Sample records for heavy ion development

  1. Recent advances of microbial breeding via heavy-ion mutagenesis at IMP.

    PubMed

    Hu, W; Li, W; Chen, J

    2017-10-01

    Nowadays, the value of heavy-ion mutagenesis has been accepted as a novel powerful mutagen technique to generate new microbial mutants due to its high linear energy transfer and high relative biological effectiveness. This paper briefly reviews recent progress in developing a more efficient mutagenesis technique for microbial breeding using heavy-ion mutagenesis, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou. Then, new insights into microbial biotechnology via heavy-ion mutagenesis are also further explored. We hope that our concerns will give deep insight into microbial breeding biotechnology via heavy-ion mutagenesis. We also believe that heavy-ion mutagenesis breeding will greatly contribute to the progress of a comprehensive study industrial strain engineering for bioindustry in the future. There is currently a great interest in developing rapid and diverse microbial mutation tool for strain modification. Heavy-ion mutagenesis has been proved as a powerful technology for microbial breeding due to its broad spectrum of mutation phenotypes with high efficiency. In order to deeply understand heavy-ion mutagenesis technology, this paper briefly reviews recent progress in microbial breeding using heavy-ion mutagenesis at IMP, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou (HIRFL) as well as new insights into microbial biotechnology via heavy-ion mutagenesis. Thus, this work can provide the guidelines to promote the development of novel microbial biotechnology cross-linking heavy-ion mutagenesis breeding that could make breeding process more efficiently in the future. © 2017 The Society for Applied Microbiology.

  2. Effects of heavy ion radiation on the brain vascular system and embryonic development

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Tobias, C. A.

    1984-01-01

    The present investigation is concerned with the effects of heavy-ion radiation on the vascular system and the embryonic development, taking into account the results of experiments with neonatal rats and mouse embryos. It is found that heavy ions can be highly effective in producing brain hemorrhages and in causing body deformities. Attention is given to aspects of methodology, the induction of brain hemorrhages by X-rays and heavy ions, and the effect of iron particles on embryonic development. Reported results suggest that high linear energy transfer (LET) heavy ions can be very effective in producing developmental abnormalities.

  3. Development of long-lived thick carbon stripper foils for high energy heavy ion accelerators by a heavy ion beam sputtering method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muto, Hideshi; Ohshiro, Yukimitsu; Kawasaki, Katsunori

    2013-04-19

    In the past decade, we have developed extremely long-lived carbon stripper foils of 1-50 {mu}g/cm{sup 2} thickness prepared by a heavy ion beam sputtering method. These foils were mainly used for low energy heavy ion beams. Recently, high energy negative Hydrogen and heavy ion accelerators have started to use carbon stripper foils of over 100 {mu}g/cm{sup 2} in thickness. However, the heavy ion beam sputtering method was unsuccessful in production of foils thicker than about 50 {mu}g/cm{sup 2} because of the collapse of carbon particle build-up from substrates during the sputtering process. The reproduction probability of the foils was lessmore » than 25%, and most of them had surface defects. However, these defects were successfully eliminated by introducing higher beam energies of sputtering ions and a substrate heater during the sputtering process. In this report we describe a highly reproducible method for making thick carbon stripper foils by a heavy ion beam sputtering with a Krypton ion beam.« less

  4. Effects of low-dose heavy ions on embryonic development in mice and on melanocyte differentiation in the epidermis and hair bulb.

    PubMed

    Hirobe, Tomohisa; Eguchi-Kasai, Kiyomi; Sugaya, Kimihiko; Murakami, Masahiro

    2013-05-01

    The effects of prenatal low-dose irradiation with heavy ions on embryonic development in mice and on melanocyte differentiation are not well understood. We performed whole-body irradiation of pregnant C57BL/10J mice at embryonic Day 9 (E9) with a single dose of γ-rays, silicon, argon or iron ions. The number of living embryos and embryonic body weight at E18 decreased after exposure to heavy ions at high doses. Malformations such as small eyes and limb anomalies were observed in heavy-ion-treated embryos, but not in γ-ray-treated embryos. The frequency of abnormally curved tails was increased by exposure to γ-rays and argon and iron ions even at a dose of 0.1 Gy (P < 0.05). In contrast, a dose-dependent decrease in the number of epidermal melanoblasts/melanocytes and hair bulb melanocytes was observed after 0.1 Gy irradiation with γ-rays or heavy ions (P < 0.01). The decrease in the number of dorsal hair bulb melanocytes, dorsal and ventral epidermal melanoblasts/melanocytes and ventral hair bulb melanocytes was not necessarily correlated with the linear energy transfer of the radiation tested. Moreover, the effects of heavy ions were larger on the ventral skin than on the dorsal skin, indicating that the sensitivity of melanocytes to heavy ions differs between the dorsal and ventral skin. Taken together, these results suggest that the effects of the low-dose heavy ions differ between cell types and tissues, and the effects on the prenatal development of mice and melanocyte development are not necessarily greater than those of γ-rays.

  5. Effects of low-dose heavy ions on embryonic development in mice and on melanocyte differentiation in the epidermis and hair bulb

    PubMed Central

    Hirobe, Tomohisa; Eguchi-Kasai, Kiyomi; Sugaya, Kimihiko; Murakami, Masahiro

    2013-01-01

    The effects of prenatal low-dose irradiation with heavy ions on embryonic development in mice and on melanocyte differentiation are not well understood. We performed whole-body irradiation of pregnant C57BL/10J mice at embryonic Day 9 (E9) with a single dose of γ-rays, silicon, argon or iron ions. The number of living embryos and embryonic body weight at E18 decreased after exposure to heavy ions at high doses. Malformations such as small eyes and limb anomalies were observed in heavy-ion-treated embryos, but not in γ-ray-treated embryos. The frequency of abnormally curved tails was increased by exposure to γ-rays and argon and iron ions even at a dose of 0.1 Gy (P < 0.05). In contrast, a dose-dependent decrease in the number of epidermal melanoblasts/melanocytes and hair bulb melanocytes was observed after 0.1 Gy irradiation with γ-rays or heavy ions (P < 0.01). The decrease in the number of dorsal hair bulb melanocytes, dorsal and ventral epidermal melanoblasts/melanocytes and ventral hair bulb melanocytes was not necessarily correlated with the linear energy transfer of the radiation tested. Moreover, the effects of heavy ions were larger on the ventral skin than on the dorsal skin, indicating that the sensitivity of melanocytes to heavy ions differs between the dorsal and ventral skin. Taken together, these results suggest that the effects of the low-dose heavy ions differ between cell types and tissues, and the effects on the prenatal development of mice and melanocyte development are not necessarily greater than those of γ-rays. PMID:23230241

  6. Comparison between calculation and measured data on secondary neutron energy spectra by heavy ion reactions from different thick targets.

    PubMed

    Iwase, H; Wiegel, B; Fehrenbacher, G; Schardt, D; Nakamura, T; Niita, K; Radon, T

    2005-01-01

    Measured neutron energy fluences from high-energy heavy ion reactions through targets several centimeters to several hundred centimeters thick were compared with calculations made using the recently developed general-purpose particle and heavy ion transport code system (PHITS). It was confirmed that the PHITS represented neutron production by heavy ion reactions and neutron transport in thick shielding with good overall accuracy.

  7. Experimental study of heavy-ion computed tomography using a scintillation screen and an electron-multiplying charged coupled device camera for human head imaging

    NASA Astrophysics Data System (ADS)

    Muraishi, Hiroshi; Hara, Hidetake; Abe, Shinji; Yokose, Mamoru; Watanabe, Takara; Takeda, Tohoru; Koba, Yusuke; Fukuda, Shigekazu

    2016-03-01

    We have developed a heavy-ion computed tomography (IonCT) system using a scintillation screen and an electron-multiplying charged coupled device (EMCCD) camera that can measure a large object such as a human head. In this study, objective with the development of the system was to investigate the possibility of applying this system to heavy-ion treatment planning from the point of view of spatial resolution in a reconstructed image. Experiments were carried out on a rotation phantom using 12C accelerated up to 430 MeV/u by the Heavy-Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS). We demonstrated that the reconstructed image of an object with a water equivalent thickness (WET) of approximately 18 cm was successfully achieved with the spatial resolution of 1 mm, which would make this IonCT system worth applying to the heavy-ion treatment planning for head and neck cancers.

  8. Triboelectrification-Enabled Self-Powered Detection and Removal of Heavy Metal Ions in Wastewater.

    PubMed

    Li, Zhaoling; Chen, Jun; Guo, Hengyu; Fan, Xing; Wen, Zhen; Yeh, Min-Hsin; Yu, Chongwen; Cao, Xia; Wang, Zhong Lin

    2016-04-20

    A fundamentally new working principle into the field of self-powered heavy-metal-ion detection and removal using the triboelectrification effect is introduced. The as-developed tribo-nanosensors can selectively detect common heavy metal ions. The water-driven triboelectric nanogenerator is taken as a sustainable power source for heavy-metal-ion removal by recycling the kinetic energy from flowing wastewater. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Development of a TOF SIMS setup at the Zagreb heavy ion microbeam facility

    NASA Astrophysics Data System (ADS)

    Tadić, Tonči; Bogdanović Radović, Iva; Siketić, Zdravko; Cosic, Donny Domagoj; Skukan, Natko; Jakšić, Milko; Matsuo, Jiro

    2014-08-01

    We describe a new Time-of-flight Secondary Ion Mass Spectrometry (TOF SIMS) setup for MeV SIMS application, which is constructed and installed at the heavy ion microbeam facility at the Ruđer Bošković Institute in Zagreb. The TOF-SIMS setup is developed for high sensitivity molecular imaging using a heavy ion microbeam that focuses ion beams (from C to I) with sub-micron resolution. Dedicated pulse processing electronics for MeV SIMS application have been developed, enabling microbeam-scanning control, incoming ion microbeam pulsing and molecular mapping. The first results showing measured MeV SIMS spectra as well as molecular maps for samples of interest are presented and discussed.

  10. Model for Cumulative Solar Heavy Ion Energy and LET Spectra

    NASA Technical Reports Server (NTRS)

    Xapsos, Mike; Barth, Janet; Stauffer, Craig; Jordan, Tom; Mewaldt, Richard

    2007-01-01

    A probabilistic model of cumulative solar heavy ion energy and lineary energy transfer (LET) spectra is developed for spacecraft design applications. Spectra are given as a function of confidence level, mission time period during solar maximum and shielding thickness. It is shown that long-term solar heavy ion fluxes exceed galactic cosmic ray fluxes during solar maximum for shielding levels of interest. Cumulative solar heavy ion fluences should therefore be accounted for in single event effects rate calculations and in the planning of space missions.

  11. A versatile MOF-based trap for heavy metal ion capture and dispersion.

    PubMed

    Peng, Yaguang; Huang, Hongliang; Zhang, Yuxi; Kang, Chufan; Chen, Shuangming; Song, Li; Liu, Dahuan; Zhong, Chongli

    2018-01-15

    Current technologies for removing heavy metal ions are typically metal ion specific. Herein we report the development of a broad-spectrum heavy metal ion trap by incorporation of ethylenediaminetetraacetic acid into a robust metal-organic framework. The capture experiments for a total of 22 heavy metal ions, covering hard, soft, and borderline Lewis metal ions, show that the trap is very effective, with removal efficiencies of >99% for single-component adsorption, multi-component adsorption, or in breakthrough processes. The material can also serve as a host for metal ion loading with arbitrary selections of metal ion amounts/types with a controllable uptake ratio to prepare well-dispersed single or multiple metal catalysts. This is supported by the excellent performance of the prepared Pd 2+ -loaded composite toward the Suzuki coupling reaction. This work proposes a versatile heavy metal ion trap that may find applications in the fields of separation and catalysis.

  12. A fluorometric paper-based sensor array for the discrimination of heavy-metal ions.

    PubMed

    Feng, Liang; Li, Hui; Niu, Li-Ya; Guan, Ying-Shi; Duan, Chun-Feng; Guan, Ya-Feng; Tung, Chen-Ho; Yang, Qing-Zheng

    2013-04-15

    A fluorometric paper-based sensor array has been developed for the sensitive and convenient determination of seven heavy-metal ions at their wastewater discharge standard concentrations. Combining with nine cross-reactive BODIPY fluorescent indicators and array technologies-based pattern-recognition, we have obtained the discrimination capability of seven different heavy-metal ions at their wastewater discharge standard concentrations. After the immobilization of indicators and the enrichment of analytes, identification of the heavy-metal ions was readily acquired using a standard chemometric approach. Clear differentiation among heavy-metal ions as a function of concentration was also achieved, even down to 10(-7)M. A semi-quantitative estimation of the heavy-metal ion concentration was obtained by comparing color changes with a set of known concentrations. The sensor array was tentatively investigated in spiked tap water and sea water, and showed possible feasibility for real sample testing. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Preliminary results of the Artemia salina experiments in biostack on LDEF

    NASA Technical Reports Server (NTRS)

    Graul, E. H.; Ruether, W.; Hiendl, C. O.

    1992-01-01

    The mosaic egg of the brine shrimp, Artemia salina, resting in blastula or gastrula state represents a system that during further development, proceeds without any further development to the larval stage, the free swimming nauplius. Therefore, injury to a single cell of the egg will be manifest in the larvae. In several experiments, it was shown that the passage of a single heavy ion through the shrimp egg damaged a cellular area large enough to disturb either embryogenesis or further development of the larvae, or the integrity of the adult individual. Emergence from the egg shell was heavily disturbed by the heavy ions as was hatching. Additional late effects, due to a hit by a heavy ion, are delayed of growth and of sexual maturity, and reduced fertility. Anomalies in the body and the extremities could be observed more frequently for the nauplii which had developed from eggs hit by heavy ions.

  14. BODIPY-based fluorometric sensor array for the highly sensitive identification of heavy-metal ions.

    PubMed

    Niu, Li-Ya; Li, Hui; Feng, Liang; Guan, Ying-Shi; Chen, Yu-Zhe; Duan, Chun-Feng; Wu, Li-Zhu; Guan, Ya-Feng; Tung, Chen-Ho; Yang, Qing-Zheng

    2013-05-02

    A BODIPY(4,4-difluoro-4-bora-3a,4a-diaza-s-indacene)-based fluorometric sensor array has been developed for the highly sensitive detection of eight heavy-metal ions at micromolar concentration. The di-2-picolyamine (DPA) derivatives combine high affinities for a variety of heavy-metal ions with the capacity to perturb the fluorescence properties of BODIPY, making them perfectly suitable for the design of fluorometric sensor arrays for heavy-metal ions. 12 cross-reactive BODIPY fluorescent indicators provide facile identification of the heavy-metal ions using a standard chemometric approach (hierarchical clustering analysis); no misclassifications were found over 45 trials. Clear differentiation among heavy-metal ions as a function of concentration was also achieved, even down to 10(-7)M. A semi-quantitative interpolation of the heavy-metal concentration is obtained by comparing the total Euclidean distance of the measurement with a set of known concentrations in the library. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Composites Based on Conducting Polymers and Carbon Nanomaterials for Heavy Metal Ion Sensing (Review).

    PubMed

    Deshmukh, Megha A; Shirsat, Mahendra D; Ramanaviciene, Almira; Ramanavicius, Arunas

    2018-07-04

    Current review signifies recent trends and challenges in the development of electrochemical sensors based on organic conducting polymers (OCPs), carbon nanotubes (CNTs) and their composites for the determination of trace heavy metal ions in water are reviewed. OCPs and CNTs have some suitable properties, such as good electrical, mechanical, chemical and structural properties as well as environmental stability, etc. However, some of these materials still have significant limitations toward selective and sensitive detection of trace heavy metal ions. To overcome the limitations of these individual materials, OCPs/CNTs composites were developed. Application of OCPs/CNTs composite and their novel properties for the adsorption and detection of heavy metal ions outlined and discussed in this review.

  16. Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials.

    PubMed

    Cui, Lin; Wu, Jie; Ju, Huangxian

    2015-01-15

    As heavy metal ions severely harm human health, it is important to develop simple, sensitive and accurate methods for their detection in environment and food. Electrochemical detection featured with short analytical time, low power cost, high sensitivity and easy adaptability for in-situ measurement is one of the most developed methods. This review introduces briefly the recent achievements in electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials modified electrodes. In particular, the unique properties of inorganic nanomaterials, organic small molecules or their polymers, enzymes and nucleic acids for detection of heavy metal ions are highlighted. By employing some representative examples, the design and sensing mechanisms of these electrodes are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Development of Continuum-Atomistic Approach for Modeling Metal Irradiation by Heavy Ions

    NASA Astrophysics Data System (ADS)

    Batgerel, Balt; Dimova, Stefka; Puzynin, Igor; Puzynina, Taisia; Hristov, Ivan; Hristova, Radoslava; Tukhliev, Zafar; Sharipov, Zarif

    2018-02-01

    Over the last several decades active research in the field of materials irradiation by high-energy heavy ions has been worked out. The experiments in this area are labor-consuming and expensive. Therefore the improvement of the existing mathematical models and the development of new ones based on the experimental data of interaction of high-energy heavy ions with materials are of interest. Presently, two approaches are used for studying these processes: a thermal spike model and molecular dynamics methods. The combination of these two approaches - the continuous-atomistic model - will give the opportunity to investigate more thoroughly the processes of irradiation of materials by high-energy heavy ions. To solve the equations of the continuous-atomistic model, a software package was developed and the block of molecular dynamics software was tested on the heterogeneous cluster HybriLIT.

  18. Polymer-grafted QCM chemical sensor and application to heavy metalions real time detection.

    PubMed

    Sartore, Luciana; Barbaglio, Marzia; Borgese, Laura; Bontempi, Elza

    2011-07-20

    A flow type quartz crystal microbalance (QCM) chemical sensor was developed for monitoring of heavy metal ions in aqueous solutions (that is suitable for environmental monitoring). The sensor is based upon surface chelation of the metal ions at multifunctional polymer modified gold electrodes on 9 MHz AT-cut quartz resonators, functioning as a QCM. New processes have been developed which enable to obtain surface-modified gold electrodes with high heavy metal ions complexing ability. These polymer grafted QCM sensors can selectively adsorb heavy metal ions, such as copper lead chrome and cadmium, from solution over a wide range from 0.01 to 1000 ppm concentration by complexation with functional groups in the polymers. Cations typically present in natural water did not interfere with the detection of heavy metals. X-Ray Reflectivity (XRR) and Total Reflection X-ray Fluorescence (TXRF) were carried out to characterise the unmodified and modified gold surfaces as well as to verify the possibility to selectively bond and remove metal ions.

  19. Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal.

    PubMed

    Liu, Xiaowang; Hu, Qiyan; Fang, Zhen; Zhang, Xiaojun; Zhang, Beibei

    2009-01-06

    Magnetic chitosan nanocomposites have been synthesized on the basis of amine-functionalized magnetite nanoparticles. These nanocomposites can be removed conveniently from water with the help of an external magnet because of their exceptional properties. The nanocomposites were applied to remove heavy metal ions from water because chitosan that is inactive on the surface of the magnetic nanoparticles is coordinated with them. The interaction between chitosan and heavy metal ions is reversible, which means that those ions can be removed from chitosan in weak acidic deionized water with the assistance of ultrasound radiation. On the basis of the reasons referred to above, synthesized magnetic chitosan nanocomposites were used as a useful recyclable tool for heavy metal ion removal. This work provides a potential platform for developing a unique route for heavy metal ion removal from wastewater.

  20. From many body wee partons dynamics to perfect fluid: a standard model for heavy ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venugopalan, R.

    2010-07-22

    We discuss a standard model of heavy ion collisions that has emerged both from experimental results of the RHIC program and associated theoretical developments. We comment briefly on the impact of early results of the LHC program on this picture. We consider how this standard model of heavy ion collisions could be solidified or falsified in future experiments at RHIC, the LHC and a future Electro-Ion Collider.

  1. Development of dual-beam system using an electrostatic accelerator for in-situ observation of swift heavy ion irradiation effects on materials

    NASA Astrophysics Data System (ADS)

    Matsuda, M.; Asozu, T.; Sataka, M.; Iwase, A.

    2013-11-01

    We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, 132Xe11+ and 12C+). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.

  2. Too much is bad--an appraisal of phytotoxicity of elevated plant-beneficial heavy metal ions.

    PubMed

    Anjum, Naser A; Singh, Harminder P; Khan, M Iqbal R; Masood, Asim; Per, Tasir S; Negi, Asha; Batish, Daizy R; Khan, Nafees A; Duarte, Armando C; Pereira, Eduarda; Ahmad, Iqbal

    2015-03-01

    Heavy metal ions such as cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), and zinc (Zn) are considered essential/beneficial for optimal plant growth, development, and productivity. However, these ions readily impact functions of many enzymes and proteins, halt metabolism, and exhibit phytotoxicity at supra-optimum supply. Nevertheless, the concentrations of these heavy metal ions are increasing in agricultural soils worldwide via both natural and anthropogenic sources that need immediate attention. Considering recent breakthroughs on Co, Cu, Fe, Mn, Mo, Ni, and Zn in soil-plant system, the present paper: (a) overviews the status in soils and their uptake, transport, and significance in plants; (b) critically discusses their elevated level-mediated toxicity to both plant growth/development and cell/genome; (c) briefly cross talks on the significance of potential interactions between previous plant-beneficial heavy metal ions in plants; and (d) highlights so far unexplored aspects in the current context.

  3. Status report of the heavy ions source research and development for Spiral2.

    PubMed

    Thuillier, T; Lamy, T; Peaucelle, C; Sortais, P

    2010-02-01

    The physics background requiring a very intense multicharged heavy ion source for Spiral2 is explained. The new Spiral2 low energy beam line dedicated to the heavy ions production and equipped with PHOENIX V2 ECRIS is presented. A status of the A-PHOENIX commissioning at 18 GHz is summarized. A new hybrid ECRIS concept with a cryogenic permanent magnet hexapole is proposed as an improvement of A-PHOENIX technology.

  4. Amyloid-carbon hybrid membranes for universal water purification

    NASA Astrophysics Data System (ADS)

    Bolisetty, Sreenath; Mezzenga, Raffaele

    2016-04-01

    Industrial development, energy production and mining have led to dramatically increased levels of environmental pollutants such as heavy metal ions, metal cyanides and nuclear waste. Current technologies for purifying contaminated waters are typically expensive and ion specific, and there is therefore a significant need for new approaches. Here, we report inexpensive hybrid membranes made from protein amyloid fibrils and activated porous carbon that can be used to remove heavy metal ions and radioactive waste from water. During filtration, the concentration of heavy metal ions drops by three to five orders of magnitude per passage and the process can be repeated numerous times. Notably, their efficiency remains unaltered when filtering several ions simultaneously. The performance of the membrane is enabled by the ability of the amyloids to selectively absorb heavy metal pollutants from solutions. We also show that our membranes can be used to recycle valuable heavy metal contaminants by thermally reducing ions trapped in saturated membranes, leading to the creation of elemental metal nanoparticles and films.

  5. Antiradiation vaccine: Technology and development of prophylaxis, prevention and treatment of biological consequences from Heavy Ion irradiation.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Vecheslav

    Introduction: An anti-radiation vaccine could be an important part of a countermeasures reg-imen for effective radioprotection, immunoprophylaxis and immunotherapy of the acute radi-ation syndromes (ARS) after gamma-irradiation, neutron irradiation or heavy ion irradiation. Reliable protection of non-neoplastic regions of patients with different forms of cancer which undergo to heavy ion therapy ( e.g. Hadron-therapy) can significantly extend the efficiency of the therapeutic course. The protection of cosmonauts astronauts from the heavy ion ra-diation component of space radiation with specific immunoprophylaxis by the anti-radiation vaccine may be an important part of medical management for long term space missions. Meth-ods and experiments: 1. The Antiradiation Vaccine preparation -standard (mixture of toxoid form of Radiation Toxins -SRD-group) which include Cerebrovascular RT Neurotoxin, Car-diovascular RT Neurotoxin, Gastrointestinal RT Neurotoxin, Hematopoietic RT Hematotoxin. Radiation Toxins Specific Radiation Determinant Group were isolated from a central lymph of gamma-irradiated animals with Cerebrovascular, Cardiovascular, Gastrointestiinal, Hematopoi-etic forms of ARS. Devices for γ-radiation are "Panorama", "Puma". 2. Heavy ion exposure was accomplished at Department of Scientific Research Institute of Nuclear Physics, Dubna, Russia. The heavy ions irradiation was generated in heavy ion (Fe56) accelerator -UTI. Heavy Ion linear transfer energy -2000-2600 KeV mkm, 600 MeV U. Absorbed Dose -3820 Rad. 3. Experimental Design: Rabbits from all groups were irradiated by heavy ion accelerator. Group A -control -10 rabbits; Group B -placebo -5 rabbits; Group C -radioprotectant Cystamine (50 mg kg)-5 rabbits, 15 minutes before irradiation -5 rabbits; Group D -radioprotectant Gammafos (Amifostine -400mg kg ), -5 rabbits; Group E -Antiradiation Vaccine: subcuta-neus administration or IM -2 ml of active substance, 14 days before irradiation -5 rabbits. 4. Results: Group A -100% mortality within two hours after heavy ion irradiation with clinical symptoms of the acute cerebrovascular and cardiovascular syndromes. Group B -100% mortal-ity within 15 hours following irradiation. Group C -100% mortality within 14-15 hours after irradiation. Group D -100% mortality within 15-16 hours after irradiation. In groups A-D, development of the acute radiation cerebrovascular and cardiovascular syndromes as well as ex-tensive burns of skin caused rapid death. Group E -100% mortality in 280-290 hours (12 days) following heavy ion irradiation while animals were exhibiting a combination or individual forms of the acute cerebrovascular, cardiovascular, and gastrointestinal forms and focal skin burns. Discussion: The Antiradiation Vaccine (ARV) and specific immune-prophylaxis are an effective method of neutralization of Radiation Toxins. Vaccination with the ARV significantly extended the survival time after irradiation with heavy ions from two hours up to 300 hours. Clinical signs, clinical features, symptoms were somewhat attenuated. Degree of clinical forms of the Acute Radiation Syndromes were diminished in their severity. Groups A-D demonstrated an extremely severe degree (Degree 4) of Cerebrovascular and Cardiovascular forms of the Acute Radiation Syndromes and lethality 100% was registered in a short time after irradiation. Radi-ation induced burns in this groups (with Cutaneous sub-syndrome of ARS -Degree 4) that were deep with extensive and total dysfunction and possible muscle involvement developed. Animals from group E -Radioprotectant -anti-radiation vaccine had demonstrated later development of the severe Degree 3 or even Degree 2-3 forms of Cerebrovascular and Cardiovascular forms of the ARS and a survival time of irradiated animals was significantly prolonged. Cutaneous sub-syndrome developed in Degree 3 or Degree 2-3. Our results have demonstrated the potential radioprotection efficacy of specific immune-prophylaxis with the Antiradiation vaccine against heavy ion irradiation.

  6. Mutagenic effects of heavy ion radiation in plants

    NASA Astrophysics Data System (ADS)

    Mei, M.; Deng, H.; Lu, Y.; Zhuang, C.; Liu, Z.; Qiu, Q.; Qiu, Y.; Yang, T. C.

    1994-10-01

    Genetic and developmental effects of heavy ions in maize and rice were investigated. Heavy particles with various charges and energies were accelerated at the BEVALAC. The frequency of occurence of white-yellow stripes on leaves of plants developed from irradiated maize seeds increased linearly with dose, and high-LET heavy charged particles, e.g., neon, argon, and iron, were 2-12 times as effective as gamma rays in inducing this type of mutation. The effectiveness of high-LET heavy ion in (1) inhibiting rice seedling growth, (2) reducing plant fertility, (3) inducing chromosome aberration and micronuclei in root tip cells and pollen mother cells of the first generation plants developed from exposed seeds, and (4) inducing mutation in the second generation, were greater than that of low-LET gamma rays. All effects observed were dose-dependent; however, there appeared to be an optimal range of doses for inducing certain types of mutation, for example, for argon ions (400 MeV/u) at 90-100 Gy, several valuable mutant lines with favorable characters, such as semidwarf, early maturity and high yield ability, were obtained. Experimental results suggest that the potential application of heavy ions in crop improvement is promising. RFLP analysis of two semidwarf mutants induced by argon particles revealed that large DNA alterations might be involved in these mutants.

  7. Colorimetric photonic hydrogel aptasensor for the screening of heavy metal ions.

    PubMed

    Ye, Bao-Fen; Zhao, Yuan-Jin; Cheng, Yao; Li, Ting-Ting; Xie, Zhuo-Ying; Zhao, Xiang-Wei; Gu, Zhong-Ze

    2012-09-28

    We have developed a robust method for the visual detection of heavy metal ions (such as Hg(2+) and Pb(2+)) by using aptamer-functionalized colloidal photonic crystal hydrogel (CPCH) films. The CPCHs were derived from a colloidal crystal array of monodisperse silica nanoparticles, which were polymerized within the polyacrylamide hydrogel. The heavy metal ion-responsive aptamers were then cross-linked in the hydrogel network. During detection, the specific binding of heavy metal ions and cross-linked single-stranded aptamers in the hydrogel network caused the hydrogel to shrink, which was detected as a corresponding blue shift in the Bragg diffraction peak position of the CPCHs. The shift value could be used to estimate, quantitatively, the amount of the target ion. It was demonstrated that our CPCH aptasensor could screen a wide concentration range of heavy metal ions with high selectivity and reversibility. In addition, these aptasensors could be rehydrated from dried gels for storage and aptamer protection. It is anticipated that our technology may also be used in the screening of a broad range of metal ions in food, drugs and the environment.

  8. Effect of tapered magnetic field on expanding laser-produced plasma for heavy-ion inertial fusion

    DOE PAGES

    Kanesue, Takeshi; Ikeda, Shunsuke

    2016-12-20

    A laser ion source is a promising candidate as an ion source for heavy ion inertial fusion (HIF), where a pulsed ultra-intense and low-charged heavy ion beam is required. It is a key development for a laser ion source to transport laser-produced plasma with a magnetic field to achieve a high current beam. The effect of a tapered magnetic field on laser produced plasma is demonstrated by comparing the results with a straight solenoid magnet. The magnetic field of interest is a wider aperture on a target side and narrower aperture on an extraction side. Furthermore, based on the experimentallymore » obtained results, the performance of a scaled laser ion source for HIF was estimated.« less

  9. Antiradiation Vaccine: Technology Development- Radiation Tolerance,Prophylaxis, Prevention And Treatment Of Clinical Presentation After Heavy Ion Irradiation.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava; Jones, Jeffrey

    Introduction: Research in the field of biological effects of heavy charged particles is necessary for both heavy-ion therapy (hadrontherapy) and protection from the exposure to galactic cosmic radiation in long-term manned space missions.[Durante M. 2004] In future crew of long-term manned missions could operate in exremely high hadronic radiation areas of space and will not survive without effective radiation protection. An Antiradiation Vaccine (AV) must be an important part of a countermeasures regimen for efficient radiation protection purposes of austronauts-cosmonauts-taukonauts: immune-prophylaxis and immune-therapy of acute radiation toxic syndromes developed after heavy ion irradiation. New technology developed (AV) for the purposes of radiological protection and improvement of radiation tolerance and it is quite important to create protective immune active status which prevent toxic reactions inside a human body irradiated by high energy hadrons.[Maliev V. et al. 2006, Popov D. et al.2008]. High energy hadrons produce a variety of secondary particles which play an important role in the energy deposition process, and characterise their radiation qualities [Sato T. et al. 2003] Antiradiation Vaccine with specific immune-prophylaxis by an anti-radiation vaccine should be an important part of medical management for long term space missions. Methods and experiments: 1. Antiradiation vaccine preparation standard, mixture of toxoid form of Radiation Toxins [SRD-group] which include Cerebrovascular RT Neurotoxin, Cardiovascular RT Neurotoxin, Gastrointestinal RT Neurotoxin, Hematopoietic RT Hematotoxin. Radiation Toxins of Radiation Determinant Group isolated from the central lymph of gamma-irradiated animals with Cerebrovascular, Cardiovascular, Gastro-intestinal, Hematopoietic forms of ARS. Devices for radiation are "Panorama", "Puma". 2. Heavy ion exposure was accomplished at Department of Research Institute of Nuclear Physics, Dubna, Russia. The heavy ions irradiation was generated in heavy ion (Fe56) accelerator - UTI. Heavy Ion linear transfer energy - 2000- 2600 KeV -mkm, 600 MeV -92U. Absorbed Dose - 3820 Rad. Experimental Design: Rabbits from all groups were irradiated by heavy ion accelerator. Group A: control-10 rabbits; Group B: placebo-5 rabbits; Group C: Radioprotectant Cystamine (50 mg-kg)-5 rabbits, 15 minutes before irradiation - 5 rabbits; Group D: Radioprotectant Gammafos (Amifostine 400mg -kg ) - 5 rabbits; Group E: Antiradiation Vaccine: subcutaneus administration or IM - 2 ml of active substance, 14 days before irradiation Results: Group A 100% mortality within two hours after heavy ion irradiation with clinical symptoms of Acute Cerebro- and Cardio-Vascular Radiation syndromes. Group B 100% mortality within 15 hours following irradiation. Group C 100% mortality within 14-15 hours after irradiation. Group D 100% mortality within 15-16 hours after irradiation. In groups A- D registered the development of acute radiation cerebrovascular and cardiovascular syndromes and also extensive burns. of skin produced rapid death. Group E -100% mortality in 280-290 hours (12 days) following heavy ion irradiation with animals exhibiting a combination or individual forms of Acute Cerebrovascular, Cardiovascular, and Gastrointestinal forms and focal skin burns. Discussion Antiradiation vaccine and immune-prophylaxis is an effective method of neutralization of Radiation Toxins. Vaccination before irradiation extended survival time after irradiation with heavy ions from two hours up to 300 hours. Clinical signs, clinical features, symptoms were somewhat attenuated. Degree of clinical forms of Acute Radiation Syndromes were diminished in their clinical manifestation and severity. Groups A-D demonstrated extremely severe level of Cerebrovascular and Cardiovascular forms of Acute Radiation Syndromes and lethality 100% was registered in short time after irradiation. Radiation induced burns in this groups (with Cutaneous sub-syndrome of ARS - Degree 4, that diffuse deep into soft tissues with extensive and total dysfunction and muscle involvement developed. Animals from group E - Radioprotectant Antiradiation Vaccine demonstrated later development of moderate-severe form forms of Cerebrovascular and Cardiovascular forms of ARS and survival time of irradiated animals was prolonged. Cutaneous sub-syndrome developed in Degree 3 or Degree 2-3. Our results have demonstrated potential radioprotection efficacy of immune-prophylaxis with Antiradiation Vaccine against high doses heavy ion irradiation.

  10. Nuclear detecting systems at LNL and LNS: foreseen experiments to provide basic data for heavy-ion risk assessment.

    PubMed

    Moroni, A; Abbondanno, U; Agodi, C; Alba, R; Ballarini, F; Bellia, G; Biaggi, M; Bruno, M; Casini, G; Cavallaro, S; Cherubini, R; Chiari, M; Colonna, N; Coniglione, R; D'Agostino, M; Del Zoppo, A; Giussani, A; Gramegna, F; Maiolino, C; Margagliotti, G V; Mastinu, P F; Migneco, E; Milazzo, P M; Nannini, A; Ordine, A; Ottolenghi, A; Piattelli, P; Santonocito, D; Sapienza, P; Vannini, G; Vannucci, L; Vardaci, E

    2001-01-01

    The use of existing detecting systems developed for nuclear physics studies allows collecting data on particle and ion production cross-sections in reactions induced by Oxygen and Carbon beams, of interest for hadrontherapy and heavy-ion risk assessment. The MULTICS and GARFIELD apparatus, together with the foreseen experiments, are reviewed.

  11. Analytical strategies based on quantum dots for heavy metal ions detection.

    PubMed

    Vázquez-González, Margarita; Carrillo-Carrion, Carolina

    2014-01-01

    Heavy metal contamination is one of the major concerns to human health because these substances are toxic and retained by the ecological system. Therefore, in recent years, there has been a pressing need for fast and reliable methods for the analysis of heavy metal ions in environmental and biological samples. Quantum dots (QDs) have facilitated the development of sensitive sensors over the past decade, due to their unique photophysical properties, versatile surface chemistry and ligand binding ability, and the possibility of the encapsulation in different materials or attachment to different functional materials, while retaining their native luminescence property. This paper comments on different sensing strategies with QD for the most toxic heavy metal ions (i.e., cadmium, Cd2+; mercury, Hg2+; and lead, Pb2+). Finally, the challenges and outlook for the QD-based sensors for heavy metals ions are discussed.

  12. Mutagenic effects of heavy ion radiation in plants

    NASA Technical Reports Server (NTRS)

    Mei, M.; Deng, H.; Lu, Y.; Zhuang, C.; Liu, Z.; Qiu, Q.; Qiu, Y.; Yang, T. C.

    1994-01-01

    Genetic and developmental effects of heavy ions in maize and rice were investigated. Heavy particles with various charges and energies were accelerated at the BEVALAC. The frequency of occurrence of white-yellow stripes on leaves of plants developed from irradiated maize seeds increased linearly with dose, and high Linear Energy Transfer (LET) heavy charged particles, e.g., neon, argon, and iron, were 2-12 times as effective as gamma rays in inducing this type of mutation. The effectiveness of high-LET heavy ion in (1) inhibiting rice seedling growth, (2) reducing plant fertility, (3) inducing chromosome aberration and micronuclei in root tip cells and pollen mother cells of the first generation plants developed from exposed seeds, and (4) inducing mutation in the second generation, were greater than that of low-LET gamma rays. All effects observed were dose-dependent; however, there appeared to be an optimal range of doses for inducing certain types of mutation, for example, for argon ions (400 MeV/u) at 90-100 Gy, several valuable mutant lines with favorable characters, such as semidwarf, early maturity and high yield ability, were obtained. Experimental results suggest that the potential application of heavy ions in crop improvement is promising. Restriction-fragment-length-polymorphism (RFLP) analysis of two semidwarf mutants induced by argon particles revealed that large DNA alterations might be involved in these mutants.

  13. Chemical Enhancements in Shock-Accelerated Particles: Ab initio Simulations.

    PubMed

    Caprioli, Damiano; Yi, Dennis T; Spitkovsky, Anatoly

    2017-10-27

    We study the thermalization, injection, and acceleration of ions with different mass/charge ratios, A/Z, in nonrelativistic collisionless shocks via hybrid (kinetic ions-fluid electrons) simulations. In general, ions thermalize to a postshock temperature proportional to A. When diffusive shock acceleration is efficient, ions develop a nonthermal tail whose extent scales with Z and whose normalization is enhanced as (A/Z)^{2} so that incompletely ionized heavy ions are preferentially accelerated. We discuss how these findings can explain observed heavy-ion enhancements in Galactic cosmic rays.

  14. EDITORIAL: Focus on Heavy Ions in Biophysics and Medical Physics FOCUS ON HEAVY IONS IN BIOPHYSICS AND MEDICAL PHYSICS

    NASA Astrophysics Data System (ADS)

    Durante, Marco

    2008-07-01

    Interest in energetic heavy ions is rapidly increasing in the field of biomedicine. Heavy ions are normally excluded from radiation protection, because they are not normally experienced by humans on Earth. However, knowledge of heavy ion biophysics is necessary in two fields: charged particle cancer therapy (hadrontherapy), and radiation protection in space missions. The possibility to cure tumours using accelerated heavy charged particles was first tested in Berkeley in the sixties, but results were not satisfactory. However, about 15 years ago therapy with carbon ions was resumed first in Japan and then in Europe. Heavy ions are preferable to photons for both physical and biological characteristics: the Bragg peak and limited lateral diffusion ensure a conformal dose distribution, while the high relative biological effectiveness and low oxygen enhancement ration in the Bragg peak region make the beam very effective in treating radioresistant and hypoxic tumours. Recent results coming from the National Institute of Radiological Sciences in Chiba (see the paper by Dr Tsujii and co-workers in this issue) and GSI (Germany) provide strong clinical evidence that heavy ions are indeed an extremely effective weapon in the fight against cancer. However, more research is needed in the field, especially on optimization of the treatment planning and risk of late effects in normal tissue, including secondary cancers. On the other hand, high-energy heavy ions are present in galactic cosmic radiation and, although they are rare as compared to protons, they give a major contribution in terms of equivalent dose to the crews of manned space exploratory-class missions. Exploration of the Solar System is now the main goal of the space program, and the risk caused by exposure to galactic cosmic radiation is considered a serious hindrance toward this goal, because of the high uncertainty on late effects of energetic heavy nuclei, and the lack of effective countermeasures. Risks include carcinogenesis, late degenerative tissue effects (including damage to the central nervous system), and hereditary effects. For these studies, microbeams represent an essential tool, considering that in space each cell in the human body will not experience more than one heavy-ion traversal. Both NASA and ESA are investing important resources in ground-based space radiation research programs, to reduce risk uncertainty and to develop countermeasures. For both cancer therapy and space radiation protection a better understanding of the effects of energetic heavy ions is needed. Physics should be improved, especially the measurements of nuclear fragmentation cross-sections, and the transport calculations. Biological effects need to be studied in greater detail, and clearly only understanding the mechanisms of heavy-ion induced biological damage will reduce the uncertainty on late effects in humans. This focus issue of New Journal of Physics aims to provide the state-of-the-art of the biophysics of energetic heavy ions and to highlight the areas where more research is urgently needed for therapy and the space program. Focus on Heavy Ions in Biophysics and Medical Physics Contents Heavy ion microprobes: a unique tool for bystander research and other radiobiological applications K O Voss, C Fournier and G Taucher-Scholz Heavy ions light flashes and brain functions: recent observations at accelerators and in spaceflight L Narici Clinical advantages of carbon-ion radiotherapy Hirohiko Tsujii, Tadashi Kamada, Masayuki Baba, Hiroshi Tsuji, Hirotoshi Kato, Shingo Kato, Shigeru Yamada, Shigeo Yasuda, Takeshi Yanagi, Hiroyuki Kato, Ryusuke Hara, Naotaka Yamamoto and Junetsu Mizoe Heavy-ion effects: from track structure to DNA and chromosome damage F Ballarini, D Alloni, A Facoetti and A Ottolenghi Shielding experiments with high-energy heavy ions for spaceflight applications C Zeitlin, S Guetersloh, L Heilbronn, J Miller, N Elkhayari, A Empl, M LeBourgeois, B W Mayes, L Pinsky, M Christl and E Kuznetsov Heavy charged particles in radiation biology and biophysics H Nikjoo, S Uehara, D Emfietzoglou and A Brahme Impact of track structure calculations on biological treatment planning in ion radiotherapy Thilo Elsässer, Richard Cunrath, Michael Krämer and Michael Scholz The physical basis for the biological action of heavy ions Jürgen Kiefer Secondary beam fragments produced by 200 MeV u-1 12C ions in water and their dose contributions in carbon ion radiotherapy K Gunzert-Marx, H Iwase, D Schardt and R S Simon

  15. Evaluating Constraints on Heavy-Ion SEE Susceptibility Imposed by Proton SEE Testing and Other Mixed Environments

    NASA Technical Reports Server (NTRS)

    Ladbury, R. L.; Lauenstein, J.-M.

    2016-01-01

    We develop metrics for assessing the effectiveness of proton SEE data for bounding heavy-ion SEE susceptibility. The metrics range from simple geometric criteria requiring no knowledge of the test articles to bounds of SEE rates.

  16. Simulations of an accelerator-based shielding experiment using the particle and heavy-ion transport code system PHITS.

    PubMed

    Sato, T; Sihver, L; Iwase, H; Nakashima, H; Niita, K

    2005-01-01

    In order to estimate the biological effects of HZE particles, an accurate knowledge of the physics of interaction of HZE particles is necessary. Since the heavy ion transport problem is a complex one, there is a need for both experimental and theoretical studies to develop accurate transport models. RIST and JAERI (Japan), GSI (Germany) and Chalmers (Sweden) are therefore currently developing and bench marking the General-Purpose Particle and Heavy-Ion Transport code System (PHITS), which is based on the NMTC and MCNP for nucleon/meson and neutron transport respectively, and the JAM hadron cascade model. PHITS uses JAERI Quantum Molecular Dynamics (JQMD) and the Generalized Evaporation Model (GEM) for calculations of fission and evaporation processes, a model developed at NASA Langley for calculation of total reaction cross sections, and the SPAR model for stopping power calculations. The future development of PHITS includes better parameterization in the JQMD model used for the nucleus-nucleus reactions, and improvement of the models used for calculating total reaction cross sections, and addition of routines for calculating elastic scattering of heavy ions, and inclusion of radioactivity and burn up processes. As a part of an extensive bench marking of PHITS, we have compared energy spectra of secondary neutrons created by reactions of HZE particles with different targets, with thicknesses ranging from <1 to 200 cm. We have also compared simulated and measured spatial, fluence and depth-dose distributions from different high energy heavy ion reactions. In this paper, we report simulations of an accelerator-based shielding experiment, in which a beam of 1 GeV/n Fe-ions has passed through thin slabs of polyethylene, Al, and Pb at an acceptance angle up to 4 degrees. c2005 Published by Elsevier Ltd on behalf of COSPAR.

  17. Expected charge states of energetic ions in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Spjeldvik, W. N.

    1979-01-01

    Major developments in magnetospheric heavy ion physics during the period 1974-1977 are reviewed with emphasis on charge state aspects. Particular attention is given to the high energy component at energies above tens of keV per ion. Also considered are charge exchange processes with application to the inner magnetosphere, a comparison between theory and measurements, and a survey of heavy ion and charge state observations in the outer magnetosphere, magnetosheath and the surrounding space.

  18. A Stochastic Model of Space Radiation Transport as a Tool in the Development of Time-Dependent Risk Assessment

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Nounu, Hatem N.; Ponomarev, Artem L.; Cucinotta, Francis A.

    2011-01-01

    A new computer model, the GCR Event-based Risk Model code (GERMcode), was developed to describe biophysical events from high-energy protons and heavy ions that have been studied at the NASA Space Radiation Laboratory (NSRL) [1] for the purpose of simulating space radiation biological effects. In the GERMcode, the biophysical description of the passage of heavy ions in tissue and shielding materials is made with a stochastic approach that includes both ion track structure and nuclear interactions. The GERMcode accounts for the major nuclear interaction processes of importance for describing heavy ion beams, including nuclear fragmentation, elastic scattering, and knockout-cascade processes by using the quantum multiple scattering fragmentation (QMSFRG) model [2]. The QMSFRG model has been shown to be in excellent agreement with available experimental data for nuclear fragmentation cross sections

  19. On contribution of energetic and heavy ions to the plasma pressure: Storm Sept 27 - Oct 4, 2002

    NASA Astrophysics Data System (ADS)

    Kronberg, E. A.; Mouikis, C.; Kistler, L. M.; Dandouras, I. S.; Daly, P. W.; Welling, D. T.; Grigorenko, E. E.

    2015-12-01

    Contribution of the energetic ions (>> 40 keV) and of heavy ions into the total plasma pressure is often neglected. In this study we evaluate the contribution of these components for the storm observed from September 27 to October 4 in 2002. The thermal component of the pressure for the protons, helium and oxygen at 0--40 keV/q is measured by the Cluster/CIS/CODIF sensor. The contribution of the energetic ions at energies >> 40 keV is calculated from the Cluster/RAPID/IIMS observations. The results show that before the storm has initiated, the contribution of the energetic ions in to the total pressure is indeed negligible in the tail plasma sheet, less than ˜1%. However, with the storm development contribution of the energetic part becomes significant, up to ˜30%, towards the recovery phase and cannot be neglected. Heavy ions contribute to the 27% of the total pressure and half of them are energetic. The contribution of energetic ions to the pressure of the ring current (L≃5) is significant. The heavy ions play a dominant role in the plasma pressure, about 62% during the main phase of the magnetic storm. Half of them are energetic ions. The SWMF/BATS-R-US MHD model underestimates the contribution of the energetic and heavy ions in to the ion distribution in the magnetotail plasma sheet and the ring current. The ring current plasma pressure distorts the terrestrial internal magnetic field and defines magnetic storm. Therefore, it is essential to take in to account the contribution of the energetic and heavy ions.

  20. Heavy-ion injector based on an electron cyclotron ion source for the superconducting linear accelerator of the Rare Isotope Science Project.

    PubMed

    Hong, In-Seok; Kim, Yong-Hwan; Choi, Bong-Hyuk; Choi, Suk-Jin; Park, Bum-Sik; Jin, Hyun-Chang; Kim, Hye-Jin; Heo, Jeong-Il; Kim, Deok-Min; Jang, Ji-Ho

    2016-02-01

    The injector for the main driver linear accelerator of the Rare Isotope Science Project in Korea, has been developed to allow heavy ions up to uranium to be delivered to the inflight fragmentation system. The critical components of the injector are the superconducting electron cyclotron resonance (ECR) ion sources, the radio frequency quadrupole (RFQ), and matching systems for low and medium energy beams. We have built superconducting magnets for the ECR ion source, and a prototype with one segment of the RFQ structure, with the aim of developing a design that can satisfy our specifications, demonstrate stable operation, and prove results to compare the design simulation.

  1. Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: A review.

    PubMed

    Vunain, E; Mishra, A K; Mamba, B B

    2016-05-01

    The application of nanomaterials as nanosorbents in solving environmental problems such as the removal of heavy metals from wastewater has received a lot of attention due to their unique physical and chemical properties. These properties make them more superior and useful in various fields than traditional adsorbents. The present mini-review focuses on the use of nanomaterials such as dendrimers, mesoporous silicas and chitosan nanosorbents in the treatment of wastewater contaminated with toxic heavy-metal ions. Recent advances in the fabrication of these nanoscale materials and processes for the removal of heavy-metal ions from drinking water and wastewater are highlighted, and in some cases their advantages and limitations are given. These next-generation adsorbents have been found to perform very well in environmental remediation and control of heavy-metal ions in wastewater. The main objective of this review is to provide up-to-date information on the research and development in this particular field and to give an account of the applications, advantages and limitations of these particular nanosorbents in the treatment of aqueous solutions contaminated with heavy-metal ions. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Identification of heavy-ion radiation-induced microRNAs in rice

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Liang, Shujian; Hang, Xiaoming; Xiang, Yingxia; Cheng, Zhenlong; Li, Wenjian; Shi, Jinming; Huang, Lei; Sun, Yeqing

    2011-03-01

    MicroRNAs (miRNAs) are a family of small non-coding RNAs, which play significant roles in regulating development and stress responses in plant. As an excellent model organism for studying the effects of environmental stress, rice has been used to assess the damage of the space radiation environment for decades. Heavy-ions radiation show higher relative biological effectiveness compared to other cosmic-rays radiation. To identify the specific miRNAs that underlie biological effects of heavy-ion radiation, the germinated seeds of rice were exposed to 1 Gy, 10 Gy and 20 Gy dose of 12C heavy-ion radiation, respectively. Analysis of phenotype indicated that 20 Gy dose of heavy-ion radiation was the semi-lethal dose of rice seedling. The microarray of μparaflo™ chip was employed to monitor the expression profiles of miRNAs in rice (Oryza sativa) under 20 Gy dose of radiation stress. miR164a, miR164c, miR164d and miR156a-j were identified as heavy-ion radiation-induced miRNAs. miR164 and miR156 family were increased in all three exposed samples by using quantitative real-time PCR (qRT-RCP). As targets of miR156 and miR164, SQUAMOSA PROMOTER BINDING-LIKE (SPL) transcription factors and NAM/ATAF/CUC (NAC) transcription factors expression were down-regulated correlating with an up-regulated level of the regulated miRNAs. Since SPL transcription factors and NAC transcription factors regulated growth and development of plant, we used 2-dimension electrophoresis (2-DE) gel to analyze changes of functional proteins in 20 Gy exposed samples. It was evident that both the height and survival rates of seedlings were markedly decreased. The abundance of some developmentally regulated proteins was also changed. To our knowledge, this study is the first to report heavy-ion radiation stress responsive miRNAs in plant. Moreover, our findings are important to understand the molecular mechanism of space biology.

  3. IFE Chamber Technology - Status and Future Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, W.R.; Raffray, A.R.; Abdel-Khalik, S.I.

    2003-07-15

    Significant progress has been made on addressing critical issues for inertial fusion energy (IFE) chambers for heavy-ion, laser and Z-pinch drivers. A variety of chamber concepts are being investigated including drywall (currently favored for laser IFE), wetted-wall (applicable to both laser and ion drivers), and thick-liquid-wall (favored by heavy ion and z-pinch drivers). Recent progress and remaining challenges in developing IFE chambers are reviewed.

  4. High-energy accelerator for beams of heavy ions

    DOEpatents

    Martin, Ronald L.; Arnold, Richard C.

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  5. Novel kinetic model of the removal of divalent heavy metal ions from aqueous solutions by natural clinoptilolite.

    PubMed

    Jovanovic, Mina; Rajic, Nevenka; Obradovic, Bojana

    2012-09-30

    Removal of heavy metal ions from aqueous solutions using zeolites is widely described by pseudo-second order kinetics although this model may not be valid under all conditions. In this work, we have extended approaches used for derivation of this model in order to develop a novel kinetic model that is related to the ion exchange mechanism underlying sorption of metal ions in zeolites. The novel model assumed two reversible steps, i.e. release of sodium ions from the zeolite lattice followed by bonding of the metal ion. The model was applied to experimental results of Cu(II) sorption by natural clinoptilolite-rich zeolitic tuff at different initial concentrations and temperatures and then validated by predictions of ion exchange kinetics of other divalent heavy metal ions (i.e. Mn(II), Zn(II) and Pb(II)). Model predictions were in excellent agreements with experimental data for all investigated systems. In regard to the proposed mechanism, modeling results implied that the sodium ion release rate was constant for all investigated metals while the overall rate was mainly determined by the rate of heavy metal ion bonding to the lattice. In addition, prediction capabilities of the novel model were demonstrated requiring one experimentally determined parameter, only. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Event Generators for Simulating Heavy Ion Interactions of Interest in Evaluating Risks in Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Pinsky, Lawrence; Andersen, Victor; Empl, Anton; Lee, Kerry; Smirmov, Georgi; Zapp, Neal; Ferrari, Alfredo; Tsoulou, Katerina; Roesler, Stefan; hide

    2005-01-01

    Simulating the Space Radiation environment with Monte Carlo Codes, such as FLUKA, requires the ability to model the interactions of heavy ions as they penetrate spacecraft and crew member's bodies. Monte-Carlo-type transport codes use total interaction cross sections to determine probabilistically when a particular type of interaction has occurred. Then, at that point, a distinct event generator is employed to determine separately the results of that interaction. The space radiation environment contains a full spectrum of radiation types, including relativistic nuclei, which are the most important component for the evaluation of crew doses. Interactions between incident protons with target nuclei in the spacecraft materials and crew member's bodies are well understood. However, the situation is substantially less comfortable for incident heavier nuclei (heavy ions). We have been engaged in developing several related heavy ion interaction models based on a Quantum Molecular Dynamics-type approach for energies up through about 5 GeV per nucleon (GeV/A) as part of a NASA Consortium that includes a parallel program of cross section measurements to guide and verify this code development.

  7. Dielectronic recombination experiments at the storage rings: From the present CSR to the future HIAF

    NASA Astrophysics Data System (ADS)

    Huang, Z. K.; Wen, W. Q.; Xu, X.; Wang, H. B.; Dou, L. J.; Chuai, X. Y.; Zhu, X. L.; Zhao, D. M.; Li, J.; Ma, X. M.; Mao, L. J.; Yang, J. C.; Yuan, Y. J.; Xu, W. Q.; Xie, L. Y.; Xu, T. H.; Yao, K.; Dong, C. Z.; Zhu, L. F.; Ma, X.

    2017-10-01

    Dielectronic recombination (DR) experiments of highly charged ions at the storage rings have been developed as a precision spectroscopic tool to investigate the atomic structure as well as nuclear properties of stable and unstable nuclei. The DR experiment on lithium-like argon ions was successfully performed at main Cooler Storage Ring (CSRm) at Heavy Ion Research Facility in Lanzhou (HIRFL) accelerator complex. The DR experiments on heavy highly charged ions and even radioactive ions are currently under preparation at the experimental Cooler Storage Ring (CSRe) at HIRFL. The current status of DR experiments at the CSRm and the preparation of the DR experiments at the CSRe are presented. In addition, an overview of DR experiments by employing an electron cooler and a separated ultra-cold electron target at the upcoming High Intensity heavy ion Accelerator Facility (HIAF) will be given.

  8. Status of Beam Line Detectors for the BigRIPS Fragment Separator at RIKEN RI Beam Factory: Issues on High Rates and Resolution

    NASA Astrophysics Data System (ADS)

    Sato, Yuki; Fukuda, Naoki; Takeda, Hiroyuki; Kameda, Daisuke; Suzuki, Hiroshi; Shimizu, Yohei; Ahn, DeukSoon; Murai, Daichi; Inabe, Naohito; Shimaoka, Takehiro; Tsubota, Masakatsu; Kaneko, Junichi H.; Chayahara, Akiyoshi; Umezawa, Hitoshi; Shikata, Shinichi; Kumagai, Hidekazu; Murakami, Hiroyuki; Sato, Hiromi; Yoshida, Koichi; Kubo, Toshiyuki

    A multiple sampling ionization chamber (MUSIC) and parallel-plate avalanche counters (PPACs) were installed within the superconducting in-flight separator, named BigRIPS, at the RIKEN Nishina Center for particle identification of RI beams. The MUSIC detector showed negligible charge collection inefficiency from recombination of electrons and ions, up to a 99-kcps incidence rate for high-energy heavy ions. For the PPAC detectors, the electrical discharge durability for incident heavy ions was improved by changing the electrode material. Finally, we designed a single crystal diamond detector, which is under development for TOF measurements of high-energy heavy ions, that has a very fast response time (pulse width <1 ns).

  9. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    PubMed

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  10. The GOES-16 Energetic Heavy Ion Sensor (EHIS) Ion Composition and Flux Measurements

    NASA Astrophysics Data System (ADS)

    Connell, J. J.; Lopate, C.

    2017-12-01

    The Energetic Heavy Ion Sensor (EHIS) was built by the University of New Hampshire, subcontracted to Assurance Technology Corporation, as part of the Space Environmental In-Situ Suite (SEISS) on the new GOES-16 satellite (formerly GOES-R) in Geostationary orbit. EHIS measures energetic ions over the range 10-200 MeV for protons, and energy ranges for heavy ions corresponding to the same stopping range (e.g., 19-207 MeV/u for carbon and 38-488 MeV/u for iron). EHIS uses the Angle Detecting Inclined Sensors (ADIS) technique to provide single-element charge resolution. Though on an operational mission for Space Weather monitoring, EHIS can thus provide a new source of high quality Solar Particle Event (SPE) data for science studies. With a high rate of on-board processing ( 2000 events/s), EHIS will provide exceptional statistics for ion composition measurements in large SPEs. For the GOES Level 1-B and Level 2 data products, heavy ions are distinguished in EHIS using pulse-height analysis with on-board processing producing charge histograms for five energy bands. Fits to these data are normalized to priority rate data on the ground. The instrumental cadence for histograms is 1 minute and the primary Level 1-B heavy ion data products are 1-minute and 5-minute averages. We discuss the preliminary EHIS heavy ion data results which show elemental peaks from H to Fe, with peaks for the isotopes D and 3He. (GOES-16 was launched in 19 November, 2016 and data has, though July 2017, been dominated by Galactic Cosmic Rays.) The EHIS instrument development project was funded by NASA under contract NNG06HX01C.

  11. Benchmark solutions for the galactic heavy-ion transport equations with energy and spatial coupling

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry D.; Townsend, Lawrence W.; Lamkin, Stanley L.; Wilson, John W.

    1991-01-01

    Nontrivial benchmark solutions are developed for the galactic heavy ion transport equations in the straightahead approximation with energy and spatial coupling. Analytical representations of the ion fluxes are obtained for a variety of sources with the assumption that the nuclear interaction parameters are energy independent. The method utilizes an analytical LaPlace transform inversion to yield a closed form representation that is computationally efficient. The flux profiles are then used to predict ion dose profiles, which are important for shield design studies.

  12. Highly sensitive heavy metal ion detection using AlQ3 microwire functionalized QCM

    NASA Astrophysics Data System (ADS)

    Can, Nursel; Aǧar, Meltem; Altındal, Ahmet

    2016-03-01

    Tris(8-hydroxyquinoline) aluminum (Alq3) microwires was successfully synthesized for the fabrication of Alq3 microwires-coated QCM sensors to detect the heavy metal ions in aqueous solution. AT-cut quartz crystal microbalance (QCM) of 10 MHz fundamental resonance frequency having gold electrodes were used as transducers. Typical measuring cycle consisted of repeated flow of target measurands through the flow cell and subsequent washing to return the baseline. The QCM results indicated that the Alq3 microwires exhibit excellent sensitivity, stability and short response-recovery time, which are much attractive for the development of portable and highly sensitive heavy metal ion sensors in water samples.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelis, François; Schenke, Björn

    In this work, we review recent developments in the ab initio theoretical description of the initial state in heavy-ion collisions. We emphasize the importance of fluctuations, both for the phenomenological description of experimental data from the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) and for the theoretical understanding of the nonequilibrium early-time dynamics and thermalization of the medium.

  14. Measured and simulated heavy-ion beam loss patterns at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Hermes, P. D.; Bruce, R.; Jowett, J. M.; Redaelli, S.; Salvachua Ferrando, B.; Valentino, G.; Wollmann, D.

    2016-05-01

    The Large Hadron Collider (LHC) at CERN pushes forward to new regimes in terms of beam energy and intensity. In view of the combination of very energetic and intense beams together with sensitive machine components, in particular the superconducting magnets, the LHC is equipped with a collimation system to provide protection and intercept uncontrolled beam losses. Beam losses could cause a superconducting magnet to quench, or in the worst case, damage the hardware. The collimation system, which is optimized to provide a good protection with proton beams, has shown a cleaning efficiency with heavy-ion beams which is worse by up to two orders of magnitude. The reason for this reduced cleaning efficiency is the fragmentation of heavy-ion beams into isotopes with a different mass to charge ratios because of the interaction with the collimator material. In order to ensure sufficient collimation performance in future ion runs, a detailed theoretical understanding of ion collimation is needed. The simulation of heavy-ion collimation must include processes in which 82 + 208Pb ions fragment into dozens of new isotopes. The ions and their fragments must be tracked inside the magnetic lattice of the LHC to determine their loss positions. This paper gives an overview of physical processes important for the description of heavy-ion loss patterns. Loss maps simulated by means of the two tools ICOSIM [1,2] and the newly developed STIER (SixTrack with Ion-Equivalent Rigidities) are compared with experimental data measured during LHC operation. The comparison shows that the tool STIER is in better agreement.

  15. Laser-driven three-stage heavy-ion acceleration from relativistic laser-plasma interaction.

    PubMed

    Wang, H Y; Lin, C; Liu, B; Sheng, Z M; Lu, H Y; Ma, W J; Bin, J H; Schreiber, J; He, X T; Chen, J E; Zepf, M; Yan, X Q

    2014-01-01

    A three-stage heavy ion acceleration scheme for generation of high-energy quasimonoenergetic heavy ion beams is investigated using two-dimensional particle-in-cell simulation and analytical modeling. The scheme is based on the interaction of an intense linearly polarized laser pulse with a compound two-layer target (a front heavy ion layer + a second light ion layer). We identify that, under appropriate conditions, the heavy ions preaccelerated by a two-stage acceleration process in the front layer can be injected into the light ion shock wave in the second layer for a further third-stage acceleration. These injected heavy ions are not influenced by the screening effect from the light ions, and an isolated high-energy heavy ion beam with relatively low-energy spread is thus formed. Two-dimensional particle-in-cell simulations show that ∼100MeV/u quasimonoenergetic Fe24+ beams can be obtained by linearly polarized laser pulses at intensities of 1.1×1021W/cm2.

  16. Recent developments of ion sources for life-science studies at the Heavy Ion Medical Accelerator in Chiba (invited)

    NASA Astrophysics Data System (ADS)

    Kitagawa, A.; Drentje, A. G.; Fujita, T.; Muramatsu, M.; Fukushima, K.; Shiraishi, N.; Suzuki, T.; Takahashi, K.; Takasugi, W.; Biri, S.; Rácz, R.; Kato, Y.; Uchida, T.; Yoshida, Y.

    2016-02-01

    With about 1000-h of relativistic high-energy ion beams provided by Heavy Ion Medical Accelerator in Chiba, about 70 users are performing various biology experiments every year. A rich variety of ion species from hydrogen to xenon ions with a dose rate of several Gy/min is available. Carbon, iron, silicon, helium, neon, argon, hydrogen, and oxygen ions were utilized between 2012 and 2014. Presently, three electron cyclotron resonance ion sources (ECRISs) and one Penning ion source are available. Especially, the two frequency heating techniques have improved the performance of an 18 GHz ECRIS. The results have satisfied most requirements for life-science studies. In addition, this improved performance has realized a feasible solution for similar biology experiments with a hospital-specified accelerator complex.

  17. The Electron Beam Ion Source (EBIS)

    ScienceCinema

    Brookhaven Lab

    2017-12-09

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  18. A dipole-assisted solid-phase extraction microchip combined with inductively coupled plasma-mass spectrometry for online determination of trace heavy metals in natural water.

    PubMed

    Shih, Tsung-Ting; Hsu, I-Hsiang; Chen, Shun-Niang; Chen, Ping-Hung; Deng, Ming-Jay; Chen, Yu; Lin, Yang-Wei; Sun, Yuh-Chang

    2015-01-21

    We employed a polymeric material, poly(methyl methacrylate) (PMMA), for fabricating a microdevice and then implanted the chlorine (Cl)-containing solid-phase extraction (SPE) functionality into the PMMA chip to develop an innovative on-chip dipole-assisted SPE technique. Instead of the ion-ion interactions utilized in on-chip SPE techniques, the dipole-ion interactions between the highly electronegative C-Cl moieties in the channel interior and the positively charged metal ions were employed to facilitate the on-chip SPE procedures. Furthermore, to avoid labor-intensive manual manipulation, a programmable valve manifold was designed as an interface combining the dipole-assisted SPE microchip and inductively coupled plasma-mass spectrometry (ICP-MS) to achieve the fully automated operation. Under the optimized operation conditions for the established system, the detection limits for each analyte ion were obtained based on three times the standard deviation of seven measurements of the blank eluent solution. The limits ranged from 3.48 to 20.68 ng L(-1), suggesting that this technique appears uniquely suited for determining the levels of heavy metal ions in natural water. Indeed, a series of validation procedures demonstrated that the developed method could be satisfactorily applied to the determination of trace heavy metals in natural water. Remarkably, the developed device was durable enough to be reused more than 160 times without any loss in its analytical performance. To the best of our knowledge, this is the first study reporting on the combination of a dipole-assisted SPE microchip and elemental analysis instrument for the online determination of trace heavy metal ions.

  19. Method for studying a sample of material using a heavy ion induced mass spectrometer source

    DOEpatents

    Fries, D.P.; Browning, J.F.

    1999-02-16

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

  20. Method for studying a sample of material using a heavy ion induced mass spectrometer source

    DOEpatents

    Fries, David P.; Browning, James F.

    1999-01-01

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.

  1. System for studying a sample of material using a heavy ion induced mass spectrometer source

    DOEpatents

    Fries, David P.; Browning, James F.

    1998-01-01

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.

  2. System for studying a sample of material using a heavy ion induced mass spectrometer source

    DOEpatents

    Fries, D.P.; Browning, J.F.

    1998-07-21

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high (n,f) reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanesue, Takeshi; Ikeda, Shunsuke

    A laser ion source is a promising candidate as an ion source for heavy ion inertial fusion (HIF), where a pulsed ultra-intense and low-charged heavy ion beam is required. It is a key development for a laser ion source to transport laser-produced plasma with a magnetic field to achieve a high current beam. The effect of a tapered magnetic field on laser produced plasma is demonstrated by comparing the results with a straight solenoid magnet. The magnetic field of interest is a wider aperture on a target side and narrower aperture on an extraction side. Furthermore, based on the experimentallymore » obtained results, the performance of a scaled laser ion source for HIF was estimated.« less

  4. Multiple-scattering model for inclusive proton production in heavy ion collisions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    1994-01-01

    A formalism is developed for evaluating the momentum distribution for proton production in nuclear abrasion during heavy ion collisions using the Glauber multiple-scattering series. Several models for the one-body density matrix of nuclei are considered for performing numerical calculations. Calculations for the momentum distribution of protons in abrasion are compared with experimental data for inclusive proton production.

  5. Physics Division progress report for period ending September 30, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-12-01

    Research and development activities are summarized in the following areas: Holifield Heavy Ion Research Facility, nuclear physics, the UNISOR program, accelerator-based atomic physics, theoretical physics, nuclear science applications, atomic physics and plasma diagnostics for fusion program, high-energy physics, the nuclear data project, and the relativistic heavy-ion collider study. Publications and papers presented are listed. (WHK)

  6. CsI-Silicon Particle detector for Heavy ions Orbiting in Storage rings (CsISiPHOS)

    NASA Astrophysics Data System (ADS)

    Najafi, M. A.; Dillmann, I.; Bosch, F.; Faestermann, T.; Gao, B.; Gernhäuser, R.; Kozhuharov, C.; Litvinov, S. A.; Litvinov, Yu. A.; Maier, L.; Nolden, F.; Popp, U.; Sanjari, M. S.; Spillmann, U.; Steck, M.; Stöhlker, T.; Weick, H.

    2016-11-01

    A heavy-ion detector was developed for decay studies in the Experimental Storage Ring (ESR) at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. This detector serves as a prototype for the in-pocket particle detectors for future experiments with the Collector Ring (CR) at FAIR (Facility for Antiproton and Ion Research). The detector includes a stack of six silicon pad sensors, a double-sided silicon strip detector (DSSD), and a CsI(Tl) scintillation detector. It was used successfully in a recent experiment for the detection of the β+-decay of highly charged 142Pm60+ ions. Based on the ΔE / E technique for particle identification and an energy resolution of 0.9% for ΔE and 0.5% for E (Full Width at Half Maximum (FWHM)), the detector is well-suited to distinguish neighbouring isobars in the region of interest.

  7. Discovery of ions with nuclear charge Z greater than or equal to 9 stability trapped in the earth's radiation belts

    NASA Astrophysics Data System (ADS)

    Spjeldvik, W. N.; Fritz, T. A.

    1981-11-01

    Observations of MeV heavy ions obtained by Explorer 45 in an equatorial earth orbit during a 7 month period in 1972 are presented, including data from four major magnetic storms. The spacecraft contained a heavy ion detector telescope and heavy ion discriminator electronics. Heavy ions were distinguished from protons and electrons, and He ions and ions heavier than F were recorded on separate data channels. The L equals 2.25 to L equals 4 zones were probed, and it was found that the relative enhancement in heavy ion fluxes in the radiation belts over the prestorm ion flux intensities tends to increase with increasing ion mass and/or increasing ion energy in the MeV range. The radial profiles of ions with nucleon number greater than nine peak at L equals 2.9, and MeV ions in this class decay on time scales from 23 days at L equals 3.25 to 55 days at L equals 2.25. Indirect evidence indicated a solar source for the very heavy ions in the magnetosphere.

  8. HIAF: New opportunities for atomic physics with highly charged heavy ions

    NASA Astrophysics Data System (ADS)

    Ma, X.; Wen, W. Q.; Zhang, S. F.; Yu, D. Y.; Cheng, R.; Yang, J.; Huang, Z. K.; Wang, H. B.; Zhu, X. L.; Cai, X.; Zhao, Y. T.; Mao, L. J.; Yang, J. C.; Zhou, X. H.; Xu, H. S.; Yuan, Y. J.; Xia, J. W.; Zhao, H. W.; Xiao, G. Q.; Zhan, W. L.

    2017-10-01

    A new project, High Intensity heavy ion Accelerator Facility (HIAF), is currently being under design and construction in China. HIAF will provide beams of stable and unstable heavy ions with high energies, high intensities and high quality. An overview of new opportunities for atomic physics using highly charged ions and radioactive heavy ions at HIAF is given.

  9. Diagnosis of high-intensity pulsed heavy ion beam generated by a novel magnetically insulated diode with gas puff plasma gun.

    PubMed

    Ito, H; Miyake, H; Masugata, K

    2008-10-01

    Intense pulsed heavy ion beam is expected to be applied to materials processing including surface modification and ion implantation. For those applications, it is very important to generate high-purity ion beams with various ion species. For this purpose, we have developed a new type of a magnetically insulated ion diode with an active ion source of a gas puff plasma gun. When the ion diode was operated at a diode voltage of about 190 kV, a diode current of about 15 kA, and a pulse duration of about 100 ns, the ion beam with an ion current density of 54 A/cm(2) was obtained at 50 mm downstream from the anode. By evaluating the ion species and the energy spectrum of the ion beam via a Thomson parabola spectrometer, it was confirmed that the ion beam consists of nitrogen ions (N(+) and N(2+)) of energy of 100-400 keV and the proton impurities of energy of 90-200 keV. The purity of the beam was evaluated to be 94%. The high-purity pulsed nitrogen ion beam was successfully obtained by the developed ion diode system.

  10. Postage stamp-sized array sensor for the sensitive screening test of heavy-metal ions.

    PubMed

    Zhang, Yu; Li, Xiao; Li, Hui; Song, Ming; Feng, Liang; Guan, Yafeng

    2014-10-07

    The sensitive determination of heavy-metal ions has been widely investigated in recent years due to their threat to the environment and to human health. Among various analytical detection techniques, inexpensive colorimetric testing papers/strips play a very important role. The limitation, however, is also clear: the sensitivity is usually low and the selectivity is poor. In this work, we have developed a postage stamp-sized array sensor composed of nine commercially available heterocyclic azo indicators. Combining filtration-based enrichment with an array of technologies-based pattern-recognition, we have obtained the discrimination capability for seven heavy-metal ions (Hg(2+), Pb(2+), Ag(+), Ni(2+), Cu(2+), Zn(2+), and Co(2+)) at their Chinese wastewater discharge standard concentrations. The allowable detection level of Hg(2+) was down to 0.05 mg L(-1). The heavy-metal ions screening test was readily achieved using a standard chemometric approach. And the array sensor applied well in real water samples.

  11. Review on heavy ion radiotherapy facilities and related ion sources (invited)a)

    NASA Astrophysics Data System (ADS)

    Kitagawa, A.; Fujita, T.; Muramatsu, M.; Biri, S.; Drentje, A. G.

    2010-02-01

    Heavy ion radiotherapy awakens worldwide interest recently. The clinical results obtained by the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan have clearly demonstrated the advantages of carbon ion radiotherapy. Presently, there are four facilities for heavy ion radiotherapy in operation, and several new facilities are under construction or being planned. The most common requests for ion sources are a long lifetime and good stability and reproducibility. Sufficient intensity has been achieved by electron cyclotron resonance ion sources at the present facilities.

  12. Energy deposition by heavy ions: Additivity of kinetic and potential energy contributions in hillock formation on CaF2

    PubMed Central

    Wang, Y. Y.; Grygiel, C.; Dufour, C.; Sun, J. R.; Wang, Z. G.; Zhao, Y. T.; Xiao, G. Q.; Cheng, R.; Zhou, X. M.; Ren, J. R.; Liu, S. D.; Lei, Y.; Sun, Y. B.; Ritter, R.; Gruber, E.; Cassimi, A.; Monnet, I.; Bouffard, S.; Aumayr, F.; Toulemonde, M.

    2014-01-01

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe22+ to Xe30+) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface. PMID:25034006

  13. Smart responsive microcapsules capable of recognizing heavy metal ions.

    PubMed

    Pi, Shuo-Wei; Ju, Xiao-Jie; Wu, Han-Guang; Xie, Rui; Chu, Liang-Yin

    2010-09-15

    Smart responsive microcapsules capable of recognizing heavy metal ions are successfully prepared with oil-in-water-in-oil double emulsions as templates for polymerization in this study. The microcapsules are featured with thin poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) (P(NIPAM-co-BCAm)) membranes, and they can selectively recognize special heavy metal ions such as barium(II) or lead(II) ions very well due to the "host-guest" complexation between the BCAm receptors and barium(II) or lead(II) ions. The stable BCAm/Ba(2+) or BCAm/Pb(2+) complexes in the P(NIPAM-co-BCAm) membrane cause a positive shift of the volume phase transition temperature of the crosslinked P(NIPAM-co-BCAm) hydrogel to a higher temperature, and the repulsion among the charged BCAm/Ba(2+) or BCAm/Pb(2+) complexes and the osmotic pressure within the P(NIPAM-co-BCAm) membranes result in the swelling of microcapsules. Induced by recognizing barium(II) or lead(II) ions, the prepared microcapsules with P(NIPAM-co-BCAm) membranes exhibit isothermal and significant swelling not only in outer and inner diameters but also in the membrane thickness. The proposed microcapsules in this study are highly attractive for developing smart sensors and/or carriers for detection and/or elimination of heavy metal ions. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Energy deposition by heavy ions: additivity of kinetic and potential energy contributions in hillock formation on CaF2.

    PubMed

    Wang, Y Y; Grygiel, C; Dufour, C; Sun, J R; Wang, Z G; Zhao, Y T; Xiao, G Q; Cheng, R; Zhou, X M; Ren, J R; Liu, S D; Lei, Y; Sun, Y B; Ritter, R; Gruber, E; Cassimi, A; Monnet, I; Bouffard, S; Aumayr, F; Toulemonde, M

    2014-07-18

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe(22+) to Xe(30+)) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface.

  15. Recent developments of ion sources for life-science studies at the Heavy Ion Medical Accelerator in Chiba (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitagawa, A.; Drentje, A. G.; Fujita, T.

    With about 1000-h of relativistic high-energy ion beams provided by Heavy Ion Medical Accelerator in Chiba, about 70 users are performing various biology experiments every year. A rich variety of ion species from hydrogen to xenon ions with a dose rate of several Gy/min is available. Carbon, iron, silicon, helium, neon, argon, hydrogen, and oxygen ions were utilized between 2012 and 2014. Presently, three electron cyclotron resonance ion sources (ECRISs) and one Penning ion source are available. Especially, the two frequency heating techniques have improved the performance of an 18 GHz ECRIS. The results have satisfied most requirements for life-sciencemore » studies. In addition, this improved performance has realized a feasible solution for similar biology experiments with a hospital-specified accelerator complex.« less

  16. Initial-State Quantum Fluctuations in the Little Bang

    DOE PAGES

    Gelis, François; Schenke, Björn

    2016-06-01

    In this work, we review recent developments in the ab initio theoretical description of the initial state in heavy-ion collisions. We emphasize the importance of fluctuations, both for the phenomenological description of experimental data from the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) and for the theoretical understanding of the nonequilibrium early-time dynamics and thermalization of the medium.

  17. Ekpyrosis and inflationary dynamics in heavy ion collisions: the role of quantum fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dusling, K.; Venugopalan, R.; Gelis, F.

    We summarize recent significant progress in the development of a first-principles formalism to describe the formation and evolution of matter in very high energy heavy ion collisions. The key role of quantum fluctuations both before and after a collision is emphasized. Systematic computations are now feasible to address early time isotropization, flow, parton energy loss and the Chiral Magnetic Effect.

  18. Heavy ion driven LMF design concept

    NASA Astrophysics Data System (ADS)

    Lee, E. P.

    1991-08-01

    The US Department of Energy has conducted a multi-year study of the requirements, designs and costs for a Laboratory Microfusion Facility (LMF). The primary purpose of the LMF would be testing of weapons physics and effects simulation using the output from microexplosions of inertial fusion pellets. It does not need a high repetition rate, efficient driver system as required by an electrical generating plant. However there would be so many features in common that the design, construction and operation of an LMF would considerably advance the application of inertial confinement fusion to energy production. The DOE study has concentrated particularly on the LMF driver, with design and component development undertaken at several national laboratories. Principally, these are LLNL (Solid State Laser), LANL (Gas Laser), and SNLA (Light Ions). Heavy Ions, although considered a possible LMF driver did not receive attention until the final stages of this study since its program management was through the Office of Energy Research rather than Defense Programs. During preparation of a summary report for the study it was decided that some account of heavy ions was needed for a complete survey of the driver candidates. A conceptual heavy ion LMF driver design was created for the DOE report which is titled LMC Phase II Design Concepts. The heavy ion driver did not receive the level of scrutiny of the other concepts and, unlike the others, no costs analysis by an independent contractor was performed. Since much of heavy ion driver design lore was brought together in this exercise it is worthwhile to make it available as an independent report. This is reproduced here as it appears in the DOE report.

  19. Development of a calculation method for estimating specific energy distribution in complex radiation fields.

    PubMed

    Sato, Tatsuhiko; Watanabe, Ritsuko; Niita, Koji

    2006-01-01

    Estimation of the specific energy distribution in a human body exposed to complex radiation fields is of great importance in the planning of long-term space missions and heavy ion cancer therapies. With the aim of developing a tool for this estimation, the specific energy distributions in liquid water around the tracks of several HZE particles with energies up to 100 GeV n(-1) were calculated by performing track structure simulation with the Monte Carlo technique. In the simulation, the targets were assumed to be spherical sites with diameters from 1 nm to 1 microm. An analytical function to reproduce the simulation results was developed in order to predict the distributions of all kinds of heavy ions over a wide energy range. The incorporation of this function into the Particle and Heavy Ion Transport code System (PHITS) enables us to calculate the specific energy distributions in complex radiation fields in a short computational time.

  20. Potential use of algae for heavy metal bioremediation, a critical review.

    PubMed

    Zeraatkar, Amin Keyvan; Ahmadzadeh, Hossein; Talebi, Ahmad Farhad; Moheimani, Navid R; McHenry, Mark P

    2016-10-01

    Algae have several industrial applications that can lower the cost of biofuel co-production. Among these co-production applications, environmental and wastewater bioremediation are increasingly important. Heavy metal pollution and its implications for public health and the environment have led to increased interest in developing environmental biotechnology approaches. We review the potential for algal biosorption and/or neutralization of the toxic effects of heavy metal ions, primarily focusing on their cellular structure, pretreatment, modification, as well as potential application of genetic engineering in biosorption performance. We evaluate pretreatment, immobilization, and factors affecting biosorption capacity, such as initial metal ion concentration, biomass concentration, initial pH, time, temperature, and interference of multi metal ions and introduce molecular tools to develop engineered algal strains with higher biosorption capacity and selectivity. We conclude that consideration of these parameters can lead to the development of low-cost micro and macroalgae cultivation with high bioremediation potential. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Identification of heavy-ion radiation-induced microRNAs in rice

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Liang, Shujian; Hang, Xiaoming; Sun, Yeqing

    As an excellent model organism for studying the effects of environmental stress, rice was used to assess biological effect of the space radiation environment. Rice abnormal development or growth was observed frequently after seeds space flight. MicroRNAs (miRNAs) are a family of small non-coding regulatory RNAs, which have significant roles in regulating development and stress responses in plant. To identify whether the miRNAs were involved in biological effects of heavy-ion radiation, the germinated seeds of rice were exposed to 20 Gy dose of 12 C heavy-ion radiation which could induce rice development retarded. The microarray was used to monitor rice (Oryza sativa) miRNAs expression profiles under radiation stress. Members of miR164 family and miR156a-j were found up-regulated significantly, and confirmed by relative quantifi-cation real-time PCR. We found that the expression of the miR156 and miR164 increased and targets genes expression decrease was closely bound up with the irradiation rice phenotypes changes.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Chune; Xue, Jianming; Zhang, Yanwen

    The determination of stopping powers for slow heavy ions in targets containing light elements is important to accurately describe ion-solid interactions, evaluate ion irradiation effects and predict ion ranges for device fabrication and nuclear applications. Recently, discrepancies of up to 40% between the experimental results and SRIM (Stopping and Range of Ions in Matter) predictions of ion ranges for heavy ions with medium and low energies (< {approx} 25 keV/nucleon) in light elemental targets have been reported. The longer experimental ion ranges indicate that the stopping powers used in the SRIM code are overestimated. Here, a molecular dynamics simulation schememore » is developed to calculate the ion ranges of heavy ions in light elemental targets. Electronic stopping powers generated from both a reciprocity approach and the SRIM code are used to investigate the influence of electronic stopping on ion range profiles. The ion range profiles for Au and Pb ions in SiC and Er ions in Si, with energies between 20 and 5250 keV, are simulated. The simulation results show that the depth profiles of implanted ions are deeper and in better agreement with the experiments when using the electronic stopping power values derived from the reciprocity approach. These results indicate that the origin of the discrepancy in ion ranges between experimental results and SRIM predictions in the low energy region may be an overestimation of the electronic stopping powers used in SRIM.« less

  3. Efficient and selective heavy metal sequestration from water by using layered sulfide K 2x Sn 4-x S 8-x (x = 0.65–1; KTS-3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarma, Debajit; Islam, Saiful M.; Subrahmanyam, K. S.

    Heavy metal ions (Cd 2+, Hg 2+, As 3+ and Pb 2+) are an important contributor to the contamination of groundwater and other water bodies in and around industrial areas. Herein, we demonstrate the rapid and efficient capacity of a layered metal sulfide material, K2xSn4-xS8-x (x = 0.65-1, KTS-3) for heavy metal ion removal from water. The effect of concentration, pH, kinetics, and competitive ions such as Na +/Ca 2+ on the heavy metal ion removal capacity of KTS-3 was systematically investigated. X-ray photoelectron spectroscopy (XPS), elemental analyses, and powder X-ray diffraction studies revealed that the heavy metal ion-exchange ofmore » KTS-3 is complete (quantitative replacement of all potassium ions) and topotactic. The heavy metal ion-exchange by using KTS-3 follows the Langmuir-Freundlich model with high exchange capacities, q(m) 205(17) mg g -1 for Cd 2+, 372(21) mg g -1 for Hg 2+ and 391(89) mg g -1 for Pb 2+. KTS-3 retains excellent heavy metal ion-exchange capacity even in very high concentration (1 M) of competing ions (Na +/Ca 2+) and also over a broad pH range (2-12). KTS-3 also exhibits very good ion-exchange capacity for precious Ag + and toxic As 3+ ions. The kinetics of heavy metal ion adsorption by KTS-3 are rapid (absorbs all ions within a few minutes). These properties and the environmentally friendly character of KTS-3 make it a promising candidate for sequestration of heavy metal ions from water.« less

  4. Use of Proton SEE Data as a Proxy for Bounding Heavy-Ion SEE Susceptibility

    NASA Technical Reports Server (NTRS)

    Ladbury, Raymond L.; Lauenstein, Jean-Marie; Hayes, Kathryn P.

    2015-01-01

    Although heavy-ion single-event effects (SEE) pose serious threats to semiconductor devices in space, many missions face difficulties testing such devices at heavy-ion accelerators. Low-cost missions often find such testing too costly. Even well funded missions face issues testing commercial off the shelf (COTS) due to packaging and integration. Some missions wish to fly COTS systems with little insight into their components. Heavy-ion testing such parts and systems requires access to expensive and hard-to-access ultra-high energy ion accelerators, or significant system modification. To avoid these problems, some have proposed using recoil ions from high-energy protons as a proxy to bound heavy-ion SEE rates.

  5. Biofilm as a bioindicator of Cr VI pollution in the Lotic Ecosystems

    NASA Astrophysics Data System (ADS)

    Kurniawan, A.; Sukandar; Satriya, C.; Guntur

    2018-04-01

    Biofilm is ubiquitous in aquatic ecosystems such as river. Biofilm have been reported to have high sorption capacities that promote the accumulation of nutrient ions inside biofilm matrix. The ion that can be accumulated inside the biofilm is not only nutrient ions but also other ions such as heavy metal ions. The pollution of heavy metal ions emerge as one of the biggest aquatic ecosystem problems. Thus, the effort to monitor the heavy metal pollution in the aquatic ecosystem in the aquatic ecosystems is needed. The difficulty to monitor the water pollution particularly in the lotic ecosystems is mainly related to the water flow. Therefore, the utilization of indicator of pollution in such ecosystem is fundamentally important. The present study investigated the accumulation of Cr VI inside biofilm matrices in the river ecosystems in order to develop biofilm as a bioindicator for pollution in the lotic ecosystems. The result indicates that biofilm can accumulate Cr VI from the surrounding water and reserve the ion. According to the result of this study, biofilm is a promising bioindicator to monitor the Cr VI pollution in the lotic ecosystems.

  6. Development of a pepper-pot emittance meter for diagnostics of low-energy multiply charged heavy ion beams extracted from an ECR ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagatomo, T., E-mail: nagatomo@riken.jp; Kase, M.; Kamigaito, O.

    2016-02-15

    Several fluorescent materials were tested for use in the imaging screen of a pepper-pot emittance meter that is suitable for investigating the beam dynamics of multiply charged heavy ions extracted from an ECR ion source. SiO{sub 2} (quartz), KBr, Eu-doped CaF{sub 2}, and Tl-doped CsI crystals were first irradiated with 6.52-keV protons to determine the effects of radiation damage on their fluorescence emission properties. For such a low-energy proton beam, only the quartz was found to be a suitable fluorescent material, since the other materials suffered a decay in fluorescence intensity with irradiation time. Subsequently, quartz was irradiated with heavymore » {sup 12}C{sup 4+}, {sup 16}O{sup 4+}, and {sup 40}Ar{sup 11+} ions, but it was found that the fluorescence intensity decreased too rapidly to measure the emittance of these heavy-ion beams. These results suggest that a different energy loss mechanism occurs for heavier ions and for protons.« less

  7. Cosmic heavy ion tracks in mesoscopic biological test objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Facius, R.

    1994-12-31

    Since more than 20 years ago, when the National Academy of Sciences and the National Research Council of the U.S.A. released their report on `HZE particle effects in manned spaced flight`, it has been emphasized how difficult - if not even impossible - it is to assess their radiobiological impact on man from conventional studies where biological test organisms are stochastically exposed to `large` fluences of heavy ions. An alternative, competing approach had been realized in the BIOSTACK experiments, where the effects of single cosmic as well as accelerator - heavy ions on individual biological test organisms could be investigated.more » Although presented from the beginning as the preferable approach for terrestrial investigations with accelerator heavy ions too (`The BIOSTACK as an approach to high LET radiation research`), only recently this insight is gaining more widespread recognition. In space flight experiments, additional constraints imposed by the infrastructure of the vehicle or satellite further impede such investigations. Restrictions concern the physical detector systems needed for the registration of the cosmic heavy ions` trajectories as well as the biological systems eligible as test organisms. Such optimized procedures and techniques were developed for the investigations on chromosome aberrations induced by cosmic heavy ions in cells of the stem meristem of lettuce seeds (Lactuca sativa) and for the investigation of the radiobiological response of Wolffia arriza, which is the smallest flowering (water) plant. The biological effects were studied by the coworkers of the Russian Institute of Biomedical Problems (IBMP) which in cooperation with the European Space Agency ESA organized the exposure in the Biosatellites of the Cosmos series.« less

  8. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions.

    PubMed

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-05-07

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy.

  9. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions

    PubMed Central

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-01-01

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient’s body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. Inmost cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy. PMID:20371908

  10. Development of an 18 GHz superconducting electron cyclotron resonance ion source at RCNP.

    PubMed

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2008-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has recently been developed and installed in order to extend the variety and the intensity of ions at the RCNP coupled cyclotron facility. Production of several ions such as O, N, Ar, Kr, etc., is now under development and some of them have already been used for user experiments. For example, highly charged heavy ion beams like (86)Kr(21+,23+) and intense (16)O(5+,6+) and (15)N(6+) ion beams have been provided for experiments. The metal ion from volatile compounds method for boron ions has been developed as well.

  11. Development of conductometric biosensors based on alkaline phosphatases for the water quality control

    NASA Astrophysics Data System (ADS)

    Berezhetskyy, A.

    2008-09-01

    Researches are focused on the elaboration of enzymatic microconductometric device for heavy metal ions detection in water solutions. The manuscript includes a general introduction, the first chapter contains bibliographic review, the second chapter described the fundamentals of conductometric transducers, the third chapter examining the possibility to create and to optimize conductometric biosensor based on bovine alkaline phosphatase for heavy metals ions detection, the fourth chapter devoted to creation and optimization of conductometric biosensor based on alkaline phosphatase active microalgae and sol gel technology, the last chapter described application of the proposed algal biosensor for measurements of heavy metal ions toxicity of waste water, general conclusions stating the progresses achieved in the field of environmental monitoring

  12. Faster Heavy Ion Transport for HZETRN

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.

    2013-01-01

    The deterministic particle transport code HZETRN was developed to enable fast and accurate space radiation transport through materials. As more complex transport solutions are implemented for neutrons, light ions (Z < 2), mesons, and leptons, it is important to maintain overall computational efficiency. In this work, the heavy ion (Z > 2) transport algorithm in HZETRN is reviewed, and a simple modification is shown to provide an approximate 5x decrease in execution time for galactic cosmic ray transport. Convergence tests and other comparisons are carried out to verify that numerical accuracy is maintained in the new algorithm.

  13. Repair of DNA damage induced by accelerated heavy ions--a mini review.

    PubMed

    Okayasu, Ryuichi

    2012-03-01

    Increasing use of heavy ions for cancer therapy and concerns from exposure to heavy charged particles in space necessitate the study of the basic biological mechanisms associated with exposure to heavy ions. As the most critical damage induced by ionizing radiation is DNA double strand break (DSB), this review focuses on DSBs induced by heavy ions and their repair processes. Compared with X- or gamma-rays, high-linear energy transfer (LET) heavy ion radiation induces more complex DNA damage, categorized into DSBs and non-DSB oxidative clustered DNA lesions (OCDL). This complexity makes the DNA repair process more difficult, partially due to retarded enzymatic activities, leading to increased chromosome aberrations and cell death. In general, the repair process following heavy ion exposure is LET-dependent, but with nonhomologous end joining defective cells, this trend is less emphasized. The variation in cell survival levels throughout the cell cycle is less prominent in cells exposed to high-LET heavy ions when compared with low LET, but this mechanism has not been well understood until recently. Involvement of several DSB repair proteins is suggested to underlie this interesting phenomenon. Recent improvements in radiation-induced foci studies combined with high-LET heavy ion exposure could provide a useful opportunity for more in depth study of DSB repair processes. Accelerated heavy ions have become valuable tools to investigate the molecular mechanisms underlying repair of DNA DSBs, the most crucial form of DNA damage induced by radiation and various chemotherapeutic agents. Copyright © 2011 UICC.

  14. Development of a beam ion velocity detector for the heavy ion beam probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fimognari, P. J., E-mail: PJFimognari@XanthoTechnologies.com; Crowley, T. P.; Demers, D. R.

    2016-11-15

    In an axisymmetric plasma, the conservation of canonical angular momentum constrains heavy ion beam probe (HIBP) trajectories such that measurement of the toroidal velocity component of secondary ions provides a localized determination of the poloidal flux at the volume where they originated. We have developed a prototype detector which is designed to determine the beam angle in one dimension through the detection of ion current landing on two parallel planes of detecting elements. A set of apertures creates a pattern of ion current on wires in the first plane and solid metal plates behind them; the relative amounts detected bymore » the wires and plates determine the angle which beam ions enter the detector, which is used to infer the toroidal velocity component. The design evolved from a series of simulations within which we modeled ion beam velocity changes due to equilibrium and fluctuating magnetic fields, along with the ion beam profile and velocity dispersion, and studied how these and characteristics such as the size, cross section, and spacing of the detector elements affect performance.« less

  15. Thermalization of Heavy Ions in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Tracy, Patrick J.; Kasper, Justin C.; Zurbuchen, Thomas H.; Raines, Jim M.; Shearer, Paul; Gilbert, Jason

    2015-10-01

    Observations of velocity distribution functions from the Advanced Composition Explorer/Solar Wind Ion Composition Spectrometer heavy ion composition instrument are used to calculate ratios of kinetic temperature and Coulomb collisional interactions of an unprecedented 50 ion species in the solar wind. These ions cover a mass per charge range of 1-5.5 amu/e and were collected in the time range of 1998-2011. We report the first calculation of the Coulomb thermalization rate between each of the heavy ion (A > 4 amu) species present in the solar wind along with protons (H+) and alpha particles (He2+). From these rates, we find that protons are the dominant source of Coulomb collisional thermalization for heavy ions in the solar wind and use this fact to calculate a collisional age for those heavy ion populations. The heavy ion thermal properties are well organized by this collisional age, but we find that the temperature of all heavy ions does not simply approach that of protons as Coulomb collisions become more important. We show that He2+ and C6+ follow a monotonic decay toward equal temperatures with protons with increasing collisional age, but O6+ shows a noted deviation from this monotonic decay. Furthermore, we show that the deviation from monotonic decay for O6+ occurs in solar wind of all origins, as determined by its Fe/O ratio. The observed differences in heavy ion temperature behavior point toward a local heating mechanism that favors ions depending on their charge and mass.

  16. Development of Compact Electron Cyclotron Resonance Ion Source with Permanent Magnets for High-Energy Carbon-Ion Therapy

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Kitagawa, A.; Iwata, Y.; Hojo, S.; Sakamoto, Y.; Sato, S.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Ueda, T.; Miyazaki, H.; Drentje, A. G.

    2008-11-01

    Heavy-ion cancer treatment is being carried out at the Heavy Ion Medical Accelerator in Chiba (HIMAC) with 140 to 400 MeV/n carbon ions at National Institute of Radiological Sciences (NIRS) since 1994. At NIRS, more than 4,000 patients have been treated, and the clinical efficiency of carbon ion radiotherapy has been demonstrated for many diseases. A more compact accelerator facility for cancer therapy is now being constricted at the Gunma University. In order to reduce the size of the injector (consists of ion source, low-energy beam transport and post-accelerator Linac include these power supply and cooling system), an ion source requires production of highly charged carbon ions, lower electric power for easy installation of the source on a high-voltage platform, long lifetime and easy operation. A compact Electron Cyclotron Resonance Ion Source (ECRIS) with all permanent magnets is one of the best types for this purpose. An ECRIS has advantage for production of highly charged ions. A permanent magnet is suitable for reduce the electric power and cooling system. For this, a 10 GHz compact ECRIS with all permanent magnets (Kei2-source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas-injection side, while the minimum B strength is 0.25 T. These parameters have been optimized for the production of C4+ based on experience at the 10 GHz NIRS-ECR ion source. The Kei2-source has a diameter of 320 mm and a length of 295 mm. The beam intensity of C4+ was obtained to be 618 eμA under an extraction voltage of 30 kV. Outline of the heavy ion therapy and development of the compact ion source for new facility are described in this paper.

  17. Neurocytotoxic effects of iron-ions on the developing brain measured in vivo using medaka (Oryzias latipes), a vertebrate model

    PubMed Central

    Yasuda, Takako; Oda, Shoji; Yasuda, Hiroshi; Hibi, Yusuke; Anzai, Kazunori; Mitani, Hiroshi

    2011-01-01

    Purpose: Exposure to heavy-ion radiation is considered a critical health risk on long-term space missions. The developing central nervous system (CNS) is a highly radiosensitive tissue; however, the biological effects of heavy-ion radiation, which are greater than those of low-linear energy transfer (LET) radiation, are not well studied, especially in vivo in intact organisms. Here, we examined the effects of iron-ions on the developing CNS using vertebrate organism, fish embryos of medaka (Oryzias latipes). Materials and methods: Medaka embryos at developmental stage 28 were irradiated with iron-ions at various doses of 0-1.5 Gy. At 24 h after irradiation, radiation-induced apoptosis was examined using an acridine orange (AO) assay and histo-logically. To estimate the relative biological effectiveness (RBE), we quantified only characteristic AO-stained rosette-shaped apoptosis in the developing optic tectum (OT). At the time of hatching, morphological abnormalities in the irradiated brain were examined histologically. Results: The dose-response curve utilizing an apoptotic index for the iron-ion irradiated embryos was much steeper than that for X-ray irradiated embryos, with RBE values of 3.7-4.2. Histological examinations of irradiated medaka brain at 24 h after irradiation showed AO-positive rosette-shaped clusters as aggregates of condensed nuclei, exhibiting a circular hole, mainly in the marginal area of the OT and in the retina. However, all of the irradiated embryos hatched normally without apparent histological abnormalities in their brains. Conclusion: Our present study indicates that the medaka embryo is a useful model for evaluating neurocytotoxic effects on the developing CNS induced by exposure to heavy iron-ions relevant to the aerospace radiation environment. PMID:21770703

  18. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.

    2017-09-01

    The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  19. Local formation of nitrogen-vacancy centers in diamond by swift heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, J.; Aloni, S.; Ogletree, D. F.

    2014-12-03

    In this paper, we exposed nitrogen-implanted diamonds to beams of swift heavy ions (~1 GeV, ~4 MeV/u) and find that these irradiations lead directly to the formation of nitrogen vacancy (NV) centers, without thermal annealing. We compare the photoluminescence intensities of swift heavy ion activated NV - centers to those formed by irradiation with low-energy electrons and by thermal annealing. NV - yields from irradiations with swift heavy ions are 0.1 of yields from low energy electrons and 0.02 of yields from thermal annealing. We discuss possible mechanisms of NV center formation by swift heavy ions such as electronic excitationsmore » and thermal spikes. While forming NV centers with low efficiency, swift heavy ions could enable the formation of three dimensional NV - assemblies over relatively large distances of tens of micrometers. Finally and further, our results show that NV center formation is a local probe of (partial) lattice damage relaxation induced by electronic excitations from swift heavy ions in diamond.« less

  20. Anomalous annealing of floating gate errors due to heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Yin, Yanan; Liu, Jie; Sun, Youmei; Hou, Mingdong; Liu, Tianqi; Ye, Bing; Ji, Qinggang; Luo, Jie; Zhao, Peixiong

    2018-03-01

    Using the heavy ions provided by the Heavy Ion Research Facility in Lanzhou (HIRFL), the annealing of heavy-ion induced floating gate (FG) errors in 34 nm and 25 nm NAND Flash memories has been studied. The single event upset (SEU) cross section of FG and the evolution of the errors after irradiation depending on the ion linear energy transfer (LET) values, data pattern and feature size of the device are presented. Different rates of annealing for different ion LET and different pattern are observed in 34 nm and 25 nm memories. The variation of the percentage of different error patterns in 34 nm and 25 nm memories with annealing time shows that the annealing of FG errors induced by heavy-ion in memories will mainly take place in the cells directly hit under low LET ion exposure and other cells affected by heavy ions when the ion LET is higher. The influence of Multiple Cell Upsets (MCUs) on the annealing of FG errors is analyzed. MCUs with high error multiplicity which account for the majority of the errors can induce a large percentage of annealed errors.

  1. Taking SiC Power Devices to the Final Frontier: Addressing Challenges of the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie; Casey, Megan

    2017-01-01

    Silicon carbide power device technology has the potential to enable a new generation of aerospace power systems that demand high efficiency, rapid switching, and reduced mass and volume in order to expand space-based capabilities. For this potential to be realized, SiC devices must be capable of withstanding the harsh space radiation environment. Commercial SiC components exhibit high tolerance to total ionizing dose but to date, have not performed well under exposure to heavy ion radiation representative of the on-orbit galactic cosmic rays. Insertion of SiC power device technology into space applications to achieve breakthrough performance gains will require intentional development of components hardened to the effects of these highly-energetic heavy ions. This work presents heavy-ion test data obtained by the authors over the past several years for discrete SiC power MOSFETs, JFETs, and diodes in order to increase the body of knowledge and understanding that will facilitate hardening of this technology to space radiation effects. Specifically, heavy-ion irradiation data taken under different bias, temperature, and ion beam conditions is presented for devices from different manufacturers, and the emerging patterns discussed.

  2. A novel surface-enhanced Raman scattering nanosensor for detecting multiple heavy metal ions based on 2-mercaptoisonicotinic acid functionalized gold nanoparticles.

    PubMed

    Tan, Enzhong; Yin, Penggang; Lang, Xiufeng; Zhang, Hongyan; Guo, Lin

    2012-11-01

    A novel, effective and simple surface-enhanced Raman scattering (SERS) nanosensor for selectively and sensitively detecting heavy metal ions in aqueous solution has been developed in the form of 2-mercaptoisonicotinic acid (2 MNA)-modified gold nanoparticles (AuNPs). Multiple heavy metal ions can be identified and quantified by using relative peak intensity ratios of selected vibrational bands in the SERS spectra of 2 MNA. Especially, concentration of Hg(2+) and Pb(2+) ions are determined by comparing the intensity ratios of the bands 1160/1230 cm(-1) for Hg(2+) and 861/815 cm(-1) (or 815/1392 cm(-1)) for Pb(2+), with detection limits of 3.4×10(-8) and 1.0×10(-7)M, respectively. 2 MNA-AuNPs sensors show a high selectivity for Hg(2+) without masking reagent, and they can also be highly selective for Pb(2+) when using sodium thiosulphate and l-cysteine as masking reagents. These results demonstrate that these 2 MNA-AuNPs nanosensors are promising candidates for in situ heavy metal ions detection and quantification, maybe even inside living cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. The Relationship between Bulk and Mobile Forms of Heavy Metals in Soils of Kursk

    NASA Astrophysics Data System (ADS)

    Nevedrov, N. P.; Protsenko, E. P.; Glebova, I. V.

    2018-01-01

    The contamination of Kursk urboecotopes by heavy metals (Pb, Cd, Zn, Cu, Ni) is considered. The relationships between the contents of bulk and mobile forms of heavy metal ions have been examined. The results of monitoring studies attest to a tendency for the accumulation of both bulk and mobile forms of heavy metals in the humus-accumulative horizon, except for bulk cadmium and mobile nickel. Linear and nonlinear regression models of the bulk contents of Pb, Cd, Zn, and Ni as dependent on the contents of their mobile forms have been developed. These models allow us to calculate the bulk content of heavy metal ions in the soils of urboecotopes using simpler methods of the extraction and laboratory determination of their mobile forms.

  4. Relative Heating of Heavy Ions Observed at 1 AU with ACE/SWICS

    NASA Astrophysics Data System (ADS)

    Tracy, P.; Kasper, J. C.; Zurbuchen, T.; Raines, J. M.; Gilbert, J. A.

    2015-12-01

    Heavy ions (Z>4) observed near 1 AU, especially in fast solar wind, tend to have thermal speeds that are approximately equal, indicative of a mass proportional temperature. The fact that these heavy ions have similar thermal speeds implies that they have very different temperatures, and furthermore, that they are far from thermal equilibrium. By comparing the observed heavy ion temperatures amongst species with different mass and charge values we can critically evaluate heating theories for the solar wind. Utilizing improved data processing techniques, results from the Solar Wind Ion Composition Spectrometer (SWICS) onboard the Advanced Composition Explorer (ACE) are used to analyze the thermal properties of the heavy ion population at 1 AU. We have shown in previous work that Coulomb Collisional relaxation has a significant effect on these heavy ion populations, and now we investigate how Coulomb Collisions effect the observed temperature ratios of different heavy ion species. We observe that the heavy ion to proton temperature ratio scales with the mass and charge values of species analyzed. These dependencies are compared to current heating theories to determine which best explains the observations. The results of this work are valuable for comparison with coronal spectroscopic observations of ion temperatures, existing solar wind observations at different distances from the Sun, and for predictions of the environment to be encountered by Solar Probe and Solar Orbiter.

  5. Investigation of the heavy-ion mode in the FAIR High Energy Storage Ring

    NASA Astrophysics Data System (ADS)

    Kovalenko, O.; Dolinskii, O.; Litvinov, Yu A.; Maier, R.; Prasuhn, D.; Stöhlker, T.

    2015-11-01

    High energy storage ring (HESR) as a part of the future accelerator facility FAIR (Facility for Antiproton and Ion Research) will serve for a variety of internal target experiments with high-energy stored heavy ions (SPARC collaboration). Bare uranium is planned to be used as a primary beam. Since a storage time in some cases may be significant—up to half an hour—it is important to examine the high-order effects in the long-term beam dynamics. A new ion optics specifically for the heavy ion mode of the HESR is developed and is discussed in this paper. The subjects of an optics design, tune working point and a dynamic aperture are addressed. For that purpose nonlinear beam dynamics simulations are carried out. Also a flexibility of the HESR ion optical lattice is verified with regard to various experimental setups. Specifically, due to charge exchange reactions in the internal target, secondary beams, such as hydrogen-like and helium-like uranium ions, will be produced. Thus the possibility of separation of these secondary ions and the primary {{{U}}}92+ beam is presented with different internal target locations.

  6. Multiple beam induction accelerators for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Seidl, Peter A.; Barnard, John J.; Faltens, Andris; Friedman, Alex; Waldron, William L.

    2014-01-01

    Induction accelerators are appealing for heavy-ion driven inertial fusion energy (HIF) because of their high efficiency and their demonstrated capability to accelerate high beam current (≥10 kA in some applications). For the HIF application, accomplishments and challenges are summarized. HIF research and development has demonstrated the production of single ion beams with the required emittance, current, and energy suitable for injection into an induction linear accelerator. Driver scale beams have been transported in quadrupole channels of the order of 10% of the number of quadrupoles of a driver. We review the design and operation of induction accelerators and the relevant aspects of their use as drivers for HIF. We describe intermediate research steps that would provide the basis for a heavy-ion research facility capable of heating matter to fusion relevant temperatures and densities, and also to test and demonstrate an accelerator architecture that scales well to a fusion power plant.

  7. The purine scaffold Hsp90 inhibitor PU-H71 sensitizes cancer cells to heavy ion radiation by inhibiting DNA repair by homologous recombination and non-homologous end joining.

    PubMed

    Lee, Younghyun; Li, Huizi Keiko; Masaoka, Aya; Sunada, Shigeaki; Hirakawa, Hirokazu; Fujimori, Akira; Nickoloff, Jac A; Okayasu, Ryuichi

    2016-10-01

    PU-H71 is a purine-scaffold Hsp90 inhibitor developed to overcome limitations of conventional Hsp90 inhibitors. This study was designed to investigate the combined effect of PU-H71 and heavy ion irradiation on human tumor and normal cells. The effects of PU-H71 were determined by monitoring cell survival by colony formation, and DNA double-strand break (DSB) repair by γ-H2AX foci and immuno-blotting DSB repair proteins. The mode of cell death was evaluated by sub-G1 DNA content (as an indicator for apoptosis), and mitotic catastrophe. PU-H71 enhanced heavy ion irradiation-induced cell death in three human cancer cell lines, but the drug did not radiosensitize normal human fibroblasts. In irradiated tumor cells, PU-H71 increased the persistence of γ-H2AX foci, and it reduced RAD51 foci and phosphorylated DNA-PKcs, key DSB repair proteins involved in homologous recombination (HR) and non-homologous end joining (NHEJ). In some tumor cell lines, PU-H71 altered the sub-G1 cell fraction and mitotic catastrophe following carbon ion irradiation. Our results demonstrate that PU-H71 sensitizes human cancer cells to heavy ion irradiation by inhibiting both HR and NHEJ DSB repair pathways. PU-H71 holds promise as a radiosensitizer for enhancing the efficacy of heavy ion radiotherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. An intelligent displacement pumping film system: a new concept for enhancing heavy metal ion removal efficiency from liquid waste.

    PubMed

    Wang, Zhongde; Feng, Yanting; Hao, Xiaogang; Huang, Wei; Guan, Guoqing; Abudula, Abuliti

    2014-06-15

    A concept of electrochemically switched ion exchange (ESIX) hybrid film system with piston-like proton pumping effect for the removal of heavy metal ions was proposed. Based on this concept, a novel ESIX hybrid film composed of layered alpha zirconium phosphate (α-Zr(HPO4)2; α-ZrP) nanosheets intercalated with a potential-responsive conducting polyaniline (PANI) was developed for the removal of Ni(2+) ions from wastewater. It is expected that the space between α-ZrP nanosheets acts as the reservoir for the functional ions while the intercalated PANI works as the potential-sensitive function element for piston-like proton pumping in such ESIX hybrid films. The prepared ESIX hybrid film showed an excellent property of rapid removal of Ni(2+) ions from wastewater with a high selectivity. The used film was simply regenerated by only altering the applied potential. The ion pumping effect for the ESIX of Ni(2+) ions using this kind of film was proved via XPS analysis. The proposed ESIX hybrid film should have high potential for the removal of Ni(2+) ions and/or other heavy metal ions from wastewater in various industrial processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Performance and operation of advanced superconducting electron cyclotron resonance ion source SECRAL at 24 GHza)

    NASA Astrophysics Data System (ADS)

    Zhao, H. W.; Lu, W.; Zhang, X. Z.; Feng, Y. C.; Guo, J. W.; Cao, Y.; Li, J. Y.; Guo, X. H.; Sha, S.; Sun, L. T.; Xie, D. Z.

    2012-02-01

    SECRAL (superconducting ECR ion source with advanced design in Lanzhou) ion source has been in routine operation for Heavy Ion Research Facility in Lanzhou (HIRFL) accelerator complex since May 2007. To further enhance the SECRAL performance in order to satisfy the increasing demand for intensive highly charged ion beams, 3-5 kW high power 24 GHz single frequency and 24 GHz +18 GHz double frequency with an aluminum plasma chamber were tested, and some exciting results were produced with quite a few new record highly charged ion beam intensities, such as 129Xe35+ of 64 eμA, 129Xe42+ of 3 eμA, 209Bi41+ of 50 eμA, 209Bi50+ of 4.3 eμA and 209Bi54+ of 0.2 eμA. In most cases SECRAL is operated at 18 GHz to deliver highly charged heavy ion beams for the HIRFL accelerator, only for those very high charge states and very heavy ion beams such as 209Bi36+ and 209Bi41+, SECRAL has been operated at 24 GHz. The total operation beam time provided by SECRAL up to July 2011 has exceeded 7720 hours. In this paper, the latest performance, development, and operation status of SECRAL ion source are presented. The latest results and reliable long-term operation for the HIRFL accelerator have demonstrated that SECRAL performance for production of highly charged heavy ion beams remains improving at higher RF power with optimized tuning.

  10. Status of ion sources at National Institute of Radiological Sciences.

    PubMed

    Kitagawa, A; Fujita, T; Goto, A; Hattori, T; Hamano, T; Hojo, S; Honma, T; Imaseki, H; Katagiri, K; Muramatsu, M; Sakamoto, Y; Sekiguchi, M; Suda, M; Sugiura, A; Suya, N

    2012-02-01

    The National Institute of Radiological Sciences (NIRS) maintains various ion accelerators in order to study the effects of radiation of the human body and medical uses of radiation. Two electrostatic tandem accelerators and three cyclotrons delivered by commercial companies have offered various life science tools; these include proton-induced x-ray emission analysis (PIXE), micro beam irradiation, neutron exposure, and radioisotope tracers and probes. A duoplasmatron, a multicusp ion source, a penning ion source (PIG), and an electron cyclotron resonance ion source (ECRIS) are in operation for these purposes. The Heavy-Ion Medical Accelerator in Chiba (HIMAC) is an accelerator complex for heavy-ion radiotherapy, fully developed by NIRS. HIMAC is utilized not only for daily treatment with the carbon beam but also for fundamental experiments. Several ECRISs and a PIG at HIMAC satisfy various research and clinical requirements.

  11. Status of ion sources at National Institute of Radiological Sciencesa)

    NASA Astrophysics Data System (ADS)

    Kitagawa, A.; Fujita, T.; Goto, A.; Hattori, T.; Hamano, T.; Hojo, S.; Honma, T.; Imaseki, H.; Katagiri, K.; Muramatsu, M.; Sakamoto, Y.; Sekiguchi, M.; Suda, M.; Sugiura, A.; Suya, N.

    2012-02-01

    The National Institute of Radiological Sciences (NIRS) maintains various ion accelerators in order to study the effects of radiation of the human body and medical uses of radiation. Two electrostatic tandem accelerators and three cyclotrons delivered by commercial companies have offered various life science tools; these include proton-induced x-ray emission analysis (PIXE), micro beam irradiation, neutron exposure, and radioisotope tracers and probes. A duoplasmatron, a multicusp ion source, a penning ion source (PIG), and an electron cyclotron resonance ion source (ECRIS) are in operation for these purposes. The Heavy-Ion Medical Accelerator in Chiba (HIMAC) is an accelerator complex for heavy-ion radiotherapy, fully developed by NIRS. HIMAC is utilized not only for daily treatment with the carbon beam but also for fundamental experiments. Several ECRISs and a PIG at HIMAC satisfy various research and clinical requirements.

  12. Conversion coefficients from fluence to effective dose for heavy ions with energies up to 3 GeV/A.

    PubMed

    Sato, T; Tsuda, S; Sakamoto, Y; Yamaguchi, Y; Niita, K

    2003-01-01

    Radiological protection against high-energy heavy ions has been an essential issue in the planning of long-term space missions. The fluence to effective dose conversion coefficients have been calculated for heavy ions using the particle and heavy ion transport code system PHITS coupled with an anthropomorphic phantom of the MIRD5 type. The calculations were performed for incidences of protons and typical space heavy ions--deuterons, tritons, 3He, alpha particles, 12C, 20Ne, 40Ar, 40Ca and 56Fe--with energies up to 3 GeV/A in the isotropic and anterior-posterior irradiation geometries. A simple fitting formula that can predict the effective dose from almost all kinds of space heavy ions below 3 GeV/A within an accuracy of 30% is deduced from the results.

  13. Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan.

    PubMed

    Verma, Roli; Gupta, Banshi D

    2015-01-01

    Optical fibre surface plasmon resonance (SPR) based sensor for the detection of heavy metal ions in the drinking water is designed. Silver (Ag) metal and indium tin oxide (ITO) are used for the fabrication of the SPR probe which is further modified with the coating of pyrrole and chitosan composite. The sensor works on the wavelength interrogation technique and is capable of detecting trace amounts of Cd(2+), Pb(2+), and Hg(2+) heavy metal ions in contaminated water. Four types of sensing probes are fabricated and characterised for heavy metal ions out of these pyrrole/chitosan/ITO/Ag coated probe is found to be highly sensitive among all other probes. Further, the cadmium ions bind strongly to the sensing surface than other ions and due to this the sensor is highly sensitive for Cd(2+) ions. The sensor's performance is best for the low concentrations of heavy metal ions and its sensitivity decreases with the increasing concentration of heavy metal ions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Comparison of gain degradation and deep level transient spectroscopy in pnp Si bipolar junction transistors irradiated with different ion species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguirre, B. A.; Bielejec, E.; Fleming, R. M.

    Here, we studied the effect of light ion and heavy ion irradiations on pnp Si BJTs. A mismatch in DLTS deep peak amplitude for devices with same final gain but irradiated with different ion species was observed. Also, different ions cause different gain degradation when the DLTS spectra are matched. Pre-dosed ion-irradiated samples show that ion induced ionization does not account for the differences in DLTS peak height but isochronal annealing studies suggest that light ions produce more VP defects than heavy ions to compensate for the lack of clusters that heavy ions produce. The creation of defect clusters bymore » heavy ions is evident by the higher content of E4 and V* 2 defects compared to light ions.« less

  15. Comparison of gain degradation and deep level transient spectroscopy in pnp Si bipolar junction transistors irradiated with different ion species

    DOE PAGES

    Aguirre, B. A.; Bielejec, E.; Fleming, R. M.; ...

    2016-12-09

    Here, we studied the effect of light ion and heavy ion irradiations on pnp Si BJTs. A mismatch in DLTS deep peak amplitude for devices with same final gain but irradiated with different ion species was observed. Also, different ions cause different gain degradation when the DLTS spectra are matched. Pre-dosed ion-irradiated samples show that ion induced ionization does not account for the differences in DLTS peak height but isochronal annealing studies suggest that light ions produce more VP defects than heavy ions to compensate for the lack of clusters that heavy ions produce. The creation of defect clusters bymore » heavy ions is evident by the higher content of E4 and V* 2 defects compared to light ions.« less

  16. A review of ion sources for medical accelerators (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muramatsu, M.; Kitagawa, A.

    2012-02-15

    There are two major medical applications of ion accelerators. One is a production of short-lived isotopes for radionuclide imaging with positron emission tomography and single photon emission computer tomography. Generally, a combination of a source for negative ions (usually H- and/or D-) and a cyclotron is used; this system is well established and distributed over the world. Other important medical application is charged-particle radiotherapy, where the accelerated ion beam itself is being used for patient treatment. Two distinctly different methods are being applied: either with protons or with heavy-ions (mostly carbon ions). Proton radiotherapy for deep-seated tumors has become widespreadmore » since the 1990s. The energy and intensity are typically over 200 MeV and several 10{sup 10} pps, respectively. Cyclotrons as well as synchrotrons are utilized. The ion source for the cyclotron is generally similar to the type for production of radioisotopes. For a synchrotron, one applies a positive ion source in combination with an injector linac. Carbon ion radiotherapy awakens a worldwide interest. About 6000 cancer patients have already been treated with carbon beams from the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan. These clinical results have clearly verified the advantages of carbon ions. Heidelberg Ion Therapy Center and Gunma University Heavy Ion Medical Center have been successfully launched. Several new facilities are under commissioning or construction. The beam energy is adjusted to the depth of tumors. It is usually between 140 and 430 MeV/u. Although the beam intensity depends on the irradiation method, it is typically several 10{sup 8} or 10{sup 9} pps. Synchrotrons are only utilized for carbon ion radiotherapy. An ECR ion source supplies multi-charged carbon ions for this requirement. Some other medical applications with ion beams attract developer's interests. For example, the several types of accelerators are under development for the boron neutron capture therapy. This treatment is conventionally demonstrated by a nuclear reactor, but it is strongly expected to replace the reactor by the accelerator. We report status of ion source for medical application and such scope for further developments.« less

  17. Effectiveness of respiratory-gated radiotherapy with audio-visual biofeedback for synchrotron-based scanned heavy-ion beam delivery

    NASA Astrophysics Data System (ADS)

    He, Pengbo; Li, Qiang; Zhao, Ting; Liu, Xinguo; Dai, Zhongying; Ma, Yuanyuan

    2016-12-01

    A synchrotron-based heavy-ion accelerator operates in pulse mode at a low repetition rate that is comparable to a patient’s breathing rate. To overcome inefficiencies and interplay effects between the residual motion of the target and the scanned heavy-ion beam delivery process for conventional free breathing (FB)-based gating therapy, a novel respiratory guidance method was developed to help patients synchronize their breathing patterns with the synchrotron excitation patterns by performing short breath holds with the aid of personalized audio-visual biofeedback (BFB) system. The purpose of this study was to evaluate the treatment precision, efficiency and reproducibility of the respiratory guidance method in scanned heavy-ion beam delivery mode. Using 96 breathing traces from eight healthy volunteers who were asked to breathe freely and guided to perform short breath holds with the aid of BFB, a series of dedicated four-dimensional dose calculations (4DDC) were performed on a geometric model which was developed assuming a linear relationship between external surrogate and internal tumor motions. The outcome of the 4DDCs was quantified in terms of the treatment time, dose-volume histograms (DVH) and dose homogeneity index. Our results show that with the respiratory guidance method the treatment efficiency increased by a factor of 2.23-3.94 compared with FB gating, depending on the duty cycle settings. The magnitude of dose inhomogeneity for the respiratory guidance methods was 7.5 times less than that of the non-gated irradiation, and good reproducibility of breathing guidance among different fractions was achieved. Thus, our study indicates that the respiratory guidance method not only improved the overall treatment efficiency of respiratory-gated scanned heavy-ion beam delivery, but also had the advantages of lower dose uncertainty and better reproducibility among fractions.

  18. Pyrolized biochar for heavy metal adsorption

    EPA Pesticide Factsheets

    Removal of copper and lead metal ions from water using pyrolized plant materials. Method can be used to develop a low cost point-of-use device for cleaning contaminated water. This dataset is associated with the following publication:DeMessie, B., E. Sahle-Demessie , and G. Sorial. Cleaning Water Contaminated With Heavy Metal Ions Using Pyrolyzed Banana Peel Adsorbents. Separation Science and Technology. Marcel Dekker Incorporated, New York, NY, USA, 50(16): 2448-2457, (2015).

  19. NEPP Update of Independent Single Event Upset Field Programmable Gate Array Testing

    NASA Technical Reports Server (NTRS)

    Berg, Melanie; Label, Kenneth; Campola, Michael; Pellish, Jonathan

    2017-01-01

    This presentation provides a NASA Electronic Parts and Packaging (NEPP) Program update of independent Single Event Upset (SEU) Field Programmable Gate Array (FPGA) testing including FPGA test guidelines, Microsemi RTG4 heavy-ion results, Xilinx Kintex-UltraScale heavy-ion results, Xilinx UltraScale+ single event effect (SEE) test plans, development of a new methodology for characterizing SEU system response, and NEPP involvement with FPGA security and trust.

  20. Plasma polymer-functionalized silica particles for heavy metals removal.

    PubMed

    Akhavan, Behnam; Jarvis, Karyn; Majewski, Peter

    2015-02-25

    Highly negatively charged particles were fabricated via an innovative plasma-assisted approach for the removal of heavy metal ions. Thiophene plasma polymerization was used to deposit sulfur-rich films onto silica particles followed by the introduction of oxidized sulfur functionalities, such as sulfonate and sulfonic acid, via water-plasma treatments. Surface chemistry analyses were conducted by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. Electrokinetic measurements quantified the zeta potentials and isoelectric points (IEPs) of modified particles and indicated significant decreases of zeta potentials and IEPs upon plasma modification of particles. Plasma polymerized thiophene-coated particles treated with water plasma for 10 min exhibited an IEP of less than 3.5. The effectiveness of developed surfaces in the adsorption of heavy metal ions was demonstrated through copper (Cu) and zinc (Zn) removal experiments. The removal of metal ions was examined through changing initial pH of solution, removal time, and mass of particles. Increasing the water plasma treatment time to 20 min significantly increased the metal removal efficiency (MRE) of modified particles, whereas further increasing the plasma treatment time reduced the MRE due to the influence of an ablation mechanism. The developed particulate surfaces were capable of removing more than 96.7% of both Cu and Zn ions in 1 h. The combination of plasma polymerization and oxidative plasma treatment is an effective method for the fabrication of new adsorbents for the removal of heavy metals.

  1. Effects of prenatal irradiation with an accelerated heavy-ion beam on postnatal development in rats: II. Further study on neurophysiologic alterations

    NASA Astrophysics Data System (ADS)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Watanabe, K.; Fujita, K.; Moreno, S. G.; Coffigny, H.; Hayata, I.

    Organogenesis is a highly radiosensitive period, study of prenatal exposure to high LET heavy ion beams on postnatal development is important for clarifying the radiation risk in space and promoting the evidence-based mechanism research. The effects from heavy ion irradiations are not well studied as those for low LET radiations such as X-rays in this field, even the ground-based investigations remain to be addressed. Using the Heavy Ion Medical Accelerator in Chiba (HIMAC) and Wistar rats, postnatal neurophysiological development in offspring was investigated following exposure of pregnant rats to accelerated neon-ion beams with a LET value of about 30 keV/μm at a dose range from 0.1 to 2.0 Gy on the 15th day of gestation. The age for appearance of four physiologic markers and attainment of five neonatal reflexes, and gain in body weight were monitored. Male offspring were evaluated as young adults using two behavioral tests including open field and hole-board dipping tests. The effects of X-rays at 200 kVp measured for the same biological end points were studied for comparison. For most of the endpoints at early age, significant neurophysiological alteration was observed even in offspring receiving 0.1 Gy of accelerated neon ions but not X-rays. All offspring receiving 2.0 Gy of accelerated neon ions died prior to weaning. Offspring prenatally irradiated with neon ions generally showed higher incidences of prenatal death, increased preweaning mortality, markedly delayed accomplishment in physiological markers and reflexes, significantly lower body weight and reduced ratios of main organ weight to body weight, and altered behavior compared to those exposed to X-rays at doses of 0.1 1.5 Gy. These findings indicate that irradiations with neon ions at 0.1 1.5 Gy on day 15 of gestation caused varied developmental alterations in offspring, and efficient dose leading to the detrimental effects seemed to be lower than that of X-rays.

  2. Magnetic separation of heavy metal ions and evaluation based on surface-enhanced Raman spectroscopy: copper(II) ions as a case study.

    PubMed

    Yan, Xue; Zhang, Xue-Jiao; Yuan, Ya-Xian; Han, San-Yang; Xu, Min-Min; Gu, Ren'ao; Yao, Jian-Lin

    2013-11-01

    A new approach was developed for the magnetic separation of copper(II) ions with easy operation and high efficiency. p-Mercaptobenzoic acid served as the modified tag of Fe2O3@Au nanoparticles both for the chelation ligand and Raman reporter. Through the chelation between the copper(II) ions and carboxyl groups on the gold shell, the Fe2O3@Au nanoparticles aggregated to form networks that were enriched and separated from the solution by a magnet. A significant decrease in the concentration of copper(II) ions in the supernatant solution was observed. An extremely sensitive method based on surface-enhanced Raman spectroscopy was employed to detect free copper(II) ions that remained after the magnetic separation, and thus to evaluate the separation efficiency. The results indicated the intensities of the surface-enhanced Raman spectroscopy bands from p-mercaptobenzoic acid were dependent on the concentration of copper(II) ions, and the concentration was decreased by several orders of magnitude after the magnetic separation. The present protocol effectively decreased the total amount of heavy metal ions in the solution. This approach opens a potential application in the magnetic separation and highly sensitive detection of heavy metal ions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Local formation of nitrogen-vacancy centers in diamond by swift heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, J.; Ilmenau University of Technology, Department of Microelectronics and Nanoelectric Systems, 98684 Ilmenau; Aloni, S.

    2014-12-07

    We exposed nitrogen-implanted diamonds to beams of swift heavy ions (∼1 GeV, ∼4 MeV/u) and find that these irradiations lead directly to the formation of nitrogen vacancy (NV) centers, without thermal annealing. We compare the photoluminescence intensities of swift heavy ion activated NV{sup −} centers to those formed by irradiation with low-energy electrons and by thermal annealing. NV{sup −} yields from irradiations with swift heavy ions are 0.1 of yields from low energy electrons and 0.02 of yields from thermal annealing. We discuss possible mechanisms of NV center formation by swift heavy ions such as electronic excitations and thermal spikes. While formingmore » NV centers with low efficiency, swift heavy ions could enable the formation of three dimensional NV{sup −} assemblies over relatively large distances of tens of micrometers. Further, our results show that NV center formation is a local probe of (partial) lattice damage relaxation induced by electronic excitations from swift heavy ions in diamond.« less

  4. Experimental measurement of the 4-d transverse phase space map of a heavy ion beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, H S

    1997-12-01

    The development and employment of a new diagnostic instrument for characterizing intense, heavy ion beams is reported on. This instrument, the ''Gated Beam Imager'' or ''GBI'' was designed for use on Lawrence Livermore National Laboratory Heavy Ion Fusion Project's ''Small Recirculator'', an integrated, scaled physics experiment and engineering development project for studying the transport and control of intense heavy ion beams as inertial fusion drivers in the production of electric power. The GBI allows rapid measurement and calculation of a heavy ion beam's characteristics to include all the first and second moments of the transverse phase space distribution, transverse emittance,more » envelope parameters and beam centroid. The GBI, with appropriate gating produces a time history of the beam resulting in a 4-D phase-space and time ''map'' of the beam. A unique capability of the GBI over existing diagnostic instruments is its ability to measure the ''cross'' moments between the two transverse orthogonal directions. Non-zero ''cross'' moments in the alternating gradient lattice of the Small Recirculator are indicative of focusing element rotational misalignments contributing to beam emittance growth. This emittance growth, while having the same effect on the ability to focus a beam as emittance growth caused by non-linear effects, is in principle removable by an appropriate number of focusing elements. The instrument uses the pepperpot method of introducing a plate with many pinholes into the beam and observing the images of the resulting beamlets as they interact with a detector after an appropriate drift distance. In order to produce adequate optical signal and repeatability, the detector was chosen to be a microchannel plate (MCP) with a phosphor readout screen. The heavy ions in the pepperpot beamlets are stopped in the MCP's thin front metal anode and the resulting secondary electron signal is amplified and proximity-focused onto the phosphor while maintaining the spatial and intensity characteristics of the heavy ion beamlets. The MCP used in this manner is a sensitive, accurate, and long-lasting detector, resistant against signal degradation experienced by previous methods of intense heavy ion beam detection and imaging. The performance of the GBI was benchmarked against existing mechanical emittance diagnostics and the results of sophisticated beam transport numerical simulation codes to demonstrate its usefulness as a diagnostic tool. A method of beam correction to remove the effects of quadrupole focusing element rotational misalignments is proposed using data obtainable from a GBI. An optimizing code was written to determine the parameters of the correction system elements based on input from the GBI. The results of this code for the Small Recirculator beam are reported on.« less

  5. Generation of quasi-monoenergetic heavy ion beams via staged shock wave acceleration driven by intense laser pulses in near-critical plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, W. L.; Qiao, B.; Shen, X. F.; You, W. Y.; Huang, T. W.; Yan, X. Q.; Wu, S. Z.; Zhou, C. T.; He, X. T.

    2016-09-01

    Laser-driven ion acceleration potentially offers a compact, cost-effective alternative to conventional accelerators for scientific, technological, and health-care applications. A novel scheme for heavy ion acceleration in near-critical plasmas via staged shock waves driven by intense laser pulses is proposed, where, in front of the heavy ion target, a light ion layer is used for launching a high-speed electrostatic shock wave. This shock is enhanced at the interface before it is transmitted into the heavy ion plasmas. Monoenergetic heavy ion beam with much higher energy can be generated by the transmitted shock, comparing to the shock wave acceleration in pure heavy ion target. Two-dimensional particle-in-cell simulations show that quasi-monoenergetic {{{C}}}6+ ion beams with peak energy 168 MeV and considerable particle number 2.1 × {10}11 are obtained by laser pulses at intensity of 1.66 × {10}20 {{W}} {{cm}}-2 in such staged shock wave acceleration scheme. Similarly a high-quality {{Al}}10+ ion beam with a well-defined peak with energy 250 MeV and spread δ E/{E}0=30 % can also be obtained in this scheme.

  6. Smart Capsules for Lead Removal from Industrial Wastewater.

    PubMed

    Tylkowski, Bartosz; Jastrząb, Renata

    2017-04-10

    Ground and especially drinking water could be contaminated by heavy metal ions such as lead and chromium, or the metalloid arsenic, discarded from industrial wastewater. These heavy metal ions are regarded as highly toxic pollutants which could cause a wide range of health problems in case of a long-term accumulation in the body. Thus, there have been many efforts to reduce the concentration of lead ions in effluent wastewater. They have included the establishment of stringent permissible discharge levels and management policies, the application of various pollution-control technologies, and the development of adsorbent materials for lead reduction. According to Science [1] encapsulation, developed approximately 65 years ago, has been defined as a major interdisciplinary research technology. Encapsulation has been used to deliver almost everything from advanced drugs to unique consumer sensory experiences. In this chapter we review the art of encapsulation technology as a potential breakthrough solution for a recyclable removal system for lead ions. Moreover, in order to provide the readers with a comprehensive and in-depth understanding of recent developments and innovative applications in this field, we highlight some remarkable advantages of encapsulation for heavy metal remove, such as simplicity of preparation, applicability for a wide range of selective extractants, large special interfacial area, ability for concentration of metal ions from dilute solutions, and less leakage of harmful components to the environment.

  7. Adsorption studies of heavy metal ions on mesoporous aluminosilicate, novel cation exchanger.

    PubMed

    Sepehrian, H; Ahmadi, S J; Waqif-Husain, S; Faghihian, H; Alighanbari, H

    2010-04-15

    Mesoporous aluminosilicates, have been prepared with various mole ratios of Si/Al and Cethyltrimethylammonium bromide (CTAB). They have been characterized by XRD, nitrogen adsorption/desorption measurements, FT-IR and thermogravimetry. Adsorption behavior of heavy metal ions on this adsorbent have been studied and discussed. The results show that incorporation of aluminum ions in the framework of the mesoporous MCM-41 has transformed it into an effective cation exchanger. The K(d) values of several metal ions have been increased. Separation of Sr(II)-Ce(III), Sr(II)-U(VI) and Cd(II)-Ce(III) has been developed on columns of this novel mesoporous cation exchanger. 2009 Elsevier B.V. All rights reserved.

  8. Neoplastic transformation of hamster embryo cells by heavy ions

    NASA Astrophysics Data System (ADS)

    Han, Z.; Suzuki, H.; Suzuki, F.; Suzuki, M.; Furusawa, Y.; Kato, T.; Ikenaga, M.

    1998-11-01

    We have studied the induction of morphological transformation of Syrian hamster embryo cells by low doses of heavy ions with different linear energy transfer (LET), ranging from 13 to 400 keV/μm. Exponentially growing cells were irradiated with 12C or 28Si ion beams generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC), inoculated to culture dishes, and transformed colonies were identified when the cells were densely stacked and showed a crisscross pattern. Over the LET range examined, the frequency of transformation induced by the heavy ions increased sharply at very low doses no greater than 5 cGy. The relative biological effectiveness (RBE) of the heavy ions relative to 250 kVp X-rays showed an initial increase with LET, reaching a maximum value of about 7 at 100 keV/μm, and then decreased with the further increase in LET. Thus, we confirmed that high LET heavy ions are significantly more effective than X-rays for the induction of in vitro cell transformation.

  9. Relative biological effectiveness of accelerated heavy ions for induction of morphological transformation in Syrian hamster embryo cells.

    PubMed

    Han, Z B; Suzuki, H; Suzuki, F; Suzuki, M; Furusawa, Y; Kato, T; Ikenaga, M

    1998-09-01

    Syrian hamster embryo cells were used to study the morphological transformation induced by accelerated heavy ions with different linear energy transfer (LET) ranging from 13 to 400 keV/micron. Exponentially growing cells were irradiated with 12C or 28Si ion beams generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC), then inoculated to culture dishes. Morphologically altered colonies were scored as transformants. Over the LET range examined, the frequency of transformation induced by the heavy ions increased sharply at very low doses no greater than 5 cGy. The relative biological effectiveness (RBE) of the heavy ions relative to X-rays first increased with LET, reached a maximum value of about 7 at 100 keV/micron, then decreased with the further increase of LET. Our findings confirmed that high LET heavy ions are much more effective than X-rays for the induction of in vitro cell transformation.

  10. Neoplastic transformation of hamster embyro cells by heavy ions.

    PubMed

    Han, Z; Suzuki, H; Suzuki, F; Suzuki, M; Furusawa, Y; Kato, T; Ikenaga, M

    1998-01-01

    We have studied the induction of morphological transformation of Syrian hamster embryo cells by low doses of heavy ions with different linear energy transfer (LET), ranging from 13 to 400 keV/micrometer. Exponentially growing cells were irradiated with 12C or 28Si ion beams generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC), inoculated to culture dishes, and transformed colonies were identified when the cells were densely stacked and showed a crisscross pattern. Over the LET range examined, the frequency of transformation induced by the heavy ions increased sharply at very low doses no greater than 5 cGy. The relative biological effectiveness (RBE) of the heavy ions relative to 250 kVp X-rays showed an initial increase with LET, reaching a maximum value of about 7 at 100 keV/micrometer, and then decreased with the further increase in LET. Thus, we confirmed that high LET heavy ions are significantly more effective than X-rays for the induction of in vitro cell transformation.

  11. Inclusive production of small radius jets in heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Zhong-Bo; Ringer, Felix; Vitev, Ivan

    Here, we develop a new formalism to describe the inclusive production of small radius jets in heavy-ion collisions, which is consistent with jet calculations in the simpler proton–proton system. Only at next-to-leading order (NLO) and beyond, the jet radius parameter R and the jet algorithm dependence of the jet cross section can be studied and a meaningful comparison to experimental measurements is possible. We are able to consistently achieve NLO accuracy by making use of the recently developed semi-inclusive jet functions within Soft Collinear Effective Theory (SCET). Additionally, single logarithms of the jet size parameter αmore » $$n\\atop{s}$$ln nR leading logarithmic (NLL R) accuracy in proton–proton collisions. The medium modified semi-inclusive jet functions are obtained within the framework of SCET with Glauber gluons that describe the interaction of jets with the medium. We also present numerical results for the suppression of inclusive jet cross sections in heavy ion collisions at the LHC and the formalism developed here can be extended directly to corresponding jet substructure observables.« less

  12. Inclusive production of small radius jets in heavy-ion collisions

    DOE PAGES

    Kang, Zhong-Bo; Ringer, Felix; Vitev, Ivan

    2017-03-31

    Here, we develop a new formalism to describe the inclusive production of small radius jets in heavy-ion collisions, which is consistent with jet calculations in the simpler proton–proton system. Only at next-to-leading order (NLO) and beyond, the jet radius parameter R and the jet algorithm dependence of the jet cross section can be studied and a meaningful comparison to experimental measurements is possible. We are able to consistently achieve NLO accuracy by making use of the recently developed semi-inclusive jet functions within Soft Collinear Effective Theory (SCET). Additionally, single logarithms of the jet size parameter αmore » $$n\\atop{s}$$ln nR leading logarithmic (NLL R) accuracy in proton–proton collisions. The medium modified semi-inclusive jet functions are obtained within the framework of SCET with Glauber gluons that describe the interaction of jets with the medium. We also present numerical results for the suppression of inclusive jet cross sections in heavy ion collisions at the LHC and the formalism developed here can be extended directly to corresponding jet substructure observables.« less

  13. Heating the polar corona by collisionless shocks: an example of cross-fertilization in space physics

    NASA Astrophysics Data System (ADS)

    Zimbardo, Gaetano; Nistico, Giuseppe

    We propose a new model for explaining the observations of preferential heating of heavy ions in the polar solar corona. We consider that a large number of small scale shock waves can be present in the solar corona, as suggested by recent observations of polar coronal jets. The heavy ion energization mechanism is, essentially, the ion reflection off supercritical quasi-perpendicular collisionless shocks in the corona and the subsequent acceleration by the motional electric field E = -V × B. The mechanism of heavy ion reflection is based on ion gyration in the magnetic overshoot of the shock. The acceleration due to E is perpendicular to the magnetic field, giving rise to large temperature anisotropy with T⊥ T , in agreement with observations. Also, heating is more than mass proportional with respect to protons, because the heavy ion orbit is mostly upstream of the quasi-perpendicular shock foot. The observed temperature ratios between O5+ ions and protons in the polar corona, and between α particles and protons in the solar wind are easily recovered. Results of numerical simulations reproducing the heavy ion reflection will be presented. This work is an interesting example of cross-fertilization in space plasma physics: the non adiabatic heating of heavy ions comes from Speiser orbits in the magnetotail, observations of preferential heating of heavy ions at shocks comes from Ulysses data on corotating interaction regions shocks, heavy ion reflecton from a magnetic barrier is akin to the ion orbits in the Ferraro-Rosenbluth sheath considered for the magnetopause, the formation of shocks in the reconnection outflow regions comes from solar flare models, and evidence of reconnection and fast flows in the polar corona comes from Hinode and STEREO observations of coronal hole jets.

  14. Ground-based research with heavy ions for space radiation protection

    NASA Astrophysics Data System (ADS)

    Durante, M.; Kronenberg, A.

    Human exposure to ionizing radiation is one of the acknowledged potential showstoppers for long duration manned interplanetary missions. Human exploratory missions cannot be safely performed without a substantial reduction of the uncertainties associated with different space radiation health risks, and the development of effective countermeasures. Most of our knowledge of the biological effects of heavy charged particles comes from accelerator-based experiments. During the 35th COSPAR meeting, recent ground-based experiments with high-energy iron ions were discussed, and these results are briefly summarised in this paper. High-quality accelerator-based research with heavy ions will continue to be the main source of knowledge of space radiation health effects and will lead to reductions of the uncertainties in predictions of human health risks. Efforts in materials science, nutrition and pharmaceutical sciences and their rigorous evaluation with biological model systems in ground-based accelerator experiments will lead to the development of safe and effective countermeasures to permit human exploration of the Solar System.

  15. Monte-Carlo Simulations of Heavy Ions Track Structures and Applications

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francia A.

    2013-01-01

    In space, astronauts are exposed to protons, high ]energy heavy (HZE) ions that have a high charge (Z) and energy (E), and secondary radiation, including neutrons and recoil nuclei produced by nuclear reactions in spacecraft walls or in tissue. The astronauts can only be partly shielded from these particles. Therefore, on travelling to Mars, it is estimated that every cell nucleus in an astronaut fs body would be hit by a proton or secondary electron (e.g., electrons of the target atoms ionized by the HZE ion) every few days and by an HZE ion about once a month. The risks related to these heavy ions are not well known and of concern for long duration space exploration missions. Medical ion therapy is another situation where human beings can be irradiated by heavy ions, usually to treat cancer. Heavy ions have a peculiar track structure characterized by high levels of energy ]deposition clustering, especially in near the track ends in the so ]called eBragg peak f region. In radiotherapy, these features of heavy ions can provide an improved dose conformation with respect to photons, also considering that the relative biological effectiveness (RBE) of therapeutic ions in the plateau region before the peak is sufficiently low. Therefore, several proton and carbon ion therapy facilities are under construction at this moment

  16. Tracing the Solar Wind to its Origin: New Insights from ACE/SWICS Data and SO/HIS Performance Predictions

    NASA Astrophysics Data System (ADS)

    Stakhiv, Mark

    The solar wind is a hot tenuous plasma that continuously streams off of the Sun into the heliosphere. The solar wind is the medium through which coronal mass ejections (CMEs) travel from the Sun to the Earth, where they can disrupt vital space-based technologies and wreak havoc on terrestrial infrastructure. Understanding the solar wind can lead to improved predications of CME arrival time as well as their geoeffectiveness. The solar wind is studied in this thesis through in situ measurements of heavy ions. Several outstanding questions about the solar wind are addressed in this thesis: What is the origin of the solar wind? How is the solar wind heated and accelerated? The charge state distribution and abundance of heavy ions in the solar wind record information about their source location and heating mechanism. This information is largely unchanged from the Sun to the Earth, where it is collected in situ with spacecraft. In this thesis we use data from the Solar Wind Ion Composition Spectrometer (SWICS) that flew on two spacecraft: Ulysses (1990 - 2009) and ACE (1998 - present). We analyze the kinetic and compositional properties of the solar wind with heavy ion data and lay out a unified wind scenario, which states that the solar wind originates from two different sources and regardless of its release mechanism the solar wind is then accelerated by waves. The data from these instruments are the best available to date but still lack the measurement cadence and distribution resolution to fully answer all of the solar wind questions. To address these issues a new heavy ion sensor is being developed to be the next generation of in situ heavy ion measurements. This thesis supports the development of this instrument through the analysis of the sensors measurement properties and the characterization of its geometric factor and efficiencies.

  17. Failla Memorial Lecture: the future of heavy-ion science in biology and medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobias, C.A.

    1985-07-01

    An extensive review, with over 100 references, of the use of accelerator techniques in radiobiology is presented. Currently, beams of any stable isotope species up to uranium are available at kinetic energies of several hundred MeV/nucleon at the Berkeley Bevalac. The heavy ions hold interest for a broad spectrum of research because of their effectiveness in producing a series of major lesions in DNA along single particle tracks and because of the Bragg depth ionization properties that allow the precise deposition of highly localized doses deep in the human body. Heavy ions, when compared to low-LET radiation, have increased effectivenessmore » for mammalian cell lethality, chromosome mutations, and cell transformation. The molecular mechanisms are not completely understood but appear to involve fragmentation and reintegration of DNA. Heavy ions do not require the presence of oxygen for producing their effects. Heavy ions are effective in delaying or blocking the cell division process. These radiobiological properties, combined with the ability to deliver highly localized internal doses, make accelerated heavy ions potentially important radiotherapeutic tools. Other novel approaches include the utilization of radioactive heavy beams as instant tracers. Heavy-ion radiography and microscopy respond to delicate changes in tissue electron density. The authors laboratory is in the process of proposing a research biomedical heavy-ion accelerator; the availability of such machines would greatly accelerate cancer and brain research with particle beams.« less

  18. Compact 2.45 GHz ECR Ion Source for generation of singly-charged ions

    NASA Astrophysics Data System (ADS)

    Fatkullin, Riyaz; Bogomolov, Sergey; Kuzmenkov, Konstantin; Efremov, Andrey

    2018-04-01

    2.45 GHz ECR ion sources are widely used for production of protons, single charged heavy ions and secondary radioactive ion beams. This paper describes the development of a compact ECR ion source based on 2.45 GHz coaxial resonator. The first results of extracted current measurements at different resonator configuration as a function of UHF frequency, power and gas flow are presented.

  19. Heavy ion fusion reactions in stars

    NASA Astrophysics Data System (ADS)

    Tang, X. D.

    2018-04-01

    Heavy ion fusion reactions play important roles in a wide variety of stellar burning scenarios. 12C+12C, 12C+16O and 16O+16O are the principle reactions during the advance burning stages of massive star. 12C+12C also triggers the happening of superburst and Type Ia supernovae. The heavy ion fusion reactions of the neutron-rich isotopes such as 24O are the major heating source in the crust of neutron star. In this talk, I will review the challenges and the recent progress in the study of these heavy ion fusion reactions at stellar energies. The outlook for the studies of the astrophysical heavy-ion fusion reactions will also be presented.

  20. The heavy ion diffusion region in magnetic reconnection in the Earth's magnetotail

    NASA Astrophysics Data System (ADS)

    Liu, Y. H.; Mouikis, C. G.; Kistler, L. M.; Wang, S.; Roytershteyn, V.; Karimabadi, H.

    2015-05-01

    While the plasma in the Earth's magnetotail predominantly consists of protons and electrons, there are times when a significant amount of oxygen is present. When magnetic reconnection occurs, the behavior of these heavy ions can be significantly different from that of the protons, due to their larger gyroradius. In this study, we investigate the heavy ion distribution functions in the reconnection ion diffusion region from a 2.5D three-species particle-in-cell numerical simulation and compare those with Cluster observations from the near-Earth magnetotail. From the simulation results, we find that the heavy ions are demagnetized and accelerated in a larger diffusion region, the heavy ion diffusion region. The ion velocity distribution functions show that, inside the heavy ion diffusion region, heavy ions appear as counterstreaming beams along z in the GSM x-z plane, while drifting in y, carrying cross-tail current. We compare this result with Cluster observations in the vicinity of reconnection regions in the near-Earth magnetotail and find that the simulation predictions are consistent with the observed ion distribution functions in the ion diffusion region, as well as the inflow, exhaust, and separatrix regions. Based on the simulation and observation results, the presence of a multiscale diffusion region model, for O+ abundant reconnection events in the Earth's magnetotail, is demonstrated. A test particle simulation shows that in the diffusion region, the H+ gains energy mainly through Ex, while the O+ energy gain comes equally from Ex and Ey.

  1. Laser ion source for isobaric heavy ion collider experiment.

    PubMed

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is (96)Ru + (96)Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

  2. Quantum dot impregnated-chitosan film for heavy metal ion sensing and removal.

    PubMed

    Jaiswal, Amit; Ghsoh, Siddhartha Sankar; Chattopadhyay, Arun

    2012-11-06

    We report the use of biopolymer-stabilized ZnS quantum dots (Q-dots) for cation exchange reaction-based easy sensing and removal of heavy metal ions such as Hg(2+), Ag(+), and Pb(2+) in water. Chitosan-stabilized ZnS Q-dots were synthesized in aqueous medium and were observed to have been converted to HgS, Ag(2)S, and PbS Q-dots in the presence of corresponding ions. The transformed Q-dots showed characteristic color development, with Hg(2+) being exceptionally identifiable due to the visible bright yellow color formation, while brown coloration was observed in other metal ions. The cation exchange was driven by the difference in the solubility product of the reactant and the product Q-dots. The cation exchanged Q-dots preserved the morphology of the reactant Q-dots and displayed volume increase based on the bulk crystal lattice parameters. The band gap of the transformed Q-dots showed a major increase from the corresponding bulk band gap of the material, demonstrating the role of quantum confinement. Next, we fabricated ZnS Q-dot impregnated chitosan film which was used to remove heavy metal ions from contaminated water as measured using atomic absorption spectroscopy (AAS). The present system could suitably be used as a simple dipstick for elimination of heavy metal ion contamination in water.

  3. Transport of cosmic ray nuclei in various materials

    NASA Technical Reports Server (NTRS)

    Silberberg, R.; Tsao, C. H.; Letaw, J. R.

    1988-01-01

    Cosmic-ray heavy ions have become a concern in space radiation effects analyses. Heavy ions rapidly deposit energy and create dense ionization trails as they traverse materials. Collection of the free charge disrupts the operation of microelectronic circuits. This effect, called the single-event upset, can cause a loss of digital data. Passage of high linear energy transfer particles through the eyes has been observed by Apollo astronauts. These heavy ions have great radiobiological effectiveness and are the primary risk factor for leukemia induction on a manned Mars mission. Models of the transport of heavy cosmic-ray nuclei through materials depend heavily on our understanding of the cosmic-ray environment, nuclear spallation cross sections, and computer transport codes. Our group has initiated and pursued the development of a full capability for modeling these transport processes. A recent review of this ongoing effort is presented in Ref. 5. In this paper, we discuss transport methods and present new results comparing the attenuation of cosmic rays in various materials.

  4. Search for the chiral magnetic effect in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Zhao, Jie

    2018-05-01

    Relativistic heavy-ion collisions provide an ideal environment to study the emergent phenomena in quantum chromodynamics (QCD). The chiral magnetic effect (CME) is one of the most interesting, arising from the topological charge fluctuations of QCD vacua, immersed in a strong magnetic field. Since the first measurement nearly a decade ago of the possibly CME-induced charge correlation, extensive studies have been devoted to background contributions to those measurements. Many new ideas and techniques have been developed to reduce or eliminate the backgrounds. This paper reviews these developments and the overall progress in the search for the CME.

  5. Survey of mercury, cadmium and lead content of household batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Recknagel, Sebastian, E-mail: sebastian.recknagel@bam.de; Radant, Hendrik; Kohlmeyer, Regina

    2014-01-15

    Highlights: • A well selected sample of 146 batteries was analysed for its heavy metals content. • A comparison was made between heavy metals contents in batteries in 2006 and 2011. • No significant change after implementation of the new EU Batteries Directive. • Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146more » different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels.« less

  6. Secondary electrons induced by fast ions under channeling conditions. II. Screening of fast heavy ions in solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudo, H.; Shima, K.; Seki, S.

    1991-06-01

    Ion-beam shadowing effects have been observed for secondary electrons induced by various ions in the energy range of 1.8--3.8 MeV/amu, under various channeling conditions in Si and GaAs crystals. From a comparison of the energy spectra of electrons induced by ions of equal velocity, we have found reduced shadowing effects for heavy ions (Si, S, and Cl) as compared with light (H, He, C, and O) ions. It is concluded that the reduction results from the screening of the heavy ion's nuclear charge by bound electrons. By analyzing the reduced shadowing effect, the effective nuclear charges for the heavy ionsmore » within the target crystals have been determined.« less

  7. Early time evolution of negative ion clouds and electron density depletions produced during electron attachment chemical release experiments

    NASA Technical Reports Server (NTRS)

    Scales, W. A.; Bernhardt, P. A.; Ganguli, G.

    1994-01-01

    Two-dimensional electrostatic particle-in-cell simulations are used to study the early time evolution of electron depletions and negative ion clouds produced during electron attachment chemical releases in the ionosphere. The simulation model considers the evolution in the plane perpendicular to the magnetic field and a three-species plasma that contains electrons, positive ions, and also heavy negative ions that result as a by-product of the electron attachment reaction. The early time evolution (less than the negative ion cyclotron period) of the system shows that a negative charge surplus initially develops outside of the depletion boundary as the heavy negative ions move across the boundary. The electrons are initially restricted from moving into the depletion due to the magnetic field. An inhomogenous electric field develops across the boundary layer due to this charge separation. A highly sheared electron flow velocity develops in the depletion boundary due to E x B and Delta-N x B drifts that result from electron density gradients and this inhomogenous electric field. Structure eventually develops in the depletion boundary layer due to low-frequency electrostatic waves that have growth times shorter than the negative ion cyclotron period. It is proposed that these waves are most likely produced by the electron-ion hybrid instability that results from sufficiently large shears in the electron flow velocity.

  8. Multistrange Baryon elliptic flow in Au+Au collisions at square root of sNN=200 GeV.

    PubMed

    Adams, J; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Arkhipkin, D; Averichev, G S; Badyal, S K; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Berger, J; Bezverkhny, B I; Bharadwaj, S; Bhasin, A; Bhati, A K; Bhatia, V S; Bichsel, H; Bielcik, J; Bielcikova, J; Billmeier, A; Bland, L C; Blyth, C O; Blyth, S L; Bonner, B E; Botje, M; Boucham, A; Bouchet, J; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Daugherity, M; de Moura, M M; Dedovich, T G; DePhillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Mazumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faivre, J; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fornazier, K S F; Fu, J; Gagliardi, C A; Gaillard, L; Gans, J; Ganti, M S; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Gos, H; Grachov, O; Grebenyuk, O; Grosnick, D; Guertin, S M; Guo, Y; Gupta, A; Gupta, N; Gutierrez, T D; Hallman, T J; Hamed, A; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horner, M J; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Jedynak, M; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Kislov, E M; Klay, J; Klein, S R; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kowalik, K L; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lehocka, S; LeVine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Liu, Q J; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahajan, S; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J N; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Miller, M L; Minaev, N G; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Reinnarth, J; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Sarsour, M; Savin, I; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schweda, K; Seger, J; Seyboth, P; Shahaliev, E; Shao, M; Shao, W; Sharma, M; Shen, W Q; Shestermanov, K E; Shimanskiy, S S; Sichtermann, E; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thein, D; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van der Kolk, N; van Leeuwen, M; Vander Molen, A M; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, G; Wang, X L; Wang, Y; Wang, Y; Wang, Z M; Ward, H; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zborovsky, I; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhong, C; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X

    2005-09-16

    We report on the first measurement of elliptic flow v2(pT) of multistrange baryons Xi- +Xi+ and Omega- + Omega+ in heavy-ion collisions. In minimum-bias Au+Au collisions at square root of s(NN)=200 GeV, a significant amount of elliptic flow, comparable to other nonstrange baryons, is observed for multistrange baryons which are expected to be particularly sensitive to the dynamics of the partonic stage of heavy-ion collisions. The pT dependence of v2 of the multistrange baryons confirms the number of constituent quark scaling previously observed for lighter hadrons. These results support the idea that a substantial fraction of the observed collective motion is developed at the early partonic stage in ultrarelativistic nuclear collisions at the Relativistic Heavy Ion Collider.

  9. HZETRN: A heavy ion/nucleon transport code for space radiations

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Chun, Sang Y.; Badavi, Forooz F.; Townsend, Lawrence W.; Lamkin, Stanley L.

    1991-01-01

    The galactic heavy ion transport code (GCRTRN) and the nucleon transport code (BRYNTRN) are integrated into a code package (HZETRN). The code package is computer efficient and capable of operating in an engineering design environment for manned deep space mission studies. The nuclear data set used by the code is discussed including current limitations. Although the heavy ion nuclear cross sections are assumed constant, the nucleon-nuclear cross sections of BRYNTRN with full energy dependence are used. The relation of the final code to the Boltzmann equation is discussed in the context of simplifying assumptions. Error generation and propagation is discussed, and comparison is made with simplified analytic solutions to test numerical accuracy of the final results. A brief discussion of biological issues and their impact on fundamental developments in shielding technology is given.

  10. Investigating Reflectance Properties of Mercury's Surface Material: Effect of Swift Heavy Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Carli, C.; Brunetto, R.; Strazzulla, G.; Serventi, G.; Poulet, F.; Capaccioni, F.; Langevin, Y.; Gardes, E.; Martinez, R.; Boduch, P.; Domaracka, A.; Rothard, H.

    2018-05-01

    Mercury’s surface is affected by space weathering processes, interesting mineral properties. Here, we present a spectral study of swift heavy ion irradiation of two minerals, olivine and nepheline, as a simulation of heavy ion irradiation at Mercury.

  11. Laser ion source for high brightness heavy ion beam

    DOE PAGES

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. But, we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. Furthermore, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory in 2014. Now most of all the solid based heavy ions are being provided from the laser ion sourcemore » for regular operation.« less

  12. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms.

    PubMed

    Bansod, BabanKumar; Kumar, Tejinder; Thakur, Ritula; Rana, Shakshi; Singh, Inderbir

    2017-08-15

    Heavy metal ions are non-biodegradable and contaminate most of the natural resources occurring in the environment including water. Some of the heavy metals including Lead (Pb), Mercury (Hg), Arsenic (As), Chromium (Cr) and Cadmium (Cd) are considered to be highly toxic and hazardous to human health even at trace levels. This leads to the requirement of fast, accurate and reliable techniques for the detection of heavy metal ions. This review presents various electrochemical detection techniques for heavy metal ions those are user friendly, low cost, provides on-site and real time monitoring as compared to other spectroscopic and optical techniques. The categorization of different electrochemical techniques is done on the basis of different types of detection signals generated due to presence of heavy metal ions in the solution matrix like current, potential, conductivity, electrochemical impedance, and electrochemiluminescence. Also, the recent trends in electrochemical detection of heavy metal ions with various types of sensing platforms including metals, metal films, metal oxides, nanomaterials, carbon nano tubes, polymers, microspheres and biomaterials have been evoked. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Laser ion source for heavy ion inertial fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamura, Masahiro

    The proposed heavy ion inertial fusion (HIF) scenarios require ampere class low charge state ion beams of heavy species. A laser ion source (LIS) is recognized as one of the promising candidates of ion beam providers, since it can deliver high brightness heavy ion beams to accelerators. A design of LIS for the HIF depends on the accelerator structure and accelerator complex following the source. In this article, we discuss the specifications and design of an appropriate LIS assuming two major types of the accelerators: radio frequency (RF) high quality factor cavity type and non-resonant induction core type. We believemore » that a properly designed LIS satisfies the requirements of both types, however some issues need to be verified experimentally.« less

  14. Laser ion source for heavy ion inertial fusion

    DOE PAGES

    Okamura, Masahiro

    2018-01-10

    The proposed heavy ion inertial fusion (HIF) scenarios require ampere class low charge state ion beams of heavy species. A laser ion source (LIS) is recognized as one of the promising candidates of ion beam providers, since it can deliver high brightness heavy ion beams to accelerators. A design of LIS for the HIF depends on the accelerator structure and accelerator complex following the source. In this article, we discuss the specifications and design of an appropriate LIS assuming two major types of the accelerators: radio frequency (RF) high quality factor cavity type and non-resonant induction core type. We believemore » that a properly designed LIS satisfies the requirements of both types, however some issues need to be verified experimentally.« less

  15. Diagnosis of NMOS DRAM functional performance as affected by a picosecond dye laser

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Schwartz, H. R.; Edmonds, L. D.; Zoutendyk, J. A.

    1992-01-01

    A picosec pulsed dye laser beam was at selected wavelengths successfully used to simulate heavy-ion single-event effects (SEEs) in negative channel NMOS DRAMs. A DRAM was used to develop the test technique because bit-mapping capability and previous heavy-ion upset data were available. The present analysis is the first to establish such a correlation between laser and heavy-ion data for devices, such as the NMOS DRAM, where charge collection is dominated by long-range diffusion, which is controlled by carrier density at remote distances from a depletion region. In the latter case, penetration depth is an important parameter and is included in the present analysis. A single-pulse picosecond dye laser beam (1.5 microns diameter) focused onto a single cell component can upset a single memory cell; clusters of memory cell upsets (multiple errors) were observed when the laser energy was increased above the threshold energy. The multiple errors were analyzed as a function of the bias voltage and total energy of a single pulse. A diffusion model to distinguish the multiple upsets from the laser-induced charge agreed well with previously reported heavy ion data.

  16. FOREWORD: International Conference on Heavy Ion Collisions in the LHC Era

    NASA Astrophysics Data System (ADS)

    Arleo, Francois; Salgado, Carlos A.; Tran Thanh Van, Jean

    2013-03-01

    The International Conference on Heavy Ion Collisions in the LHC Era was held in Quy Nhon, Vietnam, on 16-20 July 2012. The series Rencontres du Vietnam, created by Jean Tran Thanh Van in 1993, consists of international meetings aimed to stimulate the development of advanced research in Vietnam and more generally in South East Asia, and to establish collaborative research networks with Western scientific communities. This conference, as the whole series, also supports the International Center for Interdisciplinary Science Education being built in Quy Nhon. The articles published in this volume present the latest results from the heavy-ion collision programs of RHIC and LHC as well as the corresponding theoretical interpretation and future perspectives. Lower energy nuclear programs were also reviewed, providing a rather complete picture of the state-of-the-art in the field. We wish to thank the sponsors of the Conference on Heavy Ion Collisions in the LHC Era: the European Research Council; Xunta de Galicia (Spain); EMMI (Germany) and Agence Nationale de la Recherche (France) François Arleo (Laboratoire d'Annecy-le-Vieux de Physique Théorique, France) Francois Arleo, Carlos A Salgado and Jean Tran Thanh Van Conference photograph

  17. Expressing a bacterial mercuric ion binding protein in plant for phytoremediation of heavy metals.

    PubMed

    Hsieh, Ju-Liang; Chen, Ching-Yi; Chiu, Meng-Hsuen; Chein, Mei-Fang; Chang, Jo-Shu; Endo, Ginro; Huang, Chieh-Chen

    2009-01-30

    A specific mercuric ion binding protein (MerP) originating from transposon TnMERI1 of Bacillus megaterium strain MB1 isolated from Minamata Bay displayed good adsorption capability for a variety of heavy metals. In this study, the Gram-positive MerP protein was expressed in transgenic Arabidopsis to create a model system for phytoremediation of heavy metals. Under control of an actin promoter, the transgenic Arabidpsis showed higher tolerance and accumulation capacity for mercury, cadium and lead when compared with the control plant. Results from confocal microscopy analysis also indicate that MerP was localized at the cell membrane and vesicles of plant cells. The developed transgenic plants possessing excellent metal-accumulative ability could have potential applications in decontamination of heavy metals.

  18. SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator

    NASA Astrophysics Data System (ADS)

    Gardés, E.; Balanzat, E.; Ban-d'Etat, B.; Cassimi, A.; Durantel, F.; Grygiel, C.; Madi, T.; Monnet, I.; Ramillon, J.-M.; Ropars, F.; Lebius, H.

    2013-02-01

    We developed a new sub-nanosecond time-resolved instrument to study the dynamics of UV-visible luminescence under high stopping power heavy ion irradiation. We applied our instrument, called SPORT, on a fast plastic scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean electronic stopping power of 2.6 MeV/μm. As a consequence of increasing permanent radiation damages with increasing ion fluence, our investigations reveal a degradation of scintillation intensity together with, thanks to the time-resolved measurement, a decrease in the decay constant of the scintillator. This combination indicates that luminescence degradation processes by both dynamic and static quenching, the latter mechanism being predominant. Under such high density excitation, the scintillation deterioration of BC-400 is significantly enhanced compared to that observed in previous investigations, mainly performed using light ions. The observed non-linear behaviour implies that the dose at which luminescence starts deteriorating is not independent on particles' stopping power, thus illustrating that the radiation hardness of plastic scintillators can be strongly weakened under high excitation density in heavy ion environments.

  19. An artificial tongue fluorescent sensor array for identification and quantitation of various heavy metal ions.

    PubMed

    Xu, Wang; Ren, Changliang; Teoh, Chai Lean; Peng, Juanjuan; Gadre, Shubhankar Haribhau; Rhee, Hyun-Woo; Lee, Chi-Lik Ken; Chang, Young-Tae

    2014-09-02

    Herein, a small-molecule fluorescent sensor array for rapid identification of seven heavy metal ions was designed and synthesized, with its sensing mechanism mimicking that of a tongue. The photoinduced electron transfer and intramolecular charge transfer mechanism result in combinatorial interactions between sensor array and heavy metal ions, which lead to diversified fluorescence wavelength shifts and emission intensity changes. Upon principle component analysis (PCA), this result renders clear identification of each heavy metal ion on a 3D spatial dispersion graph. Further exploration provides a concentration-dependent pattern, allowing both qualitative and quantitative measurements of heavy metal ions. On the basis of this information, a "safe-zone" concept was proposed, which provides rapid exclusion of versatile hazardous species from clean water samples based on toxicity characteristic leaching procedure standards. This type of small-molecule fluorescent sensor array could open a new avenue for multiple heavy metal ion detection and simplified water quality analysis.

  20. Heavy-ion induced electronic desorption of gas from metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molvik, A W; Kollmus, H; Mahner, E

    During heavy ion operation in several particle accelerators world-wide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion induced gas desorption scales with the electronic energy loss (dE{sub e}/d/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  1. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy,and Related Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grisham, L. R.; Kwan, J. W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, andmore » with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tracy, Patrick J.; Kasper, Justin C.; Zurbuchen, Thomas H.

    Observations of velocity distribution functions from the Advanced Composition Explorer/Solar Wind Ion Composition Spectrometer heavy ion composition instrument are used to calculate ratios of kinetic temperature and Coulomb collisional interactions of an unprecedented 50 ion species in the solar wind. These ions cover a mass per charge range of 1–5.5 amu/e and were collected in the time range of 1998–2011. We report the first calculation of the Coulomb thermalization rate between each of the heavy ion (A > 4 amu) species present in the solar wind along with protons (H{sup +}) and alpha particles (He{sup 2+}). From these rates, wemore » find that protons are the dominant source of Coulomb collisional thermalization for heavy ions in the solar wind and use this fact to calculate a collisional age for those heavy ion populations. The heavy ion thermal properties are well organized by this collisional age, but we find that the temperature of all heavy ions does not simply approach that of protons as Coulomb collisions become more important. We show that He{sup 2+} and C{sup 6+} follow a monotonic decay toward equal temperatures with protons with increasing collisional age, but O{sup 6+} shows a noted deviation from this monotonic decay. Furthermore, we show that the deviation from monotonic decay for O{sup 6+} occurs in solar wind of all origins, as determined by its Fe/O ratio. The observed differences in heavy ion temperature behavior point toward a local heating mechanism that favors ions depending on their charge and mass.« less

  3. Effects of track structure and cell inactivation on the calculation of heavy ion mutation rates in mammalian cells

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.; Shavers, M. R.; Katz, R.

    1996-01-01

    It has long been suggested that inactivation severely effects the probability of mutation by heavy ions in mammalian cells. Heavy ions have observed cross sections of inactivation that approach and sometimes exceed the geometric size of the cell nucleus in mammalian cells. In the track structure model of Katz the inactivation cross section is found by summing an inactivation probability over all impact parameters from the ion to the sensitive sites within the cell nucleus. The inactivation probability is evaluated using the dose-response of the system to gamma-rays and the radial dose of the ions and may be equal to unity at small impact parameters for some ions. We show how the effects of inactivation may be taken into account in the evaluation of the mutation cross sections from heavy ions in the track structure model through correlation of sites for gene mutation and cell inactivation. The model is fit to available data for HPRT mutations in Chinese hamster cells and good agreement is found. The resulting calculations qualitatively show that mutation cross sections for heavy ions display minima at velocities where inactivation cross sections display maxima. Also, calculations show the high probability of mutation by relativistic heavy ions due to the radial extension of ions track from delta-rays in agreement with the microlesion concept. The effects of inactivation on mutations rates make it very unlikely that a single parameter such as LET or Z*2/beta(2) can be used to specify radiation quality for heavy ion bombardment.

  4. The heavy ions in space experiment

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Beahm, L. P.; Stiller, B.

    1985-01-01

    The Heavy Ions in Space (HIIS) experiment was developed and is currently in orbit onboard the long duration facility (LDEF). The HIIS will record relativistic cosmic ray nuclei heavier than magnesium and stopping nuclei down to helium. The experiment uses plastic track detectors that have a charge resolution of 0.15 charge units at krypton and 0.10 charge units, or better, for nuclei lighter than cobalt. The HIIS has a collecting power of 2 square meter steradians and it has already collected more than a year's data.

  5. Mass spectra of heavy ions near comet Halley

    NASA Astrophysics Data System (ADS)

    Korth, A.; Richter, A. K.; Loidl, A.; Anderson, K. A.; Carlson, C. W.; Curtis, D. W.; Lin, R. P.; Reme, H.; Sauvaud, J. A.; D'Uston, C.; Cotin, F.; Cros, A.; Mendis, D. A.

    1986-05-01

    The heavy-ion analyser aboard the Giotto spacecraft, detected the first cometary ions at a distance of ≡1.05x106km from the nucleus of comet Halley. In the inner coma the major ions identified are associated with the H2O, CO and CO2 groups. Ions of larger atomic mass unit are also present, corresponding possibly to various hydrocarbons, heavy metals of the iron-group or to sulphur compounds.

  6. Mass spectra of heavy ions near comet Halley

    NASA Technical Reports Server (NTRS)

    Korth, A.; Richter, A. K.; Loidl, A.; Anderson, K. A.; Carlson, C. W.

    1986-01-01

    The heavy-ion analyzer, RPA2-PICCA, aboard the Giotto spacecraft, detected the first cometary ions at a distance of about 1.05 million km from the nucleus of comet Halley. In the inner coma the major ions identified are associated with the H2O, CO and CO2 groups. Ions of larger atomic mass unit are also present, corresponding possibly to various hydrocarbons, heavy metals of the iron-group or to sulphur compounds.

  7. Results of heavy ion radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, J.R.

    1994-04-01

    The potential of heavy ion therapy for clinical use in cancer therapy stems from the biological parameters of heavy charged particles, and their precise dose localization. Biologically, carbon, neon and other heavy ion beams (up to about silicon) are clinically useful in overcoming the radioresistance of hypoxic tumors, thus increasing biological effectiveness relative to low-LET x-ray or electron beams. Cells irradiated by heavy ions show less variation in cell-cycle related radiosensitivity and decreased repair of radiation injury. The physical parameters of these heavy charged particles allow precise delivery of high radiation doses to tumors while minimizing irradiation of normal tissues.more » Clinical use requires close interaction between radiation oncologists, medical physicists, accelerator physicists, engineers, computer scientists and radiation biologists.« less

  8. Simultaneous spectrophotometric determination of trace copper, nickel, and cobalt ions in water samples using solid phase extraction coupled with partial least squares approaches

    NASA Astrophysics Data System (ADS)

    Guo, Yugao; Zhao, He; Han, Yelin; Liu, Xia; Guan, Shan; Zhang, Qingyin; Bian, Xihui

    2017-02-01

    A simultaneous spectrophotometric determination method for trace heavy metal ions based on solid-phase extraction coupled with partial least squares approaches was developed. In the proposed method, trace metal ions in aqueous samples were adsorbed by cation exchange fibers and desorbed by acidic solution from the fibers. After the ion preconcentration process, the enriched solution was detected by ultraviolet and visible spectrophotometer (UV-Vis). Then, the concentration of heavy metal ions were quantified by analyzing ultraviolet and visible spectrum with the help of partial least squares (PLS) approaches. Under the optimal conditions of operation time, flow rate and detection parameters, the overlapped absorption peaks of mixed ions were obtained. The experimental data showed that the concentration, which can be calculated through chemometrics method, of each metal ion increased significantly. The heavy metal ions can be enriched more than 80-fold. The limits of detection (LOD) for the target analytes of copper ions (Cu2 +), cobalt ions (Co2 +) and nickel ions (Ni2 +) mixture was 0.10 μg L- 1, 0.15 μg L- 1 and 0.13 μg L- 1, respectively. The relative standard deviations (RSD) were less than 5%. The performance of the solid-phase extraction can enrich the ions efficiently and the combined method of spectrophotometric detection and PLS can evaluate the ions concentration accurately. The work proposed here is an interesting and promising attempt for the trace ions determination in water samples and will have much more applied field.

  9. Simultaneous spectrophotometric determination of trace copper, nickel, and cobalt ions in water samples using solid phase extraction coupled with partial least squares approaches.

    PubMed

    Guo, Yugao; Zhao, He; Han, Yelin; Liu, Xia; Guan, Shan; Zhang, Qingyin; Bian, Xihui

    2017-02-15

    A simultaneous spectrophotometric determination method for trace heavy metal ions based on solid-phase extraction coupled with partial least squares approaches was developed. In the proposed method, trace metal ions in aqueous samples were adsorbed by cation exchange fibers and desorbed by acidic solution from the fibers. After the ion preconcentration process, the enriched solution was detected by ultraviolet and visible spectrophotometer (UV-Vis). Then, the concentration of heavy metal ions were quantified by analyzing ultraviolet and visible spectrum with the help of partial least squares (PLS) approaches. Under the optimal conditions of operation time, flow rate and detection parameters, the overlapped absorption peaks of mixed ions were obtained. The experimental data showed that the concentration, which can be calculated through chemometrics method, of each metal ion increased significantly. The heavy metal ions can be enriched more than 80-fold. The limits of detection (LOD) for the target analytes of copper ions (Cu 2+ ), cobalt ions (Co 2+ ) and nickel ions (Ni 2+ ) mixture was 0.10μgL -1 , 0.15μgL -1 and 0.13μgL -1 , respectively. The relative standard deviations (RSD) were less than 5%. The performance of the solid-phase extraction can enrich the ions efficiently and the combined method of spectrophotometric detection and PLS can evaluate the ions concentration accurately. The work proposed here is an interesting and promising attempt for the trace ions determination in water samples and will have much more applied field. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Heavy and light hadron production and D-hadron correlation in relativistic heavy-ion collisions

    DOE PAGES

    Cao, Shanshan; Luo, Tan; He, Yayun; ...

    2017-09-25

    We establish a linear Boltzmann transport (LBT) model coupled to hydrodynamical background to study hard parton evolution in heavy-ion collisions. Both elastic and inelastic scatterings are included in our calculations; and heavy and light flavor partons are treated on the same footing. Within this LBT model, we provide good descriptions of heavy and light hadron suppression and anisotropic flow in heavy-ion collisions. Angular correlation functions between heavy and light flavor hadrons are studied for the first time and shown able to quantify not only the amount of heavy quark energy loss, but also how the parton energy is re-distributed inmore » parton showers.« less

  11. Heavy and light hadron production and D-hadron correlation in relativistic heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Shanshan; Luo, Tan; He, Yayun

    We establish a linear Boltzmann transport (LBT) model coupled to hydrodynamical background to study hard parton evolution in heavy-ion collisions. Both elastic and inelastic scatterings are included in our calculations; and heavy and light flavor partons are treated on the same footing. Within this LBT model, we provide good descriptions of heavy and light hadron suppression and anisotropic flow in heavy-ion collisions. Angular correlation functions between heavy and light flavor hadrons are studied for the first time and shown able to quantify not only the amount of heavy quark energy loss, but also how the parton energy is re-distributed inmore » parton showers.« less

  12. Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacon-Golcher, Edwin

    This dissertation develops diverse research on small (diameter ~ few mm), high current density (J ~ several tens of mA/cm 2) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield () at different operating conditions are presented for K + and Cs + contact ionization sources and potassium aluminum silicate sources. Maximum valuesmore » for a K + beam of ~90 mA/cm 2 were observed in 2.3 μs pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times (~ 1 μs), high current densities (~ 100 mA/cm +) and low operating pressures (< 2 mtorr) were verified. For the latter, high but acceptable levels of beam emittance were measured (ε n ≤ 0.006 π· mm · mrad) although measured currents differed from the desired ones (I ~ 5mA) by about a factor of 10.« less

  13. Failla Memorial lecture. The future of heavy-ion science in biology and medicine.

    PubMed

    Tobias, C A

    1985-07-01

    Interplanetary space contains fluxes of fast moving atomic nuclei. The distribution of these reflects the atomic composition of the universe, and such particles may pose limitations for space flight and for life in space. Over the past 50 years, since the invention of Ernest Lawrence's cyclotron, advances in accelerator technology have permitted the acceleration of charged nuclei to very high velocities. Currently, beams of any stable isotope species up to uranium are available at kinetic energies of several hundred MeV/nucleon at the Berkeley Bevalac. Recently, new areas of particle physics research relating to the mechanisms of spallation and fission have opened up for investigation, and it is now realistic to search for nuclear super-dense states that might be produced in heavy nuclear collisions. The heavy ions hold interest for a broad spectrum of research because of their effectiveness in producing a series of major lesions in DNA along single particle tracks and because of the Bragg depth ionization properties that allow the precise deposition of highly localized doses deep in the human body. Individual heavy ions can also interrupt the continuity of membraneous regions in cells. Heavy ions, when compared to low-LET radiation, have increased effectiveness for mammalian cell lethality, chromosome mutations, and cell transformation. The molecular mechanisms are not completely understood but appear to involve fragmentation and reintegration of DNA. Cells attempt to repair these lesions, and many of the deleterious effects are due to misrepair or misrejoining of DNA. Heavy ions do not require the presence of oxygen for producing their effects, and hypoxic cells in necrotic regions have nearly the same sensitivity as cells in well-oxygenated tissues. Heavy ions are effective in delaying or blocking the cell division process. Heavy ions are also strong enhancers of viral-induced cell transformation, a process that requires integration of foreign DNA. Some cell lines, known to be radioresistant to X rays, have exhibited greater sensitivity to heavy ions. These radiobiological properties, combined with the ability to deliver highly localized internal doses, make accelerated heavy ions potentially important radiotherapeutic tools. Other novel approaches include the utilization of radioactive heavy beams as instant tracers. Heavy-ion radiography and microscopy respond to delicate changes in tissue electron density. Dose localization with helium ions has achieved excellent results for pituitary tumors, tumors adjacent to the spinal cord, and ocular melanomas. We are working on adapting silicon- and neon-ion beams for controlled therapy studies.(ABSTRACT TRUNCATED AT 400 WORDS)

  14. Intense Pulsed Heavy Ion Beam Technology

    NASA Astrophysics Data System (ADS)

    Masugata, Katsumi; Ito, Hiroaki

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm2 was obtained. The beam consists of aluminum ions (Al(1-3)+) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89 %. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were succesively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm2 was observed in the cathode, which suggests the bipolar pulse acceleration.

  15. Lateral charge transport from heavy-ion tracks in integrated circuit chips

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.; Schwartz, H. R.; Nevill, L. R.

    1988-01-01

    A 256K DRAM has been used to study the lateral transport of charge (electron-hole pairs) induced by direct ionization from heavy-ion tracks in an IC. The qualitative charge transport has been simulated using a two-dimensional numerical code in cylindrical coordinates. The experimental bit-map data clearly show the manifestation of lateral charge transport in the creation of adjacent multiple-bit errors from a single heavy-ion track. The heavy-ion data further demonstrate the occurrence of multiple-bit errors from single ion tracks with sufficient stopping power. The qualitative numerical simulation results suggest that electric-field-funnel-aided (drift) collection accounts for single error generated by an ion passing through a charge-collecting junction, while multiple errors from a single ion track are due to lateral diffusion of ion-generated charge.

  16. Thermodynamics of binding interactions between extracellular polymeric substances and heavy metals by isothermal titration microcalorimetry.

    PubMed

    Yan, Peng; Xia, Jia-Shuai; Chen, You-Peng; Liu, Zhi-Ping; Guo, Jin-Song; Shen, Yu; Zhang, Cheng-Cheng; Wang, Jing

    2017-05-01

    Extracellular polymeric substances (EPS) play a crucial role in heavy metal bio-adsorption using activated sludge, but the interaction mechanism between heavy metals and EPS remains unclear. Isothermal titration calorimetry was employed to illuminate the mechanism in this study. The results indicate that binding between heavy metals and EPS is spontaneous and driven mainly by enthalpy change. Extracellular proteins in EPS are major participants in the binding process. Environmental conditions have significant impact on the adsorption performance. Divalent and trivalent cations severely impeded the binding of heavy metal ions to EPS. Electrostatic interaction mainly attributed to competition between divalent cations and heavy metal ions; trivalent cations directly competed with heavy metal ions for EPS binding sites. Trivalent cations were more competitive than divalent cations for heavy metal ion binding because they formed complexing bonds. This study facilitates a better understanding about the interaction between heavy metals and EPS in wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Development of a robotic patient positioning system with a wide beam-angle range for fixed-beam particle therapy

    NASA Astrophysics Data System (ADS)

    Choi, Hongseok; Park, Jong-Oh; Ko, Seong Young; Park, Sukho; Cho, Sungho; Jung, Won-Gyun; Park, Yong Kyun; Kang, Jung Suk

    2016-10-01

    This paper describes a robotic patient positioning system (PPS) for a fixed-beam heavy-ion therapy system. In order to extend the limited irradiation angle range of the fixed beam, we developed a 6-degree-of-freedom (6-DOF) serial-link robotic arm and used it as the robotic PPS for the fixed-beam heavy-ion therapy system. This research aims to develop a robotic PPS for use in the Korea Heavy Ion Medical Accelerator (KHIMA) system, which is under development at the Korea Institute of Radiological & Medical Sciences (KIRAMS). In particular, we select constraints and criteria that will be used for designing and evaluating the robotic PPS through full consultation with KIRAMS. In accordance with the constraints and criteria, we develop a 6-DOF serial-link robotic arm that consists of six revolute joints for the robotic PPS, where the robotic arm covers the upper body of a patient as a treatment area and achieves a 15 ° roll and pitch angle in the treatment area without any collision. Various preliminary experiments confirm that the robotic PPS can meet all criteria for extension of the limited irradiation angle range in the treatment area and has a positioning repeatability of 0.275 mm.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitagawa, A.; Fujita, T.; Goto, A.

    The National Institute of Radiological Sciences (NIRS) maintains various ion accelerators in order to study the effects of radiation of the human body and medical uses of radiation. Two electrostatic tandem accelerators and three cyclotrons delivered by commercial companies have offered various life science tools; these include proton-induced x-ray emission analysis (PIXE), micro beam irradiation, neutron exposure, and radioisotope tracers and probes. A duoplasmatron, a multicusp ion source, a penning ion source (PIG), and an electron cyclotron resonance ion source (ECRIS) are in operation for these purposes. The Heavy-Ion Medical Accelerator in Chiba (HIMAC) is an accelerator complex for heavy-ionmore » radiotherapy, fully developed by NIRS. HIMAC is utilized not only for daily treatment with the carbon beam but also for fundamental experiments. Several ECRISs and a PIG at HIMAC satisfy various research and clinical requirements.« less

  19. NSAC Recommends a Relativistic Heavy-Ion Collider.

    ERIC Educational Resources Information Center

    Physics Today, 1984

    1984-01-01

    Describes the plan submitted by the Nuclear Science Advisory Committee to the Department of Energy and National Science Foundation urging construction of an ultrarelativistic heavy-ion collider designed to accelerate nucleon beams of ions as heavy as uranium. Discusses the process of selecting the type of facility as well as siting. (JM)

  20. Experiments on the interaction of heavy ions with dense plasma at GSI-Darmstadt

    NASA Astrophysics Data System (ADS)

    Stöckl, C.; Boine-Frankenheim, O.; Geißel, M.; Roth, M.; Wetzler, H.; Seelig, W.; Iwase, O.; Spiller, P.; Bock, R.; Süß, W.; Hoffmann, D. H. H.

    One of the main objectives of the experimental plasma physics activities at the Gesellschaft für Schwerionenforschung (GSI) are the interaction processes of heavy ions with dense ionized matter. Gas-discharge plasma targets were used for energy loss and charge state measurements in a regime of electron density and temperature up to 10 19 cm -3 and 20 eV, respectively. An improved model of the charge exchange processes in fully ionized hydrogen plasma, taking into account multiple excited electronic configurations which subsequently ionize, has removed the discrepancies of previous theoretical descriptions. The energy loss of the ion beam in partially ionized plasmas such as argon was found to agree very well with our simple theoretical model based on the modified Bethe-Bloch theory. A new setup with a 100 J/5 GW Nd-glass laser now provides access to density ranges up to 10 21 cm -3 and temperatures of up to 100 eV. First results of interaction experiments with laser-produced plasma are presented. To fully exploit the experimental possibilities of the new laser-plasma setup both improved charge state detection systems and better plasma diagnostics are indispensable. Present developments and future possibilities in these fields are presented. This paper summarizes the following contributions: Interaction of heavy-ion beams with laser plasma by C. Stöckl et al. Energy Loss of Heavy Ions in a laser-produced plasma by M. Roth et al. Charge state measurements of heavy ions passing a laser produced plasma with high time resolution by W. Süß et al. Plasma diagnostics for laser-produced plasma by O. Iwase et al. Future possibilities of plasma diagnostics at GSI by M. Geißel et al.

  1. Velocity fluctuations of a heavy particle interacting with a hot and cold gas: Applications to molecular ion traps

    NASA Astrophysics Data System (ADS)

    Vaca, Christian; Bruinsma, Robijn; Levine, Alex J.

    2014-03-01

    Understanding the stochastic motion of a heavy particle in a gas of lighter ones is a classic problem in statistical mechanics. Alkemade, MacDonald, and Van Kampen (AMvK) analyzed this problem in one dimension, computing the velocity distribution function of the heavy particle in a perturbation expansion using the ratio of mass of the light to the heavy particle as a small parameter. Novel tests of this theory are now being provided by modern molecular ion traps [arXiv:1310.5190]. In such experiments, the heavy molecular ion interacts with a cold gas used for sympathetic cooling and low density hot gasses that leak into the system. Thus, the heavy ion is maintained in a complex nonequilibrium state due to its interactions with the hot and cold gasses. In this talk, we present an extension of the AMvK model appropriate to these experiments. Using new analytic and computational techniques, we explore the time-dependent velocity distribution function of the molecular ion interacting with the gasses including higher order perturbative corrections necessary to discuss the case in which the ion's mass is not significantly larger than that of the other two species. Using this analysis we address the experimental observation of non-Gaussian velocity distributions of the heavy ions.

  2. Apoptosis and injuries of heavy ion beam and x-ray radiation on malignant melanoma cell.

    PubMed

    Qin, Jin; Li, Sha; Zhang, Chao; Gao, Dong-Wei; Li, Qiang; Zhang, Hong; Jin, Xiao-Dong; Liu, Yang

    2017-05-01

    This study aims to investigate the influence of high linear energy transfer (LET) heavy ion ( 12 C 6+ ) and low LET X-ray radiation on apoptosis and related proteins of malignant melanoma on tumor-bearing mice under the same physical dosage. C57BL/6 J mice were burdened by tumors and randomized into three groups. These mice received heavy ion ( 12 C 6+ ) and X-ray radiation under the same physical dosage, respectively; their weight and tumor volumes were measured every three days post-radiation. After 30 days, these mice were sacrificed. Then, median survival time was calculated and tumors on mice were proliferated. In addition, immunohistochemistry was carried out for apoptosis-related proteins to reflect the expression level. After tumor-bearing mice were radiated to heavy ion, median survival time improved and tumor volume significantly decreased in conjunction with the upregulated expression of pro-apoptosis factors, Bax and cytochrome C, and the downregulated expression of apoptosis-profilin (Bcl-2, Survivin) and proliferation-related proteins (proliferating cell nuclear antigen). The results indicated that radiation can promote the apoptosis of malignant melanoma cells and inhibit their proliferation. This case was more suitable for heavy ion ( 12 C 6+ ). High LET heavy ion ( 12 C 6+ ) radiation could significantly improve the killing ability for malignant melanoma cells by inducing apoptosis in tumor cells and inhibiting their proliferation. These results demonstrated that heavy ion ( 12 C 6+ ) presented special advantages in terms of treating malignant melanoma. Impact statement Malignant melanoma is a malignant skin tumor derived from melanin cells, which has a high malignant degree and high fatality rate. In this study, proliferating cell nuclear antigen (PCNA) can induce the apoptosis of malignant melanoma cells and inhibit its proliferation, and its induction effect on apoptosis is significantly higher than low LET X-ray; hence, it is expected to overcome its lower sensitivity to radiation. This study can provide theoretical basis for clinical trials, in which malignant melanoma is treated by heavy ion ( 12 C 6+ ), in order to accurately determine the clinical efficacy of heavy ion therapy. Clinical applications has revealed that local tumor control rate is high when heavy ion is used to treat malignant melanoma, indicating that heavy ion is an important direction in treating melanoma in the future.

  3. Cosmic heavy ion tracks in mesoscopic biological test objects

    NASA Technical Reports Server (NTRS)

    Facius, R.

    1994-01-01

    Since more than 20 years ago, when the National Academy of Sciences and the National Research Council of the U.S.A. released their report on 'HZE particle effects in manned spaced flight', it has been emphasized how difficult - if not even impossible - it is to assess their radiobiological impact on man from conventional studies where biological test organisms are stochastically exposed to 'large' fluences of heavy ions. An alternative, competing approach had been realized in the BIOSTACK experiments, where the effects of single cosmic as well as accelerator - heavy ions on individual biological test organisms could be investigated. Although presented from the beginning as the preferable approach for terrestrial investigations with accelerator heavy ions too ('The BIOSTACK as an approach to high LET radiation research'), only recently this insight is gaining more widespread recognition. In space flight experiments, additional constraints imposed by the infrastructure of the vehicle or satellite further impede such investigations. Restrictions concern the physical detector systems needed for the registration of the cosmic heavy ions' trajectories as well as the biological systems eligible as test organisms. Such optimized procedures and techniques were developed for the investigations on chromosome aberrations induced by cosmic heavy ions in cells of the stem meristem of lettuce seeds (Lactuca sativa) and for the investigation of the radiobiological response of Wolffia arriza, which is the smallest flowering (water) plant. The biological effects were studied by the coworkers of the Russian Institute of Biomedical Problems (IBMP) which in cooperation with the European Space Agency ESA organized the exposure in the Biosatellites of the Cosmos series. Since biological investigations and physical measurements of particle tracks had to be performed in laboratories widely separated, the preferred fixed contact between biological test objects and the particle detectors until the geometrical correlation between tracks and organisms has been established could not be maintained. This gave rise to half a dozen of coordinate systems for different measurements which finally had to be related to a single stack reference system.

  4. Overview of Heavy Ion Fusion Accelerator Research in the U. S.

    NASA Astrophysics Data System (ADS)

    Friedman, Alex

    2002-12-01

    This article provides an overview of current U.S. research on accelerators for Heavy Ion Fusion, that is, inertial fusion driven by intense beams of heavy ions with the goal of energy production. The concept, beam requirements, approach, and major issues are introduced. An overview of a number of new experiments is presented. These include: the High Current Experiment now underway at Lawrence Berkeley National Laboratory; studies of advanced injectors (and in particular an approach based on the merging of multiple beamlets), being investigated experimentally at Lawrence Livermore National Laboratory); the Neutralized (chamber) Transport Experiment being assembled at Lawrence Berkeley National Laboratory; and smaller experiments at the University of Maryland and at Princeton Plasma Physics Laboratory. The comprehensive program of beam simulations and theory is outlined. Finally, prospects and plans for further development of this promising approach to fusion energy are discussed.

  5. Particle identification using digital pulse shape discrimination in a nTD silicon detector with a 1 GHz sampling digitizer

    NASA Astrophysics Data System (ADS)

    Mahata, K.; Shrivastava, A.; Gore, J. A.; Pandit, S. K.; Parkar, V. V.; Ramachandran, K.; Kumar, A.; Gupta, S.; Patale, P.

    2018-06-01

    In beam test experiments have been carried out for particle identification using digital pulse shape analysis in a 500 μm thick Neutron Transmutation Doped (nTD) silicon detector with an indigenously developed FPGA based 12 bit resolution, 1 GHz sampling digitizer. The nTD Si detector was used in a low-field injection setup to detect light heavy-ions produced in reactions of ∼ 5 MeV/A 7Li and 12C beams on different targets. Pulse height, rise time and current maximum have been obtained from the digitized charge output of a high bandwidth charge and current sensitive pre-amplifier. Good isotopic separation have been achieved using only the digitized charge output in case of light heavy-ions. The setup can be used for charged particle spectroscopy in nuclear reactions involving light heavy-ions around the Coulomb barrier energies.

  6. Overview of Particle and Heavy Ion Transport Code System PHITS

    NASA Astrophysics Data System (ADS)

    Sato, Tatsuhiko; Niita, Koji; Matsuda, Norihiro; Hashimoto, Shintaro; Iwamoto, Yosuke; Furuta, Takuya; Noda, Shusaku; Ogawa, Tatsuhiko; Iwase, Hiroshi; Nakashima, Hiroshi; Fukahori, Tokio; Okumura, Keisuke; Kai, Tetsuya; Chiba, Satoshi; Sihver, Lembit

    2014-06-01

    A general purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS, is being developed through the collaboration of several institutes in Japan and Europe. The Japan Atomic Energy Agency is responsible for managing the entire project. PHITS can deal with the transport of nearly all particles, including neutrons, protons, heavy ions, photons, and electrons, over wide energy ranges using various nuclear reaction models and data libraries. It is written in Fortran language and can be executed on almost all computers. All components of PHITS such as its source, executable and data-library files are assembled in one package and then distributed to many countries via the Research organization for Information Science and Technology, the Data Bank of the Organization for Economic Co-operation and Development's Nuclear Energy Agency, and the Radiation Safety Information Computational Center. More than 1,000 researchers have been registered as PHITS users, and they apply the code to various research and development fields such as nuclear technology, accelerator design, medical physics, and cosmic-ray research. This paper briefly summarizes the physics models implemented in PHITS, and introduces some important functions useful for specific applications, such as an event generator mode and beam transport functions.

  7. Heavy Ion Current Transients in SiGe HBTs

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Reed, Robert A.; Vizkelethy, Gyorgy; McMorrow, Dale; Ferlet-Cavrois, Veronique; Baggio, Jacques; Paillet, Philipe; Duhanel, Olivier; Phillips, Stanley D.; Sutton, Akil K.; hide

    2009-01-01

    Time-resolved ion beam induced charge reveals heavy ion response of IBM 5AM SiGe HBT: a) Position correlation[ b) Unique response for different bias schemes; c) Similarities to TPA pulsed-laser data. Heavy ion broad-beam transients provide more realistic device response: a) Feedback using microbeam data; b) Overcome issues of LET and ion range with microbeam. Both micro- and broad-beam data sets yield valuable input for TCAD simulations. Uncover detailed mechanisms for SiGe HBTs and other devices fabricated on lightly-doped substrates.

  8. DNA damage and repair in oncogenic transformation by heavy ion radiation

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Mei, M.; George, K. A.; Craise, L. M.

    1996-01-01

    Energetic heavy ions are present in galactic cosmic rays and solar particle events. One of the most important late effects in risk assessment is carcinogenesis. We have studied the carcinogenic effects of heavy ions at the cellular and molecular levels and have obtained quantitative data on dose-response curves and on the repair of oncogenic lesions for heavy particles with various charges and energies. Studies with repair inhibitors and restriction endonucleases indicated that for oncogenic transformation DNA is the primary target. Results from heavy ion experiments showed that the cross section increased with LET and reached a maximum value of about 0.02 micrometer2 at about 500 keV/micrometer. This limited size of cross section suggests that only a fraction of cellular genomic DNA is important in radiogenic transformation. Free radical scavengers, such as DMSO, do not give any effect on induction of oncogenic transformation by 600 MeV/u iron particles, suggesting most oncogenic damage induced by high-LET heavy ions is through direct action. Repair studies with stationary phase cells showed that the amount of reparable oncogenic lesions decreased with an increase of LET and that heavy ions with LET greater than 200 keV/micrometer produced only irreparable oncogenic damage. An enhancement effect for oncogenic transformation was observed in cells irradiated by low-dose-rate argon ions (400 MeV/u; 120 keV/micrometer). Chromosomal aberrations, such as translocation and deletion, but not sister chromatid exchange, are essential for heavy-ion-induced oncogenic transformation. The basic mechanism(s) of misrepair of DNA damage, which form oncogenic lesions, is unknown.

  9. It's All Relative: A Validation of Radiation Quality Comparison Metrics

    NASA Technical Reports Server (NTRS)

    Chappell, L. J.; Milder, C. M.; Elgart, S. R.; Semones, E. J.

    2017-01-01

    Historically, the relative biological effectiveness (RBE) has been calculated to quantify the difference between heavy ion and gamma ray radiation. The RBE is then applied to gamma ray data to predict the effects of heavy ions in humans. The RBE is an iso-effect dose-to-dose ratio which, due to its counterintuitive nature, has been commonly miscalculated as an iso-dose effect-to-effect ratio. A paper recently published by Shuryak et al described this second measure intentionally for the first time in 2017, referring to it as the radiation effects ratio (RER). In this study, we utilized simulations to test the ability of both the RBE and the RER to predict known heavy ion effects. RBEs and RERs were calculated using mouse data from Chang et al, and the ability of the RBE and RER to predict the heavy ion data from which they were calculated was verified. Statistical transformations often utilized during data analysis were applied to the gamma and heavy ion data to determine whether RBE and RER are each uniquely defined measures. Scale changes are expected when translating effects from mice to humans and between human populations; gamma and heavy ion data were transformed to represent potential scale changes. The ability of the RBE and RER to predict the transformed heavy ion data from the transformed gamma data was then tested. The RBE but not the RER was uniquely defined after all statistical transformations. The RBE correctly predicted the scale-transformed heavy ion data, while the RER did not. This presentation describes potential implications for both metrics in light of these findings.

  10. Processing of ammonia-containing ices by heavy ions and its relevance to outer Solar System surfaces

    NASA Astrophysics Data System (ADS)

    Pilling, Sergio; Seperuelo Duarte, Eduardo; da Silveira, Enio F.; Domaracka, Alicja; Balanzat, Emmanuel; Rothard, Hermann; Boduch, Philippe

    Ammonia-containing ices have been detected or postulated as important components of the icy surfaces of planetary satellites (e.g. Enceladus, Miranda), in the outer Solar System objects (e.g. Charon, Quaoar) and in Oort cloud comets. We present experimental studies of the interaction of heavy, highly-charged, and energetic ions with ammonia-containing ices (pure NH3 ; NH3 :CO; NH3 :H2 O and NH3 :H2 O:CO) in an attempt to simulate the physical chemistry induced by heavy-ion cosmic rays and heavy-ion solar wind particles at outer Solar System surfaces. The measurements were performed inside a high vacuum chamber at the heavy-ion accelerator GANIL (Grand Accelerateur National d'Ions Lourds) in Caen, France. The gas samples were deposited onto a polished CsI substrate previously cooled to 13 K. In-situ analysis was performed by a Fourier transform infrared spectrometer (FTIR) at different ion fluences. The dissociation cross-section and sputtering yield of ammonia and other ice compounds have been determined. Half-life of frozen ammonia due to heavy ion bombardment at different Solar System surfaces has been estimated. Radiolysis products have been identified and their implications for the chemistry on outer Solar System surfaces are discussed.

  11. Mercury heavy-metal-induced physiochemical changes and genotoxic alterations in water hyacinths [Eichhornia crassipes (Mart.)].

    PubMed

    Malar, Srinivasan; Sahi, Shivendra Vikram; Favas, Paulo J C; Venkatachalam, Perumal

    2015-03-01

    Mercury heavy metal pollution has become an important environmental problem worldwide. Accumulation of mercury ions by plants may disrupt many cellular functions and block normal growth and development. To assess mercury heavy metal toxicity, we performed an experiment focusing on the responses of Eichhornia crassipes to mercury-induced oxidative stress. E. crassipes seedlings were exposed to varying concentrations of mercury to investigate the level of mercury ions accumulation, changes in growth patterns, antioxidant defense mechanisms, and DNA damage under hydroponics system. Results showed that plant growth rate was significantly inhibited (52 %) at 50 mg/L treatment. Accumulation of mercury ion level were 1.99 mg/g dry weight, 1.74 mg/g dry weight, and 1.39 mg/g dry weight in root, leaf, and petiole tissues, respectively. There was a decreasing trend for chlorophyll a, b, and carotenoids with increasing the concentration of mercury ions. Both the ascorbate peroxidase and malondialdehyde contents showed increased trend in leaves and roots up to 30 mg/L mercury treatment and slightly decreased at the higher concentrations. There was a positive correlation between heavy metal dose and superoxide dismutase, catalase, and peroxidase antioxidative enzyme activities which could be used as biomarkers to monitor pollution in E. crassipes. Due to heavy metal stress, some of the normal DNA bands were disappeared and additional bands were amplified compared to the control in the random amplified polymorphic DNA (RAPD) profile. Random amplified polymorphic DNA results indicated that genomic template stability was significantly affected by mercury heavy metal treatment. We concluded that DNA changes determined by random amplified polymorphic DNA assay evolved a useful molecular marker for detection of genotoxic effects of mercury heavy metal contamination in plant species.

  12. Effects of heavy ions on electron temperatures in the solar corona and solar wind

    NASA Technical Reports Server (NTRS)

    Nakada, M. P.

    1972-01-01

    The effects of the reduction in the thermal conductivity due to heavy ions on electron temperatures in the solar corona and solar wind are examined. Large enhancements of heavy ions in the corona appear to be necessary to give appreciable changes in the thermal gradient of the electrons.

  13. Heavy ion therapy: Bevalac epoch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, J.R.

    1993-10-01

    An overview of heavy ion therapy at the Bevelac complex (SuperHILac linear accelerator + Bevatron) is given. Treatment planning, clinical results with helium ions on the skull base and uveal melanoma, clinical results with high-LET charged particles, neon radiotherapy of prostate cancer, heavy charged particle irradiation for unfavorable soft tissue sarcoma, preliminary results in heavy charged particle irradiation of bone sarcoma, and irradiation of bile duct carcinoma with charged particles and-or photons are all covered. (GHH)

  14. Nuclear Physics Laboratory 1979 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adelberger, E.G.

    1979-07-01

    Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure, radiative capture, medium energy physics, heavy ion reactions, research by users and visitors, accelerator and ion source development, instrumentation and experimental techniques, and computers and computing. Publications are listed. (WHK)

  15. Nuclear spectroscopic studies. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.

    1994-02-18

    The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research).

  16. Physicochemical characterisation of natural K-clinoptilolite and heavy-metal forms from Gördes (Manisa, western Turkey)

    NASA Astrophysics Data System (ADS)

    Ünaldı, Tevfik; Mızrak, İbrahim; Kadir, Selahattin

    2013-12-01

    Physicochemical characterisation of natural K-clinoptilolite and heavy-metal (Ag+, Cd2+, Cr3+ and Co3+) forms was accomplished through ion exchange by batch, X-ray diffractometric (XRD), X-ray fluorescence (XRF), infrared-spectral (FT-IR), differential thermal analysis-thermal gravimetric (DTA-TG) and scanning-electron microscopic (SEM) methods. Increasing the normality in the cases of heavy-metal forms resulted in decrease in crystallinity and increases in unit-cell volume, rate of ion exchange, and percentage of ion selectivity. In this study, the order of ion-selectivity percentages (rather than ion selectivity) of heavy-metal forms was determined to be Ag+ > Cd2+ > Cr3+ > Co3+. This finding is consistent with the results of worldwide research on the order of ion selectivity in modified clinoptilolite.

  17. MICROFABRICATED ELECTROCHEMICAL ANALYSIS SYSTEM FOR HEAVY METAL DETECTION. (R825511C047)

    EPA Science Inventory

    A low power, hand-held system has been developed for the measurement of heavy metal ions in aqueous solutions. The system consists of an electrode array sensor, a high performance single chip potentiostat and a microcontroller circuit. The sensor is a microfabricated array of ...

  18. Analysis of Heavy Ion Irradiation Induced Thermal Damage in SiC Schottky Diodes

    NASA Astrophysics Data System (ADS)

    Abbate, C.; Busatto, G.; Cova, P.; Delmonte, N.; Giuliani, F.; Iannuzzo, F.; Sanseverino, A.; Velardi, F.

    2015-02-01

    A study is presented aimed at describing phenomena involved in Single Event Burnout induced by heavy ion irradiation in SiC Schottky diodes. On the basis of experimental data obtained for 79Br irradiation at different energies, electro-thermal FEM is used to demonstrate that the failure is caused by a strong local increase of the semiconductor temperature. With respect to previous studies the temperature dependent thermal material properties were added. The critical ion energy calculated by this model is in agreement with literature experimental results. The substrate doping dependence of the SEE robustness was analyzed, proving the effectiveness of the developed model for device technological improvements.

  19. Recent Improvements of Particle and Heavy Ion Transport code System: PHITS

    NASA Astrophysics Data System (ADS)

    Sato, Tatsuhiko; Niita, Koji; Iwamoto, Yosuke; Hashimoto, Shintaro; Ogawa, Tatsuhiko; Furuta, Takuya; Abe, Shin-ichiro; Kai, Takeshi; Matsuda, Norihiro; Okumura, Keisuke; Kai, Tetsuya; Iwase, Hiroshi; Sihver, Lembit

    2017-09-01

    The Particle and Heavy Ion Transport code System, PHITS, has been developed under the collaboration of several research institutes in Japan and Europe. This system can simulate the transport of most particles with energy levels up to 1 TeV (per nucleon for ion) using different nuclear reaction models and data libraries. More than 2,500 registered researchers and technicians have used this system for various applications such as accelerator design, radiation shielding and protection, medical physics, and space- and geo-sciences. This paper summarizes the physics models and functions recently implemented in PHITS, between versions 2.52 and 2.88, especially those related to source generation useful for simulating brachytherapy and internal exposures of radioisotopes.

  20. Overview of theory and simulations in the Heavy Ion Fusion Science Virtual National Laboratory

    NASA Astrophysics Data System (ADS)

    Friedman, Alex

    2007-07-01

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is a collaboration of Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. These laboratories, in cooperation with researchers at other institutions, are carrying out a coordinated effort to apply intense ion beams as drivers for studies of the physics of matter at extreme conditions, and ultimately for inertial fusion energy. Progress on this endeavor depends upon coordinated application of experiments, theory, and simulations. This paper describes the state of the art, with an emphasis on the coordination of modeling and experiment; developments in the simulation tools, and in the methods that underly them, are also treated.

  1. First heavy ion beam tests with a superconducting multigap CH cavity

    NASA Astrophysics Data System (ADS)

    Barth, W.; Aulenbacher, K.; Basten, M.; Busch, M.; Dziuba, F.; Gettmann, V.; Heilmann, M.; Kürzeder, T.; Miski-Oglu, M.; Podlech, H.; Rubin, A.; Schnase, A.; Schwarz, M.; Yaramyshev, S.

    2018-02-01

    Very compact accelerating-focusing structures, as well as short focusing periods, high accelerating gradients and short drift spaces are strongly required for superconducting (sc) accelerator sections operating at low and medium energies for continuous wave (cw) heavy ion beams. To keep the GSI-super heavy element (SHE) program competitive on a high level and even beyond, a standalone sc cw linac (Helmholtz linear accelerator) in combination with the GSI high charge state injector (HLI), upgraded for cw operation, is envisaged. Recently the first linac section (financed by Helmholtz Institute Mainz (HIM) and GSI) as a demonstration of the capability of 217 MHz multigap crossbar H-mode structures (CH) has been commissioned and extensively tested with heavy ion beam from the HLI. The demonstrator setup reached acceleration of heavy ions up to the design beam energy. The required acceleration gain was achieved with heavy ion beams even above the design mass to charge ratio at high beam intensity and full beam transmission. This paper presents systematic beam measurements with varying rf amplitudes and phases of the CH cavity, as well as phase space measurements for heavy ion beams with different mass to charge ratio. The worldwide first and successful beam test with a superconducting multigap CH cavity is a milestone of the R&D work of HIM and GSI in collaboration with IAP in preparation of the HELIAC project and other cw-ion beam applications.

  2. The heavy-ion compositional signature in He-3-rich solar particle events

    NASA Technical Reports Server (NTRS)

    Mason, G. M.; Reames, D. V.; Von Rosenvinge, T. T.; Klecker, B.; Hovestadt, D.

    1986-01-01

    A survey of the approx. 1 MeV/nucleon heavy ion abundances in 66 He-3-rich solar particle events was performed using the Max-Planck-Institut/University of Maryland and Goddard Space Flight Center instruments on the ISEE-3 spacecraft. The observations were carried out in interplanetary space over the period 1978 October through 1982 June. Earlier observations were confirmed which show an enrichment of heavy ions in He-3-rich events, relative to the average solar energetic particle composition in large particle events. For the survey near 1.5 MeV/nucleon the enrichments compared to large solar particle events are approximately He4:C:O:Ne:Mg:Si:Fe = 0.44:0.66:1.:3.4:3.5:4.1:9.6. Surprising new results emerging from the present broad survey are that the heavy ion enrichment pattern is the same within a factor of approx. 2 for almost all cases, and the degree of heavy ion enrichment is uncorrelated with the He-3 enrichment. Overall, the features established appear to be best explained by an acceleration mechanism in which the He-3 enrichment process is not responsible for the heavy ion enrichment, but rather the heavy ion enrichment is a measure of the ambient coronal composition at the sites where the He-3-rich events occur.

  3. The heavy ion compositional signature in 3He-rich solar particle events

    NASA Technical Reports Server (NTRS)

    Mason, G. M.; Reames, D. V.; Klecker, B.; Hovestadt, D.; Vonrosenvinge, T. T.

    1985-01-01

    A survey of the approx. 1 MeV/nucleon heavy ion abundances in 66 He3-rich solar particle events was performed using the Max-Planck-Institut/University of Maryland and Goddard Space Flight Center instruments on the ISEE-3 spacecraft. The observations were carried out in interplanetary space over the period 1978 October through 1982 June. Earlier observations were confirmed which show an enrichment of heavy ions in HE3-rich events, relative to the average solar energetic particle composition in large particle events. For the survey near 1.5 MeV/nucleon the enrichments compared to large solar particle events are approximately He4:C:O:Ne:Mg:Si:Fe = 0.44:0.66:1.:3.4:3.5:4.1:9.6. Surprising new results emerging from the present broad survey are that the heavy ion enrichment pattern is the same within a factor of approx. 2 for almost all cases, and the degree of heavy ion enrichment is uncorrelated with the He3 enrichment. Overall, the features established appear to be best explained by an acceleration mechanism in which the He3 enrichment process is not responsible for the heavy ion enrichment, but rather the heavy ion enrichment is a measure of the ambient coronal composition at the sites where the He3-rich events occur.

  4. Shielded Heavy-Ion Environment Linear Detector (SHIELD): an experiment for the Radiation and Technology Demonstration (RTD) Mission.

    PubMed

    Shavers, M R; Cucinotta, F A; Miller, J; Zeitlin, C; Heilbronn, L; Wilson, J W; Singleterry, R C

    2001-01-01

    Radiological assessment of the many cosmic ion species of widely distributed energies requires the use of theoretical transport models to accurately describe diverse physical processes related to nuclear reactions in spacecraft structures, planetary atmospheres and surfaces, and tissues. Heavy-ion transport models that were designed to characterize shielded radiation fields have been validated through comparison with data from thick-target irradiation experiments at particle accelerators. With the RTD Mission comes a unique opportunity to validate existing radiation transport models and guide the development of tools for shield design. For the first time, transport properties will be measured in free-space to characterize the shielding effectiveness of materials that are likely to be aboard interplanetary space missions. Target materials composed of aluminum, advanced composite spacecraft structure and other shielding materials, helium (a propellant) and tissue equivalent matrices will be evaluated. Large solid state detectors will provide kinetic energy and charge identification for incident heavy-ions and for secondary ions created in the target material. Transport calculations using the HZETRN model suggest that 8 g cm -2 thick targets would be adequate to evaluate the shielding effectiveness during solar minimum activity conditions for a period of 30 days or more.

  5. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap.

    PubMed

    Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A

    2012-02-01

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  6. The effects of heavy ion radiation on digital micromirror device performance

    NASA Astrophysics Data System (ADS)

    Travinsky, Anton; Vorobiev, Dmitry; Ninkov, Zoran; Raisanen, Alan D.; Pellish, Jonathan A.; Robberto, Massimo; Heap, Sara

    2016-07-01

    There is a pressing need in the astronomical community for space-suitable multi-object spectrometers (MOSs). Several digital micromirror device (DMD)-based prototype MOSs have been developed for ground-based observatories; however, their main use will come with deployment on a space based mission. Therefore, performance of DMDs under exoatmospheric radiation needs to be evaluated. In our previous work we demonstrated that DMDs are tolerant to heavy ion irradiation in general and calculated upset rate of 4.3 micromirrors in 24 hours in orbit for 1-megapixel device. The goal of this additional experiment was to acquire more data and therefore increase the accuracy of the predicted in-orbit micromirror upset rate. Similar to the previous experiment, for this testing 0.7 XGA DMDs were re-windowed with 2 μm thick pellicle and tested under accelerated heavy-ion radiation (with control electronics shielded from radiation) with a focus on detection of single-event upsets (SEUs). We concentrated on ions with low levels of linear energy transfer (LET) 1.8 - 13 MeV•cm2•mg-1 to cover the most critical range of the Weibull curve for those devices. As during the previous experiment, we observed and documented non-destructive heavy ion-induced micromirror state changes. All SEUs were always cleared with a soft reset (that is, sending a new pattern to the device). The DMDs we tested did not experience single-event induced permanent damage or functional changes that required a hard reset (power cycle), even at high ion fluences. Based on the data obtained in the experiments we predict micromirror in-orbit upset rate of 5.6 micromirrors in 24 hours in-orbit for the tested devices. This suggests that the heavy-ion induced SEU rate burden for a DMD-based instrument will be manageable when exposed to solar particle fluxes and cosmic rays in orbit.

  7. Overview of the Graphical User Interface for the GERM Code (GCR Event-Based Risk Model

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; Cucinotta, Francis A.

    2010-01-01

    The descriptions of biophysical events from heavy ions are of interest in radiobiology, cancer therapy, and space exploration. The biophysical description of the passage of heavy ions in tissue and shielding materials is best described by a stochastic approach that includes both ion track structure and nuclear interactions. A new computer model called the GCR Event-based Risk Model (GERM) code was developed for the description of biophysical events from heavy ion beams at the NASA Space Radiation Laboratory (NSRL). The GERM code calculates basic physical and biophysical quantities of high-energy protons and heavy ions that have been studied at NSRL for the purpose of simulating space radiobiological effects. For mono-energetic beams, the code evaluates the linear-energy transfer (LET), range (R), and absorption in tissue equivalent material for a given Charge (Z), Mass Number (A) and kinetic energy (E) of an ion. In addition, a set of biophysical properties are evaluated such as the Poisson distribution of ion or delta-ray hits for a specified cellular area, cell survival curves, and mutation and tumor probabilities. The GERM code also calculates the radiation transport of the beam line for either a fixed number of user-specified depths or at multiple positions along the Bragg curve of the particle. The contributions from primary ion and nuclear secondaries are evaluated. The GERM code accounts for the major nuclear interaction processes of importance for describing heavy ion beams, including nuclear fragmentation, elastic scattering, and knockout-cascade processes by using the quantum multiple scattering fragmentation (QMSFRG) model. The QMSFRG model has been shown to be in excellent agreement with available experimental data for nuclear fragmentation cross sections, and has been used by the GERM code for application to thick target experiments. The GERM code provides scientists participating in NSRL experiments with the data needed for the interpretation of their experiments, including the ability to model the beam line, the shielding of samples and sample holders, and the estimates of basic physical and biological outputs of the designed experiments. We present an overview of the GERM code GUI, as well as providing training applications.

  8. Overview of the Graphical User Interface for the GERMcode (GCR Event-Based Risk Model)

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Cucinotta, Francis A.

    2010-01-01

    The descriptions of biophysical events from heavy ions are of interest in radiobiology, cancer therapy, and space exploration. The biophysical description of the passage of heavy ions in tissue and shielding materials is best described by a stochastic approach that includes both ion track structure and nuclear interactions. A new computer model called the GCR Event-based Risk Model (GERM) code was developed for the description of biophysical events from heavy ion beams at the NASA Space Radiation Laboratory (NSRL). The GERMcode calculates basic physical and biophysical quantities of high-energy protons and heavy ions that have been studied at NSRL for the purpose of simulating space radiobiological effects. For mono-energetic beams, the code evaluates the linear-energy transfer (LET), range (R), and absorption in tissue equivalent material for a given Charge (Z), Mass Number (A) and kinetic energy (E) of an ion. In addition, a set of biophysical properties are evaluated such as the Poisson distribution of ion or delta-ray hits for a specified cellular area, cell survival curves, and mutation and tumor probabilities. The GERMcode also calculates the radiation transport of the beam line for either a fixed number of user-specified depths or at multiple positions along the Bragg curve of the particle. The contributions from primary ion and nuclear secondaries are evaluated. The GERMcode accounts for the major nuclear interaction processes of importance for describing heavy ion beams, including nuclear fragmentation, elastic scattering, and knockout-cascade processes by using the quantum multiple scattering fragmentation (QMSFRG) model. The QMSFRG model has been shown to be in excellent agreement with available experimental data for nuclear fragmentation cross sections, and has been used by the GERMcode for application to thick target experiments. The GERMcode provides scientists participating in NSRL experiments with the data needed for the interpretation of their experiments, including the ability to model the beam line, the shielding of samples and sample holders, and the estimates of basic physical and biological outputs of the designed experiments. We present an overview of the GERMcode GUI, as well as providing training applications.

  9. Removal of heavy metal ions by biogenic hydroxyapatite: Morphology influence and mechanism study

    NASA Astrophysics Data System (ADS)

    Wang, Dandan; Guan, Xiaomei; Huang, Fangzhi; Li, Shikuo; Shen, Yuhua; Chen, Jun; Long, Haibo

    2016-08-01

    Based on the synthesis of hydroxyapatite (HA) with different morphologies, such as nanorod-like, flower-like and sphere-like assembled HA nanorods, a new strategy has been developed for the removal of heavy metal ions such as Pb2+, Cu2+, Mn2+, Zn2+. The dependence of removal efficiency on the morphology and the suspended concentration of trapping agent, the removal time and selectivity were evaluated and discussed. The experimental results proved that the removal capacity of flower-like assembled HA nanorods (NAFL-HA) was the best, and the maximum removal ratio for Pb2+ ion was 99.97%. The mechanism of Pb2+ removal was studied in detail, noting that some metal ions were completely incorporated into hydroxyapatitie to produce Pb-HA. It reveals that the metal ions capture by HA is mainly controlled by sample surface adsorption and co-precipitation, which are directly controlled by sample morphology.

  10. Nuclear Matter Effects on ϕ Production in Cu+Au Collisions at √{s}NN = 200 GeV with the PHENIX Muon Arms at RHIC

    NASA Astrophysics Data System (ADS)

    Jezghani, Margaret; Phenix Collaboration

    2015-10-01

    A major objective in the field of high-energy nuclear physics is to quantify and characterize the quark-gluon plasma formed in relativistic heavy-ion collisions. The ϕ meson is an excellent probe for studying this hot and dense state of nuclear matter due to its very short lifetime, and the absence of strong interactions between muons and the surrounding hot hadronic matter makes the ϕ to dimuon decay channel particularly interesting. Since the ϕ meson is composed of a strange and antistrange quark, its nuclear modification in heavy-ion collisions may provide insight on strangeness enhancement in-medium. Additionally, the rapidity dependence of ϕ production in asymmetric heavy-ion collisions provides a unique means to study the entanglement of hot and cold nuclear matter effects. In this talk, we present the measurement of ϕ meson production and nuclear modification in asymmetric Cu+Au heavy-ion collisions at √{s}NN = 200 GeV at both forward (Cu-going direction) and backward (Au-going direction) rapidities. This material is based upon work supported by the U.S. Department of Energy (DOE), Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) award program.

  11. Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy.

    PubMed

    Kanai, T; Endo, M; Minohara, S; Miyahara, N; Koyama-ito, H; Tomura, H; Matsufuji, N; Futami, Y; Fukumura, A; Hiraoka, T; Furusawa, Y; Ando, K; Suzuki, M; Soga, F; Kawachi, K

    1999-04-01

    The irradiation system and biophysical characteristics of carbon beams are examined regarding radiation therapy. An irradiation system was developed for heavy-ion radiotherapy. Wobbler magnets and a scatterer were used for flattening the radiation field. A patient-positioning system using X ray and image intensifiers was also installed in the irradiation system. The depth-dose distributions of the carbon beams were modified to make a spread-out Bragg peak, which was designed based on the biophysical characteristics of monoenergetic beams. A dosimetry system for heavy-ion radiotherapy was established to deliver heavy-ion doses safely to the patients according to the treatment planning. A carbon beam of 80 keV/microm in the spread-out Bragg peak was found to be equivalent in biological responses to the neutron beam that is produced at cyclotron facility in National Institute Radiological Sciences (NIRS) by bombarding 30-MeV deuteron beam on beryllium target. The fractionation schedule of the NIRS neutron therapy was adapted for the first clinical trials using carbon beams. Carbon beams, 290, 350, and 400 MeV/u, were used for a clinical trial from June of 1994. Over 300 patients have already been treated by this irradiation system by the end of 1997.

  12. Disposable electrochemical sensor to evaluate the phytoremediation of the aquatic plant Lemna minor L. toward Pb(2+) and/or Cd(2+).

    PubMed

    Neagu, Daniela; Arduini, Fabiana; Quintana, Josefina Calvo; Di Cori, Patrizia; Forni, Cinzia; Moscone, Danila

    2014-07-01

    In this work a miniaturized and disposable electrochemical sensor was developed to evaluate the cadmium and lead ion phytoremediation potential by the floating aquatic macrophyte Lemna minor L. The sensor is based on a screen-printed electrode modified "in-situ" with bismuth film, which is more environmentally friendly than the mercury-based sensor usually adopted for lead and cadmium ion detection. The sensor was coupled with a portable potentiostat for the simultaneous measurement of cadmium and lead ions by stripping analysis. The optimized analytical system allows the simultaneous detection of both heavy metals at the ppb level (LOD equal to 0.3 and 2 ppb for lead and cadmium ions, respectively) with the advantage of using a miniaturized and cost-effective system. The sensor was then applied for the evaluation of Pb(2+) or/and Cd(2+) uptake by measuring the amount of the heavy metals both in growth medium and in plant tissues during 1 week experiments. In this way, the use of Lemna minor coupled with a portable electrochemical sensor allows the set up of a model system able both to remove the heavy metals and to measure "in-situ" the magnitude of heavy metal removal.

  13. Non-Targeted Effects and the Dose Response for Heavy Ion Tumorigenesis

    NASA Technical Reports Server (NTRS)

    Chappell, Lori J.; Cucinotta, Francis A.

    2010-01-01

    There is no human epidemiology data available to estimate the heavy ion cancer risks experienced by astronauts in space. Studies of tumor induction in mice are a necessary step to estimate risks to astronauts. Previous experimental data can be better utilized to model dose response for heavy ion tumorigenesis and plan future low dose studies.

  14. NF-kB activation and its downstream target genes expression after heavy ions exposure

    NASA Astrophysics Data System (ADS)

    Chishti, Arif Ali; Baumstark-Khan, Christa; Hellweg, Christine; Schmitz, Claudia; Koch, Kristina; Feles, Sebastian

    2016-07-01

    To enable long-term human space flight cellular radiation response to densely ionizing radiation needs to be better understood for developing appropriate countermeasures to mitigate acute effects and late radiation risks for the astronaut. The biological effectiveness of accelerated heavy ions (which constitute the most important radiation type in space) with high linear energy transfer (LET) for effecting DNA damage response pathways as a gateway to cell death or survival is of major concern not only for space missions but also for new regimes of tumor radiotherapy. In the current research study, the contribution of NF-κB in response to space-relevant radiation qualities was determined by a NF-κB reporter cell line (HEK-pNF-κB-d2EGFP/Neo L2). The NF-κB dependent reporter gene expression (d2EGFP) after ionizing radiation (X-rays and heavy ions) exposure was evaluated by flow cytometry. Because of differences in the extent of NF-κB activation after X-irradiation and heavy ions exposure, it was expected that radiation quality (LET) might play an important role in the cellular radiation response. In addition, the biological effectiveness (RBE) of NF-κB activation and reduction of cellular survival was examined for heavy ions having a broad range of LET (˜0.3 - 9674 keV/µm). Furthermore, the effect of LET on NF-κB target gene expression was analyzed by real time reverse transcriptase quantitative PCR (RT-qPCR). In this study it was proven that NF-κB activation and NF-κB dependent gene expression comprises an early step in cellular radiation response. Taken together, this study clearly demonstrates that NF-κB activation and NF-κB-dependent gene expression by heavy ions are highest in the LET range of ˜50-200 keV/μupm. The up-regulated chemokines and cytokines (CXCL1, CXCL2, CXCL10, IL-8 and TNF) might be important for cell-cell communication among hit as well as unhit cells (bystander effect). The results obtained suggest the NF-κB pathway to be a promising target for pharmacological modulation of cellular radiation response either to improve tumor cell killing during radiotherapy with heavy ions or to mitigate radiation late effects in astronauts or irradiated healthy tissue.

  15. Mortality and morphological anomalies related to the passage of cosmic heavy ions through the smallest flowering aquatic plant wolffia arrhiza

    NASA Astrophysics Data System (ADS)

    Facius, R.; Scherer, K.; Strauch, W.; Nevzgodina, L. V.; Maximova, E. N.; Akatov, Yu. A.

    Radiobiological effects of single cosmic heavy ions on individual, actively metabolizing test organisms, plants of Wolffia arrhiza, have been explored in an experiment flown aboard the Russian Biosatellite 10. Mortality induced during space flight, population dynamics during subsequent cultivation, and morphological anomalies occurring in the plants of these cultures were investigated. Correlation of these effects with the passage of a heavy ion was achieved by inserting monolayers of plants in a stack of surrounding plastic nuclear track detectors (BIOSTACK). Enhanced initial mortality and delayed decline of induced anomalies have been significantly associated with the passage of single heavy ions, in particular if ions penetrated the budding region of the plants. The prolonged persistence of anomalies in filial generations as an indication of delayed genetic damage has been detected for the first time as the consequence of the hit by a single heavy ion. Regarding radiation protection of space crew during prolonged missions, especially outside the magnetosphere, this appears to be a significant finding.

  16. The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae.

    PubMed

    Lee, Yi-Chao; Chang, Shui-Ping

    2011-05-01

    The aim of this research was to develop a low cost adsorbent for wastewater treatment. The prime objective of this study was to search for suitable freshwater filamentous algae that have a high heavy metal ion removal capability. This study evaluated the biosorption capacity from aqueous solutions of the green algae species, Spirogyra and Cladophora, for lead (Pb(II)) and copper (Cu(II)). In comparing the analysis of the Langmuir and Freundlich isotherm models, the adsorption of Pb(II) and Cu(II) by these two types of biosorbents showed a better fit with the Langmuir isotherm model. In the adsorption of heavy metal ions by these two types of biosorbents, chemical and physical adsorption of particle surfaces was perhaps more significant than diffusion and adsorption between particles. Continuous adsorption-desorption experiments discovered that both types of biomass were excellent biosorbents with potential for further development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.

    PubMed

    Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M

    2015-03-27

    An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19}  W/  cm^{2}. Highly charged gold ions with kinetic energies up to >200  MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration.

  18. Solar heavy ion Heinrich fluence spectrum at low earth orbit.

    PubMed

    Croley, D R; Spitale, G C

    1998-01-01

    Solar heavy ions from the JPL Solar Heavy Ion Model have been transported into low earth orbit using the Schulz cutoff criterion for L-shell access by ions of a specific charge to mass ratio. The NASA Brouwer orbit generator was used to get L values along the orbit at 60 second time intervals. Heavy ion fluences of ions 2 < or = Z < or = 92 have been determined for the LET range 1 to 130 MeV-cm2/mg by 60, 120 or 250 mils of aluminum over a period of 24 hours in a 425 km circular orbit inclined 51 degrees. The ion fluence is time dependent in the sense that the position of the spacecraft in the orbit at the flare onset time fixes the relationship between particle flux and spacecraft passage through high L-values where particles have access to the spacecraft.

  19. Production of multiply heavy flavoured baryons from Quark Gluon Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becattini, F.; INFN Sezione di Firenze, Via G. Sansone 1, I-50019, Sesto F.no

    We show that in heavy ion collisions at LHC there could be a measurable production of baryons containing two or three heavy quarks from statistical coalescence. This production mechanism is peculiar of Quark Gluon Plasma and the predicted rates, in heavy ion collisions at LHC energy, exceed those from a purely hadronic scenario, particularly for {xi}bc and {omega}ccc. Thus, besides the interest in the discovery of these new states, enhanced ratios of these baryons over singly heavy flavoured hadrons, like B or D, in heavy ion collisions with respect to pp at the same energy, would be a clear indicationmore » of kinetical equilibration of heavy quarks in the Quark Gluon Plasma.« less

  20. Combining Heavy Ion Radiation and Artificial MicroRNAs to Target the Homologous Recombination Repair Gene Efficiently Kills Human Tumor Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Zhiming; Department of Radiation Oncology, School of Medicine, Winship Cancer Institute, Emory University, Atlanta, Georgia; Wang Ping

    2013-02-01

    Purpose: Previously, we demonstrated that heavy ions kill more cells at the same dose than X-rays because DNA-clustered lesions produced by heavy ions affect nonhomologous end-joining (NHEJ) repair but not homologous recombination repair (HRR). We have also shown that our designed artificial microRNAs (amiRs) could efficiently target XRCC4 (an essential factor for NHEJ) or XRCC2 (an essential factor for HRR) and sensitize human tumor cells to X-rays. Based on these data, we were interested in testing the hypothesis that combining heavy ions and amiRs to target HRR but not NHEJ should more efficiently kill human tumor cells. Methods and Materials:more » Human tumor cell lines (U87MG, a brain tumor cell line, and A549, a lung cancer cell line) and their counterparts, overexpressed with amiR to target XRCC2, XRCC4 or both, were used in this study. Survival sensitivities were examined using a clonogenic assay after these cells were exposed to X-rays or heavy ions. In addition, these cell lines were subcutaneously injected into nude mice to form xenografts and the tumor size was compared after the tumor areas were exposed to X-rays or heavy ions. Results: Although targeting either XRCC4 (NHEJ factor) or XRCC2 (HRR factor) sensitized the human tumor cells to X-rays, in vitro and the xenograft animal model, targeting only XRCC2 but not XRCC4 sensitized the human tumor cells to heavy ions in vitro and in the xenograft animal model. Conclusions: Combining heavy ions with targeting the HRR pathway, but not the NHEJ pathway, could significantly improve the efficiency of tumor cell death.« less

  1. Combining heavy ion radiation and artificial microRNAs to target the homologous recombination repair gene efficiently kills human tumor cells.

    PubMed

    Zheng, Zhiming; Wang, Ping; Wang, Hongyan; Zhang, Xiangming; Wang, Minli; Cucinotta, Francis A; Wang, Ya

    2013-02-01

    Previously, we demonstrated that heavy ions kill more cells at the same dose than X-rays because DNA-clustered lesions produced by heavy ions affect nonhomologous end-joining (NHEJ) repair but not homologous recombination repair (HRR). We have also shown that our designed artificial microRNAs (amiRs) could efficiently target XRCC4 (an essential factor for NHEJ) or XRCC2 (an essential factor for HRR) and sensitize human tumor cells to X-rays. Based on these data, we were interested in testing the hypothesis that combining heavy ions and amiRs to target HRR but not NHEJ should more efficiently kill human tumor cells. Human tumor cell lines (U87MG, a brain tumor cell line, and A549, a lung cancer cell line) and their counterparts, overexpressed with amiR to target XRCC2, XRCC4 or both, were used in this study. Survival sensitivities were examined using a clonogenic assay after these cells were exposed to X-rays or heavy ions. In addition, these cell lines were subcutaneously injected into nude mice to form xenografts and the tumor size was compared after the tumor areas were exposed to X-rays or heavy ions. Although targeting either XRCC4 (NHEJ factor) or XRCC2 (HRR factor) sensitized the human tumor cells to X-rays, in vitro and the xenograft animal model, targeting only XRCC2 but not XRCC4 sensitized the human tumor cells to heavy ions in vitro and in the xenograft animal model. Combining heavy ions with targeting the HRR pathway, but not the NHEJ pathway, could significantly improve the efficiency of tumor cell death. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Environmental Remediation and Application of Nanoscale Zero-Valent Iron and Its Composites for the Removal of Heavy Metal Ions: A Review.

    PubMed

    Zou, Yidong; Wang, Xiangxue; Khan, Ayub; Wang, Pengyi; Liu, Yunhai; Alsaedi, Ahmed; Hayat, Tasawar; Wang, Xiangke

    2016-07-19

    The presence of heavy metals in the industrial effluents has recently been a challenging issue for human health. Efficient removal of heavy metal ions from environment is one of the most important issues from biological and environmental point of view, and many studies have been devoted to investigate the environmental behavior of nanoscale zerovalent iron (NZVI) for the removal of toxic heavy metal ions, present both in the surface and underground wastewater. The aim of this review is to show the excellent removal capacity and environmental remediation of NZVI-based materials for various heavy metal ions. A new look on NZVI-based materials (e.g., modified or matrix-supported NZVI materials) and possible interaction mechanism (e.g., adsorption, reduction and oxidation) and the latest environmental application. The effects of various environmental conditions (e.g., pH, temperature, coexisting oxy-anions and cations) and potential problems for the removal of heavy metal ions on NZVI-based materials with the DFT theoretical calculations and EXAFS technology are discussed. Research shows that NZVI-based materials have satisfactory removal capacities for heavy metal ions and play an important role in the environmental pollution cleanup. Possible improvement of NZVI-based materials and potential areas for future applications in environment remediation are also proposed.

  3. Carboxyl-functionalized nanoparticles with magnetic core and mesopore carbon shell as adsorbents for the removal of heavy metal ions from aqueous solution.

    PubMed

    Wang, Hui; Yu, Yi-Fei; Chen, Qian-Wang; Cheng, Kai

    2011-01-21

    This communication demonstrates superparamagnetic nanosized particles with a magnetic core and a porous carbon shell (thickness of 11 nm), which can remove 97% of Pb(2+) ions from an acidic aqueous solution at a Pb(2+) ion concentration of 100 mg L(-1). It is suggested that a weak electrostatic force of attraction between the heavy metal ions and the nanoparticles and the heavy metal ions adsorption on the mesopore carbon shell contribute most to the superior removal property.

  4. Design and Test Results of Superconducting Magnet for Heavy-Ion Rotating Gantry

    NASA Astrophysics Data System (ADS)

    Takayama, S.; Koyanagi, K.; Miyazaki, H.; Takami, S.; Orikasa, T.; Ishii, Y.; Kurusu, T.; Iwata, Y.; Noda, K.; Obana, T.; Suzuki, K.; Ogitsu, T.; Amemiya, N.

    2017-07-01

    Heavy-ion radiotherapy has a high curative effect in cancer treatment and also can reduce the burden on patients. These advantages have been generally recognized. Furthermore, a rotating gantry can irradiate a tumor with ions from any direction without changing the position of the patient. This can reduce the physical dose on normal cells, and is thus commonly used in proton radiotherapy. However, because of the high magnetic rigidity of carbon ions, the weight of the rotating gantry for heavy-ion therapy is about three-times heavier than those used for proton cancer therapy, according to our estimation. To overcome this issue, we developed a small and lightweight rotating gantry in collaboration with the National Institute of Radiological Sciences (NIRS). The compact rotating gantry was composed of ten low-temperature superconducting (LTS) magnets that were designed from the viewpoint of beam optics. These LTS magnets have a surface-winding coil-structure and provide both dipole and quadrupole fields. The maximum dipole and quadrupole magnetic field of the magnets were 2.88 T and 9.3 T/m, respectively. The rotating gantry was installed at NIRS, and beam commissioning is in progress to achieve the required beam quality. In the three years since 2013, in a project supported by the Ministry of Economy, Trade and Industry (METI) and the Japan Agency for Medical Research and Development (AMED), we have been developing high-temperature superconducting (HTS) magnets with the aim of a further size reduction of the rotating gantry. To develop fundamental technologies for designing and fabricating HTS magnets, a model magnet was manufactured. The model magnet was composed of 24 saddle-shaped HTS coils and generated a magnetic field of 1.2 T. In the presentation, recent progress in this research will be reported.

  5. [Progress in heavy particle radiotherapy].

    PubMed

    Tsujii, H; Tsuji, H; Okumura, T

    1994-06-01

    In recent years, new types of ionizing radiations have been used as an attractive modality in cancer treatments. Low LET radiation such as protons and helium ions has the advantage of a high physical selectivity of irradiation. Clinical results have confirmed that they are of benefit in certain types of cancer. High LET particles such as fast neutrons, heavy ions (carbon, neon) and negative pions possess higher radiobiological effects (RBE). Moreover, the latter two particles have an advantage of improved dose distribution. The clinical indications for protons are those located in close vicinity to the critical normal organs, and those for fast neutrons are relatively superficial tumors. Further studies are needed to determine indications for pions. The available clinical experience in selected tumors with protons, pions and fast neutrons justifies the heavy-ion therapy programs. Successful results are anticipated from HIMAC (Heavy ion medical accelerator in Chiba) which is a dedicated facility for heavy-ion therapy.

  6. NADPH Oxidase Activation Contributes to Heavy Ion Irradiation–Induced Cell Death

    PubMed Central

    Wang, Yupei; Liu, Qing; Zhao, Weiping; Zhou, Xin; Miao, Guoying; Sun, Chao

    2017-01-01

    Increased oxidative stress plays an important role in heavy ion radiation–induced cell death. The mechanism involved in the generation of elevated reactive oxygen species (ROS) is not fully illustrated. Here we show that NADPH oxidase activation is closely related to heavy ion radiation–induced cell death via excessive ROS generation. Cell death and cellular ROS can be greatly reduced in irradiated cancer cells with the preincubation of diphenyleneiodium, an inhibitor of NADPH oxidase. Most of the NADPH oxidase (NOX) family proteins (NOX1, NOX2, NOX3, NOX4, and NOX5) showed increased expression after heavy ion irradiation. Meanwhile, the cytoplasmic subunit p47phox was translocated to the cell membrane and localized with NOX2 to form reactive NADPH oxidase. Our data suggest for the first time that ROS generation, as mediated by NADPH oxidase activation, could be an important contributor to heavy ion irradiation–induced cell death. PMID:28473742

  7. Survey of mercury, cadmium and lead content of household batteries.

    PubMed

    Recknagel, Sebastian; Radant, Hendrik; Kohlmeyer, Regina

    2014-01-01

    The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline-manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc-carbon batteries, on average, contained the highest levels. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Feasibility study of heavy-ion collision physics at NICA JINR

    NASA Astrophysics Data System (ADS)

    Kekelidze, V.; Kovalenko, A.; Lednicky, R.; Matveev, V.; Meshkov, I.; Sorin, A.; Trubnikov, G.

    2017-11-01

    The project NICA (Nuclotron-based Ion Collider fAcility) is aimed to study hot and baryon rich QCD matter in heavy ion collisions in the energy range up to √{sNN} = 11GeV. The heavy ion program includes a study of collective phenomena, dilepton, hyperon and hypernuclei production under extreme conditions of highest baryonic density. This program will be performed at a fixed target experiment BM@N and with MPD detector at the NICA collider.

  9. Isospin dependence of fragment spectra in heavy/super-heavy colliding nuclei at intermediate energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chugh, Rajiv, E-mail: rajivchug@gmail.com; Kumar, Rohit, E-mail: rohitksharma.pu@gmail.com; Vinayak, Karan Singh, E-mail: drksvinayak@gmail.com

    2016-05-06

    Using isospin-dependent quantum molecular dynamics (IQMD) approach, we performed a theoretical investigation of the evolution of various kinds of fragments in heavy and superheavy-ion reactions in the intermediate/medium energy domain. We demonstrated direct impact of symmetry energy and Coulomb interactions on the evolution of fragments. Final fragment spectra (yields) obtained from the analysis of various heavy/super-heavy ion reactions at different reaction conditions show high sensitivity towards Coulomb interactions and less significant sensitivity to symmetry energy forms. No inconsistent pattern of fragment structure is obtained in case of super-heavy ion involved reactions for all the parameterizations of density dependence of symmetrymore » energy.« less

  10. Bose condensation of nuclei in heavy ion collisions

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.; Townsend, Lawrence W.

    1994-01-01

    Using a fully self-consistent quantum statistical model, we demonstrate the possibility of Bose condensation of nuclei in heavy ion collisions. The most favorable conditions of high densities and low temperatures are usually associated with astrophysical processes and may be difficult to achieve in heavy ion collisions. Nonetheless, some suggestions for the possible experimental verification of the existence of this phenomenon are made.

  11. Fourth workshop on Experiments and Detectors for a Relativistic Heavy Ion Collider

    NASA Technical Reports Server (NTRS)

    Fatyga, M. (Editor); Moskowitz, B. (Editor)

    1992-01-01

    We present a description of an experiment which can be used to search for effects of strong electromagnetic fields on the production of e(sup +) e(sup -) pairs in the elastic scattering of two heavy ions at the Relativistic Heavy Ion Collider (RHIC). A very brief discussion of other possible studies of electromagnetic phenomena at RHIC is also presented.

  12. Effects of bulk viscosity and hadronic rescattering in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Ryu, Sangwook; Paquet, Jean-François; Shen, Chun; Denicol, Gabriel; Schenke, Björn; Jeon, Sangyong; Gale, Charles

    2018-03-01

    We describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. We further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.

  13. Workshop summary. Biomedical and Space-Related Research with Heavy Ions at the BEVALAC

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Curtis, S. B.

    1989-01-01

    The authors provide an overview of papers presented at a workshop on Biomedical and Space-Related Research with Heavy Ions at the BEVALAC at Lawrence Berkeley Laboratory. Goals of the meeting were to determine the critical experiments using heavy ions as probes in radiation physics, radiation chemistry, macromolecular and cellular biology, evolution science, basic neurophysiology, and medical therapies; how beam lines and facilities at Lawrence Berkeley Laboratory can be improved for these experiments; and implications in priorities and funding for national policy. Workshop topics included physics and facilities, cellular and molecular biology, tissue radiobiology, and the future of heavy ion research.

  14. [Response of Nostoc flageliforme cell to Cu2+, Cr2+ and Pb2+ stress].

    PubMed

    Guo, Jinying; Shi, Mingke; Zhao, Yanli; Ren, Guoyan; Yi, Junpeng; Niu, Leilei; Li, Juan

    2013-06-04

    This study aimed to investigate the effects of Cu2+, Cr2+ and Pb2+ stress on Nostoc flagelliforme cell. The response of Nostoc flagelliforme cell was analyzed under the stress. The modified BG11 culture medium containing different heavy metal ions of 0, 0.1, 1.0, 10, 100 mg/L was used to cultivate Nostoc flagelliforme cell at 25 degrees C and light intensity of 80 micromol/(m x s). Electrolyte leakage, the activities of superoxide dismutase, the content of malondialdehyde, proline, soluble protein and trehalose were analyzed. Under 1 - 100 mg/L Cu2+, Cr2+ and Pb2+ stress, electrolyte leakage and malondialdehyde contents in Nostoc flagelliforme cell were higher than those in the control group during heavy metal ions stress. Meanwhile, superoxide dismutase activity increased slightly under 10 mg/L, but was lower afterwards. The contents of proline, soluble protein and trehalose increased under 10 mg/L heavy metal ions stress, while declined under extreme heavy metal ions stress (100 mg/L). Nostoc flagelliforme cell has resistance to low heavy metal ions stress, but is damaged badly under extreme heavy metal ions stress.

  15. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

    NASA Astrophysics Data System (ADS)

    Shen, X. F.; Qiao, B.; Chang, H. X.; Kar, S.; Zhou, C. T.; Borghesi, M.; He, X. T.

    2016-10-01

    Generation of monoenergetic heavy ion beams aroused more scientific interest in recent years. Radiation pressure acceleration (RPA) is an ideal mechanism for obtaining high-quality heavy ion beams, in principle. However, to achieve the same energy per nucleon (velocity) as protons, heavy ions undergo much more serious Rayleigh-Taylor-like (RT) instability and afterwards much worse Coulomb explosion due to loss of co-moving electrons. This leads to premature acceleration termination of heavy ions and very low energy attained in experiment. The utilization of a high-Z coating in front of the target may suppress the RT instability and Coulomb explosion by continuously replenishing the accelerating heavy ion foil with co-moving electrons due to its successive ionization under laser fields with Gaussian temporal and spatial profiles. Thus stable RPA can be realized. Two-dimensional and three-dimensional particles-in-cell simulations with dynamic ionization show that a monoenergetic Al13+ beam with peak energy 4.0GeV and particle number 1010 (charge > 20nC) can be obtained at intensity 1022 W/cm2. Supported by the NSF, Nos. 11575298 and 1000-Talents Program of China.

  16. Anion-intercalated layered double hydroxides modified test strips for detection of heavy metal ions.

    PubMed

    Wang, Nan; Sun, Jianchao; Fan, Hai; Ai, Shiyun

    2016-01-01

    In this work, a novel approach for facile and rapid detection of heavy metal ions using anion-intercalated layered double hydroxides (LDHs) modified test strips is demonstrated. By intercalating Fe(CN)6(4-) or S(2-) anions into the interlayers of LDHs on the filter paper, various heavy metal ions can be easily detected based on the color change before and after reaction between the anions and the heavy metal ions. Upon the dropping of heavy metal ions solutions to the test strips, the colors of the test strips changed instantly, which can be easily observed by naked eyes. With the decrease of the concentration, the color depth changed obviously. The lowest detection concentration can be up to 1×10(-6) mol L(-1). Due to the easily intercalation of anions into the interlayer of the LDHs on test trips, this procedure provides a general method for the construction of LDHs modified test strips for detection of heavy metal ions. The stability of the prepared test strips is investigated. Furthermore, all the results were highly reproducible. The test strips may have potential applications in environmental monitoring fields. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Estimating neutron dose equivalent rates from heavy ion reactions around 10 MeV amu(-1) using the PHITS code.

    PubMed

    Iwamoto, Yosuke; Ronningen, R M; Niita, Koji

    2010-04-01

    It has been sometimes necessary for personnel to work in areas where low-energy heavy ions interact with targets or with beam transport equipment and thereby produce significant levels of radiation. Methods to predict doses and to assist shielding design are desirable. The Particle and Heavy Ion Transport code System (PHITS) has been typically used to predict radiation levels around high-energy (above 100 MeV amu(-1)) heavy ion accelerator facilities. However, predictions by PHITS of radiation levels around low-energy (around 10 MeV amu(-1)) heavy ion facilities to our knowledge have not yet been investigated. The influence of the "switching time" in PHITS calculations of low-energy heavy ion reactions, defined as the time when the JAERI Quantum Molecular Dynamics model (JQMD) calculation stops and the Generalized Evaporation Model (GEM) calculation begins, was studied using neutron energy spectra from 6.25 MeV amu(-1) and 10 MeV amu(-1) (12)C ions and 10 MeV amu(-1) (16)O ions incident on a copper target. Using a value of 100 fm c(-1) for the switching time, calculated neutron energy spectra obtained agree well with the experimental data. PHITS was then used with the switching time of 100 fm c(-1) to simulate an experimental study by Ohnesorge et al. by calculating neutron dose equivalent rates produced by 3 MeV amu(-1) to 16 MeV amu(-1) (12)C, (14)N, (16)O, and (20)Ne beams incident on iron, nickel and copper targets. The calculated neutron dose equivalent rates agree very well with the data and follow a general pattern which appears to be insensitive to the heavy ion species but is sensitive to the target material.

  18. Theoretical Evaluation of the Radiation Hazards from Cosmic Rays Within Space Vehicles

    NASA Technical Reports Server (NTRS)

    Katz, Robert

    1998-01-01

    We may summarize our efforts as follows: a. Improvement of our calculations of the radial dose distribution from delta rays ejected in the passage of heavy ions through matter through the application of new data to a previous calculation by Kobetich and Katz (1968). Supplementing this calculation, we have found the radial distribution of electron energy spectra and the radial distribution of microdosimetric quantities (Cucinotta et al, 1996, 1997). b. Extension of the Katz model of cellular survival to bacteria, to lethal mutations in C. Elegans in vivo, to mutation induction in vitro, to thindown in radiobiology (observed experimentally at GSI, Darmstadt, and there called "Darmstadt hooks", predicted by Katz theory years before GSI was constructed). c. Coupling the Katz theory of RBE to the NASA theory of the diffusion of heavy ion beams in matter to yield predictions of the effects for monoenergetic heavy ion beams as well as range modulated beams used for cancer therapy. Here we have directed attention to the role of "ion-kill" (the effects produced by heavy ions passing through the nucleus of a cell), responsible for increased RBE, decreased OER, and reduced repair. We predict that the use of beams of heavy ions in cancer therapy will create late effect problems for fractionated therapy. We highlight also the damage by "ion-kill", from single heavy ions in the cosmic rays, to the central nervous system in space flight. d. The coupling of Katz theory and the NASA theory of heavy ion diffusion and penetration through matter, and knowledge of the space radiation environment, has been applied to design of shielding, to the cell damage in space flight.

  19. Ion-ion charge exchange processes. Final technical report, June 1, 1977-May 31, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poe, R.T.; Choi, B.H.

    Under the auspices of ERDA, we have undertaken a vigorous study of ion-ion charge exchange process pertinent to the storage-ring configurations in the heavy-ion fusion program. One particular reaction, singly charged helium charge exchange, was investigated in detail. General trend of the singly charged heavy-ion charge exchange reaction can be inferred from the present study. Some of our results were presented at Proceedings of the Heavy-Ion Fusion Workshop, Argonne National Laboratory (September 1978) as a paper entitled Charge Exchange Between Singly Ionized Helium Ions, by B.H. Choi, R.T. Poe and K.T. Tang. Here, we briefly describe our method and reportmore » the results.« less

  20. Heavy ion acceleration in the radiation pressure acceleration and breakout afterburner regimes

    NASA Astrophysics Data System (ADS)

    Petrov, G. M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N.

    2017-07-01

    We present a theoretical study of heavy ion acceleration from ultrathin (20 nm) gold foil irradiated by high-intensity sub-picosecond lasers. Using two-dimensional particle-in-cell simulations, three laser systems are modeled that cover the range between femtosecond and picosecond pulses. By varying the laser pulse duration we observe a transition from radiation pressure acceleration (RPA) to the relativistic induced transparency (RIT) regime for heavy ions akin to light ions. The underlying physics of beam formation and acceleration is similar for light and heavy ions, however, nuances of the acceleration process make the heavy ions more challenging. A more detailed study involving variation of peak laser intensity I 0 and pulse duration τFWHM revealed that the transition point from RPA to RIT regime depends on the peak laser intensity on target and occurs for pulse duration {τ }{{F}{{W}}{{H}}{{M}}}{{R}{{P}}{{A}}\\to {{R}}{{I}}{{T}}}[{{f}}{{s}}]\\cong 210/\\sqrt{{I}0[{{W}} {{{cm}}}-2]/{10}21}. The most abundant gold ion and charge-to-mass ratio are Au51+ and q/M ≈ 1/4, respectively, half that of light ions. For ultrathin foils, on the order of one skin depth, we established a linear scaling of the maximum energy per nucleon (E/M)max with (q/M)max, which is more favorable than the quadratic one found previously. The numerical simulations predict heavy ion beams with very attractive properties for applications: high directionality (<10° half-angle), high fluxes (>1011 ions sr-1) and energy (>20 MeV/nucleon) from laser systems delivering >20 J of energy on target.

  1. Development and performance evaluation of a three-dimensional clinostat synchronized heavy-ion irradiation system.

    PubMed

    Ikeda, Hiroko; Souda, Hikaru; Puspitasari, Anggraeini; Held, Kathryn D; Hidema, Jun; Nikawa, Takeshi; Yoshida, Yukari; Kanai, Tatsuaki; Takahashi, Akihisa

    2017-02-01

    Outer space is an environment characterized by microgravity and space radiation, including high-energy charged particles. Astronauts are constantly exposed to both microgravity and radiation during long-term stays in space. However, many aspects of the biological effects of combined microgravity and space radiation remain unclear. We developed a new three-dimensional (3D) clinostat synchronized heavy-ion irradiation system for use in ground-based studies of the combined exposures. Our new system uses a particle accelerator and a respiratory gating system from heavy-ion radiotherapy to irradiate samples being rotated in the 3D clinostat with carbon-ion beams only when the samples are in the horizontal position. A Peltier module and special sample holder were loaded on a static stage (standing condition) and the 3D clinostat (rotation condition) to maintain a suitable temperature under atmospheric conditions. The performance of the new device was investigated with normal human fibroblasts 1BR-hTERT in a disposable closed cell culture chamber. Live imaging revealed that cellular adhesion and growth were almost the same for the standing control sample and rotation sample over 48h. Dose flatness and symmetry were judged according to the relative density of Gafchromic films along the X-axis and Y-axis of the positions of the irradiated sample to confirm irradiation accuracy. Doses calculated using the carbon-ion calibration curve were almost the same for standing and rotation conditions, with the difference being less than 5% at 1Gy carbon-ion irradiation. Our new device can accurately synchronize carbon-ion irradiation and simulated microgravity while maintaining the temperature under atmospheric conditions at ground level. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  2. Cleaning Water Contaminated with Heavy Metal Ions Using Pyrolyzed Biochar Adsorbents

    EPA Science Inventory

    The extraction of pollutants from water using activated biochar materials is a low cost, sustainable approach for providing safe water in developing countries. The adsorption of copper ions, Cu (II), onto banana peels that were dried, pyrolyzed and activated was studied and compa...

  3. Preliminary result of rapid solenoid for controlling heavy-ion beam parameters of laser ion source

    DOE PAGES

    Okamura, M.; Sekine, M.; Ikeda, S.; ...

    2015-03-13

    To realize a heavy ion inertial fusion driver, we have studied a possibility of laser ion source (LIS). A LIS can provide high current high brightness heavy ion beams, however it was difficult to manipulate the beam parameters. To overcome the issue, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The rapid ramping magnetic field could enhance limited time slice of the current and simultaneously the beam emittance changed accordingly. This approach may also useful to realize an ion source for HIF power plant.

  4. What Can We Learn From Proton Recoils about Heavy-Ion SEE Sensitivity?

    NASA Technical Reports Server (NTRS)

    Ladbury, Raymond L.

    2016-01-01

    The fact that protons cause single-event effects (SEE) in most devices through production of light-ion recoils has led to attempts to bound heavy-ion SEE susceptibility through use of proton data. Although this may be a viable strategy for some devices and technologies, the data must be analyzed carefully and conservatively to avoid over-optimistic estimates of SEE performance. We examine the constraints that proton test data can impose on heavy-ion SEE susceptibility.

  5. Concurrent in situ ion irradiation transmission electron microscope

    DOE PAGES

    Hattar, K.; Bufford, D. C.; Buller, D. L.

    2014-08-29

    An in situ ion irradiation transmission electron microscope has been developed and is operational at Sandia National Laboratories. This facility permits high spatial resolution, real time observation of electron transparent samples under ion irradiation, implantation, mechanical loading, corrosive environments, and combinations thereof. This includes the simultaneous implantation of low-energy gas ions (0.8–30 keV) during high-energy heavy ion irradiation (0.8–48 MeV). In addition, initial results in polycrystalline gold foils are provided to demonstrate the range of capabilities.

  6. Relative biological effectiveness in canine osteosarcoma cells irradiated with accelerated charged particles

    PubMed Central

    Maeda, Junko; Cartwright, Ian M.; Haskins, Jeremy S.; Fujii, Yoshihiro; Fujisawa, Hiroshi; Hirakawa, Hirokazu; Uesaka, Mitsuru; Kitamura, Hisashi; Fujimori, Akira; Thamm, Douglas H.; Kato, Takamitsu A.

    2016-01-01

    Heavy ions, characterized by high linear energy transfer (LET) radiation, have advantages compared with low LET protons and photons in their biological effects. The application of heavy ions within veterinary clinics requires additional background information to determine heavy ion efficacy. In the present study, comparison of the cell-killing effects of photons, protons and heavy ions was investigated in canine osteosarcoma (OSA) cells in vitro. A total of four canine OSA cell lines with various radiosensitivities were irradiated with 137Cs gamma-rays, monoenergetic proton beams, 50 keV/µm carbon ion spread out Bragg peak beams and 200 keV/µm iron ion monoenergetic beams. Clonogenic survival was examined using colony-forming as says, and relative biological effectiveness (RBE) values were calculated relative to gamma-rays using the D10 value, which is determined as the dose (Gy) resulting in 10% survival. For proton irradiation, the RBE values for all four cell lines were 1.0–1.1. For all four cell lines, exposure to carbon ions yielded a decreased cell survival compared with gamma-rays, with the RBE values ranging from 1.56–2.10. Iron ions yielded the lowest cell survival among tested radiation types, with RBE values ranging from 3.51–3.69 observed in the three radioresistant cell lines. The radiosensitive cell line investigated demonstrated similar cell survival for carbon and iron ion irradiation. The results of the present study suggest that heavy ions are more effective for killing radioresistant canine OSA cells when compared with gamma-rays and protons. This markedly increased efficiency of cell killing is an attractive reason for utilizing heavy ions for radioresistant canine OSA. PMID:27446477

  7. Continuous separation of copper ions from a mixture of heavy metal ions using a three-zone carousel process packed with metal ion-imprinted polymer.

    PubMed

    Jo, Se-Hee; Lee, See-Young; Park, Kyeong-Mok; Yi, Sung Chul; Kim, Dukjoon; Mun, Sungyong

    2010-11-05

    In this study, a three-zone carousel process based on a proper molecular imprinted polymer (MIP) resin was developed for continuous separation of Cu(2+) from Mn(2+) and Co(2+). For this task, the Cu (II)-imprinted polymer (Cu-MIP) resin was synthesized first and used to pack the chromatographic columns of a three-zone carousel process. Prior to the experiment of the carousel process based on the Cu-MIP resin (MIP-carousel process), a series of single-column experiments were performed to estimate the intrinsic parameters of the three heavy metal ions and to find out the appropriate conditions of regeneration and re-equilibration. The results from these single-column experiments and the additional computer simulations were then used for determination of the operating parameters of the MIP-carousel process under consideration. Based on the determined operating parameters, the MIP-carousel experiments were carried out. It was confirmed from the experimental results that the proposed MIP-carousel process was markedly effective in separating Cu(2+) from Mn(2+) and Co(2+) in a continuous mode with high purity and a relatively small loss. Thus, the MIP-carousel process developed in this study deserves sufficient attention in materials processing industries or metal-related industries, where the selective separation of heavy metal ions with the same charge has been a major concern. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Self-Consistent Ring Current Modeling with Propagating Electromagnetic Ion Cyclotron Waves in the Presence of Heavy Ions

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.; Liemohn, M. W.

    2006-01-01

    The self-consistent treatment of the RC ion dynamics and EMlC waves, which are thought to exert important influences on the ion dynamical evolution, is an important missing element in our understanding of the storm-and recovery-time ring current evolution. Under certain conditions, relativistic electrons, with energies greater than or equal to 1 MeV, can be removed from the outer radiation belt by EMlC wave scattering during a magnetic storm (Summers and Thorne, 2003; Albert, 2003). That is why the modeling of EMlC waves is critical and timely issue in magnetospheric physics. This study will generalize the self-consistent theoretical description of RC ions and EMlC waves that has been developed by Khazanov et al. [2002, 2003] and include the heavy ions and propagation effects of EMlC waves in the global dynamic of self-consistent RC - EMlC waves coupling. The results of our newly developed model that will be presented at Huntsville 2006 meeting, focusing mainly on the dynamic of EMlC waves and comparison of these results with the previous global RC modeling studies devoted to EMlC waves formation. We also discuss RC ion precipitations and wave induced thermal electron fluxes into the ionosphere.

  9. Heating heavy ions in the polar corona by collisionless shocks: A one-dimensional simulation

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe; Zimbardo, Gaetano

    2012-01-01

    Recently a new model for explaining the observations of preferential heating of heavy ions in the polar solar corona was proposed (Zimbardo, 2010, 2011). In that model the ion energization mechanism is the ion reflection off supercritical quasi-perpendicular collisionless shocks in the corona and the subsequent acceleration by the motional electric field E = -V × B/c. The mechanism of heavy ion reflection is based on ion gyration in the magnetic overshoot of the shock. The acceleration due to the motional electric field is perpendicular to the magnetic field, giving rise to large temperature anisotropy with T⊥ ≫ T∥, in agreement with SoHO observations. Such a model is tested here by means of a one dimensional test particle simulation where ions are launched toward electric and magnetic profiles representing the shock transition. We study the dynamics of O5+, as representative of coronal heavy ions for Alfvénic Mach numbers of 2-4, as appropriate to solar corona. It is found that O5+ ions are easily reflected and gain more than mass proportional energy with respect to protons.

  10. Sorption properties of algae Spirogyra sp. and their use for determination of heavy metal ions concentrations in surface water.

    PubMed

    Rajfur, Małgorzata; Kłos, Andrzej; Wacławek, Maria

    2010-11-01

    Kinetics of heavy-metal ions sorption by alga Spirogyra sp. was evaluated experimentally in the laboratory, using both the static and the dynamic approach. The metal ions--Mn(2+), Cu(2+), Zn(2+) and Cd(2+)--were sorbed from aqueous solutions of their salts. The static experiments showed that the sorption equilibria were attained in 30 min, with 90-95% of metal ions sorbed in first 10 min of each process. The sorption equilibria were approximated with the Langmuir isotherm model. The algae sorbed each heavy metal ions proportionally to the amount of this metal ions in solution. The experiments confirmed that after 30 min of exposition to contaminated water, the concentration of heavy metal ions in the algae, which initially contained small amounts of these metal ions, increased proportionally to the concentration of metal ions in solution. The presented results can be used for elaboration of a method for classification of surface waters that complies with the legal regulations. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Application and development of ion-source technology for radiation-effects testing of electronics

    NASA Astrophysics Data System (ADS)

    Kalvas, T.; Javanainen, A.; Kettunen, H.; Koivisto, H.; Tarvainen, O.; Virtanen, A.

    2017-09-01

    Studies of heavy-ion induced single event effect (SEE) on space electronics are necessary to verify the operation of the components in the harsh radiation environment. These studies are conducted by using high-energy heavy-ion beams to simulate the radiation effects in space. The ion beams are accelerated as so-called ion cocktails, containing several ion beam species with similar mass-to-charge ratio, covering a wide range of linear energy transfer (LET) values also present in space. The use of cocktails enables fast switching between beam species during testing. Production of these high-energy ion cocktails poses challenging requirements to the ion sources because in most laboratories reaching the necessary beam energies requires very high charge state ions. There are two main technologies producing these beams: The electron beam ion source EBIS and the electron cyclotron resonance ion source ECRIS. The EBIS is most suitable for pulsed accelerators, while ECRIS is most suitable for use with cyclotrons, which are the most common accelerators used in these applications. At the Accelerator Laboratory of the University of Jyväskylä (JYFL), radiation effects testing is currently performed using a K130 cyclotron and a 14 GHz ECRIS at a beam energy of 9.3 MeV/u. A new 18 GHz ECRIS, pushing the limits of the normal conducting ECR technology is under development at JYFL. The performances of existing 18 GHz ion sources have been compared, and based on this analysis, a 16.2 MeV/u beam cocktail with 1999 MeV 126Xe44+ being the most challenging component to has been chosen for development at JYFL. The properties of the suggested beam cocktail are introduced and discussed.

  12. Treatment planning for heavy ion radiotherapy: clinical implementation and application.

    PubMed

    Jäkel, O; Krämer, M; Karger, C P; Debus, J

    2001-04-01

    The clinical implementation and application of a novel treatment planning system (TPS) for scanned ion beams is described, which is in clinical use for carbon ion treatments at the German heavy ion facility (GSI). All treatment plans are evaluated on the basis of biologically effective dose distributions. For therapy control, in-beam positron emission tomography (PET) and an online monitoring system for the beam intensity and position are used. The absence of a gantry restricts the treatment plans to horizontal beams. Most of the treatment plans consist of two nearly opposing lateral fields or sometimes orthogonal fields. In only a very few cases a single beam was used. For patients with very complex target volumes lateral and even distal field patching techniques were applied. Additional improvements can be achieved when the patient's head is fixed in a tilted position, in order to achieve sparing of the organs at risk. In order to test the stability of dose distributions in the case of patient misalignments we routinely simulate the effects of misalignments for patients with critical structures next to the target volume. The uncertainties in the range calculation are taken into account by a margin around the target volume of typically 2-3 mm, which can, however, be extended if the simulation demonstrates larger deviations. The novel TPS developed for scanned ion beams was introduced into clinical routine in December 1997 and was used for the treatment planning of 63 patients with head and neck tumours until July 2000. Planning strategies and methods were developed for this tumour location that facilitate the treatment of a larger number of patients with the scanned heavy ion beam in a clinical setting. Further developments aim towards a simultaneous optimization of the treatment field intensities and more effective procedures for the patient set-up. The results demonstrate that ion beams can be integrated into a clinical environment for treatment planning and delivery.

  13. Beam dynamics in heavy ion induction LINACS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, L.

    1981-10-01

    Interest in the use of an induction linac to accelerate heavy ions for the purpose of providing the energy required to initiate an inertially confined fusion reaction has stimulated a theoretical effort to investigate various beam dynamical effects associated with high intensity heavy ion beams. This paper presents a summary of the work that has been done so far; transverse, longitudinal and coupled longitudinal transverse effects are discussed.

  14. Examining nonextensive statistics in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Simon, A.; Wolschin, G.

    2018-04-01

    We show in detailed numerical solutions of the nonlinear Fokker-Planck equation (FPE), which has been associated with nonextensive q statistics, that the available data on rapidity distributions for stopping in relativistic heavy-ion collisions cannot be reproduced with any permitted value of the nonextensivity parameter (1

  15. Influences of hydrological regime on heavy metal and salt ion concentrations in intertidal sediment from Chongming Dongtan, Changjiang River estuary, China

    NASA Astrophysics Data System (ADS)

    Zhao, Jiale; Gao, Xiaojiang; Yang, Jin

    2017-11-01

    The tidal flat along the Changjiang (Yangtze) River estuary has long been reclaimed for the agricultural purposes, with the prevailing hydrological conditions during such pedogenic transformations being of great importance to their successful development. In this study, samples of surface sediment from Chongming Dongtan, situated at the mouth of the Changjiang River estuary, were collected and analyzed in order to understand how hydrological management can influence the concentrations of heavy metals and salt ions in pore water, and chemical fractionation of heavy metals during the reclamation process. We performed a series of experiments that simulated three different hydrological regimes: permanent flooding (R1), alternative five-day periods of wetting and drying (R2), continuous field capacity (R3). Our results exhibited good Pearson correlations coefficients between heavy metals and salt ions in the pore water for both R1 and R2. In particular, the concentrations of salt ions in the pore water decreased in all three regimes, but showed the biggest decline in R2. With this R2 experiment, the periodic concentration patterns in the pore water varied for Fe and Mn, but not for Cr, Cu, Pb and Zn. Neither the fractionation of Ni nor the residual fractions of any metals changed significantly in any regime. In R1, the reducible fractions of heavy metals (Cr, Cu, Zn and Pb) in the sediment decreased, while the acid extractable fractions increased. In R2, the acid extractable and the reducible fractions of Cr, Cu, Zn and Pb both decreased, as did the oxidizable fraction of Cu. These data suggest that an alternating hydrological regime can reduce both salinity and the availability of heavy metals in sediments.

  16. Heavy Ion Microbeam and Broadbeam Transients in SiGe HBTs

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Reed, Robert A.; McMorrow, Dale; Vizkelethy, Gyorgy; Dodd, Paul E.; Ferlet-Cavrois, Veronique; Baggio, Jacques; Paillet, Philippe; Duhamel, Olivier; Phillips, Stanley D.; hide

    2009-01-01

    SiGe HBT heavy ion current transients are measured using microbeam and both high- and low-energy broadbeam sources. These new data provide detailed insight into the effects of ion range, LET, and strike location.

  17. Fully nonlinear heavy ion-acoustic solitary waves in astrophysical degenerate relativistic quantum plasmas

    NASA Astrophysics Data System (ADS)

    Sultana, S.; Schlickeiser, R.

    2018-05-01

    Fully nonlinear features of heavy ion-acoustic solitary waves (HIASWs) have been investigated in an astrophysical degenerate relativistic quantum plasma (ADRQP) containing relativistically degenerate electrons and non-relativistically degenerate light ion species, and non-degenerate heavy ion species. The pseudo-energy balance equation is derived from the fluid dynamical equations by adopting the well-known Sagdeev-potential approach, and the properties of arbitrary amplitude HIASWs are examined. The small amplitude limit for the propagation of HIASWs is also recovered. The basic features (width, amplitude, polarity, critical Mach number, speed, etc.) of HIASWs are found to be significantly modified by the relativistic effect of the electron species, and also by the variation of the number density of electron, light ion, and heavy ion species. The basic properties of HIASWs, that may propagated in some realistic astrophysical plasma systems (e.g., in white dwarfs), are briefly discussed.

  18. NICA project at JINR: status and prospects

    NASA Astrophysics Data System (ADS)

    Kekelidze, V. D.

    2017-06-01

    The project NICA (Nuclotron-based Ion Collider fAcility) is aimed to study hot and dense baryonic matter in heavy-ion collisions in the energy range up to 11.0 AGeV . The plan of NICA accelerator block development includes an upgrade of the existing superconducting (SC) synchrotron Nuclotron and construction of the new injection complex, SC Booster, and SC Collider with two interaction points (IP). The heavy-ion collision program will be performed with the fixed target experiment Baryonic Matter at Nuclotron (BM@N) at the beam extracted from the Nuclotron, and with Multi-Purpose Detector (MPD) at the first IP of NICA Collider. Investigation of nucleon spin structure and polarization phenomena is foreseen with the Spin Physics Detector (SPC) at the second IP of the Collider.

  19. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited).

    PubMed

    Zhao, H Y; Zhang, J J; Jin, Q Y; Liu, W; Wang, G C; Sun, L T; Zhang, X Z; Zhao, H W

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10(13) W cm(-2) in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  20. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, H. Y., E-mail: zhaohy@impcas.ac.cn; Zhang, J. J.; Jin, Q. Y.

    2016-02-15

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production ofmore » highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10{sup 13} W cm{sup −2} in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.« less

  1. Bio-recovery of non-essential heavy metals by intra- and extracellular mechanisms in free-living microorganisms.

    PubMed

    García-García, Jorge D; Sánchez-Thomas, Rosina; Moreno-Sánchez, Rafael

    2016-01-01

    Free-living microorganisms may become suitable models for recovery of non-essential and essential heavy metals from wastewater bodies and soils by using and enhancing their accumulating and/or leaching abilities. This review analyzes the variety of different mechanisms developed mainly in bacteria, protists and microalgae to accumulate heavy metals, being the most relevant those involving phytochelatin and metallothionein biosyntheses; phosphate/polyphosphate metabolism; compartmentalization of heavy metal-complexes into vacuoles, chloroplasts and mitochondria; and secretion of malate and other organic acids. Cyanide biosynthesis for extra-cellular heavy metal bioleaching is also examined. These metabolic/cellular processes are herein analyzed at the transcriptional, kinetic and metabolic levels to provide mechanistic basis for developing genetically engineered microorganisms with greater capacities and efficiencies for heavy metal recovery, recycling of heavy metals, biosensing of metal ions, and engineering of metalloenzymes. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Physics Division annual review, 1 April 1980-31 March 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-06-01

    Progress in nuclear physics research is reported in the following areas: medium-energy physics (pion reaction mechanisms, high-resolution studies and nuclear structure, and two-nucleon physics with pions and electrons); heavy-ion research at the tandem and superconducting linear accelerator (resonant structure in heavy-ion reactions, fusion cross sections, high angular momentum states in nuclei, and reaction mechanisms and distributions of reaction strengths); charged-particle research; neutron and photonuclear physics; theoretical physics (heavy-ion direct-reaction theory, nuclear shell theory and nuclear structure, nuclear matter and nuclear forces, intermediate-energy physics, microscopic calculations of high-energy collisions of heavy ions, and light ion direct reactions); the superconducting linac; acceleratormore » operations; and GeV electron linac. Progress in atomic and molecular physics research is reported in the following areas: dissociation and other interactions of energetic molecular ions in solid and gaseous targets, beam-foil research and collision dynamics of heavy ions, photoionization- photoelectron research, high-resolution laser rf spectroscopy with atomic and molecular beams, moessbauer effect research, and theoretical atomic physics. Studies on interactions of energetic particles with solids are also described. Publications are listed. (WHK)« less

  3. Incorporation of the statistical multi-fragmentation model in PHITS and its application for simulation of fragmentation by heavy ions and protons

    NASA Astrophysics Data System (ADS)

    Ogawa, Tatsuhiko; Sato, Tatsuhiko; Hashimoto, Shintaro; Niita, Koji

    2014-06-01

    The fragmentation reactions of relativistic-energy nucleus-nucleus and proton-nucleus collisions were simulated using the Statistical Multi-fragmentation Model (SMM) incorporated with the Particle and Heavy Ion Transport code System (PHITS). The comparisons of calculated cross-sections with literature data showed that PHITS-SMM predicts the fragmentation cross-sections of heavy nuclei up to two orders of magnitude more accurately than PHITS for heavy-ion-induced reactions. For proton-induced reactions, noticeable improvements are observed for interactions of the heavy target with protons at an energy greater than 1 GeV. Therefore, consideration for multi-fragmentation reactions is necessary for the accurate simulation of energetic fragmentation reactions of heavy nuclei.

  4. Transmission measurement based on STM observation to detect the penetration depth of low-energy heavy ions in botanic samples.

    PubMed

    Liu, Feng; Wang, Yugang; Xue, Jianming; Wang, Sixue; Du, Guanhua; Zhao, Weijiang

    2003-02-01

    The penetration depth of low-energy heavy ions in botanic samples was detected with a new transmission measurement. In the measurement, highly oriented pyrolytic graphite (HOPG) pieces were placed behind the botanic samples with certain thickness. During the irradiation of heavy ions with energy of tens of keV, the energetic particles transmitted from those samples were received by the HOPG pieces. After irradiation, scanning tunneling microscope (STM) was applied to observe protrusion-like damage induced by these transmitted ions on the surface of the HOPG. The statistical average number density of protrusions and the minimum transmission rate of the low-energy heavy ions can be obtained. The detection efficiency of the new method for low-energy heavy ions was about 0.1-1 and the background in the measurement can be reduced to as low as 1.0 x 10(8) protrusions/cm2. With this method, the penetration depth of the energetic particles was detected to be no less than 60 micrometers in kidney bean slices when the slices were irradiated by 100 keVAr+ ion at the fluence of 5 x 10(16) ions/cm2. c2002 Elsevier Science Ltd. All rights reserved.

  5. Transmission measurement based on STM observation to detect the penetration depth of low-energy heavy ions in botanic samples

    NASA Technical Reports Server (NTRS)

    Liu, Feng; Wang, Yugang; Xue, Jianming; Wang, Sixue; Du, Guanhua; Zhao, Weijiang

    2003-01-01

    The penetration depth of low-energy heavy ions in botanic samples was detected with a new transmission measurement. In the measurement, highly oriented pyrolytic graphite (HOPG) pieces were placed behind the botanic samples with certain thickness. During the irradiation of heavy ions with energy of tens of keV, the energetic particles transmitted from those samples were received by the HOPG pieces. After irradiation, scanning tunneling microscope (STM) was applied to observe protrusion-like damage induced by these transmitted ions on the surface of the HOPG. The statistical average number density of protrusions and the minimum transmission rate of the low-energy heavy ions can be obtained. The detection efficiency of the new method for low-energy heavy ions was about 0.1-1 and the background in the measurement can be reduced to as low as 1.0 x 10(8) protrusions/cm2. With this method, the penetration depth of the energetic particles was detected to be no less than 60 micrometers in kidney bean slices when the slices were irradiated by 100 keVAr+ ion at the fluence of 5 x 10(16) ions/cm2. c2002 Elsevier Science Ltd. All rights reserved.

  6. Heavy-ion conformal irradiation in the shallow-seated tumor therapy terminal at HIRFL.

    PubMed

    Li, Qiang; Dai, Zhongying; Yan, Zheng; Jin, Xiaodong; Liu, Xinguo; Xiao, Guoqing

    2007-11-01

    Basic research related to heavy-ion cancer therapy has been done at the Institute of Modern Physics (IMP), Chinese Academy of Sciences since 1995. Now a plan of clinical trial with heavy ions has been launched at IMP. First, superficially placed tumor treatment with heavy ions is expected in the therapy terminal at the Heavy Ion Research Facility in Lanzhou (HIRFL), where carbon ion beams with energy up to 100 MeV/u can be supplied. The shallow-seated tumor therapy terminal at HIRFL is equipped with a passive beam delivery system including two orthogonal dipole magnets, which continuously scan pencil beams laterally and generate a broad and uniform irradiation field, a motor-driven energy degrader and a multi-leaf collimator. Two different types of range modulator, ripple filter and ridge filter with which Guassian-shaped physical dose and uniform biological effective dose Bragg peaks can be shaped for therapeutic ion beams respectively, have been designed and manufactured. Therefore, two-dimensional and three-dimensional conformal irradiations to tumors can be performed with the passive beam delivery system at the earlier therapy terminal. Both the conformal irradiation methods have been verified experimentally and carbon-ion conformal irradiations to patients with superficially placed tumors have been carried out at HIRFL since November 2006.

  7. Benchmarking of Neutron Production of Heavy-Ion Transport Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remec, Igor; Ronningen, Reginald M.; Heilbronn, Lawrence

    Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models andmore » codes and additional benchmarking are required.« less

  8. Benchmarking of Heavy Ion Transport Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remec, Igor; Ronningen, Reginald M.; Heilbronn, Lawrence

    Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in designing and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models andmore » codes and additional benchmarking are required.« less

  9. Effects of bulk viscosity and hadronic rescattering in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Sangwook; Paquet, Jean-Francois; Shen, Chun

    Here, we describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. Finally, we further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.

  10. Swift Heavy Ions in Matter

    NASA Astrophysics Data System (ADS)

    Rothard, Hermann; Severin, Daniel; Trautmann, Christina

    2015-12-01

    The present volume contains the proceedings of the Ninth International Symposium on Swift Heavy Ions in Matter (SHIM). This conference was held in Darmstadt, from 18 to 21 May 2015. SHIM is a triennial series, which started about 25 years ago by a joint initiative of CIRIL - Caen and GSI - Darmstadt, with the aim of promoting fundamental and applied interdisciplinary research in the field of high-energy, heavy-ion interaction processes with matter. SHIM was successively organized in Caen (1989), Bensheim (1992), Caen (1995), Berlin (1998), Catania (2002), Aschaffenburg (2005), Lyon (2008), and Kyoto (2012). The conference attracts scientists from many different fields using high-energy heavy ions delivered by large accelerator facilities and characterized by strong and short electronic excitations.

  11. Effects of bulk viscosity and hadronic rescattering in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    DOE PAGES

    Ryu, Sangwook; Paquet, Jean-Francois; Shen, Chun; ...

    2018-03-15

    Here, we describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. Finally, we further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.

  12. Study of the heavy ion bunch compression in CSRm

    NASA Astrophysics Data System (ADS)

    Yin, Da-Yu; Liu, Yong; Yuan, You-Jing; Yang, Jian-Cheng; Li, Peng; Li, Jie; Chai, Wei-Ping; Sha, Xiao-Ping

    2013-05-01

    The feasibility of attaining nanosecond pulse length heavy ion beam is studied in the main ring (CSRm) of the Heavy Ion Research Facility in Lanzhou. Such heavy ion beam can be produced by non-adiabatic compression, and it is implemented by a fast rotation in the longitudinal phase space. In this paper, the possible beam parameters during longitudinal bunch compression are studied with the envelope model and Particle in Cell simulation, and the results are compared. The result shows that the short bunch 238U28+ with the pulse duration of about 50 ns at the energy of 200 MeV/u can be obtained which can satisfy the research of high density plasma physics experiment.

  13. Means for obtaining a metal ion beam from a heavy-ion cyclotron source

    DOEpatents

    Hudson, E.D.; Mallory, M.L.

    1975-08-01

    A description is given of a modification to a cyclotron ion source used in producing a high intensity metal ion beam. A small amount of an inert support gas maintains the usual plasma arc, except that it is necessary for the support gas to have a heavy mass, e.g., xenon or krypton as opposed to neon. A plate, fabricated from the metal (or anything that can be sputtered) to be ionized, is mounted on the back wall of the ion source arc chamber and is bombarded by returning energetic low-charged gas ions that fail to cross the initial accelerating gap between the ion source and the accelerating electrode. Some of the atoms that are dislodged from the plate by the returning gas ions become ionized and are extracted as a useful beam of heavy ions. (auth)

  14. Electron cyclotron resonance ion source experience at the Heidelberg Ion Beam Therapy Centera)

    NASA Astrophysics Data System (ADS)

    Winkelmann, T.; Cee, R.; Haberer, T.; Naas, B.; Peters, A.; Scheloske, S.; Spädtke, P.; Tinschert, K.

    2008-02-01

    Radiotherapy with heavy ions is an upcoming cancer treatment method with to date unparalleled precision. It associates higher control rates particularly for radiation resistant tumor species with reduced adverse effects compared to conventional photon therapy. The accelerator beam lines and structures of the Heidelberg Ion Beam Therapy Center (HIT) have been designed under the leadership of GSI, Darmstadt with contributions of the IAP Frankfurt. Currently, the accelerator is under commissioning, while the injector linac has been completed. When the patient treatment begins in 2008, HIT will be the first medical heavy ion accelerator in Europe. This presentation will provide an overview about the project, with special attention given to the 14.5GHz electron cyclotron resonance (ECR) ion sources in operation with carbon, hydrogen, helium, and oxygen, and the experience of one year of continuous operation. It also displays examples for beam emittances, measured in the low energy beam transport. In addition to the outlook of further developments at the ECR ion sources for a continuously stable operation, this paper focuses on some of the technical processings of the past year.

  15. Holography and off-center collisions of localized shock waves

    DOE PAGES

    Chesler, Paul M.; Yaffe, Laurence G.

    2015-10-12

    Using numerical holography, we study the collision, at non-zero impact parameter, of bounded, localized distributions of energy density chosen to mimic relativistic heavy ion collisions, in strongly coupled N=4 supersymmetric Yang-Mills theory. Both longitudinal and transverse dynamics in the dual field theory are properly described. Using the gravitational description, we solve 5D Einstein equations with no dimensionality reducing symmetry restrictions to find the asymptotically anti-de Sitter spacetime geometry. Here, the implications of our results on the understanding of early stages of heavy ion collisions, including the development of transverse radial flow, are discussed.

  16. Kinetic Properties of Solar Wind Silicon and Iron Ions

    NASA Astrophysics Data System (ADS)

    Janitzek, N. P.; Berger, L.; Drews, C.; Wimmer-Schweingruber, R. F.

    2017-12-01

    Heavy ions with atomic numbers Z>2 account for less than one percent of the solar wind ions. However, serving as test particles with differing mass and charge, they provide a unique experimental approach to major questions of solar and fundamental plasma physics such as coronal heating, the origin and acceleration of the solar wind and wave-particle interaction in magnetized plasma. Yet the low relative abundances of the heavy ions pose substantial challenges to the instrumentation measuring these species with reliable statistics and sufficient time resolution. As a consequence the numbers of independent measurements and studies are small. The Charge Time-Of-Flight (CTOF) mass spectrometer as part of the Charge, ELement and Isotope Analysis System (CELIAS) onboard the SOlar and Heliospheric Observatory (SOHO) is a linear time-of-flight mass spectrometer which was operated at Lagrangian point L1 in 1996 for a few months only, before it suffered an instrument failure. Despite its short operation time, the CTOF sensor measured solar wind heavy ions with excellent charge state separation, an unprecedented cadence of 5 minutes and very high counting statistics, exceeding similar state-of-the-art instruments by a factor of ten. In contrast to earlier CTOF studies which were based on reduced onboard post-processed data, in our current studies we use raw Pulse Height Analysis (PHA) data providing a significantly increased mass, mass-per-charge and velocity resolution. Focussing on silicon and iron ion measurements, we present an overview of our findings on (1) short time behavior of heavy ion 1D radial velocity distribution functions, (2) differential streaming between heavy ions and solar wind bulk protons, (3) kinetic temperatures of heavy ions. Finally, we compare the CTOF results with measurements of the Solar Wind Ion Composition Spectrometer (SWICS) instrument onboard the Advanced Composition Explorer (ACE).

  17. Comprehensive identification of mutations induced by heavy-ion beam irradiation in Arabidopsis thaliana.

    PubMed

    Hirano, Tomonari; Kazama, Yusuke; Ishii, Kotaro; Ohbu, Sumie; Shirakawa, Yuki; Abe, Tomoko

    2015-04-01

    Heavy-ion beams are widely used for mutation breeding and molecular biology. Although the mutagenic effects of heavy-ion beam irradiation have been characterized by sequence analysis of some restricted chromosomal regions or loci, there have been no evaluations at the whole-genome level or of the detailed genomic rearrangements in the mutant genomes. In this study, using array comparative genomic hybridization (array-CGH) and resequencing, we comprehensively characterized the mutations in Arabidopsis thaliana genomes irradiated with Ar or Fe ions. We subsequently used this information to investigate the mutagenic effects of the heavy-ion beams. Array-CGH demonstrated that the average number of deleted areas per genome were 1.9 and 3.7 following Ar-ion and Fe-ion irradiation, respectively, with deletion sizes ranging from 149 to 602,180 bp; 81% of the deletions were accompanied by genomic rearrangements. To provide a further detailed analysis, the genomes of the mutants induced by Ar-ion beam irradiation were resequenced, and total mutations, including base substitutions, duplications, in/dels, inversions, and translocations, were detected using three algorithms. All three resequenced mutants had genomic rearrangements. Of the 22 DNA fragments that contributed to the rearrangements, 19 fragments were responsible for the intrachromosomal rearrangements, and multiple rearrangements were formed in the localized regions of the chromosomes. The interchromosomal rearrangements were detected in the multiply rearranged regions. These results indicate that the heavy-ion beams led to clustered DNA damage in the chromosome, and that they have great potential to induce complicated intrachromosomal rearrangements. Heavy-ion beams will prove useful as unique mutagens for plant breeding and the establishment of mutant lines. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  18. Nonresonant interaction of heavy ions with electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Gendrin, R.

    1985-01-01

    The motion of a heavy ion in the presence of an intense ultralow-frequency electromagnetic wave propagating along the dc magnetic field is analyzed. Starting from the basic equations of motion and from their associated two invariants, the heavy ion velocity-space trajectories are drawn. It is shown that after a certain time, particles whose initial phase angles are randomly distributed tend to bunch together, provided that the wave intensity b-sub-1 is sufficiently large. The importance of these results for the interpretation of the recently observed acceleration of singly charged He ions in conjunction with the occurrence of large-amplitude ion cyclotron waves in the equatorial magnetosphere is discussed.

  19. Heavy quark energy loss in high multiplicity proton-proton collisions at the LHC.

    PubMed

    Vogel, Sascha; Gossiaux, Pol Bernard; Werner, Klaus; Aichelin, Jörg

    2011-07-15

    One of the most promising probes to study deconfined matter created in high energy nuclear collisions is the energy loss of (heavy) quarks. It has been shown in experiments at the Relativistic Heavy Ion Collider that even charm and bottom quarks, despite their high mass, experience a remarkable medium suppression in the quark gluon plasma. In this exploratory investigation we study the energy loss of heavy quarks in high multiplicity proton-proton collisions at LHC energies. Although the colliding systems are smaller than compared to those at the Relativistic Heavy Ion Collider (p+p vs Au+Au), the higher energy might lead to multiplicities comparable to Cu+Cu collisions at the Relativistic Heavy Ion Collider. The interaction of charm quarks with this environment gives rise to a non-negligible suppression of high momentum heavy quarks in elementary collisions.

  20. Essential oils and metal ions as alternative antimicrobial agents: a focus on tea tree oil and silver.

    PubMed

    Low, Wan-Li; Kenward, Ken; Britland, Stephen T; Amin, Mohd Cim; Martin, Claire

    2017-04-01

    The increasing occurrence of hospital-acquired infections and the emerging problems posed by antibiotic-resistant microbial strains have both contributed to the escalating cost of treatment. The presence of infection at the wound site can potentially stall the healing process at the inflammatory stage, leading to the development of a chronic wound. Traditional wound treatment regimes can no longer cope with the complications posed by antibiotic-resistant strains; hence, there is a need to explore the use of alternative antimicrobial agents. Pre-antibiotic compounds, including heavy metal ions and essential oils, have been re-investigated for their potential use as effective antimicrobial agents. Essential oils have potent antimicrobial, antifungal, antiviral, anti-inflammatory, antioxidant and other beneficial therapeutic properties. Similarly, heavy metal ions have also been used as disinfecting agents because of their broad spectrum activities. Both of these alternative antimicrobials interact with many different intracellular components, thereby resulting in the disruption of vital cell functions and eventually cell death. This review will discuss the application of essential oils and heavy metal ions, particularly tea tree oil and silver ions, as alternative antimicrobial agents for the treatment of chronic, infected wounds. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  1. Late degeneration in rabbit tissues after irradiation by heavy ions

    NASA Technical Reports Server (NTRS)

    Lett, J. T.; Cox, A. B.; Keng, P. C.; Lee, A. C.; Su, C. M.; Bergtold, D. S.

    1980-01-01

    Results are presented for investigations of the late effects of heavy-ion irradiation on rabbit tissues which were undertaken to assess the hazards associated with the long-term exposure of humans to heavy ions in space during such activities as the construction of solar power stations or voyages to Mars. White rabbits approximately six weeks old were exposed to various doses of collimated beams of 400-MeV/n Ne ions, 570 MeV/n Ar ions and Co-60 gamma rays directed through both eyes, and the responses of the various tissues (hair follicles, skin, cornea, lens, retina, Harderian glands, bone and forebrain) were examined. Proliferating tissues are found to exhibit high damage levels in the early and late periods following irradiation, while terminally differentiating tissues repond to radiation most intensely in the late period, years after irradiation, with no intermediate recovery. The results obtained from rabbits are used to predict the occurrence of late tissue degeneration in the central nervous system, terminally differentiating systems and stem cells of humans one or more decades following exposure to radiation levels anticipated during long-duration space flights. The studies also indicate that tissues may be prematurely aged in the sense that tissue life spans may be shortened without the development of malignancies.

  2. The GOES-16 Energetic Heavy Ion Instrument Proton and Helium Fluxes for Space Weather Applications

    NASA Astrophysics Data System (ADS)

    Connell, J. J.; Lopate, C.

    2017-12-01

    The Energetic Heavy Ion Sensor (EHIS) was built by the University of New Hampshire, subcontracted to Assurance Technology Corporation, as part of the Space Environmental In-Situ Suite (SEISS) on the new GOES-16 satellite, in geostationary Earth orbit. The EHIS measures energetic ions in space over the range 10-200 MeV for protons, and energy ranges for heavy ions corresponding to the same stopping range. Though an operational satellite instrument, EHIS will supply high quality data for scientific studies. For the GOES Level 1-B and Level 2 data products, protons and helium are distinguished in the EHIS using discriminator trigger logic. Measurements are provided in five energy bands. The instrumental cadence of these rates is 3 seconds. However, the primary Level 1-B proton and helium data products are 1-minute and 5-minute averages. The data latency is 1 minute, so data products can be used for real-time predictions as well as general science studies. Protons and helium, comprising approximately 99% of all energetic ions in space are of great importance for Space Weather predictions. We discuss the preliminary EHIS proton and helium data results and their application to Space Weather. The EHIS instrument development project was funded by NASA under contract NNG06HX01C.

  3. Nanoporous Block Polymer Thin Films Functionalized with Bio-Inspired Ligands for the Efficient Capture of Heavy Metal Ions from Water.

    PubMed

    Weidman, Jacob L; Mulvenna, Ryan A; Boudouris, Bryan W; Phillip, William A

    2017-06-07

    Heavy metal contamination of water supplies poses a serious threat to public health, prompting the development of novel and sustainable treatment technologies. One promising approach is to molecularly engineer the chemical affinity of a material for the targeted removal of specific molecules from solution. In this work, nanoporous polymer thin films generated from tailor-made block polymers were functionalized with the bio-inspired moieties glutathione and cysteamine for the removal of heavy metal ions, including lead and cadmium, from aqueous solutions. In a single equilibrium stage, the films achieved removal rates of the ions in excess of 95%, which was consistent with predictions based on the engineered material properties. In a flow-through configuration, the thin films achieved an even greater removal rate of the metal ions. Furthermore, in mixed ion solutions the capacity of the thin films, and corresponding removal rates, did not demonstrate any reduction due to competitive adsorption effects. After such experiments the material was repeatedly regenerated quickly with no observed loss in capacity. Thus, these membranes provide a sustainable platform for the efficient purification of lead- and cadmium-contaminated water sources to safe levels. Moreover, their straightforward chemical modifications suggest that they could be engineered to treat sources containing other recalcitrant environmental contaminants as well.

  4. [Biological activity of selenorganic compounds at heavy metal salts intoxication].

    PubMed

    Rusetskaya, N Y; Borodulin, V B

    2015-01-01

    Possible mechanisms of the antitoxic action of organoselenium compounds in heavy metal poisoning have been considered. Heavy metal toxicity associated with intensification of free radical oxidation, suppression of the antioxidant system, damage to macromolecules, mitochondria and the genetic material can cause apoptotic cell death or the development of carcinogenesis. Organic selenium compounds are effective antioxidants during heavy metal poisoning; they exhibit higher bioavailability in mammals than inorganic ones and they are able to activate antioxidant defense, bind heavy metal ions and reactive oxygen species formed during metal-induced oxidative stress. One of promising organoselenium compounds is diacetophenonyl selenide (DAPS-25), which is characterized by antioxidant and antitoxic activity, under conditions including heavy metal intoxication.

  5. A deterministic electron, photon, proton and heavy ion transport suite for the study of the Jovian moon Europa

    NASA Astrophysics Data System (ADS)

    Badavi, Francis F.; Blattnig, Steve R.; Atwell, William; Nealy, John E.; Norman, Ryan B.

    2011-02-01

    A Langley research center (LaRC) developed deterministic suite of radiation transport codes describing the propagation of electron, photon, proton and heavy ion in condensed media is used to simulate the exposure from the spectral distribution of the aforementioned particles in the Jovian radiation environment. Based on the measurements by the Galileo probe (1995-2003) heavy ion counter (HIC), the choice of trapped heavy ions is limited to carbon, oxygen and sulfur (COS). The deterministic particle transport suite consists of a coupled electron photon algorithm (CEPTRN) and a coupled light heavy ion algorithm (HZETRN). The primary purpose for the development of the transport suite is to provide a means to the spacecraft design community to rapidly perform numerous repetitive calculations essential for electron, photon, proton and heavy ion exposure assessment in a complex space structure. In this paper, the reference radiation environment of the Galilean satellite Europa is used as a representative boundary condition to show the capabilities of the transport suite. While the transport suite can directly access the output electron and proton spectra of the Jovian environment as generated by the jet propulsion laboratory (JPL) Galileo interim radiation electron (GIRE) model of 2003; for the sake of relevance to the upcoming Europa Jupiter system mission (EJSM), the JPL provided Europa mission fluence spectrum, is used to produce the corresponding depth dose curve in silicon behind a default aluminum shield of 100 mils (˜0.7 g/cm2). The transport suite can also accept a geometry describing ray traced thickness file from a computer aided design (CAD) package and calculate the total ionizing dose (TID) at a specific target point within the interior of the vehicle. In that regard, using a low fidelity CAD model of the Galileo probe generated by the authors, the transport suite was verified versus Monte Carlo (MC) simulation for orbits JOI-J35 of the Galileo probe extended mission. For the upcoming EJSM mission with an expected launch date of 2020, the transport suite is used to compute the depth dose profile for the traditional aluminum silicon as a standard shield target combination, as well as simulating the shielding response of a high charge number (Z) material such as tantalum (Ta). Finally, a shield optimization algorithm is discussed which can guide the instrument designers and fabrication personnel with the choice of graded-Z shield selection and analysis.

  6. Reevaluation of secondary neutron spectra from thick targets upon heavy-ion bombardment

    NASA Astrophysics Data System (ADS)

    Satoh, D.; Kurosawa, T.; Sato, T.; Endo, A.; Takada, M.; Iwase, H.; Nakamura, T.; Niita, K.

    2007-12-01

    Previously published data of secondary neutron spectra from thick targets of C, Al, Cu and Pb bombarded with heavy ions from He to Xe are revised by using a new set of neutron-detection efficiency values for a liquid organic scintillator calculated with SCINFUL-QMD. Additional data have been measured for bombardment of C target by 400-MeV/nucleon C ions and 800-MeV/nucleon Si ions. The set of spectra are compared with the calculation results using a Monte-Carlo heavy-ion transport code, PHITS. It was found that PHITS is able to reproduce the secondary neutron spectra in a wide neutron-energy regime.

  7. Development of superconducting magnets for RAON 28 GHz ECR ion source.

    PubMed

    Heo, Jeongil; Choi, Sukjin; Kim, Yonghwan; Hong, In-Seok

    2016-02-01

    RAON, a 28 GHz electron cyclotron resonance ion source (ECR IS), was designed and tested as a Rare Isotope Science Project. It is expected that RAON would provide not only rare-isotope beams but also stable heavy ions ranging from protons to uranium. In order to obtain the steady heavy-ion beam required for ECR IS, we must use a 28 GHz microwave source as well as a high magnetic field. A superconducting magnet using a NbTi wire was designed and manufactured for producing the ECR IS and a test was conducted. In this paper, the design and fabrication of the superconducting magnet for the ECR IS are presented. Experimental results show that the quench current increases whenever quenching occurs, but it has not yet reached the designed current. The experiment is expected to reveal the ideal conditions required to reach the designed current.

  8. L Band EPR Tooth Dosimetry for Heavy Ion Irradiation

    PubMed Central

    Yamaguchi, Ichiro; Sato, Hitoshi; Kawamura, Hiraku; Hamano, Tsuyoshi; Yoshii, Hiroshi; Suda, Mitsuru; Miyake, Minoru; Kunugita, Naoki

    2016-01-01

    Electron Paramagnetic Resonance (EPR) tooth dosimetry is being developed as a device to rapidly assess large populations that were potentially exposed to radiation during a major radiation accident or terrorist event. While most exposures are likely to be due to fallout and therefore involve low linear energy transfer (LET) radiation, there is also a potential for exposures to high LET radiation, for which the effect on teeth has been less well characterized by EPR. Therefore, the aim of this paper is to acquire fundamental response curves for high LET radiation in tooth dosimetry using L band EPR. For this purpose, we exposed human teeth to high energy carbon ions using the heavy ion medical accelerator in Chiba at the National Institute of Radiological Sciences. The primary findings were that EPR signals for carbon ion irradiation were about one-tenth the amplitude of the response to the same dose of 150 kVp X-rays. PMID:27542817

  9. Self-Consistent Ring Current Modeling with Propagating Electromagnetic Ion Cyclotron Waves in the Presence of Heavy Ions

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.

    2006-01-01

    The self-consistent treatment of the RC ion dynamics and EMIC waves, which are thought to exert important influences on the ion dynamical evolution, is an important missing element in our understanding of the storm-and recovery-time ring current evolution. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt by EMIC wave scattering during a magnetic storm. That is why the modeling of EMIC waves is critical and timely issue in magnetospheric physics. To describe the RC evolution itself this study uses the ring current-atmosphere interaction model (RAM). RAM solves the gyration and bounce-averaged Boltzmann-Landau equation inside of geosynchronous orbit. Originally developed at the University of Michigan, there are now several branches of this model currently in use as describe by Liemohn namely those at NASA Goddard Space Flight Center This study will generalize the self-consistent theoretical description of RC ions and EMIC waves that has been developed by Khazanov and include the heavy ions and propagation effects of EMIC waves in the global dynamic of self-consistent RC - EMIC waves coupling. The results of our newly developed model that will be presented at GEM meeting, focusing mainly on the dynamic of EMIC waves and comparison of these results with the previous global RC modeling studies devoted to EMIC waves formation. We also discuss RC ion precipitations and wave induced thermal electron fluxes into the ionosphere.

  10. Interpretation of mutation induction by accelerated heavy ions in bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozubek, S.; Ryznar, L.; Horneck, G.

    In this report, a quantitative interpretation of mutation induction cross sections by heavy charged particles in bacterial cells is presented. The approach is based on the calculation of the fraction of energy deposited by indirect hits in the sensitive structure. In these events the particle does not pass through the sensitive volume, but this region is hit by {delta} rays. Four track structure models, developed by Katz, Chatterjee et al, Kiefer and Straaten and Kudryashov et al., respectively, were used for the calculations. With the latter two models, very good agreement of the calculations with experimental results on mutagenesis inmore » bacteria was obtained. Depending on the linear energy transfer (LET{infinity}) of the particles, two different modes of mutagenic action of heavy ions are distinguished: {open_quotes}{delta}-ray mutagenesis,{close_quotes} which is related to those radiation qualities that preferentially kill the cells in direct hits (LET{infinity} {ge} 100 keV/{mu}m), and {open_quotes}track core mutagenesis,{close_quotes} which arises from direct hits and is observed for lighter ions or ions with high energy (LET{infinity} {le} 100 keV/{mu}m). 37 refs., 6 figs., 1 tab.« less

  11. Heavy metal incorporated helium ion active hybrid non-chemically amplified resists: Nano-patterning with low line edge roughness

    NASA Astrophysics Data System (ADS)

    Reddy, Pulikanti Guruprasad; Thakur, Neha; Lee, Chien-Lin; Chien, Sheng-Wei; Pradeep, Chullikkattil P.; Ghosh, Subrata; Tsai, Kuen-Yu; Gonsalves, Kenneth E.

    2017-08-01

    Helium (He) ion lithography is being considered as one of the most promising and emerging technology for the manufacturing of next generation integrated circuits (ICs) at nanolevel. However, He-ion active resists are rarely reported. In this context, we are introducing a new non-chemically amplified hybrid resist (n-CAR), MAPDSA-MAPDST, for high resolution He-ion beam lithography (HBL) applications. In the resist architecture, 2.15 % antimony is incorporated as heavy metal in the form of antimonate. This newly developed resists has successfully used for patterning 20 nm negative tone features at a dose of 60 μC/cm2. The resist offered very low line edge roughness (1.27±0.31 nm) for 20 nm line features. To our knowledge, this is the first He-ion active hybrid resist for nanopatterning. The contrast (γ) and sensitivity (E0) of this resist were calculated from the contrast curve as 0.73 and 7.2 μC/cm2, respectively.

  12. U2 8 + -intensity record applying a H2 -gas stripper cell

    NASA Astrophysics Data System (ADS)

    Barth, Winfried; Adonin, Aleksey; Düllmann, Christoph E.; Heilmann, Manuel; Hollinger, Ralph; Jäger, Egon; Khuyagbaatar, Jadambaa; Krier, Joerg; Scharrer, Paul; Vormann, Hartmut; Yakushev, Alexander

    2015-04-01

    To meet the Facility for Antiproton and Ion Research science requirements higher beam intensity has to be achieved in the present GSI-accelerator complex. For this an advanced upgrade program for the UNILAC is ongoing. Stripping is a key technology for all heavy ion accelerators. For this an extensive research and development program was carried out to optimize for high brilliance heavy ion operation. After upgrade of the supersonic N2 -gas jet (2007), implementation of high current foil stripping (2011) and preliminary investigation of H2 -gas jet operation (2012), recently (2014) a new H2 -gas cell using a pulsed gas regime synchronized with arrival of the beam pulse has been developed. An obviously enhanced stripper gas density as well as a simultaneously reduced gas load for the pumping system result in an increased stripping efficiency, while the beam emittance remains the same. A new record intensity (7.8 emA) for 238U2 8 + beams at 1.4 MeV /u has been achieved applying the pulsed high density H2 stripper target to a high intensity 238U4 + beam from the VARIS ion source with a newly developed extraction system. The experimental results are presented in detail.

  13. Importance of ion energy on SEU in CMOS SRAMs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodd, P.E.; Shaneyfelt, M.R.; Sexton, F.W.

    1998-03-01

    The single-event upset (SEU) responses of 16 Kbit to 1 Mbit SRAMs irradiated with low and high-energy heavy ions are reported. Standard low-energy heavy ion tests appear to be sufficiently conservative for technologies down to 0.5 {micro}m.

  14. Characterization of the interaction between the heavy and light chains of bovine factor Va.

    PubMed

    Walker, F J

    1992-10-05

    Bovine factor Va has been previously been shown to consist of heavy (M(r) = 94,000) and light chains (M(r) = 81,000), that interact in a manner dependent upon the presence of either calcium or manganese ions. In an attempt to understand the mechanism of subunit interaction we have studied the effects of temperature and ions on factor Va stability. The rates of formation of factor Va from isolated chains and dissociation were temperature-dependent with an energy of activation of 6.2 and 1.3 kcal mol-1, respectively. The yield of factor Va from isolated chains was inversely related to the amount of time the chains were incubated at 4 degrees C. Incubation of individual chains revealed that the heavy chain is cold-labile, an effect that is reversible. Manganese ion was observed to prevent the conversion to the inactive form. High salt tends to stabilize the two-chain structure of factor Va, but is inhibitory to its formation from isolated chains. High concentrations of either manganese or calcium ions also inhibited reconstitution of activity. The light chain, in particular, was sensitive to the presence of manganese or calcium ion. Heavy chain that had been cleaved by activated protein C had a weakened interaction with the light chain, and the resulting complex had no procoagulant activity. Cooling of the heavy chain to 4 degrees C enhanced its intrinsic fluorescence. Manganese ion prevented some of this enhancement. The heavy chain fluorescence returned to the room temperature value with a half-life of approximately 10 min. In the presence of manganese ion relaxation was accelerated. The intrinsic fluorescence of activated protein C-cleaved heavy chain was not increased when the temperature was decreased. These data suggest that the heavy chain can exist in two forms. Elevated temperature converts it to a form that can bind ions and have a productive interaction with the light chain. However, conditions that prevent the heavy chain from combining with the light chain also stabilize the two subunit structure, suggesting that the high affinity of the complex is due to conformational changes that occur after chain interaction.

  15. Inactivation of individual Bacillus subtilis spores in dependence on their distance to single cosmic heavy ions.

    PubMed

    Facius, R; Reitz, G; Schafer, M

    1994-10-01

    For radiobiological experiments in space, designed to investigate biological effects of the heavy ions of the cosmic radiation field, a mandatory requirement is the possibility to spatially correlate the observed biological response of individual test organisms to the passage of single heavy ions. Among several undertakings towards this goal, the BIOSTACK experiments in the Apollo missions achieved the highest precision and therefore the most detailed information on this question. Spores of Bacillus subtilis as a highly radiation resistant and microscopically small test organism yielded these quantitative results. This paper will focus on experimental and procedural details, which must be included for an interpretation and a discussion of these findings in comparison to control experiments with accelerated heavy ions.

  16. Benchmarking of neutron production of heavy-ion transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remec, I.; Ronningen, R. M.; Heilbronn, L.

    Document available in abstract form only, full text of document follows: Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondarymore » neutron production. Results are encouraging; however, further improvements in models and codes and additional benchmarking are required. (authors)« less

  17. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    PubMed

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  18. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL (invited)a)

    NASA Astrophysics Data System (ADS)

    Zhao, H. W.; Sun, L. T.; Zhang, X. Z.; Guo, X. H.; Cao, Y.; Lu, W.; Zhang, Z. M.; Yuan, P.; Song, M. T.; Zhao, H. Y.; Jin, T.; Shang, Y.; Zhan, W. L.; Wei, B. W.; Xie, D. Z.

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6T at injection, 2.2T at extraction, and a radial sextupole field of 2.0T at plasma chamber wall. During the commissioning phase at 18GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5kW by two 18GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810eμA of O7+, 505eμA of Xe20+, 306eμA of Xe27+, and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  19. Compact Full-Field Ion Detector System for SmallSats Beyond LEO

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Clark, Pamela E.; McNeil, Roger R.

    2014-01-01

    NASA Glenn Research Center (GRC) is applying its expertise and facilities in harsh environment instrumentation to develop a Compact Full-Field Ion Detector System (CFIDS). The CFIDS is designed to be an extremely compact, low cost instrument, capable of being flown on a wide variety of deep space platforms, to provide multi-directional, comprehensive (composition, velocity, and direction) in-situ measurements of heavy ions in space plasma environments.

  20. Physics division progress report for period ending September 30 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livingston, A.B.

    1992-03-01

    This report discusses research being conducted at Oak Ridge National Laboratory in physics. The areas covered are: Holifield Heavy Ion Research Facility; low/medium energy nuclear physics; high energy experimental physics; the Unisor program; experimental atomic physics; laser and electro-optics lab; theoretical physics; compilations and evaluations; and radioactive ion beam development. (LSP)

  1. NOVEL POLY-GLUTAMIC ACID FUNCTIONALIZED MICROFILTRATION MEMBRANES FOR SORPTION OF HEAVY METALS AT HIGH CAPACITY

    EPA Science Inventory

    Various sorbent/ion exchange materials have been reported in the literature for metal ion entrapment. We have developed a highly innovative and new approach to obtain high metal pick-up utilizing poly-amino acids (poly-L-glutamic acid, 14,000 MW) covalently attached to membrane p...

  2. Characteristics of low energy ions in the Heavy Ions In Space (HIIS) experiment

    NASA Technical Reports Server (NTRS)

    Kleis, Thomas; Tylka, Allan J.; Boberg, Paul R.; Adams, James H., Jr.; Beahm, Lorraine P.

    1995-01-01

    We present preliminary data on heavy ions (Z greater than or equal to 10) detected in the topmost Lexan sheets of the track detector stacks of the Heavy Ions in space (HIIS) experiment (M0001) on LDEF. The energy interval covered by these observations varies with the element, with (for example) Ne observable at 18-100 MeV nuc and Fe at 45-200 MeV/nuc. All of the observed ions are at energies far below the geomagnetic cutoff for fully-ionized particles at the LDEF orbit. Above 50 MeV/nuc (where most of our observed particles are Fe), the ions arrive primarily from the direction of lowest geomagnetic cutoff. This suggests that these particles originate outside the magnetosphere from a source with a steeply-falling spectrum and may therefore be associated with solar energetic particle (SEP) events. Below 50 MeV/nuc, the distribution of arrival directions suggests that most of the observed heavy ions are trapped in the Earth's magnetic field. Preliminary analysis, however, shows that these trapped heavy ions have a very surprising composition: they include not only Ne and Ar, which are expected from the trapping of anomalous cosmic rays (ACR's), but also Mg and Si, which are not part of the anomalous component. Our preliminary analysis shows that trapped heavy ions at 12 less than or equal to Zeta less than or equal to 14 have a steeply-falling spectrum, similar to that reported by the Kiel experiment (exp 1,2,3) on LDEF (M0002) for trapped Ar and Fe at E less than 50 MeV/nuc. The trapped Mg, Si, and Fe may also be associated with SEP events, but the mechanism by which they have appeared to deep in the inner magnetosphere requires further theoretical investigation.

  3. Heavy-ion-induced sucrose radicals investigated using EPR and UV spectroscopy

    PubMed Central

    Nakagawa, Kouichi; Karakirova, Yordanka; Yordanov, Nicola D.

    2015-01-01

    The potential use of a sucrose dosimeter for estimating both linear energy transfer (LET) and the absorbed dose of heavy ion and X-ray radiation was investigated. The stable free radicals were produced when sucrose was irradiated with heavy ions, such as helium, carbon, silicon and neon ions, and when the X-ray radiation was similar to the obtained electron paramagnetic resonance (EPR) spectra, which were ∼7 mT wide and composed of several hyperfine structures. In addition, the total spin concentration resulting from heavy-ion irradiation increased linearly as the absorbed dose increased, and decreased logarithmically as the LET increased. These empirical relations imply that the LET at a certain dose can be determined from the spin concentration. For sucrose and alanine, both cross-sections following C-ion irradiation with a 50 Gy dose were ∼1.3 × 10−12 [μm2], taking into account the molecular size of the samples. The values of these cross-sections imply that multiple ionizing particles were involved in the production of stable radicals. Furthermore, UV absorbance at 267 nm of an aqueous solution of irradiated sucrose was found to linearly increase with increasing absorbed dose. Therefore, the EPR and UV results suggest that sucrose can be a useful dosimeter for heavy-ion irradiation. PMID:25480828

  4. Heavy Quark Correlations and J / Φ Production in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Niazi, Reza; Liu, Yunpeng; Ko, Che-Ming

    2014-09-01

    Quark Gluon Plasma (QGP), a phase of QCD matter, was the temporary state that all matter had in the universe microseconds after its creation, which has been produced in high energy nucleus-nucleus collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Normally being bound inside a proton or neutron, due to the strong nuclear force, the QGP is a hot ``soup'' of quarks and gluons that move relatively freely. QGP is still a very enigmatic state of matter; therefore, active work is being done in trying to understand what is left behind after this short-lived state of matter disintegrates. This includes the abundance of the charmonium meson that consists of a pair of heavy charm and anticharm quarks. In this study, a QGP simulation called the Parton Cascade Model is used with two different initial conditions to see if charm and anticharm quarks can create a charmonium meson in the expanding QGP. In the simulation, the charm quark pair is initially either correlated, with opposite momenta but same position, or uncorrelated, with random momenta and positions, within the QGP. Understanding the difference of the amount of charmonium mesons produced in these two conditions will be helpful in developing theoretical models for charmonium production in heavy ion collisions and thus determining the properties of QGP from experimental measurements. Quark Gluon Plasma (QGP), a phase of QCD matter, was the temporary state that all matter had in the universe microseconds after its creation, which has been produced in high energy nucleus-nucleus collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Normally being bound inside a proton or neutron, due to the strong nuclear force, the QGP is a hot ``soup'' of quarks and gluons that move relatively freely. QGP is still a very enigmatic state of matter; therefore, active work is being done in trying to understand what is left behind after this short-lived state of matter disintegrates. This includes the abundance of the charmonium meson that consists of a pair of heavy charm and anticharm quarks. In this study, a QGP simulation called the Parton Cascade Model is used with two different initial conditions to see if charm and anticharm quarks can create a charmonium meson in the expanding QGP. In the simulation, the charm quark pair is initially either correlated, with opposite momenta but same position, or uncorrelated, with random momenta and positions, within the QGP. Understanding the difference of the amount of charmonium mesons produced in these two conditions will be helpful in developing theoretical models for charmonium production in heavy ion collisions and thus determining the properties of QGP from experimental measurements. Funded by DOE and NSF-REU Program.

  5. Abundance and Source Population of Suprathermal Heavy Ions in Corotating Interaction Regions

    NASA Astrophysics Data System (ADS)

    Jensema, R. J.; Desai, M. I.; Broiles, T. W.; Dayeh, M. A.

    2015-12-01

    In this study we analyze the abundances of suprathermal heavy ions in 75 Corotating Interaction Region (CIR) events between January 1st 1995 and December 31st 2008. We correlate the heavy ion abundances in these CIRs with those measured in the solar wind and suprathermal populations upstream of these events. Our analysis reveals that the CIR suprathermal heavy ion abundances vary by nearly two orders of magnitude over the solar activity cycle, with higher abundances (e.g., Fe/O) occurring during solar maximum and depleted values occurring during solar minimum. The abundances are also energy dependent, with larger abundances at higher energies, particularly during solar maximum. Following the method used by Mason et al. 2008, we correlate the CIR abundances with the corresponding solar wind and suprathermal values measured during 6-hour intervals for upstream periods spanning 10 days prior to the start of each CIR event. This correlation reveals that suprathermal heavy ions are better correlated with upstream suprathermal abundances measured at the same energy compared with the solar wind heavy ion abundances. Using the 6-hour averaging method, we also identified timeframes of maximum correlation between the CIR and the upstream suprathermal abundances, and find that the time of maximum correlation depends on the energy of the suprathermal ions. We discuss the implications of these results in terms of previous studies of CIR and suprathermal particles, and CIR seed populations and acceleration mechanisms.

  6. Simultaneous determination of cadmium, lead and mercury ions at trace level by magnetic solid phase extraction with Fe@Ag@Dimercaptobenzene coupled to high performance liquid chromatography.

    PubMed

    Zhou, Qingxiang; Lei, Man; Liu, Yongli; Wu, Yalin; Yuan, Yongyong

    2017-12-01

    Pollution resulted from heavy metal ions have absorbed much attention, and it is of great importance to develop sensitive and simultaneous determination method for them with common technologies without highly sensitive instruments. We prepared a new and functional core-shell magnetic nano-material, Fe@Ag@dimercaptobenzene (Fe@Ag@DMB), by a one-step method with sodium borohydride as the reducing agent and transmission electron microscopy (TEM) and energy dispersive spectrometer (EDS) were used for characterisation. The mercapto functional groups on the newly synthesised magnetic nanoparticles could interact with Cd 2+ , Pb 2+ , and Hg 2+ ions in water samples and then efficient extraction for Cd 2+ , Pb 2+ , and Hg 2+ ions was achieved. DDTC-Na solution was a good elutent for elution of these ions from Fe@Ag@DMB nanoparticles. Based on these, a sensitive method was developed for simultaneous preconcentration and determination of the aforementioned ions using magnetic Fe@Ag@DMB nanoparticles as the magnetic solid phase extraction adsorbent prior to high performance liquid chromatography coupled with variable wavelength detection. Under the optimal conditions, the detection limits of the three metal ions were in the range of 0.011-0.031μgL -1 , and precisions were below 2.37% (n=6). The proposed method was evaluated with real water samples, and excellent spiked recoveries achieved indicated that the developed method would be a promising tool for monitoring these heavy metal ions in water samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Studies on heavy charged particle interaction, water equivalence and Monte Carlo simulation in some gel dosimeters, water, human tissues and water phantoms

    NASA Astrophysics Data System (ADS)

    Kurudirek, Murat

    2015-09-01

    Some gel dosimeters, water, human tissues and water phantoms were investigated with respect to their radiological properties in the energy region 10 keV-10 MeV. The effective atomic numbers (Zeff) and electron densities (Ne) for some heavy charged particles such as protons, He ions, B ions and C ions have been calculated for the first time for Fricke, MAGIC, MAGAT, PAGAT, PRESAGE, water, adipose tissue, muscle skeletal (ICRP), muscle striated (ICRU), plastic water, WT1 and RW3 using mass stopping powers from SRIM Monte Carlo software. The ranges and straggling were also calculated for the given materials. Two different set of mass stopping powers were used to calculate Zeff for comparison. The water equivalence of the given materials was also determined based on the results obtained. The Monte Carlo simulation of the charged particle transport was also done using SRIM code. The heavy ion distribution along with its parameters were shown for the given materials for different heavy ions. Also the energy loss and damage events in water when irradiated with 100 keV heavy ions were studied in detail.

  8. A high-throughput solid-phase extraction microchip combined with inductively coupled plasma-mass spectrometry for rapid determination of trace heavy metals in natural water.

    PubMed

    Shih, Tsung-Ting; Hsieh, Cheng-Chuan; Luo, Yu-Ting; Su, Yi-An; Chen, Ping-Hung; Chuang, Yu-Chen; Sun, Yuh-Chang

    2016-04-15

    Herein, a hyphenated system combining a high-throughput solid-phase extraction (htSPE) microchip with inductively coupled plasma-mass spectrometry (ICP-MS) for rapid determination of trace heavy metals was developed. Rather than performing multiple analyses in parallel for the enhancement of analytical throughput, we improved the processing speed for individual samples by increasing the operation flow rate during SPE procedures. To this end, an innovative device combining a micromixer and a multi-channeled extraction unit was designed. Furthermore, a programmable valve manifold was used to interface the developed microchip and ICP-MS instrumentation in order to fully automate the system, leading to a dramatic reduction in operation time and human error. Under the optimized operation conditions for the established system, detection limits of 1.64-42.54 ng L(-1) for the analyte ions were achieved. Validation procedures demonstrated that the developed method could be satisfactorily applied to the determination of trace heavy metals in natural water. Each analysis could be readily accomplished within just 186 s using the established system. This represents, to the best of our knowledge, an unprecedented speed for the analysis of trace heavy metal ions. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Calorimetric Low-Temperature Detectors for X-Ray Spectroscopy on Trapped Highly-Charged Heavy Ions

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline; Kraft-Bermuth, S.; Andrianov, V.; Bleile, A.; Echler, A.; Egelhof, P.; Ilieva, S.; Kilbourne, C.; McCammon, D.

    2012-01-01

    The application of Calorimetric Low-Temperature Detectors (CLTDs) has been proposed at the Heavy-Ion TRAP facility HITRAP which is currently being installed at the Helmholtz Research Center for Heavy Ion Research GSI. This cold ion trap setup will allow the investigation of X-rays from ions practically at rest, for which the excellent energy resolution of CLTDs can be used to its full advantage. However, the relatively low intensities at HITRAP demand larger solid angles and an optimized cryogenic setup. The influence of external magnetic fields has to be taken into account. CLTDs will also be a substantial part of the instrumental equipment at the future Facility for Antiproton and Heavy Ion Research (FAIR), for which a wide variety of high-precision X-ray spectroscopy experiments has been proposed. This contribution will give an overview on the chances and challenges for the application of CLTDs at HITRAP as well as perspectives for future experiments at the FAIR facility.

  10. Characterization of highly efficient heavy-ion mutagenesis in Arabidopsis thaliana.

    PubMed

    Kazama, Yusuke; Hirano, Tomonari; Saito, Hiroyuki; Liu, Yang; Ohbu, Sumie; Hayashi, Yoriko; Abe, Tomoko

    2011-11-15

    Heavy-ion mutagenesis is recognised as a powerful technology to generate new mutants, especially in higher plants. Heavy-ion beams show high linear energy transfer (LET) and thus more effectively induce DNA double-strand breaks than other mutagenic techniques. Previously, we determined the most effective heavy-ion LET (LETmax: 30.0 keV μm(-1)) for Arabidopsis mutagenesis by analysing the effect of LET on mutation induction. However, the molecular structure of mutated DNA induced by heavy ions with LETmax remains unclear. Knowledge of the structure of mutated DNA will contribute to the effective exploitation of heavy-ion beam mutagenesis. Dry Arabidopsis thaliana seeds were irradiated with carbon (C) ions with LETmax at a dose of 400 Gy and with LET of 22.5 keV μm(-1) at doses of 250 Gy or 450 Gy. The effects on mutation frequency and alteration of DNA structure were compared. To characterise the structure of mutated DNA, we screened the well-characterised mutants elongated hypocotyls (hy) and glabrous (gl) and identified mutated DNA among the resulting mutants by high-resolution melting curve, PCR and sequencing analyses. The mutation frequency induced by C ions with LETmax was two-fold higher than that with 22.5 keV μm(-1) and similar to the mutation frequency previously induced by ethyl methane sulfonate. We identified the structure of 22 mutated DNAs. Over 80% of the mutations caused by C ions with both LETs were base substitutions or deletions/insertions of less than 100 bp. The other mutations involved large rearrangements. The C ions with LETmax showed high mutation efficiency and predominantly induced base substitutions or small deletions/insertions, most of which were null mutations. These small alterations can be determined by single-nucleotide polymorphism (SNP) detection systems. Therefore, C ions with LETmax might be useful as a highly efficient reverse genetic system in conjunction with SNP detection systems, and will be beneficial for forward genetics and plant breeding.

  11. Circulation of Heavy Ions and Their Dynamical Effects in the Magnetosphere: Recent Observations and Models

    NASA Astrophysics Data System (ADS)

    Kronberg, Elena A.; Ashour-Abdalla, Maha; Dandouras, Iannis; Delcourt, Dominique C.; Grigorenko, Elena E.; Kistler, Lynn M.; Kuzichev, Ilya V.; Liao, Jing; Maggiolo, Romain; Malova, Helmi V.; Orlova, Ksenia G.; Peroomian, Vahe; Shklyar, David R.; Shprits, Yuri Y.; Welling, Daniel T.; Zelenyi, Lev M.

    2014-11-01

    Knowledge of the ion composition in the near-Earth's magnetosphere and plasma sheet is essential for the understanding of magnetospheric processes and instabilities. The presence of heavy ions of ionospheric origin in the magnetosphere, in particular oxygen (O+), influences the plasma sheet bulk properties, current sheet (CS) thickness and its structure. It affects reconnection rates and the formation of Kelvin-Helmholtz instabilities. This has profound consequences for the global magnetospheric dynamics, including geomagnetic storms and substorm-like events. The formation and demise of the ring current and the radiation belts are also dependent on the presence of heavy ions. In this review we cover recent advances in observations and models of the circulation of heavy ions in the magnetosphere, considering sources, transport, acceleration, bulk properties, and the influence on the magnetospheric dynamics. We identify important open questions and promising avenues for future research.

  12. Radiation damage by light- and heavy-ion bombardment of single-crystal LiNbO₃

    DOE PAGES

    Huang, Hsu-Cheng; Zhang, Lihua; Malladi, Girish; ...

    2015-04-14

    In this work, a battery of analytical methods including in situ RBS/C, confocal micro-Raman, TEM/STEM, EDS, AFM, and optical microscopy were used to provide a comparative investigation of light- and heavy-ion radiation damage in single-crystal LiNbO₃. High (~MeV) and low (~100s keV) ion energies, corresponding to different stopping power mechanisms, were used and their associated damage events were observed. In addition, sequential irradiation of both ion species was also performed and their cumulative depth-dependent damage was determined. It was found that the contribution from electronic stopping by high-energy heavy ions gave rise to a lower critical fluence for damage formationmore » than for the case of low-energy irradiation. Such energy-dependent critical fluence of heavy-ion irradiation is two to three orders of magnitude smaller than that for the case of light-ion damage. In addition, materials amorphization and collision cascades were seen for heavy-ion irradiation, while for light ion, crystallinity remained at the highest fluence used in the experiment. The irradiation-induced damage is characterized by the formation of defect clusters, elastic strain, surface deformation, as well as change in elemental composition. In particular, the presence of nanometric-scale damage pockets results in increased RBS/C backscattered signal and the appearance of normally forbidden Raman phonon modes. The location of the highest density of damage is in good agreement with SRIM calculations. (author)« less

  13. Radiation damage by light- and heavy-ion bombardment of single-crystal LiNbO₃

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hsu-Cheng; Zhang, Lihua; Malladi, Girish

    In this work, a battery of analytical methods including in situ RBS/C, confocal micro-Raman, TEM/STEM, EDS, AFM, and optical microscopy were used to provide a comparative investigation of light- and heavy-ion radiation damage in single-crystal LiNbO₃. High (~MeV) and low (~100s keV) ion energies, corresponding to different stopping power mechanisms, were used and their associated damage events were observed. In addition, sequential irradiation of both ion species was also performed and their cumulative depth-dependent damage was determined. It was found that the contribution from electronic stopping by high-energy heavy ions gave rise to a lower critical fluence for damage formationmore » than for the case of low-energy irradiation. Such energy-dependent critical fluence of heavy-ion irradiation is two to three orders of magnitude smaller than that for the case of light-ion damage. In addition, materials amorphization and collision cascades were seen for heavy-ion irradiation, while for light ion, crystallinity remained at the highest fluence used in the experiment. The irradiation-induced damage is characterized by the formation of defect clusters, elastic strain, surface deformation, as well as change in elemental composition. In particular, the presence of nanometric-scale damage pockets results in increased RBS/C backscattered signal and the appearance of normally forbidden Raman phonon modes. The location of the highest density of damage is in good agreement with SRIM calculations. (author)« less

  14. Rapid preparation of biosorbents with high ion exchange capacity from rice straw and bagasse for removal of heavy metals.

    PubMed

    Rungrodnimitchai, Supitcha

    2014-01-01

    This work describes the preparation of the cellulose phosphate with high ion exchange capacity from rice straw and bagasse for removal of heavy metals. In this study, rice straw and bagasse were modified by the reaction with phosphoric acid in the presence of urea. The introduced phosphoric group is an ion exchangeable site for heavy metal ions. The reaction by microwave heating yielded modified rice straw and modified bagasse with greater ion exchange capacities (∼3.62 meq/g) and shorter reaction time (1.5-5.0 min) than the phosphorylation by oil bath heating. Adsorption experiments towards Pb²⁺, Cd²⁺, and Cr³⁺ ions of the modified rice straw and the modified bagasse were performed at room temperature (heavy metal concentration 40 ppm, adsorbent 2.0 g/L). The kinetics of adsorption agreed with the pseudo-second-order model. It was shown that the modified rice straw and the modified bagasse could adsorb heavy metal ions faster than the commercial ion exchange resin (Dowax). As a result of Pb²⁺ sorption test, the modified rice straw (RH-NaOH 450W) removed Pb²⁺ much faster in the initial step and reached 92% removal after 20 min, while Dowax (commercial ion exchange resin) took 90 min for the same removal efficiency.

  15. Increasing ion and fusion yield in a dense plasma focus by combination of pre-ionization and heavy ion gas admixture

    NASA Astrophysics Data System (ADS)

    Farmanfarmaei, B.; Yousefi, H. R.; Salem, M. K.; Sari, A. H.

    2018-04-01

    The results of an experimental study of pre-ionization and heavy gas introduced into driven gas in a plasma focus device are reported. To achieve this purpose, we made use of two methods: first, the pre-ionization method by applying the shunt resistor and second, the admixture of heavy ions. We applied the different shunt resistors and found the optimum amount to be 200 MΩ at an optimum pressure of 0.5 Torr. Ion yield that was measured by array of Faraday cups and the energy of fast ions that was calculated by using the time-of-flight method were raised up to 22% and 45%, and the impurity caused by anode's erosion was reduced approximately by 67% in comparison to when there was no pre-ionization. Also, we have used the admixture of 5% argon ions with nitrogen (working gas) to improve the ion yield up to 45% in comparison with pure nitrogen. Finally, for the first time, we have utilized the combination of these methods together and have, consequently, reached the maximum ion yield and fusion yield. With this new method, ion yield raised up to 70% greater than that of the previous condition, i.e., without pre-ionization and heavy ion admixture.

  16. Amperometric biosensors for the determination of heavy metals

    NASA Astrophysics Data System (ADS)

    Compagnone, Dario; Palleschi, Giuseppe; Varallo, Giuseppe; Imperiali, PierLuigi

    1995-10-01

    A bioelectrochemical method for the determination of heavy metal ions has been developed. This method is based on the inhibition effect of metal ions on the enzymatic activity of oxidase enzymes. The enzymatic activity was determined with an amperometric hydrogen peroxide probe. The inhibition effect on enzymes in solution and covalently immobilized on polymeric supports has been evaluated. Hg(II) was the metal ion that inhibited almost all the enzymes, particularly glycerol-3-P oxidase. Hg(II) was detected in the 0.05/0.5 ppm range with the enzyme in solution. Calibration curves for Hg(II) were also obtained with the other oxidase enzymes in the 0.5/10 ppm range. The other metal ions tested inhibited the enzymes more specifically. The metal ion/enzyme systems which gave the best inhibition were Se(IV)/glutathione oxidase, Ni(II)/sarcosine oxidase, V(V)/glutathione oxidase, Cu(II)/alcohol oxidase from Pichia Pastoris and Cd(II)/D-aminoacid oxidase. All these metal ions were detected in the 0.1/10 ppm range using the enzymes in solution or covalently immobilized.

  17. Observations of Heavy Ions in the Magnetosphere

    NASA Astrophysics Data System (ADS)

    Kistler, L. M.

    2017-12-01

    There are two sources for the hot ions in the magnetosphere: the solar wind and the ionosphere. The solar wind is predominantly protons, with about 4% He++ and less than 1% other high charge state heavy ions. The ionospheric outflow is also predominantly H+, but can contain a significant fraction of heavy ions including O+, N+, He+, O++, and molecular ions (NO+, N2+, O2+). The ionospheric outflow composition varies significantly both with geomagnetic activity and with solar EUV. The variability in the contribution of the two sources, the variability in the ionospheric source itself, and the transport paths of the different species are all important in determining the ion composition at a given location in the magnetosphere. In addition to the source variations, loss processes within the magnetosphere can be mass dependent, changing the composition. In particular, charge exchange is strongly species dependent, and can lead to heavy ion dominance at some energies in the inner magnetosphere. In this talk we will review the current state of our understanding of the composition of the magnetosphere and the processes that determine it.

  18. Effect of heavy-ion beam irradiation on the level of serum soluble interleukin-2 receptors in hamster cheek pouch carcinoma model

    PubMed Central

    AN, XIAOLI; LI, MINGXIN; LI, NA; LIU, BIN; ZHANG, HONG; WANG, JIZENG

    2014-01-01

    Soluble interleukin-2 receptor (sIL-2R) is a glycoprotein derived from α chain of interleukin 2 receptors of mononuclear as well as T-cell membranes. The aims of this study were to detect the changes of serum soluble interleukin-2 receptor (sIL-2R) levels following heavy-ion beam irradiation in the hamster model with cheek pouch carcinoma, as well as to examine the impact of immune status of the hamster cheek pouch carcinoma model using heavy-ion beam irradiation. sIL-2R serum levels were detected by radioimmunoassay (RIA) in 40 hamsters bearing cheek pouch carcinoma prior to and following exposure to heavy-ion beam irradiation, and 8 normal animals served as the control. The sIL-2R serum level in hamster cheek pouch carcinoma model was significantly increased as compared to the normal control group (P<0.05). Results showed that an increase in the irradiation dose led to a gradual decrease in the sIL-2R serum level. Additionally, a statistical significance was observed compared to the tumor group (P<0.05). In conclusion, alterations in serum sIL-2R expression have an effect on the hamsters cheek pouch carcinoma model subsequent to heavy-ion beam irradiation. An increase in the irradiation dose indicated a decreased tendency in serum sIL-2R content. Detection of serum level changes may lead to an improved understanding of heavy-ion irradiation in vivo immune status, which is crucial for clinical diagnosis and prognosis. It can also provide a sensitive indicator to help estimate the effects of heavy-ion cancer targets. PMID:24748984

  19. Evidence for higher order QED effects in e+ e- pair production at the BNL Relativistic Heavy Ion Collider.

    PubMed

    Baltz, A J

    2008-02-15

    A new lowest order QED calculation for BNL Relativistic Heavy-Ion Collider e+ e- pair production has been carried out with a phenomenological treatment of the Coulomb dissociation of the heavy-ion nuclei observed in the STAR ZDC triggers. The lowest order QED result for the experimental acceptance is nearly 2 standard deviations larger than the STAR data. A corresponding higher-order QED calculation is consistent with the data.

  20. Electrochemical and density functional theory investigation on the differential behaviors of core-ring structured NiCo2O4 nanoplatelets toward heavy metal ions.

    PubMed

    Liao, Jianjun; Zhang, Junping; Wang, Cai-Zhuang; Lin, Shiwei

    2018-08-31

    In order to further improve the electroanalytical performance toward heavy metal ions, core-ring structured NiCo 2 O 4 nanoplatelets were used to modify glass carbon electrode (GCE) for the determination of heavy metal ions in water. Owing to the high surface area of NiCo 2 O 4 nanoplatelets, the Pb(II) sensitivity increased by a factor of 1.70, and the detection limit decreased by a factor of 2.64 as compared to solid NiCo 2 O 4 nanoparticles modified GCE. Interestingly, NiCo 2 O 4 nanoplatelets showed different sensitivities toward heavy metal ions with the same valence states, following the order Pb(II) > Cd(II) > Hg(II) > Cu(II). To better and scientifically understand the difference in sensitivity, adsorption and desorption abilities were integrated into account. Density functional theory calculations verified that the adsorption capability of NiCo 2 O 4 toward Pb(II) was strongest among all heavy metal ions, thereby resulting in the largest sensitivity. Further desorption current measurements indicated the large desorption barrier of Cu(II) was another important factor leading to its lowest sensitivity. Finally, the applicability of the proposed method was demonstrated by the detection of heavy metal ions in real seawater. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Physical considerations relevant to HZE-particle transport in matter.

    PubMed

    Schimmerling, W

    1988-06-01

    High-energy, highly charged (HZE) heavy nuclei may seem at first sight to be an exotic type of radiation, only remotely connected with nuclear power generation. On closer examination it becomes evident that heavy-ion accelerators are being seriously considered for driving inertial confinement fusion reactors, and high-energy heavy nuclei in the cosmic radiation are likely to place significant constraints on satellite power system deployment and space-based power generation. The use of beams of heavy nuclei in an increasing number of current applications, as well as their importance for the development of the state of the art of the future, makes it necessary to develop at the same time a good understanding of their transport through matter.

  2. Heavy ion composition in the inner heliosphere: Predictions for Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Lepri, S. T.; Livi, S. A.; Galvin, A. B.; Kistler, L. M.; Raines, J. M.; Allegrini, F.; Collier, M. R.; Zurbuchen, T.

    2014-12-01

    The Heavy Ion Sensor (HIS) on SO, with its high time resolution, will provide the first ever solar wind and surpathermal heavy ion composition and 3D velocity distribution function measurements inside the orbit of Mercury. These measurements will provide us the most in depth examination of the origin, structure and evolution of the solar wind. The near co-rotation phases of the orbiter will enable the most accurate mapping of in-situ structures back to their solar sources. Measurements of solar wind composition and heavy ion kinetic properties enable characterization of the sources, transport mechanisms and acceleration processes of the solar wind. This presentation will focus on the current state of in-situ studies of heavy ions in the solar wind and their implications for the sources of the solar wind, the nature of structure and variability in the solar wind, and the acceleration of particles. Additionally, we will also discuss opportunities for coordinated measurements across the payloads of Solar Orbiter and Solar Probe in order to answer key outstanding science questions of central interest to the Solar and Heliophysics communities.

  3. HITRAP: A Facility for Experiments with Trapped Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Quint, W.; Dilling, J.; Djekic, S.; Häffner, H.; Hermanspahn, N.; Kluge, H.-J.; Marx, G.; Moore, R.; Rodriguez, D.; Schönfelder, J.; Sikler, G.; Valenzuela, T.; Verdú, J.; Weber, C.; Werth, G.

    2001-01-01

    HITRAP is a planned ion trap facility for capturing and cooling of highly charged ions produced at GSI in the heavy-ion complex of the UNILAC-SIS accelerators and the ESR storage ring. In this facility heavy highly charged ions up to uranium will be available as bare nuclei, hydrogen-like ions or few-electron systems at low temperatures. The trap for receiving and studying these ions is designed for operation at extremely high vacuum by cooling to cryogenic temperatures. The stored highly charged ions can be investigated in the trap itself or can be extracted from the trap at energies up to about 10 keV/q. The proposed physics experiments are collision studies with highly charged ions at well-defined low energies (eV/u), high-accuracy measurements to determine the g-factor of the electron bound in a hydrogen-like heavy ion and the atomic binding energies of few-electron systems, laser spectroscopy of HFS transitions and X-ray spectroscopy.

  4. Track reconstruction and particle identification developments for a study of event-by-event fluctuations in heavy ion collisions at NICA

    NASA Astrophysics Data System (ADS)

    Mudrokh, A. A.; Zinchenko, A. I.

    2017-01-01

    A Monte Carlo simulation of heavy ion collisions (Au+Au) has been performed at MPD (Multi Purpose Detector) at NICA (Dubna) for a study of the possible critical point in the phase diagram of the hot nuclear matter. The simulation took into account real detector effects with as many details as possible to properly describe the apparatus response. Particle identification (PID) has been tuned to account for modifications in track reconstruction. Some results on hadron identification in the TPC and TOF (Time Of Flight) detectors with realistically simulated response have been also obtained.

  5. Computer Model Of Fragmentation Of Atomic Nuclei

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.; Tripathi, Ram K.; Norbury, John W.; KHAN FERDOUS; Badavi, Francis F.

    1995-01-01

    High Charge and Energy Semiempirical Nuclear Fragmentation Model (HZEFRG1) computer program developed to be computationally efficient, user-friendly, physics-based program for generating data bases on fragmentation of atomic nuclei. Data bases generated used in calculations pertaining to such radiation-transport applications as shielding against radiation in outer space, radiation dosimetry in outer space, cancer therapy in laboratories with beams of heavy ions, and simulation studies for designing detectors for experiments in nuclear physics. Provides cross sections for production of individual elements and isotopes in breakups of high-energy heavy ions by combined nuclear and Coulomb fields of interacting nuclei. Written in ANSI FORTRAN 77.

  6. OSIRIS and SOMBRERO Inertial Fusion Power Plant Designs, Volume 2: Designs, Assessments, and Comparisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, W. R.; Bieri, R. L.; Monsler, M. J.

    1992-03-01

    This is a comprehensive design study of two Inertial Fusion Energy (IFE) electric power plants. Conceptual designs are presented for a fusion reactor (called Osiris) using an induction-linac heavy-ion beam driver, and another (called SOMBRERO) using a KrF laser driver. The designs covered all aspects of IFE power plants, including the chambers, heat transport and power conversion systems, balance-of-plant facilities, target fabrication, target injection and tracking, as well as the heavy-ion and KrF drivers. The point designs were assessed and compared in terms of their environmental & safety aspects, reliability and availability, economics, and technology development needs.

  7. Phytomining of heavy metals from soil by Hibiscus radiatus using phytoremediationtechnology (Part-2)

    NASA Astrophysics Data System (ADS)

    Panchal, K. J.; Subramanian, R. B.; Gohil, T. P.

    2017-12-01

    Metal ions are not only valuable intermediates in metal extraction, but also important raw materials fortechnical applications. They possess some unique but, identical physical and chemical properties, whichmake them useful probes of low temperature geochemical reactions. Heavy metals are natural constituentsof the earth's crust, but indiscriminate human activities have drastically altered their geochemical cyclesand biochemical balance. Metal concentration in soil typically ranges from less than one to as high as100,000 mg/kg. Heavy metal contaminations of land resources continue to be the focus of numerousenvironmental studies and attract a great deal of attention worldwide. This is attributed to nobiodegradabilityand persistence of heavy metals in soils. Prolonged exposure to heavy metals such ascadmium, copper, lead, nickel, and zinc can cause deleterious health effects in humans. Complexation,separation, and removal of metal ions have become increasingly attractive areas of research and have ledto new technical developments like phytoremediation that has numerous biotechnological implications ofunderstanding of plant metal accumulation. Hibiscus radiatus is newly identified as a potential heavymetal hypreaccumulator. In this study Hibiscus radiatus was subjected for in vitro heavy metalaccumulation, to explore the accumulation pattern of four heavy metals viz Cadmium, Lead, Nickel andZinc in various parts of Hibiscus radiatus plant parts. Translocation of metals in Hibiscus radiatus plant parts from soil makes this plant an eligible candidate to remove heavy metals from soil.

  8. Influence of cosmic radiation and/or microgravity on development of Carausius morosus.

    PubMed

    Reitz, G; Bucker, H; Facius, R; Horneck, G; Graul, E H; Berger, H; Ruther, W; Heinrich, W; Beaujean, R; Enge, W; Alpatov, A M; Ushakov, I A; Zachvatkin YuA; Mesland, D A

    1989-01-01

    Eggs of Carausius morosus were exposed to spaceflight conditions in two spaceflight missions, the German 7 day Spacelab Mission D1 and the Soviet 12.56 day Biosatellite Mission "COSMOS 1887". During spaceflight the eggs continued their development. Eggs of five different ages representing different sensitivity to radiation and different capacity to regeneration were used to investigate the influence of cosmic radiation and/or microgravity on insect development. Using the Biostack concept--eggs in monolayers sandwiched between nuclear track detectors--and the 1 g reference centrifuge of BIORACK in D1 we were able to separate effects of heavy ions of the cosmic radiation from microgravity effects and also from combined effects of these two factors in space. After retrieval, hatching rates, embryonic and larval growth kinetics and anomaly frequencies were determined. Microgravity leads to a reduced hatching rate of eggs exposed in the early stages of development. Hatching was normal in eggs which were exposed on the 1 g reference centrifuge. Hits by heavy ions caused body anomalies. The combined action of heavy ions and microgravity resulted in an unexpectedly high frequency of anomalies. These results obtained from the Spacelab Mission D1, were confirmed in an experiment onboard of COSMOS 1887. In addition to the previous analysis, embryonic development before hatching was followed which showed no major difference between flight and the ground control specimens. Since a reconfirmation of reduced hatching rates was observed in COSMOS 1887, too, the above results suggest some microgravity induced functional impairment of the hatching activity, rather than blockage in embryonic development.

  9. An Experimental Review on Heavy-Flavor v 2 in Heavy-Ion Collision

    DOE PAGES

    Nasim, Md.; Esha, Roli; Huang, Huan Zhong

    2016-01-01

    For overmore » a decade now, the primary purpose of relativistic heavy-ion collisions at the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC) has been to study the properties of QCD matter under extreme conditions—high temperature and high density. The heavy-ion experiments at both RHIC and LHC have recorded a wealth of data in p+p, p+Pb, d+Au, Cu+Cu, Cu+Au, Au+Au, Pb+Pb, and U+U collisions at energies ranging from s N N = 7.7  GeV to 7 TeV. Heavy quarks are considered good probe to study the QCD matter created in relativistic collisions due to their very large mass and other unique properties. A precise measurement of various properties of heavy-flavor hadrons provides an insight into the fundamental properties of the hot and dense medium created in these nucleus-nucleus collisions, such as transport coefficient and thermalization and hadronization mechanisms. The main focus of this paper is to present a review on the measurements of azimuthal anisotropy of heavy-flavor hadrons and to outline the scientific opportunities in this sector due to future detector upgrade. We will mainly discuss the elliptic flow of open charmed meson ( D -meson), J / ψ , and leptons from heavy-flavor decay at RHIC and LHC energy.« less

  10. Invited review article: the electrostatic plasma lens.

    PubMed

    Goncharov, Alexey

    2013-02-01

    The fundamental principles, experimental results, and potential applications of the electrostatic plasma lens for focusing and manipulating high-current, energetic, heavy ion beams are reviewed. First described almost 50 years ago, this optical beam device provides space charge neutralization of the ion beam within the lens volume, and thus provides an effective and unique tool for focusing high current beams where a high degree of neutralization is essential to prevent beam blow-up. Short and long lenses have been explored, and a lens in which the magnetic field is provided by rare-earth permanent magnets has been demonstrated. Applications include the use of this kind of optical tool for laboratory ion beam manipulation, high dose ion implantation, heavy ion accelerator injection, in heavy ion fusion, and other high technology.

  11. Effect of the track potential on the motion and energy flow of secondary electrons created from heavy-ion irradiation

    NASA Astrophysics Data System (ADS)

    Moribayashi, Kengo

    2018-05-01

    Using simulations, we have evaluated the effect of the track potential on the motion and energy flow of secondary electrons, with the goal of determining the spatial distribution of energy deposition due to irradiation with heavy ions. We have simulated this effect as a function of the mean path τ between the incident ion-impact-ionization events at ion energies Eion. Here, the track potential is the potential formed from electric field near this incident ion path. The simulations indicate that this effect is mainly determined by τ and hardly depends on Eion. To understand heavy ion beam science more deeply and to reduce the time required by simulations, we have proposed simple approximation methods that almost reproduce the simulation results here.

  12. Ion and aerosol precursor densities in Titan's ionosphere: A multi-instrument case study

    NASA Astrophysics Data System (ADS)

    Shebanits, O.; Wahlund, J.-E.; Edberg, N. J. T.; Crary, F. J.; Wellbrock, A.; Andrews, D. J.; Vigren, E.; Desai, R. T.; Coates, A. J.; Mandt, K. E.; Waite, J. H.

    2016-10-01

    The importance of the heavy ions and dust grains for the chemistry and aerosol formation in Titan's ionosphere has been well established in the recent years of the Cassini mission. In this study we combine independent in situ plasma (Radio Plasma and Wave Science Langmuir Probe (RPWS/LP)) and particle (Cassini Plasma Science Electron Spectrometer, Cassini Plasma Science Ion Beam Spectrometer, and Ion and Neutral Mass Spectrometer) measurements of Titan's ionosphere for selected flybys (T16, T29, T40, and T56) to produce altitude profiles of mean ion masses including heavy ions and develop a Titan-specific method for detailed analysis of the RPWS/LP measurements (applicable to all flybys) to further constrain ion charge densities and produce the first empirical estimate of the average charge of negative ions and/or dust grains. Our results reveal the presence of an ion-ion (dusty) plasma below 1100 km altitude, with charge densities exceeding the primary ionization peak densities by a factor ≥2 in the terminator and nightside ionosphere (ne/ni ≤ 0.1). We suggest that ion-ion (dusty) plasma may also be present in the dayside ionosphere below 900 km (ne/ni < 0.5 at 1000 km altitude). The average charge of the dust grains (≥1000 amu) is estimated to be between -2.5 and -1.5 elementary charges, increasing toward lower altitudes.

  13. Single-Event Gate Rupture in Power MOSFETs: A New Radiation Hardness Assurance Approach

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie

    2011-01-01

    Almost every space mission uses vertical power metal-semiconductor-oxide field-effect transistors (MOSFETs) in its power-supply circuitry. These devices can fail catastrophically due to single-event gate rupture (SEGR) when exposed to energetic heavy ions. To reduce SEGR failure risk, the off-state operating voltages of the devices are derated based upon radiation tests at heavy-ion accelerator facilities. Testing is very expensive. Even so, data from these tests provide only a limited guide to on-orbit performance. In this work, a device simulation-based method is developed to measure the response to strikes from heavy ions unavailable at accelerator facilities but posing potential risk on orbit. This work is the first to show that the present derating factor, which was established from non-radiation reliability concerns, is appropriate to reduce on-orbit SEGR failure risk when applied to data acquired from ions with appropriate penetration range. A second important outcome of this study is the demonstration of the capability and usefulness of this simulation technique for augmenting SEGR data from accelerator beam facilities. The mechanisms of SEGR are two-fold: the gate oxide is weakened by the passage of the ion through it, and the charge ionized along the ion track in the silicon transiently increases the oxide electric field. Most hardness assurance methodologies consider the latter mechanism only. This work demonstrates through experiment and simulation that the gate oxide response should not be neglected. In addition, the premise that the temporary weakening of the oxide due to the ion interaction with it, as opposed to due to the transient oxide field generated from within the silicon, is validated. Based upon these findings, a new approach to radiation hardness assurance for SEGR in power MOSFETs is defined to reduce SEGR risk in space flight projects. Finally, the potential impact of accumulated dose over the course of a space mission on SEGR susceptibility is explored. SEGR evaluation of gamma-irradiated power MOSFETs suggests a non-significant SEGR susceptibility enhancement due to accumulated dose from gamma rays. During SEGR testing, an unexpected enhanced dose effect from heavy-ion irradiation was detected. We demonstrate that this effect could be due to direct ionization by two or more ions at the same channel location. The probability on-orbit for such an occurrence is near-zero given the low heavy-ion fluence over a typical mission lifetime, and did not affect SEGR susceptibility. The results of this work can be used to bound the risk of SEGR in power MOSFETs considered for insertion into spacecraft and instruments.

  14. Effect of heavy metals ions on enzyme activity in the Mediterranean mussel, Donax trunculus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizrahi, L.; Achituv, Y.

    Heavy metal ions strongly are bound by sulfhydryl groups of proteins. Sulfhydryl binding changes the structure and enzymatic activities of proteins and causes toxic effects evident at the whole organism level. Heavy metal ions like Cd, Cu, Hg, Zn, and Pb in sufficiently high concentrations might kill organisms or cause other adverse effects that changing aquatic community structures. Bivalves are known to be heavy metal accumulators. The aim of the present study was to examine the effects of different concentrations of each of five heavy metal ions on the activity of four enzymes in D. trunculus. As it is knownmore » that heavy metals inhibit the activity of a wide range of enzymes, the authors chose representative examples of dehydrogenases (lactate and malate dehydrogenases), respiratory enzyme (cytochrome oxidase) and digestive enzyme ({alpha}-amylase). The acute effects of different concentrations of selected metals were examined. These concentrations were higher than those found usually in the locality where the animals occur, but might be encountered during a given event of pollution.« less

  15. Effects of prenatal irradiation with accelerated heavy-ion beams on postnatal development in rats: III. Testicular development and breeding activity

    NASA Astrophysics Data System (ADS)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Watanabe, K.; Fujita, K.; Moreno, S. G.; Coffigny, H.; Hayata, I.

    With a significant increase in human activities dealing with space missions, potential teratogenic effects on the mammalian reproductive system from prenatal exposure to space radiation have become a hot topic that needs to be addressed. However, even for the ground experiments, such effects from exposure to high LET ionizing radiation are not as well studied as those for low LET ionizing radiations such as X-rays. Using the Heavy-Ion Medical Accelerator in Chiba (HIMAC) and Wistar rats, effects on gonads in prenatal male fetuses, on postnatal testicular development and on breeding activity of male offspring were studied following exposure of the pregnant animals to either accelerated carbon-ion beams with a LET value of about 13 keV/μm or neon-ion beams with a LET value of about 30 keV/μm at a dose range from 0.1 to 2.0 Gy on gestation day 15. The effects of X-rays at 200 kVp estimated for the same biological end points were studied for comparison. A significantly dose-dependent increase of apoptosis in gonocytes appeared 6 h after irradiations with a dose of 0.5 Gy or more. Measured delayed testis descent and malformed testicular seminiferous tubules were observed to be significantly different from the control animals at a dose of 0.5 Gy. These effects are observed to be dose- and LET-dependent. Markedly reduced testicular weight and testicular weight to body weight ratio were scored at postnatal day 30 even in the offspring that were prenatally irradiated with neon-ions at a dose of 0.1 Gy. A dose of 0.5 Gy from neon-ion beams induced a marked decrease in breeding activity in the prenatally irradiated male rats, while for the carbon-ion beams or X-rays, the significantly reduced breeding activity was observed only when the prenatal dose was at 1.0 Gy or more. These findings indicated that prenatal irradiations with heavy-ion beams on gestation day 15 generally induced markedly detrimental effects on prenatal gonads, postnatal testicular development and male breeding activity in rats, which seemed to be a dose and LET-related event.

  16. Electronic Desorption of gas from metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molvik, A W; Kollmus, H; Mahner, E

    During heavy ion operation in several particle accelerators world-wide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion induced gas desorption scales with the electronic energy loss (dE{sub e}/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  17. Local brain heavy ion irradiation induced Immunosuppression

    NASA Astrophysics Data System (ADS)

    Lei, Runhong; Deng, Yulin; Huiyang Zhu, Bitlife.; Zhao, Tuo; Wang, Hailong; Yu, Yingqi; Ma, Hong; Wang, Xiao; Zhuang, Fengyuan; Qing, Hong

    Purpose: To investigate the long term effect of acute local brain heavy ion irradiation on the peripheral immune system in rat model. Methodology: Only the brain of adult male Wistar rats were radiated by heavy ions at the dose of 15 Gy. One, two and three months after irradiation, thymus and spleen were analyzed by four ways. Tunel assay was performed to evaluate the percentage of apoptotic cells in thymus and spleen, level of Inflammatory cytokines (IL-2, IL-6, SSAO, and TNF-α) was detected by ELISA assay, the differentiation of thymus T lymphocyte subsets were measured by flow cytometry and the relative expression levels of genes related to thymus immune cell development were measured by using quantitative real-time PCR. Results: Thymus and spleen showed significant atrophy from one month to three months after irradiation. A high level of apoptosis in thymus and spleen were obtained and the latter was more vulnerable, also, high level of inflammatory cytokines were found. Genes (c-kit, Rag1, Rag2 and Sca1) related to thymus lymphocytes’ development were down-regulated. Conclusion: Local area radiation in the rat brain would cause the immunosuppression, especially, the losing of cell-mediated immune functions. In this model, radiation caused inflammation and then induced apoptosis of cells in the immune organs, which contributed to immunosuppression.

  18. Holographic heavy ion collisions with baryon charge

    DOE PAGES

    Casalderrey-Solana, Jorge; Mateos, David; van der Schee, Wilke; ...

    2016-09-19

    We numerically simulate collisions of charged shockwaves in Einstein-Maxwell theory in anti-de Sitter space as a toy model of heavy ion collisions with non-zero baryon charge. The stress tensor and the baryon current become well described by charged hydrodynamics at roughly the same time. The effect of the charge density on generic observables is typically no larger than 15%. Finally, we find significant stopping of the baryon charge and compare our results with those in heavy ion collision experiments.

  19. Modeling Drift Compression in an Integrated Beam Experiment for Heavy-Ion-Fusion

    NASA Astrophysics Data System (ADS)

    Sharp, W. M.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Celata, C. M.; Yu, S. S.

    2003-10-01

    The Integrated Beam Experiment (IBX) is an induction accelerator being designed to further develop the science base for heavy-ion fusion. The experiment is being developed jointly by Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. One conceptual approach would first accelerate a 0.5-1 A beam of singly charged potassium ions to 5 MeV, impose a head-to-tail velocity tilt to compress the beam longitudinally, and finally focus the beam radiallly using a series of quadrupole lenses. The lengthwise compression is a critical step because the radial size must be controlled as the current increases, and the beam emittance must be kept minimal. The work reported here first uses the moment-based model HERMES to design the drift-compression beam line and to assess the sensitivity of the final beam profile to beam and lattice errors. The particle-in-cell code WARP is then used to validate the physics design, study the phase-space evolution, and quantify the emittance growth.

  20. Magnetic Monopole Mass Bounds from Heavy-Ion Collisions and Neutron Stars

    NASA Astrophysics Data System (ADS)

    Gould, Oliver; Rajantie, Arttu

    2017-12-01

    Magnetic monopoles, if they exist, would be produced amply in strong magnetic fields and high temperatures via the thermal Schwinger process. Such circumstances arise in heavy-ion collisions and in neutron stars, both of which imply lower bounds on the mass of possible magnetic monopoles. In showing this, we construct the cross section for pair production of magnetic monopoles in heavy-ion collisions, which indicates that they are particularly promising for experimental searches such as MoEDAL.

  1. Complexified boost invariance and holographic heavy ion collisions

    DOE PAGES

    Gubser, Steven S.; van der Schee, Wilke

    2015-01-08

    At strong coupling holographic studies have shown that heavy ion collisions do not obey normal boost invariance. Here we study a modified boost invariance through a complex shift in time, and show that this leads to surprisingly good agreement with numerical holographic computations. When including perturbations the agreement becomes even better, both in the hydrodynamic and the far-from-equilibrium regime. Finally, one of the main advantages is an analytic formulation of the stress-energy tensor of the longitudinal dynamics of holographic heavy ion collisions.

  2. Heavy ion-acoustic rogue waves in electron-positron multi-ion plasmas

    NASA Astrophysics Data System (ADS)

    Chowdhury, N. A.; Mannan, A.; Hasan, M. M.; Mamun, A. A.

    2017-09-01

    The nonlinear propagation of heavy-ion-acoustic (HIA) waves (HIAWs) in a four-component multi-ion plasma (containing inertial heavy negative ions and light positive ions, as well as inertialess nonextensive electrons and positrons) has been theoretically investigated. The nonlinear Schrödinger (NLS) equation is derived by employing the reductive perturbation method. It is found that the NLS equation leads to the modulational instability (MI) of HIAWs, and to the formation of HIA rogue waves (HIARWs), which are due to the effects of nonlinearity and dispersion in the propagation of HIAWs. The conditions for the MI of HIAWs and the basic properties of the generated HIARWs are identified. It is observed that the striking features (viz., instability criteria, growth rate of MI, amplitude and width of HIARWs, etc.) of the HIAWs are significantly modified by the effects of nonextensivity of electrons and positrons, the ratio of light positive ion mass to heavy negative ion mass, the ratio of electron number density to light positive ion number density, the ratio of electron temperature to positron temperature, etc. The relevancy of our present investigation to the observations in space (viz., cometary comae and earth's ionosphere) and laboratory (viz., solid-high intense laser plasma interaction experiments) plasmas is pointed out.

  3. Heavy ion-acoustic rogue waves in electron-positron multi-ion plasmas.

    PubMed

    Chowdhury, N A; Mannan, A; Hasan, M M; Mamun, A A

    2017-09-01

    The nonlinear propagation of heavy-ion-acoustic (HIA) waves (HIAWs) in a four-component multi-ion plasma (containing inertial heavy negative ions and light positive ions, as well as inertialess nonextensive electrons and positrons) has been theoretically investigated. The nonlinear Schrödinger (NLS) equation is derived by employing the reductive perturbation method. It is found that the NLS equation leads to the modulational instability (MI) of HIAWs, and to the formation of HIA rogue waves (HIARWs), which are due to the effects of nonlinearity and dispersion in the propagation of HIAWs. The conditions for the MI of HIAWs and the basic properties of the generated HIARWs are identified. It is observed that the striking features (viz., instability criteria, growth rate of MI, amplitude and width of HIARWs, etc.) of the HIAWs are significantly modified by the effects of nonextensivity of electrons and positrons, the ratio of light positive ion mass to heavy negative ion mass, the ratio of electron number density to light positive ion number density, the ratio of electron temperature to positron temperature, etc. The relevancy of our present investigation to the observations in space (viz., cometary comae and earth's ionosphere) and laboratory (viz., solid-high intense laser plasma interaction experiments) plasmas is pointed out.

  4. Overview of recent trends and developments for BPM systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, M.; /Fermilab

    2011-08-01

    Beam position monitoring (BPM) systems are the workhorse of beam diagnostics for almost any kind of charged particle accelerator: linear, circular or transport-lines, operating with leptons, hadrons or heavy ions. BPMs are essential for beam commissioning, accelerator fault analysis and trouble shooting, machine optics, as well as lattice measurements, and finally, for accelerator optimization, in order to achieve the ultimate beam quality. This presentation summarizes the efforts of the beam instrumentation community on recent developments and advances on BPM technologies, i.e. BPM pickup monitors and front-end electronics (analog and digital). Principles, examples, and state-of-the-art status on various BPM techniques, servingmore » hadron and heavy ion machines, sync light synchrotron's, as well as electron linacs for FEL or HEP applications are outlined.« less

  5. Life sciences and space research XXI(1); Proceedings of the Topical Meeting, Graz, Austria, June 25-July 7, 1984

    NASA Technical Reports Server (NTRS)

    Klein, H. P. (Editor); Horneck, G. (Editor)

    1984-01-01

    Space research in biology is presented with emphasis on flight experiment results and radiation risks. Topics discussed include microorganisms and biomolecules in the space-environment experiment ES 029 on Spacelab-1, the preliminary characterization of persisting circadian rhythms during space flight; plant growth, development, and embryogenesis during the Salyut-7 flight, and the influence of space-flight factors on viability and mutability of plants. Consideration is also given to radiation-risk estimation and its application to human beings in space, the radiation situation in space and its modification by the geomagnetic field and shielding, the quantitative interpretation of cellular heavy-ion action, and the effects of heavy-ion radiation on the brain vascular system and embryonic development.

  6. Fluorescent Binary Ensemble Based on Pyrene Derivative and Sodium Dodecyl Sulfate Assemblies as a Chemical Tongue for Discriminating Metal Ions and Brand Water.

    PubMed

    Zhang, Lijun; Huang, Xinyan; Cao, Yuan; Xin, Yunhong; Ding, Liping

    2017-12-22

    Enormous effort has been put to the detection and recognition of various heavy metal ions due to their involvement in serious environmental pollution and many major diseases. The present work has developed a single fluorescent sensor ensemble that can distinguish and identify a variety of heavy metal ions. A pyrene-based fluorophore (PB) containing a metal ion receptor group was specially designed and synthesized. Anionic surfactant sodium dodecyl sulfate (SDS) assemblies can effectively adjust its fluorescence behavior. The selected binary ensemble based on PB/SDS assemblies can exhibit multiple emission bands and provide wavelength-based cross-reactive responses to a series of metal ions to realize pattern recognition ability. The combination of surfactant assembly modulation and the receptor for metal ions empowers the present sensor ensemble with strong discrimination power, which could well differentiate 13 metal ions, including Cu 2+ , Co 2+ , Ni 2+ , Cr 3+ , Hg 2+ , Fe 3+ , Zn 2+ , Cd 2+ , Al 3+ , Pb 2+ , Ca 2+ , Mg 2+ , and Ba 2+ . Moreover, this single sensing ensemble could be further applied for identifying different brands of drinking water.

  7. Judgement on "hit or non-hit" of CHO cells exposed to accelerated heavy-ions (Fe- or Ar-ions) using division delay and CR-39 plastics as an indicator.

    PubMed

    Mehnati, P; Yatagai, F; Tsuzuki, T; Hanaoka, F; Sasaki, H

    2001-03-01

    The cell killing effect of ionizing radiation depends on the degree of linear energy transfer (LET). The relative biological effectiveness (RBE) reaches a maximum at LET of around 100-200 keV/micron and decreases at higher levels. The ion clusters produced by high-LET radiation are not uniformly distributed. The incidence of non-hit cell events is higher in high LET irradiation than in the cases of low-LET irradiation. This fact could explain the decrease in the cell killing effect at higher levels of LET irradiation. Since the cell killing effect may be related to the nuclear traversal of heavy-ions, it is necessary to establish methods to distinguish the hit cells from the non-hit cells, especially in case with high LET irradiation. Using time-lapse photography, we first examined the hit events by observing the division delay in the cells caused by high-LET irradiation. In addition, we explored the use of CR-39 plastics to detect the exact position of heavy-ion traversal on the surface of a flask where cells were growing. When Chinese hamster ovary (CHO-K1) cells were exposed to 4 Gy of accelerated Fe-ions (2000 keV/micron) or Ar (1640 keV/micron)-ions, the surviving fraction decreased to about 30% in both cases of irradiation. Eighty percent of the irradiated cells, suffered a division delay in contrast to the remaining 20% of the cells which showed a normal division time (12-13 hrs). The later 20% of the cells is considered to be a population of cells which were not actually traversed by heavy-ions. The difference between the higher values of the surviving fraction (approximately 30%) and the non-hit cell population (20%) indicates that some hit cells can grow even after being hit by heavy-ions. The fraction of recovered cells determined by the time-lapse photography method was 10%, and this value closely correlated with the difference between the surviving fraction and the non-hit cells. We used the Poisson distribution of the hit-events by heavy-ions among the cell population in order to calculate the fraction of cells receiving at least a single-hit in the cell nucleus (130 micron 2 in average size). From this calculation we determined that 80% of the cells had a single hit to their nuclei by a heavy-ion which induced such early cellular responses as division delay. Our finding in the experiments using CR-39 plastics as a detector for hit-sites further supported the idea that the hit lethality of a cell is related to heavy-ion traversal through its nucleus. This study indicates the possible usefulness of both the division delay and CR-39 plastic methods for evaluating the biological effects of heavy-ions, especially when these two methods are combined.

  8. A singly charged ion source for radioactive {sup 11}C ion acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katagiri, K.; Noda, A.; Nagatsu, K.

    2016-02-15

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive {sup 11}C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source wasmore » found to have favorable performance as a singly charged ion source.« less

  9. Biosorption of Cd(II) and Pb(II) ions by aqueous solutions of novel alkalophillic Streptomyces VITSVK5 spp. biomass

    NASA Astrophysics Data System (ADS)

    Saurav, Kumar; Kannabiran, Krishnan

    2011-03-01

    Discharge of heavy metals from metal processing industries is known to have adverse effects on the environment. Biosorption of heavy metals by metabolically inactive biomass of microbial organisms is an innovative and alternative technology for removal of these pollutants from aqueous solution. The search of marine actinobacteria with potential heavy metal biosorption ability resulted in the identification of a novel alkalophilic Streptomyces VITSVK5 species. The biosorption property of Streptomyces VITSVK5 spp. was investigated by absorbing heavy metals Cadmium (Cd) and Lead (Pb). Physiochemical characteristics and trace metal concentration analysis of the backwater showed the concentrations of different metals were lead 13±2.1 μg L-1, cadmium 3.1±0.3μg L-1, zinc 8.4±2.6μg L-1 and copper 0.3±0.1μg L-1, whereas mercury was well below the detection limit. The effect of pH and biomass dosage on removal efficiency of heavy metal ions was also investigated. The optimum pH for maximal biosorption was 4.0 for Cd (II) and 5.0 for Pb (II) with 41% and 84% biosorption respectively. The biosorbent dosage was optimized as 3 g L-1 for both the trace metals. Fourier transform infrared absorption spectrum results indicated the chemical interactions of hydrogen atoms in carboxyl (-COOH), hydroxyl (-CHOH) and amine (-NH2) groups of biomass with the metal ions. This could be mainly involved in the biosorption of Cd (II) and Pb (II) onto Streptomyces VITSVK5 spp. The results of our study revealed Streptomyces metabolites could be used to develop a biosorbent for adsorbing metal ions from aqueous environments.

  10. Present status and future prospects of heavy ion beams as drivers for ICF

    NASA Astrophysics Data System (ADS)

    Godlove, Terry F.

    1986-01-01

    A candidate driver for a practical inertial fusion reactor system must, among other characteristics, be cost effective and reliable for the parameters required by the fusion target and the remainder of the system. Although the history of large particle accelerators provides abundant evidence of their reliability at high repetition rates, their capital cost for the fusion application has been open to question. Attempts to design cost effective systems began with accelerators based on currently available technology such as RF linacs and storage rings. The West German HIBALL and the Japanese HIBLIC are examples of this initial effort. These designs are sufficiently credible that a strong argument can be made for the heavy ion method in general, but to reduce the cost per unit power it was found necessary to design for large scale, hence high capital cost. Emphasis in the U.S. shifted to newer technologies which offer hope of significant improvement in cost. In this paper the status of various heavy ion driver designs are compared with currently perceived requirements in order to illustrate their potential and assess their development needs.

  11. Nuclear physics research at the University of Richmond. Progress report, November 1, 1994--October 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vineyard, M.F.; Gilfoyle, G.P.; Major, R.W.

    Summarized in this report is the progress achieved during the period from November 1, 1994 to October 31, 1995. The experimental work described in this report is in electromagnetic and heavy-ion nuclear physics. The effort in electromagnetic nuclear physics is in preparation for the research program at the Continuous Electron Beam Accelerator Facility (CEBAF) and is focused on the construction and use of the CEBAF Large Acceptance Spectrometer (CLAS). The heavy-ion experiments were performed at the Argonne National Laboratory ATLAS facility and SUNY, Stony Brook. The physics interests driving these efforts at CEBAF are in the study of the structure,more » interactions, and nuclear-medium modifications of mesons and baryons. This year, an extension of the experiment to measure the magnetic form factor of the neutron was approved by the CEBAF Program Advisory Committee Nine (PAC9) for beam at 6 GeV. The authors also submitted updates to PAC9 on the experiments to measure inclusive {eta} photoproduction in nuclei and electroproduction of the {Lambda}, {Lambda}*(1520), and f{sub 0}(975). In addition to these experiments, the authors collaborated on a proposal to measure rare radiative decays of the {phi} meson which was also approved by PAC9. Their contributions to the construction of the CLAS include the development of the drift-chamber gas system, drift-chamber software, and controls software. Major has been leading the effort in the construction of the gas system. In the last year, the Hall B gas shed was constructed and the installation of the gas system components built at the University of Richmond has begun. Over the last six years, the efforts in low-energy heavy-ion physics have decreased due to the change in focus to electromagnetic nuclear physics at CEBAF. Most of the heavy-ion work is completed and there are now new experiments planned. Included in this report are two papers resulting from collaborations on heavy-ion experiments.« less

  12. 2nd-order optical model of the isotopic dependence of heavy ion absorption cross sections for radiation transport studies

    NASA Astrophysics Data System (ADS)

    Cucinotta, Francis A.; Yan, Congchong; Saganti, Premkumar B.

    2018-01-01

    Heavy ion absorption cross sections play an important role in radiation transport codes used in risk assessment and for shielding studies of galactic cosmic ray (GCR) exposures. Due to the GCR primary nuclei composition and nuclear fragmentation leading to secondary nuclei heavy ions of charge number, Z with 3 ≤ Z ≥ 28 and mass numbers, A with 6 ≤ A ≥ 60 representing about 190 isotopes occur in GCR transport calculations. In this report we describe methods for developing a data-base of isotopic dependent heavy ion absorption cross sections for interactions. Calculations of a 2nd-order optical model solution to coupled-channel solutions to the Eikonal form of the nucleus-nucleus scattering amplitude are compared to 1st-order optical model solutions. The 2nd-order model takes into account two-body correlations in the projectile and target ground-states, which are ignored in the 1st-order optical model. Parameter free predictions are described using one-body and two-body ground state form factors for the isotopes considered and the free nucleon-nucleon scattering amplitude. Root mean square (RMS) matter radii for protons and neutrons are taken from electron and muon scattering data and nuclear structure models. We report on extensive comparisons to experimental data for energy-dependent absorption cross sections for over 100 isotopes of elements from Li to Fe interacting with carbon and aluminum targets. Agreement between model and experiments are generally within 10% for the 1st-order optical model and improved to less than 5% in the 2nd-order optical model in the majority of comparisons. Overall the 2nd-order optical model leads to a reduction in absorption compared to the 1st-order optical model for heavy ion interactions, which influences estimates of nuclear matter radii.

  13. Cluster formation in nuclear reactions from mean-field inhomogeneities

    NASA Astrophysics Data System (ADS)

    Napolitani, Paolo; Colonna, Maria; Mancini-Terracciano, Carlo

    2018-05-01

    Perturbing fluids of neutrons and protons (nuclear matter) may lead, as the most catastrophic effect, to the rearrangement of the fluid into clusters of nucleons. A similar process may occur in a single atomic nucleus undergoing a violent perturbation, like in heavy-ion collisions tracked in particle accelerators at around 30 to 50 MeV per nucleon: in this conditions, after the initial collision shock, the nucleus expands and then clusterises into several smaller nuclear fragments. Microscopically, when violent perturbation are applied to nuclear matter, a process of clusterisation arises from the combination of several fluctuation modes of large-amplitude where neutrons and protons may oscillate in phase or out of phase. The imposed perturbation leads to conditions of instability, the wavelengths which are the most amplified have sizes comparable to small atomic nuclei. We found that these conditions, explored in heavy-ion collisions, correspond to the splitting of a nucleus into fragments ranging from Oxygen to Neon in a time interval shorter than one zeptosecond (10 ‑ 21s). From the out-of-phase oscillations of neutrons and protons another property arises, the smaller fragments belonging to a more volatile phase get more neutron enriched: in the heavy-ion collision case this process, called distillation, reflects in the isotopic distributions of the fragments. The resulting dynamical description of heavy-ion collisions is an improvement with respect to more usual statistical approaches, based on the equilibrium assumption. It allows in fact to characterise also the very fast early stages of the collision process which are out of equilibrium. Such dynamical description is the core of the Boltzmann-Langevin One Body (BLOB) model, which in its latest development unifies in a common approach the description of fluctuations in nuclear matter, and a predictive description of the disintegration of nuclei into nuclear fragments. After a theoretical introduction, a few practical examples will be illustrated. This paper resumes the extended analysis of fluctuations in nuclear matter of ref. [2] and briefly reviews applications to heavy-ion collisions.

  14. Adsorption of Heavy Metal Ions from Aqueous Solutions by Bentonite Nanocomposites.

    PubMed

    Ma, Jing; Su, Guojun; Zhang, Xueping; Huang, Wen

    2016-08-01

    A series of bentonite nanocomposites have been synthesized by modifying bentonite with hexadecyltrimethylammonium bromide (CTMAB) and the common complexing agents, complexone (ethylene diamine tetraacetic acid, EDTA) or mercaptocomplexant (2-Mercaptobenzothiazole, MBT). These adsorbents are used to remove heavy metal ions (Cu(2+), Zn(2+), Mn(2+),Co(2+)). The Bent-CTMAB-MBT adsorbed metal ions are higher than Bent-CTMAB-EDTA under the same ion concentration in AAS. Compared with the single ion system, the adsorption of the mixed ion system of Cu(2+), Zn(2+), Mn(2+), Co(2+) had decreased differently. In the mixed system, the adsorption of Mn(2+) is significantly lower, but the adsorption of Cu(2+) was highest. The adsorption sequence of these four metal ions was Cu(2+) > Zn(2+) > Co(2+) > Mn(2+), and the selective adsorption was closely related to the hydration energy of heavy metal ions. We could remove more metal ions in different stages with the adsorption sequence.

  15. Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions.

    PubMed

    Yang, Shengyuan; Wu, Chao; Tan, Hui; Wu, Yan; Liao, Shuzhen; Wu, Zhaoyang; Shen, Guoli; Yu, Ruqin

    2013-01-02

    In this study, to enhance the capability of metal ions disturbing the orientation of liquid crystals (LCs), we designed a new label-free LC biosensor for the highly selective and sensitive detection of heavy metal ions. This strategy makes use of the target-induced DNA conformational change to enhance the disruption of target molecules for the orientation of LC leading to an amplified optical signal. The Hg(2+) ion, which possesses a unique property to bind specifically to two DNA thymine (T) bases, is used as a model heavy metal ion. In the presence of Hg(2+), the specific oligonucleotide probes form a conformational reorganization of the oligonucleotide probes from hairpin structure to duplex-like complexes. The duplex-like complexes are then bound on the triethoxysilylbutyraldehyde/N,N-dimethyl-N-octadecyl (3-aminopropyl) trimethoxysilyl chloride (TEA/DMOAP)-coated substrate modified with capture probes, which can greatly distort the orientational profile of LC, making the optical image of LC cell birefringent as a result. The optical signal of LC sensor has a visible change at the Hg(2+) concentration of low to 0.1 nM, showing good detection sensitivity. The cost-effective LC sensing method can translate the concentration signal of heavy metal ions in solution into the presence of DNA duplexes and is expected to be a sensitive detection platform for heavy metal ions and other small molecule monitors.

  16. Sub-micron resolution of localized ion beam induced charge reduction in silicon detectors damaged by heavy ions

    DOE PAGES

    Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward; ...

    2015-12-01

    In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si ++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm 2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si ++ ions and 60 keV Li + ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

  17. Sub-micron resolution of localized ion beam induced charge reduction in silicon detectors damaged by heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward

    In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si ++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm 2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si ++ ions and 60 keV Li + ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

  18. Verification of difference of ion-induced nucleation rate for kinds of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Masuda, K.; Takeuchi, Y.; Itow, Y.; Sako, T.; Matsumi, Y.; Nakayama, T.; Ueda, S.; Miura, K.; Kusano, K.

    2014-12-01

    Correlation between the global cloud cover and the galactic cosmic rays intensity has been pointed out. So as one of hypotheses, the promotion of creation of cloud condensation nuclei by cosmic rays can be considered. In this study, we have carried out verification experiment of this hypothesis using an atmospheric reaction chamber at room temperature focusing on the kind of ionizing radiation. We introduced pure air, a trace of water vapor, ozone and sulfur dioxide gas in a chamber with a volume of 75[L]. The sulfur dioxide reacts chemically in the chamber to form sulfate aerosol. After introducing the mixed gas into the chamber, it was irradiated with ultraviolet light, which simulate solar ultraviolet radiation and with anthropogenic ionizing radiation for cosmic rays, particles and new particle formation due to ion-induced nucleation was observed by measuring and recording the densities of ions and aerosol particles, the particle size distribution, the concentrations of ozone and sulfur dioxide, the temperature and the relative humidity. Here, the experimental results of aerosol nucleation rate for different types of radiation are reported. In this experiment, we conducted experiments of irradiation with heavy ions and β-rays. For ionizing radiation Sr-90 β-rays with an average energy of about 1[MeV] and a heavy ion beam from a particle accelerator facility of HIMAC at NIRS (Heavy Ion Medical Accelerator in Chiba, National Institute of Radiological Sciences) were used. The utilized heavy ion was 14N ions of 180[MeV/n] with intensities from 200[particles/spill] to 10000[particles/spill]. In this experimental run the chamber was irradiated for 10 hours and, the relationship between aerosol particle density for the particle size of > of 2.5[nm] and the generated ion density was verified. In the middle, the chamber was irradiated with β-rays for comparison. Increases in the ion density with the increase of the beam intensity were confirmed. Also, a rise in the aerosol particle density due to the ion density increase was confirmed. From this result, the ion-induced nucleation due to heavy ion irradiation could be verified. From the results of this study, ion-induced nucleation due to β-rays and heavy ion irradiation was confirmed.

  19. Polyamidoamine dendrimers as sweeping agent and stationary phase for rapid and sensitive open-tubular capillary electrophoretic determination of heavy metal ions.

    PubMed

    Ge, Ying; Guo, Yujun; Qin, Weidong

    2014-04-01

    Polyamidoamine (PAMAM) dendrimer generation 2.5 was synthesized and evaluated as sweeping agent for in-column enrichment and as stationary phase for capillary electrochromatographic separation of heavy metal ions, viz., Pb(II), Cu(II), Hg(II), Zn(II) and Co(II), in a running buffer containing 4-(2-pyridylazo)resorcinol (PAR) as a chromogenic reagent. During experiment, a plug of aqueous PAMAM generation 2.5 solution was first introduced to the capillary, followed by electrokinetic injection of the heavy metal ions under a positive voltage. In this step, PAMAM acted as a sweeping agent, stacking the metal ions on the analyte/PAMAM boundary by forming metal ion-PAMAM complexes. The second preconcentration process occurred when PAR, a stronger ligand, moving toward the injection end under the electric field, reached and re-swept the metal ion-PAMAM zone, forming metal ion-PAR complexes. During separation, the neutral PAMAM moved toward the detector with the electroosmotic flow, dynamically coating the capillary wall, forming stationary phases that affected the separation of the metal ions. Due to the function of PAMAM, the detection sensitivity and resolution of the heavy metal ions improved significantly. Under the optimum conditions, the detection limits were 0.299, 0.184, 0.774, 0.182 and 0.047 μg/L for Pb(II), Cu(II), Hg(II), Zn(II) and Co(II), respectively. The method was successfully applied to the determination of heavy metals in snow, tap and rain water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Energetic heavy ion dominance in the outer magnetosphere

    NASA Astrophysics Data System (ADS)

    Cohen, Ian; Mitchell, Don; Mauk, Barry; Anderson, Brian; Ohtani, Shin; Kistler, Lynn; Hamilton, Doug; Turner, Drew; Blake, Bern; Fennell, Joe; Jaynes, Allison; Leonard, Trevor; Gerrard, Andy; Lanzerotti, Lou; Burch, Jim

    2017-04-01

    Despite the extensive study of ring current ion composition, little exists in the literature regarding the nature of energetic ions with energies >200 keV, especially in the outer magnetosphere (r > 9 RE). In particular, information on the relative fluxes and spectral shapes of the different ion species over these energy ranges is lacking. However, new observations from the Energetic Ion Spectrometer (EIS) instruments on the Magnetospheric Multiscale (MMS) spacecraft have revealed the dominance of heavy ion species (specifically oxygen and helium) at these energies in the outer magnetosphere. This result is supported by prior but previously unreported observations obtained by the Geotail spacecraft, which also show that these heavy ion species are primarily dominated by multiply-charged populations from the solar wind. Using additional observations from the inner magnetosphere obtained by the RBSPICE instrument on the Van Allen Probes suggest, we will investigate whether this effect is due to a preferential loss of protons in the outer magnetosphere.

  1. Observations of beam losses due to bound-free pair production in a heavy-ion collider.

    PubMed

    Bruce, R; Jowett, J M; Gilardoni, S; Drees, A; Fischer, W; Tepikian, S; Klein, S R

    2007-10-05

    We report the first observations of beam losses due to bound-free pair production at the interaction point of a heavy-ion collider. This process is expected to be a major luminosity limit for the CERN Large Hadron Collider when it operates with (208)Pb(82+) ions because the localized energy deposition by the lost ions may quench superconducting magnet coils. Measurements were performed at the BNL Relativistic Heavy Ion Collider (RHIC) during operation with 100 GeV/nucleon (63)Cu(29+) ions. At RHIC, the rate, energy and magnetic field are low enough so that magnet quenching is not an issue. The hadronic showers produced when the single-electron ions struck the RHIC beam pipe were observed using an array of photodiodes. The measurement confirms the order of magnitude of the theoretical cross section previously calculated by others.

  2. Sensing of heavy metal ions by intrinsic TMV coat protein fluorescence

    NASA Astrophysics Data System (ADS)

    Bayram, Serene S.; Green, Philippe; Blum, Amy Szuchmacher

    2018-04-01

    We propose the use of a cysteine mutant of TMV coat protein as a signal transducer for the selective sensing and quantification of the heavy metal ions, Cd2+, Pb2+, Zn2+ and Ni2+ based on intrinsic tryptophan quenching. TMV coat protein is inexpensive, can be mass-produced since it is expressed and extracted from E-coli. It also displays several different functional groups, enabling a wide repertoire of bioconjugation chemistries; thus it can be easily integrated into functional devices. In addition, TMV-ion interactions have been widely reported and utilized for metallization to generate organic-inorganic hybrid composite novel materials. Building on these previous observations, we herein determine, for the first time, the TMV-ion binding constants assuming the static fluorescence quenching model. We also show that by comparing TMV-ion interactions between native and denatured coat protein, we can distinguish between chemically similar heavy metal ions such as cadmium and zinc ions.

  3. Biosorption of heavy metals and uranium from dilute solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, I.A.H.; Misra, M.; Smith, R.W.

    1995-08-01

    Eichhornia crassipes approaches being a scourge in many parts of the world, choking waterways and hindering transport upon them. At the same time it is known to readily abstract heavy metal ions from water and, thus, aids in the removal of heavy metals found in such waters. This paper considers the possibility of using specific parts of the plant as an inexpensive adsorbent for the removal of heavy metals from contaminated chemical and mining industry waste waters. In particular the root of the plant was found to be an excellent accumulator of heavy metal ions including uranium from solution. Itmore » is also suggested that dried roots of the plant might be placed in simple bags and used in a very low cost metal ion removal system.« less

  4. Identifying Wave-Particle Interactions in the Solar Wind using Statistical Correlations

    NASA Astrophysics Data System (ADS)

    Broiles, T. W.; Jian, L. K.; Gary, S. P.; Lepri, S. T.; Stevens, M. L.

    2017-12-01

    Heavy ions are a trace component of the solar wind, which can resonate with plasma waves, causing heating and acceleration relative to the bulk plasma. While wave-particle interactions are generally accepted as the cause of heavy ion heating and acceleration, observations to constrain the physics are lacking. In this work, we statistically link specific wave modes to heavy ion heating and acceleration. We have computed the Fast Fourier Transform (FFT) of transverse and compressional magnetic waves between 0 and 5.5 Hz using 9 days of ACE and Wind Magnetometer data. The FFTs are averaged over plasma measurement cycles to compute statistical correlations between magnetic wave power at each discrete frequency, and ion kinetic properties measured by ACE/SWICS and Wind/SWE. The results show that lower frequency transverse oscillations (< 0.2 Hz) and higher frequency compressional oscillations (> 0.4 Hz) are positively correlated with enhancements in the heavy ion thermal and drift speeds. Moreover, the correlation results for the He2+ and O6+ were similar on most days. The correlations were often weak, but most days had some frequencies that correlated with statistical significance. This work suggests that the solar wind heavy ions are possibly being heated and accelerated by both transverse and compressional waves at different frequencies.

  5. Large Directed Flow of Open Charm Mesons Probes the Three-Dimensional Distribution of Matter in Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sandeep; BoŻek, Piotr

    2018-05-01

    Thermalized matter created in noncentral relativistic heavy-ion collisions is expected to be tilted in the reaction plane with respect to the beam axis. The most notable consequence of this forward-backward symmetry breaking is the observation of rapidity-odd directed flow for charged particles. On the other hand, the production points for heavy quarks are forward-backward symmetric and shifted in the transverse plane with respect to the fireball. The drag on heavy quarks from the asymmetrically distributed thermalized matter generates substantial directed flow for heavy flavor mesons. We predict a very large rapidity-odd directed flow of D mesons in noncentral Au-Au collisions at √{sN N}=200 GeV , several times larger than for charged particles. A possible experimental observation of a large directed flow for heavy flavor mesons would represent an almost direct probe of the three-dimensional distribution of matter in heavy-ion collisions.

  6. PREFACE: Quark Matter 2011 (QM11) Quark Matter 2011 (QM11)

    NASA Astrophysics Data System (ADS)

    Schutz, Yves; Wiedemann, Urs Achim

    2011-12-01

    Since the early 1980s, the Quark Matter conferences have been the most important forum for presenting results in the field of high-energy heavy-ion collisions. The 22nd conference in this series took place in Annecy, France, on 22-29 May 2011, and it attracted a record attendance of almost 800 participants. More than 500 requests to give presentations were received and, based on the recommendations of the International Advisory Committee, almost 200 were selected. This special issue of Journal of Physics G: Nuclear and Particle Physics contains the written reports of those oral presentations. Quark Matter 2011 was scheduled to take place six months after the start of the heavy ion program at the Large Hadron Collider (LHC). Hence, these proceedings mark a historical milestone: two decades after starting to prepare for the LHC, the present volume documents the first substantial harvest of LHC heavy-ion data. In addition, these proceedings feature a complete overview of recent theoretical and experimental developments over two orders of magnitude in the center-of-mass energy of heavy-ion collisions. In particular, they include prominently the latest results from the heavy-ion experiments at Brookhaven's Relativistic Heavy Ion Collider and a broad range of theoretical highlights. Early in the organization of Quark Matter 2011, it was recognized that the novelty of the results expected at this conference argues for a very rapid publication of the proceedings. We would like to thank all who helped meet the ambitious production schedule. In particular, we would like to thank the paper committees of the LHC experiments ATLAS, ALICE and CMS, and the RHIC experiments PHENIX and STAR who ensured, in a coordinated action, that all experimental contributions were received within four weeks of the end of the conference. We would also like to thank the many individual contributors, as well as the anonymous referees appointed by Journal of Physics G: Nuclear and Particle Physics, who respected the tight deadline. Last but not least, we would like to thank the staff of the journal, and in particular Suzie Prescott and Rachel Lawless: they handled an enormous number of communications and requests flawlessly and swiftly. Yves Schutz and Urs Achim Wiedemann Organizers of Quark Matter 2011 Guest Editors

  7. Electron cyclotron resonance ion sources in use for heavy ion cancer therapy.

    PubMed

    Tinschert, K; Iannucci, R; Lang, R

    2008-02-01

    The use of electron cyclotron resonance (ECR) ion sources for producing ion beams for heavy ion cancer therapy has been established for more than ten years. After the Heavy Ion Medical Accelerator (HIMAC) at Chiba, Japan started therapy of patients with carbon ions in 1994 the first carbon ion beam for patient treatment at the accelerator facility of GSI was delivered in 1997. ECR ion sources are the perfect tool for providing the required ion beams with good stability, high reliability, and easy maintenance after long operating periods. Various investigations were performed at GSI with different combinations of working gas and auxiliary gas to define the optimal beam conditions for an extended use of further ion species for the dedicated Heidelberg Ion Beam Therapy (HIT) facility installed at the Radiological University Hospital Heidelberg, Germany. Commercially available compact all permanent magnet ECR ion sources operated at 14.5 GHz were chosen for this facility. Besides for (12)C(4+) these ion sources are used to provide beams of (1)H(3)(1+), (3)He(1+), and (16)O(6+). The final commissioning at the HIT facility could be finished at the end of 2006.

  8. Heavy Ion Microbeam- and Broadbeam-Induced Current Transients in SiGe HBTs

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Reed, R. A.; McMorrow, D.; Vizkelethy, G.; Ferlet-Cavrois, V.; Baggio, J.; Duhamel, O.; Moen, K. A.; Phillips, S. D.; Diestelhorst, R. M.; hide

    2009-01-01

    IBM 5AM SiGe HBT is device-under-test. High-speed measurement setup. Low-impedance current transient measurements. SNL, JYFL, GANIL. Microbeam to broadbeam position inference. Improvement to state-of-the-art. Microbeam (SNL) transients reveal position dependent heavy ion response, Unique response for different device regions Unique response for different bias schemes. Similarities to TPA pulsed-laser data. Broadbeam transients (JYFL and GANIL) provide realistic heavy ion response. Feedback using microbeam data. Overcome issues of LET and ion range with microbeam. **Angled Ar-40 data in full paper. Data sets yield first-order results, suitable for TCAD calibration feedback.

  9. Heavy-Ion Injector for the High Current Experiment

    NASA Astrophysics Data System (ADS)

    Bieniosek, F. M.; Henestroza, E.; Kwan, J. W.; Prost, L.; Seidl, P.

    2001-10-01

    We report on progress in development of the Heavy-Ion Injector at LBNL, which is being prepared for use as an injector for the High Current Experiment (HCX). It is composed of a 10-cm-diameter surface ionization source, an extraction diode, and an electrostatic quadrupole (ESQ) accelerator, with a typical operating current of 0.6 A of potassium ions at 1.8 MeV, and a beam pulse length of 4.5 microsecs. We have improved the Injector equipment and diagnostics, and have characterized the source emission and radial beam profiles at the diode and ESQ regions. We find improved agreement with EGUN predictions, and improved compatibility with the downstream matching section. Plans are to attach the matching section and the initial ESQ transport section of HCX. Results will be presented and compared with EGUN and WARP simulations.

  10. Failure Analysis of Heavy-Ion-Irradiated Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Casey, Megan C.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Campola, Michael J.; Label, Kenneth A.

    2017-01-01

    In this work, we use high- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images to identify and describe the failure locations in heavy-ion-irradiated Schottky diodes.

  11. Enhancement in sensitivity of copper sulfide thin film ammonia gas sensor: Effect of swift heavy ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagade, Abhay Abhimanyu; Sharma, Ramphal; Department of Chemistry, Hanyang University, Sungdong-Ku, Haengdang-dong 17, Seoul 133-791

    2009-02-15

    The studies are carried out on the effect of swift heavy ion (SHI) irradiation on surface morphology and electrical properties of copper sulfide (Cu{sub x}S) thin films with three different chemical compositions (x values). The irradiation experiments have been carried out on Cu{sub x}S films with x=1.4, 1.8, and 2 by 100 MeV gold heavy ions at room temperature. These as-deposited and irradiated thin films have been used to detect ammonia gas at room temperature (300 K). The SHI irradiation treatment on x=1.4 and 1.8 copper sulfide films enhances the sensitivity of the gas sensor. The results are discussed consideringmore » high electronic energy deposition by 100 MeV gold heavy ions in a matrix of copper sulfide.« less

  12. Heavy Ion Formation in Titan's Ionosphere: Magnetospheric Introduction of Free Oxygen and Source of Titan's Aerosols?

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Hartle, R. E.; Cooper, J. F.; Johnson, R. E.; Coates, A.; dePater, imke; Strom, Daphne; Simoes, F.; Steele, A.; Robb, F.

    2007-01-01

    With the recent discovery of heavy ions, positive and negative, by the Cassini Plasma Spectrometer (CAPS) instrument in Titan's ionosphere, it reveals new possibilities for aerosol formation at Titan and the introduction of free oxygen to the aerosol chemistry from Saturn's magnetosphere with Enceladus as the primary oxygen source. One can estimate whether the heavy ions in the ionosphere are of sufficient number to account for all the aerosols, under what conditions are favorable for heavy ion formation and how they are introduced as seed particles deeper in Titan's atmosphere where the aerosols form and eventually find themselves on Titan's surface where unknown chemical processes can take place. Finally, what are the possibilities with regard to their chemistry on the surface with some free oxygen present in their seed particles?

  13. Radiation risk estimation: Modelling approaches for “targeted” and “non-targeted” effects

    NASA Astrophysics Data System (ADS)

    Ballarini, Francesca; Alloni, Daniele; Facoetti, Angelica; Mairani, Andrea; Nano, Rosanna; Ottolenghi, Andrea

    The estimation of the risks from low doses of ionizing radiation - including heavy ions - is still a debated question. In particular, the action of heavy ions on biological targets needs further investigation. In this framework, we present a mechanistic model and a Monte Carlo simulation code for the induction of different types of chromosome aberrations. The model, previously validated for gamma rays and light ions, has recently started to be extended to heavy ions such as Iron and Carbon, which are of interest both for space radiation protection and for hadrontherapy. Preliminary results were found to be in agreement with experimental dose-response curves for aberration yields observed following heavy-ion irradiation of human lymphocytes treated with the Premature Chromosome Condensation technique. During the last 10 years, the "Linear No Threshold" hypothesis has been challenged by a large number of observations on the so-called "non-targeted effects" including bystander effect, which consists of the induction of cytogenetic damage in cells not directly traversed by radiation, most likely as a response to molecular messengers released by directly irradiated cells. Although it is now clear that cellular communication plays a fundamental role, our knowledge on the mechanisms underlying bystander effects is still poor, and would largely benefit from further investigations including theoretical models and simulation codes. In the present paper we will review different modelling approaches, including one that is being developed at the University of Pavia, focusing on the assumptions adopted by the various authors and on their implications in terms of low-dose radiation risk, as well as on the identification of "critical" parameters that can modulate the model outcomes.

  14. Apparatus and method for hydrogen and oxygen mass spectrometry of the terrestrial magnetosphere

    DOEpatents

    Funsten, Herbert O [Los Alamos, NM; Dors, Eric E [Los Alamos, NM; Harper, Ronnie W [Los Alamos, NM; Reisenfeld, Daniel B [Stevensville, MT

    2007-05-15

    A detector element for mass spectrometry of a flux of heavy and light ions, that includes: a first detector to detect light ions that transit through a foil operatively placed in front of the first detector, and a second detector that detects the flux of heavy and light ions.

  15. A Green's function method for high charge and energy ion transport.

    PubMed

    Chun, S Y; Khandelwal, G S; Wilson, J W

    1996-02-01

    A heavy-ion transport code using Green's function methods is developed. The low-order perturbation terms exhibiting the greatest energy variation are used as dominant energy-dependent terms, and the higher order collision terms are evaluated using nonperturbative methods. The recently revised NUCFRG database is used to evaluate the solution for comparison with experimental data for 625A MeV 20Ne and 517A MeV 40Ar ion beams. Improved agreements with the attenuation characteristics for neon ions are found, and reasonable agreement is obtained for the transport of argon ions in water.

  16. Selective sorption of lead, cadmium and zinc ions by a polymeric cation exchanger containing nano-Zr(HPO3S)2.

    PubMed

    Zhang, Qingrui; Pan, Bingcai; Pan, Bingjun; Zhang, Weiming; Jia, Kun; Zhang, Quanxing

    2008-06-01

    A novel polymeric hybrid sorbent, namely ZrPS-001, was fabricated for enhanced sorption of heavy metal ions by impregnating Zr(HPO3S)2 (i.e., ZrPS) nanoparticles within a porous polymeric cation exchanger D-001. The immobilized negatively charged groups bound to the polymeric matrix D-001 would result in preconcentration and permeation enhancement of target metal ions prior to sequestration, and ZrPS nanoparticles are expected to sequester heavy metals selectively through an ion-exchange process. Highly effective sequestration of lead, cadmium, and zinc ions from aqueous solution can be achieved by ZrPS-001 even in the presence of competing calcium ion at concentration several orders of magnitude greater than the target species. The exhausted ZrPS-001 beads are amenable to regeneration with 6 M HCI solution for repeated use without any significant capacity loss. Fixed-bed column treatment of simulated waters containing heavy metals at high or trace levels was also performed. The content of heavy metals in treated effluent approached or met the WHO drinking water standard.

  17. Heavy-ion dominance near Cluster perigees

    NASA Astrophysics Data System (ADS)

    Ferradas, C. P.; Zhang, J.-C.; Kistler, L. M.; Spence, H. E.

    2015-12-01

    Time periods in which heavy ions dominate over H+ in the energy range of 1-40 keV were observed by the Cluster Ion Spectrometry (CIS)/COmposition DIstribution Function (CODIF) instrument onboard Cluster Spacecraft 4 at L values less than 4. The characteristic feature is a narrow flux peak at around 10 keV that extends into low L values, with He+ and/or O+ dominating. In the present work we perform a statistical study of these events and examine their temporal occurrence and spatial distribution. The observed features, both the narrow energy range and the heavy-ion dominance, can be interpreted using a model of ion drift from the plasma sheet, subject to charge exchange losses. The narrow energy range corresponds to the only energy range that has direct drift access from the plasma sheet during quiet times. The drift time to these locations from the plasma sheet is > 30 h, so that charge exchange has a significant impact on the population. We show that a simple drift/loss model can explain the dependence on L shell and MLT of these heavy-ion-dominant time periods.

  18. Design, characterization and evaluation of hydroxyethylcellulose based novel regenerable supersorbent for heavy metal ions uptake and competitive adsorption.

    PubMed

    Abbas, Azhar; Hussain, Muhammad Ajaz; Sher, Muhammad; Irfan, Muhammad Imran; Tahir, Muhammad Nawaz; Tremel, Wolfgang; Hussain, Syed Zajif; Hussain, Irshad

    2017-09-01

    Hydroxyethylcellulose succinate-Na (HEC-Suc-Na) was designed and evaluated for removal of some heavy metal ions from aqueous solution. Pristine sorbent HEC-Suc-Na was thoroughly characterized by FTIR and solid-state CP/MAS 13 C NMR spectroscopy, SEM-EDS and zero point charge analyses. Langmuir isotherm, pseudo second order kinetic and ion exchange models provided best fit to the experimental data of sorption of metal ions. Maximum sorption capacities of supersorbent HEC-Suc-Na for sorption of heavy metal ions from aqueous solution as calculated by Langmuir isotherm model were found to be 1000, 909.09, 666.6, 588 and 500mgg -1 for Pb(II), Cr(VI), Co(II), Cu(II) and Ni(II), respectively. Competitive sorption of these heavy metal ions was carried out from galvanic and nuclear waste water simulated environment. The negative values of ΔG° and ΔH° indicated spontaneity and exothermic nature of sorption. The sorbent was efficiently regenerated with no significant decrease in sorption capacity after five cycles. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Progress report on the Heavy Ions in Space (HIIS) experiment

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Beahm, Lorraine P.; Boberg, Paul R.; Tylka, Allan J.

    1993-01-01

    One of the objectives of the Heavy Ions In Space (HIIS) experiment is to investigate heavy ions which appear at Long Duration Exposure Facility (LDEF) below the geomagnetic cutoff for fully-ionized galactic cosmic rays. Possible sources of such 'below-cutoff' particles are partially-ionized solar energetic particles, the anomalous component of cosmic rays, and magnetospherically-trapped particles. In recent years, there have also been reports of below-cutoff ions which do not appear to be from any known source. Although most of these observations are based on only a handful of ions, they have led to speculation about 'partially-ionized galactic cosmic rays' and 'near-by cosmic ray sources'. The collecting power of HIIS is order of magnitude larger than that of the instruments which reported these results, so HIIS should be able to confirm these observations and perhaps discover the source of these particles. Preliminary results on below-cutoff heavy-ions are reported. Observations to possible known sources of such ions are compared. A second objective of the HIIS experiment is to measure the elemental composition of ultraheavy galactic cosmic rays, beginning in the tin-barium region of the periodic table. A report on the status of this analysis is presented.

  20. Ion dynamics in the magnetospheric flanks of Mercury

    NASA Astrophysics Data System (ADS)

    Aizawa, S.; Delcourt, D.; Terada, N.

    2017-12-01

    Because of a large velocity shear in the flanks of Mercury's magnetosphere, Kelvin-Helmholtz (KH) instability is expected to develop and to play a role in mass and momentum transport across the magnetopause. Using single particle simulations in field configurations obtained from MHD simulations, we investigate the dynamics of ions in this region. We focus on heavy ions of planetary origin (e.g., Na+, K+, Mg+) that may be found on either side of the magnetopause, due to the ionization of exospheric neutrals. Because characteristic spatial and temporal scales of KH instability at Mercury are comparable to or smaller than typical ion scales, we show that under such conditions the guiding center approximation is invalid and that planetary ions may be transported in a non-adiabatic (magnetic moment violation) manner. In this study, we focus on the effect of the electric field that develops within KH vortices. We show that the intensification rather than the change of orientation of this electric field is responsible for large (up to hundreds of eVs or a few keVs) energization of heavy planetary ions. This energization occurs systematically for particles with low initial energies in the perpendicular direction, the energy realized being of the order of the energy corresponding to the maximum ExB drift speed, ɛmax, in a like manner to a pickup ion process. It is also found that particles that have initial energies comparable to ɛmax may be decelerated depending upon gyration phase. Finally, we find that particles with initial perpendicular energies much larger than ɛmax are little affected during transport through KH vortices. We suggest that the development of KH instabilities in Mercury's magnetospheric flanks may lead to significant ion energization and pitch angle diffusion, and may thus play a prominent role in plasma mixing at the magnetopause.

  1. Compact Full-Field Ion Detector System for CubeSat Science Beyond LEO

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Clark, Pamela E.

    2013-01-01

    NASA Glenn Research Center (GRC) is applying its expertise and facilities in harsh environment instrumentation to develop a Compact Full-Field Ion Detector System (CFIDS). The CFIDS is designed to be an extremely compact, low cost instrument, capable of being flown on a wide variety of deep space platforms, to provide comprehensive (composition, velocity, and direction) in situ measurements of heavy ions in space plasma environments with higher fidelity, than previously available.

  2. Classification of heavy metal ions present in multi-frequency multi-electrode potable water data using evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Karkra, Rashmi; Kumar, Prashant; Bansod, Baban K. S.; Bagchi, Sudeshna; Sharma, Pooja; Krishna, C. Rama

    2017-11-01

    Access to potable water for the common people is one of the most challenging tasks in the present era. Contamination of drinking water has become a serious problem due to various anthropogenic and geogenic events. The paper demonstrates the application of evolutionary algorithms, viz., particle swan optimization and genetic algorithm to 24 water samples containing eight different heavy metal ions (Cd, Cu, Co, Pb, Zn, Ar, Cr and Ni) for the optimal estimation of electrode and frequency to classify the heavy metal ions. The work has been carried out on multi-variate data, viz., single electrode multi-frequency, single frequency multi-electrode and multi-frequency multi-electrode water samples. The electrodes used are platinum, gold, silver nanoparticles and glassy carbon electrodes. Various hazardous metal ions present in the water samples have been optimally classified and validated by the application of Davis Bouldin index. Such studies are useful in the segregation of hazardous heavy metal ions found in water resources, thereby quantifying the degree of water quality.

  3. The influence of heavy metals on the production of extracellular polymer substances in the processes of heavy metal ions elimination.

    PubMed

    Mikes, J; Siglova, M; Cejkova, A; Masak, J; Jirku, V

    2005-01-01

    Wastewaters from a chemical industry polluted by heavy metal ions represent a hazard for all living organisms. It can mean danger for ecosystems and human health. New methods are sought alternative to traditional chemical and physical processes. Active elimination process of heavy metals ions provided by living cells, their components and extracellular products represents a potential way of separating toxic heavy metals from industrial wastewaters. While the abilities of bacteria to remove metal ions in solution are extensively used, fungi have been recognized as a promising kind of low-cost adsorbents for removal of heavy-metal ions from aqueous waste sources. Yeasts and fungi differ from each other in their constitution and in their abilities to produce variety of extracellular polymeric substances (EPS) with different mechanisms of metal interactions. The accumulation of Cd(2+), Cr(6+), Pb(2+), Ni(2+) and Zn(2+) by yeasts and their EPS was screened at twelve different yeast species in microcultivation system Bioscreen C and in the shaking Erlenmayer's flasks. This results were compared with the production of yeast EPS and the composition of yeast cell walls. The EPS production was measured during the yeast growth and cell wall composition was studied during the cultivations in the shaking flasks. At the end of the process extracellular polymers and their chemical composition were isolated and amount of bound heavy metals was characterized. The variable composition and the amount of the EPS were found at various yeast strains. It was influenced by various compositions of growth medium and also by various concentrations of heavy metals. It is evident, that the amount of bound heavy metals was different. The work reviews the possibilities of usage of various yeast EPS and components of cell walls in the elimination processes of heavy metal ions. Further the structure and properties of yeasts cell wall and EPS were discussed. The finding of mechanisms mentioned above is necessary to identify the functional groups entered in the metals elimination processes.

  4. Design of four-beam IH-RFQ linear accelerator

    NASA Astrophysics Data System (ADS)

    Ikeda, Shota; Murata, Aki; Hayashizaki, Noriyosu

    2017-09-01

    The multi-beam acceleration method is an acceleration technique for low-energy high-intensity heavy ion beams, which involves accelerating multiple beams to decrease space charge effects, and then integrating these beams by a beam funneling system. At the Tokyo Institute of Technology a two beam IH-RFQ linear accelerator was developed using a two beam laser ion source with direct plasma injection scheme. This system accelerated a carbon ion beam with a current of 108 mA (54 mA/channel × 2) from 5 up to 60 keV/u. In order to demonstrate that a four-beam IH-RFQ linear accelerator is suitable for high-intensity heavy ion beam acceleration, we have been developing a four-beam prototype. A four-beam IH-RFQ linear accelerator consists of sixteen RFQ electrodes (4 × 4 set) with stem electrodes installed alternately on the upper and lower ridge electrodes. As a part of this development, we have designed a four-beam IH-RFQ linear accelerator using three dimensional electromagnetic simulation software and beam tracking simulation software. From these simulation results, we have designed the stem electrodes, the center plate and the side shells by evaluating the RF properties such as the resonance frequency, the power loss and the electric strength distribution between the RFQ electrodes.

  5. Induction of anchorage-independent growth in primary human cells exposed to protons or HZE ions separately or in dual exposures.

    PubMed

    Sutherland, B M; Cuomo, N C; Bennett, P V

    2005-10-01

    Travelers on space missions will be exposed to a complex radiation environment that includes protons and heavy charged particles. Since protons are present at much higher levels than are heavy ions, the most likely scenario for cellular radiation exposure will be proton exposure followed by a hit by a heavy ion. Although the effects of individual ion species on human cells are being investigated extensively, little is known about the effects of exposure to both radiation types. One useful measure of mammalian cell damage is induction of the ability to grow in a semi-solid agar medium highly inhibitory to the growth of normal human cells, termed neoplastic transformation. Using primary human cells, we evaluated induction of soft-agar growth and survival of cells exposed to protons only or to heavy charged particles (600 MeV/nucleon silicon) only as well as of cells exposed to protons followed after a 4-day interval by silicon ions. Both ions alone efficiently transformed the human cells to anchorage-independent growth. Initial experiments indicate that the dose responses for neoplastic transformation of cells exposed to protons and then after 4 days to silicon ions appear similar to that of cells exposed to silicon ions alone.

  6. Angular distribution of Cherenkov radiation from relativistic heavy ions taking into account deceleration in the radiator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdanov, O. V., E-mail: bov@tpu.ru; Fiks, E. I.; Pivovarov, Yu. L.

    2012-09-15

    Numerical methods are used to study the dependence of the structure and the width of the angular distribution of Vavilov-Cherenkov radiation with a fixed wavelength in the vicinity of the Cherenkov cone on the radiator parameters (thickness and refractive index), as well as on the parameters of the relativistic heavy ion beam (charge and initial energy). The deceleration of relativistic heavy ions in the radiator, which decreases the velocity of ions, modifies the condition of structural interference of the waves emitted from various segments of the trajectory; as a result, a complex distribution of Vavilov-Cherenkov radiation appears. The main quantitymore » is the stopping power of a thin layer of the radiator (average loss of the ion energy), which is calculated by the Bethe-Bloch formula and using the SRIM code package. A simple formula is obtained to estimate the angular distribution width of Cherenkov radiation (with a fixed wavelength) from relativistic heavy ions taking into account the deceleration in the radiator. The measurement of this width can provide direct information on the charge of the ion that passes through the radiator, which extends the potentialities of Cherenkov detectors. The isotopic effect (dependence of the angular distribution of Vavilov-Cherenkov radiation on the ion mass) is also considered.« less

  7. A survey of heavy ions in Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Crary, Frank

    2016-06-01

    The Cassini Plasma Spectrometer (CAPS) has observed heavy positive ions, with masses up to approximately 300 amu, as well as negative ions with even higher masses. The abundance and density of these positive ions have been reported for selected encounters, especially during those where comparisons with Ion and Neutral Mass Spectrometer (INMS) data are possible. The present work presents a survey of all available encounters, showing the density of ions in various mass ranges and their spatial distribution. The influence of the broad mass distribution on ionospheric conductivity will also be discussed.

  8. Optimization of a low noise detection circuit for probing the structure of damage cascades with IBIC

    DOE PAGES

    Auden, Elizabeth C.; Doyle, Barney L.; Bielejec, Edward; ...

    2015-06-18

    Optimal detector / pre-amplifier combinations have been identified for the use of light ion IBIC (ion beam induced charge) to probe the physical structure of electrically active defects in damage cascades caused by heavy ion implantation. The ideal detector must have a sufficiently thin dead layer that incident ions will produce the majority of damage cascades in the depletion region of the detector rather than the dead layer. Detector and circuit noise must be low enough to detect the implantation of a single heavy ion as well as the decrease in the light ion IBIC signal caused by Shockley-Read-Hall recombinationmore » when the beam scans regions of the detector damaged by the heavy ion. The IBIC signals from three detectors irradiated with 750 keV He⁺ ions are measured with commercial and bespoke charge sensitive pre-amplifiers to identify the combination with the lowest noise.« less

  9. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.

    PubMed

    Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika

    2011-10-05

    This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms. © 2011 IOP Publishing Ltd

  10. [Heavy charged particles radiotherapy--mainly carbon ion beams].

    PubMed

    Yanagi, Takeshi; Tsuji, Hiroshi; Tsujii, Hirohiko

    2003-12-01

    Carbon ion beams have superior dose distribution allowing selective irradiation to the tumor while minimizing irradiation to the surrounding normal tissues. Furthermore, carbon ions produce an increased density of local energy deposition with high-energy transfer (LET) components, resulting in radiobiological advantages. Stimulated by the favorable results in fast neutrons, helium ions, and neon ions, a clinical trial of carbon ion therapy was begun at the National Institute of Radiological Sciences in 1994. Carbon ions were generated by a medically dedicated accelerator (HIMAC, Heavy Ion Medical Accelerator in Chiba, Japan), which was the world's first heavy ion accelerator complex dedicated to medical use in a hospital environment. In general, patients were selected for treatment when their tumors could not be expected to respond favorably to conventional forms of therapy. A total of 1601 patients were registered in this clinical trial so far. The normal tissue reactions were acceptable, and there were no carbon related deaths. Carbon ion radiotherapy seemed to be a clinically feasible curative treatment modality, and appears to offer improved results not only over conventional X-rays but also even over surgery in some selected carcinomas.

  11. Silicon Carbide Power Device Performance Under Heavy-Ion Irradiation

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie; Casey, Megan; Topper, Alyson; Wilcox, Edward; Phan, Anthony; Ikpe, Stanley; LaBel, Ken

    2015-01-01

    Heavy-ion induced degradation and catastrophic failure data for SiC power MOSFETs and Schottky diodes are examined to provide insight into the challenge of single-event effect hardening of SiC power devices.

  12. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion sourcea)

    NASA Astrophysics Data System (ADS)

    Kondo, K.; Yamamoto, T.; Sekine, M.; Okamura, M.

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (˜100 μA) with high charge (˜10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  13. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source.

    PubMed

    Kondo, K; Yamamoto, T; Sekine, M; Okamura, M

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  14. Design and development of a radio frequency quadrupole linac postaccelerator for the Variable Energy Cyclotron Center rare ion beam project.

    PubMed

    Dechoudhury, S; Naik, V; Mondal, M; Chatterjee, A; Pandey, H K; Mandi, T K; Bandyopadhyay, A; Karmakar, P; Bhattacharjee, S; Chouhan, P S; Ali, S; Srivastava, S C L; Chakrabarti, A

    2010-02-01

    A four-rod type heavy-ion radio frequency quadrupole (RFQ) linac has been designed, constructed, and tested for the rare ion beam (RIB) facility project at VECC. Designed for cw operation, this RFQ is the first postaccelerator in the RIB beam line. It will accelerate A/q < or = 14 heavy ions coming from the ion source to the energy of around 100 keV/u for subsequent acceleration in a number of Interdigital H-Linac. Operating at a resonance frequency of 37.83 MHz, maximum intervane voltage of around 54 kV will be needed to achieve the final energy over a vane length of 3.12 m for a power loss of 35 kW. In the first beam tests, transmission efficiency of about 90% was measured at the QQ focus after the RFQ for O(5+) beam. In this article the design of the RFQ including the effect of vane modulation on the rf characteristics and results of beam tests will be presented.

  15. Effects of heavy ion radiation on digital micromirror device performance

    NASA Astrophysics Data System (ADS)

    Travinsky, Anton; Vorobiev, Dmitry; Ninkov, Zoran; Raisanen, Alan D.; Pellish, Jonny; Robberto, Massimo; Heap, Sara

    2016-09-01

    There is a pressing need in the astronomical community for space-suitable multiobject spectrometers (MOSs). Several digital micromirror device (DMD)-based prototype MOSs have been developed for ground-based observatories; however, their main use will come with deployment on a space-based mission. Therefore, the performance of DMDs under exoatmospheric radiation needs to be evaluated. DMDs were rewindowed with 2-μm thick pellicle and tested under accelerated heavy-ion radiation (control electronics shielded from radiation), with a focus on the detection of single-event effects (SEEs) including latch-up events. Testing showed that while DMDs are sensitive to nondestructive ion-induced state changes, all SEEs are cleared with a soft reset (i.e., sending a pattern to the device). The DMDs did not experience single-event induced permanent damage or functional changes that required a hard reset (power cycle), even at high ion fluences. This suggests that the SSE rate burden will be manageable for a DMD-based instrument when exposed to solar particle fluxes and cosmic rays in orbit.

  16. Simultaneous determination of heavy metal ions in water using near-infrared spectroscopy with preconcentration by nano-hydroxyapatite.

    PubMed

    Ning, Yu; Li, Jihui; Cai, Wensheng; Shao, Xueguang

    2012-10-01

    A method for simultaneous determination of metal ions in river water was developed by using preconcentration and near-infrared diffuse reflectance spectroscopy (NIRDRS). An inorganic biomaterial, nano-hydroxyapatite (HAP) was used as a high-efficient adsorbent for gathering the ions from water samples. After adsorbing the analytes onto the adsorbent, NIRDRS was measured and partial least squares (PLS) models were established for fast and simultaneous quantitative prediction. With the samples prepared by river water, determination of Pb(2+), Zn(2+), Cu(2+), Cd(2+) and Cr(3+) was investigated. The calibration models of Cu(2+), Cr(3+) and total content were proven to be efficient enough for precise prediction. The determination coefficients (R(2)) of the independent validation were found as high as 0.9924, 0.9869 and 0.9273 for Cu(2+), Cr(3+) and total content, respectively. Therefore, the feasibility of NIRDRS for microanalysis of heavy metal ions in waste water was demonstrated. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Highlights from PHENIX at RHIC

    NASA Astrophysics Data System (ADS)

    Nouicer, Rachid

    2018-02-01

    Hadrons conveying strange quarks or heavy quarks are essential probes of the hot and dense medium created in relativistic heavy-ion collisions. With hidden strangeness, ϕ meson production and its transport in the nuclear medium have attracted high interest since its discovery. Heavy quark-antiquark pairs, like charmonium and bottomonium mesons, are mainly produced in initial hard scattering processes of partons. While some of the produced pairs form bound quarkonia, the vast majority hadronize into particles carrying open heavy flavor. In this context, the PHENIX collaboration carries out a comprehensive physics program which studies the ϕ meson production, and heavy flavor production in relativistic heavy-ion collisions at RHIC. In recent years, the PHENIX experiment upgraded the detector in installing silicon vertex tracker (VTX) at mid-rapidity region and forward silicon vertex tracker (FVTX) at the forward rapidity region. With these new upgrades, the experiment has collected large data samples, and enhanced the capability of heavy flavor measurements via precision tracking. This paper summarizes the latest PHENIX results concerning ϕ meson, open and closed charm and beauty heavy quark production in relativistic heavy-ion collisions. These results are presented as a function of rapidity, energy and system size, and their interpretation with respect to the current theoretical understanding.

  18. MRI biosensor for lead detection based on the DNAzyme-induced catalytic reaction.

    PubMed

    Xu, Liguang; Yin, Honghong; Ma, Wei; Wang, Libing; Kuang, Hua; Xu, Chuanlai

    2013-11-21

    A MRI biosensor for sensitive and specific detection of lead ions (Pb(2+)) was developed based on DNAzyme-induced cleavage of magnetic nanoparticles (MNPs). A low limit of detection (LOD) of 0.05 ng mL(-1) was obtained. This biosensor has the potential to serve as a general platform for the detection of heavy metal ions.

  19. Phenomenology of anomalous chiral transports in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Huang, Xu-Guang

    2018-01-01

    High-energy Heavy-ion collisions can generate extremely hot quark-gluon matter and also extremely strong magnetic fields and fluid vorticity. Once coupled to chiral anomaly, the magnetic fields and fluid vorticity can induce a variety of novel transport phenomena, including the chiral magnetic effect, chiral vortical effect, etc. Some of them require the environmental violation of parity and thus provide a means to test the possible parity violation in hot strongly interacting matter. We will discuss the underlying mechanism and implications of these anomalous chiral transports in heavy-ion collisions.

  20. Importance of the Bulk Viscosity of QCD in Ultrarelativistic Heavy-Ion Collisions

    DOE PAGES

    Ryu, S.; Paquet, J. -F.; Shen, C.; ...

    2015-09-22

    In this study, we investigate the consequences of a nonzero bulk viscosity coefficient on the transverse momentum spectra, azimuthal momentum anisotropy, and multiplicity of charged hadrons produced in heavy ion collisions at LHC energies. The agreement between a realistic 3D hybrid simulation and the experimentally measured data considerably improves with the addition of a bulk viscosity coefficient for strongly interacting matter. Lastly, this paves the way for an eventual quantitative determination of several QCD transport coefficients from the experimental heavy ion and hadron-nucleus collision programs.

  1. Internuclear cascade-evaporation model for LET spectra of 200 MeV protons used for parts testing.

    PubMed

    O'Neill, P M; Badhwar, G D; Culpepper, W X

    1998-12-01

    The Linear Energy Transfer (LET) spectrum produced in microelectronic components during testing with 200 MeV protons is calculated with an intemuclear cascade-evaporation code. This spectrum is compared to the natural space heavy ion environment for various earth orbits. This comparison is used to evaluate the results of proton testing in terms of determining a firm upper bound to the on-orbit heavy ion upset rate and the risk of on-orbit heavy ion failures that would not be detected with protons.

  2. Universal pion freeze-out in heavy-ion collisions.

    PubMed

    Adamová, D; Agakichiev, G; Appelshäuser, H; Belaga, V; Braun-Munzinger, P; Castillo, A; Cherlin, A; Damjanović, S; Dietel, T; Dietrich, L; Drees, A; Esumi, S I; Filimonov, K; Fomenko, K; Fraenkel, Z; Garabatos, C; Glässel, P; Hering, G; Holeczek, J; Kushpil, V; Lenkeit, B; Ludolphs, W; Maas, A; Marín, A; Milosević, J; Milov, A; Miśkowiec, D; Panebrattsev, Yu; Petchenova, O; Petrácek, V; Pfeiffer, A; Rak, J; Ravinovich, I; Rehak, P; Sako, H; Schmitz, W; Schukraft, J; Sedykh, S; Shimansky, S; Slívová, J; Specht, H J; Stachel, J; Sumbera, M; Tilsner, H; Tserruya, I; Wessels, J P; Wienold, T; Windelband, B; Wurm, J P; Xie, W; Yurevich, S; Yurevich, V

    2003-01-17

    Based on an evaluation of data on pion interferometry and on particle yields at midrapidity, we propose a universal condition for thermal freeze-out of pions in heavy-ion collisions. We show that freeze-out occurs when the mean free path of pions lambda(f) reaches a value of about 1 fm, which is much smaller than the spatial extent of the system at freeze-out. This critical mean free path is independent of the centrality of the collision and beam energy from the Alternating Gradient Synchrotron to the Relativistic Heavy Ion Collider.

  3. Structural transformation of Si-rich SiNx film on Si via swift heavy ions irradiation

    NASA Astrophysics Data System (ADS)

    Murzalinov, D.; Akilbekov, A.; Dauletbekova, A.; Vlasukova, L.; Makhavikov, M.; Zdorovets, M.

    2018-03-01

    The effects of 200 MeV-Xe+ irradiation with fluencies of (109–1014) cm‑2 on the phase-structural transformation of Si-rich SiNx film deposited on Si substrate by low-pressure chemical vapor deposition have been reported. It has been shown from Raman scattering data that the swift heavy ions irradiation results in the dissolution of amorphous Si nanoclusters in nitride matrix. It has been shown, too, that the swift heavy ion irradiation leads to quenching a visual photoluminescence from nitride films.

  4. Project Nuclotron-based Ion Collider fAcility at JINR

    NASA Astrophysics Data System (ADS)

    Kekelidze, V. D.; Matveev, V. A.; Meshkov, I. N.; Sorin, A. S.; Trubnikov, G. V.

    2017-09-01

    The project of Nuclotron-based Ion Collider fAcility (NICA) that is under development at JINR (Dubna) is presented. The general goals of the project are experimental studies of both hot and dense baryonic matter and spin physics (in collisions of polarized protons and deuterons). The first program requires providing of heavy ion collisions in the energy range of √ {{s_{NN}}} = 4-11 Gev at average luminosity of L = 1 × 1027 cm-2 s-1 for 197Au79+ nuclei. The polarized beams mode is proposed to be used in energy range of √ {{s_{NN}}} = 12-27 Gev (protons at luminosity of L ≥ 1 × 1030 cm-2 s-1. The report contains description of the facility scheme and its characteristics in heavy ion operation mode. The Collider will be equipped with two detectors—MultiPurpose Detector (MPD), which is in an active stage of construction, and Spin Physics Detector (SPD) that is in the stage of conceptual design. Fixed target experiment "Baryonic matter at Nuclotron" (BM@N) will be performed in very beginning of the project. The wide program of applied researches at NICA facility is being developed as well.

  5. Advances in Heavy Ion Beam Probe Technology and Operation on MST

    NASA Astrophysics Data System (ADS)

    Demers, D. R.; Connor, K. A.; Schoch, P. M.; Radke, R. J.; Anderson, J. K.; Craig, D.; den Hartog, D. J.

    2003-10-01

    A technique to map the magnetic field of a plasma via spectral imaging is being developed with the Heavy Ion Beam Probe on the Madison Symmetric Torus. The technique will utilize two-dimensional images of the ion beam in the plasma, acquired by two CCD cameras, to generate a three-dimensional reconstruction of the beam trajectory. This trajectory, and the known beam ion mass, energy and charge-state, will be used to determine the magnetic field of the plasma. A suitable emission line has not yet been observed since radiation from the MST plasma is both broadband and intense. An effort to raise the emission intensity from the ion beam by increasing beam focus and current has been undertaken. Simulations of the accelerator ion optics and beam characteristics led to a technique, confirmed by experiment, that achieves a narrower beam and marked increase in ion current near the plasma surface. The improvements arising from these simulations will be discussed. Realization of the magnetic field mapping technique is contingent upon accurate reconstruction of the beam trajectory from the camera images. Simulations of two camera CCD images, including the interior of MST, its various landmarks and beam trajectories have been developed. These simulations accept user input such as camera locations, resolution via pixellization and noise. The quality of the images simulated with these and other variables will help guide the selection of viewing port pairs, image size and camera specifications. The results of these simulations will be presented.

  6. A Deterministic Electron, Photon, Proton and Heavy Ion Radiation Transport Suite for the Study of the Jovian System

    NASA Technical Reports Server (NTRS)

    Norman, Ryan B.; Badavi, Francis F.; Blattnig, Steve R.; Atwell, William

    2011-01-01

    A deterministic suite of radiation transport codes, developed at NASA Langley Research Center (LaRC), which describe the transport of electrons, photons, protons, and heavy ions in condensed media is used to simulate exposures from spectral distributions typical of electrons, protons and carbon-oxygen-sulfur (C-O-S) trapped heavy ions in the Jovian radiation environment. The particle transport suite consists of a coupled electron and photon deterministic transport algorithm (CEPTRN) and a coupled light particle and heavy ion deterministic transport algorithm (HZETRN). The primary purpose for the development of the transport suite is to provide a means for the spacecraft design community to rapidly perform numerous repetitive calculations essential for electron, proton and heavy ion radiation exposure assessments in complex space structures. In this paper, the radiation environment of the Galilean satellite Europa is used as a representative boundary condition to show the capabilities of the transport suite. While the transport suite can directly access the output electron spectra of the Jovian environment as generated by the Jet Propulsion Laboratory (JPL) Galileo Interim Radiation Electron (GIRE) model of 2003; for the sake of relevance to the upcoming Europa Jupiter System Mission (EJSM), the 105 days at Europa mission fluence energy spectra provided by JPL is used to produce the corresponding dose-depth curve in silicon behind an aluminum shield of 100 mils ( 0.7 g/sq cm). The transport suite can also accept ray-traced thickness files from a computer-aided design (CAD) package and calculate the total ionizing dose (TID) at a specific target point. In that regard, using a low-fidelity CAD model of the Galileo probe, the transport suite was verified by comparing with Monte Carlo (MC) simulations for orbits JOI--J35 of the Galileo extended mission (1996-2001). For the upcoming EJSM mission with a potential launch date of 2020, the transport suite is used to compute the traditional aluminum-silicon dose-depth calculation as a standard shield-target combination output, as well as the shielding response of high charge (Z) shields such as tantalum (Ta). Finally, a shield optimization algorithm is used to guide the instrument designer with the choice of graded-Z shield analysis.

  7. Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers

    NASA Astrophysics Data System (ADS)

    He, Junyong; Li, Yulian; Wang, Chengming; Zhang, Kaisheng; Lin, Dongyue; Kong, Lingtao; Liu, Jinhuai

    2017-12-01

    Removing heavy metals from aqueous solutions has drawn more and more attentions these years because of their serious global health challenge to human society. To develop an adsorbent with low-cost and high-efficiency for removal of heavy metals (HMs), β-cyclodextrin (β-CD) polymers crosslinked with rigid aromatic groups were prepared and used for lead (Pb), copper (Cu) and cadmium (Cd) removal for the first time. The negatively charged β-CD polymers with large BET surface area were suitable to be used in HMs adsorption. The adsorption process completed in 5 min was well fit by Freundlich isotherm model and pseudo-second-order model. The intraparticle diffusion model was also appropriate to describe the adsorption of Pb, Cu and Cd on β-CD polymer. The maximum of adsorption capacities at 25 °C for Pb, Cu and Cd were 196.42, 164.43 and 136.43 mg/g when the initial concentration was 200 mg/L. The HMs adsorption process on the surface of β-CD polymer was an endothermic and spontaneous process. Both of the electrostatic interaction and distribution of Pb, Cu and Cd species influenced the adsorption process at different pH values. The order of removal efficiencies in multi-component adsorption for the three metal ions were Pb > Cu > Cd. The adsorption mechanisms were H+ ions on hydroxyl groups exchanged with heavy metal ions and electrostatic interactions. This study indicated that β-CD polymers could be developed into effective adsorbents for rapid removal of heavy metals.

  8. High LET radiation shows no major cellular and functional effects on primary cardiomyocytes in vitro

    NASA Astrophysics Data System (ADS)

    Heselich, Anja; Frieß, Johannes L.; Ritter, Sylvia; Benz, Naja P.; Layer, Paul G.; Thielemann, Christiane

    2018-02-01

    It is well known that ionizing radiation causes adverse effects on various mammalian tissues. However, there is little information on the biological effects of heavy ion radiation on the heart. In order to fill this gap, we systematically examined DNA-damage induction and repair, as well as proliferation and apoptosis in avian cardiomyocyte cultures irradiated with heavy ions such as titanium and iron, relevant for manned space-flight, and carbon ions, as used for radiotherapy. Further, and to our knowledge for the first time, we analyzed the effect of heavy ion radiation on the electrophysiology of primary cardiomyocytes derived from chicken embryos using the non-invasive microelectrode array (MEA) technology. As electrophysiological endpoints beat rate and field action potential duration were analyzed. The cultures clearly exhibited the capacity to repair induced DNA damage almost completely within 24 h, even at doses of 7 Gy, and almost completely recovered from radiation-induced changes in proliferative behavior. Interestingly, no significant effects on apoptosis could be detected. Especially the functionality of primary cardiac cells exhibited a surprisingly high robustness against heavy ion radiation, even at doses of up to 7 Gy. In contrast to our previous study with X-rays the beat rate remained more or less unaffected after heavy ion radiation, independently of beam quality. The only change we could observe was an increase of the field action potential duration of up to 30% after titanium irradiation, diminishing within the following three days. This potentially pathological observation may be an indication that heavy ion irradiation at high doses could bear a long-term risk for cardiovascular disease induction.

  9. Carbon dots rooted agarose hydrogel hybrid platform for optical detection and separation of heavy metal ions.

    PubMed

    Gogoi, Neelam; Barooah, Mayuri; Majumdar, Gitanjali; Chowdhury, Devasish

    2015-02-11

    A robust solid sensing platform for an on-site operational and accurate detection of heavy metal is still a challenge. We introduce chitosan based carbon dots rooted agarose hydrogel film as a hybrid solid sensing platform for detection of heavy metal ions. The fabrication of the solid sensing platform is centered on simple electrostatic interaction between the NH3+ group present in the carbon dots and the OH- groups present in agarose. Simply on dipping the hydrogel film strip into the heavy metal ion solution, in particular Cr6+, Cu2+, Fe3+, Pb2+, Mn2+, the strip displays a color change, viz., Cr6+→yellow, Cu2+→blue, Fe3+→brown, Pb2+→white, Mn2+→tan brown. The optical detection limit of the respective metal ion is found to be 1 pM for Cr6+, 0.5 μM for Cu2+, and 0.5 nM for Fe3+, Pb2+, and Mn2+ by studying the changes in UV-visible reflectance spectrum of the hydrogel film. Moreover, the hydrogel film finds applicability as an efficient filtration membrane for separation of these quintet heavy metal ions. The strategic fundamental feature of this sensing platform is the successful capability of chitosan to form colored chelates with transition metals. This proficient hybrid hydrogel solid sensing platform is thus the most suitable to employ as an on-site operational, portable, cheap colorimetric-optical detector of heavy metal ion with potential skill in their separation. Details of the possible mechanistic insight into the colorimetric detection and ion separation are also discussed.

  10. Heavy ion beams from an Alphatross source for use in calibration and testing of diagnostics

    NASA Astrophysics Data System (ADS)

    Ward, R. J.; Brown, G. M.; Ho, D.; Stockler, B. F. O. F.; Freeman, C. G.; Padalino, S. J.; Regan, S. P.

    2016-10-01

    Ion beams from the 1.7 MV Pelletron Accelerator at SUNY Geneseo have been used to test and calibrate many inertial confinement fusion (ICF) diagnostics and high energy density physics (HEDP) diagnostics used at the Laboratory for Laser Energetics (LLE). The ion source on this accelerator, a radio-frequency (RF) alkali-metal charge exchange source called an Alphatross, is designed to produce beams of hydrogen and helium isotopes. There is interest in accelerating beams of carbon, oxygen, argon, and other heavy ions for use in testing several diagnostics, including the Time Resolved Tandem Faraday Cup (TRTF). The feasibility of generating these heavy ion beams using the Alphatross source will be reported. Small amounts of various gases are mixed into the helium plasma in the ion source bottle. A velocity selector is used to allow the desired ions to pass into the accelerator. As the heavy ions pass through the stripper canal of the accelerator, they emerge in a variety of charge states. The energy of the ion beam at the high-energy end of the accelerator will vary as a function of the charge state, however the maximum energy deliverable to target is limited by the maximum achievable magnetic field produced by the accelerator's steering magnet. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  11. Epigenetic Analysis of Heavy-ion Radiation Induced Bystander Effects in Mice

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Sun, Yeqing; Cui, Changna; Xue, Bei

    Abstract: Radiation-induced bystander effect was defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic and proteomics plays significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male Balb/c and C57BL mice were exposed head-only to 40, 200, 2000mGy dose of (12) C heavy-ion radiation, while the rest of the animal body was shielded. Directly radiation organ ear and the distant organ liver were detected on 1h, 6h, 12h and 24h after radiation, respectively. Methylation-sensitive amplification polymorphism (MSAP) was used to monitor the level of polymorphic genomic DNA methylation changed with dose and time effects. The results show that heavy-ion irradiated mouse head could induce genomic DNA methylation changes significantly in both the directly radiation organ ear and the distant organ liver. The percent of DNA methylation changes were time-dependent and tissue-specific. Demethylation polymorphism rate was highest separately at 1 h in 200 mGy and 6 h in 2000 mGy after irradiation. The global DNA methylation changes tended to occur in the CG sites. The results illustrated that genomic methylation changes of heavy ion radiation-induced bystander effect in liver could be obvious 1 h after radiation and achieved the maximum at 6 h, while the changes could recover gradually at 12 h. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in both directly radiation organ ear and distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo.

  12. Influence of the Interplanetary Convective Electric Field on the Distribution of Heavy Pickup Ions Around Mars

    NASA Astrophysics Data System (ADS)

    Johnson, B. C.; Liemohn, M. W.; Fränz, M.; Ramstad, R.; Stenberg Wieser, G.; Nilsson, H.

    2018-01-01

    This study obtains a statistical representation of 2-15 keV heavy ions outside of the Martian-induced magnetosphere and depicts their organization by the solar wind convective electric field (ESW). The overlap in the lifetime of Mars Global Surveyor (MGS) and Mars Express (MEX) provides a period of nearly three years during which magnetometer data from MGS can be used to estimate the direction of ESW in order to better interpret MEX ion data. In this paper we use MGS estimates of ESW to express MEX ion measurements in Mars-Sun-Electric field (MSE) coordinates. A new methodological technique used in this study is the limitation of the analysis to a particular instrument mode for which the overlap between proton contamination and plume observations is rare. This allows for confident energetic heavy ion identification outside the induced magnetosphere boundary. On the dayside, we observe high count rates of 2-15 keV heavy ions more frequently in the +ESW hemisphere (+ZMSE) than in the -ESW hemisphere, but on the nightside the reverse asymmetry was found. The results are consistent with planetary origin ions being picked up by the solar wind convective electric field. Though a field of view hole hinders quantification of plume fluxes and velocity space, this new energetic heavy ion identification technique means that Mars Express should prove useful in expanding the time period available to assess general plume loss variation with drivers.

  13. Soil-modified carbon paste electrode: a useful tool in environmental assessment of heavy metal ion binding interactions.

    PubMed

    Svegl, I G; Ogorevc, B

    2000-08-01

    Carbon paste electrodes (CPEs) modified with different soils in their native form were prepared to create a soil-like solid phase suitable for application in studies of heavy metal ion uptake and binding interactions. The preparation of CPEs modified with five different soils was examined and their heavy metal ion uptake behavior investigated using a model Cu(II) aqueous solution. Metal ions were accumulated under open circuit conditions and were determined after a medium exchange using differential pulse anodic stripping voltammetry, applying preelectrolysis at -0.7 V. The soil-modified CPE accumulation behavior, including the linearity of the current response versus Cu(II) concentration, the influence of the pH on the solution, and the uptake kinetics, was thoroughly investigated. The correlation between the soil-modified CPE uptake capability and the standard soil parameters, such as ion exchange capacity, soil pH, organic matter and clay content, were evaluated for all five examined soils. The influence of selected endogenous cations (K(I), Ca(II), Fe(III)) on the transfer of Cu(II) ions from a solution to the simulated soil solid phase was examined and is discussed. Preliminary examinations of the soil-modified CPE uptake behavior with some exogenous heavy metal ions of strong environmental interest (Pb(II), Hg(II), Cd(II) and Ag(I)) are also presented. This work demonstrates some attractive possibilities for the application of a soil-modified CPE in studying soil-heavy metal ion binding interactions, with a further potential use as a new environmental sensor appropriate for fist on-site testing of polluted soils.

  14. Simulation of the charge migration in DNA under irradiation with heavy ions.

    PubMed

    Belov, Oleg V; Boyda, Denis L; Plante, Ianik; Shirmovsky, Sergey Eh

    2015-01-01

    A computer model to simulate the processes of charge injection and migration through DNA after irradiation by a heavy charged particle was developed. The most probable sites of charge injection were obtained by merging spatial models of short DNA sequence and a single 1 GeV/u iron particle track simulated by the code RITRACKS (Relativistic Ion Tracks). Charge migration was simulated by using a quantum-classical nonlinear model of the DNA-charge system. It was found that charge migration depends on the environmental conditions. The oxidative damage in DNA occurring during hole migration was simulated concurrently, which allowed the determination of probable locations of radiation-induced DNA lesions.

  15. Sputtering of Lunar Regolith by Solar Wind Protons and Heavy Ions, and General Aspects of Potential Sputtering

    NASA Technical Reports Server (NTRS)

    Alnussirat, S. T.; Sabra, M. S.; Barghouty, A. F.; Rickman, Douglas L.; Meyer, F.

    2014-01-01

    New simulation results for the sputtering of lunar soil surface by solar-wind protons and heavy ions will be presented. Previous simulation results showed that the sputtering process has significant effects and plays an important role in changing the surface chemical composition, setting the erosion rate and the sputtering process timescale. In this new work and in light of recent data, we briefly present some theoretical models which have been developed to describe the sputtering process and compare their results with recent calculation to investigate and differentiate the roles and the contributions of potential (or electrodynamic) sputtering from the standard (or kinetic) sputtering.

  16. A new relativistic viscous hydrodynamics code and its application to the Kelvin-Helmholtz instability in high-energy heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Okamoto, Kazuhisa; Nonaka, Chiho

    2017-06-01

    We construct a new relativistic viscous hydrodynamics code optimized in the Milne coordinates. We split the conservation equations into an ideal part and a viscous part, using the Strang spitting method. In the code a Riemann solver based on the two-shock approximation is utilized for the ideal part and the Piecewise Exact Solution (PES) method is applied for the viscous part. We check the validity of our numerical calculations by comparing analytical solutions, the viscous Bjorken's flow and the Israel-Stewart theory in Gubser flow regime. Using the code, we discuss possible development of the Kelvin-Helmholtz instability in high-energy heavy-ion collisions.

  17. Effects of impurities in biodiesel-derived glycerol on growth and expression of heavy metal ion homeostasis genes and gene products in Pseudomonas putida LS46.

    PubMed

    Fu, Jilagamazhi; Sharma, Parveen; Spicer, Vic; Krokhin, Oleg V; Zhang, Xiangli; Fristensky, Brian; Wilkins, John A; Cicek, Nazim; Sparling, Richard; Levin, David B

    2015-07-01

    Biodiesel production-derived waste glycerol (WG) was previously investigated as potential carbon source for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas putida LS46. In this study, we evaluated the effect of impurities in the WG on P. putida LS46 physiology during exponential growth and corresponding changes in transcription and protein expression profiles compared with cells grown on pure, reagent grade glycerol. High concentration of metal ions, such as Na(+), and numbers of heavy metals ion, such as copper, ion, zinc, were detected in biodiesel-derived WG. Omics analysis from the corresponding cultures suggested altered expression of genes involved in transport and metabolism of ammonia and heavy metal ions. Expression of three groups of heavy metal homeostasis genes was significantly changed (mostly upregulated) in WG cultures and included the following: copper-responded cluster 1 and 2 genes, primarily containing cusABC; two copies of copAB and heavy metal translocating P-type ATPase; Fur-regulated, TonB-dependent siderophore receptor; and several cobalt/zinc/cadmium transporters. Expression of these genes suggests regulation of intracellular concentrations of heavy metals during growth on biodiesel-derived glycerol. Finally, a number of genes involved in adapting to, or metabolizing free fatty acids and other nonheavy metal contaminants, such as Na(+), were also upregulated in P. putida LS46 grown on biodiesel-derived glycerol.

  18. Heavy-ion-induced sucrose radicals investigated using EPR and UV spectroscopy.

    PubMed

    Nakagawa, Kouichi; Karakirova, Yordanka; Yordanov, Nicola D

    2015-05-01

    The potential use of a sucrose dosimeter for estimating both linear energy transfer (LET) and the absorbed dose of heavy ion and X-ray radiation was investigated. The stable free radicals were produced when sucrose was irradiated with heavy ions, such as helium, carbon, silicon and neon ions, and when the X-ray radiation was similar to the obtained electron paramagnetic resonance (EPR) spectra, which were ∼7 mT wide and composed of several hyperfine structures. In addition, the total spin concentration resulting from heavy-ion irradiation increased linearly as the absorbed dose increased, and decreased logarithmically as the LET increased. These empirical relations imply that the LET at a certain dose can be determined from the spin concentration. For sucrose and alanine, both cross-sections following C-ion irradiation with a 50 Gy dose were ∼1.3 × 10(-12) [μm(2)], taking into account the molecular size of the samples. The values of these cross-sections imply that multiple ionizing particles were involved in the production of stable radicals. Furthermore, UV absorbance at 267 nm of an aqueous solution of irradiated sucrose was found to linearly increase with increasing absorbed dose. Therefore, the EPR and UV results suggest that sucrose can be a useful dosimeter for heavy-ion irradiation. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  19. EXPERIMENTAL EVALUATION OF DOSIMETRIC CHARACTERIZATION OF GAFCHROMIC EBT3 AND EBT-XD FILMS FOR CLINICAL CARBON ION BEAMS.

    PubMed

    Yonai, Shunsuke; Arai, Chinatsu; Shimoyama, Kaoru; Fournier-Bidoz, Nathalie

    2018-02-03

    Radiochromic film is a very useful tool for 2D dosimetric measurements in radiotherapy because it is self-developing and has very high-spatial resolution. However, considerable care has to be taken in ion beam radiotherapy owing to the quenching effect of high-linear energy transfer (LET) radiation. In this study, the dose responses of GAFchromic EBT3 and EBT-XD films were experimentally investigated using the clinical carbon ion beam at the Heavy Ion Medical Accelerator in Chiba. Results showed that the relations between absorbed dose and net optical density could be expressed well using an equation proposed by Reinhardt (2015). The quenching effect was evaluated by determining their relative efficiencies for photon irradiation as a function of LET. A correction equation derived in this study allowed the absorbed dose to be determined in the small irradiation field used for carbon ion radiotherapy eye treatments. This study contributes to establishing an absolute dosimetry procedure for heavy ion beams using radiochromic film. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

    NASA Astrophysics Data System (ADS)

    Shen, X. F.; Qiao, B.; Zhang, H.; Kar, S.; Zhou, C. T.; Chang, H. X.; Borghesi, M.; He, X. T.

    2017-05-01

    A method to achieve stable radiation pressure acceleration (RPA) of heavy ions from laser-irradiated ultrathin foils is proposed, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating heavy ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as foil deformation and electron loss induced by the Rayleigh-Taylor-like and other instabilities in RPA are significantly offset and suppressed so that stable acceleration of heavy ions are maintained. Particle-in-cell simulations show that a monoenergetic Al13 + beam with peak energy 3.8 GeV and particle number 1 010 (charge >20 nC ) can be obtained at intensity 1 022 W /cm2 .

  1. Heavy-Ion Physics at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC): Feasibility Studies for Quarkonium and Drell-Yan Production

    NASA Astrophysics Data System (ADS)

    Trzeciak, B.; Da Silva, C.; Ferreiro, E. G.; Hadjidakis, C.; Kikola, D.; Lansberg, J. P.; Massacrier, L.; Seixas, J.; Uras, A.; Yang, Z.

    2017-09-01

    We outline the case for heavy-ion-physics studies using the multi-TeV lead LHC beams in the fixed-target mode. After a brief contextual reminder, we detail the possible contributions of AFTER@LHC to heavy-ion physics with a specific emphasis on quarkonia. We then present performance simulations for a selection of observables. These show that Υ (nS), J/ψ and ψ (2S) production in heavy-ion collisions can be studied in new energy and rapidity domains with the LHCb and ALICE detectors. We also discuss the relevance to analyse the Drell-Yan pair production in asymmetric nucleus-nucleus collisions to study the factorisation of the nuclear modification of partonic densities and of further quarkonium states to restore their status of golden probes of the quark-gluon plasma formation.

  2. A cross-reactive sensor array for the fluorescence qualitative analysis of heavy metal ions.

    PubMed

    Kang, Huaizhi; Lin, Liping; Rong, Mingcong; Chen, Xi

    2014-11-01

    A cross-reactive sensor array using mercaptopropionic acid modified cadmium telluride (CdTe), glutathione modified CdTe, poly(methacrylic acid) modified silver nanoclusters, bovine serum albumin modified gold nanoclusters, rhodamine derivative and calcein blue as fluorescent indicators has been designed for the detection of seven heavy metal ions (Ag(+), Hg(2+), Pb(2+), Cu(2+), Cr(3+), Mn(2+) and Cd(2+)). The discriminatory capacity of the sensor array to different heavy metal ions in different pH solutions has been tested and the results have been analyzed with linear discriminant analysis. Results showed that the sensor array could be used to qualitatively analyze the selected heavy metal ions. The array performance was also evaluated in the identification of known and unknown samples and the preliminary results suggested the promising practicability of the designed sensor assay. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Mutation induction in yeast by very heavy ions

    NASA Astrophysics Data System (ADS)

    Kiefer, J.

    1994-10-01

    Resistance to canavanine was studied in haploid yeast after exposure to heavy ions (argon to uranium) of energies between 1 and 10 MeV/u covering a LET-range up to about 10000 keV/μm. Mutations were found in all instances but the induction cross sections increased with ion energy. This is taken to mean that the contribution of penumbra electrons plays an important role. The probability to recover surviving mutants is highest if the cell is not directly hit by the particle. The experiments demonstrate that the geometrical dimensions of the target cell nucleus as well as its sensitivity in terms of survival have a critical influence on mutation induction with very heavy ions.

  4. Exploring the Universe Within

    ScienceCinema

    John Marburger

    2017-12-09

    A guided tour of Brookhaven's Relativistic Heavy Ion Collider (RHIC) conducted by past Laboratory Director John Marburger. RHIC is a world-class scientific research facility that began operation in 2000, following 10 years of development and construction.

  5. Shannon information entropy in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Ma, Yu-Gang

    2018-03-01

    The general idea of information entropy provided by C.E. Shannon "hangs over everything we do" and can be applied to a great variety of problems once the connection between a distribution and the quantities of interest is found. The Shannon information entropy essentially quantify the information of a quantity with its specific distribution, for which the information entropy based methods have been deeply developed in many scientific areas including physics. The dynamical properties of heavy-ion collisions (HICs) process make it difficult and complex to study the nuclear matter and its evolution, for which Shannon information entropy theory can provide new methods and observables to understand the physical phenomena both theoretically and experimentally. To better understand the processes of HICs, the main characteristics of typical models, including the quantum molecular dynamics models, thermodynamics models, and statistical models, etc., are briefly introduced. The typical applications of Shannon information theory in HICs are collected, which cover the chaotic behavior in branching process of hadron collisions, the liquid-gas phase transition in HICs, and the isobaric difference scaling phenomenon for intermediate mass fragments produced in HICs of neutron-rich systems. Even though the present applications in heavy-ion collision physics are still relatively simple, it would shed light on key questions we are seeking for. It is suggested to further develop the information entropy methods in nuclear reactions models, as well as to develop new analysis methods to study the properties of nuclear matters in HICs, especially the evolution of dynamics system.

  6. Status of the SPIRAL2 injector commissioning

    NASA Astrophysics Data System (ADS)

    Thuillier, T.; Angot, J.; Barué, C.; Bertrand, P.; Biarrotte, J. L.; Canet, C.; Denis, J.-F.; Ferdinand, R.; Flambard, J.-L.; Jacob, J.; Jardin, P.; Lamy, T.; Lemagnen, F.; Maunoury, L.; Osmond, B.; Peaucelle, C.; Roger, A.; Sole, P.; Touzery, R.; Tuske, O.; Uriot, D.

    2016-02-01

    The SPIRAL2 injector, installed in its tunnel, is currently under commissioning at GANIL, Caen, France. The injector is composed of two low energy beam transport lines: one is dedicated to the light ion beam production, the other to the heavy ions. The first light ion beam, created by a 2.45 GHz electron cyclotron resonance ion source, has been successfully produced in December 2014. The first beam of the PHOENIX V2 18 GHz heavy ion source was analyzed on 10 July 2015. A status of the SPIRAL2 injector commissioning is given. An upgrade of the heavy ion source, named PHOENIX V3 aimed to replace the V2, is presented. The new version features a doubled plasma chamber volume and the high charge state beam intensity is expected to increase by a factor of 1.5 to 2 up to the mass ˜50. A status of its assembly is proposed.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thuillier, T., E-mail: thuillier@lpsc.in2p3.fr; Angot, J.; Jacob, J.

    The SPIRAL2 injector, installed in its tunnel, is currently under commissioning at GANIL, Caen, France. The injector is composed of two low energy beam transport lines: one is dedicated to the light ion beam production, the other to the heavy ions. The first light ion beam, created by a 2.45 GHz electron cyclotron resonance ion source, has been successfully produced in December 2014. The first beam of the PHOENIX V2 18 GHz heavy ion source was analyzed on 10 July 2015. A status of the SPIRAL2 injector commissioning is given. An upgrade of the heavy ion source, named PHOENIX V3more » aimed to replace the V2, is presented. The new version features a doubled plasma chamber volume and the high charge state beam intensity is expected to increase by a factor of 1.5 to 2 up to the mass ∼50. A status of its assembly is proposed.« less

  8. Status of the SPIRAL2 injector commissioning.

    PubMed

    Thuillier, T; Angot, J; Barué, C; Bertrand, P; Biarrotte, J L; Canet, C; Denis, J-F; Ferdinand, R; Flambard, J-L; Jacob, J; Jardin, P; Lamy, T; Lemagnen, F; Maunoury, L; Osmond, B; Peaucelle, C; Roger, A; Sole, P; Touzery, R; Tuske, O; Uriot, D

    2016-02-01

    The SPIRAL2 injector, installed in its tunnel, is currently under commissioning at GANIL, Caen, France. The injector is composed of two low energy beam transport lines: one is dedicated to the light ion beam production, the other to the heavy ions. The first light ion beam, created by a 2.45 GHz electron cyclotron resonance ion source, has been successfully produced in December 2014. The first beam of the PHOENIX V2 18 GHz heavy ion source was analyzed on 10 July 2015. A status of the SPIRAL2 injector commissioning is given. An upgrade of the heavy ion source, named PHOENIX V3 aimed to replace the V2, is presented. The new version features a doubled plasma chamber volume and the high charge state beam intensity is expected to increase by a factor of 1.5 to 2 up to the mass ∼50. A status of its assembly is proposed.

  9. Ratiometric and turn-on monitoring for heavy and transition metal ions in aqueous solution with a fluorescent peptide sensor.

    PubMed

    Joshi, Bishnu Prasad; Park, Junwon; Lee, Wan In; Lee, Keun-Hyeung

    2009-05-15

    A novel fluorescent peptide sensor containing tryptophan (donor) and dansyl fluorophore (acceptor) was synthesized for monitoring heavy and transition metal (HTM) ions on the basis of metal ion binding motif (Cys-X-X-X-Cys). The peptide probe successfully exhibited a turn on and ratiometric response for several heavy metal ions such as Hg(2+), Cd(2+), Pb(2+), Zn(2+), and Ag(+) in aqueous solution. The enhancements of emission intensity were achieved in the presence of the HTM ions by fluorescent resonance energy transfer (FRET) and chelation enhanced fluorescence (CHEF) effects. The detection limits of the sensor for Cd(2+), Pb(2+), Zn(2+), and Ag(+) were lower than the EPA's drinking water maximum contaminant levels (MCL). We described the fluorescent enhancement, binding affinity, and detection limit of the peptide probe for HTM ions.

  10. Measurements of heavy ions in the low-altitude regions of the outer zone

    NASA Astrophysics Data System (ADS)

    Blake, J. B.; Fennell, J. F.; Hovestadt, D.

    1980-11-01

    Measurements of heavy ions in the low-altitude outer zone are discussed. The data were acquired with a heavy-ion sensor aboard the S3-2 satellite in the time period between Dec. 24, 1975, and March 3, 1976. Mirroring fluxes of 370/sq/s/sr He ions and CNO ions were observed; thus, the CNO/He ratio was about 6.8 x 10 to the -5th. Equatorial measurements gave a much larger He/CNO ratio showing that magnetospheric processes strongly discriminate against populating the low-altitude regions with ions of increasing mass in the energy range of hundreds of keV. In addition, a comparison of the S3-2 data with those from Injun 5 acquired in Jan. 1969 in the same region of the magnetosphere indicated that the low-altitude CNO/He ratio is strongly time dependent.

  11. Compact injector with alternating phase focusing-interdigital H-mode linac and superconducting electron cyclotron resonance ion source for heavy ion cancer therapy

    NASA Astrophysics Data System (ADS)

    Hayashizaki, Noriyosu; Hattori, Toshiyuki; Matsui, Shinjiro; Tomizawa, Hiromitsu; Yoshida, Toru; Isokawa, Katsushi; Kitagawa, Atsushi; Muramatsu, Masayuki; Yamada, Satoru; Okamura, Masahiro

    2000-02-01

    We have researched a compact medical accelerator with low investment and running cost for the popularization of heavy ion cancer therapy. As the first step, the compact injector system has been investigated for a Heavy Ion Medical Accelerator in Chiba at National Institute of Radiological Sciences. The proposed new injector system consists of a 6 MeV/u interdigital H-mode (IH) linac of 3.1 m long and a 18 GHz superconducting electron cyclotron resonance (ECR) (SC-ECR) ion source. The IH linac with high power efficiency is appropriate to a medical and industrial injector system. Its beam trajectory was simulated and a prototype has been constructed. The SC-ECR ion source has been designed to realize lightweight and low power consumption and the mirror field distribution was estimated.

  12. Synergistically-enhanced ion track formation in pre-damaged strontium titanate by energetic heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Haizhou; Zarkadoula, Eva; Sachan, Ritesh

    Latent ion tracks created by energetic heavy ions (12 MeV Ti to 946 MeV Au) in single crystal SrTiO 3 are investigated in this paper using Rutherford backscattering spectrometry and scanning transmission electron microscopy. The results demonstrate that pre-existing irradiation damage, introduced via elastic collision processes, interacts synergistically with the electronic energy deposition from energetic heavy ions to enhance formation of latent ion tracks. The average amorphous cross-section increases with the level of pre-damage and is linearly proportional to the electronic energy loss of the ions, with a slope dependent on the pre-damage level. For the highest energy ions (629more » MeV Xe and 946 MeV Au), the tracks are continuous over the pre-damaged depth, but become discontinuous beyond the pre-damaged region. Finally, this work provides new understanding and insights on ion-solid interactions that significantly impact the interpretation of latent track formation processes, models of amorphization, and the fabrication of electro-ceramic devices.« less

  13. Synergistically-enhanced ion track formation in pre-damaged strontium titanate by energetic heavy ions

    DOE PAGES

    Xue, Haizhou; Zarkadoula, Eva; Sachan, Ritesh; ...

    2018-03-20

    Latent ion tracks created by energetic heavy ions (12 MeV Ti to 946 MeV Au) in single crystal SrTiO 3 are investigated in this paper using Rutherford backscattering spectrometry and scanning transmission electron microscopy. The results demonstrate that pre-existing irradiation damage, introduced via elastic collision processes, interacts synergistically with the electronic energy deposition from energetic heavy ions to enhance formation of latent ion tracks. The average amorphous cross-section increases with the level of pre-damage and is linearly proportional to the electronic energy loss of the ions, with a slope dependent on the pre-damage level. For the highest energy ions (629more » MeV Xe and 946 MeV Au), the tracks are continuous over the pre-damaged depth, but become discontinuous beyond the pre-damaged region. Finally, this work provides new understanding and insights on ion-solid interactions that significantly impact the interpretation of latent track formation processes, models of amorphization, and the fabrication of electro-ceramic devices.« less

  14. Effect of source tuning parameters on the plasma potential of heavy ions in the 18 GHz high temperature superconducting electron cyclotron resonance ion source.

    PubMed

    Rodrigues, G; Baskaran, R; Kukrety, S; Mathur, Y; Kumar, Sarvesh; Mandal, A; Kanjilal, D; Roy, A

    2012-03-01

    Plasma potentials for various heavy ions have been measured using the retarding field technique in the 18 GHz high temperature superconducting ECR ion source, PKDELIS [C. Bieth, S. Kantas, P. Sortais, D. Kanjilal, G. Rodrigues, S. Milward, S. Harrison, and R. McMahon, Nucl. Instrum. Methods B 235, 498 (2005); D. Kanjilal, G. Rodrigues, P. Kumar, A. Mandal, A. Roy, C. Bieth, S. Kantas, and P. Sortais, Rev. Sci. Instrum. 77, 03A317 (2006)]. The ion beam extracted from the source is decelerated close to the location of a mesh which is polarized to the source potential and beams having different plasma potentials are measured on a Faraday cup located downstream of the mesh. The influence of various source parameters, viz., RF power, gas pressure, magnetic field, negative dc bias, and gas mixing on the plasma potential is studied. The study helped to find an upper limit of the energy spread of the heavy ions, which can influence the design of the longitudinal optics of the high current injector being developed at the Inter University Accelerator Centre. It is observed that the plasma potentials are decreasing for increasing charge states and a mass effect is clearly observed for the ions with similar operating gas pressures. In the case of gas mixing, it is observed that the plasma potential minimizes at an optimum value of the gas pressure of the mixing gas and the mean charge state maximizes at this value. Details of the measurements carried out as a function of various source parameters and its impact on the longitudinal optics are presented.

  15. Effect of source tuning parameters on the plasma potential of heavy ions in the 18 GHz high temperature superconducting electron cyclotron resonance ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, G.; Mathur, Y.; Kumar, Sarvesh

    2012-03-15

    Plasma potentials for various heavy ions have been measured using the retarding field technique in the 18 GHz high temperature superconducting ECR ion source, PKDELIS [C. Bieth, S. Kantas, P. Sortais, D. Kanjilal, G. Rodrigues, S. Milward, S. Harrison, and R. McMahon, Nucl. Instrum. Methods B 235, 498 (2005); D. Kanjilal, G. Rodrigues, P. Kumar, A. Mandal, A. Roy, C. Bieth, S. Kantas, and P. Sortais, Rev. Sci. Instrum. 77, 03A317 (2006)]. The ion beam extracted from the source is decelerated close to the location of a mesh which is polarized to the source potential and beams having different plasmamore » potentials are measured on a Faraday cup located downstream of the mesh. The influence of various source parameters, viz., RF power, gas pressure, magnetic field, negative dc bias, and gas mixing on the plasma potential is studied. The study helped to find an upper limit of the energy spread of the heavy ions, which can influence the design of the longitudinal optics of the high current injector being developed at the Inter University Accelerator Centre. It is observed that the plasma potentials are decreasing for increasing charge states and a mass effect is clearly observed for the ions with similar operating gas pressures. In the case of gas mixing, it is observed that the plasma potential minimizes at an optimum value of the gas pressure of the mixing gas and the mean charge state maximizes at this value. Details of the measurements carried out as a function of various source parameters and its impact on the longitudinal optics are presented.« less

  16. Solar particle induced upsets in the TDRS-1 attitude control system RAM during the October 1989 solar particle events

    NASA Astrophysics Data System (ADS)

    Croley, D. R.; Garrett, H. B.; Murphy, G. B.; Garrard, T. L.

    1995-10-01

    The three large solar particle events, beginning on October 19, 1989 and lasting approximately six days, were characterized by high fluences of solar protons and heavy ions at 1 AU. During these events, an abnormally large number of upsets (243) were observed in the random access memory of the attitude control system (ACS) control processing electronics (CPE) on-board the geosynchronous TDRS-1 (Telemetry and Data Relay Satellite). The RAR I unit affected was composed of eight Fairchild 93L422 memory chips. The Galileo spacecraft, launched on October 18, 1989 (one day prior to the solar particle events) observed the fluxes of heavy ions experienced by TDRS-1. Two solid-state detector telescopes on-board Galileo designed to measure heavy ion species and energy, were turned on during time periods within each of the three separate events. The heavy ion data have been modeled and the time history of the events reconstructed to estimate heavy ion fluences. These fluences were converted to effective LET spectra after transport through the estimated shielding distribution around the TDRS-1 ACS system. The number of single event upsets (SEU) expected was calculated by integrating the measured cross section for the Fairchild 93L422 memory chip with average effective LET spectrum. The expected number of heavy ion induced SEUs calculated was 176. GOES-7 proton data, observed during the solar particle events, were used to estimate the number of proton-induced SEUs by integrating the proton fluence spectrum incident on the memory chips, with the two-parameter Bendel cross section for proton SEUs.

  17. Selective removals of heavy metals (Pb(2+), Cu(2+), and Cd(2+)) from wastewater by gelation with alginate for effective metal recovery.

    PubMed

    Wang, Fei; Lu, Xingwen; Li, Xiao-yan

    2016-05-05

    A novel method that uses the aqueous sodium alginate solution for direct gelation with metal ions is developed for effective removal and recovery of heavy metals from industrial wastewater. The experimental study was conducted on Pb(2+), Cu(2+), and Cd(2+) as the model heavy metals. The results show that gels can be formed rapidly between the metals and alginate in less than 10 min and the gelation rates fit well with the pseudo second-order kinetic model. The optimum dosing ratio of alginate to the metal ions was found to be between 2:1 and 3:1 for removing Pb(2+) and around 4:1 for removing Cu(2+) and Cd(2+) from wastewater, and the metal removal efficiency by gelation increased as the solution pH increased. Alginate exhibited a higher gelation affinity toward Pb(2+) than Cu(2+) and Cd(2+), which allowed a selective removal of Pb(2+) from the wastewater in the presence of Cu(2+) and Cd(2+) ions. Chemical analysis of the gels suggests that the gelation mainly occurred between the metal ions and the -COO(-) and -OH groups on alginate. By simple calcination of the metal-laden gels at 700 °C for 1 h, the heavy metals can be well recovered as valuable resources. The metals obtained after the thermal treatment are in the form of PbO, CuO, and CdO nanopowders with crystal sizes of around 150, 50, and 100 nm, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Anomalous chiral transport in heavy ion collisions from Anomalous-Viscous Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Shi, Shuzhe; Jiang, Yin; Lilleskov, Elias; Liao, Jinfeng

    2018-07-01

    Chiral anomaly is a fundamental aspect of quantum theories with chiral fermions. How such microscopic anomaly manifests itself in a macroscopic many-body system with chiral fermions, is a highly nontrivial question that has recently attracted significant interest. As it turns out, unusual transport currents can be induced by chiral anomaly under suitable conditions in such systems, with the notable example of the Chiral Magnetic Effect (CME) where a vector current (e.g. electric current) is generated along an external magnetic field. A lot of efforts have been made to search for CME in heavy ion collisions, by measuring the charge separation effect induced by the CME transport. A crucial challenge in such effort, is the quantitative prediction for the CME signal. In this paper, we develop the Anomalous-Viscous Fluid Dynamics (AVFD) framework, which implements the anomalous fluid dynamics to describe the evolution of fermion currents in QGP, on top of the neutral bulk background described by the VISH2+1 hydrodynamic simulations for heavy ion collisions. With this new tool, we quantitatively and systematically investigate the dependence of the CME signal to a series of theoretical inputs and associated uncertainties. With realistic estimates of initial conditions and magnetic field lifetime, the predicted CME signal is quantitatively consistent with measured change separation data in 200GeV Au-Au collisions. Based on analysis of Au-Au collisions, we further make predictions for the CME observable to be measured in the planned isobaric (Ru-Ru v.s. Zr-Zr) collision experiment, which could provide a most decisive test of the CME in heavy ion collisions.

  19. Particle simulation of ion heating in the ring current

    NASA Technical Reports Server (NTRS)

    Qian, S.; Hudson, M. K.; Roth, I.

    1990-01-01

    Heating of heavy ions has been observed in the equatorial magnetosphere in GEOS 1 and 2 and ATS 6 data due to ion cyclotron waves generated by anisotropic hot ring current ions. A one-dimensional hybrid-Darwin code has been developed to study ion heating in the ring current. Here, a strong instability and heating of thermal ions is investigated in a plasma with a los cone distribution of hot ions. The linear growth rate calculation and particle simulations are conducted for cases with different loss cones and relative ion densities. The linear instability of the waves, the quasi-linear heating of cold ions and dependence on the thermal H(+)/He(+) density ratio are analyzed, as well as nonlinear parallel heating of thermal ions. Effects of thermal oxygen and hot oxygen are also studied.

  20. Progress on MEVVA source VARIS at GSI

    NASA Astrophysics Data System (ADS)

    Adonin, A.; Hollinger, R.

    2018-05-01

    For the last few years, the development of the VARIS (vacuum arc ion source) was concentrated on several aspects. One of them was the production of high current ion beams of heavy metals such as Au, Pb, and Bi. The requested ion charge state for these ion species is 4+. This is quite challenging to produce in vacuum arc driven sources for reasonable beam pulse length (>120 µs) due to the physical properties of these elements. However, the situation can be dramatically improved by using the composite materials or alloys with enhanced physical properties of the cathodes. Another aspect is an increase of the beam brilliance for intense U4+ beams by the optimization of the geometry of the extraction system. A new 7-hole triode extraction system allows an increase of the extraction voltage from 30 kV to 40 kV and also reduces the outer aperture of the extracted ion beam. Thus, a record beam brilliance for the U4+ beam in front of the RFQ (Radio-Frequency Quadrupole) has been achieved, exceeding the RFQ space charge limit for an ion current of 15 mA. Several new projectiles in the middle-heavy region have been successfully developed from VARIS to fulfill the requirements of the future FAIR (Facility for Antiproton and Ion Research) programs. An influence of an auxiliary gas on the production performance of certain ion charge states as well as on operation stability has been investigated. The optimization of the ion source parameters for a maximum production efficiency and highest particle current in front of the RFQ has been performed. The next important aspect of the development will be the increase of the operation repetition rate of VARIS for all elements especially for uranium to 2.7 Hz in order to provide the maximum availability of high current ion beams for future FAIR experiments.

  1. Parameterized cross sections for Coulomb dissociation in heavy-ion collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Cucinotta, F. A.; Townsend, L. W.; Badavi, F. F.

    1988-01-01

    Simple parameterizations of Coulomb dissociation cross sections for use in heavy-ion transport calculations are presented and compared to available experimental dissociation data. The agreement between calculation and experiment is satisfactory considering the simplicity of the calculations.

  2. Studying Thermodynamics in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.; Wosiek, J.

    1999-01-01

    We discuss the possibility of measuring entropy of the system created in heavy ion collisions using the Ma coincidence method. The same method can also be used to test whether the system in question is in a state of equilibrium.

  3. Measuring an entropy in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.; Wosiek, J.

    1999-03-01

    We propose to use the coincidence method of Ma to measure an entropy of the system created in heavy ion collisions. Moreover we estimate, in a simple model, the values of parameters for which the thermodynamical behaviour sets in.

  4. Systematic measurements of ion-proton differential streaming in the solar wind.

    PubMed

    Berger, L; Wimmer-Schweingruber, R F; Gloeckler, G

    2011-04-15

    The small amount of heavy ions in the highly rarefied solar wind are sensitive tracers for plasma-physics processes, which are usually not accessible in the laboratory. We have analyzed differential streaming between heavy ions and protons in the solar wind at 1 AU. 3D velocity vector and magnetic field measurements from the Solar Wind Electron Proton Alpha Monitor and the Magnetometer aboard the Advanced Composition Explorer were used to reconstruct the ion-proton difference vector v(ip) = v(i) - v(p) from the 12 min 1D Solar Wind Ion Composition Spectrometer observations. We find that all 44 analyzed heavy ions flow along the interplanetary magnetic field at velocities which are smaller than, but comparable to, the local Alfvén speed C(A). The flow speeds of 35 of the 44 ion species lie within the range of ±0.15C(A) around 0.55C(A), the flow speed of He(2+).

  5. Sensing of heavy metal ions by intrinsic TMV coat protein fluorescence.

    PubMed

    Bayram, Serene S; Green, Philippe; Blum, Amy Szuchmacher

    2018-04-15

    We propose the use of a cysteine mutant of TMV coat protein as a signal transducer for the selective sensing and quantification of the heavy metal ions, Cd 2+ , Pb 2+ , Zn 2+ and Ni 2+ based on intrinsic tryptophan quenching. TMV coat protein is inexpensive, can be mass-produced since it is expressed and extracted from E-coli. It also displays several different functional groups, enabling a wide repertoire of bioconjugation chemistries; thus it can be easily integrated into functional devices. In addition, TMV-ion interactions have been widely reported and utilized for metallization to generate organic-inorganic hybrid composite novel materials. Building on these previous observations, we herein determine, for the first time, the TMV-ion binding constants assuming the static fluorescence quenching model. We also show that by comparing TMV-ion interactions between native and denatured coat protein, we can distinguish between chemically similar heavy metal ions such as cadmium and zinc ions. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Characterization of swift heavy ion irradiation damage in ceria

    DOE PAGES

    Yablinsky, Clarissa A.; Devanathan, Ram; Pakarinen, Janne; ...

    2015-03-04

    Swift heavy ion induced radiation damage is investigated for ceria (CeO 2), which serves as a UO 2 fuel surrogate. Microstructural changes resulting from an irradiation with 940 MeV gold ions of 42 keV/nm electronic energy loss are investigated by means of electron microscopy accompanied by electron energy loss spectroscopy showing that there exists a small density reduction in the ion track core. While chemical changes in the ion track are not precluded, evidence of them was not observed. Classical molecular dynamics simulations of thermal spikes in CeO 2 with an energy deposition of 12 and 36 keV/nm show damagemore » consisting of isolated point defects at 12 keV/nm, and defect clusters at 36 keV/nm, with no amorphization at either energy. Furthermore, inferences are drawn from modeling about density changes in the ion track and the formation of interstitial loops that shed light on features observed by electron microscopy of swift heavy ion irradiated ceria.« less

  7. Proteomic Analysis Implicates Dominant Alterations of RNA Metabolism and the Proteasome Pathway in the Cellular Response to Carbon-Ion Irradiation

    PubMed Central

    Xie, Da-Fei; Xie, Yi; Liu, Xiao-Dan; Wang, Qi; Sui, Li; Song, Man; Zhang, Hong; Zhou, Jianhua; Zhou, Ping-Kun

    2016-01-01

    Radiotherapy with heavy ions is considered advantageous compared to irradiation with photons due to the characteristics of the Braggs peak and the high linear energy transfer (LET) value. To understand the mechanisms of cellular responses to different LET values and dosages of heavy ion radiation, we analyzed the proteomic profiles of mouse embryo fibroblast MEF cells exposed to two doses from different LET values of heavy ion 12C. Total proteins were extracted from these cells and examined by Q Exactive with Liquid Chromatography (LC)—Electrospray Ionization (ESI) Tandem MS (MS/MS). Using bioinformatics approaches, differentially expressed proteins with 1.5 or 2.0-fold changes between different dosages of exposure were compared. With the higher the dosage and/or LET of ion irradiation, the worse response the cells were in terms of protein expression. For instance, compared to the control (0 Gy), 771 (20.2%) proteins in cells irradiated at 0.2 Gy of carbon-ion radiation with 12.6 keV/μm, 313 proteins (8.2%) in cells irradiated at 2 Gy of carbon-ion radiation with 12.6 keV/μm, and 243 proteins (6.4%) in cells irradiated at 2 Gy of carbon-ion radiation with 31.5 keV/μm exhibited changes of 1.5-fold or greater. Gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Munich Information Center for Protein Sequences (MIPS) analysis, and BioCarta analysis all indicated that RNA metabolic processes (RNA splicing, destabilization and deadenylation) and proteasome pathways may play key roles in the cellular response to heavy-ion irradiation. Proteasome pathways ranked highest among all biological processes associated with heavy carbon-ion irradiation. In addition, network analysis revealed that cellular pathways involving proteins such as Col1a1 and Fn1 continued to respond to high dosages of heavy-ion irradiation, suggesting that these pathways still protect cells against damage. However, pathways such as those involving Ikbkg1 responded better at lower dosages than at higher dosages, implying that cell damage would occur when the networks involving these proteins stop responding. Our investigation provides valuable proteomic information for elucidating the mechanism of biological effects induced by carbon ions in general. PMID:27711237

  8. Removal of toxic heavy metal ions in runoffs by modified alfalfa and juniper

    Treesearch

    J.S. Han; J.K. Park; S.H. Min

    2000-01-01

    A series of batch isotherm tests was performed with alfalfa and juniper fibers to evaluate the effectiveness in filtering toxic heavy metals from stormwater. The adsorption of the heavy metal ions on the alfalfa and juniper fibers was strongly dependent on the equilibrium pH value of the solution. The change in sorption rate over time showed that two different sorption...

  9. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions.

    PubMed

    Nefiodov, A V; Plunien, G; Soff, G

    2002-08-19

    The influence of nuclear polarization on the bound-electron g factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron g factor in highly charged ions.

  10. HEAVY ION LINEAR ACCELERATOR

    DOEpatents

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  11. Effects of heavy ions on visual function and electrophysiology of rodents: the ALTEA-MICE project

    NASA Technical Reports Server (NTRS)

    Sannita, W. G.; Acquaviva, M.; Ball, S. L.; Belli, F.; Bisti, S.; Bidoli, V.; Carozzo, S.; Casolino, M.; Cucinotta, F.; De Pascale, M. P.; hide

    2004-01-01

    ALTEA-MICE will supplement the ALTEA project on astronauts and provide information on the functional visual impairment possibly induced by heavy ions during prolonged operations in microgravity. Goals of ALTEA-MICE are: (1) to investigate the effects of heavy ions on the visual system of normal and mutant mice with retinal defects; (2) to define reliable experimental conditions for space research; and (3) to develop animal models to study the physiological consequences of space travels on humans. Remotely controlled mouse setup, applied electrophysiological recording methods, remote particle monitoring, and experimental procedures were developed and tested. The project has proved feasible under laboratory-controlled conditions comparable in important aspects to those of astronauts' exposure to particle in space. Experiments are performed at the Brookhaven National Laboratories [BNL] (Upton, NY, USA) and the Gesellschaft fur Schwerionenforschung mbH [GSI]/Biophysik (Darmstadt, FRG) to identify possible electrophysiological changes and/or activation of protective mechanisms in response to pulsed radiation. Offline data analyses are in progress and observations are still anecdotal. Electrophysiological changes after pulsed radiation are within the limits of spontaneous variability under anesthesia, with only indirect evidence of possible retinal/cortical responses. Immunostaining showed changes (e.g. increased expression of FGF2 protein in the outer nuclear layer) suggesting a retinal stress reaction to high-energy particles of potential relevance in space. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  12. Systematics of heavy-ion charge-exchange straggling

    NASA Astrophysics Data System (ADS)

    Sigmund, P.; Schinner, A.

    2016-10-01

    The dependence of heavy-ion charge-exchange straggling on the beam energy has been studied theoretically for several ion-target combinations. Our previous work addressed ions up to krypton, while the present study focuses on heavier ions, especially uranium. Particular attention has been paid to a multiple-peak structure which has been predicted theoretically in our previous work. For high-Z1 and high-Z2 systems, exemplified by U in Au, we identify three maxima in the energy dependence of charge-exchange straggling, while the overall magnitude is comparable with that of collisional straggling. Conversely, for U in C, charge-exchange straggling dominates, but only two peaks lie in the energy range where we presently are able to produce credible predictions. For U-Al we find good agreement with experiment in the energy range around the high-energy maximum. The position of the high-energy peak - which is related to processes in the projectile K shell - is found to scale as Z12, in contrast to the semi-empirical Z13/2 dependence proposed by Yang et al. Measurements for heavy ions in heavy targets are suggested in order to reconcile a major discrepancy between the present calculations and the frequently-used formula by Yang et al.

  13. Research needed for improving heavy-ion therapy

    NASA Astrophysics Data System (ADS)

    Kraft, G; Kraft, S D

    2009-02-01

    The large interest in heavy-ion therapy is stimulated from its excellent clinical results. The bases of this success are the radiobiological and physical advantages of heavy-ion beams and the active beam delivery used for an intensity-modulated particle radiotherapy (IMPT). Although heavy-ion therapy has reached a high degree of perfection for clinical use there is still large progress possible to improve this novel technique: in order to extend IMPT to more tumor entities and to tailor the planning more individually for each patient in an adaptive way, radiobiological work is required both experimentally and theoretically. It is also not clear whether the neighboring ions to carbon could have a clinical application as well. For this extension basic biological studies as well as physics experiments have to be performed. On the technical side, many improvements of the equipment used seem to be possible. Two major topics are the extension of IMPT to moving organs and the transition to more compact and therefore cheaper particle accelerators. In the present paper, these topics are treated to some extent in order to give an outline of the great future potential of ion-beam therapy.

  14. Heavy Ion Microbeam- and Broadbeam-Induced Transients in SiGe HBTs

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Reed, Robert A.; McMorrow, Dale; Vizkelethy, Gyorgy; Ferlet-Cavrois, Veronique; Baggio, Jacques; Duhamel, Olivier; Moen, Kurt A.; Phillips, Stanley D.; Diestelhorst, Ryan M.; hide

    2009-01-01

    SiGe HBT heavy ion-induced current transients are measured using Sandia National Laboratories microbeam and high- and low-energy broadbeam sources at the Grand Accelerateur National d'Ions Lourds and the University of Jyvaskyla. The data were captured using a custom broadband IC package and real-time digital phosphor oscilloscopes with at least 16 GHz of analog bandwidth. These data provide detailed insight into the effects of ion strike location, range, and LET.

  15. Evaluation of biosurfactants grown in corn oil by Rhodococcus rhodochrous on removing of heavy metal ion from aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suryanti, Venty, E-mail: venty@mipa.uns.ac.id; Hastuti, Sri; Pujiastuti, Dwi

    The potential application of biosurfactants to remove heavy metal ion from aqueous solution by batch technique was examined. The glycolipids type biosurfactants were grown in a media containing of 20% v/v corn oil with 7 days of fermentation by Rhodococcus rhodochrous. The biosurfactants reduced the surface tension of water of about 51% from 62 mN/m to 30 mN/m. The biosurfactant increased the E24 of water-palm oil emulsion of about 55% from 43% to 97% and could maintain this E24 value of above 50% for up to 9 days. Heavy metal ion removal, in this case cadmium ion, by crude andmore » patially purified biosurfactants has been investigated from aqueous solution at pH 6. Adsorption capacity of Cd(II) ion by crude biosurfactant with 5 and 10 minutes of contact times were 1.74 and 1.82 mg/g, respectively. Additionally, the adsorption capacity of Cd(II) ion by partially purified biosurfactant with 5 and 10 minutes of contact times were 0.79 and 1.34 mg/g, respectively. The results demonstrated that the adsorption capacity of Cd(II) ion by crude biosurfactant was higher than that of by partially purified biosurfactant. The results suggested that the biosurfactant could be used in the removal of heavy metal ions from aqueous solution.« less

  16. Dominance of high-energy (>150 keV) heavy ion intensities in Earth's middle to outer magnetosphere

    NASA Astrophysics Data System (ADS)

    Cohen, Ian J.; Mitchell, Donald G.; Kistler, Lynn M.; Mauk, Barry H.; Anderson, Brian J.; Westlake, Joseph H.; Ohtani, Shinichi; Hamilton, Douglas C.; Turner, Drew L.; Blake, J. Bernard; Fennell, Joseph F.; Jaynes, Allison N.; Leonard, Trevor W.; Gerrard, Andrew J.; Lanzerotti, Louis J.; Allen, Robert C.; Burch, James L.

    2017-09-01

    Previous observations have driven the prevailing assumption in the field that energetic ions measured by an instrument using a bare solid state detector (SSD) are predominantly protons. However, new near-equatorial energetic particle observations obtained between 7 and 12 RE during Phase 1 of the Magnetospheric Multiscale mission challenge the validity of this assumption. In particular, measurements by the Energetic Ion Spectrometer (EIS) instruments have revealed that the intensities of heavy ion species (specifically oxygen and helium) dominate those of protons at energies ≳150-220 keV in the middle to outer (>7 RE) magnetosphere. Given that relative composition measurements can drift as sensors degrade in gain, quality cross-calibration agreement between EIS observations and those from the SSD-based Fly's Eye Energetic Particle Spectrometer (FEEPS) sensors provides critical support to the veracity of the measurement. Similar observations from the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instruments aboard the Van Allen Probes spacecraft extend the ion composition measurements into the middle magnetosphere and reveal a strongly proton-dominated environment at L≲6 but decreasing proton intensities at L≳6. It is concluded that the intensity dominance of the heavy ions at higher energies (>150 keV) arises from the existence of significant populations of multiply-charged heavy ions, presumably of solar wind origin.

  17. Evaluation of biosurfactants grown in corn oil by Rhodococcus rhodochrous on removing of heavy metal ion from aqueous solution

    NASA Astrophysics Data System (ADS)

    Suryanti, Venty; Hastuti, Sri; Pujiastuti, Dwi

    2016-02-01

    The potential application of biosurfactants to remove heavy metal ion from aqueous solution by batch technique was examined. The glycolipids type biosurfactants were grown in a media containing of 20% v/v corn oil with 7 days of fermentation by Rhodococcus rhodochrous. The biosurfactants reduced the surface tension of water of about 51% from 62 mN/m to 30 mN/m. The biosurfactant increased the E24 of water-palm oil emulsion of about 55% from 43% to 97% and could maintain this E24 value of above 50% for up to 9 days. Heavy metal ion removal, in this case cadmium ion, by crude and patially purified biosurfactants has been investigated from aqueous solution at pH 6. Adsorption capacity of Cd(II) ion by crude biosurfactant with 5 and 10 minutes of contact times were 1.74 and 1.82 mg/g, respectively. Additionally, the adsorption capacity of Cd(II) ion by partially purified biosurfactant with 5 and 10 minutes of contact times were 0.79 and 1.34 mg/g, respectively. The results demonstrated that the adsorption capacity of Cd(II) ion by crude biosurfactant was higher than that of by partially purified biosurfactant. The results suggested that the biosurfactant could be used in the removal of heavy metal ions from aqueous solution.

  18. Calculation of Heavy Ion Inactivation and Mutation Rates in Radial Dose Model of Track Structure

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Shavers, Mark R.; Katz, Robert

    1997-01-01

    In the track structure model, the inactivation cross section is found by summing an inactivation probability over all impact parameters from the ion to the sensitive sites within the cell nucleus. The inactivation probability is evaluated by using the dose response of the system to gamma rays and the radial dose of the ions and may be equal to unity at small impact parameters. We apply the track structure model to recent data with heavy ion beams irradiating biological samples of E. Coli, B. Subtilis spores, and Chinese hamster (V79) cells. Heavy ions have observed cross sections for inactivation that approach and sometimes exceed the geometric size of the cell nucleus. We show how the effects of inactivation may be taken into account in the evaluation of the mutation cross sections in the track structure model through correlation of sites for gene mutation and cell inactivation. The model is fit to available data for HPRT (hypoxanthine guanine phosphoribosyl transferase) mutations in V79 cells, and good agreement is found. Calculations show the high probability for mutation by relativistic ions due to the radial extension of ions track from delta rays. The effects of inactivation on mutation rates make it very unlikely that a single parameter such as LET (linear energy transfer) can be used to specify radiation quality for heavy ion bombardment.

  19. Status of the laser ion source at IMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sha, S.; Graduate University of Chinese Academy of Sciences, Beijing 100049; School of Nuclear science and technology, Lanzhou University, Lanzhou 73000

    2012-02-15

    A laser (Nd:YAG laser, 3 J, 1064 nm, 8-10 ns) ion source has been built and under development at IMP to provide pulsed high-charge-state heavy ion beams to a radio frequency quadrupole (RFQ) for upgrading the IMP accelerators with a new low-energy beam injector. The laser ion source currently operates in a direct plasma injection scheme to inject the high charge state ions produced from a solid target into the RFQ. The maximum power density on the target was about 8.4 x 10{sup 12} W/cm{sup 2}. The preliminary experimental results will be presented and discussed in this paper.

  20. Effect of heavy ion irradiation on C 60

    NASA Astrophysics Data System (ADS)

    Lotha, S.; Ingale, A.; Avasthi, D. K.; Mittal, V. K.; Mishra, S.; Rustagi, K. C.; Gupta, A.; Kulkarni, V. N.; Khathing, D. T.

    1999-06-01

    Thin films of C 60 were subjected to swift heavy ion irradiation spanning the region from 2 to 11 keV/nm of electronic excitation. Studies of the irradiated films by Raman spectroscopy indicated polymerization and damage of the film with an ion fluence. The ion track radii are estimated for various ions using the Raman data. Photoluminescence spectroscopy of the irradiated film indicated a decrease in the C 60 phase with a dose, and an increase in the intensity at the 590 nm wavelength, which is attributed to an increase in the oxygen content.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Chune; Xue, Jianming; Zhang, Yanwen

    The determination of stopping powers for slow heavy ions in targets containing light elements is important to accurately describe ion-solid interactions, evaluate ion irradiation effects and predict ion ranges for device fabrication and nuclear applications. Recently, discrepancies of up to 40% between the experimental results and SRIM (Stopping and Range of Ions in Matter) predictions of ion ranges for heavy ions with medium and low energies (<25 keV/nucleon) in light elemental targets have been reported. The longer experimental ion ranges indicate that the stopping powers used in the SRIM code are overestimated. Here, a molecular dynamics simulation scheme is developedmore » to calculate the ion ranges of heavy ions in light elemental targets. Electronic stopping powers generated from both a reciprocity approach and the SRIM code are used to investigate the influence of electronic stopping on ion range profiles. The ion range profiles for Au and Pb ions in SiC and Er ions in Si, with energies between 20 and 5250 keV, are simulated. The simulation results show that the depth profiles of implanted ions are deeper and in better agreement with the experiments when using the electronic stopping power values derived from the reciprocity approach. These results indicate that the origin of the discrepancy in ion ranges between experimental results and SRIM predictions in the low energy region may be an overestimation of the electronic stopping powers used in SRIM.« less

  2. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - a review.

    PubMed

    Sud, Dhiraj; Mahajan, Garima; Kaur, M P

    2008-09-01

    Heavy metal remediation of aqueous streams is of special concern due to recalcitrant and persistency of heavy metals in environment. Conventional treatment technologies for the removal of these toxic heavy metals are not economical and further generate huge quantity of toxic chemical sludge. Biosorption is emerging as a potential alternative to the existing conventional technologies for the removal and/or recovery of metal ions from aqueous solutions. The major advantages of biosorption over conventional treatment methods include: low cost, high efficiency, minimization of chemical or biological sludge, regeneration of biosorbents and possibility of metal recovery. Cellulosic agricultural waste materials are an abundant source for significant metal biosorption. The functional groups present in agricultural waste biomass viz. acetamido, alcoholic, carbonyl, phenolic, amido, amino, sulphydryl groups etc. have affinity for heavy metal ions to form metal complexes or chelates. The mechanism of biosorption process includes chemisorption, complexation, adsorption on surface, diffusion through pores and ion exchange etc. The purpose of this review article is to provide the scattered available information on various aspects of utilization of the agricultural waste materials for heavy metal removal. Agricultural waste material being highly efficient, low cost and renewable source of biomass can be exploited for heavy metal remediation. Further these biosorbents can be modified for better efficiency and multiple reuses to enhance their applicability at industrial scale.

  3. Investigation of Current Spike Phenomena During Heavy Ion Irradiation of NAND Flash Memories

    NASA Technical Reports Server (NTRS)

    Oldham, Timothy R.; Berg, Melanie; Friendlich, Mark; Wilcox, Ted; Seidleck, Christina; LaBel, Kenneth A.; Irom, Farokh; Buchner, Steven P.; McMorrow, Dale; Mavis, David G.; hide

    2011-01-01

    A series of heavy ion and laser irradiations were performed to investigate previously reported current spikes in flash memories. High current events were observed, however, none matches the previously reported spikes. Plausible mechanisms are discussed.

  4. [The heavy ion irradiation influence on the thermodynamic parameters of liquids in human body].

    PubMed

    Vlasenko, T S; Bulavin, L A; Sysoev, V M

    2014-01-01

    In this manuscript a theoretical model describing the influence of the heavy ion radiotherapy on the liquid matter in the human body is suggested. Based on the fundamental equations of Bogoliubov chain the effective temperatures in the case of constant particles fluent are found in the context of single component model. An existence of such temperatures allows the use of equilibrium thermodynamics formalism to nonequilibrium stationary state. The obtained results provide the possibility of predicting the liquid matter structural changes in the biological systems in the area influenced by the heavy ion beams.

  5. Thermal Effects for Quark and Gluon Distributions in Heavy-Ion Collisions at Nica

    NASA Astrophysics Data System (ADS)

    Lykasov, G. I.; Sissakian, A. N.; Sorin, A. S.; Teryaev, O. V.

    2011-10-01

    In-medium effects for distributions of quarks and gluons in central A+A collisions are considered. We suggest a duality principle, which means similarity of thermal spectra of hadrons produced in heavy-ion collisions and inclusive spectra which can be obtained within the dynamic quantum scattering theory. Within the suggested approach we show that the mean square of the transverse momentum for these partons grows and then saturates when the initial energy increases. It leads to the energy dependence of hadron transverse mass spectra which is similar to that observed in heavy ion collisions.

  6. Diffusion of non-Gaussianity in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Kitazawa, Masakiyo; Asakawa, Masayuki; Ono, Hirosato

    2014-05-01

    We investigate the time evolution of higher order cumulants of bulk fluctuations of conserved charges in the hadronic stage in relativistic heavy ion collisions. The dynamical evolution of non-Gaussian fluctuations is modeled by the diffusion master equation. Using this model we predict that the fourth-order cumulant of net-electric charge is suppressed compared with the recently observed second-order one at ALICE for a reasonable parameter range. Significance of the measurements of various cumulants as functions of rapidity window to probe dynamical history of the hot medium created by heavy ion collisions is emphasized.

  7. Azimuthal correlations between directed and elliptic flow in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Wu, Feng-Juan; Shan, Lian-Qiang; Zhang, Jing-Bo; Tang, Gui-Xin; Huo, Lei

    2008-12-01

    A method for investigating the azimuthal correlations between directed and elliptic flow in heavy ion collisions is described. The transverse anisotropy of particle emission at AGS energies is investigated within the RQMD model. It is found that the azimuthal correlations between directed and elliptic flow are sensitive to the incident energy and impact parameter. The fluctuations in the initial stage and dynamical evolution of heavy ion collisions are not negligible. Supported by Natural Science Foundation of Heilongjiang Province (A0208) and Science Foundation of Harbin Institute of Technology (HIT.2002.47, HIT.2003.33)

  8. Λ hyperon polarization in relativistic heavy ion collisions from a chiral kinetic approach

    NASA Astrophysics Data System (ADS)

    Sun, Yifeng; Ko, Che Ming

    2017-08-01

    Using a chiral kinetic approach based on initial conditions from a multiphase transport model, we study the spin polarizations of quarks and antiquarks in noncentral heavy ion collisions at the BNL Relativistic Heavy Ion Collider. Because of the nonvanishing vorticity field in these collisions, quarks and antiquarks are found to acquire appreciable spin polarizations in the direction perpendicular to the reaction plane. Converting quarks and antiquarks to hadrons via the coalescence model, we further calculate the spin polarizations of Λ and anti-Λ hyperons and find their values comparable to those measured in experiments by the STAR Collaboration.

  9. Significance of Heavy-Ion Beam Irradiation-Induced Avermectin B1a Production by Engineered Streptomyces avermitilis

    PubMed Central

    Bo, Yong-Heng; Chen, Ji-Hong; Li, Wen-Jian; Liang, Jian-Ping; Xiao, Guo-Qing; Wang, Yu-Chen; Liu, Jing; Hu, Wei; Jiang, Bo-Ling

    2017-01-01

    Heavy-ion irradiation technology has advantages over traditional methods of mutagenesis. Heavy-ion irradiation improves the mutation rate, broadens the mutation spectrum, and shortens the breeding cycle. However, few data are currently available regarding its effect on Streptomyces avermitilis morphology and productivity. In this study, the influence of heavy-ion irradiation on S. avermitilis when cultivated in approximately 10 L stirred-tank bioreactors was investigated. The specific productivity of the avermectin (AVM) B1a-producing mutant S. avermitilis 147-G58 increased notably, from 3885 to 5446 μg/mL, approximately 1.6-fold, compared to the original strain. The mycelial morphology of the mutant fermentation processes was microscopically examined. Additionally, protein and metabolite identification was performed by using SDS-PAGE, 2- and 3-dimensional electrophoresis (2DE and 3DE). The results showed that negative regulation gene deletion of mutants led to metabolic process upregulating expression of protein and improving the productivity of an avermectin B1a. The results showed that the heavy-ion beam irradiation dose that corresponded to optimal production was well over the standard dose, at approximately 80 Gy at 220 AMeV (depending on the strain). This study provides reliable data and a feasible method for increasing AVM productivity in industrial processes. PMID:28243599

  10. Treatment of mining waste leachate by the adsorption process using spent coffee grounds.

    PubMed

    Ayala, Julia; Fernández, Begoña

    2018-02-15

    The removal of heavy metals from mining waste leachate by spent coffee grounds has been investigated. In synthetic solutions, metal uptake was studied in batch adsorption experiments as a function of pH, contact time, initial metal concentration, adsorbent concentration, particle size, and the effect of co-ions (Na, K, Ca, Mg, Cu, Cd, Ni, Zn). Results showed that adsorption was significantly affected by pH, showing the highest affinity within a pH range of 5-7. Sorption of heavy metals reached equilibrium in 3 h. Removal percentages of metals ions increased with increasing dosage. Particle size did not have a significant influence on metal uptake. The adsorption of heavy metals was found to fit Langmuir and Freundlich isotherms. Maximum Zn, Cd and Ni uptake values were calculated as 10.22, 5.96 and 7.51 mg/g, respectively, using unwashed coffee grounds (UCG) as the adsorbent and 5.36, 4.28 and 4.37 mg/g when employing washed coffee grounds as the adsorbent. The presence of co-ions inhibited the uptake of heavy metals, divalent ions having a more negative effect than monovalent ions. The results obtained in the experiments with mining waste leachate showed that UCG is effective in removing heavy metals.

  11. Poultry litter-based activated carbon for removing heavy metal ions in water.

    PubMed

    Guo, Mingxin; Qiu, Guannan; Song, Weiping

    2010-02-01

    Utilization of poultry litter as a precursor material to manufacture activated carbon for treating heavy metal-contaminated water is a value-added strategy for recycling the organic waste. Batch adsorption experiments were conducted to investigate kinetics, isotherms, and capacity of poultry litter-based activated carbon for removing heavy metal ions in water. It was revealed that poultry litter-based activated carbon possessed significantly higher adsorption affinity and capacity for heavy metals than commercial activated carbons derived from bituminous coal and coconut shell. Adsorption of metal ions onto poultry litter-based carbon was rapid and followed Sigmoidal Chapman patterns as a function of contact time. Adsorption isotherms could be described by different models such as Langmuir and Freundlich equations, depending on the metal species and the coexistence of other metal ions. Potentially 404 mmol of Cu2+, 945 mmol of Pb2+, 236 mmol of Zn2+, and 250-300 mmol of Cd2+ would be adsorbed per kg of poultry litter-derived activated carbon. Releases of nutrients and metal ions from litter-derived carbon did not pose secondary water contamination risks. The study suggests that poultry litter can be utilized as a precursor material for economically manufacturing granular activated carbon that is to be used in wastewater treatment for removing heavy metals.

  12. Exploiting differential electrochemical stripping behaviors of Fe3O4 nanocrystals toward heavy metal ions by crystal cutting.

    PubMed

    Yao, Xian-Zhi; Guo, Zheng; Yuan, Qing-Hong; Liu, Zhong-Gang; Liu, Jin-Huai; Huang, Xing-Jiu

    2014-08-13

    This study attempts to understand the intrinsic impact of different morphologies of nanocrystals on their electrochemical stripping behaviors toward heavy metal ions. Two differently shaped Fe3O4 nanocrystals, i.e., (100)-bound cubic and (111)-bound octahedral, have been synthesized for the experiments. Electrochemical results indicate that Fe3O4 nanocrystals with different shapes show different stripping behaviors toward heavy metal ions. Octahedral Fe3O4 nanocrystals show better electrochemical sensing performances toward the investigated heavy metal ions such as Zn(II), Cd(II), Pb(II), Cu(II), and Hg(II), in comparison with cubic ones. Specifically, Pb(II) is found to have the best stripping performance on both the (100) and (111) facets. To clarify these phenomena, adsorption abilities of as-prepared Fe3O4 nanocrystals have been investigated toward heavy metal ions. Most importantly, combined with theoretical calculations, their different electrochemical stripping behaviors in view of facet effects have been further studied and enclosed at the level of molecular/atom. Finally, as a trial to find a disposable platform completely free from noble metals, the potential application of the Fe3O4 nanocrystals for electrochemical detection of As(III) in drinking water is demonstrated.

  13. 4-(2-Pyridylazo)-resorcinol Functionalized Thermosensitive Ionic Microgels for Optical Detection of Heavy Metal Ions at Nanomolar Level.

    PubMed

    Zhou, Xianjing; Nie, Jingjing; Du, Binyang

    2015-10-07

    4-(2-Pyridylazo)-resorcinol (PAR) functionalized thermosensitive ionic microgels (PAR-MG) were synthesized by a one-pot quaternization method. The PAR-MG microgels were spherical in shape with radius of ca. 166.0 nm and narrow size distribution and exhibited thermo-sensitivity in aqueous solution. The PAR-MG microgels could optically detect trace heavy metal ions, such as Cu(2+), Mn(2+), Pb(2+), Zn(2+), and Ni(2+), in aqueous solutions with high selectivity and sensitivity. The PAR-MG microgel suspensions exhibited characteristic color with the presence of various trace heavy metal ions, which could be visually distinguished by naked eyes. The limit of colorimetric detection (DL) was determined to be 38 nM for Cu(2+) at pH 3, 12 nM for Cu(2+) at pH 7, and 14, 79, 20, and 21 nM for Mn(2+), Pb(2+), Zn(2+), and Ni(2+), respectively, at pH 11, which was lower than (or close to) the United States Environmental Protection Agency standard for the safety limit of these heavy metal ions in drinking water. The mechanism of detection was attributed to the chelation between the nitrogen atoms and o-hydroxyl groups of PAR within the microgels and heavy metal ions.

  14. Validation of Heavy Ion Transport Capabilities in PHITS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronningen, Reginald M.

    The performance of the Monte Carlo code system PHITS is validated for heavy ion transport capabilities by performing simulations and comparing results against experimental data from heavy ion reactions of benchmark quality. These data are from measurements of secondary neutron production cross sections in reactions of Xe at 400 MeV/u with lithium and lead targets, measurements of neutrons outside of thick concrete and iron shields, and measurements of isotope yields produced in the fragmentation of a 140 MeV/u 48Ca beam on a beryllium target and on a tantalum target. A practical example that tests magnetic field capabilities is shown formore » a simulated 48Ca beam at 500 MeV/u striking a lithium target to produce the rare isotope 44Si, with ion transport through a fragmentation-reaction magnetic pre-separator. The results of this study show that PHITS performs reliably for the simulation of radiation fields that is necessary for designing safe, reliable and cost effective future high-powered heavy-ion accelerators in rare isotope beam facilities.« less

  15. Oblique Propagation of Electrostatic Waves in a Magnetized Electron-Positron-Ion Plasma in the Presence of Heavy Particles

    NASA Astrophysics Data System (ADS)

    Sarker, M.; Hossen, M. R.; Shah, M. G.; Hosen, B.; Mamun, A. A.

    2018-06-01

    A theoretical investigation is carried out to understand the basic features of nonlinear propagation of heavy ion-acoustic (HIA) waves subjected to an external magnetic field in an electron-positron-ion plasma that consists of cold magnetized positively charged heavy ion fluids and superthermal distributed electrons and positrons. In the nonlinear regime, the Korteweg-de Vries (K-dV) and modified K-dV (mK-dV) equations describing the propagation of HIA waves are derived. The latter admits a solitary wave solution with both positive and negative potentials (for K-dV equation) and only positive potential (for mK-dV equation) in the weak amplitude limit. It is observed that the effects of external magnetic field (obliqueness), superthermal electrons and positrons, different plasma species concentration, heavy ion dynamics, and temperature ratio significantly modify the basic features of HIA solitary waves. The application of the results in a magnetized EPI plasma, which occurs in many astrophysical objects (e.g. pulsars, cluster explosions, and active galactic nuclei) is briefly discussed.

  16. A new compact structure for a high intensity low-energy heavy-ion accelerator

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Jun; He, Yuan; A. Kolomiets, A.; Liu, Shu-Hui; Du, Xiao-Nan; Jia, Huan; Li, Chao; Wang, Wang-Sheng; Chen, Xi-Meng

    2013-12-01

    A new compact accelerating structure named Hybrid RFQ is proposed to accelerate a high-intensity low-energy heavy ion beam in HISCL (High Intensive heavy ion SuperConducting Linear accelerator), which is an injector of HIAF (Heavy Ion Advanced Research Facility). It is combined by an alternative series of acceleration gaps and RFQ sections. The proposed structure has a high accelerating ability compared with a conventional RFQ and is more compact than traditional DTLs. A Hybrid RFQ is designed to accelerate 238U34+ from 0.38 MeV/u to 1.33 MeV/u. The operation frequency is described to be 81.25 MHz at CW (continuous wave) mode. The design beam current is 1.0 mA. The results of beam dynamics and RF simulation of the Hybrid RFQ show that the structure has a good performance at the energy range for ion acceleration. The emittance growth is less than 5% in both directions and the RF power is less than 150 kW. In this paper, the results of beam dynamics and RF simulation of the Hybrid RFQ are presented.

  17. Thermal width of the upsilon at large 't Hooft coupling.

    PubMed

    Noronha, Jorge; Dumitru, Adrian

    2009-10-09

    We use the anti-de Sitter/conformal field theory correspondence to show that the heavy quark (static) potential in a strongly coupled plasma develops an imaginary part at finite temperature. Thus, deeply bound heavy quarkonia states acquire a small nonzero thermal width when the 't Hooft coupling lambda = g2N(c) > 1 and the number of colors N(c) --> infinity. In the dual gravity description, this imaginary contribution comes from thermal fluctuations around the bottom of the classical sagging string in the bulk that connects the heavy quarks located at the boundary. We predict a strong suppression of Upsilon's in heavy-ion collisions and discuss how this may be used to estimate the initial temperature.

  18. Advances in target design for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Callahan, D. A.; Tabak, M.; Bennett, G. R.; Cuneo, M. E.; Vesey, R. A.; Nikroo, A.; Czechowicz, D.; Steinman, D.

    2005-12-01

    Over the past few years, the emphasis in heavy ion target design has moved from the distributed radiator target to the 'hybrid' target because the hybrid target allows a larger beam focal spot than the distributed radiator (~5 mm radius rather than ~2 mm radius). The larger spot relaxes some of the requirements on the driver, but introduces some new target physics issues. Most notable is the use of shine shields and shims in the hohlraum to achieve symmetry rather than achieving symmetry by beam placement. The shim is a thin layer of material placed on or near the capsule surface to block a small amount of excess radiation. While we have been developing this technique for the heavy ion hybrid target, the technique can also be used in any indirect drive target. We have begun testing the concept of a shim to improve symmetry using a double-ended z-pinch hohlraum on the Sandia Z-machine. Experiments using shimmed thin wall capsules have shown that we can reverse the sign of a P2 asymmetry and significantly reduce the size of a P4 asymmetry. These initial experiments demonstrate the concept of a shim as another method for controlling early time asymmetries in ICF capsules.

  19. [Survivability and morphologic anomalies in higher plants wolffia arrhiza following exposure to heavy ions of the galactic space radiation].

    PubMed

    Nevzgodina, L V; Kaminskaia, E V; Maksimova, E N; Fatsius, R; Sherrer, K; Shtraukh, V

    2000-01-01

    Experimental data on the effects of spaceflight factors, space radiation in particular, on higher plant Wolffia arrhiza firstly exposed in the "Bioblock" assembly and measurements made by physical track detectors of heavy ions (HI) are presented. Death of individual Wolffia plants and morphologic anomalies were the basic evaluation criteria. The peculiar feature of this biological object consists in the possibility to reveal delayed effects after 1-2 months since space flight as Wolffia has a high rate of vegetative reproduction. German investigators through microscopic examination of track detectors performed identification of individual plants affected by HI. With specially developed software and a coordinate system of supposition of biolayers and track detectors with the accuracy of 1 micron, tracks and even separate sections of individual HI tracks were determined in biological objects. Thereafter each Wolffia plant hit by HI was examined and data were compared with other variants. As a result, correlation between Wolffia death rate and morphologic anomalies were determined at different times post flight and topography of HI tracks was found. It is hypothesized that morphological anomalies in Walffia were caused by direct hits of plant germs by heavy ions or close passage of particles.

  20. Heavy ion linear accelerator for radiation damage studies of materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response ofmore » the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for U-238(50+) and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.« less

  1. Heavy ion linear accelerator for radiation damage studies of materials

    NASA Astrophysics Data System (ADS)

    Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif

    2017-03-01

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for 238U50+ and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.

  2. Kinetics of Electrons from Plasma Discharge in a Latent Track Region Induced by Swift Heavy ION Irradiation

    NASA Astrophysics Data System (ADS)

    Minárik, Stanislav

    2015-08-01

    While passing swift heavy ion through a material structure, it produces a region of radiation affected material which is known as a "latent track". Scattering motions of electrons interacting with a swift heavy ion are dominant in the latent track region. These phenomena include the electron impurity and phonon scattering processes modified by the interaction with the ion projectile as well as the Coulomb scattering between two electrons. In this paper, we provide detailed derivation of a 3D Boltzmann scattering equation for the description of the relative scattering motion of such electrons. Phase-space distribution function for this non-equilibrioum system of scattering electrons can be found by the solution of mentioned equation.

  3. Clinical Ion Beam Applications: Basic Properties, Application, Quality Control, Planning

    NASA Astrophysics Data System (ADS)

    Kraft, Gerhard

    2009-03-01

    Heavy-ion therapy using beam scanning and biological dose optimization is a novel technique of high-precision external radiotherapy. It yields a better perspective for tumor cure of radio-resistant tumors. However, heavy-ion therapy is not a general solution for all types of tumors. As compared to conventional radiotherapy, heavy-ion radiotherapy has the advantages of higher tumor dose, improved sparing of normal tissue in the entrance channel, a more precise concentration of the dose in the target volume with steeper gradients to the normal tissue, and a higher radiobiological effectiveness for tumors which are radio-resistant in conventional therapy. These properties make it possible to treat radio-resistant tumors with great success, including those in close vicinity to critical organs.

  4. Neutron Production from In-situ Heavy Ice Coated Targets at Vulcan

    NASA Astrophysics Data System (ADS)

    Morrison, John; Krygier, A. G.; Kar, S.; Ahmed, H.; Alejo, A.; Clarke, R.; Fuchs, J.; Green, A.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.

    2015-05-01

    Laser based neutron production experiments have been performed utilizing ultra-high intensity laser accelerated ions impinging upon a secondary target. The neutron yield from such experiments may be improved if the accelerated ions were primarily deuterons taking advantage of the d-d cross section. Recent experiments have demonstrated that selective deuteron acceleration from in-situ heavy ice coating of targets can produce ion spectra where deuterons comprise > 99 % of the measured ions. Results will be presented from integrated neutron production experiments from heavy ice targets coated in-situ recently performed on the Vulcan laser at Rutherford Appleton Laboratory. We are grateful for the Staff at RAL and acknowledge funding from the US DoE. AFOSR, European Social Fund, and the Czech Republic.

  5. Polyrhodanine modified anodic aluminum oxide membrane for heavy metal ions removal.

    PubMed

    Song, Jooyoung; Oh, Hyuntaek; Kong, Hyeyoung; Jang, Jyongsik

    2011-03-15

    Polyrhodanine was immobilized onto the inner surface of anodic aluminum oxide (AAO) membrane via vapor deposition polymerization method. The polyrhodanine modified membrane was applied to remove heavy metal ions from aqueous solution because polyrhodanine could be coordinated with specific metal ions. Several parameters such as initial metal concentration, contact time and metal species were evaluated systematically for uptake efficiencies of the fabricated membrane under continuous flow condition. Adsorption isotherms of Hg(II) ion on the AAO-polyrhodanine membrane were analyzed with Langmuir and Freundlich isotherm models. The adsorption rate of Hg(II) ion on the membrane was obeyed by a pseudo-second order equation, indicating the chemical adsorption. The maximum removal capacity of Hg(II) ion onto the fabricated membrane was measured to be 4.2 mmol/g polymer. The AAO-polyrhodanine membrane had also remarkable uptake performance toward Ag(I) and Pb(II) ions. Furthermore, the polyrhodanine modified membrane could be recycled after recovery process. These results demonstrated that the polyrhodanine modified AAO membrane provided potential applications for removing the hazardous heavy metal ions from wastewater. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Cyanobacterial megamolecule sacran efficiently forms LC gels with very heavy metal ions.

    PubMed

    Okajima, Maiko K; Miyazato, Shinji; Kaneko, Tatsuo

    2009-08-04

    We extracted the megamolecular polysaccharide sacran, which contains carboxylate and sulfate groups, from the jellylike extracellular matrix (ECM) of the cyanobacterium Aphanothece sacrum, which has mineral adsorption bioactivity. We investigated the gelation properties of sacran binding with various heavy metal ions. The sacran chain adsorbed heavier metal ions such as indium, rare earth metals, and lead ions more efficiently to form gel beads. In addition, trivalent metal ions adsorbed onto the sacran chains more efficiently than did divalent ions. The investigation of the metal ion binding ratio on sacran chains demonstrated that sacran adsorbed gadolinium trivalent ions more efficiently than indium trivalent ions. Gel bead formation may be closely correlated to the liquid-crystalline organization of sacran.

  7. Status of the ion sources developments for the Spiral2 project at GANILa)

    NASA Astrophysics Data System (ADS)

    Lehérissier, P.; Bajeat, O.; Barué, C.; Canet, C.; Dubois, M.; Dupuis, M.; Flambard, J. L.; Frigot, R.; Jardin, P.; Leboucher, C.; Lemagnen, F.; Maunoury, L.; Osmond, B.; Pacquet, J. Y.; Pichard, A.; Thuillier, T.; Peaucelle, C.

    2012-02-01

    The SPIRAL 2 facility is now under construction and will deliver either stable or radioactive ion beams. First tests of nickel beam production have been performed at GANIL with a new version of the large capacity oven, and a calcium beam has been produced on the heavy ion low energy beam transport line of SPIRAL 2, installed at LPSC Grenoble. For the production of radioactive beams, several target/ion-source systems (TISSs) are under development at GANIL as the 2.45 GHz electron cyclotron resonance ion source, the surface ionization source, and the oven prototype for heating the uranium carbide target up to 2000 °C. The existing test bench has been upgraded for these developments and a new one, dedicated for the validation of the TISS before mounting in the production module, is under design. Results and current status of these activities are presented.

  8. Detection of γ-radiation and heavy metals using electrochemical bacterial-based sensor

    NASA Astrophysics Data System (ADS)

    Al-Shanawa, M.; Nabok, A.; Hashim, A.; Smith, T.; Forder, S.

    2013-06-01

    The main aim of this work is to develop a simple electrochemical sensor for detection of γ-radiation and heavy metals using bacteria. A series of DC and AC electrical measurements were carried out on samples of two types of bacteria, namely Escherichia coli and Deinococcus radiodurans. As a first step, a correlation between DC and AC electrical conductivity and bacteria concentration in solution was established. The study of the effect of γ-radiation and heavy metal ions (Cd2+) on DC and AC electrical characteristics of bacteria revealed a possibility of pattern recognition of the above inhibition factors.

  9. Heavy-ion lab to assess benefits and risk of radon therapy

    NASA Astrophysics Data System (ADS)

    Stafford, Ned

    2012-04-01

    Researchers in Germany, led by staff at the GSI heavy-ion centre in Darmstadt, have announced a three-and-a-half year project to study the potential risks of low-dose radon therapy as well as investigate its therapeutic benefits.

  10. Relativistic Hydrodynamics for Heavy-Ion Collisions

    ERIC Educational Resources Information Center

    Ollitrault, Jean-Yves

    2008-01-01

    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…

  11. Accelerator-Based Studies of Heavy Ion Interactions Relevant to Space Biomedicine

    NASA Technical Reports Server (NTRS)

    Miller, J.; Heilbronn, L.; Zeitlin, C.

    1999-01-01

    Evaluation of the effects of space radiation on the crews of long duration space missions must take into account the interactions of high energy atomic nuclei in spacecraft and planetary habitat shielding and in the bodies of the astronauts. These heavy ions (i.e. heavier than hydrogen), while relatively small in number compared to the total galactic cosmic ray (GCR) charged particle flux, can produce disproportionately large effects by virtue of their high local energy deposition: a single traversal by a heavy charged particle can kill or, what may be worse, severely damage a cell. Research into the pertinent physics and biology of heavy ion interactions has consequently been assigned a high priority in a recent report by a task group of the National Research Council. Fragmentation of the incident heavy ions in shielding or in the human body will modify an initially well known radiation field and thereby complicate both spacecraft shielding design and the evaluation of potential radiation hazards. Since it is impractical to empirically test the radiation transport properties of each possible shielding material and configuration, a great deal of effort is going into the development of models of charged particle fragmentation and transport. Accurate nuclear fragmentation cross sections (probabilities), either in the form of measurements with thin targets or theoretical calculations, are needed for input to the transport models, and fluence measurements (numbers of fragments produced by interactions in thick targets) are needed both to validate the models and to test specific shielding materials and designs. Fluence data are also needed to characterize the incident radiation field in accelerator radiobiology experiments. For a number of years, nuclear fragmentation measurements at GCR-like energies have been carried out at heavy ion accelerators including the LBL Bevalac, Saturne (France), the Synchrophasotron and Nuklotron (Dubna, Russia), SIS-18 (GSI, Germany), the Alternating Gradient Synchrotron at Brookhaven National Laboratory (BNL AGS) and the Heavy Ion Medical Accelerator (HIMAC) in Chiba, Japan. Until fairly recently most of these experiments were done to investigate fundamental problems in nuclear physics, but with the increasing interest in heavy charged particles on the part of the space flight, radiobiology and radiotherapy communities, an increasing number of experiments are being directed at these areas. Some of these measurements are discussed in references therein. Over the past several years, our group has taken cross section and fluence data at the AGS and HIMAC for several incident beams with nuclear charge, Z, between 6 and 26 at energies between 290 and 1050 MeV/nucleon. Iron (Z = 26) has been studied most extensively, since it is the heaviest ion present in significant numbers in the GCR. Targets have included tissue-equivalent and proposed shielding materials, as well as a variety of elemental targets for cross section measurements. Most of the data were taken along the beam axis, but measurements have been made off-axis, as well. Here we present selected data and briefly discuss some implications for spacecraft and planetary habitat design.

  12. GCR Transport in the Brain: Assessment of Self-Shielding, Columnar Damage, and Nuclear Reactions on Cell Inactivation Rates

    NASA Technical Reports Server (NTRS)

    Shavers, M. R.; Atwell, W.; Cucinotta, F. A.; Badhwar, G. D. (Technical Monitor)

    1999-01-01

    Radiation shield design is driven by the need to limit radiation risks while optimizing risk reduction with launch mass/expense penalties. Both limitation and optimization objectives require the development of accurate and complete means for evaluating the effectiveness of various shield materials and body-self shielding. For galactic cosmic rays (GCR), biophysical response models indicate that track structure effects lead to substantially different assessments of shielding effectiveness relative to assessments based on LET-dependent quality factors. Methods for assessing risk to the central nervous system (CNS) from heavy ions are poorly understood at this time. High-energy and charge (HZE) ion can produce tissue events resulting in damage to clusters of cells in a columnar fashion, especially for stopping heavy ions. Grahn (1973) and Todd (1986) have discussed a microlesion concept or model of stochastic tissue events in analyzing damage from HZE's. Some tissues, including the CNS, maybe sensitive to microlesion's or stochastic tissue events in a manner not illuminated by either conventional dosimetry or fluence-based risk factors. HZE ions may also produce important lateral damage to adjacent cells. Fluences of high-energy proton and alpha particles in the GCR are many times higher than HZE ions. Behind spacecraft and body self-shielding the ratio of protons, alpha particles, and neutrons to HZE ions increases several-fold from free-space values. Models of GCR damage behind shielding have placed large concern on the role of target fragments produced from tissue atoms. The self-shielding of the brain reduces the number of heavy ions reaching the interior regions by a large amount and the remaining light particle environment (protons, neutrons, deuterons. and alpha particles) may be the greatest concern. Tracks of high-energy proton produce nuclear reactions in tissue, which can deposit doses of more than 1 Gv within 5 - 10 cell layers. Information on rates of cell killing from GCR, including patterns of cell killing from single particle tracks. can provide useful information on expected differences between proton and HZE tracks and clinical experiences with photon irradiation. To model effects on cells in the brain, it is important that transport models accurately describe changes in the GCR due to interactions in the cranium and proximate tissues. We describe calculations of the attenuated GCR particle fluxes at three dose-points in the brain and associated patterns of cell killing using biophysical models. The effects of the brain self-shielding and bone-tissue interface of the skull in modulating the GCR environment are considered. For each brain dose-point, the mass distribution in the surrounding 4(pi) solid angle is characterized using the CAM model to trace 512 rays. The CAM model describes the self-shielding by converting the tissue distribution to mass-equivalent aluminum, and nominal values of spacecraft shielding is considered. Particle transport is performed with the proton, neutron, and heavy-ion transport code HZETRN with the nuclear fragmentation model QMSFRG. The distribution of cells killed along the path of individual GCR ions is modeled using in vitro cell inactivation data for cells with varying sensitivity. Monte Carlo simulations of arrays of inactivated cells are considered for protons and heavy ions and used to describe the absolute number of cell killing events of various magnitude in the brain from the GCR. Included are simulations of positions of inactivated cells from stopping heavy ions and nuclear stars produced by high-energy ions most importantly, protons and neutrons.

  13. Paper-Based Heavy Metal Sensors from the Concise Synthesis of an Anionic Porphyrin: A Practical Application of Organic Synthesis to Environmental Chemistry

    ERIC Educational Resources Information Center

    Prabpal, Jutamat; Vilaivan, Tirayut; Praneenararat, Thanit

    2017-01-01

    Tetrakis(4-sulfonatophenyl)porphyrin (TSPP) was immobilized on patterned paper and used as a sensor for heavy metal ions in an advanced organic chemistry course. The resulting sensor could detect Hg[superscript 2+] and Cd[superscript 2+] ions colorimetrically, while Cu[superscript 2+] ion resulted in fluorescence quenching, thus demonstrating a…

  14. Extension to Higher Mass Numbers of an Improved Knockout-Ablation-Coalescence Model for Secondary Neutron and Light Ion Production in Cosmic Ray Interactions

    NASA Astrophysics Data System (ADS)

    Indi Sriprisan, Sirikul; Townsend, Lawrence; Cucinotta, Francis A.; Miller, Thomas M.

    Purpose: An analytical knockout-ablation-coalescence model capable of making quantitative predictions of the neutron spectra from high-energy nucleon-nucleus and nucleus-nucleus collisions is being developed for use in space radiation protection studies. The FORTRAN computer code that implements this model is called UBERNSPEC. The knockout or abrasion stage of the model is based on Glauber multiple scattering theory. The ablation part of the model uses the classical evaporation model of Weisskopf-Ewing. In earlier work, the knockout-ablation model has been extended to incorporate important coalescence effects into the formalism. Recently, alpha coalescence has been incorporated, and the ability to predict light ion spectra with the coalescence model added. The earlier versions were limited to nuclei with mass numbers less than 69. In this work, the UBERNSPEC code has been extended to make predictions of secondary neutrons and light ion production from the interactions of heavy charged particles with higher mass numbers (as large as 238). The predictions are compared with published measurements of neutron spectra and light ion energy for a variety of collision pairs. Furthermore, the predicted spectra from this work are compared with the predictions from the recently-developed heavy ion event generator incorporated in the Monte Carlo radiation transport code HETC-HEDS.

  15. Chemoprevention of Radiation Induced Rat Mammary Neoplasms

    NASA Technical Reports Server (NTRS)

    Huso, David L.

    1999-01-01

    Radiations encountered in space include protons and heavy ions such as iron as well as their secondaries. The relative biological effect (RBE) of these ions is not known, particularly at the doses and dose-rates expected for planetary missions. Neutrons, are not particularly relevant to space travel, but have been found experimentally to have an increase in their RBE with decreasing dose. If a similar trend of increasing RBE with decreasing dose is present for heavy ions and protons during irradiation in space, the small doses received during space travel could potentially have substantial carcinogenic risk. Clearly more investigation of the effects of heavy ions and protons is needed before accurate risk assessment for prolonged travel in space can be done. One means to mitigate the increased risk of cancer due to radiation exposure in space is by developing effective countermeasures that can reduce the incidence of tumor development. Tamoxifen has recently been shown to be an effective chemopreventive agent in both animal models and humans for the prevention of mammary tumors. Tamoxifen is a unique drug, with a highly specific mechanism of action affecting a specific radiation-sensitive population of epithelial cells in the mammary gland. In human studies, the annual incidence of a primary tumor in the contralateral breast of women with previous breast cancer is about 8 per 1000, making them an exceedingly high-risk group for the development of breast cancer. In this high risk group, treated with tamoxifen, daily, for 2 years, the incidence of a new primary tumor in the contralateral breast was approximately one third of that noted in the non-tamoxifen treatment group. Tamoxifen antagonizes the action of estrogen by competing for the nuclear receptor complex thereby altering the association of the receptor complex and nuclear binding sites. Its effects in reducing the development of breast cancer could be accomplished by controlling clinically undetectable microcancers, arresting preneoplastic lesions, or correcting abnormal environments which predispose to high risk of malignant transformation.

  16. Nonlinear Delta-f Simulations of Collective Effects in Intense Charged Particle Beams

    NASA Astrophysics Data System (ADS)

    Qin, Hong

    2002-11-01

    A nonlinear delta-f particle simulation method based on the Vlasov-Maxwell equations has been recently developed to study collective processes in high-intensity beams, where space-charge and magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Implemented in the Beam Equilibrium, Stability and Transport (BEST) code, the nonlinear delta-f method provides a low-noise and self-consistent tool for simulating collective interactions and nonlinear dynamics of high-intensity beams in modern and next- generation accelerators and storage rings, such as the Spallation Neutron Source, and heavy ion fusion drivers. Simulation results for the electron-proton two-stream instability in the Proton Storage Ring (PSR) experiment at Los Alamos National Laboratory agree well with experimental observations. Large-scale parallel simulations have also been carried out for the ion-electron two-stream instability in the very high-intensity heavy ion beams envisioned for heavy ion fusion applications. In both cases, the simulation results indicate that the dominant two-stream instability has a dipole-mode (hose-like) structure and can be stabilized by a modest axial momentum spread of the beam particles of less than 0.25collective processes in high-intensity beams, such as anisotropy-driven instabilities, collective eigenmode excitations for perturbations about stable beam equilibria, and the Darwin model for fully electromagnetic perturbations will also be discussed.

  17. Detection of microlesions induced by heavy ions using liposomes filled with fluorescent dye

    NASA Technical Reports Server (NTRS)

    Koniarek, J. P.; Thomas, J. L.; Vazquez, M.

    2004-01-01

    In cells irradiation by heavy ions has been hypothesized to produce microlesions, regions of local damage. In cell membranes this damage is thought to manifest itself in the form of holes. The primary evidence for microlesions comes from morphological studies of cell membranes, but this evidence is still controversial, especially since holes also have been observed in membranes of normal, nonirradiated, cells. However, it is possible that damage not associated with histologically discernable disruptions may still occur. In order to resolve this issue, we developed a system for detecting microlesions based on liposomes filled with fluorescent dye. We hypothesized that if microlesions form in these liposomes as the result of irradiation, then the entrapped dye will leak out into the surrounding medium in a measurable way. Polypropylene vials containing suspensions of vesicles composed of either dipalmitoyl phosphatidylcholine, or a combination of egg phosphatidylcholine and cholesterol were irradiated at the Brookhaven National Laboratory using 56Fe ions at 1 GeV/amu. In several cases we obtained a significant loss of the entrapped dye above the background level. Our results suggest that holes may form in liposomes as the result of heavy ion irradiation, and that these holes are large enough to allow leakage of cell internal contents that are at least as large as a 1 nm diameter calcein molecule. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  18. Initiation-promotion model of tumor prevalence in mice from space radiation exposures

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.

    1995-01-01

    Exposures in space consist of low-level background components from galactic cosmic rays (GCR), occasional intense-energetic solar-particle events, periodic passes through geomagnetic-trapped radiation, and exposure from possible onboard nuclear-propulsion engines. Risk models for astronaut exposure from such diverse components and modalities must be developed to assure adequate protection in future NASA missions. The low-level background exposures (GCR), including relativistic heavy ions (HZE), will be the ultimate limiting factor for astronaut career exposure. We consider herein a two-mutation, initiation-promotion, radiation-carcinogenesis model in mice in which the initiation stage is represented by a linear kinetics model of cellular repair/misrepair, including the track-structure model for heavy ion action cross-sections. The model is validated by comparison with the harderian gland tumor experiments of Alpen et al. for various ion beams. We apply the initiation-promotion model to exposures from galactic cosmic rays, using models of the cosmic-ray environment and heavy ion transport, and consider the effects of the age of the mice prior to and after the exposure and of the length of time in space on predictions of relative risk. Our results indicate that biophysical models of age-dependent radiation hazard will provide a better understanding of GCR risk than models that rely strictly on estimates of the initial slopes of these radiations.

  19. Contribution of energetic and heavy ions to the plasma pressure: The 27 September to 3 October 2002 storm

    NASA Astrophysics Data System (ADS)

    Kronberg, E. A.; Welling, D.; Kistler, L. M.; Mouikis, C.; Daly, P. W.; Grigorenko, E. E.; Klecker, B.; Dandouras, I.

    2017-09-01

    Magnetospheric plasma sheet ions drift toward the Earth and populate the ring current. The ring current plasma pressure distorts the terrestrial internal magnetic field at the surface, and this disturbance strongly affects the strength of a magnetic storm. The contribution of energetic ions (>40 keV) and of heavy ions to the total plasma pressure in the near-Earth plasma sheet is not always considered. In this study, we evaluate the contribution of low-energy and energetic ions of different species to the total plasma pressure for the storm observed by the Cluster mission from 27 September until 3 October 2002. We show that the contribution of energetic ions (>40 keV) and of heavy ions to the total plasma pressure is ≃76-98.6% in the ring current and ≃14-59% in the magnetotail. The main source of oxygen ions, responsible for ≃56% of the plasma pressure of the ring current, is located at distances earthward of XGSE ≃ -13.5 RE during the main phase of the storm. The contribution of the ring current particles agrees with the observed Dst index. We model the magnetic storm using the Space Weather Modeling Framework (SWMF). We assess the plasma pressure output in the ring current for two different ion outflow models in the SWMF through comparison with observations. Both models yield reasonable results. The model which produces the most heavy ions agrees best with the observations. However, the data suggest that there is still potential for refinement in the simulations.

  20. Probing nuclear symmetry energy at high densities using pion, kaon, eta and photon productions in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Xiao, Zhi-Gang; Yong, Gao-Chan; Chen, Lie-Wen; Li, Bao-An; Zhang, Ming; Xiao, Guo-Qing; Xu, Nu

    2014-02-01

    The high-density behavior of nuclear symmetry energy is among the most uncertain properties of dense neutron-rich matter. Its accurate determination has significant ramifications in understanding not only the reaction dynamics of heavy-ion reactions, especially those induced by radioactive beams, but also many interesting phenomena in astrophysics, such as the explosion mechanism of supernova and the properties of neutron stars. The heavy-ion physics community has devoted much effort during the last few years to constrain the high-density symmetry using various probes. In particular, the / ratio has been most extensively studied both theoretically and experimentally. All models have consistently predicted qualitatively that the / ratio is a sensitive probe of the high-density symmetry energy especially with beam energies near the pion production threshold. However, the predicted values of the / ratio are still quite model dependent mostly because of the complexity of modeling pion production and reabsorption dynamics in heavy-ion collisions, leading to currently still controversial conclusions regarding the high-density behavior of nuclear symmetry energy from comparing various model calculations with available experimental data. As more / data become available and a deeper understanding about the pion dynamics in heavy-ion reactions is obtained, more penetrating probes, such as the K +/ K 0 ratio, meson and high-energy photons are also being investigated or planned at several facilities. Here, we review some of our recent contributions to the community effort of constraining the high-density behavior of nuclear symmetry energy in heavy-ion collisions. In addition, the status of some worldwide experiments for studying the high-density symmetry energy, including the HIRFL-CSR external target experiment (CEE) are briefly introduced.

Top