NASA Astrophysics Data System (ADS)
García-Jiménez, I.; Novales-Sánchez, H.; Toscano, J. J.
2016-05-01
One-loop Standard Model observables produced by virtual heavy Kaluza-Klein fields play a prominent role in the minimal model of universal extra dimensions. Motivated by this aspect, we integrate out all the Kaluza-Klein heavy modes coming from the Yang-Mills theory set on a spacetime with an arbitrary number, n , of compact extra dimensions. After fixing the gauge with respect to the Kaluza-Klein heavy gauge modes in a covariant manner, we calculate a gauge-independent effective Lagrangian expansion containing multiple Kaluza-Klein sums that entail a bad divergent behavior. We use the Epstein-zeta function to regularize and characterize discrete divergences within such multiple sums, and then we discuss the interplay between the number of extra dimensions and the degree of accuracy of effective Lagrangians to generate or not divergent terms of discrete origin. We find that nonrenormalizable terms with mass dimension k are finite as long as k >4 +n . Multiple Kaluza-Klein sums of nondecoupling logarithmic terms, not treatable by Epstein-zeta regularization, are produced by four-dimensional momentum integration. On the grounds of standard renormalization, we argue that such effects are unobservable.
Residue theorem and summing over Kaluza-Klein excitations
Feng Taifu; Chen Jianbin; Gao Tiejun; Sun Kesheng
2011-11-01
Applying the equations of motion together with corresponding boundary conditions of bulk profiles at infrared and ultraviolet branes, we verify some lemmas on the eigenvalues of Kaluza-Klein modes in extension of the standard model with a warped extra dimension and the custodial symmetry SU(3){sub c}xSU(2){sub L}xSU(2){sub R}xU(1){sub X}xP{sub LR}. Using the lemmas and performing properly analytic extensions of bulk profiles, we present the sufficient condition for a convergent series of Kaluza-Klein excitations and sum over the series through the residue theorem. The method can also be applied to sum over the infinite series of Kaluza-Klein excitations in a universal extra dimension. Furthermore, we analyze the possible connection between the propagators in five-dimensional full theory and the product of bulk profiles with corresponding propagators of exciting Kaluza-Klein modes in four-dimensional effective theory, and recover some relations presented in the literature for warped and universal extra dimensions, respectively. As an example, we present the correction from new physics to the branching ratio of B{yields}X{sub s{gamma}} to the order O({mu}{sub EW}{sup 2}/{Lambda}{sub KK}{sup 2}) in extension of the standard model with a warped extra dimension and the custodial symmetry, where {Lambda}{sub KK} denotes the energy scale of low-lying Kaluza-Klein excitations and {mu}{sub EW} denotes the electroweak energy scale.
Kaluza-Klein nature of entropy function
NASA Astrophysics Data System (ADS)
Salti, Mustafa; Aydogdu, Oktay; Yanar, Hilmi
2015-11-01
In the present study, we mainly investigate the nature of entropy function in non-flat Kaluza-Klein universe. We prove that the first and generalized second laws of gravitational thermodynamics are valid on the dynamical apparent horizon.
Cosmological production of Kaluza-Klein monopoles
Harvey, J.A.; Kolb, E.W.; Perry, M.J.
1984-09-01
The cosmological production of Kaluza-Klein monopoles is discussed. The present monopole to entropy ratio is calculated in some simple models with the conclusion that this ratio is unacceptably large unless additional mechanisms for entropy production or monopole annihilation are present.
Galactic entropy in extended Kaluza-Klein cosmology
NASA Astrophysics Data System (ADS)
Yanar, Hilmi; Salti, Mustafa; Aydogdu, Oktay; Acikgoz, Irfan; Yasar, Erol
2016-02-01
We use a Kaluza-Klein model with variable cosmological and gravitational terms to discuss the nature of galactic entropy function. For this purpose, we assume a universe filled with dark fluid and consider five-dimensional (5D) field equations using the Gamma law equation. We mainly discuss the validity of the first and generalized second laws of galactic thermodynamics for viable Kaluza-Klein models.
The abundance of Kaluza-Klein dark matter with coannihilation
Burnell, Fiona; Kribs, Graham D.
2006-01-01
In universal extra dimension models, the lightest Kaluza-Klein (KK) particle is generically the first KK excitation of the photon and can be stable, serving as particle dark matter. We calculate the thermal relic abundance of the KK photon for a general mass spectrum of KK excitations including full coannihilation effects with all (level-one) KK excitations. We find that including coannihilation can significantly change the relic abundance when the coannihilating particles are within about 20% of the mass of the KK photon. Matching the relic abundance with cosmological data, we find the mass range of the KK photon is much wider than previously found, up to about 2 TeV if the masses of the strongly interacting level-one KK particles are within 5% of the mass of the KK photon. We also find cases where several coannihilation channels compete (constructively and destructively) with one another. The lower bound on the KK photon mass, about 540 GeV when just right-handed KK leptons coannihilate with the KK photon, relaxes upward by several hundred GeV when coannihilation with electroweak KK gauge bosons of the same mass is included.
A neo-intuitive proposal for Kaluza-Klein unification
NASA Astrophysics Data System (ADS)
Rosen, Steven M.
1988-11-01
This paper addresses a central question of contemporary theoretical physics: Can a unified account be provided for the known forces of nature? The issue is brought into focus by considering the recently revived Kaluza-Klein approach to unification, a program entailing dimensional transformation through cosmogony. First it is demonstrated that, in a certain sence, revitalized Kaluza-Klein theory appears to undermine the intuitive foundations of mathematical physics, but that this implicit consequence has been repressed at a substantial cost. A fundamental reformulation of the Kaluza-Klein strategy is then undertaken, one that casts it within a new intuitive context. This is followed by a provisional application of the suggested approach to the specific problem of cosmological change. The paper concludes by exploring the far-reaching epistemological implications of the “neo-intuitive” proposal set forth.
Kaluza's and Klein's Contributions to the Kaluza-Klein-Theory
NASA Astrophysics Data System (ADS)
Wünsch, Daniela; Goenner, Hubert
2006-02-01
Kaluza's and Klein's contributions to Kaluza-Klein-theory. The Kaluza-Klein-theory is one of the "classics" of modern theoretical physics. All theories that construct a space with extra dimensions, such as superstring and membrane theory, are based on the structure of this unified theory. The original five-dimensional theories by Theodor Kaluza (from 1921) and Oskar Klein (from 1926) have not yet been closely analysed, historically. What has survived as an established part of physics is a "folklore version" that mixes together elements from both theories. Our paper analyses the individual mathematical and physical contributions by Kaluza and Klein. It points out the importance of the achievements of these two founders of five-dimensional unified theories, and compares them with the folklore version of the Kaluza-Klein theory.
Klein-Gordon oscillator in Kaluza-Klein theory
NASA Astrophysics Data System (ADS)
Carvalho, Josevi; Carvalho, Alexandre M. de M.; Cavalcante, Everton; Furtado, Claudio
2016-07-01
In this contribution we study the Klein-Gordon oscillator on the curved background within the Kaluza-Klein theory. The problem of the interaction between particles coupled harmonically with topological defects in Kaluza-Klein theory is studied. We consider a series of topological defects, then we treat the Klein-Gordon oscillator coupled to this background, and we find the energy levels and corresponding eigenfunctions in these cases. We show that the energy levels depend on the global parameters characterizing these spacetimes. We also investigate a quantum particle described by the Klein-Gordon oscillator interacting with a cosmic dislocation in Som-Raychaudhuri spacetime in the presence of homogeneous magnetic field in a Kaluza-Klein theory. In this case, the energy spectrum is determined, and we observe that these energy levels represent themselves as the sum of the terms related with Aharonov-Bohm flux and of the parameter associated to the rotation of the spacetime.
Charged rotating dilaton black holes with Kaluza-Klein asymptotics
NASA Astrophysics Data System (ADS)
Knoll, Christian; Nedkova, Petya
2016-03-01
We construct a class of stationary and axisymmetric solutions to the five-dimensional Einstein-Maxwell-dilaton gravity, which describe configurations of charged rotating black objects with Kaluza-Klein asymptotics. The solutions are constructed by uplifting a vacuum seed solution to six dimensions, performing a boost and a subsequent circle reduction. We investigate the physical properties of the charged solutions and obtain their general relations to the properties of the vacuum seed. We also derive the gyromagnetic ratio and the Smarr-like relations. As particular cases, we study three solutions, which describe a charged rotating black string, a charged rotating black ring on Kaluza-Klein bubbles, and a superposition of two black holes and a Kaluza-Klein bubble.
Light Kaluza Klein States in Randall-Sundrum Models with Custodial SU(2)
Carena, Marcela; Ponton, Eduardo; Santiago, Jose; Wagner, Carlos E.M.; /Argonne /Chicago U., EFI /KICP, Chicago
2006-07-01
We consider Randall-Sundrum scenarios based on SU(2){sub L} x SU(2){sub R} and a discrete parity exchanging L with R. The custodial and parity symmetries can be used to make the tree level contribution to the T parameter and the anomalous couplings of the bottom quark to the Z very small. We show that the resulting quantum numbers typically induce a negative T parameter at one loop that, together with the positive value of the S parameter, restrict considerably these models. There are nevertheless regions of parameter space that successfully reproduce the fit to electroweak precision observables with light Kaluza-Klein excitations accessible at colliders. We consider models of gauge-Higgs unification that implement the custodial and parity symmetries and find that the electroweak data singles out a very well defined region in parameter space. In this region one typically finds light gauge boson Kaluza-Klein excitations as well as light SU(2){sub L} singlet, and sometimes also doublet, fermionic states, that mix with the top quark, and that may yield interesting signatures at future colliders.
Neutrinos from Kaluza-Klein dark matter in the Sun
Blennow, Mattias; Melbéus, Henrik; Ohlsson, Tommy E-mail: melbeus@kth.se
2010-01-01
We investigate indirect neutrino signals from annihilations of Kaluza-Klein dark matter in the Sun. Especially, we examine a five- as well as a six-dimensional model, and allow for the possibility that boundary localized terms could affect the spectrum to give different lightest Kaluza-Klein particles, which could constitute the dark matter. The dark matter candidates that are interesting for the purpose of indirect detection of neutrinos are the first Kaluza-Klein mode of the gauge boson and the neutral component of the gauge bosons. Using the DarkSUSY and WimpSim packages, we calculate muon fluxes at an Earth-based neutrino telescope, such as IceCube. For the five-dimensional model, the results that we obtained agree reasonably well with the results that have previously been presented in the literature, whereas for the six-dimensional model, we find that, at tree-level, the results are the same as for the five-dimensional model. Finally, if the first Kaluza-Klein mode of the gauge boson constitutes the dark matter, IceCube can constrain the parameter space. However, in the case that the neutral component of the gauge bosons is the LKP, the signal is too weak to be observed.
Non-oscillatory behaviour in vacuum Kaluza-Klein cosmologies
NASA Astrophysics Data System (ADS)
Demaret, J.; Henneaux, M.; Spindel, P.; Taormina, A.; Hanquin, J.-L.
The generic behavior of vacuum inhomogeneous Kaluza-Klein cosmologies is studied in the vicinity of the cosmological singularity. It is argued that, in spacetime dimensions equal to or greater than 11, the generalized Kasner solution, with monotonic power-law behavior of the spatial distances, becomes a general solution of the Einstein vacuum field equations and, moreover, the chaotic oscillatory behavior disappears.
Kaluza-Klein Braneworld Cosmology with Static Internal Dimensions
NASA Astrophysics Data System (ADS)
Kanno, S.; Langlois, D.; Sasaki, M.; Soda, J.
2007-10-01
We investigate the Kaluza-Klein braneworld cosmology from the point of view of observers on the brane. We first generalize the Shiromizu-Maeda-Sasaki (SMS) equations to higher dimensions. As an application, we study a (4+n)-dimensional brane with n dimensions compactified on the brane, in a (5+n)-dimensional bulk. By assuming that the size of the internal space is static, that the bulk energy-momentum tensor can be ignored, we determine the effect of the bulk geometry on the Kaluza-Klein braneworld. Then we derive the effective Friedmann equation on the brane. It turns out that the Friedmann equation explicitly depends on the equation of state, in contrast to the braneworld in a 5-dimensional bulk spacetime. In particular, in a radiation-dominated era, the effective Newton constant depends logarithmically on the scale factor. If we include a pressureless matter on the brane, this dependence disappears after the radiation-matter equality. This may be interpreted as st abilization of the Newton constant by the matter on the brane. Our findings imply that the Kaluza-Klein braneworld cosmology is quite different from the conventional Kaluza-Klein cosmology even at low energy.
Geodetic precession in squashed Kaluza-Klein black hole spacetimes
Matsuno, Ken; Ishihara, Hideki
2009-11-15
We investigate the geodetic precession effect of a parallelly transported spin vector along a circular geodesic in five-dimensional squashed Kaluza-Klein black hole spacetime. Then we derive the higher-dimensional correction of the precession angle to general relativity. We find that the correction is proportional to the square of (size of extra dimension)/(gravitational radius of central object)
Charged rotating Kaluza-Klein black holes in dilaton gravity
Allahverdizadeh, Masoud; Matsuno, Ken; Sheykhi, Ahmad
2010-02-15
We obtain a class of slowly rotating charged Kaluza-Klein black hole solutions of the five-dimensional Einstein-Maxwell-dilaton theory with arbitrary dilaton coupling constant. At infinity, the spacetime is effectively four dimensional. In the absence of the squashing function, our solution reduces to the five-dimensional asymptotically flat slowly rotating charged dilaton black hole solution with two equal angular momenta. We calculate the mass, the angular momentum, and the gyromagnetic ratio of these rotating Kaluza-Klein dilaton black holes. It is shown that the dilaton field and the nontrivial asymptotic structure of the solutions modify the gyromagnetic ratio of the black holes. We also find that the gyromagnetic ratio crucially depends on the dilaton coupling constant, {alpha}, and decreases with increasing {alpha} for any size of the compact extra dimension.
Towards Kaluza-Klein Dark Matter on nilmanifolds
NASA Astrophysics Data System (ADS)
Andriot, David; Cacciapaglia, Giacomo; Deandrea, Aldo; Deutschmann, Nicolas; Tsimpis, Dimitrios
2016-06-01
We present a first study of the field spectrum on a class of negatively-curved compact spaces: nilmanifolds or twisted tori. This is a case where analytical results can be obtained, allowing to check numerical methods. We focus on the Kaluza-Klein expansion of a scalar field. The results are then applied to a toy model where a natural Dark Matter candidate arises as a stable massive state of the bulk scalar.
Constraints on cosmic superstrings from Kaluza-Klein emission.
Dufaux, Jean-François
2012-07-01
Cosmic superstrings interact generically with a tower of light and/or strongly coupled Kaluza-Klein (KK) modes associated with the geometry of the internal space. We study the production of KK particles by cosmic superstring loops, and show that it is constrained by big bang nucleosynthesis. We study the resulting constraints in the parameter space of the underlying string theory model and highlight their complementarity with the regions that can be probed by current and upcoming gravitational wave experiments. PMID:23031097
Einstein-Rosen solutions from Kaluza-Klein theory
NASA Astrophysics Data System (ADS)
López, L. A.; Bretón, N.; Ramírez, B. V.
2013-01-01
From a time-dependent boost-rotational symmetric vacuum solution of the Einstein Equations in five dimensions, through the Kaluza-Klein reduction the corresponding Einstein-Maxwell-dilaton solutions are obtained. The four dimensional counterpart turns out to be generalized Einstein-Rosen spacetimes representing unpolarized gravitational waves traveling in an inhomogeneous cosmology. Restricting the parameters we are able to obtain different 4D time-dependent solutions equipped with scalar and electromagnetic fields.
Finite Number of Kaluza-Klein Modes, all with Zero Masses
NASA Astrophysics Data System (ADS)
Erdem, Recai
Kaluza-Klein modes of fermions in a five-dimensional toy model are considered. The number of Kaluza-Klein modes that survive after integration over extra dimensions is finite in this space. Moreover, the extra dimensional piece of the kinetic part of the Lagrangian in this space induces no mass for the higher Kaluza-Klein modes on contrary to the standard lore.
On the stability of toroidally compact Kaluza-Klein theories
NASA Astrophysics Data System (ADS)
Blau, S. K.; Guendelman, E. I.; Taormina, A.; Wijewardhana, L. C. R.
1984-08-01
We study the stability ar the one loop level, of finite temperature Kaluza-Klein theories coupled to matter fields. We restrict our attention to space-times containing compact manifolds which are toruses and Klein bottles. If the cosmological constant is chosen so that the effective potential vanishes at its minimum, and if twisted bosons or untwisted fermions are introduced into the theory, then these space-times are stable below a critical temperature of the order of the particle masses. We also discuss some subtleties that arises when Fermi fields are defined on non-simply connected manifolds.
Constraints on the size of the extra dimension from Kaluza-Klein gravitino decay
Gherson, David
2007-08-15
We study the consequences of the gravitino decay into dark matter. We suppose that the lightest neutralino is the main component of dark matter. In our framework the gravitino is heavy enough to decay before big bang nucleosynthesis starts. We consider a model coming from a five dimensional supergravity compactified on S{sup 1}/Z{sub 2} with gravity in the bulk and matter localized on tensionless branes at the orbifold fixed points. We require that the dark matter, which is produced thermally and in the decay of Kaluza-Klein modes of the gravitino, has an abundance compatible with observation. We deduce from our model that there are curves of constraints between the size of the extra dimension and the reheating temperature of the Universe after inflation.
Universal extra dimension: Violation of Kaluza-Klein parity
Bhattacherjee, Biplob
2009-01-01
The minimal universal extra dimension (mUED) model respects the Kaluza-Klein (KK) parity (-1){sup n}, where n is the KK number. However, it is possible to have interactions located at only one of the two fixed points of the S{sub 1}/Z{sub 2} orbifold. Such asymmetric interactions violate the KK parity. This kills the cold dark matter component of UED but also removes the upper bound on the inverse compactification radius, and thus nonobservation of the KK excitations even at the Large Hadron Collider does not necessarily invalidate the model. Apart from the decay of the lightest n=1 KK excitation, this leads to collider signals which are markedly different from those in the mUED scenario. The phenomenological consequences of such KK-parity violating terms are explored.
Vacuum destabilization from Kaluza Klein modes in an inflating brane
NASA Astrophysics Data System (ADS)
Pujolàs, Oriol; Sasaki, Misao
2005-09-01
We discuss the effects from the Kaluza Klein modes in the brane world scenario when an interaction between bulk and brane fields is included. We focus on the bulk inflaton model, where a bulk field Ψ drives inflation in an almost AdS5 bulk bounded by an inflating brane. We couple Ψ to a brane scalar field phiv representing matter on the brane. The bulk field Ψ is assumed to have a light mode, whose mass depends on the expectation value of phiv. The KK modes form a continuum with masses m>3H/2, where H is the Hubble constant. To estimate their effects, we integrate them out and obtain the 1-loop effective potential Veff(phiv). With no tuning of the parameters of the model, the vacuum becomes (meta)stable—Veff(phiv) develops a true vacuum at \\varphi \
Generalized Kaluza-Klein monopole, quadratic algebras and ladder operators
NASA Astrophysics Data System (ADS)
Marquette, Ian
2011-06-01
We present a generalized Kaluza-Klein monopole system. We solve this quantum superintegrable system on a Euclidean Taub Nut manifold using the separation of variables of the corresponding Schrödinger equation in spherical and parabolic coordinates. We present the integrals of motion of this system, the quadratic algebra generated by these integrals, the realization in terms of a deformed oscillator algebra using the Daskaloyannis construction and the energy spectrum. The structure constants and the Casimir operator are functions not only of the Hamiltonian but also of other two integrals commuting with all generators of the quadratic algebra and forming an Abelian subalgebra. We present another algebraic derivation of the energy spectrum of this system using the factorization method and ladder operators.
Charged rotating Kaluza-Klein black holes in five dimensions
Nakagawa, Toshiharu; Ishihara, Hideki; Matsuno, Ken; Tomizawa, Shinya
2008-02-15
We construct a new charged rotating Kaluza-Klein black hole solution in the five-dimensional Einstein-Maxwell theory with a Chern-Simon term. The features of the solutions are also investigated. The spacetime is asymptotically locally flat, i.e., it asymptotes to a twisted S{sup 1} bundle over the four-dimensional Minkowski spacetime. The solution describe a non-BPS black hole rotating in the direction of the extra dimension. The solutions have the limits to the supersymmetric black hole solutions, a new extreme non-BPS black hole solution and a new rotating non-BPS black hole solution with a constant twisted S{sup 1} fiber.
Kaluza-Klein gluon + jets associated production at the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Iyer, A. M.; Mahmoudi, F.; Manglani, N.; Sridhar, K.
2016-08-01
The Kaluza-Klein excitations of gluons offer the exciting possibility of probing bulk Randall-Sundrum (RS) models. In these bulk models either a custodial symmetry or a deformation of the metric away from AdS is invoked in order to deal with electroweak precision tests. Addressing both these models, we suggest a new channel in which to study the production of KK-gluons (gKK): one where it is produced in association with one or more hard jets. The cross-section for the gKK + jets channel is significant because of several contributing sub-processes. In particular, the 1-jet and the 2-jet associated processes are important because at these orders in QCD the qg and the gg initial states respectively come into play. We have performed a hadron-level simulation of the signal and present strategies to effectively extract the signal from what could potentially be a huge background. We present results for the kinematic reach of the LHC Run-II for different gKK masses in bulk-RS models.
Cosmic super-strings and Kaluza-Klein modes
Dufaux, Jean-François
2012-09-01
Cosmic super-strings interact generically with a tower of relatively light and/or strongly coupled Kaluza-Klein (KK) modes associated with the geometry of the internal space. In this paper, we study the production of spin-2 KK particles by cusps on loops of cosmic F- and D-strings. We consider cosmic super-strings localized either at the bottom of a warped throat or in a flat internal space with large volume. The total energy emitted by cusps in KK modes is comparable in both cases, although the number of produced KK modes may differ significantly. We then show that KK emission is constrained by the photo-dissociation of light elements and by observations of the diffuse gamma ray background. We show that this rules out regions of the parameter space of cosmic super-strings that are complementary to the regions that can be probed by current and upcoming gravitational wave experiments. KK modes are also expected to play an important role in the friction-dominated epoch of cosmic super-string evolution.
Warped Kaluza-Klein reduction from string duality
NASA Astrophysics Data System (ADS)
Schulz, Michael; Tammaro, Elliott
2014-03-01
Virtually all phenomenologically relevant string theory compactifications are of warped type, in which the overall scale factor of 4D spacetime varies over the internal dimensions. However, the procedure for Kaluza-Klein (KK) reduction is more poorly understood for warped compactifications than for standard compactifications. The simplest standard compactifications are compactifications on tori, and the simplest warped compactifications differ from these by the addition of parallel D-branes and O-branes. It is astonishing that a direct derivation of the dimensionally reduced action does not exist even for these simple warped compactifications (which are T-dual to Type I), although the answer is known on supersymmetry grounds. We fill this void. We derive the procedure for the KK reduction of a simple Type IIA warped compactification with D6 branes and O6 planes, via its lift to the standard compactification of M-theory on K3. Our derivation utilizes an approximate K3 metric of Gibbons-Hawking form, which is exactly equivalent to the classical type IIA supergravity description of the warped compactification. This material is based upon work supported by the National Science Foundation under Grant Nos. PHY09-12219 and PHY11-25915.
The Equivalence Principle in Kaluza-Klein Gravity
NASA Astrophysics Data System (ADS)
Ponce de Leon, J.
In four-dimensional general relativity the space-time outside of an isolated spherical star is described by a unique line element, which is the Schwarzschild metric. As a consequence, the "gravitational" mass and the "inertial" mass of a star are equal to each other. However, theories that envision our world as being embedded in a larger universe, with more than four dimensions, permit a number of possible non-Schwarzschild 4D exteriors, which typically lead to different masses, violating the weak equivalence principle of ordinary general relativity. Therefore, the question arises as to whether the violation of this principle, i.e. the equality of gravitational and inertial mass, is a necessary consequence of the existence of extra dimensions. In this paper, in the context of Kaluza-Klein gravity in 5D, we show that the answer to this question is negative. We find a one-parameter family of asymptotically flat non-Schwarzschild static exteriors for which the inertial and gravitational masses are equal to each other, and equal to the Deser-Soldate mass. This family is consistent with the Newtonian weak field limit as well as with the general-relativistic Schwarzschild limit. Thus, we conclude that the existence of an extra dimension, and the corresponding non-Schwarzschild exterior, does not necessarily require different masses. However, to an observer in 4D, it does affect the motion of test particles in 4D, which is a consequence of the departure from the usual (4D) law of geodesic motion.
Measuring a Kaluza-Klein radius smaller than the Planck length
NASA Astrophysics Data System (ADS)
Reifler, Frank; Morris, Randall
2003-03-01
Hestenes has shown that a bispinor field on a Minkowski space-time is equivalent to an orthonormal tetrad of one-forms together with a complex scalar field. More recently, the Dirac and Einstein equations were unified in a tetrad formulation of a Kaluza-Klein model which gives precisely the usual Dirac-Einstein Lagrangian. In this model, Dirac’s bispinor equation is obtained in the limit for which the radius of higher compact dimensions of the Kaluza-Klein manifold becomes vanishingly small compared with the Planck length. For a small but finite radius, the Kaluza-Klein model predicts the velocity splitting of single fermion wave packets. That is, the model predicts that a single fermion wave packet will split into two wave packets with slightly different group velocities. The observation of such wave packet splits would determine the size of the Kaluza-Klein radius. If wave packet splits were not observed in experiments with currently achievable accuracies, the Kaluza-Klein radius would be bounded by at most 10-25 times the Planck length.
Hawking radiation as tunneling from squashed Kaluza-Klein black hole
Matsuno, Ken; Umetsu, Koichiro
2011-03-15
We discuss Hawking radiation from a five-dimensional squashed Kaluza-Klein black hole on the basis of the tunneling mechanism. A simple method, which was recently suggested by Umetsu, may be used to extend the original derivation by Parikh and Wilczek to various black holes. That is, we use the two-dimensional effective metric, which is obtained by the dimensional reduction near the horizon, as the background metric. Using the same method, we derive both the desired result of the Hawking temperature and the effect of the backreaction associated with the radiation in the squashed Kaluza-Klein black hole background.
Kaluza-Klein models: Can we construct a viable example?
Eingorn, Maxim; Zhuk, Alexander
2011-02-15
In Kaluza-Klein models with toroidal compactification of the extra dimensions, we investigate soliton solutions of Einstein equation. The nonrelativistic gravitational potential of these solitons exactly coincides with the Newtonian one. We obtain the formulas for perihelion shift, deflection of light, time delay of radar echoes and post-Newtonian (PPN) parameters. Using the constraint on PPN parameter {gamma}, we find that the solitonic parameter k should be very big: |k|{>=}2.3x10{sup 4}. We define a soliton solution which corresponds to a pointlike mass source. In this case the soliton parameter k=2, which is clearly contrary to this restriction. A similar problem with the observations takes place for static spherically symmetric perfect fluid with the dustlike equation of state in all dimensions. The common for both of these models is the same (dustlike) equations of state in our three dimensions and in the extra dimensions. All dimensions are treated at equal footing. This is the crucial point. To be in agreement with observations, it is necessary to break the symmetry (in terms of equations of state) between the external/our and internal spaces. It takes place for black strings which are particular examples of solitons with k{yields}{infinity}. For such k, black strings are in concordance with the observations. Moreover, we show that they are the only solitons which are at the same level of agreement with the observations as in general relativity. Black strings can be treated as perfect fluid with dustlike equation of state p{sub 0}=0 in the external/our space and very specific equation of state p{sub 1}=-(1/2){epsilon} in the internal space. The latter equation is due to negative tension in the extra dimension. We also demonstrate that dimension 3 for the external space is a special one. Only in this case we get the latter equation of state. We show that the black string equations of state satisfy the necessary condition of the internal space stabilization
Confining the scalar field of the Kaluza-Klein wormhole soliton
Clement, G. )
1989-08-01
The Maison five-to-three dimensional reduction, generalized to the case of five-dimensional general relativity with sources, is applied to the problem of confining the scalar field of the Kaluza-Klein wormhole soliton by a very weak perfect fluid source, without affecting the spatial geometry of this localized solution.
On Pauli's Invention of Non-Abelian Kaluza-Klein Theory in 1953
NASA Astrophysics Data System (ADS)
Straumann, N.
2002-12-01
There are documents which show that Wolfgang Pauli developed in 1953 the first consistent generalization of the five-dimensional theory of Kaluza, Klein, Fock and others to a higher dimensional internal space. Because he saw no way to give masses to the gauge bosons, he refrained from publishing his results formally.
Z boson decay to photon plus Kaluza Klein graviton: large extra dimensional bounds
NASA Astrophysics Data System (ADS)
Allanach, B. C.; Skittrall, J. P.
2008-05-01
We consider the phenomenology of the decay of a Z boson into a photon and a Kaluza Klein excitation of the graviton in the ADD model. Using LEP data, we obtain an upper bound on the branching ratio corresponding to this process of ˜10-11. We also investigate energy profiles of the process.
Deformed phase space Kaluza-Klein cosmology and late time acceleration
NASA Astrophysics Data System (ADS)
Sabido, M.; Yee-Romero, C.
2016-06-01
The effects of phase space deformations on Kaluza-Klein cosmology are studied. The deformation is introduced by modifying the symplectic structure of the minisuperspace variables. In the deformed model, we find an accelerating scale factor and therefore infer the existence of an effective cosmological constant from the phase space deformation parameter β.
Hoop conjecture and the horizon formation cross section in Kaluza-Klein spacetimes
Yoo, Chul-Moon; Ishihara, Hideki; Kimura, Masashi; Tanzawa, Sugure
2010-01-15
We analyze momentarily static initial data sets of the gravitational field produced by two-point sources in five-dimensional Kaluza-Klein spacetimes. These initial data sets are characterized by the mass, the separation of sources and the size of an extra dimension. Using these initial data sets, we discuss the condition for black hole formation, and propose a new conjecture which is a hybrid of the four-dimensional hoop conjecture and the five-dimensional hyperhoop conjecture. By using the new conjecture, we estimate the cross section of black hole formation due to collisions of particles in Kaluza-Klein spacetimes. We show that the mass dependence of the cross section gives us information about the size and the number of the compactified extra dimensions.
Uniqueness theorem for Kaluza-Klein black holes in five-dimensional minimal supergravity
Tomizawa, Shinya
2010-11-15
We show a uniqueness theorem for Kaluza-Klein black holes in the bosonic sector of five-dimensional minimal supergravity. More precisely, under the assumptions of the existence of two commuting axial isometries and a nondegenerate connected event horizon of the cross-section topology S{sup 3}, or lens space, we prove that a stationary charged rotating Kaluza-Klein black hole in five-dimensional minimal supergravity is uniquely characterized by its mass, two independent angular momenta, electric charge, magnetic flux, and nut charge, provided that there exists neither a nut nor a bolt (a bubble) in the domain of outer communication. We also show that under the assumptions of the same symmetry, same asymptotics, and the horizon cross section of S{sup 1}xS{sup 2}, a black ring within the same theory--if it exists--is uniquely determined by its dipole charge and rod intervals besides the charges and magnetic flux.
NASA Astrophysics Data System (ADS)
Chakraborty, Shuvendu; Debnath, Ujjal; Jamil, Mubasher; Myrzakulov, Ratbay
2012-07-01
In this work, we have calculated the deceleration parameter, statefinder parameters and EoS parameters for different dark energy models with variable G correction in homogeneous, isotropic and non-flat universe for Kaluza-Klein Cosmology. The statefinder parameters have been obtained in terms of some observable parameters like dimensionless density parameter, EoS parameter and Hubble parameter for holographic dark energy, new agegraphic dark energy and generalized Chaplygin gas models.
Z boson decay to photon plus Kaluza-Klein graviton in large extra dimensions
NASA Astrophysics Data System (ADS)
Allanach, Benjamin C.; Skittrall, Jordan P.; Sridhar, K.
2007-11-01
In the large extra dimensional ADD scenario, Z bosons undergo a one-loop decay into a photon and Kaluza-Klein towers of gravitons/gravi-scalars. We calculate such a decay width, extending previous arguments about the general form of the four-dimensional on-shell amplitude. The amplitudes calculated are relevant to processes in other extra dimensional models where the Standard Model fields are confined to a 4-brane.
The fate of the mixmaster behaviour in vacuum inhomogeneous Kaluza-Klein cosmological models
NASA Astrophysics Data System (ADS)
Demaret, Jacques; Hanquin, Jean-Luc; Henneaux, Marc; Spindel, Philipe; Taormina, Anne
1986-07-01
The generic behaviour of vacuum inhomogeneous Kaluza-Klein cosmologies is studied in the vicinity of the cosmological singularity. The collision law for the Kasner exponents is calculated in any number of spatial dimensions d. Its properties are investigated both theoretically and numerically. It is argued that the chaotic oscillatory behaviour disappears for d >= 10. This regime is replaced by the monotonic Kasner behaviour found previously.
Rotating Kaluza-Klein multi-black holes with Goedel parameter
Matsuno, Ken; Ishihara, Hideki; Nakagawa, Toshiharu; Tomizawa, Shinya
2008-09-15
We obtain new five-dimensional supersymmetric rotating multi-Kaluza-Klein black hole solutions with the Goedel parameter in the Einstein-Maxwell system with a Chern-Simons term. These solutions have no closed timelike curve outside the black hole horizons. At infinity, the space-time is effectively four-dimensional. Each horizon admits various lens space topologies L(n;1)=S{sup 3}/Z{sub n} in addition to a round S{sup 3}. The space-time can have outer ergoregions disjointed from the black hole horizons, as well as inner ergoregions attached to each horizon. We discuss the rich structures of ergoregions.
NASA Astrophysics Data System (ADS)
Khudaverdian, H. M.
2014-03-01
We consider differential operators acting on densities of arbitrary weights on manifold M identifying pencils of such operators with operators on algebra of densities of all weights. This algebra can be identified with the special subalgebra of functions on extended manifold . On one hand there is a canonical lift of projective structures on M to affine structures on extended manifold . On the other hand the restriction of algebra of all functions on extended manifold to this special subalgebra of functions implies the canonical scalar product. This leads in particular to classification of second order operators with use of Kaluza-Klein-like mechanisms.
Entropy-corrected holographic scalar field models of dark energy in Kaluza-Klein universe
NASA Astrophysics Data System (ADS)
Sharif, M.; Jawad, Abdul
2013-12-01
We investigate the evolution of interacting holographic dark energy with logarithmic corrections in the flat Kaluza-Klein universe. We evaluate the equation of state parameter and also reconstruct the scalar field models in this scenario. For this purpose, the well-known choice of scale factor in the power law form is taken. It is interesting to mention here that the corresponding equation of state parameter crosses the phantom divide line for a particular choice of interacting parameters. Finally, we conclude that the behavior of the dynamical scalar field as well as the scalar potential is consistent with the present observations.
Hawking Radiation of the Charged Particle via Tunneling from the Kaluza-Klein Black Hole
NASA Astrophysics Data System (ADS)
Pu, Jin; Han, Yan
2016-08-01
In this paper, by applying the Lagrangian analysis on the action, we first redefine the geodesic equation of the charged massive particle. Then, basing on the new definition of the geodesic equation, we revisit the Hawking radiation of the charged massive particle via tunneling from the event horizon of the Kaluza-Klein black hole. In our treatment, the geodesic equation of the charged massive particle is defined uniformly with that of the massless particle, which overcomes the shortcomings of its previous definition, and is more suitable for the tunneling mechanism. The highlight of our work is a new and important development for the Parikh-Wilczek's tunneling method.
Compact hyperbolic extra dimensions: branes, kaluza-klein modes, and cosmology
Kaloper; March-Russell; Starkman; Trodden
2000-07-31
We reconsider theories with low gravitational (or string) scale M(*) where Newton's constant is generated via new large-volume spatial dimensions, while standard model states are localized to a 3-brane. Utilizing compact hyperbolic manifolds we show that the spectrum of Kaluza-Klein modes is radically altered. This allows the early Universe to evolve normally up to substantial temperatures, and completely negates the astrophysical constraints on M(*). Furthermore, an exponential hierarchy between the usual Planck scale and the true fundamental scale of physics can emerge with only O(1) coefficients. The linear size of the internal space remains small. The proposal has striking testable signatures. PMID:10991441
A 5D noncompact and non Ricci flat Kaluza-Klein Cosmology
NASA Astrophysics Data System (ADS)
Darabi, F.
2009-03-01
A model universe is proposed in the framework of 5D noncompact Kaluza-Klein cosmology which is not Ricci flat. The 4D part as the Robertson-Walker metric is coupled to conventional perfect fluid, and its extra-dimensional part is coupled to a dark pressure through a scalar field. It is shown that neither early inflation nor current acceleration of the 4D universe would happen if the nonvacuum states of the scalar field would contribute to 4D cosmology.
a 5d Noncompact Kaluza-Klein Cosmology in the Presence of Null Perfect Fluid
NASA Astrophysics Data System (ADS)
Farajollahi, Hossein; Amiri, Hamed
For the description of the early inflation and acceleration expansion of the universe that are compatible with observational data, the 5D noncompact Kaluza-Klein cosmology is investigated. It is proposed that the 5D space is filled with a null perfect fluid, resulting in a perfect fluid in a 4D universe, plus one along the fifth dimension. By analyzing the reduced field equations for the flat FRW model, we show the early inflationary behavior and the current acceleration of the universe.
Graviton Kaluza-Klein modes in nonflat branes with stabilized modulus
NASA Astrophysics Data System (ADS)
Paul, Tanmoy; SenGupta, Soumitra
2016-04-01
We consider a generalized two brane Randall-Sundrum model where the branes are endowed with nonzero cosmological constant. In this scenario, we re-examine the modulus stabilization mechanism and the nature of Kaluza-Klein (KK) graviton modes. Our result reveals that while the KK mode graviton masses may change significantly with the brane cosmological constant, the Goldberger-Wise stabilization mechanism, which assumes a negligible backreaction on the background metric, continues to hold even when the branes have a large cosmological constant. The possibility of having a global minimum for the modulus is also discussed. Our results also include an analysis for the radion mass in this nonflat brane scenario.
Infinite-dimensional spin-2 symmetries in Kaluza-Klein theories
NASA Astrophysics Data System (ADS)
Hohm, Olaf
2006-02-01
We consider the couplings of an infinite number of spin-2 fields to gravity appearing in Kaluza-Klein theories. They are constructed as the broken phase of a massless theory possessing an infinite-dimensional spin-2 symmetry. Focusing on a circle compactification of four-dimensional gravity we show that the resulting gravity/spin-2 system in D=3 has in its unbroken phase an interpretation as a Chern-Simons theory of the Kac-Moody algebra iso(1,2)^ associated to the Poincaré group and also fits into the geometrical framework of algebra-valued differential geometry developed by Wald. Assigning all degrees of freedom to scalar fields, the matter couplings in the unbroken phase are determined, and it is shown that their global symmetry algebra contains the Virasoro algebra together with an enhancement of the Ehlers group SL(2,R) to its affine extension. The broken phase is then constructed by gauging a subgroup of the global symmetries. It is shown that metric, spin-2 fields and Kaluza-Klein vectors combine into a Chern-Simons theory for an extended algebra, in which the affine Poincaré subalgebra acquires a central extension.
Dynamics of localized Kaluza-Klein black holes in a collapsing universe
NASA Astrophysics Data System (ADS)
Kastor, David; Sorbo, Lorenzo; Traschen, Jennie
2012-03-01
The Clayton Antitrust Act of 1914 prohibits corporate mergers that would result in certain highly undesired end states. We study an exact solution of the Einstein equations describing localized, charged Kaluza-Klein black holes in a collapsing de Sitter universe and seek to demonstrate that a similar effect holds, preventing a potentially catastrophic black hole merger. As the collapse proceeds, it is natural to expect that the black hole undergoes a topological transition, wrapping around the shrinking compact dimension to merge with itself and form a black string. However, the putative uniform charged black string end state is singular and such a transition would violate (a reasonable notion of) cosmic censorship. We present analytic and numerical evidence that strongly suggests the absence of such a transition. Based on this evidence, we expect that the Kaluza-Klein black hole horizon stays localized, despite the increasingly constraining size of the compact dimension. On the other hand, the de Sitter horizon does change between spherical and cylindrical topologies in a simple way.
Kaluza-Klein graviton phenomenology for warped compactifications, and the 750 GeV diphoton excess
NASA Astrophysics Data System (ADS)
Giddings, Steven B.; Zhang, Hao
2016-06-01
A generic prediction of scenarios with extra dimensions accessible in TeV-scale collisions is the existence of Kaluza-Klein excitations of the graviton. For a broad class of strongly warped scenarios one expects to initially find an isolated resonance, whose phenomenology in the simplest cases is described by a simplified model with two parameters, its mass, and a constant Λ with units of mass parametrizing its coupling to the Standard Model stress tensor. These parameters are in turn determined by the geometrical configuration of the warped compactification. We explore the possibility that the 750 GeV excess recently seen in 13 TeV data at ATLAS and CMS could be such a warped Kaluza-Klein graviton, and find a best-fit value Λ ≈60 TeV . We find that while there is some tension between this interpretation and data from 8 TeV and from the dilepton channel at 13 TeV, it is not strongly excluded. However, in the simplest scenarios of this kind, such a signal should soon become apparent in both diphoton and dilepton channels.
Dimensional reduction of the 5D Kaluza-Klein geodesic deviation equation
NASA Astrophysics Data System (ADS)
Lacquaniti, V.; Montani, Giovanni; Vietri, F.
2010-02-01
In the work of Kerner et al. (Phys Rev D 63:027502, 2001) the problem of the geodesic deviation in a 5D Kaluza-Klein background is faced. The 4D space-time projection of the resulting equation coincides with the usual geodesic deviation equation in the presence of the Lorenz force, provided that the fifth component of the deviation vector satisfies an extra constraint which takes into account the q/ m conservation along the path. The analysis was performed setting as a constant the scalar field which appears in Kaluza-Klein model. Here we focus on the extension of such a work to the model where the presence of the scalar field is considered. Our result coincides with that of Kerner et al. when the minimal case {φ=1} is considered, while it shows some departures in the general case. The novelty due to the presence of {φ} is that the variation of the q/ m between the two geodesic lines is not conserved during the motion; an exact law for such a behaviour has been derived.
Supersymmetric and Kaluza-Klein Particles Multiple Scattering in the Earth
Albuquerque, Ivone; Klein, Spencer
2009-05-19
Neutrino telescopes with cubic kilometer volume have the potential to discover new particles. Among them are next to lightest supersymmetric (NLSPs) and next to lightest Kaluza-Klein (NLKPs) particles. Two NLSPs or NLKPs will transverse the detector simultaneously producing parallel charged tracks. The track separation inside the detector can be a few hundred meters. As these particles might propagate a few thousand kilometers before reaching the detector, multiple scattering could enhance the pair separation at the detector. We find that the multiple scattering will alter the separation distribution enough to increase the number of NLKP pairs separated by more than 100 meters (a reasonable experimental cut) by up to 46% depending on the NLKP mass. Vertical upcoming NLSPs will have their separation increased by 24% due to multiple scattering.
Kaluza-Klein-Carmeli Metric from Quaternion-Clifford Space, Lorentz' Force, and Some Observables
NASA Astrophysics Data System (ADS)
Christianto, Vic; Smarandache, Florentin
2009-05-01
It was known for quite long time that a quaternion space can be generalized to a Clifford space, and vice versa; but how to find its neat link with more convenient metric form in the General Relativity theory, has not been explored extensively. We begin with a representation of group with non-zero quaternions to derive closed FLRW metric, and from there obtains Carmeli metric, which can be extended further to become 5D and 6D metric (which we propose to call Kaluza-Klein-Carmeli metric). Thereafter we discuss some plausible implications of this metric, beyond describing a galaxy's spiraling motion and redshift data as these have been done by Carmeli and Hartnett. In subsequent section we explain Podkletnov's rotating disc experiment. We also note possible implications to quantum gravity. Further observations are of course recommended in order to refute or verify this proposition.
Kaluza-Klein masses in nonprime orbifolds: Z{sub 12-I} compactification and threshold correction
Kim, Jihn E.; Kyae, Bumseok
2008-05-15
Analyzing the one-loop partition function, we discuss possible Kaluza-Klein (KK) states in the orbifold compactification of the heterotic string theory, toward the application to the threshold correction. The KK massive states associated with (relatively) large extra dimensions can arise only in nonprime orbifolds. The Gliozzi-Scherk-Olive (GSO) projection condition by a shift vector V{sup I} is somewhat relaxed above the compactification scale 1/R. We also present the other condition on Wilson line W, P{center_dot}W=integer. With the knowledge of the partition function, we obtain the threshold corrections to gauge couplings, which include the Wilson line effects. We point out the differences in string and field theoretic orbifolds.
Casimir Effect Near the Future Singularity in Kaluza Klein Viscous Cosmology
NASA Astrophysics Data System (ADS)
Khadekar, G. S.
2016-02-01
In this paper we investigate the analytical properties of the scalar expansion θ in the cosmic fluid close to the future singularity, when the fluid possesses a constant bulk viscosity ζ in the framework of Kaluza-Klein theory of gravitation. In addition, we assume the viscous cosmology theories in the sense that the Casimir contributions to the energy density and pressure are both proportional to 1/ a 4, where a being scale factor. We also worked out the series expansion for the scalar expansion θ under the condition that the Casimir influence is small. However, near to the big rip singularity the Casimir term has to fade away and we obtain the same singularity behavior for the scalar expansion θ, energy density ρ, the scale factor a as in the Casimir-free viscous case.
Zeta-function regularization approach to finite temperature effects in Kaluza-Klein space-times
Bytsenko, A.A. ); Vanzo, L.; Zerbini, S. )
1992-09-21
In the framework of heat-kernel approach to zeta-function regularization, in this paper the one-loop effective potential at finite temperature for scalar and spinor fields on Kaluza-Klein space-time of the form M[sup p] [times] M[sub c][sup n], where M[sup p] is p-dimensional Minkowski space-time is evaluated. In particular, when the compact manifold is M[sub c][sup n] = H[sup n]/[Gamma], the Selberg tracer formula associated with discrete torsion-free group [Gamma] of the n-dimensional Lobachevsky space H[sup n] is used. An explicit representation for the thermodynamic potential valid for arbitrary temperature is found. As a result a complete high temperature expansion is presented and the roles of zero modes and topological contributions is discussed.
A Note on Gaugino Masses in Kaluza-Klein/Radion Mediated SUSY Breaking
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh
2001-05-01
We review the equivalence of two approaches to study theories with gauge fields in extra spatial dimensions, namely the ``4D'' approach (with KK states) and the ``5D'' approach (with matching to the 4D theory at the compactification scale). In particular, we reiterate that there are two different power-law scalings of ``effective'' gauge couplings. In a supersymmetric framework with SUSY breaking in the radius modulus, i.e. the field which fixes the size of the extra dimensions, these two approaches seem to give gaugino masses at loop-level (with a possible enhancement due to large number of Kaluza-Klein states) [1], and tree-level [2], respectively. We show explicitly how this discrepancy can be resolved.
NASA Astrophysics Data System (ADS)
Jain, Namrata I.; Bhoga, Shyamsunder S.
2015-08-01
Cosmological models with time varying gravitational constant G and cosmological constant Λ in the presence of viscous fluid in Kaluza-Klein metric were investigated. The solutions to Einstein Field Equation were obtained for different types of G, with bulk coefficient ξ = ξ 0 ρ d (where ρ is density of the Universe, d is some constant) and lambda Λ = α H 2 + β R -2 where H and R are Hubble parameter and scale factor respectively. Two possible models are suggested, one where G is proportional to H and, the other where G is inversely proportional to H. While the former leads to a non-singular model, the latter results in an inflationary model. Both Cosmological models show that the Universe is accelerating; but at the early stage of the Universe the behaviour of both models is quite different,which has been studied through the variation of decelerating parameter q with time.
Astrophysical Evidence for AN Extra Dimension: Phenomenology of a Kaluza-Klein Theory
NASA Astrophysics Data System (ADS)
Pugliese, D.; Montani, G.
2013-05-01
In this brief review, we discuss the viability of a multi-dimensional geometrical theory with one compactified dimension. We discuss the case of a Kaluza-Klein (KK) fifth-dimensional theory, addressing the problem by an overview of the astrophysical phenomenology associated with this five-dimensional (5D) theory. By comparing the predictions of our model with the features of the ordinary (four-dimensional (4D)) Relativistic Astrophysics, we highlight some small but finite discrepancies, expectably detectible from the observations. We consider a class of static, vacuum solutions of free electromagnetic KK equations with three-dimensional (3D) spherical symmetry. We explore the stability of the particle dynamics in these spacetimes, the construction of self-gravitating stellar models and the emission spectrum generated by a charged particle falling on this stellar object. The matter dynamics in these geometries has been treated by a multipole approach adapted to the geometric theory with a compactified dimension.
Kaluza-Klein Reduction of Pure Gravity and its Implications for K3 Surface Compactifications
NASA Astrophysics Data System (ADS)
Tammaro, Elliott
Kaluza demonstrated that a geometrical unification of Einsteinian gravity and Maxwell's equations could occur in five (4+1) dimensions if the dependence on the fourth spatial coordinate is ignorable. Klein noted that the last assumption would be natural for a compact extra dimension (i.e., a circle, rather than a line) of very small size. Since this initial proposal dimensional reduction has been incorporated into string theory, where the compactification manifold of choice is a Calabi-Yau manifold. In this dissertation, we investigate reduction via the Kaluza-Klein mechanism by considering the general compactification from D to d (D>d) dimensions of pure gravity, wherein the internal metric moduli are promoted to moduli fields. An essential point is that D-dimensional equations of motion must be satisfied, even in the effective degrees of freedom (the moduli fields). If the d-dimensional equations of motion imply the D-dimensional equations the effective theory is consistent. As a first pass the truncation to massless modes is made, but with a special gauge choice, transverse/traceless gauge, imposed on the internal metric. Equivalently, compensating fields, which are intended to assure consistency, are included in the metric ansatz. It is concluded that the consistency of the compactification demands that all massless and massive Kaluza-Klein modes be included in the lower dimensional theory. Motivated by the importance and ubiquitousness of K3 compactifications, a review of K3 geometry is presented. The E8 ⊕ E 8 ⊕ U31,1 and Sp(32)/Z2 ⊕ U 31,1 decompositions of the (co)homology lattice of the K3 are exhibited explicitly in terms of a natural orbifold basis, which augments the abstract derivations available in the literature. A novel feature is introduced -- an approximate, but explicit, metric on K3, which exactly generates a K3 metric in the limit of small fiber and large base.
Akhoury, Ratindranath; Gauthier, Christopher S.
2008-11-15
We investigate decoupling of heavy Kaluza-Klein (KK) modes in an Abelian Higgs model with space-time topologies R{sup 3,1}xS{sup 1} and R{sup 3,1}xS{sup 1}/Z{sub 2}. After integrating out only the heavy KK modes we find the one-loop, light-particle (irreducible) effective action (LPEA) for the zero-mode fields. We find that in the R{sup 3,1}xS{sup 1} topology the heavy modes do not decouple in this low-energy effective action, due to the zero mode of the 5th component of the 5D gauge field A{sub 5}. Because A{sub 5} is a scalar under 4D Lorentz transformations, there is no gauge symmetry protecting it from getting mass and A{sub 5}{sup 4} interaction terms after loop corrections. In addition, after symmetry breaking, we find that the effective action has new divergences in the A{sub 5} mass that did not appear in the symmetric phase. The new divergences are traced back to the gauge-goldstone mixing that occurs after symmetry breaking. We find that when considering low-energy physical processes, however, the divergences of the zero-mode loop diagrams will cancel the divergences in the effective action, rendering the radiatively corrected couplings finite. Although, this clears up the extra divergences in the A{sub 5} sector, the gauge coupling still has a different compactification scale dependence in the A{sub 5} then it does in the A{sub {mu}} sector, leading to an explicit violation of decoupling. If instead of the LPEA one considers the Wilsonian effective action by integrating out zero modes of momenta |p|>M (M is the mass of the lowest KK excitation) in addition to the heavy modes, then decoupling is manifest. However, as is well known the price is the difficulty in maintaining 4D Lorentz and gauge invariance. In order to get a more sensible effective theory in the LPEA formalism, we investigate the S{sup 1}/Z{sub 2} compactification. With this kind of compact topology, the A{sub 5} zero mode disappears. With no A{sub 5}, there are no new divergences and the
Gluon-initiated production of a Kaluza-Klein gluon in a bulk Randall-Sundrum model
NASA Astrophysics Data System (ADS)
Allanach, Benjamin C.; Mahmoudi, Farvah; Skittrall, Jordan P.; Sridhar, K.
2010-03-01
In the Bulk Randall-Sundrum model, the Kaluza-Klein excitations of the gauge bosons are the primary signatures. In particular, the search for the Kaluza-Klein (KK) excitation of the gluon at hadron colliders is of great importance in testing this model. At the leading order in QCD, the production of this KK-gluon proceeds only via qbar q -initial states. We study the production of KK-gluons from gluon initial states at next-to-leading order in QCD. We find that, even after including the sub-dominant KK-gluon loops at this order, the next-to-leading order (NLO) cross-section is tiny compared to the leading order cross-section and unlikely to impact the searches for this resonance at hardon colliders.
Yazadjiev, Stoytcho S.; Nedkova, Petia G.
2009-07-15
We present a general class of exact solutions in Einstein-Maxwell-dilaton gravity describing configurations of black holes and Kaluza-Klein bubbles magnetized along the compact dimension. Smarr-like relations for the mass and the tension are found. We also derive the mass and tension first laws for the configurations under consideration using the Noether current approach. The novelty is the appearance of new terms in the Smarr-like relations and the first laws containing the magnetic flux. The solutions we consider are also explicit examples showing that in Kaluza-Klein spacetimes the interval (rod) structure and the charges (which are zero by construction for the solutions here), are insufficient to classify the solutions and additional data is necessary, namely, the magnetic flux(es)
Kaluza-Klein cosmological model in f(R, T) gravity with Λ(T)
NASA Astrophysics Data System (ADS)
Sahoo, P. K.; Mishra, B.; Tripathy, S. K.
2016-04-01
A class of Kaluza-Klein cosmological models in $f(R,T)$ theory of gravity have been investigated. In the work, we have considered the functional $f(R,T)$ to be in the form $f(R,T)=f(R)+f(T)$ with $f(R)=\\lambda R$ and $f(T)=\\lambda T$. Such a choice of the functional $f(R,T)$ leads to an evolving effective cosmological constant $\\Lambda$ which depends on the stress energy tensor. The source of the matter field is taken to be a perfect cosmic fluid. The exact solutions of the field equations are obtained by considering a constant deceleration parameter which leads two different aspects of the volumetric expansion namely a power law and an exponential volumetric expansion. Keeping an eye on the accelerating nature of the universe in the present epoch, the dynamics and physical behaviour of the models have been discussed. From statefinder diagnostic pair we found that the model with exponential volumetric expansion behaves more like a $\\Lambda$CDM model.
Search for Kaluza-Klein gravitons in extra dimension models via forward detectors at the LHC
NASA Astrophysics Data System (ADS)
Cho, Gi-Chol; Kono, Takanori; Mawatari, Kentarou; Yamashita, Kimiko
2015-06-01
We investigate contributions of Kaluza-Klein (KK) graviton in extra dimension models to the process p p →p γ p →p γ j X , where a proton emits a quasireal photon and is detected by using the very forward detectors planned at the LHC. In addition to the γ q initial state as in the Compton scattering in the standard model, the γ g scattering contributes through the t -channel exchange of KK gravitons. Taking account of pileup contributions to the background and examining viable kinematical cuts, constraints on the parameter space of both the ADD (Arkani-Hamed, Dimopoulos and Dvali) model and the RS (Randall and Sundrum) model are studied. With 200 fb-1 data at a center-of-mass energy of 14 TeV, the expected lower bound on the cutoff scale for the ADD model is 6.3 TeV at 95% confidence level, while a lower limit of 2.0 (0.5) TeV is set on the mass of the first excited graviton with the coupling parameter k /M¯ Pl=0.1 (0.01 ) for the RS model.
The PAMELA and ATIC Signals From Kaluza-Klein Dark Matter
Hooper, Dan; Zurek, Kathryn M.; /Fermilab /Michigan U.
2009-02-01
In this letter, we study the possibility that Kaluza-Klein dark matter in a model with one universal extra dimension is responsible for the recent observations of the PAMELA and ATIC experiments. In this model, the dark matter particles annihilate largely to charged leptons, which enables them to produce a spectrum of cosmic ray electrons and positrons consistent with the PAMELA and ATIC measurements. To normalize to the observed signal, however, large boost factors ({approx}10{sup 3}) are required. Despite these large boost factors and significant annihilation to hadronic modes (35%), we find that the constraints from cosmic ray antiproton measurements can be satisfied. Relic abundance considerations in this model force us to consider a rather specific range of masses (approximately 600-900 GeV) which is very similar to the range required to generate the ATIC spectral feature. The results presented here can also be used as a benchmark for model-independent constraints on dark matter annihilation to hadronic modes.
Static wormholes on the brane inspired by Kaluza-Klein gravity
Leon, J. Ponce de
2009-11-01
We use static solutions of 5-dimensional Kaluza-Klein gravity to generate several classes of static, spherically symmetric spacetimes which are analytic solutions to the equation {sup (4)}R = 0, where {sup (4)}R is the four-dimensional Ricci scalar. In the Randall and Sundrum scenario they can be interpreted as vacuum solutions on the brane. The solutions contain the Schwarzschild black hole, and generate new families of traversable Lorenzian wormholes as well as nakedly singular spacetimes. They generalize a number of previously known solutions in the literature, e.g., the temporal and spatial Schwarzschild solutions of braneworld theory as well as the class of self-dual Lorenzian wormholes. A major departure of our solutions from Lorenzian wormholes a la Morris and Thorne is that, for certain values of the parameters of the solutions, they contain three spherical surfaces (instead of one) which are extremal and have finite area. Two of them have the same size, meet the ''flare-out'' requirements, and show the typical violation of the energy conditions that characterizes a wormhole throat. The other extremal sphere is ''flaring-in'' in the sense that its sectional area is a local maximum and the weak, null and dominant energy conditions are satisfied in its neighborhood. After bouncing back at this second surface a traveler crosses into another space which is the double of the one she/he started in. Another interesting feature is that the size of the throat can be less than the Schwarzschild radius 2M, which no longer defines the horizon, i.e., to a distant observer a particle or light falling down crosses the Schwarzschild radius in a finite time.
Hamiltonian Map to Conformal Modification of Spacetime Metric: Kaluza-Klein and TeVeS
NASA Astrophysics Data System (ADS)
Horwitz, Lawrence; Gershon, Avi; Schiffer, Marcelo
2011-01-01
It has been shown that the orbits of motion for a wide class of non-relativistic Hamiltonian systems can be described as geodesic flows on a manifold and an associated dual by means of a conformal map. This method can be applied to a four dimensional manifold of orbits in spacetime associated with a relativistic system. We show that a relativistic Hamiltonian which generates Einstein geodesics, with the addition of a world scalar field, can be put into correspondence in this way with another Hamiltonian with conformally modified metric. Such a construction could account for part of the requirements of Bekenstein for achieving the MOND theory of Milgrom in the post-Newtonian limit. The constraints on the MOND theory imposed by the galactic rotation curves, through this correspondence, would then imply constraints on the structure of the world scalar field. We then use the fact that a Hamiltonian with vector gauge fields results, through such a conformal map, in a Kaluza-Klein type theory, and indicate how the TeVeS structure of Bekenstein and Saunders can be put into this framework. We exhibit a class of infinitesimal gauge transformations on the gauge fields {mathcal{U}}_{μ}(x) which preserve the Bekenstein-Sanders condition {mathcal{U}}_{μ}{mathcal{U}}^{μ}=-1. The underlying quantum structure giving rise to these gauge fields is a Hilbert bundle, and the gauge transformations induce a non-commutative behavior to the fields, i.e. they become of Yang-Mills type. Working in the infinitesimal gauge neighborhood of the initial Abelian theory we show that in the Abelian limit the Yang-Mills field equations provide residual nonlinear terms which may avoid the caustic singularity found by Contaldi et al.
Photo-production of a 750 GeV di-photon resonance mediated by Kaluza-Klein leptons in the loop
NASA Astrophysics Data System (ADS)
Abel, Steven; Khoze, Valentin V.
2016-05-01
We consider the phenomenology of a 750 GeV resonance X which can be produced at the LHC by only photon fusion and subsequently decay into di-photons. We propose that the spin-zero state X is coupled to a heavy lepton that lives in the bulk of a higher-dimensional theory and interacts only with the photons of the Standard Model. We compute the di-photon rate in these models with two and more compact extra dimensions and demonstrate that they allow for a compelling explanation of the di-photon excess recently observed by the ATLAS and CMS collaborations. The central role in our approach is played by the summation over the Kaluza-Klein modes of the new leptons, thus providing a significant enhancement of the X → γγ loops for the production and decay subprocesses. It is expected that the jet activity accompanying these purely electromagnetic (at the partonic level) processes is numerically suppressed by factors such as {α}_{em}^2{{C}}_{qoverline{q}}/{{C}}_{γ γ}˜ 1{0}^{-3}.
IceCube Collaboration; Abbasi, R.; al., et
2009-10-23
A search for muon neutrinos from Kaluza-Klein dark matter annihilations in the Sun has been performed with the 22-string configuration of the IceCube neutrino detector using data collected in 104.3 days of live-time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured lightest Kaluza-Klein particle (LKP) WIMPs in the Sun and converted to limits on the LKP-proton cross-sections for LKP masses in the range 250 - 3000 GeV. These results are the most stringent limits to date on LKP annihilation in the Sun.
‘Effective two dimensionality’ cases bring a new hope to the Kaluza-Klein(like) theories
NASA Astrophysics Data System (ADS)
Lukman, D.; Mankoč Borštnik, N. S.; Nielsen, H. B.
2011-10-01
One step towards realistic Kaluza-Klein(like) theories and a loophole through Witten's ‘no-go theorem’ is presented for cases that we call effective two dimensionality cases: in d = 2, the equations of motion following from the action with the linear curvature leave spin connections and zweibeins undetermined. We present the case of a spinor in d = (1 + 5) compactified on a formally infinite disc with the zweibein that makes a disc curved on an almost S2 and with the spin connection field that allows on such a sphere only one massless normalizable spinor state of a particular charge, which couples the spinor chirally to the corresponding Kaluza-Klein gauge field. We assume no external gauge fields. The masslessness of a spinor is achieved by the choice of a spin connection field (which breaks the left-right symmetry), the zweibein and the normalizability condition for spinor states, which guarantee a discrete spectrum forming the complete basis. We discuss the meaning of the hole, which manifests the non-compactness of the space.
Uniqueness theorem for black holes with Kaluza-Klein asymptotic in 5D Einstein-Maxwell gravity
Yazadjiev, Stoytcho
2010-07-15
In the present paper, we prove a uniqueness theorem for stationary multi-black hole configurations with Kaluza-Klein asymptotic in a certain sector of 5D Einstein-Maxwell gravity. As a part of the technical assumptions in the theorem, we assume that the Killing vector associated with the compact dimension is orthogonal to the other Killing vectors and that it is also hypersurface orthogonal. About the Maxwell field, we assume that it is invariant under the Killing symmetries and has a nonzero component only along the Killing vector associated with the compact dimension. We show that such multi-black hole configurations are uniquely specified by the interval structure, angular momenta of the horizons, magnetic charges, and the magnetic flux. A straightforward generalization of the uniqueness theorem for 5D Einstein-Maxwell-dilaton gravity is also given.
Gauge invariance, quantization and integration of heavy modes in a gauge Kaluza-Klein theory
NASA Astrophysics Data System (ADS)
Novales-Sánchez, H.
This dissertation examines topics at the intersection of environmental and energy economics. The first two chapters explore how policies can induce more efficient use of the energy sources available for generating electricity. The electricity sector is a major source of a wide variety of harmful pollutants. To mitigate the environmental impacts of electricity production, a variety of policies are being implemented to increase the quantity of generation from clean, renewable energy sources. The first chapter identifies the short-run reductions in emissions caused by generation from a particular renewable technology; wind turbines. Using the estimates of the pollution offset by the renewable production, I explore the efficiency of the incentives created by the current set of renewable energy policies. The second chapter examines the impact adding bulk electricity storage capacity will have on the full social costs of generating electricity. The third chapter explores the impact of various gasoline tax structures on both retail price volatility and state revenue volatility.
Acosta, D; Affolder, T; Akimoto, H; Albrow, M G; Ambrose, D; Amidei, D; Anikeev, K; Antos, J; Apollinari, G; Arisawa, T; Artikov, A; Asakawa, T; Ashmanskas, W; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Bailey, S; de Barbaro, P; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bell, W H; Bellettini, G; Bellinger, J; Benjamin, D; Bensinger, J; Beretvas, A; Berryhill, J; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Blusk, S R; Bocci, A; Bodek, A; Bolla, G; Bolshov, A; Bonushkin, Y; Bortoletto, D; Boudreau, J; Brandl, A; Bromberg, C; Brozovic, M; Brubaker, E; Bruner, N; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Byrum, K L; Cabrera, S; Calafiura, P; Campbell, M; Carithers, W; Carlson, J; Carlsmith, D; Caskey, W; Castro, A; Cauz, D; Cerri, A; Cerrito, L; Chan, A W; Chang, P S; Chang, P T; Chapman, J; Chen, C; Chen, Y C; Cheng, M-T; Chertok, M; Chiarelli, G; Chirikov-Zorin, I; Chlachidze, G; Chlebana, F; Christofek, L; Chu, M L; Chung, J Y; Chung, W-H; Chung, Y S; Ciobanu, C I; Clark, A G; Coca, M; Connolly, A; Convery, M; Conway, J; Cordelli, M; Cranshaw, J; Culbertson, R; Dagenhart, D; D'Auria, S; De Cecco, S; DeJongh, F; Dell'Agnello, S; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; De Pedis, D; Derwent, P F; Devlin, T; Dionisi, C; Dittmann, J R; Dominguez, A; Donati, S; D'Onofrio, M; Dorigo, T; Eddy, N; Einsweiler, K; Engels, E; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fan, Q; Farrington, S; Feild, R G; Fernandez, J P; Ferretti, C; Field, R D; Fiori, I; Flaugher, B; Flores-Castillo, L R; Foster, G W; Franklin, M; Freeman, J; Friedman, J; Fukui, Y; Furic, I; Galeotti, S; Gallas, A; Gallinaro, M; Gao, T; Garcia-Sciveres, M; Garfinkel, A F; Gatti, P; Gay, C; Gerdes, D W; Gerstein, E; Giagu, S; Giannetti, P; Giolo, K; Giordani, M; Giromini, P; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Goncharov, M; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Green, C; Gresele, A; Grim, G; Grosso-Pilcher, C; Guenther, M; Guillian, G; Guimaraes da Costa, J; Haas, R M; Haber, C; Hahn, S R; Halkiadakis, E; Hall, C; Handa, T; Handler, R; Happacher, F; Hara, K; Hardman, A D; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Heinrich, J; Heiss, A; Hennecke, M; Herndon, M; Hill, C; Hocker, A; Hoffman, K D; Hollebeek, R; Holloway, L; Hou, S; Huffman, B T; Hughes, R; Huston, J; Huth, J; Ikeda, H; Issever, C; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iwai, J; Iwata, Y; Iyutin, B; James, E; Jones, M; Joshi, U; Kambara, H; Kamon, T; Kaneko, T; Kang, J; Karagoz Unel, M; Karr, K; Kartal, S; Kasha, H; Kato, Y; Keaffaber, T A; Kelley, K; Kelly, M; Kennedy, R D; Kephart, R; Khazins, D; Kikuchi, T; Kilminster, B; Kim, B J; Kim, D H; Kim, H S; Kim, M J; Kim, S B; Kim, S H; Kim, T H; Kim, Y K; Kirby, M; Kirk, M; Kirsch, L; Klimenko, S; Koehn, P; Kondo, K; Konigsberg, J; Korn, A; Korytov, A; Kotelnikov, K; Kovacs, E; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kurino, K; Kuwabara, T; Kuznetsova, N; Laasanen, A T; Lai, N; Lami, S; Lammel, S; Lancaster, J; Lannon, K; Lancaster, M; Lander, R; Lath, A; Latino, G; LeCompte, T; Le, Y; Lee, J; Lee, S W; Leonardo, N; Leone, S; Lewis, J D; Li, K; Lin, C S; Lindgren, M; Liss, T M; Liu, J B; Liu, T; Liu, Y C; Litvintsev, D O; Lobban, O; Lockyer, N S; Loginov, A; Loken, J; Loreti, M; Lucchesi, D; Lukens, P; Lusin, S; Lyons, L; Lys, J; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Mangano, M; Manca, G; Mariotti, M; Martignon, G; Martin, M; Martin, A; Martin, V; Martínez, M; Matthews, J A J; Mazzanti, P; McFarland, K S; McIntyre, P; Menguzzato, M; Menzione, A; Merkel, P; Mesropian, C; Meyer, A; Miao, T; Miller, R; Miller, J S; Minato, H; Miscetti, S; Mishina, M; Mitselmakher, G; Miyazaki, Y; Moggi, N; Moore, E; Moore, R; Morita, Y; Moulik, T; Mulhearn, M; Mukherjee, A; Muller, T; Munar, A; Murat, P; Murgia, S; Nachtman, J; Nagaslaev, V; Nahn, S; Nakada, H; Nakano, I; Napora, R; Niell, F; Nelson, C; Nelson, T; Neu, C; Neubauer, M S; Neuberger, D; Newman-Holmes, C; Ngan, C-Y P; Nigmanov, T; Niu, H; Nodulman, L; Nomerotski, A; Oh, S H; Oh, Y D; Ohmoto, T; Ohsugi, T; Oishi, R; Okusawa, T; Olsen, J; Orejudos, W; Pagliarone, C; Palmonari, F; Paoletti, R; Papadimitriou, V; Partos, D; Patrick, J; Pauletta, G; Paulini, M; Pauly, T; Paus, C; Pellett, D; Penzo, A; Pescara, L; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Pompos, A; Pondrom, L; Pope, G; Pratt, T; Prokoshin, F; Proudfoot, J; Ptohos, F; Pukhov, O; Punzi, G; Rademacker, J; Rakitine, A; Ratnikov, F; Ray, H; Reher, D; Reichold, A; Renton, P; Rescigno, M; Ribon, A; Riegler, W; Rimondi, F; Ristori, L; Riveline, M; Robertson, W J; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Rott, C; Roy, A; Ruiz, A; Ryan, D; Safonov, A; St Denis, R
2004-03-26
We report on a search for direct Kaluza-Klein graviton production in a data sample of 84 pb(-1) of ppmacr; collisions at sqrt[s]=1.8 TeV, recorded by the Collider Detector at Fermilab. We investigate the final state of large missing transverse energy and one or two high energy jets. We compare the data with the predictions from a (3+1+n)-dimensional Kaluza-Klein scenario in which gravity becomes strong at the TeV scale. At 95% confidence level (C.L.) for n=2, 4, and 6 we exclude an effective Planck scale below 1.0, 0.77, and 0.71 TeV, respectively. PMID:15089665
An Expanding 4d Universe in a 5d Kaluza-Klein Cosmology with Higher Dimensional Matter
NASA Astrophysics Data System (ADS)
Darabi, F.
In the framework of Kaluza-Klein theory, we investigate a (4+1)-dimensional universe consisting of a (4+1)-dimensional Robertson-Walker type metric coupled with a (4+1)-dimensional energy-momentum tensor. The matter part consists of an energy density together with a pressure subject to 4D part of the (4+1)-dimensional energy-momentum tensor. The dark part consists of just a dark pressure bar {p}, corresponding to the extra-dimension endowed by a scalar field, with no element of dark energy. It is shown that the reduced Einstein field equations are free of 4D pressure and are just affected by an effective pressure produced by the 4D energy density and dark pressure. It is then proposed that the expansion of the universe may be controlled by the equation of state in higher dimension rather than four dimensions. This may account for the current acceleration at the beginning or in the middle of matter dominant era.
Mass and Charge in Brane-World and Non-Compact Kaluza-Klein Theories in 5 Dim
NASA Astrophysics Data System (ADS)
Ponce de Leon, J.
2003-08-01
In classical Kaluza-Klein theory, with compactified extra dimensions and without scalar field, the rest mass as well as the electric charge of test particles are constants of motion. We show that in the case of a large extra dimension this is no longer so. We propose the Hamilton-Jacobi formalism, instead of the geodesic equation, for the study of test particles moving in a five-dimensional background metric. This formalism has a number of advantages: (i) it provides a clear and invariant definition of rest mass, without the ambiguities associated with the choice of the parameters used along the motion in 5D and 4D, (ii) the electromagnetic field can be easily incorporated in the discussion, and (iii) we avoid the difficulties associated with the ``splitting'' of the geodesic equation. For particles moving in a general 5D metric, we show how the effective rest mass, as measured by an observer in 4D, varies as a consequence of the large extra dimension. Also, the fifth component of the momentum changes along the motion. This component can be identified with the electric charge of test particles. With this interpretation, both the rest mass and the charge vary along the trajectory. The constant of motion is now a combination of these quantities. We study the cosmological variations of charge and rest mass in a five-dimensional bulk metric which is used to embed the standard k = 0 FRW universes. The time variations in the fine structure ``constant'' and the Thomson cross section are also discussed.
Savina, M. V.
2015-06-15
A survey of the results of the Compact Muon Solenoid (CMS) experiment that concern searches for massive Kaluza-Klein graviton excitations and microscopic black holes, quantum black holes, and string balls within models of low-energy multidimensional gravity is presented on behalf of the CMS Collaboration. The analysis in question is performed on the basis of a complete sample of data accumulated for proton-proton collisions at the c.m. energies of 7 and 8 TeV at the Large Hadron Collider (LHC) over the period spanning 2010 and 2012.
NASA Astrophysics Data System (ADS)
Pasqua, Antonio; Chattopadhyay, Surajit; Assaf, Khudhair A.; Salako, Ines G.
2016-06-01
In this paper, we study the properties of the Holographic Dark Energy (HDE) model in the context of Kaluza-Klein (KK) cosmology with infrared cut-off given by the recently proposed by Granda-Oliveros cut-off, which contains a term proportional to the time derivative of the Hubble parameter and one proportional to the Hubble parameter squared. Moreover, this cut-off is characterized by two free parameters which are the proportional constants of the two terms of the cut-off. We derive the expression of the Equation of State (EoS) parameter ωD and of the deceleration parameter q for both non-interacting and interacting Dark Sectors and in the limiting case of a flat Dark Dominated Universe. Moreover, we study the squared speed of the sound vs2 and the statefinder diagnostic \\{r,s\\} in order to understand the cosmological properties of the model considered. We also develop a correspondence between the model considered and three scalar field models: the tachyon, the k-essence and the quintessence ones.
Bulk Randall-Sundrum models, electroweak precision tests, and the 125 GeV Higgs
NASA Astrophysics Data System (ADS)
Iyer, Abhishek M.; Sridhar, K.; Vempati, Sudhir K.
2016-04-01
We present up-to-date electroweak fits of various Randall-Sundrum (RS) models. We consider the bulk RS, deformed RS, and the custodial RS models. For the bulk RS case we find the lightest Kaluza-Klein (KK) mode of the gauge boson to be ˜8 TeV , while for the custodial case it is ˜3 TeV . The deformed model is the least fine-tuned of all which can give a good fit for KK masses <2 TeV depending on the choice of the model parameters. We also comment on the fine-tuning in each case.
Search for heavy resonances, and resonant diboson production with the ATLAS detector
NASA Astrophysics Data System (ADS)
Tal Hod, Noam
2013-05-01
Heavy resonances decaying into a pair of fundamental particles such as jj, ℓ+ℓ-, γγ, and ℓV, are among the most common features to search for phenomena beyond the standard model (SM). Electroweak boson pair production, such as WW or ZZ with subsequent decays to ℓVℓ'V' and ℓℓjj respectively, is a powerful test of the spontaneously broken gauge symmetry of the SM and can be also used to search for phenomena beyond the SM. There is a wide spectrum of theoretical models predicting these kinds of resonant signatures. This note covers several searches for these new phenomena conducted within ATLAS in 2011 and 2012 for the LHC 7 and 8 TeV center of mass energies respectively. No significant deviations from the SM have been observed and therefore, limits are set on the characteristic parameters of several new physics models. These benchmark models include new heavy Z'/W' gauge bosons, chiral excitation of the SM weak gauge bosons, Z*/W* Randal-Sundrum and ADD gravitons, Composite models for quarks, e.g. q* with substructure scale Λ, Quantum black holes, TeV-1 Kaluza-Klein excitation of γ/Z and more.
Dynamical Electroweak Symmetry Breaking with a Heavy Fermion in Light of Recent LHC Results
Hung, Pham Q.
2013-01-01
The recent announcement of a discovery of a possible Higgs-like particle—its spin and parity are yet to be determined—at the LHC with a mass of 126 GeV necessitates a fresh look at the nature of the electroweak symmetry breaking, in particular if this newly-discovered particle will turn out to have the quantum numbers of a Standard Model Higgs boson. Even if it were a 0 + scalar with the properties expected for a SM Higgs boson, there is still the quintessential hierarchy problem that one has to deal with and which, by itself, suggests a new physics energy scale aroundmore » 1 TeV. This paper presents a minireview of one possible scenario: the formation of a fermion-antifermion condensate coming from a very heavy fourth generation, carrying the quantum number of the SM Higgs field, and thus breaking the electroweak symmetry.« less
Gao Jun; Li Chongsheng; Li Bohua; Zhu Huaxing; Yuan, C.-P.
2010-07-01
We present a complete next-to-leading order (NLO) QCD calculation to a heavy resonance production and decay into a top quark pair at the LHC, where the resonance could be either a Randall-Sundrum Kaluza-Klein graviton G or an extra gauge boson Z{sup '}. The complete NLO QCD corrections can enhance the total cross sections by about 80%-100% and 20%-40% for the G and the Z{sup '}, respectively, depending on the resonance mass. We also explore in detail the NLO corrections to the polar angle distributions of the top quark, and our results show that the shapes of the NLO distributions can be different from the leading order ones for the Kaluza-Klein graviton. Moreover, we study the NLO corrections to the spin correlations of the top quark pair production via the above process, and find that the corrections are small.
Compact stars in Kaluza -Klein World
NASA Astrophysics Data System (ADS)
Gábor Barnaföldi, Gergely; Lévai, Péter; Lukács, Béla
2010-03-01
Unification and geometrization of interactions has been extensively studied during the XX. century. In this short contribution we investigated the possible effect of an extra compactified dimension (alias hypercharge) on a flavor dependent gravitational potential, proposed by Fischbach et al.. We estimated the deviation from the 3 + 1 dimensional scheme and found that, although the deviation is moderate, for celestial compact object it may be higher by orders of magnitude than in terrestrial laboratory measurements.
Magnetic monopoles in Kaluza Klein theory
Sundaresan, M.K.; Tanaka, K.
1985-01-01
We start with an introduction to magnetic monopoles and then discuss the magnetic monopoles in 5-dimensions, the stability of solution with respect to small changes in the metric, and finally end with remarks.
Kaluza-Klein monopoles in five dimensions
Sundaresan, M.K.; Tanaka, K.
1986-01-15
We obtain the general perturbation of the metric belonging to a given q,l,m, and parity of the monopole harmonics. We examine the stability of the monopole solution against small perturbation of the metric.
New branch of Kaluza-Klein compactification
Kinoshita, Shunichiro
2007-12-15
We found a new branch of solutions in Freund-Rubin type flux compactifications. The geometry of these solutions is described as the external space which has a de Sitter symmetry and the internal space which is topologically spherical. However, it is not a simple form of dS{sub p}xS{sup q} but a warped product of de Sitter space and a deformed sphere. We explicitly constructed numerical solutions for a specific case with p=4 and q=4. We show that the new branch of solutions emanates from the marginally stable solution in the branch of dS{sub 4}xS{sup 4} solutions.
Searches for Exotics: Heavy resonances with the ATLAS detector
NASA Astrophysics Data System (ADS)
Viel, Simon; ATLAS Collaboration
2013-08-01
Many theories that go beyond the Standard Model predict the existence of new heavy resonances decaying into pairs of particles. This review summarizes a wide collection of recent results from the ATLAS experiment at the Large Hadron Collider on searches for resonances decaying into various combinations of charged leptons, neutrinos, jets from gluons or light quarks, top quarks, photons and heavy gauge bosons. Limits are set on a variety of theories beyond the Standard Model used as benchmarks, among them Kaluza-Klein, Randall-Sundrum and ADD models with extra dimensions, as well as Grand Unified Theories and Technicolour.
LHC signals for warped electroweak charged gauge bosons
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Gopalakrishna, Shrihari; Han, Tao; Huang, Gui-Yu; Soni, Amarjit
2009-10-01
We study signals at the LHC for the Kaluza-Klein (KK) excitations of electroweak charged gauge bosons in the framework of the standard model (SM) fields propagating in the bulk of a warped extra dimension. Such a scenario can solve both the Planck-weak and flavor hierarchy problems of the SM. There are two such charged states in this scenario with couplings to light quarks and leptons being suppressed relative to those in the SM, whereas the couplings to top/bottom quarks are enhanced, similar to the case of electroweak neutral gauge bosons previously studied. However, unlike the case of electroweak neutral gauge bosons, there is no irreducible QCD background (including pollution from possibly degenerate KK gluons) for decays to top+bottom final states so that this channel is useful for the discovery of the charged states. Moreover, decays of electroweak charged gauge bosons to longitudinal W, Z and Higgs are enhanced just as for the neutral bosons. However, unlike for the neutral gauge bosons, the purely leptonic (and hence clean) decay mode of the WZ is fully reconstructible so that the ratio of the signal to the SM (electroweak) background can potentially be enhanced by restricting to the resonance region more efficiently. We show that such final states can give sensitivity to 2(3) TeV masses with an integrated luminosity of 100(300)fb-1. We emphasize that improvements in discriminating a QCD jet from a highly boosted hadronically decaying W, and a highly boosted top jet from a bottom jet will enhance the reach for these KK particles, and that the signals we study for the warped extra dimensional model might actually be applicable also to a wider class of nonsupersymmetric models of electroweak symmetry breaking.
Electroweak constraints on warped geometry in five dimensions and beyond
NASA Astrophysics Data System (ADS)
Archer, Paul R.; Huber, Stephan J.
2010-10-01
Here we consider the tree level corrections to electroweak (EW) observables from standard model (SM) particles propagating in generic warped extra dimensions. The scale of these corrections is found to be dominated by three parameters, the Kaluza-Klein (KK) mass scale, the relative coupling of the KK gauge fields to the Higgs and the relative coupling of the KK gauge fields to fermion zero modes. It is found that 5D spaces that resolve the hierarchy problem through warping typically have large gauge-Higgs coupling. It is also found in D> 5 where the additional dimensions are warped the relative gauge-Higgs coupling scales as a function of the warp factor. If the warp factor of the additional spaces is contracting towards the IR brane, both the relative gauge-Higgs coupling and resulting EW corrections will be large. Conversely EW constraints could be reduced by finding a space where the additional dimension’s warp factor is increasing towards the IR brane. We demonstrate that the Klebanov Strassler solution belongs to the former of these possibilities.
Thermal corrections to Electroweak Decays
NASA Astrophysics Data System (ADS)
Masood, Samina
2016-03-01
We study the electroweak processes at finite temperatures. This includes the decay rates of electroweak gauge bosons and beta decays. Major thermal corrections come from QED type radiative corrections. Heavy mass of the electroweak gauge bosons helps to suppress the radiative corrections due to the electroweak gauge boson loops. Therefore, dominant thermal corrections are due to the photon loops. We also discuss the relevance of our results to astrophysics and cosmology.
Precision electroweak measurements
Demarteau, M.
1996-11-01
Recent electroweak precision measurements fro {ital e}{sup +}{ital e}{sup -} and {ital p{anti p}} colliders are presented. Some emphasis is placed on the recent developments in the heavy flavor sector. The measurements are compared to predictions from the Standard Model of electroweak interactions. All results are found to be consistent with the Standard Model. The indirect constraint on the top quark mass from all measurements is in excellent agreement with the direct {ital m{sub t}} measurements. Using the world`s electroweak data in conjunction with the current measurement of the top quark mass, the constraints on the Higgs` mass are discussed.
NASA Astrophysics Data System (ADS)
Paschos, E. A.
2005-01-01
The electroweak theory unifies two basic forces of nature: the weak force and electromagnetism. This book is a concise introduction to the structure of the electroweak theory and its applications. It describes the structure and properties of field theories with global and local symmetries, leading to the construction of the standard model. It describes the new particles and processes predicted by the theory, and compares them with experimental results. It also covers neutral currents, the properties of W and Z bosons, the properties of quarks and mesons containing heavy quarks, neutrino oscillations, CP-asymmetries in K, D, and B meson decays, and the search for Higgs particles. Each chapter contains problems, stemming from the long teaching experience of the author, to supplement the text. This will be of great interest to graduate students and researchers in elementary particle physics. Password protected solutions are available to lecturers at www.cambridge.org/9780521860987. Each chapter has an introduction highlighting its contents and giving a historical perspective. Chapters are cross-referenced, interrelating concepts and sections of the book. Contains 49 exercises
CERN LHC signals for warped electroweak neutral gauge bosons
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Davoudiasl, Hooman; Gopalakrishna, Shrihari; Han, Tao; Huang, Gui-Yu; Perez, Gilad; Si, Zong-Guo; Soni, Amarjit
2007-12-01
We study signals at the Large Hadron Collider (LHC) for Kaluza-Klein (KK) excitations of the electroweak gauge bosons in the framework with the standard model (SM) gauge and fermion fields propagating in a warped extra dimension. Such a framework addresses both the Planck-weak and flavor hierarchy problems of the SM. Unlike the often studied Z' cases, in this framework, there are three neutral gauge bosons due to the underlying SU(2)L×SU(2)R×U(1)X gauge group in the bulk. Furthermore, couplings of these KK states to light quarks and leptons are suppressed, whereas those to top and bottom quarks are enhanced compared to the SM gauge couplings. Therefore, the production of light quark and lepton states is suppressed relative to other beyond the SM constructions, and the fermionic decays of these states are dominated by the top and bottom quarks, which are, though, overwhelmed by KK gluons dominantly decaying into them. However, as we emphasize in this paper, decays of these states to longitudinal W, Z and Higgs are also enhanced similarly to the case of top and bottom quarks. We show that the W, Z and Higgs final states can give significant sensitivity at the LHC to ˜2(3)TeV KK scale with an integrated luminosity of ˜100fb-1 (˜1ab-1). Since current theoretical framework(s) favor KK masses ≳3TeV, a luminosity upgrade of LHC is likely to be crucial in observing these states.
Developed Adomian method for quadratic Kaluza-Klein relativity
NASA Astrophysics Data System (ADS)
Azreg-Aïnou, Mustapha
2010-01-01
We develop and modify the Adomian decomposition method (ADecM) to work for a new type of nonlinear matrix differential equations (MDE's) which arise in general relativity (GR) and possibly in other applications. The approach consists in modifying both the ADecM linear operator with highest order derivative and ADecM polynomials. We specialize in the case of a 4 × 4 nonlinear MDE along with a scalar one describing stationary cylindrically symmetric metrics in quadratic five-dimensional GR, derive some of their properties using ADecM and construct the most general unique power series solutions. However, because of the constraint imposed on the MDE by the scalar one, the series solutions terminate in closed forms exhausting all possible solutions.
Associated production of heavy quarkonia and electroweak bosons at present and future colliders
NASA Astrophysics Data System (ADS)
Kniehl, Bernd A.; Palisoc, Caesar P.; Zwirner, Lennart
2002-12-01
We investigate the associated production of heavy quarkonia, with angular-momentum quantum numbers 2S+1LJ=1S0,3S1,1P1,3PJ (J=0,1,2), and photons, Z bosons, and W bosons in photon-photon, photon-hadron, and hadron-hadron collisions within the factorization formalism of nonrelativistic quantum chromodynamics providing all contributing partonic cross sections in analytic form. In the case of photoproduction, we also include the resolved-photon contributions. We present numerical results for the processes involving J/ψ and χcJ mesons appropriate for the Fermilab Tevatron, CERN LHC, DESY TESLA, operated in the e+e- and γγ modes, and DESY THERA.
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Azatov, Aleksandr; Han, Tao; Li, Yingchuan; Si, Zong-Guo; Zhu, Lijun
2010-05-01
The framework of a warped extra dimension with the standard model (SM) fields propagating in it is a very well-motivated extension of the SM since it can address both the Planck-weak and flavor hierarchy problems of the SM. Within this framework, solution to the little hierarchy problem motivates extending the SM electroweak (EW) 5D gauge symmetry in such a way that its breakdown to the SM delivers the SM Higgs boson. We study signals at the large hadron collider (LHC) for the extra EW (called coset) gauge bosons, a fundamental ingredient of this framework. The coset gauge bosons, due to their unique EW gauge quantum numbers [doublets of SU(2)L], do not couple at leading order to two SM particles. We find that, using the associated production of the charged coset gauge bosons via their coupling to bottom quark and a (light) Kaluza-Klein excitation of the top quark, the LHC can have a 3σ reach of ˜2(2.6)TeV for the coset gauge boson masses with ˜100(1000)fb-1 luminosity. Since current theoretical framework(s) suggest an indirect lower limit on coset gauge boson masses of ≳3TeV, luminosity or energy upgrade of LHC is likely to be crucial in observing these states.
Pangilinan, Monica
2010-05-01
The top quark produced through the electroweak channel provides a direct measurement of the V_{tb} element in the CKM matrix which can be viewed as a transition rate of a top quark to a bottom quark. This production channel of top quark is also sensitive to different theories beyond the Standard Model such as heavy charged gauged bosons termed W'. This thesis measures the cross section of the electroweak produced top quark using a technique based on using the matrix elements of the processes under consideration. The technique is applied to 2.3 fb^{-1} of data from the D0 detector. From a comparison of the matrix element discriminants between data and the signal and background model using Bayesian statistics, we measure the cross section of the top quark produced through the electroweak mechanism σ(p$\\bar{p}$ → tb + X, tqb + X) = 4.30_{-1.20}^{+0.98} pb. The measured result corresponds to a 4.9σ Gaussian-equivalent significance. By combining this analysis with other analyses based on the Bayesian Neural Network (BNN) and Boosted Decision Tree (BDT) method, the measured cross section is 3.94 ± 0.88 pb with a significance of 5.0σ, resulting in the discovery of electroweak produced top quarks. Using this measured cross section and constraining |V_{tb}| < 1, the 95% confidence level (C.L.) lower limit is |V_{tb}| > 0.78. Additionally, a search is made for the production of W' using the same samples from the electroweak produced top quark. An analysis based on the BDT method is used to separate the signal from expected backgrounds. No significant excess is found and 95% C.L. upper limits on the production cross section are set for W' with masses within 600-950 GeV. For four general models of W{prime} boson production using decay channel W' → t$\\bar{p}$, the lower mass limits are the following: M(W'_{L} with SM couplings) > 840 GeV; M(W'_{R}) > 880 GeV or 890 GeV if the right-handed neutrino is
Renton, P.
1990-01-01
The central part of the book consists of a comprehensive discussion of many scattering and decay processes involving electromagnetic, weak and strong interactions. A list of topics includes electron-proton scattering, Compton scattering, muon decay, electron-positron annihilation, photon and hadron structure functions, neutrino-nucleus scattering, Cabibbo theory, tau-lepton decays, W and Z boson decays, mixing phenomena and many others. For most processes, the author presents the appropriate Feynman diagrams, first-order matrix elements and the resulting cross sections or decay rates. The last section of Electroweak Interactions discusses some of the open or unanswered questions in the standard model, including the undiscovered top quark, the Higgs mechanism of electroweak symmetry breaking and detailed tests involving radiative effects. The book concludes with a brief account of ideas that extend beyond the standard model, such as left-right symmetric models, grand unified theories, compositeness, supersymmetry and string theory.
Electroweak Theory: Proceedings of the Advanced School on Electroweak Theory
NASA Astrophysics Data System (ADS)
Espriu, D.; Pich, A.
1998-04-01
The Table of Contents for the full book PDF is as follows: * Foreword * Quark Mixing and CP Violation * Heavy Quark Effective Theory * Introduction to Low-Energy Supersymmetry * An Introduction to Dynamical Electroweak Symmetry Breaking * Hadron Colliders, the Top Quark, and the Higgs Sector * Physics Potential of LEP2 and NLC * List of Participants
Electroweak bosons in heavy-ion collisions with the CMS detector at =2.76 TeV
NASA Astrophysics Data System (ADS)
Florent, Alice; Cms Collaboration
2013-09-01
Electroweak gauge bosons W and Z, do not interact strongly, and thus constitute clean probes of the initial state of nucleus-nucleus collisions. The comparison of their production cross-sections in pp and in nuclear collisions provides an estimate of the nuclear parton distribution functions. Despite the low production cross section of weak bosons compared to other nuclear processes, the relatively clean signal of their leptonic decay channel allows their detection. This paper reports measurements of Z and W bosons, produced in PbPb and pp collisions both at nucleon-nucleon center of mass energy =2.76 TeV with the CMS detector. The Z boson yield and the nuclear modification factor (RAA) corresponding to the integrated luminosity of 150 μb-1 for PbPb collisions are presented. The search for W bosons has been performed in the muon plus neutrino channel, using the data sample with integrated luminosity of 7.2 μb-1 for PbPb collisions. Event centrality an muon pseudorapidity dependencies are studied for the complete W candidate sample as well as samples separated by charge (W+ and W-).
Electroweak baryogenesis from exotic electroweak symmetry breaking
NASA Astrophysics Data System (ADS)
Blinov, Nikita; Kozaczuk, Jonathan; Morrissey, David E.; Tamarit, Carlos
2015-08-01
We investigate scenarios in which electroweak baryogenesis can occur during an exotic stage of electroweak symmetry breaking in the early Universe. This transition is driven by the expectation value of a new electroweak scalar instead of the standard Higgs field. A later, second transition then takes the system to the usual electroweak minimum, dominated by the Higgs boson, while preserving the baryon asymmetry created in the first transition. We discuss the general requirements for such a two-stage electroweak transition to be suitable for electroweak baryogenesis and present a toy model that illustrates the necessary ingredients. We then apply these results to construct an explicit realization of this scenario within the inert two Higgs doublet model. Despite decoupling the Higgs from the symmetry-breaking transition required for electroweak baryogenesis, we find that this picture generically predicts new light states that are accessible experimentally.
NASA Astrophysics Data System (ADS)
Baranov, S. P.; Lipatov, A. V.; Malyshev, M. A.; Snigirev, A. M.; Zotov, N. P.
2016-05-01
The production of weak gauge bosons in association with heavy flavored mesons at the LHCb conditions is considered, and a detailed study of the different contributing processes is presented including single and double parton scattering (DPS) mechanisms. We find that the usual DPS factorization formula needs to be corrected for the limited partonic phase space, and that including the relevant corrections reduces discrepancies in the associated Z D production. We conclude finally that double parton scattering dominates the production of same-sign W±D± states, as well as the production of W- bosons associated with B mesons. The latter processes can thus be regarded as new useful DPS indicators.
Dual technicolor with hidden local symmetry
Belitsky, A. V.
2010-08-15
We consider a dual description of the technicolor-like gauge theory within the D4/D8-brane configuration with varying confinement and electroweak symmetry breaking scales. Constructing an effective truncated model valid below a certain cutoff, we identify the particle spectrum with Kaluza-Klein modes of the model in a manner consistent with the hidden local symmetry. Integrating out heavy states, we find that the low-energy action receives nontrivial corrections stemming from the mixing between standard model and heavy gauge bosons, which results in reduction of oblique parameters.
NASA Astrophysics Data System (ADS)
Anderson, Gregory Wayne
An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles, and completes at a temperature where the order parameter,
Anderson, G.W.
1991-09-16
An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, {l angle}{phi}{r angle}{sub T} is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of {l angle}{phi}{r angle}{sub T}. In very minimal extensions of the standard model it is quite easy to increase {l angle}{phi}{r angle}{sub T} so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value {l angle}{phi}{r angle} = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state {l angle}{phi}{r angle} = 246 GeV unstable. The requirement that the state {l angle}{phi}{r angle} = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field.
Anderson, G.W.
1991-09-16
An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, {l_angle}{phi}{r_angle}{sub T} is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of {l_angle}{phi}{r_angle}{sub T}. In very minimal extensions of the standard model it is quite easy to increase {l_angle}{phi}{r_angle}{sub T} so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value {l_angle}{phi}{r_angle} = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state {l_angle}{phi}{r_angle} = 246 GeV unstable. The requirement that the state {l_angle}{phi}{r_angle} = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field.
Electroweak Symmetry Breaking from Monopole Condensation
Csaki, Csaba; Shirman, Yuri; Terning, John
2011-01-28
We argue that the electroweak symmetry of the standard model (SM) could be broken via condensation of magnetic monopole bilinears. We present an extension of the SM where this could indeed happen, and where the heavy top mass is also a consequence of the magnetic interactions.
Electroweak-scale resonant leptogenesis
Pilaftsis, Apostolos; Underwood, Thomas E.J.
2005-12-01
We study minimal scenarios of resonant leptogenesis near the electroweak phase transition. These models offer a number of testable phenomenological signatures for low-energy experiments and future high-energy colliders. Our study extends previous analyses of the relevant network of Boltzmann equations, consistently taking into account effects from out of equilibrium sphalerons and single lepton flavors. We show that the effects from single lepton flavors become very important in variants of resonant leptogenesis, where the observed baryon asymmetry in the Universe is created by lepton-to-baryon conversion of an individual lepton number, for example, that of the {tau}-lepton. The predictions of such resonant {tau}-leptogenesis models for the final baryon asymmetry are almost independent of the initial lepton-number and heavy neutrino abundances. These models accommodate the current neutrino data and have a number of testable phenomenological implications. They contain electroweak-scale heavy Majorana neutrinos with appreciable couplings to electrons and muons, which can be probed at future e{sup +}e{sup -} and {mu}{sup +}{mu}{sup -} high-energy colliders. In particular, resonant {tau}-leptogenesis models predict sizable 0{nu}{beta}{beta} decay, as well as e- and {mu}-number-violating processes, such as {mu}{yields}e{gamma} and {mu}{yields}e conversion in nuclei, with rates that are within reach of the experiments proposed by the MEG and MECO collaborations.
Chris Quigg
2001-08-10
After a short essay on the current state of particle physics, the author reviews the antecedents of the modern picture of the weak and electromagnetic interactions and then undertakes a brief survey of the SU(2){sub L} {circle_times} U(1){sub Y} electroweak theory. The authors reviews the features of electroweak phenomenology at tree level and beyond, presents an introduction to the Higgs boson and the 1-TeV scale, and examines arguments for enlarging the electroweak theory. The author concludes with a brief look at low-scale gravity.
D. S. Waters
2004-06-02
Inclusive W and Z production cross-sections have been measured by CDF and certain electroweak parameters extracted with high precision from these measurements. New results on diboson production at the Tevatron are also presented.
A. Sidoti
2003-11-03
The CDF experiment at the Tevatron has used p{bar p} collisions at {radical}s = 1.96 TeV to perform electroweak physics measurements. A program of precision electroweak tests of SM started measuring W and Z bosons cross section using different leptonic final states, evaluating dielectron Forward-Backward Asymmetry A{sub FB} and di-boson cross section production.
Hyperbolic Kac-Moody algebras and chaos in Kaluza-Klein models
NASA Astrophysics Data System (ADS)
Damour, T.; Henneaux, M.; Julia, B.; Nicolai, H.
2001-06-01
Some time ago, it was found that the never-ending oscillatory chaotic behaviour discovered by Belinskii, Khalatnikov and Lifshitz (BKL) for the generic solution of the vacuum Einstein equations in the vicinity of a spacelike (``cosmological'') singularity disappears in spacetime dimensions /D≡d+1>10. Recently, a study of the generalization of the BKL chaotic behaviour to the superstring effective Lagrangians has revealed that this chaos is rooted in the structure of the fundamental Weyl chamber of some underlying hyperbolic Kac-Moody algebra. In this Letter we show that the same connection applies to pure gravity in any spacetime dimension />=4, where the relevant algebras are AEd. In this way the disappearance of chaos in pure gravity models in /D>=11 dimensions becomes linked to the fact that the Kac-Moody algebras AEd are no longer hyperbolic for /d>=10.
Equations of motion and fifth force in a general Kaluza-Klein space
NASA Astrophysics Data System (ADS)
Bejancu, Aurel
2013-11-01
In this paper we present a new point of view on space-time-matter (STM) theory. First, some weak points from earlier research papers on STM theory are presented. Then, we obtain in a covariant form the fully general equations of motion for STM theory. This enables us to classify the motions and to give a new definition of the fifth force in physics.
Microstates of the D1-D5-Kaluza-Klein monopole system
Bena, Iosif; Kraus, Per
2005-07-15
We find supergravity solutions corresponding to all U(1)xU(1) invariant chiral primaries of the D1-D5-KK system. These solutions are 1/8 BPS, carry angular momentum, and are asymptotically flat in the 3+1 dimensional sense. They can be thought of as representing the ground states of the four-dimensional black hole constructed from the D1-D5-KK-P system. Demanding the absence of unphysical singularities in our solutions determines all free parameters, and gives precise agreement with the quantum numbers expected from the CFT point of view. The physical mechanism behind the smoothness of the solutions is that the D1 branes and D5 branes expand into a KK-monopole supertube in the transverse space of the original KK monopole.
Kaluza-Klein theory as a dynamics in a dual geometry
NASA Astrophysics Data System (ADS)
Gershon, Avi; Horwitz, Lawrence
2009-10-01
It has been shown that the orbits of motion for a wide class of nonrelativistic Hamiltonian systems can be described as geodesic flow on a manifold and an associated dual. This method can be applied to a four dimensional manifold of orbits in space-time associated with a relativistic system. One can study the consequences on the geometry of the introduction of electromagnetic interaction. We find that resulting geometrical structure in the dual space is that of Kaluza and Klein.
Hamiltonian Formulation of the 5-D Kaluza-Klein Model and Test-Particle Motion
NASA Astrophysics Data System (ADS)
Lacquaniti, Valentino; Montani, Giovanni
2008-09-01
We examine the ADM reformulation of the 5-D KK model: the dimensional reduction is provided to commute with the ADM splitting and we show how the time component of the gauge vector is given by combination of the Lagrangian multipliers for the 5-D gravitational field. We consider 5D particles motion and after dimensional reduction the definition of charge is recovered within electrodynamic coupling. A time-varying fine structure constant is recognized because an extra scalar field is present in the 4-D theory.
Pre-big bang collapsing universe from modern Kaluza-Klein theory of gravity
NASA Astrophysics Data System (ADS)
Bellini, Mauricio
2011-11-01
We study the collapse of the universe described by a scalar field spherically symmetric collapse of a system described by a massless scalar field from a 5D Riemann-flat canonical metric, on which we make a dynamical foliation on the extra space-like dimension. The asymptotic universe (absent of singularities) results to be finite in size and energy density, with an vacuum dominated equation of state. The important result here obtained is that the asymptotic back-reaction effects are given by a negative constant: 1 2 [ 1 1 + ψ ˙ + 1 ψ ˙ ] < ( > + 1 2 a 2 < ( ∇ > | = - 8 Λ 3 π G .
Tunnelling of scalar and Dirac particles from squashed charged rotating Kaluza-Klein black holes
NASA Astrophysics Data System (ADS)
Stetsko, M. M.
2016-02-01
The thermal radiation of scalar particles and Dirac fermions from squashed charged rotating five-dimensional black holes is considered. To obtain the temperature of the black holes we use the tunnelling method. In the case of scalar particles we make use of the Hamilton-Jacobi equation. To consider tunnelling of fermions the Dirac equation was investigated. The examination shows that the radial parts of the action for scalar particles and fermions in the quasi-classical limit in the vicinity of horizon are almost the same and as a consequence it gives rise to identical expressions for the temperature in the two cases.
Electroweak asymmetries from SLD
Bellodi, G.
2002-06-01
We present a summary of the results on electroweak asymmetries performed by the SLD experiment at the Stanford Linear Collider (SLC). Most of these results are final and are based, unless otherwise stated, on the full 1993-1998 data set of approximately 550,000 hadronic decays of Z{sup 0} bosons, produced with an average electron beam polarization of 73%.
Nodulman, L.; CDF Collaboration
1996-06-01
The CDF collaboration is engaged in a broad program of electroweak measurements. The production of WW, WZ, ZZ, W{sub {gamma}}, Z{sub {gamma}} and the high mass Drell Yan charge asymmetry will be discussed, along with a status report on extracting a new W mass from the most recent 90 pb{sup {minus}1} data sample.
Inert scalars and vacuum metastability around the electroweak scale
NASA Astrophysics Data System (ADS)
Świeżewska, Bogumiła
2015-07-01
We analyse effective potential around the electroweak (EW) scale in the Standard Model (SM) extended with a heavy scalar doublet. We show that the additional scalars can have a strong impact on vacuum stability. Although the additional heavy scalars may improve the behaviour of running Higgs self-coupling at large field values, we prove that they can destabilise the vacuum due to EW-scale effects. A new EW symmetry conserving minimum of the effective potential can appear rendering the electroweak symmetry breaking (EWSB) minimum meta- or unstable. However, for the case of the inert doublet model (IDM) with a 125 GeV Higgs boson we demonstrate that the parameter space region where the vacuum is meta- or unstable cannot be reconciled with the constraints from perturbative unitarity, electroweak precision tests (EWPT) and dark matter relic abundance measurements.
Mass of the electroweak monopole
NASA Astrophysics Data System (ADS)
Kimm, Kyoungtae; Yoon, J. H.; Oh, S. H.; Cho, Y. M.
2016-03-01
We present three independent methods to estimate the mass of the electroweak monopole. Our result strongly implies the existence of a genuine electroweak monopole of mass around 4-10 TeV, which could be detected by MoEDAL at present Large Hadron Collider (LHC). We emphasize that the discovery of the electroweak monopole should be the final test of the Standard Model.
Strong and Electroweak Matter 2004
NASA Astrophysics Data System (ADS)
Eskola, Kari J.; Kainulainen, Kimmo; Kajantie, Keijo; Rummukainen, Kari
RHIC experimental summary: the message from pp, d+Au and Au+Au collisions / M. Calderón de la Barca Sánchez -- Hydrodynamic aspects of relativistic heavy ion collisions at RHIC / P. F. Kolb -- Photon emission in a hot QCD plasma / P. Aurenche -- In search of the saturation scale: intrinsic features of the CGC / H. Weigert -- From leading hadron suppression to jet quenching at RHIC and LHC / U. A. Wiedemann -- Lattice simulations with chemical potential / C. Schmidt -- Mesonic correlators in hot QCD / M. Laine -- Thermalization and plasma instabilities / P. Arnold -- Transport coefficients in hot QCD / G. D. Moore -- Classical fields and heavy ion collisions / T. Lappi -- Progress in nonequilibrium quantum field theory II / J. Berges and J. Serreau -- A general effective theory for dense quark matter / P. T. Reuter, Q. Wang and D. H. Rischke -- Thermal leptogenesis / M. Plümacher -- Cold electroweak Baryogenesis / J. Smit -- Proton-nucleus collisions in the color glass condensate framework / J.-P. Blaizot, F. Gelis and R. Venugopalan -- From classical to quantum saturation in the nuclear wavefunction / D. N. Triantafyllopoulos -- Charge correlations in heavy ion collisions / A. Rajantie -- Whitening of the quark-gluon plasma / S. Mrówczyński -- Progress in anisotropic plasma physics / P. Romatschke and M. Strickland -- Deconfinement and chiral symmetry: competing orders / K. Tuominen -- Relation between the chiral and deconfinement phase transitions / Y. Hatta -- Renormalized Polyakov loops, matrix models and the Gross-Witten point / A. Dumitru and J. T. Lenaghan -- The nature of the soft excitation at the critical end point of QCD / A. Jakovác ... [et al.] -- Thermodynamics of the 1+1-dimensional nonlinear sigma model through next-to-leading order in 1/N / H. J. Warringa -- Light quark meson correlations at high temperature / E. Laemann ... [et al.] -- Charmonia at finite momenta in a deconfined plasma / S. Datta ... [et al.] -- QCD thermodynamics: lattice
Introduction to Electroweak Symmetry Breaking
Dawson,S.
2008-10-02
The Standard Model (SM) is the backbone of elementary particle physics-not only does it provide a consistent framework for studying the interactions of quark and leptons, but it also gives predictions which have been extensively tested experimentally. In these notes, I review the electroweak sector of the Standard Model, discuss the calculation of electroweak radiative corrections to observables, and summarize the status of SM Higgs boson searches. Despite the impressive experimental successes, however, the electroweak theory is not completely satisfactory and the mechanism of electroweak symmetry breaking is untested. I will discuss the logic behind the oft-repeated statement: 'There must be new physics at the TeV scale'. These lectures reflect my strongly held belief that upcoming results from the LHC will fundamentally change our understanding of electroweak symmetry breaking. In these lectures, I review the status of the electroweak sector of the Standard Model, with an emphasis on the importance of radiative corrections and searches for the Standard Model Higgs boson. A discussion of the special role of the TeV energy scale in electroweak physics is included.
Electroweak results from the tevatron
Wood, D.
1997-01-01
Electroweak results are presented from the CDF and DO experiments based on data collected in recent runs of the Fermilab Tevatron Collider. The measurements include the mass and width of the W boson, the production cross sections of the W and Z bosons, and the W charge asymmetry. Additional results come from studies of events with pairs of electroweak gauge bosons and include limits on anomalous couplings.
B-Factory Signals for a Warped Extra Dimension
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Perez, Gilad; Soni, Amarjit
2004-11-01
We study predictions for B physics in a class of warped extra dimension models recently introduced, where few (˜3) TeV Kaluza-Klein masses are consistent with electroweak data due to custodial symmetry. As in the standard model (SM), flavor violations arise due to the heavy top quark leading to striking signals: (i)New physics contributions to ΔF=2 transitions are comparable to the SM, so the success of the SM unitarity triangle fit is a “coincidence.” Thus, clean extractions of unitarity angles are likely to be affected, in addition to O(1) deviation from the SM prediction in Bs mixing. (ii)O(1) deviation from various SM predictions for B→Xsl+l-. (iii)Large mixing-induced CP asymmetry in radiative B decays. Also, the neutron electric dipole moment is roughly 20 times larger than the current bound so that this framework has a “CP problem.”
Electroweak Baryogenesis and Higgs Properties
Cohen, Timothy; Morrissey, David E.; Pierce, Aaron; /Michigan U., MCTP
2012-03-13
We explore the connection between the strength of the electroweak phase transition and the properties of the Higgs boson. Our interest is in regions of parameter space that can realize electroweak baryogenesis. We do so in a simplified framework in which a single Higgs field couples to new scalar fields charged under SU(3){sub c} by way of the Higgs portal. Such new scalars can make the electroweak phase transition more strongly first-order, while contributing to the effective Higgs boson couplings to gluons and photons through loop effects. For Higgs boson masses in the range 115 {approx}< m{sub h} {approx}< 130 GeV, whenever the phase transition becomes strong enough for successful electroweak baryogenesis, we find that Higgs boson properties are modified by an amount observable by the LHC. We also discuss the baryogenesis window of the minimal supersymmetric standard model (MSSM), which appears to be under tension. Furthermore, we argue that the discovery of a Higgs boson with standard model-like couplings to gluons and photons will rule out electroweak baryogenesis in the MSSM.
Electroweak Gauge Models and Lepton Conservation Laws
NASA Astrophysics Data System (ADS)
Atsuji, N.; Ito, I.; Tsai, S. Y.; Kimura, T.; Furuya, K.
1982-04-01
We discuss, in the framework of the spontaneously broken electroweak gauge theory, the connection between the two non-standard lepton conservation laws, i.e., the Konopinski-Mahmoud (KM) scheme and the multiplicative scheme. For this purpose, we take SU(3) as a gauge group and start with KM triplets ({μ}^+,{ν},e^-)_L and (e^+,{ν}^c,{μ}^-)_L. We then point out that the idea of mass generation through the Higgs mechanism naturally gives rise to {μ}-e mixing which, supplemented by the requirement of a {μ}-e symmetry, results in a model of leptons which obeys the multiplicative scheme. This model also provides a mechanism for giving an asymmetrical masses to the electron and muon which otherwise behave symmetrically. An extension of the model to include the heavy lepton and quark sectors is suggested.
Electroweak symmetry breaking via QCD.
Kubo, Jisuke; Lim, Kher Sham; Lindner, Manfred
2014-08-29
We propose a new mechanism to generate the electroweak scale within the framework of QCD, which is extended to include conformally invariant scalar degrees of freedom belonging to a larger irreducible representation of SU(3)c. The electroweak symmetry breaking is triggered dynamically via the Higgs portal by the condensation of the colored scalar field around 1 TeV. The mass of the colored boson is restricted to be 350 GeV≲mS≲3 TeV, with the upper bound obtained from perturbative renormalization group evolution. This implies that the colored boson can be produced at the LHC. If the colored boson is electrically charged, the branching fraction of the Higgs boson decaying into two photons can slightly increase, and moreover, it can be produced at future linear colliders. Our idea of nonperturbative electroweak scale generation can serve as a new starting point for more realistic model building in solving the hierarchy problem. PMID:25215976
Unparticles and electroweak symmetry breaking
Lee, Jong-Phil
2008-11-23
We investigate a scalar potential inspired by the unparticle sector for the electroweak symmetry breaking. The scalar potential contains the interaction between the standard model fields and unparticle sector. It is described by the non-integral power of fields that originates from the nontrivial scaling dimension of the unparticle operator. It is found that the electroweak symmetry is broken at tree level when the interaction is turned on. The scale invariance of unparticle sector is also broken simultaneously, resulting in a physical Higgs and a new lighter scalar particle.
Fluctuation driven electroweak phase transition
NASA Technical Reports Server (NTRS)
Gleiser, Marcelo; Kolb, Edward W.
1991-01-01
We examine the dynamics of the electroweak phase transition in the early Universe. For Higgs masses in the range 46 less than or = M sub H less than or = 150 GeV and top quark masses less than 200 GeV, regions of symmetric and asymmetric vacuum coexist to below the critical temperature, with thermal equilibrium between the two phases maintained by fluctuations of both phases. We propose that the transition to the asymmetric vacuum is completed by percolation of these subcritical fluctuations. Our results are relevant to scenarios of baryogenesis that invoke a weakly first-order phase transition at the electroweak scale.
Two-step electroweak baryogenesis
NASA Astrophysics Data System (ADS)
Inoue, Satoru; Ovanesyan, Grigory; Ramsey-Musolf, Michael J.
2016-01-01
We analyze electroweak baryogenesis during a two-step electroweak symmetry-breaking transition, wherein the baryon asymmetry is generated during the first step and preserved during the second. Focusing on the dynamics of C P violation required for asymmetry generation, we discuss general considerations for successful two-step baryogenesis. Using a concrete model realization, we illustrate in detail the viability of this scenario and the implications for present and future electric dipole moment (EDM) searches. We find that C P violation associated with a partially excluded sector may yield the observed baryon asymmetry while evading present and future EDM constraints.
Moriond Electroweak 2006: Theory summary
Lykken, Joseph D.; /Fermilab
2006-07-01
A concise look at the big picture of particle physics, including the status of the Standard Model, neutrinos, supersymmetry, extra dimensions and cosmology. Based upon the theoretical summary presented at the XLIst Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, 11-18 March 2006.
Latest Electroweak Results from CDF
Lancaster, Mark
2010-05-01
The latest results in electroweak physics from proton anti-proton collisions at the Fermilab Tevatron recorded by the CDF detector are presented. The results provide constraints on parton distribution functions, the mass of the Higgs boson and beyond the Standard Model physics.
Spin and precision electroweak physics
Marciano, W.J.
1993-12-31
A perspective on fundamental parameters and precision tests of the Standard Model is given. Weak neutral current reactions are discussed with emphasis on those processes involving (polarized) electrons. The role of electroweak radiative corrections in determining the top quark mass and probing for ``new physics`` is described.
Strong coupling electroweak symmetry breaking
Barklow, T.L.; Burdman, G.; Chivukula, R.S.
1997-04-01
The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.
Research on Electroweak and Flavor Symmetry Breaking
Lane, Kenneth Douglas
2013-05-01
Abstract of Project Summary, as written in August 2012: The objective of this research is the primary one of the Large Hadron Collider (LHC) at CERN in Geneva: the discovery and study of the origin of electroweak symmetry breaking (EWSB). This is the mission of the LHC's two large general-purpose detectors, ATLAS and CMS. Lane's approach to this goal assumes that a new strong interaction at the electroweak energy scale of 100's of GeV, called ``technicolor'' (TC), is responsible for triggering EWSB. He is one of the developers of technicolor, particularly of its flavor-physics component, called extended technicolor (ETC). The TC/ETC theory of this physics provides not only the dynamics of EWSB, but also an understanding of the types (flavors) of quarks and leptons and of their masses and mixing. The main thrust of this research involves close collaboration with members of ATLAS and CMS to search for the signatures of TC/ETC that are most accessible experimentally. These are new, rather heavy, spin-one particles --- technivector bosons ($\\tro$, $\\tom$, $\\ta$) --- readily produced at the LHC and decaying into electroweak bosons, $\\gamma, W, Z$, and spin-zero bosons called technipions, $\\tpi$. If these particles exist, they hold the key to understanding flavor physics. A very important recent development at the LHC is the discovery of a new 125-GeV boson decaying into $\\gamma\\gamma$, $ZZ$ and $WW$. This particle is widely suspected to be the long-sought Higgs boson, a basic component of the so-called standard model of EWSB. But, from a purely theoretical standpoint, this resolution to the origin of EWSB is very unsatisfactory. Moreover, there are interesting and possibly significant discrepancies of the data with this interpretation. Lane and collaborators are proposing that this boson is, in fact, a special kind of technipion. He is also working with ATLAS experimentalists to test this hypothesis. The LHC data to be collected and analyzed by ATLAS and CMS over
Unanswered Questions in the Electroweak Theory
Quigg, Chris
2009-11-01
This article is devoted to the status of the electroweak theory on the eve of experimentation at CERN's Large Hadron Collider. A compact summary of the logic and structure of the electroweak theory precedes an examination of what experimental tests have established so far. The outstanding unconfirmed prediction of the electroweak theory is the existence of the Higgs boson, a weakly interacting spin-zero particle that is the agent of electroweak symmetry breaking, the giver of mass to the weak gauge bosons, the quarks, and the leptons. General arguments imply that the Higgs boson or other new physics is required on the TeV energy scale. Indirect constraints from global analyses of electroweak measurements suggest that the mass of the standard-model Higgs boson is less than 200 GeV. Once its mass is assumed, the properties of the Higgs boson follow from the electroweak theory, and these inform the search for the Higgs boson. Alternative mechanisms for electroweak symmetry breaking are reviewed, and the importance of electroweak symmetry breaking is illuminated by considering a world without a specific mechanism to hide the electroweak symmetry. For all its triumphs, the electroweak theory has many shortcomings.
Electroweak measurements at the Tevatron
Garcia, Jose E.; /INFN, Pisa
2006-06-01
Recent Electroweak measurements by the CDF and D0 collaborations in p{bar p} collisions {radical}s = 1.96 TeV are presented here. Measurements of W, Z and diboson production cross sections as well as W asymmetry using integrated luminosities up to 800 pb{sup -1} are reviewed. Limits on triple gauge anomalous couplings on diboson production are discussed elsewhere.
Demarteau, M.; D0 Collaboration
1993-05-01
Preliminary results from D0 are presented on properties of the W{sup {plus_minus}} and Z{sup 0} electroweak gauge bosons, using final states containing electrons and muons. In particular, preliminary measurements of the W{sup {plus_minus}} and Z{sup 0} production cross sections with decay into final states containing electrons are shown and a status report on the determination of M{sub w}/M{sub z} is given.
Low-energy signals of strongly-coupled electroweak symmetry-breaking scenarios
NASA Astrophysics Data System (ADS)
Pich, Antonio; Rosell, Ignasi; Santos, Joaquín; Sanz-Cillero, Juan José
2016-03-01
The nonobservation of new particles at the LHC suggests the existence of a mass gap above the electroweak scale. This situation is adequately described through a general electroweak effective theory with the established fields and Standard Model symmetries. Its couplings contain all information about the unknown short-distance dynamics which is accessible at low energies. We consider a generic strongly coupled scenario of electroweak symmetry breaking, with heavy states above the gap, and analyze the imprints that its lightest bosonic excitations leave on the effective Lagrangian couplings. Different quantum numbers of the heavy states imply different patterns of low-energy couplings, with characteristic correlations which could be identified in future data samples. The predictions can be sharpened with mild assumptions about the ultraviolet behaviour of the underlying fundamental theory.
Rogers, J.
1992-12-31
This report contains viewgraphs on the following topics: Introduction to Electroweak Symmetry Breaking: Intermediate-Mass Higgs Bosons; Extended Higgs Sectors and Novel Searches; and Heavy Higgs Bosons and Strong WW Scattering.
ELECTROWEAK PHYSICS AND PRECISION STUDIES.
MARCIANO, W.
2005-10-24
The utility of precision electroweak measurements for predicting the Standard Model Higgs mass via quantum loop effects is discussed. Current values of m{sub W}, sin{sup 2} {theta}{sub W}(m{sub Z}){sub {ovr MS}} and m{sub t} imply a relatively light Higgs which is below the direct experimental bound but possibly consistent with Supersymmetry expectations. The existence of Supersymmetry is further suggested by a 2{sigma} discrepancy between experiment and theory for the muon anomalous magnetic moment. Constraints from precision studies on other types of ''New Physics'' are also briefly described.
Inflation at the electroweak scale
NASA Technical Reports Server (NTRS)
Knox, Lloyd; Turner, Michael S.
1993-01-01
We present a model for slow-rollover inflation where the vacuum energy that drives inflation is of the order of G(F) exp -2; unlike most models, the conversion of vacuum energy to radiation ('reheating') is moderately efficient. The scalar field responsible for inflation is a standard-model singlet, develops a vacuum expectation value of 4 x 10 exp 6 GeV, has a mass of about 1 GeV, and can play a role in electroweak phenomena. We also discuss models where the energy scale of inflation is somewhat larger, but still well below the unification scale.
History of electroweak symmetry breaking
NASA Astrophysics Data System (ADS)
Kibble, T. W. B.
2015-07-01
In this talk, I recall the history of the development of the unified electroweak theory, incorporating the symmetry-breaking Higgs mechanism, as I saw it from my standpoint as a member of Abdus Salam's group at Imperial College. I start by describing the state of physics in the years after the Second World War, explain how the goal of a unified gauge theory of weak and electromagnetic interactions emerged, the obstacles encountered, in particular the Goldstone theorem, and how they were overcome, followed by a brief account of more recent history, culminating in the historic discovery of the Higgs boson in 2012.
Precision electroweak physics at future collider experiments
Baur, U.; Demarteau, M.
1996-11-01
We present an overview of the present status and prospects for progress in electroweak measurements at future collider experiments leading to precision tests of the Standard Model of Electroweak Interactions. Special attention is paid to the measurement of the {ital W} mass, the effective weak mixing angle, and the determination of the top quark mass. Their constraints on the Higgs boson mass are discussed.
Electroweak relaxation from finite temperature
NASA Astrophysics Data System (ADS)
Hardy, Edward
2015-11-01
We study theories which naturally select a vacuum with parametrically small Electroweak Scale due to finite temperature effects in the early universe. In particular, there is a scalar with an approximate shift symmetry broken by a technically natural small coupling to the Higgs, and a temperature dependent potential. As the temperature of the universe drops, the scalar follows the minimum of its potential altering the Higgs mass squared parameter. The scalar also has a periodic potential with amplitude proportional to the Higgs expectation value, which traps it in a vacuum with a small Electroweak Scale. The required temperature dependence of the potential can occur through strong coupling effects in a hidden sector that are suppressed at high temperatures. Alternatively, it can be generated perturbatively from a one-loop thermal potential. In both cases, for the scalar to be displaced, a hidden sector must be reheated to temperatures significantly higher than the visible sector. However this does not violate observational constraints provided the hidden sector energy density is transferred to the visible sector without disrupting big bang nucleosynthesis. We also study how the mechanism can be implemented when the visible sector is completed to the Minimal Supersymmetric Standard Model at a high scale. Models with a UV cutoff of 10 TeV and no fields taking values over a range greater than 1012 GeV are possible, although the scalar must have a range of order 108 times the effective decay constant in the periodic part of its potential.
Flavor from the electroweak scale
Bauer, Martin; Carena, Marcela; Gemmler, Katrin
2015-11-04
We discuss the possibility that flavor hierarchies arise from the electroweak scale in a two Higgs doublet model, in which the two Higgs doublets jointly act as the flavon. Quark masses and mixing angles are explained by effective Yukawa couplings, generated by higher dimensional operators involving quarks and Higgs doublets. Modified Higgs couplings yield important effects on the production cross sections and decay rates of the light Standard Model like Higgs. In addition, flavor changing neutral currents arise at tree-level and lead to strong constraints from meson-antimeson mixing. Remarkably, flavor constraints turn out to prefer a region in parameter space that is in excellent agreement with the one preferred by recent Higgs precision measurements at the Large Hadron Collider (LHC). Direct searches for extra scalars at the LHC lead to further constraints. Precise predictions for the production and decay modes of the additional Higgs bosons are derived, and we present benchmark scenarios for searches at the LHC Run II. As a result, flavor breaking at the electroweak scale as well as strong coupling effects demand a UV completion at the scale of a few TeV, possibly within the reach of the LHC.
Flavor from the electroweak scale
Bauer, Martin; Carena, Marcela; Gemmler, Katrin
2015-11-04
We discuss the possibility that flavor hierarchies arise from the electroweak scale in a two Higgs doublet model, in which the two Higgs doublets jointly act as the flavon. Quark masses and mixing angles are explained by effective Yukawa couplings, generated by higher dimensional operators involving quarks and Higgs doublets. Modified Higgs couplings yield important effects on the production cross sections and decay rates of the light Standard Model like Higgs. In addition, flavor changing neutral currents arise at tree-level and lead to strong constraints from meson-antimeson mixing. Remarkably, flavor constraints turn out to prefer a region in parameter spacemore » that is in excellent agreement with the one preferred by recent Higgs precision measurements at the Large Hadron Collider (LHC). Direct searches for extra scalars at the LHC lead to further constraints. Precise predictions for the production and decay modes of the additional Higgs bosons are derived, and we present benchmark scenarios for searches at the LHC Run II. As a result, flavor breaking at the electroweak scale as well as strong coupling effects demand a UV completion at the scale of a few TeV, possibly within the reach of the LHC.« less
Electroweak Physics at the Tevatron
Sekaric, J.; /Kansas U.
2011-06-08
The most recent Electroweak results from the Tevatron are presented. The importance of precise Standard Model measurements in the Higgs sector, quantum chromodynamics and searches for new physics is emphasized. Analyzed data correspond to 1-7 fb{sup -1} of integrated luminosity recorded by the CDF and D0 detectors at the Tevatron Collider at {radical}s = 1.96 TeV during the period between 2002-2010. The main goal of the Electroweak (EW) physics is to probe the mechanism of the EW symmetry breaking. An important aspect of these studies is related to precise measurements of the Standard Model (SM) parameters and tests of the SU(2) x U(1) gauge symmetry. Deviations from the SM may be indicative of new physics. Thus, the interplay between the tests of the 'standard' physics and searches for a 'nonstandard' physics is an important aspect of the EW measurements. The observables commonly used in these measurements are cross sections, gauge boson couplings, differential distributions, asymmetries, etc. Besides, many EW processes represent a non-negligible background in a Higgs boson and top quark production, and production of supersymmetric particles. Therefore, the complete and detailed understanding of EW processes is a mandatory precondition for early discoveries of very small new physics signals. Furthermore, several EW analyses represent a proving ground for analysis techniques and statistical treatments used in the Tevatron Higgs searches.
Precision experiments in electroweak interactions
Swartz, M.L.
1990-03-01
The electroweak theory of Glashow, Weinberg, and Salam (GWS) has become one of the twin pillars upon which our understanding of all particle physics phenomena rests. It is a brilliant achievement that qualitatively and quantitatively describes all of the vast quantity of experimental data that have been accumulated over some forty years. Note that the word quantitatively must be qualified. The low energy limiting cases of the GWS theory, Quantum Electrodynamics and the V-A Theory of Weak Interactions, have withstood rigorous testing. The high energy synthesis of these ideas, the GWS theory, has not yet been subjected to comparably precise scrutiny. The recent operation of a new generation of proton-antiproton (p{bar p}) and electron-positron (e{sup +}e{sup {minus}}) colliders has made it possible to produce and study large samples of the electroweak gauge bosons W{sup {plus minus}} and Z{sup 0}. We expect that these facilities will enable very precise tests of the GWS theory to be performed in the near future. In keeping with the theme of this Institute, Physics at the 100 GeV Mass Scale, these lectures will explore the current status and the near-future prospects of these experiments.
A gravitating electroweak bag model
NASA Astrophysics Data System (ADS)
Burinskii, Alexander
2016-02-01
Gravitational and electromagnetic (EM) field of electron is described by the Kerr-Newman (KN) black hole solution with a topological defect. Regularization of this defect by the Higgs field leads to the smooth source which shares much in common with the known MIT- and SLAC- bag models, but has the advantage, of matching gravitational and electromagnetic fields of the electron. This model is flexible, and the rotating KN bag takes the shape of a thin disk with a circular string positioned on the sharp border of the disk. We consider the lowest excitations of the KN solution and the corresponding deformations of the bag surface, setting a preliminary correspondence with electroweak sector of the SM.
Electroweak Baryogenesis and Colored Scalars
Cohen, Timothy; Pierce, Aaron; /Michigan U., MCTP
2012-02-15
We consider the 2-loop finite temperature effective potential for a Standard Model-like Higgs boson, allowing Higgs boson couplings to additional scalars. If the scalars transform under color, they contribute 2-loop diagrams to the effective potential that include gluons. These 2-loop effects are perhaps stronger than previously appreciated. For a Higgs boson mass of 115 GeV, they can increase the strength of the phase transition by as much as a factor of 3.5. It is this effect that is responsible for the survival of the tenuous electroweak baryogenesis window of the Minimal Supersymmetric Standard Model. We further illuminate the importance of these 2-loop diagrams by contrasting models with colored scalars to models with singlet scalars. We conclude that baryogenesis favors models with light colored scalars. This motivates searches for pair-produced di-jet resonances or jet(s) + = E{sub T}.
Batell, Brian; Sword, Daniel; Gherghetta, Tony
2008-12-01
We explore the possibility of modeling electroweak physics in a warped extra dimension with a soft wall. The infrared boundary is replaced with a smoothly varying dilaton field that provides a dynamical spacetime cutoff. We analyze gravity, gauge fields, and fermions in the soft-wall background and obtain a discrete spectrum of Kaluza-Klein states which can exhibit linear Regge-like behavior. Bulk Yukawa interactions give rise to nonconstant fermion mass terms, leading to fermion localization in the soft-wall background and a possible explanation of the standard model flavor structure. Furthermore we construct electroweak models with custodial symmetry, where the gauge symmetry is broken with a bulk Higgs condensate. The electroweak constraints are not as stringent as in hard-wall models, allowing Kaluza-Klein masses of order the TeV scale.
Precision Electroweak Physics at the LHC
NASA Astrophysics Data System (ADS)
Freitas, Ayres
2015-04-01
The current status of precision tests of the electroweak Standard Model is summarized, and a short review of the theory input from higher-order loop corrections is given. The most constraining quantities are the masses and couplings of the W and Z bosons, and it is shown how these put strong bounds on various examples of new physics. Furthermore, the impact of current and future LHC data on electroweak precision tests is described in some detail. It is also briefly discussed how measurements of anomalous gauge boson couplings provide complementary information about the electroweak theory.
CP-Violating Sources for Electroweak Baryogenesis
Lee, Christopher
2008-11-23
In this talk I derive the CP-violating sources for the squark number density in the MSSM generated by interactions with the spacetime-varying Higgs vev during a first-order electroweak phase transition.
New strong interactions above the electroweak scale
White, A.R.
1994-08-09
Theoretical arguments for a new higher-color quark sector, based on Pomeron physics in QCD, are briefly described. The electroweak symmetry-breaking, Strong CP conservation, and electroweak scale CP violation, that is naturally produced by this sector is also outlined. A further consequence is that above the electroweak scale there will be a radical change in the strong interaction. Electroweak states, in particular multiple W`s and Z`s, and new, semi-stable, very massive, baryons, will be commonly produced. The possible correlation of expected phenomena with a wide range of observed Cosmic Ray effects at and above the primary spectrum knee is described. Related phenomena that might be seen in the highest energy hard scattering events at the Fermilab Tevatron, some of which could be confused with top production, are also briefly discussed.
Illuminating new electroweak states at hadron colliders
NASA Astrophysics Data System (ADS)
Ismail, Ahmed; Izaguirre, Eder; Shuve, Brian
2016-07-01
In this paper, we propose a novel powerful strategy to perform searches for new electroweak states. Uncolored electroweak states appear in generic extensions of the Standard Model (SM) and yet are challenging to discover at hadron colliders. This problem is particularly acute when the lightest state in the electroweak multiplet is neutral and all multiplet components are approximately degenerate. In this scenario, production of the charged fields of the multiplet is followed by decay into nearly invisible states; if this decay occurs promptly, the only way to infer the presence of the reaction is through its missing energy signature. Our proposal relies on emission of photon radiation from the new charged states as a means of discriminating the signal from SM backgrounds. We demonstrate its broad applicability by studying two examples: a pure Higgsino doublet and an electroweak quintuplet field.
Electroweak Gauge-Higgs Unification Scenario
Hosotani, Yutaka
2008-11-23
In the gauge-Higgs unification scenario 4D Higgs fields are unified with gauge fields in higher dimensions. The electroweak model is constructed in the Randall-Sundrum warped space. The electroweak symmetry is dynamically broken by the Hosotani mechanism due to the top quark contribution. The Higgs mass is predicted to be around 50 GeV with the vanishing ZZH and WWH couplings so that the LEP2 bound for the Higgs mass is evaded.
Electroweak Baryogenesis with Anomalous Higgs Couplings
NASA Astrophysics Data System (ADS)
Kobakhidze, Archil; Wu, Lei; Yue, Jason
2016-07-01
In non-linear realisation of the electroweak gauge symmetry, the LHC Higgs boson can be assumed to be a singlet under SU(2)L ⊗ U(1)Y. In such scenario, the Standard Model particle content can be kept but new sets of couplings are allowed. We identify a range of anomalous Higgs cubic and the 𝒞𝒫-violating Higgs-top quark couplings that leads to first order phase transition and successful baryogenesis at the electroweak scale.
An electroweak enigma: Hyperon radiative decays
Vorobyov, A.,; Jastrzembski, E.; Lach, J.; Marriner, J.; Golovtsov, V.; Krivshich, A.; Schegelsky, V.; Smirnov, N.; Terentiev, N.K.; Uvarov, L.; McCliment, E.; Newsom, C.; Norbeck, E.; Cooper, P.S.; /Yale U.
1985-04-03
The main thrust of this experiment will be to measure the asymmetry parameter for the electroweak decay {Sigma}{sup +} {yields} p{gamma} and verify its branching ratio. As a secondary goal they will measure, or set new upper limits for, the branching ratio of the electroweak decay {Xi}{sup -} {yields} {Sigma}{sup -}{gamma}. Since the {Xi}{sup -} are expected to be polarized, information on the asymmetry parameter may also be available.
Theory and phenomenology of electroweak phase transitions
NASA Astrophysics Data System (ADS)
Patel, Hiren H.
An open problem in cosmology is to explain the origin of baryon abundance implied by observational cosmology. Among the many proposed explanations, electroweak baryogenesis is particularly attractive in that its ingredients is discoverable by modern experiments. The analysis of the electroweak phase transition in the early universe comprises an integral component within the larger study of electroweak baryogenesis. In this work, I make a detailed investigation of the conventional analysis of the electroweak phase transition commonly found in literature, and explicitly demonstrate that results are not independent of the choice of gauge. In its place, I provide a manifestly gauge-independent method for the analysis, review sources of theoretical and numerical uncertainties, and explore avenues for further development. Next, I explore the dynamics of the electroweak phase transition in two minimal extensions of the Standard Model of particle physics. Within these simple models, I describe a novel pattern of electroweak symmetry breaking favorable for baryogenesis that can serve as a paradigm for phase transition analysis in more complicated models.
Inert dark matter and strong electroweak phase transition
NASA Astrophysics Data System (ADS)
Gil, Grzegorz; Chankowski, Piotr; Krawczyk, Maria
2012-10-01
The main virtue of the Inert Doublet Model (IDM) is that one of its spinless neutral bosons can play the role of Dark Matter. Assuming that the additional sources of CP violation are present in the form of higher dimensional operator(s) we reexamine the possibility that the model parameters for which the right number density of relic particles is predicted are compatible with the first-order phase transition that could lead to electroweak baryogenesis. We find, taking into account recent indications from the LHC and the constraints from the electroweak precision data, that for a light DM (40-60 GeV) particle H0 and heavy, almost degenerate additional scalars H± and A0 this is indeed possible but the two parameters most important for the strength of the phase transition: the common mass of H± and A0 and the trilinear coupling of the Higgs particle h0 to DM are then strongly constrained. H± and A0 must weight less than ∼ 440 GeV if the inert minimum is to be the lowest one and the value of the h0H0H0 coupling is limited by the XENON 100 data. We stress the important role of the zero-temperature part of the effective potential for the strength of the phase transition.
Electroweak constraints from atomic parity violation and neutrino scattering
Hobbs, Timothy; Rosner, Jonathan L.
2010-07-01
Precision electroweak physics can provide fertile ground for uncovering new physics beyond the standard model (SM). One area in which new physics can appear is in so-called 'oblique corrections', i.e., next-to-leading-order expansions of bosonic propagators corresponding to vacuum polarization. One may parametrize their effects in terms of quantities S and T that discriminate between conservation and nonconservation of isospin. This provides a means of comparing the relative contributions of precision electroweak experiments to constraints on new physics. Given the prevalence of strongly T-sensitive experiments, there is an acute need for further constraints on S, such as provided by atomic parity-violating experiments on heavy atoms. We evaluate constraints on S arising from recently improved calculations in the Cs atom. We show that the top quark mass m{sub t} provides stringent constraints on S within the context of the SM. We also consider the potential contributions of next-generation neutrino scattering experiments to improved (S,T) constraints.
Workshop on electroweak symmetry breaking: proceedings
Hinchliffe, I.
1984-10-01
A theoretical workshop on electroweak symmetry breaking at the Superconducting Supercollider was held at Lawrence Berkeley Laboratory, June 4-22, 1984. The purpose of the workshop was to focus theoretical attention on the ways in which experimentation at the SSC could reveal manifestations of the phenomenon responsible for electroweak symmetry breaking. This issue represents, at present, the most compelling scientific argument for the need to explore the energy region to be made accessible by the SSC, and a major aim of the workshop was to involve a broad cross section of particle theorists in the ongoing process of sharpening the requirements for both accelerator and detector design that will ensure detection and identification of meaningful signals, whatever form the electroweak symmetry breaking phenomenon should actually take. Separate entries were prepared for the data base for the papers presented.
Radiative and Electroweak Penguins at Belle
Hyun, Hyo Jung
2010-02-10
Radiative and electroweak penguin decays of B mesons are a sensitive probe of new physics beyond the Standard Model. We study the inclusive and exclusive radiative and electroweak penguin decays of B meson and also search an exotic particle seen by the HyperCP experiment. The measurements are based on a large data sample of 605 fb{sup -1} containing 657 millions BB-bar pairs collected at the UPSILON(4S) with the Belle detector at the KEKB energy asymmetric e{sup +}e{sup -} collider.
Quadratic electroweak corrections for polarized Moller scattering
A. Aleksejevs, S. Barkanova, Y. Kolomensky, E. Kuraev, V. Zykunov
2012-01-01
The paper discusses the two-loop (NNLO) electroweak radiative corrections to the parity violating electron-electron scattering asymmetry induced by squaring one-loop diagrams. The calculations are relevant for the ultra-precise 11 GeV MOLLER experiment planned at Jefferson Laboratory and experiments at high-energy future electron colliders. The imaginary parts of the amplitudes are taken into consideration consistently in both the infrared-finite and divergent terms. The size of the obtained partial correction is significant, which indicates a need for a complete study of the two-loop electroweak radiative corrections in order to meet the precision goals of future experiments.
Top and Electroweak Measurements at the Tevatron
Bartos, P.
2016-01-01
In this report, we summarize the latest results of the top-quark mass and electroweak measurements from the Tevatron. Since the world combination of top-quark mass measurements was done, CDF and D0 experiments improved the precision of several results. Some of them reach the relative precition below 1% for a single measurement. From the electroweak results, we report on the WW and WZ production cross section, measurements of the weak mixing angle and indirect measurements of W boson mass. The Tevatron results of the weak mixing angle are still the most precise ones of hadron colliders.
Electroweak naturalness and deflected mirage mediation
NASA Astrophysics Data System (ADS)
Barger, Vernon; Everett, Lisa L.; Garon, Todd S.
2016-04-01
We investigate the question of electroweak naturalness within the deflected mirage mediation (DMM) framework for supersymmetry breaking in the minimal supersymmetric standard model. The class of DMM models considered are nine-parameter theories that fall within the general classification of the 19-parameter phenomenological minimal supersymmetric standard model. Our results show that these DMM models have regions of parameter space with very low electroweak fine-tuning, at levels comparable to the phenomenological minimal supersymmetric standard model. These parameter regions should be probed extensively in the current LHC run.
Electroweak corrections to Bs,d→ℓ+ℓ-
NASA Astrophysics Data System (ADS)
Bobeth, Christoph; Gorbahn, Martin; Stamou, Emmanuel
2014-02-01
We calculate the full two-loop electroweak matching corrections to the operator governing the decay Bq→ℓ+ℓ- in the standard model. Their inclusion removes an electroweak scheme and scale uncertainty of about ±7% of the branching ratio. Using different renormalization schemes of the involved electroweak parameters, we estimate residual perturbative electroweak and QED uncertainties to be less than ±1% at the level of the branching ratio.
Signatures from an extra-dimensional seesaw model
Blennow, Mattias; Melbeus, Henrik; Ohlsson, Tommy; Zhang He
2010-08-15
We study the generation of small neutrino masses in an extra-dimensional model, where singlet fermions are allowed to propagate in the extra dimension, while the standard model particles are confined to a brane. Motivated by the fact that extra-dimensional models are nonrenormalizable, we truncate the Kaluza-Klein towers at a maximal Kaluza-Klein number. This truncation, together with the structure of the bulk Majorana mass term, motivated by the Sherk-Schwarz mechanism, implies that the Kaluza-Klein modes of the singlet fermions pair to form Dirac fermions, except for a number of unpaired Majorana fermions at the top of each tower. These heavy Majorana fermions are the only sources of lepton number breaking in the model, and similarly to the type-I seesaw mechanism, they naturally generate small masses for the left-handed neutrinos. The lower Kaluza-Klein modes mix with the light neutrinos, and the mixing effects are not suppressed with respect to the light-neutrino masses. Compared to conventional fermionic seesaw models, such mixing can be more significant. We study the signals of this model at the Large Hadron Collider, and find that the current low-energy bounds on the nonunitarity of the leptonic mixing matrix are strong enough to exclude an observation.
Electroweak fragmentation functions for dark matter annihilation
Cavasonza, Leila Ali; Krämer, Michael; Pellen, Mathieu
2015-02-18
Electroweak corrections can play a crucial role in dark matter annihilation. The emission of gauge bosons, in particular, leads to a secondary flux consisting of all Standard Model particles, and may be described by electroweak fragmentation functions. To assess the quality of the fragmentation function approximation to electroweak radiation in dark matter annihilation, we have calculated the flux of secondary particles from gauge-boson emission in models with Majorana fermion and vector dark matter, respectively. For both models, we have compared cross sections and energy spectra of positrons and antiprotons after propagation through the galactic halo in the fragmentation function approximation and in the full calculation. Fragmentation functions fail to describe the particle fluxes in the case of Majorana fermion annihilation into light fermions: the helicity suppression of the lowest-order cross section in such models cannot be lifted by the leading logarithmic contributions included in the fragmentation function approach. However, for other classes of models like vector dark matter, where the lowest-order cross section is not suppressed, electroweak fragmentation functions provide a simple, model-independent and accurate description of secondary particle fluxes.
On the Ambjorn-Olesen electroweak condensates
NASA Astrophysics Data System (ADS)
Bartolucci, Daniele; De Marchis, Francesca
2012-07-01
We obtain sufficient conditions for the existence of the Ambjorn-Olesen ["On electroweak magnetism," Nucl. Phys. B315, 606-614 (1989), 10.1016/0550-3213(89)90004-7] electroweak N-vortices in case N ⩾ 1 and therefore generalize earlier results [D. Bartolucci and G. Tarantello, "Liouville type equations with singular data and their applications to periodic multivortices for the electroweak theory," Commun. Math. Phys. 229, 3-47 (2002), 10.1007/s002200200664; J. Spruck and Y. Yang, "On multivortices in the electroweak theory I: Existence of periodic solutions," Commun. Math. Phys. 144, 1-16 (1992), 10.1007/BF02099188] which handled the cases N ∈ {1, 2, 3, 4}. The variational argument provided here has its own independent interest as it generalizes the one adopted by Ding et al. ["Existence results for mean field equations," Ann. Inst. Henri Poincare, Anal. Non Lineaire 16, 653-666 (1999), 10.1016/S0294-1449(99)80031-6] to obtain solutions for Liouville-type equations on closed 2-manifolds. In fact, we obtain at once a second proof of the existence of supercritical conformal metrics on surfaces with conical singularities and prescribed Gaussian curvature recently established by Bartolucci, De Marchis and Malchiodi [Int. Math. Res. Not. 24, 5625-5643 (2011), 10.1093/imrn/rnq285].
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Servant, Géraldine
2005-02-01
In the past year, a new non-supersymmetric framework for electroweak symmetry breaking (with or without Higgs) involving SU(2)L × SU(2)R × U(1)B-L in higher dimensional warped geometry has been suggested. In this work, we embed this gauge structure into a GUT such as SO(10) or Pati Salam. We showed recently (in hep-ph/0403143) that in a warped GUT, a stable Kaluza Klein fermion can arise as a consequence of imposing proton stability. Here, we specify a complete realistic model where this particle is a weakly interacting right-handed neutrino, and present a detailed study of this new dark matter candidate, providing relic density and detection predictions. We discuss phenomenological aspects associated with the existence of other light ({\\lesssim }\\mathrm {TeV} ) KK fermions (related to the neutrino), whose lightness is a direct consequence of the top quark's heaviness. The AdS/CFT interpretation of this construction is also presented. Most of our qualitative results do not depend on the nature of the breaking of the electroweak symmetry provided that it happens near the TeV brane.
Fitzpatrick, A Liam; Perez, Gilad; Randall, Lisa
2008-05-01
A variant of a warped extra dimension model is presented. It is based on 5D minimal flavor violation, in which the only sources of flavor breaking are two 5D anarchic Yukawa matrices. These matrices also control the bulk masses, which are responsible for the resulting flavor hierarchy. The theory flows to a next to minimal flavor violation model where flavor violation is dominantly coming from the 3rd generation. Flavor violation is also suppressed by a parameter that dials the violation in the up or down sector. There is therefore a sharp limit in which there is no flavor violation in the down-type quark sector which, remarkably, is consistent with the observed flavor parameters. This is used to eliminate the current Randall-Sundrum flavor and CP problem. Our construction suggests that strong dynamic-based, flavor models may be built based on the same concepts. PMID:18518274
Fitzpatrick, A. Liam; Randall, Lisa; Perez, Gilad
2008-05-02
A variant of a warped extra dimension model is presented. It is based on 5D minimal flavor violation, in which the only sources of flavor breaking are two 5D anarchic Yukawa matrices. These matrices also control the bulk masses, which are responsible for the resulting flavor hierarchy. The theory flows to a next to minimal flavor violation model where flavor violation is dominantly coming from the 3rd generation. Flavor violation is also suppressed by a parameter that dials the violation in the up or down sector. There is therefore a sharp limit in which there is no flavor violation in the down-type quark sector which, remarkably, is consistent with the observed flavor parameters. This is used to eliminate the current Randall-Sundrum flavor and CP problem. Our construction suggests that strong dynamic-based, flavor models may be built based on the same concepts.
NASA Astrophysics Data System (ADS)
Fitzpatrick, A. Liam; Perez, Gilad; Randall, Lisa
2008-05-01
A variant of a warped extra dimension model is presented. It is based on 5D minimal flavor violation, in which the only sources of flavor breaking are two 5D anarchic Yukawa matrices. These matrices also control the bulk masses, which are responsible for the resulting flavor hierarchy. The theory flows to a next to minimal flavor violation model where flavor violation is dominantly coming from the 3rd generation. Flavor violation is also suppressed by a parameter that dials the violation in the up or down sector. There is therefore a sharp limit in which there is no flavor violation in the down-type quark sector which, remarkably, is consistent with the observed flavor parameters. This is used to eliminate the current Randall-Sundrum flavor and CP problem. Our construction suggests that strong dynamic-based, flavor models may be built based on the same concepts.
750 GeV diphoton excess and strongly first-order electroweak phase transition
NASA Astrophysics Data System (ADS)
Perelstein, Maxim; Tsai, Yu-Dai
2016-07-01
A new scalar particle, coupled to photons and gluons via loops of vectorlike quarks, provides a simple theoretical interpretation of the 750 GeV diphoton excess reported by the experiments at the Large Hadron Collider (LHC). In this paper, we show that this model contains a large, phenomenologically viable parameter space region in which the electroweak phase transition (EWPT) is strongly first order, opening the possibility that the electroweak baryogenesis mechanism can be realized in this context. A large coupling between the Higgs doublet and the heavy scalar, required for a strongly first-order EWPT, can arise naturally in composite Higgs models. The scenario makes robust predictions that will be tested in near-future experiments. The cross section of resonant di-Higgs production at the 13 TeV LHC is predicted to be at least 20 fb, while the Higgs cubic self-coupling is enhanced by 40% or more with respect to its Standard Model (SM) value.
Theory of precision electroweak measurements
Peskin, M.E.
1990-03-01
In these lectures, I will review the theoretical concepts needed to understand the goals and implications of experiments in this new era of weak interactions. I will explain how to compute the most important order-{alpha} radiative corrections to weak interaction processes and discuss the physical implications of these correction terms. I hope that this discussion will be useful to those --- experimentalists and theorists --- who will try to interpret the new data that we will soon receive. This paper is organized as follows: I will review the structure of the standard weak interaction model at zeroth order. I will discuss the measurement of the Z{sup 0} boson mass in e{sup +}e{sup {minus}} annihilation. This measurement is affected by radiative correction to the form of the Z{sup 0} resonance, and so I will review the theory of the resonance line shape. I will briefly review the modifications of the properties of the Z{sup 0} which would be produced by additional neutral gauge bosons. I will review the theory of the renormalization of weak interaction parameters such as sin{sup 2} {theta}{sub {omega}}, concentrating especially on the contributions of the top quark and other heavy, undiscovered particles.
Recent Electroweak Results from the Tevatron
Zhu, Junjie; /SUNY, Stony Brook
2009-07-01
W and Z bosons are mainly produced via quark-antiquark annihilations at the Fermilab Tevatron collider. Precision measurements with these gauge bosons provide us with high precision tests of the Standard Model (SM) as well as indirect search for possible new physics beyond the SM. I present the recent electroweak measurements related to single W, Z boson and diboson productions from the CDF and D0 experiments at the Fermilab Tevatron collider.
Electroweak Symmetry Breaking in Historical Perspective
Quigg, Chris
2015-10-01
The discovery of the Higgs boson is a major milestone in our progress toward understanding the natural world. A particular aim of my review is to show how diverse ideas came together in the conception of electroweak symmetry breaking that led up to the discovery. Furthermore, I survey what we know now that we did not know before, what properties of the Higgs boson remain to be established, and what new questions we may now hope to address.
Tevatron Measurements of Electroweak Boson Production
Hooper, Ryan J.; /Lewis U.
2011-08-01
With a large and still increasing dataset, W and Z boson physics studies at the Tevatron p{bar p} collider are particularly useful for testing many aspects of the Standard Model. In this proceeding, we present measurements of electroweak boson properties, distributions, and charge asymmetries. We examine both solitary W and Z production as well as production in association with jets. These measurements are compared to NLO QCD predictions, are used to extract fundamental Standard Model parameters, and constrain parton distribution functions.
Electroweak Symmetry Breaking in Historical Perspective
NASA Astrophysics Data System (ADS)
Quigg, Chris
2015-10-01
The discovery of the Higgs boson is a major milestone in our progress toward understanding the natural world. A particular aim of this review is to show how diverse ideas came together in the conception of electroweak symmetry breaking that led up to the discovery. I also survey what we know now that we did not know before, what properties of the Higgs boson remain to be established, and what new questions we may now hope to address.
Electroweak Sudakov Corrections using Effective Field Theory
Chiu Juiyu; Golf, Frank; Kelley, Randall; Manohar, Aneesh V.
2008-01-18
Electroweak Sudakov corrections of the form {alpha}{sup n}log{sup m}s/M{sub W,Z}{sup 2} are summed using renormalization group evolution in soft-collinear effective theory. Results are given for the scalar, vector, and tensor form factors for fermion and scalar particles. The formalism for including massive gauge bosons in soft-collinear effective theory is developed.
Towards a scale free electroweak baryogenesis
NASA Astrophysics Data System (ADS)
Ishikawa, Kazuya; Kitahara, Teppei; Takimoto, Masahiro
2015-03-01
We propose a new electroweak baryogenesis scenario in high-scale supersymmetric (SUSY) models. We consider a singlet extension of the minimal SUSY standard model introducing additional vectorlike multiplets. We show that the strongly first-order phase transition can occur at a high temperature comparable to the soft SUSY breaking scale. In addition, the proper amount of the baryon asymmetry of the Universe can be generated via the lepton number violating process in the vectorlike multiplet sector. The typical scale of our scenario, the soft SUSY breaking scale, can be any value. Thus our new electroweak baryogenesis scenario can be realized at arbitrary scales, and we call this scenario scale free electroweak baryogenesis. This soft SUSY breaking scale is determined by other requirements. If the soft SUSY breaking scale is O (10 ) TeV , our scenario is compatible with the observed mass of the Higgs boson and the constraints by electric dipole moment measurements and flavor experiments. Furthermore, the singlino can be a good candidate for dark matter.
Diphoton resonance from a warped extra dimension
NASA Astrophysics Data System (ADS)
Bauer, Martin; Hörner, Clara; Neubert, Matthias
2016-07-01
We argue that extensions of the Standard Model (SM) with a warped extra dimension, which successfully address the hierarchy and flavor problems of elementary particle physics, can provide an elegant explanation of the 750 GeV diphoton excess recently reported by ATLAS and CMS. A gauge-singlet bulk scalar with {O} (1) couplings to fermions is identified as the new resonance S, and the vector-like Kaluza-Klein excitations of the SM quarks and leptons mediate its loop-induced couplings to photons and gluons. The electroweak gauge symmetry almost unambiguously dictates the bulk matter content and hence the hierarchies of the Sto γ γ, W W,ZZ,Zγ, toverline{t} and dijet decay rates. We find that the S → Zγ decay mode is strongly suppressed, such that Br( S → Zγ) /Br( S → γγ) < 0 .1. The hierarchy problem for the new scalar boson is solved in analogy with the Higgs boson by localizing it near the infrared brane. The infinite sums over the Kaluza-Klein towers of fermion states converge and can be calculated in closed form with a remarkably simple result. Reproducing the observed pp → S → γγ signal requires Kaluza-Klein masses in the multi-TeV range, consistent with bounds from flavor physics and electroweak precision observables.
PRECISION ELECTROWEAK MEASUREMENTS AND THE HIGGS MASS.
MARCIANO, W.J.
2004-08-02
The utility of precision electroweak measurements for predicting the Standard Model Higgs mass via quantum loop effects is discussed. Current constraints from m{sub w} and sin{sup 2} {theta}{sub w} (m{sub z}){sub {ovr MS}} imply a relatively light Higgs {approx}< 154 GeV which is consistent with Supersymmetry expectations. The existence of Supersymmetry is further suggested by a discrepancy between experiment and theory for the muon anomalous magnetic moment. Constraints from precision studies on other types of ''New Physics'' are also briefly described.
Electroweak Baryogenesis from a Classical Force
Joyce, M.; Prokopec, T.; Turok, N.
1995-08-28
We describe a new effect that produces baryons at a first order electroweak phase transition. It operates when there is a {ital CP}-violating field present on propagating bubble walls. The novel aspect is that it involves a purely classical force, which alters the motion of particles across the wall and through diffusion creates a chiral asymmetry in front of the wall. We develop a technique for computing the baryon asymmetry using the Boltzmann equation, and a fluid approximation which allows us to model strong scattering effects. The final formula for the baryon asymmetry has a remarkably simple form.
Minimal electroweak model for monopole annihilation
Farris, T.H. ); Kephart, T.W.; Weiler, T.J. ); Yuan, T.C. )
1992-02-03
We construct the minimal (most economical in fields) extension of the standard model implementing the Langacker-Pi mechanism for reducing the grand unified theory (GUT) monopole cosmic density to an allowed level. The model contains just a single charged scalar field in addition to the standard Higgs doublet, and is easily embeddable in any GUT. We identify the region of parameter space where monopoles annihilate in the higher temperature early Universe. A particularly alluring possibility is that the demise of monopoles at the electroweak scale is in fact the origin of the Universe's net baryon number.
Electroweak physics results from the Tevatron
Demarteau, M.
1996-11-01
An overview of recent electroweak physics results from the Tevatron is given. Properties of the W{sup {+-}} and Z{sup 0} gauge bosons using final states containing electrons and muons based on large integrated luminosities are presented. In particular, measurements of the W{sup {+-}} and Z{sup 0} production cross sections, the W-charge asymmetry and the measurement of the W-mass are summarized. Gauge boson self interactions are measured by studying gauge boson pair production and Emits on anomalous gauge boson couplings are discussed.
Electroweak boson production in double parton scattering
NASA Astrophysics Data System (ADS)
Golec-Biernat, Krzysztof; Lewandowska, Emilia
2014-11-01
We study the W+W- and Z0Z0 electroweak boson production in double parton scattering using QCD evolution equations for double parton distributions. In particular, we analyze the impact of splitting terms in the evolution equations on the double parton scattering cross sections. Unlike the standard terms, the splitting terms are not suppressed for large values of the relative momentum of two partons in the double parton scattering. Thus, they play an important role which we discuss in detail for the single splitting contribution to the cross sections under the study.
Gravitational waves from a very strong electroweak phase transition
NASA Astrophysics Data System (ADS)
Leitao, Leonardo; Mégevand, Ariel
2016-05-01
We investigate the production of a stochastic background of gravitational waves in the electroweak phase transition. We consider extensions of the Standard Model which can give very strongly first-order phase transitions, such that the transition fronts either propagate as detonations or run away. To compute the bubble wall velocity, we estimate the friction with the plasma and take into account the hydrodynamics. We track the development of the phase transition up to the percolation time, and we calculate the gravitational wave spectrum generated by bubble collisions, magnetohydrodynamic turbulence, and sound waves. For the kinds of models we consider, we find parameter regions for which the gravitational waves are potentially observable at the planned space-based interferometer eLISA. In such cases, the signal from sound waves is generally dominant, while that from bubble collisions is the least significant of them. Since the sound waves and turbulence mechanisms are diminished for runaway walls, the models with the best prospects of detection at eLISA are those which do not have such solutions. In particular, we find that heavy extra bosons provide stronger gravitational wave signals than tree-level terms.
Modified magnetohydrodynamics around the electroweak transition
NASA Astrophysics Data System (ADS)
Pavlović, Petar; Leite, Natacha; Sigl, Günter
2016-06-01
We analyse solutions of the MHD equations around the electroweak transition taking into account the effects of the chiral anomaly. It is shown that a transition that is not of the first order has direct consequences on the evolution of the asymmetry between left- and right-handed leptons. Assuming an initial chiral asymmetry in the symmetric phase at temperatures higher than the transition temperature, as well as the existence of magnetic fields, it is demonstrated that the asymmetry typically grows with time, until it undergoes a fast decrease at the transition, and then eventually gets damped at lower temperatures in the broken phase. We argue that it is unlikely to have any significant magnetic field amplification as a consequence of the electroweak transition in the Standard model, even when the chiral anomaly is introduced. The presence of a chiral asymmetry between left- and right-handed charge carriers naturally leads to the creation of helical magnetic fields from non-helical fields and this can have consequences on their subsequent evolution. Similarly, an initially vanishing chiral asymmetry is naturally created in the presence of a helical magnetic field.
Electroweak standard model with very special relativity
NASA Astrophysics Data System (ADS)
Alfaro, Jorge; González, Pablo; Ávila, Ricardo
2015-05-01
The very special relativity electroweak Standard Model (VSR EW SM) is a theory with SU (2 )L×U (1 )R symmetry, with the same number of leptons and gauge fields as in the usual Weinberg-Salam model. No new particles are introduced. The model is renormalizable and unitarity is preserved. However, photons obtain mass and the massive bosons obtain different masses for different polarizations. Besides, neutrino masses are generated. A VSR-invariant term will produce neutrino oscillations and new processes are allowed. In particular, we compute the rate of the decays μ →e +γ . All these processes, which are forbidden in the electroweak Standard Model, put stringent bounds on the parameters of our model and measure the violation of Lorentz invariance. We investigate the canonical quantization of this nonlocal model. Second quantization is carried out, and we obtain a well-defined particle content. Additionally, we do a counting of the degrees of freedom associated with the gauge bosons involved in this work, after spontaneous symmetry breaking has been realized. Violations of Lorentz invariance have been predicted by several theories of quantum gravity [J. Alfaro, H. Morales-Tecotl, and L. F. Urrutia, Phys. Rev. Lett. 84, 2318 (2000); Phys. Rev. D 65, 103509 (2002)]. It is a remarkable possibility that the low-energy effects of Lorentz violation induced by quantum gravity could be contained in the nonlocal terms of the VSR EW SM.
Enabling electroweak baryogenesis through dark matter
NASA Astrophysics Data System (ADS)
Lewicki, Marek; Rindler-Daller, Tanja; Wells, James D.
2016-06-01
We study the impact on electroweak baryogenesis from a swifter cosmological expansion induced by dark matter. We detail the experimental bounds that one can place on models that realize it, and we investigate the modifications of these bounds that result from a non-standard cosmological history. The modifications can be sizeable if the expansion rate of the Universe increases by several orders of magnitude. We illustrate the impact through the example of scalar field dark matter, which can alter the cosmological history enough to enable a strong-enough first-order phase transition in the Standard Model when it is supplemented by a dimension six operator directly modifying the Higgs boson potential. We show that due to the modified cosmological history, electroweak baryogenesis can be realized, while keeping deviations of the triple Higgs coupling below HL-LHC sensitivies. The required scale of new physics to effectuate a strong-enough first order phase transition can change by as much as twenty percent as the expansion rate increases by six orders of magnitude.
Electroweak baryogenesis with anomalous Higgs couplings
NASA Astrophysics Data System (ADS)
Kobakhidze, Archil; Wu, Lei; Yue, Jason
2016-04-01
We investigate feasibility of efficient baryogenesis at the electroweak scale within the effective field theory framework based on a non-linear realisation of the electroweak gauge symmetry. In this framework the LHC Higgs boson is described by a singlet scalar field, which, therefore, admits new interactions. Assuming that Higgs couplings with the eletroweak gauge bosons are as in the Standard Model, we demonstrate that the Higgs cubic coupling and the CP-violating Higgs-top quark anomalous couplings alone may drive the a strongly first-order phase transition. The distinguished feature of this transition is that the anomalous Higgs vacuum expectation value is generally non-zero in both phases. We identify a range of anomalous couplings, consistent with current experimental data, where sphaleron rates are sufficiently fast in the `symmetric' phase and are suppressed in the `broken' phase and demonstrate that the desired baryon asymmetry can indeed be generated in this framework. This range of the Higgs anomalous couplings can be further constrained from the LHC Run 2 data and be probed at high luminosity LHC and beyond.
Electroweak Baryogenesis in R-symmetric Supersymmetry
Fok, R.; Kribs, Graham D.; Martin, Adam; Tsai, Yuhsin
2013-03-01
We demonstrate that electroweak baryogenesis can occur in a supersymmetric model with an exact R-symmetry. The minimal R-symmetric supersymmetric model contains chiral superfields in the adjoint representation, giving Dirac gaugino masses, and an additional set of "R-partner" Higgs superfields, giving R-symmetric \\mu-terms. New superpotential couplings between the adjoints and the Higgs fields can simultaneously increase the strength of the electroweak phase transition and provide additional tree-level contributions to the lightest Higgs mass. Notably, no light stop is present in this framework, and in fact, we require both stops to be above a few TeV to provide sufficient radiative corrections to the lightest Higgs mass to bring it up to 125 GeV. Large CP-violating phases in the gaugino/higgsino sector allow us to match the baryon asymmetry of the Universe with no constraints from electric dipole moments due to R-symmetry. We briefly discuss some of the more interesting phenomenology, particularly of the of the lightest CP-odd scalar.
Higgs couplings and electroweak phase transition
NASA Astrophysics Data System (ADS)
Katz, Andrey; Perelstein, Maxim
2014-07-01
We argue that extensions of the Standard Model (SM) with a strongly first-order electroweak phase transition generically predict significant deviations of the Higgs couplings to gluons, photons, and Z bosons from their SM values. Precise experimental measurements of the Higgs couplings at the LHC and at the proposed next-generation facilities will allow for a robust test of the phase transition dynamics. To illustrate this point, in this paper we focus on the scenario in which loops of a new scalar field are responsible for the first-order phase transition, and study a selection of benchmark models with various SM gauge quantum numbers of the new scalar. We find that the current LHC measurement of the Higgs coupling to gluons already excludes the possibility of a first-order phase transition induced by a scalar in a sextet, or larger, representation of the SU(3) c . Future LHC experiments (including HL-LHC) will be able to definitively probe the case when the new scalar is a color triplet. If the new scalar is not colored, an electron-positron Higgs factory, such as the proposed ILC or TLEP, would be required to test the nature of the phase transition. The extremely precise measurement of the Higgsstrahlung cross section possible at such machines will allow for a comprehensive and definitive probe of the possibility of a first-order electroweak phase transition in all models we considered, including the case when the new scalar is a pure gauge singlet.
Precision Electroweak Measurements on the Z Presonance
Aleph,Delphi,L3,Opal,SLD , Collaborations
2005-09-08
The authors report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. the data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLD experiment using a polarized beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarized asymmetries. The mass and width of the Z boson, m{sub Z} and {Lambda}{sub Z}, and its couplings to fermions, for example the {rho} parameter and the effective electroweak mixing angle for leptons, are precisely measured: m{sub Z} = 91.1875 {+-} 0.0021 GeV; {Lambda}{sub Z} = 2.4952 {+-} 0.0023 GeV; {rho}{sub {ell}} = 1.0050 {+-} 0.0010; sin{sup 2} {theta}{sub eff}{sup lept} = 0.23153 {+-} 0.00016. The number of light neutrino species is determined to be 2.9840 {+-} 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model. At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its Standard Model expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m{sub t} = 173{sub -10}{sup +13} GeV, and the mass of the W boson, m{sub W} = 80.363 {+-} 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the Standard Model. Using in addition the direct measurements of m{sub t} and m{sub W}, the mass of the as yet unobserved Standard Model Higgs boson is predicted with a
The Electroweak Phase Transition: Corralling the Higgs with Colliders & Cosmology
NASA Astrophysics Data System (ADS)
Long, Andrew J.
Through this thesis, I investigate the way in which the electroweak phase transition, and therefore the Higgs boson, bridges high energy particle physics and early universe cosmology; moreover, I argue that it is particularly interesting to explore this bridge today as experiments such as the Large Hadron Collider begin to uncover the nature of physics at the electroweak scale. I will discuss how measurements of the properties of the Higgs boson at the Large Hadron Collider allow one to determine the nature of the phase transition that was responsible for electroweak symmetry breaking in the early universe. That information in turn will allow one to assess whether the asymmetry between the abundances of matter and anti-matter in the universe may have been generated during the electroweak phase transition. Additionally, I will discuss the impact of the electroweak phase transition on another cosmological relic: namely, the dark matter. Precise measurements of the mass and abundance of dark matter today yield further information about the nature of the electroweak phase transition, in some scenarios. This information may be used to test the hypothesis that the cosmological constant, assumed to be a good model of dark energy, is finely tuned. In this way, I hope to demonstrate the importance of the electroweak phase transition as a bridge between terrestrial tests of high energy physics and cosmological tests of the physics of the early universe.
Radiative And Electroweak Penguin Decays of B
Richman, Jeffrey D.; /UC, Santa Barbara
2007-11-09
Radiative and electroweak penguin decays of B mesons are flavor-changing-neutral-current processes that provide powerful ways to test the Standard Model at the one-loop level, to search for the effects of new physics, and to extract Standard Model parameters such as CKM matrix elements and quark masses. The large data samples obtained by the B-factory experiments BaBar and Belle, together with an intensive theoretical effort, have led to significant progress towards understanding these rare decays. Recent experimental results include the measurements of the b {yields} d{gamma} decays B {yields} {rho}({omega}){gamma}, the observation of B {yields} K(*){ell}{sup +}{ell}{sup -} decays (together with studies of the associated kinematic distributions), and improved measurements of the inclusive B {yields} Xs{gamma} rate and photon energy spectrum.
Neutrino dynamics below the electroweak crossover
NASA Astrophysics Data System (ADS)
Ghiglieri, J.; Laine, M.
2016-07-01
We estimate the thermal masses and damping rates of active (m < eV) and sterile (M ~ GeV) neutrinos with thermal momenta k~ 3T at temperatures below the electroweak crossover (5 GeV < T < 160 GeV) . These quantities fix the equilibration or ``washout'' rates of Standard Model lepton number densities. Sterile neutrinos interact via direct scatterings mediated by Yukawa couplings, and via their overlap with active neutrinos. Including all leading-order reactions we find that the washout rate generally exceeds the Hubble rate for 5 GeV < T < 30 GeV . Therefore it is challenging to generate a large lepton asymmetry facilitating dark matter computations operating at T < 5 GeV, whereas the generation of a baryon asymmetry at T > 130 GeV remains an option. Our differential rates are tabulated in a form suitable for studies of specific scenarios with given neutrino Yukawa matrices.
Electroweak symmetry breaking: Higgs/whatever
Chanowitz, M.S.
1989-10-16
In the first of these two lectures the Higgs mechanism is reviewed in its most general form, which does not necessarily require the existence of Higgs bosons. The general consequences of the hypothesis that electroweak symmetry breaking is due to the Higgs mechanism are deduced just from gauge invariance and unitarity. In the second lecture the general properties are illustrated with three specific models: the Weinberg-Salam model, its minimal supersymmetric extension, and technicolor. The second lecture concludes with a discussion of the experiment signals for strong WW scattering, whose presence or absence will allow us to determine whether the symmetry breaking sector lies above or below 1 TeV. 57 refs.
B-factory signals for a warped extra dimension
Agashe, Kaustubh; Perez, Gilad; Soni, Amarjit
2004-08-24
We study predictions for B-physics in a class of models, recently introduced, with a non-supersymmetric warped extra dimension. In these models few ({approx} 3) TeV Kaluza-Klein masses are consistent with electroweak data due to bulk custodial symmetry. Furthermore, there is an analog of GIM mechanism which is violated by the heavy top quark (just as in SM) leading to striking signals at B-factories: (1) New Physics (NP) contributions to {Delta}F = 2 transitions are comparable to SM. This implies that, within this NP framework, the success of the SM unitarity triangle fit is a ''coincidence''. Thus, clean extractions of unitarity angles via e.g. B {yields} {pi}{pi}, {rho}{pi}, {rho}{rho}, DK are likely to be affected, in addition to O(1) deviation from SM prediction in Bs mixing. (2) O(1) deviation from SM predictions for B {yields} X{sub s}{ell}{sup +}{ell}{sup -} in rate as well as in forward-backward and direct CP asymmetry. (3) Large mixing-induced CP asymmetry in radiative B decays, wherein the SM unambiguously predicts very small asymmetries. Also, with KK masses 3 TeV or less, and with anarchic Yukawa masses, contributions to electric dipole moments of the neutron are roughly 20 times larger than the current experimental bound so that this framework has a ''CP problem''.
Standard electroweak interactions and Higgs bosons
Cox, B.; Gilman, F.J.
1984-09-01
In the standard model, only one basic component remains to be found: the Higgs boson. The specifics of Higgs boson production and detection, with decay to t anti t and a particular t quark mass range in mind, have not been examined in detail. As such, the working group on Standard Electroweak Interactions and Higgs Bosons at this meeting decided to concentrate on Higgs boson production and detection at SSC energies in the particular case where the Higgs mass is in the range so as to make t anti t quark-antiquark pairs the dominant decay mode. The study of this case, that of the so-called intermediate mass Higgs, had already been launched in the Berkeley PSSC Workshop on Electroweak Symmetry Breaking, and was continued and extended here. The problems of t quark jet identification and detection efficiency and the manner of rejection of background (especially from b quark jets) with realistic detectors then occupied much of the attention of the group. The subject of making precise measurements of parameters in the standard model at SSC energies is briefly examined. Then we delve into the Higgs sector, with an introduction to the neutral Higgs of the standard model together with its production cross-sections in various processes and the corresponding potential backgrounds. A similar, though briefer, discussion for a charged Higgs boson (outside the Standard Model) follows. The heart of the work on identifying and reconstructing the t and then the Higgs boson in the face of backgrounds is discussed. The problems with semileptonic decays, low energy jet fragments, mass resolution, and b-t discrimination all come to the fore. We have tried to make a serious step here towards a realistic assessment of the problems entailed in pulling a signal out of the background, including a rough simulation of calorimeter-detector properties. 25 references.
NASA Astrophysics Data System (ADS)
Das, Arindam; Oda, Satsuki; Okada, Nobuchika; Takahashi, Dai-suke
2016-06-01
We consider the minimal U(1 ) ' extension of the standard model (SM) with the classically conformal invariance, where an anomaly-free U(1 ) ' gauge symmetry is introduced along with three generations of right-handed neutrinos and a U(1 ) ' Higgs field. Since the classically conformal symmetry forbids all dimensional parameters in the model, the U(1 ) ' gauge symmetry is broken by the Coleman-Weinberg mechanism, generating the mass terms of the U(1 ) ' gauge boson (Z' boson) and the right-handed neutrinos. Through a mixing quartic coupling between the U(1 ) ' Higgs field and the SM Higgs doublet field, the radiative U(1 ) ' gauge symmetry breaking also triggers the breaking of the electroweak symmetry. In this model context, we first investigate the electroweak vacuum instability problem in the SM. Employing the renormalization group equations at the two-loop level and the central values for the world average masses of the top quark (mt=173.34 GeV ) and the Higgs boson (mh=125.09 GeV ), we perform parameter scans to identify the parameter region for resolving the electroweak vacuum instability problem. Next we interpret the recent ATLAS and CMS search limits at the LHC Run-2 for the sequential Z' boson to constrain the parameter region in our model. Combining the constraints from the electroweak vacuum stability and the LHC Run-2 results, we find a bound on the Z' boson mass as mZ'≳3.5 TeV . We also calculate self-energy corrections to the SM Higgs doublet field through the heavy states, the right-handed neutrinos and the Z' boson, and find the naturalness bound as mZ'≲7 TeV , in order to reproduce the right electroweak scale for the fine-tuning level better than 10%. The resultant mass range of 3.5 TeV ≲mZ'≲7 TeV will be explored at the LHC Run-2 in the near future.
Lower bound on the electroweak wall velocity from hydrodynamic instability
Mégevand, Ariel; Membiela, Federico Agustín; Sánchez, Alejandro D.
2015-03-27
The subsonic expansion of bubbles in a strongly first-order electroweak phase transition is a convenient scenario for electroweak baryogenesis. For most extensions of the Standard Model, stationary subsonic solutions (i.e., deflagrations) exist for the propagation of phase transition fronts. However, deflagrations are known to be hydrodynamically unstable for wall velocities below a certain critical value. We calculate this critical velocity for several extensions of the Standard Model and compare with an estimation of the wall velocity. In general, we find a region in parameter space which gives stable deflagrations as well as favorable conditions for electroweak baryogenesis.
NASA Astrophysics Data System (ADS)
Huang, Fa Peng; Gu, Pei-Hong; Yin, Peng-Fei; Yu, Zhao-Huan; Zhang, Xinmin
2016-05-01
We study the collider phenomenology of the electroweak phase transition and electroweak baryogenesis in the framework of the effective field theory. Our study shows that the effective theory using the dimension-6 operators can enforce strong first order phase transition and provide sizable C P violation to realize a successful electroweak baryogenesis. Such dimension-6 operators can induce interesting Higgs phenomenology that can be verified at colliders such as the LHC and the planning CEPC. We then demonstrate that this effective theory can originate from vectorlike quarks and the triplet Higgs.
Models of little Higgs and electroweak precision tests
Chen, Mu-Chun; /Fermilab
2006-01-01
The little Higgs idea is an alternative to supersymmetry as a solution to the gauge hierarchy problem. In this note, the author reviews various little Higgs models and their phenomenology with emphasis on the precision electroweak constraints in these models.
Crucial role of neutrinos in the electroweak symmetry breaking
NASA Astrophysics Data System (ADS)
Smetana, Adam
2013-12-01
Not only the top-quark condensate appears to be the natural significant source of dynamical electroweak symmetry breaking. Provided the seesaw scenario, the neutrinos can have their Dirac masses large enough so that their condensates contribute significantly to the electroweak scale as well. We address the question of a phenomenological feasibility of the top-quark and neutrino condensation conspiracy against the electroweak symmetry within the simplifying two-composite-Higgs-doublet model. Mandatory is to reproduce the masses of electroweak gauge bosons, the top-quark mass and the recently observed scalar mass of 125 GeV, and to satisfy the upper limits on absolute value of active neutrino masses. To accomplish that, the number of right-handed neutrinos participating on the seesaw mechanism turns out to be rather large, O(100-1000).
Electroweak contributions to squark pair production at the LHC
Germer, Jan; Hollik, Wolfgang; Mirabella, Edoardo; Trenkel, Maike
2010-02-10
We present the tree-level and next-to-leading order (NLO) electroweak (EW) contributions to squark - squark production at the Large Hadron Collider (LHC) within the framework of the Minimal Supersymmetric Standard Model (MSSM).
Crucial role of neutrinos in the electroweak symmetry breaking
Smetana, Adam
2013-12-30
Not only the top-quark condensate appears to be the natural significant source of dynamical electroweak symmetry breaking. Provided the seesaw scenario, the neutrinos can have their Dirac masses large enough so that their condensates contribute significantly to the electroweak scale as well. We address the question of a phenomenological feasibility of the top-quark and neutrino condensation conspiracy against the electroweak symmetry within the simplifying two-composite-Higgs-doublet model. Mandatory is to reproduce the masses of electroweak gauge bosons, the top-quark mass and the recently observed scalar mass of 125 GeV, and to satisfy the upper limits on absolute value of active neutrino masses. To accomplish that, the number of right-handed neutrinos participating on the seesaw mechanism turns out to be rather large, O(100–1000)
Production of a KK-graviton and a vector boson in ADD model via gluon fusion
NASA Astrophysics Data System (ADS)
Shivaji, Ambresh; Ravindran, V.; Agrawal, Pankaj
2012-02-01
In the models with large extra-dimensions, we examine the production of a vector boson (γ/ Z) in association with the Kaluza-Klein (KK) modes of the graviton via gluon fusion. At the leading order, the process takes place through quark-loop box and triangle diagrams and it is ultraviolate finite. We report the results for the LHC. We also discuss the issues of anomaly and decoupling of heavy quarks in the amplitude.
Electroweak corrections and unitarity in linear moose models
Chivukula, R. Sekhar; Simmons, Elizabeth H.; He, H.-J.; Kurachi, Masafumi; Tanabashi, Masaharu
2005-02-01
We calculate the form of the corrections to the electroweak interactions in the class of Higgsless models which can be deconstructed to a chain of SU(2) gauge groups adjacent to a chain of U(1) gauge groups, and with the fermions coupled to any single SU(2) group and to any single U(1) group along the chain. The primary advantage of our technique is that the size of corrections to electroweak processes can be directly related to the spectrum of vector bosons ('KK modes'). In Higgsless models, this spectrum is constrained by unitarity. Our methods also allow for arbitrary background 5D geometry, spatially dependent gauge-couplings, and brane kinetic energy terms. We find that, due to the size of corrections to electroweak processes in any unitary theory, Higgsless models with localized fermions are disfavored by precision electroweak data. Although we stress our results as they apply to continuum Higgsless 5D models, they apply to any linear moose model including those with only a few extra vector bosons. Our calculations of electroweak corrections also apply directly to the electroweak gauge sector of 5D theories with a bulk scalar Higgs boson; the constraints arising from unitarity do not apply in this case.
Gravitational waves from the electroweak phase transition
Leitao, Leonardo; Mégevand, Ariel; Sánchez, Alejandro D. E-mail: megevand@mdp.edu.ar
2012-10-01
We study the generation of gravitational waves in the electroweak phase transition. We consider a few extensions of the Standard Model, namely, the addition of scalar singlets, the minimal supersymmetric extension, and the addition of TeV fermions. For each model we consider the complete dynamics of the phase transition. In particular, we estimate the friction force acting on bubble walls, and we take into account the fact that they can propagate either as detonations or as deflagrations preceded by shock fronts, or they can run away. We compute the peak frequency and peak intensity of the gravitational radiation generated by bubble collisions and turbulence. We discuss the detectability by proposed spaceborne detectors. For the models we considered, runaway walls require significant fine tuning of the parameters, and the gravitational wave signal from bubble collisions is generally much weaker than that from turbulence. Although the predicted signal is in most cases rather low for the sensitivity of LISA, models with strongly coupled extra scalars reach this sensitivity for frequencies f ∼ 10{sup −4} Hz, and give intensities as high as h{sup 2}Ω{sub GW} ∼ 10{sup −8}.
MSSM Electroweak Baryogenesis and LHC Data
Carena, Marcela; Nardini, Germano; Quiros, Mariano; Wagner, Carlos E.M.
2013-02-01
Electroweak baryogenesis is an attractive scenario for the generation of the baryon asymmetry of the universe as its realization depends on the presence at the weak scale of new particles which may be searched for at high energy colliders. In the MSSM it may only be realized in the presence of light stops, and with moderate or small mixing between the left- and right-handed components. Consistency with the observed Higgs mass around 125 GeV demands the heavier stop mass to be much larger than the weak scale. Moreover the lighter stop leads to an increase of the gluon-gluon fusion Higgs production cross section which seems to be in contradiction with indications from current LHC data. We show that this tension may be considerably relaxed in the presence of a light neutralino with a mass lower than about 60 GeV, satisfying all present experimental constraints. In such a case the Higgs may have a significant invisible decay width and the stop decays through a three or four body decay channel, including a bottom quark and the lightest neutralino in the final state. All these properties make this scenario testable at a high luminosity LHC.
Nonperturbative QCD corrections to electroweak observables
Dru B Renner, Xu Feng, Karl Jansen, Marcus Petschlies
2011-12-01
Nonperturbative QCD corrections are important to many low-energy electroweak observables, for example the muon magnetic moment. However, hadronic corrections also play a significant role at much higher energies due to their impact on the running of standard model parameters, such as the electromagnetic coupling. Currently, these hadronic contributions are accounted for by a combination of experimental measurements and phenomenological modeling but ideally should be calculated from first principles. Recent developments indicate that many of the most important hadronic corrections may be feasibly calculated using lattice QCD methods. To illustrate this, we will examine the lattice computation of the leading-order QCD corrections to the muon magnetic moment, paying particular attention to a recently developed method but also reviewing the results from other calculations. We will then continue with several examples that demonstrate the potential impact of the new approach: the leading-order corrections to the electron and tau magnetic moments, the running of the electromagnetic coupling, and a class of the next-to-leading-order corrections for the muon magnetic moment. Along the way, we will mention applications to the Adler function, the determination of the strong coupling constant and QCD corrections to muonic-hydrogen.
Gravitational waves from the electroweak phase transition
NASA Astrophysics Data System (ADS)
Leitao, Leonardo; Mégevand, Ariel; Sánchez, Alejandro D.
2012-10-01
We study the generation of gravitational waves in the electroweak phase transition. We consider a few extensions of the Standard Model, namely, the addition of scalar singlets, the minimal supersymmetric extension, and the addition of TeV fermions. For each model we consider the complete dynamics of the phase transition. In particular, we estimate the friction force acting on bubble walls, and we take into account the fact that they can propagate either as detonations or as deflagrations preceded by shock fronts, or they can run away. We compute the peak frequency and peak intensity of the gravitational radiation generated by bubble collisions and turbulence. We discuss the detectability by proposed spaceborne detectors. For the models we considered, runaway walls require significant fine tuning of the parameters, and the gravitational wave signal from bubble collisions is generally much weaker than that from turbulence. Although the predicted signal is in most cases rather low for the sensitivity of LISA, models with strongly coupled extra scalars reach this sensitivity for frequencies f ~ 10-4 Hz, and give intensities as high as h2ΩGW ~ 10-8.
Low energy strong electroweak sector with decoupling
Casalbuoni, R.; Dominici, D. |; Deandrea, A.; Gatto, R.; De Curtis, S.; Grazzini, M. |
1996-05-01
We discuss possible symmetries of effective theories describing spinless and spin-1 bosons, mainly to concentrate on an intriguing phenomenological possibility: that of a hardly noticeable strong electroweak sector at relatively low energies. Specifically, a model with both vector and axial vector strong interacting bosons may possess a discrete symmetry imposing degeneracy of the two sets of bosons (degenerate BESS model). In such a case its effects at low energies become almost invisible and the model easily passes all low energy precision tests. The reason lies essentially in the fact that the model automatically satisfies decoupling, contrary to models with only vectors. For large mass of the degenerate spin-one bosons the model becomes identical at the classical level to the standard model taken in the limit of infinite Higgs boson mass. For these reasons we have thought it worthwhile to fully develop the model, together with its possible generalizations, and to study the expected phenomenology. For instance, just because of its invisibility at low energy, it is conceivable that degenerate BESS has low mass spin-one states and gives quite visible signals at existing or forthcoming accelerators. {copyright} {ital 1996 The American Physical Society.}
Electroweak Corrections at the LHC with MCFM
Campbell, John M.; Wackeroth, Doreen; Zhou, Jia
2015-07-10
Electroweak (EW) corrections at the LHC can be enhanced at high energies due to soft/collinear radiation of W and Z bosons, being dominated by Sudakov-like corrections in the form of $\\alpha_W^l\\log^n(Q^2/M_W^2)$ $(n \\le 2l, \\alpha_W = \\alpha/(4\\pi\\sin\\theta_W^2))$ when the energy scale $Q$ enters the TeV regime. Thus, the inclusion of EW corrections in LHC predictions is important for the search of possible signals of new physics in tails of kinematic distributions. EW corrections should also be taken into account in virtue of their comparable size ($\\mathcal{O}(\\alpha)$) to that of higher order QCD corrections ($\\mathcal{O}(\\alpha_s^2)$). We calculated the next-to-leading-order (NLO) weak corrections to the neutral-current (NC) Drell-Yan process, top-quark pair production and di-jet producion, and implemented them in the Monte-Carlo program MCFM. This enables a combined study with the corresponding NLO QCD corrections. We provide both the full NLO weak corrections and their weak Sudakov approximation valid at high energies. The latter is often used for a fast evaluation of weak effects, and having the exact result available as well allows to quantify the validity of the Sudakov approximation.
Heavy quark spectroscopy and decay
Schindler, R.H.
1987-01-01
The understanding of q anti q systems containing heavy, charmed, and bottom quarks has progressed rapidly in recent years, through steady improvements in experimental techniques for production and detection of their decays. These lectures are meant to be an experimentalist's review of the subject. In the first of two lectures, the existing data on the spectroscopy of the bound c anti c and b anti b systems will be discussed. Emphasis is placed on comparisons with the theoretical models. The second lecture covers the rapidly changing subject of the decays of heavy mesons (c anti q and b anti q), and their excited states. In combination, the spectroscopy and decays of heavy quarks are shown to provide interesting insights into both the strong and electroweak interactions of the heavy quarks. 103 refs., 39 figs.
Electroweak and QCD corrections to Higgs production via vector-boson fusion at the CERN LHC
Ciccolini, M.; Denner, A.; Dittmaier, S.
2008-01-01
The radiative corrections of the strong and electroweak interactions are calculated at next-to-leading order for Higgs-boson production in the weak-boson-fusion channel at hadron colliders. Specifically, the calculation includes all weak-boson fusion and quark-antiquark annihilation diagrams to Higgs-boson production in association with two hard jets, including all corresponding interferences. The results on the QCD corrections confirm that previously made approximations of neglecting s-channel diagrams and interferences are well suited for predictions of Higgs production with dedicated vector-boson fusion cuts at the LHC. The electroweak corrections, which also include real corrections from incoming photons and leading heavy Higgs-boson effects at two-loop order, are of the same size as the QCD corrections, viz. typically at the level of 5%-10% for a Higgs-boson mass up to {approx}700 GeV. In general, both types of corrections do not simply rescale differential distributions, but induce distortions at the level of 10%. The discussed corrections have been implemented in a flexible Monte Carlo event generator.
The inverse seesaw in conformal electro-weak symmetry breaking and phenomenological consequences
NASA Astrophysics Data System (ADS)
Humbert, Pascal; Lindner, Manfred; Smirnov, Juri
2015-06-01
We study the inverse seesaw mechanism for neutrino masses and phenomenological consequences in the context of conformal electro-weak symmetry breaking. The main difference to the usual case is that all explicit fermion mass terms including Majorana masses for neutrinos are forbidden. All fermion mass terms arise therefore from vacuum expectation values of suitable scalars times some Yukawa couplings. This leads to interesting consequences for model building, neutrino mass phenomenology and the Dark Matter abundance. In the context of the inverse seesaw we find a favoured scenario with heavy pseudo-Dirac sterile neutrinos at the TeV scale, which in the conformal framework conspire with the electro-weak scale to generate keV scale warm Dark Matter. The mass scale relations provide naturally the correct relic abundance due to a freeze-in mechanism. We demonstrate also how conformal symmetry decouples the right-handed neutrino mass scale and effective lepton number violation. We find that lepton flavour violating processes can be well within the reach of modern experiments. Furthermore, interesting decay signatures are expected at the LHC.
Electroweak Boson Production in Association with Jets
NASA Astrophysics Data System (ADS)
Focke, Christfried Hermann
The high energies involved in modern collider experiments lead to hadronic final states that are often boosted inside collimated jets and surrounded by soft radiation. Together with tracking and energy information from leptons and photons, these jets contain essential information about a collision event. A good theoretical understanding is vital for measurements within the Standard Model (SM) as well as for background modeling required for new physics searches. Often one is interested in hadronic final states with cuts on jets in order to reduce backgrounds. For example, by imposing a central jet veto pcut in H → WW → lnulnu one can greatly reduce contamination from tt¯ → WW bb¯. Imposing such a jet veto comes at the cost of introducing potentially large logarithms L = ln pcut/Q into the cross section (Q is the hard scale), since the cuts restrict the cancellation of soft and collinear divergences between real and virtual diagrams. There are at most two powers of L for each power of the strong coupling constant alphas and this can spoil the convergence of the perturbative series when alpha sL2 ˜ 1 . We resume these logarithmically enhanced terms to all orders within the framework of Soft-Collinear Effective Theory (SCET) in order to recover the convergence and obtain reliable predictions for several processes. Another focus of this dissertation is the application of SCET in fixed order predictions of electroweak boson production in association with an exclusive number of final state jets. We employ the N-jettiness event-shape TN to resolve the infrared singularity structure of QCD in the presence of N signal jets. This allows us to obtain the first complete next-to-next-to leading order predictions for W, Z and Higgs boson production in association with one jet.
LEP precision electroweak measurements from the Z{sup 0} resonance
Strom, D.
1997-01-01
Preliminary electroweak measurements from the LEP Collaboration from data taken at the Z{sup 0} resonance are presented. Most of the results presented are based on a total data sample of 12 x 10{sup 6} recorded Z{sup 0} events which included data from the 1993 and 1994 LEP runs. The Z{sup 0} resonance parameters, including hadronic and leptonic cross sections and asymmetries, {tau} polarization and its asymmetry, and heavy-quark asymmetries and partial widths, are evaluated and confronted with the predictions of the Standard Model. This comparison incorporates the constraints provided by the recent determination of the top-quark mass at the Tevatron. The Z{sup 0} resonance parameters are found to be in good agreement with the Standard Model prediction using the Tevatron top-quark mass, with the exception of the partial widths for Z{sup 0} decays to pairs of b and c quarks.
Combined QCD and electroweak analysis of HERA data
NASA Astrophysics Data System (ADS)
Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Antonelli, S.; Aushev, V.; Behnke, O.; Behrens, U.; Bertolin, A.; Bhadra, S.; Bloch, I.; Boos, E. G.; Brock, I.; Brook, N. H.; Brugnera, R.; Bruni, A.; Bussey, P. J.; Caldwell, A.; Capua, M.; Catterall, C. D.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cooper-Sarkar, A. M.; Corradi, M.; Dementiev, R. K.; Devenish, R. C. E.; Dusini, S.; Foster, B.; Gach, G.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Golubkov, Yu. A.; Grzelak, G.; Guzik, M.; Gwenlan, C.; Hain, W.; Hlushchenko, O.; Hochman, D.; Hori, R.; Ibrahim, Z. A.; Iga, Y.; Ishitsuka, M.; Januschek, F.; Jomhari, N. Z.; Kadenko, I.; Kananov, S.; Karshon, U.; Kaur, P.; Kisielewska, D.; Klanner, R.; Klein, U.; Korzhavina, I. A.; Kotański, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Krupa, B.; Kuprash, O.; Kuze, M.; Levchenko, B. B.; Levy, A.; Limentani, S.; Lisovyi, M.; Lobodzinska, E.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Makarenko, I.; Malka, J.; Mastroberardino, A.; Mohamad Idris, F.; Mohammad Nasir, N.; Myronenko, V.; Nagano, K.; Nobe, T.; Nowak, R. J.; Onishchuk, Yu.; Paul, E.; Perlański, W.; Pokrovskiy, N. S.; Polini, A.; Przybycień, M.; Roloff, P.; Ruspa, M.; Saxon, D. H.; Schioppa, M.; Schneekloth, U.; Schörner-Sadenius, T.; Shcheglova, L. M.; Shevchenko, R.; Shkola, O.; Shyrma, Yu.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Solano, A.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stopa, P.; Sztuk-Dambietz, J.; Tassi, E.; Tokushuku, K.; Tomaszewska, J.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Verbytskyi, A.; Wan Abdullah, W. A. T.; Wichmann, K.; Wing, M.; Yamada, S.; Yamazaki, Y.; Zakharchuk, N.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhautykov, B. O.; Zotkin, D. S.; ZEUS Collaboration
2016-05-01
A simultaneous fit of parton distribution functions (PDFs) and electroweak parameters to HERA data on deep inelastic scattering is presented. The input data are the neutral current and charged current inclusive cross sections which were previously used in the QCD analysis leading to the HERAPDF2.0 PDFs. In addition, the polarization of the electron beam was taken into account for the ZEUS data recorded between 2004 and 2007. Results on the vector and axial-vector couplings of the Z boson to u - and d -type quarks, on the value of the electroweak mixing angle and the mass of the W boson are presented. The values obtained for the electroweak parameters are in agreement with Standard Model predictions.
The electroweak phase transition in the Inert Doublet Model
Blinov, Nikita; Profumo, Stefano; Stefaniak, Tim
2015-07-21
We study the strength of a first-order electroweak phase transition in the Inert Doublet Model (IDM), where particle dark matter (DM) is comprised of the lightest neutral inert Higgs boson. We improve over previous studies in the description and treatment of the finite-temperature effective potential and of the electroweak phase transition. We focus on a set of benchmark models inspired by the key mechanisms in the IDM leading to a viable dark matter particle candidate, and illustrate how to enhance the strength of the electroweak phase transition by adjusting the masses of the yet undiscovered IDM Higgs states. We argue that across a variety of DM masses, obtaining a strong enough first-order phase transition is a generic possibility in the IDM. We find that due to direct dark matter searches and collider constraints, a sufficiently strong transition and a thermal relic density matching the universal DM abundance is possible only in the Higgs funnel regime.
Electroweak baryogenesis in the exceptional supersymmetric standard model
Chao, Wei
2015-08-28
We study electroweak baryogenesis in the E{sub 6} inspired exceptional supersymmetric standard model (E{sub 6}SSM). The relaxation coefficients driven by singlinos and the new gaugino as well as the transport equation of the Higgs supermultiplet number density in the E{sub 6}SSM are calculated. Our numerical simulation shows that both CP-violating source terms from singlinos and the new gaugino can solely give rise to a correct baryon asymmetry of the Universe via the electroweak baryogenesis mechanism.
Electroweak absorptive parts in the matching conditions of nonrelativistic QCD
Hoang, Andre H.; Reisser, Christoph J.
2005-04-01
Electroweak corrections associated with the instability of the top quark to the next-to-next-to-leading logarithmic (NNLL) total top pair threshold cross section in e{sup +}e{sup -} annihilation are determined. Our method is based on absorptive parts in electroweak matching conditions of the operators of nonrelativistic QCD and the optical theorem. The corrections lead to ultraviolet phase space divergences that have to be renormalized and lead to NLL mixing effects. Numerically, the corrections can amount to several percent and are comparable to the known NNLL QCD corrections.
Electroweak and B physics results from the Fermilab Tevatron Collider
Pitts, K.T.
2001-01-30
This writeup is an introduction to some of the experimental issues involved in performing electroweak and b physics measurements at the Fermilab Tevatron. In the electroweak sector, we discuss W and Z boson cross section measurements as well as the measurement of the mass of the W boson. For b physics, we discuss measurements of B{sup 0}/{bar B}{sup 0} mixing and CP violation. This paper is geared towards nonexperts who are interested in understanding some of the issues and motivations for these measurements and how the measurements are carried out.
Recent results in electroweak physics at the Tevatron
Giulia Manca
2004-02-13
The Run II physics program of CDF and D0 has just begun with the first 72 pb{sup -1} of analysis quality data collected at the center-of-mass energy of 1.96 TeV. The Electroweak measurements are among the first and most important benchmarks for the best understanding of the detectors and testing the Standard Model. We present measurements of the W and Z inclusive cross sections and decays asymmetries, recent results in di-boson physics and searches for new physics which make use of distinct electroweak signatures.
Fluctuation-driven electroweak phase transition. [in early universe
NASA Technical Reports Server (NTRS)
Gleiser, Marcelo; Kolb, Edward W.
1992-01-01
We examine the dynamics of the electroweak phase transition in the early Universe. For Higgs masses in the range 46 less than or = M sub H less than or = 150 GeV and top quark masses less than 200 GeV, regions of symmetric and asymmetric vacuum coexist to below the critical temperature, with thermal equilibrium between the two phases maintained by fluctuations of both phases. We propose that the transition to the asymmetric vacuum is completed by percolation of these subcritical fluctuations. Our results are relevant to scenarios of baryogenesis that invoke a weakly first-order phase transition at the electroweak scale.
Review of Physics Results from the Tevatron. Electroweak Physics
Kotwal, Ashutosh V.; Schellman, Heidi; Sekaric, Jadranka
2015-02-17
We summarize an extensive Tevatron (1984–2011) electroweak physics program that involves a variety of W and Z boson precision measurements. The relevance of these studies using single and associated gauge boson production to our understanding of the electroweak sector, quantum chromodynamics and searches for new physics is emphasized. Furthermore,we discuss the importance of the W boson mass measurement, the W/Z boson distributions and asymmetries, and diboson studies. We also highlight the recent Tevatron measurements and prospects for the final Tevatron measurements.
The heavy top quark and supersymmetry
Hall, L.J. |
1996-05-08
Three aspects of supersymmetric theories are discussed: electroweak symmetry breaking, the issues of flavor, and gauge unification. The heavy top quark plays an important, sometimes dominant, role in each case. Additional symmetries lead to extensions of the standard model which can provide an understanding for many of the outstanding problems of particle physics. A broken supersymmetric extension of spacetime allows electroweak symmetry breaking to follow from the dynamics of the heavy top quark; an extension of isospin provides a constrained framework for understanding the pattern of quark and lepton masses; and a grand unified extension of the standard model gauge group provides an elegant understanding of the gauge quantum numbers of the components of a generation. Experimental signatures for each of these additional symmetries are discussed.
The heavy top quark and supersymmetry
Hall, L.J. |
1997-01-01
Three aspects of supersymmetric theories are discussed: electroweak symmetry breaking, the issues of flavor, and gauge unification. The heavy top quark plays an important, sometimes dominant, role in each case. Additional symmetries lead to extensions of the Standard Model which can provide an understanding for many of the outstanding problems of particle physics. A broken supersymmetric extension of spacetime allows electroweak symmetry breaking to follow from the dynamics of the heavy top quark; an extension of isospin provides a constrained framework for understanding the pattern of quark and lepton masses; and a grand unified extension of the Standard Model gauge group provides an elegant understanding of the gauge quantum numbers of the components of a generation. Experimental signatures for each of these additional symmetries are discussed.
Measurement of Electroweak Top Quark Production at {D\\O}
Tsai, Yun-Tse
2013-01-01
We present a new model-independent measurement of the electroweak single top-quark production cross section in proton-antiproton (p- $\\bar{p}$) collisions at √s = 1.96 TeV in 9.7 fb^{-1} of integrated luminosity collected with the DØ detector.
Electroweak matching conditions for top pair production at threshold
Hoang, Andre H.; Reisser, Christoph J.
2006-08-01
We determine the real parts of electroweak matching conditions relevant for top quark pair production close to threshold in e{sup +}e{sup -} annihilation at next-to-next-to-leading logarithmic (NNLL) order. Numerically the corrections are comparable to the NNLL QCD corrections.
Sakurai Prize Lecture: Thirty Years of Precision Electroweak Physics
NASA Astrophysics Data System (ADS)
Sirlin, Alberto
2002-04-01
We discuss the development of the theory of electroweak radiative corrections and its role in testing the Standard Model, predicting the top quark mass, constraining the Higgs boson mass, and searching for deviations that may signal the presence of new physics.
Natural cold baryogenesis from strongly interacting electroweak symmetry breaking
Konstandin, Thomas; Servant, Géraldine E-mail: geraldine.servant@cern.ch
2011-07-01
The mechanism of ''cold electroweak baryogenesis'' has been so far unpopular because its proposal has relied on the ad-hoc assumption of a period of hybrid inflation at the electroweak scale with the Higgs acting as the waterfall field. We argue here that cold baryogenesis can be naturally realized without the need to introduce any slow-roll potential. Our point is that composite Higgs models where electroweak symmetry breaking arises via a strongly first-order phase transition provide a well-motivated framework for cold baryogenesis. In this case, reheating proceeds by bubble collisions and we argue that this can induce changes in Chern-Simons number, which in the presence of new sources of CP violation commonly lead to baryogenesis. We illustrate this mechanism using as a source of CP violation an effective dimension-six operator which is free from EDM constraints, another advantage of cold baryogenesis compared to the standard theory of electroweak baryogenesis. Our results are general as they do not rely on any particular UV completion but only on a stage of supercooling ended by a first-order phase transition in the evolution of the universe, which can be natural if there is nearly conformal dynamics at the TeV scale. Besides, baryon-number violation originates from the Standard Model only.
EXECUTIVE SUMMARY OF THE SNOWMASS 2001 WORKING GROUP : ELECTROWEAK SYMMETRY BREAKING.
CARENA,M.; GERDES,D.W.; HABER,H.E.; TURCOT,A.S.; ZERWAS,P.M.
2001-06-30
In this summary report of the 2001 Snowmass Electroweak Symmetry Breaking Working Group, the main candidates for theories of electroweak symmetry breaking are surveyed, and the criteria for distinguishing among the different approaches are discussed. The potential for observing electroweak symmetry breaking phenomena at the upgraded Tevatron and the LHC is described. We emphasize the importance of a high-luminosity e{sup +}e{sup -} linear collider for precision measurements to clarify the underlying electroweak symmetry breaking dynamics. Finally, we note the possible roles of the {mu}{sup +} {mu}{sup -} collider and VLHC for further elucidating the physics of electroweak symmetry breaking.
Jets and Vector Bosons in Heavy Ion Collisions
NASA Astrophysics Data System (ADS)
de la Cruz, Begoña
2013-11-01
This paper reviews experimental results on jets and electroweak boson (photon,Wand Z) production in heavy-ion collisions, from the CMS and ATLAS detectors, using data collected during 2011 PbPb run and pp data collected at an equivalent energy. By comparing the two collision systems, the energy loss of the partons propagating through the medium produced in PbPb collisions can be studied. Its characterization is done using dijet events and isolated photon-jet pairs. Since the electroweak gauge bosons do not participate in the strong interaction, and are thus unmodified by the nuclear medium, they serve as clean probes of the initial state in the collision.
Unified description of kaon electroweak form factors
A. Afanasev; W. Buck
1996-06-01
A calculation of the semileptonic decays of the kaon (K{sub l3}) is presented. The results are direct predictions of a covariant model of the pion and kaon introduced earlier by Ito, Buck, Gross. The weak form factors for K{sub l3} are predicted with absolutely no parameter adjustments of the model. The authors obtained for the form factor parameters: f{sub {minus}}(q{sup 2}=m{sub l}{sup 2})/f{sub +}(q{sup 2}=m{sub l}{sup 2})={minus}0.28 and {lambda}{sub +}= 0.028, both within experimental error bars. Connections of this approach to heavy quark symmetry will also be discussed.
Radiative natural supersymmetry: Reconciling electroweak fine-tuning and the Higgs boson mass
NASA Astrophysics Data System (ADS)
Baer, Howard; Barger, Vernon; Huang, Peisi; Mickelson, Dan; Mustafayev, Azar; Tata, Xerxes
2013-06-01
Models of natural supersymmetry seek to solve the little hierarchy problem by positing a spectrum of light Higgsinos ≲200-300GeV and light top squarks ≲600GeV along with very heavy squarks and TeV-scale gluinos. Such models have low electroweak fine-tuning and satisfy the LHC constraints. However, in the context of the minimal supersymmetric standard model, they predict too low a value of mh, are frequently in conflict with the measured b→sγ branching fraction, and the relic density of thermally produced Higgsino-like weakly interacting massive particles (WIMPs) falls well below dark matter measurements. We propose a framework dubbed radiative natural supersymmetry (RNS), which can be realized within the minimal supersymmetric standard model (avoiding the addition of extra exotic matter) and which maintains features such as gauge coupling unification and radiative electroweak symmetry breaking. The RNS model can be generated from supersymmetry (SUSY) grand unified theory type models with nonuniversal Higgs masses. Allowing for high-scale soft SUSY breaking Higgs mass mHu>m0 leads to automatic cancellations during renormalization group running and to radiatively-induced low fine-tuning at the electroweak scale. Coupled with large mixing in the top-squark sector, RNS allows for fine-tuning at the 3%-10% level with TeV-scale top squarks and a 125 GeV light Higgs scalar h. The model allows for at least a partial solution to the SUSY flavor, CP, and gravitino problems since first-/second-generation scalars (and the gravitino) may exist in the 10-30 TeV regime. We outline some possible signatures for RNS at the LHC, such as the appearance of low invariant mass opposite-sign isolated dileptons from gluino cascade decays. The smoking gun signature for RNS is the appearance of light Higgsinos at a linear e+e- collider. If the strong CP problem is solved by the Peccei-Quinn mechanism, then RNS naturally accommodates mixed axion-Higgsino cold dark matter, where the
Nonminimal universal extra dimensional model confronts Bs→μ+μ-
NASA Astrophysics Data System (ADS)
Datta, Anindya; Shaw, Avirup
2016-03-01
The addition of boundary localized kinetic and Yukawa terms to the action of a five-dimensional Standard Model would nontrivially modify the Kaluza-Klein spectra and some of the interactions among the Kaluza-Klein excitations compared to the minimal version of this model, in which these boundary terms are not present. In the minimal version of this framework, known as the universal extra dimensional model, special assumptions are made about these unknown, beyond the cutoff contributions to restrict the number of unknown parameters of the theory to be minimum. We estimate the contribution of Kaluza-Klein modes to the branching ratios of Bs (d )→μ+μ- in the framework of the nonminimal universal extra dimensional model, at one-loop level. The results have been compared to the experimental data to constrain the parameters of this model. From the measured decay branching ratio of Bs→μ+μ- (depending on the values of boundary localized parameters), the lower limit on R-1 can be as high as 800 GeV. We have briefly reviewed the bounds on nonminimal universal extra dimensional parameter space coming from electroweak precision observables. The present analysis (Bs→μ+μ-) has ruled out new regions of parameter space in comparison to the analysis of electroweak data. We have revisited the bound on R-1 in the universal extra dimensional model, which came out to be 454 GeV. This limit on R-1 in the universal extra dimensional framework is not as competitive as the limits derived from the consideration of relic density or Standard Model Higgs boson production and decay to W+W-. Unfortunately, the Bd→μ+μ- decay branching ratio would not set any significant limit on R-1 in a minimal or nonminimal universal extra dimensional model.
Electroweak baryogenesis, electric dipole moments, and Higgs diphoton decays
NASA Astrophysics Data System (ADS)
Chao, Wei; Ramsey-Musolf, Michael J.
2014-10-01
We study the viability of electroweak baryogenesis in a two Higgs doublet model scenario augmented by vector-like, electroweakly interacting fermions. Considering a limited, but illustrative region of the model parameter space, we obtain the observed cosmic baryon asymmetry while satisfying present constraints from the non-observation of the permanent electric dipole moment (EDM) of the electron and the combined ATLAS and CMS result for the Higgs boson diphoton decay rate. The observation of a non-zero electron EDM in a next generation experiment and/or the observation of an excess (over the Standard Model) of Higgs to diphoton events with the 14 TeV LHC run or a future e + e - collider would be consistent with generation of the observed baryon asymmetry in this scenario.
Strong electroweak phase transition from Supersymmetric Custodial Triplets
NASA Astrophysics Data System (ADS)
Garcia-Pepin, Mateo; Quiros, Mariano
2016-05-01
The Supersymmetric Custodial Triplet Model, a supersymmetric generalization of the Georgi-Machacek model, has proven to be an interesting modification of the MSSM. It extends the MSSM Higgs sector by three extra SU(2) L triplets in such a way that approximate custodial invariance is preserved and ρ-parameter deviations are kept under control. By means of a sizeable triplet contribution to electroweak breaking the model is able to generate a barrier at tree level between the false vacuum and the electroweak one. This will result in a strong first order phase transition for an important region of the parameter space. We also look at the gravitational waves that could be generated as a result of the phase transition and show how future interferometers could be used as a probe of the model.
Precision Electroweak Measurements and Constraints on the Standard Model
Not Available
2011-11-11
This note presents constraints on Standard Model parameters using published and preliminary precision electroweak results measured at the electron-positron colliders LEP and SLC. The results are compared with precise electroweak measurements from other experiments, notably CDF and D0 at the Tevatron. Constraints on the input parameters of the Standard Model are derived from the results obtained in high-Q{sup 2} interactions, and used to predict results in low-Q{sup 2} experiments, such as atomic parity violation, Moller scattering, and neutrino-nucleon scattering. The main changes with respect to the experimental results presented in 2007 are new combinations of results on the W-boson mass and width and the mass of the top quark.
Precision Electroweak Measurements and Constraints on the Standard Model
The , ALEPH, CDF, D0, ...
2009-12-11
This note presents constraints on Standard Model parameters using published and preliminary precision electroweak results measured at the electron-positron colliders LEP and SLC. The results are compared with precise electroweak measurements from other experiments, notably CDF and D0 at the Tevatron. Constraints on the input parameters of the Standard Model are derived from the combined set of results obtained in high-Q{sup 2} interactions, and used to predict results in low-Q{sup 2} experiments, such as atomic parity violation, Moeller scattering, and neutrino-nucleon scattering. The main changes with respect to the experimental results presented in 2008 are new combinations of results on the W-boson mass and the mass of the top quark.
Precision Electroweak Measurements and Constraints on the Standard Model
None, None
2009-11-01
This note presents constraints on Standard Model parameters using published and preliminary precision electroweak results measured at the electron-positron colliders LEP and SLC. The results are compared with precise electroweak measurements from other experiments, notably CDF and D0 at the Tevatron. Constraints on the input parameters of the Standard Model are derived from the combined set of results obtained in high-Q{sup 2} interactions, and used to predict results in low-Q{sup 2} experiments, such as atomic parity violation, Moeller scattering, and neutrino-nucleon scattering. The main changes with respect to the experimental results presented in 2008 are new combinations of results on the W-boson mass and the mass of the top quark.
Precision electroweak measurements and constraints on the Standard Model
Not Available
2010-12-01
This note presents constraints on Standard Model parameters using published and preliminary precision electroweak results obtained at the electron-positron colliders LEP and SLC. The results are compared with precise electroweak measurements from other experiments, notably CDF and D0 at the Tevatron. Constraints on the input parameters of the Standard Model are derived from the combined set of results obtained in high-Q{sup 2} interactions, and used to predict results in low-Q{sup 2} experiments, such as atomic parity violation, Moeller scattering, and neutrino-nucleon scattering. The main changes with respect to the experimental results presented in 2009 are new combinations of results on the width of the W boson and the mass of the top quark.
The minimal composite Higgs model and electroweak precision tests
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Contino, Roberto
2006-05-01
A complete analysis of the electroweak precision observables is performed within a recently proposed minimal composite Higgs model, realized as a 5-dimensional warped compactification. In particular, we compute Z→bb¯ and the one-loop correction to the ρ parameter. We find that oblique data can be easily reproduced without a significant amount of tuning in the parameters of the model, while Z→bb¯ imposes a stronger constraint. As a consequence of the latter, some of the new fermionic resonances must have mass around 4 TeV, which corresponds to an electroweak fine tuning of a few percent. Other resonances, such as Z, can be lighter in sizeable portions of the parameter space. We discuss in detail the origin of the Z→bb¯ constraint and we suggest several possible avenues beyond the minimal model for weakening it.
Vacuum energy density kicked by the electroweak crossover
Klinkhamer, F. R.; Volovik, G. E.
2009-10-15
Using q-theory, we show that the electroweak crossover can generate a remnant vacuum energy density {lambda}{approx}E{sub ew}{sup 8}/E{sub Planck}{sup 4}, with effective electroweak energy scale E{sub ew}{approx}10{sup 3} GeV and reduced Planck-energy scale E{sub Planck}{approx}10{sup 18} GeV. The obtained expression for the effective cosmological constant {lambda} may be a crucial input for the suggested solution by Arkani-Hamed et al. of the triple cosmic coincidence puzzle (why the orders of magnitude of the energy densities of vacuum, matter, and radiation are approximately the same in the present Universe)
CP violation and electroweak baryogenesis in the Standard Model
NASA Astrophysics Data System (ADS)
Brauner, Tomáš
2014-04-01
One of the major unresolved problems in current physics is understanding the origin of the observed asymmetry between matter and antimatter in the Universe. It has become a common lore to claim that the Standard Model of particle physics cannot produce sufficient asymmetry to explain the observation. Our results suggest that this conclusion can be alleviated in the so-called cold electroweak baryogenesis scenario. On the Standard Model side, we continue the program initiated by Smit eight years ago; one derives the effective CP-violating action for the Standard Model bosons and uses the resulting effective theory in numerical simulations. We address a disagreement between two previous computations performed effectively at zero temperature, and demonstrate that it is very important to include temperature effects properly. Our conclusion is that the cold electroweak baryogenesis scenario within the Standard Model is tightly constrained, yet producing enough baryon asymmetry using just known physics still seems possible.
Toward verification of electroweak baryogenesis by electric dipole moments
NASA Astrophysics Data System (ADS)
Fuyuto, Kaori; Hisano, Junji; Senaha, Eibun
2016-04-01
We study general aspects of the CP-violating effects on the baryon asymmetry of the Universe (BAU) and electric dipole moments (EDMs) in models extended by an extra Higgs doublet and a singlet, together with electroweak-interacting fermions. In particular, the emphasis is on the structure of the CP-violating interactions and dependences of the BAU and EDMs on masses of the relevant particles. In a concrete mode, we investigate a relationship between the BAU and the electron EDM for a typical parameter set. As long as the BAU-related CP violation predominantly exists, the electron EDM has a strong power in probing electroweak baryogenesis. However, once a BAU-unrelated CP violation comes into play, the direct correlation between the BAU and electron EDM can be lost. Even in such a case, we point out that verifiability of the scenario still remains with the help of Higgs physics.
Dark matter as the trigger of strong electroweak phase transition
Chowdhury, Talal Ahmed; Nemevšek, Miha; Senjanović, Goran; Zhang, Yue E-mail: miha@ictp.it E-mail: yuezhang@ictp.it
2012-02-01
In this paper, we propose a new possible connection between dark matter relic density and baryon asymmetry of the universe. The portal between standard model sector and dark matter not only controls the relic density and detections of dark matter, but also allows the dark matter to trigger the first order electroweak phase transition. We discuss systematically possible scalar dark matter candidates, starting from a real singlet to arbitrary high representations. We show that the simplest realization is provided by a doublet, and that strong first-order electroweak phase transition implies a lower bound on the dark matter direct detection rate. The mass of dark matter lies between 45 and 80 GeV, allowing for an appreciable invisible decay width of the Standard Model Higgs boson, which is constrained to be lighter than 130 GeV for the sake of the strong phase transition.
Electroweak corrections to high energy processes using effective field theory
Chiu Juiyu; Golf, Frank; Kelley, Randall; Manohar, Aneesh V.
2008-03-01
Electroweak Sudakov logarithms at high energy, of the form ({alpha}/sin{sup 2}{theta}{sub W}){sup n}log{sup m}s/M{sub Z,W}{sup 2}, are summed using effective theory methods. The corrections are computed to processes involving two external particles in the standard model. The results include nonzero particle masses, such as the t-quark mass, electroweak mixing effects which lead to unequal W and Z masses, and radiative Higgs corrections proportional to the Yukawa couplings. We show that the matching at the scale M{sub W,Z} has a term at most linear in logs/{mu}{sup 2} to all orders. The effective theory formalism is compared with, and extends, previous work based on infrared evolution equations.
Electroweak baryogenesis and the expansion rate of the Universe
NASA Astrophysics Data System (ADS)
Joyce, Michael
1997-02-01
The standard requirement for the production of baryons at the electroweak phase transition, that the phase transition be first order and the sphaleron bound be satisfied, is predicated on the assumption of a radiation-dominated universe at that epoch. One simple alternative, domination by the energy in a kinetic mode of a scalar field which scales as 1/a6, gives a significantly weakened sphaleron bound for the preservation of a baryon asymmetry produced at a first-order phase transition, and allows the possibility that the observed baryon asymmetry be produced when the phase transition is second order or crossover. Such a phase of ``kination'' at the electroweak scale can occur in various ways as a scalar field evolves after inflation in an exponential potential.
Electroweak absolute, meta-, and thermal stability in neutrino mass models
NASA Astrophysics Data System (ADS)
Lindner, Manfred; Patel, Hiren H.; Radovčić, Branimir
2016-04-01
We analyze the stability of the electroweak vacuum in neutrino mass models containing right-handed neutrinos or fermionic isotriplets. In addition to considering absolute stability, we place limits on the Yukawa couplings of new fermions based on metastability and thermal stability in the early Universe. Our results reveal that the upper limits on the neutrino Yukawa couplings can change significantly when the top quark mass is allowed to vary within the experimental range of uncertainty in its determination.
Local and nonlocal defect-mediated electroweak baryogenesis
Brandenberger, R.; Davis, A.; Prokopec, T.; Trodden, M. |||
1996-04-01
We consider the effects of particle transport in topological defect-mediated electroweak baryogenesis scenarios. We analyze the cases of both thin and thick defects and demonstrate an enhancement of the original mechanism in both cases due to an increased effective volume in which baryogenesis occurs. This phenomenon is a result of an imperfect cancellation between the baryons and antibaryons produced on opposite faces of the defect. {copyright} {ital 1996 The American Physical Society.}
Gedanken Worlds without Higgs: QCD-Induced Electroweak Symmetry Breaking
Quigg, Chris; Shrock, Robert; /YITP, Stony Brook
2009-01-01
To illuminate how electroweak symmetry breaking shapes the physical world, we investigate toy models in which no Higgs fields or other constructs are introduced to induce spontaneous symmetry breaking. Two models incorporate the standard SU(3){sub c} {circle_times} SU(2){sub L} {circle_times} U(1){sub Y} gauge symmetry and fermion content similar to that of the standard model. The first class--like the standard electroweak theory--contains no bare mass terms, so the spontaneous breaking of chiral symmetry within quantum chromodynamics is the only source of electroweak symmetry breaking. The second class adds bare fermion masses sufficiently small that QCD remains the dominant source of electroweak symmetry breaking and the model can serve as a well-behaved low-energy effective field theory to energies somewhat above the hadronic scale. A third class of models is based on the left-right-symmetric SU(3){sub c} {circle_times} SU(2){sub L} {circle_times} SU(2){sub R} {circle_times} U(1)B?L gauge group. In a fourth class of models, built on SU(4){sub PS} {circle_times} SU(2){sub L} {circle_times} SU(2){sub R} gauge symmetry, lepton number is treated as a fourth color. Many interesting characteristics of the models stem from the fact that the effective strength of the weak interactions is much closer to that of the residual strong interactions than in the real world. The Higgs-free models not only provide informative contrasts to the real world, but also lead us to consider intriguing issues in the application of field theory to the real world.
Electroweak Penguin and Leptonic Decays at BaBar
Bucci, F.; /Pisa U. /INFN, Pisa
2005-08-26
Recent BABAR results on electroweak penguin and leptonic decays are reviewed. In particular, the measurements of B {yields} K{sup (*)}l{sup +}l{sup -} and the preliminary results on B {yields} X{sub s}l{sup +}l{sup -} are presented. Also summarized are the preliminary limits on B{sup +} {yields} l{sup +}{nu} (l = e,{mu}) and B{sup +} {yields} K{sup +}{nu}{bar {nu}}.
Recent Results in Electroweak B Decays from the BABAR Experiment
Koeneke, Karsten
2006-07-11
A review of the most recent BABAR results on electroweak penguin B decays is presented. The focus of this paper is on the measurement of observables in the decays B {yields} X{sub s}{gamma}, B {yields} K{sup (*)}l{sup +}l{sup -} B {yields} K{sub s}{sup 0}{pi}{sup 0}{gamma} (time-dependent analysis) and B {yields} ({rho}/{omega}){gamma}.
Strong Electroweak Symmetry Breaking in the Large Hadron Collider Era
NASA Astrophysics Data System (ADS)
Evans, Jared Andrew
2011-12-01
With the Large Hadron Collider collecting data, both the pursuit of novel detection techniques and the exploration of new ideas are more important than ever. Novel detection techniques are essential in order for the community to garner the most worth from the machine. New ideas are needed both to expand the boundaries of what could be observed and to foster the creative mindset of the community that moves particle physics into fascinating, and often unexpected, directions. Discovering whether electroweak symmetry is broken strongly or weakly is one of the most pressing questions to be answered. Exploring the possibility of strong electroweak symmetry breaking is the topic of this work. The first of two major sectors in this work concerns the theory of conformal technicolor. We present the low energy minimal model for conformal technicolor and verify that it can satisfy current constraints from experiment. We will also provide a UV completion for this model, which realistically extends the sector with high-energy supersymmetry. Two complete models of flavor are presented. This is the first example of a complete, consistent model of strong electroweak symmetry breaking. The second of the two sectors discusses experimental signatures arising in a large class of general technicolor models at the Large Hadron Collider. The possible existence of narrow scalar states that can be produced via gluon-gluon fusion is first discussed. These states can decay into exotic final states of multiple electroweak gauge bosons, third generation particles and even light composite Higgs particles. A two Higgs doublet model is proposed as an effective way to model these exciting states. Lastly, we discuss the array of possible final states and their possible discovery.
Electroweak symmetry breaking without the μ2 term
NASA Astrophysics Data System (ADS)
Goertz, Florian
2016-07-01
We demonstrate that from a low-energy perspective a viable breaking of the electroweak symmetry, as present in nature, can be achieved without the (negative sign) μ2 mass term in the Higgs potential, thereby avoiding completely the appearance of relevant operators, featuring coefficients with a positive mass dimension, in the theory. We show that such a setup is self-consistent and not ruled out by Higgs physics. In particular, we point out that it is the lightness of the Higgs boson that allows for the electroweak symmetry to be broken dynamically via operators of D ≥4 , consistent with the power expansion. Beyond that, we entertain how this scenario might even be preferred phenomenologically compared to the ordinary mechanism of electroweak symmetry breaking, as realized in the Standard Model, and argue that it can be fully tested at the LHC. In the Appendix, we classify UV completions that could lead to such a setup, considering also the option of generating all scales dynamically.
A few words about resonances in the electroweak effective Lagrangian
NASA Astrophysics Data System (ADS)
Rosell, Ignasi; Pich, Antonio; Santos, Joaquín; Sanz-Cillero, Juan José
2016-01-01
Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models including both a light Higgs-like boson and massive spin-1 resonances are not in conflict with experimental constraints on the oblique S and T parameters. We use an effective Lagrangian implementing the chiral symmetry breaking SU (2)L ⊗ SU (2)R → SU (2)L + R that contains the Standard Model gauge bosons coupled to the electroweak Goldstones, one Higgs-like scalar state h with mass mh = 126 GeV and the lightest vector and axial-vector resonance multiplets V and A. We have considered the one-loop calculation of S and T in order to study the viability of these strongly-coupled scenarios, being short-distance constraints and dispersive relations the main ingredients of the calculation. Once we have constrained the resonance parameters, we do a first approach to the determination of the low energy constants of the electroweak effective theory at low energies (without resonances). We show this determination in the case of the purely Higgsless bosonic Lagrangian.
Global constraints on heavy neutrino mixing
NASA Astrophysics Data System (ADS)
Fernandez-Martinez, Enrique; Hernandez-Garcia, Josu; Lopez-Pavon, Jacobo
2016-08-01
We derive general constraints on the mixing of heavy Seesaw neutrinos with the SM fields from a global fit to present flavour and electroweak precision data. We explore and compare both a completely general scenario, where the heavy neutrinos are integrated out without any further assumption, and the more constrained case were only 3 additional heavy states are considered. The latter assumption implies non-trivial correlations in order to reproduce the correct neutrino masses and mixings as observed by oscillation data and thus some qualitative differences can be found with the more general scenario. The relevant processes analyzed in the global fit include searches for Lepton Flavour Violating (LFV) decays, probes of the universality of weak interactions, CKM unitarity bounds and electroweak precision data. In particular, a comparative and detailed study of the present and future sensitivity of the different LFV experiments is performed. We find a mild 1-2σ preference for non-zero heavy neutrino mixing of order 0.03-0.04 in the electron and tau sectors. At the 2σ level we derive bounds on all mixings ranging from 0.1 to 0.01 with the notable exception of the e - μ sector with a more stringent bound of 0.005 from the μ → eγ process.
Naturalness of Electroweak Symmetry Breaking while Waiting for the LHC
Espinosa, J. R.
2007-06-19
After revisiting the hierarchy problem of the Standard Model and its implications for the scale of New Physics, I consider the finetuning problem of electroweak symmetry breaking in several scenarios beyond the Standard Model: SUSY, Little Higgs and ''improved naturalness'' models. The main conclusions are that: New Physics should appear on the reach of the LHC; some SUSY models can solve the hierarchy problem with acceptable residual tuning; Little Higgs models generically suffer from large tunings, many times hidden; and, finally, that ''improved naturalness'' models do not generically improve the naturalness of the SM.
Electroweak and b-physics at the Tevatron collider
Hara, K.
1994-04-01
The CDF and D0 experiments have collected integrated luminosities of 21 pb{sup {minus}1} and 16 pb{sup {minus}1}, respectively, in the 1992--1993 run (Run Ia) at the Fermilab Tevatron. Preliminary results on electroweak physics are reported from both experiments: the W mass, the leptonic branching ratios {Tau}(W {yields} {ell}{nu}), the total W width, gauge boson couplings, W decay asymmetry and W{prime}/Z{prime} search. Preliminary new results on b physics are presented: B{sup o} {minus} {bar B}{sup o} mixing from D0, and masses and lifetimes of B{minus}mesons from CDF.
Spontaneous CP symmetry breaking at the electroweak scale
Valenzuela, Cristian
2005-05-01
We present a top-condensation model in which the CP symmetry is spontaneously broken at the electroweak scale due to the condensation of two composite Higgs doublets. In particular the CP-violating phase of the Cabibbo-Kobayashi-Maskawa quark-mixing matrix is generated. A simpler model where only one quark family is included is also discussed. In this case, for a general four-fermion interaction (G{sub tb}{ne}0), the particle spectrum is the one of the one Higgs doublet model.
Electroweak and top physics results from D0
Bhat, Pushpalatha C.; /Fermilab
2004-12-01
The collider Run II at Fermilab that started in March 2001 with upgraded accelerator complex and detectors is progressing extremely well. An integrated luminosity of 670 pb{sup -1} was delivered to the CDF and D0 experiments each, by the end of August 2004. Additional planned upgrades to the accelerators will result in an integrated luminosity of 4-8 fb{sup -1} for each experiment by the end of 2009. I present some preliminary electroweak and top quark physics measurements made by the D0 collaboration analyzing data sets corresponding to integrated luminosity in the range of 150-250 pb{sup -1}.
Observation of Electroweak Single Top-Quark Production with the CDF II Experiment
Lueck, Jan
2009-07-24
predicted cross section. Therefore, the vast majority of the CDF and D0 single top-quark analyses search for the combined s- and t-channel signal, with the production ratio to be given by the SM. In Tevatron Run I, several limits on the single top-quark production cross section were set by CDF and D0, whereas in Run II, even stronger limits followed by both collaborations. Furthermore, limits on the non-SM production of single top-quarks via flavor-changing neutral currents could be obtained. The electroweak production of single top-quarks has not yet been observed up to the time of this thesis, although the D0 and shortly thereafter the CDF Collaborations found first evidence. The experimental challenge of the search for single top-quark production is the tiny expected signal beneath a large and imprecisely known amount of background processes. The relative fraction of background events is at the order of about ten times higher compared to the top-quark pair production. Consequently, the expected signal amounts to about 5% of the full candidate event sample whose background contribution is only known to a level at the order of 20%. Furthermore, the signal events themselves are expected to be not as distinct from the background as the top-quark pair production since there is only one heavy object present in the event. Thus, experimental methods like simple counting experiments are not sufficiently sensitive and the development of more sophisticated analysis techniques is required to distinguish such small signals from alike and inaccurately known background processes. Neural networks comply with those requirements. They can be used to distinguish between signal and background processes by combining the information contained in several variables into a powerful discriminant, while each variable has a rather low separation capability. The application of those neural network discriminants to collision data provide a method for the extraction of the signal fraction and its
Topological interactions in the Higgsless model at the LHC
Perelstein, Maxim; Qi Yonghui
2010-07-01
Topological quantum interactions, namely, Chern-Simons terms and global Wess-Zumino terms, arise naturally in theories with extra dimensions of space compactified on orbifolds. If the extra dimensions become manifest at the TeV scale, experiments at the Large Hadron Collider (LHC) could observe signatures of topological interactions. Decays of Kaluza-Klein excitations of neutral electroweak gauge bosons into pairs of neutral standard model gauge bosons, Z{sup 0}Z{sup 0} and Z{sup 0{gamma}}, would provide a clean signature, since such decays do not occur at tree level. In this paper, we investigate the prospects for discovering such decays at the LHC, in the context of the Higgsless model of electroweak symmetry breaking. We identify the form of the relevant topological interactions, and estimate their strength. We find that in the minimal version of the model, the signal may be observed with about 100 fb{sup -1} of data at the LHC using the Drell-Yan production process of the Kaluza-Klein gauge bosons. In addition, it is likely that the ultraviolet completion of the model would contain additional massive fermions, which can significantly enhance the signal. With two additional fermion multiplets, observation of the topological decay modes at the 3-sigma level would be possible with about 100 fb{sup -1} of data using the highly model-independent vector-boson fusion production channel.
NASA Astrophysics Data System (ADS)
Civitarese, O.; Suhonen, J.; Zuber, K.
2015-07-01
The minimal extension of the standard model of electroweak interactions allows for massive neutrinos, a massive right-handed boson WR, and a left-right mixing angle ζ. While an estimate of the light (electron) neutrino can be extracted from the non-observation of the neutrinoless double beta decay, the limits on the mixing angle and the mass of the righthanded (RH) boson may be extracted from a combined analysis of the double beta decay measurements (GERDA, EXO-200 and KamLAND-Zen collaborations) and ATLAS data on the two-jets two-leptons signals following the excitation of a virtual RH boson mediated by a heavy-mass neutrino. In this work we shall compare results of both types of experiments, and show that the estimates are not in tension.
Electroweak Symmetry Breaking via UV Insensitive Anomaly Mediation
Kitano, Ryuichiro; Kribs, Graham D.; Murayama, Hitoshi
2004-02-19
Anomaly mediation solves the supersymmetric flavor and CP problems. This is because the superconformal anomaly dictates that supersymmetry breaking is transmitted through nearly flavor-blind infrared physics that is highly predictive and UV insensitive. Slepton mass squareds, however, are predicted to be negative. This can be solved by adding D-terms for U(1)_Y and U(1)_{B-L} while retaining the UV insensitivity. In this paper we consider electroweak symmetry breaking via UV insensitive anomaly mediation in several models. For the MSSM we find a stable vacuum when tanbeta< 1, but in this region the top Yukawa coupling blows up only slightly above the supersymmetry breaking scale. For the NMSSM, we find a stable electroweak breaking vacuum but with a chargino that is too light. Replacing the cubic singlet term in the NMSSM superpotential with a term linear in the singlet wefind a stable vacuum and viable spectrum. Most of the parameter region with correct vacua requires a large superpotential coupling, precisely what is expected in the"Fat Higgs'" model in which the superpotential is generated dynamically. We have therefore found the first viable UV complete, UV insensitive supersymmetry breaking model that solves the flavor and CP problems automatically: the Fat Higgs model with UV insensitive anomaly mediation. Moreover, the cosmological gravitino problem is naturally solved, opening up the possibility of realistic thermal leptogenesis.
A pedagogical review of electroweak symmetry breaking scenarios
NASA Astrophysics Data System (ADS)
Bhattacharyya, Gautam
2011-02-01
We review different avenues of electroweak symmetry breaking explored over the years. This constitutes a timely exercise as the world's largest and the highest energy particle accelerator, namely, the Large Hadron Collider (LHC) at CERN near Geneva, has started running whose primary mission is to find the Higgs or some phenomena that mimic the effects of the Higgs, i.e. to unravel the mysteries of electroweak phase transition. In the beginning, we discuss the Standard Model Higgs mechanism. After that we review the Higgs sector of the minimal supersymmetric Standard Model. Then we take up three relatively recent ideas: little Higgs, gauge-Higgs unification and Higgsless scenarios. For the latter three cases, we first present the basic ideas and restrict our illustration to some instructive toy models to provide an intuitive feel of the underlying dynamics, and then discuss, for each of the three cases, how more realistic scenarios are constructed and how to decipher their experimental signatures. Wherever possible, we provide pedagogical details, which beginners might find useful.
Electroweak vacuum stability and the seesaw mechanism revisited
NASA Astrophysics Data System (ADS)
Ng, J. N.; de la Puente, Alejandro
2016-03-01
We study the electroweak vacuum stability in Type I seesaw models for three generations of neutrinos in scenarios where the right-handed neutrinos have explicit bare mass terms in the Lagrangian and where these are dynamically generated through the mechanism of spontaneous symmetry breaking. To best highlight the difference of the two cases we concentrate on the absolute stability of the scalar potential. We observe that for the first scenario, the scale at which the scalar potential becomes unstable is lower from that within the standard model. In addition the Yukawa couplings {Y}_ν are constrained such that {Tr}{[{Y}^{dagger }_ν {Y}_{ν }}] ≲ 10^{-3}. In the second scenario the electroweak stability can be improved in a large region of parameter space. However, we found that the scalar used to break the lepton number symmetry cannot be too light and have a large coupling to right-handed neutrinos in order for the seesaw mechanism to be a valid mechanism for neutrino mass generation. In this case we have {Tr}[{Y}^dagger _{ν } {Y}_ν ]≲ 0.01.
Hearing the echoes of electroweak baryogenesis with gravitational wave detectors
NASA Astrophysics Data System (ADS)
Huang, Fa Peng; Wan, Youping; Wang, Dong-Gang; Cai, Yi-Fu; Zhang, Xinmin
2016-08-01
We report on the first joint analysis of observational signatures from the electroweak baryogenesis in both gravitational wave (GW) detectors and particle colliders. With an effective extension of the Higgs sector in terms of the dimension-six operators, we derive a strong first-order phase transition associated with a sizable CP violation to realize a successful electroweak baryogenesis. We calculate the GW spectrum resulting from the bubble nucleation, plasma transportation, and magnetohydrodynamic turbulence of this process that occurred after the big bang and find that it yields GW signals testable with the Evolved Laser Interferometer Space Antenna, Deci-hertz Interferometer Gravitational Wave Observatory, and Big Bang Observer. We further identify collider signals from the same mechanism that are observable at the planning Circular Electron Positron Collider. Our analysis bridges astrophysics and cosmology with particle physics by providing significant motivation for searches for GW events peaking at the (1 0-4,1 ) Hz range, which are associated with signals at colliders, and highlights the possibility of an interdisciplinary observational window into baryogenesis. The technique applied in analyzing early Universe phase transitions may enlighten the study of phase transitions in applied science.
Galvano-rotational effect induced by electroweak interactions in pulsars
Dvornikov, Maxim
2015-05-21
We study electroweakly interacting particles in rotating matter. The existence of the electric current along the axis of the matter rotation is predicted in this system. This new galvano-rotational effect is caused by the parity violating interaction between massless charged particles in the rotating matter. We start with the exact solution of the Dirac equation for a fermion involved in the electroweak interaction in the rotating frame. This equation includes the noninertial effects. Then, using the obtained solution, we derive the induced electric current which turns out to flow along the rotation axis. We study the possibility of the appearance of the galvano-rotational effect in dense matter of compact astrophysical objects. The particular example of neutron and hypothetical quark stars is discussed. It is shown that, using this effect, one can expect the generation of toroidal magnetic fields comparable with poloidal ones in old millisecond pulsars. We also briefly discuss the generation of the magnetic helicity in these stars. Finally we analyze the possibility to apply the galvano-rotational effect for the description of the asymmetric neutrino emission from a neutron star to explain pulsars kicks.
Probing the electroweak phase transition at the LHC
NASA Astrophysics Data System (ADS)
Huang, Peisi; Joglekar, Aniket; Li, Bing; Wagner, Carlos E. M.
2016-03-01
We study the correlation between the value of the triple Higgs coupling and the nature of the electroweak phase transition. We use an effective potential approach, including higher order, nonrenormalizable terms coming from integrating out new physics. We show that if only the dimension six operators are considered, large positive deviations of the triple Higgs coupling from its standard model (SM) value are predicted in the regions of parameter space consistent with a strong first order electroweak phase transition. We also show that at higher orders sizable and negative deviations of the triple Higgs coupling may be obtained, and the sign of the corrections tends to be correlated with the order of the phase transition. We also consider a singlet extension of the SM, which allows us to establish the connection with the effective field theory approach and analyze the limits of its validity. Furthermore, we study how to probe the triple Higgs coupling from the double Higgs production at the LHC. We show that selective cuts in the invariant mass of the two Higgs bosons should be used, to maximize the sensitivity for values of the triple Higgs coupling significantly different from the standard model one.
Diffractive heavy flavor production-including W/sup +-/ and Z/sup 0/
White, A.R.
1986-01-01
It is shown that when the Pomeron has the semiperturbative origin in QCD, diffractive heavy quark production is independent from, and not suppressed relative to, the perturbative gluon fusion process. It is emphasized that anomalously large diffractive heavy flavor cross-sections could anticipate correspondingly large cross-sections for the diffractive production of W/sup +-/ and Z/sup 0/-providing distinctive evidence for the dynamical nature of the electroweak Higgs sector.
Dynamics Behind the Quark Mass Hierarchy and Electroweak Symmetry breaking
NASA Astrophysics Data System (ADS)
Miransky, Vladimir A.
2011-05-01
I review the dynamics in a new class of models describing the quark mass hierarchy, suggested recently by Michio Hashimoto and the author. In this class, the dynamics primarily responsible for electroweak symmetry breaking (EWSB) leads to the mass spectrum of quarks with no (or weak) isospin violation. Moreover, the values of these masses are of the order of the observed masses of the down-type quarks. Then, strong (although subcritical) horizontal diagonal interactions for the t quark plus horizontal flavor-changing neutral interactions between different families lead (with no fine tuning) to a realistic quark mass spectrum. In this scenario, many composite Higgs bosons occur. A concrete model with the dynamical EWSB with the fourth family is described in detail.
Dynamics Behind the Quark Mass Hierarchy and Electroweak Symmetry breaking
Miransky, Vladimir A.
2011-05-24
I review the dynamics in a new class of models describing the quark mass hierarchy, suggested recently by Michio Hashimoto and the author. In this class, the dynamics primarily responsible for electroweak symmetry breaking (EWSB) leads to the mass spectrum of quarks with no (or weak) isospin violation. Moreover, the values of these masses are of the order of the observed masses of the down-type quarks. Then, strong (although subcritical) horizontal diagonal interactions for the t quark plus horizontal flavor-changing neutral interactions between different families lead (with no fine tuning) to a realistic quark mass spectrum. In this scenario, many composite Higgs bosons occur. A concrete model with the dynamical EWSB with the fourth family is described in detail.
Recent Run II Electroweak and QCD Results from D0
Robert L. Kehoe
2003-12-17
The D0 Detector is a hermetic, multipurpose detector residing at one interaction region designated for p{bar p} collisions at 2 TeV at the Fermilab Tevatron. Both the detector and accelerator have undergone major upgrades to increase the luminosity and handle higher interaction rates. This paper presents recent results from Run II data which explore QCD and electroweak physics at the energy frontier. The dijet mass cross section and a search for Z' in dielectron decays are presented, and these are already approaching sensitivities seen in Run I. Additionally, the first measurement of the {sigma}{sub Z} * BR(Z {yields} {mu}{mu}) is given for the new collision energy.
On a model of dynamical breaking of the electroweak symmetry
NASA Astrophysics Data System (ADS)
Arbuzov, B. A.
1992-08-01
A model of dynamical breaking of the symmetry of the electroweak interaction is proposed. It is based on a self-consistent mechanism of the appearance of an additional gauge invariant vertex. The conditions of spontaneous symmetry breaking in the mass operators of W, Z and in the form factor of the vertex give a set of equations. There exist solutions breaking the symmetry which bear no contradiction to the existing data. The model defines the Weinberg mixing angle sin 2θw ≈ 0.34 with the possible accuracy of (20-30)%. The mechanism predicts strong W and Z multiple production in e+e- reactions at TeV energies.
The electroweak axion, dark energy, inflation and baryonic matter
McLerran, L.
2015-03-15
In a previous paper [1], the standard model was generalized to include an electroweak axion which carries baryon plus lepton number, B + L. It was shown that such a model naturally gives the observed value of the dark energy, if the scale of explicit baryon number violation A was chosen to be of the order of the Planck mass. In this paper, we consider the effect of the modulus of the axion field. Such a field must condense in order to generate the standard Goldstone boson associated with the phase of the axion field. This condensation breaks baryon number. We argue that this modulus might be associated with inflation. If an additional B − L violating scalar is introduced with a mass similar to that of the modulus of the axion field, we argue that decays of particles associated with this field might generate an acceptable baryon asymmetry.
Electroweak radiative corrections to triple photon production at the ILC
NASA Astrophysics Data System (ADS)
Zhang, Yu; Li, Wei-Hua; Duan, Peng-Fei; Song, Mao; Li, Gang
2016-07-01
In this paper, we present the precision predictions for three photon production in the standard model (SM) at the ILC including the full next-to-leading (NLO) electroweak (EW) corrections, high order initial state radiation (h.o.ISR) contributions and beamstrahlung effects. We present the LO and the NLO EW + h.o.ISR + beamstrahlung corrected total cross sections for various colliding energy when √{ s} ≥ 200 GeV and the kinematic distributions of final photons with √{ s} = 500 GeV at ILC, and find that the NLO EW corrections, the h.o.ISR contributions and the beamstrahlung effects are important in exploring the process e+e- → γγγ.
Electric dipole moment constraints on minimal electroweak baryogenesis
Huber, Stephan J.; Pospelov, Maxim; Ritz, Adam
2007-02-01
We study the simplest generic extension of the standard model which allows for conventional electroweak baryogenesis, through the addition of dimension-six operators in the Higgs sector. At least one such operator is required to be CP-odd, and we study the constraints on such a minimal setup, and related scenarios with minimal flavor violation, from the null results of searches for electric dipole moments (EDMs), utilizing the full set of two-loop contributions to the EDMs. The results indicate that the current bounds are stringent, particularly that of the recently updated neutron EDM, but fall short of ruling out these scenarios. The next generation of EDM experiments should be sufficiently sensitive to provide a conclusive test.
CDF electroweak studies and the search for the top quark
Frisch, H.J.; CDF Collaboration
1994-02-01
The second major run of the {bar p}p Fermilab Tevatron Collider ended on May 30. The CDF detector has accumulated almost five times the data sample of its previous 1988-1989 run. The author presents new results on electroweak physics, including the ratio of W to Z boson production cross-sections, and the charge asymmetry in W decay. He gives a progress report on the measurement of the W mass. New results from the 1988-1989 data on W-{gamma} production are also presented. The status of the search for the top quark in the dilepton modes is described. In addition a status report of the ongoing search in the lepton + jets mode is given.
Nonperturbative quantization of the electroweak model's electrodynamic sector
NASA Astrophysics Data System (ADS)
Fry, M. P.
2015-04-01
Consider the Euclidean functional integral representation of any physical process in the electroweak model. Integrating out the fermion degrees of freedom introduces 24 fermion determinants. These multiply the Gaussian functional measures of the Maxwell, Z , W , and Higgs fields to give an effective functional measure. Suppose the functional integral over the Maxwell field is attempted first. This paper is concerned with the large amplitude behavior of the Maxwell effective measure. It is assumed that the large amplitude variation of this measure is insensitive to the presence of the Z , W , and H fields; they are assumed to be a subdominant perturbation of the large amplitude Maxwell sector. Accordingly, we need only examine the large amplitude variation of a single QED fermion determinant. To facilitate this the Schwinger proper time representation of this determinant is decomposed into a sum of three terms. The advantage of this is that the separate terms can be nonperturbatively estimated for a measurable class of large amplitude random fields in four dimensions. It is found that the QED fermion determinant grows faster than exp [c e2∫d4x Fμν 2] , c >0 , in the absence of zero mode supporting random background potentials. This raises doubt on whether the QED fermion determinant is integrable with any Gaussian measure whose support does not include zero mode supporting potentials. Including zero mode supporting background potentials can result in a decaying exponential growth of the fermion determinant. This is prima facie evidence that Maxwellian zero modes are necessary for the nonperturbative quantization of QED and, by implication, for the nonperturbative quantization of the electroweak model.
Higgs bosons, electroweak symmetry breaking, and the physics of the Large Hadron Collider
Quigg, Chris; /Fermilab /CERN
2007-02-01
The Large Hadron Collider, a 7 {circle_plus} 7 TeV proton-proton collider under construction at CERN (the European Laboratory for Particle Physics in Geneva), will take experiments squarely into a new energy domain where mysteries of the electroweak interaction will be unveiled. What marks the 1-TeV scale as an important target? Why is understanding how the electroweak symmetry is hidden important to our conception of the world around us? What expectations do we have for the agent that hides the electroweak symmetry? Why do particle physicists anticipate a great harvest of discoveries within reach of the LHC?
Non-canonical inflation coupled to matter
NASA Astrophysics Data System (ADS)
Céspedes, Sebastián; Davis, Anne-Christine
2015-11-01
We compute corrections to the inflationary potential due to conformally coupled non-relativistic matter. We find that under certain conditions of the matter coupling, inflation may be interrupted abruptly. We display this in the superconformal Starobinsky model, where matter is conformally coupled to the Einstein frame metric. These corrections may easily stop inflation provided that there is an initial density of non-relativistic matter. Since these additional heavy degrees of freedom generically occur in higher dimension theories, for example as Kaluza-Klein modes, this effect can arise in multiple scenarios.
NASA Astrophysics Data System (ADS)
Liebler, Stefan; Profumo, Stefano; Stefaniak, Tim
2016-04-01
We investigate the implications of the Higgs rate measurements from Run 1 of the LHC for the mass of the light scalar top partner (stop) in the Minimal Supersymmetric Standard Model (MSSM). We focus on light stop masses, and we decouple the second, heavy stop and the gluino to the multi-TeV range in order to obtain a Higgs mass of ˜ 125 GeV. We derive lower mass limits for the light stop within various scenarios, taking into account the effects of a possibly light scalar tau partner (stau) or chargino on the Higgs rates, of additional Higgs decays to undetectable "new physics", as well as of non-decoupling of the heavy Higgs sector. Under conservative assumptions, the stop can be as light as 123 GeV. Relaxing certain theoretical and experimental constraints, such as vacuum stability and model-dependent bounds on sparticle masses from LEP, we find that the light stop mass can be as light as 116 GeV. Our indirect limits are complementary to direct limits on the light stop mass from collider searches and have important implications for electroweak baryogenesis in the MSSM as a possible explanation for the observed matter-antimatter asymmetry of the Universe.
Electroweak corrections to squark--anti-squark pair production at the LHC
Hollik, W.; Mirabella, E.
2008-11-23
Presented are the complete NLO electroweak contributions to the production of diagonal squark--anti-squark pairs at the LHC. We discuss their effects for the production of squarks of the first two generations, in different SUSY scenarios.
Electroweak corrections and Bloch-Nordsieck violations in 2-to-2 processes at the LHC
NASA Astrophysics Data System (ADS)
Stirling, W. J.; Vryonidou, E.
2013-04-01
We consider the effect of next-to-leading order (NLO) electroweak corrections to Standard Model 2 → 2 processes, taking into account the potentially large double logarithms originating from both real and virtual corrections. A study of the leading Sudakov logarithms is presented and Bloch-Nordsieck (BN) violations are discussed for processes at the CERN Large Hadron Collider. In particular, we focus on the processes Z/γ+jet and also the ratio of Z to γ production. This ratio is known to be insensitive to NLO QCD corrections but this is not expected to be the case for the electroweak corrections. We also comment on the effect of electroweak corrections and the presence of BN violation for QCD processes, in particular dijet production, and also for purely electroweak processes such as W + H and W + Z associated production.
Precision Studies of Hadronic and Electro-Weak Interactions for Collider Physics. Final Report
Yost, Scott A
2014-04-02
This project was directed toward developing precision computational tools for proton collisions at the Large Hadron Collider, focusing primarily on electroweak boson production and electroweak radiative corrections. The programs developed under this project carried the name HERWIRI, for High Energy Radiation With Infra-Red Improvements, and are the first steps in an ongoing program to develop a set of hadronic event generators based on combined QCD and QED exponentiation. HERWIRI1 applied these improvements to the hadronic shower, while HERWIRI2 will apply the electroweak corrections from the program KKMC developed for electron-positron scattering to a hadronic event generator, including exponentiated initial and final state radiation together with first-order electroweak corrections to the hard process. Some progress was also made on developing differential reduction techniques for hypergeometric functions, for application to the computation of Feynman diagrams.
Disappearing inflaton potential via heavy field dynamics
NASA Astrophysics Data System (ADS)
Kitajima, Naoya; Takahashi, Fuminobu
2016-02-01
We propose a possibility that the inflaton potential is significantly modified after inflation due to heavy field dynamics. During inflation such a heavy scalar field may be stabilized at a value deviated from the low-energy minimum. In extreme cases, the inflaton potential vanishes and the inflaton becomes almost massless at some time after inflation. Such transition of the inflaton potential has interesting implications for primordial density perturbations, reheating, creation of unwanted relics, dark radiation, and experimental search for light degrees of freedom. To be concrete, we consider a chaotic inflation in supergravity where the inflaton mass parameter is promoted to a modulus field, finding that the inflaton becomes stable after the transition and contributes to dark matter. Another example is a hilltop inflation (also called new inflation) by the MSSM Higgs field which acquires a large expectation value just after inflation, but it returns to the origin after the transition and finally rolls down to the electroweak vacuum. Interestingly, the smallness of the electroweak scale compared to the Planck scale is directly related to the flatness of the inflaton potential.
Gauge-Higgs unification, neutrino masses, and dark matter in warped extra dimensions
Carena, Marcela; Medina, Anibal D.; Shah, Nausheen R.; Wagner, Carlos E. M.
2009-05-01
Gauge-Higgs unification in warped extra dimensions provides an attractive solution to the hierarchy problem. The extension of the standard model gauge symmetry to SO(5)xU(1){sub X} allows the incorporation of the custodial symmetry SU(2){sub R} plus a Higgs boson doublet with the right quantum numbers under the gauge group. In the minimal model, the Higgs mass is in the range 110-150 GeV, while a light Kaluza-Klein excitation of the top quark appears in the spectrum, providing agreement with precision electroweak measurements and a possible test of the model at a high luminosity LHC. The extension of the model to the lepton sector has several interesting features. We discuss the conditions necessary to obtain realistic charged lepton and neutrino masses. After the addition of an exchange symmetry in the bulk, we show that the odd neutrino Kaluza-Klein modes provide a realistic dark-matter candidate, with a mass of the order of 1 TeV, which will be probed by direct dark-matter detection experiments in the near future.
Flavor-changing decays of the top quark in 5D warped models
NASA Astrophysics Data System (ADS)
Díaz-Furlong, Alfonso; Frank, Mariana; Pourtolami, Nima; Toharia, Manuel; Xoxocotzi, Reyna
2016-08-01
We study flavor-changing neutral current decays of the top quark in the context of general warped extra dimensions, where the five-dimensional (5D) metric is slightly modified from 5D anti-de Sitter (AdS5 ). These models address the Planck-electroweak hierarchies of the Standard Model and can obey all the low-energy flavor bounds and electroweak precision tests, while allowing the scale of new physics to be at the TeV level, and thus within the reach of the LHC at Run II. We perform the calculation of these exotic top decay rates for the case of a bulk Higgs, and thus include in particular the effect of the additional Kaluza-Klein (KK) Higgs modes running in the loops, along with the usual KK fermions and KK gluons.
Cox, B.; Gilman, F.J.; Gottschalk, T.D.
1986-11-01
A range of issues pertaining to heavy flavors at the SSC is examined including heavy flavor production by gluon-gluon fusion and by shower evolution of gluon jets, flavor tagging, reconstruction of Higgs and W bosons, and the study of rare decays and CP violation in the B meson system. A specific detector for doing heavy flavor physics and tuned to this latter study at the SSC, the TASTER, is described. 36 refs., 10 figs.
Electroweak baryogenesis in a scalar-assisted vectorlike fermion model
NASA Astrophysics Data System (ADS)
Xiao, Ming-Lei; Yu, Jiang-Hao
2016-07-01
We extend the standard model to a scalar-assisted vectorlike fermion model to realize electroweak baryogenesis. The extended Cabibbo-Kobayashi-Maskawa matrix, due to the mixing among the vectorlike quark and the standard model quarks, provides additional sources of the C P violation. Together with the enhancement from a large vectorlike quark mass, a large enough baryon-to-photon ratio could be obtained. The strongly first-order phase transition could be realized via the potential barrier which separates the broken minimum and the symmetric minimum in the scalar potential. We investigate in detail the one loop temperature-dependent effective potential and perform a random parameter scan to study the allowed parameter region that satisfies the strongly first order phase transition criteria vc≥Tc. Several distinct patterns of phase transition are classified and discussed. Among these patterns, a large trilinear mass term between the Higgs boson and the scalar is preferred, for it controls the width of the potential barrier. Our results indicate large quartic scalar couplings and a moderate mixing angle between the Higgs boson and the new scalar. This parameter region could be further explored at the Run 2 LHC.
Parity-violating electroweak asymmetry in {rvec e} p scattering
Konrad Aniol; David Armstrong; Todd Averett; Maud Baylac; Etienne Burtin; John Calarco; Gordon Cates; Christian Cavata; Zhengwei Chai; C. Chang; Jian-Ping Chen; Eugene Chudakov; Evaristo Cisbani; Marius Coman; Daniel Dale; Alexandre Deur; Pibero Djawotho; Martin Epstein; Stephanie Escoffier; Lars Ewell; Nicolas Falletto; John Finn; Kevin Fissum; A.Fleck; Bernard Frois; Salvatore Frullani; Haiyan Gao; Franco Garibaldi; Ashot Gasparian; G.Gerstner; Ronald Gilman; Oleksandr Glamazdin; Javier Gomez; Viktor Gorbenko; Jens-Ole Hansen; F. Hersman; Douglas Higinbotham; Richard Holmes; Maurik Holtrop; Thomas Humensky; Sebastien Incerti; Mauro Iodice; Cornelis de Jager; David Jardillier; Xiaodong Jiang; Mark Jones; J.Jorda; Christophe Jutier; Kahl; James Kelly; Donghee Kim; Min Kim; Minsuk Kim; Ioannis Kominis; Edgar Kooijman; Kevin Kramer; Krishna Kumar; Michael Kuss; John LeRose; Raffaele De Leo; M.Leuschner; David Lhuillier; Meihua Liang; Nilanga Liyanage; R.Lourie; Richard Madey; Sergey Malov; Demetrius Margaziotis; Frederic Marie; Pete Markowitz; Jacques Martino; Peter Mastromarino; Kathy McCormick; Justin McIntyre; Zein-Eddine Meziani; Robert Michaels; Brian Milbrath; Gerald Miller; Joseph Mitchell; Ludyvine Morand; Damien Neyret; Charles Perdrisat; Gerassimos Petratos; Roman Pomatsalyuk; John Price; David Prout; Vina Punjabi; Thierry Pussieux; Gilles Quemener; Ronald Ransome; David Relyea; Yves Roblin; Julie Roche; Gary Rutledge; Paul Rutt; Marat Rvachev; Franck Sabatie; Arunava Saha; Paul Souder; Marcus Spradlin; Steffen Strauch; Riad Suleiman; Jeffrey Templon; Tatsuo Terasawa; J.Thompson; Raphael Tieulent; Luminita Todor; Baris Tonguc; Paul Ulmer; Guido Urciuoli; Branislav Vlahovic; Krishni Wijesooriya; R.Wilson; Bogdan Wojtsekhowski; Rhett Woo; Wang Xu; Imran Younus; C. Zhang
2004-02-01
We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from protons. Significant contributions to this asymmetry could arise from the contributions of strange form factors in the nucleon. The measured asymmetry is A = -15.05 {+-} 0.98(stat) {+-} 0.56(syst) ppm at the kinematic point <{theta}{sub lab}> = 12.3{sup o} and = 0.477 (GeV/c){sup 2}. Based on these data as well as data on electromagnetic form factors, we extract the linear combination of strange form factors G{sub E}{sup s} + 0.392G{sub M}{sup s} = 0.014 {+-} 0.020 {+-} 0.010 where the first error arises from this experiment and the second arises from the electromagnetic form factor data. This paper provides a full description of the special experimental techniques employed for precisely measuring the small asymmetry, including the first use of a strained GaAs crystal and a laser-Compton polarimeter in a fixed target parity-violation experiment.
Electroweak Structure of Three- and Four-Body Nuclei
Laura Marcucci
2000-06-01
This work reports results for (i) the elastic electromagnetic form factors of the trin- of ucleons; (ii) the nuclear response functions of interest in ~ experiments, 3 He(~e; e 0 ) experiments, at VERSITY excitation energies below the deuteron breakup threshold; (iii) the astrophysical ark S-factor for proton weak capture on 3 He (the hep reaction). The initial and nal using state wave functions are calculated using the correlated hyperspherical harmonics onsisting method, from a realistic Hamiltonian consisting of the Argonne v 18 two-nucleon uclear and Urbana IX three-nucleon interactions. The nuclear electroweak charge and ts. current operators include one- and many-body components. The predicted mag- netic form factor of 3 H, charge form factors and static properties of both 3 H and ntal 3 He, are in satisfactory agreement with the experimental data. However, the po- sition of the zero in the magnetic form factor of 3 He is underpredicted by theory. disintegration The calculated nuclear response functions in 3 He electrodisintegration at thresh- er old are in good agreement with the experimental data, which have however rather s large errors. Finally, the astrophysical S-factor for the hep reaction is predicted ortant ' 4.5 larger than the value adopted in the standard-solar-model, with important consequences for the solar neutrino spectrum measured by the Super-Kamiokande collaboration.
Electroweak and top physics at CDF in Run II
A. Taffard
2003-06-12
The CDF experiment at the Tevatron has used p{bar p} collisions at {radical}s = 1.96 TeV to measure the production cross sections of W and Z bosons using several leptonic final states. An indirect measurement of the W width and the ratio of tau and electron electroweak couplings have been extracted. The forward-backward charge asymmetry, A{sub FB}, in Drell-Yan dilectron production has been measured up to an invariant mass of 600 GeV/c{sup 2}. CDF has also started looking for WW production in the dilepton channel, WW{prime} {yields} ll{prime}vv, with the aim of measuring its cross section and derive limits on the anomalous WWZ and WW{gamma} couplings. The presence of a top quark signal in the Tevatron data has been reestablished by measuring the top quark pair production cross section in the dilepton channel, t{bar t} {yields} WbW{bar b} {yields} {bar l}v{sub l}bl{prime}{bar v}{sub l{prime}}{bar b} and in the lepton plus jets channel, t{bar t} {yields} WbW{bar b} {yields} q{bar q}lbl{bar b}{sub l}{bar b} + {bar l}v{sub l}bq{bar q}{prime}{bar b}. A pre-tagged lepton plus jets sample has also been used to reconstruct the top quark mass.
Electroweak interacting dark matter with a singlet scalar portal
NASA Astrophysics Data System (ADS)
Chiang, Cheng-Wei; Senaha, Eibun
2015-11-01
We investigate an electroweak interacting dark matter (DM) model in which the DM is the neutral component of the SU(2)L triplet fermion that couples to the standard model (SM) Higgs sector via an SM singlet Higgs boson. In this setup, the DM can have a CP-violating coupling to the singlet Higgs boson at the renormalizable level. As long as the nonzero Higgs portal coupling (singlet-doublet Higgs boson mixing) exists, we can probe CP violation of the DM via the electric dipole moment of the electron. Assuming the O (1) CP-violating phase in magnitude, we investigate the relationship between the electron EDM and the singlet-like Higgs boson mass and coupling. It is found that for moderate values of the Higgs portal couplings, current experimental EDM bound is not able to exclude the wide parameter space due to a cancellation mechanism at work. We also study the spin-independent cross section of the DM in this model. It is found that although a similar cancellation mechanism may diminish the leading-order correction, as often occurs in the ordinary Higgs portal DM scenarios, the residual higher-order effects leave an O (10-47) cm2 correction in the cancellation region. It is shown that our benchmark scenarios would be fully tested by combining all future experiments of the electron EDM, DM direct detection and Higgs physics.
Uncovering the single top: Observation of electroweak top quark production
NASA Astrophysics Data System (ADS)
Benitez, Jorge Armando
The top quark is generally produced in quark and anti-quark pairs. However, the Standard Model also predicts the production of only one top quark which is mediated by the electroweak interaction, known as "Single Top." Single Top quark production is important because it provides a unique and direct way to measure the CKM matrix element Vtb, and can be used to explore physics possibilities beyond the Standard Model predictions. This dissertation presents the results of the observation of Single Top using 2.3 fb-1 of Data collected with the DO detector at the Fermilab Tevatron collider. The analysis includes the Single Top muon+jets and electron+jets final states and employs Boosted Decision Tress as a method to separate the signal from the background. The resulting Single Top cross section measurement is: spp→tb+X,tqb+X =3.74+0.95-0.74pb, 1 where the errors include both statistical and systematic uncertainties. The probability to measure a cross section at this value or higher in the absence of signal is p = 1.9 x 10-6. This corresponds to a standard deviation Gaussian equivalence of 4.6. When combining this result with two other analysis methods, the resulting cross section measurement is: spp→tb+X,tqb+X =3.94+/-0.88pb, 2 and the corresponding measurement significance is 5.0 standard deviations.
Electroweak form factors of the Δ (1232 ) resonance
NASA Astrophysics Data System (ADS)
Graczyk, Krzysztof M.; Żmuda, Jakub; Sobczyk, Jan T.
2014-11-01
Nucleon →Δ (1232 ) transition electroweak form factors are discussed in a single pion production model with nonresonant background terms originating from a chiral perturbation theory. Fits to electron-proton scattering F2 as well as neutrino scattering bubble chamber experimental data are performed. Both ν -proton and ν -neutron channel data are discussed in a unified statistical model. A new parametrization of the N →Δ (1232 ) vector form factors is proposed. In the case of model with deuteron nuclear effects fit to neutrino scattering data gives the axial mass MA Δ=0.85-0.08+0.09 GeV and C5A(0 )=1.10-0.14+0.15 in accordance with the Goldberger-Treiman relation. However, the consistency is spoiled when the deuteron effects are omitted; i.e., in this case the fit gives the axial mass MA Δ=0.8 1-0.09+0.09 GeV and C5A(0 )=0.9 3-0.13+0.13 .
Uncovering the single top: observation of electroweak top quark production
Benitez, Jorge Armando
2009-01-01
The top quark is generally produced in quark and anti-quark pairs. However, the Standard Model also predicts the production of only one top quark which is mediated by the electroweak interaction, known as 'Single Top'. Single Top quark production is important because it provides a unique and direct way to measure the CKM matrix element V_{tb}, and can be used to explore physics possibilities beyond the Standard Model predictions. This dissertation presents the results of the observation of Single Top using 2.3 fb^{-1} of Data collected with the D0 detector at the Fermilab Tevatron collider. The analysis includes the Single Top muon+jets and electron+jets final states and employs Boosted Decision Tress as a method to separate the signal from the background. The resulting Single Top cross section measurement is: (1) σ(p$\\bar{p}$→ tb + X, tqb + X) = 3.74_{-0.74}^{+0.95} pb, where the errors include both statistical and systematic uncertainties. The probability to measure a cross section at this value or higher in the absence of signal is p = 1.9 x 10^{-6}. This corresponds to a standard deviation Gaussian equivalence of 4.6. When combining this result with two other analysis methods, the resulting cross section measurement is: (2) σ(p$\\bar{p}$ → tb + X, tqb + X) = 3.94 ± 0.88 pb, and the corresponding measurement significance is 5.0 standard deviations.
LHC Higgs signatures from extended electroweak gauge symmetry
NASA Astrophysics Data System (ADS)
Abe, Tomohiro; Chen, Ning; He, Hong-Jian
2013-01-01
We study LHC Higgs signatures from the extended electroweak gauge symmetry SU(2) ⊗ SU(2) ⊗ U(1). Under this gauge structure, we present an effective UV completion of the 3-site moose model with ideal fermion delocalization, which contains two neutral Higgs states ( h, H) plus three new gauge bosons ( W ' , Z '). We study the unitarity, and reveal that the exact E 2 cancellation in the longitudinal V L V L scattering amplitudes is achieved by the joint role of exchanging both spin-1 new gauge bosons W ' /Z ' and spin-0 Higgs bosons h/H. We identify the lighter Higgs state h with mass 125 GeV, and derive the unitarity bound on the mass of heavier Higgs boson H. The parameter space of this model is highly predictive. We study the production and decay signals of this 125 GeV Higgs boson h at the LHC. We demonstrate that the h Higgs boson can naturally have enhanced signals in the diphoton channel gg → h → γγ, while the event rates in the reactions gg → h → W W ∗ and gg → h → ZZ ∗ are generally suppressed relative to the SM expectation. Searching the h Higgs boson via the associated production and the vector boson fusions are also discussed for our model. We further analyze the LHC signals of the heavier Higgs boson H as a new physics discriminator from the SM. For wide mass-ranges of H, we derive constraints from the existing LHC searches, and study the discovery potential of H at the LHC (8 TeV) and LHC (14 TeV).
Vector resonances from a strong electroweak sector at linear colliders
NASA Astrophysics Data System (ADS)
Casalbuoni, R.; Chiappetta, P.; Deandrea, A.; de Curtis, S.; Dominici, D.; Gatto, R.
1993-06-01
We explore the usefulness of very energetic linear e + e - colliders in the TeV range in studying an alternative scheme of electroweak symmetry breaking based on a strong interacting sector. The calculations are performed within the BESS model which contains new vector resonances. If the mass M V of the new boson multiplet lies not far from the maximum machine energy, or if it is lower, such a resonant contribution would be quite manifest. A result of our analysis is that also virtual effects are important. It appears that annihilation into a fermion pair in such machines, at the considered luminosities, would improve only marginally on existing limits if polarized beams are available and left-right asymmetries are measured. On the other hand, the process of W-pair production by e + e - annihilation would allow for sensitive tests of the hypothesized strong sector, especially if the W polarizations are reconstructed from their decay distributions, and the more so the higher the energy of the machine. An e + e - collider with c.m. energysqrt s = 500 GeV could improve the limits on the model for the range 500< M V (GeV)<1000 when W polarization is not reconstructed. If W polarizations are reconstructed, then the bounds improve for the entire expected range of M V . These bounds become more stringent for larger energy of the collider. We have also studied the detectability of the new resonances through the fusion subprocesses, but this channel does not seem to be interesting even for a collider with a c.m. energysqrt s = 2 TeV.
AbdusSalam, Shehu S.; Chowdhury, Talal Ahmed E-mail: chowdhu@sissa.it
2014-05-01
The extension of the standard model's minimal Higgs sector with an inert SU(2){sub L} scalar doublet can provide light dark matter candidate and simultaneously induce a strong phase transition for explaining Baryogenesis. There is however no symmetry reasons to prevent the extension using scalars with higher SU(2){sub L} representations. By making random scans over the models' parameters, we show that in the light of electroweak physics constraints, strong first order electroweak phase transition and the possibility of having sub-TeV cold dark matter candidate the higher representations are rather disfavored compared to the inert doublet. This is done by computing generic perturbativity behavior and impact on electroweak phase transitions of higher representations in comparison with the inert doublet model. Explicit phase transition and cold dark matter phenomenology within the context of the inert triplet and quartet representations are used for detailed illustrations.
A new dynamics of electroweak symmetry breaking with classically scale invariance
NASA Astrophysics Data System (ADS)
Haba, Naoyuki; Ishida, Hiroyuki; Kitazawa, Noriaki; Yamaguchi, Yuya
2016-04-01
We propose a new dynamics of the electroweak symmetry breaking in a classically scale invariant version of the standard model. The scale invariance is broken by the condensations of additional fermions under a strong coupling dynamics. The electroweak symmetry breaking is triggered by negative mass squared of the elementary Higgs doublet, which is dynamically generated through the bosonic seesaw mechanism. We introduce a real pseudo-scalar singlet field interacting with additional fermions and Higgs doublet in order to avoid massless Nambu-Goldstone bosons from the chiral symmetry breaking in a strong coupling sector. We investigate the mass spectra and decay rates of these pseudo-Nambu-Goldstone bosons, and show they can decay fast enough without cosmological problems. We further show that our model can make the electroweak vacuum stable.
Natural limits of electroweak model as contraction of its gauge group
NASA Astrophysics Data System (ADS)
Gromov, N. A.
2015-06-01
The low and higher energy limits of the electroweak model are obtained from the first principles of gauge theory. Both limits are given by the same contraction of the gauge group, but for the different consistent rescalings of the field space. Mathematical contraction parameter in both cases is interpreted as energy. Very weak neutrino-matter interactions are explained by zero tending contraction parameter, which depends on neutrino energy. The second consistent rescaling corresponds to the higher energy limit of the electroweak model. At the infinite energy all particles lose mass, electroweak interactions become long-range and are mediated by neutral currents. The limit model represents the development of the early Universe from the big bang up to the end of the first second.
Eboli, O.J.P.; Gonzalez-Garcia, M.C.
2004-10-01
We analyze the potential of the CERN Large Hadron Collider (LHC) to study anomalous trilinear vector-boson interactions W{sup +}W{sup -}{gamma} and W{sup +}W{sup -}Z through the single production of electroweak gauge bosons via the weak boson fusion processes qq{yields}qqW({yields}l{sup {+-}}{nu}) and qq{yields}qqZ({yields}l{sup +}l{sup -}) with l=e or {mu}. After a careful study of the standard model backgrounds, we show that the single production of electroweak bosons at the LHC can provide stringent tests on deviations of these vertices from the standard model prediction. In particular, we show that single gauge-boson production exhibits a sensitivity to the couplings {delta}{kappa}{sub Z,{gamma}} similar to that attainable from the analysis of electroweak boson pair production.
Electroweak W+W- jj prodution at NLO in QCD matched with parton shower in the POWHEG-BOX
NASA Astrophysics Data System (ADS)
Jäger, Barbara; Zanderighi, Giulia
2013-04-01
We present an implementation of electroweak W + W - jj production at hadron colliders in the POWHEG framework, a method that allows the interfacing of a next-to-leading order QCD calculation with parton shower Monte Carlo programs. We provide results for both, fully and semi-leptonic decay modes of the weak bosons, taking resonant and non-resonant contributions and spin correlations of the final-state particles into account. To illustrate the versatility of our implementation, we provide phenomenological results for two representative scenarios with a light and with a heavy Higgs boson, respectively, and in a kinematic regime of highly boosted gauge bosons. The impact of the parton shower is found to depend on the setup and the observable under investigation. In particular, distributions related to a central-jet veto are more sensitive to these effects. Therefore the impact of radiation by the parton shower on next-to-leading order predictions should be assessed carefully on a case-by-case basis.
Observation of $t$-channel electroweak top quark production
Triplett, Nathan
2011-01-01
The top quark is the heaviest known fundamental particle, with a mass of 172.0^{+0.9}_{-1.3}GeV. This is nearly twice the mass of the second heaviest known particle, the Z boson, and roughly the mass of a gold atom. Because of its unusually large mass, studying the top quark may provide insight into the Higgs mechanism and other beyond the standard model physics. Only two accelerators in the world are powerful enough to produce top quarks. The Tevatron, which first accelerated protons in 1983, has produced almost 400,000 top quarks, roughly half at each of its two detectors: DO and CDF. The LHC is a much newer accelerator which currently has accumulated about 0.5% as much data as the Tevatron. However, when running at full luminosity, the LHC is capable of producing a top quark about once every second and will quickly surpass the Tevatron as the leading producer of top quarks. This analysis uses data from the DØ detector at the Tevatron, which are described in chapter 3. Top quarks are produced most often in pairs of top and anti-top quarks through an interaction of the strong force. This production mode was first observed in 1995 at the Tevatron. However, top quarks can also be produced though an electroweak interaction, which produces just one top quark. This production mode was first observed at the Tevatron in 2008. Single top quark production can occur in different channels. In this analysis, a measurement of the cross section of the t-channel production mode is performed. This measurement uses 5.4 fb^{-1} of data and uses the technique of boosted decision trees in order to separate signal from background events. The t-channel cross section is measured to be: σ(p$\\bar{p}$ → tqb + X) = 3.03^{+0.78}_{-0.66} pb (0.0.1). Additional cross section measurements were also performed for the s-channel as well as the s + t-channel. The measurement of each one of these three cross sections was repeated three times using
Electro-Weak Penguin and Leptonic Decays in BaBar
Di Lodovico, F.; /Queen Mary, U. of London
2005-09-08
Electro-weak penguin and leptonic decays provide an indirect probe for physics beyond the Standard Model and contribute to the determination of Standard Model parameters. Copious quantities of B mesons produced at the B-Factories permit precision measurements of the electro-weak penguin decays and searches for leptonic decays. We review the current experimental status of b {yields} s(d){gamma}, B{sup 0} {yields} D*{sup 0}{gamma}, b {yields} s{ell}{sup +}{ell}{sup -} and finally B{sup +} {yields} {tau}{sup +}{nu}{sub {tau}} decays at BABAR.
Gravity waves as a probe of the Hubble expansion rate during an electroweak scale phase transition
Chung, Daniel J. H.; Zhou Peng
2010-07-15
Just as big bang nucleosynthesis allows us to probe the expansion rate when the temperature of the Universe was around 1 MeV, the measurement of gravity waves from electroweak scale first order phase transitions may allow us to probe the expansion rate when the temperature of the Universe was at the electroweak scale. We compute the simple transformation rule for the gravity wave spectrum under the scaling transformation of the Hubble expansion rate. We then apply this directly to the scenario of quintessence kination domination and show how gravity wave spectra would shift relative to Laser Interferometer Space Antenna and Big Bang Observer projected sensitivities.
Complete calculation of electroweak corrections for polarized Møller scattering at high energies
NASA Astrophysics Data System (ADS)
Zykunov, V. A.
2009-09-01
A complete calculation of electroweak radiative corrections to observables of polarized Møller scattering at high energies was performed. This calculation took explicitly into account contributions caused by hard bremsstrahlung. A FORTRAN code that permitted including radiative corrections to high-energy Møller scattering under arbitrary electron-detection conditions was written. It was shown that the electroweak corrections caused by hard bremsstrahlung were rather strongly dependent on the choice of experimental cuts and changed substantially the polarization asymmetry in the region of high energies and over a broad interval of scattering angles.
Electroweak properties of octet baryons in a light-cone quark-diquark model
NASA Astrophysics Data System (ADS)
Zhang, Jun; Ma, Bo-Qiang
2016-06-01
We study the electroweak properties of ground state octet baryons in a relativistic quark-spectator-diquark model, with a light-front formalism applied to take relativistic effects into account. Our model provides a consistent picture of the electroweak properties of the ground state octet baryons in the low momentum transfer region. The Melosh-Wigner rotation is applied as the transformation relation between spinors in the instant form and front form. Numerical results are presented for the magnetic moments, weak transition charges, and Sachs form factors. Our results are in good agreement with experimental measurements and other theoretical results.
Implications of Gauge Invariance on a Heavy Diphoton Resonance
Low, Ian; Lykken, Joseph
2015-12-30
Assuming a heavy electroweak singlet scalar, which couples to the Standard Model gauge bosons only through loop-induced couplings, SU(2)_L x U(1)_Y gauge invariance imposes interesting patterns on its decays into electroweak gauge bosons, which are dictated by only two free parameters. Therefore experimental measurements on any two of the four possible electroweak channels would determine the remaining two decay channels completely. Furthermore, searches in the WW/ZZ channels probe a complimentary region of parameter space from searches in the gamma-gamma/Z-gamma channels. We derive a model-independent upper bound on the branching fraction in each decay channel, which for the diphoton channel turns out to be about 61%. Including the coupling to gluons, the upper bound on the diphoton branching fraction implies an upper bound on the mass scale of additional colored particles mediating the gluon-fusion production. Using an event rate of about 5 fb for the reported 750 GeV diphoton excess, we find the new colored particle must be lighter than O(1.7 TeV) and O(2.6 TeV) for a pure CP-even and a pure CP-odd singlet scalar, respectively.
Soft collinear effective theory for heavy WIMP annihilation
NASA Astrophysics Data System (ADS)
Bauer, Martin; Cohen, Timothy; Hill, Richard J.; Solon, Mikhail P.
2015-01-01
In a large class of models for Weakly Interacting Massive Particles (WIMPs), the WIMP mass M lies far above the weak scale m W . This work identifies universal Sudakov-type logarithms ˜ α log2(2 M/m W ) that spoil the naive convergence of perturbation theory for annihilation processes. An effective field theory (EFT) framework is presented, allowing the systematic resummation of these logarithms. Another impact of the large separation of scales is that a long-distance wavefunction distortion from electroweak boson exchange leads to observable modifications of the cross section. Careful accounting of momentum regions in the EFT allows the rigorous disentanglement of this so-called Sommerfeld enhancement from the short-distance hard annihilation process. The WIMP is described as a heavy-particle field, while the electroweak gauge bosons are treated as soft and collinear fields. Hard matching coefficients are computed at renormalization scale μ ˜ 2 M , then evolved down to μ ˜ m W , where electroweak symmetry breaking is incorporated and the matching onto the relevant quantum mechanical Hamiltonian is performed. The example of an SU(2) W triplet scalar dark matter candidate annihilating to line photons is used for concreteness, allowing the numerical exploration of the impact of next-to-leading order corrections and log resummation. For M ≃ 3 TeV, the resummed Sommerfeld enhanced cross section is reduced by a factor of ˜ 3 with respect to the treelevel fixed order result.
Collider searches and cosmology in the MSSM with heavy scalars
Carena, Marcela; Freitas, A.; /Zurich U.
2006-08-01
In a variety of supersymmetric extensions of the Standard Model, the scalar partners of the quarks and leptons are predicted to be very heavy and beyond the reach of next-generation colliders. For instance, the realization of electroweak baryogenesis in supersymmetry requires new sources of CP-violation, which can only be naturally accommodated with electric dipole moment constraints if the first and second generation scalar fermions are beyond the TeV scale. Also in focus-point supersymmetry and split supersymmetry the scalar fermions are very heavy. In this work, the phenomenology of scenarios with electroweak baryogenesis and in the focus point region at the LHC and ILC is studied, which becomes challenging due to the presence of heavy scalar fermions. Implications for the analysis of baryogenesis and dark matter are deduced. It is found that precision measurements of superpartner properties allow an accurate determination of the dark matter relic density in both scenarios, while important but only incomplete information about the baryogenesis mechanism can be obtained.
Large electroweak penguin contribution in B{yields}K{pi} and {pi}{pi} decay modes
Mishima, Satoshi; Yoshikawa, Tadashi
2004-11-01
We discuss a possibility of large electroweak penguin contribution in B{yields}K{pi} and {pi}{pi} from recent experimental data. The experimental data may be suggesting that there are some discrepancies between the data and theoretical estimation in the branching ratios of them. In B{yields}K{pi} decays, to explain it, a large electroweak penguin contribution and large strong phase differences seem to be needed. The contributions should appear also in B{yields}{pi}{pi}. We show, as an example, a solution to solve the discrepancies in both B{yields}K{pi} and B{yields}{pi}{pi}. However the magnitude of the parameters and the strong phase estimated from experimental data are quite large compared with the theoretical estimations. It may be suggesting some new physics effects are included in these processes. We will have to discuss about the dependence of the new physics. To explain both modes at once, we may need large electroweak penguin contribution with new weak phases and some SU(3) breaking effects by new physics in both QCD and electroweak penguin-type processes.
QCD and electroweak interference in Higgs production by gauge boson fusion
Andersen, Jeppe R.; Smillie, Jennifer M.
2007-02-01
We explicitly calculate the contribution to Higgs production at the LHC from the interference between gluon fusion and weak vector boson fusion, and compare it to the pure QCD and pure electroweak result. While the effect is small at tree level, we speculate it will be significantly enhanced by loop effects.
Constraints on inert dark matter from the metastability of the electroweak vacuum
NASA Astrophysics Data System (ADS)
Khan, Najimuddin; Rakshit, Subhendu
2015-09-01
The inert scalar doublet model of dark matter can be valid up to the Planck scale. We briefly review the bounds on the model in such a scenario and identify parameter spaces that lead to absolute stability and metastability of the electroweak vacuum.
NASA Astrophysics Data System (ADS)
Choi, Seong Youl; Han, Tao; Kalinowski, Jan; Rolbiecki, Krzysztof; Wang, Xing
2015-11-01
We explore the scenarios where the only accessible new states at the electroweak scale consist of a pair of color-singlet electroweak particles, the masses of which are degenerate at the tree level and split only by electroweak symmetry breaking at the loop level. For the sake of illustration, we consider a supersymmetric model and study the following three representative cases with the lower-lying states as (a) two spin-1 /2 Higgsino SU(2 ) L doublets, (b) a spin-1 /2 wino SU(2 ) L triplet and (c) a spin-0 left-handed slepton SU(2 ) L doublet. Due to the mass degeneracy, those lower-lying electroweak states are difficult to observe at the LHC and rather challenging to detect at the e+e- collider as well. We exploit the pair production in association with a hard photon radiation in high energy e+e- collisions. If kinematically accessible, such single-photon processes at e+e- colliders with polarized beams enable us to characterize each scenario by measuring the energy of the associated hard photon and to determine the spin of the nearly invisible particles unambiguously through the threshold behavior in the photon energy distribution.
Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies
NASA Astrophysics Data System (ADS)
Profumo, Stefano; Ramsey-Musolf, Michael J.; Wainwright, Carroll L.; Winslow, Peter
2015-02-01
We update the phenomenology of gauge-singlet extensions of the Standard Model scalar sector and their implications for the electroweak phase transition. Considering the introduction of one real scalar singlet to the scalar potential, we analyze present constraints on the potential parameters from Higgs coupling measurements at the Large Hadron Collider (LHC) and electroweak precision observables for the kinematic regime in which no new scalar decay modes arise. We then show how future precision measurements of Higgs boson signal strengths and the Higgs self-coupling could probe the scalar potential parameter space associated with a strong first-order electroweak phase transition. We illustrate using benchmark precision for several future collider options, including the high-luminosity LHC, the International Linear Collider, Triple-Large Electron-Positron collider, the China Electron-Positron Collider, and a 100 TeV proton-proton collider, such as the Very High Energy LHC or the Super Proton-Proton Collider. For the regions of parameter space leading to a strong first-order electroweak phase transition, we find that there exists considerable potential for observable deviations from purely Standard Model Higgs properties at these prospective future colliders.
Bethe-Salpeter dynamics and the constituent mass concept for heavy quark mesons
Souchlas, N.; Stratakis, D.
2010-06-01
The definition of a quark as heavy requires a comparison of its mass with the nonperturbative chiral symmetry breaking scale which is about 1 GeV ({Lambda}{sub {chi}{approx}1} GeV) or with the scale {Lambda}{sub QCD{approx}}0.2 GeV that characterizes the distinction between perturbative and nonperturbative QCD. For quark masses significantly larger than these scales, nonperturbative dressing effects, or equivalently nonperturbative self-energy contributions, and relativistic effects are believed to be less important for physical observables. We explore the concept of a constituent mass for heavy quarks in the Dyson-Schwinger equations formalism, for light-heavy and heavy-heavy quark mesons by studying their masses and electroweak decay constants.
Bethe-Salpeter dynamics and the constituent mass concept for heavy quark mesons
NASA Astrophysics Data System (ADS)
Souchlas, N.; Stratakis, D.
2010-06-01
The definition of a quark as heavy requires a comparison of its mass with the nonperturbative chiral symmetry breaking scale which is about 1 GeV (Λχ˜1GeV) or with the scale ΛQCD˜0.2GeV that characterizes the distinction between perturbative and nonperturbative QCD. For quark masses significantly larger than these scales, nonperturbative dressing effects, or equivalently nonperturbative self-energy contributions, and relativistic effects are believed to be less important for physical observables. We explore the concept of a constituent mass for heavy quarks in the Dyson-Schwinger equations formalism, for light-heavy and heavy-heavy quark mesons by studying their masses and electroweak decay constants.
On dilatons and the LHC diphoton excess
NASA Astrophysics Data System (ADS)
Megías, Eugenio; Pujolàs, Oriol; Quirós, Mariano
2016-05-01
We study soft wall models that can embed the Standard Model and a naturally light dilaton. Exploiting the full capabilities of these models we identify the parameter space that allows to pass Electroweak Precision Tests with a moderate Kaluza-Klein scale, around 2 TeV. We analyze the coupling of the dilaton with Standard Model (SM) fields in the bulk, and discuss two applications: i) Models with a light dilaton as the first particle beyond the SM pass quite easily all observational tests even with a dilaton lighter than the Higgs. However the possibility of a 125 GeV dilaton as a Higgs impostor is essentially disfavored; ii) We show how to extend the soft wall models to realize a 750 GeV dilaton that could explain the recently reported diphoton excess at the LHC.
Search for extra dimensions in the diphoton final state with ATLAS
NASA Astrophysics Data System (ADS)
Buat, Quentin
2012-06-01
The large difference between the Planck scale and the electroweak scale, known as the hierarchy problem, has been addressed in some models through the existence of extra spatial dimensions. A search for evidence of extra spatial dimensions has been performed, through an analysis of the diphoton final state in data recorded in 2011 with the ATLAS detector at the CERN Large Hadron Collider. The analysis uses a dataset of 2.12 fb-1 of proton-proton collisions at √s = 7 TeV. The diphoton invariant mass spectrum is observed to be in good agreement with the expected Standard Model (SM) background. We set 95% CL lower limits on the scale related to virtual graviton exchange process in the context of the Arkani-Hamed, Dimopoulos, Dvali model (ADD) and on the lightest Kaluza Klein excitation mass in the context of the Randall-Sundrum model (RS).
Higgs-gluon coupling in warped extra dimensional models with brane kinetic terms
NASA Astrophysics Data System (ADS)
Dey, Ujjal Kumar; Ray, Tirtha Sankar
2016-01-01
Warped models with the Higgs confined to the weak brane and the gauge and matter fields accessing the AdS5 bulk provide a viable setting to address the gauge hierarchy problem. Brane kinetic terms for the bulk fields are known to ease some of the tensions of these models with precision electroweak observables and flavor constraints. We study the loop-driven Higgs coupling to the gluons that are relevant to the Higgs program at the LHC, in this scenario. We demonstrate a partial cancellation in the contribution of the fermionic Kaluza-Klein (KK) towers within such framework relatively independent of the 5D parameters. The entire dependence of this coupling on the new physics arises from the mixing between the Standard Model states and the KK excitations. We find that the present precision in measurement of these couplings can lead to a constraint on the KK scale up to 1.2 TeV at 95% confidence level.
Enhanced Higgs mass in Compact Supersymmetry
NASA Astrophysics Data System (ADS)
Tobioka, Kohsaku; Kitano, Ryuichiro; Murayama, Hitoshi
2016-04-01
The current LHC results make weak scale supersymmetry difficult due to relatively heavy mass of the discovered Higgs boson and the null results of new particle searches. Geometrical supersymmetry breaking from extra dimensions, Scherk-Schwarz mechanism, is possible to accommodate such situations. A concrete example, the Compact Supersymmetry model, has a compressed spectrum ameliorating the LHC bounds and large mixing in the top and scalar top quark sector with |{A}_t|˜ 2{m}_{tilde{t}} which radiatively raises the Higgs mass. While the zero mode contribution of the model has been considered, in this paper we calculate the Kaluza-Klein tower effect to the Higgs mass. Although such contributions are naively expected to be as small as a percent level for 10 TeV Kaluza-Klein modes, we find the effect significantly enhances the radiative correction to the Higgs quartic coupling by from 10 to 50%. This is mainly because the top quark wave function is pushed out from the brane, which makes the top mass depend on higher powers in the Higgs field. As a result the Higgs mass is enhanced up to 15 GeV from the previous calculation. We also show the whole parameter space is testable at the LHC run II.
Search for resonances in the dilepton mass distribution in pp collisions at sqrt {s} = 7 TeV
NASA Astrophysics Data System (ADS)
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hänsel, S.; Hoch, M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kasieczka, G.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Teischinger, F.; Wagner, P.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Benucci, L.; De Wolf, E. A.; Janssen, X.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Devroede, O.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, J.; Maes, M.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Hreus, T.; Marage, P. E.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Adler, V.; Cimmino, A.; Costantini, S.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Caudron, J.; Ceard, L.; Cortina Gil, E.; De Favereau De Jeneret, J.; Delaere, C.; Favart, D.; Giammanco, A.; Grégoire, G.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Ovyn, S.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Beliy, N.; Caebergs, T.; Daubie, E.; Alves, G. A.; De Jesus Damiao, D.; Pol, M. E.; Souza, M. H. G.; Carvalho, W.; Da Costa, E. M.; De Oliveira Martins, C.; De Souza, S. Fonseca; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Silva Do Amaral, S. M.; Sznajder, A.; Da Silva De Araujo, F. Torres; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Darmenov, N.; Dimitrov, L.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vankov, I.; Dimitrov, A.; Hadjiiska, R.; Karadzhinova, A.; Kozhuharov, V.; Litov, L.; Mateev, M.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Mao, Y.; Qian, S. J.; Teng, H.; Zhang, L.; Zhu, B.; Zou, W.; Cabrera, A.; Gomez Moreno, B.; Ocampo Rios, A. A.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Lelas, K.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Dzelalija, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Morovic, S.; Attikis, A.; Galanti, M.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Khalil, S.; Mahmoud, M. A.; Hektor, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Azzolini, V.; Eerola, P.; Fedi, G.; Czellar, S.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Korpela, A.; Tuuva, T.; Sillou, D.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Verrecchia, P.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Dahms, T.; Dobrzynski, L.; Elgammal, S.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Thiebaux, C.; Wyslouch, B.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A.-C.; Mikami, Y.; Van Hove, P.; Fassi, F.; Mercier, D.; Baty, C.; Beauceron, S.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Lomidze, D.; Anagnostou, G.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Mohr, N.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Weber, M.; Wittmer, B.; Ata, M.; Bender, W.; Dietz-Laursonn, E.; Erdmann, M.; Frangenheim, J.; Hebbeker, T.
2011-05-01
A search for narrow resonances at high mass in the dimuon and dielectron channels has been performed by the CMS experiment at the CERN LHC, using pp collision data recorded at sqrt {s} = 7 TeV. The event samples correspond to integrated luminosities of 40 pb-1 in the dimuon channel and 35 pb-1 in the dielectron channel. Heavy dilepton resonances are predicted in theoretical models with extra gauge bosons (Z') or as Kaluza-Klein graviton excitations (GKK) in the Randall-Sundrum model. Upper limits on the inclusive cross section of Z'(GKK) → ℓ + ℓ - relative to Z → ℓ + ℓ - are presented. These limits exclude at 95% confidence level a Z' with standard-model-like couplings below 1140GeV, the superstring-inspired Z ψ ' below 887 GeV, and, for values of the coupling parameter {{k} left/ {{{{overline M }_{text{Pl}}}}} right.} of 0.05 (0.1), Kaluza-Klein gravitons below 855 (1079) GeV.
Higgs production and decay in models of a warped extra dimension with a bulk Higgs
Archer, Paul R.; Carena, Marcela; Carmona, Adrian; Neubert, Matthias
2015-01-13
Warped extra-dimension models in which the Higgs boson is allowed to propagate in the bulk of a compact AdS5 space are conjectured to be dual to models featuring a partially composite Higgs boson. They offer a framework with which to investigate the implications of changing the scaling dimension of the Higgs operator, which can be used to reduce the constraints from electroweak precision data. In the context of such models, we calculate the cross section for Higgs production in gluon fusion and the H → γγ decay rate and show that they are finite (at one-loop order) as a consequencemore » of gauge invariance. The extended scalar sector comprising the Kaluza-Klein excitations of the Standard Model scalars is constructed in detail. The largest effects are due to virtual KK fermions, whose contributions to the cross section and decay rate introduce a quadratic sensitivity to the maximum allowed value y* of the random complex entries of the 5D anarchic Yukawa matrices. We find an enhancement of the gluon-fusion cross section and a reduction of the H → γγ rate as well as of the tree-level Higgs couplings to fermions and electroweak gauge bosons. As a result, we perform a detailed study of the correlated signal strengths for different production mechanisms and decay channels as functions of y*, the mass scale of Kaluza-Klein resonances and the scaling dimension of the composite Higgs operator.« less
Higgs production and decay in models of a warped extra dimension with a bulk Higgs
Archer, Paul R.; Carena, Marcela; Carmona, Adrian; Neubert, Matthias
2015-01-13
Warped extra-dimension models in which the Higgs boson is allowed to propagate in the bulk of a compact AdS_{5} space are conjectured to be dual to models featuring a partially composite Higgs boson. They offer a framework with which to investigate the implications of changing the scaling dimension of the Higgs operator, which can be used to reduce the constraints from electroweak precision data. In the context of such models, we calculate the cross section for Higgs production in gluon fusion and the H → γγ decay rate and show that they are finite (at one-loop order) as a consequence of gauge invariance. The extended scalar sector comprising the Kaluza-Klein excitations of the Standard Model scalars is constructed in detail. The largest effects are due to virtual KK fermions, whose contributions to the cross section and decay rate introduce a quadratic sensitivity to the maximum allowed value y_{*} of the random complex entries of the 5D anarchic Yukawa matrices. We find an enhancement of the gluon-fusion cross section and a reduction of the H → γγ rate as well as of the tree-level Higgs couplings to fermions and electroweak gauge bosons. As a result, we perform a detailed study of the correlated signal strengths for different production mechanisms and decay channels as functions of y_{*}, the mass scale of Kaluza-Klein resonances and the scaling dimension of the composite Higgs operator.
Gauge bosons and heavy quarks: Proceedings of Summer Institute on Particle Physics
Hawthorne, J.F.
1991-01-01
This report contains papers on the following topics: Z decays and tests of the standard model; future possibilities for LEP; studies of the interactions of electroweak gauge bosons; top quark topics; the next linear collider; electroweak processes in hadron colliders; theoretical topics in B-physics; experimental aspects of B-physics; B-factory storage ring design; rare kaon decays; CP violation in K{sup 0} decays at CERN; recent K{sup 0} decay results from Fermilab E-731; results from LEP on heavy quark physics; review of recent results on heavy flavor production; weak matrix elements and the determination of the weak mixing angles; recent results from CLEO I and a glance at CLEO II data; recent results from ARGUS; neutrino lepton physics with the CHARM 2 detector; recent results from the three TRISTAN experiments; baryon number violation at high energy in the standard model: fact or fiction New particle searches at LEP; review of QCD at LEP; electroweak interactions at LEP; recent results on W physics from the UA2 experiment at the CERN {rho}{bar {rho}} collider; B physics at CDF; and review of particle astrophysics.
Studies of strong electroweak symmetry breaking at future e{sup +}e{sup {minus}} linear colliders
Barklow, T.L.
1994-08-01
Methods of studying strong electroweak symmetry breaking at future e{sup +}e{sup {minus}} linear colliders are reviewed. Specifically, we review precision measurements of triple gauge boson vertex parameters and the rescattering of longitudinal W bosons in the process e{sup +}e{sup {minus}} {yields} W{sup +}W{sup {minus}}. Quantitative estimates of the sensitivity of each technique to strong electroweak symmetry breaking are included.
NASA Astrophysics Data System (ADS)
Kakizaki, Mitsuru; Kanemura, Shinya; Matsui, Toshinori
2015-12-01
We discuss spectra of gravitational waves which are originated by the strongly first order phase transition at the electroweak symmetry breaking, which is required for a successful scenario of electroweak baryogenesis. Such spectra are numerically evaluated without high temperature expansion in a set of extended scalar sectors with additional N isospin-singlet fields as a concrete example of renormalizable theories. We find that the produced gravitational waves can be significant, so that they are detectable at future gravitational wave interferometers such as DECIGO and BBO. Furthermore, since the spectra strongly depend on N and the mass of the singlet fields, our results indicate that future detailed observation of gravitational waves can be in general a useful probe of extended scalar sectors with the first order phase transition.
Electroweak Unification into a Five-Dimensional SU(3) at a TeV
Kaplan, David Elazzar
2002-07-19
We apply a recently proposed mechanism for predicting the weak mixing angle to theories with TeV-size dimensions. ''Reconstruction'' of the associated moose (or quiver) leads to theories which unify the electroweak forces into a five dimensional SU(3) symmetry. Quarks live at an orbifold fixed point where SU(3) breaks to the electroweak group. A variety of theories--all sharing the same successful prediction of sin{sup 2} {theta}{sub W}-emerges; they differ primarily by the spatial location of the leptons and the absence or presence of supersymmetry. A particularly interesting theory puts leptons in a Konopinski-Mahmoud triplet and suppresses proton decay by placing quarks and leptons on opposite fixed points.
Electroweak breaking and neutrino mass: ‘invisible’ Higgs decays at the LHC (type II seesaw)
NASA Astrophysics Data System (ADS)
Bonilla, Cesar; Romão, Jorge C.; Valle, José W. F.
2016-03-01
Neutrino mass generation through the Higgs mechanism not only suggests the need to reconsider the physics of electroweak symmetry breaking from a new perspective, but also provides a new theoretically consistent and experimentally viable paradigm. We illustrate this by describing the main features of the electroweak symmetry breaking sector of the simplest type-II seesaw model with spontaneous breaking of lepton number. After reviewing the relevant ‘theoretical’ and astrophysical restrictions on the Higgs sector, we perform an analysis of the sensitivities of Higgs Boson searches at the ongoing ATLAS and CMS experiments at the LHC, including not only the new contributions to the decay channels present in the standard model (SM) but also genuinely non-SM Higgs Boson decays, such as ‘invisible’ Higgs Boson decays to majorons. We find sensitivities that are likely to be reached at the upcoming run of the experiments.
Electroweak unification into a five-dimensional /SU(3) at a TeV
NASA Astrophysics Data System (ADS)
Dimopoulos, Savas; Kaplan, David Elazzar; Weiner, Neal
2002-05-01
We apply a recently proposed mechanism for predicting the weak mixing angle to theories with TeV-size dimensions. "Reconstruction" of the associated moose (or quiver) leads to theories which unify the electroweak forces into a five-dimensional SU(3) symmetry. Quarks live at an orbifold fixed point where SU(3) breaks to the electroweak group. A variety of theories-all sharing the same successful prediction of sin2θW-emerges; they differ primarily by the spatial location of the leptons and the absence or presence of supersymmetry. A particularly interesting theory puts leptons in a Konopinski-Mahmoud triplet and suppresses proton decay by placing quarks and leptons on opposite fixed points.
Radiative electroweak symmetry breaking model perturbative all the way to the Planck scale.
Chway, Dongjin; Dermíšek, Radovan; Jung, Tae Hyun; Kim, Hyung Do
2014-08-01
We discuss an extension of the standard model by fields not charged under standard model gauge symmetry in which the electroweak symmetry breaking is driven by the Higgs quartic coupling itself without the need for a negative mass term in the potential. This is achieved by a scalar field S with a large coupling to the Higgs field at the electroweak scale which is driven to very small values at high energies by the gauge coupling of a hidden symmetry under which S is charged. This model can remain perturbative all the way to the Planck scale. The Higgs boson is fully standard-model-like in its couplings to fermions and gauge bosons. However, the effective cubic and quartic self-couplings of the Higgs boson are significantly enhanced. PMID:25126909
Cosmological Higgs-Axion Interplay for a Naturally Small Electroweak Scale.
Espinosa, J R; Grojean, C; Panico, G; Pomarol, A; Pujolàs, O; Servant, G
2015-12-18
Recently, a new mechanism to generate a naturally small electroweak scale has been proposed. It exploits the coupling of the Higgs boson to an axionlike field and a long era in the early Universe where the axion unchains a dynamical screening of the Higgs mass. We present a new realization of this idea with the new feature that it leaves no sign of new physics at the electroweak scale, and up to a rather large scale, 10^{9} GeV, except for two very light and weakly coupled axionlike states. One of the scalars can be a viable dark matter candidate. Such a cosmological Higgs-axion interplay could be tested with a number of experimental strategies. PMID:26722916
Baryon and lepton number violation in the electroweak theory at TeV energies
Mottola, E.
1990-01-01
In the standard Weinberg-Salam electroweak theory baryon and lepton number (B and L) are NOT exactly conserved. The nonconservation of B and L can be traced to the existence of parity violation in the electroweak theory, together with the chiral current anomaly. This subtle effect gives negligibly small amplitudes for B and L violation at energies and temperatures significantly smaller than M{sub w} sin{sup 2} {theta}{sub w}/{alpha} {approximately} 10 TeV. However, recent theoretical work shows that the rate for B and L nonconservation is unsuppressed at higher energies. The consequences of this for cosmology and the baryon asymmetry of the universe, as well as the prospects for direct verification at the SSC are discussed. 13 refs., 3 figs.
Recent Results in Electroweak B Decays from the BaBar Experiment
Koeneke, Karsten; /MIT, LNS /SLAC
2006-09-01
A review of the most recent BABAR results on electroweak penguin B decays is presented. The focus of this paper is on the measurement of observables in the decays B {yields} X{sub s}{gamma}, B {yields} K{sup (*)}l{sup +}l{sup -} B {yields} K{sub s}{sup 0}{pi}{sup 0}{gamma} (time-dependent analysis) and B {yields} ({rho}/{omega}){gamma}.
A strong electroweak sector at future {mu}{sup +}{mu}{sup {minus}} colliders
Casalbuoni, R.; Dominici, D.; Casalbuoni, R.; De Curtis, S.; Dominici, D.; Deandrea, A.; Casalbuoni, R.; Gatto, R.; Gunion, J.F.
1998-08-01
We discuss the prospects for detecting at a muon collider the massive new vector resonances V and light pseudo-Nambu-Goldstone bosons {ital P} of a typical strongly interacting electroweak sector (as represented by the BESS model). Expected sensitivities to V{close_quote}s at a high energy collider are evaluated and the excellent prospects for discovering {ital P}{close_quote}s via scanning at a low energy collider are delineated. {copyright} {ital 1998 American Institute of Physics.}
Electroweak corrections to W+W-Z and ZZZ production at the linear collider
NASA Astrophysics Data System (ADS)
Boudjema, F.; Le, D. N.; Sun, H.; Weber, M. M.
2010-07-01
We calculate the electroweak corrections to the production of WWZ and ZZZ at the linear collider in the Standard Model. These processes are important for the extraction of the quartic couplings of the massive gauge bosons which can be a window on the mechanism of spontaneous symmetry breaking. We find that the weak corrections to some kinematic distributions show new features and hence cannot be explained by an overall scale factor.
A UV-complete Composite Higgs model for Electroweak Symmetry Breaking: Minimal Conformal Technicolor
NASA Astrophysics Data System (ADS)
Tacchi, Ruggero Altair
The Large Hadron Collider is currently collecting data. One of the main goals of the experiment is to find evidence of the mechanism responsible for the breaking of the electroweak symmetry. There are many different models attempting to explain this breaking and traditionally most of them involve the use of supersymmetry near the scale of the breaking. This work is focused on exploring a viable model that is not based on a weakly coupled low scale supersymmetry sector to explain the electroweak symmetry breaking. We build a model based on a new strong interaction, in the fashion of theories commonly called "technicolor", name that is reminiscent of one of the first attempts of explaining the electroweak symmetry breaking using a strong interaction similar to the one whose charges are called colors. We explicitly study the minimal model of conformal technicolor, an SU(2) gauge theory near a strongly coupled conformal fixed point, with conformal symmetry softly broken by technifermion mass terms. Conformal symmetry breaking triggers chiral symmetry breaking in the pattern SU(4) → Sp (4), which gives rise to a pseudo-Nambu-Goldstone boson that can act as a composite Higgs boson. There is an additional composite pseudoscalar A with mass larger than mh and suppressed direct production at LHC. We discuss the electroweak fit in this model in detail. A good fit requires fine tuning at the 10% level. We construct a complete, realistic, and natural UV completion of the model, that explains the origin of quark and lepton masses and mixing angles. We embed conformal technicolor in a supersymmetric theory, with supersymmetry broken at a high scale. The effective theory below the supersymmetry breaking scale is minimal conformal technicolor with an additional light technicolor gaugino that might give rise to an additional pseudo Nambu-Goldstone boson that is observable at the LHC.
13. The su(2|1) Model of Electroweak Interactions and Its Connection to NC Geometry
NASA Astrophysics Data System (ADS)
Häussling, R.
I review the su(2|1) model of electroweak interactions which is essentially based on the super Lie algebra su(2|1), thus incorporating both usual gauge fields and Higgs fields in one generalized Yang-Mills field. Special emphasis is put on the natural appearance of spontaneous symmetry breaking and other appealing features of the model like generation mixing. Also the connection of the model to noncommutative geometry is briefly discussed.
Genesis of electroweak and dark matter scales from a bilinear scalar condensate
NASA Astrophysics Data System (ADS)
Kubo, Jisuke; Yamada, Masatoshi
2016-04-01
The condensation of scalar bilinear in a classically scale invariant strongly interacting hidden sector is used to generate the electroweak scale, where the excitation of the condensate is identified as dark matter. We formulate an effective theory for the condensation of the scalar bilinear and find in the self-consistent mean field approximation that the dark matter mass is of O (1 ) TeV with the spin-independent elastic cross section off the nucleon slightly below the LUX upper bound.
Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP
NASA Astrophysics Data System (ADS)
ALEPH Collaboration; DELPHI Collaboration; L3 Collaboration; OPAL Collaboration; LEP Electroweak Working Group 1
2013-11-01
Electroweak measurements performed with data taken at the electron-positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3 fb-1 collected by the four LEP experiments ALEPH, DELPHI, L3 and OPAL, at centre-of-mass energies ranging from 130 GeV to 209 GeV.
Sleuth at CDF: A Quasi-model-independent search for new electroweak scale physics
Choudalakis, Georgios; /MIT, LNS
2007-10-01
These proceedings describe Sleuth, a quasi-model-independent search strategy targeting new electroweak scale physics, and its application to 927 pb{sup -1} of CDF II data. Exclusive final states are analyzed for an excess of data beyond the Standard Model prediction at large summed scalar transverse momentum. This analysis of high-pT data represents one of the most encompassing searches so far conducted for new physics at the energy frontier.
Metz, D.
1982-01-01
The extreme pressures on the roof and walls of an earth-sheltered residential home are discussed and the need for careful planning is stressed. Pertinent terms are defined. Footings and wall structure (reinforced concrete walls and concrete block walls) are described. Roofing systems are discussed in detail and illustrated: (1) poured-in-place concrete roof slabs; (2) pre-cast concrete planks; and (3) heavy timber roofs. Insulation of earth-sheltered homes is reviewed in terms of using: (1) urethanes; (2) extruded polystyrene; and (3) expanded polystyrene. Advantages, disadvantages, R-factors, costs, and installation are discussed. (MJJ)
Cosmological baryon and lepton number in the presence of electroweak fermion-number violation
NASA Technical Reports Server (NTRS)
Harvey, Jeffrey A.; Turner, Michael S.
1990-01-01
In the presence of rapid fermion-number violation due to nonperturbative electroweak effects certain relations between the baryon number of the Universe and the lepton numbers of the Universe are predicted. In some cases the electron-neutrino asymmetry is exactly specified in terms of the baryon asymmetry. Without introducing new particles, beyond the usual quarks and leptons, it is necessary that the Universe possess a nonzero value of B - L prior to the epoch of fermion-number violation if baryon and lepton asymmetries are to survive. Contrary to intuition, even though electroweak processes violate B + L, a nonzero value of B + L persists after the epoch of rapid fermion-number violation. If the standard model is extended to include lepton-number violation, for example through Majorana neutrino masses, then electroweak processes will reduce the baryon number to zero even in the presence of an initial B - L unless 20 M(sub L) approximately greater than the square root of (T(sub B - L) m(sub P1)) where M(sub L) sets the scale of lepton number violation and T(sub B - L) is the temperature at which a B - L asymmetry is produced. In many models this implies that neutrinos must be so light that they cannot contribute appreciably to the mass density of the Universe.
Electroweak vacuum stability and inflation via nonminimal derivative couplings to gravity
NASA Astrophysics Data System (ADS)
Di Vita, Stefano; Germani, Cristiano
2016-02-01
We show that the standard model vacuum can be stabilized if all particle propagators are nonminimally coupled to gravity. This is due to a Higgs-background dependent redefinition of the standard model fields: in terms of canonical variables and in the large Higgs field limit, the quantum fluctuations of the redefined fields are suppressed by the Higgs background. Thus, in this regime, quantum corrections to the tree-level electroweak potential are negligible. Finally, we show that in this framework the Higgs boson can be responsible for inflation. Due to a numerical coincidence that originates from the CMB data, inflation can happen if the Higgs boson mass, the top mass, and the QCD coupling lie in a region of the parameter space approximately equivalent than the one allowing for electroweak vacuum stability in the standard Model. We find some (small) regions in the standard model parameter space in which the new interaction "rescues" the electroweak vacuum, which would not be stable in the standard model.
Electroweak vacuum stability and diphoton excess at 750 GeV
NASA Astrophysics Data System (ADS)
Zhang, Jue; Zhou, Shun
2016-08-01
Recently, both ATLAS and CMS collaborations at the CERN Large Hadron Collider (LHC) announced their observations of an excess of diphoton events around the invariant mass of 750 GeV with a local significance of 3.6σ and 2.6σ, respectively. In this paper, we interpret the diphoton excess as the on-shell production of a real singlet scalar in the pp → S → γγ channel. To accommodate the observed production rate, we further introduce a vector-like fermion F, which carries both color and electric charges. The viable regions of model parameters are explored for this simple extension of the Standard Model (SM). Moreover, we revisit the problem of electroweak vacuum stability in the same scenario, and find that the requirement for the electroweak vacuum stability up to high energy scales imposes serious constraints on the Yukawa coupling of the vector-like fermion and the quartic couplings of the SM Higgs boson and the new singlet scalar. Consequently, a successful explanation for the diphoton excess and the absolute stability of electroweak vacuum cannot be achieved simultaneously in this economical setup. Supported by Innovation Program of the Institute of High Energy Physics (Y4515570U1), National Youth Thousand Talents Program, and CAS Center for Excellence in Particle Physics (CCEPP)
Electroweak stars: how nature may capitalize on the standard model's ultimate fuel
Dai, De-Chang; Stojkovic, Dejan; Lue, Arthur; Starkman, Glenn E-mail: shinypup@gmail.com E-mail: ds77@buffalo.edu
2010-12-01
We study the possible existence of an electroweak star — a compact stellar-mass object whose central core temperature is higher than the electroweak symmetry restoration temperature. We found a solution to the Tolman-Oppenheimer-Volkoff equations describing such an object. The parameters of such a star are not substantially different from a neutron star — its mass is around 1.3 Solar masses while its radius is around 8km. What is different is the existence of a small electroweak core. The source of energy in the core that can at least temporarily balance gravity are standard-model non-perturbative baryon number (B) and lepton number (L) violating processes that allow the chemical potential of B+L to relax to zero. The energy released at the core is enormous, but gravitational redshift and the enhanced neutrino interaction cross section at these energies make the energy release rate moderate at the surface of the star. The lifetime of this new quasi-equilibrium can be more than ten million years. This is long enough to represent a new stage in the evolution of a star if stellar evolution can take it there.
Does zero temperature decide on the nature of the electroweak phase transition?
NASA Astrophysics Data System (ADS)
Harman, Christopher P. D.; Huber, Stephan J.
2016-06-01
Taking on a new perspective of the electroweak phase transition, we investigate in detail the role played by the depth of the electroweak minimum ("vacuum energy difference"). We find a strong correlation between the vacuum energy difference and the strength of the phase transition. This correlation only breaks down if a negative eigen-value develops upon thermal corrections in the squared scalar mass matrix in the broken vacuum before the critical temperature. As a result the scalar fields slide across field space toward the symmetric vacuum, often causing a significantly weakened phase transition. Phenomenological constraints are found to strongly disfavour such sliding scalar scenarios. For several popular models, we suggest numerical bounds that guarantee a strong first order electroweak phase transition. The zero temperature phenomenology can then be studied in these parameter regions without the need for any finite temperature calculations. For almost all non-supersymmetric models with phenomenologically viable parameter points, we find a strong phase transition is guaranteed if the vacuum energy difference is greater than -8.8 × 107 GeV4. For the GNMSSM, we guarantee a strong phase transition for phenomenologically viable parameter points if the vacuum energy difference is greater than -6.9×107 GeV4. Alternatively, we capture more of the parameter space exhibiting a strong phase transition if we impose a simultaneous bound on the vacuum energy difference and the singlet mass.
Vacuum stability and radiative electroweak symmetry breaking in an SO(10) dark matter model
NASA Astrophysics Data System (ADS)
Mambrini, Yann; Nagata, Natsumi; Olive, Keith A.; Zheng, Jiaming
2016-06-01
Vacuum stability in the Standard Model is problematic as the Higgs quartic self-coupling runs negative at a renormalization scale of about 1010 GeV . We consider a nonsupersymmetric SO(10) grand unification model for which gauge coupling unification is made possible through an intermediate scale gauge group, Gint=SU (3 )C⊗SU (2 )L⊗SU (2 )R⊗U (1 )B -L . Gint is broken by the vacuum expectation value of a 126 of SO(10) which not only provides for neutrino masses through the seesaw mechanism but also preserves a discrete Z2 that can account for the stability of a dark matter candidate, here taken to be the Standard Model singlet component of a bosonic 16 . We show that in addition to these features the model insures the positivity of the Higgs quartic coupling through its interactions to the dark matter multiplet and 126 . We also show that the Higgs mass squared runs negative, triggering electroweak symmetry breaking. Thus, the vacuum stability is achieved along with radiative electroweak symmetry breaking and captures two more important elements of supersymmetric models without low-energy supersymmetry. The conditions for perturbativity of quartic couplings and for radiative electroweak symmetry breaking lead to tight upper and lower limits on the dark matter mass, respectively, and this dark matter mass region (1.35-2 TeV) can be probed in future direct detection experiments.
Soft collinear effective theory for heavy WIMP annihilation
Bauer, Martin; Cohen, Timothy; Hill, Richard J.; Solon, Mikhail P.
2015-01-19
In a large class of models for Weakly Interacting Massive Particles (WIMPs), the WIMP mass M lies far above the weak scale mW . This work identifies universal Sudakov-type logarithms ~ α log2(2 M/mW) that spoil the naive convergence of perturbation theory for annihilation processes. An effective field theory (EFT) framework is presented, allowing the systematic resummation of these logarithms. Another impact of the large separation of scales is that a long-distance wavefunction distortion from electroweak boson exchange leads to observable modifications of the cross section. Careful accounting of momentum regions in the EFT allows the rigorous disentanglement of thismore » so-called Sommerfeld enhancement from the short-distance hard annihilation process. In addition, the WIMP is described as a heavy-particle field, while the electroweak gauge bosons are treated as soft and collinear fields. Hard matching coefficients are computed at renormalization scale μ ~ 2 M , then evolved down to μ ~ mW , where electroweak symmetry breaking is incorporated and the matching onto the relevant quantum mechanical Hamiltonian is performed. The example of an SU(2)W triplet scalar dark matter candidate annihilating to line photons is used for concreteness, allowing the numerical exploration of the impact of next-to-leading order corrections and log resummation. As a result, for M ≃ 3 TeV, the resummed Sommerfeld enhanced cross section is reduced by a factor of ~ 3 with respect to the treelevel fixed order result.« less
Soft collinear effective theory for heavy WIMP annihilation
Bauer, Martin; Cohen, Timothy; Hill, Richard J.; Solon, Mikhail P.
2015-01-19
In a large class of models for Weakly Interacting Massive Particles (WIMPs), the WIMP mass M lies far above the weak scale m_{W} . This work identifies universal Sudakov-type logarithms ~ α log^{2}(2 M/m_{W}) that spoil the naive convergence of perturbation theory for annihilation processes. An effective field theory (EFT) framework is presented, allowing the systematic resummation of these logarithms. Another impact of the large separation of scales is that a long-distance wavefunction distortion from electroweak boson exchange leads to observable modifications of the cross section. Careful accounting of momentum regions in the EFT allows the rigorous disentanglement of this so-called Sommerfeld enhancement from the short-distance hard annihilation process. In addition, the WIMP is described as a heavy-particle field, while the electroweak gauge bosons are treated as soft and collinear fields. Hard matching coefficients are computed at renormalization scale μ ~ 2 M , then evolved down to μ ~ m_{W} , where electroweak symmetry breaking is incorporated and the matching onto the relevant quantum mechanical Hamiltonian is performed. The example of an SU(2)_{W} triplet scalar dark matter candidate annihilating to line photons is used for concreteness, allowing the numerical exploration of the impact of next-to-leading order corrections and log resummation. As a result, for M ≃ 3 TeV, the resummed Sommerfeld enhanced cross section is reduced by a factor of ~ 3 with respect to the treelevel fixed order result.
Hiding a Heavy Higgs Boson at the 7 TeV LHC
Bai, Yang; Fan, JiJi; Hewett, JoAnne L.
2012-03-20
A heavy Standard Model Higgs boson is not only disfavored by electroweak precision observables but is also excluded by direct searches at the 7 TeV LHC for a wide range of masses. Here, we examine scenarios where a heavy Higgs boson can be made consistent with both the indirect constraints and the direct null searches by adding only one new particle beyond the Standard Model. This new particle should be a weak multiplet in order to have additional contributions to the oblique parameters. If it is a color singlet, we find that a heavy Higgs with an intermediate mass of 200-300 GeV can decay into the new states, suppressing the branching ratios for the standard model modes, and thus hiding a heavy Higgs at the LHC. If the new particle is also charged under QCD, the Higgs production cross section from gluon fusion can be reduced significantly due to the new colored particle one-loop contribution. Current collider constraints on the new particles allow for viable parameter space to exist in order to hide a heavy Higgs boson. We categorize the general signatures of these new particles, identify favored regions of their parameter space and point out that discovering or excluding them at the LHC can provide important indirect information for a heavy Higgs. Finally, for a very heavy Higgs boson, beyond the search limit at the 7 TeV LHC, we discuss three additional scenarios where models would be consistent with electroweak precision tests: including an additional vector-like fermion mixing with the top quark, adding another U(1) gauge boson and modifying triple-gauge boson couplings.
Dominant mixed QCD-electroweak O (αs α) corrections to Drell-Yan processes in the resonance region
NASA Astrophysics Data System (ADS)
Dittmaier, Stefan; Huss, Alexander; Schwinn, Christian
2016-03-01
A precise theoretical description of W- and Z-boson production in the resonance region is essential for the correct interpretation of high-precision measurements of the W-boson mass and the effective weak mixing angle. Currently, the largest unknown fixed-order contribution is given by the mixed QCD-electroweak corrections of O (αs α) . We argue, using the framework of the pole expansion for the NNLO QCD-electroweak corrections established in a previous paper, that the numerically dominant corrections arise from the combination of large QCD corrections to the production with the large electroweak corrections to the decay of the W / Z boson. We calculate these so-called factorizable corrections of "initial-final" type and estimate the impact on the W-boson mass extraction. We compare our results to simpler approximate combinations of electroweak and QCD corrections in terms of naive products of NLO QCD and electroweak correction factors and using leading-logarithmic approximations for QED final-state radiation as provided by the structure-function approach or QED parton-shower programs. We also compute corrections of "final-final" type, which are given by finite counterterms to the leptonic vector-boson decays and are found to be numerically negligible.
NASA Astrophysics Data System (ADS)
Cheng, Michael
2012-03-01
The Standard Model provides an elegant mechanism for electroweak symmetry breaking (EWSB) via the introduction of a scalar Higgs field. However, the Standard Model Higgs mechanism is not the only way to explain EWSB. A class of models, broadly known as Technicolor, postulates the existence of a new strongly-interacting gauge sector at the TeV scale, coupled to the Standard Model through technifermions charged under electroweak. In technicolor, the spontaneous breaking of chiral symmetry triggers EWSB, with the resulting Goldstone bosons ``eaten'' by the massive W, Z gauge bosons. Because they are strongly-coupled and inherently non-perturbative, numerical lattice gauge theory provides an ideal arena in which technicolor can be explored. The maturation of lattice methods and availability of sufficient computing power has spurred the investigation of technicolor using lattice gauge theory techniques, in particular one variant known as ``walking'' technicolor. A technicolor model that resembles QCD is problematic that it does not satisfy the constraints of precision electro-weak observables, most notably those encapsulated by the Peskin-Takeuchi parameters, as well as the contraints on flavor-changing neutral currents. Walking technicolor is a class of models where the theory is near-conformal, i.e. the gauge coupling runs very slowly (``walks'') over some large range of energy scales. This walking behavior produces a large separation of scales between the natural cut-off for the theory and the EWSB scale, allowing one to naturally generate fermion masses without violating contrainsts on flavor-changing neutral currents. The dynamics of walking theories may also allow it to satisfy the bounds on the Peskin-Takeuchi parameters. We discuss the results of recent lattice calculations that explore the properties of walking technicolor models and the its implications on possible physics beyond the Standard Model.
Quantum Monte Carlo calculations of electroweak transition matrix elements in A=6,7 nuclei
Pervin, Muslema; Pieper, Steven C.; Wiringa, R. B.
2007-12-15
Green's function Monte Carlo (GFMC) calculations of magnetic dipole, electric quadrupole, Fermi, and Gamow-Teller transition matrix elements are reported for A=6,7 nuclei. The matrix elements are extrapolated from mixed estimates that bracket the relevant electroweak operator between variational Monte Carlo (VMC) and GFMC propagated wave functions. Because they are off-diagonal terms, two mixed estimates are required for each transition, with a VMC initial (final) state paired with a GFMC final (initial) state. The realistic Argonne v{sub 18} two-nucleon and Illinois-2 three-nucleon interactions are used to generate the nuclear states. In most cases we find good agreement with experimental data.
Mixing-induced CP violating sources for electroweak baryogenesis from a semiclassical approach
Zhou Yufeng
2008-11-23
The effects of flavor mixing in electroweak baryogenesis is investigated in a generalized semiclassical WKB approach. Through calculating the nonadiabatic corrections to the particle currents it is shown that extra CP violation sources arise from the off-diagonal part of the equation of motion of particles moving inside the bubble wall. The mixing-induced source is of the first order in derivative expansion of the Higgs condensate, but is oscillation suppressed. The numerical importance of the mixing-induced source is discussed in the Minimal Supersymmetric Standard Model and compared with the source term induced by semiclassical force.
Strongly first-order electroweak phase transition and classical scale invariance
NASA Astrophysics Data System (ADS)
Farzinnia, Arsham; Ren, Jing
2014-10-01
In this work, we examine the possibility of realizing a strongly first-order electroweak phase transition within the minimal classically scale-invariant extension of the standard model (SM), previously proposed and analyzed as a potential solution to the hierarchy problem. By introducing one complex gauge-singlet scalar and three (weak scale) right-handed Majorana neutrinos, the scenario was successfully rendered capable of achieving a radiative breaking of the electroweak symmetry (by means of the Coleman-Weinberg mechanism), inducing nonzero masses for the SM neutrinos (via the seesaw mechanism), presenting a pseudoscalar dark matter candidate (protected by the CP symmetry of the potential), and predicting the existence of a second CP-even boson (with suppressed couplings to the SM content) in addition to the 125 GeV scalar. In the present treatment, we construct the full finite-temperature one-loop effective potential of the model, including the resummed thermal daisy loops, and demonstrate that finite-temperature effects induce a first-order electroweak phase transition. Requiring the thermally driven first-order phase transition to be sufficiently strong at the onset of the bubble nucleation (corresponding to nucleation temperatures TN˜100-200 GeV) further constrains the model's parameter space; in particular, an O(0.01) fraction of the dark matter in the Universe may be simultaneously accommodated with a strongly first-order electroweak phase transition. Moreover, such a phase transition disfavors right-handed Majorana neutrino masses above several hundreds of GeV, confines the pseudoscalar dark matter masses to ˜1-2 TeV, predicts the mass of the second CP-even scalar to be ˜100-300 GeV, and requires the mixing angle between the CP-even components of the SM doublet and the complex singlet to lie within the range 0.2≲sinω ≲0.4. The obtained results are displayed in comprehensive exclusion plots, identifying the viable regions of the parameter space
Electroweak Radiative Corrections to the Parity-violating Asymmetry for SLAC Experiment E158
Zykunov, Vladimir A.; /Gomel State Tech. U.
2012-04-04
Electroweak radiative corrections to observable quantities of Moeller scattering of polarized particles are calculated. We emphasize the contribution induced by infrared divergent parts of cross section. The covariant method is used to remove infrared divergences, so that our results do not involve any unphysical parameters. When applied to the kinematics of SLAC E158 experiment, these corrections reduce the parity violating asymmetry by about -6.5% at E = 48 GeV and y = 0.5, and kinematically weighted 'hard' bremsstrahlung effect for SLAC E158 is {approx} 1%.
Standard model explanations for the NuTeV electroweak measurements
R. H. Bernstein
2003-12-23
The NuTeV Collaboration has measured the electroweak parameters sin{sup 2} {theta}{sub W} and {rho} in neutrino-nucleon deep-inelastic scattering using a sign-selected beam. The nearly pure {nu} or {bar {nu}} beams that result provide many of the cancellations of systematics associated with the Paschos-Wolfenstein relation. The extracted result for sin{sup 2} {theta}{sub W}(on-shell) = 1 - M{sub W}{sup 2}/M{sub Z}{sup 2} is three standard deviations from prediction. We discuss Standard Model explanations for the puzzle.
DZero (D0) Experiment Results for Electroweak Physics from the Fermilab Tevatron
The D0 (DZero) Experiment is a worldwide collaboration of scientists conducting research on the fundamental nature of matter. The experiment is located at the Tevatron Collider, Fermilab. The research is focused on precise studies of interactions of protons and antiprotons and involves an intense search for subatomic clues that reveal the character of the building blocks of the universe. This web page provides access to Run II research results of the Electroweak Physics group, including preliminary, submitted, and published results. Figures and data plots are found in the directories with their respective papers.
The Role of Electroweak Corrections for the Dark Matter Relic Abundance
Ciafaloni, Paolo; Comelli, Denis; Simone, Andrea De; Morgante, Enrico; Riotto, Antonio; Urbano, Alfredo E-mail: comelli@fe.infn.it E-mail: enrico.morgante@unige.ch E-mail: alfredo.urbano@sissa.it
2013-10-01
We analyze the validity of the theorems concerning the cancellation of the infrared and collinar divergences in the case of dark matter freeze-out in the early universe. In particular, we compute the electroweak logarithmic corrections of infrared origin to the annihilation cross section of a dark matter particle being the neutral component of a SU(2){sub L} multiplet. The inclusion of processes with final state W can modify significantly the cross sections computed with only virtual W exchange. Our results show that the inclusion of infrared logs is necessary for a precise computation of the dark matter relic abundance.
Gaussian effective potential for the standard model SU(2)xU(1) electroweak theory
Siringo, Fabio; Marotta, Luca
2008-07-01
The Gaussian effective potential is derived for the non-Abelian SU(2)xU(1) gauge theory of electroweak interactions. At variance with naive derivations, the Gaussian effective potential is proven to be a genuine variational tool in any gauge. The role of ghosts is discussed and the unitarity gauge is shown to be the only choice which allows calculability without insertion of further approximations. The full non-Abelian calculation confirms the existence of a light Higgs boson in the nonperturbative strong coupling regime of the Higgs sector.
One-Loop β Functions for Yukawa Couplings in the Electroweak-Scale Right-Handed Neutrino Model
NASA Astrophysics Data System (ADS)
Nhu Le, Nguyen; Quang Hung, Pham
2014-09-01
Fermions in the model of electroweak-scale right-handed neutrinos (EWRH) with masses of the order of 300 GeV or more could result in dynamical electroweak symmetry breaking by forming condensates through the exchange of a fundamental Higgs scalar doublet or triplet. These condensates are dynamically studied within the framework of the Schwinger- Dyson equation. With the electroweak symmetry broken by condensates, the fully worked-out model of EWRH in which there are two doublets and two triplets, one of which is composite and the others being the original fundamental scalar doublet and triplet could be suitable for recent LHC discovery of the 125 GeV scalar particle.
Heavy triplet neutrinos as a new dark-matter option
NASA Astrophysics Data System (ADS)
Chardonnet, Pascal; Fayet, Pierre; Salati, Pierre
1993-04-01
We propose a new scheme where dark matter is made of heavy stable neutral particles N, possibly even lighter than 1/2mZ, but uncoupled to the Z0. Such particles should be given an efficient way to annihilate, otherwise their fossil density would overclose the universe. In this scheme, the annihilation results from a delicate interplay between N and its heavier charged electroweak partner E+/-. A closure density may be naturally reached if the mass splitting is ~10 GeV, which suggests that the E+/- may be discovered at LEP 200. The species N results from the mixing between a singlet and the neutral member of a triplet, here induced by the vacuum expectation value of a Higgs triplet. The latter is kept naturally small with respect to the electroweak scale, as a result of a new approximate discrete symmetry, the triplet-parity Tp. We discuss various implications of this model for astrophysics and particle physics. Unité propre de Recherche du CNRS, associée à l'Ecole Normale Supérieure et à l'Université de Paris-Sud.
WLWL scattering in Higgsless models: Identifying better effective theories
NASA Astrophysics Data System (ADS)
Belyaev, Alexander S.; Chivukula, R. Sekhar; Christensen, Neil D.; He, Hong-Jian; Kurachi, Masafumi; Simmons, Elizabeth H.; Tanabashi, Masaharu
2009-09-01
The three-site model has been offered as a benchmark for studying the collider phenomenology of Higgsless models. In this paper we analyze how well the three-site model performs as a general exemplar of Higgsless models in describing WLWL scattering, and which modifications can make it more representative. We employ general sum rules relating the masses and couplings of the Kaluza-Klein modes of the gauge fields in continuum and deconstructed Higgsless models as a way to compare the different theories. We show that the size of the four-point vertex for the (unphysical) Nambu-Goldstone modes and the degree to which the sum rules are saturated by contributions from the lowest-lying Kaluza-Klein resonances both provide good measures of the extent to which a highly deconstructed theory can accurately describe the low-energy physics of a continuum 5D Higgsless model. After comparing the three-site model to flat and warped continuum models, we analyze extensions of the three-site model to a longer open linear moose with an additional U(1) group and to a ring (“breaking electroweak symmetry strongly” or “hidden local symmetry”) model with three sites and three links. Both cases may be readily analyzed in the framework of the general sum rules. We demonstrate that WLWL scattering in the ring model can very closely approximate scattering in the continuum models, provided that the hidden local symmetry parameter a is chosen to mimic ρ-meson dominance of ππ scattering in QCD. The hadron and lepton collider phenomenology of both extended models is briefly discussed, with a focus on the complementary information to be gained from precision measurements of the Z' line shape and ZWW coupling at a high-energy lepton collider.
W{sub L}W{sub L} scattering in Higgsless models: Identifying better effective theories
Belyaev, Alexander S.; Chivukula, R. Sekhar; Christensen, Neil D.; Simmons, Elizabeth H.; He Hongjian; Kurachi, Masafumi; Tanabashi, Masaharu
2009-09-01
The three-site model has been offered as a benchmark for studying the collider phenomenology of Higgsless models. In this paper we analyze how well the three-site model performs as a general exemplar of Higgsless models in describing W{sub L}W{sub L} scattering, and which modifications can make it more representative. We employ general sum rules relating the masses and couplings of the Kaluza-Klein modes of the gauge fields in continuum and deconstructed Higgsless models as a way to compare the different theories. We show that the size of the four-point vertex for the (unphysical) Nambu-Goldstone modes and the degree to which the sum rules are saturated by contributions from the lowest-lying Kaluza-Klein resonances both provide good measures of the extent to which a highly deconstructed theory can accurately describe the low-energy physics of a continuum 5D Higgsless model. After comparing the three-site model to flat and warped continuum models, we analyze extensions of the three-site model to a longer open linear moose with an additional U(1) group and to a ring ('breaking electroweak symmetry strongly' or 'hidden local symmetry') model with three sites and three links. Both cases may be readily analyzed in the framework of the general sum rules. We demonstrate that W{sub L}W{sub L} scattering in the ring model can very closely approximate scattering in the continuum models, provided that the hidden local symmetry parameter a is chosen to mimic {rho}-meson dominance of {pi}{pi} scattering in QCD. The hadron and lepton collider phenomenology of both extended models is briefly discussed, with a focus on the complementary information to be gained from precision measurements of the Z{sup '} line shape and ZWW coupling at a high-energy lepton collider.
Geometry and symmetry structures in two-time gravity
Bars, Itzhak; Chen, S.-H.
2009-04-15
Two-time (2T) gravity in d+2 dimensions predicts 1T general relativity in d dimensions, augmented with a local scale symmetry known as the Weyl symmetry in 1T field theory. The emerging general relativity comes with a number of constraints, particularly on scalar fields and their interactions in 1T field theory. These constraints, detailed in this paper, are footprints of 2T gravity and could be a basis for testing 2T physics. Some of the conceptually interesting consequences of the 'accidental' Weyl symmetry include that the gravitational constant emerges from vacuum values of the dilaton and other Higgs-type scalars and that it changes after every cosmic phase transition (inflation, grand unification, electroweak phase transition, etc.). We show that this consequential Weyl symmetry in d dimensions originates from coordinate reparametrization, not from scale transformations, in the d+2 spacetime of 2T gravity. To recognize this structure we develop in detail the geometrical structures, curvatures, symmetries, etc. of the d+2 spacetime which is restricted by a homothety condition derived from the action of 2T gravity. Observers that live in d dimensions perceive general relativity and all degrees of freedom as shadows of their counterparts in d+2 dimensions. Kaluza-Klein type modes are removed by gauge symmetries and constraints that follow from the 2T-gravity action. However some analogs to Kaluza-Klein modes, which we call 'prolongations' of the shadows into the higher dimensions, remain but they are completely determined, up to gauge freedom, by the shadows in d dimensions.
Poltis, Robert; Stojkovic, Dejan
2010-10-15
The decay of nontopological electroweak strings may leave an observable imprint in the Universe today in the form of primordial magnetic fields. Protogalaxies preferentially tend to form with their axis of rotation parallel to an external magnetic field, and, moreover, an external magnetic field produces torque which tends to align the galaxy axis with the magnetic field. We demonstrate that the shape of a magnetic field left over from two looped electroweak strings can explain the observed nontrivial alignment of quasar polarization vectors and make predictions for future observations. PMID:21230960
Precision electroweak physics with the SLD/SLC: The left-right polarization asymmetry
Rowson, P.C.; SLD Collaboration
1994-12-01
Following a brief review of a commonly used general framework for the analysis of radiative corrections and possible new physics, the recent precision results from the SLD/SLC are discussed and used to test the standard electroweak model. In the 1993 SLD/SLC run, the SLD recorded 50,000 Z events produced by the collision of longitudinally polarized electrons on unpolarized positrons at a center-of-mass energy of 91.26 GeV. The luminosity-weighted average polarization of the SLC electron beam was (63.0 {plus_minus} 1.1)%. We measure the left-right cross-section asymmetry in Z boson production, A{sub LR}, to be 0.1628 {plus_minus} 0.0071 (stat) {plus_minus} 0.0028 (syst) which determines the effective weak mixing angle to be sin{sup 2} {theta}{sub W}{sup eff} = 0.2292 {plus_minus} 0.0009 (stat) {plus_minus} 0.0004 (syst). When averaged with our 1992 result, we obtain sin{sup 2} {theta}{sub W}{sup eff} = 0.2294 {plus_minus} 0. 0010. This result differs from analogous LEP results at the level of about 2.5 {sigma}. The world averages of electroweak data are comfortably in agreement with the standard model.
Electroweak higher-order effects and theoretical uncertainties in deep-inelastic neutrino scattering
Diener, K.-P.O.; Dittmaier, S.; Hollik, W.
2005-11-01
A previous calculation of electroweak O({alpha}) corrections to deep-inelastic neutrino scattering, as e.g. measured by NuTeV and NOMAD, is supplemented by higher-order effects. In detail, we take into account universal two-loop effects from {delta}{alpha} and {delta}{rho} as well as higher-order final-state photon radiation off muons in the structure function approach. Moreover, we make use of the recently released O({alpha})-improved parton distributions MRST2004QED and identify the relevant QED factorization scheme, which is DIS-like. As a technical by-product, we describe slicing and subtraction techniques for an efficient calculation of a new type of real corrections that are induced by the generated photon distribution. A numerical discussion of the higher-order effects suggests that the remaining theoretical uncertainty from unknown electroweak corrections is dominated by nonuniversal two-loop effects and is of the order 0.0003 when translated into a shift in sin{sup 2}{theta}{sub W}=1-M{sub W}{sup 2}/M{sub Z}{sup 2}. The O({alpha}) corrections implicitly included in the parton distributions lead to a shift of about 0.0004.
NASA Astrophysics Data System (ADS)
Gabrielli, Emidio; Heikinheimo, Matti; Kannike, Kristjan; Racioppi, Antonio; Raidal, Martti; Spethmann, Christian
2014-01-01
We study the standard model (SM) in its full perturbative validity range between ΛQCD and the U(1)Y Landau pole, assuming that a yet unknown gravitational theory in the UV does not introduce additional particle thresholds, as suggested by the tiny cosmological constant and the absence of new stabilizing physics at the electroweak scale. We find that, due to dimensional transmutation, the SM Higgs potential has a global minimum at 1026 GeV, invalidating the SM as a phenomenologically acceptable model in this energy range. We show that extending the classically scale invariant SM with one complex singlet scalar S allows us to (i) stabilize the SM Higgs potential, (ii) induce a scale in the singlet sector via dimensional transmutation that generates the negative SM Higgs mass term via the Higgs portal, (iii) provide a stable CP-odd singlet as the thermal relic dark matter due to CP-conservation of the scalar potential, and (iv) provide a degree of freedom that can act as an inflaton in the form of the CP-even singlet. The logarithmic behavior of dimensional transmutation allows one to accommodate the large hierarchy between the electroweak scale and the Landau pole, while understanding the latter requires a new nonperturbative view on the SM.
Electroweak phase transition, critical bubbles, and sphaleron decoupling condition in the MSSM
Funakubo, Koichi; Senaha, Eibun
2009-06-01
The electroweak phase transition and the sphaleron decoupling condition in the minimal supersymmetric standard model are revisited taking the latest experimental data into account. The light Higgs boson scenario and the ordinary decoupling limit, which are classified by the relative size between the CP-odd Higgs boson mass and Z boson mass, are considered within the context of electroweak baryogenesis. We investigate v/T at not only the critical temperature at which the effective potential has two degenerate minima but also the nucleation temperature of the critical bubbles, where v is a vacuum expectation value of the Higgs boson and T denotes a temperature. It is found that v/T at the nucleation temperature can be enhanced by about 10% compared to that at the critical temperature. We also evaluate the sphaleron decoupling condition including the zero mode factors of the fluctuations around sphaleron. It is observed that the sphaleron decoupling condition at the nucleation temperature is given by v/T > or approx. 1.38 for the typical parameter sets. In any phenomenologically allowed region, v/T at both the critical and nucleation temperatures cannot be large enough to satisfy such a sphaleron decoupling condition.
Electroweak gauge-boson production in association with b jets at Hadron Colliders
NASA Astrophysics Data System (ADS)
Febres Cordero, F.; Reina, L.
2015-06-01
The production of both charged and neutral electroweak gauge bosons in association with b jets has attracted a lot of experimental and theoretical attention in recent years because of its central role in the physics programs of both the Fermilab Tevatron and the CERN Large Hadron Collider. The improved level of accuracy achieved both in the theoretical predictions and experimental measurements of these processes can promote crucial developments in modeling b-quark jets and b-quark parton distribution functions, and can provide a more accurate description of some of the most important backgrounds to the measurement of Higgs-boson couplings and several new physics searches. In this paper, we review the status of theoretical predictions for cross sections and kinematic distributions of processes in which an electroweak gauge boson is produced in association with up to two b jets in hadronic collisions, namely p\\bar {p}, pp → V + 1b jet and p\\bar {p}, pp → V + 2b jets with V = W±, Z/γ*, γ. Available experimental measurements at both the Fermilab Tevatron and the CERN Large Hadron Collider are also reviewed and their comparison with theoretical predictions is discussed.
Porsev, S G; Beloy, K; Derevianko, A
2009-05-01
We carry out high-precision calculation of parity violation in a cesium atom, reducing theoretical uncertainty by a factor of 2 compared to previous evaluations. We combine previous measurements with calculations and extract the weak charge of the 133Cs nucleus, QW=-73.16(29)expt(20)theor. The result is in agreement with the standard model (SM) of elementary particles. This is the most accurate to-date test of the low-energy electroweak sector of the SM. In combination with the results of high-energy collider experiments, we confirm the energy dependence (or "running") of the electroweak force over an energy range spanning 4 orders of magnitude (from approximately 10 MeV to approximately 100 GeV). Additionally, our result places constraints on a variety of new physics scenarios beyond the SM. In particular, we increase the lower limit on the masses of extra Z bosons predicted by models of grand unification and string theories. PMID:19518856
NASA Astrophysics Data System (ADS)
Agashe, K.; Deshpande, N. G.; Wu, G.-H.
2001-06-01
We investigate whether models with flat extra dimensions in which SM fields propagate can give a significant contribution to the anomalous magnetic moment of the muon (MMM). In models with only SM gauge and Higgs fields in the bulk, the contribution to the MMM from Kaluza-Klein (KK) excitations of gauge bosons is very small. This is due to the constraint on the size of the extra dimensions from tree-level effects of KK excitations of gauge bosons on precision electroweak observables such as Fermi constant. If the quarks and leptons are also allowed to propagate in the (same) bulk (``universal'' extra dimensions), then there are no contributions to precision electroweak observables at tree-level. However, in this case, the constraint from one-loop contribution of KK excitations of (mainly) the top quark to /T parameter again implies that the contribution to the MMM is small. We show that in models with leptons, electroweak gauge and Higgs fields propagating in the (same) bulk, but with quarks and gluon propagating in a sub-space of this bulk, both the above constraints can be relaxed. However, with only one Higgs doublet, the constraint from the process /b-->sγ requires the contribution to the MMM to be smaller than the SM electroweak correction. This constraint can be relaxed in models with more than one Higgs doublet.
Heavy-flavor results for the era of SUSY and TeV-scale
Kwon, Youngjoon
2008-11-23
In this talk, we review recent experimental results in the heavy-flavor physics, in particular, in the B meson and {tau} lepton systems. We focus on the phenomena which could be sensitive to new physics effects in the TeV scale, including SUSY. The CP violations in B and B{sub s} mesons, radiative and electroweak penguin decays of B, search for lepton-flavor-violaing {tau} decays, prospects of CP violation search in {tau} and B decays to final states including {tau} leptons are discussed.
Implications of a heavy gauge boson
NASA Astrophysics Data System (ADS)
Kang, Junhai
We study the implications of neutral heavy gauge bosons to electroweak (EW) baryogenesis, neutrino physics and the discovery limits at the Tevatron and LHC. For baryogenesis, we construct two anomaly free supersymmetric U(1)' models with secluded U(1) '-breaking sectors. In the framework of the one with E6 embedding, we study the one-loop effective potential at finite temperature, and show that there exist strong enough first order EW phase transition (EWPT) because of the large trilinear terms in the tree-level Higgs potentials. Unlike the Minimal Supersymmetric Standard Model (MSSM), the stop masses can be very heavy. We discuss possible large tree-level CP violation associated with the Higgs sector. Numerical calculations show that the contribution purely from the thin wall regime is big enough to explain the observed baryon number asymmetry for some of the parameter space. Our model is free of domain wall problems and does not introduce new contributions to electric dipole moments (EDM). Secondly, we consider various possibilities for generating neutrino masses in supersymmetric models with an additional U(1)' gauge symmetry. One class of models involves two extra U (1)' x U(1)″ gauge symmetries, with U(1)″ breaking at an intermediate scale and yielding small Dirac masses through higher-dimensional operators. The right-handed neutrinos Nci can naturally decouple from the low energy U(1) ', avoiding cosmological constraints. We secondly consider models with a pair of heavy triplets which couple to left-handed neutrinos. After integrating out the heavy triplets, a small neutrino Majorana mass matrix can be generated by the induced non-renormalizable terms. We also study models involving the double-see-saw mechanism, in which heavy Majorana masses are associated with the TeV-scale of U(1)' breaking. We finally study how the exotic particles and supersymmetric partners would affect the discovery limit at the Tevatron and LHC for neutral gauge bosons in generic
SUSY models under siege: LHC constraints and electroweak fine-tuning
NASA Astrophysics Data System (ADS)
Baer, Howard; Barger, Vernon; Mickelson, Dan; Padeffke-Kirkland, Maren
2014-06-01
Recent null results from LHC8 supersymmetry (SUSY) searches along with the discovery of a standard model (SM)-like Higgs boson with mass mh≃125.5 GeV indicates sparticle masses in the TeV range, causing tension with conventional measures of electroweak fine-tuning. We propose a simple fine-tuning rule which should be followed under any credible evaluation of fine-tuning. We believe that overestimates of electroweak fine-tuning by conventional measures all arise from violations of this rule. We show that to gain accord with the fine-tuning rule, then both the Higgs mass and the traditional ΔBG fine-tuning measures reduce to the model-independent electroweak fine-tuning measure ΔEW. This occurs by combining dependent contributions to mZ or mh into independent units. Then, using ΔEW, we evaluate EW fine-tuning for a variety of SUSY models including mSUGRA, NUHM1, NUHM2, mGMSB, mAMSB, hyper-charged AMSB, gaugino AMSB and nine cases of mixed moduli-anomaly (mirage) mediated SUSY breaking models while respecting LHC Higgs mass and B-decay constraints (we do not impose LHC8 sparticle mass constraints due to the possibility of compressed spectra within many of these models). We find mSUGRA, mGMSB and the AMSB models all to be highly fine-tuned. The NUHM1 model is moderately fine-tuned while NUHM2 which allows for radiatively driven naturalness (RNS) allows for fine-tuning at a meager 10% level in the case where m(Higgsinos)˜100-200 GeV and the TeV-scale top squarks are well mixed. Models with RNS may or may not be detectable at LHC14. A √s ˜500 GeV e+e- collider will be required to make a definitive search for the requisite light Higgsinos.
NASA Astrophysics Data System (ADS)
Balossini, Giovanni; Montagna, Guido; Carloni Calame, Carlo Michel; Moretti, Mauro; Nicrosini, Oreste; Piccinini, Fulvio; Treccani, Michele; Vicini, Alessandro
2010-01-01
Precision studies of the production of a high-transverse momentum lepton in association with missing energy at hadron colliders require that electroweak and QCD higher-order contributions are simultaneously taken into account in theoretical predictions and data analysis. Here we present a detailed phenomenological study of the impact of electroweak and strong contributions, as well as of their combination, to all the observables relevant for the various facets of the pmathop {p}limits^{left( - right)} to {text{lepton}} + X physics programme at hadron colliders, including luminosity monitoring and Parton Distribution Functions constraint, W precision physics and search for new physics signals. We provide a theoretical recipe to carefully combine electroweak and strong corrections, that are mandatory in view of the challenging experimental accuracy already reached at the Fermilab Tevatron and aimed at the CERN LHC, and discuss the uncertainty inherent the combination. We conclude that the theoretical accuracy of our calculation can be conservatively estimated to be about 2% for standard event selections at the Tevatron and the LHC, and about 5% in the very high W transverse mass/lepton transverse momentum tails. We also provide arguments for a more aggressive error estimate (about 1% and 3%, respectively) and conclude that in order to attain a one per cent accuracy: 1) exact mixed mathcal{O}left( {α {α_s}} right) corrections should be computed in addition to the already available NNLO QCD contributions and two-loop electroweak Sudakov logarithms; 2) QCD and electroweak corrections should be coherently included into a single event generator.
May heavy neutrinos solve underground and cosmic-ray puzzles?
Belotsky, K. M. Fargion, D. Khlopov, M. Yu. Konoplich, R. V.
2008-01-15
Primordial heavy neutrinos of the fourth generation might explain different astrophysical puzzles. The simplest fourth-neutrino scenario is consistent with known fourth-neutrino physics, cosmic ray antimatter, cosmic gamma fluxes, and positive signals in underground detectors for a very narrow neutrino mass window (46-47 GeV). However, accounting for the constraint of underground experiment CDMS prohibits solution of cosmic-ray puzzles in this scenario. We have analyzed extended heavy-neutrino models related to the clumpiness of neutrino density, new interactions in heavy-neutrino annihilation, neutrino asymmetry, and neutrino decay. We found that, in these models, the cosmic-ray imprint may fit the positive underground signals in DAMA/Nal experiment in the entire mass range 46-70 GeV allowed from uncertainties of electroweak parameters, while satisfaction of the CDMS constraint reduces the mass range to around 50 GeV, where all data can come to consent in the framework of the considered hypothesis.
Heavy neutrino impact on the triple Higgs coupling
NASA Astrophysics Data System (ADS)
Baglio, J.; Weiland, C.
2016-07-01
We present the first calculation of the one-loop corrections to the triple Higgs coupling in the framework of a simplified 3 +1 Dirac neutrino model, that is three light neutrinos plus one heavy neutrino embedded in the Standard Model (SM). The triple Higgs coupling is a key parameter of the scalar potential triggering the electroweak symmetry-breaking mechanism in the SM. The impact of the heavy neutrino can be as large as +20 % to +30 % for parameter points allowed by the current experimental constraints depending on the tightness of the perturbative bound. This can be probed at the high-luminosity LHC, at future electron-positron colliders and at the Future Circular Collider in hadron-hadron mode, an envisioned 100 TeV p p machine. Our calculation, being done in the mass basis, can be extended to any model using the neutrino portal. In addition, the effects that we have calculated are expected to be enhanced if additional heavy fermions with large Yukawa couplings are included, as in low-scale seesaw mechanisms.
Next-to-leading order QCD corrections to electroweak Zjj production in the POWHEG BOX
NASA Astrophysics Data System (ADS)
Jäger, Barbara; Schneider, Steven; Zanderighi, Giulia
2012-09-01
We present an implementation of electroweak Z-boson production in association with two jets at hadron colliders in the POWHEG framework, a method that allows the interfacing of NLO-QCD calculations with parton-shower Monte Carlo programs. We focus on the leptonic decays of the weak gauge boson, and take photonic and non-resonant contributions to the matrix elements fully into account. We provide results for observables of particular importance for the suppression of QCD backgrounds to vector-boson fusion processes by means of central-jet-veto techniques. While parton-shower effects are small for most observables associated with the two hardest jets, they can be more pronounced for distributions that are employed in central-jet-veto studies.
Probing electroweak physics for all B{yields}XM decays in the endpoint region
Chay, Junegone; Kim, Chul; Leibovich, Adam K.; Zupan, Jure
2007-11-01
Using soft-collinear effective theory we describe at leading order in 1/m{sub b} all the semi-inclusive hadronic B{yields}XM decays near the endpoint, where an energetic light meson M recoils against an inclusive jet X. Here we extend to the decays in which spectator quarks go into the jet X, and also include the decays involving {eta}, {eta}{sup '} mesons that receive additional contributions from gluonic operators. The predicted branching ratios and CP asymmetries depend on fewer hadronic parameters than the corresponding two-body B decays. This makes semi-inclusive hadronic B{yields}XM decays a powerful probe of the potential nonperturbative nature of charming penguins as well as a useful probe of new physics effects in electroweak flavor changing transitions. A comparison with B{yields}KX data from BABAR points to an enhanced charming penguin, albeit with large experimental errors.
Electroweak model-independent tests for SU(3) symmetry in hadronic B decays
NASA Astrophysics Data System (ADS)
He, Xiao-Gang; Leou, Jenq-Yuan; Wu, Chung-Yi
2000-12-01
We study the effects of new physics beyond the standard model on SU(3) symmetry in charmless hadronic two body B decays. It is found that several equalities for some of the decay amplitudes if small annihilation contributions are neglected, such as A(Bd(Bu)-->π+π-,π+K-(π-K¯0))=A(Bs-->K+π-,K-K+(K0K¯0)), A(Bd-->π+ρ-,π-ρ+,K-ρ+,π+K*-) = A(Bs-->K+ρ-,π-K*+,K-K*+,K+K*-), A(Bd(Bu)-->ρ+ρ-, ρ+K*-(ρ-K¯*0))=A(Bs-->K*+ρ-, K*-K*+(K*0K¯*0)), predicted by SU(3) symmetry in the SM are not affected by new physics. These relations provide important electroweak model independent tests for SU(3) symmetry in B decays. We also discuss how the assumption of the smallness of annihilation contributions can be tested experimentally.
Electroweak contribution to the top quark forward-backward asymmetry at the Tevatron
Hollik, Wolfgang; Pagani, Davide
2011-11-01
The electroweak contributions to the forward-backward asymmetry in the production of top-quark pairs at the Tevatron are evaluated at O({alpha}{sup 2}) and O({alpha}{alpha}{sub s}{sup 2}). We perform a detailed analysis of all partonic channels that produce an asymmetry and combine them with the QCD contributions. They provide a non-negligible addition to the QCD-induced asymmetry with the same overall sign, thus enlarging the standard model prediction and diminishing the observed deviation. For the observed mass-dependent forward-backward asymmetry a 3{sigma} deviation still remains at an invariant-mass cut of M{sub tt}>450 GeV.
{nu} induced threshold production of two pions and N*(1440) electroweak form factors
Hernandez, E.; Nieves, J.; Valverde, M.; Singh, S. K.; Vacas, M. J. Vicente
2008-03-01
We study the threshold production of two pions induced by neutrinos in nucleon targets. The contribution of nucleon, pion, and contact terms are calculated using a chiral Lagrangian. The contribution of the Roper resonance, neglected in earlier studies, has also been taken into account. The numerical results for the cross sections are presented and compared with the available experimental data. It has been found that in the two-pion channels with {pi}{sup +}{pi}{sup -} and {pi}{sup 0}{pi}{sup 0} in the final state, the contribution of the N*(1440) is quite important and could be used to determine the N*(1440) electroweak transition form factors if experimental data with better statistics become available in the future.
Complete one-loop electroweak corrections to ZZZ production at the ILC
NASA Astrophysics Data System (ADS)
Ji-Juan, Su; Wen-Gan, Ma; Ren-You, Zhang; Shao-Ming, Wang; Lei, Guo
2008-07-01
We study the complete O(αew) electroweak (EW) corrections to the production of three Z0 bosons in the framework of the standard model (SM) at the ILC. The leading-order and the EW next-to-leading-order corrected cross sections are presented, and their dependence on the colliding energy s and Higgs-boson mass mH is analyzed. We investigate also the LO and one-loop EW corrected distributions of the transverse momentum of the final Z0 boson, and the invariant mass of the Z0Z0 pair. Our numerical results show that the EW one-loop correction generally suppresses the tree-level cross section, and the relative correction with mH=120GeV(150GeV) varies between -15.8%(-13.9%) and -7.5%(-6.2%) when s goes up from 350 GeV to 1 TeV.
Non-minimal CW inflation, electroweak symmetry breaking and the 750 GeV anomaly
NASA Astrophysics Data System (ADS)
Marzola, L.; Racioppi, A.; Raidal, M.; Urban, F. R.; Veermäe, H.
2016-03-01
We study whether the hinted 750 GeV resonance at the LHC can be a Coleman-Weinberg inflaton which is non-minimally coupled to gravity. Since the inflaton must couple to new charged and coloured states to reproduce the LHC diphoton signature, the same interaction can generate its effective potential and trigger the electroweak symmetry breaking via the portal coupling to the Higgs boson. This inflationary scenario predicts a lower bound on the tensor-to-scalar ratio of r ≳ 0.006, where the minimal value corresponds to the measured spectral index n s ≃ 0.97. However, we find that the compatibility with the LHC diphoton signal requires exotic new physics at energy scales accessible at the LHC. We study and quantify the properties of the predicted exotic particles.
A consistent model of electroweak data including Z → b overlineb and Z → c overlinec
NASA Astrophysics Data System (ADS)
Agashe, K.; Graesser, M.; Hinchliffe, I.; Suzuki, M.
1996-02-01
We have performed an overall fit to the electroweak data with the generation blind U(1) extension of the Standard Model. As input data for fitting we have included the asymmetry parameters, the partial decay widths of Z, neutrino scattering, and atomic parity violation. The QCD coupling αs has been constrained to the world average obtained from all data except the Z width. On the basis of our fit we have constructed a viable gauge model that not only explains Rb and Rc but also provides a much better overall fit to the data than the Standard Model. Despite its phenomenological viability, our model is unfortunately not simple from the theoretical viewpoint. Atomic parity violation experiments strongly disfavor more aesthetically appealing alternatives that can be grand unified.
Electroweak single pion production and form factors of the Δ(1232) resonance
NASA Astrophysics Data System (ADS)
Żmuda, Jakub; Graczyk, Krzysztof M.
2015-10-01
We extend and review our analysis of the nucleon → Δ(1232) transition electroweak form factors from Ref. [1]. New fit of the Δ(1232) vector form factors to electron-proton scattering F2 structure function is introduced as well, leading to results different from the popular parametrization of Ref. [2]. A clear model dependence of the extracted parameters emerges. Fit to neutrino scattering data is performed in all available isospin channels. The resulting axial mass is MA Δ=0.85-0.08+0.09(GeV) and C5A(0 )=1.10-0.14+0.15 . The latter value is in accordance with Goldberger-Treiman relation as long as the deuteron effects are included.
Theoretical aspects of electroweak and other interactions in medium energy physics
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Nimai C.
1990-11-01
The project, supported by the Department of Energy grant, deals with the theory of electroweak and other interactions of nucleons and nuclei, with emphasis on the electromagnetic production of mesons, and the theory of hadron structure inspired by quantum chromodynamics. On these topics, twenty-seven papers and other scientific communications have been completed during the current project period, April 1988 to present, including a number of invited papers presented at international meetings and workshops. One student has got his Ph.D. degree, and two working toward it; the latter have been rewarded by the organizers of the PANIC-XII Conference at MIT (June 1990) with financial support to present their papers. A DEC-3100 workstation has been installed for the dedicated use of this project, and it has been upgraded with additional funding from Rensselaer and Digital Equipment Corporation. A new research collaboration with Professor F. Iachello, a theorist from Yale University has been started.
Theoretical aspects of electroweak and other interactions in medium energy nuclear physics
NASA Astrophysics Data System (ADS)
Mukhopadhyay, N. C.
1994-12-01
Significant progress has been made in the current project year in the development of chiral soliton model and its applications to the electroweak structure of the nucleon and the Delta (1232) resonance. Further progress also has been made in the application of the perturbative QCD (pQCD) and the study of physics beyond the standard model. The postdoctoral associate and the graduate student working towards his Ph.D. degree have both made good progress. The review panel of the DOE has rated this program as a 'strong, high priority' one. A total of fifteen research communications -- eight journal papers and, conference reports and seven other communications -- have been made during the project year so far.
A Departure from prediction: Electroweak physics at NuTeV
K. S. McFarland et al.
2004-01-12
The NuTeV experiment has performed precision measurements of the ratio of neutral-current to charged-current cross-sections in high rate, high energy neutrino and antineutrino beams on a dense, primarily steel, target. The separate neutrino and anti-neutrino beams, high statistics, and improved control of other experimental systematics, allow the determination of electroweak parameters with significantly greater precision than past {nu}N scattering experiments. Our null hypothesis test of the standard model prediction measures sin{sup 2} {theta}{sub W}{sup (on shell)} = 0.2277 {+-} 0.0013(stat) {+-} 0.0009(syst), a value which is 3.0{sigma} above the prediction. We discuss possible explanations for and implications of this discrepancy.
Datta, Mousumi; /Fermilab
2007-10-01
The top quark was discovered in 1995 by the CDF and D0 experiments at the Fermilab Tevatron during the Run I operation. Since the start of the Tevatron Run II in 2001, both experiments have collected {approx}2 fb{sup -1} data samples, which are over twenty times larger than that used in the Run 1 discovery. This larger data sample allows more precise studies of top-quark properties; differences between observed top-quark properties and the Standard Model (SM) prediction may give hints to possible physics beyond the SM. Here we present the latest results on the measurements of top-quark properties and the search for electroweak (EW) single top quark production from the CDF and D0 collaborations. The integrated luminosity used for the measurements corresponds to about 1 fb{sup -1}.
Signals for new spin-1 resonances in electroweak gauge boson pair production at the LHC
Alves, A.; Eboli, O. J. P.; Netto, D. Goncalves; Gonzalez-Garcia, M. C.; Mizukoshi, J. K.
2009-10-01
The mechanism of electroweak symmetry breaking (EWSB) will be directly scrutinized soon at the CERN Large Hadron Collider. We analyze the LHC potential to look for new vector bosons associated with the EWSB sector, presenting a possible model independent approach to search for these new spin-1 resonances. We show that the analyses of the processes pp{yields}l{sup +}l{sup '-}Ee{sub T}, l{sup {+-}}jjEe{sub T}, l{sup '{+-}}l{sup +}l{sup -}Ee{sub T}, l{sup {+-}}jjEe{sub T}, and l{sup +}l{sup -}jj (with l, l{sup '}=e or {mu} and j=jet) have a large reach at the LHC and can lead to the discovery or exclusion of many EWSB scenarios such as Higgsless models.
Gamma-ray constraints on dark-matter annihilation to electroweak gauge and Higgs bosons
Fedderke, Michael A.; Kolb, Edward W.; Lin, Tongyan; Wang, Lian-Tao E-mail: Rocky.Kolb@uchicago.edu E-mail: liantaow@uchicago.edu
2014-01-01
Dark-matter annihilation into electroweak gauge and Higgs bosons results in γ-ray emission. We use observational upper limits on the fluxes of both line and continuum γ-rays from the Milky Way Galactic Center and from Milky Way dwarf companion galaxies to set exclusion limits on allowed dark-matter masses. (Generally, Galactic Center γ-ray line search limits from the Fermi-LAT and the H.E.S.S. experiments are most restrictive.) Our limits apply under the following assumptions: a) the dark matter species is a cold thermal relic with present mass density equal to the measured dark-matter density of the universe; b) dark-matter annihilation to standard-model particles is described in the non-relativistic limit by a single effective operator O∝J{sub DM}⋅J{sub SM}, where J{sub DM} is a standard-model singlet current consisting of dark-matter fields (Dirac fermions or complex scalars), and J{sub SM} is a standard-model singlet current consisting of electroweak gauge and Higgs bosons; and c) the dark-matter mass is in the range 5 GeV to 20 TeV. We consider, in turn, the 34 possible operators with mass dimension 8 or lower with non-zero s-wave annihilation channels satisfying the above assumptions. Our limits are presented in a large number of figures, one for each of the 34 possible operators; these limits can be grouped into 13 classes determined by the field content and structure of the operators. We also identify three classes of operators (coupling to the Higgs and SU(2){sub L} gauge bosons) that can supply a 130 GeV line with the desired strength to fit the putative line signal in the Fermi-LAT data, while saturating the relic density and satisfying all other indirect constraints we consider.
Top Quarks Spin Correlations with Graviton in ADD and RS Models at the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Arai, Masato; Okada, Nobuchika; Smolek, Karel; Šimák, Vladislav
2008-03-01
In LHC physics we study the spin correlation of top-antitop pairs production to investigate the production mechanism of heavy quarks[F. Hubard et al. Eur. Phys. J. C 44 (2006) 13]. The s-channel process mediated by graviton Kaluza-Klein modes in ADD model with several extra dimensions[N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. 429B (1998) 263, hep-ph/9803315] or in the Randall-Sundrum model with only one extra dimension[L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999) 3370 hep-ph/9905221] contribute to the top-antitop pair production and affects the resulting top spin correlations. We calculated the full density matrix for the top-antitop pair production. We find a sizable deviation of the top spin correlations from the Standard.
Higgs boson production and decay in 5D warped models
NASA Astrophysics Data System (ADS)
Frank, Mariana; Pourtolami, Nima; Toharia, Manuel
2016-03-01
We calculate the production and decay rates of the Higgs boson at the LHC in the context of general five-dimensional warped scenarios with a spacetime background modified from the usual AdS5 , with Standard Model (SM) fields propagating in the bulk. We extend previous work by considering the full flavor structure of the SM, and thus including all possible flavor effects coming from mixings with heavy fermions. We proceed in three different ways, first by only including two complete Kaluza-Klein (KK) levels (15 ×15 fermion mass matrices), then including three complete KK levels (21 ×21 fermion mass matrices) and finally we compare with the effect of including the infinite (full) KK towers. We present numerical results for the Higgs production cross section via gluon fusion and Higgs decay branching fractions in both the modified metric scenario and in the usual Randall-Sundrum metric scenario.
Heavy to light Higgs boson decays at NLO in the singlet extension of the Standard Model
NASA Astrophysics Data System (ADS)
Bojarski, F.; Chalons, G.; López-Val, D.; Robens, T.
2016-02-01
We study the decay of a heavy Higgs boson into a light Higgs pair at one loop in the singlet extension of the Standard Model. To this purpose, we construct several renormalization schemes for the extended Higgs sector of the model. We apply these schemes to calculate the heavy-to-light Higgs decay width Γ H → hh at next-to-leading order electroweak accuracy, and demonstrate that certain prescriptions lead to gauge-dependent results. We comprehensively examine how the NLO predictions depend on the relevant singlet model parameters, with emphasis on the trademark behavior of the quantum effects, and how these change under different renormalization schemes and a variable renormalization scale. Once all present constraints on the model are included, we find mild NLO corrections, typically of few percent, and with small theoretical uncertainties.
Electroweak Corrections to pp→μ^{+}μ^{-}e^{+}e^{-}+X at the LHC: A Higgs Boson Background Study.
Biedermann, B; Denner, A; Dittmaier, S; Hofer, L; Jäger, B
2016-04-22
The first complete calculation of the next-to-leading-order electroweak corrections to four-lepton production at the LHC is presented, where all off-shell effects of intermediate Z bosons and photons are taken into account. Focusing on the mixed final state μ^{+}μ^{-}e^{+}e^{-}, we study differential cross sections that are particularly interesting for Higgs boson analyses. The electroweak corrections are divided into photonic and purely weak corrections. The former exhibit patterns familiar from similar W- or Z-boson production processes with very large radiative tails near resonances and kinematical shoulders. The weak corrections are of the generic size of 5% and show interesting variations, in particular, a sign change between the regions of resonant Z-pair production and the Higgs signal. PMID:27152792
Lattice study of an electroweak phase transition at m{sub h} ≅ 126 GeV
Laine, M.; Nardini, G.; Rummukainen, K. E-mail: germano@physik.uni-bielefeld.de
2013-01-01
We carry out lattice simulations of a cosmological electroweak phase transition for a Higgs mass m{sub h} ≅ 126 GeV. The analysis is based on a dimensionally reduced effective theory for an MSSM-like scenario including a relatively light coloured SU(2)-singlet scalar, referred to as a right-handed stop. The non-perturbative transition is stronger than in 2-loop perturbation theory, and may offer a window for electroweak baryogenesis. The main remaining uncertainties concern the physical value of the right-handed stop mass which according to our analysis could be as high as m{sub t-tilde{sub R}} ≅ 155 GeV; a more precise effective theory derivation and vacuum renormalization than available at present are needed for confirming this value.
Electroweak Corrections to p p →μ+μ-e+e-+X at the LHC: A Higgs Boson Background Study
NASA Astrophysics Data System (ADS)
Biedermann, B.; Denner, A.; Dittmaier, S.; Hofer, L.; Jäger, B.
2016-04-01
The first complete calculation of the next-to-leading-order electroweak corrections to four-lepton production at the LHC is presented, where all off-shell effects of intermediate Z bosons and photons are taken into account. Focusing on the mixed final state μ+μ-e+e-, we study differential cross sections that are particularly interesting for Higgs boson analyses. The electroweak corrections are divided into photonic and purely weak corrections. The former exhibit patterns familiar from similar W - or Z -boson production processes with very large radiative tails near resonances and kinematical shoulders. The weak corrections are of the generic size of 5% and show interesting variations, in particular, a sign change between the regions of resonant Z -pair production and the Higgs signal.
Studies of the strong and electroweak interactions at the Z{sub 0} pole
Hildreth, M.D.
1995-03-01
This thesis presents studies of the strong and electroweak forces, two of the fundamental interactions that govern the behavior of matter at high energies. The authors have used the hadronic decays of Z{sup 0} bosons produced with the unique experimental apparatus of the e{sup +}e{sup {minus}} Linear Collider at the Stanford Linear Accelerator Center (SLAC) and the SLAC Large Detector (SLD) for these measurements. Employing the precision tracking capabilities of the SLD, they isolated samples of Z{sup 0} events containing primarily the decays of the Z{sup 0} to a chosen quark type. With an inclusive selection technique, they have tested the flavor independence of the strong coupling, {alpha}{sub s} by measuring the rates of multi-jet production in isolated samples of light (uds), c, and b quark events. They find: {alpha}{sub s}{sup uds}/{alpha}{sub s}{sup all} 0.987 {+-} 0.027(stat) {+-} 0.022(syst) {+-} 0.022(theory), {alpha}{sub s}{sup c}/{alpha}{sub s}{sup all} = 1.012 {+-} 0.104(stat) {+-} 0.102(syst) {+-} 0.096(theory), {alpha}{sub s}{sup b}/{alpha}{sub s}{sup all} = 1.026 {+-} 0.041(stat) {+-} 0.030(theory), which implies that the strong interaction is independent of quark flavor within the present experimental sensitivity. They have also measured the extent of parity-violation in the Z{sup 0} c{bar c} coupling, given by the parameter A{sub c}{sup 0}, using a sample of fully and partially reconstructed D* and D{sup +} meson decays and the longitudinal polarization of the SLC electron beam. This sample of charm quark events was derived with selection techniques based on their kinematic properties and decay topologies. They find A{sub c}{sup 0} = 0.73 {+-} 0.22(stat) {+-} 0.10(syst). This value is consistent with that expected in the electroweak standard model of particle interactions.
NASA Technical Reports Server (NTRS)
Testa, Massimo
1990-01-01
In the large quark mass limit, an argument which identifies the mass of the heavy-light pseudoscalar or scalar bound state with the renormalized mass of the heavy quark is given. The following equation is discussed: m(sub Q) = m(sub B), where m(sub Q) and m(sub B) are respectively the mass of the heavy quark and the mass of the pseudoscalar bound state.
Aleksejevs, Aleksandrs; Barkanova, Svetlana; Ilyichev, Alexander; Zykunov, Vladimir
2010-11-01
We perform updated and detailed calculations of the complete NLO set of electroweak radiative corrections to parity violating e- e- --> e- e- (gamma) scattering asymmetries at energies relevant for the ultra-precise Moller experiment coming soon at JLab. Our numerical results are presented for a range of experimental cuts and relative importance of various contributions is analyzed. We also provide very compact expressions analytically free from non-physical parameters and show them to be valid for fast yet accurate estimations.
Wong, P.K.
1988-04-01
Certain heavy metals are required, as trace elements for normal cellular functions. However, heavy metals are toxic to cells once their levels exceed their low physiological values. The toxicity of heavy metals on microorganisms, and on animals has been well-documented. These interactions may induce the alteration of the primary as well as secondary structures of the DNA and result in mutation(s). The present communication reports the results in determining the mutagenicity and carcinogenicity of ten heavy metals commonly found in polluted areas by using the Salmonella/mammalian-microsome mutagenicity test.
Dark matter coupling to electroweak gauge and Higgs bosons: An effective field theory approach
NASA Astrophysics Data System (ADS)
Chen, Jing-Yuan; Kolb, Edward W.; Wang, Lian-Tao
2013-12-01
If dark matter is a new species of particle produced in the early universe as a cold thermal relic (a weakly-interacting massive particle-WIMP), its present abundance, its scattering with matter in direct-detection experiments, its present-day annihilation signature in indirect-detection experiments, and its production and detection at colliders, depend crucially on the WIMP coupling to standard-model (SM) particles. It is usually assumed that the WIMP couples to the SM sector through its interactions with quarks and leptons. In this paper we explore the possibility that the WIMP coupling to the SM sector is via electroweak gauge and Higgs bosons. In the absence of an ultraviolet-complete particle-physics model, we employ effective field theory to describe the WIMP-SM coupling. We consider both scalars and Dirac fermions as possible dark-matter candidates. Starting with an exhaustive list of operators up to dimension 8, we present detailed calculation of dark-matter annihilations to all possible final states, including γγ, γZ, γh, ZZ, Zh, W+W-, hh, and ffbar, and demonstrate the correlations among them. We compute the mass scale of the effective field theory necessary to obtain the correct dark-matter mass density, and well as the resulting photon line signals.
Instability of magnetic fields in electroweak plasma driven by neutrino asymmetries
Dvornikov, Maxim; Semikoz, Victor B. E-mail: semikoz@yandex.ru
2014-05-01
The magnetohydrodynamics (MHD) is modified to incorporate the parity violation in the Standard Model leading to a new instability of magnetic fields in the electroweak plasma in the presence of nonzero neutrino asymmetries. The main ingredient for such a modified MHD is the antisymmetric part of the photon polarization tensor in plasma, where the parity violating neutrino interaction with charged leptons is present. We calculate this contribution to the polarization tensor connected with the Chern-Simons term in effective Lagrangian of the electromagnetic field. The general expression for such a contribution which depends on the temperature and the chemical potential of plasma as well as on the photon's momentum is derived. The instability of a magnetic field driven by the electron neutrino asymmetry for the ν-burst during the first second of a supernova explosion can amplify a seed magnetic field of a protostar, and, perhaps, can explain the generation of strongest magnetic fields in magnetars. The growth of a cosmological magnetic field driven by the neutrino asymmetry density Δn{sub ν} = n{sub ν}−n{sub ν-bar}≠0 is provided by a lower bound on |ξ{sub ν{sub e}}| = |μ{sub ν{sub e}}|/T which is consistent with the well-known Big Bang nucleosynthesis (upper) bound on neutrino asymmetries in a hot universe plasma.
Instability of magnetic fields in electroweak plasma driven by neutrino asymmetries
NASA Astrophysics Data System (ADS)
Dvornikov, Maxim; Semikoz, Victor B.
2014-05-01
The magnetohydrodynamics (MHD) is modified to incorporate the parity violation in the Standard Model leading to a new instability of magnetic fields in the electroweak plasma in the presence of nonzero neutrino asymmetries. The main ingredient for such a modified MHD is the antisymmetric part of the photon polarization tensor in plasma, where the parity violating neutrino interaction with charged leptons is present. We calculate this contribution to the polarization tensor connected with the Chern-Simons term in effective Lagrangian of the electromagnetic field. The general expression for such a contribution which depends on the temperature and the chemical potential of plasma as well as on the photon's momentum is derived. The instability of a magnetic field driven by the electron neutrino asymmetry for the ν-burst during the first second of a supernova explosion can amplify a seed magnetic field of a protostar, and, perhaps, can explain the generation of strongest magnetic fields in magnetars. The growth of a cosmological magnetic field driven by the neutrino asymmetry density Δnν = nν-nbar nu≠0 is provided by a lower bound on |ξνe| = |μνe|/T which is consistent with the well-known Big Bang nucleosynthesis (upper) bound on neutrino asymmetries in a hot universe plasma.
Electroweak ZZjj production in the Standard Model and beyond in the POWHEG-BOX V2
NASA Astrophysics Data System (ADS)
Jäger, Barbara; Karlberg, Alexander; Zanderighi, Giulia
2014-03-01
We present an implementation of electroweak ZZjj production in the POWHEG BOX V2 framework, an upgrade of the POWHEG BOX program which includes a number of new features that are particularly helpful for high-multiplicity processes. We consider leptonic and semi-leptonic decay modes of the Z bosons, and take non-resonant contributions and spin correlations of the final-state particles into account. In the case of decays to leptons, we also include interactions beyond the Standard Model that arise from an effective Lagrangian which includes CP conserving and violating operators up to dimension six. We find that while leptonic distributions are very sensitive to anomalous couplings, because of the small cross-section involved, these analyses are feasible only after a high-luminosity upgrade of the LHC. We consider the cases of a 14 TeV, 33 TeV and 100 TeV machine and discuss the limits that can be placed on those couplings for different luminosities.
Electroweak interactions and dark baryons in the sextet BSM model with a composite Higgs particle
NASA Astrophysics Data System (ADS)
Fodor, Zoltan; Holland, Kieran; Kuti, Julius; Mondal, Santanu; Nogradi, Daniel; Wong, Chik Him
2016-07-01
The electroweak interactions of a strongly coupled gauge theory are discussed with an outlook beyond the Standard Model (BSM) under global and gauge anomaly constraints. The theory is built on a minimal massless fermion doublet of the SU(2) BSM flavor group (bsm-flavor) with a confining gauge force at the TeV scale in the two-index symmetric (sextet) representation of the BSM SU(3) color gauge group (bsm-color). The intriguing possibility of near-conformal sextet gauge dynamics could lead to the minimal realization of the composite Higgs mechanism with a light 0++ scalar, far separated from strongly coupled resonances of the confining gauge force in the 2-3 TeV range, distinct from Higgsless technicolor. In previous publications we have presented results for the meson spectrum of the theory, including the light composite scalar, which is perhaps the emergent Higgs impostor. Here we discuss the critically important role of the baryon spectrum in the sextet model investigating its compatibility with what we know about thermal evolution of the early Universe including its galactic and terrestrial relics. For an important application, we report the first numerical results on the baryon spectrum of this theory from nonperturbative lattice simulations with baryon correlators in the staggered fermion implementation of the strongly coupled gauge sector. The quantum numbers of composite baryons and their spectroscopy from lattice simulations are required inputs for exploring dark matter contributions of the sextet BSM model, as outlined for future work.
Toward electroweak scale cold dark matter with local dark gauge symmetry and beyond the DM EFT
NASA Astrophysics Data System (ADS)
Ko, Pyungwon
2016-06-01
In this talk, I describe a class of electroweak (EW) scale dark matter (DM) models where its stability or longevity are the results of underlying dark gauge symmetries: stable due to unbroken local dark gauge symmetry or topology, or long-lived due to the accidental global symmetry of dark gauge theories. Compared with the usual phenomenological dark matter models (including DM EFT or simplified DM models), DM models with local dark gauge symmetries include dark gauge bosons, dark Higgs bosons and sometimes excited dark matter. And dynamics among these fields are completely fixed by local gauge principle. The idea of singlet portals including the Higgs portal can thermalize these hidden sector dark matter very efficiently, so that these DM could be easily thermal DM. I also discuss the limitation of the usual DM effective field theory or simplified DM models without the full SM gauge symmetry, and emphasize the importance of the full SM gauge symmetry and renormalizability especially for collider searches for DM.
Ahrens, L.A.; Aronson, S.H.; Connolly, P.L.; Gibbard, B.G.; Murtagh, M.J.; Murtagh, S.J.; Terada, S.; White, D.H. ); Callas, J.L.; Cutts, D.; Diwan, M.V.; Hoftun, J.S.; Hughlock, B.W.; Lanou, R.E.; Shinkawa, T. ); Kurihara, Y. ); Amako, K.; Kabe, S. , Ibaraki-Ken 305 ); Nagashima, Y.; Suzuki, Y.; Tatsumi, S.; Yamaguchi, Y. ); Abe, K.; Beier, E.W.; Doughty, D.C.; Durkin, L.S.; Heagy, S.M.; Hurley, M.; Mann, A.K.; Newcomer, F.M.; Williams, H.H.; York, T. ); Hedin, D.; Marx, M.D.; Stern, E. )
1990-06-01
Total and differential cross sections for {nu}{sub {mu}}{ital e}{r arrow}{nu}{sub {mu}}{ital e} and {bar {nu}}{sub {mu}}{ital e}{r arrow}{bar {nu}}{sub {mu}}{ital e} are measured. Values for the model-independent neutral-current couplings of the electron are found to be {ital g}{sub {ital V}}={minus}0.107{plus minus}0.035(stat){plus minus}0.028(syst) and {ital g}{sub {ital A}}={minus}0.514{plus minus}0.023(stat){plus minus}0.028(syst). The electroweak mixing parameter sin{sup 2}{theta}{sub {ital W}} is determined to be 0.195{plus minus}0.018(stat){plus minus}0.013(syst). Limits are set for the charge radius and magnetic moment of the neutrino as ({l angle}{ital r}{sup 2}{r angle}){lt}0.24{times}10{sup {minus}32} cm{sup 2} and {ital f}{sub {mu}}{lt}0.85{times}10{sup {minus}9} Bohr magnetons, respectively.
One-loop Electroweak Radiative Corrections for Polarized Møller Scattering
NASA Astrophysics Data System (ADS)
Barkanova, Svetlana; Aleksejevs, Aleksandrs; Ilyichev, Alexander; Kolomensky, Yury; Zykunov, Vladimir
2011-04-01
Møller scattering measurements are a clean, powerful probe of new physics effects. However, before physics of interest can be extracted from the experimental data, radiative corrections must be taken into account very carefully. Using two different approaches, we perform updated and detailed calculations of the complete one-loop set of electroweak radiative corrections to parity violating electron-electron scattering asymmetry at low energies relevant for the ultra-precise 11 GeV MOLLER experiment planned at JLab. Although contributions from some of the self-energies and vertex diagrams calculated in the two approaches can differ significantly, our full gauge-invariant set still guarantees that the total relative weak corrections are in excellent agreement for the two methods of calculation. Our numerical results are presented for a range of experimental cuts and the relative importance of various contributions is analyzed. We also provide very compact expressions analytically free from non-physical parameters and show them to be valid for fast yet accurate estimations.
Electro-Weak Dark Matter: Non-perturbative effect confronting indirect detections
NASA Astrophysics Data System (ADS)
Chun, Eung Jin; Park, Jong-Chul
2015-11-01
We update indirect constraints on Electro-Weak Dark Matter (EWDM) considering the Sommerfeld-Ramsauer-Townsend (SRT) effect for its annihilations into a pair of standard model gauge bosons assuming that EWDM accounts for the observed dark matter (DM) relic density for a given DM mass and mass gaps among the multiplet components. For the radiative or smaller mass splitting, the hypercharged triplet and higher multiplet EWDMs are ruled out up to the DM mass ≈ 10- 20 TeV by the combination of the most recent data from AMS-02 (antiproton), Fermi-LAT (gamma-ray), and HESS (gamma-line). The Majorana triplet (wino-like) EWDM can evade all the indirect constraints only around Ramsauer-Townsend dips which can occur for a tiny mass splitting of order 10 MeV or less. In the case of the doublet (Higgsino-like) EWDM, a wide range of its mass ≳ 500 GeV is allowed except Sommerfeld peak regions. Such a stringent limit on the triplet DM can be evaded by employing a larger mass gap of the order of 10 GeV which allows its mass larger than about 1 TeV. However, the future CTA experiment will be able to cover most of the unconstrained parameter space.
Light dark matter, naturalness, and the radiative origin of the electroweak scale
Altmannshofer, Wolfgang; Bardeen, William A.; Bauer, Martin; Carena, Marcela; Lykken, Joseph D.
2015-01-09
We study classically scale invariant models in which the Standard Model Higgs mass term is replaced in the Lagrangian by a Higgs portal coupling to a complex scalar field of a dark sector. We focus on models that are weakly coupled with the quartic scalar couplings nearly vanishing at the Planck scale. The dark sector contains fermions and scalars charged under dark SU(2) × U(1) gauge interactions. Radiative breaking of the dark gauge group triggers electroweak symmetry breaking through the Higgs portal coupling. Requiring both a Higgs boson mass of 125.5 GeV and stability of the Higgs potential up tomore » the Planck scale implies that the radiative breaking of the dark gauge group occurs at the TeV scale. We present a particular model which features a long-range abelian dark force. The dominant dark matter component is neutral dark fermions, with the correct thermal relic abundance, and in reach of future direct detection experiments. The model also has lighter stable dark fermions charged under the dark force, with observable effects on galactic-scale structure. Collider signatures include a dark sector scalar boson with mass ≲ 250 GeV that decays through mixing with the Higgs boson, and can be detected at the LHC. As a result, the Higgs boson, as well as the new scalar, may have significant invisible decays into dark sector particles.« less
Light dark matter, naturalness, and the radiative origin of the electroweak scale
Altmannshofer, Wolfgang; Bardeen, William A.; Bauer, Martin; Carena, Marcela; Lykken, Joseph D.
2015-01-09
We study classically scale invariant models in which the Standard Model Higgs mass term is replaced in the Lagrangian by a Higgs portal coupling to a complex scalar field of a dark sector. We focus on models that are weakly coupled with the quartic scalar couplings nearly vanishing at the Planck scale. The dark sector contains fermions and scalars charged under dark SU(2) × U(1) gauge interactions. Radiative breaking of the dark gauge group triggers electroweak symmetry breaking through the Higgs portal coupling. Requiring both a Higgs boson mass of 125.5 GeV and stability of the Higgs potential up to the Planck scale implies that the radiative breaking of the dark gauge group occurs at the TeV scale. We present a particular model which features a long-range abelian dark force. The dominant dark matter component is neutral dark fermions, with the correct thermal relic abundance, and in reach of future direct detection experiments. The model also has lighter stable dark fermions charged under the dark force, with observable effects on galactic-scale structure. Collider signatures include a dark sector scalar boson with mass ≲ 250 GeV that decays through mixing with the Higgs boson, and can be detected at the LHC. As a result, the Higgs boson, as well as the new scalar, may have significant invisible decays into dark sector particles.
NLO QCD and electroweak corrections to W + γ production with leptonic W-boson decays
NASA Astrophysics Data System (ADS)
Denner, Ansgar; Dittmaier, Stefan; Hecht, Markus; Pasold, Christian
2015-04-01
We present a calculation of the next-to-leading-order electroweak corrections to W+γ production, including the leptonic decay of the W boson and taking into account all off-shell effects of the W boson, where the finite width of the W boson is implemented using the complex-mass scheme. Corrections induced by incoming photons are fully included and find particular emphasis in the discussion of phenomenological predictions for the LHC. The corresponding next-to-leading-order QCD corrections are reproduced as well. In order to separate hard photons from jets, a quark-to-photon fragmentation function á la Glover and Morgan is employed. Our results are implemented into Monte Carlo programs allowing for the evaluation of arbitrary differential cross sections. We present integrated cross sections for the LHC at 7 TeV, 8 TeV, and 14 TeV as well as differential distributions at 14 TeV for bare muons and dressed leptons. Finally, we discuss the impact of anomalous W W γ couplings.
NLO QCD and electroweak corrections to Z + γ production with leptonic Z-boson decays
NASA Astrophysics Data System (ADS)
Denner, Ansgar; Dittmaier, Stefan; Hecht, Markus; Pasold, Christian
2016-02-01
The next-to-leading-order electroweak corrections to ppto {l}+{l}-/overline{ν}ν +\\upgamma +X production, including all off-shell effects of intermediate Z bosons in the complex-mass scheme, are calculated for LHC energies, revealing the typically expected large corrections of tens of percent in the TeV range. Contributions from quark-photon and photon-photon initial states are taken into account as well, but their impact is found to be moderate or small. Moreover, the known next-to-leading-order QCD corrections are reproduced. In order to separate hard photons from jets, both a quark-to-photon fragmentation function á la Glover/Morgan and Frixione's cone isolation are employed. The calculation is available in the form of Monte Carlo programs allowing for the evaluation of arbitrary differential cross sections. Predictions for integrated cross sections are presented for the LHC at 7 TeV, 8 TeV, and 14 TeV, and differential distributions are discussed at 14 TeV for bare muons and dressed leptons. Finally, we consider the impact of anomalous ZZγ and Zγγ couplings.
Determination of the spin of new resonances in electroweak gauge boson pair production at the LHC
Eboli, O. J. P.; Fong, Chee Sheng; Gonzalez-Fraile, J.; Gonzalez-Garcia, M. C.
2011-05-01
The appearance of spin-1 resonances associated with the electroweak symmetry breaking sector is expected in many extensions of the standard model. We analyze the CERN Large Hadron Collider potential to probe the spin of possible new charged and neutral vector resonances through the purely leptonic processes pp{yields}Z{sup '{yields}}l{sup +}l{sup '-}Ee{sub T}, and pp{yields}W{sup '{yields}}l{sup '{+-}l+}l{sup -}Ee{sub T}, with l, l{sup '}=e or {mu}. We perform a model-independent analysis and demonstrate that the spin of the new states can be determined with 99% C.L. in a large fraction of the parameter space where these resonances can be observed with 100 fb{sup -1}. We show that the best sensitivity to the spin is obtained by directly studying correlations between the final state leptons, without the need of reconstructing the events in their center-of-mass frames.
Fisk, Z.; Ott, H.R.; Smith, J.L.
1986-01-01
De Haas-van Alphen results demonstrated the existence of a Fermi surface at sufficiently low temperature and show that the entire Fermi surface involves heavy electrons. The phase transitions in their heavy-electron state are discussed. These are either magnetic or superconducting. 38 refs., 6 figs., 2 tabs. (WRF)
Wong, P.K. )
1988-05-01
Certain heavy metals are required, as trace elements for normal cellular functions. However, heavy metals are toxic to cells once their levels exceed their low physiological values. The toxicity of heavy metals on microorganisms, on plants and on animals has been well-documented. These interactions may induce the alteration of the primary as well as secondary structures of the DNA and result in mutation(s). Though the rec assay with Bacillus subtilis and the reversion assay with Escherichia coli were used to assess the mutagenicity of some heavy metals, the present communication reports the results in determining the mutagenicity and carcinogenicity of ten heavy metals commonly found in polluted areas by using the Salmonella/mammalian-microsome mutagenicity test.
Schimmerling, W.
1980-03-01
This lecture deals with some of the more important physical characteristics of relativistic heavy ions and their measurement, with beam delivery and beam monitoring, and with conventional radiation dosimetry as used in the operation of the BEVALAC biomedical facility for high energy heavy ions (Lyman and Howard, 1977; BEVALAC, 1977). Even so, many fundamental aspects of the interaction of relativistic heavy ions with matter, including important atomic physics and radiation chemical considerations, are not discussed beyond the reminder that such additional understanding is required before an adequte perspective of the problem can be attained.
Electroweak production of the top quark in the Run II of the D0 experiment
Clement, Benoit
2006-04-01
The work exposed in this thesis deals with the search for electroweak production of top quark (single top) in proton-antiproton collisions at {radical}s = 1.96 TeV. This production mode has not been observed yet. Analyzed data have been collected during the Run II of the D0 experiment at the Fermilab Tevatron collider. These data correspond to an integrated luminosity of 370 pb{sup -1}. In the Standard Model, the decay of a top quark always produce a high momentum bottom quark. Therefore bottom quark jets identification plays a major role in this analysis. The large lifetime of b hadrons and the subsequent large impact parameters relative to the interaction vertex of charged particle tracks are used to tag bottom quark jets. Impact parameters of tracks attached to a jet are converted into the probability for the jet to originate from the primary vertex. This algorithm has a 45% tagging efficiency for a 0.5% mistag rate. Two processes (s and t channels) dominate single top production with slightly different final states. The searched signature consists in 2 to 4 jets with at least one bottom quark jet, one charged lepton (electron or muon) and missing energy accounting for a neutrino. This final state is background dominated and multivariate techniques are needed to separate the signal from the two main backgrounds: associated production of a W boson and jets and top quarks pair production. The achieved sensitivity is not enough to reach observation and we computed upper limits at the 95% confidence level at 5 pb (s-channel) and 4.3 pb (t-channel) on single top production cross-sections.
Electroweak coupling measurements from polarized Bhabha scattering at the Z{sup 0} resonance
Pitts, K.T.
1994-03-01
The cross section for Bhabha scattering (e{sup +}e{sup {minus}} {yields} e{sup +}e{sup {minus}}) with polarized electrons at the center of mass energy of the Z{sup 0} resonance has been measured with the SLD experiment at the Stanford Linear Accelerator Center during the 1992 and 1993 runs. The electroweak couplings of the electron are extracted. At small angles the measurement is done in the SLD Silicon/Tungsten Luminosity Monitor (LMSAT). A detailed description of the design, construction, commissioning and operation of the LMSAT is provided. The integrated luminosity for 1992 is measured to be L = 420.86{plus_minus}2.56 (stat){plus_minus}4.23 (sys) nb{sup {minus}1}. The luminosity asymmetry for polarized beams is measured to be A{sub LR}(LUM) = (1.7 {plus_minus} 6.4) {times} 10{sup {minus}3}. The large angle polarized Bhabha scattering reveals the effective electron vector and axial vector couplings to the Z{sup 0} through the measurement of the Z{sup 0} {yields} e{sup +}e{sup {minus}} partial width, {Gamma}{sub ee}, and the parity violation parameter, A{sub e}. From the combined 1992 and 1993 data the effective electron vector and axial vector couplings are measured to be {bar g}{sub v}{sup e} = {minus}0.0495{plus_minus}0.0096{plus_minus}0.0030, and {bar g}{sub {alpha}}{sup e} = {minus}0.4977{plus_minus}0.0035{plus_minus}0.0064 respectively. The effective weak mixing angle is measured to be sin{sup 2}{theta}{sub W}{sup eff} = 0.2251{plus_minus}0.0049{plus_minus}0.0015. These results are compared with other experiments.
NASA Astrophysics Data System (ADS)
Hashino, Katsuya; Kakizaki, Mitsuru; Kanemura, Shinya; Matsui, Toshinori
2016-07-01
Probing the Higgs potential and new physics behind the electroweak symmetry breaking is one of the most important issues of particle physics. In particular, the nature of the electroweak phase transition is essential for understanding the physics of the early Universe, such that the strongly first-order phase transition is required for a successful scenario of electroweak baryogenesis. The strongly first-order phase transition is expected to be tested by precisely measuring the triple Higgs boson coupling at future colliders like the International Linear Collider. It can also be explored via the spectrum of stochastic gravitational waves to be measured at future space-based interferometers such as eLISA and DECIGO. We discuss the complementarity of both the methods in testing the strongly first-order phase transition of the electroweak symmetry in models with additional isospin singlet scalar fields with and without classical scale invariance. We find that they are synergetic in identifying specific models of electroweak symmetry breaking in more detail.
[Electroweak and other interactions in medium-energy nuclear physics]. Progress report
Mukhopadhyay, N.C.
1993-12-01
This report discusses the following topics: spectrum generating algebra; vibrational spectra in the heavy quarkonia; chiral soliton model; pion neutral photoproduction from proton with polarized photons in the delta-1232 region; compton scattering in the delta- 1232 region; nucleon magnetic polarizability and the role of the delta resonance; eta photo- and electroproduction; perturbative QCD; and nuclear muon capture.
Aerodynamics of Heavy Vehicles
NASA Astrophysics Data System (ADS)
Choi, Haecheon; Lee, Jungil; Park, Hyungmin
2014-01-01
We present an overview of the aerodynamics of heavy vehicles, such as tractor-trailers, high-speed trains, and buses. We introduce three-dimensional flow structures around simplified model vehicles and heavy vehicles and discuss the flow-control devices used for drag reduction. Finally, we suggest important unsteady flow structures to investigate for the enhancement of aerodynamic performance and future directions for experimental and numerical approaches.
Process for removing heavy metal compounds from heavy crude oil
Cha, Chang Y.; Boysen, John E.; Branthaver, Jan F.
1991-01-01
A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.
Heavy Higgs decays into sfermions in the complex MSSM: a full one-loop analysis
NASA Astrophysics Data System (ADS)
Heinemeyer, S.; Schappacher, C.
2015-05-01
For the search for additional Higgs bosons in the Minimal Supersymmetric Standard Model (MSSM) as well as for future precision analyses in the Higgs sector a precise knowledge of their decay properties is mandatory. We evaluate all two-body decay modes of the heavy Higgs bosons into sfermions in the MSSM with complex parameters (cMSSM). The evaluation is based on a full one-loop calculation of all decay channels, also including hard QED and QCD radiation. The dependence of the heavy Higgs bosons on the relevant cMSSM parameters is analyzed numerically. We find sizable contributions to many partial decay widths. They are roughly of of the tree-level results, but can go up to or higher. The size of the electroweak one-loop corrections can be as large as the QCD corrections. The full one-loop contributions are important for the correct interpretation of heavy Higgs-boson search results at the LHC and, if kinematically allowed, at a future linear collider. The evaluation of the branching ratios of the heavy Higgs bosons will be implemented into the Fortran code FeynHiggs.
Mukhopadhyay, N.C.
1992-12-01
Progress in the study of electroweak structure of baryon resonances and in the analysis of data for pion and eta photoproduction. Four graduate students are currently associated with the program. One has obtained his Ph.D. degree in the year under review. Six research articles have been completed in this year, and five conference contributions have been made. Collaborations with scientists from Illinois, Los Alamos, Westinghouse, William and Mary, Yale, Mainz (Germany), Saskatchewan (Canada) and TRIUMF (Canada) continue, along with participation in collaborations at CEBAF.
Mukhopadhyay, N.C.
1992-01-01
Progress in the study of electroweak structure of baryon resonances and in the analysis of data for pion and eta photoproduction. Four graduate students are currently associated with the program. One has obtained his Ph.D. degree in the year under review. Six research articles have been completed in this year, and five conference contributions have been made. Collaborations with scientists from Illinois, Los Alamos, Westinghouse, William and Mary, Yale, Mainz (Germany), Saskatchewan (Canada) and TRIUMF (Canada) continue, along with participation in collaborations at CEBAF.
Aleksejevs, Aleksandrs; Barkanova, Svetlana; Ilyichev, Alexander; Zykunov, Vladimir
2010-11-19
We perform updated and detailed calculations of the complete NLO set of electroweak radiative corrections to parity violating e^{–} e^{–} → e^{–} e^{–} (γ) scattering asymmetries at energies relevant for the ultra-precise Moller experiment coming soon at JLab. Our numerical results are presented for a range of experimental cuts and relative importance of various contributions is analyzed. In addition, we also provide very compact expressions analytically free from non-physical parameters and show them to be valid for fast yet accurate estimations.
NASA Astrophysics Data System (ADS)
Bodek, A.; Han, J.; Khukhunaishvili, A.; Sakumoto, W.
2016-03-01
The uncertainties in parton distribution functions (PDFs) are the dominant source of the systematic uncertainty in precision measurements of electroweak parameters at hadron colliders (e.g. sin ^2θ _{eff}(M_Z), sin ^2θ W=1-M_W^2/M_Z^2 and the mass of the W boson). We show that measurements of the forward-backward charge asymmetry (A_{FB}(M,y)) of Drell-Yan dilepton events produced at hadron colliders provide a new powerful tool to reduce the PDF uncertainties in these measurements.
Aleksejevs, Aleksandrs; Barkanova, Svetlana; Ilyichev, Alexander; Zykunov, Vladimir
2010-11-19
We perform updated and detailed calculations of the complete NLO set of electroweak radiative corrections to parity violating e– e– → e– e– (γ) scattering asymmetries at energies relevant for the ultra-precise Moller experiment coming soon at JLab. Our numerical results are presented for a range of experimental cuts and relative importance of various contributions is analyzed. In addition, we also provide very compact expressions analytically free from non-physical parameters and show them to be valid for fast yet accurate estimations.
Higgs boson production with heavy quarks at hadron colliders
NASA Astrophysics Data System (ADS)
Jackson, Christopher B.
2005-11-01
One of the remaining puzzles in particle physics is the origin of electroweak symmetry breaking. In the Standard Model (SM), a single doublet of complex scalar fields is responsible for breaking the SU(2) L x U(1)Y gauge symmetry thus giving mass to the electroweak gauge bosons via the Higgs mechanism and to the fermions via Yukawa couplings. The remnant of the process is a vet to he discovered scalar particle, the Higgs boson (h). However, current and future experiments at hadron colliders hold great promise. Of particular interest at hadron colliders is the production of a Higgs boson in association with a pair of heavy quarks, pp¯(pp) → QQ¯h, where Q can be either a top or a bottom quark. Indeed, the production of a Higgs boson with a pair of top quarks provides a very distinctive signal in hadronic collisions where background processes are formidable, and it will be instrumental in the discovery of a Higgs boson below about 130 GeV at the LHC. On the other hand, the production of a Higgs boson with bottom quarks can be strongly enhanced in models of new physics beyond the SM, e.g. supersymmetric models. If this is the case, bb¯h production will play a crucial role at the Tevatron where it could provide the first signal of new physics. Given the prominent role that Higgs production with heavy quarks can play at hadron colliders, it becomes imperative to have precise theoretical predictions for total and differential cross sections. In this dissertation, we outline and present detailed results for the next-to-leading order (NLO) calculation of the Quantum Chromodynamic (QCD) corrections to QQ¯h production at both the Tevatron and the LHC. This calculation involves several difficult issues due to the three massive particles in the final state, a situation which is at the frontier of radiative correction calculations in quantum field theory. We detail the novel techniques developed to deal with these challenges. The calculation of pp¯(pp) → bb¯h at NLO in
Ciccolini, M.; Denner, A.; Dittmaier, S.
2007-10-19
Radiative corrections of strong and electroweak interactions are presented at next-to-leading order for the production of a Higgs boson plus two hard jets via weak interactions at the CERN Large Hadron Collider. The calculation includes all weak-boson fusion and quark-antiquark annihilation diagrams as well as the corresponding interferences. The electroweak corrections, which are discussed here for the first time, reduce the cross sections by 5% and thus are of the same order of magnitude as the QCD corrections.
Search for electroweak single top quark production in 1.96-TeV proton-antiproton collisions
Stelzer, Bernd; /Toronto U.
2005-01-01
This thesis describes the first search for electroweak single top quark production in proton-antiproton collisions at a center of mass energy of 1.96 TeV. The data sample used for this analysis corresponds to 162 pb{sup -1} recorded by the upgraded Collider Detector at Fermilab. The search is performed by doing a classic maximum likelihood fit to the H{sub T} distribution in data. The kinematic variable H{sub T} is the scalar sum of transverse energies of all final state particles in the event. This variable has the advantage that its distribution looks very similar for both contributing (s-channel and t-channel) single top processes, but is different for background processes. The combination of both channels to one signal improves the sensitivity of the search. No significant evidence for electroweak single top quark production is found and we set an upper limit at the 95% confidence level on the combined single top quark production cross section of 17.8 pb.
Studies of heavy hadron physics
Guo Xinheng
2011-12-14
In the diquark picture, we establish Bethe-Salpeter equations for ground states of heavy baryons containing one heavy quark and two heavy quarks in the heavy quark limit, respectively. The Bethe-Salpeter equations for both heavy and light diquarks are also established. Assuming kernels to consist of a scalar confinement term and a one-gluon-exchange term we solve Bethe-Salpeter wave functions numerically in the covariant instantaneous approximation and give some applications including semileptonic and nonleptonic decay widths of heavy baryons, the average kinetic energy of the heavy quark in {Lambda}{sub Q}, {Sigma}{sub Q}{sup (*)}{yields}{Lambda}{sub Q}+{pi} decay widths, and heavy quark distribution functions. We also study possible molecular heavy bound states in the Bethe-Salpeter approach. Proof of QCD factorization for {Lambda}{sub b}{yields}{Lambda}{sub c}{pi} is presented in the framework of QCD factorization.
Relativistic Heavy Ion Collider
Willen, E.H.
1986-01-01
The Relativistic Heavy Ion Collider (RHIC) is a proposed research facility at Brookhaven National Laboratory to study the collision of beams of heavy ions, up to gold in mass and at beam energies up to 100 GeV/nucleon. The physics to be explored by this collider is an overlap between the traditional disciplines of nuclear physics and high energy physics and is a continuation of the planned program of light and heavy ion physics at BNL. The machine is to be constructed in the now-empty tunnel built for the former CBA project. Various other facilities to support the collider are either in place or under construction at BNL. The collider itself, including the magnets, is in an advanced state of design, and a construction start is anticipated in the next several years.
(Relativistic heavy ion research)
Not Available
1990-01-01
At Brookhaven National Laboratory, participation in the E802 Experiment, which is the first major heavy-ion experiment at the BNL-AGS, was the main focus of the group during the past four years. The emphases of the E802 experiment were on (a) accurate particle identification and measurements of spectra over a wide kinematical domain (5{degree} < {theta}{sub LAB} < 55{degree}, p < 20 GeV/c); and (b) measurements of small-angle two-particle correlations, with event characterization tools: multiplicity array, forward and large-angle calorimeters. This experiment and other heavy ion collision experiments are discussed in this report.
On the precision of the computation of the QCD corrections to electroweak vacuum polarizations
NASA Astrophysics Data System (ADS)
Gonzalez-Garcia, M. C.; Halzen, F.; Vázquez, R. A.
1994-02-01
We demonstrate that the dispersive computation of the threshold enhancements to heavy quark vacuum polarizations is unstable. Because of the slow convergence of the dispersion relations the result critically depends on the intermediate energy region where the non-relativistic approximation, intrinsic to threshold calculations, is invalid. We discuss other ambiguities precluding a reliable calculation of the threshold contribution to the vacuum polarizations. In the absence of a solution prudence should force one to assign an error to the radiative corrections not far below the level of the perturbative O( ααs) contributions. This may preclude the extraction of the Higgs mass from precision measurements.
Electroweak and Higgs Measurements Using Tau Final States with the LHCb Detector
NASA Astrophysics Data System (ADS)
Ilten, Philip
Spin correlations for tau lepton decays are included in the Pythia 8 event generation software with a framework which can be expanded to include the decays of particles other than the tau lepton. The spin correlations for the decays of tau leptons produced from electroweak and Higgs bosons are calculated. Decays of the tau lepton using sophisticated resonance models are included in Pythia 8 for all channels with experimentally observed branching fractions greater than 0.04%. The mass distributions for the decay products of these channels calculated with Pythia 8 are validated against the equivalent distributions from the Herwig++ and Tauola event generators. The technical implementation of the tau lepton spin correlations and decays in Pythia 8 is described. A measurement of the inclusive Z to di-tau cross-section using 1.0 inverse fb of data from pp collisions at sqrt(s) = 7 TeV collected with the LHCb detector is presented. Reconstructed final states containing two muons, a muon and an electron, a muon and a charged hadron, or an electron and a charged hadron are selected as Z to di-tau candidates. The cross-section for Z bosons with a mass between 60 and 120 GeV decaying into tau leptons with pseudo-rapidities between 2.0 and 4.5 and transverse momenta greater than 20 GeV is measured to be 72.3 +/- 3.5 +/- 2.9 +/- 2.5 pb. The first uncertainty is statistical, the second uncertainty is systematic, and the third is to due the integrated luminosity uncertainty. The Z to di-tau to Z to di-muon cross-section ratio is found to be 0.94 +/- 0.09 and the Z to di-tau to Z to di-electron cross-section ratio is found to be 0.95 +/- 0.07. The uncertainty on these ratios is the combined statistical, systematic, and luminosity uncertainties. Limits on the production of neutral Higgs bosons decaying into tau lepton pairs with pseudo-rapidities between 2.0 and 4.5 are set at a 95% confidence level using the same LHCb dataset. A model independent upper limit on the production of
NASA Astrophysics Data System (ADS)
Qiu, Hao
2014-11-01
Hadrons containing heavy quarks are a clean probe of the early dynamic evolution of the dense and hot medium created in high-energy nuclear collisions. To explore heavy quark production at RHIC, the Heavy Flavor Tracker (HFT) for the STAR experiment was built and installed in time for RHIC Run 14. The HFT consists of four layers of silicon detectors. The two outermost layers are silicon strip detectors and the two innermost layers are made from state-of-the-art ultra-thin CMOS Monolithic Active Pixel Sensors (MAPS). This is the first application of a CMOS MAPS detector in a collider experiment. The use of thin pixel sensors plus the use of carbon fiber supporting material limits the material budget to be only 0.4% radiation length per pixel detector layer, enabling the reconstruction of low pT heavy flavor hadrons. The status and performance of the HFT in the RHIC 200 GeV Au + Au run in 2014 are reported. Very good detector efficiency, hit residuals and track resolution (DCAs) were observed in the cosmic ray data and in the Au + Au data.
Betts, R.R.
1983-01-01
The experimental situation for the study of resonances in heavy-ion collisions is reviewed, with emphasis on the heaviest systems. New data are presented which show some of the systematics of this phenomenon. The narrow resonance structures are established as a feature of the nuclear structure of the composite system rather than a purely entrance channel effect.
... cells often prevents proper absorption of nutrients from food (malabsorption), resulting in severe diarrhea and weight loss. A rare form that affects the respiratory tract also exists. Blood tests are done when alpha heavy chain disease is suspected. Serum protein electrophoresis, measurement of ...
Gordon, H.A.
1984-01-01
The prospects for detecting heavy Higgs are discussed. In particular a general procedure is developed which includes studying first the characteristics of producing the signal, estimating the most important background, simulating both types of events via Monte Carlo techniques in an appropriate detector and concluding with the prospects for detection. 20 references.
Sid Diamond; Richard Wares; Jules Routbort
2000-04-11
Heavy Vehicle (HV) systems are a necessary component of achieving OHVT goals. Elements are in place for a far-ranging program: short, intermediate, and long-term. Solicitation will bring industrial input and support. Future funding trend is positive, outlook for HV systems is good.
Kane, G.L.; Wells, James D.
2000-08-09
High-energy data has been accumulating over the last ten years, and it should not be ignored when making decisions about the future experimental program. In particular, we argue that the electroweak data collected at LEP, SLC and Tevatron indicate a light scalar particle with mass less than 500 GeV. This result is based on considering a wide variety of theories including the Standard Model, supersymmetry, large extra dimensions, and composite models. We argue that a high luminosity, 600 GeV e{sup +}e{sup -} collider would then be the natural choice to feel confident about finding and studying states connected to electroweak symmetry breaking. We also argue from the data that worrying about resonances at multi-TeV energies as the only signal for electroweak symmetry breaking is not as important a discovery issue for the next generation of colliders. Such concerns should perhaps be replaced with more relevant discovery issues such as a Higgs boson that decays invisibly, and ''new physics'' that could conspire with a heavier Higgs boson to accommodate precision electroweak data. An e{sup +}e{sup -} collider with {radical}s {approx}< 600 GeV is ideally suited to cover these possibilities.
Heavy Flavor Dynamics in Relativistic Heavy-ion Collisions
NASA Astrophysics Data System (ADS)
Cao, Shanshan
Heavy flavor hadrons serve as valuable probes of the transport properties of the quark-gluon plasma (QGP) created in relativistic heavy-ion collisions. In this dissertation, we introduce a comprehensive framework that describes the full-time evolution of heavy flavor in heavy-ion collisions, including its initial production, in-medium evolution inside the QGP matter, hadronization process from heavy quarks to their respective mesonic bound states and the subsequent interactions between heavy mesons and the hadron gas. The in-medium energy loss of heavy quarks is studied within the framework of a Langevin equation coupled to hydrodynamic models that simulate the space-time evolution of the hot and dense QGP matter. We improve the classical Langevin approach such that, apart from quasi-elastic scatterings between heavy quarks and the medium background, radiative energy loss is incorporated as well by treating gluon radiation as a recoil force term. The subsequent hadronization of emitted heavy quarks is simulated via a hybrid fragmentation plus recombination model. The propagation of produced heavy mesons in the hadronic phase is described using the ultra-relativistic quantum molecular dynamics (UrQMD) model. Our calculation shows that while collisional energy loss dominates the heavy quark motion inside the QGP in the low transverse momentum (p T) regime, contributions from gluon radiation are found to be significant at high pT. The recombination mechanism is important for the heavy flavor meson production at intermediate energies. The hadronic final state interactions further enhance the suppression and the collective flow of heavy mesons we observe. Within our newly developed framework, we present numerical results for the nuclear modification and the elliptic flow of D mesons, which are consistent with measurements at both the CERN Large Hadron Collider (LHC) and the BNL Relativistic Heavy-Ion Collider (RHIC); predictions for B mesons are also provided. In
Andreas S. Kronfeld
2003-11-05
This paper is a review of heavy quarks in lattice gauge theory, focusing on methodology. It includes a status report on some of the calculations that are relevant to heavy-quark spectroscopy and to flavor physics.
NASA Astrophysics Data System (ADS)
Fedi, G.; CMS Collaboration
2016-07-01
The most recent results which concern the heavy quark hadrons done in the CMS experiment are reported. The searching area spans over the heavy quark spectroscopy, production cross sections, beauty meson decay properties, rare decays, and CP violation.
An entropic understanding of Coulomb force
NASA Astrophysics Data System (ADS)
Cho, Jin-Ho; Kim, Hyosung
2012-02-01
Exploiting Verlinde's proposal on the entropic understanding of Newton's law, we show that Coulomb force could also be understood as an entropically emergent force (rather than as a fundamental force). We apply Kaluza-Klein idea to Verlinde's formalism to obtain Coulomb interaction in the lower dimensions. The kinematics concerning the Kaluza-Klein momenta separates the interaction due to the momentum flow from the gravitational interaction. The momentum-charge conversion relation results in the precise form of Coulomb interaction.
Heavy Stars Thrive among Heavy Elements
NASA Astrophysics Data System (ADS)
2002-08-01
VLT Observes Wolf-Rayet Stars in Virgo Cluster Galaxies [1] Summary Do very massive stars form in metal-rich regions of the Universe and in the nuclei of galaxies ? Or does "heavy element poisoning" stop stellar growth at an early stage, before young stars reach the "heavyweight class"? What may at the first glance appear as a question for specialists actually has profound implications for our understanding of the evolution of galaxies, those systems of billions of stars - the main building blocks of the Universe. With an enormous output of electromagnetic radiation and energetic elementary particles, massive stars exert a decisive influence on the surrounding (interstellar) gas and dust clouds . They also eject large amounts of processed elements, thereby participating in the gradual build-up of the many elements we see today. Thus the presence or absence of such stars at the centres of galaxies can significantly change the overall development of those regions and hence, presumably, that of the entire galaxy. A team of European astronomers [2] has now directly observed the presence of so-called Wolf-Rayet stars (born with masses of 60 - 90 times that of the Sun or more) within metal-rich regions in some galaxies in the Virgo cluster, some 50 million light-years away. This is the first unambiguous detection of such massive stellar objects in metal-rich regions . PR Photo 20a/02 : H II regions in the Virgo cluster galaxy NGC 4254 . PR Photo 20b/02 : Multi-object-slit observation of galaxy NGC 4303 . PR Photo 20c/02 : Spectrum of H II region in NGC 4254 with Wolf-Rayet signatures. Production of heavy elements in the Universe Most scientists agree that the Universe in which we live underwent a dramatic event, known as the Big Bang , approximately 15,000 million years ago. During the early moments, elementary particles were formed which after some time united into more complex nuclei and in turn resulted in the production of hydrogen and helium atoms and their isotopes
LHC diphoton resonance at 750 {GeV} as an indication of SU(3)_L× U(1)_X electroweak symmetry
NASA Astrophysics Data System (ADS)
Hernández, A. E. Cárcamo; Nišandžić, Ivan
2016-07-01
The LHC collaborations ATLAS and CMS recently reported on the excess of the events in the diphoton final states at the invariant mass of about 750 {GeV}. In this article we speculate on the possibility that the excess arises from the neutral CP-even component φ of the scalar triplet Φ of the SU(3)c× SU(3)L× U(1)X (3{-}3{-} 1) model that has a U(1)X charge equal to X=-1/3 and acquires a vacuum expectation value larger than the electroweak symmetry breaking scale. The interactions of the scalar field φ with the photon and gluon pairs are mediated by the virtual vector-like fermions which appear as components of the anomaly-free chiral fermion representations of the 3{ -}3{-}1 gauge group.
Echoes of the electroweak phase transition: discovering a second Higgs doublet through A0→ZH0.
Dorsch, G C; Huber, S J; Mimasu, K; No, J M
2014-11-21
The existence of a second Higgs doublet in nature could lead to a cosmological first-order electroweak phase transition and explain the origin of the matter-antimatter asymmetry in the Universe. We obtain the spectrum and properties of the new scalars H0, A0, and H(±) that signal such a phase transition and show that the observation of the decay A0→ZH0 at LHC would be a "smoking gun" signature of these scenarios. We analyze the LHC search prospects for this decay in the ℓℓbb and ℓℓW(+)W(-) final states, arguing that current data may be sensitive to this signature in the former channel as well as there being great potential for a discovery in either channel at the very early stages of the 14 TeV run. PMID:25479487
Electroweak top-quark pair production at the LHC with Z ' bosons to NLO QCD in POWHEG
NASA Astrophysics Data System (ADS)
Bonciani, Roberto; Ježo, Tomáš; Klasen, Michael; Lyonnet, Florian; Schienbein, Ingo
2016-02-01
We present the calculation of the NLO QCD corrections to the electroweak production of top-antitop pairs at the CERN LHC in the presence of a new neutral gauge boson. The corrections are implemented in the parton shower Monte Carlo program POWHEG. Standard Model (SM) and new physics interference effects are properly taken into account. QED singularities, first appearing at this order, are consistently subtracted. Numerical results are presented for SM and Z ' total cross sections and distributions in invariant mass, transverse momentum, azimuthal angle and rapidity of the top-quark pair. The remaining theoretical uncertainty from scale and PDF variations is estimated, and the potential of the charge asymmetry to distinguish between new physics models is investigated for the Sequential SM and a leptophobic topcolor model.
String completion of an SU(3)c ⊗ SU(3)L ⊗ U(1)X electroweak model
NASA Astrophysics Data System (ADS)
Addazi, Andrea; Valle, J. W. F.; Vaquera-Araujo, C. A.
2016-08-01
The extended electroweak SU(3)c ⊗ SU(3)L ⊗ U(1)X symmetry framework "explaining" the number of fermion families is revisited. While 331-based schemes can not easily be unified within the conventional field theory sense, we show how to do it within an approach based on D-branes and (un)oriented open strings, on Calabi-Yau singularities. We show how the theory can be UV-completed in a quiver setup, free of gauge and string anomalies. Lepton and baryon numbers are perturbatively conserved, so neutrinos are Dirac-type, and their lightness results from a novel TeV scale seesaw mechanism. Dynamical violation of baryon number by exotic instantons could induce neutron-antineutron oscillations, with proton decay and other dangerous R-parity violating processes strictly forbidden.
QCD and electroweak corrections to Z Z +jet production with Z -boson leptonic decays at the LHC
NASA Astrophysics Data System (ADS)
Wang, Yong; Zhang, Ren-You; Ma, Wen-Gan; Li, Xiao-Zhou; Guo, Lei
2016-07-01
In this paper we present the full next-to-leading-order (NLO) QCD +NLO electroweak (EW) corrections to the Z -boson pair production in association with a hard jet at the LHC. The subsequent Z -boson leptonic decays are included by adopting both the naive narrow-width approximation and madspin methods for comparison. Since the Z Z +jet production is an important background for single Higgs boson production and new physics searches at hadron colliders, the theoretical predictions with high accuracy for the hadronic production of Z Z +jet are necessary. We present the numerical results of the integrated cross section and various kinematic distributions of final particles, and conclude that it is necessary to take into account the spin correlation and finite-width effects from the Z -boson leptonic decays. We also find that the NLO EW correction is quantitatively non-negligible in matching the experimental accuracy at the LHC, particularly in the high-transverse-momentum region.
Two-loop radiative corrections of electroweak mixing angle and branching fraction for Z going to bb
NASA Astrophysics Data System (ADS)
Huang, Yi-Cheng
In this thesis I develop a numerical technique which is based on the Mellin-Barnes representation to calculate two-loop Feynman integrals. The resulting complex integrals of high dimensions are being applied with some treatments, such as the variable transform, reduction formulas, etc, to improve the convergence of the integrals. The approach is adopted to compute the two-loop radiative corrections of the electroweak mixing angle, sin theta W, and the hadronic branching ratio Rb for the process Z → bb¯. I focus on contributions with an internal fermion sub-loop using the on-shell renormalization scheme. The results will help to derive improved constraints on the Higgs particle.
Measurement of electroweak single top quark production in proton-antiproton collisions at 1.96 TeV
Dong, Peter Joseph
2008-01-01
The top quark is an extremely massive fundamental particle that is predominantly produced in pairs at particle collider experiments. The Standard Model of particle physics predicts that top quarks can also be produced singly by the electroweak force; however, this process is more difficult to detect because it occurs at a smaller rate and is more difficult to distinguish from background processes. The cross section of this process is related to the Cabbibo-Kobayashi-Maskawa matrix element |V_{ tb}|, and measurement of the single top quark production cross section is currently the only method to directly measure this quantity without assuming the number of generations of fermions. This thesis describes a measurement of the cross section of electroweak single top quark production in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. This analysis uses 2.2 fb^{-1} of integrated luminosity recorded by the Collider Detector at Fermilab. The search is performed using a matrix element method which calculates the differential cross section for each event for several signal and background hypotheses. These numbers are combined into a single discriminant and used to construct templates from Monte Carlo simulation. A maximum likelihood fit to the data distribution gives a measurement of the cross section. This analysis measures a value of 2.2$+0.8\\atop{-0.7}$ pb, which corresponds to a value of |V_{ tb}| = 0.88$+0.16\\atop{-0.14}$experimental±0.7(theoretical). The probability that this result originates from a background fluctuation in the absence of single top production (p-value) is 0.0003, which is equivalent to 3.4 standard deviations in Gaussian statistics. The expected (median) p-value as estimated from pseudo-experiments for this analysis is 0.000003, which corresponds to 4.5 standard deviations in Gaussian statistics.
NASA Astrophysics Data System (ADS)
Dobado, Antonio; Guo, Feng-Kun; Llanes-Estrada, Felipe J.
2015-12-01
We are exploring a generic strongly-interacting Electroweak Symmetry Breaking Sector (EWSBS) with the low-energy effective field theory for the four experimentally known particles (W±L, ZL, h) and its dispersion-relation based unitary extension. In this contribution we provide simple estimates for the production cross-section of pairs of the EWSBS bosons and their resonances at proton-proton colliders as well as in a future e-e+ (or potentially a μ-μ+) collider with a typical few-TeV energy. We examine the simplest production mechanisms, tree-level production through a W (dominant when quantum numbers allow) and the simple effective boson approximation (in which the electroweak bosons are considered as collinear partons of the colliding fermions). We exemplify with custodial isovector and isotensor resonances at 2 TeV, the energy currently being discussed because of a slight excess in the ATLAS 2-jet data. We find it hard, though not unthinkable, to ascribe this excess to one of these WLWL rescattering resonances. An isovector resonance could be produced at a rate smaller than, but close to earlier CMS exclusion bounds, depending on the parameters of the effective theory. The ZZ excess is then problematic and requires additional physics (such as an additional scalar resonance). The isotensor one (that would describe all charge combinations) has smaller cross-section. Supported by the Spanish Excellence Network on Hadronic Physics FIS2014-57026-REDT, by Spanish Grants Universidad Complutense UCM:910309 and Ministerio de Economia y Competitividad MINECO:FPA2011-27853-C02-01, MINECO:FPA2014-53375-C2-1-P, by the Deutsche Forschungsgemeinschaft and National Natural Science Foundation of China through Funds Provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” (NSFC Grant No. 11261130311) and by NSFC (Grant No. 11165005)
Study of VV-scattering processes as a probe of electroweak symmetry breaking
Govoni, P.
2008-11-23
An exploratory study has been performed in order to assess the possibility of probing the symmetry breaking mechanism through the VV fusion process using the CMS detector. A model independent analysis was carried out with no assumption on the mechanism restoring the unitarity in the scattering amplitude and without any degrees of freedom beyond the SM. In order to explore the sensitivity of the analysis method to an heavy Higgs resonance, we analyzed a data set produced using an Higgs boson mass of 500 GeV. Moreover, in order to consider the VV fusion cross section in a region where no resonances are present, a sample corresponding to the no-Higgs scenario, that in the SM is equivalent to a very high Higgs mass, has been also studied.
Heavy Vehicle Propulsion Materials
Ray Johnson
2000-01-31
The objectives are to Provide Key Enabling Materials Technologies to Increase Energy Efficiency and Reduce Exhaust Emissions. The following goals are listed: Goal 1: By 3rd quarter 2002, complete development of materials enabling the maintenance or improvement of fuel efficiency {ge} 45% of class 7-8 truck engines while meeting the EPA/Justice Department ''Consent Decree'' for emissions reduction. Goal 2: By 4th quarter 2004, complete development of enabling materials for light-duty (class 1-2) diesel truck engines with efficiency over 40%, over a wide range of loads and speeds, while meeting EPA Tier 2 emission regulations. Goal 3: By 4th quarter 2006, complete development of materials solutions to enable heavy-duty diesel engine efficiency of 50% while meeting the emission reduction goals identified in the EPA proposed rule for heavy-duty highway engines.''
Benenson, G.; Chau, L.L.; Ludlam, T.; Paige, F.E.; Platner, E.D.; Protopopescu, S.D.; Rehak, P.
1983-01-01
In this exercise we examine the performance of a detector specifically configured to tag heavy quark (HQ) jets through direct observations of D-meson decays with a high resolution vertex detector. To optimize the performance of such a detector, we assume the small diamond beam crossing configuration as described in the 1978 ISABELLE proposal, giving a luminosity of 10/sup 32/ cm/sup -2/ sec/sup -1/. Because of the very large backgrounds from light quark (LQ) jets, most triggering schemes at this luminosity require high P/sub perpendicular to/ leptons and inevitably give missing neutrinos. If alternative triggering schemes could be found, then one can hope to find and calculate the mass of objects decaying to heavy quarks. A scheme using the high resolution detector will also be discussed in detail. The study was carried out with events generated by the ISAJET Monte Carlo and a computer simulation of the described detector system. (WHK)
J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel
2009-10-20
The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.
NASA Technical Reports Server (NTRS)
Melson, ED
1991-01-01
A weight-measuring rain gauge was developed to collect rain data and configured to operate at a high sample rate (one sample pre second). Instead of averaging the rain rate in minutes, hours, and sometime days as normally performed, the rain data collected are examined in seconds. The results of six field sites are compiled. Rain rate levels, duration of downpours, and frequency of heavy rainfall events are presented.
Heavy Stars Thrive among Heavy Elements
NASA Astrophysics Data System (ADS)
2002-08-01
VLT Observes Wolf-Rayet Stars in Virgo Cluster Galaxies [1] Summary Do very massive stars form in metal-rich regions of the Universe and in the nuclei of galaxies ? Or does "heavy element poisoning" stop stellar growth at an early stage, before young stars reach the "heavyweight class"? What may at the first glance appear as a question for specialists actually has profound implications for our understanding of the evolution of galaxies, those systems of billions of stars - the main building blocks of the Universe. With an enormous output of electromagnetic radiation and energetic elementary particles, massive stars exert a decisive influence on the surrounding (interstellar) gas and dust clouds . They also eject large amounts of processed elements, thereby participating in the gradual build-up of the many elements we see today. Thus the presence or absence of such stars at the centres of galaxies can significantly change the overall development of those regions and hence, presumably, that of the entire galaxy. A team of European astronomers [2] has now directly observed the presence of so-called Wolf-Rayet stars (born with masses of 60 - 90 times that of the Sun or more) within metal-rich regions in some galaxies in the Virgo cluster, some 50 million light-years away. This is the first unambiguous detection of such massive stellar objects in metal-rich regions . PR Photo 20a/02 : H II regions in the Virgo cluster galaxy NGC 4254 . PR Photo 20b/02 : Multi-object-slit observation of galaxy NGC 4303 . PR Photo 20c/02 : Spectrum of H II region in NGC 4254 with Wolf-Rayet signatures. Production of heavy elements in the Universe Most scientists agree that the Universe in which we live underwent a dramatic event, known as the Big Bang , approximately 15,000 million years ago. During the early moments, elementary particles were formed which after some time united into more complex nuclei and in turn resulted in the production of hydrogen and helium atoms and their isotopes
Nelson, Christopher
2009-01-08
The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient engine
Warped gravitons at the CERN LHC and beyond
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Davoudiasl, Hooman; Perez, Gilad; Soni, Amarjit
2007-08-01
We study the production and decay of Kaluza-Klein (KK) gravitons at the CERN Large Hadron Collider (LHC), in the framework of a warped extra dimension in which the standard model (SM) fields propagate. Such a scenario can provide solutions to both the Planck-weak hierarchy problem and the flavor puzzle of the SM. In this scenario, the production via qq¯ annihilation and decays to the conventional photon and lepton channels are highly suppressed. However, we show that graviton production via gluon fusion followed by decay to longitudinal Z/W can be significant; vector boson fusion is found to be a subdominant production mode. In particular, the golden ZZ decay mode offers a distinctive 4-lepton signal that could lead to the observation at the LHC with 300fb-1 (SLHC with 3ab-1) of a KK graviton with a mass up to ˜2 (˜3) TeV for the ratio of the AdS5 curvature to the Planck scale modestly above unity. We argue that (contrary to the lore) such a size of the curvature scale can still be within the regime of validity of the framework. Upgrades beyond the SLHC luminosity are required to discover gravitons heavier than ˜4TeV, as favored by the electroweak and flavor precision tests in the simplest such models.
CERN LHC signals from warped extra dimensions
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Belyaev, Alexander; Krupovnickas, Tadas; Perez, Gilad; Virzi, Joseph
2008-01-01
We study production of Kaluza-Klein (KK) gluons at the Large Hadron Collider (LHC) in the framework of a warped extra dimension with the standard model fields propagating in the bulk. We show that the detection of the KK gluon is challenging since its production is suppressed by small couplings to the proton’s constituents. Moreover, the KK gluon decays mostly to top pairs due to an enhanced coupling and hence is broad. Nevertheless, we demonstrate that for MKKG≲4TeV, 100fb-1 of data at the LHC can provide discovery of the KK gluon. We utilize a sizable left-right polarization asymmetry from the KK gluon resonance to maximize the signal significance, and we explore the novel feature of extremely highly energetic “top-jets.” We briefly discuss how the detection of electroweak gauge KK states (Z/W) faces a similar challenge since their leptonic decays (golden modes) are suppressed. Our analysis suggests that other frameworks, for example, little Higgs, which rely on UV completion via strong dynamics might face similar challenges, namely, (1) suppressed production rates for the new particles (such as Z'), due to their “light-fermion-phobic” nature, and (2) difficulties in detection since the new particles are broad and decay predominantly to third generation quarks and longitudinal gauge bosons.
Warped gravitons at the CERN LHC and beyond
Agashe, Kaustubh; Davoudiasl, Hooman; Soni, Amarjit; Perez, Gilad
2007-08-01
We study the production and decay of Kaluza-Klein (KK) gravitons at the CERN Large Hadron Collider (LHC), in the framework of a warped extra dimension in which the standard model (SM) fields propagate. Such a scenario can provide solutions to both the Planck-weak hierarchy problem and the flavor puzzle of the SM. In this scenario, the production via qq annihilation and decays to the conventional photon and lepton channels are highly suppressed. However, we show that graviton production via gluon fusion followed by decay to longitudinal Z/W can be significant; vector boson fusion is found to be a subdominant production mode. In particular, the golden ZZ decay mode offers a distinctive 4-lepton signal that could lead to the observation at the LHC with 300 fb{sup -1} (SLHC with 3 ab{sup -1}) of a KK graviton with a mass up to {approx}2 ({approx}3) TeV for the ratio of the AdS{sub 5} curvature to the Planck scale modestly above unity. We argue that (contrary to the lore) such a size of the curvature scale can still be within the regime of validity of the framework. Upgrades beyond the SLHC luminosity are required to discover gravitons heavier than {approx}4 TeV, as favored by the electroweak and flavor precision tests in the simplest such models.
Ultravisible warped model from flavor triviality and improved naturalness
Delaunay, Cedric; Gedalia, Oram; Lee, Seung J.; Perez, Gilad; Ponton, Eduardo
2011-06-01
A warped extra-dimensional model, where the standard model Yukawa hierarchy is set by UV physics, is shown to have a sweet spot of parameters with improved experimental visibility and possibly naturalness. Upon marginalizing over all the model parameters, a Kaluza-Klein scale of 2.1 TeV can be obtained at 2{sigma} (95.4% C.L.) without conflicting with electroweak precision measurements. Fitting all relevant parameters simultaneously can relax this bound to 1.7 TeV. In this bulk version of the Rattazzi-Zaffaroni shining model, flavor violation is also highly suppressed, yielding a bound of 2.4 TeV. Nontrivial flavor physics at the LHC in the form of flavor gauge bosons is predicted. The model is also characterized by a depletion of the third-generation couplings--as predicted by the general minimal flavor violation framework--which can be tested via flavor precision measurements. In particular, sizable CP violation in {Delta}B=2 transitions can be obtained, and there is a natural region where B{sub s} mixing is predicted to be larger than B{sub d} mixing, as favored by recent Tevatron data. Unlike other proposals, the new contributions are not linked to Higgs or any scalar exchange processes.
Off-the-Wall Higgs in the Universal Randall-Sundrum Model
Davoudiasl, Hooman; Lillie, Ben; Rizzo, Thomas G.; /SLAC
2005-09-09
We outline a consistent Randall-Sundrum (RS) framework in which a fundamental 5-dimensional Higgs doublet induces electroweak symmetry breaking (EWSB). In this framework of a warped Universal Extra Dimension, the lightest Kaluza-Klein (KK) mode of the bulk Higgs is tachyonic leading to a vacuum expectation value (vev) at the TeV scale. The consistency of this picture imposes a set of constraints on the parameters in the Higgs sector. A novel feature of our scenario is the emergence of an adjustable bulk profile for the Higgs vev. We also find a tower of nontachyonic Higgs KK modes at the weak scale. We consider an interesting implementation of this ''Off-the-Wall Higgs'' mechanism where the 5-dimensional curvature-scalar coupling alone generates the tachyonic mode responsible for EWSB. In this case, additional relations among the parameters of the Higgs and gravitational sectors are established. We discuss the experimental signatures of the bulk Higgs in general, and those of the ''Gravity-Induced'' EWSB in particular.
LHC Signals from Warped Extra Dimensions
Agashe, K.; Belyaev, A.; Krupovnickas, T.; Perez, G.; Virzi, J.
2006-12-06
We study production of Kaluza-Klein gluons (KKG) at the Large Hadron Collider (LHC) in the framework of a warped extra dimension with the Standard Model (SM) fields propagating in the bulk. We show that the detection of KK gluon is challenging since its production is suppressed by small couplings to the proton's constituents. Moreover, the KK gluon decaysmostly to top pairs due to an enhanced coupling and hence is broad. Nevertheless, we demonstrate that for MKKG<~;; 4 TeV, 100 fb-1 of data at the LHC can provide discovery of the KK gluon. We utilize a sizeable left-right polarization asymmetry from the KK gluon resonance to maximize the signal significance, and we explore the novel feature of extremely highly energetic"top-jets." We briefly discuss how the detection of electroweak gauge KK states (Z/W) faces a similar challenge since their leptonic decays ("golden" modes) are suppressed. Our analysis suggests that other frameworks, for example little Higgs, which rely on UV completion via strong dynamics might face similar challenges, namely (1) Suppressed production rates for the new particles (such as Z'), due to their"lightfermion-phobic" nature, and (2) Difficulties in detection since the new particles are broad and decay predominantly to third generation quarks and longitudinal gauge bosons.
Compactification on phase space
NASA Astrophysics Data System (ADS)
Lovelady, Benjamin; Wheeler, James
2016-03-01
A major challenge for string theory is to understand the dimensional reduction required for comparison with the standard model. We propose reducing the dimension of the compactification by interpreting some of the extra dimensions as the energy-momentum portion of a phase-space. Such models naturally arise as generalized quotients of the conformal group called biconformal spaces. By combining the standard Kaluza-Klein approach with such a conformal gauge theory, we may start from the conformal group of an n-dimensional Euclidean space to form a 2n-dimensional quotient manifold with symplectic structure. A pair of involutions leads naturally to two n-dimensional Lorentzian manifolds. For n = 5, this leaves only two extra dimensions, with a countable family of possible compactifications and an SO(5) Yang-Mills field on the fibers. Starting with n=6 leads to 4-dimensional compactification of the phase space. In the latter case, if the two dimensions each from spacetime and momentum space are compactified onto spheres, then there is an SU(2)xSU(2) (left-right symmetric electroweak) field between phase and configuration space and an SO(6) field on the fibers. Such a theory, with minor additional symmetry breaking, could contain all parts of the standard model.
Searches for hyperbolic extra dimensions at the LHC
NASA Astrophysics Data System (ADS)
Melbéus, Henrik; Ohlsson, Tommy
2008-08-01
We investigate a model of large extra dimensions where the internal space has the geometry of a hyperbolic disc. Compared with the ADD model, this model provides a more satisfactory solution to the hierarchy problem between the electroweak scale and the Planck scale, and it also avoids constraints from astrophysics. In general, a novel feature of this model is that the physical results depend on the position of the brane in the internal space, and in particular, the signal almost disappears completely if the brane is positioned at the center of the disc. Since there is no known analytic form of the Kaluza-Klein spectrum for our choice of geometry, we obtain a spectrum based on a combination of approximations and numerical computations. We study the possible signatures of our model for hadron colliders, especially the LHC, where the most important processes are the production of a graviton together with a hadronic jet or a photon. We find that the signals are similar to those of the ADD model, regarding both qualitative behavior and strength. For the case of hadronic jet production, it is possible to obtain relatively strong signals, while for the case of photon production, this is much more difficult.
Beyond the three-site Higgless model
Kurachi, Masafumi; Belyaev, Alexander S; Chivukula, R Sekhar; Christensen, Neil D; Simmon, Elizabeth H; He, Hong - Jian; Tanabashie, Masaharu
2009-01-01
The three-site model has been offered as a benchmark or test case for studying the collider phenomenology of Higgs-less models. It is therefore appropriate to consider how well the three-site model performs as a general representative of Higgs-less models, and which modifications might remedy any shortcomings. We employ sum rules relating the masses and couplings of the Kaluza-Klein modes of the gauge fields in continuum and deconstructed Higgs-less models as a way to compare the different theories. These identities enable us to quantify how well a given theory performs at unitarizing the scattering of electroweak gauge bosons at a particular energy scale. We will see that the tendency of the sum rules to be saturated by contributions from the lowest-lying KK resonances provides a good measure of the extent to which a highly-deconstructed theory like the three-site model can accurately describe the low-energy physics. After comparing the three-site model to a pair of continuum models, we analyze extensions of the three-site model to a longer open linear model with an additional U(I) group and to a ring model with three sites and three links; both cases can be analyzed in the framework created by the sum rules. The hadron and lepton collider phenomenology of both extended models is discussed, with a focus on the complementary information to be gained from the different facilities.
Heavy ion therapy: Bevalac epoch
Castro, J.R.
1993-10-01
An overview of heavy ion therapy at the Bevelac complex (SuperHILac linear accelerator + Bevatron) is given. Treatment planning, clinical results with helium ions on the skull base and uveal melanoma, clinical results with high-LET charged particles, neon radiotherapy of prostate cancer, heavy charged particle irradiation for unfavorable soft tissue sarcoma, preliminary results in heavy charged particle irradiation of bone sarcoma, and irradiation of bile duct carcinoma with charged particles and-or photons are all covered. (GHH)
Heavy quark production and spectroscopy
Appel, J.A.
1993-11-01
This review covers many new experimental results on heavy flavor production and spectroscopy. It also shows some of the increasingly improved theoretical understanding of results in light of basic perturbative QCD and heavy quark symmetry. At the same time, there are some remaining discrepancies among experiments as well as significant missing information on some of the anticipated lowest lying heavy quark states. Most interesting, perhaps, are some clearly measured production effects awaiting full explanation.
Accomando, E.; Kaiser, A.
2006-05-01
We have analyzed the production of WZ and WW vector-boson pairs at the LHC. These processes give rise to four-fermion final states, and are particularly sensitive to possible nonstandard trilinear gauge-boson couplings. We have studied the interplay between the influence of these anomalous couplings and the effect of the complete logarithmic electroweak O({alpha}) corrections. Radiative corrections to the standard model processes in double-pole approximation and nonstandard terms due to trilinear couplings are implemented into a Monte Carlo program for pp{yields}4f(+{gamma}) with final states involving four or two charged leptons. We numerically investigate purely leptonic final states and find that electroweak corrections can fake new-physics signals, modifying the observables by the same amount and shape, in kinematical regions of statistical significance.
NASA Astrophysics Data System (ADS)
Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; Abouzeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bieniek, S. P.; Biesuz, N. V.; Biglietti, M.; Bilbao de Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.
2016-03-01
The ATLAS experiment has performed extensive searches for the electroweak production of charginos, neutralinos, and staus. This article summarizes and extends the search for electroweak supersymmetry with new analyses targeting scenarios not covered by previously published searches. New searches use vector-boson fusion production, initial-state radiation jets, and low-momentum lepton final states, as well as multivariate analysis techniques to improve the sensitivity to scenarios with small mass splittings and low-production cross sections. Results are based on 20 fb-1 of proton-proton collision data at √{s }=8 TeV recorded with the ATLAS experiment at the Large Hadron Collider. No significant excess beyond Standard Model expectations is observed. The new and existing searches are combined and interpreted in terms of 95% confidence-level exclusion limits in simplified models, where a single production process and decay mode is assumed, as well as within phenomenological supersymmetric models.
Heavy-flavor production overview
Jeffrey A. Appel
2003-12-10
This talk serves as an introduction to the Heavy-Flavor session of the XXXIII International Symposium on Multiparticle Dynamics. A major focus of this session is on the production of heavy quarks. The talks which follow review the latest results on heavy quark production in strong, electromagnetic, and weak interactions, as well as some of the physics of the heavy quarks themselves. This talk emphasizes what we can learn from the production measurements, both about underlying QCD theory and the partonic nature of the hadrons which we see in the laboratory.
Rheological properties of heavy oils and heavy oil emulsions
Khan, M.R.
1996-06-01
In this study, the author investigated the effects of a number of process variables such as shear rate, measurement temperature, pressure, the influence of pretreatment, and the role of various amounts of added water on the rheology of the resulting heavy oil or the emulsion. Rheological properties of heavy oils and the corresponding emulsions are important from transportation and processing standpoints.
Heavy flavour production and decay with prompt leptons in the ALEPH detector
NASA Astrophysics Data System (ADS)
Buskulic, D.; Casper, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Martinez, M.; Mattison, T.; Ortreu, S.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bonvicini, G.; Boudreau, J.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Girone, M.; Hagelberg, R.; Harvey, J.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Maggi, M.; Markou, C.; Mato, P.; Meinhard, H.; Minten, A.; Miquel, R.; Palazzi, P.; Pater, J. R.; Perlas, J. A.; Perrodo, P.; Pusztaszeri, J.-F.; Ranjard, F.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Tomalin, I. R.; Veenhof, R.; Wachsmuth, H.; Wasserbaech, S.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Bardadin-Otwinowska, M.; Barres, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Johnson, S. D.; Møllerud, R.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, B.; Fouque, G.; Passalacqua, L.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Focardi, E.; Moneta, L.; Parrini, G.; Corden, M.; Delfino, M.; Georgiopoulos, C.; Jaffe, D. E.; Levinthal, D.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Pepe-Altarelli, M.; Salomone, S.; Colrain, P.; Ten Have, I.; Knowles, I. G.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Thorn, S.; Turnbull, R. M.; Becker, U.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Hassard, J. F.; Konstantinidis, N.; Moutoussi, A.; Nash, J.; Payne, D. G.; San Martin, G.; Sedgbeer, J. K.; Wright, A. G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Vogl, R.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Walther, S. M.; Wanke, R.; Wolf, B.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Calvet, D.; Carr, J.; Coyle, P.; Diaconu, C.; Etienne, F.; Nicod, D.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Jakobs, K.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Musolino, G.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foa, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Martin, E. B.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Valassi, A.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Gao, Y.; Green, M. G.; Johnson, D. L.; March, P. V.; Medcalf, T.; Mir, Ll. M.; Quazi, I. S.; Strong, J. A.; Bertin, V.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Edwards, M.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Babbage, W.; Booth, C. N.; Buttar, C.; Cartwright, S.; Combley, F.; Dawson, I.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Feigl, E.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Schäfer, U.; Smolik, L.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Pitis, L.; Ragusa, F.; Bellantoni, L.; Chen, W.; Conway, J. S.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Hu, H.; Nachtman, J. M.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Weber, F. V.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.
1994-06-01
In 431 000 hadronic Z decays recorded with the ALEPH detector at LEP, the yields of electrons and muons in events with one or more prompt leptons have been analysed to give information on the production and decay of heavy quarks. The fractions ofbbar b andcbar c events are measured to be 0.219±0.006±0.005 and 0.165±0.005±0.020, and the corresponding forward-backward asymmetries at the Z mass are measured to be 0.090±0.013±0.003 and 0.111±0.021±0.018, after QED and QCD corrections. Measurements for the semileptonic branching ratios BR(b to ell ^ - bar vX) and BR ( b→ cℓ+ vX) yield 0.114±0.003±0.004 and 0.082±0.003±0.012, respectively. The dilepton events enable measurement of the b mixing parameter, Χ=0.114±0.014±0.008. Results are also presented for the energy variation of thebbar b asymmetry and the parameters required to describe heavy quark fragmentation. From the asymmetry measurements, the effective electroweak mixing angle is sin2θ{/W eff}=0.2333±0.0022.
NASA Technical Reports Server (NTRS)
Beaujean, R.; Jonathal, D.; Enge, W.
1992-01-01
A stack of CR-39 and Kodak CN track detectors was exposed on the NASA satellite LDEF and recovered after almost six years in space. The quick look analysis yielded heavy ion tracks on a background of low energy secondaries from proton interaction. The detected heavy ions show a steep energy spectrum which indicates a radiation belt origin.