nanowires was found to be in the vicinity of 0.1 mW. By measuring the dependence of external differential quantum efficiency on the cavity length, the internal quantum efficiency of ZnO nanowire nanolasers was determined to be about 85%.

  18. Doped ZnO nanowires obtained by thermal annealing.

    PubMed

    Shan, C X; Liu, Z; Wong, C C; Hark, S K

    2007-02-01

    Doped ZnO nanowires were prepared in a very simple and inexpensive thermal annealing method using ZnSe nanowires as a precursor. As doped, P doped, and As/P codoped ZnO nanowires were obtained in this method. X-ray diffraction shows that the zincblende ZnSe nanowires were converted to doped wurtzite ZnO nanowires. The incorporation of the dopants was confirmed by energy dispersive X-ray spectroscopy. The doping concentration could be adjusted by changing the annealing temperature and duration. Scanning electron microscopy indicated that the morphology of the ZnSe nanowires was essentially retained after the annealing and doping process. Photoluminescence spectroscopy also verified the incorporation of the dopants into the nanowires.

  19. Nanodamage and Nanofailure of 1d Zno Nanomaterials and Nanodevices

    NASA Astrophysics Data System (ADS)

    Li, Peifeng; Yang, Ya; Huang, Yunhua; Zhang, Yue

    2012-08-01

    One-dimensional (1D) ZnO nanomaterials include nanowires, nanobelts, and nanorods etc. The extensive applied fields and excellent properties of 1D ZnO nanomaterials can meet the requests of the electronic and electromechanical devices for "smaller, faster and colder", and would be applied in new energy convention, environmental protection, information science and technology, biomedical, security and defense fields. While micro porous, etching pits nanodamage and brittle fracture, dissolving, functional failure nanofailure phenomena of 1D ZnO nanomaterials and nanodevices are observed in some practical working environments like illumination, currents or electric fields, external forces, and some chemical gases or solvents. The more important thing is to discuss the mechanism and reduce or prohibit their generation.

  20. Nitrogen is a deep acceptor in ZnO

    SciTech Connect

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence band relative to the vacuum level.

  1. Mobility of indium on the ZnO(0001) surface

    SciTech Connect

    Heinhold, R.; Reeves, R. J.; Allen, M. W.; Williams, G. T.; Evans, D. A.

    2015-02-02

    The mobility of indium on the Zn-polar (0001) surface of single crystal ZnO wafers was investigated using real-time x-ray photoelectron spectroscopy. A sudden transition in the wettability of the ZnO(0001) surface was observed at ∼520 °C, with indium migrating from the (0001{sup ¯}) underside of the wafer, around the non-polar (11{sup ¯}00) and (112{sup ¯}0) sidewalls, to form a uniform self-organized (∼20 Å) adlayer. The In adlayer was oxidized, in agreement with the first principles calculations of Northrup and Neugebauer that In{sub 2}O{sub 3} precipitation can only be avoided under a combination of In-rich and Zn-rich conditions. These findings suggest that unintentional In adlayers may form during the epitaxial growth of ZnO on indium-bonded substrates.

  2. Nitrogen is a deep acceptor in ZnO

    DOE PAGES

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence bandmore » relative to the vacuum level.« less

  3. Indirect excitons in hydrogen-doped ZnO

    NASA Astrophysics Data System (ADS)

    Zhu, Liangchen; Lem, Laurent L. C.; Nguyen, Thien-Phap; Fair, Kit; Ali, Sajid; Ford, Michael J.; Phillips, Matthew R.; Ton-That, Cuong

    2017-03-01

    We present a correlative experimental and theoretical study of bound excitons in hydrogen-doped ZnO, with a particular focus on the dynamics of their metastable state confined in the sub-surface region, using a combination of surface-sensitive characterisation techniques and density functional theory calculations. A metastable sub-surface emission at 3.31 eV found in H-doped ZnO is attributed to the radiative recombination of indirect excitons localised at basal plane stacking faults (BSFs) where the excitonic transition involves electrons bound to bond-centre hydrogen donors in the potential well of the BSF. Additionally, our work shows the electrical transport of ZnO Schottky junctions is dominated by electrons confined at BSFs in the near-surface region.

  4. Hydrothermal growth of ZnO nanoparticles under different conditions

    NASA Astrophysics Data System (ADS)

    Yilmaz, Mehmet; Bozkurt Cirak, Burcu; Cirak, Cagri; Aydogan, Sakir

    2016-02-01

    In this study, a simple low-temperature hydrothermal method was used to synthesize ZnO nanoparticles. The structural, morphological and optical characterizations of the nanoparticles were evaluated with regard to the zinc content. To achieve this, the molar ratios of the precursors were changed from 0.05 to 0.1 M. The structural and morphological analyses showed that all samples had a polycrystalline hexangular wurtzite crystal structure and the shape of the ZnO nanoparticles changed with increasing zinc content. A possible growth mechanism of the ZnO nanoparticles is explained in terms of the zinc content. Optical measurement revealed that the shape of the nanoparticles affects the position of the band-edge emission as well as the shape of the luminescence spectrum.

  5. Optical characterization of Eu3+ doped ZnO nanocomposites.

    PubMed

    Grandhe, Bhaskar Kumar; Bandi, Vengala Rao; Jang, Kiwan; Lee, Ho-Sueb; Shin, Dong-Soo; Yi, Soung-Soo; Jeong, Jung-Hyun

    2013-11-01

    A rare-earth metal ion (Eu3+) doped ZnO nanocomposites have been successfully synthesized by employing wet chemical procedure using multi-wall carbon nanotubes (MWCNT's) as removable template. The preparation was carried out by immersing empty and dried MWCNT's in a stoichiometric composition of zinc nitrate and europium nitrate solution followed by filtration and sintering. The synthesized Eu3+ doped ZnO nanocomposites were characterized by means of different characterization techniques namely XRD, SEM, EDS, FT-IR and Raman spectroscopy. The XRD profile of the Eu3+ doped ZnO nanocomposites indicated its hexagonal nature while the photoluminescent analysis reveals that the prepared nanocomposite exhibits a strong red emission peak at 619 nm due to 5D0 --> 7F2 forced electric dipole transition of Eu3+ ions. Such luminescent materials are expected to find potential applications in display devices.

  6. Room-temperature ferromagnetism in pure ZnO nanoflowers

    NASA Astrophysics Data System (ADS)

    Bie, Xiaofei; Wang, Chunzhong; Ehrenberg, H.; Wei, Yingjin; Chen, Gang; Meng, Xing; Zou, Guangtian; Du, Fei

    2010-08-01

    ZnO nanoflowers are synthesized by hydrothermal method. The morphology of ZnO is captured by SEM, TEM and HRTEM, which is composed of closely packed nanorods of about 100 nm in diameter and 1 μm in length. The ZFC/FC curves show superparamagnetic features. The abnormal increase in magnetization curves below 14 K comes from the isolated vacancy clusters with no interaction. The magnetic hysteresis at 300 K displays saturation state and confirms room-temperature ferromagnetism. While the magnetic hysteresis at 5 K shows nonsaturation state due to the enhanced effects of vacancy clusters. The O 1s XPS results can be fitted to three Gaussian peaks. The existence of medium-binding energy located at 531.16 eV confirms the deficiency of O ions at the surface of ZnO nanoflowers.

  7. Growth of ZnO nanowires on nonwoven polyethylene fibers

    NASA Astrophysics Data System (ADS)

    Baruah, Sunandan; Thanachayanont, Chanchana; Dutta, Joydeep

    2008-04-01

    We report the growth of ZnO nanowires on nonwoven polyethylene fibers using a simple hydrothermal method at a temperature below the boiling point of water. The ZnO nanowires were grown from seed ZnO nanoparticles affixed onto the fibers. The seed ZnO nanoparticles, with diameters of about 6-7 nm, were synthesized in isopropanol by reducing zinc acetate hydrate with sodium hydroxide. The growth process was carried out in a sealed chemical bath containing an equimolar solution of zinc nitrate hexahydrate and hexamethylene tetramine at a temperature of 95 °C over a period of up to 20 h. The thickness and length of the nanowires can be controlled by using different concentrations of the starting reactants and growth durations. A 0.5 mM chemical bath yielded nanowires with an average diameter of around 50 nm, while a 25 mM bath resulted in wires with a thickness of up to about 1 μm. The length of the wires depends both on the concentration of the precursor solution as well as the growth duration, and in 20 h, nanowires as long as 10 μm can be grown. The nonwoven mesh of polyethylene fibers covered with ZnO nanowires can be used for novel applications such as water treatment by degrading pollutants by photocatalysis. Photocatalysis tests carried out on standard test contaminants revealed that the polyethylene fibers with ZnO nanowires grown on them could accelerate the photocatalytic degradation process by a factor of 3.

  8. A high power ZnO thin film piezoelectric generator

    NASA Astrophysics Data System (ADS)

    Qin, Weiwei; Li, Tao; Li, Yutong; Qiu, Junwen; Ma, Xianjun; Chen, Xiaoqiang; Hu, Xuefeng; Zhang, Wei

    2016-02-01

    A highly efficient and large area piezoelectric ZnO thin film nanogenerator (NG) was fabricated. The ZnO thin film was deposited onto a Si substrate by pulsed laser ablation at a substrate temperature of 500 °C. The deposited ZnO film exhibited a preferred c-axis orientation and a high piezoelectric value of 49.7 pm/V characterized using Piezoelectric Force Microscopy (PFM). Thin films of ZnO were patterned into rectangular power sources with dimensions of 0.5 × 0.5 cm2 with metallic top and bottom electrodes constructed via conventional semiconductor lithographic patterning processes. The NG units were subjected to periodic bending/unbending motions produced by mechanical impingement at a fixed frequency of 100 Hz at a pressure of 0.4 kg/cm2. The output electrical voltage, current density, and power density generated by one ZnO NG were recorded. Values of ∼95 mV, 35 μA cm-2 and 5.1 mW cm-2 were recorded. The level of power density is typical to that produced by a PZT NG on a flexible substrate. Higher energy NG sources can be easily created by adding more power units either in parallel or in series. The thin film ZnO NG technique is highly adaptable with current semiconductor processes, and as such, is easily integrated with signal collecting circuits that are compatible with mass production. A typical application would be using the power harvested from irregular human foot motions to either to operate blue LEDs directly or to drive a sensor network node in mille-power level without any external electric source and circuits.

  9. Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor

    NASA Astrophysics Data System (ADS)

    Khun, K.; Ibupoto, Z. H.; Chey, C. O.; Lu, Jun.; Nur, O.; Willander, M.

    2013-03-01

    In this study, the comparative study of ZnO nanorods and ZnO thin films were performed regarding the chemical and biosensing properties and also ZnO nanorods based strontium ion sensor is proposed. ZnO nanorods were grown on gold coated glass substrates by the hydrothermal growth method and the ZnO thin films were deposited by electro deposition technique. ZnO nanorods and thin films were characterised by field emission electron microscopy [FESEM] and X-ray diffraction [XRD] techniques and this study has shown that the grown nanostructures are highly dense, uniform and exhibited good crystal quality. Moreover, transmission electron microscopy [TEM] was used to investigate the quality of ZnO thin film and we observed that ZnO thin film was comprised of nano clusters. ZnO nanorods and thin films were functionalised with selective strontium ionophore salicylaldehyde thiosemicarbazone [ST] membrane, galactose oxidase, and lactate oxidase for the detection of strontium ion, galactose and L-lactic acid, respectively. The electrochemical response of both ZnO nanorods and thin films sensor devices was measured by using the potentiometric method. The strontium ion sensor has exhibited good characteristics with a sensitivity of 28.65 ± 0.52 mV/decade, for a wide range of concentrations from 1.00 × 10-6 to 5.00 × 10-2 M, selectivity, reproducibility, stability and fast response time of 10.00 s. The proposed strontium ion sensor was used as indicator electrode in the potentiometric titration of strontium ion versus ethylenediamine tetra acetic acid [EDTA]. This comparative study has shown that ZnO nanorods possessed better performance with high sensitivity and low limit of detection due to high surface area to volume ratio as compared to the flat surface of ZnO thin films.

  10. Nanostructured ZnO films on stainless steel are highly safe and effective for antimicrobial applications.

    PubMed

    Shim, Kyudae; Abdellatif, Mohamed; Choi, Eunsoo; Kim, Dongkyun

    2017-04-01

    The safety and effectiveness of antimicrobial ZnO films must be established for general applications. In this study, the antimicrobial activity, skin irritation, elution behavior, and mechanical properties of nanostructured ZnO films on stainless steel were evaluated. ZnO nanoparticle (NP) and ZnO nanowall (NW) structures were prepared with different surface roughnesses, wettability, and concentrations using an RF magnetron sputtering system. The thicknesses of ZnO NP and ZnO NW were approximately 300 and 620 nm, respectively, and ZnO NW had two diffraction directions of [0002] and [01-10] based on high-resolution transmission electron microscopy. The ZnO NW structure demonstrated 99.9% antimicrobial inhibition against Escherichia coli, Staphylococcus aureus, and Penicillium funiculosum, and no skin irritation was detected using experimental rabbits. Approximately 27.2 ± 3.0 μg L(-1) Zn ions were eluted from the ZnO NW film at 100 °C for 24 h, which satisfies the WHO guidelines for drinking water quality. Furthermore, the Vickers hardness and fracture toughness of ZnO NW films on stainless steel were enhanced by 11 and 14% compared to those of the parent stainless steel. Based on these results, ZnO NW films on STS316L sheets are useful for household supplies, such as water pipes, faucets, and stainless steel containers.

  11. Selective patterning of ZnO nanorods on silicon substrates using nanoimprint lithography

    PubMed Central

    2011-01-01

    In this research, nanoimprint lithography (NIL) was used for patterning crystalline zinc oxide (ZnO) nanorods on the silicon substrate. To fabricate nano-patterned ZnO nanorods, patterning of an n-octadecyltrichlorosilane (OTS) self-assembled monolayers (SAMs) on SiO2 substrate was prepared by the polymer mask using NI. The ZnO seed layer was selectively coated only on the hydrophilic SiO2 surface, not on the hydrophobic OTS SAMs surface. The substrate patterned with the ZnO seed layer was treated with the oxygen plasma to oxidize the silicon surface. It was found that the nucleation and initial growth of the crystalline ZnO were proceeded only on the ZnO seed layer, not on the silicon oxide surface. ZnO photoluminescence spectra showed that ZnO nanorods grown from the seed layer treated with plasma showed lower intensity than those untreated with plasma at 378 nm, but higher intensity at 605 nm. It is indicated that the seed layer treated with plasma produced ZnO nanorods that had a more oxygen vacancy than those grown from seed layer untreated with plasma. Since the oxygen vacancies on ZnO nanorods serve as strong binding sites for absorption of various organic and inorganic molecules. Consequently, a nano-patterning of the crystalline ZnO nanorods grown from the seed layer treated with plasma may give the versatile applications for the electronics devices. PMID:21711665

  12. Synthesis and photocatalytic application of oriented hierarchical ZnO flower-rod architectures.

    PubMed

    Han, Zhizhong; Liao, Lan; Wu, Yueting; Pan, Haibo; Shen, Shuifa; Chen, Jianzhong

    2012-05-30

    An oriented hierarchical ZnO flower-rod arrays (FRs) were prepared on indium doped tin oxide (ITO) glass using a facile solution-based method assisted with ZnO seed layer. And the as-prepared ZnO FRs/ITO was used as a convenient photocatalytic device that recycled without centrifugation. The results show that ZnO FRs are wurtzite phase with single crystalline grown along the [001] direction. The photoluminescence (PL) spectra illustrate that there are more oxygen vacancies on the surface of ZnO FRs compared with ZnO nanoparticles (NPs). The electrochemical methods using Rhodamine B (RhB) as electrolyte are also performed to study on the photodegradation mechanism where RhB is acted as photocatalytic substrate. For ZnO FRs, the higher photoinduced currents under UV irradiation and current density prove that the recombination of electron-hole pairs is restrained with oxygen vacancies, and the lower charge transfer resistance suggest that the charges could move quickly through ZnO oriented structures. Therefore, the photocatalytic activity is enhanced by ZnO FRs compared with ZnO NPs, and RhB degradation efficiency of ZnO FRs photocatalysts is nearly 100% by UV irradiation for 1.5h. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Synthesis and properties of ZnO nanorods by modified Pechini process

    NASA Astrophysics Data System (ADS)

    Devaraj, Ramasamy; Karthikeyan, Krishnamoorthy; Jeyasubramanian, Kadarkaraithangam

    2013-02-01

    Zinc oxide (ZnO) nanorods have been successfully synthesized by modified Pechini process. The as-synthesized ZnO nanorods were characterized by X-ray diffraction, scanning electron microscope, Raman spectrum, ultraviolet-visible (UV-vis) spectrum. X-ray diffraction result shows that the ZnO nanorods are oriented in wurtzite phase. Raman spectroscopy measurements revealed the presence of E2 (high) mode at 437 cm-1 indicating the high crystallinity of the as-synthesized ZnO nanorods. The optical property of the ZnO nanorods were studied from their UV-vis spectroscopy analysis which exhibits the absorbance at 373 nm corresponds to the Zn-O absorption. A mechanism for modified Pechini process for the synthesis of ZnO nanorods using citric acid-ethylene glycol precursor has also been proposed.

  14. ZnO hierarchical nanostructures: simple solvothermal synthesis and growth mechanism.

    PubMed

    Dev, Apurba; Kar, Soumitra; Chaudhuri, Subhadra

    2008-09-01

    Hierarchical nano/micro structures of ZnO have been fabricated by solvothermal approach on sol-gel derived ZnO thin films. Paintbrush like nano/micro rod assembly, double-sided brush and windmill type architectures of ZnO are obtained when the ZnO thin film coated substrates were treated solvothermally in water at pH 10. Aligned nanorods are obtained at pH approximately 13.5 in water. In ethylenediamine-water solvent divergent micro/nanorod assemblies such as hemispherical dandelion, rice plant type bush of ZnO are obtained. Increase in the percentage of ethyelendiamine resulted in the formation of smaller assemblies of relatively thin nanorods. Initial slow reaction caused by the slow increase of the temperature inside the reaction medium and the different growth kinetics of the ZnO crystals are supposed to be the reason behind the architectural assemblies of the ZnO crystals.

  15. Seed-mediated growth of ZnO nanorods on multiwalled carbon nanotubes.

    PubMed

    Li, Changqing; Jin, Zhong; Chu, Haibin; Li, Yan

    2008-09-01

    The heterostructures of ZnO nanorods on multiwalled carbon nanotubes (MWNTs) were fabricated by a seed-mediated growth method. First, the surfaces of the carbon nanotubes (CNTs) were coated in situ with mono-dispersed ZnO nanocrystals of about 7 nm by the reaction of zinc acetate and sodium hydroxide. These nanocrystals were then served as the seeds for further growth of ZnO nanorods. In the second step, ZnO nanorods were grown on MWNTs coated with ZnO nanocrystals in an aqueous solution of zinc nitrate and equimolar hexamethylenetetramine at 85 degrees C. Typically, the ZnO nanorods had the length of 300-600 nm and the diameter of 40-140 nm and took a random direction on the outside walls of MWNTs. The morphology of the ZnO nanorods was dependent on pH, reactant concentration, and growing time.

  16. Opto-electrical properties of Sb-doped p-type ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Kao, Tzu-Hsuan; Chen, Jui-Yuan; Chiu, Chung-Hua; Huang, Chun-Wei; Wu, Wen-Wei

    2014-03-01

    P-type ZnO nanowires (NWs) have attracted much attention in the past years due to the potential applications for optoelectronics and piezotronics. In this study, we have synthesized Sb-doped p-type ZnO NWs on Si (100) substrates by chemical vapor deposition with Aucatalyst. The Sb-doped ZnO NWs are single crystalline with high density, grown along [1-1-2] direction. The doping percentage of Sb is about 2.49%, which has been confirmed by X-ray photoelectron spectroscopy. The ZnO NW field effect transistor demonstrated its p-type characteristics. A high responsivity to ultraviolet photodetection was also observed. In addition, compared to intrinsic ZnO NWs, the conductivity of the Sb-doped ZnO NWs exhibited ˜2 orders of magnitude higher. These properties make the p-type ZnO NWs a promising candidate for electronic and optoelectronic devices.

  17. Opto-electrical properties of Sb-doped p-type ZnO nanowires

    SciTech Connect

    Kao, Tzu-Hsuan; Chen, Jui-Yuan; Chiu, Chung-Hua; Huang, Chun-Wei; Wu, Wen-Wei

    2014-03-17

    P-type ZnO nanowires (NWs) have attracted much attention in the past years due to the potential applications for optoelectronics and piezotronics. In this study, we have synthesized Sb-doped p-type ZnO NWs on Si (100) substrates by chemical vapor deposition with Aucatalyst. The Sb-doped ZnO NWs are single crystalline with high density, grown along [1-1-2] direction. The doping percentage of Sb is about 2.49%, which has been confirmed by X-ray photoelectron spectroscopy. The ZnO NW field effect transistor demonstrated its p-type characteristics. A high responsivity to ultraviolet photodetection was also observed. In addition, compared to intrinsic ZnO NWs, the conductivity of the Sb-doped ZnO NWs exhibited ∼2 orders of magnitude higher. These properties make the p-type ZnO NWs a promising candidate for electronic and optoelectronic devices.

  18. Transparent conductivity modulation of ZnO by group-IVA doping

    NASA Astrophysics Data System (ADS)

    Liu, J.; Fan, X. F.; Sun, C. Q.; Zhu, W.

    2016-04-01

    We examined the effect of group-IVA doping on the electronic structure and transmittance of ZnO using first-principle calculations. All these doped ZnO materials are found to perform n-type conductive behavior. Si-doped ZnO and Pb-doped ZnO are found to have larger optical band gap than those of Ge-doped ZnO and Sn-doped ZnO. The transmittance of Si-doped ZnO is found to be high in both UV and visible region. The enhancement of UV region transmittance can be attributed to the enhanced optical band gap, while the reduction of visible region transmittance is due to the intraband optical transition.

  19. Fluorescence property of ZnO nanoparticles and the interaction with bromothymol blue.

    PubMed

    Yue, Qiaoli; Cheng, Jinmei; Li, Guang; Zhang, Ke; Zhai, Yanling; Wang, Lei; Liu, Jifeng

    2011-05-01

    We synthesized ZnO quantum dots (QDs) simply in alcoholic solution, and investigated the interaction between ZnO QDs and bromothymol blue. The structural, morphological, size and spectral properties of ZnO QDs were studied. It was found that ZnO QDs were spherical nanoparticles in the crystal structure, and the average diameter of ZnO QDs was about 4.8 nm. The excitation and emission peaks were located at 346 nm and 520 nm, respectively, which were obtained on a common fluorophotometer. The quantum yield of ZnO QDs was obtained by using quinine sulfate as a reference reagent. In addition, the fluorescence of ZnO QDs can be quenched by bromothymol blue, and the quenching mechanism was proposed in a dynamic quenching mode.

  20. CdSe quantum dot sensitized solar cell based hierarchical branched ZnO nanoarrays

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Deng, Jianping

    2015-05-01

    The hierarchical branched ZnO nanoarrays (NAs) photoanode was prepared by a two-step hydrothermal method. Vertically aligned long ZnO NWs were first synthesized using as the backbone of hierarchical branched ZnO NAs structure and high quality ZnO NAs branches were grown on the surface of backbone ZnO NAs. The structured films enhance the optical path length through the light scatting effect of branched ZnO NAs and prove the larger internal surface area in NAs film to increase quantum dots (QDs) sensitizer loadings, so the light absorption has an optimization. Compared with the cell based conventional 1D ZnO NAs, the efficiency of the new cells has a great improvement due to the increase of the short circuit current density.

  1. Characterization of undoped and Co doped ZnO nanoparticles synthesized by DC thermal plasma method

    NASA Astrophysics Data System (ADS)

    Nirmala, M.; Anukaliani, A.

    2011-02-01

    ZnO nanopowders doped with 5 and 10 at% cobalt were synthesized and their antibacterial activity was studied. Cobalt doped ZnO powders were prepared using dc thermal plasma method. Crystal structure and grain size of the particles were characterized by X-ray diffractometry and optical properties were studied using UV-vis spectroscopy. The particle size and morphology was observed by SEM and HRTEM, revealing rod like morphology. The antibacterial activity of undoped ZnO and cobalt doped ZnO nanoparticles against a Gram-negative bacterium Escherichia coli and a Gram-positive bacterium Bacillus atrophaeus was investigated. Undoped ZnO and cobalt doped ZnO exhibited antibacterial activity against both E. coli and Staphylococcus aureus but it was considerably more effective in the cobalt doped ZnO.

  2. Nanostructured ZnO - its challenging properties and potential for device applications

    NASA Astrophysics Data System (ADS)

    Dimova-Malinovska, D.

    2017-01-01

    Nanostructured ZnO possessing interesting structural and optical properties offers challenging opportunities for innovative applications. In this lecture the review of the optical and structural properties of ZnO nanostructured layers is presented. It is shown that they have a direct impact on the parameters of devices involving ZnO. An analysis of current trends in the photovoltaic (PV) field shows that improved light harvesting and efficiency of solar cells can be obtained by implementing nanostructured ZnO layers to process advanced solar cell structures. Because of amenability to doping, high chemical stability, sensitivity to different adsorbed gases, nontoxicity and low cost ZnO attracted much attention for application as gas sensors. The sensitivity of nano-grain ZnO gas elements is comparatively high because of the grain-size effect. Application of nanostructured ZnO for gas sensors and for increasing of light harvesting in solar cells is demonstrated.

  3. Free-standing ZnO nanorods and nanowalls by aqueous solution method.

    PubMed

    Kim, Dae-Hee; Lee, Sam-Dong; Kim, Kyoung-Kook; Park, Gyeong-Su; Lee, Ji-Myon; Kim, Sang-Woo

    2008-09-01

    Large quantity of free-standing ZnO nanorods and nanowalls were synthesized at low temperature of below 100 degrees C using zinc acetate, zinc nitrate hexahydrate, and hexamethylenetetramine by using a simple aqueous solution method. The general morphology of the grown ZnO nanostructures which include nanorods and nanowalls was strongly influenced by growth conditions. It was found that the grown ZnO nanorods are of a single-crystalline hexagonal structure and preferred c-axis growth orientation. ZnO nanorods were of better crystallinity than ZnO nanowalls, due to the higher growth temperature used to grow ZnO nanorods. Strong free exciton emission bands with relatively weak deep level emission were clearly observed from ZnO nanorods and nanowalls, indicating their good optical properties.

  4. ZnO nanotube based dye-sensitized solar cells.

    PubMed

    Martinson, Alex B F; Elam, Jeffrey W; Hupp, Joseph T; Pellin, Michael J

    2007-08-01

    We introduce high surface area ZnO nanotube photoanodes templated by anodic aluminum oxide for use in dye-sensitized solar cells (DSSCs). Atomic layer deposition is utilized to coat pores conformally, providing a direct path for charge collection over tens of micrometers thickness. Compared to similar ZnO-based devices, ZnO nanotube cells show exceptional photovoltage and fill factors, in addition to power efficiencies up to 1.6%. The novel fabrication technique provides a facile, metal-oxide general route to well-defined DSSC photoanodes.

  5. Reducing ZnO nanoparticle cytotoxicity by surface modification

    NASA Astrophysics Data System (ADS)

    Luo, Mingdeng; Shen, Cenchao; Feltis, Bryce N.; Martin, Lisandra L.; Hughes, Anthony E.; Wright, Paul F. A.; Turney, Terence W.

    2014-05-01

    Nanoparticulate zinc oxide (ZnO) is one of the most widely used engineered nanomaterials and its toxicology has gained considerable recent attention. A key aspect for controlling biological interactions at the nanoscale is understanding the relevant nanoparticle surface chemistry. In this study, we have determined the disposition of ZnO nanoparticles within human immune cells by measurement of total Zn, as well as the proportions of extra- and intracellular dissolved Zn as a function of dose and surface coating. From this mass balance, the intracellular soluble Zn levels showed little difference in regard to dose above a certain minimal level or to different surface coatings. PEGylation of ZnO NPs reduced their cytotoxicity as a result of decreased cellular uptake arising from a minimal protein corona. We conclude that the key role of the surface properties of ZnO NPs in controlling cytotoxicity is to regulate cellular nanoparticle uptake rather than altering either intracellular or extracellular Zn dissolution.Nanoparticulate zinc oxide (ZnO) is one of the most widely used engineered nanomaterials and its toxicology has gained considerable recent attention. A key aspect for controlling biological interactions at the nanoscale is understanding the relevant nanoparticle surface chemistry. In this study, we have determined the disposition of ZnO nanoparticles within human immune cells by measurement of total Zn, as well as the proportions of extra- and intracellular dissolved Zn as a function of dose and surface coating. From this mass balance, the intracellular soluble Zn levels showed little difference in regard to dose above a certain minimal level or to different surface coatings. PEGylation of ZnO NPs reduced their cytotoxicity as a result of decreased cellular uptake arising from a minimal protein corona. We conclude that the key role of the surface properties of ZnO NPs in controlling cytotoxicity is to regulate cellular nanoparticle uptake rather than

  6. Wettability designing by ZnO periodical surface textures.

    PubMed

    Zhang, Yinmin; Lan, Ding; Wang, Yuren; Cao, He; Zhao, Yapu

    2010-11-01

    A facile and effective aqueous chemical synthesis approach towards well control of periodical ZnO textures in large-scale areas is reported, by which considerable adjusting of surface wettability can be realized. With the assistance of polystyrene spheres monolayer template and morphology control agent, we succeeded in preparing a series of ordered ZnO microbowls with different sag height. It was found that the contact angle could be well adjusted by changing geometry of microbowl. Such novel, ordered arrays are expected to exploit the great potentiality in waterproof or self-cleaning micro/nanodevices, and even microfluidic devices. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Permanent bending and alignment of ZnO nanowires.

    PubMed

    Borschel, Christian; Spindler, Susann; Lerose, Damiana; Bochmann, Arne; Christiansen, Silke H; Nietzsche, Sandor; Oertel, Michael; Ronning, Carsten

    2011-05-06

    Ion beams can be used to permanently bend and re-align nanowires after growth. We have irradiated ZnO nanowires with energetic ions, achieving bending and alignment in different directions. Not only the bending of single nanowires is studied in detail, but also the simultaneous alignment of large ensembles of ZnO nanowires. Computer simulations reveal how the bending is initiated by ion beam induced damage. Detailed structural characterization identifies dislocations to relax stresses and make the bending and alignment permanent, even surviving annealing procedures.

  8. Structure of graphene oxide dispersed with ZnO nanoparticles

    SciTech Connect

    Yadav, Rishikesh Pandey, Devendra K.; Khare, P. S.

    2014-10-15

    Graphene has been proposed as a promising two-dimensional nanomaterial with outstanding electronic, optical, thermal and mechanical properties for many applications. In present work a process of dispersion of graphene oxide with ZnO nanoparticles in ethanol solution with different pH values, have been studied. Samples have been characterized by XRD, SEM, PL, UV-visible spectroscopy and particles size measurement. The results analysis indicates overall improved emission spectrum. It has been observed that the average diameter of RGO (Reduced Graphene Oxide) decreases in presence of ZnO nanoparticles from 3.8μm to 0.41μm.

  9. Kinetics of Congruent Vaporization of ZnO Islands

    SciTech Connect

    Kim, B.J.; Stach, E.; Garcia, R.E.

    2011-09-28

    We examine the congruent vaporization of ZnO islands using in situ transmission electron microscopy. Correlating quantitative measurements with a theoretical model offers a comprehensive understanding of the equilibrium conditions of the system, including equilibrium vapor pressure and surface free energy. Interestingly, the surface energy depends on temperature, presumably due to a charged surface at our specific condition of low P and high T. We find that the vaporization temperature decreases with decreasing system size, a trend that is more pronounced at higher T. Applying our results of island decay towards the growth of the ZnO provides new insights into the cooperative facet growth of anisotropic nanocrystals.

  10. Stabilization Mechanism of ZnO Nanoparticles by Fe Doping

    NASA Astrophysics Data System (ADS)

    Xiao, Jianping; Kuc, Agnieszka; Frauenheim, Thomas; Heine, Thomas

    2014-03-01

    Surprisingly low solubility and toxicity of Fe-doped ZnO nanoparticles is elucidated on the basis of first-principles calculations. Various ZnO surfaces that could be present in nanoparticles are subject to substitutional Fe doping. We show that Fe stabilizes polar instable surfaces, while nonpolar surfaces, namely (101_0) and (112_0), remain intact. Polar surfaces can be stabilized indirectly through Fe2+-Fe3+ pair-assisted charge transfer, which reduces surface polarity and therefore, the solubility in polar solvents.

  11. ZnO nanotube based dye-sensitized solar cells.

    SciTech Connect

    Martinson, A. B. F.; Elam, J. W.; Hupp, J. T.; Pellin, M. J.

    2007-05-25

    We introduce high surface area ZnO nanotube photoanodes templated by anodic aluminum oxide for use in dye-sensitized solar cells (DSSCs). Atomic layer deposition is utilized to coat pores conformally, providing a direct path for charge collection over tens of micrometers thickness. Compared to similar ZnO-based devices, ZnO nanotube cells show exceptional photovoltage and fill factors, in addition to power efficiencies up to 1.6%. The novel fabrication technique provides a facile, metal-oxide general route to well-defined DSSC photoanodes.

  12. Oxygen sensing characteristics of individual ZnO nanowire transistors

    SciTech Connect

    Li, Q.H.; Liang, Y.X.; Wan, Q.; Wang, T.H.

    2004-12-27

    Individual ZnO nanowire transistors are fabricated, and their sensing properties are investigated. The transistors show a carrier density of 2300 {mu}m{sup -1} and mobility up to 6.4 cm{sup 2}/V s, which are obtained from the I{sub SD}-V{sub G} curves. The threshold voltage shifts in the positive direction and the source-drain current decreases as ambient oxygen concentration increases. However, the opposite occurs when the transistors are under illumination. Surface adsorbates on the ZnO nanowires affect both the mobility and the carrier density. Our data are helpful in understanding the sensing mechanism of the gas sensors.

  13. Growth modes of ZnO nanostructures from laser ablation

    SciTech Connect

    Amarilio-Burshtein, I.; Tamir, S.; Lifshitz, Y.

    2010-03-08

    ZnO nanowires (NWs) and other nanostructures were grown by laser ablation of a ZnO containing target onto different substrates with and without the presence of an Au catalyst. The morphology and structure of the NWs were studied using high resolution scanning and transmission electron microscopes [including imaging, selected area electron diffraction (SAED), and energy dispersive x-ray spectroscopy (EDS)]. The different growth modes obtainable could be tuned by varying the Zn concentration in the vapor phase keeping other growth parameters intact. Possible growth mechanisms of these nanowires are suggested and discussed.

  14. Multipod znO nanoforms: low temperature synthesis and characterization.

    PubMed

    Ghoshal, Tandra; Kar, Soumitra; Biswas, Subhajit; Majumdar, Gautam; Chaudhuri, Subhadra

    2007-02-01

    ZnO nanotetrapods were synthesized by a simple thermal evaporation of Zn powder at a relatively low temperature approximately 600 degrees C. The tetrapods have four legs with hexagonal cross-section. Interpenetrating growth was observed in some of these nanotetrapods. Multipod ZnO nanoforms were produced at higher temperature. The optical characterizations such as optical absorbance, photoluminescence and Raman spectroscopy reveal excellent crystal qualities of these nanoforms. The field emission studies indicated that these nanoforms could be utilized in field emission based devices.

  15. Improved Response of ZnO Films for Pyroelectric Devices

    PubMed Central

    Hsiao, Chun-Ching; Yu, Shih-Yuan

    2012-01-01

    Increasing the temperature variation rate is a useful method for enhancing the response of pyroelectric devices. A three-dimensional ZnO film was fabricated by the aerosol deposition (AD) rapid process using the shadow mask method, which induces lateral temperature gradients on the sidewalls of the responsive element, thereby increasing the temperature variation rate. To enhance the quality of the film and reduce the concentration of defects, the film was further treated by laser annealing, and the integration of a comb-like top electrode enhanced the voltage response and reduced the response time of the resulting ZnO pyroelectric devices. PMID:23235444

  16. Electron-hole quantum physics in ZnO

    NASA Astrophysics Data System (ADS)

    Versteegh, M. A. M.

    2011-09-01

    This dissertation describes several new aspects of the quantum physics of electrons and holes in zinc oxide (ZnO), including a few possible applications. Zinc oxide is a II-VI semiconductor with a direct band gap in the ultraviolet. Experimental and theoretical studies have been performed, both on bulk ZnO and on ZnO nanowires. Chapter 2 presents a new technique for an ultrafast all-optical shutter, based on two-photon absorption in a ZnO crystal. This shutter can be used for luminescence experiments requiring extremely high time-resolution. Chapter 3 describes a time-resolved study on the electron-hole many-body effects in highly excited ZnO at room temperature, in particular band-filling, band-gap renormalization, and the disappearance of the exciton resonance due to screening. In Chapter 4, the quantum many-body theory developed and experimentally verified in Chapter 3, is used to explain laser action in ZnO nanowires, and compared with experimental results. In contrast to current opinion, the results indicate that excitons are not involved in the laser action. The measured emission wavelength, the laser threshold, and the spectral distance between the laser modes are shown to be excellently explained by our quantum many-body theory. Multiple scattering of light in a forest of nanowires can be employed to enhance light absorption in solar cells. Optimization of this technique requires better understanding of light diffusion in such a nanowire forest. In Chapter 5 we demonstrate a method, based on two-photon absorption, to directly measure the residence time of light in a nanowire forest, and we show that scanning electron microscope (SEM) images can be used to predict the photon mean free path. In Chapter 6 we present a new ultrafast all-optical transistor, consisting of a forest of ZnO nanowires. After excitation, laser action in this forest causes rapid recombination of the majority of the electrons and holes, limiting the amplification to 1.2 picoseconds only

  17. Optical characterization of ZnO nanomaterial with praseodymium ions

    SciTech Connect

    Sharma, Y. K. Bind, Umesh Chandra; Pal, Sudha Goyal, Priyanka

    2016-05-06

    ZnO nanomaterial with praseodymium ions was prepared by chemical synthesis method. The ZnO nanomaterial was characterized by XRD, SEM and TEM. Their absorption in UV-VIS/NIR regions was measured at room temperature. The experimental oscillator strengths were calculated from the areas under the absorption bands. Eight absorption bands have been observed. From these spectral data various energy interaction parameters like Slater–Condon, Lande, Racah, Nephelauxetic ratio and bonding parameters have been computed. Judd-Ofelt analysis has been carried out using the absorption spectra to evaluate the radiative properties for luminescent levels of the praseodymium ion and discussed. The observed nano particle size is 2nm.

  18. Single photon emission from ZnO nanoparticles

    SciTech Connect

    Choi, Sumin; Ton-That, Cuong; Phillips, Matthew R.; Aharonovich, Igor; Johnson, Brett C.; Castelletto, Stefania

    2014-06-30

    Room temperature single photon emitters are very important resources for photonics and emerging quantum technologies. In this work, we study single photon emission from defect centers in 20 nm zinc oxide (ZnO) nanoparticles. The emitters exhibit bright broadband fluorescence in the red spectral range centered at 640 nm with polarized excitation and emission. The studied emitters showed continuous blinking; however, bleaching can be suppressed using a polymethyl methacrylate coating. Furthermore, hydrogen termination increased the density of single photon emitters. Our results will contribute to the identification of quantum systems in ZnO.

  19. In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae

    NASA Astrophysics Data System (ADS)

    Hameed, Abdulrahman Syedahamed Haja; Karthikeyan, Chandrasekaran; Ahamed, Abdulazees Parveez; Thajuddin, Nooruddin; Alharbi, Naiyf S.; Alharbi, Sulaiman Ali; Ravi, Ganasan

    2016-04-01

    Pure ZnO and Neodymium (Nd) doped ZnO nanoparticles (NPs) were synthesized by the co-precipitation method. The synthesized nanoparticles retained the wurtzite hexagonal structure. From FESEM studies, ZnO and Nd doped ZnO NPs showed nanorod and nanoflower like morphology respectively. The FT-IR spectra confirmed the Zn-O stretching bands at 422 and 451 cm‑1 for ZnO and Nd doped ZnO NPs respectively. From the UV-VIS spectroscopic measurement, the excitonic peaks were found around 373 nm and 380 nm for the respective samples. The photoluminescence measurements revealed that the broad emission was composed of ten different bands due to zinc vacancies, oxygen vacancies and surface defects. The antibacterial studies performed against extended spectrum β-lactamases (ESBLs) producing strains of Escherichia coli and Klebsiella pneumoniae showed that the Nd doped ZnO NPs possessed a greater antibacterial effect than the pure ZnO NPs. From confocal laser scanning microscopic (CLSM) analysis, the apoptotic nature of the cells was confirmed by the cell shrinkage, disorganization of cell wall and cell membrane and dead cell of the bacteria. SEM analysis revealed the existence of bacterial loss of viability due to an impairment of cell membrane integrity, which was highly consistent with the damage of cell walls.

  20. In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae

    PubMed Central

    Hameed, Abdulrahman Syedahamed Haja; Karthikeyan, Chandrasekaran; Ahamed, Abdulazees Parveez; Thajuddin, Nooruddin; Alharbi, Naiyf S.; Alharbi, Sulaiman Ali; Ravi, Ganasan

    2016-01-01

    Pure ZnO and Neodymium (Nd) doped ZnO nanoparticles (NPs) were synthesized by the co-precipitation method. The synthesized nanoparticles retained the wurtzite hexagonal structure. From FESEM studies, ZnO and Nd doped ZnO NPs showed nanorod and nanoflower like morphology respectively. The FT-IR spectra confirmed the Zn-O stretching bands at 422 and 451 cm−1 for ZnO and Nd doped ZnO NPs respectively. From the UV-VIS spectroscopic measurement, the excitonic peaks were found around 373 nm and 380 nm for the respective samples. The photoluminescence measurements revealed that the broad emission was composed of ten different bands due to zinc vacancies, oxygen vacancies and surface defects. The antibacterial studies performed against extended spectrum β-lactamases (ESBLs) producing strains of Escherichia coli and Klebsiella pneumoniae showed that the Nd doped ZnO NPs possessed a greater antibacterial effect than the pure ZnO NPs. From confocal laser scanning microscopic (CLSM) analysis, the apoptotic nature of the cells was confirmed by the cell shrinkage, disorganization of cell wall and cell membrane and dead cell of the bacteria. SEM analysis revealed the existence of bacterial loss of viability due to an impairment of cell membrane integrity, which was highly consistent with the damage of cell walls. PMID:27071382

  1. In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae.

    PubMed

    Hameed, Abdulrahman Syedahamed Haja; Karthikeyan, Chandrasekaran; Ahamed, Abdulazees Parveez; Thajuddin, Nooruddin; Alharbi, Naiyf S; Alharbi, Sulaiman Ali; Ravi, Ganasan

    2016-04-13

    Pure ZnO and Neodymium (Nd) doped ZnO nanoparticles (NPs) were synthesized by the co-precipitation method. The synthesized nanoparticles retained the wurtzite hexagonal structure. From FESEM studies, ZnO and Nd doped ZnO NPs showed nanorod and nanoflower like morphology respectively. The FT-IR spectra confirmed the Zn-O stretching bands at 422 and 451 cm(-1) for ZnO and Nd doped ZnO NPs respectively. From the UV-VIS spectroscopic measurement, the excitonic peaks were found around 373 nm and 380 nm for the respective samples. The photoluminescence measurements revealed that the broad emission was composed of ten different bands due to zinc vacancies, oxygen vacancies and surface defects. The antibacterial studies performed against extended spectrum β-lactamases (ESBLs) producing strains of Escherichia coli and Klebsiella pneumoniae showed that the Nd doped ZnO NPs possessed a greater antibacterial effect than the pure ZnO NPs. From confocal laser scanning microscopic (CLSM) analysis, the apoptotic nature of the cells was confirmed by the cell shrinkage, disorganization of cell wall and cell membrane and dead cell of the bacteria. SEM analysis revealed the existence of bacterial loss of viability due to an impairment of cell membrane integrity, which was highly consistent with the damage of cell walls.

  2. Study of ZnO and Mg doped ZnO nanoparticles by sol-gel process

    SciTech Connect

    Ansari, Mohd Meenhaz Arshad, Mohd; Tripathi, Pushpendra

    2015-06-24

    Nano-crystalline undoped and Mg doped ZnO (Mg-ZnO) nanoparticles with compositional formula Mg{sub x}Zn{sub 1-x}O (x=0,1,3,5,7,10 and 12 %) were synthesized using sol-gel process. The XRD diffraction peaks match with the pattern of the standard hexagonal structure of ZnO that reveals the formation of hexagonal wurtzite structure in all samples. SEM images demonstrates clearly the formation of spherical ZnO nanoparticles, and change of the morphology of the nanoparticles with the concentration of the magnesium, which is in close agreement with that estimated by Scherer formula based on the XRD pattern. To investigate the doping effect on optical properties, the UV–VIS absorption spectra was obtained and the band gap of the samples calculated.

  3. Built-in electric field in ZnO based semipolar quantum wells grown on (1012) ZnO substrates

    SciTech Connect

    Chauveau, J.-M.; Xia, Y.; Roland, B.; Vinter, B.; Ben Taazaet-Belgacem, I.; Teisseire, M.; Nemoz, M.; Brault, J.; Damilano, B.; Leroux, M.

    2013-12-23

    We report on the properties of semipolar (Zn,Mg)O/ZnO quantum wells homoepitaxially grown by molecular beam epitaxy on (1012) R-plane ZnO substrates. We demonstrate that atomically flat interfaces can be achieved with fully relaxed quantum wells because the mismatch between (Zn,Mg)O and ZnO is minimal for this growth orientation. The photoluminescence properties evidence a quantum confined Stark effect with an internal electric field estimated to 430 kV/cm for a 17% Mg content in the barriers. The quantum well emission is strongly polarized along the 1210 direction and a comparison with the semipolar bulk ZnO luminescence polarization points to the effect of the confinement.

  4. Structural studies of ZnO nanostructures by varying the deposition parameters

    NASA Astrophysics Data System (ADS)

    Yunus, S. H. A.; Sahdan, M. Z.; Ichimura, M.; Supee, A.; Rahim, S.

    2017-01-01

    The effect of Zinc Oxide (ZnO) thin film on the growth of ZnO nanorods (NRs) was investigated. The structures of ZnO NRs were synthesized by chemical bath deposition (CBD) method in aqueous solution of N2O6Zn.6H2O and C6H12N4 at 90°C of deposition temperature. One of the ZnO NRs samples was deposited on a ZnO seed layer coated on a glass substrate to investigate the properties of ZnO NRs without receiving effect of other materials. Next, for diode application, the ZnO NRs was deposited on tin monosulfide (SnS) coated on indium-tin-oxide (ITO) coated glass substrate (SnS/ITO). The next, the ZnO structural properties were studied from surface morphology, X-ray diffractometer (XRD) spectra, and chemical composition by using field emission scanning electron microscope (FESEM), XRD and energy dispersive X-ray Spectroscopy (EDX). The growth of ZnO NRs on ZnO seed layer was investigated by ZnO seed layer condition while the growth of ZnO NRs on SnS/ITO was investigated by deposition time and deposition temperature parameters. From FESEM images, aligned ZnO NRs were obtained, and the diameters of ZnO NRs were 0.024-3.94 µm. The SnS thin film was affected by the diameter of ZnO NRs which are the ZnO NRs grow on SnS thin films has a larger diameter compared to ZnO NRs grow on ZnO seed layer. Besides that, all of ZnO peaks observed from XRD corresponding to the wurzite structure and preferentially oriented along the c-axis. In addition, EDX shows a high composition of zinc (Zn) and oxygen (O) signals, which indicated that the NRs are indeed made up of Zn and O.

  5. Detecting heavy quarks

    SciTech Connect

    Benenson, G.; Chau, L.L.; Ludlam, T.; Paige, F.E.; Platner, E.D.; Protopopescu, S.D.; Rehak, P.

    1983-01-01

    In this exercise we examine the performance of a detector specifically configured to tag heavy quark (HQ) jets through direct observations of D-meson decays with a high resolution vertex detector. To optimize the performance of such a detector, we assume the small diamond beam crossing configuration as described in the 1978 ISABELLE proposal, giving a luminosity of 10/sup 32/ cm/sup -2/ sec/sup -1/. Because of the very large backgrounds from light quark (LQ) jets, most triggering schemes at this luminosity require high P/sub perpendicular to/ leptons and inevitably give missing neutrinos. If alternative triggering schemes could be found, then one can hope to find and calculate the mass of objects decaying to heavy quarks. A scheme using the high resolution detector will also be discussed in detail. The study was carried out with events generated by the ISAJET Monte Carlo and a computer simulation of the described detector system. (WHK)

  6. Heavy Vehicle Propulsion Materials

    SciTech Connect

    Ray Johnson

    2000-01-31

    The objectives are to Provide Key Enabling Materials Technologies to Increase Energy Efficiency and Reduce Exhaust Emissions. The following goals are listed: Goal 1: By 3rd quarter 2002, complete development of materials enabling the maintenance or improvement of fuel efficiency {ge} 45% of class 7-8 truck engines while meeting the EPA/Justice Department ''Consent Decree'' for emissions reduction. Goal 2: By 4th quarter 2004, complete development of enabling materials for light-duty (class 1-2) diesel truck engines with efficiency over 40%, over a wide range of loads and speeds, while meeting EPA Tier 2 emission regulations. Goal 3: By 4th quarter 2006, complete development of materials solutions to enable heavy-duty diesel engine efficiency of 50% while meeting the emission reduction goals identified in the EPA proposed rule for heavy-duty highway engines.''

  7. Utah Heavy Oil Program

    SciTech Connect

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  8. Heavy rain field measurements

    NASA Technical Reports Server (NTRS)

    Melson, ED

    1991-01-01

    A weight-measuring rain gauge was developed to collect rain data and configured to operate at a high sample rate (one sample pre second). Instead of averaging the rain rate in minutes, hours, and sometime days as normally performed, the rain data collected are examined in seconds. The results of six field sites are compiled. Rain rate levels, duration of downpours, and frequency of heavy rainfall events are presented.

  9. Retrofitting heavy oil processes

    SciTech Connect

    Hamilton, G.L.; Fitzgerald, M.; D'Amico, V.

    1986-01-01

    Refiners, faced with the need to process the bottom end of the heavy high sulfur crude oil barrel in today's uncertain economic environment, are reluctant to commit large amounts of money to expensive upgrading processes. In order to conserve scarce capital while improving operating margins, additional valuable products can be produced by retrofits such as conversion of an idle crude unit to visbreaking, delayed coking or deasphalting service, or conversion of hydrodesulfurizers to mild hydrocracking.

  10. Hadroduction of heavy flavors

    SciTech Connect

    Leedom, I.D.

    1986-04-01

    The current state of knowledge of heavy quark production, particularly charm, by hadron beams is reviewed. The state of knowledge of total cross section, p/sub T/ and x/sub F/ dependence of charm hadroproduction is given. Besides D production, production of D* is discussed. Also covered is the present evidence for hadronically produced B mesons. 28 refs., 5 figs., 3 tabs. (LEW)

  11. Heavy Stars Thrive among Heavy Elements

    NASA Astrophysics Data System (ADS)

    2002-08-01

    VLT Observes Wolf-Rayet Stars in Virgo Cluster Galaxies [1] Summary Do very massive stars form in metal-rich regions of the Universe and in the nuclei of galaxies ? Or does "heavy element poisoning" stop stellar growth at an early stage, before young stars reach the "heavyweight class"? What may at the first glance appear as a question for specialists actually has profound implications for our understanding of the evolution of galaxies, those systems of billions of stars - the main building blocks of the Universe. With an enormous output of electromagnetic radiation and energetic elementary particles, massive stars exert a decisive influence on the surrounding (interstellar) gas and dust clouds . They also eject large amounts of processed elements, thereby participating in the gradual build-up of the many elements we see today. Thus the presence or absence of such stars at the centres of galaxies can significantly change the overall development of those regions and hence, presumably, that of the entire galaxy. A team of European astronomers [2] has now directly observed the presence of so-called Wolf-Rayet stars (born with masses of 60 - 90 times that of the Sun or more) within metal-rich regions in some galaxies in the Virgo cluster, some 50 million light-years away. This is the first unambiguous detection of such massive stellar objects in metal-rich regions . PR Photo 20a/02 : H II regions in the Virgo cluster galaxy NGC 4254 . PR Photo 20b/02 : Multi-object-slit observation of galaxy NGC 4303 . PR Photo 20c/02 : Spectrum of H II region in NGC 4254 with Wolf-Rayet signatures. Production of heavy elements in the Universe Most scientists agree that the Universe in which we live underwent a dramatic event, known as the Big Bang , approximately 15,000 million years ago. During the early moments, elementary particles were formed which after some time united into more complex nuclei and in turn resulted in the production of hydrogen and helium atoms and their isotopes

  12. ZnO nanowire-based CO sensor

    NASA Astrophysics Data System (ADS)

    Ho, Mon-Shu; Chen, Wei-Hao; Chen, Yu-Lin; Chang, Meng-Fan

    This study applied ZnO nanowires to the fabrication of a CO gas sensor operable at room temperature. Following the deposition of a seed layer by spin coating, an aqueous solution method was used to grow ZnO nanowires. This was followed by the self-assembly of an electrode array via dielectrophoresis prior to the fabrication of the CO sensing device. The material characteristics were analyzed using FE-SEM, EDS, GIXRD, FE-TEM, and the measurement of photoluminescence (PL). Our results identified the ZnO nanowires as a single crystalline wurtzite structure. Extending the growth period from 30 min to 360 min led to an increase in the length and diameter of the nanowires. After two hours, the ZnO presented a preferred crystal orientation of [002]. Sensor chips were assembled using 60 pairs of electrodes with gaps of 2 μm, over which were lain nanowires to complete the sensing devices. The average sensing response was 48.37 s and the average recovery time was 65.61 s, with a sensing response magnitude of approximately 6.8% at room temperature.

  13. Photoluminescence of spray pyrolysis deposited ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Kärber, Erki; Raadik, Taavi; Dedova, Tatjana; Krustok, Jüri; Mere, Arvo; Mikli, Valdek; Krunks, Malle

    2011-04-01

    Photoluminescence of highly structured ZnO layers comprising well-shaped hexagonal rods is presented. The ZnO rods (length 500-1,000 nm, diameter 100-300 nm) were grown in air onto a preheated soda-lime glass (SGL) or ITO/SGL substrate by low-cost chemical spray pyrolysis method using zinc chloride precursor solutions and growth temperatures in the range of 450-550°C. We report the effect of the variation in deposition parameters (substrate type, growth temperature, spray rate, solvent type) on the photoluminescence properties of the spray-deposited ZnO nanorods. A dominant near band edge (NBE) emission is observed at 300 K and at 10 K. High-resolution photoluminescence measurements at 10 K reveal fine structure of the NBE band with the dominant peaks related to the bound exciton transitions. It is found that all studied technological parameters affect the excitonic photoluminescence in ZnO nanorods. PACS: 78.55.Et, 81.15.Rs, 61.46.Km

  14. Photoluminescence of spray pyrolysis deposited ZnO nanorods.

    PubMed

    Kärber, Erki; Raadik, Taavi; Dedova, Tatjana; Krustok, Jüri; Mere, Arvo; Mikli, Valdek; Krunks, Malle

    2011-04-21

    Photoluminescence of highly structured ZnO layers comprising well-shaped hexagonal rods is presented. The ZnO rods (length 500-1,000 nm, diameter 100-300 nm) were grown in air onto a preheated soda-lime glass (SGL) or ITO/SGL substrate by low-cost chemical spray pyrolysis method using zinc chloride precursor solutions and growth temperatures in the range of 450-550°C. We report the effect of the variation in deposition parameters (substrate type, growth temperature, spray rate, solvent type) on the photoluminescence properties of the spray-deposited ZnO nanorods. A dominant near band edge (NBE) emission is observed at 300 K and at 10 K. High-resolution photoluminescence measurements at 10 K reveal fine structure of the NBE band with the dominant peaks related to the bound exciton transitions. It is found that all studied technological parameters affect the excitonic photoluminescence in ZnO nanorods.PACS: 78.55.Et, 81.15.Rs, 61.46.Km.

  15. Memristive switching of ZnO nanorod mesh

    NASA Astrophysics Data System (ADS)

    Yevgeniy, Puzyrev; Shen, Xiao; Ni, Kai; Zhang, Xuan; Hachtel, Jordan; Choi, Bo; Chisholm, Matthew; Fleetwood, Daniel; Schrimpf, Ronald; Pantelides, Sokrates

    We present a combined experimental and theoretical study of memristive switching in a self-assembled mesh of ZnO nanorods. A ZnO nanorod mesh spans the area between Ag contacts in a device that exhibits hysteresis with large ON/OFF ratio, reaching ION/IOFF values of 104. We show that switching behavior depends critically on the geometry of the nanorod mesh. We employ density functional theory (DFT) calculations to deduce the mechanism for resistive switching for the nanorod mesh. Redistribution of Ag atoms, driven by an electrical field, leads to the formation and evolution of a conducting path through nanorods. Field-induced migration of Ag atoms changes the doping level of nanorods and modulates their conductivity. Using static DFT and nudged-elastic-band calculations, we investigate the energy of interaction between Ag clusters and a ZnO surface, including migration barriers of Ag atoms. Current-voltage (I-V) characteristics are modeled using percolation theory in a nanorod mesh. To describe the dynamics of SET/RESET phenomena, model parameters include the experimentally observed nanorod geometry and the energetics of Ag on ZnO surfaces, obtained from DFT calculations. This work was supported by NSF Grant DMR-1207241, DOE Grant DE-FG02-09ER46554, and the McMinn Endowment at Vanderbilt University. Computational support was provided by the NSF XSEDE under Grant #DMR TG-DMR130121.

  16. Hydrothermally grown ZnO nanoparticles for effective photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Kumaresan, N.; Ramamurthi, K.; Ramesh Babu, R.; Sethuraman, K.; Moorthy Babu, S.

    2017-10-01

    ZnO nanoparticles were prepared by hydrothermal method from the source materials of zinc chloride and ammonium hydroxide. Precursor solution pH was varied to 7, 9, 11 and 13 by the addition of ammonium solution and the solution was hydrothermally treated at 150 °C for 3 h. Further prepared samples were annealed at 400° C for 3 h. X-ray diffraction technique was employed to study the structure and crystalline nature of synthesized nanoparticles. Diffuse Reflectance Spectroscopy studies revealed that optical band gap of ZnO is slightly varied due to the effect of size of the particle. Field emission scanning electron microscope images showed that the prepared ZnO nanoparticles acquired spindle like nanorods, hexagonal disk, porous nanorods and nanoflower structures due to the effect of pH of the precursor solution. Photocatlytic activity of the prepared ZnO nanoparticles was evaluated for Rhodamine B (RhB) dye which showed 94% of degradation and good stability for five cycles.

  17. Self-focused ZnO transducers for ultrasonic biomicroscopy

    SciTech Connect

    Cannata, J. M.; Williams, J. A.; Zhou, Q. F.; Sun, L.; Shung, K. K.; Yu, H.; Kim, E. S.

    2008-04-15

    A simple fabrication technique was developed to produce high frequency (100 MHz) self-focused single element transducers with sputtered zinc oxide (ZnO) crystal films. This technique requires the sputtering of a ZnO film directly onto a curved backing substrate. Transducers were fabricated by sputtering an 18 {mu}m thick ZnO layer on 2 mm diameter aluminum rods with ends shaped and polished to produce a 2 mm focus or f-number equal to one. The aluminum rod served a dual purpose as the backing layer and positive electrode for the resultant transducers. A 4 {mu}m Parylene matching layer was deposited on the transducers after housing and interconnect. This matching layer was used to protect the substrate and condition the transfer of acoustic energy between the ZnO film and the load medium. The pulse-echo response for a representative transducer was centered at 101 MHz with a -6 dB bandwidth of 49%. The measured two way insertion loss was 44 dB. A tungsten wire phantom and an adult zebrafish eye were imaged to show the capability of these transducers.

  18. Photoluminescence of spray pyrolysis deposited ZnO nanorods

    PubMed Central

    2011-01-01

    Photoluminescence of highly structured ZnO layers comprising well-shaped hexagonal rods is presented. The ZnO rods (length 500-1,000 nm, diameter 100-300 nm) were grown in air onto a preheated soda-lime glass (SGL) or ITO/SGL substrate by low-cost chemical spray pyrolysis method using zinc chloride precursor solutions and growth temperatures in the range of 450-550°C. We report the effect of the variation in deposition parameters (substrate type, growth temperature, spray rate, solvent type) on the photoluminescence properties of the spray-deposited ZnO nanorods. A dominant near band edge (NBE) emission is observed at 300 K and at 10 K. High-resolution photoluminescence measurements at 10 K reveal fine structure of the NBE band with the dominant peaks related to the bound exciton transitions. It is found that all studied technological parameters affect the excitonic photoluminescence in ZnO nanorods. PACS: 78.55.Et, 81.15.Rs, 61.46.Km PMID:21711895

  19. Ecotoxicity of Manufactured ZnO Nanoparticles - A Review

    EPA Science Inventory

    This report presents an exhaustive literature review on the toxicity of manufactured ZnO nanoparticles (NPs) to ecological receptors across different phylum: bacteria, algae and plants, aquatic and terrestrial invertebrates and freshwater fish. Results show that the majority of s...

  20. Tyrosinase immobilization on ZnO nanorods for phenol detection.

    PubMed

    Gu, B X; Xu, C X; Zhu, G P; Liu, S Q; Chen, L Y; Li, X S

    2009-01-08

    Directly using zinc powders as source material, ZnO nanorods were fabricated on gold wire by hydrothermal reaction without any other surfacant and stabilizing agent. The gold wire was skillfully treated to improve the nucleation for growth of ZnO nanostructures and to further improve the performance of the biosensor, which was construct by immobilizing tyrosinase (Tyr) on the ZnO nanorods for phenol detection. Electrochemical measurement, Fourier transform infrared and scanning electron microscopic analyses demonstrated that the Tyr was stably adsorbed on the ZnO nanorods surface with bioactivity for phenol oxidization. The biosensor reached 95% of steady-state current within 5s, and the sensitivity was as high as 103.08 microA/mM at C(phenol) > 20 microM and was 40.76 microA/mM at C(phenol) < 20 microM. The detection limit of 0.623 microM was obtained at a signal/noise ratio of 3.

  1. Growth of ZnO and GaN Films

    NASA Astrophysics Data System (ADS)

    Chang, J.; Hong, S.-K.; Matsumoto, K.; Tokunaga, H.; Tachibana, A.; Lee, S. W.; Cho, M.-W.

    . Zinc oxide (ZnO) and gallium nitride (GaN) are wide bandgap semi conductors applicable to light emitting diodes (LEDs) and laser diodes (LDs) with wavelengths ranging from ultraviolet to blue light. Now ZnO and GaN are key ma terials for optoelectronic device applications and their applications are being rapidly expanded to lots of other technology including electronics, biotechnology, nanotech-nology, and fusion technology among all these. As a fundamental starting point for the development of this new technique, epitaxy of ZnO and GaN films is one of the most important key technology. Hence, development of the growth technique for high quality epitaxial films is highly necessary. Among the various kinds of epi taxy technique for semiconductor films developed so far, physical vapor deposition (PVD)-based epitaxy technique has been revealed to be the appropriate way for the high quality ZnO film and related alloy growths, while chemical vapor deposition (CVD)-based epitaxy technique has been proved to be the best method for the high quality GaN film and related alloy growths.

  2. Growth Kinetics and Modeling of ZnO Nanoparticles

    ERIC Educational Resources Information Center

    Hale, Penny S.; Maddox, Leone M.; Shapter, Joe G.; Voelcker, Nico H.; Ford, Michael J.; Waclawik, Eric R.

    2005-01-01

    The technique for producing quantum-sized zinc oxide (ZnO) particles is much safer than a technique that used hydrogen sulfide gas to produce cadmium sulfide and zinc sulfide nanoparticles. A further advantage of this method is the ability to sample the solution over time and hence determine the growth kinetics.

  3. Growth Kinetics and Modeling of ZnO Nanoparticles

    ERIC Educational Resources Information Center

    Hale, Penny S.; Maddox, Leone M.; Shapter, Joe G.; Voelcker, Nico H.; Ford, Michael J.; Waclawik, Eric R.

    2005-01-01

    The technique for producing quantum-sized zinc oxide (ZnO) particles is much safer than a technique that used hydrogen sulfide gas to produce cadmium sulfide and zinc sulfide nanoparticles. A further advantage of this method is the ability to sample the solution over time and hence determine the growth kinetics.

  4. Co doped ZnO nanowires as visible light photocatalysts

    NASA Astrophysics Data System (ADS)

    Šutka, Andris; Käämbre, Tanel; Pärna, Rainer; Juhnevica, Inna; Maiorov, Mihael; Joost, Urmas; Kisand, Vambola

    2016-06-01

    High aspect ratio cobalt doped ZnO nanowires showing strong photocatalytic activity and moderate ferromagnetic behaviour were successfully synthesized using a solvothermal method and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), vibrating sample magnetometry (VSM) and UV-visible absorption spectroscopy. The photocatalytic activities evaluated for visible light driven degradation of an aqueous methylene orange (MO) solution were higher than for Co doped ZnO nanoparticles at the same doping level and synthesized by the same synthesis route. The rate constant for MO visible light photocatalytic degradation was 1.9·10-3 min-1 in case of nanoparticles and 4.2·10-3 min-1 in case of nanowires. We observe strongly enhanced visible light photocatalytic activity for moderate Co doping levels, with an optimum at a composition of Zn0.95Co0.05O. The enhanced photocatalytic activities of Co doped ZnO nanowires were attributed to the combined effects of enhanced visible light absorption at the Co sites in ZnO nanowires, and improved separation efficiency of photogenerated charge carriers at optimal Co doping.

  5. Ferromagnetism in ZnO doped with alkaline elements

    NASA Astrophysics Data System (ADS)

    Wang, Yiren; Piao, Jingyuan; Xin, Guozhong; Lu, Yunhao; Ao, Zhimin; Bao, Nina; Ding, Jun; Li, Sean; Yi, Jiabao

    We have observed room temperature ferromagnetism (RTFM) in ZnO doped with alkaline elements Using first-principles calculations we found the magnetization in these systems is originated from the O2p hole states around Zn vacancies. Calculations indicate that the formation energy of Zn vacancies alone is rather high while further investigation indicates the formation can be much stabilized by the alkaline dopants in the form of defect complexes. By calculating the formation energy of concerned defects and complexes, we found the role of the dopants that under a certain doping concentration: Zn vacancy, substitutional and interstitial dopants can form a defect complex, which can lower formation energy, therefore stabilizing Zn vacancies. Moreover K dopants have shown unique functions on the ferromagnetism since the substitutional K can induce magnetic moments to the system by forming partial zinc vacancy via lattice distortion. Hence K doped ZnO can be magnetic at low doping concentrations. Experimentally, Li, Na doped ZnO films and K doped ZnO nanorods with different doping levels are synthesized, RTFM can be observed in all these systems. The magnetization is found to be greatly influenced by the doping concentrations. The experimental results have shown good consistence with our theoretical calculations. Our studies can inspire the defect induced ferromagnetism as a new route for the fabrication of new diluted magnetic semiconductors.

  6. Computer simulation of ZnO varistors failures

    SciTech Connect

    Bartkowiak, M.; Mahan, G.D. |; Comber, M.G.; Alim, M.A.

    1997-11-01

    Zinc oxide varistors are multi-component ceramic devices produced by sintering ZnO powder together with small amounts of other oxides. Highly nonlinear current-voltage (I-V) characteristics of ZnO varistors are used in electrical surge arresters. They protect electrical equipment from damage by limiting overvoltages and dissipating the associated energy. Therefore, the energy handling capability is crucial. It is defined as the amount of energy that a varistor can absorb before it fails. Here, a simple thermo-mechanical model is applied to evaluate the influence of the nonuniformity of ZnO varistor disks used in surge arresters on their energy handling capability. By solving heat transfer equations for a varistor disk with nonuniform electrical properties, the authors compute the time dependence of the temperature profile and the distribution of thermal stresses. The model can identify the energy handling limitations of ZnO varistors imposed by three different failure modes: puncture, thermal runaway, and cracking. It conforms to the available failure data, and explains the observation that energy handling improves at high current densities.

  7. Ecotoxicity of Manufactured ZnO Nanoparticles - A Review

    EPA Science Inventory

    This report presents an exhaustive literature review on the toxicity of manufactured ZnO nanoparticles (NPs) to ecological receptors across different phylum: bacteria, algae and plants, aquatic and terrestrial invertebrates and freshwater fish. Results show that the majority of s...

  8. Rapid synthesis of flower-like ZnO nanostructures.

    PubMed

    Movahedi, Maryam; Mahjoub, Ali Reza; Yavari, Issa; Kowsari, Elaheh

    2010-09-01

    Flower-like ZnO nanostructures were prepared via microwave assisted heating in the presence and absence of ionic liquid (IL). X-ray diffraction analysis (XRD), Scanning electron microscopy SEM and room temperature photoluminescence (PL) spectra have been employed for characterization of the products. The SEM image illustrates the surface of flower-like ZnO prepared in the presence of IL is not smooth and consists of nanoparticles with grain size of about 48 nm. PL spectra of flower-like ZnO in absence and presence IL reveal similar photoluminescence features: a strong UV, weak blue and green-yellow emissions peak at a bout 393 nm, 448 nm and 583 nm respectively. The strong UV photoluminescence and the weak green emission indicate the good crystallization quality of the flower-like nanostructure. The results show that imidazolium-based IL can be used as template for achieving very high level control over the size and shape of nanostructures. The approach developed in this work can potentially be used as a viable method for making various other uniform nanostructures in the presence of IL. This method is simple, fast, low-cost and suitable for large-scale production of ZnO nanostructures.

  9. Perovskite enhanced solid state ZnO solar cells

    NASA Astrophysics Data System (ADS)

    Loh, L.; Briscoe, J.; Dunn, S.

    2013-12-01

    This paper will report on the design, fabrication and testing of a solid-state perovskite enhanced ZnO solar cell. The p-type perovskite material used is bismuth ferrite (BFO) which has an absorption range within the blue range of the visible light spectrum. The solid state solar cell, was sensitized with N719 dye and used a CuSCN hole conductor. A disadvantage of ZnO is its poor chemical stability in acidic and corrosive environments. As chemical solution techniques were used in depositing BFO, a buffer method using an aminosilane ((3-aminopropyltrimethoxysilane or H2N(CH2)3Si(OCH3)3)) coating was used to provide a protective coating on the ZnO nanorods before the BFO film was spin coated onto the ZnO nanorods. The photovoltaic performance of the solar cells were tested using a Keithley 2400 source meter under 100mW/cm2, AM 1.5G simulated sunlight, where improvements in Jsc and efficiency were observed. The BFO was able to harness more electrons and also acted as a buffer from electron recombination.

  10. Heavy-heavy and heavy-light quarks interactions generated by QCD vacuum

    NASA Astrophysics Data System (ADS)

    Musakhanov, Mirzayusuf

    2017-03-01

    The QCD vacuum is populated by instantons that correspond to the tunneling processes in the vacuum. This mechanism creates the strong vacuum gluon fields. As result, the QCD vacuum instantons induce very strong interactions between light quarks, initially almost massless. Such a strong interactions bring a large dynamical mass M of the light quarks and bound them to produce almost massless pions in accordance with the spontaneous breaking of the chiral symmetry (SBCS). On the other hand, the QCD vacuum instantons also interact with heavy quarks and responsible for the generation of the heavy-heavy and heavy-light quarks interactions, with a traces of the SBCS. If we take the average instanton size \\bar ρ = 0.33 fm, and the average inter-instanton distance \\bar R = 1 fm we obtain the dynamical light quark mass to be M = 365 MeV and the instanton media contribution to the heavy quark mass ΔM=70 MeV. These factors define the coupling between heavy-light and heavy-heavy quarks induced by the QCD vacuum instantons. We consider first the instanton effects on the heavy-heavy quarks potential, including its spin-dependent part. We also discuss those effects on the masses of the charmonia and their hyperfine mass splittings. At the second part we discuss the interaction between a heavy and light quarks generated by instantons and it's effects.

  11. Effects of polyphosphates and orthophosphate on the dissolution and transformation of ZnO nanoparticles.

    PubMed

    Wan, Biao; Yan, Yupeng; Tang, Yuanzhi; Bai, Yuge; Liu, Fan; Tan, Wenfeng; Huang, Qiaoyun; Feng, Xionghan

    2017-02-27

    The fate and toxicity of zinc oxide nanoparticles (ZnO NPs) in nature are affected by solution chemistry such as pH, anions, and natural organic matter (NOM). Inorganic polyphosphates are environmentally ubiquitous phosphorus (P) species that may change the speciation and environmental fate of ZnO NPs. In this study, the interactions of polyphosphates with ZnO NPs and the impacts on ZnO NP dissolution and transformation were investigated and compared with orthophosphate (P1). The results revealed that pyrophosphate (P2), tripolyphosphate (P3), and hexametaphosphate (P6) enhanced whereas P1 inhibited the dissolution of ZnO NPs. In addition, P1, P2, and P3 promoted the transformation of ZnO NPs into zinc phosphate (Zn-P) precipitates via interactions with dissolved Zn(2+). However, P6-promoted ZnO NP dissolution was through the formation of soluble Zn-P complexes due to the strong capability of P6 to chelate with Zn(2+). The transformation of ZnO NPs in the presence of P3 was affected by reaction time, pH, and P/Zn molar ratio. P3 first formed inner-sphere surface complexes on ZnO NPs, which gradually transformed into crystalline Zn2HP3O10(H2O)6 precipitates. This study provided a new perspective for understanding the reactivity of various forms of inorganic phosphate species with ZnO NPs in the natural environment.

  12. The Effects of Si Addition on Electrical Degradation of ZnO Varistors

    NASA Astrophysics Data System (ADS)

    Satoi, Yohei; Hirai, Hideki; Yoshino, Hiroyuki; Yoshikado, Shinzo

    The effects of Si addition on the electrical degradation of the ZnO varistors were investigated by voltage-current (V-I ), capacitance-voltage (C-V ) methods, and Isothermal Capacitance Transient Spectroscopy (ICTS). The nonlinearity index α for the Bi-Mn-Si-added ZnO varistors didn’t show the remarkable change but that for the Bi-Co-Si-added ZnO varistors decreased by Si addition. Values of α after electrical degradation showed the local maximum at approximately 700molppm for Bi-Mn-added ZnO varistors and at approximately 500molppm for Bi-Co-added ZnO varistors. It is found that the electrical degradation can be hindered at these optimum Si contents. EC-ET showed the local maximum at the optimum Si content similar to α for the Bi-Mn-Al-added ZnO varistors but those for Bi-Co-Si-added ZnO varistors showed the local minimum at the optimum Si content contrary to α for Bi-Co-Al-added ZnO varistors. The density Nis of the interface trap levels obtained by C-V characteristics and ICTS for both kinds of ZnO varistor showed the local minimum at the optimum Si content similar to Al added Bi-Mn-added and Bi-Co-added ZnO varistors.

  13. Room temperature photoluminescence properties of ZnO nanorods grown by hydrothermal reaction

    SciTech Connect

    Iwan, S.; Fauzia, Vivi; Umar, A. A.; Sun, X. W.

    2016-04-19

    Zinc oxide (ZnO) nanorods were fabricated by a hydrothermal reaction on silicon (Si) substrate at 95 °C for 6 hours. The ZnO seed layer was fabricated by depositing ZnO thin films on Si substrates by ultrasonic spray pyrolisis (USP). The annealing effects on crystal structure and optical properties of ZnO nanorods were investigated. The post-annealing treatment was performed at 800 °C with different environments. The annealed of ZnO nanorods were characterized by X-ray diffraction (XRD) and photoluminescence (PL) in order to analyze crystal structure and optical properties, respectively. The results show the orientations of [002], [101], [102], and [103] diffraction peaks were observed and hexagonal wurtzite structure of ZnO nanorods were vertically grown on Si substrates. The room temperature PL spectra show ultra-violet (UV) and visible emissions. The annealed of ZnO nanorods in vacuum condition (3.8 × 10{sup −3} Torr) has dominant UV emission. Meanwhile, non-annealed of ZnO nanorods has dominant visible emission. It was expected that the annealed of ZnO in vacuum condition suppresses the existence of native defects in ZnO nanorods.

  14. Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes.

    PubMed

    Esmailzadeh, Hakimeh; Sangpour, Parvaneh; Shahraz, Farzaneh; Hejazi, Jalal; Khaksar, Ramin

    2016-01-01

    Recent advances in nanotechnology have opened new windows in active food packaging. Nano-sized ZnO is an inexpensive material with potential antimicrobial properties. The aim of the present study is to evaluate the antibacterial effect of low density Polyethylene (LDPE) containing ZnO nanoparticles on Bacillus subtilis and Enterobacter aerogenes. ZnO nanoparticles have been synthesized by facil molten salt method and have been characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). Nanocomposite films containing 2 and 4 wt.% ZnO nanoparticles were prepared by melt mixing in a twin-screw extruder. The growth of both microorganisms has decreased in the presence of ZnO containing nanocomposites compared with controls. Nanocomposites with 4 wt.% ZnO nanoparticles had stronger antibacterial effect against both bacteria in comparison with the 2 wt.% ZnO containing nanocomposites. B. subtilis as Gram-positive bacteria were more sensitive to ZnO containing nanocomposite films compared with E. aerogenes as Gram-negative bacteria. There were no significant differences between the migration of Zn ions from 2 and 4 wt.% ZnO containing nanocomposites and the released Zn ions were not significantly increased in both groups after 14 days compared with the first. Regarding the considerable antibacterial effects of ZnO nanoparticles, their application in active food packaging can be a suitable solution for extending the shelf life of food.

  15. Growth of high aspect ratio ZnO nanorods by solution process: Effect of polyethyleneimine

    SciTech Connect

    Choi, Han-Seok; Vaseem, Mohammad; Kim, Sang Gon; Im, Yeon-Ho; Hahn, Yoon-Bong

    2012-05-15

    High aspect ratio ZnO nanorods were grown vertically on ZnO seed layer deposited silicon, glass and polyimide substrates by a solution process at low-temperature using zinc nitrate hexahydrate and hexamethylenetetramine. We studied the effect of polyethlyeneimine (PEI) on the growth of ZnO nanorods. It was found that PEI has a prominent effect on controlling the aspect ratio of ZnO nanorods in solution. The morphological and photoluminescence properties of the ZnO nanorods were also examined with varying the growth temperature (60-90 Degree-Sign C). - Graphical abstract: With addition of polyehyleneimine (PEI) high aspect-ratio ZnO nanorods were grown. It is believed that during ZnO nanorods growth, protonized form of linear PEI molecules inhibits the lateral growth by being adsorbed on non-polar lateral planes. Thus the vertical growth is favored. Highlights: Black-Right-Pointing-Pointer A controlled growth of high aspect ratio ZnO nanorods on different substrates. Black-Right-Pointing-Pointer A prominent effect of polyethlyeneimine (PEI) on controlling the aspect ratio of ZnO nanorods in solution. Black-Right-Pointing-Pointer Precursor concentration and growth temperature effect for various aspect ratio ZnO nanorods.

  16. Catalytic effects of ZnO nanorods grown by sonochemical decomposition of zinc acetate dihydrate.

    PubMed

    Cho, Seok Cheol; Lee, Ho Suk; Sohn, Sang Ho

    2012-07-01

    In this study, we prepared ZnO nanorods by a sonochemical method using a zinc acetate dihydrate as a new precursor. Well-aligned high-quality ZnO nanorods were synthesized on FTO glass by the sonochemical decomposition of zinc acetate dihydrate using a ZnO thin-film as the catalytic layer. The ZnO thin-films were deposited on the FTO glass by a sputtering method. To investigate their catalytic effects on the ZnO nanorods, catalytic ZnO thin-films of 20 nm, 40 nm, and 60 nm thickness were prepared by adjusting the sputtering time. The ZnO nanorods grown on catalytic layers with different thicknesses were characterized by SEM, XRD, and PL. The ZnO nanorods grown on the catalytic layer of 40 nm thickness show the best crystal and spatial orientation and as a result display the best optical properties. It was found that a catalytic ZnO thin-film of 40 nm in thickness yields well-aligned high-quality ZnO nanorods, due to its small surface roughness and structural strain.

  17. Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion.

    PubMed

    Mu, Hui; Chen, Yinguang

    2011-11-01

    The increasing use of zinc oxide nanoparticles (ZnO NPs) raises concerns about their environmental impacts, but the potential effect of ZnO NPs on sludge anaerobic digestion remains unknown. In this paper, long-term exposure experiments were carried out to investigate the influence of ZnO NPs on methane production during waste activated sludge (WAS) anaerobic digestion. The presence of 1 mg/g-TSS of ZnO NPs did not affect methane production, but 30 and 150 mg/g-TSS of ZnO NPs induced 18.3% and 75.1% of inhibition respectively, which showed that the impact of ZnO NPs on methane production was dosage dependant. Then, the mechanisms of ZnO NPs affecting sludge anaerobic digestion were investigated. It was found that the toxic effect of ZnO NPs on methane production was mainly due to the release of Zn(2+) from ZnO NPs, which may cause the inhibitory effects on the hydrolysis and methanation steps of sludge anaerobic digestion. Further investigations with enzyme and fluorescence in situ hybridization (FISH) assays indicated that higher concentration of ZnO NPs decreased the activities of protease and coenzyme F(420), and the abundance of methanogenesis Archaea.

  18. Influence of defects on electrical properties of electrodeposited co-doped ZnO nanocoatings

    NASA Astrophysics Data System (ADS)

    Simimol, A.; Anappara, Aji A.; Barshilia, Harish C.

    2017-01-01

    We present a systematic investigation of the electrical properties of undoped and Co-doped ZnO nanostructures at room temperature as an extensive study of the role of defects in ZnO. The ZnO nanostructures were fabricated by the electrodeposition method at low bath temperature (80 °C) and the Co concentration was varied from 0.01 to 0.2 mM. Electrical properties of the undoped and Co-doped ZnO nanostructures were studied in detail. The carrier concentration increases while the mobility reduces with increase in Co-concentration. The resistivity increases with an increase in Co-concentration and the reason is correlated with the defects in ZnO. In order to understand more details of the role of defects in the present I-V characteristic behavior of the Co-doped ZnO, high temperature vacuum annealing of ZnO sample was carried out. Electrical, optical and magnetic properties of the high temperature vacuum annealed ZnO were studied in detail. Photoluminescence spectroscopy (PL) results revealed more information of the defect levels which act as scattering centers for the carriers. Co-doping as well as annealing at high temperature in vacuum environment tunes the defects in ZnO and which influence the optical, magnetic and electrical behavior of the ZnO nanostructures.

  19. Development of nanostructured ZnO thin film via electrohydrodynamic atomization technique and its photoconductivity characteristics.

    PubMed

    Duraisamy, Navaneethan; Kwon, Ki Rin; Jo, Jeongdai; Choi, Kyung-Hyun

    2014-08-01

    This article presents the non-vacuum technique for the preparation of nanostructured zinc oxide (ZnO) thin film on glass substrate through electrohydrodynamic atomization (EHDA) technique. The detailed process parameters for achieving homogeneous ZnO thin films are clearly discussed. The crystallinity and surface morphology of ZnO thin film are investigated by X-ray diffraction and field emission scanning electron microscopy. The result shows that the deposited ZnO thin film is oriented in the wurtzite phase with void free surface morphology. The surface roughness of deposited ZnO thin film is found to be ~17.8 nm. The optical properties of nanostructured ZnO thin films show the average transmittance is about 90% in the visible region and the energy band gap is found to be 3.17 eV. The surface chemistry and purity of deposited ZnO thin films are analyzed by fourier transform infrared and X-ray photoelectron spectroscopy, conforming the presence of Zn-O in the deposited thin films without any organic moiety. The photocurrent measurement of nanostructured ZnO thin film is examined in the presence of UV light illumination with wavelength of 365 nm. These results suggest that the deposited nanostructured ZnO thin film through EHDA technique possess promising applications in the near future.

  20. Selective area growth of well-ordered ZnO nanowire arrays with controllable polarity.

    PubMed

    Consonni, Vincent; Sarigiannidou, Eirini; Appert, Estelle; Bocheux, Amandine; Guillemin, Sophie; Donatini, Fabrice; Robin, Ivan-Christophe; Kioseoglou, Joseph; Robaut, Florence

    2014-05-27

    Controlling the polarity of ZnO nanowires in addition to the uniformity of their structural morphology in terms of position, vertical alignment, length, diameter, and period is still a technological and fundamental challenge for real-world device integration. In order to tackle this issue, we specifically combine the selective area growth on prepatterned polar c-plane ZnO single crystals using electron-beam lithography, with the chemical bath deposition. The formation of ZnO nanowires with a highly controlled structural morphology and a high optical quality is demonstrated over large surface areas on both polar c-plane ZnO single crystals. Importantly, the polarity of ZnO nanowires can be switched from O- to Zn-polar, depending on the polarity of prepatterned ZnO single crystals. This indicates that no fundamental limitations prevent ZnO nanowires from being O- or Zn-polar. In contrast to their catalyst-free growth by vapor-phase deposition techniques, the possibility to control the polarity of ZnO nanowires grown in solution is remarkable, further showing the strong interest in the chemical bath deposition and hydrothermal techniques. The single O- and Zn-polar ZnO nanowires additionally exhibit distinctive cathodoluminescence spectra. To a broader extent, these findings open the way to the ultimate fabrication of well-organized heterostructures made from ZnO nanowires, which can act as building blocks in a large number of electronic, optoelectronic, and photovoltaic devices.

  1. A comprehensive review of ZnO materials and devices

    NASA Astrophysics Data System (ADS)

    Özgür, Ü.; Alivov, Ya. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doǧan, S.; Avrutin, V.; Cho, S.-J.; Morkoç, H.

    2005-08-01

    The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. Lett. 16, 439 (1970)]. In terms of devices, Au Schottky barriers in 1965 by Mead [Phys. Lett. 18, 218 (1965)], demonstration of light-emitting diodes (1967) by Drapak [Semiconductors 2, 624 (1968)], in which Cu2O was used as the p-type material, metal-insulator-semiconductor structures (1974) by Minami et al. [Jpn. J. Appl. Phys. 13, 1475 (1974)], ZnO /ZnSe n-p junctions (1975) by Tsurkan et al. [Semiconductors 6, 1183 (1975)], and Al /Au Ohmic contacts by Brillson [J. Vac. Sci. Technol. 15, 1378 (1978)] were attained. The main obstacle to the development of ZnO has been the lack of reproducible and low-resistivity p-type ZnO, as recently discussed by Look and Claflin [Phys. Status Solidi B 241, 624 (2004)]. While ZnO already has many industrial applications owing to its piezoelectric properties and band gap in the near ultraviolet, its applications to optoelectronic devices has not yet materialized due chiefly to the lack of p-type epitaxial layers. Very high

  2. Highly efficient excitonic emission of CBD grown ZnO micropods (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Aad, Roy; Gokarna, Anisha; Nomenyo, Komla; Miska, Patrice; Geng, Wei; Couteau, Christophe; Lérondel, Gilles

    2015-10-01

    Due to its wide direct band gap and large exciton binding energy allowing for efficient excitonic emission at room temperature, ZnO has attracted attention as a luminescent material in various applications such as UV-light emitting diodes, chemical sensors and solar cells. While low-cost growth techniques, such as chemical bath deposition (CBD), of ZnO thin films and nanostructures have been already reported; nevertheless, ZnO thin films and nanostructures grown by costly techniques, such as metalorganic vapour phase epitaxy, still present the most interesting properties in terms of crystallinity and internal quantum efficiency. In this work, we report on highly efficient and highly crystalline ZnO micropods grown by CBD at a low temperature (< 90°C). XRD and low-temperature photoluminescence (PL) investigations on as-grown ZnO micropods revealed a highly crystalline ZnO structure and a strong UV excitonic emission with internal quantum efficiency (IQE) of 10% at room temperature. Thermal annealing at 900°C of the as-grown ZnO micropods leads to further enhancement in their structural and optical properties. Low-temperature PL measurements on annealed ZnO micropods showed the presence of phonon replicas, which was not the case for as-grown samples. The appearance of phonon replicas provides a strong proof of the improved crystal quality of annealed ZnO micropods. Most importantly, low-temperature PL reveals an improved IQE of 15% in the excitonic emission of ZnO micropods. The ZnO micropods IQE reported here are comparable to IQEs reported on ZnO structures obtained by costly and more complex growth techniques. These results are of great interest demonstrating that high quality ZnO microstructures can be obtained at low temperatures using a low-cost CBD growth technique.

  3. The Antibacterial Activity of Ta-doped ZnO Nanoparticles.

    PubMed

    Guo, Bing-Lei; Han, Ping; Guo, Li-Chuan; Cao, Yan-Qiang; Li, Ai-Dong; Kong, Ji-Zhou; Zhai, Hai-Fa; Wu, Di

    2015-12-01

    A novel photocatalyst of Ta-doped ZnO nanoparticles was prepared by a modified Pechini-type method. The antimicrobial study of Ta-doped ZnO nanoparticles on several bacteria of Gram-positive Bacillus subtilis (B. subtilis) and Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) were performed using a standard microbial method. The Ta-doping concentration effect on the minimum inhibitory concentration (MIC) of various bacteria under dark ambient has been evaluated. The photocatalytical inactivation of Ta-doped ZnO nanoparticles under visible light irradiation was examined. The MIC results indicate that the incorporation of Ta(5+) ions into ZnO significantly improve the bacteriostasis effect of ZnO nanoparticles on E. coli, S. aureus, and B. subtilis in the absence of light. Compared to MIC results without light irradiation, Ta-doped ZnO and pure ZnO nanoparticles show much stronger bactericidal efficacy on P. aeruginosa, E. coli, and S. aureus under visible light illumination. The possible antimicrobial mechanisms in Ta-doped ZnO systems under visible light and dark conditions were also proposed. Ta-doped ZnO nanoparticles exhibit more effective bactericidal efficacy than pure ZnO in dark ambient, which can be attributed to the synergistic effect of enhanced surface bioactivity and increased electrostatic force due to the incorporation of Ta(5+) ions into ZnO. Based on the antibacterial tests, 5 % Ta-doped ZnO is a more effective antimicrobial agent than pure ZnO.

  4. The Antibacterial Activity of Ta-doped ZnO Nanoparticles

    NASA Astrophysics Data System (ADS)

    Guo, Bing-Lei; Han, Ping; Guo, Li-Chuan; Cao, Yan-Qiang; Li, Ai-Dong; Kong, Ji-Zhou; Zhai, Hai-Fa; Wu, Di

    2015-08-01

    A novel photocatalyst of Ta-doped ZnO nanoparticles was prepared by a modified Pechini-type method. The antimicrobial study of Ta-doped ZnO nanoparticles on several bacteria of Gram-positive Bacillus subtilis ( B. subtilis) and Staphylococcus aureus ( S. aureus) and Gram-negative Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) were performed using a standard microbial method. The Ta-doping concentration effect on the minimum inhibitory concentration (MIC) of various bacteria under dark ambient has been evaluated. The photocatalytical inactivation of Ta-doped ZnO nanoparticles under visible light irradiation was examined. The MIC results indicate that the incorporation of Ta5+ ions into ZnO significantly improve the bacteriostasis effect of ZnO nanoparticles on E. coli, S. aureus, and B. subtilis in the absence of light. Compared to MIC results without light irradiation, Ta-doped ZnO and pure ZnO nanoparticles show much stronger bactericidal efficacy on P. aeruginosa, E. coli, and S. aureus under visible light illumination. The possible antimicrobial mechanisms in Ta-doped ZnO systems under visible light and dark conditions were also proposed. Ta-doped ZnO nanoparticles exhibit more effective bactericidal efficacy than pure ZnO in dark ambient, which can be attributed to the synergistic effect of enhanced surface bioactivity and increased electrostatic force due to the incorporation of Ta5+ ions into ZnO. Based on the antibacterial tests, 5 % Ta-doped ZnO is a more effective antimicrobial agent than pure ZnO.

  5. Optical Properties of Al Doped ZnO Nanorods

    NASA Astrophysics Data System (ADS)

    Samuel, M. Soosen; Koshy, Jiji; Chandran, Anoop; George, K. C.

    2011-10-01

    Aluminium doped Zinc Oxide nanorods Zn(1-x)AlxO (x = 0,0.02,0.05,0.08) were synthesized by hydrothermal process. XRD, TEM, SEM-EDS and SAED pattern were used to characterise the crystalline structure, size and morphology of the samples. Results showed that the aluminium ions replace Zn2+ ions into the ZnO lattice without changing its wurtzite structure. The optical properties of as-synthesised Al doped ZnO nanorods were investigated in detail by UV-vis absorption, Photoluniniscence and Raman spectra. No apparent changes in the band gap energies were observed upto the doping concentration of 5 mol%. The Al doped ZnO nanorods with 8 mol% showed a strong exciton absorption peak at 360 nm and there was a sudden increase in the band gap energy. The perfect wurtzite structure of Al doped samples were verified by the intense E2 (high) Raman mode. The broad band in the range 535-545 cm-1 was associated with intrinsic lattice defects arised by the doping which was absent in the Raman spectra of pure ZnO nanorods. Because of the anharmonicity effect, some overtone and combination modes were observed besides the fundamental phonon modes. The PL spectra showed that the ratio of ultraviolet to visible emission peak (IUV/IVis) decreased till the doping concentration of 5 mol%. The strong ultraviolet emission and high IUV/IVis ratio were observed in the ZnO nanorods with doping concentration of 8 mol%.

  6. Electronic structure of Co-doped ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Neffati, Ahmed; Souissi, Hajer; Kammoun, Souha

    2012-10-01

    The optical transmission spectra, the photoluminescence (PL), and the photoluminescence excitation (PLE) spectra of the cobalt doped zinc oxide nanorods Zn1-xCoxO (x = 0.01, 0.10) were measured by Loan et al. [J. Phys. D: Appl. Phys. 42, 065412 (2009)] in the region 1.5-4 eV. These spectra exhibit a group of ultraviolet narrow lines in the region of 3.0-3.4 eV related to the near-band-edge emission of the host ZnO materials and a group of emission lines in the red region of 1.8-1.9 eV assigned to the radiative transitions within the tetrahedral Co2+ ions in the ZnO host crystal. The group of lines in the visible region provides important information about the electronic structure of the cobalt doped zinc oxide nanorods. This work investigates a theoretical crystal-field analysis of the visible lines associated to the Co2+ ion transition occupying a Td site symmetry in ZnO host crystal. A satisfactory correlations were obtained between experimental and calculated energy levels. The electronic structure was compared with the reported for cobalt transition ion doped in ZnO nanoparticles and bulk crystals [Volbers et al., Appl. Phys. A 88, 153 (2007) and H. J. Schulz and M. Thiede, Phys. Rev. B 35, 18 (1987)]. In order to explain the existence of excitation peaks observed near the band edge of the ZnO host, an energy transfer mechanism is proposed.

  7. CMOS Alcohol Sensor Employing ZnO Nanowire Sensing Films

    NASA Astrophysics Data System (ADS)

    Santra, S.; Ali, S. Z.; Guha, P. K.; Hiralal, P.; Unalan, H. E.; Dalal, S. H.; Covington, J. A.; Milne, W. I.; Gardner, J. W.; Udrea, F.

    2009-05-01

    This paper reports on the utilization of zinc oxide nanowires (ZnO NWs) on a silicon on insulator (SOI) CMOS micro-hotplate for use as an alcohol sensor. The device was designed in Cadence and fabricated in a 1.0 μm SOI CMOS process at XFAB (Germany). The basic resistive gas sensor comprises of a metal micro-heater (made of aluminum) embedded in an ultra-thin membrane. Gold plated aluminum electrodes, formed of the top metal, are used for contacting with the sensing material. This design allows high operating temperatures with low power consumption. The membrane was formed by using deep reactive ion etching. ZnO NWs were grown on SOI CMOS substrates by a simple and low-cost hydrothermal method. A few nanometer of ZnO seed layer was first sputtered on the chips, using a metal mask, and then the chips were dipped in a zinc nitrate hexahydrate and hexamethylenetramine solution at 90° C to grow ZnO NWs. The chemical sensitivity of the on-chip NWs were studied in the presence of ethanol (C2H5OH) vapour (with 10% relative humidity) at two different temperatures: 200 and 250° C (the corresponding power consumptions are only 18 and 22 mW). The concentrations of ethanol vapour were varied from 175-1484 ppm (pers per million) and the maximum response was observed 40% (change in resistance in %) at 786 ppm at 250° C. These preliminary measurements showed that the on-chip deposited ZnO NWs could be a promising material for a CMOS based ethanol sensor.

  8. Synthesis, structural and optical properties of pure ZnO and Co doped ZnO nanoparticles prepared by the co-precipitation method

    NASA Astrophysics Data System (ADS)

    Devi, P. Geetha; Velu, A. Sakthi

    2016-09-01

    Pure ZnO and Cobalt (Co) doped ZnO nanoparticles (NPs) were synthesized by the co-precipitation method. The synthesized nanoparticles retained the wurtzite hexagonal structure, which was confirmed by X-ray diffraction studies. From FESEM studies, ZnO and Co doped ZnO NPs showed Spherical and nanorod mixed phase and Spherical like morphology, respectively. The amount of dopant (Co2+) incorporated into ZnO sample was determined by EDAX. The FT-IR spectra confirmed the Zn-O stretching bands at 438 and 427 cm-1 for ZnO and Co doped ZnO NPs. From the UV-VIS spectroscopic measurements, the excitonic pecks were found around 376 and 370 nm for the respective samples. The photoluminescence measurements revealed that the broad emission was composed of seven different bands due to zinc vacancies, oxygen vacancies and surface defects. The dynamic light scattering (DLS) and Zeta potential measurements were used to find out the size and surface charges.

  9. Ohmic-Rectifying Conversion of Ni Contacts on ZnO and the Possible Determination of ZnO Thin Film Surface Polarity

    PubMed Central

    Saw, Kim Guan; Tneh, Sau Siong; Tan, Gaik Leng; Yam, Fong Kwong; Ng, Sha Shiong; Hassan, Zainuriah

    2014-01-01

    The current-voltage characteristics of Ni contacts with the surfaces of ZnO thin films as well as single crystal (0001) ZnO substrate are investigated. The ZnO thin film shows a conversion from Ohmic to rectifying behavior when annealed at 800°C. Similar findings are also found on the Zn-polar surface of (0001) ZnO. The O-polar surface, however, only shows Ohmic behavior before and after annealing. The rectifying behavior observed on the Zn-polar and ZnO thin film surfaces is associated with the formation of nickel zinc oxide (Ni1-xZnxO, where x = 0.1, 0.2). The current-voltage characteristics suggest that a p-n junction is formed by Ni1-xZnxO (which is believed to be p-type) and ZnO (which is intrinsically n-type). The rectifying behavior for the ZnO thin film as a result of annealing suggests that its surface is Zn-terminated. Current-voltage measurements could possibly be used to determine the surface polarity of ZnO thin films. PMID:24466144

  10. ZnO nanowire arrays synthesized on ZnO and GaN films for photovoltaic and light-emitting devices

    NASA Astrophysics Data System (ADS)

    Janfeshan, Bita; Sadeghimakki, Bahareh; Sadeghi Jahed, Navid Mohammad; Sivoththaman, Siva

    2014-01-01

    The wide bandgap, one-dimensional zinc oxide (ZnO) nanowires (NWs) and their heterostructures with other materials provide excellent pathways for efficient photovoltaic (PV) and light-emitting devices. ZnO NWs sensitized with quantum dots (QDs) provide high-surface area and tunable bandgap absorbers with a directional path for carriers in advanced PV devices, while ZnO heterojunctions with other p-type wide bandgap materials lead to light-emitting diodes (LEDs) with better emission and waveguiding properties compared with the homojunction counterparts. Synthesis of the structures with the desired morphology is a key to device applications. In this work, ZnO NW arrays were synthesized using hydrothermal method on ZnO and GaN thin films. Highly crystalline, upright, and ordered arrays of ZnO NWs in the 50 to 250-nm diameter range and 1 μm in length were obtained. The morphology and optical properties of the NWs were studied. Energy dispersive x-ray spectroscopy (EDX) analysis revealed nonstoichiometric oxygen content in the grown ZnO NWs. Photoluminescence (PL) studies depicted the presence of oxygen vacancy and interstitial zinc defects in the grown ZnO NWs, underlining the potential for LEDs. Further, hydrophobically ligated CdSe/ZnS QDs were successfully incorporated to the NW arrays. PL analysis indicated the injection of electrons from photoexcited QDs to the NWs, showing the potential for quantum dot-sensitized solar cells.

  11. ZnO p-n homojunctions and ohmic contacts to Al-N-co-doped p-type ZnO

    SciTech Connect

    Zhuge, F.; Zhu, L.P.; Ye, Z.Z.; Ma, D.W.; Lu, J.G.; Huang, J.Y.; Wang, F.Z.; Ji, Z.G.; Zhang, S.B.

    2005-08-29

    ZnO p-n homojunctions were fabricated on quartz substrates by depositing Al-doped n-type ZnO layer on Al-N-co-doped p-type ZnO layer through reactive magnetron sputtering. In/Zn metal contacts to as-grown ZnO show ohmic behavior, and the ohmic contacts can be improved by annealing in an Ar ambient. The optimal annealing temperatures for Al-N-co-doped ZnO and Al-doped ZnO are 550 deg. C and 600 deg. C, respectively. The p-n junction characteristic is confirmed by current-voltage measurements. The turn-on voltage is 2 V, with a low leakage current under reverse bias. Series resistances of the ZnO p-n junctions can be lowered by optimizing the annealing temperature, increasing the grain size of the ZnO, or increasing the hole concentration of the p layer.

  12. Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification.

    PubMed

    Dong, Juan; Zhao, Yanhong; Shi, Jiangjian; Wei, Huiyun; Xiao, Junyan; Xu, Xin; Luo, Jianheng; Xu, Jing; Li, Dongmei; Luo, Yanhong; Meng, Qingbo

    2014-11-11

    Al-doped ZnO (AZO) modified ZnO nanorods have been applied in CH3NH3PbI3 perovskite solar cells, which can show a positive effect on open circuit voltage and power conversion efficiency. The average power conversion efficiency is improved from 8.5% to 10.07% and the maximum efficiency reaches 10.7%.

  13. Using the hydrothermal method to grow p-type ZnO nanowires on Al-doped ZnO thin film to fabricate a homojunction diode.

    PubMed

    Tseng, Yung-Kuan; Hung, Meng-Chun; Su, Shun-Lung; Li, Sheng-Kai

    2014-10-01

    In this study, the hydrothermal method is used to grow phosphorus-doped ZnO nanowires on Si/SiO2 substrates deposited with Al-doped ZnO thin film. This structure forms a homogeneous p-n junction. In this study, we are the pioneers to use ammonium hypophosphite (NH4H2PO2) as a source of phosphorus to prepare the precursor solution. Ammonium hypophosphite of different concentration levels is used to observe its effects on the growth of nanowires. The results show that the precursor solution prepared from ammonium hypophosphite can produce good crystalline ZnO nanowires while there is no linear relationship between the amounts and concentration levels of phosphorus doped into the nanowires. Whether the phosphorus-doped ZnO nanowires have the characteristics of a p-type semiconductor is indirectly verified by measuring whether the p-n junction made up of Al-doped ZnO thin film and phosphorus-doped ZnO nanowires shows rectifying behavior. I-V measurements are made on the specimens. The results show good rectifying behavior, proving that the phosphorus-doped ZnO nanowires and Al-doped AZO films have p-type and n-type semiconductor properties, constituting a good p-n junction. This result also proves that ammonium hypophosphite is a better source of phosphorus in the hydrothermal method to synthesize phosphorus-doped ZnO nanowires.

  14. Study on synthesis of ZnO nanorods and its UV-blocking properties on cotton fabrics coated with the ZnO quantum dot

    NASA Astrophysics Data System (ADS)

    Li, Rong; Che, Jiangning; Zhang, Heng; He, Jinsong; Bahi, Addie; Ko, Frank

    2014-09-01

    Crystalline ZnO quantum dots have been synthesized by hydrolysis of zinc acetate dihydrate with lithium hydroxide in ethanolic solution. The effects of different synthesis parameters on the structure and optical properties of ZnO QDs were investigated in detail. The UV-Vis optical spectra showed that the particle size is highly dependent on the precursor concentration and temperature, while the luminescence properties of as-prepared ZnO QDs depend on the both size and surface properties of particles. UV-blocking cotton fabrics were prepared by coated with ZnO nanorods. The preparation process was conducted in mild conditions, which involved the dip-coating ZnO QDs as crystal seeds, the dissolution-recrystallization of ZnO nanorods, and the hydrothermal growth of ZnO nanorods. The ZnO nanorods covered the cotton fibers uniformly and densely. The treated cotton textile exhibited an excellent UV-blocking property with an ultrahigh UPF value of 118.12.

  15. Comparative in vitro genotoxicity study of ZnO nanoparticles, ZnO macroparticles and ZnCl2 to MDCK kidney cells: Size matters.

    PubMed

    Kononenko, Veno; Repar, Neža; Marušič, Nika; Drašler, Barbara; Romih, Tea; Hočevar, Samo; Drobne, Damjana

    2017-04-01

    In the present study, we evaluated the roles that ZnO particle size and Zn ion release have on cyto- and genotoxicity in vitro. The Madin-Darby canine kidney (MDCK) cells were treated with ZnO nanoparticles (NPs), ZnO macroparticles (MPs), and ZnCl2 as a source of free Zn ions. We first tested cytotoxicity to define sub-cytotoxic exposure concentrations and afterwards we performed alkaline comet and cytokinesis-block micronucleus assays. Additionally, the activities of both catalase (CAT) and glutathione S-transferase (GST) were evaluated in order to examine the potential impairment of cellular stress-defence capacity. The amount of dissolved Zn ions from ZnO NPs in the cell culture medium was evaluated by an optimized voltammetric method. The results showed that all the tested zinc compounds induced similar concentration-dependent cytotoxicity, but only ZnO NPs significantly elevated DNA and chromosomal damage, which was accompanied by a reduction of GST and CAT activity. Although Zn ion release from ZnO NPs in cell culture medium was significant, our results show that this reason alone cannot explain the ZnO genotoxicity seen in this experiment. We discuss that genotoxicity of ZnO NPs depends on the particle size, which determines the physical principles of their dissolution and cellular internalisation.

  16. Effect of ZnO seed layer on the morphology and optical properties of ZnO nanorods grown on GaN buffer layers

    SciTech Connect

    Nandi, R. Mohan, S. Major, S. S.; Srinivasa, R. S.

    2014-04-24

    ZnO nanorods were grown by chemical bath deposition on sputtered, polycrystalline GaN buffer layers with and without ZnO seed layer. Scanning electron microscopy and X-ray diffraction show that the ZnO nanorods on GaN buffer layers are not vertically well aligned. Photoluminescence spectrum of ZnO nanorods grown on GaN buffer layer, however exhibits a much stronger near-band-edge emission and negligible defect emission, compared to the nanorods grown on ZnO buffer layer. These features are attributed to gallium incorporation at the ZnO-GaN interface. The introduction of a thin (25 nm) ZnO seed layer on GaN buffer layer significantly improves the morphology and vertical alignment of ZnO-NRs without sacrificing the high optical quality of ZnO nanorods on GaN buffer layer. The presence of a thick (200 nm) ZnO seed layer completely masks the effect of the underlying GaN buffer layer on the morphology and optical properties of nanorods.

  17. Heavy Truck Engine Program

    SciTech Connect

    Nelson, Christopher

    2009-01-08

    The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient engine

  18. Recycling of an electric arc furnace flue dust to obtain high grade ZnO.

    PubMed

    Ruiz, Oscar; Clemente, Carmen; Alonso, Manuel; Alguacil, Francisco Jose

    2007-03-06

    The production of steel in electric arc furnace (EAF) generates a by-product called EAF dusts. These steelmaking flue dusts are classified in most industrialized countries as hazardous residues because the heavy metals contained in them, tend to leach under slightly acidic rainfall conditions. However, and at the same time they contain zinc species which can be used as a source to obtain valuable by-products. The present investigation shows results on the processing of an EAF flue dust using ammonium carbonate solutions. Once zinc is dissolved: ZnO + 4NH3 + H2O --> Zn(NH3)4(2+) + 2OH- with other impurities (i.e. cadmium and copper), these are eliminated from the zinc solution via cementation with metallic zinc. The purified zinc solution was evaporated (distilled) until precipitation of a zinc carbonate species, which then was calcined to yield a zinc oxide of a high grade. For the unattacked dust residue from the leaching operation, mainly composed of zinc ferrite, several options can be considered: back-recycling to the furnace, further treatment by sodium hydroxide processing or a more safely dumping due to its relatively inertness.

  19. Heavy Metal Factory

    NASA Astrophysics Data System (ADS)

    Löbling, Lisa

    2017-07-01

    The metal enrichment in the cosmic circuit of matter is dominated by the yields of asymptotic giant branch (AGB) nucleosynthesis, that are blown back into the interstellar medium just before these stars die as white dwarfs. To establish constraints on AGB processes, spectral analyses of hot post-AGB stars are mandatory. These show that such stars are heavy metal factories due to the AGB s-process. The Virtual Observatory service TheoSSA offers access to synthetic stellar spectra calculated with our Tübingen non-local thermodynamic equilibrium model-atmosphere package that are suitable for the analysis of hot post-AGB stars.

  20. Heavy fermion superconductivity

    NASA Astrophysics Data System (ADS)

    Brison, Jean-Pascal; Glémot, Loı̈c; Suderow, Hermann; Huxley, Andrew; Kambe, Shinsaku; Flouquet, Jacques

    2000-05-01

    The quest for a precise identification of the symmetry of the order parameter in heavy fermion systems has really started with the discovery of the complex superconducting phase diagram in UPt 3. About 10 years latter, despite numerous experiments and theoretical efforts, this is still not achieved, and we will quickly review the present status of knowledge and the main open question. Actually, the more forsaken issue of the nature of the pairing mechanism has been recently tackled by different groups with macroscopic or microscopic measurement, and significant progress have been obtained. We will discuss the results emerging from these recent studies which all support non-phonon-mediated mechanisms.

  1. Heavy ion storage rings

    SciTech Connect

    Schuch, R.

    1987-01-01

    A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented.

  2. Fundamental understanding of the growth, doping and characterization of aligned ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Shen, Gang

    Zinc oxide (ZnO) is a II-VI semiconductor whose wide direct bandgap (3.37 eV) and large exciton binding energy (60 meV) make it compelling for optoelectronic devices such as light emitting diodes, lasers, photodetectors, solar cells, and mechanical energy harvesting devices. One dimensional structures of ZnO (nanowires) have become significant due to their unique physical properties arising from quantum confinement, and they are ideal for studying transport mechanisms in one-dimensional systems. In this doctoral research work, ZnO nanowire (NW) arrays were synthesized on sapphire substrates through carbo-thermal reduction of ZnO powders, and the effects of growth parameters on the properties of ZnO NW arrays were studied by scanning and transmission electron microscopy, X-ray diffraction, photoluminescence and Raman spectroscopy. Based on the phonon mode selection rules in wurtzite ZnO, confocal Raman spectroscopy was used to assess the alignment of ZnO NWs in an array, thereby complementing X-ray diffraction. Al doped ZnO NW arrays were achieved by mixing Al powder into the ZnO and graphite source mixture, and the presence of Al was confirmed by Energy-dispersive X-ray spectroscopy. The incorporation of Al had the effects of lowering the electrical resistivity, slightly deteriorating crystal quality and suppressing defect related green emission. Two models of ZnO NW growth were developed by establishing the relationship between NW length and diameter for undoped and Al doped ZnO NWs separately. The growth of undoped ZnO NWs followed the diffusion-induced model which was characterized by thin wires being longer than thick wires, while the growth of Al doped ZnO was controlled by Gibbs-Thomson effect which was characterized by thin wires being shorter than thin wires. Local electrode atom probe analysis of ZnO NWs was carried out to study the crystal stoichiometry and Al incorporation. Undoped ZnO NWs were found to be high purity with no detectable impurities

  3. Heavy-antiquark-diquark symmetry and heavy hadron molecules: Are there triply heavy pentaquarks?

    NASA Astrophysics Data System (ADS)

    Guo, Feng-Kun; Hidalgo-Duque, Carlos; Nieves, Juan; Valderrama, Manuel Pavón

    2013-09-01

    We explore the consequences of heavy flavor, heavy quark spin, and heavy antiquark-diquark symmetries for hadronic molecules within an effective field theory framework. Owing to heavy antiquark-diquark symmetry, the doubly heavy baryons have approximately the same light-quark structure as the heavy antimesons. As a consequence, the existence of a heavy meson-antimeson molecule implies the possibility of a partner composed of a heavy meson and a doubly heavy baryon. In this regard, the DD¯* molecular nature of the X(3872) will hint at the existence of several baryonic partners with isospin I=0 and JP=(5)/(2)(-)/() or (3)/(2)(-)/(). Moreover, if the Zb(10650) turns out to be a B*B¯* bound state, we can be confident of the existence of Ξbb*B¯* hadronic molecules with quantum numbers I(JP)=1((1)/(2)(-)/()) and I(JP)=1((3)/(2)(-)/()). These states are of special interest since they can be considered to be triply heavy pentaquarks.

  4. Spontaneous Growth of ZnCO3 Nanowires on ZnO Nanostructures in Normal Ambient Environment: Unstable ZnO Nanostructures

    SciTech Connect

    Pan, Z.; Tao, J.; Zhu, Y.; Huang, J.-F.; Paranthaman, M.P.

    2009-12-09

    ZnO nanowires, one of the most investigated nanostructures that promise numerous applications in nanophotonics, opto-electronics, and energy, are generally thought to be highly stable under ambient conditions because of their oxide nature. Here, we report that ZnO nanowires are actually extremely unstable even in normal ambient environment (70% RH, and {approx}350 ppm CO{sub 2}) because of atmospheric corrosion. When placed on an oxide substrate (e.g., glass slide) and exposed in air, ZnO nanowires tend to react with airborne moisture and CO{sub 2} to form amorphous ZnCO{sub 3} thin films and nanowires. The factors that specially affect the corrosion of ZnO nanowires in a laboratory environment include CO{sub 2}, humidity, and substrates. Our results suggest that a CO{sub 2}{sup -} and/or moisture-free environment are required in order for optimal applications of ZnO nanowires.

  5. "Spontaneous Growth of ZnCO3 Nanowires on ZnO Nanostructures in Normal Ambient Environment: Unstable ZnO Nanostructures:

    SciTech Connect

    Pan, Zhengwei; Tao, Jing; Zhu, Yimei; Huang, Jing-Fang; Paranthaman, Mariappan Parans

    2010-01-01

    ZnO nanowires, one of the most investigated nanostructures that promise numerous applications in nanophotonics, opto-electronics, and energy, are generally thought to be highly stable under ambient conditions because of their oxide nature. Here, we report that ZnO nanowires are actually extremely unstable even in normal ambient environment (70% RH, and 350 ppm CO2) because of atmospheric corrosion.When placed on an oxide substrate (e.g., glass slide) and exposed in air, ZnO nanowires tend to react with airborne moisture and CO2 to form amorphous ZnCO3 thin films and nanowires. The factors that specially affect the corrosion of ZnO nanowires in a laboratory environment include CO2, humidity, and substrates. Our results suggest that a CO2- and/or moisture-free environment are required in order for optimal applications of ZnO nanowires.

  6. [Chemical hazards induced by heavy metals refining processes].

    PubMed

    Gaweda, Ewa

    2003-01-01

    Processes of refining heavy metals consist in removing impurities, which can be found in metals produced on industrial scale. People involved in heavy metals refining processes are primarily exposed to metals (Pb, Cd, Cu), metalloids (As, Se) and metal compounds. Exposure to dusts (from 2 to 50% SiO2) and sulfuric acid is an additional hazard. The air concentrations of harmful chemical agents at heavy metals refining stations in two Polish Plants are presented. Several tens of workers employed in the processes of copper, lead, nickel sulfate, zinc, cadmium and silver production were examined. Concentrations of Cd, Ni, Se, Cu, Pb, Ag, As and Sb were determined by atomic absorption spectrometry (AAS) with a graphite tube, whereas Fe, ZnO oxide (as Zn), MgO (as Mg) and CaO (as Ca) by AAS with air-acetylene flame, and sulfuric acid by method described in PN-91/Z-04056/02. Lead concentrations in the samples collected in both Plants were often high (significantly exceeding Polish MAC values at some workstations). Arsenic concentrations ranged from very low in all processes in one Plant to very high, exceeding Polish MAC values, at some workstations in the other. In general, air concentrations of other agents were not high (fraction of MAC). The occurrence of antimony and magnesium oxide was not determined. The risk created by metals and metalloids at the workstations in two Plants was diversified. There is no need to determine Sb and MgO in further studies. Lead should be determined at all workstations, other agents can be determined at workstations with concentrations exceeding the determinability of relevant methods.

  7. Thermodynamic Study of Interactions Between ZnO and ZnO Binding Peptides Using Isothermal Titration Calorimetry.

    PubMed

    Limo, Marion J; Perry, Carole C

    2015-06-23

    While material-specific peptide binding sequences have been identified using a combination of combinatorial methods and computational modeling tools, a deep molecular level understanding of the fundamental principles through which these interactions occur and in some instances modify the morphology of inorganic materials is far from being fully realized. Understanding the thermodynamic changes that occur during peptide-inorganic interactions and correlating these to structural modifications of the inorganic materials could be the key to achieving and mastering control over material formation processes. This study is a detailed investigation applying isothermal titration calorimetry (ITC) to directly probe thermodynamic changes that occur during interaction of ZnO binding peptides (ZnO-BPs) and ZnO. The ZnO-BPs used are reported sequences G-12 (GLHVMHKVAPPR), GT-16 (GLHVMHKVAPPR-GGGC), and alanine mutants of G-12 (G-12A6, G-12A11, and G-12A12) whose interaction with ZnO during solution synthesis studies have been extensively investigated. The interactions of the ZnO-BPs with ZnO yielded biphasic isotherms comprising both an endothermic and an exothermic event. Qualitative differences were observed in the isothermal profiles of the different peptides and ZnO particles studied. Measured ΔG values were between -6 and -8.5 kcal/mol, and high adsorption affinity values indicated the occurrence of favorable ZnO-BP-ZnO interactions. ITC has great potential in its use to understand peptide-inorganic interactions, and with continued development, the knowledge gained may be instrumental for simplification of selection processes of organic molecules for the advancement of material synthesis and design.

  8. Heavy ion therapy: Bevalac epoch

    SciTech Connect

    Castro, J.R.

    1993-10-01

    An overview of heavy ion therapy at the Bevelac complex (SuperHILac linear accelerator + Bevatron) is given. Treatment planning, clinical results with helium ions on the skull base and uveal melanoma, clinical results with high-LET charged particles, neon radiotherapy of prostate cancer, heavy charged particle irradiation for unfavorable soft tissue sarcoma, preliminary results in heavy charged particle irradiation of bone sarcoma, and irradiation of bile duct carcinoma with charged particles and-or photons are all covered. (GHH)

  9. Heavy quark production and spectroscopy

    SciTech Connect

    Appel, J.A.

    1993-11-01

    This review covers many new experimental results on heavy flavor production and spectroscopy. It also shows some of the increasingly improved theoretical understanding of results in light of basic perturbative QCD and heavy quark symmetry. At the same time, there are some remaining discrepancies among experiments as well as significant missing information on some of the anticipated lowest lying heavy quark states. Most interesting, perhaps, are some clearly measured production effects awaiting full explanation.

  10. Theoretical prediction of low-density hexagonal ZnO hollow structures

    SciTech Connect

    Tuoc, Vu Ngoc; Huan, Tran Doan; Thao, Nguyen Thi; Tuan, Le Manh

    2016-10-14

    Along with wurtzite and zinc blende, zinc oxide (ZnO) has been found in a large number of polymorphs with substantially different properties and, hence, applications. Therefore, predicting and synthesizing new classes of ZnO polymorphs are of great significance and have been gaining considerable interest. Herein, we perform a density functional theory based tight-binding study, predicting several new series of ZnO hollow structures using the bottom-up approach. The geometry of the building blocks allows for obtaining a variety of hexagonal, low-density nanoporous, and flexible ZnO hollow structures. Their stability is discussed by means of the free energy computed within the lattice-dynamics approach. Our calculations also indicate that all the reported hollow structures are wide band gap semiconductors in the same fashion with bulk ZnO. The electronic band structures of the ZnO hollow structures are finally examined in detail.

  11. Synthesis and characterization of Mn-doped ZnO column arrays

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Guo, Zhixing; Qiu, Kehui; Long, Jianping; Yin, Guangfu; Guan, Denggao; Liu, Sutian; Zhou, Shijie

    2010-04-01

    Mn-doped ZnO column arrays were successfully synthesized by conventional sol-gel process. Effect of Mn/Zn atomic ratio and reaction time were investigated, and the morphology, tropism and optical properties of Mn-doped ZnO column arrays were characterized by SEM, XRD and photoluminescence (PL) spectroscopy. The result shows that a Mn/Zn atomic ratio of 0.1 and growth time of 12 h are the optimal condition for the preparation of densely distributed ZnO column arrays. XRD analysis shows that Mn-doped ZnO column arrays are highly c-axis oriented. As for Mn-doped ZnO column arrays, obvious increase of photoluminescence intensity is observed at the wavelength of ˜395 nm and ˜413 nm, compared to pure ZnO column arrays.

  12. Theoretical prediction of low-density hexagonal ZnO hollow structures

    NASA Astrophysics Data System (ADS)

    Tuoc, Vu Ngoc; Huan, Tran Doan; Thao, Nguyen Thi; Tuan, Le Manh

    2016-10-01

    Along with wurtzite and zinc blende, zinc oxide (ZnO) has been found in a large number of polymorphs with substantially different properties and, hence, applications. Therefore, predicting and synthesizing new classes of ZnO polymorphs are of great significance and have been gaining considerable interest. Herein, we perform a density functional theory based tight-binding study, predicting several new series of ZnO hollow structures using the bottom-up approach. The geometry of the building blocks allows for obtaining a variety of hexagonal, low-density nanoporous, and flexible ZnO hollow structures. Their stability is discussed by means of the free energy computed within the lattice-dynamics approach. Our calculations also indicate that all the reported hollow structures are wide band gap semiconductors in the same fashion with bulk ZnO. The electronic band structures of the ZnO hollow structures are finally examined in detail.

  13. Microwave absorption properties and mechanism of cagelike ZnO /SiO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Cao, Mao-Sheng; Shi, Xiao-Ling; Fang, Xiao-Yong; Jin, Hai-Bo; Hou, Zhi-Ling; Zhou, Wei; Chen, Yu-Jin

    2007-11-01

    In this paper, cagelike ZnO /SiO2 nanocomposites were prepared and their microwave absorption properties were investigated in detail. Dielectric constants and losses of the pure cagelike ZnO nanostructures were measured in a frequency range of 8.2-12.4GHz. The measured results indicate that the cagelike ZnO nanostructures are low-loss material for microwave absorption in X band. However, the cagelike ZnO /SiO2 nanocomposites exhibit a relatively strong attenuation to microwave in X band. Such strong absorption is related to the unique geometrical morphology of the cagelike ZnO nanostructures in the composites. The microcurrent network can be produced in the cagelike ZnO nanostructures, which contributes to the conductive loss.

  14. Single-walled carbon nanotubes coated with ZnO by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Pal, Partha P.; Gilshteyn, Evgenia; Jiang, Hua; Timmermans, Marina; Kaskela, Antti; Tolochko, Oleg V.; Kurochkin, Alexey V.; Karppinen, Maarit; Nisula, Mikko; Kauppinen, Esko I.; Nasibulin, Albert G.

    2016-12-01

    The possibility of ZnO deposition on the surface of single-walled carbon nanotubes (SWCNTs) with the help of an atomic layer deposition (ALD) technique was successfully demonstrated. The utilization of pristine SWCNTs as a support resulted in a non-uniform deposition of ZnO in the form of nanoparticles. To achieve uniform ZnO coating, the SWCNTs first needed to be functionalized by treating the samples in a controlled ozone atmosphere. The uniformly ZnO coated SWCNTs were used to fabricate UV sensing devices. An UV irradiation of the ZnO coated samples turned them from hydrophobic to hydrophilic behaviour. Furthermore, thin films of the ZnO coated SWCNTs allowed us switch p-type field effect transistors made of pristine SWCNTs to have ambipolar characteristics.

  15. Effect of potassium on structural, photocatalytic and antibacterial activities of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Bhaviya Raj, R.; Umadevi, M.; Poornima Parvathi, V.; Parimaladevi, R.

    2016-12-01

    ZnO and potassium doped ZnO nanoparticles were synthesized through wet chemical method. The samples were characterized by UV, XRD, SEM, TEM and EDAX. XRD analysis reveals that the prepared nanoparticles exhibit hexagonal wurtzite structure. TEM and SEM analyses disclose that synthesized samples were porous structure with needle shape. It also confirms that potassium was dispersed on ZnO surface. The influence of potassium on ZnO surface modulates the degradation of textile dyeing wastewater by improving its rate of decomposition to 0.007 min-1 with decoloration. A better zone of inhibition of about 20 mm against Staphylococci aureus and Pseudomonas aernginosa by ZnO and potassium doped ZnO nanoparticles were measured. The findings suggest that these nanoparticles have the potential to be a good photocatalyst and applied in water treatment to inhibit the bacterial growth.

  16. Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Romeiro, Fernanda C.; Marinho, Juliane Z.; Lemos, Samantha C. S.; de Moura, Ana P.; Freire, Poliana G.; da Silva, Luis F.; Longo, Elson; Munoz, Rodrigo A. A.; Lima, Renata C.

    2015-10-01

    We report for the first time a rapid preparation of Zn1-2xCoxNixO nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green-orange-red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra. Electrochemical experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni co-doped ZnO samples when compared to pure ZnO.

  17. Surface Defects Control for ZnO Nanorods Synthesized Through a Gas-Assisted Hydrothermal Process

    NASA Astrophysics Data System (ADS)

    Zhao, Limin; Shu, Changhua; Jia, Zhengfeng; Wang, Changzheng

    2017-01-01

    Oxygen vacancies in crystal have an important impact on the electronic properties of zinc oxide (ZnO). In this paper, ZnO nanorods with rich oxygen vacancies were prepared through a novel gas-assisted hydrothermal growth process. X-ray diffraction data showed that single-phase ZnO with the wurtzite crystal structure was obtained and the crystallite size decreased as the reaction atmosphere pressure increased. The oxygen vacancies of ZnO were confirmed using x-ray photoelectron spectroscopy and photoluminescence spectroscopy. The results showed that the concentration of oxygen vacancies could be regulated by both the atmosphere pressure and the atmosphere properties. The oxygen vacancies in ZnO samples were reduced when the pressure increase in the hydrogen reaction environment (reducing atmosphere) and the oxygen vacancies in ZnO samples were increased when the pressure increased in the oxygen reaction environment (oxidizing atmosphere).

  18. Effect of intrinsic point defect on the magnetic properties of ZnO nanowire.

    PubMed

    Yun, Jiangni; Zhang, Zhiyong; Yin, Tieen

    2013-01-01

    The effect of intrinsic point defect on the magnetic properties of ZnO nanowire is investigated by the first-principles calculation based on the density functional theory (DFT). The calculated results reveal that the pure ZnO nanowire without intrinsic point defect is nonmagnetic and ZnO nanowire with V(O), Zn(i), O(i), O(Zn), or Zn(O) point defect also is nonmagnetic. However, a strong spin splitting phenomenon is observed in ZnO nanowire with V(Zn) defect sitting on the surface site. The Mulliken population analysis reveals that the oxygen atoms which are close to the V(Zn) defect do major contribution to the magnetic moment. Partial density states calculation further suggests that the appearance of the half-metallic ferromagnetism in ZnO nanorod with V(Zn) originates from the hybridization of the O2p states with Zn 3d states.

  19. Synthesis and characterization of ZnO nanowires for nanosensor applications

    SciTech Connect

    Lupan, O.; Emelchenko, G.A.; Ursaki, V.V.; Chai, G.; Redkin, A.N.; Gruzintsev, A.N.; Tiginyanu, I.M.; Chow, L.; Ono, L.K.; and others

    2010-08-15

    In this paper we report the synthesis of ZnO nanowires via chemical vapor deposition (CVD) at 650 {sup o}C. It will be shown that these nanowires are suitable for sensing applications. ZnO nanowires were grown with diameters ranging from 50 to 200 nm depending on the substrate position in a CVD synthesis reactor and the growth regimes. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and Raman spectroscopy (RS) have been used to characterize the ZnO nanowires. To investigate the suitability of the CVD synthesized ZnO nanowires for gas sensing applications, a single ZnO nanowire device (50 nm in diameter) was fabricated using a focused ion beam (FIB). The response to H{sub 2} of a gas nanosensor based on an individual ZnO nanowire is also reported.

  20. Preparation and structural properties of pure and codoped (Mg, Ag) ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Reddy, B. Sankara; Reddy, S. Venkatramana; Reddy, N. Koteeswara

    2013-06-01

    Pure and co-doped (Mg, Ag) ZnO nanoparticles (Zn0.90Mg0.05Ag0.05O) are synthesized by chemical co-precipitation method in the presence of capping agent Polyethylene glycol 600 (PEG 600) and annealed at 500°C in air ambient for 1h. The XRD measurements reveals that the pure and co-doped ZnO samples have hexagonal structure without any change and the size of ZnO nanoparicles were decreased from 17 nm to 13 nm. FESEM images indicates that they are flake like structures of the ZnO and co-doped ZnO samples and ED AX spectra reveals that the successful doping concentration of Mg and Ag. From the TEM results, the size of the ZnO nanoparticles which are in good agreement with the XRD results.

  1. Catalyst free growth of ZnO nanorods by thermal evaporation method

    SciTech Connect

    Somvanshi, Divya; Jit, S.

    2013-06-03

    In this work, we report catalyst free growth of ZnO nanorods on n-Si substrate by a low cost thermal evaporation method. The surface morphology, chemical composition and crystalline structure of ZnO nanorods have been determined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) spectroscopy respectively. It is found that, the as -deposited ZnO seed layer reduces lattice mismatching between ZnO and Si from 40.3 to 0.28%, therefore enhances the subsequent growth and crystalline quality of ZnO nanorods on Si substrate. The present methodology is simple, cost effective and highly applicable for synthesis of ZnO nanorods for optoelectronics applications.

  2. Hybrid material based on plasmonic nanodisks decorated ZnO and its application on nanoscale lasers

    NASA Astrophysics Data System (ADS)

    Chen, Zuxin; Lai, Boya; Zhang, Junming; Wang, Guoping; Chu, Sheng

    2014-07-01

    Plasmonic noble metal nanodisks with regular (triangular or hexagonal) shapes have been epitaxially formed on ZnO nanorods’ (0002) surfaces. The composite material’s crystal structures, epitaxial relationships between metal nanodisks, and ZnO host crystals were fully investigated. The effects from metal nanodisks on lasing characteristics of two types of ZnO nanoscale cavities (Fabry-Perot and Whispering Gallery Mode cavity) were studied. The results suggest that metal nanodisks can effectively enhance the lasing performance by lowering the lasing threshold in the ZnO Whispering Gallery Mode nanoplate laser, whereas the Fabry-Perot ZnO nanorods lasers were much less affected by the metal decoration. The plasmonic enhancement mechanism for the ZnO nanoplate cavities was further studied using numerical simulations as well as spatially resolved photoluminescence measurement.

  3. The effect of nanosize ZnO on the properties of the selected polymer blend composites

    NASA Astrophysics Data System (ADS)

    Grigalovica, A.; Bochkov, I.; Merijs Meri, R.; Zicans, J.; Grabis, J.; Kotsilkova, R.; Borovanska, I.

    2012-08-01

    In the current research the effect of ZnO nanoparticles on the structure and properties of common thermoplastic polymers (polyoxymethylene (POM), polypropylene (PP), ethylene-α-octene copolymers (EOC)) and their binary blends is investigated. EOC content in the composites varies from 0 to 50 wt. %. The amount of nanostructured ZnO filler in the composites is changed in the interval from 0 to 5 wt. %. Tensile and frictional properties of ZnO modified nanocomposites are investigated. Results of the investigation show that ZnO additions cause increment in stiffness and strength as well as coefficient of friction of the investigated nanocomposites. The effect of ZnO modifier is the highest at low EOC content. The effect of ZnO is strongly dependent on the compatibility and crystallinity of the investigated nanocomposites.

  4. III-nitrides on oxygen- and zinc-face ZnO substrates

    SciTech Connect

    Namkoong, Gon; Burnham, Shawn; Lee, Kyoung-Keun; Trybus, Elaissa; Doolittle, W. Alan; Losurdo, Maria; Capezzuto, Pio; Bruno, Giovanni; Nemeth, Bill; Nause, Jeff

    2005-10-31

    The characteristics of III-nitrides grown on zinc- and oxygen-face ZnO by plasma-assisted molecular beam epitaxy were investigated. The reflection high-energy electron diffraction pattern indicates formation of a cubic phase at the interface between III-nitride and both Zn- and O-face ZnO. The polarity indicates that Zn-face ZnO leads to a single polarity, while O-face ZnO forms mixed polarity of III-nitrides. Furthermore, by using a vicinal ZnO substrate, the terrace-step growth of GaN was realized with a reduction by two orders of magnitude in the dislocation-related etch pit density to {approx}10{sup 8} cm{sup -2}, while a dislocation density of {approx}10{sup 10} cm{sup -2} was obtained on the on-axis ZnO substrates.

  5. Controllable Growth of Ultrathin P-doped ZnO Nanosheets.

    PubMed

    Zhu, Yuankun; Yang, Hengyan; Sun, Feng; Wang, Xianying

    2016-12-01

    Ultrathin phosphor (P)-doped ZnO nanosheets with branched nanowires were controllably synthesized, and the effects of oxygen and phosphor doping on the structural and optical properties were systematically studied. The grown ZnO nanosheet exhibits an ultrathin nanoribbon backbone with one-side-aligned nanoteeth. For the growth of ultrathin ZnO nanosheets, both oxygen flow rate and P doping are essential, by which the morphologies and microstructures can be finely tuned. P doping induces strain relaxation to change the growth direction of ZnO nanoribbons, and oxygen flow rate promotes the high supersaturation degree to facilitate the growth of nanoteeth and widens the nanoribbons. The growth of P-doped ZnO in this work provides a new progress towards the rational control of the morphologies for ZnO nanostructures.

  6. Structural and optical characterization of ZnO doped PC/PS blend nanocomposites

    NASA Astrophysics Data System (ADS)

    Agarwal, Shalini; Saraswat, Vibhav K.

    2015-04-01

    PC50%/PS50% polymer blend nanocomposites, undoped and doped with different concentration of ZnO nanoparticles (1, 2, 3 wt%), have been prepared using solution casting method. Structural and optical studies have been performed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Ultraviolet-Visible spectroscopy (UV-Vis). ZnO nanoparticles have been synthesized by chemical route method. The nanostructure of the ZnO nanoparticles has been ascertained through X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Optical Absorption Spectra has been used to study optical constants of prepared blend nanocomposites. Energy band gap of PC/PS - ZnO blend nanocomposites have been calculated by using Tauc relation. The band gap of the nanocomposites decreases as ZnO wt% increases. Extinction coefficient, refractive index and real & imaginary part of dielectric constants increase with increase in ZnO nanoparticles wt%.

  7. Controllable Growth of Ultrathin P-doped ZnO Nanosheets

    NASA Astrophysics Data System (ADS)

    Zhu, Yuankun; Yang, Hengyan; Sun, Feng; Wang, Xianying

    2016-04-01

    Ultrathin phosphor (P)-doped ZnO nanosheets with branched nanowires were controllably synthesized, and the effects of oxygen and phosphor doping on the structural and optical properties were systematically studied. The grown ZnO nanosheet exhibits an ultrathin nanoribbon backbone with one-side-aligned nanoteeth. For the growth of ultrathin ZnO nanosheets, both oxygen flow rate and P doping are essential, by which the morphologies and microstructures can be finely tuned. P doping induces strain relaxation to change the growth direction of ZnO nanoribbons, and oxygen flow rate promotes the high supersaturation degree to facilitate the growth of nanoteeth and widens the nanoribbons. The growth of P-doped ZnO in this work provides a new progress towards the rational control of the morphologies for ZnO nanostructures.

  8. Effect of solution concentration on the functional properties of ZnO nanostructures: Role of Hexamethylenetetramine

    NASA Astrophysics Data System (ADS)

    Heo, Si Nae; Park, Keun Young; Seo, Yong Jun; Ahmed, Faheem; Anwar, M. S.; Koo, Bon Heun

    2013-05-01

    In this research, ZnO nanorods have been successfully synthesized via wet chemical method. XRD results revealed the single phase nature with the wurtzite structure of the as prepared ZnO nanorods. By only varying the concentration of Hexamethylenetetramine (HMT) in the solution, morphology of ZnO changed from hexagonal facet nanorods to pencil like nanorods and size of nanorods also changed. The band gap of as-synthesized ZnO nanorods was found to increase with increasing the concentration of HMT in the solution. The narrow full-width at half-maximum (FWHM) of the UV emission of PL spectra indicated that the grown ZnO nanorods have high crystal quality and is well matched with the obtained XRD results. These results revealed that the concentration of Hexamethylenetetramine plays a vital role to control the properties of ZnO nanorods.

  9. g-C3N4 decorated ZnO nanorod arrays for enhanced photoelectrocatalytic performance

    NASA Astrophysics Data System (ADS)

    Kuang, Pan-Yong; Su, Yu-Zhi; Chen, Gao-Feng; Luo, Zhuo; Xing, Shu-Yang; Li, Nan; Liu, Zhao-Qing

    2015-12-01

    Heterojunction can not only offer a wide range of solar light absorption but also facilitate the separation of photoinduced charge carriers, and thereby lead to enhanced photoelectrochemical efficiency. Herein, we report the heterostructured g-C3N4/ZnO nanorod arrays (NRAs) for enhanced photoelectrocatalytic performance. The g-C3N4 shell layer of about 20-30 nm was coated on the surface of ZnO nanorod uniformly through thermal annealing the melamine precursor. Compared to the pristine ZnO and g-C3N4, the as-prepared g-C3N4/ZnO NRAs exhibit enhanced photoelectrocatalytic activity for methylene blue (MB) decolorization under visible light illumination. This enhancement of photoelectrocatalytic performance may be mainly attributed to improved separation efficiency of charge carriers from photoexcited g-C3N4 to ZnO across the g-C3N4/ZnO interfaces.

  10. Heavy-flavor production overview

    SciTech Connect

    Jeffrey A. Appel

    2003-12-10

    This talk serves as an introduction to the Heavy-Flavor session of the XXXIII International Symposium on Multiparticle Dynamics. A major focus of this session is on the production of heavy quarks. The talks which follow review the latest results on heavy quark production in strong, electromagnetic, and weak interactions, as well as some of the physics of the heavy quarks themselves. This talk emphasizes what we can learn from the production measurements, both about underlying QCD theory and the partonic nature of the hadrons which we see in the laboratory.

  11. Synthesis and thermoelectric properties of composite oxides in the pseudobinary system ZnO-Ga2O3

    NASA Astrophysics Data System (ADS)

    Michiue, Yuichi; Nishijima, Hitoshi; Suzuki, Yoshikazu; Mori, Takao

    2017-03-01

    Phase relations in the pseudobinary system ZnO-Ga2O3 were investigated at 1723 K. The homologous phase Ga2O3(ZnO)m was formed in a region 9 ≦ n ≦ 38 for ZnO: Ga2O3 = n: 1, and Ga-doped ZnO (wurtzite structure) was in n ≧ 398. In between the two regions (i.e. 38 < n < 398) a composite of Ga-doped ZnO and the homologous phase Ga2O3(ZnO)mmax (mmax ≈ 38) was formed. Thermoelectric properties of the composite were examined along with Ga-doped ZnO and the homologous phase Ga2O3(ZnO)33. In the composite, the homologous phase appears to be very effective in lowering the thermal conductivity. As a result of a trade-off relationship between the power factor and the thermal resistivity, thermoelectric performance happened to be roughly the same for the composite and Ga-doped ZnO samples.

  12. Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil.

    PubMed

    Bandyopadhyay, Susmita; Plascencia-Villa, Germán; Mukherjee, Arnab; Rico, Cyren M; José-Yacamán, Miguel; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2015-05-15

    ZnO nanoparticles (NPs) are reported as potentially phytotoxic in hydroponic and soil media. However, studies on ZnO NPs toxicity in a plant inoculated with bacterium in soil are limited. In this study, ZnO NPs, bulk ZnO, and ZnCl₂ were exposed to the symbiotic alfalfa (Medicago sativa L.)-Sinorhizobium meliloti association at concentrations ranging from 0 to 750 mg/kg soil. Plant growth, Zn bioaccumulation, dry biomass, leaf area, total protein, and catalase (CAT) activity were measured in 30 day-old plants. Results showed 50% germination reduction by bulk ZnO at 500 and 750 mg/kg and all ZnCl₂ concentrations. ZnO NPs and ionic Zn reduced root and shoot biomass by 80% and 25%, respectively. Conversely, bulk ZnO at 750 mg/kg increased shoot and root biomass by 225% and 10%, respectively, compared to control. At 500 and 750 mg/kg, ZnCl₂ reduced CAT activity in stems and leaves. Total leaf protein significantly decreased as external ZnCl₂ concentration increased. STEM-EDX imaging revealed the presence of ZnO particles in the root, stem, leaf, and nodule tissues. ZnO NPs showed less toxicity compared to ZnCl₂ and bulk ZnO found to be growth enhancing on measured traits. These findings are significant to reveal the toxicity effects of different Zn species (NPs, bulk, and ionic Zn) into environmentally important plant-bacterial system in soil.

  13. Synthesis, characterization, UV and dielectric properties of hexagonal disklike ZnO particles embedded in polyimides

    SciTech Connect

    Vural, Sema; Koeytepe, Sueleyman; Seckin, Turgay; Adiguezel, Ibrahim

    2011-10-15

    Graphical abstract: The hexagonal disklike ZnO particles with a diameter of 300-500 nm were synthesized from zinc acetate and NaOH in water with citric acid. ZnO/polyimide composite films with different ZnO contents was prepared. The prepared zinc oxide-polyimide composites were characterized for their structure, morphology and thermal behavior. Composites with ZnO particle contents from 1 to 5 wt% show good transparency in the visible region and luminescent properties. Highlights: {yields} A series of novel ZnO/polyimide composite films with different ZnO contents was prepared. {yields} The ZnO was homogeneously dispersed in the PI matrix. {yields} The composites showed the low dielectric constant of 50 at 10{sup 6} Hz. {yields} Homogenous dispersion and the amount of ZnO particles contributed to the dielectric properties of composites. -- Abstract: A series of novel ZnO/polyimide composite films with different ZnO contents was prepared through incorporation hexagonal disklike ZnO particles into poly(amic acid) of the pre polymer of the polyimide. The hexagonal disklike ZnO particles with a diameter of 300-500 nm were synthesized from zinc acetate and NaOH in water with citric acid. The prepared zinc oxide-polyimide composites were characterized for their structure, morphology, and thermal behavior employing Fourier transform infrared spectroscopy, scanning electron micrograph, X-ray diffraction and thermal analysis techniques. Thermal analyses show that the ZnO particles were successfully incorporated into the polymer matrix and these ZnO/polymer composites have a good thermal stability. Scanning electron microscopy studies indicate the ZnO particles were uniformly dispersed in the polymer and they remained at the original size (300-500 nm) before immobilization. All composite films with ZnO particle contents from 1 to 5 wt% show good transparency in the visible region and luminescent properties.

  14. The effect of ZnO nanoparticles on liver function in rats.

    PubMed

    Tang, Hua-Qiao; Xu, Min; Rong, Qian; Jin, Ru-Wen; Liu, Qi-Ji; Li, Ying-Lun

    Zinc oxide (ZnO) is widely incorporated as a food additive in animal diets. In order to optimize the beneficial effects of ZnO and minimize any resultant environmental pollution, ZnO nanoparticles are often used for delivery of the zinc. However, the possible toxic effects of ZnO nanoparticles, including effects on cytochrome P450 (CYP450) enzymes, have not been evaluated. In this study, we investigated the effect of ZnO nanoparticles, in doses used in animal feeds, on CYP450 enzymes, liver and intestinal enzymes, liver and kidney histopathology, and hematologic indices in rats. We found that liver and kidney injury occurred when the concentrations of ZnO nanoparticles in feed were 300-600 mg/kg. Also, liver mRNA expression for constitutive androstane receptor was suppressed and mRNA expression for pregnane X receptor was induced when feed containing ZnO nanoparticles was given at a concentration of 600 mg/kg. Although the expression of mRNA for CYP 2C11 and 3A2 enzymes was induced by ZnO nanoparticles, the activities of CYP 2C11 and 3A2 were suppressed. While liver CYP 1A2 mRNA expression was suppressed, CYP 1A2 activity remained unchanged at all ZnO nanoparticle doses. Therefore, it has been concluded that ZnO nanoparticles, in the doses customarily added to animal feed, changed the indices of hematology and blood chemistry, altered the expression and activity of hepatic CYP enzymes, and induced pathological changes in liver and kidney tissues of rats. These findings suggest that greater attention needs to be paid to the toxic effects of ZnO nanoparticles in animal feed, with the possibility that the doses of ZnO should be reduced.

  15. The effect of cations on the aggregation of commercial ZnO nanoparticle suspension

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Szu; Peng, Yu-Huei; Shiung, Chia-En; Shih, Yang-hsin

    2012-12-01

    Nanoscale ZnO materials have been largely used in many products due to their distinct properties. However, ZnO nanoparticles (NPs) are hazardous to human health and the ecosystem. The characteristics and the stability of ZnO NPs are relevant to their fate in the environment and their potential toxicities. In this study, a stable commercial ZnO NP suspension was chosen to investigate its aggregation under various salt additions. Different concentrations of NaCl, KCl and CaCl2 were chosen to represent various environmental conditions. Under pH 8-9, the surface charge of commercial ZnO NPs was negative. The behavior of the stabilized ZnO NPs in water was affected by ionic combinations and ionic strength; that is, divalent cations were more effective than monovalent ones in promoting aggregation formation. The attachment efficiencies of ZnO aggregates were calculated based upon the aggregation kinetics. The critical coagulation concentration values for this commercial ZnO NPs were higher than previous reported for ZnO NPs, indicating this ZnO NP could be stable in the aquatic environment and might have increased hazardous potentials. Based upon the Derjaguin-Landau-Verwey-Overbeek theory, interactions between ZnO NPs in the presence of different ions were evaluated to illustrate the aggregation mechanism. Our results indicated that critical ionic type and concentration promote the aggregation of stable ZnO NPs. These understandings also can facilitate the design of the precipitation treatment to remove NPs from water.

  16. The effect of ZnO nanoparticles on liver function in rats

    PubMed Central

    Tang, Hua-Qiao; Xu, Min; Rong, Qian; Jin, Ru-Wen; Liu, Qi-Ji; Li, Ying-Lun

    2016-01-01

    Zinc oxide (ZnO) is widely incorporated as a food additive in animal diets. In order to optimize the beneficial effects of ZnO and minimize any resultant environmental pollution, ZnO nanoparticles are often used for delivery of the zinc. However, the possible toxic effects of ZnO nanoparticles, including effects on cytochrome P450 (CYP450) enzymes, have not been evaluated. In this study, we investigated the effect of ZnO nanoparticles, in doses used in animal feeds, on CYP450 enzymes, liver and intestinal enzymes, liver and kidney histopathology, and hematologic indices in rats. We found that liver and kidney injury occurred when the concentrations of ZnO nanoparticles in feed were 300–600 mg/kg. Also, liver mRNA expression for constitutive androstane receptor was suppressed and mRNA expression for pregnane X receptor was induced when feed containing ZnO nanoparticles was given at a concentration of 600 mg/kg. Although the expression of mRNA for CYP 2C11 and 3A2 enzymes was induced by ZnO nanoparticles, the activities of CYP 2C11 and 3A2 were suppressed. While liver CYP 1A2 mRNA expression was suppressed, CYP 1A2 activity remained unchanged at all ZnO nanoparticle doses. Therefore, it has been concluded that ZnO nanoparticles, in the doses customarily added to animal feed, changed the indices of hematology and blood chemistry, altered the expression and activity of hepatic CYP enzymes, and induced pathological changes in liver and kidney tissues of rats. These findings suggest that greater attention needs to be paid to the toxic effects of ZnO nanoparticles in animal feed, with the possibility that the doses of ZnO should be reduced. PMID:27621621

  17. Sulfur-Doped Zinc Oxide (ZnO) Nanostars: Synthesis and Simulation of Growth Mechanism

    DTIC Science & Technology

    2011-10-01

    temperature hydrothermal growth method. The cross-section of the ZnO nanowires transformed from a hexagon to a hexagram when sulfur dopants from thiourea ...from hexagon to hexagram nanostructures. KEYWORDS ZnO nanostar, hexagram, thiourea , sulfur doping, growth mechanism, ab initio simulation 1...16–21], there have been no systematic studies combining experimental measurements with ab initio theoretical calculations to explore why complex ZnO

  18. Propagation of heavy baryons in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Das, Santosh K.; Torres-Rincon, Juan M.; Tolos, Laura; Minissale, Vincenzo; Scardina, Francesco; Greco, Vincenzo

    2016-12-01

    The drag and diffusion coefficients of heavy baryons (Λc and Λb ) in the hadronic phase created in the latter stage of the heavy-ion collisions at RHIC and LHC energies have been evaluated recently. In this work we compute some experimental observables, such as the nuclear suppression factor RA A and the elliptic flow v2 of heavy baryons at RHIC and LHC energies, highlighting the role of the hadronic phase contribution to these observables, which are going to be measured at Run 3 of LHC. For the time evolution of the heavy quarks in the quark and gluon plasma (QGP) and heavy baryons in the hadronic phase, we use the Langevin dynamics. For the hadronization of the heavy quarks to heavy baryons we employ Peterson fragmentation functions. We observe a strong suppression of both the Λc and Λb . We find that the hadronic medium has a sizable impact on the heavy-baryon elliptic flow whereas the impact of hadronic medium rescattering is almost unnoticeable on the nuclear suppression factor. We evaluate the Λc/D ratio at RHIC and LHC. We find that the Λc/D ratio remains unaffected due to the hadronic phase rescattering which enables it as a nobel probe of QGP phase dynamics along with its hadronization.

  19. Rheological properties of heavy oils and heavy oil emulsions

    SciTech Connect

    Khan, M.R.

    1996-06-01

    In this study, the author investigated the effects of a number of process variables such as shear rate, measurement temperature, pressure, the influence of pretreatment, and the role of various amounts of added water on the rheology of the resulting heavy oil or the emulsion. Rheological properties of heavy oils and the corresponding emulsions are important from transportation and processing standpoints.

  20. Enhanced ultraviolet emission of ZnO microrods array based on Au surface plasmon

    NASA Astrophysics Data System (ADS)

    Feng, Wen-po; Jing, Ai-hua; Li, Jing-hua; Liang, Gao-feng

    2016-05-01

    In this work, the Au/ZnO hybrid microstructure was fabricated by assembling Au nanoparticles (NPs) onto the surface of ZnO microrods, and an obviously improved ultraviolet (UV) emission of ZnO is observed in the hybrid microstructure. About 27-fold enhancement ratio of the UV emission to the green band emission of ZnO is achieved. The underlying enhanced mechanism of the UV emission intensities can be ascribed to the charge transfer and the efficient coupling between ZnO excitons and Au surface plasmon (SP).

  1. Stable fluorescence conjugation of ZnO nanoparticles and their size dependent cellular uptake.

    PubMed

    Kim, Kyoung-Min; Kim, Min-Kyu; Paek, Hee-Jeong; Choi, Soo-Jin; Oh, Jae-Min

    2016-09-01

    We evaluated size dependent cellular uptake of ZnO nanoparticles utilizing stably introduced Cy5.5, which emits long-wavelength fluorescence. Through (3-aminopropyl)triethoxysilane modification, ZnO nanoparticles of different sizes (20 and 70nm) were functionalized with amine moiety, which was further reacted with Cy5.5-N-hydroxylsuccinimide ester to make covalently conjugated Cy5.5 dye on ZnO nanoparticles. Field emission-scanning electron microscopic images revealed that average particle size as well as particle morphology of ZnO nanoparticles were not altered by Cy5.5 conjugation. Zeta potential measurement confirmed that the positive surface charge of ZnO nanoparticles was well preserved after successive conjugation reactions. Based on infrared, ultraviolet-visible light and photoluminescence spectroscopies, we verify that the Cy5.5 was stably introduced to ZnO nanoparticles without serious aggregation. Surface conjugated Cy5.5 showed high stability in deionized water, phosphate buffered saline and cell culture medium, showing less than 2% of release during 85h. Confocal microscopy and fluorescence-activated cell sorting analysis demonstrated that smaller ZnO nanoparticles were more taken up in greater quantities by HaCaT cells. Moreover, systematic study on cellular uptake pathway showed that smaller ZnO nanoparticles were internalized into cells mainly by clathrin-mediated endocytosis, while larger ZnO nanoparticles entered cells via several pathways.

  2. [Study of transmittance of ZnO film deposited on different substrate].

    PubMed

    Yuan, Guang-Cai; Xu, Zheng; Zhang, Fu-Jun; Wang, Yong; Zhao, De-Wei; Xu, Hong-Hua

    2007-07-01

    ZnO films were deposited on different structural substrate by rf-reactive Magnetron sputtering. The optical characteristics of ZnO films were studied by X-ray diffraction and optical transmission spectrum. The ZnO films deposited on the Al2 O3 / AlN compound substrate had better crystallized and had a higher transmittance compared to the ones on AlN substrate. The optical characteristics of ZnO films were studied after all samples with a series of annealing temperature from 200 degrees C to 500 degrees C. When the annealing temperature was 400 degrees C, crystallization and c-axis (002) oriented of the ZnO film got best, and average optical transmittance reached 88% in the range visible light. While annealing temperature went beyond 450 degrees C, the crystallized structure of ZnO films was broken; the distance between O and Zn atoms became bigger. The authors found that the higher annealing temperature make against crystallization of ZnO thin film and increased density of defect states and dispersion mechanisms and reduced optical characteristics of ZnO film, and average optical transmittance of ZnO films reached 80% in the range of visible light at 500 degrees C.

  3. Toxicity evaluation of ZnO nanostructures on L929 fibroblast cell line using MTS assay

    SciTech Connect

    Bakhori, Siti Khadijah Mohd; Mahmud, Shahrom; Ann, Ling Chuo; Mohamed, Azman Seeni; Saifuddin, Siti Nazmin; Masudi, Sam’an Malik; Mohamad, Dasmawati

    2015-04-24

    ZnO has wide applications in medical and dentistry apart from being used as optoelectronic devices such as solar cells, photodetectors, sensors and light emitting diodes (LEDs). Therefore, the toxicity evaluation is important to know the toxicity level on normal cell line. The toxicity of two grades ZnO nanostructures, ZnO-4 and ZnO-8 have been carried out using cytotoxicity test of MTS assay on L929 rat fibroblast cell line. Prior to that, ZnO-4 and ZnO-8 were characterized for its morphology, structure and optical properties using FESEM, X-ray diffraction, and Photoluminescence respectively. The two groups revealed difference in morphology and exhibit slightly shifted of near band edge emission of Photoluminescence other than having a similar calculated crystallite size of nanostructures. The viability of cells after 72h were obtained and the statistical significance value was calculated using SPSS v20. The p value is more than 0.05 between untreated and treated cell with ZnO. This insignificant value of p>0.05 can be summarized as a non-toxic level of ZnO-4 and ZnO-8 on the L929 cell line.

  4. Electrodeposition of ZnO Nanorods in the Presence of Metal Ions

    SciTech Connect

    Seipel, Bjoern; Athavan, Nadarajah; Wutzke, Ben; Koenenkamp, Rolf F.

    2009-04-15

    We report on structural and optical changes induced by impurity incorporation in ZnO nanorods grown via electrodeposition. We find the lattice parameters of the hexagonal ZnO rods to be larger than in defect-free single-crystalline ZnO. SIMS measurements indicate impurity incorporation and doping in the bulk of the nanorods. The impurity content correlates with changes in the electroluminescence spectra. The maximum of the defect luminescence band around 600 nm shifts towards longer wavelengths with metal incorporation. Aluminum incorporation leads to a narrow luminescence band close by the bandgap of ZnO around 390 nm.

  5. Optical properties of hybrid PEDOT-PSS: ZnO thin film

    NASA Astrophysics Data System (ADS)

    Zabidi, Z. M.; Alias, A. N.; Khalid, S. H.; Sahapini, N. F. M.

    2012-09-01

    Hybrid PEDOT-PSS: ZnO thin film have been prepared using drop casting method. The optical properties such as refractive index (n), extinction coefficient (k), reflectivity (R), optical dielectric loss, optical conductivity (σ), dispersion energy (Ed), oscillator energy (E0) and optical energy band gap (Eg) have been calculated in this paper. The determinations of optical constants have been made by applying the single-effective oscillator model proposed by Wemple and Didomenico Jr. We found that the reflectance is decreasing as the composition of ZnO increase. The refractive index of film also show significantly changes with the volume composition of ZnO. As the composition of ZnO increase, the refractive index shows the normal dispersion behavior. The extinction coefficient is decreasing with the increasing of wavelength, but as the wavelength increase from 400 nm until 700 nm, the extinction coefficient is also increasing. Both the real and imaginary part of the dielectric constant decrease as the photon energy increase. The oscillator energy Eo, dispersion energy Ed, optical band energy Eg were determined by using Wemple DiDomenico single-effective-oscillator model. It is shown that Eo is increasing as the composition of ZnO increase, Ed is decreasing as the composition of ZnO increase and Eg is increasing as the composition of ZnO increase. It is shown that the compositions of ZnO influence the optical properties of hybrid PEDOT-PSS: ZnO thin film.

  6. Characterization and ammonia sensing properties of pure and modified ZnO films

    NASA Astrophysics Data System (ADS)

    Bal, Amandeep Kaur; Singh, Amarjit; Bedi, R. K.

    2011-05-01

    Zinc oxide (ZnO) films have been prepared by thermal oxidation of pre-deposited zinc films on the glass substrate kept at room temperature. These films were surface modified by dipping them into an aqueous solution (0.1 M) of lithium chloride (LiCl) and aluminium chloride (AlCl3) followed by firing at 500°C. Based on X-ray diffraction results it is observed that modification of pure ZnO by lithium and aluminium precursor results a change in the lattice parameters. Li and Al ions appear to enhance the a-axis orientation and c-axis orientation of pure ZnO films, respectively. Field emission scanning electron micrographs of lithium-modified ZnO film indicate the presence of nanoneedles, while nanorods are observed in case of aluminium-modified ZnO film. The electrical resistance measurements of modified ZnO films also show variation in resistance as compared to pure ZnO film. Pure and Al-modified films of ZnO are sensitive to ammonia at room temperature, while Al-modified ZnO film is found to be more sensitive with 99% of response at 250 ppm.

  7. Synthesis of ordered large-scale ZnO nanopore arrays

    NASA Astrophysics Data System (ADS)

    Ding, G. Q.; Shen, W. Z.; Zheng, M. J.; Fan, D. H.

    2006-03-01

    An effective approach is demonstrated for growing ordered large-scale ZnO nanopore arrays through radio-frequency magnetron sputtering deposition on porous alumina membranes (PAMs). The realization of highly ordered hexagonal ZnO nanopore arrays benefits from the unique properties of ZnO (hexagonal structure, polar surfaces, and preferable growth directions) and PAMs (controllable hexagonal nanopores and localized negative charges). Further evidence has been shown through the effects of nanorod size and thermal treatment of PAMs on the yielded morphology of ZnO nanopore arrays. This approach opens the possibility of creating regular semiconducting nanopore arrays for the application of filters, sensors, and templates.

  8. Amine-Functionalized ZnO Nanosheets for Efficient CO₂ Capture and Photoreduction.

    PubMed

    Liao, Yusen; Hu, Zhaoning; Gu, Quan; Xue, Can

    2015-10-16

    Amine-functionalized ZnO nanosheets were prepared through a one-step hydrothermal method by using monoethanolamine, which has a hydroxyl group, for covalent attachment on ZnO and a primary amine group to supply the amine-functionalization. We demonstrate that the terminal amine groups on ZnO surfaces substantially increase the capability of CO₂ capture via chemisorption, resulting in effective CO₂ activation. As a result, the photogenerated electrons from excited ZnO can more readily reduce the surface-activated CO₂, which thereby enhances the activity for photocatalytic CO₂ reduction.

  9. Atmospheric growth of ZnO films deposited by spray pyrolysis using diethylzinc solution

    NASA Astrophysics Data System (ADS)

    Imai, Masato; Watanabe, Marin; Mochihara, Akiko; Tominaga, Himeka; Yoshino, Kenji; Shen, Qing; Toyoda, Taro; Hayase, Shuzi

    2017-06-01

    Non-doped ZnO thin films are deposited on glass substrates by spray pyrolysis using diethylzinc solution at a range from a room temperature to 150 °C while making N2 gas flow in atmospheric pressure. The morphology, the structural property, the density and the optical band gap are studied. As the deposition temperature is increasing, the overall density and the optical band gap approach to the values of ZnO single crystal. The quality of ZnO thin film deposited at 150 °C becomes near ZnO single crystal.

  10. EFFECTS OF Au ON THE GROWTH OF ZnO NANOSTRUCTURES ON Si BY MOCVD

    NASA Astrophysics Data System (ADS)

    Cong, Chen; Fan, Lu Yang; Ping, He Hai; Wei, Wu Ke; Zhen, Ye Zhi

    2013-06-01

    The effects of Au on the growth of ZnO nanostructures on Si by metal organic chemical vapor deposition (MOCVD) at a relatively low temperature (450°C) were investigated. The experimental results showed that Au nanoparticles played a critical role during the growth of the ZnO nanostructures and affected their morphology and optical properties. It was found that Au nanoparticles particularly affected the nucleation of ZnO nanostructures during the growth process and the Au-assisted growth mechanism of ZnO nanostructures should be ascribed to the vapor-solid (VS) mechanism. The formation of a nanoneedle may be attributed to a more reactive interface between Au and ZnO, which leads to more zinc gaseous species absorbed near the interface. Different nucleation sites on ZnO nuclei resulted in the disorder of ZnO nanoneedles. Moreover, the crystalline quality of nano-ZnO was improved due to the presence of Au, according to the smaller full width at half maximum (FWHM) of the low-temperature exciton emission. We confirmed that ZnO nanoneedles showed better crystalline quality than ZnO nanorods through the HRTEM images and the SAED patterns. The reason for the improvement of the crystalline quality of nano-ZnO may be due to the less lattice mismatch.

  11. Ag-doped ZnO nanorods synthesized by two-step method

    NASA Astrophysics Data System (ADS)

    Chen, Xian-Mei; Ji, Yong; Gao, Xiao-Yong; Zhao, Xian-Wei

    2012-11-01

    A two-step method is adopted to synthesize Ag-doped ZnO nanorods. A ZnO seed layer is first prepared on a glass substrate by thermal decomposition of zinc acetate. Ag-doped ZnO nanorods are then assembled on the ZnO seed layer using the hydrothermal method. The influences of the molar percentage of Ag ions to Zn ions (RAg/Zn) on the structural and optical properties of the ZnO nanorods obtained are carefully studied using X-ray diffractometry, scanning electron microscopy and spectrophotometry. Results indicate that Ag ions enter into the crystal lattice through the substitution of Zn ions. The (002) c-axis-preferred orientation of the ZnO nanorods decreases as RAg/Zn increases. At RAg/Zn > 1.0%, ZnO nanorods lose their c-axis-preferred orientation and generate Ag precipitates from the ZnO crystal lattice. The average transmissivity in the visible region first increases and then decreases as RAg/Zn increases. The absorption edge is first blue shifted and then red shifted. The influence of Ag doping on the average head face, and axial dimensions of the ZnO nanorods may be optimized to improve the average transmissivity at RAg/Zn < 1.0%.

  12. Shape controlled Sn doped ZnO nanostructures for tunable optical emission and transport properties

    SciTech Connect

    Rakshit, T.; Manna, I.; Ray, S. K.

    2013-11-15

    Pure and Sn doped ZnO nanostructures have been grown on SiO{sub 2}/Si substrates by vapor-solid technique without using any catalysts. It has been found that the morphology of the nanostructures depend strongly on the growth temperature and doping concentration. By proper tuning of the growth temperature, morphology of pure ZnO can be changed from tetrapods to multipods. On the other hand, by varying the doping concentration of Sn in ZnO, the morphology can be tuned from tetrapods to flower-like multipods to nanowires. X-ray diffraction pattern reveals that the nanostructures have a preferred (0002) growth orientation, and they are tensile strained with the increase of Sn doping in ZnO. Temperature-dependent photoluminescence characteristics of these nanostructures have been investigated in the range from 10 to 300 K. Pure ZnO tetrapods exhibited less defect state emissions than that of pure ZnO multipods. The defect emission is reduced with low concentration of Sn doping, but again increases at higher concentration of doping because of increased defects. Transport properties of pure and Sn doped ZnO tetrapods have been studied using complex-plane impedance spectroscopy. The contribution from the arms and junctions of a tetrapod could be distinguished. Sn doped ZnO samples showed lower conductivity but higher relaxation time than that of pure ZnO tetrapods.

  13. Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst.

    PubMed

    Sun, Jian-Hui; Dong, Shu-Ying; Wang, Yong-Kui; Sun, Sheng-Peng

    2009-12-30

    A novel dumbbell-shaped ZnO microcrystal photocatalyst was successfully synthesized by hydrothermal method in the present study. The prepared ZnO photocatalyst was systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TG-DTA), photoluminescence spectrum (PL) and UV-vis absorption spectrum (UV-vis). The characterizations of dumbbell-shaped ZnO were also compared with the commercial ZnO. The results show that the prepared ZnO photocatalyst has a unique dumbbell shape and it belongs to the hexagonal wurtzite family. In addition, the photocatalytic activity of the prepared dumbbell-shaped ZnO microcrystal photocatalyst was evaluated by the degradation of three different kinds of dyes wastewater (Crystal Violet, Methyl Violet and Methylene Blue). After 75 min reaction, the decolourization efficiencies of the three kinds of dyes wastewater achieved 68.0%, 99.0% and 98.5%, the TOC removal efficiencies achieved 43.2%, 59.4% and 70.6%, respectively. Compared to commercial ZnO, 16-22% higher TOC removal efficiency was obtained by the dumbbell-shaped ZnO. The results indicated that the prepared dumbbell-shaped ZnO microcrystal photocatalyst showed good photocatalytic activity and it could be considered as a promising photocatalyst for dyes wastewater treatment.

  14. Plasma Induced Modification on Spin-Coated ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Vyas, Rishi; Gupta, Parul; Mathur, Shubhra; Sachdev, K.; Sharma, S. K.

    2011-07-01

    Sol-gel spin coated ZnO thin films were prepared using nanostructured ZnO powder synthesized by sol-gel route. The spin coated ZnO thin films were annealed at 300 °C & 400 °C for 2 hours in air to produce films with different grain size. These thin films were then given N2+H2 (1:3) DC plasma treatment for 30 min. These films were investigated with XRD and SEM. XRD investigation on the specimens revealed the reduction of grain size in plasma treated ZnO thin films. The SEM investigation indicated the smoothening of the surface on plasma treatment.

  15. Effects of Ce doping and humidity on UV sensing properties of electrospun ZnO nanofibers

    NASA Astrophysics Data System (ADS)

    Liu, Yan-Jie; Zhang, Hong-Di; Zhang, Jun; Li, Shuo; Zhang, Jun-Cheng; Zhu, Jian-Wei; Gong, Mao-Gang; Wang, Xiao-Xiong; Long, Yun-Ze

    2017-09-01

    Pure ZnO and Ce-doped ZnO nanofibers were synthesized via electrospinning-calcination technique. The morphology, composition, structure, humidity sensing and photoelectric properties were characterized. The field-effect curves showed that a single pure ZnO nanofiber is an n-type semiconductor and an individual Ce-ZnO nanofiber is a p-type semiconductor. The Ce doping and humidity have strong influence on the UV sensing properties of ZnO-based nanofibers. In the dark, the responses [(IVarious RH - I43% RH)/I43% RH] of pure ZnO increased gradually with the increase of humidity, while the responses of Ce-doped ZnO nanofibers decreased. When exposed to UV radiation, the response of pure ZnO nanofibers decreased with increasing humidity, while that of Ce-doped ZnO increased. And the highest responses are around 88.44 and 683.67 at 97% humidity for pure ZnO and Ce-ZnO nanofibers under UV irradiation. In addition, the UV response of Ce-ZnO with good stability and repeatability increases by two orders of magnitude than that of pure ZnO. The sensing mechanism relevant to oxygen and water-related conduction was discussed briefly. These results exhibit that the application prospects of p-type Ce-ZnO nanofibers are promising in the field of photoelectric devices.

  16. Controlled growth of well-aligned ZnO nanowire arrays using the improved hydrothermal method

    NASA Astrophysics Data System (ADS)

    Zhitao, Han; Sisi, Li; Jinkui, Chu; Yong, Chen

    2013-06-01

    Well-aligned ZnO nanowires were hydrothermally synthesized based on a facile method for preparing the ZnO seed layer which was derived from the combination of a sol—gel process and the spin-coating technique. The effect of the contents of growth solution and the growth duration on the morphology of ZnO nanowires has been investigated. The results indicated that long and vertically aligned ZnO nanowires could be obtained by adjusting the contents of ammonia and polyethyleneimine (PEI) in the growth solution. Under the optimized condition, the length of ZnO nanowires increased fast and almost linearly with the growth duration. After 10 h incubation, ZnO nanowires more than 25 μm in length were obtained. By combining the conventional photolithographic method with this hydrothermal approach, long and well-aligned ZnO nanowire arrays were selectively grown on the substrate. In addition, the bottom fusion at the foot of the nanowires has been obviously improved. The results demonstrated that the improved hydrothermal process is favorable to synthesize long and well-aligned ZnO nanowires, and possesses good process compatibility with the conventional photolithographic technique for preparing ZnO nanowire arrays. So it has great potential in applications such as display and field emission devices.

  17. Toxicity evaluation of ZnO nanostructures on L929 fibroblast cell line using MTS assay

    NASA Astrophysics Data System (ADS)

    Bakhori, Siti Khadijah Mohd; Mahmud, Shahrom; Ann, Ling Chuo; Mohamed, Azman Seeni; Saifuddin, Siti Nazmin; Masudi, Sam'an Malik; Mohamad, Dasmawati

    2015-04-01

    ZnO has wide applications in medical and dentistry apart from being used as optoelectronic devices such as solar cells, photodetectors, sensors and light emitting diodes (LEDs). Therefore, the toxicity evaluation is important to know the toxicity level on normal cell line. The toxicity of two grades ZnO nanostructures, ZnO-4 and ZnO-8 have been carried out using cytotoxicity test of MTS assay on L929 rat fibroblast cell line. Prior to that, ZnO-4 and ZnO-8 were characterized for its morphology, structure and optical properties using FESEM, X-ray diffraction, and Photoluminescence respectively. The two groups revealed difference in morphology and exhibit slightly shifted of near band edge emission of Photoluminescence other than having a similar calculated crystallite size of nanostructures. The viability of cells after 72h were obtained and the statistical significance value was calculated using SPSS v20. The p value is more than 0.05 between untreated and treated cell with ZnO. This insignificant value of p>0.05 can be summarized as a non-toxic level of ZnO-4 and ZnO-8 on the L929 cell line.

  18. Synthesis of nitrogen-doped ZnO nanoparticles by RF thermal plasma

    NASA Astrophysics Data System (ADS)

    Hiragino, Yuto; Tanaka, Toshimi; Takeuchi, Hiroshi; Takeuchi, Akira; Lin, Jie; Yoshida, Toshiyuki; Fujita, Yasuhisa

    2016-04-01

    The nitrogen-doped ZnO nanoparticles (NPs) were successfully synthesized by using an RF thermal plasma process which would be a promising technique to the massive production. XRD measurements revealed that the formation of the hexagonal ZnO wurtzite structure. The synthesized nitrogen-doped ZnO NPs showed the nitrogen and carbon concentrations of 3.1-4.6 × 1020 cm-3 and 1.1-1.2 × 1020 cm-3. The hole injection was confirmed by evaluating band edge electroluminescence from the LED structures using nitrogen doped ZnO NPs as a p-type layer.

  19. Electrical property studies on chemically processed polypyrolle/aluminum doped ZnO based hybrid heterostructures

    NASA Astrophysics Data System (ADS)

    Mohan Kumar, G.; Ilanchezhiyan, P.; Madhan Kumar, A.; Yuldashev, Sh. U.; Kang, T. W.

    2016-04-01

    A hybrid structure based on p-type polypyrolle (PPy) and n-type aluminum (Al) doped ZnO nanorods was successfully constructed. The effect of Al doping on material properties of wurtzite structured ZnO were studied using several analytical techniques. To establish the desired hybrid structure, pyrrole monomers were polymerized on hydrothermally grown Al doped ZnO nanorods by chemical polymerization. The current⿿voltage characteristics on the fabricated PPy/Al doped ZnO heterostructures were found to exhibit excellent rectifying characteristics under dark and illumination conditions. The obtained results augment the prescribed architecture to be highly suitable for high-sensitivity optoelectronic applications.

  20. Synthesis and optical properties of ZnO and carbon nanotube based coaxial heterostructures

    NASA Astrophysics Data System (ADS)

    Kim, D. S.; Lee, S.-M.; Scholz, R.; Knez, M.; Gösele, U.; Fallert, J.; Kalt, H.; Zacharias, M.

    2008-09-01

    Carbon nanotubes and ZnO based functional coaxial heterostructured nanotubes have been fabricated by using atomic layer deposition. An irregular structured shell composed of ZnO nanocrystals was deposited on pristine nanotubes, while a highly defined ZnO shell was deposited on the tubes after its functionalization with Al2O3. Photoluminescence measurements of the ZnO shell on Al2O3/nanotube show a broad green band emission, whereas the shell grown on the bare nanotube shows a band shifted to the orange spectral range.