Science.gov

Sample records for heavy metal concentration

  1. Multivariate analysis of heavy metals concentrations in river estuary.

    PubMed

    Alkarkhi, Abbas F M; Ahmad, Anees; Ismail, Norli; Easa, Azhar Mat

    2008-08-01

    Multivariate statistical techniques such as multivariate analysis of variance (MANOVA) and discriminant analysis (DA) were applied for analyzing the data obtained from two rivers in the Penang State of Malaysia for the concentration of heavy metal ions (As, Cr, Cd, Zn, Cu, Pb, and Hg) using a flame atomic absorption spectrometry (F-AAS) for Cr, Cd, Zn, Cu, Pb, As and cold vapor atomic absorption spectrometry (CV-AAS) for Hg. The two locations of interest with 20 sampling points of each location were Kuala Juru (Juru River) and Bukit Tambun (Jejawi River). MANOVA showed a strong significant difference between the two rivers in terms of heavy metal concentrations in water samples. DA gave the best result to identify the relative contribution for all parameters in discriminating (distinguishing) the two rivers. It provided an important data reduction as it used four parameters (Zn, Pb, Cd and Cr) affording 100% correct assignations. Results indicated that the two rivers were different in terms of heavy metals concentrations in water, and the major difference was due to the contribution of Zn. A negative correlation was found between discriminate functions (DF) and Cr and As, whereas positive correlation was exhibited with other heavy metals. Therefore, DA allowed a reduction in the dimensionality of the data set, delineating a few indicator parameters responsible for large variations in heavy metal concentrations. Correlation matrix between the parameters exhibited a strong evidence of mutual dependence of these metals.

  2. Effect of fertilizer application on soil heavy metal concentration.

    PubMed

    Atafar, Zahra; Mesdaghinia, Alireza; Nouri, Jafar; Homaee, Mehdi; Yunesian, Masoud; Ahmadimoghaddam, Mehdi; Mahvi, Amir Hossein

    2010-01-01

    A large amount of chemicals is annually applied at the agricultural soils as fertilizers and pesticides. Such applications may result in the increase of heavy metals particularly Cd, Pb, and As. The objective of this study was to investigate the variability of chemical applications on Cd, Pb, and As concentrations of wheat-cultivated soils. Consequently, a study area was designed and was divided into four subareas (A, B, C, and D). The soil sampling was carried out in 40 points of cultivated durum wheat during the 2006-2007 periods. The samples were taken to the laboratory to measure their heavy metal concentration, soil texture, pH, electrical conductivity, cationic exchange capacity, organic matter, and carbonate contents. The result indicated that Cd, Pb, and As concentrations were increased in the cultivated soils due to fertilizer application. Although the statistical analysis indicates that these heavy metals increased significantly (P value<0.05), the lead and arsenic concentrations were increased dramatically compared to Cd concentration. This can be related to overapplication of fertilizers as well as the pesticides that are used to replant plant pests, herbs, and rats.

  3. Heavy metal concentrations in edible barnacles exposed to natural contamination.

    PubMed

    Dionísio, M; Costa, A; Rodrigues, A

    2013-04-01

    The giant barnacle Megabalanus azoricus is a popular seafood in the Azores. It is mainly caught in coastal environments and sold for domestic human consumption. This species is a filter feeder and can be used as a biomonitor of trace metal bioavailabilities. To investigate consumption safety, the concentrations of 10 trace metals - As, Cd, Cr, Cu, Mn, Pb, Rb, Se, Sr and Zn - were evaluated in 3 body tissues of M. azoricus from 3 sites on 2 islands. There were no significant differences between the metal loads of the barnacles from the different sites. However, the concentrations of the total trace metal loads revealed significant differences among the tissues (cirrus, muscles and ovaries). The concentrations of some metals in the body were not within the safety levels for consumers, based on the allowable standard levels for crustaceans issued by the European Union and of legislations in several countries. Alarming levels of As and Cd were found. Considering the absence of heavy industry in the region, a non-anthropogenic volcanic source was assumed to be the reason for the observed metal levels. Barnacles, in particular M. azoricus, seem to be useful as bioindicators in this peculiar environment.

  4. [Heavy metal concentrations in mosses from Qiyi Glacier region].

    PubMed

    Ma, Juan-Juan; Li, Zhen

    2014-06-01

    Heavy metal (Cr, Fe, Cu, Zn, As, Cd and Pb) concentrations were measured in 17 moss samples which were collected at Qiyi Glacier Region in July, August and September, 2009 in a preliminary investigation of heavy metal pollution situation in this area. The results indicated that heavy metal concentrations in mosses were relatively high and concentrations of Fe were at the highest level (varied between 15 160.00 and 34 960.00 microg x g(-1)), followed by Zn, Cu, Cr, Pb, As, with average concentrations of 169.56, 134.81, 34.52, 26.16, 9.15 microg x g(-1). Enrichment factor analysis and correlation analysis indicated that Fe and Cr in mosses mainly stemmed from crustal dust, and concentrations of Cu, Pb, Zn and Cd were influenced by human activities; As was moderately enriched which means As in mosses was mainly originated from anthropogenic pollution. According to the Global Data Assimilation System (GDAS) meteorological data from the National Center for Environmental Prediction (NCEP) of 2009 and the simulation of the HYSPLIT v4.9 Model on 3-dimension back trajectories of air mass at Qiyi glacier district, several trajectories reflecting the main characteristics of air flow were obtained based on the classification of cluster analysis on the hundreds of back trajectories. The back trajectories revealed that atmospheric transport characteristics in the study area changed obviously by season. Compared to Spring and Autumn, atmospheric transmission sources were relatively more in Winter and Summer. The main sources of atmospheric pollutants in Qiyi Glacier region were transported from Jiuquan and Jiayuguan regions.

  5. Heavy metal concentrations in Louisiana waterways, sediments, and biota

    SciTech Connect

    Bundy, K.J.; Berzins, D.

    1994-12-31

    In this investigation polarographic methods (along with GFAAS and ICP) have been used to study the distribution of lead and chromium in Bayou Trepagnier and Devil`s Swamp. Both laboratory and field research have been conducted. Separation and extraction methodology appropriate for analysis of the contaminants at these sites have been developed. Particular attention has been paid to extraction methods for chromium which do not lead to valence state conversion. The availability of such techniques is essential to take full advantage of polarography, a method capable of performing speciation analysis. The results indicate that there is a very inhomogeneous distribution of heavy metals in these environments. In Devil`s Swamp, for example, separation and analysis of aqueous and variously sized particulate moieties in the water and sediment compartments were conducted to determine the partition of lead between them. The results showed that the average lead content was 14.7 ppb and 19.8 ppm, respectively, in these compartments. Apparently bull frogs in Devil`s Swamp can bioaccumulate lead (compared to the measured water level), since the muscle concentration was found to be about 0.6 ppm. This phenomenon is being investigated in a Xenopus frog laboratory model of heavy metal uptake. The basic methodology validated in this study should be fairly generally applicable to assays of other heavy metals.

  6. Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge.

    PubMed

    Yuan, Xingzhong; Huang, Huajun; Zeng, Guangming; Li, Hui; Wang, Jingyu; Zhou, Chunfei; Zhu, Huina; Pei, Xiaokai; Liu, Zhifeng; Liu, Zhantao

    2011-03-01

    The risk (including bioavailability and eco-toxicity) of heavy metals (Pb, Zn, Cu, Cd, Cr and Ni) in liquefaction residues (LR) of sewage sludge (SS) was estimated, according to both the speciation of heavy metals and the local environmental characteristics. The amount of organic matters in LR was lower than that in SS, resulting in a smaller calorific value, while the total content of heavy metals in LR nearly doubled. High residual rates of heavy metals (about 80%) indicated that the heavy metals in SS were concentrated into LR after liquefaction. The comparisons of sequential extraction results between SS and LR showed that after liquefaction, the mobile and easily available heavy metal fractions (acid soluble/exchangeable and reducible fractions) were mainly transformed into the relatively stable heavy metal fractions (oxidizable and residual fractions). The bioavailability and eco-toxicity of heavy metals in LR were relieved, though the total concentrations of heavy metals increased.

  7. Heavy metals in urban soils of East St. Louis, IL, Part I: Total concentration of heavy metals in soils.

    PubMed

    Kaminski, M D; Landsberger, S

    2000-09-01

    The city of East St. Louis, IL, has a history of abundant industrial activities including smelters of ferrous and non-ferrous metals, a coal-fired power plant, companies that produce organic and inorganic chemicals, and petroleum refineries. A protocol for soil analysis was developed to produce sufficient information on the extent of heavy metal contamination in East St. Louis soils. Soil cores representing every borough of East St. Louis were analyzed for heavy metals--As, Cd, Cu, Cr, Hg, Ni, Pb, Sb, Sn, and Zn. The topsoil contained heavy metal concentrations as high as 12.5 ppm Cd, 14,400 ppm Cu, ppm quantities of Hg, 1860 ppm Pb, 40 ppm Sb, 1130 ppm Sn, and 10,360 ppm Zn. Concentrations of Sb, Cu, and Cd were well correlated with Zn concentrations, suggesting a similar primary industrial source. In a sandy loam soil from a vacated rail depot near the bank of the Mississippi River, the metals were evenly distributed down to a 38-cm depth. The clay soils within a half-mile downwind of the Zn smelter and Cu products company contained elevated Cd (81 ppm), Cu (340 ppm), Pb (700 ppm), and Zn (6000 ppm) and displayed a systematic drop in concentration of these metals with depth. This study demonstrates the often high concentration of heavy metals heterogeneously distributed in the soil and provides baseline data for continuing studies of heavy metal soil leachability.

  8. Space-time quantitative source apportionment of soil heavy metal concentration increments.

    PubMed

    Yang, Yong; Christakos, George; Guo, Mingwu; Xiao, Lu; Huang, Wei

    2017-04-01

    Assessing the space-time trends and detecting the sources of heavy metal accumulation in soils have important consequences in the prevention and treatment of soil heavy metal pollution. In this study, we collected soil samples in the eastern part of the Qingshan district, Wuhan city, Hubei Province, China, during the period 2010-2014. The Cd, Cu, Pb and Zn concentrations in soils exhibited a significant accumulation during 2010-2014. The spatiotemporal Kriging technique, based on a quantitative characterization of soil heavy metal concentration variations in terms of non-separable variogram models, was employed to estimate the spatiotemporal soil heavy metal distribution in the study region. Our findings showed that the Cd, Cu, and Zn concentrations have an obvious incremental tendency from the southwestern to the central part of the study region. However, the Pb concentrations exhibited an obvious tendency from the northern part to the central part of the region. Then, spatial overlay analysis was used to obtain absolute and relative concentration increments of adjacent 1- or 5-year periods during 2010-2014. The spatial distribution of soil heavy metal concentration increments showed that the larger increments occurred in the center of the study region. Lastly, the principal component analysis combined with the multiple linear regression method were employed to quantify the source apportionment of the soil heavy metal concentration increments in the region. Our results led to the conclusion that the sources of soil heavy metal concentration increments should be ascribed to industry, agriculture and traffic. In particular, 82.5% of soil heavy metal concentration increment during 2010-2014 was ascribed to industrial/agricultural activities sources. Using STK and SOA to obtain the spatial distribution of heavy metal concentration increments in soils. Using PCA-MLR to quantify the source apportionment of soil heavy metal concentration increments.

  9. Statistical comparisons of heavy-metal concentrations in river sediments

    NASA Astrophysics Data System (ADS)

    Murray, K. S.

    1996-02-01

    Statistical t tests were used to determine lead, copper, and chromium enrichment in sediments from the Lower Branch of the Rouge River in southeast Michigan, USA. Both absolute metal concentrations and ratios of trace metal to conservative metal concentrations were used to compare sampled sites along the Lower Branch of the Rouge River to background sites in the headwaters region. Concentration ratios were used to reduce the effects of certain chemical and physical characteristics on the level of metal contained in a given sediment. Results from the comparison of sample sites to the background reveal metal enrichment at several sites, particularly along the highly urbanized, downstream section of the river. This section of the Lower Branch of the Rouge River exhibits significant lead and copper contamination, as well as measurable chromium enrichment when using either concentrations alone or ratios as methods of comparison. The areas of metal enrichment appear to coincide closely with areas of known anthropogenic activities. Of particular interest, however, is the enrichment of lead and copper at two upstream sites where the statistical tests suggest an anthropogenic source for the enrichment, but where no previously known cultural activities existed. These data prompted a historical search of records, which discovered several abandoned landfills immediately upstream of the metal enrichment sites.

  10. Heavy metal concentrations in soils and vegetation in urban areas of Quezon City, Philippines.

    PubMed

    Navarrete, Ian A; Gabiana, Christella C; Dumo, Joan Ruby E; Salmo, Severino G; Guzman, Maria Aileen Leah G; Valera, Nestor S; Espiritu, Emilyn Q

    2017-04-01

    Limited data have been published on the chemistry of urban soils and vegetation in the Philippines. The aim of this study is to quantify the concentrations of heavy metals (i.e., Cr, Ni, Cu, Zn, and Pb) in soils and vegetation in the urban landscape of Quezon City, Philippines, and to elucidate the relationships between soil properties and the concentration of heavy metals pertaining to different land uses [i.e., protected forest (LM), park and wildlife area (PA), landfill (PL), urban poor residential and industrial areas (RA), and commercial areas (CA)]. Soil (0-15 cm) and senescent plant leaves were collected and were analyzed for soil properties and heavy metal concentrations. Results revealed that the concentrations of heavy metals (i.e., Cr, Ni, Cu, Zn, and Pb) in urban soils were higher in areas where anthropogenic activities or disturbance (PL, RA, and CA) were dominant as compared to the less disturbed areas (LM and PA). Organic matter and available phosphorous were strongly correlated with heavy metal concentrations, suggesting that heavy metal concentrations were primarily controlled by these soil properties. The average foliar heavy metal concentrations varied, ranging from 0 to 0.4 mg/kg for Cd, 0-10 mg/kg for Cr, 2-22 mg/kg for Cu, 0-5 mg/kg for Pb, and 11-250 mg/kg for Zn. The concentrations of Cd and Cr exceeded the critical threshold concentrations in some plants. Leaves of plants growing in PL (i.e., landfill) showed the highest levels of heavy metal contamination. Our results revealed that anthropogenic activities and disturbance caused by the rapid urbanization of the city are major contributors to the heavy metal accumulation and persistence in the soils in these areas.

  11. Heavy metal concentrations in tissues of Virginia river otters

    SciTech Connect

    Anderson-Bledsoe, K.L.; Scanlon, P.F.

    1983-04-01

    Concentrations of lead, cadmium, zinc and copper in liver, kidney and bone samples of otter harvested during the 1979-1980 and 1980-1981 trapping seasons were determined by atomic absorption spectrophotometry. Correlations between metal concentrations and age for all three tissues were nonsignificant. Correlations among the concentrations of the four elements in liver and kidney samples were also nonsignificant for otter samples in both years. The highest correlation coefficient (0.47) was found between zinc and copper concentrations in liver samples from otters trapped during the 1979-1980 trapping season. (JMT)

  12. Concentrations of heavy metals in soil, Zimapan, México

    NASA Astrophysics Data System (ADS)

    Ongley, L. K.; Armienta, A.; Mango, H.

    2003-05-01

    Pb-Zn-Ag mining and ore pocessing have occurred continuously in Zimapán, México since at least 1632 and possibly since 1576 [1, 2]. This has resulted in the development of significant slag and tailings piles. Dissolution of ore and tailings has resulted in arsenic contamination of much of the water in the valley raising the possibility of arsenicosis of the residents [3, 4, 5]. INAA and ICP analysis of more than 175 sediment, soil and tailings samples demonstrate significant metal and arsenic contamination of these unconsolidated materials. As, Cu, Pb, and Zn were among the measured elements. Metal concentrations in soils and sediments were highest within 1000 m of tailings or slag piles. Some of the highest soil metal concentrations were measured in a developing soil on top of a slag pile: As-14 700 mg/kg, Cu 8 638 mg/kg, Pb 41444 mg/kg, and Zn 16 976 mg/kg. Soils more than 4 000 m from the tailings and slag generally had less than 40 mg As/kg with Cu < 30 mg/kg, Pb < 64 mg/kg, and Zn < 200 mg/kg. Some rocks ftum the area also show elevated metal concentrations. For example, the As concentrations in dikes and ores from Zimapàn averaged 1 242 and 30 800 mg/kg respectively. Average shale As concentrations (74 mg/kg) match published data for shales that indicate “normal” As concentrations range from 3-490 mg/kg are found world-wide [6]. Some of the soil contamination is natural, the result of the geologic processes responsible for the Pb-Zn ores. However, particularly near the tailings and slag piles, the soils are also contaminated by anthropogenic means: by dry particulate deposition from smelters, by windblown tailings, and possibly by ore and rock dust from the ore transport trucks.

  13. Distribution of heavy metal concentrations in surface sediments in Dubai Creeks, United Arab Emirates.

    PubMed

    Howari, Fares M

    2005-01-01

    Dubai is developing rapidly and many developmental activities are concentrated around its Creek. The present study reports the lateral distribution of heavy metals and compares it with local historical record of heavy metal concentrations. For this purpose surface sediment samples were collected and analyzed for metal contents, total organic carbon content (TOC), mineralogy and grain size. The percentages of the different grain size fraction of the collected sediments were as follow 65% for sand size, 15% for silt size fraction, and the rest accounted for clay size fraction. The microscopic analyses indicate that the sediment composed mainly from carbonate and quartz with traces of rock fragments. Such mineral composition is not believed to be a potential source of heavy metal. The study found that the average recorded heavy metal concentrations in the collected sediment samples were 87, 96, 127, 38.5, and 279 ppm for Cr, Cu, Ni, Pb, and Zn, respectively. Those values were slightly higher than metal concentrations recoded in 2001 with 1.22 (Cr), 2.5 (Cu), 2.87 (Ni), 0.69 (Pb), and 2.1 (Zn) folds. However, in 2001 and 2003 the measured metal contents, along the creek, were lower than those of the average earth crust. Along the Creek most metals recorded the highest concentrations in the upper reach of the Creek. The distribution of the measured heavy metals was not affected significantly with the TOC values. The present study also documented obvious related point sources of pollution.

  14. Heavy metal concentrations in feathers of ruffed grouse shot by Virginia hunters

    SciTech Connect

    Scanlon, P.F.; Oderwaid, R.G.; Dietrick, T.J.; Coggin, J.L.

    1980-12-01

    Heavy metal contamination is a continuing problem for populations of wild animals and in environmental management. Those species which inhabit relatively undisturbed environments and are nonmigratory probably present the best opportunities to obtain background concentrations of heavy metals under present day conditions. Work on one such species-the wild turkey (Meleagris gallopava) has been reported earlier. Concentrations of lead, cadmium, nickel, zinc, silver and copper in ruffed grouse (Bonassa umbellus) shot by hunters in Virginia were analyzed.

  15. High concentrations of heavy metals in neighborhoods near ore smelters in northern Mexico.

    PubMed Central

    Benin, A L; Sargent, J D; Dalton, M; Roda, S

    1999-01-01

    In developing countries, rapid industrialization without environmental controls has resulted in heavy metal contamination of communities. We hypothesized that residential neighborhoods located near ore industries in three northern Mexican cities would be heavily polluted with multiple contaminants (arsenic, cadmium, and lead) and that these sites would be point sources for the heavy metals. To evaluate these hypotheses, we obtained samples of roadside surface dust from residential neighborhoods within 2 m of metal smelters [Torreón (n = 19)] and Chihuahua (n = 19)] and a metal refinery [Monterrey (n = 23)]. Heavy metal concentrations in dust were mapped with respect to distance from the industrial sites. Correlation between dust metal concentration and distance was estimated with least-squares regression using log-transformed data. Median dust arsenic, cadmium, and lead concentrations were 32, 10, and 277 microg/g, respectively, in Chihuahua; 42, 2, and 467 microg/g, respectively, in Monterrey, and 113, 112, and 2,448 microg/g, respectively, in Torreón. Dust concentrations of all heavy metals were significantly higher around the active smelter in Torreón, where more than 90% of samples exceeded Superfund cleanup goals. At all sites, dust concentrations were inversely related to distance from the industrial source, implicating these industries as the likely source of the contamination. We concluded that residential neighborhoods around metal smelting and refining sites in these three cities are contaminated by heavy metals at concentrations likely to pose a health threat to people living nearby. Evaluations of human exposure near these sites should be conducted. Because multiple heavy metal pollutants may exist near smelter sites, researchers should avoid attributing toxicity to one heavy metal unless others have been measured and shown not to coexist. Images Figure 1 Figure 2-3 Figure 4-5 Figure 6-7 Figure 8 PMID:10090706

  16. Concentrations of selected heavy metals in benthic diatoms and sediment in the Westerschelde Estuary

    SciTech Connect

    Absil, M.C.P.; Scheppingen, Y. van

    1996-12-31

    In recent years considerable data have been compiled on heavy metal levels in biota in marine and estuarine environments. With respect to the fauna, much information is available on accumulation and effects of heavy metals in birds, fish and benthic macrofauna. Accumulation of heavy metals in aquatic flora has been studied mostly in benthic macroalgae, in particular in relation to the use as a biological monitor. The response of planktonic algal species to heavy metals has been studied extensively in cultured populations. Also. heavy metal concentrations in natural plankton have been studied. As far as we know, very few data are available on the concentrations of heavy metals in the lowest benthic trophic level, the benthic microflora. It is a major food supply for numerous intertidal species, so it is obvious that microflora might play an important role in the accumulation of contaminants through coastal food chains. The aim of this research was to adjust a recently developed collection technique for benthic diatoms so that it is suitable for large-scale field studies. The method was then used to assess the concentration of the heavy metals Cd, Cu, Pb and Zn in benthic diatoms and sediments along an estuarine gradient. 18 refs., 2 figs., 1 tab.

  17. On heavy metal concentrations and biogenic enrichment in microbial mat environments

    NASA Astrophysics Data System (ADS)

    Taher, A. G.; Abd El Wahab, S.; Philip, G.; Wali, A. M.; Krumbein, W. E.

    1994-09-01

    Heavy metal concentrations of a recent salina on the shore of the Mediterranean Sea near Port Said (Egypt) were investigated. Samples for the heavy metal study were taken in different ponds of the salina. It was found that microbial mat dominated brine sediments concentrated and enriched heavy metal 2 3 times more than sediments lacking microbial mat developments, suggesting that cyanobacteria play a major role in this enrichment. Heavy metal enrichment by cyanobacteria was therefore also studied in the laboratory environment. This study is compared with a recent study of Solar Lake and Sabkha Gavish sediments (Sinai, Egypt). Our conclusion is that recent hypersaline environments with ambient microbial mat (potential stromatolite) developments are ideal examples of present-day environments of metal accumulations.

  18. [Concentrations and Speciation of Dissolved Heavy Metal in Rainwater in Guiyang, China].

    PubMed

    Zhu, Zhao-zhou; Li, Jun; Wang, Zhi-ru

    2015-06-01

    In order to understand the pollution situation, as well as seasonal changes in characteristics and speciation of dissolved heavy metals in acid rain control zone, the concentrations of dissolved heavy metals in rainwater collected at Guiyang were measured using inductively coupled plasma mass spectrometry (ICP-MS). And the speciation of dissolved heavy metals was further simulated by PHREEQC model. The results showed that the dissolved Co, Ni, Cu, Zn and Cd concentrations were low and not higher than the national standards for drinking water quality in China. The dissolved Pd concentrations were high in fall and winter and higher than the national standards for drinking water quality in China. The Co and Ni in rainwater mainly came from the crust and there was almost no human impact. The Cu, Zn, Cd and Pd pollutions in rainwater were affected by human activity with different levels. The degrees of contamination in autumn and winter were more serious than those in spring and summer. The free metal ion species was the dominant form of dissolved heavy metal, accounting for 47.27%-95.28% of the dissolved metal in rainwater from Guiyang city. The free metal ion species was followed in abundance by Metal-Oxalate and Metal-sulfate complexes that accounted for 0.72% -51.87% and 0.50%-7.66%, respectively. The acidity of rainwater, acid type as well as content of ligand more likely controlled the distribution of dissolved heavy metal in precipitation.

  19. Distribution of the concentration of heavy metals associated with the sediment particles accumulated on road surfaces.

    PubMed

    Zafra, C A; Temprano, J; Tejero, I

    2011-07-01

    The heavy metal pollution caused by road run-off water constitutes a problem in urban areas. The metallic load associated with road sediment must be determined in order to study its impact in drainage systems and receiving waters, and to perfect the design of prevention systems. This paper presents data regarding the sediment collected on road surfaces in the city of Torrelavega (northern Spain) during a period of 65 days (132 samples). Two sample types were collected: vacuum-dried samples and those swept up following vacuuming. The sediment loading (g m(-2)), particle size distribution (63-2800 microm) and heavy metal concentrations were determined. The data showed that the concentration of heavy metals tends to increase with the reduction in the particle diameter (exponential tendency). The concentrations ofPb, Zn, Cu, Cr, Ni, Cd, Fe, Mn and Co in the size fraction <63 microm were 350, 630, 124, 57, 56, 38, 3231, 374 and 51 mg kg(-1), respectively (average traffic density: 3800 vehicles day(-1)). By increasing the residence time of the sediment, the concentration increases, whereas the ratio of the concentration between the different size fractions decreases. The concentration across the road diminishes when the distance between the roadway and the sampling siteincreases; when the distance increases, the ratio between size fractions for heavy metal concentrations increases. Finally, the main sources of heavy metals are the particles detached by braking (brake pads) and tyre wear (rubber), and are associated with particle sizes <125 microm.

  20. Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India - Spectroscopical approach

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, A.; Ravisankar, R.; Harikrishnan, N.; Satapathy, K. K.; Prasad, M. V. R.; Kanagasabapathy, K. V.

    2015-02-01

    Anthropogenic activities increase the accumulation of heavy metals in the soil environment. Soil pollution significantly reduces environmental quality and affects the human health. In the present study soil samples were collected at different locations of Yelagiri Hills, Tamilnadu, India for heavy metal analysis. The samples were analyzed for twelve selected heavy metals (Mg, Al, K, Ca, Ti, Fe, V, Cr, Mn, Co, Ni and Zn) using energy dispersive X-ray fluorescence (EDXRF) spectroscopy. Heavy metals concentration in soil were investigated using enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF) and pollution load index (PLI) to determine metal accumulation, distribution and its pollution status. Heavy metal toxicity risk was assessed using soil quality guidelines (SQGs) given by target and intervention values of Dutch soil standards. The concentration of Ni, Co, Zn, Cr, Mn, Fe, Ti, K, Al, Mg were mainly controlled by natural sources. Multivariate statistical methods such as correlation matrix, principal component analysis and cluster analysis were applied for the identification of heavy metal sources (anthropogenic/natural origin). Geo-statistical methods such as kirging identified hot spots of metal contamination in road areas influenced mainly by presence of natural rocks.

  1. Heavy metal concentration in sediment, benthic, benthopelagic, and pelagic fish species from Musa Estuary (Persian Gulf).

    PubMed

    Abdolahpur Monikh, Fazel; Safahieh, Alireza; Savari, Ahmad; Doraghi, Abdolmajid

    2013-01-01

    The concentration of Cd, Co, Cu, Ni, and Pb was measured in sediment and three fish species collected from Musa Estuary, Persian Gulf. The concentration order of heavy metals in sediment were Ni > Co > Cu > Pb > Cd >. Concentrations of the heavy metals in the fish were apparently different among the three species. The concentrations of Cd and Ni in fish were Johnius belangerii > Euryglossa orientalis > Liza abu, while the Co and Cu levels were L. abu > E. orientalis > J. belangerii and E. orientalis > L. abu > J. belangerii, respectively. Result of regression analysis showed that there were no significant relationships between metal concentration in fish tissues and sediment, except for Ni concentration in the J. belangerii liver. The concentrations of studied metals in fish muscle were below the permissible limits proposed by FAO, WHO, and EC.

  2. Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China.

    PubMed

    Chen, Xi; Xia, Xinghui; Zhao, Ye; Zhang, Ping

    2010-09-15

    A detailed investigation was conducted to study the heavy metal concentrations in roadside soils of Beijing. The concentrations of Cd, Cu, Pb and Zn showed a decreasing trend with increasing distance from the road while such trend was not identified in As, Cr and Ni. In addition, the concentrations of Cd, Cu, Pb and Zn significantly positively correlated with black carbon (BC) and TOC (p<0.01). The soil samples from West 2nd Ring Road with the highest traffic volume had the highest heavy metal concentrations of the 10 roads, and Pb concentration was significantly positively correlated with traffic volumes (p<0.05). According to the soil guideline values of China, Cd was considered to have considerable contamination in roadside soils, while Cu, Pb and Zn less, but As, Ni, Cr none. The concentrations of heavy metals in roadside soils of Beijing were considered medium or low in comparison with those in other cities; this may be due to the windy and dry climate in Beijing. The heavy metals could move with wind along the wind direction and the soil samples had higher heavy metal concentrations at the downwind direction.

  3. Heavy metal concentration in fish tissues inhabiting waters of "Busko Blato" reservoir (Bosnia and Herzegovina).

    PubMed

    Has-Schön, Elizabeta; Bogut, Ivan; Kralik, Gordana; Bogut, Stjepan; Horvatić, Janja; Cacić, Milan; Cacić, Ivan

    2008-09-01

    Heavy metals concentration (mercury, lead, cadmium, arsenic, copper, zinc and chromium) in tissues (muscles, liver, kidney and gonads) of Dalmatian barbelgudgeon, the nase, the souffie and brown trout, inhabiting waters of Busko Blato reservoir in Bosnia and Herzegovina, has been determined by atomic absorption spectrophotometry. The meat of the tested fish sorts does not contain elevated concentration of most analyzed heavy metals with exception of lead (higher than MAC in Italy, Germany and Denmark) and mercury (in muscles of brown trout higher than MAC in most countries). The lowest level of all heavy metals is always detected in gonads, with higher values in fry compared to milt for copper, zinc, chromium and arsenic. The highest copper concentration is observed in the liver from the souffie which is suggested as a suitable biomonitor for copper intoxication. In muscles of all fish sorts, lead was always present in much higher concentration than cadmium, while in kidneys of most fish sorts, lead and cadmium concentrations were similar. We showed that bioaccumulation of some heavy metals in the fish sorts analyzed is tissue and sex dependent. Also, we concluded that the small water exchange in reversible shallow reservoir does not induce elevated concentration of heavy metals in fish tissues inhabiting Busko Blato.

  4. Relationship between Heavy Metal Concentrations in Soils and Grasses of Roadside Farmland in Nepal

    PubMed Central

    Yan, Xuedong; Zhang, Fan; Zeng, Chen; Zhang, Man; Devkota, Lochan Prasad; Yao, Tandong

    2012-01-01

    Transportation activities can contribute to accumulation of heavy metals in roadside soil and grass, which could potentially compromise public health and the environment if the roadways cross farmland areas. Particularly, heavy metals may enter the food chain as a result of their uptake by roadside edible grasses. This research was conducted to investigate heavy metal (Cu, Zn, Cd, and Pb) concentrations in roadside farmland soils and corresponding grasses around Kathmandu, Nepal. Four factors were considered for the experimental design, including sample type, sampling location, roadside distance, and tree protection. A total of 60 grass samples and 60 topsoil samples were collected under dry weather conditions. The Multivariate Analysis of Variance (MANOVA) results indicate that the concentrations of Cu, Zn, and Pb in the soil samples are significantly higher than those in the grass samples; the concentrations of Cu and Pb in the suburban roadside farmland are higher than those in the rural mountainous roadside farmland; and the concentrations of Cu and Zn at the sampling locations with roadside trees are significantly lower than those without tree protection. The analysis of transfer factor, which is calculated as the ratio of heavy-metal concentrations in grass to those in the corresponding soil, indicates that the uptake capabilities of heavy metals from soil to grass is in the order of Zn > Cu > Pb. Additionally, it is found that as the soils’ heavy-metal concentrations increase, the capability of heavy-metal transfer to the grass decreases, and this relationship can be characterized by an exponential regression model. PMID:23202679

  5. Concentration and transportation of heavy metals in vegetables and risk assessment of human exposure to bioaccessible heavy metals in soil near a waste-incinerator site, South China.

    PubMed

    Li, Ning; Kang, Yuan; Pan, Weijian; Zeng, Lixuan; Zhang, Qiuyun; Luo, Jiwen

    2015-07-15

    There is limited study focusing on the bioaccumulation of heavy metals in vegetables and human exposure to bioaccessible heavy metals in soil. In the present study, heavy metal concentrations (Cr, Ni, Cu, Pb and Cd) were measured in five types of vegetables, soil, root, and settled air particle samples from two sites (at a domestic waste incinerator and at 20km away from the incinerator) in Guangzhou, South China. Heavy metal concentrations in soil were greater than those in aerial parts of vegetables and roots, which indicated that vegetables bioaccumulated low amount of heavy metals from soil. The similar pattern of heavy metal (Cr, Cd) was found in the settled air particle samples and aerial parts of vegetables from two sites, which may suggest that foliar uptake may be an important pathway of heavy metal from the environment to vegetables. The highest levels of heavy metals were found in leaf lettuce (125.52μg/g, dry weight) and bitter lettuce (71.2μg/g) for sites A and B, respectively, followed by bitter lettuce and leaf lettuce for sites A and B, respectively. Swamp morning glory accumulated the lowest amount of heavy metals (81.02μg/g for site A and 53.2μg/g for site B) at both sites. The bioaccessibility of heavy metals in soil ranged from Cr (2%) to Cu (71.78%). Risk assessment showed that Cd and Pb in soil samples resulted in the highest non-cancer risk and Cd would result in unacceptable cancer risk for children and risk. The non-dietary intake of soil was the most important exposure pathway, when the bioaccessibility of heavy metals was taken into account.

  6. Concentration distribution and potential health risk of heavy metals in Mactra veneriformis from Bohai Bay, China.

    PubMed

    Li, Yuhu; Liu, Hui; Zhou, Hailong; Ma, Wandong; Han, Qian; Diao, Xiaoping; Xue, Qinzhao

    2015-08-15

    To investigate the pollution level and evaluate the potential health risks of heavy metals, the concentrations of chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), molybdenum (Mo), cadmium (Cd), antimony (Sb), and lead (Pb) were determined by inductively coupled plasma-mass spectrometry (ICP-MS) in 198 clams (Mactra veneriformis) collected from 11 sites of the Bohai Bay. The results showed that heavy metal concentrations in the clams were different at different sites (p<0.05). Mn was dominant with a percentage of 22.08-77.03% in heavy metals, followed by Zn with 12.66-57.11%, and the concentration of Pb was the lowest with 0.45-1.04%. The potential health risk to consumers was evaluated by the target hazard quotient (THQ) and the maximum daily consumption rate (CRmax). The results indicated that the THQs of Co were the highest with the values of 1.125, 1.665, and 1.144 at three sections; the values of other individual metals were <1, which indicated that consumption of clams from the study areas caused health risks due to Co. Moreover, the CRmax values also indicated the potential health risk caused by Co in clams consumed in this area. Pearson correlation analysis and principal component analysis (PCA) indicated that there were significantly positive or negative correlations between the heavy metals (p<0.05), and the studied metals were divided into four groups. The results indicated that the concentrations of heavy metals in clams were affected not only by pollution sources but also by the characteristics of clams that could absorb selectively and accumulate special metals. This study offers important information on the pollution levels of heavy metals in clams and warns consumers of the health risks associated with the consumption of clams in the area.

  7. Influence of traffic activity on heavy metal concentrations of roadside farmland soil in mountainous areas.

    PubMed

    Zhang, Fan; Yan, Xuedong; Zeng, Chen; Zhang, Man; Shrestha, Suraj; Devkota, Lochan Prasad; Yao, Tandong

    2012-05-01

    Emission of heavy metals from traffic activities is an important pollution source to roadside farmland ecosystems. However, little previous research has been conducted to investigate heavy metal concentrations of roadside farmland soil in mountainous areas. Owing to more complex roadside environments and more intense driving conditions on mountainous highways, heavy metal accumulation and distribution patterns in farmland soil due to traffic activity could be different from those on plain highways. In this study, design factors including altitude, roadside distance, terrain, and tree protection were considered to analyze their influences on Cu, Zn, Cd, and Pb concentrations in farmland soils along a mountain highway around Kathmandu, Nepal. On average, the concentrations of Cu, Zn, Cd, and Pb at the sampling sites are lower than the tolerable levels. Correspondingly, pollution index analysis does not show serious roadside pollution owing to traffic emissions either. However, some maximum Zn, Cd, and Pb concentrations are close to or higher than the tolerable level, indicating that although average accumulations of heavy metals pose no hazard in the region, some spots with peak concentrations may be severely polluted. The correlation analysis indicates that either Cu or Cd content is found to be significantly correlated with Zn and Pb content while there is no significant correlation between Cu and Cd. The pattern can be reasonably explained by the vehicular heavy metal emission mechanisms, which proves the heavy metals' homology of the traffic pollution source. Furthermore, the independent factors show complex interaction effects on heavy metal concentrations in the mountainous roadside soil, which indicate quite a different distribution pattern from previous studies focusing on urban roadside environments. It is found that the Pb concentration in the downgrade roadside soil is significantly lower than that in the upgrade soil while the Zn concentration in the

  8. Time Series Analysis of Heavy Metal Concentrations along the Watershed Gradient in Cameron Highlands: Geospatial Approaches

    NASA Astrophysics Data System (ADS)

    Haron, S. H.; Ismail, B. S.; Mispan, M. R.; Abd Rahman, N. F.; Khalid, K.; Rasid, M. Z. Abdul; Sidek, L. M.

    2016-03-01

    Heavy metal, particularly cadmium, lead, and arsenic, constitute a significant potential threat to human health. Some metals are extremely toxic to humans and the toxic heavy metals of greatest concern include cadmium, lead, and arsenic. The objective of the study conducted was to determine the accumulation and distribution status of heavy metal cadmium (Cd) in the sediment of Bertam River from September 2014 to February 2015 in the agricultural areas of Cameron Highlands, Malaysia. The sediment samples were collected randomly in three replicates from ten sampling points in the agricultural areas of Cameron Highlands. The heavy metals in the sediment were extracted using the wet acid method and the sample concentrations are then tested for metal concentrations by the spectrography method using Inductively Coupled Plasma (ICP) spectrography. Inverse distance weighting (IDW) was used to create a map of metal concentrations for a point on the polygon dataset spatial interpolation. There is an increasing trend of Cd from the upstream to downstream stations along Bertam River during the rainy season. The activity range of Cd is 0.07 to 2.83 µg/g during the rainy season, whereas, during the dry season, Cd activity ranged from 0.26-0.83µg/g.

  9. Influence of Traffic Activity on Heavy Metal Concentrations of Roadside Farmland Soil in Mountainous Areas

    PubMed Central

    Zhang, Fan; Yan, Xuedong; Zeng, Chen; Zhang, Man; Shrestha, Suraj; Devkota, Lochan Prasad; Yao, Tandong

    2012-01-01

    Emission of heavy metals from traffic activities is an important pollution source to roadside farmland ecosystems. However, little previous research has been conducted to investigate heavy metal concentrations of roadside farmland soil in mountainous areas. Owing to more complex roadside environments and more intense driving conditions on mountainous highways, heavy metal accumulation and distribution patterns in farmland soil due to traffic activity could be different from those on plain highways. In this study, design factors including altitude, roadside distance, terrain, and tree protection were considered to analyze their influences on Cu, Zn, Cd, and Pb concentrations in farmland soils along a mountain highway around Kathmandu, Nepal. On average, the concentrations of Cu, Zn, Cd, and Pb at the sampling sites are lower than the tolerable levels. Correspondingly, pollution index analysis does not show serious roadside pollution owing to traffic emissions either. However, some maximum Zn, Cd, and Pb concentrations are close to or higher than the tolerable level, indicating that although average accumulations of heavy metals pose no hazard in the region, some spots with peak concentrations may be severely polluted. The correlation analysis indicates that either Cu or Cd content is found to be significantly correlated with Zn and Pb content while there is no significant correlation between Cu and Cd. The pattern can be reasonably explained by the vehicular heavy metal emission mechanisms, which proves the heavy metals’ homology of the traffic pollution source. Furthermore, the independent factors show complex interaction effects on heavy metal concentrations in the mountainous roadside soil, which indicate quite a different distribution pattern from previous studies focusing on urban roadside environments. It is found that the Pb concentration in the downgrade roadside soil is significantly lower than that in the upgrade soil while the Zn concentration in the

  10. Heavy metals' concentration in sediment, shrimp and two fish species from the northwest Persian Gulf.

    PubMed

    Monikh, Fazel Abdolahpur; Maryamabadi, Ammar; Savari, Ahmad; Ghanemi, Kamal

    2015-06-01

    The concentrations of heavy metals (cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn)) were measured in hepatopancreas and muscle of a commercial shrimp (Metapenaeus affinis), in the muscle, liver and gills of two fish species (Thryssa vitrirostris and Johnius belangerii) and in the sediment samples taken from the mouth of the Arvand river, Meleh estuary and Musa estuary in the northeast Persian Gulf. Concentration of heavy metals varied depending on different tissues, species and sampling sites. Liver of fish and hepatopancreas of shrimp exhibited higher metals' concentration than the other tissues. Generally, in the mouth of the Arvand river, the highest concentration of metals was found in benthic species; while in the mouth of Musa estuary, the highest level of the metals was found in pelagic fish species. Bioaccumulation factors were observed to follow the order: J. belangerii-liver-Cd > T. vitrirostris-liver-Pb > M. affinis-hepatopancreas-Zn >M. affinis-hepatopancreas-Cu >M. affinis- hepatopancreas-Ni. The analysed heavy metals were found in sediment samples at mean concentration in the sediment quality guideline proposed by National Oceanic and Atmospheric Administration (NOAA) and Regional Organization for the Protection of The Marine Environment (ROPME), except for Ni concentration in some cases.

  11. [The concentration of heavy metals from a micromycete biomass using zeolites].

    PubMed

    Oliferchuk, V P; Lebedinets, L O; Sukhomlin, M N

    1996-01-01

    A method is suggested to be used for removing ions of heavy metals from the micromycete biomass immobilized on a porous carrier after exposition of this biomass in sewage water of a settler of a precise machine-building enterprise. A complex of micromyctes has embraced species belonging to Ulocladium, Arthrinium and Humicola genera. Optimal concentration of soda ash for efficient removal of ions of metals adsorbed on the micromycete biomass is elaborated. Later the H(+)- form of zeolites is used to concentration of metals from the soda solution. This permits putting the metals back to the industry and micromycete mass to decontamination tanks.

  12. Tissue heavy metal concentrations of stranded California sea lions (Zalophus californianus) in Southern California.

    PubMed

    Harper, Erin R; St Leger, Judy A; Westberg, Jody A; Mazzaro, Lisa; Schmitt, Todd; Reidarson, Tom H; Tucker, Melinda; Cross, Dee H; Puschner, Birgit

    2007-06-01

    Concentrations of nine heavy metals (As, Cd, Cu, Fe, Hg, Pb, Mn, Mo and Zn) were determined in the hepatic and renal tissues of 80 stranded California sea lions (Zalophus californianus). Significant age-dependant increases were observed in liver and kidney concentrations of cadmium and mercury, and renal zinc concentrations. Hepatic iron concentrations were significantly higher in females than males. Animals with suspected domoic acid associated pathological findings had significantly higher concentrations of liver and kidney cadmium; and significantly higher liver mercury concentrations when compared to animals classified with infectious disease or traumatic mortality. Significantly higher hepatic burdens of molybdenum and zinc were found in animals that died from infectious diseases. This is the largest study of tissue heavy metal concentrations in California sea lions to date. These data demonstrate how passive monitoring of stranded animals can provide insight into environmental impacts on marine mammals.

  13. Determination of heavy metal concentrations in street dusts in Istanbul E-5 highway.

    PubMed

    Sezgin, Naim; Ozcan, H Kurtulus; Demir, Goksel; Nemlioglu, Semih; Bayat, Cuma

    2004-01-01

    Components and quantity of street dust are environmental pollution indicators especially in big cities. Street dust is generally composed of car exhaust gas originated particles and wind-transported particles. Heavy metals, which are found in street dust, such as Pb, Cu, Mn, Zn, Cd and Ni are significant for environmental pollution. According to the kind of vehicle in traffic, quantity and type of heavy metals vary in street dust. The use of leaded gasoline gives a boost to the importance of lead level especially in street dust even at the start of 21st century. These metals possess bioaccumulation property, and the possibility of the amount of these metals reaching a critical value and threatening human health increases the importance of this issue. In this study, street dusts have been collected from E-5 Highway from Topkapi to Avcilar regions that spans about 18 km in Istanbul, Turkey, and Pb, Cu, Mn, Zn, Cd and Ni concentrations have been detected in street dust. Twenty-two street dust samples were taken from a total of 22 different points at previously decided 14 main areas. Analyses were conducted using Leeds Public Analyst method. According to the results of this study, Pb, Cu and Zn concentrations in E-5 Highway between Topkapi and Avcilar region in Istanbul were higher than maximum concentration levels of these heavy metals in normal soil. This situation indicates that there is heavy metal pollution in the inspected area in E-5 Highway in Istanbul.

  14. Spatial Evaluation of Heavy Metals Concentrations in the Surface Sediment of Taihu Lake.

    PubMed

    Niu, Yong; Jiao, Wei; Yu, Hui; Niu, Yuan; Pang, Yong; Xu, Xiangyang; Guo, Xiaochun

    2015-11-27

    With regard to the size of China's freshwater lakes, Taihu Lake ranks third and it plays an important role in the supply of drinking water, flood prevention, farming and navigation, as well as in the travelling industry. The problem of environmental pollution has attracted widespread attention in recent years. In order to understand the levels, distribution and sources of heavy metals in sediments of Taihu Lake, random selection was carried out to obtain 59 samples of surface sediment from the entire lake and study the concentrations of Pb, Cd, Cu, Zn, Cr and Ni. Toxic units were also calculated to normalize the toxicities caused by various heavy metals. As a result, Cd and Cu in sediment were considered lower than the effect range low (ERL) at all regions where samples were gathered, while Pb and Ni were categorized into ERL-effect range median (ERM) at over 22% of the regions where samples were obtained. Nevertheless, all average concentrations of the samples were below the level of potential effect. According to the findings of this research, significant spatial heterogeneity existed in the above heavy metals. In conclusion, the distribution areas of heavy metals with higher concentrations were mainly the north bays, namely Zhushan Bay, Meiliang Bay as well as Gonghu Bay. The distribution areas of Cu, Zn, Cr and Ni with higher concentration also included the lake's central region, whereas the uniform distribution areas of those with lower concentrations were the lake's southeast region. In addition, it was most probable that the spatial distribution of heavy metals was determined by river inputs, whereas atmospheric precipitation caused by urban and traffic contamination also exerted considerable effects on the higher concentrations of Pb and Cd. Through evaluating the total amount of toxic units (ΣTU), it was found that higher toxicity existed primarily in the north bays and central region of the lake. If the heavy metals were sorted by the reduction of mean

  15. Magnetic Measurements and Heavy Metal Concentrations at Formosa Mine Superfund Site, Douglas County, OR

    NASA Astrophysics Data System (ADS)

    Upton, T. L.

    2015-12-01

    Advances in the field of environmental magnetism have led to exciting new applications for this field. Magnetic minerals are ubiquitous in the environment and tend to have an affinity for heavy metals. It has been demonstrated that magnetic properties are often significantly related to concentrations of heavy metals and/or pollution loading index (PLI). As a result, magnetic techniques have been used as proxy for determining hot spots of several types of pollution produced from a diversity of anthropogenic sources. Magnetic measurements are non-destructive and relatively inexpensive compared to geochemical analyses. The utility of environmental magnetic methods varies widely depending on biological, chemical and physical processes that create and transform soils and sediments. Applications in the direction of mapping heavy metals have been studied and shown to be quite useful in countries such as China and India but to date, little research has been done in the US. As such, there is need to expand the scope of research to a wider range of soil types and land uses, especially within the US. This study investigates the application of environmental magnetic techniques to mapping of heavy metal concentrations and PLI at the Formosa Mine Superfund Site, an abandoned mine about 25 miles southwest of Roseburg, OR. Using hotspot analysis, correlation and cluster analyses, interactions between metals and magnetic parameters are examined in relation to environmental factors such as proximity to seeps and adits. Preliminary results suggest significant correlation of magnetic susceptibility with certain heavy metals, signifying that magnetic methods may be useful in mapping heavy metal hotspots at this site.

  16. Heavy Metal Concentration of Roadside Farmland Soil in Mountainous Areas around Kathmandu, Nepal

    NASA Astrophysics Data System (ADS)

    Yan, X.; Zhang, F.; Zhang, M.; Zeng, C.; Devkota, L. P.

    2011-12-01

    The heavy metals generated from road traffic activities are an important contaminant resource that can be disseminated to the roadside soil and pose hazard to local environment. Especially, if the roadways pass across farmland areas, the heavy metals may transport through the roadside soil into crops so as to have a potential affect on the food safety and human health. In this study, a factorial analysis is conducted to investigate heavy metals (Cu, Zn, Cd, and Pb) concentration of roadside farmland soil along the Trishuli Highway across mountainous areas around Kathmandu, Nepal. Four factors were considered for the experimental design, including altitude, roadside distance, terrain, and tree protection. Totally, 342 samples of 0-5 cm topsoil along the highway were collected to analyze the factors' effect on roadside heavy metal distribution and concentration. The sampling sites were located along the highway at six levels of altitude, which are 800 m, 1000 m, 1200 m, 1400 m, 1600 m, and 1800 m. At each level of altitude, the sampling distances to the highway edge are 0 m, 10 m, 30 m, 50 m, and 100 m. The samples are classified into the topsoil in the up-grade terrain or down-grade terrain. Considering the potential tree protection effect on the roadside soil, the samples are also categorized into the topsoil with tree protection or topsoil without tree protection. The experimental results indicate that with the rise of altitude, the concentration of heavy metals in roadside topsoil expresses a clear increasing trend, which can be explained that the fuel-consumption efficiency of vehicles in higher altitude is lower than that in lower altitude due to the less Oxygen concentration. It was also found that the concentration of heavy metals in down-grade topsoil is lower than that in up-grade topsoil. Generally, the heavy metal content in roadside soil has a belt-shaped distribution in terms of distance to road edge, decreasing exponentially with increment of the

  17. Heavy metal concentration in mangrove surface sediments from the north-west coast of South America.

    PubMed

    Fernández-Cadena, J C; Andrade, S; Silva-Coello, C L; De la Iglesia, R

    2014-05-15

    Mangrove ecosystems are coastal estuarine systems confined to the tropical and subtropical regions. The Estero Salado mangrove located in Guayaquil, Ecuador, has suffered constant disturbances during the past 20 years, due to industrial wastewater release. However, there are no published data for heavy metals present in its sediments and the relationship with anthropogenic disturbance. In the present study, metal concentrations were evaluated in surface sediment samples of the mangrove, showing that B, Cd, Cu, Pb, Se, V, and Zn levels exceeded those declared in international environmental quality standards. Moreover, several metals (Pb, Sn, Cd, Ag, Mo, Zn and Ni) could be linked to the industrial wastewater present in the studied area. In addition, heavy metal levels detected in this mangrove are higher than previous reports on mangrove sediments worldwide, indicating that this mangrove ecosystem is one of the most disrupted on earth.

  18. Small mammal-heavy metal concentrations from mined and control sites

    USGS Publications Warehouse

    Smith, G.J.; Rongstad, O.J.

    1982-01-01

    Total body concentrations of zinc, copper, cadmium, lead, nickel, mercury and arsenic were determined for Peromyscus maniculatus and Microtus pennsylvanicus from an active zinc-copper mine near Timmins, Ontario, Canada, and a proposed zinc-copper mine near Crandon, Wisconsin, USA. Metal concentrations were evaluated with respect to area, species, sex and age groups. Metal concentrations in Peromyscus from the proposed mine site were not different from those collected in a third area where no mine or deposit exists. This is probably due to the 30 m of glacial material over the proposed mine site deposit. A statistical interaction between area, species, sex and age was observed for zinc and copper concentrations in small mammals we examined. Peromyscus from the mine site had consistently higher metal concentrations than Peromyscus from the control site. Greater total body cadmium and lead concentrations in adult?compared with juvenile?Peromyscus collected at the mine site suggests age-dependent accumulation of these toxic metals. Microtus did not exhibit this age-related response, and responded to other environmental metals more erratically and to a lesser degree. Differences in the response of these two species to environmental metal exposure may be due to differences in food habits. Nickel, mercury and arsenic concentrations in small mammals from the mine site were not different from controls. Heavy metal concentrations are also presented for Sorex cinereus, Blarina brevicauda and Zapus hudsonicus without respect to age and sex cohorts. Peromyscus may be a potentially important species for the monitoring of heavy metal pollution.

  19. [Concentrations and safety evaluation of heavy metals in aquatic products of Yancheng, Jiangsu Province].

    PubMed

    Liu, Yang; Fu, Qiang; Gao, Jun; Xu, Wang-Gu; Yin, Bo; Cao, Ya-Qiao; Qin, Wei-Hua

    2013-10-01

    Current status and intake risk of heavy metal pollution in aquatic products were studied in Yancheng, Jiangsu Province. Twenty-two kinds of aquatic products were sampled in May 2012, and the concentrations of Cd, Cu, Zn, Pb and Cr in muscles were measured using atomic absorption spectroscopy. Single factor pollution index (Pg) and metal pollution index (MPI) were used to evaluate the degree of pollution, and provisional tolerable weekly intake (PTWI) and carcinogenic risks were used to assess the edible safety and health risk, respectively. We found all the aquatic products were contaminated, and the pollutions by Cd, Pb and Cr were more serious, with the exceeding rates of 31.8% , 31.8% and 40.9% , respectively. Pi indices indicated the contents of Cd, Pb and Cr exceeded the allowable criteria of " Light Pollution", while Cd and Pb in freshwater fish, Pb and Cr in shellfish, and Cr in cephalopoda reached the criteria of " Heavy Pollution". The MPI results showed that heavy metal pollution in shellfish was the most severe, followed by crustacean, freshwater fish, and cephalopoda, while it was slight in marine fish. At present, the edible safety of heavy metals in aquatic products was acceptable in Yancheng, but the Cr intake of shellfish and cephalopoda was approaching PTWI and that of a minority of marine fishes even exceeded the PTWI value. The model estimation for health risk indicated that the health risk value of heavy metal ingestion was still below the maximal acceptable level (5.0 x 10(-5) a-1), recommended by International Commission on Radiation Protection (ICRP) , but the values of Cr for shellfish and cephalopoda were approaching the criterion. In summary, heavy metal pollution in aquatic products in Yancheng is rather severe, especially for Cr pollution, and more attention should be paid to the pollution status, edible safety and health risk.

  20. Determination of Heavy Metals Concentration in Traditional Herbs Commonly Consumed in the United Arab Emirates

    PubMed Central

    Dghaim, Rania; Al Khatib, Safa; Rasool, Husna; Ali Khan, Munawwar

    2015-01-01

    Herbs are extensively consumed in the United Arab Emirates for their flavoring and medicinal properties. This study aimed at determining the concentration of heavy metals in selected traditional herbs consumed in the United Arab Emirates (UAE). A total of 81 samples of seven herbs, parsley (Petroselinum crispum), basil (Ocimum basilicum), sage (Salvia officinalis), oregano (Origanum vulgare), mint (Mentha spicata), thyme (Thymus vulgaris), and chamomile (Matricaria chamomilla), were purchased from the local market in Dubai and analyzed for their cadmium, lead, copper, iron, and zinc contents. Microwave-assisted digestion was applied for the dissolution of the samples and heavy metals concentration was determined using Atomic Absorption Spectrometry (AAS). Metals were found to be present in varied concentrations in the herb samples. The concentration ranges were found as follows: less than 0.1–1.11 mg·kg−1 for cadmium, less than 1.0–23.52 mg·kg−1 for lead, 1.44–156.24 mg·kg−1 for copper, 12.65–146.67 mg·kg−1 for zinc, and 81.25–1101.22 mg·kg−1 for iron. The findings of the study suggest that most of the analyzed herbs contained unsafe levels of heavy metals that exceeded the World Health Organization (WHO) permissible limits (PL). PMID:26000023

  1. Concentrations and speciation of heavy metals in sludge from nine textile dyeing plants.

    PubMed

    Liang, Xin; Ning, Xun-an; Chen, Guoxin; Lin, Meiqing; Liu, Jingyong; Wang, Yujie

    2013-12-01

    The safe disposal of sludge from textile dyeing industry requires research on bioavailability and concentration of heavy metals. In this study, concentrations and chemical speciation of heavy metals (Cd, Cr, Cu, Ni, Zn, Pb) in sludge from nine different textile dyeing plants were examined. Some physiochemical features of sludge from textile dyeing industry were determined, and a sequential extraction procedure recommended by the Community Bureau of Reference (BCR) was used to study the metal speciation. Cluster analysis (CA) and principal component analysis (PCA) were applied to provide additional information regarding differences in sludge composition. The results showed that Zn and Cu contents were the highest, followed by Ni, Cr, Cd and Pb. The concentration of Cd and Ni in some sludge samples exceeded the standard suggested for acidic soils in China (GB18918-2002). In sludge from textile dyeing plants, Pb, Cd and Cr were principally distributed in the oxidizable and residual fraction, Cu in the oxidizable fraction, Ni in all four fractions and Zn in the acid soluble/exchangeable and reducible fractions. The pH and heat-drying method affected the fractionation of heavy metals in sludge.

  2. Heavy metal concentrations in the tissue of Sparus sarba Forskal, 1775 from the United Arab Emirates

    SciTech Connect

    Al-Ghais, S.M.

    1995-10-01

    Pollution of the marine environment by inorganic and organic chemicals has been recognised as one of the major factors posing serious threat to the survival of marine organisms including fish. Heavy metal contamination of the marine environment has been reported to cause toxicity to aquatic organisms. Natural processes such as volcanic eruptions, erosion and wind, industrial activities and mining are the major sources of metal contamination. Exposure to heavy metals through air, water and/or the food chain is known to induce a wide variety of toxic effects in humans and animals. Metals such as zinc manganese and copper are toxic only when present in high enough amounts, but at low levels are considered essential as micronutients. Extensive studies have been carried out in Europe and America to determine toxicity and bio-accumulation of these metals in fish and other marine flora and fauna. However, there is a gap in our knowledge of the kind and extent of marine pollution by heavy metals around the coast of the United Arab Emirates (UAE) and the resultant contamination of the aquatic habitat. This study was designed to investigate the concentrations of cadmium, cobalt, copper, manganese, nickel, lead and zinc in the muscle, liver and heart, and mercury in the muscle tissue of Sparus Sarba, one of the more nutritionally popular fish of the UAE region. 11 refs., 3 figs., 2 tabs.

  3. Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks.

    PubMed

    Karlsson, Kristin; Viklander, Maria; Scholes, Lian; Revitt, Mike

    2010-06-15

    Sedimentation is a widely used technique in structural best management practices to remove pollutants from stormwater. However, concerns have been expressed about the environmental impacts that may be exerted by the trapped pollutants. This study has concentrated on stormwater ponds and sedimentation tanks and reports on the accumulated metal concentrations (Cd, Cr, Ni, Pb, and Zn) and the associated toxicity to the bacteria Vibrio fischeri. The metal concentrations are compared with guidelines and the toxicity results are assessed in relation to samples for which metal concentrations either exceed or conform to these values. The water phase metal concentrations were highest in the ponds whereas the sedimentation tanks exhibited a distinct decrease towards the outlet. However, none of the water samples demonstrated toxicity even though the concentrations of Cu, Pb, and Zn exceeded the threshold values for the compared guidelines. The facilities with higher traffic intensities had elevated sediment concentrations of Cr, Cu, Ni, and Zn which increased towards the outlet for the sedimentation tanks in agreement with the highest percentage of fine particles. The sediments in both treatment facilities exhibited the expected toxic responses in line with their affinity for heavy metals but the role of organic carbon content is highlighted.

  4. Temporal distribution of heavy metal concentrations in oysters Crassostrea rhizophorae from the central Venezuelan coast.

    PubMed

    Alfonso, Juan A; Handt, Helga; Mora, Abrahan; Vásquez, Yaneth; Azocar, José; Marcano, Eunice

    2013-08-15

    The oyster Crassostrea rhizophorae is a bivalve abundant in Venezuelan estuaries and consumed by local populations. No known values have been reported on trace metals in oysters from the central Venezuelan coast. We report the concentrations of Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, V and Zn in the soft parts of C. rhizophorae, which were collected bimonthly between March 2008 and March 2009, at two sampling areas from the Central Venezuelan Coast: Buche estuary and Mochima estuary. Our results show that for each metal there is a similar temporal variation pattern. The concentrations of the heavy metals reported in this work are useful as reliable baselines and can be used for comparison in future environment studies. Concentrations in C. rhizophorae from the Buche estuary can be interpreted to be high on a global scale for Cd, Cu, Ni and Mn, indicating atypically raised bioavailabilities.

  5. Influence of Road Proximity on the Concentrations of Heavy Metals in Korean Urban Agricultural Soils and Crops.

    PubMed

    Kim, Hyuck Soo; Kim, Kwon-Rae; Kim, Won-Il; Owens, Gary; Kim, Kye-Hoon

    2017-02-01

    The urban agricultural (UA) environment near active roadways can be degraded by traffic-related particles (i.e., exhaust gases and road dust), which may contain heavy metals. The current study investigated changes in heavy-metal [cadmium (Cd), copper (Cu), chromium (Cr) nickel (Ni), lead (Pb) and zinc (Zn)] concentrations in soils located near highly trafficked roads in Korea and the subsequent uptake of these metals by Chinese cabbage. Heavy-metal plant concentrations were determined in both washed and unwashed plant leaves to determine whether foliar deposition played any role in plant metal uptake. Soil concentrations of Cd, Cu, Pb, and Zn were all lower than the Korean standard soil limits and showed no significant influence from road traffic. In contrast, both Ni and Cr concentrations in soils collected within 10 m of the road were 4 and 5 times greater, respectively, than those in soils collected 70 m from the road. Heavy-metal concentrations in unwashed Chinese cabbage leaf collected at 5 m from the road were consistently greater than those of washed leaf samples, thus indicating the deposition of traffic-related particles on the plant surface. With the exception of Cu, all heavy-metal concentration in washed plant samples collected at 5 m also showed greater accumulation compared with samples collected further away. This was mainly attributed to increased total soil heavy-metal concentrations and increased metal phytoavailability induced by decreases in soil pH near the road. However, overall heavy-metal soil concentrations were well lower than the allowable concentrations, and the levels observed in plants collected in this study were considered not to currently pose a significant risk to human health. However, some traffic-related heavy metals, in particular Cr and Ni, were being accumulated in the roadside UA environment, which may warrant some caution regarding the environment and/or health issues in the future.

  6. Heavy metal concentrations of duck tissues in relation to ingestion of spent shot

    SciTech Connect

    Hall, S.L.; Fisher, F.M. Jr.

    1985-08-01

    Lead poisoning of waterfowl from dissolution of ingested lead shot has been recognized as a major problem in wildlife management for almost a century. However, lead shot also contains considerable amounts of other metals. The aims of this study were to determine if any of the additional components of lead or steel shot were accumulated upon shot ingestion as indicated by their concentrations in bones and features, and to determine the feasibility of heavy metal analysis of feathers to assess exposure to spent shot.

  7. Relationship between the concentrations of heavy metals and bioelements in aging men with metabolic syndrome.

    PubMed

    Rotter, Iwona; Kosik-Bogacka, Danuta; Dołęgowska, Barbara; Safranow, Krzysztof; Lubkowska, Anna; Laszczyńska, Maria

    2015-04-10

    Heavy metals may exacerbate metabolic syndrome (MS) but abnormal serum concentrations of bioelements may also co-exist with MS. The primary aim of the study was to assess the relationship of blood heavy metal and bioelement concentrations and MS, in men aged 50-75 years. Heavy metals-lead (Pb), cadmium (Cd), mercury (Hg), arsenic (As), tungsten (W), Macroelements-magnesium (Mg) and calcium (Ca), and microelements-iron (Fe), zinc (Zn) copper (Cu), chromium (Cr), molybdenum (Mo), selenium (Se) and manganese (Mn), body mass index (BMI), waist to hip ratio (WHR), abdominal circumference (AC) and blood pressure (BP), total cholesterol (TCh), high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglyceride (TG), fasting plasma glucose (FPG), insulin, and Homeostasis Model Assessment-Insulin resistance (HOMA-IR). The men with MS showed statistically significant higher Zn and lower Mg concentrations. Those with diabetes had higher Ca concentration and lower Mg concentration. Cr and Mn concentrations were significantly higher in obese men. The participants with hypertension had lower Mg concentration. We found statistically significant positive correlations (W-TCh, W-LDL, Mg-TCh, Mg-LDL, Ca-TCh, Ca-LDL, Ca-insulin, Ca-HOMAR-IR, Zn-TG, Zn-insulin, Zn-HOMA-IR, Cu-BP systolic, Mn-BMI, Mn-AC, Mn-WHR, Mn-insulin, Mn-HOMA-IR, Se-TCh, Se-LDL, Se-TG, Se-insulin, Se-HOMA-IR, Cr-TCh, Cr-HDL, Cr-LDL, Cr-TG) and negative correlations (Cd-insulin, Hg-WHR, W-insulin, W-HOMA-IR, Mg-BMI, Mg-AC, Mg-WHR, Mg-BP systolic, Mo-insulin, Mn-HDL). Tungsten may contribute to lipid disorders. Magnesium appears to play the protective role in the occurrence of metabolic disorders. Microelements Mn, Cr and Se may intensify MS.

  8. Study of heavy metal concentrations in wild edible mushrooms in Yunnan Province, China.

    PubMed

    Liu, Borui; Huang, Qing; Cai, Huajie; Guo, Xiang; Wang, Tingting; Gui, Mingying

    2015-12-01

    Contamination with heavy metals in several species of edible mushrooms from the Yunnan Province in China was determined. Samples were collected from 16 locations in the Yunnan Province, and the contamination levels of Mn, Fe, Cu, Zn, As, Cd, and Pb were analyzed. The results demonstrated that the concentrations of essential elements (Mn, Fe, Cu, and Zn) in the mushrooms were at typical levels. The concentrations of potentially toxic metals (As, Pb and Cd) were higher than the national standard values of China (1.0 mg/kg for As, 0.2 mg/kg for Cd, and 2.0 mg/kg for Pb) in most cases. Bio-concentration factors suggested that it was easier for As and Cd to be accumulated in mushrooms than Pb, and a Health Risk Index assessment also suggested that As and Cd are greater risks to health than Pb. In conclusion, heavy metal pollution in wild edible mushrooms is a serious problem in the Yunnan Province. Among the toxic metals, As and Cd in the edible mushrooms in the area are the main sources of risk, as they may cause severe health problems. The local government needs to take measures in the form of concrete policies to protect the wild edible mushroom resources in the Yunnan Province.

  9. The use of heavy metal top soil concentrations for the validation of overbank floodplain sedimentation models

    NASA Astrophysics Data System (ADS)

    Büttner, Olaf; Rode, Michael; Schulz, Marcus

    2010-05-01

    In floodplains of lowland rivers, the transport, sedimentation, and remobilization of fine sediments is highly variable in space and time. Therefore, it is often difficult to validate sediment transport models due to the lack of appropriate data. The objective of this study is to show that heavy metal concentrations in the top soil (upper 15 cm) of a highly polluted floodplain are related to the deposition of fine sediments and thus can be used to assess the plausibility of a two-dimensional (2D) hydraulic and sediment transport model. In a floodplain, heavy metals are bonded to fine sediments, and the deposition of heavy metals originates from a long history of floods. Heavy metal concentrations can be used as a time-integrated indicator of sedimentation, if during a defined period of heavy metal contamination the total deposition of fine sediments is less than a defined topsoil sampling depth. We provided evidence for this hypothesis studying a 45km²-floodplain of River Mulde (Germany). For the assessment of heavy metal top soil concentrations, 126 samples were available. Hydraulics, sedimentation patterns, and concentrations of particle-bonded pollutants were calculated with a 2D computational fluid dynamics (CFD) model (TELEMAC 2D). The calibration of critical velocities of sedimentation and erosion of the model was based on sediment trap exposures during a flood event with a ten-year recurrence interval (Schulz et al. 2009). The calculated sedimentation of the calibrated model was subdivided into three classes: low sedimentation (<0.1 mm), medium sedimentation (0.1 mm < sedimentation < 1 mm), and high sedimentation (> 1mm). Heavy metal concentrations of the floodplain soil were classified according to these simulated spatially distributed sedimentation classes. The analysis of the measured and modelled values clearly showed that the mean values of the classified concentrations of arsenic (As), lead (Pb), cadmium (Cd), and zinc (Zn) were increasing with

  10. Heavy metals concentration in plants growing on mine tailings in Central Mexico.

    PubMed

    Franco-Hernández, M O; Vásquez-Murrieta, M S; Patiño-Siciliano, A; Dendooven, L

    2010-06-01

    Metal concentrations were measured in plants growing on heavily contaminated tailings from a mine active since about 1800 in San Luis Potosí (Mexico). Viguiera dentata (Cav.) Spreng., Parthenium bipinnatifidum (Ort.) Rollins, Flaveria angustifolia (Cav.) Pers., F. trinervia (Spreng.) C. Mohr. and Sporobolusindicus (L.) R. Br. were tolerant to high As, Cu, Pb and Zn concentrations. Of those, S.indicus excluded heavy metals from its shoots, while P. bipinnatifidum and F. angustifolia accumulated them. V. dentata and P. bipinnatifidum were accumulators of As, but not hyperaccumulators. It was found that V. dentata,P. bipinnatifidum, F. angustifolia, F. trinervia and S.indicus, could be used to vegetate soils contaminated with As, Cu, Pb and Zn. Ambrosiaartemisifolia could be used to remediate soils contaminated with Zn, S. amplexicaulis those with Cu and F. angustifolia and F. trinervia those with As, as they have a strong capacity to accumulate those metals.

  11. Heavy metal concentrations of groundwater in the east of Ergene Basin, Turkey.

    PubMed

    Arkoc, Orhan

    2014-10-01

    The aim of this research was to investigate the concentrations of the heavy metals (copper, iron, zinc, chromium, cadmium and lead) and determine their relationship between pH and EC in the east of Ergene Basin, Turkey. For this purpose 18 groundwater samples were collected in May 2013. Results show that mean concentrations of Cu, Fe, Zn, Cr, Cd and Pb were, 0.005, 0.012, 0.083, 0.016, 0.000 and 0.0006 mg L(-1) respectively, with the decreasing sequence of Zn > Cr > Fe > Cu > Pb > Cd. No significant correlations were found among metals. Only moderate positive correlation was determined between Pb and pH (r = 0.451; p < 0.05). All metal pollutants studied in the groundwater were below international and national guidelines except Cr.

  12. Concentration is not enough to evaluate accumulation of heavy metals and nutrients in plants.

    PubMed

    Vymazal, Jan

    2016-02-15

    Wetland plants produce high aboveground biomass and possess the ability to accumulate heavy metals and nutrients. This ability is used for phytoremediation purposes including removal of nutrients and heavy metals from polluted waters. The concentrations of heavy metals are usually much higher in the belowground then in aboveground biomass, especially in roots which are primary sites of uptake. This may lead to the conclusion that accumulation of heavy metals is higher in the belowground biomass. However, in case the aboveground is much higher than belowground biomass the accumulation could be higher in the aboveground biomass. Concentration of nitrogen and phosphorus is always higher in leaves than in stems. However, the stem biomass is often much higher in robust emergent species such as Phragmites australis and therefore, more nutrients can be stored in stems. The examples shown in this communication clearly reveal that to evaluate properly the accumulation of heavy metals and nutrients in particular plant compartment biomass amount must be taken into consideration. In the first study, concentrations of Cd, Cr and Hg in Phalaris arundinacea belowground/aboveground biomass were 150/80 μg/kg, 5420/228 μg/kg and 38/18 μg/kg. The high aboveground biomass (1196 g/m(2)) and low belowground biomass (244 g/(2)) resulted in much higher accumulation of Cd and Hg in aboveground biomass (96 μg/m(2) and 21.2 μg/m(2), respectively) than in belowground biomass (36 μg/m(2) and 9.3 μg/m(2), respectively). Only for chromium, belowground accumulation (1312 μg/m(2)) was higher than aboveground accumulation (272 μg/m(2)). In the second study, both nitrogen and phosphorus concentrations were higher (26.7 mg/g and 749 mg/kg, respectively) in leaves than in stems (8.2mg/g and 534 mg/kg, respectively) of P. australis. The higher biomass of stems (1835 g/m(2)) than leaves (967 g/m(2)) resulted in higher accumulation of nitrogen but lower accumulation of phosphorus in leaves as

  13. Assessment of marine pollution in Izmir Bay: nutrient, heavy metal and total hydrocarbon concentrations.

    PubMed

    Kucuksezgin, F; Kontas, A; Altay, O; Uluturhan, E; Darilmaz, E

    2006-01-01

    Izmir Bay (western Turkey) is one of the great natural bays of the Mediterranean. Izmir is an important industrial and commercial centre and a cultural focal point. The main industries in the region include food processing, oil, soap and paint production, chemical industries, paper and pulp factories, textile industries and metal processing. The mean concentrations showed ranges of 0.01-0.19 and 0.01-10 microM for phosphate, 0.10-1.8 and 0.12-27 microM for nitrate+nitrite, and 0.30-5.8 and 0.43-39 microM for silicate in the outer and middle-inner bays, respectively. The TNO(x)/PO(4) ratio is significantly lower than the Redfield's ratio and nitrogen is the limiting element in the middle-inner bays. Diatoms and dinoflagellates were observed all year around in the bay and are normally nitrogen limited. Metal concentrations ranged between Hg: 0.05-1.3, Cd: 0.005-0.82, Pb: 14-113 and Cr: 29-316 microg g(-1) in the sediments. The results showed significant enrichments during sampling periods from Inner Bay. Outer and middle bays show low levels of heavy metal enrichments except estuary of Gediz River. The concentrations of Hg, Cd and Pb in the outer bay were generally similar to the background levels from the Mediterranean. The levels gradually decreased over the sampling period. Total hydrocarbons concentrations range from 427 to 7800 ng g(-1) of sediments. The highest total hydrocarbon levels were found in the inner bay due to the anthropogenic activities, mainly combustion processes of traffic and industrial activities. The concentrations of heavy metals found in fish varied for Hg: 4.5-520, Cd: 0.10-10 and Pb: 0.10-491 microg kg(-1) in Izmir Bay. There was no significant seasonal variation in metal concentrations. An increase in Hg concentration with increasing length was noted for Mullus barbatus. A person can consume more than 2, 133 and 20 meals per week of fish in human diet would represent the tolerable weekly intake of mercury, cadmium and lead, respectively

  14. Concentration and potential health risk of heavy metals in market vegetables in Chongqing, China.

    PubMed

    Yang, Qing-Wei; Xu, Yuan; Liu, Shou-Jiang; He, Jin-Feng; Long, Fang-Yan

    2011-09-01

    Concentration and daily intake (DI) of heavy metals (Pb, Zn, Mn, Cu, Cd and Cr) in market vegetables in Chongqing of China are investigated and their potential health risk for local consumers is simultaneously evaluated by calculating the target hazard quotient (THQ). The results showed that the measured Pb and Cd concentrations exceeded the safety limits given by FAO/WHO and Chinese regulations, indicating serious contamination of market vegetables by these metals. As respective DI values for Pb, Mn and Cd were also above the international guideline bases, health risk to the consumers is obvious. The individual THQ for Pb and Cd in pakchoi and Cd in mustard, and the combined THQ for all metals in each vegetable species excluding cos lettuce were above the threshold 1.0, implying the obviously adverse effect on health. Therefore, attention should be paid particularly to the potential hazardous exposure to vegetable heavy metals, especially for Pb and Cd, over a lifetime for people in Chongqing.

  15. Relationship between the Concentrations of Heavy Metals and Bioelements in Aging Men with Metabolic Syndrome

    PubMed Central

    Rotter, Iwona; Kosik-Bogacka, Danuta; Dołęgowska, Barbara; Safranow, Krzysztof; Lubkowska, Anna; Laszczyńska, Maria

    2015-01-01

    Heavy metals may exacerbate metabolic syndrome (MS) but abnormal serum concentrations of bioelements may also co-exist with MS. The primary aim of the study was to assess the relationship of blood heavy metal and bioelement concentrations and MS, in men aged 50–75 years. Heavy metals—lead (Pb), cadmium (Cd), mercury (Hg), arsenic (As), tungsten (W), Macroelements—magnesium (Mg) and calcium (Ca), and microelements—iron (Fe), zinc (Zn) copper (Cu), chromium (Cr), molybdenum (Mo), selenium (Se) and manganese (Mn), body mass index (BMI), waist to hip ratio (WHR), abdominal circumference (AC) and blood pressure (BP), total cholesterol (TCh), high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglyceride (TG), fasting plasma glucose (FPG), insulin, and Homeostasis Model Assessment—Insulin resistance (HOMA-IR). The men with MS showed statistically significant higher Zn and lower Mg concentrations. Those with diabetes had higher Ca concentration and lower Mg concentration. Cr and Mn concentrations were significantly higher in obese men. The participants with hypertension had lower Mg concentration. We found statistically significant positive correlations (W-TCh, W-LDL, Mg-TCh, Mg-LDL, Ca-TCh, Ca-LDL, Ca-insulin, Ca-HOMAR-IR, Zn-TG, Zn-insulin, Zn-HOMA-IR, Cu-BP systolic, Mn-BMI, Mn-AC, Mn-WHR, Mn-insulin, Mn-HOMA-IR, Se-TCh, Se-LDL, Se-TG, Se-insulin, Se-HOMA-IR, Cr-TCh, Cr-HDL, Cr-LDL, Cr-TG) and negative correlations (Cd-insulin, Hg-WHR, W-insulin, W-HOMA-IR, Mg-BMI, Mg-AC, Mg-WHR, Mg-BP systolic, Mo-insulin, Mn-HDL). Tungsten may contribute to lipid disorders. Magnesium appears to play the protective role in the occurrence of metabolic disorders. Microelements Mn, Cr and Se may intensify MS. PMID:25867198

  16. Background concentrations and reference values for heavy metals in soils of Cuba.

    PubMed

    Alfaro, Mirelys Rodríguez; Montero, Alfredo; Ugarte, Olegario Muñiz; do Nascimento, Clístenes Williams Araújo; de Aguiar Accioly, Adriana Maria; Biondi, Caroline Miranda; da Silva, Ygor Jacques Agra Bezerra

    2015-01-01

    The potential threat of heavy metals to human health has led to many studies on permissible levels of these elements in soils. The objective of this study was to establish quality reference values (QRVs) for Cd, Pb, Zn, Cu, Ni, Cr, Fe, Mn, As, Hg, V, Ba, Sb, Ag, Co, and Mo in soils of Cuba. Geochemical associations between trace elements and Fe were also studied, aiming to provide an index for establishing background concentrations of metals in soils. Surface samples of 33 soil profiles from areas of native forest or minimal anthropic influence were collected. Samples were digested (USEPA method 3051A), and the metals were determined by ICP-OES. The natural concentrations of metals in soils of Cuba followed the order Fe > Mn > Ni > Cr > Ba > V > Zn > Cu > Pb > Co > As > Sb > Ag > Cd > Mo > Hg. The QRVs found for Cuban soils were as follows (mg kg(-1)): Ag (1), Ba (111), Cd (0.6), Co (25), Cr (153), Cu (83), Fe (54,055), Mn (1947), Ni (170), Pb (50), Sb (6), V (137), Zn (86), Mo (0.1), As (19), and Hg (0.1). The average natural levels of heavy metals are above the global average, especially for Ni and Cr. The chemical fractionation of soil samples presenting anomalous concentrations of metals showed that Cu, Ni, Cr, Sb, and As have low bioavailability. This suggests that the risk of contamination of agricultural products via plant uptake is low. However, the final decision on the establishment of soil QRVs in Cuba depends on political, economic, and social issues and in-depth risk analyses considering all routes of exposure to these elements.

  17. Assessment of PM10 and heavy metals concentration in a Ceramic Cluster (NE Spain)

    NASA Astrophysics Data System (ADS)

    Belen Vicente, Ana; Pardo, Francisco; Sanfeliu, Teofilo; Bech, Joan

    2013-04-01

    Environmental pollution control is one of the most important goals in pollution risk assessment today. The aim of this study is conducting a retrospective view of the evolution of particulate matter (PM10) and heavy metals (As, Cd, Ni and Pb) at different localities in the Spanish cluster ceramic in the period between January 2007 and December 2011. The study area is in the province of Castellón. This province is a strategical area in the framework of European Union Pollution control. Approximately 80% of European ceramic tiles and ceramic frits manufacturers are concentrated in two areas, forming the so-called "Ceramics Clusters"; one is in Modena (Italy) and the other in Castellón (Spain). In this kind of areas, there are a lot of pollutants from this industry that represent an important contribution to soil contamination so it is necessary to control the air quality in them. These atmospheric particles are deposited in the ground through both dry and wet deposition. Soil is a major sink for heavy metals released into the environment. The level of pollution of soils by heavy metals depends on the retention capacity of the soil, especially on physical-chemical properties (mineralogy, grain size, organic matter) affecting soil particle surfaces and also on the chemical properties of the metal. The most direct consequences on the ground of air pollutants are acidification, salinization and the pollutions that can cause heavy metals as components of suspended particulate matter. For this purpose the levels of PM10 in ambient air and the corresponding annual and weekly trend were calculated. The results of the study show that the PM10 and heavy metals concentrations are below the limit values recommended by European Union Legislation for the protection of human health and ecosystems in the study period. There is an important reduction of them from 2009 in all control stations due to the economic crisis. References Moral, R., Gilkes, R.J., Jordán, M.M., 2005

  18. Placental concentrations of heavy metals in a mother-child cohort

    SciTech Connect

    Amaya, E.; Gil, F.; Freire, C.; Olmedo, P.; Fernandez-Rodriguez, M.; Fernandez, M.F.; Olea, N.

    2013-01-15

    Heavy metals are environmental contaminants with properties known to be toxic for wildlife and humans. Despite strong concerns about their harmful effects, little information is available on intrauterine exposure in humans. The aim of this study was to evaluate prenatal exposure to As, Cd, Cr, Hg, Mn, and Pb and its association with maternal factors in a population-based mother-child cohort in Southern Spain. Between 2000 and 2002, 700 pregnant women were recruited and 137 placentas from the cohort were randomly selected and analyzed for the selected metals by atomic absorption. Maternal sociodemographic and lifestyle factors were obtained by questionnaire after delivery. Bivariate analysis and multivariate linear regression were performed. Cd and Mn concentrations were detected in all placentas, while Cr, Pb, and Hg were found in 98.5%, 35.0%, and 30.7% of samples, respectively. The highest concentrations were observed for Pb (mean: 94.80 ng/g wet weight of placenta), followed by Mn (63.80 ng/g), Cr (63.70 ng/g), Cd (3.45 ng/g), and Hg (0.024 ng/g). Arsenic was not detected in any sample. Gestational age and smoking during pregnancy were associated with placental Cd concentrations, while no factor appeared to influence concentrations of Cr, Hg, Mn, or Pb. In comparison to results of European studies, these concentrations are in a low-intermediate position. Studies are required to investigate the factors contributing to early exposure to heavy metals and to determine how placental transfer of these toxic compounds may affect children's health.

  19. Effect of sulphur concentration on bioleaching of heavy metals from contaminated dredged sediments.

    PubMed

    Fang, D; Zhao, L; Yang, Z Q; Shan, H X; Gao, Y; Yang, Q

    2009-11-01

    The sulphur-based bioleaching process using sulphur-oxidizing bacteria (SOB) has been demonstrated to be a feasible technology for removing heavy metals from contaminated sediments, but the excess sulphur application will lead to the re-acidification of bioleached sediments. The objective of the present study was to examine the effect of sulphur concentration on the bioleaching of heavy metals from contaminated sediments, with the ultimate purpose of minimizing the sulphur addition. The results showed that the inoculation of 7% of indigenous SOB, containing 3.6 x 10(8) colony forming units (CFU) mL(-1), and addition of elemental sulphur as a substrate (0.5 to 7.0 g L(-1)) resulted in a sharp decrease in sediment pH from an initial pH 8.0 to pH 1.4-2.4 and an increase in ORP (oxidation-reduction potential) from -10 mV to 500 mV within 10 days of bioleaching. Although the increase in sulphur concentration enhanced the rates of pH reduction and ORP elevation, the bioleaching process with the addition of 3.0 g L(-1) of sulphur was already sufficient to reach conditions of acidity (pH < 2.0) and ORP (500 mV) necessary for a satisfactory removal of metals, and, at day 10, 71.8% of Cu, 58.2% of Zn, and 25.3% of Cr were removed from the sediments. During the bioleaching process, Zn removal increased with a reduction in pH, whereas the removal of Cu and Cr increased not only with a reduction in pH but also with an increase in ORP. Results of sequential selective extraction indicated that the final levels of metal removals were dependent on their speciation distribution in the original sediments, and after bioleaching those unremoved metals in the bioleached sediments mainly existed in the residual fraction.

  20. Heavy metal concentrations in Black-tailed Gull (Larus crassirostris) chicks, Korea.

    PubMed

    Kim, Jungsoo; Oh, Jon-Min

    2014-10-01

    The objectives of this study were to quantify concentrations of heavy metals in livers and stomach contents of Black-tailed Gull (Larus crassirostris) chicks from two islands in Korea. Iron and manganese concentrations were significantly higher in chick livers at Hongdo Island compared to Rando Islnad. In contrast, zinc, copper and cadmium concentrations were significantly higher at Rando Island than Hongdo Island. On Hongdo Island, Black-tailed Gull chicks at a lighthouse site had higher lead concentrations in livers and stomach contents than at a nearby reference site and stomach contents of Black-tailed Gull chicks had significantly higher lead concentrations than regurgitated diets. In Hongdo Island, manganese, lead and cadmium concentrations were significantly correlated between livers and stomach contents. Essential elements such as iron, zinc, manganese and copper concentrations from the present study were within the range reported for other seabird species including gulls. Livers of four individual gull chicks (13.3%) were at a level considered lead exposed (6-30 μg g(-1) dry weight), but cadmium concentrations in all specimens were within the background level (<3 μg g(-1) dry weight) for wild birds. Elevated lead concentrations on lighthouse site may be attributed to ingestion of paint chips and these concentrations may negatively affect chick behavior, growth and survival.

  1. Heavy metal concentrations in wild fishes captured from the South China Sea and associated health risks.

    PubMed

    Gu, Yang-Guang; Lin, Qin; Wang, Xue-Hui; Du, Fei-Yan; Yu, Zi-Ling; Huang, Hong-Hui

    2015-07-15

    Heavy metal concentrations were measured in 29 marine wild fish species from the South China Sea. Concentrations (wet weight) were 0.51-115.81 ng/g (Cd), 0.54-27.31 ng/g (Pb), 0.02-1.26 μg/g (Cr), 8.32-57.48 ng/g (Ni), 0.12-1.13 μg/g (Cu), 2.34-6.88 μg/g (Zn), 2.51-22.99 μg/g (Fe), and 0.04-0.81 μg/g (Mn), respectively. Iron concentrations in all and Mn in some fish species were higher than the acceptable daily upper limit, suggesting human consumption of these wild fish species may pose a health risk. Human health risk assessment, however, indicated no significant adverse health effects with consumption.

  2. Detection of Heavy-metal Ions Based on Evaporative Concentration Using a Super-hydrophobic Surface

    NASA Astrophysics Data System (ADS)

    Yanagimachi, Isao; Nashida, Norihiro; Iwasa, Koichiro; Suzuki, Hiroaki

    A concentrator chip which could detect a variety of heavy-metal ions was fabricated. To improve the detection sensitivity, a droplet of a sample solution was concentrated evaporatively using a super-hydrophobic surface formed with polytetrafluoroethylene (PTFE) beads. The system consists of a working electrode at the center, surrounded by an Ag/AgCl reference electrode. Square-wave anodic stripping voltammetry was conducted using concentrator chips with different working electrode materials. A significant increase in peak height was observed as the sensitive area decreased and the volume of the droplet increased. When a 5-μl droplet was used, the detection limit for lead, cadmium, and arsenic ions was 1 ppb.

  3. Heavy metal concentrations in marine green, brown, and red seaweeds from coastal waters of Yemen, the Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Al-Shwafi, Nabil A.; Rushdi, Ahmed I.

    2008-08-01

    The purpose of this study was to investigate the concentration levels of heavy metals in different species of the main three marine algal divisions from the Gulf of Aden coastal waters, Yemen. The divisions included Chlorophyta—green plants ( Halimeda tuna, Rhizoclonium kochiamum, Caldophora koiei, Enteromorpha compressa, and Caulerpa racemosa species), Phaeophyta—brown seaweeds ( Padina boryana, Turbinaria elatensis, Sargassum binderi, Cystoseira myrica, and Sargassum boveanum species), and Rhodophyta—red seaweeds ( Hypnea cornuta, Champia parvula, Galaxaura marginate, Laurencia paniculata, Gracilaria foliifere, and species). The heavy metals, which included cadmium (Cd), cobalt (Co), copper (Cu), chromium (Cr), Iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), zinc (Zn), and vanadium (V) were measured by Atomic Absorption Spectrophotometer (AAs). The concentrations of heavy metals in all algal species are in the order of Fe >> Cu > Mn > Cr > Zn > Ni > Pb > Cd > V > Co. The results also showed that the uptake of heavy metals by different marine algal divisions was in the order of Chlorophyta > Phaeophyta > Rhodophyta. These heavy metals were several order of magnitude higher than the concentrations of the same metals in seawater. This indicates that marine alga progressively uptake heavy metals from seawater.

  4. Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India--spectroscopical approach.

    PubMed

    Chandrasekaran, A; Ravisankar, R; Harikrishnan, N; Satapathy, K K; Prasad, M V R; Kanagasabapathy, K V

    2015-02-25

    Anthropogenic activities increase the accumulation of heavy metals in the soil environment. Soil pollution significantly reduces environmental quality and affects the human health. In the present study soil samples were collected at different locations of Yelagiri Hills, Tamilnadu, India for heavy metal analysis. The samples were analyzed for twelve selected heavy metals (Mg, Al, K, Ca, Ti, Fe, V, Cr, Mn, Co, Ni and Zn) using energy dispersive X-ray fluorescence (EDXRF) spectroscopy. Heavy metals concentration in soil were investigated using enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF) and pollution load index (PLI) to determine metal accumulation, distribution and its pollution status. Heavy metal toxicity risk was assessed using soil quality guidelines (SQGs) given by target and intervention values of Dutch soil standards. The concentration of Ni, Co, Zn, Cr, Mn, Fe, Ti, K, Al, Mg were mainly controlled by natural sources. Multivariate statistical methods such as correlation matrix, principal component analysis and cluster analysis were applied for the identification of heavy metal sources (anthropogenic/natural origin). Geo-statistical methods such as kirging identified hot spots of metal contamination in road areas influenced mainly by presence of natural rocks.

  5. Heavy metals concentrations in zooplankton and suspended particulate matter in a southwestern Atlantic temperate estuary (Argentina).

    PubMed

    Fernández-Severini, Melisa Daiana; Hoffmeyer, Mónica Susana; Marcovecchio, Jorge Eduardo

    2013-02-01

    The present work includes part of the first studies of metals concentrations in the zooplankton from a heavily industrialized estuary of Argentina, the Bahía Blanca estuary. Cd, Cu, and Pb concentrations in the zooplankton (macro- and mesozooplankton) and the suspended particulate matter were measured at stations with different degree of pollution. Physicochemical variables and zooplankton composition and abundance were also analyzed. Thus, the aim of the present work was to analyze the spatial and temporal distribution of heavy metals in these two different fractions, and the possible relation among them due to their importance in the biogeochemical cycles of marine environments. Samplings were carried out during a year, from March 2005 to April 2006, every 2 months, at stations located near chemical and petrochemical industries, stations far from these points and one station in an intermediate location. In the mesozooplankton, the mean concentrations of Cd, Cu, and Pb were 3.63 ± 1.46, 34.46 ± 5.40, and 11.54 ± 3.04 μg g(-1) dry weight (d.w.) respectively, while in the macrozooplankton, 3.20 ± 2.28, 21.86 ± 4.79, and 8.36 ± 1.85 μg g(-1) d.w. On the other hand, particulate Cd, Cu, and Pb presented a mean concentration of 3.33 ± 1.22, 12.75 ± 2.67, and 12.53 ± 3.20 μg g(-1) d.w., respectively. Metals' levels in both the SPM and zooplankton fluctuated throughout the study time and were relatively high in the particulate phase especially for Cu and Pb. Moreover, zooplankton accumulated important concentrations of the three metals. The sources of them are probably the discharges of the industries and domestic sewages located near the estuary.

  6. Richness, coverage and concentration of heavy metals in vascular epiphytes along an urbanization gradient.

    PubMed

    Becker, Diego Fedrizzi Petry; Linden, Rafael; Schmitt, Jairo Lizandro

    2017-04-15

    Richness, coverage and concentration of heavy metals in vascular epiphytes were analyzed in isolated trees along an urbanization gradient in Southern Brazil. A total of 20 phorophytes were sampled in the main street of each site. Concentrations of chromium, cadmium, lead, manganese, nickel and zinc were measured in the leaves of Tillandsia recurvata L. using Graphite Furnace Atomic Absorption Spectrophotometry. A decreasing gradient of epiphyte richness and coverage was observed as urbanization increased. Vehicle fleet and demographic density were the parameters most correlated with the reduction of epiphytic diversity. In T. recurvata, significantly higher values of cadmium, lead and zinc were recorded in the most urbanized areas, and were strongly related to the vehicle fleet and to the demographic density in these sites. The results demonstrated that these parameters could be applied to the diagnosis of environmental quality in urban areas, allowing standardized analyses in other regions.

  7. Effect of vermicomposting on concentration and speciation of heavy metals in sewage sludge with additive materials.

    PubMed

    He, Xin; Zhang, Yaxin; Shen, Maocai; Zeng, Guangming; Zhou, Mucen; Li, Meirong

    2016-10-01

    The aim of this work was to evaluate the total content and speciation of heavy metals (As, Cr, Cd, Cu, Fe, Mn, Ni, Pb and Zn) during vermicomposting of sewage sludge by Eisenia fetida earthworm with different additive materials (soil, straw, fly ash and sawdust). Results showed that the pH, total organic carbon were reduced, while the electric conductivity and germination index increased after a combined composting - vermicomposting process. The addition of bulking agents accelerated the stabilization of sludge and eliminated its toxicity. The total heavy metals after vermicomposting in 10 scenarios were lowered as compared with the initial values and the control without amendment. BCR sequential extraction indicated that vermicomposting significantly decreased the mobility of all heavy metals by increasing the residual fractions. The activity of earthworms and appropriate addition of amendment materials played a positive role in sequestering heavy metals during the treatment of sewage sludge.

  8. Heavy metals in ryegrass species versus metal concentrations in atmospheric particulate measured in an industrial area of Southern Italy.

    PubMed

    Caggiano, Rosa; d'Emilio, Mariagrazia; Macchiato, Maria; Ragosta, Maria

    2005-03-01

    The aim of this paper is to evaluate the reliability of ryegrass species as active biomonitors by assessing atmospheric metal concentrations. We show a procedure for measuring atmospheric concentrations of heavy metals by means of biomonitors and present the data collected between July 1997 and October 2000 in the industrial area of Tito Scalo (Basilicata region, Southern Italy). In particular, we discuss the reproducibility of the biomonitoring measures, the influence of plant age and the correlation between metal concentrations in plants and in atmospheric particulate. Statistical analysis of measured data suggests us that in the investigated site, Cd, Cr and Ni are suitable to be monitored by means of ryegrass species. For the other metals, their emission patterns in atmosphere make it difficult to identify the correlation structure between plants and particulate, and as a result the interpretation of the biomonitoring data is complex. On the basis of the results, we believe that for correct application of active biomonitoring procedure, a careful preliminary analysis of the monitoring site and integration of the biomonitoring and chemical-physical observation is necessary.

  9. Heavy metal concentrations in water, suspended matter, and sediment from Gökova Bay, Turkey.

    PubMed

    Balkis, Nuray; Aksu, Abdullah; Okuş, Erdoğan; Apak, Reşat

    2010-08-01

    The contents of heavy metals (Fe, Mn, Pb, Cu, Cd, and Hg) dissolved in water and suspended solids of Gökova Bay--partly and fully sampled in 2005 and 2006, respectively--are quite higher than the average values encountered in uncontaminated sea water. The high concentrations are associated with terrestrial inputs from the mining zones and anthropogenic (domestic+industrial) sources. Moreover, the distribution of Fe and Cu is affected by primary production because these elements function as nutrients in biological activities. The Cr, Ni, and Fe concentrations of surface sediments are above the shale average. The Cr and Ni contents of surface sediments representative of river mouths strongly correlate with total phosphorus contents. In a sulfide-poor environment, Pb and Cu were concentrated at a higher ratio in surface sediments than Cd, probably due to higher stabilities of their surface complexes with amorphous iron oxides and clay minerals existing as major components in the sediments. The exceptional enrichment of Zn may be attributed to double oxide formation with amorphous iron oxides in sediments. The high metal values are most probably caused by terrestrial inputs from anthropogenic sources and the mining zones at the southeast part of the bay. The Al, Mn, Pb, Cu, Zn, and Hg contents are below the shale average. The low values have possibly originated from the coarse-grained sandy sediments having a low affinity for metals. There are no distinct differences in the metal distributions in water and suspended matter between the years 2005 and 2006 in the bay, probably due to low sedimentation rates.

  10. Heavy metal concentrations in some macrobenthic fauna of the Sundarbans mangrove forest, south west coast of Bangladesh.

    PubMed

    Ahmed, Kawser; Mehedi, Yousuf; Haque, Rezaul; Mondol, Pulakesh

    2011-06-01

    Heavy metal concentrations in some macrobenthic fauna have been reported for the first time from the Sundarbans mangrove forest, south west coast of Bangladesh, in the northern part of Bay of Bengal. The concentration of Fe, Cu, Zn, Cd and Pb in macrobenthos ranged from 235 ± 10.11 to 1,051 ± 38.42, 3.66 ± 0.89 to 7.55 ± 1.29, 76.8 ± 8.55 to 98.5 ± 6.49, 0.46 ± 0.11 to 0.859 ± 0.2 and 4.66 ± 1.17 to 6.77 ± 2.1 μg/g, respectively. Significant variations (p ≤ 0.05) in heavy metal concentrations have been observed among the mud crab, mudskipper and gastropod. However, heavy metal burdens did not vary significantly among the hermit and horseshoe crabs. In mud crab, horseshoe crab and gastropod, heavy metal concentrations were recorded in the sequence: Fe > Zn > Pb > Cu > Cd. Hermit crab and mudskipper contained heavy metals in the order of Fe > Zn > Cu > Pb > Cd. Fe and Zn concentrations were found significantly (p ≤ 0.05) higher in macrobenthos. The lead (Pb) concentration found in the edible portion of macrobenthos exceeded the international permissible limits certified by the WHO. Bioconcentration factors >1.00 obtained for Fe (17.05 in mudskipper) and Cd (1.87 in gastropod) indicated that these metals were highly bioaccumulated and biomagnified in benthic fauna of Sundarbans. The findings of this study refer to the potential impact of heavy metals in the mangrove ecosystem of Bangladesh.

  11. Background concentrations of heavy metals in benthos from transboundary rivers of the Transbaikalia region, Russia.

    PubMed

    Kuklin, Aleksei Petrovich; Matafonov, Petr Viktorovich

    2014-02-01

    The concentrations (mg/kg dry weight) of Cu, Zn, As, Cd, Hg, and Pb were measured in benthic macroalgae and invertebrates collected in the upper transboundary tributaries of the Onon River, Transbaikalia, Russia. The background concentration ranges in Cladophora fracta, Ulothrix zonata and Zygnemataceae were: 6.4-9.1 for Cu, 27.2-73.1 for Zn, 0.4-0.9 for Cd, 6.7-35.3 for As, 0.01-0.02 for Hg, and 1.9-4.3 for Pb. In Brachycentrus americanus and Lymnaea media the concentration ranges were: 9.0-25.5 for Cu, 21.4-96.0 for Zn, 0.1-0.3 for Cd, 1.7-5.6 for As, 0.004-0.02 for Hg, and 0.4-2.2 for Pb. The concentrations of Cu, Zn, Pb, and Hg were consistent with data for uncontaminated areas. Under contamination conditions the concentrations in C. fracta were: 938 for Zn, 513 for Pb, and 9.5 for Cd; in Lymnaea media were: 46.8 for Cu, 176 for Zn, 52.3 for Pb, and 3.0 for Cd. All the organisms showed a common response to contamination, and consequently can be used as biomonitors of contamination by heavy metals.

  12. Determination of heavy metal concentrations in plants exposed to different degrees of pollution using ICP-AES.

    PubMed

    Kos, V; Budic, B; Hudnik, V; Lobnik, F; Zupan, M

    1996-03-01

    Plant samples (Plantago lanceolata - narrow leaf plantain and Cichorium endiviae - endive) were collected in the surroundings of heavy metal emission sources and in other less contaminated areas. After digestion in a closed microwave system using HNO(3), the concentrations of Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, and Zn were determined using ICP-AES. Detection limits for all the elements of interest are given. Differences in heavy metal uptake rate between both plant species were observed. The uptake is more intensive for endive than for narrow leaf plantain. High concentrations of some heavy metals were determined in the unwashed plant samples as a result of exposure to aerosols. Tukey's statistical test was used to confirm the discrepancy of Cr concentration in plant samples from various areas. Washing the leaves with water was found to remove a large amount of water-soluble aerosols.

  13. Host-parasite relationships as determinants of heavy metal concentrations in perch (Perca fluviatilis) and its intestinal parasite infection.

    PubMed

    Brázová, Tímea; Hanzelová, Vladimíra; Miklisová, Dana; Šalamún, Peter; Vidal-Martínez, Víctor M

    2015-12-01

    The concentrations of As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn and their bioconcentration factors (BCFs) were determined in two intestinal parasites, an acanthocephalan, Acanthocephalus lucii, a tapeworm, Proteocephalus percae, present in the same host, the European perch (Perca fluviatilis, L.), in the heavily polluted Ružín reservoir in eastern Slovakia. The bioaccumulation of heavy metals in the fish organs and parasites was studied for acanthocephalan and tapeworm monoinfections or mixed infections by the two parasites and for the size of their parasitic infrapopulations. Bioconcentration factors (c[parasite]/c[muscle tissue]) showed that the concentrations of As, Ni, Pb and Zn were higher in mixed infections than in monoinfections. Negative correlations between heavy metal concentrations in perch organs and the parasites were found. For example, higher concentrations of Ni and Zn in both parasite species corresponded with lower metal concentrations in perch and hard roe. Likewise, significant negative relationships between metal concentrations in fish organs and number of parasites were noticed with lower levels of Pb in fish harbouring higher numbers of tapeworms. Similarly, in both parasite species the concentrations of some essential elements (Cr, Mn) were lower at high infection intensities compared to low intensities. Our study revealed that the differential concentration of heavy metals in perch organs was affected by the type of infection (mono- or mixed-infection), and needs to be considered in field ecotoxicological and parasitological studies as a potentially important factor influencing the pollutant concentrations in fish.

  14. Heavy metal concentration in the coastal wetlands of Thiruvananthapuram district, southern India.

    PubMed

    Arunkumar, K S; Joseph, Sabu; Thomas, Jobin

    2010-04-01

    Levels of heavy metals (Cu, Cr, Pb, Zn, Fe and Mn) in the surficial sediments of the four coastal wetlands, viz. Poovar, Poonthura, Akkulam-Veli and Kadinamkulam-Anjengo-Akathumuri of Thiruvananthapuram are presented in this study. Further the statistical tools like contamination factor (CF), index of geoaccumulation (Igeo) and pollution load index (PLI) are used to assess the heavy metal pollution. Among the wetlands, Poonthura and Akkulam-Veli were polluted by the heavy metals, as very high values are observed for Pb and Cu indicating high build up of these metals in the sediments. The highest value of CF can be attributed to anthropogenic inputs mainly from urban domestic sewage and land run-off. Based on the value of CF, PLI and Igeo, the Poonthura and Akkulam-Veli wetlands are identified as potential 'hot spots' in the district.

  15. Heavy metal concentration and speciation of seven representative municipal sludges from wastewater treatment plants in Northeast China.

    PubMed

    Tu, Jiangcheng; Zhao, Qingliang; Wei, Liangliang; Yang, Qianqian

    2012-03-01

    The analysis of heavy metals is very important for assessing the feasibility of the agricultural utilization for the municipal sludge. In this paper, a four-step sequential extraction method was applied to extract heavy metals (Cu, Zn, Mn, Cr, and Ni) in municipal sludges from seven individual wastewater treatment plants located in Jilin and Heilongjiang Province, China, for estimating the mobility and bioavailability of the metal ions in the agricultural application. The total concentrations of heavy metals and their chemical fractions after the sequential extraction were determined. Principal component analysis (PCA) was applied to analyze the relations of heavy metals fractions in the municipal sludges. Experimental results indicated that the total concentrations of Cu, Zn, Cr, and Ni in all sludge samples were below the threshold values set out by the Chinese legislation (GB18918-2002). Specially, Zn had a high bioavailability and mobility, Cu and Cr had potential bioavailability, while Mn mainly existed in the residual fraction of municipal sludge. On the other hand, Ni had different mobility in different municipal sludge. PCA results were confirmed by the environmental behavior of heavy metals.

  16. Heavy metal and selenium concentrations in liver tissue from wild American alligator (Alligator mississippiensis) livers near Charleston, South Carolina.

    PubMed

    Campbell, Joshua W; Waters, Matthew N; Tarter, Anna; Jackson, Jennifer

    2010-10-01

    Liver samples from 33 wild American alligators (Alligator mississippiensis) livers from the Charleston, South Carolina, area were analyzed for arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), mercury (Hg), nickel (Ni), lead (Pb), and selenium (Se) concentrations. Alligators are top predators and are considered a good biomonitoring species for various toxins, including heavy metals. Alligators from other areas in the US have shown high concentrations of mercury and other heavy metals, but the Charleston area, which is highly industrialized, has not been investigated. We found wide variation in hepatic heavy metal and selenium concentrations among alligators. Length and sex did not show a strong relationship with any metal based on statistical analysis. However, cluster analysis revealed three groupings of alligators based on liver metal concentrations. Alligators with low Se:Hg ratios also had high concentrations of Hg. Due to the wide variation in metal concentrations among individual alligators, we postulate that individual diet and microhabitat usage could be the cause for this variation.

  17. Adjustment of urinary concentration to urinary volume in relation to erythrocyte and plasma concentrations: an evaluation of urinary heavy metals and organic substances

    SciTech Connect

    Araki, S.; Aono, H.; Murata, K.

    1986-05-01

    The effects of urinary volume on adjusted and nonadjusted urinary excretion of 11 heavy metals and organic substances were examined in relation to plasma and erythrocyte concentrations in 19 metal workers under conditions of water restriction and loading. Blood lead concentrations in these workers ranged from 25 to 59 micrograms/dl. The results indicated that: urinary volume significantly affects not only nonadjusted urinary concentration for all substances, but also affects timed excretion and concentrations adjusted to urinary specific gravity and to urinary creatinine for most substances; the concentration adjusted to urinary volume is, on the other hand, independent of urinary volume; and urinary excretion of lead and mercury is related more closely to erythrocyte concentration than to plasma concentration. This last finding reflects complex renal excretory mechanisms for these heavy metals.

  18. Heavy Metal.

    ERIC Educational Resources Information Center

    Shoemaker, W. Lee

    1998-01-01

    Discusses the advantages, both functional and economic, of using a standing-seam metal roof in both new roof installations and reroofing projects of educational facilities. Structural versus non-structural standing-seam roofs are described as are the types of insulation that can be added and roof finishes used. (GR)

  19. Changes in total concentrations and assessed background concentrations of heavy metals in moss in Lithuania and the Czech Republic between 1995 and 2005.

    PubMed

    Sakalys, J; Kvietkus, K; Sucharová, J; Suchara, I; Valiulis, D

    2009-06-01

    Data on concentrations of heavy metals (As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, V and Zn) in moss collected on the lightly industrialized territory of Lithuania and on the highly industrialized territory of the Czech Republic in 1995, 2000 and 2005 is used to separate the background and anthropogenic contributions to heavy metal concentrations in moss. The distribution of the concentration logarithms allowed us to determine a background mode, and to estimate the background concentration of heavy metals from this mode. The method was then applied for an estimation of the contribution of local sources to the total pollution level in both countries. The average concentrations and the background modes of heavy metals in Lithuania and in the Czech Republic were very similar, except in the case of vanadium, where the background concentration was higher in Lithuania than in the Czech Republic. For most elements, the background concentration in moss had a decreasing tendency in Lithuania and in the Czech Republic between 1995 and 2005, though the concentration of Cu and Hg increased in Lithuania. The variability of chromium concentration in moss differed from the remaining investigated elements in the Czech Republic, and it was expressed as a bimodal lognormal distribution. This variability may be due to simultaneous contamination of moss by chromium from soil and from industrial sources of pollution.

  20. Use of statistical and GIS techniques to assess and predict concentrations of heavy metals in soils of Lahore City, Pakistan.

    PubMed

    Alam, Nayab; Ahmad, Sajid Rashid; Qadir, Abdul; Ashraf, Muhammad Imran; Lakhan, Calvin; Lakhan, V Chris

    2015-10-01

    Soils from different land use areas in Lahore City, Pakistan, were analyzed for concentrations of heavy metals-cadmium (Cd), chromium (Cr), nickel (Ni), and lead (Pb). One hundred one samples were randomly collected from six land use areas categorized as park, commercial, agricultural, residential, urban, and industrial. Each sample was analyzed in the laboratory with the tri-acid digestion method. Metal concentrations in each sample were obtained with the use of an atomic absorption spectrophotometer. The statistical techniques of analysis of variance, correlation analysis, and cluster analysis were used to analyze all data. In addition, kriging, a geostatistical procedure supported by ArcGIS, was used to model and predict the spatial concentrations of the four heavy metals-Cd, Cr, Ni, and Pb. The results demonstrated significant correlation among the heavy metals in the urban and industrial areas. The dendogram, and the results associated with the cluster analysis, indicated that the agricultural, commercial, and park areas had high concentrations of Cr, Ni, and Pb. High concentrations of Cd and Ni were also observed in the residential and industrial areas, respectively. The maximum concentrations of both Cd and Pb exceeded world toxic limit values. The kriging method demonstrated increasing spatial diffusion of both Cd and Pb concentrations throughout and beyond the Lahore City area.

  1. Heavy metal concentrations in earthworms from soil amended with sewage sludge

    USGS Publications Warehouse

    Beyer, W.N.; Chaney, R.L.; Mulhern, B.M.

    1982-01-01

    Metal concentrations in soil may be elevated considerably when metal-laden sewage sludge is spread on land. Metals in earthworms (Lumbricidae) from agricultural fields amended with sewage sludge and from experimental plots were examined to determine if earthworms are important in transferring metals in soil to wildlife. Earthworms from four sites amended with sludge contained significantly (P . < 0.05) more Cd (12 times), Cu (2.4 times), Zn (2.0 times), and Pb (1.2 times) than did earthworms from control sites, but the concentrations detected varied greatly and depended on the particular sludge application. Generally, Cd and Zn were concentrated by earthworms relative to soil, and Cu, Pb, and Ni were not concentrated. Concentrations of Cd, Zn, Cu, and Pb in earthworms were correlated (P < 0.05) with those in soil. The ratio of the concentration of metals in earthworms to the concentration of metals in soil tended to be lower in contaminated soil than in clean soil. Concentrations of Cd as high as 100 ppm (dry wt) were detected in earthworms from soil containing only 2 ppm Cd. These concentrations are considered hazardous to wildlife that eat worms. Liming soil decreased Cd concentrations in earthworms slightly (P < 0.05) but had no discernible effect on concentrations of the other metals studied. High Zn concentrations in soil substantially reduced Cd concentrations in earthworms.

  2. Heavy Metals Concentration Levels in Soils throughout the East San Francisco Bay Area, California

    NASA Astrophysics Data System (ADS)

    Hagan, K.; Ramirez, N.; Diaz, J.; Cuff, K.; Adarkwah, N.

    2008-12-01

    Previous studies have shown that soils near structures made of pressure treated wood created before 2003 often contain high levels of arsenic, which was widely used in the processing of such wood. One such study, conducted by student scientists affiliated with the SF ROCKS program at San Francisco State University, found high levels of arsenic in soils collected from several children's play areas in San Francisco (Negrete, et al., 2006). Due to the known health risks associated with high concentrations of arsenic, and given a general lack of data related to soils of the East San Francisco Bay Area, the current study was initiated to determine whether or not dangerously high levels of arsenic exist in soils near public schools and playgrounds located in Richmond and Oakland, California. Soil samples were collected from approximately 100 locations in and around such areas, and analyzed for arsenic and a variety of other heavy metals concentration levels using an ICP spectrometer. Preliminary results demonstrate arsenic levels that exceed the EPA's 0.4 ppm action limit in 27 of the 100 sites from which samples were collected. Also, strong correlations between arsenic and various metals in the soil were found, such as arsenic with chromium (0.7022) and nickel (0.6588). Additionally, dangerously high levels of arsenic and lead were found in soils collected along the shores of a small lake fed by Leona Creek on the campus of Mills College in the Oakland foothills, approximately 2 kilometers downstream from a former iron sulphide mine. This occurrence constitutes evidence that the owner of the mine has not complied with recent orders from a local regulatory agency to make sure that mine effluents are safe.

  3. Determination of some heavy metal concentrations in razor clam (Solen brevis) from Tanjung Lumpur coastal waters, Pahang, Malaysia.

    PubMed

    Kamaruzzaman, B Y; Zahir, M S; John, B Akbar; Waznah, A Siti; Jalal, K C A; Shahbudin, S; Al-Barwani, S M; Goddard, J S

    2010-12-15

    An effort to analyze selected heavy metal accumulation by the razor clam (Solen brevis) from Tanjung Lumpur was conducted on January to April 2010. A total of fifty individuals of Razor clam Solen brevis were sampled and metals such as Iron (Fe), Zinc (Zn), Copper (Cu), Manganese (Mn), Lead (Pb) and Cadmium (Cd) Concentrations were determined using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Among the metals Fe occurred in elevated concentration in the soft tissue of razor clam followed by Zn. Cd was found to be in least concentration in the sample. Mean concentration of Fe, Zn, Mn, Cu, Cd and Pb in the soft tissue were 415.2 +/- 56.52, 87.74 +/- 11.85, 18.71 +/- 2.10, 8.64 +/- 1.75, 0.67 +/- 0.29 and 1.61 +/- 0.45 microg g(-1) dw, respectively indicating that the bioaccumulation of essential metals in the soft tissue was greater than the non essential heavy metals. Metal accumulation in the soft tissue of razor clam followed Fe > Zn > Mn > Cu > Pb > Cd order in present study. The observed concentration of acute toxicity of metals in Solen brevis (Family: Solenidae) from Tanjung Lumpur Coastal waters was lower than the permissible limit recommended by National and international standards proved that this species could be utilized for human consumption.

  4. Temporal relationships between heavy-metal concentrations in water and food crops at a Zambian urban agriculture site.

    NASA Astrophysics Data System (ADS)

    Holden, Jennifer A.; Malamud, Bruce D.; Chishala, Benson H.; Kapungwe, Evaristo; Volk, John; Harpp, Karen S.

    2010-05-01

    In this paper, for a suite of 17 elements, we examine the temporal relationships between heavy-metal concentrations in water and food crops, and between different elements, at Chunga, Zambia, August 2004 to July 2005. In many locations in the developing world, the water source used for urban agriculture is often wastewater from industrial sources, and is potentially contaminated with heavy metals. In Zambia, the location of this study, the wastewater source for irrigation use in some urban areas has been called 'a sink for sewage, mining and industrial effluents' all of which potentially contain heavy metals. We present field research results examining relationships between heavy-metal concentrations in both the water and the foodcrops from an urban agriculture location in northwest Lusaka (Chunga), the capital of Zambia. Monthly monitoring of water and food crops irrigated by the water was carried out at the study site, August 2004 to July 2005, for n = 39 water samples and n = 17 food crop samples. Heavy-metal concentrations were examined for Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Ba, Hg, Tl, Pb, U (17 elements) using ICP-MS. We find that both water and food-crop samples have peak concentrations for many elements in the wet season (October to February). When examining temporal relationships, we find some positive and negative statistically significant correlations between elements for both [water]:[food crop] and [food crop]:[food crop]. For the concentrations of [water]:[food crop] we find particularly strong positive correlations for V:Se and (V, Cr, Co, Zn, Cd, Hg, Pb, U):Tl; strong negative correlations are observed for V:Zn, Ni:Cu, Cd:Cu. For [food crop]:[food crop] particularly strong positive relationships are observed for Al:V, Al:Cr, Cr:V, and Cd:U. Theoretically, concentrations of heavy-metals in plant samples normally should reflect the heavy-metal contamination in the water used to irrigate the plants throughout the growth cycle (typically six

  5. Heavy metal concentrations and speciation in riverine sediments and the risks posed in three urban belts in the Haihe Basin.

    PubMed

    Zhang, Chao; Shan, Baoqing; Tang, Wenzhong; Dong, Lixin; Zhang, Wenqiang; Pei, Yuansheng

    2017-02-02

    Heavy metal (Cr, Cu, Ni, Pb, and Zn) pollution and the risks posed by the heavy metals in riverine sediments in a mountainous urban-belt area (MB), a mountain-plain urban-belt area (MPB), and a plain urban-belt area (PB) in the Haihe Basin, China, were assessed. The enrichment factors indicated that the sediments were more polluted with Cu and Zn than with the other metals, especially in the MPB. The sediments in the MPB were strongly affected by Cu and Zn inputs from anthropogenic sources. The risk assessment codes and individual contamination factors showed that Zn was mobile and posed ecological risks, the exchangeable fractions being 21.1%, 21.2%, and 19.2% of the total Zn concentrations in the samples from the MB, MPB, and PB, respectively. Cr, Cu, and Zn in the sediments from the MPB were potentially highly bioavailable because the non-residual fractions were 56.2%, 54.9%, and 56.5%, respectively, of the total concentrations. The potential risks posed by the heavy metals (determined from the chemical fractions of the heavy metals) in the different areas generally decreased in the order MPB > MB > PB. Pictorial representation of cluster analysis results showed that urbanization development level could cause Cr and Zn pollution in the urban riverine sediments to become more severe.

  6. Heavy metal concentrations and the variations of foraminifers in the Silivri-Kumbagi area (NW Marmara Sea, Turkey)

    NASA Astrophysics Data System (ADS)

    Ünal Yümün, Zeki; Murat Kılıç, Ali; Önce, Melike

    2016-04-01

    In the area between Silivri (İstanbul) and Kumbagi (Tekirdag), NW of Marmara Sea, there is a considerable extent in marine pollution from industrial and settlements wastes, sea transports, and agricultural activities. The most important one of these pollutions is the spread of heavy metals. Our research investigated sediments in order to determine whether heavy minerals affected biota such as recent foraminifers, or not. Our investigation area starts from Marmara Ereglisi, in the east, continues to Tekirdag and Kumbagi, in the west. 10 sea-water samples, 10 sediment-core samples and one 10 m core-drilling sample, taken 250 m off-shore from coast line. As a result of this sampling geochemical analysis of the bottom-mud and water samples were done and the ratio of heavy metals and other contaminants determined. For heavy metal analyses, concentration analysis of 12 heavy metals (Cd, Fe, Cu, Pb, Zn, Al, Co, Cr, Mn, Ni, As, and Hg) has been conducted, as ppm, in sediment samples taken from the levels in which foraminifers are collected. Perpendicular (spatial) heavy metal concentration changes have been determined with off-shore drilling samples and horizontal changes (geochronological) have been determined with the help of core samples. Especially, it has been understood that heavy metal concentrations in recent sediments are higher compared to the past. In this research the samples have been taken from each 10 cm. of core and drilling samples to collect the benthic foraminifers. In this context, 15 grams of dry sediment sample taken from each level, have been washed in 125 μm sieves in order to determine its benthic foraminifer content. Benthic foraminifera from these samples have been identified taxonomically and their morphological differentiation has been determined after taking SEM photos. As a result of this study, the foraminifera types of "Adelosinacliarensis, Adelosinamediteranensis, Adelosinapulchella, Ammonia compacta, Ammonia parkinsonia, Ammonia tepida

  7. Heavy metal concentrations in freshwater macrophytes from the Aldomirovsko swamp in the Sofia District, Bulgaria

    SciTech Connect

    Yurukova, L.; Kochev, K. )

    1994-08-01

    Man's impact on the environment has become global and presents an international problem. The selective ionic absorption by hydrophytes in littoral ecosystems may be used for indicating the chemistry of water medium and submersed soils. The purpose of this investigation was to determine the concentrations of heavy metals in the main species of aquatic macrophytes distributed in the Aldomirovsko swamp in the Sofia District, Bulgaria. An evaluation of the anthropogenic contamination of this area will be made before the area is declared a protected locality. Aldomirovsko is one of the few inland swamps which is well preserved in Bulgaria. The swamp is situated to the northwest of Slivnica town, at the foot of the Tri Usi hills, around 650 m above sea level. It is of Karst origin. The area is about 2.5 km[sup 2]. The water capacity of the swamp varies throughout the year. Its depth decreases down to 1.10 m and is maintained by rainfall. The pH varies from 7.5 to 8.0. There is a considerable layer of silt at the bottom, with a pH of about 8.5. Thus far the swamp has been mainly a study area for floristic, faunistic, phytocoenological and ecological investigations. 17 refs., 1 fig., 3 tabs.

  8. Effects of age on heavy metal concentrations of black-crowned night herons Nycticorax nycticorax from Korea.

    PubMed

    Kim, Jungsoo; Lee, Doo-Pyo; Koo, Tae-Hoe

    2010-03-01

    This study presents concentrations of heavy metals in tissues of Black-crowned night herons (Nycticorax nycticorax), age-related variations related to the growth stage from chicks to adults, and comparison of concentrations between chicks and adults. Heavy metal differences by growth stage from chicks to adults were observed for iron concentrations in the muscle; manganese concentrations in the kidney; zinc and copper concentrations in the muscle; lead concentrations in the liver, kidney, and bone; and cadmium concentrations in the kidney. Comparing chicks with adults, iron concentrations in the kidney and bone of adults were higher than those of chicks. Copper concentrations in the muscle of adults were higher than those of chicks. Lead concentrations in the liver and bone were lower in adults than in chicks. Manganese, zinc and cadmium concentration of each tissue did not significantly differ between adults and chicks. We suggest that concentrations of iron, manganese, zinc and copper varied with the metabolic turnover for growth of chicks. In this study, lead concentrations of adults and cadmium concentrations of chicks and adults were within the range of background levels for wild birds, only lead concentrations of chicks were within the range of a level consistent with elevated lead exposure.

  9. Serum Concentrations of Selected Heavy Metals in Patients with Alcoholic Liver Cirrhosis from the Lublin Region in Eastern Poland.

    PubMed

    Prystupa, Andrzej; Błażewicz, Anna; Kiciński, Paweł; Sak, Jarosław J; Niedziałek, Jarosław; Załuska, Wojciech

    2016-06-13

    According to the WHO report, alcohol is the third most significant health risk factor for the global population. There are contrary reports about heavy metals concentrations in patients with alcoholic liver cirrhosis. The aim of this study was to investigate serum concentrations of selected heavy metals in patients with alcoholic liver cirrhosis living in the eastern part of Poland according to cirrhosis stage. The participants came from various hospitals of the Lublin region were enrolled. The study group included 46 male and 16 female patients. The control group consisted of 18 healthy individuals without liver disease. High Performance Ion Chromatography was used to determine the concentrations of metal ions (Cd, Zn, Cu, Ni, Co, Mn, and Pb) in serum samples. The concentrations of copper, zinc, nickel, and cobalt were found to be significantly lower in patients with alcoholic liver cirrhosis compared to the control group. The serum concentration of cadmium was significantly higher in patients with advanced alcoholic liver cirrhosis compared to the control group. We hypothesize that disorders of metabolism of heavy metals seem to be the outcome of impaired digestion and absorption, which are common in cirrhosis, improper diet, environmental and occupational exposure.

  10. Serum Concentrations of Selected Heavy Metals in Patients with Alcoholic Liver Cirrhosis from the Lublin Region in Eastern Poland

    PubMed Central

    Prystupa, Andrzej; Błażewicz, Anna; Kiciński, Paweł; Sak, Jarosław J.; Niedziałek, Jarosław; Załuska, Wojciech

    2016-01-01

    According to the WHO report, alcohol is the third most significant health risk factor for the global population. There are contrary reports about heavy metals concentrations in patients with alcoholic liver cirrhosis. The aim of this study was to investigate serum concentrations of selected heavy metals in patients with alcoholic liver cirrhosis living in the eastern part of Poland according to cirrhosis stage. The participants came from various hospitals of the Lublin region were enrolled. The study group included 46 male and 16 female patients. The control group consisted of 18 healthy individuals without liver disease. High Performance Ion Chromatography was used to determine the concentrations of metal ions (Cd, Zn, Cu, Ni, Co, Mn, and Pb) in serum samples. The concentrations of copper, zinc, nickel, and cobalt were found to be significantly lower in patients with alcoholic liver cirrhosis compared to the control group. The serum concentration of cadmium was significantly higher in patients with advanced alcoholic liver cirrhosis compared to the control group. We hypothesize that disorders of metabolism of heavy metals seem to be the outcome of impaired digestion and absorption, which are common in cirrhosis, improper diet, environmental and occupational exposure. PMID:27304961

  11. Heavy metal concentrations in a lichen of Mt. Rainier and Olympic National Parks, Washington, USA

    SciTech Connect

    Frenzel, R.W.; Witmer, G.W.; Starkey, E.E. )

    1990-01-01

    It is commonly assumed that the larger National Parks in the United States are pristine places which can provide baseline environmental conditions for comparisons with more developed areas. However, recently it has been recognized that many National Pars are threatened by atmospheric pollution. Until 1985, a copper smelter at Tacoma, Washington, 50 km northwest of Mount Rainier National Park, Washington emitted 30 tons of lead annually, along with high levels of arsenic and other metals. Other nearby sources of airborne heavy metals include a coal-fired generating plant at Centralia, 80 km west of the Park, and automobiles within the Seattle-Tacoma metropolitan area 50-100 km to the northwest. Heavy metals are a potential threat because they may effect ecosystems by decreasing nutrient cycling rates and impairing overall productivity. The objective of this study was to test the hypothesis that an arboreal lichen (Alectoria sarmentosa) within Mt. Rainier National Park contained elevated levels of heavy metals from these sources. This lichen species was chosen because it is common throughout forested areas of the region. Olympic National Park was selected as an experimental control area because it is located on the relatively undeveloped Olympic Penisula west of Seattle-Tacoma.

  12. Ecological implications of heavy metal concentrations in the sediments of Burullus Lagoon of Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Chen, Zhongyuan; Salem, Alaa; Xu, Zhuang; Zhang, Weiguo

    2010-02-01

    This paper examines the spatial and temporal distribution of heavy metals (Fe, Al, Cu, Zn, Mn, Cd, Pb and Ni) from three short sediment cores collected from Burullus lagoon of the Nile delta, Egypt. 210Pb and 137Cs measurement is applied to understand sedimentation rate and related chronology. Remarkably low isotopic activities and intensive bioturbation in the lagoonal sediments rendered age determination difficult. Samples with detectable 137Cs in the upper core sediments together with sediment lithology could help infer a sedimentation rate of about 2.0 mm yr -1, thereby indicating post-dam (after 1964) sedimentation of the upper 10-cm core sediments. Our results demonstrate that most heavy metals in the surficial sediments after normalization to Al decrease seaward, showing a function of distance to the sewerage outlet on the inland lake coast. Also, there is an upwardly increasing trend of normalized heavy metals, especially in the upper 10-cm core sediments. Relevancy analysis has identified Mn, Pb and Cd as the diagnostic heavy metals in Burullus lagoon, most likely derived from Tanta and Kafrelsheihk, the major downtowns in the central Nile delta plain, from where wastewaters are directly discharging into the lake via canal networks. Although Burullus lagoon is presently least affected by pollution as compared to other major lagoons of the Nile delta, the increasing quantities of diagnostic metals, especially Mn, are extremely toxic, as they are potentially linked to the risks of digestive issues and pancreatic cancer reportedly. The situation calls for a rational planning for sewerage treatment in the protected Burullus coast.

  13. Diversity and Distribution of Heavy Metal-Resistant Bacteria in Polluted Sediments of the Araça Bay, São Sebastião (SP), and the Relationship Between Heavy Metals and Organic Matter Concentrations.

    PubMed

    Zampieri, Bruna Del Busso; Pinto, Aline Bartelochi; Schultz, Leonardo; de Oliveira, Marcos Antonio; de Oliveira, Ana Julia Fernandes Cardoso

    2016-10-01

    Heavy metals influence the population size, diversity, and metabolic activity of bacteria. In turn, bacteria can develop heavy metal resistance mechanisms, and this can be used in bioremediation of contaminated areas. The purpose of the present study was to understand how heavy metals concentration influence on diversity and distribution of heavy metal-resistant bacteria in Araça Bay, São Sebastião, on the São Paulo coast of Brazil. The hypothesis is that activities that contribute for heavy metal disposal and the increase of metals concentrations in environment can influence in density, diversity, and distribution of heavy metal-resistant bacteria. Only 12 % of the isolated bacteria were sensitive to all of the metals tested. We observed that the highest percentage of resistant strains were in areas closest to the São Sebastião channel, where port activity occurs and have bigger heavy metals concentrations. Bacterial isolated were most resistant to Cr, followed by Zn, Cd, and Cu. Few strains resisted to Cd levels greater than 200 mg L(-1). In respect to Cr, 36 % of the strains were able to grow in the presence of as much as 3200 mg L(-1). Few strains were able to grow at concentrations of Zn and Cu as high as 1600 mg L(-1), and none grew at the highest concentration of 3200 mg L(-1). Bacillus sp. was most frequently isolated and may be the dominant genus in heavy metal-polluted areas. Staphylococcus sp., Planococcus maritimus, and Vibrio aginolyticus were also isolated, suggesting their potential in bioremediation of contaminated sites.

  14. Filterable plasma concentration, glomerular filtration, tubular balance, and renal clearance of heavy metals and organic substances in metal workers

    SciTech Connect

    Araki, S.; Aono, H.; Yokoyama, K.; Murata, K.

    1986-07-01

    To estimate filterable plasma concentration (FPx), glomerular filtration, tubular balance, and renal clearance of heavy metals and organic substances, the authors examined the regressions of the 24-hr urinary excretion on glomerular filtration rate (GFR, 24-hr endogenous creatinine (Cn) clearance) in 19 gun-metal foundry workers with blood lead (Pb) concentrations of 25-59 micrograms/dl. It was estimated that the proportion of FPx to total plasma concentration was on average 15, 7, 3, 0.6, 0.06, and 0.008% for Pb, cadmium (Cd), manganese (Mn), zinc (Zn), chromium (Cr), and copper (Cu), respectively. The estimated FPx value was 2.8 X 10(2), 4, 0.08, and 2.8 X 10(4) micrograms/dl for hippuric acid (HA), delta-aminolevulinic acid (ALA), coproporphyrin (CP), and total urinary solutes (TUS), respectively. The estimated glomerular filtration was significantly greater than the zero level for all substances but inorganic mercury (Hg). Similarly, the estimated net tubular secretion was significantly greater than the zero level for Cr, Cu, and TUS; the net tubular reabsorption was significantly greater than the zero level for Pb, ALA, and CP. The renal clearance of ''filterable'' plasma substance was significantly greater than GFR for Cr, Cu, and TUS and was significantly smaller for Pb, ALA, and CP. Thus the renal excretory mechanisms of substances were classified into four major categories: glomerular filtration for Cd, Mn, Zn, HA, and Cn; glomerular filtration and net tubular secretion for Cr, Cu, and TUS; glomerular filtration and net tubular reabsorption for Pb, ALA, and CP; and no glomerular filtration, i.e., suspected tubular secretion, for Hg.

  15. Heavy metal pattern and solute concentration in soils along the oldest highway of the world--the AVUS Autobahn.

    PubMed

    Kluge, Björn; Wessolek, Gerd

    2012-11-01

    Highways and main roads are a potential source of contamination for the surrounding environment. High traffic rates result in elevated heavy metal concentrations in road runoff, soil and water seepage, which has attracted much attention in the recent past. Nonetheless, investigations of pollutants in roadside soils are still a subject of major interest due to the rapid development of traffic systems and increasing traffic all over the world. The accumulation of the heavy metals Pb, Cd, Cu and Zn in soils along the oldest federal highway of the world has been studied by sampling a roadside transect of 125 by 10 m. In addition, heavy metal concentrations of Pb, Cd, Zn, Cu, Ni and Cr in soil solutions from different distances (2.5, 5 and 10 m) from the hard shoulder of the highway and from three soil depths (10, 30, and 50 cm) were investigated. The results show that heavy metal concentrations are up to 20 times increased compared to the geochemical background levels and a reference site of 800-m distance from the roadside. Soil matrix concentrations in the topsoil (0-10 cm) mostly exceeded the precautionary values of the German Federal Soil Protection and Contamination Ordinance (BBodSchV). The concentrations of Cd, Pb and Zn in the soil matrix tended to decrease with distance from the roadside edge, whereas the concentrations in the soil solution increased at a distance of 10 m onwards due to a lower soil pH. Because of both high pH values and a high sorption capacity of the soils, soil solution concentrations seldom exceeded the trigger values of the German Federal Soil Protection and Contamination Ordinance (BBodSchV) for transferring soil solution to groundwater.

  16. Seasonal and Spatial Variations of Heavy Metals in Two Typical Chinese Rivers: Concentrations, Environmental Risks, and Possible Sources

    PubMed Central

    Yao, Hong; Qian, Xin; Gao, Hailong; Wang, Yulei; Xia, Bisheng

    2014-01-01

    Ten metals were analyzed in samples collected in three seasons (the dry season, the early rainy season, and the late rainy season) from two rivers in China. No observed toxic effect concentrations were used to estimate the risks. The possible sources of the metals in each season, and the dominant source(s) at each site, were assessed using principal components analysis. The metal concentrations in the area studied were found, using t-tests, to vary both seasonally and spatially (P = 0.05). The potential risks in different seasons decreased in the order: early rainy season > dry season > late rainy season, and Cd was the dominant contributor to the total risks associated with heavy metal pollution in the two rivers. The high population and industrial site densities in the Taihu basin have had negative influences on the two rivers. The river that is used as a source of drinking water (the Taipu River) had a low average level of risks caused by the metals. Metals accumulated in environmental media were the main possible sources in the dry season, and emissions from mechanical manufacturing enterprises were the main possible sources in the rainy season. The river in the industrial area (the Wusong River) had a moderate level of risk caused by the metals, and the main sources were industrial emissions. The seasonal and spatial distributions of the heavy metals mean that risk prevention and mitigation measures should be targeted taking these variations into account. PMID:25407421

  17. Seasonal and spatial variations of heavy metals in two typical Chinese rivers: concentrations, environmental risks, and possible sources.

    PubMed

    Yao, Hong; Qian, Xin; Gao, Hailong; Wang, Yulei; Xia, Bisheng

    2014-11-17

    Ten metals were analyzed in samples collected in three seasons (the dry season, the early rainy season, and the late rainy season) from two rivers in China. No observed toxic effect concentrations were used to estimate the risks. The possible sources of the metals in each season, and the dominant source(s) at each site, were assessed using principal components analysis. The metal concentrations in the area studied were found, using t-tests, to vary both seasonally and spatially (P = 0.05). The potential risks in different seasons decreased in the order: early rainy season > dry season > late rainy season, and Cd was the dominant contributor to the total risks associated with heavy metal pollution in the two rivers. The high population and industrial site densities in the Taihu basin have had negative influences on the two rivers. The river that is used as a source of drinking water (the Taipu River) had a low average level of risks caused by the metals. Metals accumulated in environmental media were the main possible sources in the dry season, and emissions from mechanical manufacturing enterprises were the main possible sources in the rainy season. The river in the industrial area (the Wusong River) had a moderate level of risk caused by the metals, and the main sources were industrial emissions. The seasonal and spatial distributions of the heavy metals mean that risk prevention and mitigation measures should be targeted taking these variations into account.

  18. Heavy metal and organochlorine compound concentrations in tissues of raccoons from east-central Michigan

    SciTech Connect

    Herbert, G.B.; Peterle, T.J. )

    1990-02-01

    Organochlorine (OC) pesticides and related compounds and heavy metals are persistent contaminants in the environment. Bioconcentration and biomagnification are well reported for organochlorine compounds. These compounds have a great potential for causing wildlife mortality or serious behavioral, reproductive, carcinogenic, teratogenic, and mutagenic effects, along with specific organ toxicity. The pervasive nature of toxic substances in the environment necessitates some knowledge for potential exposure of wildlife species. Without baseline values of contaminant loads for selected indicator species it is impossible to determine when abnormal or pathological conditions exist in wild populations. The purpose of this study was to provide baseline values for selected environmental contaminants in the raccoon (Procyon lotor), a potential indicator species for wildlife and to see if heavy metal accumulation was related to age or sex.

  19. Concentration of heavy metals in seawater and sediments from the northern Aegean Sea, Greece

    SciTech Connect

    Fytianos, K; Vasilikiotis, G.S.

    1983-01-01

    The aim of the study presented was to investigate the distribution of heavy metals in seawater and sediments in areas, which face increasing marine pollution problems, due to the industrialization and especially in the closed gulfs of Thermaikos and Kavala in north Aegean sea. The city of Thessaloniki with more than 1,200,000 inhabitants and the surrounding industrial area use Thermaikos Gulf as the final receiver for their liquid wastes. The Gulf of Thermaikos receives domestic, agricultural, industrial and natural runoff from a heavily populated and fairly industrialized area. The heavy metal contamination is mainly affected by industrial wastes from oil refinery, steel industry, a fertilizer plant and some other industries located in the industrial area, west of the city.

  20. Heavy metal concentrations in sediment cores from the northern Baltic Sea: declines over the last two decades.

    PubMed

    Vallius, Henry

    2014-02-15

    The Baltic Sea has received considerable loads of pollutants due to industrialization in Eastern Europe. Concern for the Baltic's ecological health eventually led to legislation and voluntary measures to limit pollution during the last decades of the 20th century. Heavy metal concentrations in open sea surface sediments reflected these steps to limit contaminant loads almost immediately, suggesting the possibility that the trend would continue in the ensuing years. Recent seafloor samples reveal that the declines have persisted over the past two decades. Currently, almost all heavy metal species have declined in surface sediments to levels approaching the safe limits for humans and the environment. Cadmium and mercury however remain at relatively high concentrations in many areas. Arsenic concentrations, which occur at safe levels within the Gulf of Finland persist at unacceptably high levels in surface sediments of the Bothnian Bay, and thus pose a potential threat to marine life in the area.

  1. Diffusive gradients in thin films (DGT) for the prediction of bioavailability of heavy metals in contaminated soils to earthworm (Eisenia foetida) and oral bioavailable concentrations.

    PubMed

    Bade, Rabindra; Oh, Sanghwa; Shin, Won Sik

    2012-02-01

    The applicability of diffusive gradients in thin-films (DGT) as a biomimic surrogate was investigated to determine the bioavailable heavy metal concentrations to earthworm (Eisenia foetida). The relationships between the amount of DGT and earthworm uptake; DGT uptake and the bioavailable concentrations of heavy metals in soils were evaluated. The one-compartment model for the dynamic uptake of heavy metals in the soil fitted well to both the earthworm (R(2)=0.641-0.990) and DGT (R(2)=0.473-0.998) uptake data. DGT uptake was linearly correlated with the total heavy metal concentrations in the soil (aqua regia), the bioavailable heavy metal concentrations estimated by fractions I+II of the standard measurements and testing (SM&T) and physiologically based extraction test (PBET, stomach+intestine). The coefficients of determination (R(2)) of DGT uptake vs. aqua regia were 0.433, 0.929 and 0.723; vs. SM&T fractions (I+II) were 0.901, 0.882 and 0.713 and vs. PBET (stomach+intestine) were 0.913, 0.850 and 0.649 for Pb, Zn and Cu, respectively. These results imply that DGT can be used as a biomimic surrogate for the earthworm uptake of heavy metals in contaminated soils as well as predict bioavailable concentrations of heavy metals estimated by SM&T (I+II) and PBET as a human oral bioavailable concentrations of heavy metals.

  2. Root Fungal Endophytes Enhance Heavy-Metal Stress Tolerance of Clethra barbinervis Growing Naturally at Mining Sites via Growth Enhancement, Promotion of Nutrient Uptake and Decrease of Heavy-Metal Concentration.

    PubMed

    Yamaji, Keiko; Watanabe, Yumiko; Masuya, Hayato; Shigeto, Arisa; Yui, Hiroshi; Haruma, Toshikatsu

    2016-01-01

    Clethra barbinervis Sieb. et Zucc. is a tree species that grows naturally at several mine sites and seems to be tolerant of high concentrations of heavy metals, such as Cu, Zn, and Pb. The purpose of this study is to clarify the mechanism(s) underlying this species' ability to tolerate the sites' severe heavy-metal pollution by considering C. barbinervis interaction with root fungal endophytes. We measured the heavy metal concentrations of root-zone soil, leaves, branches, and fine roots collected from mature C. barbinervis at Hitachi mine. We isolated fungal endophytes from surface-sterilized root segments, and we examined the growth, and heavy metal and nutrient absorption of C. barbinervis seedlings growing in sterilized mine soil with or without root fungal endophytes. Field analyses showed that C. barbinervis contained considerably high amounts of Cu, Zn, and Pb in fine roots and Zn in leaves. The fungi, Phialocephala fortinii, Rhizodermea veluwensis, and Rhizoscyphus sp. were frequently isolated as dominant fungal endophyte species. Inoculation of these root fungal endophytes to C. barbinervis seedlings growing in sterilized mine soil indicated that these fungi significantly enhanced the growth of C. barbinervis seedlings, increased K uptake in shoots and reduced the concentrations of Cu, Ni, Zn, Cd, and Pb in roots. Without root fungal endophytes, C. barbinervis could hardly grow under the heavy-metal contaminated condition, showing chlorosis, a symptom of heavy-metal toxicity. Our results indicate that the tree C. barbinervis can tolerate high heavy-metal concentrations due to the support of root fungal endophytes including P. fortinii, R. veluwensis, and Rhizoscyphus sp. via growth enhancement, K uptake promotion and decrease of heavy metal concentrations.

  3. Root Fungal Endophytes Enhance Heavy-Metal Stress Tolerance of Clethra barbinervis Growing Naturally at Mining Sites via Growth Enhancement, Promotion of Nutrient Uptake and Decrease of Heavy-Metal Concentration

    PubMed Central

    Shigeto, Arisa; Yui, Hiroshi; Haruma, Toshikatsu

    2016-01-01

    Clethra barbinervis Sieb. et Zucc. is a tree species that grows naturally at several mine sites and seems to be tolerant of high concentrations of heavy metals, such as Cu, Zn, and Pb. The purpose of this study is to clarify the mechanism(s) underlying this species’ ability to tolerate the sites’ severe heavy-metal pollution by considering C. barbinervis interaction with root fungal endophytes. We measured the heavy metal concentrations of root-zone soil, leaves, branches, and fine roots collected from mature C. barbinervis at Hitachi mine. We isolated fungal endophytes from surface-sterilized root segments, and we examined the growth, and heavy metal and nutrient absorption of C. barbinervis seedlings growing in sterilized mine soil with or without root fungal endophytes. Field analyses showed that C. barbinervis contained considerably high amounts of Cu, Zn, and Pb in fine roots and Zn in leaves. The fungi, Phialocephala fortinii, Rhizodermea veluwensis, and Rhizoscyphus sp. were frequently isolated as dominant fungal endophyte species. Inoculation of these root fungal endophytes to C. barbinervis seedlings growing in sterilized mine soil indicated that these fungi significantly enhanced the growth of C. barbinervis seedlings, increased K uptake in shoots and reduced the concentrations of Cu, Ni, Zn, Cd, and Pb in roots. Without root fungal endophytes, C. barbinervis could hardly grow under the heavy-metal contaminated condition, showing chlorosis, a symptom of heavy-metal toxicity. Our results indicate that the tree C. barbinervis can tolerate high heavy-metal concentrations due to the support of root fungal endophytes including P. fortinii, R. veluwensis, and Rhizoscyphus sp. via growth enhancement, K uptake promotion and decrease of heavy metal concentrations. PMID:28030648

  4. Comparative study of heavy metals concentration in topsoil of urban green space and agricultural land uses.

    PubMed

    Mirzaei, Rouhollah; Teymourzade, Safiye; Sakizadeh, Mohamad; Ghorbani, Hadi

    2015-12-01

    The main objective of this study was to determine the concentration of cadmium, chromium, copper, nickel, lead, and zinc in surface soils of two land uses including agricultural and urban green space in Semnan Province, Iran. For this purpose, the soil samples of 27 urban green space and 47 agricultural fields were collected and analyzed. The correlation coefficients, analysis of variance, principal component analysis, cluster analysis, and geoaccumulation index were utilized to compare the mean values in the two land uses and pinpoint the possible sources of contamination in the study area. The average contents of Cd, Cu, Cr, Ni, Pb, and Zn in green space soils were 0.1, 24.9, 78.7, 28.2, 22.1, and 82.1 mg/kg, respectively, while the mean concentrations of Cd, Cu, Cr, Ni, Pb, and Zn in agricultural soils were 0.3, 24.3, 83.7, 33.3, 18.1, and 80.4 mg/kg, respectively. The mean concentrations of lead, copper, and zinc were higher in urban green space in comparison with those of agricultural fields, while it was vice versa for chromium, cadmium, and nickel. In general, significant, but weak, correlations were observed between Zn with Pb (r = 0.53) and Cu (r = 0.61) and Ni with Cr (r = 0.55) and Cu(r = 0.51). The main sources of contamination turned out to be both natural and anthropogenic as the results of correlation coefficients, principal component analysis, and cluster analysis showed. That is to say, chromium and nickel had emanated from natural while the sources of cadmium, lead, and zinc could be attributed to anthropogenic activities. For the case of copper, both natural and anthropogenic activities were influential; however, the role of human activities was more effective. The results of contamination assessment showed that heavy metal contamination in agricultural land use was higher than green space indicating the role of human activities in this respect.

  5. Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium.

    PubMed

    Senesi, G S; Dell'Aglio, M; Gaudiuso, R; De Giacomo, A; Zaccone, C; De Pascale, O; Miano, T M; Capitelli, M

    2009-05-01

    Soil is unanimously considered as one of the most important sink of heavy metals released by human activities. Heavy metal analysis of natural and polluted soils is generally conducted by the use of atomic absorption spectroscopy (AAS) or inductively coupled plasma optical emission spectroscopy (ICP-OES) on adequately obtained soil extracts. Although in recent years the emergent technique of laser-induced breakdown spectroscopy (LIBS) has been applied widely and with increasing success for the qualitative and quantitative analyses of a number of heavy metals in soil matrices with relevant simplification of the conventional methodologies, the technique still requires further confirmation before it can be applied fully successfully in soil analyses. The main objective of this work was to demonstrate that new developments in LIBS technique are able to provide reliable qualitative and quantitative analytical evaluation of several heavy metals in soils, with special focus on the element chromium (Cr), and with reference to the concentrations measured by conventional ICP spectroscopy. The preliminary qualitative LIBS analysis of five soil samples and one sewage sludge sample has allowed the detection of a number of elements including Al, Ca, Cr, Cu, Fe, Mg, Mn, Pb, Si, Ti, V and Zn. Of these, a quantitative analysis was also possible for the elements Cr, Cu, Pb, V and Zn based on the obtained linearity of the calibration curves constructed for each heavy metal, i.e., the proportionality between the intensity of the LIBS emission peaks and the concentration of each heavy metal in the sample measured by ICP. In particular, a triplet of emission lines for Cr could be used for its quantitative measurement. The consistency of experiments made on various samples was supported by the same characteristics of the laser-induced plasma (LIP), i.e., the typical linear distribution confirming the existence of local thermodynamic equilibrium (LTE) condition, and similar excitation

  6. Heavy metal concentrations in litteral sediments from the Beagle Channel, Tierra del Fuego, Argentina.

    PubMed

    Amin, O; Ferrer, L; Marcovecchio, J

    1996-07-01

    For the first time the concentration of trace metals (Fe, Pb, Cu, Zn, Cd and total Hg) of sediments from the coastal zone of the Beagle Channel (Tierra del Fuego, in Southern Argentina) were measured. Atomic absorption spectrophotometry was utilized in order to determine the metal contents. The level of metals as observed in the sediments was recognized as the natural background, even though the use of normalization of lead, copper, and zinc to iron allowed the identification of the main sources of metal pollution for this environment. In order to develop future environmental monitoring programmes for the area of Ushuaia city and the Beagle Channel, the present results need to be considered.

  7. Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some "hotspots" remain in 2010.

    PubMed

    Harmens, H; Norris, D A; Sharps, K; Mills, G; Alber, R; Aleksiayenak, Y; Blum, O; Cucu-Man, S-M; Dam, M; De Temmerman, L; Ene, A; Fernández, J A; Martinez-Abaigar, J; Frontasyeva, M; Godzik, B; Jeran, Z; Lazo, P; Leblond, S; Liiv, S; Magnússon, S H; Maňkovská, B; Karlsson, G Pihl; Piispanen, J; Poikolainen, J; Santamaria, J M; Skudnik, M; Spiric, Z; Stafilov, T; Steinnes, E; Stihi, C; Suchara, I; Thöni, L; Todoran, R; Yurukova, L; Zechmeister, H G

    2015-05-01

    In recent decades, naturally growing mosses have been used successfully as biomonitors of atmospheric deposition of heavy metals and nitrogen. Since 1990, the European moss survey has been repeated at five-yearly intervals. In 2010, the lowest concentrations of metals and nitrogen in mosses were generally found in northern Europe, whereas the highest concentrations were observed in (south-)eastern Europe for metals and the central belt for nitrogen. Averaged across Europe, since 1990, the median concentration in mosses has declined the most for lead (77%), followed by vanadium (55%), cadmium (51%), chromium (43%), zinc (34%), nickel (33%), iron (27%), arsenic (21%, since 1995), mercury (14%, since 1995) and copper (11%). Between 2005 and 2010, the decline ranged from 6% for copper to 36% for lead; for nitrogen the decline was 5%. Despite the Europe-wide decline, no changes or increases have been observed between 2005 and 2010 in some (regions of) countries.

  8. Concentrations, spatial distribution, and risk assessment of soil heavy metals in a Zn-Pb mine district in southern China.

    PubMed

    Qi, Jianying; Zhang, Hailong; Li, Xiangping; Lu, Jian; Zhang, Gaosheng

    2016-07-01

    China is one of the largest producers and consumers of lead and zinc in the world. Lead and zinc mining and smelting can release hazardous heavy metals such as Cd, Pb, Zn, and As into soils, exerting health risks to human by chronic exposure. The concentrations of Cd, Zn, Pb, and As in soil samples collected from a Pb-Zn mining area with exploitation history of 60 years were investigated. Health risks of the heavy metals in soil were evaluated using US Environmental Protection Agency (US EPA) recommended method. A geo-statistical technique (Kriging) was used for the interpolation of heavy metals pollution and Hazard Index (HI). The results indicated that the long-term Pb/Zn mining activities caused the serious pollution in the local soil. The concentrations of Cd, As, Pb, and Zn in topsoil were 40.3 ± 6.3, 103.7 ± 37.3, 3518.4 ± 896.1, and 10,413 ± 2973.2 mg/kg dry weight, respectively. The spatial distribution of the four metals possessed similar patterns, with higher concentrations around Aayiken (AYK), Maseka (MSK), and Kuangshan (KS) area and more rapidly dropped concentrations at upwind direction than those at downwind direction. The main pollutions of Cd and Zn were found in the upper 60 cm, the Pb was found in the upper 40 cm, and the As was in the upper 20 cm. The mobility of metals in soil profile of study area was classed as Cd > Zn ≫ Pb > As. Results indicated that there was a higher health risk (child higher than adult) in the study area. Pb contributed to the highest Hazard Quotient (57.0 ~ 73.9 %) for the Hazard Index.

  9. Relationships between soil heavy metal concentration and mycorrhizal colonisation in Thymus polytrichus in northern England.

    PubMed

    Whitfield, L; Richards, A J; Rimmer, D L

    2004-02-01

    A study was conducted to establish whether the wild thyme [ Thymus polytrichus A. Kerner ex Borbás ssp. britannicus (Ronn.) Kerguelen (Lamiaceae)] growing in the metal-contaminated soils along the River South Tyne, United Kingdom, is colonised by arbuscular mycorrhizal (AM) fungi, and whether the degree of colonisation increases (perhaps suggesting increasing mycorrhizal dependence) or decreases (indicating possible inhibition of AM growth) with increasing degree of soil contamination. Seasonal changes in AM colonisation were also assessed. The AM fungal communities colonising T. polytrichus were also investigated, using the polymerase chain reaction with restriction fragment length polymorphism and sequencing of fungal DNA to establish whether AM species richness varied between sites, and whether fungal ecotypes specific to sites with different amounts of metal contamination could be identified. All plants examined were heavily colonised by AM fungi, and mean percentage root length colonised did not increase significantly with increasing soil metal contamination. However, AM vesicle abundance (percentage of mycorrhizal root length containing vesicles) at the most contaminated site was significantly greater than at the other sites. No significant seasonal variation in degree of colonisation or vesicle abundance was found. Glomus was the predominant AM genus detected at all sites. The number of AM genotypes colonising T. polytrichus roots was similar at all sites but, although some were common to all sites, certain strains appeared to be specific to either the most- or the least-contaminated site. This variation in species may account for the difference in vesicle abundance between sites. The consistently heavy AM colonisation of T. polytrichus found suggests that these fungi are not inhibited by soil heavy metals at these sites, and that the host derives some benefit from its AM symbiont.

  10. Assessment of Concentrations of Heavy Metals and Phthalates in Two Urban Rivers of the Northeast of Puerto Rico

    PubMed Central

    Ortiz-Colón, Ana I; Piñero-Santiago, Luis E; Rivera, Nilsa M; Sosa, María A

    2016-01-01

    Urbanization adjacent to rivers has increased in recent years and is considered a source of environmental contamination. The resulting increase in number of urban rivers in highly populated areas, such as the Caribbean island of Puerto Rico, has led to the appearance of synthetic as well as naturally occurring chemicals not previously observed nor regularly monitored in freshwater habitats. Some of these chemicals, such as heavy metals and plasticizers, have been shown to affect endocrine, respiratory, and nervous system function in animals and humans, even at relatively low concentrations. The purpose of this study was to measure concentrations of such emergent contaminants on rivers of urbanized areas on the northeast of Puerto Rico, as one element in the assessment of the impact of urbanism on water quality in these communities. To accomplish this, we used Inductively Coupled Plasma and Gas Chromatography Mass Spectrometry to measure amounts of heavy metals and phthalates, respectively, in superficial water of three rivers of Puerto Rico: Mameyes (non-urban), Río Piedras (urban river without a dam), and La Plata (urban river with a dam). The urban rivers had significantly higher concentrations of heavy metals arsenic, barium, cadmium, manganese, and antimony, when compared with the reference non-urban river. Manganese was the only metal found in concentrations higher than limits established by the EPA for drinking water. Of eight phthalates amenable to measurement with the chosen protocol and instrumentation, only dibutyl phthalate was detected, only in the La Plata river, and at concentrations ranging from 3 to 8 parts-per-billion. These findings suggest that urbanism close to rivers of Puerto Rico is likely having an impact on water quality and thus further study to identify the potential sources, as well as the inclusion of these emergent contaminants on the list of chemicals regularly monitored by government agencies is justified. PMID:27148470

  11. Assessment of Concentrations of Heavy Metals and Phthalates in Two Urban Rivers of the Northeast of Puerto Rico.

    PubMed

    Ortiz-Colón, Ana I; Piñero-Santiago, Luis E; Rivera, Nilsa M; Sosa, María A

    2016-03-20

    Urbanization adjacent to rivers has increased in recent years and is considered a source of environmental contamination. The resulting increase in number of urban rivers in highly populated areas, such as the Caribbean island of Puerto Rico, has led to the appearance of synthetic as well as naturally occurring chemicals not previously observed nor regularly monitored in freshwater habitats. Some of these chemicals, such as heavy metals and plasticizers, have been shown to affect endocrine, respiratory, and nervous system function in animals and humans, even at relatively low concentrations. The purpose of this study was to measure concentrations of such emergent contaminants on rivers of urbanized areas on the northeast of Puerto Rico, as one element in the assessment of the impact of urbanism on water quality in these communities. To accomplish this, we used Inductively Coupled Plasma and Gas Chromatography Mass Spectrometry to measure amounts of heavy metals and phthalates, respectively, in superficial water of three rivers of Puerto Rico: Mameyes (non-urban), Río Piedras (urban river without a dam), and La Plata (urban river with a dam). The urban rivers had significantly higher concentrations of heavy metals arsenic, barium, cadmium, manganese, and antimony, when compared with the reference non-urban river. Manganese was the only metal found in concentrations higher than limits established by the EPA for drinking water. Of eight phthalates amenable to measurement with the chosen protocol and instrumentation, only dibutyl phthalate was detected, only in the La Plata river, and at concentrations ranging from 3 to 8 parts-per-billion. These findings suggest that urbanism close to rivers of Puerto Rico is likely having an impact on water quality and thus further study to identify the potential sources, as well as the inclusion of these emergent contaminants on the list of chemicals regularly monitored by government agencies is justified.

  12. Ion beam methods to determine trace heavy metals concentrations and sources in urban airsheds

    NASA Astrophysics Data System (ADS)

    Cohen, David D.; Stelcer, Ed; Garton, David

    2002-05-01

    Unique data for Australia on the concentration of selected metals in fine particle ambient air pollution is presented for urban, industrial and rural sites along 300 km section of the eastern coast line of Australia around Sydney. IBA techniques were used to determine over 25 different chemical species in the air including, H, C, N, O, F, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, Se and Pb. This included many trace metals at concentrations around 1 ng/m 3 of air sampled.

  13. Evaluation of heavy metal concentrations of edible wild-grown mushrooms from China.

    PubMed

    Wang, Xuemei; Liu, Honggao; Zhang, Ji; Li, Tao; Wang, Yuanzhong

    2017-03-04

    The heavy metal contents (Co, Cu, Fe, Mn, Ni, and Zn) of eight species of wild edible mushrooms from China were determined. The analyses were performed using inductively coupled plasma atomic emission spectrophotometry after microwave digestion. The contents of Co, Cu, Fe, Mn, Ni, and Zn in caps of mushroom samples were 0.7-7.2, 16.2-70.4, 371-1315, 12.5-29.8, 7.1-58.5, and 77.8-187.4 mg kg(-1) dry matter (dm), respectively, while considerable differences were found to be 1.8-25.9, 9.8-36.3, 288-6762, 13.3-103.9, 5.9-78.7, and 38.7-118 mg kg(-1) dm for stipes. The results indicated that higher levels of Co, Fe, and Ni were found in the mushrooms samples analyzed. Zinc and manganese levels were similar to previous reports, whereas Cu was lower than literature values. Correlation analysis suggested that significant correlations were found between the minerals determined and the greatest amount of contamination is associated with Co, Mn, Ni, and Fe. The results of this study indicate that heavy metal contents in mushroom species are mainly related to the mineral resources of sampling sites.

  14. Effect on heavy metals concentration from vermiconversion of agro-waste mixed with landfill leachate.

    PubMed

    Azizi, Abu Bakar; Choy, May Yee; Noor, Zalina Mahmood; Noorlidah, Abdullah

    2015-04-01

    Spent Pleurotus sajor-caju compost mixed with livestock excreta, i.e. cow dung or goat manure, was contaminated with landfill leachate and vermiremediated in 75 days. Results showed an extreme decrease of heavy metals, i.e. Cd, Cr and Pb up to 99.81% removal as effect of vermiconversion process employing epigeic earthworms i.e. Lumbricus rubellus. In addition, there were increments of Cu and Zn from 15.01% to 85.63%, which was expected as non-accumulative in L. rubellus and secreted out as contained in vermicompost. This phenomenon is due to dual effects of heavy metal excretion period and mineralisation. Nonetheless, the increments were 50-fold below the limit set by EU and USA compost limits and the Malaysian Recommended Site Screening Levels for Contaminated Land (SSLs). Moreover, the vermicompost C:N ratio range is 20.65-22.93 and it can be an advantageous tool to revitalise insalubrious soil by acting as soil stabiliser or conditioner.

  15. Concentration of heavy metals in hair and skin of silver and red foxes (Vulpes vulpes).

    PubMed

    Filistowicz, Andrzej; Dobrzański, Zbigniew; Przysiecki, Piotr; Nowicki, Sławomir; Filistowicz, Aneta

    2011-11-01

    The structure of hair and levels of main chemical elements (C, N, O, S, Cl, Ca, P, Al, Na) in the external layer of hair of silver and red foxes (Vulpes vulpes) in a non-industrialised, typically agricultural region of middle-west Poland was assessed using a scanning microscope. Additionally, analysis of the accumulation of certain heavy metals (Cr, Cu, Ni, Pb and Zn) in hair (washed) and skin (non-tanned) of those foxes was conducted. Heavy metal levels were determined using a spectrophotometric method (ICP-OES), and correlations between these levels in hair and skin were calculated. The microscopic external (morphological) and internal structures (histological) of the hair of farm and wild foxes were not differentiated; however, the hair of farm foxes (external layer) contained higher amounts of C, Na, Al and P. A significantly higher Pb content was noted in non-tanned skin of wild foxes in comparison to farm ones. In the case of farm foxes, a significantly higher Zn content in hair and Zn and Cu in skin was observed in comparison to wild ones. Positive significant correlations between Cr and Ni content (r = 0.622) and Zn and Cu (r = 0.721) in fox skin were noted. A similar relationship between Cr content in hair and Ni in skin (r = 0.643) and between Zn in hair and skin (r = 0.595) was also observed.

  16. A comparison of heavy metal concentrations and health assessment in Asian clams Corbicula fluminea from Florida and North Carolina.

    PubMed

    Lewbart, Gregory A; Christian, Larry S; Harms, Craig A; Van Wettere, Arnaud J

    2010-06-01

    The Asian clam Corbicula fluminea was introduced into the United States in 1938 and has since become established in much of the country. This invasive species can compete with native bivalves and compromise industrial water supply systems and power plants. Numerous studies have examined bivalves as bioindicators. The purpose of this study was to compare the heavy metal concentrations of the hard and soft tissues of specimens from Florida and North Carolina and to assess the clams' health by microscopic examination of their soft tissues. Although the sample size was small, this study suggests that the Asian clams from the watersheds examined are healthy and that they accumulate lower levels of heavy metals than have been reported for clams from other, more polluted aquatic environments.

  17. Assessing of heavy metal concentrations in the tissues of Rutilus rutilus caspicus and Neogobius gorlap from Miankaleh international wetland.

    PubMed

    Alipour, Hossein; Pourkhabbaz, Alireza; Hassanpour, Mehdi

    2013-11-01

    The concentrations of four heavy metals (Pb, Cd, Ni and Cr) were measured in tissues of pelagic (Rutilus caspicus) and benthic (Neogobius gorlap) fishes from the Miankaleh international wetland. The maximum concentrations of Pb, Cd, Ni, and Cr (2.06, 1.20, 1.14 and 0.70 μg g(-1), respectively) were measured in the liver of N. gorlap, while the lowest concentrations were measured in muscle tissue collected from R. caspicus (Pb 0.67; Cd 0.25; Ni 0.21 and Cr 0.08 μg g(-1)). The mean concentrations of metals in liver of R. caspicus and N. gorlap followed a trend where Pb > Cd > Ni > Cr, whereas in R. caspicus and N. gorlap gills and N. gorlap muscle the following trend was observed Pb > Ni > Cd > Cr. The data of presented study show that the liver and gill tissues have higher metal concentrations than muscle and also the metal concentrations in tissues of N. gorlap (benthic) were higher in comparison with R. caspicus (pelagic).

  18. Organochlorine and heavy metal concentrations in blubber and liver tissue collected from Queensland (Australia) dugong (Dugong dugon).

    PubMed

    Haynes, David; Carter, Steve; Gaus, Caroline; Müller, Jochen; Dennison, William

    2005-01-01

    Tissue samples of liver and blubber were salvaged from fifty-three dugong (Dugong dugon) carcasses stranded along the Queensland coast between 1996 and 2000. Liver tissue was analysed for a range of heavy metals and blubber samples were analysed for organochlorine compounds. Metal concentrations were similar in male and female animals and were generally highest in mature animals. Liver concentrations of arsenic, chromium, iron, lead, manganese, mercury and nickel in a number of individual animals were elevated in comparison to concentrations previously reported in Australian dugong. Dieldrin, DDT (and its breakdown products) and/or heptachlor epoxide were detected in 59% of dugong blubber samples. In general, concentrations of organochlorines were similar to those reported in dugong 20 years earlier, and were low in comparison to concentrations recorded from marine mammal tissue collected elsewhere in the world. With the exception of lead, the extent of carcass decomposition, the presence of disease or evidence of animal starvation prior to death did not significantly affect dugong tissue concentrations of metals or organochlorines. The results of the study suggest that bioaccumulation of metals and organochlorine compounds (other than dioxins) does not represent a significant risk to Great Barrier Reef dugong populations, particularly in the context of other pressures associated with coastal development and other anthropogenic activities.

  19. Heavy metals and coal combustion

    SciTech Connect

    Danihelka, P.; Ochodek, T.; Noskievic, P.; Seidlerova, J.

    1998-07-01

    Combustion of coal may be an important source of heavy metals pollution. The distribution of heavy metals during combustion process has been studied in six power plants, where fuel, bottom ash, fly ash and emissions have been analyzed and the relative concentrations of heavy metals have been estimated. For the most volatile metals (arsenic, antimony, lead, and zinc), the redistribution process involving condensation on surface is probable. Some metals like manganese or chromium are concentrated rather in coarse particles. In such cases, no clear conclusion can be made and probably several mechanisms are involved, including mineral form of metal. Typical results of low chlorine coal (0.01--0.03% Cl) exhibit increasing concentration of volatile metals in the magnitude of around one order when going from bottom ash to emissions. Different results have been found in similar operation conditions in the case of high content of chlorine in coal (0.3% of Cl in coal). In this case, the concentration of metals in emissions is significantly higher and also nickel, copper and manganese concentrations increase. It seems to be probable that chlorine in the coal increases the redistribution of metals by volatile chlorides formation. At three operation condition (nominal output, 70% and 40% respectively) emission factors of heavy metals have been estimated for 35 MW stoker-fired boiler. Ba, Pb, Sb and Zn increased their emission factors and Cr and Mn decreased when output was decreased. Heavy metals pollution caused by emissions from combustion of coal may be decreased by fine particles removal, other possibilities (metals extraction from the coal, changes of condition in the flame) are rather limited.

  20. Heavy Metal Pumps in Plants

    SciTech Connect

    Harper, J.F.

    2000-10-01

    The long term goal of the funded research is to understand how heavy metals are taken up from the soil and translocated throughout the plant. The potential application of this research is to create plants with better heavy metal uptake systems and thereby improve the ability of these plants to help clean up toxic metals from soils. A rate limiting step is using plant for bioremediation is the normally poor capacity of plants to concentrate toxic metals. Our interest in metal ion transport systems includes those for essential mineral nutrients such as molybdenum, copper, iron, manganese, as well as toxic metals such as cerium, mercury, cesium, cadmium, arsenic and selenium. Understanding the pathways by which toxic metals accumulate in plants will enable the engineering of plants to exclude toxic metals and create healthier food sources, or to extract toxic metals from the soil as a strategy to clean up polluted lands and water.

  1. Interspecific variation in heavy metal body concentrations in Hong Kong marine invertebrates.

    PubMed

    Blackmore, G

    2001-01-01

    Accumulated body concentrations of cadmium, copper and zinc were investigated in 19 species of intertidal invertebrates (the barnacles Tetraclita squamosa, Capitulum mitella, Balanus amphitrite, Megabalanus volcano, the bivalves Saccostrea cucullata, Septifer virgatus and Brachidontes atratus, the chiton Acanthopleura japonica and the gastropods Cellana grata, Cellana toreuma, Patelloida saccharina, Patelloida pygmaea, Siphonaria japonica, Tegula argyrostoma, Lunella coronata, Monodonta labio, Nerita albicilla, Thais clavigera and Thais luteostoma) collected from a relatively unpolluted area in Hong Kong, i.e. two shores within the Cape d'Aguilar Marine Reserve. In general body metal concentrations could be explained by the accumulation strategy of the analysed organism and by physiological requirements for the essential metals, i.e. copper and zinc. Zinc concentrations were, therefore, greatest in the barnacles and the oyster S. cucullata. Copper concentrations were greatest in those gastropods containing the respiratory pigment haemocyanin and in S. cucullata. One species collected from the sheltered shore, i.e. T. luteostoma, had much higher copper body concentrations compared with exposed shore conspecifics and this may be attributed to a diet that was dominated by oysters, which have high copper body concentrations. In contrast to both copper and zinc, cadmium body concentrations showed little interspecific variation.

  2. Impact of sediment characteristics on the heavy metal concentration and their ecological risk level of surface sediments of Vaigai river, Tamilnadu, India.

    PubMed

    Paramasivam, K; Ramasamy, V; Suresh, G

    2015-02-25

    The distributions of the metals (Al, Fe, Mg, Cd, Cr, Cu, Ni, Pb and Zn) were measured for the surface sediments of the Vaigai river, Tamilnadu, India. These values are compared with different standard values to assess the level of toxicity of the heavy metals in the sediments. Risk indices (CF, PLI and PER) are also calculated to understand the level of toxicity of the metals. Multivariate statistical analyses (Pearson's correlation analysis, cluster analysis and factor analysis) are carried out to know the inter-relationship between sediment characteristics and the heavy metals. From this analysis, it is confirmed that the contents of clay and organic matter play an important role to raise the level of heavy metal contents as well as PLI and PER (level of toxicity). Heavy metal concentrations of the samples (after removing silt and clay fractions from bulk samples) show decrease in their concentrations and risk indices compared to the level of bulk samples.

  3. The concentration, source and potential human health risk of heavy metals in the commonly consumed foods in Bangladesh.

    PubMed

    Islam, Md Saiful; Ahmed, Md Kawser; Habibullah-Al-Mamun, Md; Raknuzzaman, Mohammad

    2015-12-01

    Seven food items, namely, meat, egg, fish, milk, vegetables, cereals and fruits were collected from Bogra district, Bangladesh to evaluate the levels of heavy metal and associated health risk to the adults and children. The samples were analyzed for the quantification of selected heavy metals (Cr, Ni, Cu, As, Cd and Pb) on inductively coupled plasma mass spectrometer followed by acid digestion. In general, the highest concentrations of the studied metals were detected in vegetables, cereals, and fruits. The range of Cr, Ni, Cu, As, Cd, and Pb in the foods were 0.058-10, 0.036-25, 0.045-40, 0.005-7.1, 0.001-5.5 and 0.005-13 mg/kg fw, respectively. Multivariate principal component analysis (PCA) revealed three major groups of the studied metals and showed significant anthropogenic contributions of the Ni, Cu, and As in foods. Health risk assessment was evaluated in terms of target hazard quotient and target carcinogenic risk (TR) which showed that the intake of some metals through foods were higher than the recommended values, consequently consumption of the foods may be associated with non-carcinogenic health risks. Nonetheless, elevated levels of As and Pb were also found to be associated with lifetime carcinogenic risk to the consumers.

  4. Concentrations of heavy metals in the food, faeces, adults, and empty cocoons of Neodiprion sertifer (Hymenoptera, diprionidae)

    SciTech Connect

    Helioevaara, K.; Vaeisaenen, R. Water and Environment Research Institute, Helsinki )

    1990-07-01

    Heavy metals have an adverse effect in polluted forest ecosystems situated in the vicinity of industrial plants and smelters, but little is known about their accumulation along food chains. In some studies, distinct accumulation has been observed from one trophic level to another, while in others no accumulation has been recorded. Insects can excrete heavy metals directly in the faeces, or avoid food containing high concentrations. They may also excrete these elements during metamorphosis in the larval skins including the gut epithelium, pupal remnants, cocoons, gall-walls, or in the droplet excreted by the imago just after hatching. Neodiprion sertifer (Geoffroy), the European pine sawfly, has mass-outbreaks at approximately ten-year intervals. It is a severe defoliator of Scots pine (Pinus sylvestries L.), usually exploiting only the previous years' needles. Eggs are laid in autumn, and the species overwinters at the egg stage in the needles. The aim of the present study was to analyze the proportion of copper, iron, nickel and cadmium in newly hatched adult insects, in their larval nutrition, faeces and empty cocoons. Larvae of N. sertifer were reared for this purpose on needles of varying heavy metal levels.

  5. Reproduction, mortality, and heavy metal concentrations in great blue herons from three colonies in Washington and Idaho

    USGS Publications Warehouse

    Blus, L.J.; Henny, C.J.; Anderson, A.; Fitzner, R.E.

    1985-01-01

    We collected eggs in nests, hatchlings and eggs with advanced embryos on the ground, and prefledgling young of Great Blue Herons (Ardea herodias) at three nesting colonies in Washington and Idaho. Intact fish were also collected on the ground at the Idaho colony. The Ft. Lewis colony near Puget Sound in Washington and the Lake Chatcolet colony in northern Idaho were located near areas extensively polluted with heavy metals from minning or smelting activities. The Hanford Reservation colony near Richland, Washington was located some distance from point sources of heavy metal pollution. Heavy metals in heron samples were generally low and were all below concentrations known to induce mortality or adversely affect reproductive success. The elevated copper in one of three prefledglings from Ft. Lewis paralleled that found in an occasional nestling of several species of birds in other studies; the significance of this relationship is unclear. Breeding herons apparently fed near their colonies in areas removed from the sites of heaviest contamination, but birds in the Lake Chatcolet colony were preying on fish containing as much as 6 mu-g/g lead.

  6. Assessment of particle and heavy-metal concentrations in the atmosphere around Bourne Chemicals at Welwyn Garden City

    SciTech Connect

    Davis, B.J.; Clayton, P.

    1985-01-01

    Concentrations of heavy metals in the ambient atmosphere were measured during a three month period at three sites around Bourne Chemicals works at Welwyn Garden City. The measurements were made using the Warren Spring Laboratory directional M-type sampler, which provided weekly samples taken both continuously and for periods when the wind was blowing from the direction of the works. Weekly ambient lead concentrations were found to be similar to annual average urban values found in a previous survey. In general, the weekly concentrations of lead in the continuous and the directionally orientated samples were very similar and all measured lead concentrations were less than 1.5 microgram/m/sup 3/. These results indicate that the contribution to the ambient lead concentrations measured in the atmosphere in the vicinity of the works during the period of the survey was not significant.

  7. Concentrations, diffusive fluxes and toxicity of heavy metals in pore water of the Fuyang River, Haihe Basin.

    PubMed

    Tang, Wenzhong; Duan, Shenghui; Shan, Baoqing; Zhang, Hong; Zhang, Wenqiang; Zhao, Yu; Zhang, Chao

    2016-05-01

    While the concentrations of heavy metals in pore water provide important information about their bioavailability, to date few studies have focused on this topic. In this study, pore water in river sediments collected from nine sampling sites (S1-S9) was examined to determine the concentrations, fluxes, and toxicity of heavy metals in the Fuyang River. The results showed that the average concentrations of Cr, Ni, Cu, As, Zn, and Pb in pore water were 17.06, 15.97, 20.93, 19.08, 43.72, and 0.56μgL(-1), respectively; these concentrations varied as the pore water depth increased. The diffusive fluxes of Cr, Ni, Cu, As, Zn, and Pb were in the following range: (-0.37) to 3.17, (-1.37) to 2.63, (-4.61) to 3.44, 0.17-6.02, (-180.26) to 7.51, and (-0.92) to (-0.29)μg(m(2)day)(-1), respectively. There was a potential risk of toxicity from Cu to aquatic organisms, as indicated by a value of the Interstitial Water Criteria Toxic Units that exceeded 1.0. Values of the Nemeraw Index were 2.06, 0.48, 0.11, 0.20, 1.11, 1.03, 0.99, 0.88, and 0.89 from S1 to S9, respectively. Only S1 was moderately polluted by heavy metals in pore water.

  8. Heavy metals and coal combustion

    SciTech Connect

    Danihelka, P.; Ochodek, T.; Noskievic, P.; Seidlerova, J.

    1998-04-01

    Combustion of coal may be an important source of heavy metals pollution. The distribution of heavy metals during combustion process has been studied in six power plants, where fuel, bottom ash, fly ash and emissions have been analysed and the relative concentrations of heavy metals have been estimated. For the most volatile metals (arsenic, antimony, lead, and zinc), the redistribution process involving condensation on surface is probable. Some metals like manganese or chromium are concentrated rather in coarse particles. In such cases, no clear conclusion can be made and probably several mechanisms are involved, including mineral form of metal. Typical results of low chlorine coal (0.01-0.03% Cl) exhibit increasing concentration of volatile metals in the magnitude of around one order when going from bottom ash to emissions. Different results have been found in similar operation conditions in the case of high content of chlorine in coal (0.3 % of Cl in coal). In this case, the concentration of metals in emissions is significantly higher and also nickel, copper and manganese concentrations increase. It seems to be probable that chlorine in the coal increases the redistribution of metals by volatile chlorides formation.

  9. Total and available heavy metal concentrations in soils of the Thriassio plain (Greece) and assessment of soil pollution indexes.

    PubMed

    Massas, Ioannis; Kalivas, Dionisios; Ehaliotis, Constantions; Gasparatos, Dionisios

    2013-08-01

    The Thriassio plain is located 25 km west of Athens city, the capital of Greece. Two major towns (Elefsina and Aspropyrgos), heavy industry plants, medium to large-scale manufacturing, logistics plants, and agriculture comprise the main land uses of the studied area. The aim of the present study was to measure the total and available concentrations of Cr, Zn, Ni, Pb, Co, Mn, Ba, Cu, and Fe in the top soils of the plain, and to asses soil contamination by these metals by using the geoaccumulation index (I geo), the enrichment factor (EF), and the availability ratio (AR) as soil pollution indexes. Soil samples were collected from 90 sampling sites, and aqua regia and DTPA extractions were carried out to determine total and available metal forms, respectively. Median total Cr, Zn, Ni, Pb, Co, Mn, Ba, Cu, and Fe concentrations were 78, 155, 81, 112, 24, 321, 834, 38, and 16 × 10(3) mg kg(-1), respectively. The available fractions showed much lower values with medians of 0.4, 5.6, 1.7, 6.9, 0.8, 5.7, 19.8, 2.1, and 2.9 mg kg(-1). Though median total metal concentrations are not considered as particularly high, the I geo and the EF values indicate moderate to heavy soil enrichment. For certain metals such as Cr, Ni, Cu, and Ba, the different distribution patterns between the EFs and the ARs suggest different origin of the total and the available metal forms. The evaluation of the EF and AR data sets for the soils of the two towns further supports the argument that the EFs can well demonstrate the long-term history of soil pollution and that the ARs can adequately portray the recent history of soil pollution.

  10. Heavy metal concentrations in the small intestine of red fox (Vulpes vulpes) with and without Echinococcus multilocularis infection.

    PubMed

    Brožová, Adela; Jankovská, Ivana; Miholová, Daniela; Scháňková, Štěpánka; Truněčková, Jana; Langrová, Iva; Kudrnáčová, Marie; Vadlejch, Jaroslav

    2015-02-01

    Heavy metal (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) levels in red fox small intestine samples with or without Echinococcus multilocularis infection were studied. The red foxes were taken from the open countryside of northwest Bohemia (CR). Red foxes with E. multilocularis infection had lower levels of toxic metals (Cd, Pb); cadmium levels in infected foxes (0.0052 mg/kg) were twice as low as in uninfected foxes (0.0106 mg/kg). This was the same case for lead: 0.0288 mg/kg infected red foxes (inf.) and 0.0413 mg/kg uninfected (uninf.). Conversely, red foxes with E. multilocularis infection yielded higher concentrations in comparison to their uninfected counterparts: Cr (0.0087 mg/kg uninf. and 0.0116 mg/kg inf.), Cu (0.2677 mg/kg uninf. and 0.3205 mg/kg inf.), Fe (6.46 mg/kg uninf. and 10.89 mg/kg inf.), Mn (0.1966 mg/kg uninf. and 0.2029 mg/kg inf.), Ni (0.0415 mg/kg uninf. and 0.064 mg/kg inf.) and Zn (16.71 mg/kg uninf. and 20.25 mg/kg inf). This could support the hypothesis that tapeworms are able to absorb toxic heavy metals from the host body into their tissues, as well as to modify other element concentrations in the host body.

  11. Concentrations of Heavy Metals in Commercially Important Oysters from Goa, Central-West Coast of India.

    PubMed

    Shenai-Tirodkar, Prachi S; Gauns, Mangesh U; Ansari, Zakir A

    2016-12-01

    The major beds of oyster along the central-west coast of India are exposed to different anthropogenic activities and are severely exploited for human consumption. In this viewpoint, tissues of oyster Crassostrea madrasensis, C. gryphoides and Saccostrea cucullata were analyzed for Cu, Ni, Cd and Pb concentrations (dry weight) from Chicalim Bay, Nerul Creek and Chapora Bay in pre-monsoon, monsoon and post-monsoon seasons. A higher concentration of Cu (134.4-2167.9 mg kg(-1)) and Cd (7.1-88.5 mg kg(-1)) was found, which is greater than the recommended limits in all the three species (and sites). Moreover, significant (p < 0.05) variations were observed for all the metals concentrations among the species, seasons and sites. The high concentrations of Cd and Cu in tissues of edible oyster pose a threat to human health. Therefore, continuous monitoring, people awareness and a stringent government policy should be implemented to mitigate the metal pollution along the studied sites.

  12. Simultaneous determination of trace heavy metals in ambient aerosols by inductively coupled plasma atomic emission spectrometry after pre-concentration with sodium diethyldithiocarbamate.

    PubMed

    Talebi, S M; Malekiha, M

    2008-07-01

    The simultaneous determination of heavy metals associated with airborne particulate matter in the atmosphere of the city Isfahan (Iran) was performed by inductively coupled plasma atomic emission spectrometry (ICP-AES) after pre-concentration with sodium diethyldithiocarbamate. The preconcentration procedure developed found instrumental to determine the trace heavy metals associated with ambient aerosols collected at a short sampling period or collected from rural areas where the concentrations of these metals are much less than those in urban areas. Several samples were analyzed by both flame atomic absorption spectrometry (FAAS) as a conventional method and the proposed method. The results obtained by the two methods were found in good agreement. The method was applied to the determination of atmospheric level of heavy metals in rural area and also for study of variation in levels of heavy metals in urban atmosphere during the days and nights.

  13. Heavy metals concentration in edible fishes from coastal region of Kalpakkam, southeastern part of India.

    PubMed

    Biswas, Sudeepta; Prabhu, R Krishna; Hussain, K Jahir; Selvanayagam, M; Satpathy, Kamala Kanta

    2012-08-01

    Concentrations of Cu, Mn, Zn, Fe, Cr, and Pb were estimated using ICP-MS in nine commercially important and locally consumed fish species (Sarda orientalis, Scomberomorus commerson, Rastrelliger kanagurta, Sardinella longiceps, Paraplagusia bilineata, Cynoglossus lida, Cynoglossus macrostomus, Lepturacanthus savala, and Siganus javus) collected from coastal waters of Kalpakkam, eastern part of India. Their concentration (μg g(-1)) in the examined fish species ranged as follows: Cu (0.8-6.5), Zn (14.3-27.9), Mn (0.5-8.8), Fe (17.6-117.0), Cr (0.24-1.78), and Pb (0.18-2.29). Concentrations of most of the metals in the fish species studied were found to be safe for human consumption barring Mn.

  14. The concentrations of radionuclides, heavy metals, and poloychlorinated biphenyls in field mice collected from regional background areas. Revision 3

    SciTech Connect

    Fresquez, Philip R.

    2016-01-21

    Field mice are effective indicators of contaminant presence. This paper reports the concentrations of various radionuclides, heavy metals, polychlorinated biphenyls, high explosives, perchlorate, and dioxin/furans in field mice (mostly deer mice) collected from regional background areas in northern New Mexico. These data, represented as the regional statistical reference level (the mean plus three standard deviations = 99% confidence level), are used to compare with data from field mice collected from areas potentially impacted by Laboratory operations, as per the Environmental Surveillance Program at Los Alamos National Laboratory.

  15. Biodegradation of high concentration phenol containing heavy metal ions by functional biofilm in bioelectro-reactor.

    PubMed

    Li, Xin-gang; Wang, Tao; Sun, Jin-sheng; Huang, Xin; Kong, Xiao-song

    2006-01-01

    Functional microorganisms to high concentration phenol containing Cr6+ and Pb2+ were cultured and biofilm was formed on polypropylene packings in bioelectro-reactor. It was found that the biodegradation capability of such biofilm to phenol changed with the applied voltage. Under the optimal electric field conditions (voltage of 3.0 V, electric field of strength 17.7 V/m and current density of 1.98 A/m2), biodegradation efficiency of phenol aof concentration of 1200 mg/L increased 33% compared to the instance without applying electric field. However, voltage had inverse effect on biodegradation, as microorganisms were killed under strong electric field. Voltage had little effect on heavy ions elimination. Higher absorption rate of Cr6+ and Pb2+ was observed when changing pH from acidic to neutral. The experiment results indicated that, after treatment, 10 L phenol of 2400 mg/L was biodegraded completely within 55 h and concentrations of Cr6+ and Pb2+ dropped to less than 1 mg/L within 12 h and 6 h, from initial values of 50 mg/L and 30 mg/L, respectively.

  16. Modeling the influence of environmental heterogeneity on heavy metal exposure concentrations for terrestrial vertebrates in river floodplains.

    PubMed

    Schipper, Aafke M; Loos, Mark; Ragas, Ad M J; Lopes, João P C; Nolte, Boris T; Wijnhoven, Sander; Leuven, Rob S E W

    2008-04-01

    To analyze the influence of environmental heterogeneity on heavy metal exposure concentrations for terrestrial vertebrates in river floodplains, a spatially explicit exposure model has been constructed (SpaCE-model: Spatially explicit cumulative exposure model). This model simulates the environmental use of individual organisms by selecting model cells to be foraged in within a multicelled, heterogeneous landscape. Exposure durations and exposure concentrations are calculated for the selected cells, whereby exposure concentrations are dependent on the availability and contaminant concentrations of different diet items in each cell. The model was applied to a selection of 10 terrestrial vertebrate species, including six small mammalian and four top predator species. It was parameterized for cadmium contamination in a 285-ha, embanked floodplain area along the Rhine River in The Netherlands. Simulations of 1,000 individuals for each species resulted in intraspecies variation in exposure concentrations of between 11 and 39%, with the smallest values generally corresponding to the species with the largest home ranges. Comparison of the model results with cadmium concentrations measured in four of the species from the study area showed that the predicted variation accounted for 12 to 16% of the variation in the measurements. This indicates that environmental heterogeneity governs a minor part of the variation in metal exposure concentrations that can actually be observed in river floodplains.

  17. Assessment of heavy metals concentrations in soil samples from the vicinity of busy roads: influence on Drosophila melanogaster life cycle.

    PubMed

    Massadeh, Adnan; Al-Momani, Fouad; Elbetieha, Ahmed

    2008-06-01

    An assessment of Cd, Cu, Pb, and Zn in 25 soil samples collected near busy roads in Irbid city, Jordan indicated contamination of these soil samples with different concentrations of 624, 1.243, 242, and 847 microg/g for Pb, Cd, Cu, and Zn, respectively. The survival percentage of Drosophila melanogaster third-instar larvae on synthetic medium containing these concentrations for the first generation shows a significant reduction in their growth and development or metamorphosis for most soil extracts. Moreover, there was a significant reduction in survival growth and development in the second generation. The survival percentages of the second generation at pupa stage was higher than the first generation, whereas at the adult stage, there was a lower survival percentage indicating some effects on metamorphosis caused by concentration of heavy metals on Drosophila melanogaster.

  18. Concentrations of heavy metals in sediment and organisms during a harmful algal bloom (HAB) at Kun Kaak Bay, Sonora, Mexico.

    PubMed

    García-Hernández, Jaqueline; García-Rico, Leticia; Jara-Marini, Martin E; Barraza-Guardado, Ramón; Hudson Weaver, Amy

    2005-07-01

    In early April 2003, fishermen from Kino Bay Sonora alerted us about a massive die-off of fish and mollusks occurring at Kun Kaak Bay. Phytoplankton samples taken on 17 May 2003 reported the presence of a harmful algal bloom composed of Chatonella marina, Chatonella cf. ovata, Gymnodinium catenatum and Gymnodinium sanguineum. On 22 of May, we collected samples of water, sediment and organisms at the affected area. Physicochemical parameters and nutrients were measured in water samples from different depths. Sediment and benthic organisms were analyzed for Cd, Cu, Zn, Pb and Hg. We found concentrations of heavy metals higher than background levels for this area. Cadmium and Lead concentrations in sediment from the HAB area were up to 6x greater than background levels and Cd in mollusks was 8x greater than regulations allow. A relationship between elevated Cd and Pb concentrations in sediment and the survival of toxic dinoflagellates is suspected.

  19. Concentrations and distribution of mercury and other heavy metals in surface sediments of the Yatsushiro Sea including Minamata Bay, Japan.

    PubMed

    Nakata, Haruhiko; Shimada, Hideaki; Yoshimoto, Maki; Narumi, Rika; Akimoto, Kazumi; Yamashita, Takayuki; Matsunaga, Tomoya; Nishimura, Keisuke; Tanaka, Masakazu; Hiraki, Kenju; Shimasaki, Hideyuki; Takikawa, Kiyoshi

    2008-01-01

    The concentrations and distribution of heavy metals, such as mercury, zinc, copper, lead, and iron in surface sediments from 234 stations of the Yatsushiro Sea including Minamata bay were investigated. High concentrations of mercury were found in sediments from Minamata bay and its vicinity, but the levels decreased gradually with distance from the bay. The concentrations of mercury in sediments decreased gradually from south to north of the Yatsushiro Sea. These imply the lack of movement of mercury from Minamata bay to the northern Yatsushiro Sea. The geographical profiles of zinc and copper were contrary to that found for mercury, indicating the presence of natural and anthropogenic sources of copper and zinc in the northern Yatsushiro Sea.

  20. Baseline concentrations of radionuclides and heavy metals in soils and vegetation around the DARHT facility: Construction phase (1997). Progress report

    SciTech Connect

    Fresquez, P.R.; Haagenstad, H.T.; Naranjo, L. Jr.

    1998-06-01

    As part of the Department of Energy`s Mitigation Action Plan for the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory (LANL), baseline concentrations of radionuclides ({sup 3}H, {sup 137}Cs, {sup 90}Sr, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, and {sup tot}U) and heavy metals (Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, and Tl) in soil, sediment, and vegetation (overstory and understory) around the DARHT facility during the construction phase in 1997 were determined. Most radionuclides and heavy metals in soils, sediments, and vegetation, with the exception of {sup 90}Sr in soils and sediments, were within upper (95%) limit background concentrations. Although the levels of {sup 90}Sr in soils and sediments around the DARHT facility were higher than background, they were below LANL screening action levels (<4.4 pCi g{sup {minus}1} dry) and are of no concern.

  1. Is there a relationship between tea intake and maternal whole blood heavy metal concentrations?

    PubMed Central

    Colapinto, Cynthia K; Arbuckle, Tye E; Dubois, Lise; Fraser, William

    2016-01-01

    The aim of this analysis was to examine the association between tea intake during pregnancy and maternal and infant metal exposures. Data from the Maternal-Infant Research on Environmental Chemicals (MIREC) Study, a pan-Canadian pregnancy cohort, were used. All participants with a gestational age of ⩾20 weeks (n=1954) with available biomarkers were included. Geometric means (GMs) for lead, arsenic, mercury, cadmium and manganese in maternal (first and third trimesters) and cord blood, as well as speciated arsenic in maternal urine in the first trimester, were calculated for participants who drank regular, green or herbal tea and for those who did not. Differences between groups were examined using chi-square tests. Adjusted least squares geometric means (LSGMs) were estimated by tea intake, controlling for factors such as country of birth, coffee intake and maternal smoking. Concentrations of all metals were above the limits of detection in most participants in the first trimester: lead (GM): 0.62 μg/dl), mercury (GM: 2.99 nmol/l); cadmium (GM 1.93 nmol/l), arsenic (GM 9.75 nmol/l) and manganese (GM 160.1 nmol/l). Adjusted LSGMs for lead in the first trimester were higher for tea drinkers than for those who were non-tea drinkers (LSGM 0.65 μg/dl, 95%CI: 0.62, 0.69 and 0.61 μg/dl, 95%CI: 0.59, 0.62), and there was evidence of a dose–response relationship for green and herbal tea. Those who consumed herbal tea in the third trimester had significantly higher third trimester maternal and cord blood lead concentrations than non-herbal tea drinkers. This study provides evidence of an association between blood lead concentrations and green or herbal tea consumption. However, the GM blood lead concentrations of the highest tea consumers were still less than 1 μg/dl and within the normal range of blood lead concentrations in the Canadian population. PMID:26732378

  2. Heavy metal accumulation in Diplodus annularis, Liza aurata, and Solea vulgaris relevant to their concentration in water and sediment from the southwestern Mediterranean (coast of Sfax).

    PubMed

    Ben Salem, Zohra; Ayadi, Habib

    2016-07-01

    The concentrations of heavy metals (Cd, Cu, Fe, Pb, Ni, and Zn) were measured in the liver, gills, and muscle of Solea vulgaris, Liza aurata, and Diplodus annularis, collected from the south coast of Sfax (Gabes Gulf, southwestern Mediterranean). The concentrations of heavy metals in water exhibited the following decreasing order (expressed in μg l(-1)): Fe > Ni > Zn > Cu > Pb > Cd whereas the trend is somewhat different in sediments (mg kg(-1) D.W.) Fe > Zn > Pb > Ni > Cu > Cd. The levels of heavy metals varied significantly among fish species and tissues. Heavy metal levels were found generally higher in the liver and gills than the muscle in all species. The liver was the target organ for Cd, Cu, Fe, Ni, and Zn accumulation. Nickel and lead, however, exhibited their highest concentrations in the gills. The three studied fishes showed a difference in metals accumulation decreasing in following order S. vulgaris > D. annularis > L. aurata. Solea vulgaris with the highest TFwater, TFsediment, and metal concentrations in tissues would be considered as a potential bio-indicator in the south coast of Sfax for the assessment of environmental pollution status. Comparative studies with Luza zone indicate considerable bioaccumulation of heavy metals (Pb and Zn) in the various tissues of fish samples of the south coast of Sfax.

  3. Heavy metal origin and concentration in the sediments of the Pointe à Pitre bay (guadeloupe—lesser antilles

    NASA Astrophysics Data System (ADS)

    Castaing, P.; Assor, R.; Jouanneau, J. M.; Weber, O.

    1986-12-01

    Sewage discharge (chiefly waste waters into the Pointe à Pitre bay originates from the neighboring developing town (60,000 inhabitants) A sampling campaign carried out in March 1984 permitted the assessment of both water and sediment quality in the bay, as well as the evaulation of heavy metal contents Industrial pollution appears insignificant whilst urban pollution dominates. Heavy metal contents (lead (Pb), zinc (Zn), copper (Cu)) are high in the sediments of the inner end of the bay and eastern bank, parallel to the urban agglomeration. This anthropogenic origin is accounted for by comparison of heavy metal contents with those prevailing in the terrestrial environment

  4. Some selected heavy metal concentrations in water, sediment, and oysters in the Er-Ren estuary, Taiwan: chemical fractions and the implications for biomonitoring.

    PubMed

    Chen, Yueh-Min; Li, Hong-Chun; Tsao, Tsung-Ming; Wang, Liaug-Chi; Chang, Yin

    2014-11-01

    Studies of heavy metal contamination and ecological risk in estuaries are an important emerging area of environmental science. However, there have been few detailed studies of heavy metal contamination that concern the spatial variation of heavy metal levels in water, sediment, and oyster tissue. Because of the effective uptake of heavy metals, cultured oysters are a cheap and effective subject for study. This study, conducts an experiment in the Er-Ren river to examine the biological uptake of heavy metals in farmed, cultured oysters. The distribution of copper, zinc, lead, cadmium, and arsenic concentrations in water, sediment, and oysters from the Er-Ren river is also evaluated. By sequential extraction of the sediments, the following order of mobilities is found for heavy metals Pb > Cd > As > Zn > Cu. The highest percentages of heavy metals are found in the residual phase. The mean uptake rates for young oysters are 7.24 mg kg(-1) day(-1) for Cu and 94.52 mg kg(-1) day(-1) for Zn, but that for adult oyster is 10.79 mg kg(-1) day(-1) for Cu and 137.24 mg kg(-1) day(-1) for Zn. With good policies and management, the establishment of cultured oyster frames in these contaminated tributaries and near shore environments is a potential method for removing Cu and Zn and protecting the coast.

  5. Heavy metal concentrations in surface sediments and Manila clams (Ruditapes philippinarum) from the Dalian coast, China after the Dalian port oil spill.

    PubMed

    Zhao, Liqiang; Yang, Feng; Yan, Xiwu; Huo, Zhongming; Zhang, Guofan

    2012-11-01

    We conducted an investigation of heavy metal concentrations in Manila clams (Ruditapes philippinarum) and surface sediments after the Dalian Port oil spill. Samples were collected from three mariculture zones (Jinshitan, Dalijia, and Pikou) along the Dalian coast. Heavy metal concentrations in R. philippinarum were consistent and ranked in decreasing order of Zn > Cu > As > Cr > Pb > Cd > Hg, while concentrations in surface sediments were ranked as Zn > Cr > Cu > Pb > As > Cd > Hg, respectively. Bioaccumulation of Zn, Cd, and Hg had obviously occurred in R. philippinarum. Statistically significant correlations (p < 0.05) between concentrations of Pb, Cd, and Hg in R. philippinarum and in surface sediments were observed. Except for Cr and As, heavy metal concentrations in R. philippinarum were well within the legal limits for human consumption.

  6. Baseline concentrations of radionuclides and heavy metals in soils and vegetation around the DARHT facility: Construction phase (1996)

    SciTech Connect

    Fresquez, P.R.; Haagenstad, H.T.; Naranjo, L. Jr.

    1997-04-01

    As part of the Department of Energy`s Mitigation Action Plan for the Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility at Los Alamos National Laboratory (LANL), baseline concentrations of radionuclides ({sup 3}H, {sup 137}Cs, {sup 90}Sr, {sup 238}Pu, {sup 239}Pu, {sup 241}Am, total U), and heavy metals (Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se and Tl) in soil, sediment, and vegetation (overstory and understory) around the DARHT facility during the construction phase in 1996 were determined. Also, U and Be concentrations in soil samples collected in 1993 from within the proposed DARHT facility area are reported. Most radionuclides in soils, sediments, and vegetation were within current background and/or long-term regional statistical reference levels.

  7. Assessment of arsenic and heavy metal concentrations in water and sediments of the Rio Grande at El Paso-Juarez metroplex region.

    PubMed

    Rios-Arana, J V; Walsh, E J; Gardea-Torresdey, J L

    2004-01-01

    The Rio Grande located along the US-Mexico border is affected by anthropogenic activities along its geographical course. Runoff and wind deposition of smelting residues may contribute to the pollution of the Rio Grande in the El Paso-Ciudad Juarez area. Few studies have addressed the presence or impacts of heavy metals or arsenic in this ecosystem. This study reports a survey of heavy metals (Cr, Cu, Cd, Ni, Pb, and Zn) and arsenic (As) in water and sediments of the Rio Grande collected from seven sites in the El Paso-Juarez region. Since water quality influences metal content in water, physical (temperature, flow and conductivity), and chemical (pH, dissolved oxygen, nitrates, alkalinity, and water hardness) parameters were measured at each site. Arsenic and heavy metal levels were determined using Inductively Couple Plasma (ICP) emission spectroscopy following EPA procedures. Zinc and lead were found as both total and dissolved metals in most of the samples, with concentrations of total recoverable metals reaching up to 105 and 70 microg/l, respectively. Most metals were found in sediment samples collected from four of seven sites. The highest Cu concentration (35 mg/l) was found at the American Dam site. Concentrations of metals found through this survey will be used as a reference for future studies in monitoring arsenic, heavy metals, and their impacts in the Rio Grande.

  8. Accumulation of heavy metals in the fish, Oreochromis niloticus and Poecilia latipinna and their concentration in water and sediment of dam lake of Wadi Namar, Saudi Arabia.

    PubMed

    Ahmad, Zubair; Al-Ghanim, Khalid A; Al-Balawi, Hmoud F Al-Kahem; Al-Misned, Fahad; Maboob, Shahid; Suliman, El-Amin M

    2015-01-01

    The present study reports the accumulation of heavy metals like Cu, Hg, Cd, Pb and Cr in different tissues viz. liver, kidney, gills and muscles of Oreochromisniloticus and Poecilia latipinna from two sites in dam lake of Wadi Namar. Water and sediment samples were also collected from two sites for heavy metal analysis. Metal concentration in water and sediment samples of both the sites were observed in the following order: Cu>Cr>Pb>Cd>Hg; however, their concentration was found to be more at site 2 as compared to site 1. The order of metal accumulation in different tissues of O. niloticus and P. latipinna was in the following order: Cu>Cr>Pb>Cd>Hg at both the sites, while liver accumulated maximum amounts of metals followed by kidney, gills and muscles. The results showed the site 2 was more polluted by metals than Site 1 and O. niloticus accumulated greater amount of metals than P. latipinna.

  9. Radionuclide and heavy metal concentrations in soil, vegetation, and fish collected around and within Tsicoma Lake in Santa Clara Canyon

    SciTech Connect

    Fresquez, P.R.; Armstrong, D.R.; Naranjo, L. Jr.

    1996-03-01

    Radionuclide ({sup 3}H, {sup 90}Sr, {sup 137}Cs, {sup 238}Pu, {sup 239}Pu, total U) and heavy metal (Ag, As, Ba, Be, Cd, Cr, Hg, Ni, Pb, Sb, Se, Tl) contents were determined in soil, vegetation (overstory and understory), and fish (rainbow trout) collected around and within Tsicoma Lake in Santa Clara Canyon in 1995. All heavy metal and most radionuclide contents around or within the lake, except for U in soil, vegetation, and fish, were within or just above upper limit background. Detectable levels (where the analytical result was greater than two times counting uncertainty) of U in soils, vegetation, and fish were found in slightly higher concentrations than in background samples. Overall, however, maximum total committed effective dose equivalent (CEDE)(95% confidence level)--based on consumption of 46 lb of fish--from Tsicoma Lake (0.066 mrem/y) was within the maximum total CEDE from the ingestion of fish from the Mescalero National Fish Hatchery (background)(0.113 mrem/y).

  10. Concentrations, bioaccumulation, and human health risk assessment of organochlorine pesticides and heavy metals in edible fish from Wuhan, China.

    PubMed

    Cui, Lili; Ge, Jing; Zhu, Yindi; Yang, Yuyi; Wang, Jun

    2015-10-01

    The objective of this study was to determine concentration and bioaccumulation of organochlorine pesticides and heavy metals in edible fish from Wuhan, China, in order to assess health risk to the human via fish consumption. Two edible fish species (Aristichthys nobilis and Hypophthalmichthys molitrix) were collected and analyzed for 11 organochlorine pesticides (OCPs) and eight heavy metals (HMs). Concentrations of ∑HCHs, ∑DDTs, and ∑OCPs in fish samples were in the range of 0.37-111.20, not detected (nd)-123.61, and 2.04-189.04 ng g(-1) (wet weight), respectively. Bioaccumulation factors (BAFs) of OCPs in bighead carp (A. nobilis) were higher than those in silver carp (H. molitrix). Concentrations of ∑HMs in bighead carp and silver carp were 352.48 and 345.20 mg kg(-1) (dw), respectively. Daily exposure of OCPs and HMs for consumers was estimated by comparing estimated daily intake (EDI) with different criteria. The results revealed that the EDIs in our study were all lower than those criteria. Target hazard quotient (THQ) and risk ratio (R) were used to evaluate non-carcinogenic and carcinogenic risks, respectively. As regard to non-carcinogenic effects of the contaminants, hazard quotients (THQ) of OCPs and HMs were both lower than 1.0, implying negligible non-carcinogenic risk via fish consumption in study area. Nevertheless, in view of carcinogenic effects of the contaminants, the total value of risk ratio (R) of OCPs was lower than the threshold of tolerable risk while the total value of risk ratio (R) of HMs was higher than the threshold of tolerable risk due to the high carcinogenic risk ratios of As and Cr, indicating high carcinogenic risks via fish consumption. The results demonstrated that HMs in edible fish from Wuhan, China, especially As and Cr required more attention than OCPs.

  11. Heavy metal concentrations in green-lipped mussels collected from Tolo Harbour and markets in Hong Kong and Shenzhen.

    PubMed

    Wong, C K; Cheung, R Y; Wong, M H

    2000-07-01

    Green-lipped mussels, Perna viridis, were collected from Kat O, Yim Tin Tsai, Ma Liu Shui and Tap Mun around Tolo Harbour and six local markets in Hong Kong (Aberdeen, Shau Kei Wan, Kowloon City, Mongkok, Yuen Long) and Shenzhen (Dongmun) between July 1994 and February 1995 and analysed for cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn). The metal concentrations of mussels collected from the study sites were Cd (0.45-1.44 microg/g), Cr (0.82-4.89 microg/g), Cu (6.02-23.99 microg/g), Ni (3.25-6.87 microg/g), Pb (2.02-4.36 microg/g) and Zn (90-135 microg/g), while those from the markets were Cd (0.27-1.44 microg/g), Cr (1.09-3.30 microg/g), Cu (9.05-17.8 microg/g), Ni (2.44-5.25 microg/g), Pb (1.17-5 microg/g) and Zn (51-103 microg/g). The metal concentrations were below the maximum permissible levels set by the Hong Kong Government. In addition, seasonal variation of metal accumulation in mussels was investigated in Yim Tin Tsai and Ma Liu Shui and a reduction in the total heavy metal concentrations during winter was noted. The non-carcinogenic hazard index of mussels collected from Tolo Harbour and from Hong Kong markets was between 0.46 and 1.36 compared with those from Shenzhen markets (0.85-1.46), which indicated a low but possible risk in consuming the mussels.

  12. [Concentrations and pollution assessment of soil heavy metals at different water-level altitudes in the draw-down areas of the Three Gorges Reservoir].

    PubMed

    Wang, Ye-Chun; Lei, Bo; Yang, San-Ming; Zhang, Sheng

    2012-02-01

    To investigate the effect of 175 m trial impounding (2008 and 2009) of the Three Gorges Reservoir on soil heavy metals, three draw-down areas with similar geological environment and history of land-use in Zhongxian County were chosen. Altogether 36 surface soil samples (including 0-10 cm and 10-20 cm soil layer) from water-level altitude of 160 m and 170 m were obtained, and their heavy metals concentrations (As, Cd, Cr, Cu, Ni, Pb and Zn) were measured by the X-ray fluorescence spectrometric method. Geoaccumulation index (I(geo)) and Håkanson potential ecological risk index were applied to assess the heavy metals pollution status and potential ecological risk, respectively. Results indicated that although the inundation period of 160 m was 224 d longer than that of 170 m, significant difference in concentrations of heavy metals were not found between the two water-level altitudes. Except for Cd, most of the heavy metals highly related with each other positively. According to the geoaccumulation index, the pollution extent of the heavy metals followed the order: As > Cd > Cu > Ni > Zn = Pb > Cr. The I(geo) value of As, Cd and Cu were 0.45, 0.39 and 0.06, respectively, indicating that the soil was only lightly polluted by these heavy metals. Håkanson single potential ecological risk index followed the order: Cd > As > Cu > Pb > Ni > Cr > Zn. Cd with E(i) values of 59.10, had a medium potential for ecological risk,while As, Cr, Cu, Pb, Ni and Zn only had a light potential. Consequently, although As, Cd and Cu were the major heavy metals with potential ecological risk for surface soil pollution in the draw-down areas in Zhongxian County, the Three Gorges Reservoir.

  13. Feasibility of estimating heavy metal concentrations in water column using hyperspectral data and partial least squares regression

    NASA Astrophysics Data System (ADS)

    Chen, Yiyun; Liu, Yaolin; Wang, Dun; Kong, XueSong; Zeng, Chen

    2009-10-01

    Mining and smelting often produce acidic wastes that can cause severe biogeochemical changes downstream from these mines. Dexing copper mine, as the largest open cast mine in China, is connected to Poyang Lake by Le An river. Water and spectra samples were taken from Le An River and two of its branches, and afterward the concentrations of Cd, Cu, Pb and Zn were measured in the lab. Different spectral pre-processing methods were applied to the spectra, including Savitzky-Golay spectral smoothing, SNV, first derivative, second derivative spectral transforming. On the purpose of estimating metal concentrations from differently pre-processed spectra, partial least squares regression was then used in model calibrations. For deciding the optimal number of PLS factors included in the PLS model, the model with the lowest root mean square error of validation is chosen. The coefficient of determination (R2v) between the predicted and the reference values from the test set are used as an evaluation mean. For estimating Pb concentration, R2v = 0.915, which is acceptable. For Cd concentration, R2v = 0.697 and 0.683 for Zn. PLS model seems to failed in estimating Cu concentration, for the best R2v for PLS model of Cu is lower than 0.5. From the aspects of spectral pre-processing methods, first derivative after Savitzky-Golay smoothing performs superior to others. In conclusion, PLS models based on carefully pre-processed hyperspectral data turn out to be a promising solution for detecting certain heavy metals concentrations in river.

  14. Monitoring heavy metal concentrations in leachates from a forest soil subjected to repeated applications of sewage sludge.

    PubMed

    Egiarte, G; Pinto, M; Ruíz-Romera, E; Camps Arbestain, M

    2008-12-01

    The aim of the study was to establish whether the repeated application of sewage sludge to an acid forest soil (Dystric Cambisol) would lead to short-term groundwater contamination. Sludge was applied at four loading rates (0, 2.4, 17 and 60 Mg ha(-1)) in two consecutive years and leachates were analysed. Heavy metal inputs to soils at the lowest dose were below EC regulations but, at higher doses, limits for Zn, Cd, Cr and Ni were exceeded. Repeated application of sludge at 60 Mg ha(-1) resulted in significantly (P<0.05) higher concentrations of Zn, Cd, Cr and Ni in the leachates than with other treatments. The drinking water standards for Cd and Ni were surpassed in all treatments. Control plots were contaminated by groundwater flow despite the existence of buffer zones between plots. This complicated interpretation of the results, highlighting the importance of careful design of this type of experiment.

  15. Yield, quality, and concentration of seven heavy metals in cabbage and broccoli grown in sewage sludge and chicken manure amended soil.

    PubMed

    Antonious, George F; Kochhar, Tejinder S; Coolong, Timothy

    2012-01-01

    The mobility of heavy metals from soil into the food chain and their subsequent bioaccumulation has increased the attention they receive as major environmental pollutants. The objectives of this investigation were to: i) study the impact of mixing native agricultural soil with municipal sewage sludge (SS) or chicken manure (CM) on yield and quality of cabbage and broccoli, ii) quantify the concentration of seven heavy metals (Cd, Cr, Mo, Cu, Zn, Pb, and Ni) in soil amended with SS or CM, and iii) determine bioavailability of heavy metals to cabbage leaves and broccoli heads at harvest. Analysis of the two soil amendments used in this investigation indicated that Cr, Ni, Cu, Zn, Mo, Cd, Pb, and organic matter content were significantly greater (P < 0.05) in premixed sewage sludge than premixed chicken manure. Total cabbage and broccoli yields obtained from SS and CM mixed soil were both greater than those obtained from no-mulch (bare) soil. Concentration of Ni in cabbage leaves of plants grown in soil amended with CM was low compared to plants grown in no-mulch soil. No significant differences were found in Cd and Pb accumulation between cabbage and broccoli. Concentrations of Ni, Cu, Zn, and Mo were greater in broccoli than cabbage. Total metals and plant available metals were also determined in the native and amended soils. Results indicated that the concentration of heavy metals in soils did not necessary reflect metals available to plants. Regardless of soil amendments, the overall bioaccumulation factor (BAF) of seven heavy metals in cabbage leaves and broccoli heads revealed that cabbage and broccoli were poor accumulators of Cr, Ni, Cu, Cd, and Pb (BAF <1), while BAF values were >1 for Zn and Mo. Elevated Ni and Mo bioaccumulation factor (BAF >1) of cabbage grown in chicken manure mixed soil is a characteristic that would be less favorable when cabbage is grown on sites having high concentrations of these two metals.

  16. [Interannual variation patterns of heavy metals concentrations in tree rings of Larix gmelinii near Xilin Lead-zinc Mine, Yichun of Northeast China].

    PubMed

    Hu, Shen; Wang, Xiao-Chun; Yang, Jin-Yan

    2013-06-01

    By using dendro-environmental methods, this paper measured and analyzed the variations of five heavy metals (Pb, Cd, Zn, Cu, and Mn) concentrations in the tree rings of Larix gmelinii near Xilin Lead-zinc Mine, Yichun of Northeast China. Among the test heavy metals, the Mn concentration in the tree rings was the highest, while the Cd concentration was the lowest. The Cd, Zn, and Cu concentrations in the tree rings near the ground (0.3 m high from the ground, D0.3) were significantly higher than those at breast height (1.3 m high from the ground, D1.3), while the Pb and Mn concentrations at the two heights had less difference. In 1987-2010, the Pb concentration in the tree rings had a slight increase, but the Cd, Zn, Cu, and Mn concentrations presented a decreasing trend. The Cd concentration decreased most obviously, while the Zn, Cu, and Mn concentrations decreased after an initial increase. With the increase of tree ring width, the Pb concentration decreased, while the Cd, Zn, Cu, and Mn concentrations were in adverse. The relationships between the Pb and other four heavy metals concentrations in the tree rings near the ground and at breast height had definite differences. Near the ground, the Pb concentration showed a significant positive correlation with the other four heavy metals concentrations, but at breast height, less correlation was observed, and even, the Cd concentration decreased significantly with increasing Pb concentration. The variations of the heavy metals concentrations in the L. gmelinii tree rings could be affected by the production and mining activities of Xilin Lead-zinc Mine, an thus, it would be possible to use the Pb concentration in the tree rings to reconstruct the mining his tory of the study area. At present, the Pb concentration in the tailing wastes has polluted the surrounding environments near Xilin Lead-zinc Mine. Therefore, countermeasures should be adopted to manage the heavy metals in tailing wastes if the Mine would be

  17. Prediction of Heavy Metal Uptake by Marsh Plants Based on Chemical Extraction of Heavy Metals from Dredged Material.

    DTIC Science & Technology

    1978-02-01

    A field and laboratory study was conducted to establish the extent of heavy metal absorption and uptake by marsh plant species from dredged material...emphasizes the need for a method to predict heavy metal availability from dredged material to plants. DTPA extraction of heavy metals gave the best correlations with actual heavy metal concentrations in marsh plants.

  18. Concentrations of persistent organic pollutants (POPs) and heavy metals in soil from San Luis Potosí, México.

    PubMed

    Perez-Vazquez, Francisco Javier; Flores-Ramirez, Rogelio; Ochoa-Martinez, Angeles Catalina; Orta-Garcia, Sandra Teresa; Hernandez-Castro, Berenice; Carrizalez-Yañez, Leticia; Pérez-Maldonado, Iván N

    2015-01-01

    The aim of this study was to assess the levels of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), p,p'-dichlorodiphenyltrichloroethane (DDT), p,p'-dichlorodiphenyldichloroethylene (DDE), and four heavy metals (arsenic, cadmium, lead, and mercury) in soil from the city of San Luis Potosí in Mexico. In order to confirm the presence of the previously mentioned compounds, outdoor surface soil samples were collected and analyzed by gas chromatography/mass spectrometer for PBDEs, PCBs, DDT, and DDE. Meanwhile, heavy metals were quantified using the atomic absorption spectrophotometry technique. The total PBDEs levels ranged from 5.0 to 134 μg/kg dry weight (dw), with a total mean PBDEs level of 22.0 ± 32.5 μg/kg dw (geometric mean ± standard deviation). For PCBs, the total mean level in the studied soil was 21.6 ± 24.7 μg/kg dw (range, concentration data for the occurrence of persistent organic pollutants (POPs) and four heavy metals in soil samples from the city of San Luis Potosí, Mexico, and considering that soil is an important pathway of exposure for people, a biomonitoring program for the surveillance of the general population in the city of San Luis Potosi is necessary.

  19. Dissolved heavy metal concentrations of the Kralkızı, Dicle and Batman dam reservoirs in the Tigris River basin, Turkey.

    PubMed

    Varol, Memet

    2013-10-01

    Water samples were collected at monthly intervals during 1 year of monitoring from Kralkızı, Dicle and Batman dam reservoirs in the Tigris River basin to assess the concentrations of dissolved heavy metals and to determine their spatial and seasonal variations. The results indicated that dissolved heavy metal concentrations in the reservoirs were very low, reflecting the natural background levels. The lowest total metal concentrations in the three dam reservoirs were detected at sampling sites close to the dam wall. However, the highest total concentrations were observed at sites, which are located at the entrance of the streams to the reservoirs. Fe, Cr and Ni were the most abundant elements in the reservoirs, whereas Cd and As were the less abundant. The mean concentrations of dissolved metals in the dam reservoirs never exceeded the maximum permitted concentrations established by EC (European Community), WHO and USEPA drinking water quality guidelines. All heavy metals showed significant seasonal variations. As, Cd, Cr, Cu, Fe, Ni and Pb displayed higher values in the dry season, while higher values for Zn in the wet season. Cluster analysis grouped all ten sampling sites into three clusters. Clusters 1 and 2, and cluster 3 corresponded to relatively low polluted and moderate polluted regions, respectively. PCA/FA demonstrated the dissolved metals in the dam reservoirs controlled by natural sources.

  20. Biomolecules for removal of heavy metal.

    PubMed

    Singh, Namita Ashish

    2017-02-23

    Heavy metals are natural constituents of the earth's crust, but some heavy metals like cadmium, lead, mercury, arsenic etc. are injurious to living organisms at higher concentration. Nowadays, anthropogenic activities have altered geochemical cycles and biochemical balance of heavy metals. Biomolecules are used nowadays for removal of heavy metals compared to other synthetic biosorbents due to their environmental friendly nature and cost effectiveness. The goal of this work is to review research work and patents related to adsorption through biomolecules like polysaccharides, polypeptides, lignin etc. and bio-sorption by biological material that are used for heavy metal removal. Biomolecules are cost effective and there have been significant progresses in the remediation of heavy metals but, still there are some problems that need to be rectified for its application at industrial processes.

  1. Persistent Organic Pollutants and Heavy Metal Concentrations in Soil from the Metropolitan Area of Monterrey, Nuevo Leon, Mexico.

    PubMed

    Orta-García, Sandra Teresa; Ochoa-Martinez, Angeles Catalina; Carrizalez-Yáñez, Leticia; Varela-Silva, José Antonio; Pérez-Vázquez, Francisco Javier; Pruneda-Álvarez, Lucia Guadalupe; Torres-Dosal, Arturo; Guzmán-Mar, Jorge Luis; Pérez-Maldonado, Iván N

    2016-04-01

    The purpose of this study was to assess the levels of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethane (DDE), and four heavy metals (arsenic, cadmium, and lead) in outdoor surface soils (50 samples) collected from the metropolitan area of Monterrey in Mexico. Total PBDEs levels ranged from 1.80 to 127 µg/kg, with mean total PBDEs level of 14.2 ± 21.5 µg/kg (geometric mean ± standard deviation). For PCBs, the mean total level in the studied soils was 23.5 ± 20.2 µg/kg (range 4.0-65.5 µg/kg). An important finding in our study was that all soil samples (100%) had detectable levels of the metabolite p,p'-DDE. Moreover, the mean total DDT level (∑p'p-DDT and p'p-DDE) was approximately 132 ± 175 µg/kg. The mean levels for arsenic, cadmium, and lead in soil were 5.30 ± 1.35 (range 1.55-7.85) mg/kg, 2.20 ± 1.20 (range 0.65-6.40) mg/kg, and 455 ± 204 (range 224-1230) mg/kg, respectively. Our study has several limitations, the most notable of which is the small sample of soils evaluated. However, this screening study provided concentration data for the occurrence of POPs and four heavy metals in soil from the metropolitan area of Monterrey, Nuevo Leon, Mexico, and taking into consideration that soil is an important pathway of exposure for people, a biomonitoring program for the surveillance of the general population in the metropolitan area of Monterrey, Nuevo Leon is deemed necessary.

  2. Physicochemical changes effected in activated sludge by the earthworm Eisenia foetida. [Concentration of heavy metals during sludge catabolism

    SciTech Connect

    Hartenstein, R.; Hartenstein, F.

    1981-09-01

    Measurements were made of some physicochemical changes effected in activated sludge by the earthworm Eisenia foetida following conversion of the sludge into wormcasts. Mineralization was accelerated 1.3-fold and 2% of the minerals were assimilated. The rate at which heavy metals were concentrated during sludge catabolism was also accelerated. Castings stabilized within 2 weeks, as indexed by respirometry. Nucleic acids, which can be used as an index of microbial biomass, were present at a greater concentration in the wormcasts than in the sludge, while the phenolic content, which may potentially serve as an index of humification, was less concentrated. Other changes included a reduction in pH and an increase in oxidation-reduction potential and cation exchange capacity. The major general effect of E. foetida on the physicochemical properties of activated sludge is to convert a material which has a relatively small surface/volume ratio into numerous particles with an overall large S/V ratio, thus accelerating decomposition, mineralization, drying, and preclusion of malodor.

  3. Heavy metal uptake of Geosiphon pyriforme

    NASA Astrophysics Data System (ADS)

    Scheloske, Stefan; Maetz, Mischa; Schüßler, Arthur

    2001-07-01

    Geosiphon pyriforme represents the only known endosymbiosis between a fungus, belonging to the arbuscular mycorrhizal (AM) fungi, and cyanobacteria (blue-green algae). Therefore we use Geosiphon as a model system for the widespread AM symbiosis and try to answer some basic questions regarding heavy metal uptake or resistance of AM fungi. We present quantitative micro-PIXE measurements of a set of heavy metals (Cu, Cd, Tl, Pb) taken up by Geosiphon-cells. The uptake is studied as a function of the metal concentration in the nutrient solution and of the time Geosiphon spent in the heavy metal enriched medium. The measured heavy metal concentrations range from several ppm to some hundred ppm. Also the influence of the heavy metal uptake on the nutrition transfer of other elements will be discussed.

  4. Spatial and temporal distribution of heavy metal concentrations in mussels (Mytilus edulis) from the Baie des Chaleurs, New Brunswick, Canada.

    PubMed

    Fraser, Marc; Surette, Céline; Vaillancourt, Cathy

    2011-06-01

    Previous studies on heavy metal contamination of the Baie des Chaleurs focus only on industrial centers and overlooked the ecosystem as a whole. To fill this gap, the objective of this study is to establish a baseline of the spatio-temporal distribution of heavy metals in mussels from the Baie des Chaleurs based on the ecosystem approach. Our results show, for the first time, a cadmium contamination in mussels across the south coast of the Baie des Chaleurs and not only in industrial centers. Our results also confirm previous studies showing heavy metal contamination of the Belledune area. This study demonstrates that the use of the ecosystemic approach is essential to obtain a comprehensive picture of environmental contamination in marine ecosystems.

  5. Comparison of toxic heavy metals concentration in medicinal plants and their respective branded herbal formulations commonly available in Khyber Pakhtunkhwa.

    PubMed

    Shah, Waheed Ali; Zakiullah; Khuda, Fazli; Khan, Faridullah; Saeed, Muhammad

    2016-07-01

    The present study was conducted on fifteen medicinal plants and their respective branded formulations, commonly used in Khyber Pakhtunkhwa, for the evaluation of toxic heavy metals. The purpose of the study was to assess the toxic profile of the crude medicinal plants with respect to the worldwide permissible limits of metal concentrations and to correlate it with their respective herbal formulations available on the market. Chromium (Cr), Copper (Cu), Lead (Pb), Manganese (Mn) and Nickel (Ni) content were evaluated using wet digestion and Atomic Absorption Spectrophotometry technique. The results exhibited that in 100% of the analyzed medicinal plants Cr and Ni are present in excess of the maximum limits, Cu and Pb in 73% and 60% respectively, while Mn is in the normal range. Likewise in the respective branded formulations Cr and Ni exceed the normal limit in 100% of the products, Cu and Pb in 27% and 20% of the products respectively, while Mn is in the normal range. It indicates that majority of people in Pakistan who frequently use herbal drugs in various forms are exposed to the hazardous elements, which may pose serious health effects. Regulatory measures should therefore be taken to protect the general public from their hazardous health effects.

  6. Heavy Metals Concentrations in top Soils of Urban Areas (Naples - Southern Italy) as an Indicator of Anthropogenic Origin.

    NASA Astrophysics Data System (ADS)

    Cicchella, D.; De Vivo, B.; Lima, A.; Somma, R.

    2001-12-01

    Heavy metals pollution, which mainly originates from automobile exhausts and industry, is a serious danger for human health. The source and extension of heavy metals pollution in the top soils has been studied extensively in the past 30 years. The role of the soil processes in accumulating or mobilising metals is very important in environmental science due to the central position of the soil in the hydrological cycle and ecosystem. Concentrations of heavy metals in top soils, collected in green areas and public parks in metropolitan Naples area have been determined to provide information on specific emission sources. In addition to toxic metals, such as Pb, As, Cd, Cr and others, we have investigated the top soils as well for Pt group elements (PGEs), because since 1993 it is mandatory within EC for all new petrol driven motor vehicles to be equipped with Pt/Pd/Rh catalytic converter. In Italy this law has come into effect in 1998, but still is allowed to old vehicles use lead gasoline, though now the big majority of cars is equipped with Pt/Pd/Rh catalytic converters. Emission of abraded fragments of catalytic converters in vehicle exhausts will certainly determine environmental contamination with Pt group elements (PGEs), since many Pt complexes are highly cytotoxic and, in small dose, are strong allergens and potent sensitiser. The metropolitan area of Naples due to intense human activities and vehicles traffic is an interesting area to be monitored in order to check the pollution state of the soils. The geology of the area is prevalently represented by volcanics, erupted from the Upper Pleistocene to Recent by Mt. Somma-Vesuvius on the east and the Campi Flegrei fields on the west. To compile multi-element geochemical maps baseline we have sampled in situ and transported top soil for a total of 200 samples. The survey have been carried at about 200 sites covering an area of about 120 Km2, with a grid of 0.5 x 0.5 km in the highly urbanised area and 1 km x 1 km

  7. Coal combustion and heavy metals pollution

    SciTech Connect

    Danihelka, P.; Ochodek, T.; Borovec, K.

    1996-12-31

    Combustion of coal may be an important source of heavy metals pollution. The major environmental risks of heavy metals are connected to their toxicity and mobility in the environment. In the flame, heavy metals are re-distributed with respect to their volatility. Enrichment of fine particles by volatile metals is the most important mechanism for most of the metals. Nevertheless, Hg is emitted mainly in gaseous form and some metals like Mn are concentrated rather in coarse particles. Heavy metals pollution caused by emissions from combustion of coal may be decreased by fine particles removal; other possibilities (metals extraction from the coal, changes of condition in the flame) are limited. Fly ashes from the most important Czech power plants were examined with respect to the heavy metals content. The easily leachable elements with high volatility in the flame (arsenic, zinc, lead) were recognized as the most important fly ash pollutants. The average concentrations of these metals in fly ash were: bituminous coal 46{+-}18 ppm As, 196{+-}93 ppm Zn, 126{+-}46 ppm Pb; brown coal 283{+-}260 ppm As, 60{+-}28 ppm Pb and 212{+-}116 ppm Zn. When ESP and cyclones are used in series, fly ashes from ESP have higher concentration of volatile heavy metals, mainly Pb, Zn and As. Presence of chlorine in fuel increases the volatility of metals.

  8. Mathematical model and computer simulation on moving precipitate boundary electrophoresis for offline sample pre- concentration of heavy metal ion.

    PubMed

    Chang, Jiang; Zhang, Jie; Wang, Hou-Yu; Fan, Liu-Yin; Fan, Yin-Ping; Li, Shan; Cao, Cheng-Xi

    2013-01-15

    In this paper, a mathematical model and computer simulator were developed for offline sample pretreatment of heavy metal ion based on moving precipitate boundary (MPB) electrophoresis. The simulation indicates that (i) the program can easily accomplish numerical computations, such as the velocities of MPB and elution boundary (EB), and enrichment factor (EF) etc; (ii) the simulator can vividly imitate the dynamics of MPB, EB, precipitate zone, and precipitate-elution; and (iii) the software may simply optimized experimental conditions via the influence factors (e.g., voltage, hydroxyl, hydrogen and metal ions) on the EF. As a proof of concept, copper ion and its precipitate with definite blue color were, respectively chosen as mode heavy metal ion and alkaline precipitate for the relevant experiments of MPB-based sample preconcentration of heavy metal ion in large tube. All of the experimental results manifest the validity of developed mathematical model and the relevant simulation results. The model and simulator advanced herein are of clear significance to the optimization of experimental conditions and understanding of offline MPB- based sample condensation of heavy metal ion.

  9. Heavy metals extraction by microemulsions.

    PubMed

    Dantas, T N Castro; Dantas Neto, A A; Moura, M C P A; Barros Neto, E L; Forte, K R; Leite, R H L

    2003-06-01

    The objective of this study is the heavy metal extraction by microemulsion, using regional vegetable oils as surfactants. Firstly, the main parameters, which have influence in the microemulsion region, such as: nature of cosurfactant, influence of cosurfactant (C)/surfactant (S) ratio and salinity were studied, with the objective of choosing the best extraction system. The extraction/reextraction process by microemulsion consists of two stages. In the first one, the heavy metal ion present in the aqueous phase is extracted by the microemulsion. In a second step, the reextraction process occurs: the microemulsion phase, rich in metal, is acidified and the metal is recovered in a new aqueous phase, with higher concentration. The used system had the following parameters: surfactant-saponified coconut oil; cosurfactant-n-butanol; oil phase-kerosene; C/S ratio=4; salinity-2% (NaCl); temperature of 27+/-1 degrees C; water phase-aqueous solution that varied according to the heavy metal in study (Cr, Cu, Fe, Mn, Ni and Pb). A methodology of experimental planning was used (Scheffé Net) to study the behavior of the extraction in a chosen domain. The extraction was accomplished in one step and yielded extraction percentage higher than 98% for all metals. In the reextraction HCl-8M was used as reextraction agent and the influence of the pH and time were verified. This work showed the great efficiency of the microemulsion, indicating that it is possible to extract selectively the heavy metals from the aqueous phase.

  10. Concentrations of heavy metals and polycyclic aromatic hydrocarbons in needles of Masson pine (Pinus massoniana L.) growing nearby different industrial sources.

    PubMed

    Sun, Fangfang; Wen, Dazhi; Kuang, Yuanwen; Li, Jiong; Li, Jianli; Zuo, Weidong

    2010-01-01

    Emissions from industrial activities pose a serious threat to human health and impose the need for monitoring both inorganic and organic pollutants in industrial areas. We selected Masson pine (Pinus massoniana L.) as potential biomonitor and collected the current (C) and previous year (C+1) needles from three industrial sites dominated by petrochemical, ceramics manufacturing, and iron and steel smelting plants and one remote site to determine heavy metals (Cu, Cd, Pb, Zn, Cr, Ni and Co) and polycyclic aromatic hydrocarbons (PAHs) in unwashed and water-washed needles. Both unwashed and washed C+1 needles showed generally higher concentrations of heavy metals and PAHs than C needles, although the washed needles more clearly spotlighted the accumulation effect of PAHs over exposure time. Water-washing resulted in a significant decrease in needle PAH concentrations with more significant effects shown in C needles. By contrast, needle heavy metal concentrations were much less affected by washing. Although heavy metals and PAHs might differ in adsorption and uptake strategies, their higher concentrations in the needles at the industrial sites indicated conspicuous contamination due to industrial emissions there. The PAH distribution patterns in pine needles accorded with the real types of energy consumption in the study sites and were efficiently used for pinpointing local pollutant sources.

  11. Genes and quantitative trait loci (QTL) controlling trace element concentrations in perennial grasses grown on phytotoxic soil contaminated with heavy metals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial grasses cover diverse soils throughout the world, including sites contaminated with heavy metals, producing forages that must be safe for livestock and wildlife. Chromosome regions known as quantitative trait loci (QTLs) controlling forage mineral concentrations were mapped in a populatio...

  12. Determination of heavy metal (Zn, Pb, Cd and Cr) concentration in benthic fauna tissues collected from the southeast Caspian Sea, Iran.

    PubMed

    Saghali, Mahmood; Hoseini, Seyyed Morteza; Hosseini, Seyed Abbas; Baqraf, Rauf

    2014-01-01

    The aim of the present study was to determine zinc (Zn), chromium (Cr), cadmium (Cd) and lead (Pb) content of benthic fauna in the southeast coast of the Caspian Sea, where the major fish restocking programs are conducted. Seasonal sampling was performed in three sampling sites: north Miankaleh (NM), south Miankaleh (SM) and Gharesoo coast (GC). Results showed that sampling sites, sampling seasons and sampling sites × sampling seasons interaction had a significant effect on the heavy metal levels (p < 0.05). The yearly heavy metal concentration order was as follows: Zn > Pb > Cd > Cr. Yearly Pb levels of the NM site were significantly higher than the other sites. Also, yearly Cr levels of the SM site were significantly higher than site GC. Comparison of the benthos heavy metal levels with the available reference values suggests that the benthos tissues might be highly polluted which can intoxicate the fish feeding on them.

  13. Regional background concentrations of heavy metals (Cr, Co, Ni, Cu, Zn, Pb) in coastal sediments of the South Sea of Korea.

    PubMed

    Song, Yunho; Choi, Man Sik; Lee, Ji Youn; Jang, Dong Jun

    2014-06-01

    The background concentration (BC) of metals in coastal sediments may be a useful tool for assessing the extent of sediment contamination by human activities. This study presents an approach to establish BCs that are applicable at the regional scale, particularly for coastal areas with relatively tortuous coastlines and complex coastal geology and/or geomorphology like the South Sea of Korea. The approach is based on the sorption hypothesis for metal enrichment of coastal sediments and was verified using 33 core and 187 surface sediments. The concentrations of major and heavy metals, grain size parameters, organic carbon, and sedimentation rates were determined. Cs was selected as the most suitable geochemical normalizer to correct the grain-size effect. Non-contaminated samples from core sediments were selected according to the sedimentation rate, 32 types of profile pattern based on metal concentrations and metal/Cs ratios, and their variability in past sediments. Metal concentrations in the selected non-contaminated samples were well correlated with Cs, with a given Cs amounts in surface sediments corresponding to the lowest metal concentrations. This result supported the use of a procedure based on the sorption hypothesis, which was then used to synthesize all core samples and establish the regional BC of heavy metals in the coastal sediments. Linear regression equations between metal and Cs concentrations provided the following BCs of metals in coastal sediments in the South Sea of Korea: 70 (Cr), 13 (Co), 30 (Ni), 13 (Cu), 87 (Zn), and 23 (Pb)mg/kg at 8mg/kg of Cs (mean concentration of 393 sediments).

  14. Correlating concentrations of heavy metals in atmospheric deposition with respective accumulation in moss and natural surface soil for ecological land classes in Norway between 1990 and 2010.

    PubMed

    Nickel, Stefan; Hertel, Anne; Pesch, Roland; Schröder, Winfried; Steinnes, Eiliv; Uggerud, Hilde Thelle

    2015-06-01

    This study investigated whether statistical correlation of modeled atmospheric heavy metal deposition and respective accumulation in moss and natural surface soil varies across natural landscapes in Norway. Target metals were cadmium, lead, and mercury, and analyses were run between 1990 and 2010 on a 5-year interval. The landscape information was derived from the Ecological Land Classification of Europe. Correlations between concentration and respective deposition data were computed for each land class. The strongest correlations between heavy metal concentrations in atmospheric deposition and corresponding levels in moss and natural surface soil were observed for lead. Correlations for mercury were weaker compared to those calculated for cadmium and lead, indicating that atmospheric transport of mercury occurs at a larger spatial scale, while accumulation additionally seems to be influenced by factors operating on smaller scales. The correlation between concentrations in atmospheric deposition and moss is landscape-specific and metal-specific. The same holds true for the relations between heavy metal concentration in modeled atmospheric deposition and natural surface soil. The results of this investigation are in line with similar calculations from across Europe. They further confirm previous studies indicating that for Norway atmospheric transport is a main source of lead and cadmium accumulation in moss as well as in natural surface soil.

  15. [Concentration levels and spatial distribution of heavy metals in soil surrounding a municipal solid waste incineration plant (Shenzhen)].

    PubMed

    Wang, Jun-Jian; Zhao, Hong-Wei; Zhong, Xiu-Ping; Liu, Yang-Sheng; Zeng, Hui

    2011-01-01

    The municipal solid waste (MSW) incineration has been well known among key sources of heavy metal (HM) emission. To investigate the multivariate relationships and spatial distribution of HMs from this source, 9 HMs (Hg, As, Cd, Cr, Cu, Ni, Pb, Se and Zn) were analysed by multivariate statistical analysis in 80 representative soil samples including surface soils and subsurface soils around the Shenzhen Qingshuihe MSW Incineration Plant (MSWIP). Results show that, the concentrations of Hg, As, Cd, Cr, Cu, Ni, Pb, Se and Zn range 0.012-0.136, 0.23-75.89, not detected (ND)-1.17, 21.7-116.0, ND-61.1, ND-47.0, ND-133.0, ND-16.4 and 8.6-246.9 mg x kg(-1), respectively. No significant elevation of concentrations of HMs in soils is observed, compared with the natural background. Based on the hierarchical cluster and historical analysis, the spatial correlations of HMs have been changed by the impact of MSWIP. According to the similarity of concentration, the HMs can be divided into 3 categories: (1) Cu, Ni, Cr, Se, Zn, Pb; (2) As, Cd; (3) Hg. Factors analysis was also performed and shows that the HM distribution patterns are dominantly affected by 3 principal components: local biogeochemical characteristics (48.6% of variance), impact of the MSWIP (16.6% of variance) as well as topographical characteristics (13.2% of variance). Subsequently the 3 maps of factor scores are calculated and exhibited. This study favors to estimate the long-term effects of HM emission from MSWIP on surrounding soil environment and facilitate the local health risk assessment.

  16. Distribution and Normalization of Heavy Metal Concentrations in Mangrove and Lagoonal Sediments from Mazatlán Harbor (SE Gulf of California)

    NASA Astrophysics Data System (ADS)

    Soto-Jiménez, M. F.; Páez-Osuna, F.

    2001-09-01

    Concentrations of heavy metals, carbonates, organic carbon and granulometry were examined in sediments from 60 sites within Mazatlán Harbor and adjacent areas. Regional distribution had a strong (for Al, Fe, Li and Ni) and weak (for Cd, Co, Cr, Pb, V and Zn) seaward concentration gradient decreasing from the upper lagoon. The highest concentrations for most metals occurred in fine-grained sediments from Infiernillo Estuary, the upper lagoon and the industrial zone. In contrast, lower levels were usually found in the sandy sediments of the navigation channel, port entrance and an area associated with sewage outfall. Analysis of transects in mangrove and lagoonal sediments indicated that the amount of fine material and organic carbon increases towards the margins where mangrove sediments exist. While metal variations were not clearly observed in most of the metals examined; only Ni, V, Pb and Cu showed a slight tendency to increase towards the margins. Sometimes lagoonal sediments had redox and texture characteristics comparable to those from mangrove substrate, thus competing because of a similar capture capacity of metals. Metal data were normalized against Al and Li using a combination of normalization techniques (95% prediction intervals, regional anomalies and enrichment factor). It was found that Al and Li were good normalizers for most of the examined metals and they are important constituents of one or more of the major fine-grained heavy metal carrier(s) and adequately reflect the granulometric variability in the sediments of the study area.

  17. Environmental variability and heavy metal concentrations from five lagoons in the Ionian Sea (Amvrakikos Gulf, W Greece)

    PubMed Central

    Pavloudi, Christina; Kalantzi, Ioanna; Apostolaki, Eugenia T.; Chatzigeorgiou, Giorgos; Chatzinikolaou, Eva; Pafilis, Evangelos; Papageorgiou, Nafsika; Fanini, Lucia; Konstas, Spyridon; Fragopoulou, Nina; Arvanitidis, Christos

    2016-01-01

    Abstract Background Coastal lagoons are ecosystems of major importance as they host a number of species tolerant to disturbances and they are highly productive. Therefore, these ecosystems should be protected to ensure stability and resilience. The lagoons of Amvrakikos Gulf form one of the most important lagoonal complexes in Greece. The optimal ecological status of these lagoons is crucial for the well-being of the biodiversity and the economic prosperity of the local communities. Thus, monitoring of the area is necessary to detect possible sources of disturbance and restore stability. New information The environmental variables and heavy metals concentrations, from five lagoons of Amvrakikos Gulf were measured from seasonal samplings and compared to the findings of previous studies in the area, in order to check for possible sources of disturbance. The analysis, showed that i) the values of the abiotic parameters vary with time (season), space (lagoon) and with space over time; ii) the variability of the environmental factors and enrichment in certain elements is naturally induced and no source of contamination is detected in the lagoons. PMID:27932906

  18. Determination of radioactivity levels and heavy metal concentrations in seawater, sediment and anchovy (Engraulis encrasicolus) from the Black Sea in Rize, Turkey.

    PubMed

    Baltas, Hasan; Kiris, Erkan; Sirin, Murat

    2017-01-09

    Seawater, sediment and fish (anchovy) samples consumed in the Rize province of the Eastern Black Sea region of Turkey were collected from five different stations. The radioactivity levels ((226)Ra, (232)Th, (40)K and (137)Cs) were determined in all the samples using a high-purity germanium detector. While (226)Ra, (232)Th and (40)K radionuclides were detected in all samples, the radionuclide concentration of (137)Cs, except for the sediment samples (mean activity is 9±1.4Bqkg(-1)), was not detected for the seawater and fish samples. The total annual effective dose rates from the ingestion of these radionuclides for fish were calculated using the measured activity concentrations in radionuclides and their ingested dose conversion factor. Also, the concentrations of some heavy metals in all the samples were determined. The activity and heavy metal concentration values that were determined for the seawater, sediment and fish samples were compared among the locations themselves and with literature values.

  19. Arbuscular Mycorrhizal Fungi Can Benefit Heavy Metal Tolerance and Phytoremediation

    ERIC Educational Resources Information Center

    Forgy, David

    2012-01-01

    Sites contaminated by heavy metals, such as industrial waste sites, create unwelcoming environments for plant growth. Heavy metals can have a wide range of toxic effects such as replacing essential elements or disrupting enzyme function. While some heavy metals are essential to plant nutrition at low concentrations, high concentrations of any…

  20. Heavy metal concentrations and biomarkers of oxidative stress in native mussels (Mytilus edulis chilensis) from Beagle Channel coast (Tierra del Fuego, Argentina).

    PubMed

    Duarte, Claudia A; Giarratano, Erica; Amin, Oscar A; Comoglio, Laura I

    2011-08-01

    The aim of this study was to evaluate the usefulness of oxidative stress biomarkers of pollution in native mussels Mytilus edulis chilensis from the Beagle Channel. Spatial and seasonal variations of catalase, glutathione-S-transferase and lipid peroxidation in gills and digestive gland were analyzed in relation to environmental parameters, heavy metals in sediment and in tissue. Four sites with anthropogenic impact and a control site were selected and monitored during the four seasons of 2007. We found significant differences among sites in concentrations of dissolved nutrients and heavy metals in sediments, with the highest values recorded at sites with anthropogenic pressure. Different patterns were observed between concentrations of metals in tissues and in sediments suggesting differences in bioavailability. There were also significant differences in biomarker responses among sites, despite the strong seasonal variability. Our results showed relatively moderate levels of pollution in the study area as a result of urban influences.

  1. Assessment of physico-chemical qualities and heavy metal concentrations of Umgeni and Umdloti Rivers in Durban, South Africa.

    PubMed

    Olaniran, Ademola O; Naicker, Kovashnee; Pillay, Balakrishna

    2014-04-01

    We assessed the effects of seasonal dynamics on the physico-chemical qualities and heavy metals concentrations of the Umgeni and Umdloti Rivers in Durban, South Africa. Water samples were taken from nine different sampling points and analysed for the following parameters; temperature, pH, turbidity, electrical conductivity (EC), biological oxygen demand (BOD5), chemical oxygen demand (COD), phosphate (PO4(2-)), nitrate (NO3(2-)), ammonium (NH4(+)), sulphate (SO4(2-)), lead (Pb(2+)), mercury (Hg(2+)), cadmium (Cd(2+)), aluminium (Al(3+)), and copper (Cu(2+)) using standard methods. The data showed variations it terms of the seasonal fluctuations and sampling regime as follows: temperature 12-26.5 °C; pH 5.96-8.45; turbidity 0.53-18.8 NTU; EC 15.8-5180 mS m(-1); BOD5 0.60-7.32 mg L(-1); COD 10.5-72.9 mg L(-1); PO4 (2-) < 500-2,460 μg L(-1); NO3 (2-) <0.05-4.21 mg L(-1); NH4 (+) < 0.5-1.22 mg L(-1); SO4 (2-) 3.90-2,762 mg L(-1); Pb(2+) 0.023-0.135 mg L(-1); Hg(2+) 0.0122-0.1231 mg L(-1) Cd(2+) 0.068-0.416 mg L(-1); Al(3+) 0.037-1.875 mg L(-1), and Cu(2+)0.006-0.144 mg L(-1). The concentrations of most of the investigated parameters exceeded the recommended limit of the South African Guidelines and World Health Organization tolerance limits for freshwater quality. We conclude that these water bodies are potentially hazardous to public health and this highlights the need for implementation of improved management strategies of these river catchments for continued sustainability.

  2. Heavy metal concentrations in Squilla mantis (L.) (Crustacea, Stomatopoda) from the gulf of cadiz evaluation of the impact of the Aznalcollar mining spill.

    PubMed

    Blasco, J; Arias, A M; Sáenz, V

    2002-04-01

    After the Aznalcóllar mining spill (25th April 1998), considerable social concern arose amongst the inhabitants of the SW Iberian Peninsula concerning the consumption of local seafood. Squilla mantis was collected in four regions of the Gulf of Cádiz with a dual objective: to analyze the heavy metal levels for human consumption and as part of biomonitoring program. Heavy metal concentrations (Fe, Mn, Zn, Cu, Cd and Pb) were analyzed in soft tissues and cuticle. The highest values were found in the soft tissues for zinc, copper and cadmium and in the cuticle for iron, manganese and lead. The mean copper concentration in the soft tissue, corresponding to the edible part, was 27.1 microg x g(-1) wet weight. Approximately 80% of stations showed values higher than 20 microg x g(-1) wet weight of copper, the Spanish legal limit for the concentration of this metal in the crustacean for human consumption. For Zn and Cu no significant differences were found between regions, probably related with the capacity for regulation of S. mantis. The highest values found for copper in the Gulf of Cádiz compared to other areas is likely to be related with contamination from terrestrial mining activities (copper and pyrites) in the region, dating back to the times of Tartessians and Romans, rather than the effects of mining spill which was shown not to create any significant increases in heavy metal concentrations of organisms of the Guadalquivir River or the adjacent coastal area.

  3. Heavy Metal Stars

    NASA Astrophysics Data System (ADS)

    2001-08-01

    thereafter dies as a burnt-out, dim "white dwarf" . Stars with masses between 0.8 and 8 times that of the Sun are believed to evolve to AGB-stars and to end their lives in this particular way. At the same time, they produce beautiful nebulae like the "Dumbbell Nebula". Our Sun will also end its active life this way, probably some 7 billion years from now. Low-metallicity stars The detailed understanding of the "s-process" and, in particular, where it takes place inside an AGB-star, has been an area of active research for many years. Current state-of-the-art computer-based stellar models predict that the s-process should be particularly efficient in stars with a comparatively low content of metals ("metal-poor" or "low-metallicity" stars) . In such stars - which were born at an early epoch in our Galaxy and are therefore quite old - the "s-process" is expected to effectively produce atomic nuclei all the way up to the most heavy, stable ones, like Lead (atomic number 82 [2]) and Bismuth (atomic number 83) - since more neutrons are available per Iron-seed nucleus when there are fewer such nuclei (as compared to the solar composition). Once these elements have been produced, the addition of more s-process neutrons to those nuclei will only produce unstable elements that decay back to Lead. Hence, when the s-process is sufficiently efficient, atomic nuclei with atomic numbers around 82, that is, the Lead region, just continue to pile up. As a result, when compared to stars with "normal" abundances of the metals (like our Sun), those low-metallicity stars should thus exhibit a significant "over-abundance" of those very heavy elements with respect to Iron, in particular of Lead . Looking for Lead Direct observational support for this theoretical prediction would be the discovery of some low-metallicity stars with a high abundance of Lead. At the same time, the measured amounts of all the heavy elements and their relative abundances would provide very valuable information and

  4. The effect of heavy metal concentration and soil pH on the abundance of selected microbial groups within ArcelorMittal Poland steelworks in Cracow.

    PubMed

    Lenart, Anna; Wolny-Koładka, Katarzyna

    2013-01-01

    The present study aimed to identify the effect of heavy metal concentration and soil pH on the abundance of the selected soil microorganisms within ArcelorMittal Poland steelworks, Cracow. The analysis included 20 soil samples, where the concentration of Fe, Zn, Cd, Pb, Ni, Cu, Mn, Cr and soil pH were evaluated together with the number of mesophilic bacteria, fungi, Actinomycetes and Azotobacter spp. In the majority of samples soil pH was alkaline. The limits of heavy metals exceeded in eight samples and in one sample, the concentration of Zn exceeded 31-fold. Chromium was the element which most significantly limited the number of bacteria and Actinomycetes.

  5. Effect of heavy metals on soil fungi

    NASA Astrophysics Data System (ADS)

    Sosak-Świderska, Bożena

    2010-05-01

    Fungi constitute a high proportion of the microbial biomass in soil.Being widespread in soil their large surface-to-volume ratio and high metabolic activity, fungi can contribute significantly to heavy metal dynamics in soil. At neutral pH heavy metals in soils tend to be immobilized to precipitation and/or absorption to cation exchange sites of clay minerals. In the acidic soils, metals are more mobile and enter food webs easier. Microbial production of acids and chelating agents can mobilize to toxic metals. Mobilization is often by uptake and intracellular accumulation of the heavy metlas, and in this way, the bioavailability of metals towards other organisms can be more reduced. Fungi were isolated from soils from Upper Silesia in Poland and belonged to widespread genera: Aspergillus, Cladosporium, Penicillium and Trichoderma. Fungi from different taxonomic groups differ greatly in their tolerance to heavy metals. This could be related to their wall structure and chemistry as well as biochemical and physiological characteristics of fungi. Localization of metals in fungal cells was studied using electron microscopy analysis. Metal biosorption in the cell wall can be complex as melanin granules. Fungal vacuoles have an important role in the regulation of the cytosolic concentration of metal ions, and may contribute to heavy metal tolerance.In polluted soils with heavy metals, fungal species composition can be changed and their physiological activity can be changed, too.

  6. Chemical characteristics of dissolved organic matter (DOM) in relation to heavy metal concentrations in soil water from boreal peatlands after clear-cut harvesting

    NASA Astrophysics Data System (ADS)

    Kiikkilä, O.; Nieminen, T.; Starr, M.; Ukonmaanaho, L.

    2012-04-01

    Boreal peatlands form an important terrestrial carbon reserve and are a major source of dissolved organic matter (DOM) to surface waters, particularly when disturbed through forestry practices such as draining or timber harvesting. Heavy metals show a strong affinity to organic matter and so, along with DOM, heavy metals can be mobilized and transported from the soil to surface waters and sediments where they may become toxic to aquatic organisms and pass up the food chain. The complexation of heavy metals with DOM can be expected to be related and determined by the chemical characteristics of DOM and oxidation/reducing conditions in the peat. We extracted interstitial water from peat samples and determined the concentrations of dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and Al, Cu, Zn and Fe in various fractions of DOM isolated by adsorption properties (XAD-8 fractionation) and molecular-weight (ultrafiltration). The peat samples were taken from 0-30 and 30-50 cm depth in drained peatland catchments two years after whole-tree or stem-only clear-cut harvesting (Scots pine or Norway spruce) had been carried out. The samples from the upper layer had been subject to alternating saturation/aeration conditions while the deeper layer had been continuously under the water table. The fractionation of DOC and DON according to both adsorption properties and molecular-weight fractions clearly differed between the upper and lower peat layers. While the hydrophobic acid fraction contained proportionally more DOC and DON than the hydrophilic acid fraction in the upper peat layer the results were vice versa in the lower peat layer. High-molecular-weight compounds (> 100 kDa) were proportionally more abundant in the upper and low-molecular-weight compounds (< 1 kDa) in the lower peat layer. These differences are assumed to reflect differences in the aerobic/ anaerobic conditions and degree of decomposition between the two layers. The concentrations of Zn, Al

  7. Assessing the Variability of Heavy Metal Concentrations in Liquid-Solid Two-Phase and Related Environmental Risks in the Weihe River of Shaanxi Province, China.

    PubMed

    Song, Jinxi; Yang, Xiaogang; Zhang, Junlong; Long, Yongqing; Zhang, Yan; Zhang, Taifan

    2015-07-17

    Accurate estimation of the variability of heavy metals in river water and the hyporheic zone is crucial for pollution control and environmental management. The biotoxicities and potential ecological risks of heavy metals (Cu, Zn, Pb, Cd) in a solid-liquid two-phase system were estimated using the Geo-accumulation Index, Potential Ecological Risk Assessment and Quality Standard Index methods in the Weihe River of Shaanxi Province, China. Water and sediment samples were collected from five study sites during spring, summer and winter, 2013. The dominant species in the streambed sediments were chironomids and flutter earthworm, whose bioturbation mainly ranged from 0 to 20 cm. The concentrations of heavy metals in surface water and pore water varied obviously in spring and summer. The degrees of concentration of Cu and Cd in spring and summer were higher than the U.S. water quality Criteria Maximum Concentrations. Furthermore, the biotoxicities of Pb and Zn demonstrated season-spatial variations. The concentrations of Cu, Zn, Pb and Cd in spring and winter were significantly higher than those in summer, and the pollution levels also varied obviously in different layers of the sediments. Moreover, the pollution level of Cd was the most serious, as estimated by all three assessment methods.

  8. Assessing the Variability of Heavy Metal Concentrations in Liquid-Solid Two-Phase and Related Environmental Risks in the Weihe River of Shaanxi Province, China

    PubMed Central

    Song, Jinxi; Yang, Xiaogang; Zhang, Junlong; Long, Yongqing; Zhang, Yan; Zhang, Taifan

    2015-01-01

    Accurate estimation of the variability of heavy metals in river water and the hyporheic zone is crucial for pollution control and environmental management. The biotoxicities and potential ecological risks of heavy metals (Cu, Zn, Pb, Cd) in a solid-liquid two-phase system were estimated using the Geo-accumulation Index, Potential Ecological Risk Assessment and Quality Standard Index methods in the Weihe River of Shaanxi Province, China. Water and sediment samples were collected from five study sites during spring, summer and winter, 2013. The dominant species in the streambed sediments were chironomids and flutter earthworm, whose bioturbation mainly ranged from 0 to 20 cm. The concentrations of heavy metals in surface water and pore water varied obviously in spring and summer. The degrees of concentration of Cu and Cd in spring and summer were higher than the U.S. water quality Criteria Maximum Concentrations. Furthermore, the biotoxicities of Pb and Zn demonstrated season-spatial variations. The concentrations of Cu, Zn, Pb and Cd in spring and winter were significantly higher than those in summer, and the pollution levels also varied obviously in different layers of the sediments. Moreover, the pollution level of Cd was the most serious, as estimated by all three assessment methods. PMID:26193293

  9. Transfer of heavy metals through terrestrial food webs: a review.

    PubMed

    Gall, Jillian E; Boyd, Robert S; Rajakaruna, Nishanta

    2015-04-01

    Heavy metals are released into the environment by both anthropogenic and natural sources. Highly reactive and often toxic at low concentrations, they may enter soils and groundwater, bioaccumulate in food webs, and adversely affect biota. Heavy metals also may remain in the environment for years, posing long-term risks to life well after point sources of heavy metal pollution have been removed. In this review, we compile studies of the community-level effects of heavy metal pollution, including heavy metal transfer from soils to plants, microbes, invertebrates, and to both small and large mammals (including humans). Many factors contribute to heavy metal accumulation in animals including behavior, physiology, and diet. Biotic effects of heavy metals are often quite different for essential and non-essential heavy metals, and vary depending on the specific metal involved. They also differ for adapted organisms, including metallophyte plants and heavy metal-tolerant insects, which occur in naturally high-metal habitats (such as serpentine soils) and have adaptations that allow them to tolerate exposure to relatively high concentrations of some heavy metals. Some metallophyte plants are hyperaccumulators of certain heavy metals and new technologies using them to clean metal-contaminated soil (phytoextraction) may offer economically attractive solutions to some metal pollution challenges. These new technologies provide incentive to catalog and protect the unique biodiversity of habitats that have naturally high levels of heavy metals.

  10. Concentration of some heavy metals in rice types available in Shiraz market and human health risk assessment.

    PubMed

    Naseri, Mahmood; Vazirzadeh, Arya; Kazemi, Robabeh; Zaheri, Farnaz

    2015-05-15

    This investigation was conducted to survey the levels of some heavy metals such as cadmium, lead, chromium, nickel and cobalt in domestic cultivated and imported rice sold on the Shiraz - Iran markets. The potential human health risk assessment was conducted by considering estimated weekly intake (EWI) of toxic metals from eating rice and compared calculated values with provisional tolerable weekly intake (PTWI). The mean values for lead and cadmium in domestic cultivated and imported rice were considerably higher than allowable limits set by FAO/WHO. In combination of recent rice consumption data, the estimated weekly intakes of toxic element were calculated for Iranian population. EWI for cadmium, nickel, chromium through imported and domestic cultivated rice consumption was lower than the PTWI. The EWI for lead were considerably higher than other measured toxic metals. The highest mean level of EWI for lead was observed in some imported rice samples (25.76 μg/kg body weight).

  11. Concentration and health risk evaluation of heavy metals in market-sold vegetables and fishes based on questionnaires in Beijing, China.

    PubMed

    Fang, Yanyan; Nie, Zhiqiang; Liu, Feng; Die, Qingqi; He, Jie; Huang, Qifei

    2014-10-01

    Concentrations of heavy metals (As, Cd, Pb, Cu, Ni, Fe, Mn, and Zn) in market vegetables and fishes in Beijing, China, are investigated, and their health risk to local consumers is evaluated by calculating the target hazard quotient (THQ). The heavy metal concentrations in vegetables and fishes ranged from not detectable (ND) to 0.21 mg/kg fresh weight (f.w.) (As), ND to 0.10 mg/kg f.w. (Cd), and n.d to 0.57 mg/kg f.w. (Pb), with average concentrations of 0.17, 0.04, and 0.24 mg/kg f.w., respectively. The measured concentrations of As, Cd, Pb, Cu, Ni, Fe, Mn, and Zn are generally lower than the safety limits given by the Chinese regulation safety and quality standards of agriculture products (GB2762-2012). As, Cd, and Pb contaminations are found in vegetables and fishes. The exceeding standard rates are 19 % for As, 3 % for Cd, and 25 % for Pb. Pb contaminations are found quite focused on the fish samples from traditional agri-product markets. The paper further analyzed the health risk of heavy metals in vegetables and fishes respectively from supermarkets and traditional agri-product markets; the results showed that the fishes of traditional agri-product markets have higher health risk, while the supermarkets have vegetables of higher heavy metal risk, and the supervision should be strengthened in the fish supply channels in traditional agri-product markets.

  12. Disorders of heavy metals.

    PubMed

    Woimant, France; Trocello, Jean-Marc

    2014-01-01

    Heavy metals and trace elements play an important role in relation to the physiology and pathology of the nervous system. Neurologic diseases related to disorders of metabolism of copper and iron are reviewed. Copper disorders are divided into two classes: ATP7A- or ATP7B-related inherited copper transport disorders (Menkes disease, occipital horn syndrome, ATP7A-related distal motor neuropathy, and Wilson disease) and acquired diseases associated with copper deficiency or copper excess. Iron brain disorders are divided into genetic neurodegeneration with brain iron accumulation (NBIA, neuroferritinopathy, and aceruloplasminemia), genetic systemic iron accumulation with neurologic features (hemochromatosis), and acquired diseases associated with iron excess (superficial siderosis) or iron deficiency (restless leg syndrome). The main features of cadmium, lead, aluminum, mercury, and manganese toxicity are summarized.

  13. Failure Engineered Heavy Metal Penetrators

    DTIC Science & Technology

    1992-12-01

    ARMY RESEARCH LABORATORY Failure Engineered Heavy Metal Penetrators, Phase I, SBIR ARL-CR-5· R. Cavalieri, W. Tiarn, and D. Nicholson prepared...REPORT DATE S. REPORT TYPE AND DATES COVERED December 1992 Final Report-1/1/92 - 7/31/92 4. TITLE AND SUBTITLE FAILURE ENGINEERED HEAVY METAL PENETRATORS

  14. Heavy metal removal and recovery using microorganisms

    SciTech Connect

    Wilde, E.W. ); Benemann, J.R. , Pinole, CA )

    1991-02-01

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding.

  15. Residues of organochlorine chemicals and concentrations of heavy metals in ciconiiforme eggs in relation to diet and habitat

    SciTech Connect

    Hernandez, L.M.; Rico, M.C.; Gonzalez, M.J.; Montero, M.C.; Fernandez, M.A.

    1987-01-01

    Residues of organochlorine pollutants and heavy metals were determined in 50 aquatic organisms of five species, 31 eggs of four species of wading birds, water, and sediment collected at Donana National Park, (Spain) during the nesting season 1983 and 1984. Hg, Cd, Pb, Cu, and Zn were detected in all samples. The levels of contaminants investigated are generally below the levels known to cause direct effects on survival or reproduction. Biomagnification of the organochlorine pollutants and Hg is clearly illustrated; there is no evidence of accumulation of Cd, Pb, Cu, and Zn along a food chain.

  16. Concentrations of toxic heavy metals and trace elements in raw milk of Simmental and Holstein-Friesian cows from organic farm.

    PubMed

    Pilarczyk, Renata; Wójcik, Jerzy; Czerniak, Paweł; Sablik, Piotr; Pilarczyk, Bogumiła; Tomza-Marciniak, Agnieszka

    2013-10-01

    Concentrations of toxic heavy metals (cadmium (Cd), lead (Pb)) and major nutritional and trace elements (Ca, Mg, P, Cu, Fe, Mn, Se, Zn) were analyzed in the milk of Simmental (n = 20) and Holstein-Friesian (n = 20) cows from an organic farm. Elements were determined using inductively coupled plasma emission atomic spectrometry. The conducted research showed that the milk of Simmental cows was characterized by the more advantageous mineral composition and lower concentration of noxious heavy metals compared to the milk of Holstein-Friesian cows. In the milk of Simmental cows, significantly lower concentrations of Pb and Cd (P < 0.001) and Cu (P < 0.05) and significantly higher concentrations of Fe and Mg (P < 0.05) as well as nonsignificantly higher concentrations of Ca, Mn, and Se were found. In the milk of both breeds, very low Cu concentrations were recorded. The higher-than-recommended concentration of Pb in milk was also found. In the milk of both breeds, the significant positive correlations between concentrations of the following elements were observed: Pb-Cd, Pb-Se, Cd-Se, Cd-Mn, Zn-Cu, Zn-P, Ca-P, Ca-Mg, and Mg-P. The correlations between other elements within each of the analyzed breeds separately were also found.

  17. Assessment of the governance system for the management of the East Sea-Jung dumping site, Korea through analysis of heavy metal concentrations in bottom sediments

    NASA Astrophysics Data System (ADS)

    Song, Ki-Hoon; Choi, Ki-Young; Kim, Chang-Joon; Kim, Young-Il; Chung, Chang-Soo

    2015-12-01

    As with many countries, the Korea government has made a variety of efforts to meet the precautionary principle under the London Convention and Protocol acceded in 1994 and 2009. However, new strategies for the suitable marine dumping of waste materials have since been developed. In this study, the distribution and contamination of heavy metals including Al, Fe, Mn, Li, Co, Cr, Ni, Cu, Zn, As, Cd, Pb and Hg in bottom sediments were analyzed and compared to various criteria in order to evaluate the effectiveness of the management of the East Sea-Jung (ES-Jung) dumping site by the Korea government. The results indicate that the average metal concentrations were significantly lower than Effects Range Low (ERL) values, and generally similar to or lower than the Threshold Effect Levels (TEL) from the Sediment Quality Guidelinces (SQGs). According to analyses of various metal contamination indexes (Enrichment Factor: EF, Pollution Load Index: PLI and the Index of Geoaccumulation: Igeo), most areas were found to be uncontaminated by heavy metals with the exception of several moderately contaminated stations (ESJ 33, 54, 64 and ESJR 20). Heavy metal concentrations in areas grouped as G1, G2, DMDA, N-Ref and S-Ref which showed similar characteristics between 2007-2013 and 2014, were compared. Unexpectedly, most concentrations in the northern reference area (N-Ref) were much higher than those in the actual dumping areas (G1 and G2), may be due to the influences from nearby cities to the west of the ES-Jung site, rather than from the dumping site itself. Additionally, heavy metal concentrations in the dredged material dumping area (DMDA) were found to be low although they have slightly increased over time and those in the southern reference area (S-Ref) were found to have gradually decreased with year. The concentrations of most metals in the East Sea-Jung dumping site were similar to or less than those in the Earth's crust and approximately the same as those in continental

  18. Assessment of heavy metals/metalloid (As, Pb, Cd, Ni, Zn, Cr, Cu, Mn) concentrations in edible fish species tissue in the Pearl River Delta (PRD), China.

    PubMed

    Leung, H M; Leung, A O W; Wang, H S; Ma, K K; Liang, Y; Ho, K C; Cheung, K C; Tohidi, F; Yung, K K L

    2014-01-15

    The major aim of this study was to investigate heavy metal content of edible fish in the PRD. Eleven species of fish (consisting of 711 individuals) [catfish (Clarias fuscus), tilapia (Oreochromis mossambicus), grass carp (Ctenopharyngodon idellus), bighead carp (Aristichthys nobilis), mandarin fish (Siniperca kneri), snakehead (Channa asiatiea), black bass (Micropterus salmoides), mangrove snapper (Lutjanus griseus), star snapper (Lutjanu stellatus), snubnose pompano (Trachinotus blochii) and orange-spotted grouper (Epinephelus coioides)] were collected for the analyses of heavy metals. Overall concentrations (mg/kg, ww) in the fish muscles were: As (0.03-1.53), Pb (0.03-8.62), Cd (0.02-0.06), Ni (0.44-9.75), Zn (15.7-29.5), Cr (0.22-0.65), Cu (0.79-2.26), Mn (0.82-6.91). Significant level of Pb were found in tilapia at all locations. It is recommended that heavy metal concentrations in different fish species must be determined on a regular basis in the future so as to reduce human health risks from acute and chronic food intoxication.

  19. Heavy metal concentrations of the endoparasitoid Glyptapanteles liparidis bouche (hymenoptera) in contaminated Lymantria dispar L. Larvaie (lepidoptera)

    SciTech Connect

    Bischof, C.

    1995-10-01

    The braconid wasp Glyptapanteles liparidis is one of the main parasitoids of the forest pest insect Lymantria dispar (gypsy moth) and therefore a regulator of the pest population. The eggs of the endoparasitoid are deposited in early larval stages of the host. The parasitoid larvae develop in the haemolymph of the host and feed exclusively on the nutrients of the haemolymph. Applied metals at the No-observed-effect-concentration level for L. dispar did not affect G. liparidis directly. Instead the parasitoid development is probably influenced by the alteration of the trophic situations within the host due to its metal stress. This study provides information on the metal concentration of the parasitoid larvae shortly before their eclosion from the host. 19 refs., 1 fig., 1 tab.

  20. Determination of heavy metals in the ambient atmosphere.

    PubMed

    Suvarapu, Lakshmi Narayana; Baek, Sung-Ok

    2017-01-01

    Heavy metal determination in ambient air is an important task for environmental researchers because of their toxicity to human beings. Some heavy metals (hexavalent chromium (Cr), arsenic (As), cadmium (Cd) and nickel (Ni)) have been listed as carcinogens. Furthermore, heavy metals in the atmosphere can accumulate in various plants and animals and enter humans through the food chain. This article reviews the determination of heavy metals in the atmosphere in different areas of the world since 2006. The results showed that most researchers concentrated on toxic metals, such as Cr, Cd, Ni, As and lead. A few studies used plant materials as bio-monitors for the atmospheric levels of heavy metals. Some researchers found higher concentrations of heavy metals surrounding industrial areas compared with residential and/or commercial areas. Most studies reported the major sources of the particulate matter and heavy metals in the atmosphere to be industrial emissions, vehicular emissions and secondary aerosols.

  1. Rapid and efficient treatment of wastewater with high-concentration heavy metals using a new type of hydrogel-based adsorption process.

    PubMed

    Zhou, Guiyin; Liu, Chengbin; Chu, Lin; Tang, Yanhong; Luo, Shenglian

    2016-11-01

    In this study, a new type of double-network hydrogel sorbent was developed to remove heavy metals in wastewater. The amino-functionalized Starch/PAA hydrogel (NH2-Starch/PAA) could be conducted in a wide pH and the adsorption process could rapidly achieve the equilibrium. The adsorption capacity got to 256.4mg/g for Cd(II). Resultantly, even though Cd(II) concentration was as high as 180mg/L, the Cd(II) could be entirely removed using 1g/L sorbent. Furthermore, the desirable mechanical durability of the adsorbent allowed easy separation and reusability. In the fixed-bed column experiments, the treatment volume of the effluent with a high Cd(II) concentration of 200mg/L reached 2400BV (27.1L) after eight times cycle. The NH2-Starch/PAA overcame the deficiency of conventional sorbents that could not effectively treat the wastewater with relatively high metal concentrations. This work provides a new insight into omnidirectional enhancement of sorbents for removing high-concentration heavy metals in wastewater.

  2. Removal of organic matter and heavy metals of low concentration from wastewater via micellar-enhanced ultrafiltration: an overview

    NASA Astrophysics Data System (ADS)

    Li, F.; Li, X.; Zhang, J. D.; Peng, L.; Liu, C. Y.

    2017-01-01

    As a new and effective means of wastewater treatment, the micellar-enhanced ultrafiltration (MEUF) has been extensively studied. In this paper, MEUF was introduced from the aspects of theory basis, ultrafiltration membranes, and surfactants. Additionally, the latest research achievements in removing organic matter and heavy ions, its application in actual wastewater, and the characterization parameters of MEUF were introduced and summarized. Then, influences and mechanisms of the primary operation parameters, including surfactant concentration, pH, electrolytes, and transmembrane pressure on the performance of the MEUF process were analyzed. Finally, existing problems in the MEUF process were identified and developmental trends were predicted.

  3. Higher Serum Heavy Metal May Be Related with Higher Serum gamma-Glutamyltransferase Concentration in Koreans: Analysis of the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V-1, 2, 2010, 2011)

    PubMed Central

    Kim, Sung-Jin; Han, Sung-Woo; Lee, Duck-Joo; Kim, Kwang-Min

    2014-01-01

    Background Abnormal serum gamma-glutamyltransferase (γ-GT) may be an early and sensitive marker for oxidative stress. This study was performed to evaluate the association between serum heavy metals and γ-GT concentration. Methods This study is a cross-sectional analysis based on data from Korean National Health and Nutrition Examination Survey (V-1, 2, 2010, 2011) regarding serum heavy metal concentrations (lead, mercury, and cadmium) as well as serum γ-GT. Serum heavy metals were categorized into tertiles, and serum γ-GT concentration was compared using an analysis of covariance test after relevant variable adjustments. In addition, we evaluated the odds ratio (OR) of having the highest tertile of serum γ-GT in each heavy metal tertile using logistic regression. Results The mean serum lead, mercury, and cadmium concentrations were 2.67, 5.08, and 1.02 µg/dL in men and 1.95, 3.60, and 1.21 µg/dL in women, respectively. Partial correlation showed a significant positive relation between each heavy metal and serum γ-GT concentration. Comparing serum γ-GT concentration by the tertile of each heavy metal, serum γ-GT concentration showed a significant increase as the tertiles of serum mercury and cadmium in men and that of serum mercury in women increased, but not with lead. The OR of having the highest tertile of serum γ-GT was significant for cadmium in men (OR, 4.02; 95% confidence interval [CI], 2.54 to 6.35) and mercury in women (OR, 2.00; 95% CI, 1.29 to 3.10) in the top tertile of each heavy metal. Conclusion Higher serum heavy metal concentration may be related with higher serum γ-GT concentration. In particular, serum cadmium in men and mercury in women showed significant correlation with serum γ-GT concentration. PMID:24724002

  4. Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill].

    PubMed

    Salazar, María Julieta; Rodriguez, Judith Hebelen; Leonardo Nieto, Gastón; Pignata, María Luisa

    2012-09-30

    Argentina is one of the major producers of soybean in the world, this generates a high global demand for this crop leading to find it everywhere, even close to human activities involving pollutant emissions. This study evaluated heavy metal content, the transfer of metals and its relation to crop quality, and the toxicological risk of seed consumption, through soil and soybean sampling. The results show that concentrations of Pb and Cd in soils and soybeans at several sites were above the maximum permissible levels. The heavy metal bioaccumulation depending on the rhizosphere soil compartment showed significant and high regression coefficients. In addition, the similar behavior of Cd and Zn accumulation by plants reinforces the theory of other studies indicating that these metals are incorporated into the plant for a common system of transport. On the other hand, the seed quality parameters did not show a clear pattern of response to metal bioacumulation. Taken together, our results show that soybeans grown nearby to anthropic emission sources might represent a toxicological hazard for human consumption in a potential Chinese consumer. Hence, further studies should be carried out taking into account the potential negative health effects from the consumption of soybeans (direct or indirect through consumption of meat from cattle) in these conditions.

  5. Linking environmental heavy metal concentrations and salinity gradients with metal accumulation and their effects: A case study in 3 mussel species of Vitória estuary and Espírito Santo bay, Southeast Brazil.

    PubMed

    Kumar, Vikas; Sinha, Amit Kumar; Rodrigues, Paulo Pinheiro; Mubiana, Valentine K; Blust, Ronny; De Boeck, Gudrun

    2015-08-01

    The present study was conducted to link the heavy metal load in three species of mussels (Perna perna, Mytella falcata and Mytella guyanensis) from the estuaries and bays around Vitória island, south-east of Brazil, with the salinity gradient and the heavy metal levels in the abiotic environment (including water, suspended particulate matter (SPM) and sediment). Primarily based on the salinity gradient, a total of 26 sites around Vitória Island were selected for sampling of water, SPM, sediments and organisms. Besides tissue metal levels, the condition index and energy stores (glycogen, lipid and protein) were quantified as an indicator of fitness in response to metal pollution. Dissolved metals in water indicate that Cd and Mn content was higher along Espírito Santo Bay, while Al, Co, Cu, Cr and Fe were elevated in the sites with low salinity such as river mouths, estuarine and sewage canals. Likewise, suspended matter sampled from low salinity sites showed a higher heavy metal load compared to moderate and high salinity sites. Though mussels were sampled from different sites, the contamination for Cd, Cu, Fe and Mn was higher in mussels inhabiting low salinity sites (M. guyanensis and M. falcata) compared to P. perna, a high saline water inhabitant. However, a higher Zn body burden was observed for P. perna compared to Mytella species. Tissue Fe accumulation (but not Mn and Zn) correlated with heavy metal levels in suspended material for all three species, and for M. falcata this correlation also existed for Cd and Cu. Energy store and condition index in all mussels varied depending on the sampling sites and correlated with salinity gradient rather than tissue metal concentration. Overall, metal concentration in mussels did not exceed the safe levels as per the international standards for metals, and would be of no risk for human consumption.

  6. Heavy metal concentrations in water, sediments and body tissues of red worm (Tubifex spp.) collected from natural habitats in Mumbai, India.

    PubMed

    Singh, Ravendra Kumar; Chavan, Sugandha L; Sapkale, Pravin H

    2007-06-01

    Live feeds, especially Tubifex spp., which are collected from a wide variety of polluted habitats, are used by aquarium fish keepers in India. These habitats receive domestic sewage and industrial wastes from nearby residential and industrial areas. Reports of morbidity and mortality from aquarium fish culturists in and around Mumbai led to the present investigations on the ecology of these habitats with a view to assess the water quality, presence of heavy metals in the environment and their bioaccumulation in Tubifex worms, and to examine whether these habitats could be exploited to meet the demand of the industry. Six natural red worm (Tubifex spp.) collection centres in Mumbai and Thane districts of Maharashtra state in India constituting a major source of live Tubifex supply to aquarium fish industry were evaluated for pollution, heavy metal concentration in water, sediments and in the body tissues of Tubifex. Data revealed the presence of heavy metals in water and sediments at collection sites and bioaccumulation of cadmium, iron, lead, zinc and copper in body tissues of Tubifex worms. Cadmium ranged from 2.38 to 7.21 mg/kg, iron 671.9 to 5738 mg/kg, lead 14.95 to 33.49 mg/kg, zinc 60.20 to 166.60 mg/kg and copper 29.38 to 108.90 mg/kg of dry Tubifex worms. The study suggests that all the six collection sites are polluted and the red worms contaminated with heavy metals and hence, unfit for use in aquaria or feeding any variety of fish or crustaceans in the hatcheries.

  7. Heavy metal concentrations in diet and livers of Black-crowned Night Heron Nycticorax nycticorax and Grey Heron Ardea cinerea chicks from Pyeongtaek, Korea.

    PubMed

    Kim, Jungsoo; Koo, Tae-Hoe

    2007-07-01

    This study presents concentrations of iron, manganese, zinc, copper, lead and cadmium in diet and livers of Black-crowned Night Heron Nycticorax nycticorax and Grey Heron Ardea cinerea chicks from Pyeongtaek, Gyeonggi-do, Korea. Heavy metal concentrations of heron chicks were not related to concentrations in the diet. Copper concentrations were significantly greater in the diet of Black-crowned Night Herons (geometric mean = 13.6 wet microg/g) than Grey Herons (7.45 wet microg/g), other metal concentrations did not differ between the diet of two species. Manganese (respectively 3.20 wet microg/g, 1.41 wet microg/g) and cadmium (respectively 13.4 wet microg/kg, 1.41 wet microg/kg) concentrations were higher in livers of Black-crowned Night Heron chicks than Grey Heron chicks, but zinc, iron, copper and lead concentrations in livers did not differ in between two herons. The essential elements were at background levels, however copper concentrations were relatively higher than previously reported from Korea. Lead and cadmium concentrations were within background levels for herons.

  8. Regional variations of heavy metal concentrations in tissues of barnacles from the subtropical Pacific Coast of Mexico

    SciTech Connect

    Paez-Osuna, F.; Bojorquez-Leyva, H.; Ruelas-Inzunza, J.

    1999-07-01

    Concentrations of Cd, Cu, Cr, Fe, Mn, Ni, Ag, Pb, and Zn in soft and hard tissues of barnacles from eight sampling sites in six harbors on the subtropical Pacific Coast of Mexico were determined by atomic absorption spectrophotometry. Some inter-regional differences in metal concentrations, especially concerning Zn, Mn, Fe, Cd, and Pb, were identified. The lowest concentrations of Cu, Cr, Fe, and Ag were observed in the barnacle populations from Ceuta Lagoon, an uncontaminated site with rural agriculture and semi-intensive shrimp farms in the surroundings. Conversely, the highest concentrations of: (1) Zn, Cu, and Ag were found in the soft tissues of Balanus eburneus from Mazatlan piers; (2) Pb, Ni, and Cd in the soft tissue of Megabalanus coccopoma from Puerto Vallarta; (3) Fe in the hard tissue of Balanus sp. from Guaymas Harbour; and (4) Mn in the hard tissue of M. coccopoma from Mazatlan Harbour. Inter-comparison of the present data indicates that the soft (mainly Cd, Cu, Pb, and Zn) and the hard (mainly for Fe and Mn) tissues are useful in detecting areas of selected metallic contaminants. Barnacles such as B. eburneus, M. coccopoma, and Fistulobalanus dentivarians appear to be convenient biomonitors for identification of coastal waters exposed to Cd, Pb, Cu, Zn, Ni, Mn, Fe, and Ag in the American region of the subtropical Pacific.

  9. Community Heavy Metal Exposure, San Francisco, California

    NASA Astrophysics Data System (ADS)

    Chavez, A.; Devine, M.; Ho, T.; Zapata, I.; Bissell, M.; Neiss, J.

    2008-12-01

    Heavy metals are natural elements that generally occur in minute concentrations in the earth's crust. While some of these elements, in small quantities, are vital to life, most are harmful in larger doses. Various industrial and agricultural processes can result in dangerously high concentrations of heavy metals in our environment. Consequently, humans can be exposed to unsafe levels of these elements via the air we breathe, the water and food we consume, and the many products we use. During a two week study we collected numerous samples of sediments, water, food, and household items from around the San Francisco Bay Area that represent industrial, agricultural, and urban/residential settings. We analyzed these samples for Mercury (Hg), Lead (Pb), and Arsenic (As). Our goal was to examine the extent of our exposure to heavy metals in our daily lives. We discovered that many of the common foods and materials in our lives have become contaminated with unhealthy concentrations of these metals. Of our food samples, many exceeded the EPA's Maximum Contaminant Levels (MCL) set for each metal. Meats (fish, chicken, and beef) had higher amounts of each metal than did non-meat items. Heavy metals were also prevalent in varying concentrations in the environment. While many of our samples exceeded the EPA's Sediment Screening Level (SSL) for As, only two other samples surpassed the SSL set for Pb, and zero of our samples exceeded the SSL for Hg. Because of the serious health effects that can result from over-exposure to heavy metals, the information obtained in this study should be used to influence our future dietary and recreational habits.

  10. Heavy metal concentrations in edible muscle of whitecheek shark, Carcharhinus dussumieri (elasmobranchii, chondrichthyes) from the Persian Gulf: A food safety issue.

    PubMed

    Adel, Milad; Oliveri Conti, Gea; Dadar, Maryam; Mahjoub, Masoud; Copat, Chiara; Ferrante, Margherita

    2016-11-01

    Together with several health benefits, fish meat could lead to heavy metal intoxication of consumers. In this study, we discuss Zn, Cu, Pb, Hg and Cd concentrations in fillets of forty specimens of Carcharhinus dussumieri, analyzed with atomic adsorption spectroscopy (AAS). The potential human health risks due to consumption of C. dussumieri was assessed by estimating average daily intake (EDI) and target hazard quotient (THQ) of metals. The average concentrations of metals measured in this study were (ppm dry weight): Cu 7.49 ± 0.25; Zn 3.47 ± 0.26; Pb 0.12 ± 0.03; Hg 0.028 ± 0.02; Cd 0.11 ± 0.03. Our results showed that no metal exceeded the EC and FAO limits. Cu and Cd accumulate in muscles with a body length (age)-dependent manner. The exposure daily intake of all toxic metals analyzed was found lower than the PTDI provided by WHO and the THQ resulted lower than 1, suggesting no risk for human health derived from consumption.

  11. Cellular Mutagenicity and Heavy Metal Concentrations of Leachates Extracted from the Fly and Bottom Ash Derived from Municipal Solid Waste Incineration

    PubMed Central

    Chen, Po-Wen; Liu, Zhen-Shu; Wun, Min-Jie; Kuo, Tai-Chen

    2016-01-01

    Two incinerators in Taiwan have recently attempted to reuse the fly and bottom ash that they produce, but the mutagenicity of these types of ash has not yet been assessed. Therefore, we evaluated the mutagenicity of the ash with the Ames mutagenicity assay using the TA98, TA100, and TA1535 bacterial strains. We obtained three leachates from three leachants of varying pH values using the toxicity characteristic leaching procedure test recommended by the Taiwan Environmental Protection Agency (Taiwan EPA). We then performed the Ames assay on the harvested leachates. To evaluate the possible relationship between the presence of heavy metals and mutagenicity, the concentrations of five heavy metals (Cd, Cr, Cu, Pb, and Zn) in the leachates were also determined. The concentrations of Cd and Cr in the most acidic leachate from the precipitator fly ash and the Cd concentration in the most acidic leachate from the boiler fly ash exceeded the recommended limits. Notably, none of the nine leachates extracted from the boiler, precipitator, or bottom ashes displayed mutagenic activity. This data partially affirms the safety of the fly and bottom ash produced by certain incinerators. Therefore, the biotoxicity of leachates from recycled ash should be routinely monitored before reusing the ash. PMID:27827867

  12. Seasonal study of concentration of heavy metals in waters from lower São Francisco River basin, Brazil.

    PubMed

    Souza, A M; Salviano, A M; Melo, J F B; Felix, W P; Belém, C S; Ramos, P N

    2016-01-01

    In this study we determined the concentration of metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in the water lower São Francisco River basin, to evaluate the influence of urbanization and industrialization on environmental changes in the water resource. All samples were analyzed using the IUPAC adapted method and processed in an atomic absorption spectrophotometer. The sampling stations located near the industrial areas were influenced by industrialization because they presented higher concentrations of Cd, Cr, Ni and Cu. The other sampled locations showed changes with regard the trace elements probably originating in the soil, like Fe, Zn and Pb. There was a gradual increase in the concentrations of metals, in general, in the period of highest rainfall of the hydrographic network. Overall, except for Zn and Mn, the trace elements exceeded the maximum allowed value established by national legislation (CONAMA). Lower São Francisco River basin has suffered interference from urbanization and industrialization, so awareness programs should be developed so as to control and lessen future problems.

  13. Heavy metal concentrations in the freshwater snail Biomphalaria alexandrina uninfected or infected with cercariae of Schistosoma mansoni and/or Echinostoma liei in Egypt: the potential use of this snail as a bioindicator of pollution.

    PubMed

    Mostafa, O M S; Mossa, A-T H; El Einin, H M A

    2014-12-01

    In spite of using aquatic snails as bioindicators for water pollution, little attention has been paid to the effect of parasitism upon the concentration of heavy metals (Al, Cd, Cu, Fe, Mn, Pb and Zn) in these organisms. The present study therefore aimed to compare the concentrations of heavy metals in trematode-infected Biomphalaria alexandrina collected from Kafer Alsheikh and Menofia provinces, Egypt, with uninfected snails from the same sites, in order to assess the effect of parasitism on the use of these snails as bioindicators. The concentrations of heavy metals in the soft parts and shells of snails were measured by flame atomic absorption spectrometry. The results showed that the heavy metal profile in snails infected with Echinostoma liei was very different from that in snails infected with Schistosoma mansoni. The total concentration of heavy metals in E. liei-infected snails collected from Kafer Alsheikh or Menofia province was greater than in uninfected snails. In contrast, the total concentration of heavy metals in S. mansoni-infected snails was reduced compared with uninfected snails. In conclusion, the status of snails with respect to parasitic infection must be taken into consideration when these snails are used as bioindicators.

  14. Heavy metal concentrations in the soft tissues of swan mussel (Anodonta cygnea) and surficial sediments from Anzali wetland, Iran.

    PubMed

    Pourang, N; Richardson, C A; Mortazavi, M S

    2010-04-01

    Concentrations of cadmium, copper, and lead were determined in surficial sediments and the soft tissues (foot and gills) of swan mussel Anodonta cygnea from two sampling sites in Anzali wetland, which is an internationally important wetland registered in the Ramsar Convention. The metal contents in the mussel species from the studied region were comparable to other world areas. In most cases, the levels of the metals either fell within the range for other areas or were lower. There were significant differences between the tissues for the accumulation of Cd and Pb. Only in the case of Pb accumulation in gills significant differences between the specimens from the selected sampling sites could be observed. Age-related correlations were found in the case of Cu accumulation in foot and Cd levels in gills. No weight-dependent trend could be observed for the accumulation of the three elements. There was significant negative width-dependent relationship in the case of Cu. A significant negative correlation was also found between the maximum shell height and Cu accumulation in the gills. The only association among the elements in the selected soft tissues was found between Cd and Pb. Highly significant differences could be found between the sampling sites from the concentration of the elements in sediments point of view. The pattern of metal occurrence in the selected tissues and sediments exhibited the following descending order: Pb, Cu>Cd for gills, Cu>Pb, Cd for foot, and Cu>Pb>Cd for sediments. The mean concentrations of Cd and Pb in the sediments from the study area were higher than the global baseline values and world average shale. In the case of Cu, our results were somewhat higher than the baseline values but well below the world average shale.

  15. Heavy metals concentrations in fish from Sicily (Mediterranean Sea) and evaluation of possible health risks to consumers.

    PubMed

    Copat, Chiara; Bella, Francesca; Castaing, Marine; Fallico, Roberto; Sciacca, Salvatore; Ferrante, Margherita

    2012-01-01

    Cadmium, lead, mercury and chromium concentrations in fish muscle tissue taken from various Sicilian areas were detected. Fish caught in Siracusa, nearby a petrochemical industrial area, were more contaminated by cadmium, lead and chromium (respectively 0.366, 0.32, 0.72 μg/g) than those from the other sites. In the Sicily Channel, we found the highest bioaccumulation of mercury (0.31 μg/g). Although some metals concentrations exceed the limits set by the European regulation, the estimated weekly intake was below the Provisional Tolerable Weekly Intake established by the European Food and Safety Authority, and the Target Hazard Quotient values indicate that there is no carcinogenic risk for humans.

  16. Concentrations and human health implications of heavy metals in wild aquatic organisms captured from the core area of Daya Bay's Fishery Resource Reserve, South China Sea.

    PubMed

    Gu, Yang-Guang; Huang, Hong-Hui; Lin, Qin

    2016-07-01

    Heavy metal concentrations in edible organisms from the core area of Daya Bay's Fishery Resource Reserve, South China Sea, were determined. Samples of 14 crustacean, fish, and shellfish species were collected and analyzed. The As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn concentrations were 0.18-1.16, 0.002-0.919, 0.40-2.85, 0.07-4.10, 0.004-0.055, 0.14-1.19, 0.014-0.070, and 4.57-15.94μg/g wet weight, respectively. The As concentrations were higher than the Chinese maximum permissible levels in all of the fish and shellfish species and two crustacean species, indicating that consumption of these wild species by humans may pose health risks. However, calculations of the health risks posed to humans indicated that no significant adverse health effects would be associated with consuming these species.

  17. Selective reduction of heavy metals

    SciTech Connect

    Bjorling, G.

    1984-12-11

    The present invention relates to selective reduction of heavy metals out of finey grained, substantially oxidic material by blowing the oxidic material into a furnace together with an amount of reducing agent required for obtaining desired selectivity while simultaneously heat energy is supplied by a gas heated in a plasma generator, the temperature being adjusted to such a level as to correspond to the oxygen potential at which the desired metals are transformed into a particular, isolatable phase as metal melt, metal vapor, speiss or matte and at which the remaining metals enter into a slag phase and can be isolated as slag melt.

  18. ANALYSIS OF HEAVY METALS IN STORMWATER

    EPA Science Inventory

    Sampling has been undertaken to determine the concentrations of heavy metals, both particle-associated and dissolved, in stormwater from several storm sewer outfalls in Monmouth County, NJ. This project is ongoing in concert with coordinated studies of pathogen and nutrient input...

  19. Assessing and Mapping Spatial Associations among Oral Cancer Mortality Rates, Concentrations of Heavy Metals in Soil, and Land Use Types Based on Multiple Scale Data

    PubMed Central

    Lin, Wei-Chih; Lin, Yu-Pin; Wang, Yung-Chieh; Chang, Tsun-Kuo; Chiang, Li-Chi

    2014-01-01

    In this study, a deconvolution procedure was used to create a variogram of oral cancer (OC) rates. Based on the variogram, area-to-point (ATP) Poisson kriging and p-field simulation were used to downscale and simulate, respectively, the OC rate data for Taiwan from the district scale to a 1 km × 1 km grid scale. Local cluster analysis (LCA) of OC mortality rates was then performed to identify OC mortality rate hot spots based on the downscaled and the p-field-simulated OC mortality maps. The relationship between OC mortality and land use was studied by overlapping the maps of the downscaled OC mortality, the LCA results, and the land uses. One thousand simulations were performed to quantify local and spatial uncertainties in the LCA to identify OC mortality hot spots. The scatter plots and Spearman’s rank correlation yielded the relationship between OC mortality and concentrations of the seven metals in the 1 km cell grid. The correlation analysis results for the 1 km scale revealed a weak correlation between OC mortality rate and concentrations of the seven studied heavy metals in soil. Accordingly, the heavy metal concentrations in soil are not major determinants of OC mortality rates at the 1 km scale at which soils were sampled. The LCA statistical results for local indicator of spatial association (LISA) revealed that the sites with high probability of high-high (high value surrounded by high values) OC mortality at the 1 km grid scale were clustered in southern, eastern, and mid-western Taiwan. The number of such sites was also significantly higher on agricultural land and in urban regions than on land with other uses. The proposed approach can be used to downscale and evaluate uncertainty in mortality data from a coarse scale to a fine scale at which useful additional information can be obtained for assessing and managing land use and risk. PMID:24566045

  20. Use of geostatistics for assessing the concentration of heavy metals in a stretch of the River Apodi-Mossoro (Rio Grande do Norte State, Brazil).

    NASA Astrophysics Data System (ADS)

    Bezerra, J. M.; Siqueira, G. M.; Montenegro, A. A. A.; Silva, P. C. M.; Batista, R. O.

    2012-04-01

    The objective of this study was to assess the environmental changes with respect to the concentration of heavy metals in the sediment contained a stretch of the River Apodi-Mossoró (Rio Grande do Norte State, Brazil), considering changes in land use and soil. The sediment samples were collected at 30 points in the bed Apodi- Mossoró River in a section with features urban-rural town of Mossoró. The concentration of heavy metals in the sediment was determined using composite samples of surface sediments from the bottom with a depth of 20 cm, according to the methodology of APHAAWWA-WPCF (1998), where he subsequently held to determine the presence and quantity of metal concentration total by the technique of atomic absorption spectrometry, and analyzed the following heavy metals: aluminum(Al), cádmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn). Data were analyzed using statistical and geostatistical. The geostatistical analysiswas performed by the construction of experimental semivariogramas self-assessment and adjustment by using the technique of Jack-kinifing. The elemento Cd was absent in the samples, which reduces the possibility of environmental contamination events. The average concentrations of the elements under study are within the limits proposed by the environmental legislation (National Environmental Council). However, for the elements Fe, Al and Mn no threshold values, because these are associated with the rocky material of geochemical origin. The elemento Fe had the highest range of values than the other, and all elements except for Zn and Cd showed the presence of outliers, suggesting the possibility that these points are listed as points liable to contribution by human activities. It was verified the presence of human influence, because the elements undergo an increase of concentration values from the point 11, which is located downstream of the urban bus consolidated. The experimental

  1. Process for removing heavy metal compounds from heavy crude oil

    DOEpatents

    Cha, Chang Y.; Boysen, John E.; Branthaver, Jan F.

    1991-01-01

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  2. Concentrations of sulphur and heavy metals in needles and rooting soils of Masson pine (Pinus massoniana L.) trees growing along an urban-rural gradient in Guangzhou, China.

    PubMed

    Sun, Fang Fang; Wen, Da Zhi; Kuang, Yuan Wen; Li, Jiong; Zhang, Ji Guang

    2009-07-01

    Current (C) and previous year (C + 1) needles and soils (organic horizon, 0-10 cm and 10-20 cm mineral depth) of Masson pine (Pinus massoniana L.) trees were sampled at four forested sites (Huang Pu industrial district, HP; South China Botanical Garden, BG; Mao Feng Mt., MF; and Nan Kun Mt., NK) in Guangzhou along a urban-rural gradient and analyzed for sulfur (S) and heavy metals (Cu, Zn, Ni, Cd, Cr and Pb) concentrations. Needle concentrations of all the elements were significantly higher at industrial HP than at other three sites, except for Cu and Pb which were highest at the traffic site (BG). The C + 1 needles generally had higher Cu, Cd, Pb, Zn, Cr than the C needles while the opposite was for Ni and S. Total and available Cd, Pb, Zn in soils peaked at the urban sites (HP and BG) and decreased at suburban MF and rural NK. Heavy metals were generally higher in the organic soils than in the mineral soils at all sites. Zinc and Pb at all sites, and Cd, S and Cu at the urban sites (HP and BG) in soils or pine needles were above or near their respective natural background levels, implying that threats resulted from these toxic elements occurred on local particularly urban forests, but did not for Cr and Ni due to their presence below their background values. Our results demonstrated that elements concentrations in needles and soils had reflected the variability of pollutants and the environmental quality change along the urban-rural transect, and were efficient as biomonitors to assess the influence of anthropogenic activities along the urbanization course on forest health.

  3. Abatement of Marine Coatings Containing Heavy Metals

    DTIC Science & Technology

    1995-06-01

    in the abatement of heavy metal containing marine coatings. Funding for this...shipyards to be proactive in the area of heavy metal coating systems abatement as current regulations were not "user friendly" in shipboard applications.

  4. Ion exchange extraction of heavy metals from wastewater sludges.

    PubMed

    Al-Enezi, G; Hamoda, M F; Fawzi, N

    2004-01-01

    Heavy metals are common contaminants of some industrial wastewater. They find their way to municipal wastewaters due to industrial discharges into the sewerage system or through household chemicals. The most common heavy metals found in wastewaters are lead, copper, nickel, cadmium, zinc, mercury, arsenic, and chromium. Such metals are toxic and pose serious threats to the environment and public health. In recent years, the ion exchange process has been increasingly used for the removal of heavy metals or the recovery of precious metals. It is a versatile separation process with the potential for broad applications in the water and wastewater treatment field. This article summarizes the results obtained from a laboratory study on the removal of heavy metals from municipal wastewater sludges obtained from Ardhiya plant in Kuwait. Data on heavy metal content of the wastewater and sludge samples collected from the plant are presented. The results obtained from laboratory experiments using a commercially available ion exchange resin to remove heavy metals from sludge were discussed. A technique was developed to solubilize such heavy metals from the sludge for subsequent treatment by the ion exchange process. The results showed high efficiency of extraction, almost 99.9%, of heavy metals in the concentration range bound in wastewater effluents and sludges. Selective removal of heavy metals from a contaminated wastewater/sludge combines the benefits of being economically prudent and providing the possibility of reuse/recycle of the treated wastewater effluents and sludges.

  5. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals.

    PubMed

    Miransari, Mohammad

    2011-01-01

    Use of plants, with hyperaccumulating ability or in association with soil microbes including the symbiotic fungi, arbuscular mycorrhiza (AM), are among the most common biological methods of treating heavy metals in soil. Both hyperaccumulating plants and AM fungi have some unique abilities, which make them suitable to treat heavy metals. Hyperaccumulator plants have some genes, being expressed at the time of heavy metal pollution, and can accordingly localize high concentration of heavy metals to their tissues, without showing the toxicity symptoms. A key solution to the issue of heavy metal pollution may be the proper integration of hyperaccumulator plants and AM fungi. The interactions between the soil microbes and the host plant can also be important for the treatment of soils polluted with heavy metals.

  6. Surprising abundance of Gallionella-related iron oxidizers in creek sediments at pH 4.4 or at high heavy metal concentrations

    PubMed Central

    Fabisch, Maria; Beulig, Felix; Akob, Denise M.; Küsel, Kirsten

    2013-01-01

    We identified and quantified abundant iron-oxidizing bacteria (FeOB) at three iron-rich, metal-contaminated creek sites with increasing sediment pH from extremely acidic (R1, pH 2.7), to moderately acidic (R2, pH 4.4), to slightly acidic (R3, pH 6.3) in a former uranium-mining district. The geochemical parameters showed little variations over the 1.5 year study period. The highest metal concentrations found in creek sediments always coincided with the lowest metal concentrations in creek water at the slightly acidic site R3. Sequential extractions of R3 sediment revealed large portions of heavy metals (Ni, Cu, Zn, Pb, U) bound to the iron oxide fraction. Light microscopy of glass slides exposed in creeks detected twisted stalks characteristic of microaerobic FeOB of the family Gallionellaceae at R3 but also at the acidic site R2. Sequences related to FeOB such as Gallionella ferruginea, Sideroxydans sp. CL21, Ferritrophicum radicicola, and Acidovorax sp. BrG1 were identified in the sediments. The highest fraction of clone sequences similar to the acidophilic “Ferrovum myxofaciens” was detected in R1. Quantitative PCR using primer sets specific for Gallionella spp., Sideroxydans spp., and “Ferrovum myxofaciens” revealed that ~72% (R2 sediment) and 37% (R3 sediment) of total bacterial 16S rRNA gene copies could be assigned to groups of FeOB with dominance of microaerobic Gallionella spp. at both sites. Gallionella spp. had similar and very high absolute and relative gene copy numbers in both sediment communities. Thus, Gallionella-like organisms appear to exhibit a greater acid and metal tolerance than shown before. Microaerobic FeOB from R3 creek sediment enriched in newly developed metal gradient tubes tolerated metal concentrations of 35 mM Co, 24 mM Ni, and 1.3 mM Cd, higher than those in sediments. Our results will extend the limited knowledge of FeOB at contaminated, moderately to slightly acidic environments. PMID:24385973

  7. Surprising abundance of Gallionella-related iron oxidizers in creek sediments at pH 4.4 or at high heavy metal concentrations

    USGS Publications Warehouse

    Fabisch, Maria; Beulig, Felix; Akob, Denise M.; Küsel, Kirsten

    2013-01-01

    We identified and quantified abundant iron-oxidizing bacteria (FeOB) at three iron-rich, metal-contaminated creek sites with increasing sediment pH from extremely acidic (R1, pH 2.7), to moderately acidic (R2, pH 4.4), to slightly acidic (R3, pH 6.3) in a former uranium-mining district. The geochemical parameters showed little variations over the 1.5 year study period. The highest metal concentrations found in creek sediments always coincided with the lowest metal concentrations in creek water at the slightly acidic site R3. Sequential extractions of R3 sediment revealed large portions of heavy metals (Ni, Cu, Zn, Pb, U) bound to the iron oxide fraction. Light microscopy of glass slides exposed in creeks detected twisted stalks characteristic of microaerobic FeOB of the family Gallionellaceae at R3 but also at the acidic site R2. Sequences related to FeOB such as Gallionella ferruginea, Sideroxydans sp. CL21, Ferritrophicum radicicola, and Acidovorax sp. BrG1 were identified in the sediments. The highest fraction of clone sequences similar to the acidophilic “Ferrovum myxofaciens” was detected in R1. Quantitative PCR using primer sets specific for Gallionella spp., Sideroxydans spp., and “Ferrovum myxofaciens” revealed that ~72% (R2 sediment) and 37% (R3 sediment) of total bacterial 16S rRNA gene copies could be assigned to groups of FeOB with dominance of microaerobic Gallionella spp. at both sites. Gallionella spp. had similar and very high absolute and relative gene copy numbers in both sediment communities. Thus, Gallionella-like organisms appear to exhibit a greater acid and metal tolerance than shown before. Microaerobic FeOB from R3 creek sediment enriched in newly developed metal gradient tubes tolerated metal concentrations of 35 mM Co, 24 mM Ni, and 1.3 mM Cd, higher than those in sediments. Our results will extend the limited knowledge of FeOB at contaminated, moderately to slightly acidic environments.

  8. Assessment of the state of the gibel carp Carassius auratus gibelio in the Amur River Basin: heavy-metal and arsenic concentrations and histopathology of internal organs.

    PubMed

    Syasina, Iraida G; Khlopova, Anna V; Chukhlebova, Lyubov M

    2012-04-01

    This study describes the concentrations of heavy metals and arsenic (As) and the basic histopathological changes in the internal organs of gibel carp Carassius auratus gibelio from five sites of the Amur River basin. Gibel carp from Sindinskaya Passage had the highest liver concentrations of zinc (Zn) (31.95 ± 13.443), copper (Cu) (12.52 ± 5.746), manganese (9.22 ± 8.121), and cadmium (0.37 ± 0.660 mg/kg wet weight [ww]) compared with fish captured from the Bol'shoi Ussuriiskii Island area and Kadi Lake; however, concentrations of nickel (0.22 ± 0.156 mg/kg ww) were not significantly different, and concentrations of lead (0.19 ± 0.121 mg/kg ww) were higher than those in fish from Kadi Lake. Mean concentrations of metals and As in muscles were lower than Russia's recommended limits for food products; however, concentrations of Cu, Zn, and Hg in individual fish were greater than the limit. Kidney disease was detected in 100% of sampled carp. Kidney disease was characterized by the formation of numerous granulomas in kidney tissues between the renal tubules. The degree of granulomatosis varied among sites. Granulomatous kidney disease in gibel carp is widespread in many reservoirs of the lower Amur River basin. The following histopathological changes were detected in liver: vacuolization of hepatocytes, hypertrophy of multiple hepatocytes, binuclearity, presence of numerous irregularly shaped nuclei in hepatocytes, karyopyknosis, diffuse necrosis of hepatocytes (in some cases focal), and edema. Necrotic changes in hepatocytes, which are important indices of the toxic effect of pollutants, were found in the majority of investigated carp from the lower Amur River basin. Some fish had simultaneous pathological alterations in multiple organs.

  9. Heavy metal concentrations in great blue heron fecal castings in Washington State: A technique for monitoring regional and global trends in environmental contaminants

    SciTech Connect

    Fitzner, R.E.; Gray, G.H.; Hinds, W.T.

    1995-09-01

    Growing concern over the world`s environment necessitates development of methods to monitor environmental changes over time. Various proposals involving {open_quotes}literally{close_quotes} thousands of useful ecological indicators have been published over the past two or three decades, including the theoretical foundations for the use of indicators in ecosystem-based monitoring. Sampling of animals often requires a choice between killing individuals in the field to allow measurement, or using a non-destructive sampling technique. Sampling of feathers to determine metal concentrations in tropical Pacific Rim birds, including herons, was reported by Burger, Burger and Gochfeld, and Burger et al. While collection of feathers did not harm the birds, the feathers still had to be plucked from the birds. We report a method that does not involve disturbing the birds. Great blue herons (Ardea herodius) feed at the top of a diverse but reasonably well understood food web. The birds are colonial during their reproductive season, and gather into identifiable, replicable, and annually repeated groups, using the same nests (usually in trees) for years at a time. Herons maintain nests free of regurgitated prey parts and nestling fecal materials by discarding detritus and fecal sacs over the nest edge. This behavior produces a {open_quotes}rain{close_quotes} of fecal matter including identifiable discarded or undigested items (e.g., bones) that reflect the food on which herons prey. Collecting this material provides a quantifiable estimate of contaminants in the food web and makes the heron a prime sampling target. We discuss here the results of a two-year study designed to determine the relationship between heavy metal residues in heron fecal castings and those in heron tissues from the same colonies. We also evaluated whether analysis of heron excrement was a reliable indication of heavy metals in the environment. 12 refs., 2 tabs.

  10. Heavy Metal Induced Antibiotic Resistance in Bacterium LSJC7.

    PubMed

    Chen, Songcan; Li, Xiaomin; Sun, Guoxin; Zhang, Yingjiao; Su, Jianqiang; Ye, Jun

    2015-09-29

    Co-contamination of antibiotics and heavy metals prevails in the environment, and may play an important role in disseminating bacterial antibiotic resistance, but the selective effects of heavy metals on bacterial antibiotic resistance is largely unclear. To investigate this, the effects of heavy metals on antibiotic resistance were studied in a genome-sequenced bacterium, LSJC7. The results showed that the presence of arsenate, copper, and zinc were implicated in fortifying the resistance of LSJC7 towards tetracycline. The concentrations of heavy metals required to induce antibiotic resistance, i.e., the minimum heavy metal concentrations (MHCs), were far below (up to 64-fold) the minimum inhibition concentrations (MIC) of LSJC7. This finding indicates that the relatively low heavy metal levels in polluted environments and in treated humans and animals might be sufficient to induce bacterial antibiotic resistance. In addition, heavy metal induced antibiotic resistance was also observed for a combination of arsenate and chloramphenicol in LSJC7, and copper/zinc and tetracycline in antibiotic susceptible strain Escherichia coli DH5α. Overall, this study implies that heavy metal induced antibiotic resistance might be ubiquitous among various microbial species and suggests that it might play a role in the emergence and spread of antibiotic resistance in metal and antibiotic co-contaminated environments.

  11. Heavy Metal Induced Antibiotic Resistance in Bacterium LSJC7

    PubMed Central

    Chen, Songcan; Li, Xiaomin; Sun, Guoxin; Zhang, Yingjiao; Su, Jianqiang; Ye, Jun

    2015-01-01

    Co-contamination of antibiotics and heavy metals prevails in the environment, and may play an important role in disseminating bacterial antibiotic resistance, but the selective effects of heavy metals on bacterial antibiotic resistance is largely unclear. To investigate this, the effects of heavy metals on antibiotic resistance were studied in a genome-sequenced bacterium, LSJC7. The results showed that the presence of arsenate, copper, and zinc were implicated in fortifying the resistance of LSJC7 towards tetracycline. The concentrations of heavy metals required to induce antibiotic resistance, i.e., the minimum heavy metal concentrations (MHCs), were far below (up to 64-fold) the minimum inhibition concentrations (MIC) of LSJC7. This finding indicates that the relatively low heavy metal levels in polluted environments and in treated humans and animals might be sufficient to induce bacterial antibiotic resistance. In addition, heavy metal induced antibiotic resistance was also observed for a combination of arsenate and chloramphenicol in LSJC7, and copper/zinc and tetracycline in antibiotic susceptible strain Escherichia coli DH5α. Overall, this study implies that heavy metal induced antibiotic resistance might be ubiquitous among various microbial species and suggests that it might play a role in the emergence and spread of antibiotic resistance in metal and antibiotic co-contaminated environments. PMID:26426011

  12. Heavy metal fates in laboratory bioretention systems.

    PubMed

    Sun, Xueli; Davis, Allen P

    2007-01-01

    Key to managing heavy metals in bioretention is to understand their fates in bioretention facilities. In this study, pot prototypes filled with bioretention media were built to simulate the conditions of natural growth of plants. Synthetic runoff with different heavy metal loadings (copper, cadmium, lead, and zinc) was periodically applied. Metal accumulations in tissues of grasses -Panicum virgatum, Kentucky-31, and Bromus ciliatus, were investigated after 230d of growth and multiple runoff treatment events. After 183d of periodic runoff application, the concentrations of Zn, Cu, Pb and Cd with low and high loadings had the same trends in the plant tissues, Zn>Cu>Pb>Cd, following the trend of the input metal concentrations. The fates of input metals were 88-97% captured in soil media, 2.0-11.6% not captured by bioretention media, and 0.5-3.3% accumulated in plants. Compared to the metals retained by the soil, the percentages of input metals taken up by plants were relatively low due to the low plant biomass produced in this study. Greater biomass density would be required for the vegetation to have a valuable impact in prolonging the lifetime of a bioretention cell.

  13. Fluctuation of dissolved heavy metal concentrations in the leachate from anaerobic digestion of municipal solid waste in commercial scale landfill bioreactors: The effect of pH and associated mechanisms.

    PubMed

    Xie, S; Ma, Y; Strong, P J; Clarke, W P

    2015-12-15

    Heavy metals present in landfill leachate have infrequently been related to complete anaerobic degradation municipal solid waste (MSW) due to discrete ages of deposited MSW layers and leachate channelling in landfills. In this study, anaerobic digestion of MSW was performed in two enclosed 1000 tonne bioreactors using a unique flood and drain process. Leachates were characterised in terms of pH, soluble chemical oxygen demand, volatile fatty acids (VFAs), ammonium nitrogen and heavy metals over the entire course of digestion. All parameters, including pH, fluctuated during acidogenesis, acetogenesis and methanogenesis, which strongly impacted on the dynamics of dissolved heavy metal concentrations. The simulation of dissolution and precipitation processes indicated that metal sulphide precipitation was not a factor as metal concentrations exceeded solubility limits. The correlation of pH and dissolved heavy metal concentrations indicated that other, mechanisms were involved in the homogenised conditions within the bioreactors. Beside dissolution and precipitation, the main processes most likely involved in metal distributions were adsorption (Zn, Cu, Ni, Pb and Cd), complexation (Cr) or combinations of both process (As and Co).

  14. Hydroponics reducing effluent's heavy metals discharge.

    PubMed

    Rababah, Abdellah; Al-Shuha, Ahmad

    2009-01-01

    This paper investigates the capacity of Nutrient Film Technique (NFT) to control effluent's heavy metals discharge. A commercial hydroponic system was adapted to irrigate lettuces with primary treated wastewater for studying the potential heavy metals removal. A second commercial hydroponic system was used to irrigate the same type of lettuces with nutrient solution and this system was used as a control. Results showed that lettuces grew well when irrigated with primary treated effluent in the commercial hydroponic system. The NFT-plant system heavy metals removal efficiency varied amongst the different elements, The system's removal efficiency for Cr was more than 92%, Ni more than 85%, in addition to more than 60% reduction of B, Pb, and Zn. Nonetheless, the NFT-plants system removal efficiencies for As, Cd and Cu were lower than 30%. Results show that lettuces accumulated heavy metals in leaves at concentrations higher than the maximum acceptable European and Australian levels. Therefore, non-edible plants such as flowers or pyrethrum are recommended as value added crops for the proposed NFT.

  15. Nitrification and Heavy Metal Removal in the Activated Sludge Treatment Process.

    DTIC Science & Technology

    1976-08-01

    parameters to heavy metal removal in the activated sludge waste treatment process. The heavy metals studied were chromium and silver. Analyses...performed on the influent, mixed liquor, return sludge, and effluent included heavy metal concentration, pH, dissolved oxygen, temperature, suspended solids...related to heavy metal removal. Nitrification is only indirectly related. A theory for the mechanisms contributing to heavy metal removal is developed.

  16. How composting affects heavy metal content

    SciTech Connect

    Canarutto, S.; Petruzzelli, G.; Lubrano, L.; Guidi, G.V.

    1991-06-01

    This paper describes ways in which a properly conducted composting process can alter the chemical forms of heavy metals and consequently the quality of the compost. This process is of particular interest in the Italian policy of waste management due to the low level of organic matter in Italian agricultural soils. Results of the studies show that the proper process of compost maturation seems to increase the concentrations of humic acids with respect to those of fulvic acids. These variations in the quantity and quality of humic substances influence the speciation of heavy metals with a large part of the metals complexed and reaching the soil in a less mobile form. The distribution of copper, cadmium, zinc, nickel, lead and chromium among humic fractions is compared in two composting procedures.

  17. Small-scale spatial and temporal variance in the concentration of heavy metals in aquatic sediments: a review and some new concepts.

    PubMed

    Birch, G F; Taylor, S E; Matthai, C

    2001-01-01

    Uncertainty associated with data derived by the analyses of heavy metals in aquatic sediment is due to variance produced in the laboratory (precision), plus 'natural', small-scale spatial variance, (or field variance) at the sampling site. Precision is easily determined and is usually reported in contaminant studies, but field variance is poorly understood and seldom documented. It is important to have an understanding of the field variance because if small-scale spatial variance in the concentration of heavy metals is excessive, regional trends may be limited value. Similarly, if temporal change is large, the results of single synoptic surveys may be questionable and the ability to demonstrate anthropogenic contributions over time will be difficult. However, it is evident from the literature that the information needed to address problems of spatial and temporal variance in the field is beyond the resources of most researchers. Analytical precision of about 5% relative standard deviation (RSD) for heavy metal analysis is typical of a well-managed laboratory. Many studies of small-scale spatial variability made during the current investigation indicate that field variance is related to ambient energy and to the type of sedimentological environment. Total variance (analytical plus field variance) is approximately 10% RSD (mean for a suite of nine trace elements) for depositional parts of estuaries and the marine environment, but increases to about 20-35% RSD for the more dynamic parts of the estuarine environment and the fluvial system. Repeated sampling over periods of up to 7 years undertaken during the present study, indicate a similar order of magnitude for temporal variability in these sedimentological environments. A proposed scheme to provide information on field variance is to undertake small-scale spatial and temporal studies in discrete sedimentological environments in the study area after sediment sampling and characterisation has been completed. The

  18. Species sensitivity analysis of heavy metals to freshwater organisms.

    PubMed

    Xin, Zheng; Wenchao, Zang; Zhenguang, Yan; Yiguo, Hong; Zhengtao, Liu; Xianliang, Yi; Xiaonan, Wang; Tingting, Liu; Liming, Zhou

    2015-10-01

    Acute toxicity data of six heavy metals [Cu, Hg, Cd, Cr(VI), Pb, Zn] to aquatic organisms were collected and screened. Species sensitivity distributions (SSD) curves of vertebrate and invertebrate were constructed by log-logistic model separately. The comprehensive comparisons of the sensitivities of different trophic species to six typical heavy metals were performed. The results indicated invertebrate taxa to each heavy metal exhibited higher sensitivity than vertebrates. However, with respect to the same taxa species, Cu had the most adverse effect on vertebrate, followed by Hg, Cd, Zn and Cr. When datasets from all species were included, Cu and Hg were still more toxic than the others. In particular, the toxicities of Pb to vertebrate and fish were complicated as the SSD curves of Pb intersected with those of other heavy metals, while the SSD curves of Pb constructed by total species no longer crossed with others. The hazardous concentrations for 5 % of the species (HC5) affected were derived to determine the concentration protecting 95 % of species. The HC5 values of the six heavy metals were in the descending order: Zn > Pb > Cr > Cd > Hg > Cu, indicating toxicities in opposite order. Moreover, potential affected fractions were calculated to assess the ecological risks of different heavy metals at certain concentrations of the selected heavy metals. Evaluations of sensitivities of the species at various trophic levels and toxicity analysis of heavy metals are necessary prior to derivation of water quality criteria and the further environmental protection.

  19. Earthworm contamination by PCBs and heavy metals

    SciTech Connect

    Diercxsens, P.; de Weck, D.; Borsinger, N.; Rosset, B.; Tarradellas, J.

    1985-01-01

    A comparison is made of soil and earthworm contamination by PCBs and heavy metals between a nature reserve and two sites conditioned by the addition of sewage sludge and compost. The tissues and gut content of the earthworms shows a higher PCB concentration than that of the surrounding soil and also a difference in the fingerprint of some single PCB compounds. Earthworms display a selective accumulation of cadmium and zinc in their tissues and gut content.

  20. Arbuscular Mycorrhizal Fungi Community Structure, Abundance and Species Richness Changes in Soil by Different Levels of Heavy Metal and Metalloid Concentration

    PubMed Central

    Krishnamoorthy, Ramasamy; Kim, Chang-Gi; Subramanian, Parthiban; Kim, Ki-Yoon; Selvakumar, Gopal; Sa, Tong-Min

    2015-01-01

    Arbuscular Mycorrhizal Fungi (AMF) play major roles in ecosystem functioning such as carbon sequestration, nutrient cycling, and plant growth promotion. It is important to know how this ecologically important soil microbial player is affected by soil abiotic factors particularly heavy metal and metalloid (HMM). The objective of this study was to understand the impact of soil HMM concentration on AMF abundance and community structure in the contaminated sites of South Korea. Soil samples were collected from the vicinity of an abandoned smelter and the samples were subjected to three complementary methods such as spore morphology, terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE) for diversity analysis. Spore density was found to be significantly higher in highly contaminated soil compared to less contaminated soil. Spore morphological study revealed that Glomeraceae family was more abundant followed by Acaulosporaceae and Gigasporaceae in the vicinity of the smelter. T-RFLP and DGGE analysis confirmed the dominance of Funneliformis mosseae and Rhizophagus intraradices in all the study sites. Claroideoglomus claroideum, Funneliformis caledonium, Rhizophagus clarus and Funneliformis constrictum were found to be sensitive to high concentration of soil HMM. Richness and diversity of Glomeraceae family increased with significant increase in soil arsenic, cadmium and zinc concentrations. Our results revealed that the soil HMM has a vital impact on AMF community structure, especially with Glomeraceae family abundance, richness and diversity. PMID:26035444

  1. Arbuscular mycorrhizal fungi community structure, abundance and species richness changes in soil by different levels of heavy metal and metalloid concentration.

    PubMed

    Krishnamoorthy, Ramasamy; Kim, Chang-Gi; Subramanian, Parthiban; Kim, Ki-Yoon; Selvakumar, Gopal; Sa, Tong-Min

    2015-01-01

    Arbuscular Mycorrhizal Fungi (AMF) play major roles in ecosystem functioning such as carbon sequestration, nutrient cycling, and plant growth promotion. It is important to know how this ecologically important soil microbial player is affected by soil abiotic factors particularly heavy metal and metalloid (HMM). The objective of this study was to understand the impact of soil HMM concentration on AMF abundance and community structure in the contaminated sites of South Korea. Soil samples were collected from the vicinity of an abandoned smelter and the samples were subjected to three complementary methods such as spore morphology, terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE) for diversity analysis. Spore density was found to be significantly higher in highly contaminated soil compared to less contaminated soil. Spore morphological study revealed that Glomeraceae family was more abundant followed by Acaulosporaceae and Gigasporaceae in the vicinity of the smelter. T-RFLP and DGGE analysis confirmed the dominance of Funneliformis mosseae and Rhizophagus intraradices in all the study sites. Claroideoglomus claroideum, Funneliformis caledonium, Rhizophagus clarus and Funneliformis constrictum were found to be sensitive to high concentration of soil HMM. Richness and diversity of Glomeraceae family increased with significant increase in soil arsenic, cadmium and zinc concentrations. Our results revealed that the soil HMM has a vital impact on AMF community structure, especially with Glomeraceae family abundance, richness and diversity.

  2. Effects of mining activities on heavy metal concentrations in water, sediment, and macroinvertebrates in different reaches of the Pilcomayo River, South America.

    PubMed

    Smolders, A J P; Lock, R A C; Van der Velde, G; Medina Hoyos, R I; Roelofs, J G M

    2003-04-01

    From 1997 until 1999 the extent and the ecological effects of zinc, copper, lead, and cadmium pollution were studied in different reaches of the South American Pilcomayo River. A comparison of metal concentrations in water, sediment, and chironomid larvae, as well as the diversity of macroinvertebrate species, was made between sites near the origin of the Pilcomayo River, with hardly any mining activities, sites in the Potosí region, with intensive mining, and sites located 500 km or further downstream of Potosí, in the Chaco plain. Samples were also collected in an unpolluted river (Cachi Mayu River) and in the Tarapaya River, which is strongly contaminated by mine tailings (1000 tons a day). The upper parts of the Pilcomayo River are strongly affected by the release of mine tailings from the Potosí mines where mean concentrations of lead, cadmium, copper, and zinc in water, filtered water, sediment, and chironomid larvae were up to a thousand times higher than the local background levels. The diversity of the benthic macroinvertebrate community was strongly reduced in the contaminated parts; 97% of the benthic macroinvertebrates consisted of chironomid larvae. The degree of contamination in the lower reaches of the river, however, was fairly low because of sedimentation processes and the strong dilution of mine tailings with enormous amounts of clean sediment from erosion processes. Analysis of sediment cores from the Ibibobo floodplain, however, reveal an increase of the heavy metal concentrations in the lower reaches since the introduction of the contaminating flotation process in the mine industry in 1985.

  3. Customizable Biopolymers for Heavy Metal Remediation

    NASA Astrophysics Data System (ADS)

    Kostal, Jan; Prabhukumar, Giridhar; Lao, U. Loi; Chen, Alin; Matsumoto, Mark; Mulchandani, Ashok; Chen*, Wilfred

    2005-10-01

    Nanoscale materials have been gaining increasing interest in the area of environmental remediation because of their unique physical, chemical and biological properties. One emerging area of research has been the development of novel materials with increased affinity, capacity, and selectivity for heavy metals because conventional technologies are often inadequate to reduce concentrations in wastewater to acceptable regulatory standards. Genetic and protein engineering have emerged as the latest tools for the construction of nanoscale materials that can be controlled precisely at the molecular level. With the advent of recombinant DNA techniques, it is now possible to create `artificial' protein polymers with fundamentally new molecular organization. The most significant feature of these nanoscale biopolymers is that they are specifically pre-programmed within a synthetic gene template and can be controlled precisely in terms of sizes, compositions and functions at the molecular level. In this review, the use of specifically designed protein-based nano-biomaterials with both metal-binding and tunable properties for heavy metal removal is summarized. Several different strategies for the selective removal of heavy metals such as cadmium and mercury are highlighted.

  4. Heavy metal pollution in coastal areas of South China: a review.

    PubMed

    Wang, Shuai-Long; Xu, Xiang-Rong; Sun, Yu-Xin; Liu, Jin-Ling; Li, Hua-Bin

    2013-11-15

    Coastal areas of South China face great challenges due to heavy metal contamination caused by rapid urbanization and industrialization. In this paper, more than 90 articles on levels, distributions, and sources of heavy metals in sediments and organisms were collected to review the status of heavy metal pollution along coastal regions of South China. The results show that heavy metal levels were closely associated with local economic development. Hong Kong and the Pearl River Estuary were severely contaminated by heavy metals. However, concentrations of heavy metals in sediments from Hong Kong have continually decreased since the early 1990 s. High levels of heavy metals were found in biota from Lingdingyang in Guangdong province. Mollusks had higher concentrations of heavy metals than other species. Human health risk assessments suggested that levels of heavy metals in some seafood from coastal areas of South China exceeded the safety limit.

  5. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots.

    PubMed

    Meinardi, Francesco; McDaniel, Hunter; Carulli, Francesco; Colombo, Annalisa; Velizhanin, Kirill A; Makarov, Nikolay S; Simonutti, Roberto; Klimov, Victor I; Brovelli, Sergio

    2015-10-01

    Luminescent solar concentrators serving as semitransparent photovoltaic windows could become an important element in net zero energy consumption buildings of the future. Colloidal quantum dots are promising materials for luminescent solar concentrators as they can be engineered to provide the large Stokes shift necessary for suppressing reabsorption losses in large-area devices. Existing Stokes-shift-engineered quantum dots allow for only partial coverage of the solar spectrum, which limits their light-harvesting ability and leads to colouring of the luminescent solar concentrators, complicating their use in architecture. Here, we use quantum dots of ternary I-III-VI2 semiconductors to realize the first large-area quantum dot-luminescent solar concentrators free of toxic elements, with reduced reabsorption and extended coverage of the solar spectrum. By incorporating CuInSexS2-x quantum dots into photo-polymerized poly(lauryl methacrylate), we obtain freestanding, colourless slabs that introduce no distortion to perceived colours and are thus well suited for the realization of photovoltaic windows. Thanks to the suppressed reabsorption and high emission efficiencies of the quantum dots, we achieve an optical power efficiency of 3.2%. Ultrafast spectroscopy studies suggest that the Stokes-shifted emission involves a conduction-band electron and a hole residing in an intragap state associated with a native defect.

  6. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Meinardi, Francesco; McDaniel, Hunter; Carulli, Francesco; Colombo, Annalisa; Velizhanin, Kirill A.; Makarov, Nikolay S.; Simonutti, Roberto; Klimov, Victor I.; Brovelli, Sergio

    2015-10-01

    Luminescent solar concentrators serving as semitransparent photovoltaic windows could become an important element in net zero energy consumption buildings of the future. Colloidal quantum dots are promising materials for luminescent solar concentrators as they can be engineered to provide the large Stokes shift necessary for suppressing reabsorption losses in large-area devices. Existing Stokes-shift-engineered quantum dots allow for only partial coverage of the solar spectrum, which limits their light-harvesting ability and leads to colouring of the luminescent solar concentrators, complicating their use in architecture. Here, we use quantum dots of ternary I-III-VI2 semiconductors to realize the first large-area quantum dot-luminescent solar concentrators free of toxic elements, with reduced reabsorption and extended coverage of the solar spectrum. By incorporating CuInSexS2-x quantum dots into photo-polymerized poly(lauryl methacrylate), we obtain freestanding, colourless slabs that introduce no distortion to perceived colours and are thus well suited for the realization of photovoltaic windows. Thanks to the suppressed reabsorption and high emission efficiencies of the quantum dots, we achieve an optical power efficiency of 3.2%. Ultrafast spectroscopy studies suggest that the Stokes-shifted emission involves a conduction-band electron and a hole residing in an intragap state associated with a native defect.

  7. Organochlorine pesticide, polychlorinated biphenyl and heavy metal concentrations in wolves (Canis lupus L. 1758) from north-west Russia.

    PubMed

    Shore, R F; Casulli, A; Bologov, V; Wienburg, C L; Afsar, A; Toyne, P; Dell'Omo, G

    2001-12-03

    The wolf Canis lupus is a major terrestrial predator in eastern Europe and, as a top carnivore, may be exposed to high concentrations of contaminants that are readily transferred through the food chain. Despite this, there are few published data on pollutant and pesticide levels in wolves. This study utilised tissues from animals legally killed by hunters for other reasons (animals were not killed for the purposes of this study) to carry out the only detailed investigation of contaminants in wolves in Europe and the first in animals from Eastern Europe. The livers of 58 wolves from the Tver and Smoliensk regions of northwest Russia (54 degrees N 31 degrees E to 57 degrees N 35 degrees E) were analysed for seven organochlorine pesticides, 24 PCB congeners, Aroclor 1254-matched summed PCBs (sigmaPCBs), total mercury, cadmium and lead. Cadmium, most of the organochlorine pesticides and many PCB congeners were not detectable in any of the wolves. Hexachlorobenzene, alpha-HCH, pp'DDE, PCB congeners 118, 138, 149 and 156 and lead were detected in up to 6% of livers. Dieldrin, PCB congeners 153, 170 and 180, sigmaPCBs and mercury were detected more frequently. Contaminant levels were generally low; maximum wet weight concentrations of any of the organochlorine pesticides, sigmaPCBs and mercury were less than 0.1, 1 and 0.25 microg g(-1), respectively. PCB congeners 153, 170 and 180 accounted for 41% of the sigmaPCBs. Dieldrin, sigmaPCBs and mercury concentrations did not vary significantly between males and females nor between adult and juvenile (< 12 months old) wolves apart from the sigmaPCB concentration, which was on average five times higher in adults than juveniles. Liver residues were generally below the level normally associated with adverse effects except for lead levels which exceeded the critical 5 microg g(-1) dry wt. concentration in three of the 58 animals examined.

  8. Heavy metal displacement in chelate-irrigated soil during phytoremediation

    NASA Astrophysics Data System (ADS)

    Madrid, F.; Liphadzi, M. S.; Kirkham, M. B.

    2003-03-01

    Heavy metals in wastewater sewage sludge (biosolids), applied to land, contaminate soils. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with and without roots following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals in biosolids applied to the surface of soil columns (76 cm long; 17 cm diam.) with or without plants (barley; Hordeum vulgare L.). Three weeks after barley was planted, all columns were irrigated with the disodium salt of the chelating agent, EDTA (ethylenediamine tetraacetic acid) (0.5 g/kg soil). Drainage water, soil, and plants were analyzed for heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, Zn). Total concentrations of the heavy metals in all columns at the end of the experiment generally were lower in the top 30 cm of soil with EDTA than without EDTA. The chelate increased concentrations of heavy metals in shoots. With or without plants, the EDTA mobilized Cd, Fe, Mn, Ni, Pb, and Zn, which leached to drainage water. Drainage water from columns without EDTA had concentrations of these heavy metals below detection limits. Only Cu did not leach in the presence of EDTA. Even though roots retarded the movement of Cd, Fe, Mn, Ni, Pb, and Zn through the EDTA-treated soil from 1 d (Cd) to 5 d (Fe), the drainage water from columns with EDTA had concentrations of Cd, Fe, Mn, and Pb that exceeded drinking water standards by 1.3, 500, 620, and 8.6 times, respectively. Because the chelate rendered Cd, Fe, Mn, Ni, Pb, and Zn mobile, it is suggested that the theory for leaching of soluble salts, put forward by Nielsen and associates in 1965, could be applied to control movement of the heavy metals for maximum uptake during chelate-assisted phytoremediation.

  9. Seasonal variations in the blood concentration of selected heavy metals in sheep and their effects on the biochemical and hematological parameters.

    PubMed

    Kovacik, Anton; Arvay, Julius; Tusimova, Eva; Harangozo, Lubos; Tvrda, Eva; Zbynovska, Katarina; Cupka, Peter; Andrascikova, Stefania; Tomas, Jan; Massanyi, Peter

    2017-02-01

    The main objective of this study was to assess the concentration of various heavy metals (Cd, Pb, Zn, Cu, Hg) in the blood of sheep, followed by biochemical and hematological analysis in order to reveal possible associations. Blood was collected in two different seasons: winter (fed by fodder) and spring (grazing animals). The higher concentrations of Pb (p < 0.01), Cu (p < 0.05) and Hg, but lower of Cd and Zn were found in spring. Evaluation of the biochemical and hematological parameters during different seasons showed a possible environmental effect on the health of animals. A statistically significant increase of Ca (p < 0.001), Mg (p < 0.05), urea (p < 0.001), TP (p < 0.05), glucose (p < 0.01), AST (p < 0.001), ALT (p < 0.001), ALP (p < 0.01), cholesterol (p < 0.001), bilirubin (p < 0.05), triglycerides (p < 0.001) and a decrease of P (p < 0.05), HGB (p < 0.05), MCHC (p < 0.05) and RDWc (p < 0.05) in spring was detected. The results of this study showed statistically significant correlations between Pb and ALP (r = 0.53) level in winter and between Pb and Ca (r = -0.73) in the spring. The hematological analysis revealed a significant correlation between Zn and RBC (r = 0.61), MCV (r = -0.74), MCH (r = -0.71) and between Pb and MCH (r = -0.55), PCT (r = -0.66), PDWC (r = -0.55) in the winter. A high positive significant correlations were found between Cd and RDWC (r = 0.77) and Cu and RDWC (r = 0.75). The significance of this work is the use the data in the preventive diagnosis of metabolic and production diseases. The collected data may serve as a control indicator to detect toxic hazards related to the heavy metal occurrence on animal health status.

  10. Multidisciplinary study of radionuclides and heavy-metal concentrations in wildlife on phosphate-mined and reclaimed lands. Final report

    SciTech Connect

    Pritchard, P.C.H.; Bloodwell, J.M.

    1986-11-01

    The phosphate-rich mineral deposits of central Florida tend to exhibit background radiation levels that are elevated due to the uranium and its decay products found in association with the ore. The report documents radioactivity levels in two groups of animals that had heretofore not been examined by other investigators -- aquatic reptiles (American alligators, softshell turtles, and Florida cooter turtles) and terrestrial mammals (armadillos), based on the criterion that these species have significant proportions of their mass comprised of bony tissue likely to show elevated concentrations of radium. The alligator bones contained only low concentrations of radium, and there were no significant differences between alligators collected from mined, mineralized-unmined, or unmineralized land. Whether the levels of radium in the bones of the turtles represents a hazard to the health of these long-lived animals or to humans who may consume their flesh is unclear.

  11. Dietary heavy metal uptake by the least shrew, Cryptotis parva

    SciTech Connect

    Brueske, C.C.; Barrett, G.W. )

    1991-12-01

    Heavy metals from sewage sludge have been reported to concentrate in producers, in primary consumers, and in detritivores. Little research, however, has focused on the uptake of heavy metals from sewage sludge by secondary consumers. The Family Soricidae represents an ideal mammalian taxonomic group to investigate rates of heavy metal transfer between primary and secondary consumers. The least shrew (Cryptotis parva) was used to evaluate the accumulation of heavy metals while maintained on a diet of earthworms collected from long-term sludge-treated old-field communities. This secondary consumer is distributed widely through the eastern United States and its natural diet includes earthworms which makes it a potentially good indicator of heavy metal transfer in areas treated with municipal sludge.

  12. The Heavy Metal Subculture and Suicide.

    ERIC Educational Resources Information Center

    Stack, Steven; And Others

    1994-01-01

    Assessed relationship between heavy metal music and suicide with data on heavy metal magazine subscriptions and youth suicide in 50 states. Found that, controlling for other predictors of suicide, greater strength of metal subculture, higher youth suicide rate, suggests that music perhaps nurtures suicidal tendencies already present in subculture.…

  13. Industrial hygiene of selected heavy metals

    SciTech Connect

    Woodring, J.L.

    1993-08-01

    The industrial hygiene of heavy metals consists of recognition, evaluation, and control of exposures in the occupational environment. Several of these metals have been in use since ancient times. Reports of health effects and poisonings from overexposures also have a long history. This report discusses the industrial hygiene of the heavy metals, lead, cadmium, mercury, and manganese.

  14. Can heavy metal pollution defend seed germination against heat stress? Effect of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination under high temperature.

    PubMed

    Deng, Benliang; Yang, Kejun; Zhang, Yifei; Li, Zuotong

    2016-09-01

    Heavy metal pollution, as well as greenhouse effect, has become a serious threat today. Both heavy metal and heat stresses can arrest seed germination. What response can be expected for seed germination under both stress conditions? Here, the effects of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination were investigated at 20 °C and 40 °C. Compared with 20 °C, heat stress induced thermodormancy. However, this thermodormancy could be significantly alleviated by the addition of a low concentration of heavy metals. Heavy metals, as well as heat stress induced H2O2 accumulation in germinating seeds. Interestingly, this low concentration of heavy metal that promoted seed germination could be partly blocked by DMTU (a specific ROS scavenger), irrespective of temperature. Accordingly, H2O2 addition reinforced this promoting effect on seed germination, which was induced by a low concentration of heavy metal. Furthermore, we found that the NADPH oxidase derived ROS was required for seed germination promoted by the heavy metals. Subsequently, treatment of seeds with fluridone (a specific inhibitor of ABA) or ABA significantly alleviated or aggravated thermodormancy, respectively. However, this alleviation or aggravation could be partly attenuated by a low concentration of heavy metals. In addition, germination that was inhibited by high concentrations of heavy metals was also partly reversed by fluridone. The obtained results support the idea that heavy metal-mediated ROS and hormone interaction can finally affect the thermodormancy release or not.

  15. [Monitoring of the concentration of lithium and heavy metals in drinking water by the method of stripping voltammetry].

    PubMed

    Khakhanina, T I; Kovaleva, A Iu; Gurskaia, A A

    2007-01-01

    A method for monitoring of the concentration of lithium, zinc, cadmium, lead, and copper in drinking water is suggested. Monitoring can be performed within the range of 1.5(10(-8) - 2.0(10(-6) mg/dm3. A new design of the electrochemical cell is suggested. Analysis is performed against the background of 0.02 M dimethylformamide solution of (C4H9)4NCIO4. The time and potential of electrolysis are determined experimentally. The method can be used in medical research.

  16. The production of stress ethylene relative to the concentration of heavy metals and other elements in the lichen Hypogymnia physodes

    SciTech Connect

    Garty, J.; Kauppi, M.; Kauppi, A.

    1997-11-01

    The objective of this study was to examine fluctuations in the production of ethylene by the lichen, Hypogymnia physodes, indicative of environmental stress caused by air pollutants. In addition, the authors investigated the accumulation capacity of H. physodes, transplanted in the vicinity of two streets having slow traffic and a highway in the city of Oulu, N. Finland, for a short period (45 d). The amounts of stress ethylene produced by the transplanted lichens was compared with the amounts of airborne elements accumulated in the thallus. H. physodes manifested a high accumulation capacity for Fe and Mg in thalli exposed in either one or both streets with slow traffic in Oulu in comparison with thalli left on the control site in the forest outside of the city. Two of the observed elements, Zn and Fe, exhibited a significant positive correlation with the ethylene concentration detected concomitant in thalli retrieved from one or both streets with slow traffic were higher than the concentrations in thalli transplanted in a highway with 25,240 cars/d after 45 d of exposure. The data thus suggest that the streets with slow traffic and fewer cars are more polluted than the highway.

  17. [Beijing common green tree leaves' accumulation capacity for heavy metals].

    PubMed

    Li, Shao-Ning; Kong, Ling-Wei; Lu, Shao-Wei; Chen, Bo; Gao, Chen; Shi, Yuan

    2014-05-01

    Seasonal variation of heavy metal contents in leaves and their relationships with soil heavy metal pollution levels were studied through measuring and analyzing the leaves of the common tree species in Beijing and soil heavy metal contents, to detect heavy metal accumulation ability of plant leaves. The results showed that: (1) the contents of Cu, Pb, Zn in plant leaves first decreased and then increased, again declined with changing the seasons (from spring to winter). Cr concentration showed the trend of first increase and then decrease from spring to winter, and the highest in the autumn; the accumulation capacities of Cu for Babylonica and Japonica were higher in the spring, summer and autumn, while Tabuliformis was in winter; the higher accumulation capacities for Cr, Pb were Japonica and Platycladus, and in winter were Platycladus and Bungeana; the higher accumulation capacities for Zn were Babylonica and Bungeana, while Platycladus in winter; (2) the pollution degree of four kinds of heavy metals (Cu, Cr, Pb, Zn) from downtown to suburbs showed that: Jingshan (C =2.48, C is contamination factor) > Olympic (C = 1.27) > Songshan (C = 1.20) > Shuiguan (C = 1. 18); (3) the heavy metals concentration of same plant leaves in the water of the Great Wall changed larger, but those in the other three areas showed that: Jingshan > Olympic > Songshan; the ability of same species leaf to absorb different sorts of heavy metals showed that: Zn >Cu >Pb >Cr; the difference between Zn content and Cr content was significant (P <0.01); (4) the relationship between heavy metal content in plant leaves and soil heavy metal pollution levels presented a quadratic polynomial relation; the significant correlation was found between other three heavy metal contents of plant samples and soil samples, but they were not the case for the Cu, and the correlation coefficients were above 0. 9.

  18. Improving crop tolerance to heavy metal stress by polyamine application.

    PubMed

    Soudek, Petr; Ursu, Marina; Petrová, Šárka; Vaněk, Tomáš

    2016-12-15

    Many areas have been heavily contaminated by heavy metals from industry and are not suitable for food production. The consumption of contaminated foods represents a health risk in humans, although some heavy metals are essential at low concentrations. Increasing the concentrations of essential elements in foods is one goal to improve nutrition. The aim of this study was to increase the accumulation of heavy metals in plant foods by the external application of putrescine. The levels of cadmium, zinc and iron were measured in different vegetables grown in hydroponic medium supplemented with heavy metals and compared with those grown in a reference medium. The estimated daily intake, based on the average daily consumption for various vegetable types, and the influence of polyamines on metal uptake were calculated.

  19. Contamination, toxicity and speciation of heavy metals in an industrialized urban river: Implications for the dispersal of heavy metals.

    PubMed

    Wu, Qihang; Zhou, Haichao; Tam, Nora F Y; Tian, Yu; Tan, Yang; Zhou, Song; Li, Qing; Chen, Yongheng; Leung, Jonathan Y S

    2016-03-15

    Urban rivers are often utilized by the local residents as water source, but they can be polluted by heavy metals due to industrialization. Here, the concentrations, toxicity, speciation and vertical profiles of heavy metals in sediment were examined to evaluate their impact, dispersal and temporal variation in Dongbao River. Results showed that the sediment in the industrialized areas was seriously contaminated with Cr, Cu and Ni which posed acute toxicity. Heavy metals, except Cr and Pb, were mainly associated with non-residual fractions, indicating their high mobility and bioavailability. The non-industrialized areas were also seriously contaminated, suggesting the dispersal of heavy metals along the river. The surface sediment could be more contaminated than the deep sediment, indicating the recent pollution events. Overall, when the point sources are not properly regulated, intense industrialization can cause both serious contamination and dispersal of heavy metals, which have far-reaching consequences in public health and environment.

  20. Characterization of land-based sources of pollution in Jobos Bay, Puerto Rico: status of heavy metal concentration in bed sediment.

    PubMed

    Apeti, Dennis A; Whitall, David R; Pait, Anthony S; Dieppa, Angel; Zitello, Adam G; Lauenstein, Gunnar G

    2012-01-01

    As part of an assessment of land-based sources of pollution in Jobos Bay, Puerto Rico, sediment samples were collected at 43 sites to characterize concentrations of a suite of pollutants, including metals. Fifteen major and trace metals (Ag, Al, As, Cd, Cr, Cu, Fe, Hg, Mn Ni, Pb, Sb, Se, Sn, and Zn) were measured along with total organic carbon and grain size in surficial sediments. For most metals, maximum concentrations were seen in the eastern bay; however, values were still within concentration ranges found in other estuarine systems. In contrast, silver was higher in the western region. In general, metal distribution in the bay was positively correlated with grain size. Additionally, correlations between Al and other metals suggest natural sources for metals. The data presented here suggest that, although the Jobos Bay watershed contains both urban centers along with industrial and agricultural developments, anthropogenic inputs of metals may be negligible.

  1. Selection of ectomycorrhizal willow genotype in phytoextraction of heavy metals.

    PubMed

    Hrynkiewicz, Katarzyna; Baum, Christel

    2013-01-01

    Willow clones are used for the phytoextraction of heavy metals from contaminated soils and are usually mycorrhizal. The receptiveness of willow clones for mycorrhizal inoculum varies specific to genotype; however, it is unknown if this might have a significant impact on their efficiency in phytoextraction of heavy metals. Therefore, a model system with mycorrhizal and non-mycorrhizal willows of two different genotypes--one with usually stronger natural mycorrhizal colonization (Salix dasyclados), and one with lower natural mycorrhizal colonization (S. viminalis)--was investigated for its efficiency of phytoextraction of heavy metals (Cd, Pb, Cu, Zn) from contaminated soil. Inoculation with the ectomycorrhizal fungus Amanita muscaria significantly decreased the biomass of leaves of both inoculated willow clones, and increased or had no effect on the biomass of trunks and roots of S. dasyclados and S. viminalis, respectively. The concentrations of heavy metals in the biomass of S. dasyclados were in general higher than in S. viminalis irrespective of inoculation with the ectomycorrhizal fungus. Inoculation with A. muscaria significantly decreased the concentration of Cu in the trunks of both Salix taxa, but did not affected the concentrations of other heavy metals in the biomass. In conclusion, stronger receptiveness of willow clones for mycorrhizal inoculum was correlated with an increased total extraction of heavy metals from contaminated soils. Therefore, this seems to be a suitable criterion for effective willow clone selection for phytoremediation. Increased biomass production with relatively constant metal concentrations seems to be a major advantage of mycorrhizal formation of willows in phytoremediation of contaminated soils.

  2. Cell surface engineering of microorganisms towards adsorption of heavy metals.

    PubMed

    Li, Peng-Song; Tao, Hu-Chun

    2015-06-01

    Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed.

  3. Heavy metals, islet function and diabetes development.

    PubMed

    Chen, Ya Wen; Yang, Ching Yao; Huang, Chun Fa; Hung, Dong Zong; Leung, Yuk Man; Liu, Shing Hwa

    2009-01-01

    It has long been believed that heavy metals possess many adverse health effects. Uncontrolled industrialization has released heavy metal pollution in the world. Heavy metal pollutants damage organ functions and disrupt physiological homeostasis. Diabetes mellitus is growing in prevalence worldwide. Several studies have indicated that the deficiency and efficiency of some essential trace metals may play a role in the islet function and development of diabetes mellitus. Some toxic metals have also been shown to be elevated in biological samples of diabetes mellitus patients. In the present work, we review the important roles of heavy metals in islet function and diabetes development in which the in vitro, in vivo or human evidences are associated with exposure to zinc, arsenic, cadmium, mercury and nickel. Through this work, we summarize the evidence which suggests that some heavy metals may play an important role in diabetes mellitus as environmental risk factors.

  4. Characterisation of heavy metal discharge into the Ria of Huelva.

    PubMed

    Sainz, A; Grande, J A; de la Torre, M L

    2004-06-01

    The Ria of Huelva estuary, in SW Spain, is known to be one of the most heavy metal contaminated estuaries in the world. River contribution to the estuary of dissolved Cu, Zn, Mn, Cr, Ni, Cd, and As were analysed for the period 1988-2001. The obtained mean values show that this contribution, both because of the magnitude of total metals (895.1 kg/h), composition, toxicity (8.7 kg/h of As+Cd+Pb) and persistence, is an incomparable case in heavy metal contamination of estuaries. The amount and typology of heavy metal discharge to the Ria of Huelva are related to freshwater flow (and, consequently, to rainfall); as a result, two different types of heavy metal discharge can be distinguished in the estuary: during low water (50% of the days), with only 19.3 kg/h of heavy metals, and during high water or flood (17% of the days), where daily maximum discharge of 72,475 kg of heavy metals were recorded, from which 1481 kg were of As, 470 kg of Pb, and 170 kg of Cd. In the most frequent situation (77% of the days), the Odiel River discharges from 90% to 100% of the freshwater received by the estuary. Despite this, the high concentration of heavy metals in the Tinto River water causes this river to discharge into the Ria of Huelva 12.5% of fluvial total dissolved metal load received by the estuary.

  5. Bioindication of a surplus of heavy metals in terrestrial ecosystems.

    PubMed

    Ernst, W H; Verkleij, J A; Vooijs, R

    1983-09-01

    A survey of the methods of boindication of heavy metals in terrestrial ecosystems and their effectiveness for predicting the consequences of environmental stress on organisms is presented. Two main inputs of heavy metals for terrestrial ecosystems have been considered: airborne and soil-borne.Airborne metals can be monitored due to physical adsorption on plant surfaces or due to chemical exchange processes in cell walls. Active biomonitoring widely uses both aspects, however, without predictive values.Meaningful bioindication of soilborne heavy metals can only be achieved by passive monitoring. Due to the different functions of heavy metals in organisms-micronutrients and trace elements-the knowledge of natural background values is important, considering the qualitative aspects of metals in the soil. In exceptional situations morphological and anatomical changes of plant organs will facilitate bioindication; in every case chemical analysis of the concentration of heavy metals is an essential part of the monitoring program.A long-term exposure of organisms to heavy metals will influence the genetic structure of populations. Therefore measurement of heavy metal tolerance of plants has to be a standard procedure in monitoring programs.

  6. Separation Characteristics of Heavy Metal Compounds by Hot Gas Cleaning System

    SciTech Connect

    Sakano, T.; Kanaoka, C.; Furuuchi, M.; Yang, K-S.; Hata, M.

    2002-09-20

    The purpose of this research is the basic study for the development of separation technology of heavy metal compounds from hot flue gas. While the hot flue gas containing heavy metals from a melting furnace of industrial waste passes through the high temperature dust collector which can be varied the operating temperature. The heavy metals can be separated due to different boiling point of each heavy metal. On the basis of this concept, the concentration of heavy metals in the flue gas were sampled and measured at inlet, outlet of the ceramic filter housing in the actual industrial waste processing system. Speciation of heavy metals in collected ashes was clarified by separating heavy metals according to compounds using their elution characteristics. Moreover, equilibrium analysis was performed to determine the effect of temperature, flue gases conditions on heavy metals speciation, and it was compared with experimental data. From these results, we discussed about separation performance of heavy metal compounds by hot gas cleaning.

  7. Body burdens of heavy metals in Lake Michigan wetland turtles.

    PubMed

    Smith, Dayna L; Cooper, Matthew J; Kosiara, Jessica M; Lamberti, Gary A

    2016-02-01

    Tissue heavy metal concentrations in painted (Chrysemys picta) and snapping (Chelydra serpentina) turtles from Lake Michigan coastal wetlands were analyzed to determine (1) whether turtles accumulated heavy metals, (2) if tissue metal concentrations were related to environmental metal concentrations, and (3) the potential for non-lethal sampling techniques to be used for monitoring heavy metal body burdens in freshwater turtles. Muscle, liver, shell, and claw samples were collected from painted and snapping turtles and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, and zinc. Turtle tissues had measurable quantities of all eight metals analyzed. Statistically significant correlations between tissue metal concentrations and sediment metal concentrations were found for a subset of metals. Metals were generally found in higher concentrations in the larger snapping turtles than in painted turtles. In addition, non-lethal samples of shell and claw were found to be possible alternatives to lethal liver and muscle samples for some metals. Human consumption of snapping turtles presents potential health risks if turtles are harvested from contaminated areas. Overall, our results suggest that turtles could be a valuable component of contaminant monitoring programs for wetland ecosystems.

  8. Material Removes Heavy Metal Ions From Water

    NASA Technical Reports Server (NTRS)

    Philipp, Warren H., Jr.; Street, Kenneth W.; Hill, Carol; Savino, Joseph M.

    1995-01-01

    New high capacity ion-exchange polymer material removes toxic metal cations from contaminated water. Offers several advantages. High sensitivities for such heavy metals as lead, cadmium, and copper and capable of reducing concentrations in aqueous solutions to parts-per-billion range. Removes cations even when calcium present. Material made into variety of forms, such as thin films, coatings, pellets, and fibers. As result, adapted to many applications to purify contaminated water, usually hard wherever found, whether in wastewater-treatment systems, lakes, ponds, industrial plants, or homes. Another important feature that adsorbed metals easily reclaimed by either destructive or nondestructive process. Other tests show ion-exchange polymer made inexpensively; easy to use; strong, flexible, not easily torn; and chemically stable in storage, in aqueous solutions, and in acidic or basic solution.

  9. Biomedical implications of heavy metals induced imbalances in redox systems.

    PubMed

    Sharma, Bechan; Singh, Shweta; Siddiqi, Nikhat J

    2014-01-01

    Several workers have extensively worked out the metal induced toxicity and have reported the toxic and carcinogenic effects of metals in human and animals. It is well known that these metals play a crucial role in facilitating normal biological functions of cells as well. One of the major mechanisms associated with heavy metal toxicity has been attributed to generation of reactive oxygen and nitrogen species, which develops imbalance between the prooxidant elements and the antioxidants (reducing elements) in the body. In this process, a shift to the former is termed as oxidative stress. The oxidative stress mediated toxicity of heavy metals involves damage primarily to liver (hepatotoxicity), central nervous system (neurotoxicity), DNA (genotoxicity), and kidney (nephrotoxicity) in animals and humans. Heavy metals are reported to impact signaling cascade and associated factors leading to apoptosis. The present review illustrates an account of the current knowledge about the effects of heavy metals (mainly arsenic, lead, mercury, and cadmium) induced oxidative stress as well as the possible remedies of metal(s) toxicity through natural/synthetic antioxidants, which may render their effects by reducing the concentration of toxic metal(s). This paper primarily concerns the clinicopathological and biomedical implications of heavy metals induced oxidative stress and their toxicity management in mammals.

  10. Biomedical Implications of Heavy Metals Induced Imbalances in Redox Systems

    PubMed Central

    Singh, Shweta; Siddiqi, Nikhat J.

    2014-01-01

    Several workers have extensively worked out the metal induced toxicity and have reported the toxic and carcinogenic effects of metals in human and animals. It is well known that these metals play a crucial role in facilitating normal biological functions of cells as well. One of the major mechanisms associated with heavy metal toxicity has been attributed to generation of reactive oxygen and nitrogen species, which develops imbalance between the prooxidant elements and the antioxidants (reducing elements) in the body. In this process, a shift to the former is termed as oxidative stress. The oxidative stress mediated toxicity of heavy metals involves damage primarily to liver (hepatotoxicity), central nervous system (neurotoxicity), DNA (genotoxicity), and kidney (nephrotoxicity) in animals and humans. Heavy metals are reported to impact signaling cascade and associated factors leading to apoptosis. The present review illustrates an account of the current knowledge about the effects of heavy metals (mainly arsenic, lead, mercury, and cadmium) induced oxidative stress as well as the possible remedies of metal(s) toxicity through natural/synthetic antioxidants, which may render their effects by reducing the concentration of toxic metal(s). This paper primarily concerns the clinicopathological and biomedical implications of heavy metals induced oxidative stress and their toxicity management in mammals. PMID:25184144

  11. Heavy metals in livers and kidneys of goats in Alabama

    SciTech Connect

    Khan, A.T.; Diffay, B.C.; Datiri, B.C.

    1995-10-01

    The popularity of goat farming is increasing in the southeastern region of the United States. Baseline values of Hg, Pb, and Cd are not available in goat tissues in the United States. These values are needed when monitoring food for heavy metal contamination which may be associated with urbanization and industrialization. Due to human activities or anthropogenic sources of metals in the environment, high concentrations of these metals have been observed in herbage and animal tissues. It has also been reported that toxic heavy metals are concentrated mostly in kidneys and livers of animals. The risk of exposure of humans to heavy metals contained in edible organs of animals has received widespread concern. The objectives of this study were to (i) measure the levels of Hg,Pb, and Cd in livers and kidneys of goats; and (ii) determine whether accumulation of these metals is related to age and/or sex. 20 refs., 3 tabs.

  12. Arbuscular mycorrhiza and heavy metal tolerance.

    PubMed

    Hildebrandt, Ulrich; Regvar, Marjana; Bothe, Hermann

    2007-01-01

    Arbuscular mycorrhizal fungi (AMF) have repeatedly been demonstrated to alleviate heavy metal stress of plants. The current manuscript summarizes results obtained to date on the colonization of plants by AMF in heavy metal soils, the depositions of heavy metals in plant and fungal structures and the potential to use AMF-plant combinations in phytoremediation, with emphasis on pennycresses (Thlaspi ssp.). The focus of this manuscript is to describe and discuss studies on the expression of genes in plants and fungi under heavy metal stress. The summary is followed by data on differential gene expression in extraradical mycelia (ERM) of in vitro cultured Glomus intraradices Sy167 supplemented with different heavy metals (Cd, Cu or Zn). The expression of several genes encoding proteins potentially involved in heavy metal tolerance varied in their response to different heavy metals. Such proteins included a Zn transporter, a metallothionein, a 90 kD heat shock protein and a glutathione S-transferase (all assignments of protein function are putative). Studies on the expression of the selected genes were also performed with roots of Medicago truncatula grown in either a natural, Zn-rich heavy metal "Breinigerberg" soil or in a non-polluted soil supplemented with 100 microM ZnSO(4). The transcript levels of the genes analyzed were enhanced up to eight fold in roots grown in the heavy metal-containing soils. The data obtained demonstrate the heavy metal-dependent expression of different AMF genes in the intra- and extraradical mycelium. The distinct induction of genes coding for proteins possibly involved in the alleviation of damage caused by reactive oxygen species (a 90 kD heat shock protein and a glutathione S-transferase) might indicate that heavy metal-derived oxidative stress is the primary concern of the fungal partner in the symbiosis.

  13. Relationships between thiamine content of eggs and concentrations of lead and other heavy metals in water and survival of Atlantic salmon fry

    USGS Publications Warehouse

    Ketola, H. George; Wedge, Leslie R.; Lary, Sandra J.; Grant, Edward C.; Rutzke, Michael A.; Wagenet, Linda P.; Eckhardt, David A.V.; Hairston, Nelson G.; Karig, Daniel E.; Yager, Richard

    2001-01-01

    Atlantic salmon (Salmo salar) were extirpated in much of New York state by the late 1800s. Currently, Atlantic salmon from Little Clear Pond (Saranac Lake, NY) are stocked in Cayuga Lake (Ithaca, NY) and Lake Ontario to support a fishery, but reproduction is severely impaired by thiamine deficiency in Cayuga Lake and probably in Lake Ontario--apparently caused by adults feeding on prey fish high in thiaminase. One study suggested that survival of these fry may be reduced by phosphorus, calcium, magnesium, copper, or lead in water. Thiamine deficiency is known to increase lead toxicity. Bringing gravid Atlantic salmon from Little Clear Pond and Cayuga Inlet into the laboratory, we examined the effect of exposing their fertilized eggs during water-hardening to water with and without added lead (0.1 to 100 mg lead·liter-1) and to other contaminated waters (from New York State) on the survival of their eggs and fry. Our results showed no significant influence of our water-hardening treatments on survival of eggs or fry; therefore, it appears that exposure of eggs (during water-hardening) to lead in water (concentrations up to 100 mg lead·liter-1) or to several contaminated waters was not detrimental to the survival of eggs or fry of Atlantic salmon. We also determined the mineral and heavy metal content of dried eggs and found that eggs from Cayuga Lake salmon had significantly higher concentrations of copper (1.9 vs. 0.5 mg·g-1) than did eggs from salmon from Little Clear Pond. All concentrations of copper appeared to be within the range observed in other normal salmon. There were no other significant differences in concentrations of other minerals tested. Concentrations of copper in Cayuga Lake water (mean, 1.16 mg·liter-1) were significantly higher than in Little Clear Pond water (mean, 0.17 mg·liter-1). The effect of copper in eggs of thiamine-deficient salmon is not known.

  14. Contamination of Polish national parks with heavy metals.

    PubMed

    Staszewski, Tomasz; Łukasik, Włodzimierz; Kubiesa, Piotr

    2012-07-01

    The paper presents results of screening analysis of all Polish national parks (23) contamination with Cd, Cu, Pb and Zn on the basis of a three-level characteristic of heavy metal presence in Norway spruce stands: accumulation on the needle surface, concentration of heavy metals in spruce needles and concentration of bioavailable heavy metals in the soil. Based on the obtained results, the classification of forest ecosystem hazard in national parks with heavy metals was made using synthetic indicators. It was found out that Babiogórski, Magurski, Ojcowski and Gorczański National Parks, located in the southern part of the country, were the most polluted with heavy metals. It is probably due to a higher industrial activity in this part of Poland and the transboundary transport of air pollutants. A little lower level of pollution was observed in Kampinoski National Park located in the middle of the country. The concentration of heavy metals found in needles from national parks does not seem to be harmful for the health status of the trees. Statistically significant correlation between all parameters, which was found for cadmium--the most mobile of the analysed elements--shows that this metal can be proposed as a marker to reflect present effect of industrial emission on forests.

  15. Heavy Metal, Religiosity, and Suicide Acceptability.

    ERIC Educational Resources Information Center

    Stack, Steven

    1998-01-01

    Reports on data taken from the General Social Survey that found a link between "heavy metal" rock fanship and suicide acceptability. Finds that relationship becomes nonsignificant once level of religiosity is controlled. Heavy metal fans are low in religiosity, which contributes to greater suicide acceptability. (Author/JDM)

  16. Heavy Metal Music and Adolescent Suicidal Risk.

    ERIC Educational Resources Information Center

    Lacourse, Eric; Claes, Michel; Villeneuve, Martine

    2001-01-01

    Studied differentiating characteristics of youth who prefer heavy metal music, worship music, and use music for vicarious release. Data for 275 secondary school students suggest that heavy metal music preference and worshipping is not related to suicidal risk when controlling for other suicide factors. Discusses findings in the context of…

  17. Distribution of heavy metals from flue gas in algal bioreactor

    NASA Astrophysics Data System (ADS)

    Napan, Katerine

    Flue gas from coal-fired power plants is a major source of CO2 to the atmosphere. Microalgae can use this enriched form of CO2 as carbon source and in turn the biomass can be used to produce food, feed, fertilizer and biofuels. However, along with CO2, coal-based flue gas will inevitably introduce heavy metals, which have a high affinity to bind algal cells, could be toxic to the organisms and if transferred to the products could limit their uses. This study seeks to address the distribution and impact of heavy metals present in flue gas on microalgae production systems. To comprehend its effects, algae Scenedesmus obliquus was grown in batch reactors in a multimetal system. Ten heavy metals (Cu, Co, Zn, Pb, As, Se, Cr, Hg, Ni and Cd) were selected and were evaluated at four concentrations (1X, 2X, 5X and 10X). Results show that most heavy metals accumulated mainly in biomass and were found in very low concentrations in media. Hg was shown to be lost from the culture, with low amounts present in the biomass. An upper limit for As uptake was observed, suggesting its likelihood to build-up in the system during medium recycle. The As limited bioaccumulation was overcome by addition of sulfur to the algal medium. Heavy metal at 2X, 5X and 10X inhibited both growth and lipid production, while at the reference concentration both biomass and lipids yields were increased. Heavy metal concentrations in the medium and biomass were time dependent, and at the end of the cultivation most heavy metals in the supernatant solution complied with the recommendations for irrigation water, while biomass was below limits for cattle and poultry feed, fertilizer, plastic and paper. This research shows that bioremediation of CO2 and heavy metals in combination with energy production can be integrated, which is an environmentally friendly form of biotechnology.

  18. An optical dosimeter for monitoring heavy metal ions in water

    NASA Astrophysics Data System (ADS)

    Mignani, Anna G.; Regan, Fiona; Leamy, D.; Mencaglia, A. A.; Ciaccheri, L.

    2005-05-01

    This work presents an optochemical dosimeter for determining and discriminating nickel, copper, and cobalt ions in water that can be used as an early warning system for water pollution. An inexpensive fiber optic spectrophotometer monitors the sensor's spectral behavior under exposure to water solutions of heavy metal ions in the 1-10 mg/l concentration range. The Principal Component Analysis (PCA) method quantitatively determines the heavy metals and discriminates their type and combination.

  19. Heavy metal toxicity to bacteria - are the existing growth media accurate enough to determine heavy metal toxicity?

    PubMed

    Rathnayake, I V N; Megharaj, Mallavarapu; Krishnamurti, G S R; Bolan, Nanthi S; Naidu, Ravi

    2013-01-01

    A new minimal medium was formulated considering the limitations of the existing media for testing heavy metal sensitivity to bacteria. Toxicity of cadmium and copper to three bacteria was investigated in the new medium and compared with three other media commonly used to study the effect of the toxic metals. Based on speciation data arrived at using ion-selective electrodes, the available free-metal concentration in solution was highest in the MES-buffered medium. This finding was strongly supported by the estimated EC(50) values for the metals tested based on the toxicity bioassays. The free-ionic cadmium and copper concentrations in the medium provide more accurate determination of metal concentrations that affects the bacteria, than with most of other existing media. This will avoid doubts on other media and misleading conclusions relevant to the toxicity of heavy metals to bacteria and provides a better option for the study of metal-bacteria interactions.

  20. Microalgae - A promising tool for heavy metal remediation.

    PubMed

    Suresh Kumar, K; Dahms, Hans-Uwe; Won, Eun-Ji; Lee, Jae-Seong; Shin, Kyung-Hoon

    2015-03-01

    Biotechnology of microalgae has gained popularity due to the growing need for novel environmental technologies and the development of innovative mass-production. Inexpensive growth requirements (solar light and CO2), and, the advantage of being utilized simultaneously for multiple technologies (e.g. carbon mitigation, biofuel production, and bioremediation) make microalgae suitable candidates for several ecofriendly technologies. Microalgae have developed an extensive spectrum of mechanisms (extracellular and intracellular) to cope with heavy metal toxicity. Their wide-spread occurrence along with their ability to grow and concentrate heavy metals, ascertains their suitability in practical applications of waste-water bioremediation. Heavy metal uptake by microalgae is affirmed to be superior to the prevalent physicochemical processes employed in the removal of toxic heavy metals. In order to evaluate their potential and to fill in the loopholes, it is essential to carry out a critical assessment of the existing microalgal technologies, and realize the need for development of commercially viable technologies involving strategic multidisciplinary approaches. This review summarizes several areas of heavy metal remediation from a microalgal perspective and provides an overview of various practical avenues of this technology. It particularly details heavy metals and microalgae which have been extensively studied, and provides a schematic representation of the mechanisms of heavy metal remediation in microalgae.

  1. Comparison of Eleven Heavy Metals in Moringa Oleifera Lam. Products

    PubMed Central

    Limmatvapirat, C.; Limmatvapirat, S.; Charoenteeraboon, J.; Wessapan, C.; Kumsum, A.; Jenwithayaamornwech, S.; Luangthuwapranit, P.

    2015-01-01

    Eleven heavy metals in various products of Moringa oleifera were analyzed to determine eleven heavy metals (Al, As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, and Zn) using Inductively Coupled Plasma-Mass Spectrometry. The products of M. oleifera were purchased in Nakhon Pathom, Thailand. All products were digested with nitric acid solution before determining the concentrations of heavy metals. The recoveries of all heavy metals were found to be in the range of 99.89-103.05%. Several criteria such as linearity, limits of detection, limits of quantification, specificity, precision under repeatability conditions and intermediate precision reproducibility were evaluated. Results indicate that this method could be used in the laboratory for determination of eleven heavy metals in M. oleifera products with acceptable analytical performance. The results of analysis showed that the highest concentrations of As, Cr, Hg, and Mn were found in tea leaves while the highest concentrations of Al, Cd, Cu, Fe, Ni, Pb, and Zn were found in leaf capsules. Continuous monitoring of heavy metals in M. oleifera products is crucial for consumer health. PMID:26664066

  2. Heavy metals content of municipal wastewater and sludges in Kuwait.

    PubMed

    Al Enezi, G; Hamoda, M F; Fawzi, N

    2004-01-01

    Municipal wastewater may contain heavy metals, which are hazardous to the environment and humans. With stringent regulations concerning water reuse and sludge utilization in agriculture, there is a great need to determine levels of heavy metals in liquid wastes, sludges and agricultural crops. The state of Kuwait has programs to utilize waste sludge produced at wastewater treatment plants as soil conditioner and fertilizer for greenery and agricultural development projects and to reuse treated wastewater effluents in irrigation. The common metals found in Kuwait's raw wastewater and sludge are Cd, Cr, Cu, Hg, Ni, Pb, and Zn. The effects of accumulation of heavy metals in soil are long lasting and even permanent. In this study, the variations in the concentration levels of heavy metals were measured in wastewater and sludge produced at Ardiya municipal wastewater treatment plant in Kuwait. A relationship was observed between the concentrations of heavy metals in treated wastewater and sludge used for agriculture and the level of accumulated heavy metals found in residual tissues of some crops.

  3. Leaching Properties of Naturally Occurring Heavy Metals from Soils

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Hoshino, M.; Yoshikawa, M.; Hara, J.; Sugita, H.

    2014-12-01

    The major threats to human health from heavy metals are associated with exposure to arsenic, lead, cadmium, chromium, mercury, as well as some other elements. The effects of such heavy metals on human health have been extensively studied and reviewed by international organizations such as WHO. Due to their toxicity, heavy metal contaminations have been regulated by national environmental standards in many countries, and/or laws such as the Soil Contamination Countermeasures Act in Japan. Leaching of naturally occurring heavy metals from the soils, especially those around abandoned metal mines into surrounding water systems, either groundwater or surface water systems, is one of the major pathways of exposure. Therefore, understanding the leaching properties of toxic heavy metals from naturally polluted soils is of fundamentally importance for effectively managing abandoned metal mines, excavated rocks discharged from infrastructure constructions such as tunneling, and/or selecting a pertinent countermeasure against pollution when it is necessary. In this study, soil samples taken from the surroundings of abandoned metal mines in different regions in Japan were collected and analyzed. The samples contained multiple heavy metals such as lead, arsenic and chromium. Standard leaching test and sequential leaching test considering different forms of contaminants, such as trivalent and pentavalent arsenics, and trivalent and hexavalent chromiums, together with standard test for evaluating total concentration, X-ray Fluorescence Analysis (XRF), X-ray diffraction analysis (XRD) and Cation Exchange Capacity (CEC) tests were performed. In addition, sequential leaching tests were performed to evaluate long-term leaching properties of lead from representative samples. This presentation introduces the details of the above experimental study, discusses the relationships among leaching properties and chemical and mineral compositions, indicates the difficulties associated with

  4. Heavy metals removal from automobile shredder residues (ASR).

    PubMed

    Kurose, Keisuke; Okuda, Tetsuji; Nishijima, Wataru; Okada, Mitsumasa

    2006-10-11

    The fate of heavy metals during a separation process for automobile shredder residues (ASR) was investigated. A washing method to remove heavy metals from the ASR was also investigated. Although the separation process was not designed for removal of heavy metals, but for the recovery of reusable materials, the heavy metal content in the ASR was efficiently decreased. The concentrations of Pb, Cr and Cd in ASR were effectively reduced by a nonferrous metals removal process, and the As concentration was reduced by the removal of light dusts during the separation process. Five heavy metals (As, Se, Pb, Cr, Cd) remaining in the ASR after the separation process satisfied the content criteria of the Environmental Quality Standards for Soil (EQSS), while the concentrations of As, Se, Pb in the leachate from the remaining ASR did not satisfy the elution criteria of the EQSS. After additional washing of the remaining ASR with a pH 1 acid buffer solution, the As, Se, and Pb concentrations satisfied the EQSS for elution. These results indicate that an ASR residue can be safely recycled after a separation process, followed by washing at acidic pH.

  5. The environmental impact of gold mines: pollution by heavy metals

    NASA Astrophysics Data System (ADS)

    Abdul-Wahab, Sabah Ahmed; Marikar, Fouzul Ameer

    2012-06-01

    The gold mining plant of Oman was studied to assess the contribution of gold mining on the degree of heavy metals into different environmental media. Samples were collected from the gold mining plant area in tailings, stream waters, soils and crop plants. The collected samples were analyzed for 13 heavy metals including vanadium (V), chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), cadmium (Cd), cobalt (Co), lead (Pb), zinc (Zn), aluminium (Al), strontium (Sr), iron (Fe) and barium (Ba). The water in the acid evaporation pond showed a high concentration of Fe as well as residual quantities of Zn, V, and Al, whereas water from the citizens well showed concentrations of Al above those of Omani and WHO standards. The desert plant species growing closed to the gold pit indicated high concentrations of heavy metals (Mn, Al, Ni, Fe, Cr, and V), while the similar plant species used as a control indicated lesser concentrations of all heavy metals. The surface water (blue) indicated very high concentrations of copper and significant concentrations of Mn, Ni, Al, Fe, Zn, lead, Co and Cd. The results revealed that some of the toxic metals absorbed by plants indicated significant metal immobilization.

  6. Heavy metal content of combustible municipal solid waste in Denmark.

    PubMed

    Riber, Christian; Fredriksen, Gry S; Christensen, Thomas H

    2005-04-01

    Data on the heavy metal composition of outlets from Danish incinerators was used to estimate the concentration of Zn, Cu, Pb, Cr, Ni, Cd, As and Hg in combustible waste (wet as received) at 14 Danish incinerators, representing about 80% of the waste incinerated in Denmark. Zn (1020 mg kg(-1)), Cu (620 mg kg(-1)) and Pb (370 mg kg(-1)) showed the highest concentration, whereas Hg (0.6 mg kg(-1)) showed the lowest concentration. The variation among the incinerators was in most cases within a factor of two to three, except for Cr that in two cases showed unexplained high concentrations. The fact that the data represent many incinerators and, in several cases, observations from a period of 4 to 5 years provides a good statistical basis for evaluating the content of heavy metals in combustible Danish waste. Such data may be used for identifying incinerators receiving waste with high concentrations of heavy metals suggesting the introduction of source control, or, if repeated in time, the data must also be used for monitoring the impacts of national regulation controlling heavy metals. It is recommended that future investigations consider the use of sample digestion methods that ensure complete digestion in order to use the data for determining the total heavy metal content of waste.

  7. Heavy metals in canned tuna from Italian markets.

    PubMed

    Russo, R; Lo Voi, A; De Simone, A; Serpe, F P; Anastasio, A; Pepe, T; Cacace, D; Severino, L

    2013-02-01

    Fish is a good source of nutrients for humans but can pose a risk to human health because of the possible presence of some xenobiotics such as heavy metals and persistent organic contaminants. Constant monitoring is needed to minimize health risks and ensure product quality and consumer safety. The aim of the present study was to use atomic absorption spectrometry to determine the concentrations of some heavy metals (Hg, Pb, and Cd) in tuna packaged in different kinds of packages (cans or glass) in various countries (Italy and elsewhere). Concentrations of Cd and Hg were within the limits set by European Commission Regulation (EC) No 1881/2006 and in many samples were below the detection limit. Pb concentrations exceeded European limits in 9.8% of the analyzed samples. These results are reassuring in terms of food safety but highlighted the need to constantly monitor the concentrations of heavy metals in fish products that could endanger consumer health.

  8. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals.

    PubMed

    Wu, Qihang; Leung, Jonathan Y S; Geng, Xinhua; Chen, Shejun; Huang, Xuexia; Li, Haiyan; Huang, Zhuying; Zhu, Libin; Chen, Jiahao; Lu, Yayin

    2015-02-15

    Illegal e-waste recycling activity has caused heavy metal pollution in many developing countries, including China. In recent years, the Chinese government has strengthened enforcement to impede such activity; however, the heavy metals remaining in the abandoned e-waste recycling site can still pose ecological risk. The present study aimed to investigate the concentrations of heavy metals in soil and water in the vicinity of an abandoned e-waste recycling site in Longtang, South China. Results showed that the surface soil of the former burning and acid-leaching sites was still heavily contaminated with Cd (>0.39 mg kg(-1)) and Cu (>1981 mg kg(-1)), which exceeded their respective guideline levels. The concentration of heavy metals generally decreased with depth in both burning site and paddy field, which is related to the elevated pH and reduced TOM along the depth gradient. The pond water was seriously acidified and contaminated with heavy metals, while the well water was slightly contaminated since heavy metals were mostly retained in the surface soil. The use of pond water for irrigation resulted in considerable heavy metal contamination in the paddy soil. Compared with previous studies, the reduced heavy metal concentrations in the surface soil imply that heavy metals were transported to the other areas, such as pond. Therefore, immediate remediation of the contaminated soil and water is necessary to prevent dissemination of heavy metals and potential ecological disaster.

  9. Heavy metal retention of different roadside soils

    NASA Astrophysics Data System (ADS)

    Werkenthin, Moritz; Kluge, Björn; Wessolek, Gerd

    2014-05-01

    Emissions from major highways contain different kinds of contaminants such as heavy metals, polycyclic aromatic hydrocarbons and road salts which can occur in both particulate and dissolved form. Pollutants are transferred to the environment via aerial transport or the infiltration of road runoff and spray water. A significant rate of the road runoff infiltrates into the Embankment which is usually built during road construction and located next to the road edge. Especially in the long term development there is an increasing problem of soil contamination and groundwater pollution. According to valid German law, newly constructed hard shoulders have to provide a specific bear-ing capacity to enable trafficability in emergency cases. Therefore the applicable materials consist of accurately defined gravel-soil mixtures, which can fulfil this requirement. To determine and com-pare the total and dissolved concentrations of Pb, Cd, Zn, Cu, Ni, Cr in the road runoff and seep-age water of newly constructed embankments, we installed 6 Lysimeter along the edge of the German highway A115. Three lysimeter were filled with different materials which are recently used for embankment construction in Germany. Three further lysimeter where installed and filled with plain gravel, to observe the distribution, quantity and quality of road runoff. Fist results showed that heavy metal concentrations determined in the road runoff were compara-ble to literature values. The solute concentrations in the seepage water of the different embank-ment materials do not show considerable differences and exceed the trigger values of the German Federal Soil Protection & Contamination Ordinance (BBodSchV) only sporadically. Total concentra-tions of the seepage water are significantly higher than solute concentrations and clearly differ be-tween stable and non stable variant. In order to estimate the risk of groundwater pollution further monitoring of seepage water quality is necessary.

  10. Visualizing plumes of heavy metals and radionuclides

    NASA Astrophysics Data System (ADS)

    Prigiobbe, V.; Liu, T.; Bryant, S. L.; Hesse, M. A.

    2015-12-01

    The understanding of the transport behaviors in porous media resides on the ability to reproduce fundamental phenomena in a lab setting. Experiments with quasi 2D tanks filled with beads are performed to study physical phenomena induced by chemical and fluid dynamic processes. When an alkaline solution containing heavy metals or radionuclides invades a low pH region, mixing due to longitudinal dispersion induces destabilization of the front forming a fast travelling pulse [1]. When the two fluids travel in parallel, instead, mixing induced by transverse dispersion creates a continuous leakage from the alkaline region into the acidic one forming a fast travelling plume [2] (Figure 1). Impact of these phenomena are on aquifers upon leaking of alkaline fluids, rich in heavy metals and radionuclides, from waste storage sites. Here, we report the results from a study where experiments with a quasi 2D tank are performed to analyze the effect of transverse mixing on strontium (Sr2+) transport. To visualize the leaking plume, a fluorescent dye (Fura-2) is added the acidic solution, which has been widely used in biomedical applications [3]. It is the aim of this work to optimize its application under the conditions relevant to this work. Spectrometric measurements of absorption and fluorescence show sensitivity of the dye to the presence of Sr2+ throughout a broad range of pH and Sr2+ concentration (Figure 2). In the absence of Sr2+, no significant absorption and fluorescence was measured, but as Sr2+ was added the relevant peaks increase significantly and sample dilution of tenfold was required to remain within the measuring threshold. These results show a strong sensitivity of the dye to the cation opening the opportunity to use Fura-2 as a tool to visualize heavy metals and radionuclides plumes. References[1] Prigiobbe et al. (2012) GRL 39, L18401. [2] Prigiobbe and Hesse (2015) in preparation. [3] Xu-Friedman and Regehr (2000) J. Neurosci. 20(12) 4414-4422.

  11. Human health risk assessment of heavy metals in urban stormwater.

    PubMed

    Ma, Yukun; Egodawatta, Prasanna; McGree, James; Liu, An; Goonetilleke, Ashantha

    2016-07-01

    Toxic chemical pollutants such as heavy metals (HMs) are commonly present in urban stormwater. These pollutants can pose a significant risk to human health and hence a significant barrier for urban stormwater reuse. The primary aim of this study was to develop an approach for quantitatively assessing the risk to human health due to the presence of HMs in stormwater. This approach will lead to informed decision making in relation to risk management of urban stormwater reuse, enabling efficient implementation of appropriate treatment strategies. In this study, risks to human health from heavy metals were assessed as hazard index (HI) and quantified as a function of traffic and land use related parameters. Traffic and land use are the primary factors influencing heavy metal loads in the urban environment. The risks posed by heavy metals associated with total solids and fine solids (<150μm) were considered to represent the maximum and minimum risk levels, respectively. The study outcomes confirmed that Cr, Mn and Pb pose the highest risks, although these elements are generally present in low concentrations. The study also found that even though the presence of a single heavy metal does not pose a significant risk, the presence of multiple heavy metals could be detrimental to human health. These findings suggest that stormwater guidelines should consider the combined risk from multiple heavy metals rather than the threshold concentration of an individual species. Furthermore, it was found that risk to human health from heavy metals in stormwater is significantly influenced by traffic volume and the risk associated with stormwater from industrial areas is generally higher than that from commercial and residential areas.

  12. Heavy metals in the environment

    SciTech Connect

    Storm, G.L.; Fosmire, G.J.; Bellis, E.D.

    1994-05-01

    Concentration (Cd, Pb, Zn, and Cu) in soil and wildlife at the Palmerton zinc smelter site in eastern Pennsylvania were determined 6 yr after zinc smelting was terminated in 1980. Levels of the four metals were higher in litter (01 and 02 horizon) than in soil (A1 horizon), and the metals were at or near levels when the smelters were still in operation. Levels of metals in sod weft highest at sites close to the smelters and decreased as distances from the smelters increased. The relation of decreasing amounts of metals in body tissues with increasing distance from the smelters also held true for amphibians and mammals. An exception to this relation was higher level of Cu in red-lacked salamanders (Plethodon cinereus) captured {approx}17 km downwind than those captured {approx}12 km downwind. Levels of Zn, Pb, and Co in liver, kidney, and muscle tissue of white-footed mice (Peromyscus leucopus) were not different (P >0.05) among sites. Cadmium in kidneys in white-footed mice exceeded 10 mg&& which is reportedly considered an indication of environmental contamination. Levels of Cd in kidneys and liver of white-tailed deer (Odocoileus virginianus) at Palmerton were five times higher than those for white-tailed deer collected 180 km southwest of Palmerton in southcentral Pennsylvania. The abnormal amounts of metals in the tissues of terrestrial vertebrates, and the absence or low abundance of wildlife at Palmerton indicated that ecological processes within 5 km of the smelters were markedly influenced 6 yr after zinc smelting was discontinued. 41 refs., 5 figs., 4 tabs.

  13. Heavy metals in composts of separated municipal wastes

    SciTech Connect

    Liao, W.P.; Huang, W.C.; Fan, W.H.; Hsu, C.C.

    1997-12-31

    This study is to examine the influence of the metal components on the contents of heavy metals in composts of Municipal Solid Wastes (MSW). Fresh MSW used in composting was obtained from the city landfill of Taichung in Taiwan. Compost 1 was from as-collected MSW; Compost 2 was from degradable fraction in MSW; Compost 3 was from MSW without metal. The results show that the total concentration of zinc is the highest among the five heavy metals examined. Paper wastes are main sources of lead and copper with average concentrations of 18.53 mg/kg and 26.92 mg/kg of compost on dry weight. The contents of nickel and cadmium are relatively low. The total concentrations of the five heavy metals in composts increase by typical ratios between 1.72 and 2.58 for Composts 2 and 3, but 3.16 to 4.69 for Compost 1. The increase of concentration around a ratio of 2.0 is due to the loss of degraded organic matter. For the ratios above 2.0, fractions of some heavy metals have corroded from the surfaces of metal components into the Compost 1 in the early phase of acidic fermentation.

  14. Higher urinary heavy metal, phthalate, and arsenic but not parabens concentrations in people with high blood pressure, U.S. NHANES, 2011-2012.

    PubMed

    Shiue, Ivy

    2014-06-05

    Link between environmental chemicals and human health has emerged but not been completely examined in risk factors. Therefore, it was aimed to study the relationships of different sets of urinary environmental chemical concentrations and risk of high blood pressure (BP) in a national, population-based study. Data were retrieved from United States National Health and Nutrition Examination Surveys, 2011-2012 including demographics, BP readings, and urinary environmental chemical concentrations. Analyses included chi-square test, t-test and survey-weighted logistic regression modeling. After full adjustment (adjusting for urinary creatinine, age, sex, ethnicity, and body mass index), urinary cesium (OR 1.56, 95%CI 1.11-2.20, P = 0.014), molybden (OR 1.46, 95%CI 1.06-2.01, P = 0.023), manganese (OR 1.42, 95%CI 1.09-1.86, P = 0.012), lead (OR 1.58, 95%CI 1.28-1.96, P < 0.001), tin (OR 1.44, 95%CI 1.25-1.66, P < 0.001), antimony (OR 1.39, 95%CI 1.10-1.77, P = 0.010), and tungsten (OR 1.49, 95%CI 1.25-1.77, P < 0.001) concentrations were observed to be associated with high BP. People with higher urinary mono-2-ethyl-5-carboxypentyl phthalate (OR 1.33, 95%CI 1.00-1.62, P = 0.006), mono-n-butyl phthalate (OR 1.35, 95%CI 1.13-1.62, P = 0.002), mono-2-ethyl-5-hydroxyhexyl (OR 1.25, 95%CI 1.05-1.49, P = 0.014), mono-n-methyl phthalate (OR 1.26, 95%CI 1.07-1.48, P = 0.007), mono-2-ethyl-5-oxohexyl (OR 1.25, 95%CI 1.07-1.48, P = 0.009), and monobenzyl phthalate (OR 1.40, 95%CI 1.15-1.69, P = 0.002) tended to have high BP as well. However, there are no clear associations between environmental parabens and high BP, nor between pesticides and high BP. In addition, trimethylarsine oxide (OR 2.47, 95%CI 1.27-4.81, P = 0.011) and dimethylarsonic acid concentrations (OR 1.42, 95%CI 1.12-1.79, P = 0.006) were seen to be associated with high BP. In sum, urinary heavy metal, phthalate, and arsenic concentrations were associated with high BP, although the causal effect cannot be

  15. Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions.

    PubMed

    Ding, Qian; Cheng, Gong; Wang, Yong; Zhuang, Dafang

    2017-02-01

    Various studies have shown that soils surrounding mining areas are seriously polluted with heavy metals. Determining the effects of natural factors on spatial distribution of heavy metals is important for determining the distribution characteristics of heavy metals in soils. In this study, an 8km buffer zone surrounding a typical non-ferrous metal mine in Suxian District of Hunan Province, China, was selected as the study area, and statistical, spatial autocorrelation and spatial interpolation analyses were used to obtain descriptive statistics and spatial autocorrelation characteristics of As, Pb, Cu, and Zn in soil. Additionally, the distributions of soil heavy metals under the influences of natural factors, including terrain (elevation and slope), wind direction and distance from a river, were determined. Layout of sampling sites, spatial changes of heavy metal contents at high elevations and concentration differences between upwind and downwind directions were then evaluated. The following results were obtained: (1) At low elevations, heavy metal concentrations decreased slightly, then increased considerably with increasing elevation. At high elevations, heavy metal concentrations first decreased, then increased, then decreased with increasing elevation. As the slope increased, heavy metal contents increased then decreased. (2) Heavy metal contents changed consistently in the upwind and downwind directions. Heavy metal contents were highest in 1km buffer zone and decreased with increasing distance from the mining area. The largest decrease in heavy metal concentrations was in 2km buffer zone. Perennial wind promotes the transport of heavy metals in downwind direction. (3) The spatial extent of the influence of the river on Pb, Zn and Cu in the soil was 800m. (4) The influence of the terrain on the heavy metal concentrations was greater than that of the wind. These results provide a scientific basis for preventing and mitigating heavy metal soil pollution in

  16. Ecological risk and pollution history of heavy metals in Nansha mangrove, South China.

    PubMed

    Wu, Qihang; Tam, Nora F Y; Leung, Jonathan Y S; Zhou, Xizhen; Fu, Jie; Yao, Bo; Huang, Xuexia; Xia, Lihua

    2014-06-01

    Owing to the Industrial Revolution in the late 1970s, heavy metal pollution has been regarded as a serious threat to mangrove ecosystems in the region of the Pearl River Estuary, potentially affecting human health. The present study attempted to characterize the ecological risk of heavy metals (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in Nansha mangrove, South China, by estimating their concentrations in the surface sediment. In addition, the pollution history of heavy metals was examined by determining the concentrations of heavy metals along the depth gradient. The phytoremediation potential of heavy metals by the dominant plants in Nansha mangrove, namely Sonneratia apetala and Cyperus malaccensis, was also studied. Results found that the surface sediment was severely contaminated with heavy metals, probably due to the discharge of industrial sewage into the Pearl River Estuary. Spatial variation of heavy metals was generally unobvious. The ecological risk of heavy metals was very high, largely due to Cd contamination. All heavy metals, except Mn, decreased with depth, indicating that heavy metal pollution has been deteriorating since 1979. Worse still, the dominant plants in Nansha mangrove had limited capability to remove the heavy metals from sediment. Therefore, we propose that immediate actions, such as regulation of discharge standards of industrial sewage, should be taken by the authorities concerned to mitigate the ecological risk posed by heavy metals.

  17. Heavy metals in Tuskegee Lake crayfish

    SciTech Connect

    Khan, A.T.

    1995-12-31

    The crayfish, Onconectes virifis, is a bottom dweller and eats insect larvae, worms, crustaceans, small snails, fishes, and dead animal matter. They can be used to monitor the aquatic environment such as lakes, ponds and creeks. To monitor the environmental contamination of heavy metals (Hg, Pb, Cd, Cu, Co, Ni, and Zn) in Tuskegee Lake, Tuskegee, Alabama, adult crayfish were collected and analyzed for these metals. The Pb, Cd, Cu, Ni, and Zn concentrations were 3.91, 0.22, 8.06, 1.11, and 33.37 ppm in muscle and 28.98, 1.15, 9.86, 2.1 8, and 32.62 ppm in exoskeleton of crayfish, respectively. The concentrations of Pb and Cd were significantly higher in exoskeleton than those of muscle. However, the concentrations of Cu, Ni, and Zn did not show any significant difference between the muscle and the exoskeleton of the crayfish. The concentrations of Hg and Co were undetected in both the exoskeleton and muscle of the crayfish.

  18. Bacterial sorption of heavy metals

    SciTech Connect

    Mullen, M.D.; Wolf, D.C.; Ferris, F.G.; Beveridge, T.J.; Flemming, C.A.

    1989-01-01

    Four bacteria, Bacillus cereus, B. subtilis, Escherichia coli, and Pseudomonas aeruginosa, were examined for the ability to remove Ag{sup +}, Cd{sup 2+}, Cu{sup 2+}, and La{sup 3+} from solution by batch equilibration methods. Cd and Cu sorption over the concentration range 0.001 to 1 mM was described by Freundlich isotherms. At 1 mM concentrations of both Cd{sup 2+} and Cu{sup 2+}, P. aeruginosa and B. cereus were the most and least efficient at metal removal, respectively. Freundlich K constants indicated that E. coli was most efficient at Cd{sup 2+} removal and B. subtilis removed the most Cu{sup 2+}. Removal of Ag{sup +} from solution by bacteria was very efficient; an average of 89% of the total Ag{sup +} was removed from the 1 mM solution, whereas only 12, 29, and 27% of the total Cd{sup 2+}, Cu{sup 2+}, and La{sup 3+}, respectively, were sorbed from 1 mM solutions. Electron microscopy indicated that La{sup 3+} accumulated at the cell surface as needlelike, crystalline precipitates. Silver precipitated as discrete colloidal aggregates at the cell surface and occasionally in the cytoplasma. The results indicate that bacterial cells are capable of binding large quantities of different metals.

  19. Variation in dry grassland communities along a heavy metals gradient.

    PubMed

    Woch, Marcin W; Kapusta, Paweł; Stefanowicz, Anna M

    2016-01-01

    The aim of this study was to investigate the variation in plant communities growing on metal-enriched sites created by historical Zn–Pb mining. The study sites were 65 small heaps of waste rock covered by grassland vegetation and scattered mostly over agricultural land of southern Poland. The sites were described in terms of plant coverage, species richness and composition, and the composition of plant traits. They were classified using phytosociological methods and detrended correspondence analysis. Identified plant communities were compared for vegetation parameters and habitat properties (soil characteristics, distance from the forest) by analysis of variance. The variation in plant community parameters was explained by multiple regression, in which the predictors were properties of the habitat selected on the basis of factor analysis. Grasslands that developed at low and high concentrations of heavy metals in soil were similar to some extent: they were composed on average of 17–20 species (per 4 m(2)), and their total coverage exceeded 90%. The species composition changed substantially with increasing contamination with heavy metals; metal-sensitive species withdrew, while the metal-tolerant became more abundant. Other important predictors of community structure were: proximity to the forest (responsible for the encroachment of competitive forest species and ruderals), and the thickness of the surface soil (shallow soil favored the formation of the heavy metal grassland). The heavy metal grassland was closely related to the dry calcareous grasslands. The former was an earlier succession stage of the latter at low contamination with heavy metals.

  20. Heavy metal contamination from geothermal sources.

    PubMed Central

    Sabadell, J E; Axtmann, R C

    1975-01-01

    Liquid-dominated hydrothermal reservoirs, which contain saline fluids at high temperatures and pressures, have a significant potential for contamination of the environment by heavy metals. The design of the power conversion cycle in a liquid-dominated geothermal plant is a key factor in determining the impact of the installation. Reinjection of the fluid into the reservoir minimizes heavy metal effluents but is routinely practiced at few installations. Binary power cycles with reinjection would provide even cleaner systems but are not yet ready for commercial application. Vapor-dominated systems, which contain superheated steam, have less potential for contamination but are relatively uncommon. Field data on heavy metal effluents from geothermal plants are sparse and confounded by contributions from "natural" sources such as geysers and hot springs which often exist nearby. Insofar as geothermal power supplies are destined to multiply, much work is required on their environmental effects including those caused by heavy metals. PMID:1227849

  1. Removal of heavy metals from waste streams

    SciTech Connect

    Spence, M.D.; Kozaruk, J.M.; Melvin, M.; Gardocki, S.M.

    1988-07-19

    A method for removing heavy metals from effluent water is described comprising performing sequentially the following steps: (a) adding from 7-333 ppm of an anionic surfactant to the effluent water to provide coagulatable heavy metal ion; (b) adjusting the effluent water pH to within the range of 8 to 10, (c) providing from 10-200 ppm of a cationic coagulant to coagulate the heavy metal ion, (d) providing from 0.3 to 5.0 ppm of a polymeric flocculant whereby a heavy metal containing floc is formed for removal from the effluent water, and, (e) then removing the floc from the effluent water, wherein the anionic surfactant is sodium lauryl ether sulfate. The cationic coagulant is selected from the group consisting of diallyl dimethylammonium chloride polymer, epichlorohydrin dimethylamine polymer, ethylene amine polymer, polyaluminum chloride, and alum; and the flocculant is an acrylamide/sodium acrylate copolymer having an RSV greater than 23.

  2. Heavy metals and living systems: An overview

    PubMed Central

    Singh, Reena; Gautam, Neetu; Mishra, Anurag; Gupta, Rajiv

    2011-01-01

    Heavy metals are natural constituents of the earth's crust, but indiscriminate human activities have drastically altered their geochemical cycles and biochemical balance. This results in accumulation of metals in plant parts having secondary metabolites, which is responsible for a particular pharmacological activity. Prolonged exposure to heavy metals such as cadmium, copper, lead, nickel, and zinc can cause deleterious health effects in humans. Molecular understanding of plant metal accumulation has numerous biotechnological implications also, the long term effects of which might not be yet known. PMID:21713085

  3. Heavy metal concentrations in northern water snakes (Nerodia sipedon) from East Fork Poplar Creek and the Little River, East Tennessee, USA.

    PubMed

    Campbell, K R; Campbell, T S; Burger, J

    2005-08-01

    We compared the levels of arsenic, cadmium, chromium, lead, manganese, mercury, and selenium in the blood, kidney, liver, muscle, and skin of northern water snakes (Nerodia sipedon) collected from the upper reach of East Fork Poplar Creek (EFPC) within the United States Department of Energy's (USDOE's) Y-12 National Security Complex with concentrations in tissues of northern water snakes from a reference reach of the Little River downstream from the Great Smoky Mountains National Park in East Tennessee. Our objectives were to determine whether concentrations of these metals were higher in tissues of water snakes collected from EFPC compared with the reference site and if northern water snakes were suitable bioindicators of metal contamination. Except for chromium, metal levels were significantly higher in tissues (kidney, liver, muscle, and skin) of EFPC northern water snakes compared with those in tissues of snakes from the reference site. Although female northern water snakes were significantly larger than male snakes, their tissues did not contain significantly higher metal concentrations compared with those from male snakes, possibly because of maternal transfer of metals to eggs. This study was the first to examine the accumulation of contaminants resulting from the operations of the USDOE's Oak Ridge Reservation in snakes.

  4. A multivariate assessment of innate immune-related gene expressions due to exposure to low concentration individual and mixtures of four kinds of heavy metals on zebrafish (Danio rerio) embryos.

    PubMed

    Cobbina, Samuel Jerry; Xu, Hai; Zhao, Ting; Mao, Guanghua; Zhou, Zhaoxiang; Wu, Xueshan; Liu, Hongyang; Zou, Yanmin; Wu, Xiangyang; Yang, Liuqing

    2015-12-01

    Concerns over the potential health effects of mixtures of low concentration heavy metals on living organisms keep growing by the day. However, the toxicity of low concentration metal mixtures on the immune system of fish species has rarely been investigated. In this study, the zebrafish model was employed to investigate the effect on innate immune and antioxidant-related gene expressions, on exposure to environmentally relevant concentrations of individual and mixtures of Pb (0.01 mg/L), Hg (0.001 mg/L), As (0.01 mg/L) and Cd (0.005 mg/L). Messenger-RNA (mRNA) levels of IL1β, TNF-α, IFNγ, Mx, Lyz, C3B and CXCL-Clc which are closely associated with the innate immune system were affected after exposing zebrafish embryos to metals for 120 h post fertilization (hpf). Individual and mixtures of metals exhibited different potentials to modulate innate-immune gene transcription. IL1β genes were significantly up regulated on exposure to Pb + As (2.01-fold) and inhibited on exposure to Pb + Hg + Cd (0.13-fold). TNF-α was significantly inhibited on exposure to As (0.40-fold) and Pb + As (0.32-fold) compared to control. Metal mixtures generally up regulated IFNγ compared to individual metals. Additionally, antioxidant genes were affected, as CAT and GPx gene expressions generally increased, whiles Mn-SOD and Zn/Cu-SOD reduced. Multivariate analysis showed that exposure to individual metals greatly influenced modulation of innate immune genes; whiles metal mixtures influenced antioxidant gene expressions. This suggests that beside oxidative stress, there may be other pathways influencing gene expressions of innate immune and antioxidant-related genes. Low concentration heavy metals also affect expression of development-related (wnt8a and vegf) genes. Altogether, the results of this study clearly demonstrate that low concentration individual and mixtures of metals in aquatic systems will greatly influence the immune system. It is indicative that mechanisms associated with

  5. Comprehensive assessment of heavy metal contamination in sediment of the Pearl River Estuary and adjacent shelf.

    PubMed

    Yang, Yongqiang; Chen, Fanrong; Zhang, Ling; Liu, Jinsong; Wu, Shijun; Kang, Mingliang

    2012-09-01

    Total metal concentrations (Cr, Ni, Cu, Zn, and Pb), acid volatile sulfide and simultaneously extracted metals (AVS-SEM), and heavy metal fractionation were used to assess the heavy metals contamination status and ecological risk in the sediments of the Pearl River Estuary (PRE) and adjacent shelf. Elevated concentrations at estuarine sites and lower concentrations at adjacent shelf sites are observed, especially for Cu and Zn. Within the PRE, the concentration of heavy metals in the western shore was mostly higher than that in the middle shore. The metals from anthropogenic sources mainly occur in the labile fraction and may be taken up by organisms as the environmental parameters change. A combination of total metal concentrations, metal contamination index and sequential extraction analysis is necessary to get the comprehensive information on the baseline, anthropogenic discharge and bioavailability of heavy metals.

  6. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops*

    PubMed Central

    Islam, Ejaz ul; Yang, Xiao-e; He, Zhen-li; Mahmood, Qaisar

    2007-01-01

    Heavy metals, such as cadmium, copper, lead, chromium and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. Their presence in the atmosphere, soil and water, even in traces can cause serious problems to all organisms, and heavy metal bioaccumulation in the food chain especially can be highly dangerous to human health. Heavy metals enter the human body mainly through two routes namely: inhalation and ingestion, ingestion being the main route of exposure to these elements in human population. Heavy metals intake by human populations through food chain has been reported in many countries. Soil threshold for heavy metal toxicity is an important factor affecting soil environmental capacity of heavy metal and determines heavy metal cumulative loading limits. For soil-plant system, heavy metal toxicity threshold is the highest permissible content in the soil (total or bioavailable concentration) that does not pose any phytotoxic effects or heavy metals in the edible parts of the crops does not exceed food hygiene standards. Factors affecting the thresholds of dietary toxicity of heavy metal in soil-crop system include: soil type which includes soil pH, organic matter content, clay mineral and other soil chemical and biochemical properties; and crop species or cultivars regulated by genetic basis for heavy metal transport and accumulation in plants. In addition, the interactions of soil-plant root-microbes play important roles in regulating heavy metal movement from soil to the edible parts of crops. Agronomic practices such as fertilizer and water managements as well as crop rotation system can affect bioavailability and crop accumulation of heavy metals, thus influencing the thresholds for assessing dietary toxicity of heavy metals in the food chain. This paper reviews the phytotoxic effects and bioaccumulation of heavy metals in vegetables and food crops and assesses soil heavy metal thresholds for potential dietary

  7. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops.

    PubMed

    Islam, Ejaz ul; Yang, Xiao-e; He, Zhen-li; Mahmood, Qaisar

    2007-01-01

    Heavy metals, such as cadmium, copper, lead, chromium and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. Their presence in the atmosphere, soil and water, even in traces can cause serious problems to all organisms, and heavy metal bioaccumulation in the food chain especially can be highly dangerous to human health. Heavy metals enter the human body mainly through two routes namely: inhalation and ingestion, ingestion being the main route of exposure to these elements in human population. Heavy metals intake by human populations through food chain has been reported in many countries. Soil threshold for heavy metal toxicity is an important factor affecting soil environmental capacity of heavy metal and determines heavy metal cumulative loading limits. For soil-plant system, heavy metal toxicity threshold is the highest permissible content in the soil (total or bioavailable concentration) that does not pose any phytotoxic effects or heavy metals in the edible parts of the crops does not exceed food hygiene standards. Factors affecting the thresholds of dietary toxicity of heavy metal in soil-crop system include: soil type which includes soil pH, organic matter content, clay mineral and other soil chemical and biochemical properties; and crop species or cultivars regulated by genetic basis for heavy metal transport and accumulation in plants. In addition, the interactions of soil-plant root-microbes play important roles in regulating heavy metal movement from soil to the edible parts of crops. Agronomic practices such as fertilizer and water managements as well as crop rotation system can affect bioavailability and crop accumulation of heavy metals, thus influencing the thresholds for assessing dietary toxicity of heavy metals in the food chain. This paper reviews the phytotoxic effects and bioaccumulation of heavy metals in vegetables and food crops and assesses soil heavy metal thresholds for potential dietary

  8. Phytoremediation of heavy metals--concepts and applications.

    PubMed

    Ali, Hazrat; Khan, Ezzat; Sajad, Muhammad Anwar

    2013-05-01

    The mobilization of heavy metals by man through extraction from ores and processing for different applications has led to the release of these elements into the environment. Since heavy metals are nonbiodegradable, they accumulate in the environment and subsequently contaminate the food chain. This contamination poses a risk to environmental and human health. Some heavy metals are carcinogenic, mutagenic, teratogenic and endocrine disruptors while others cause neurological and behavioral changes especially in children. Thus remediation of heavy metal pollution deserves due attention. Different physical and chemical methods used for this purpose suffer from serious limitations like high cost, intensive labor, alteration of soil properties and disturbance of soil native microflora. In contrast, phytoremediation is a better solution to the problem. Phytoremediation is the use of plants and associated soil microbes to reduce the concentrations or toxic effects of contaminants in the environments. It is a relatively recent technology and is perceived as cost-effective, efficient, novel, eco-friendly, and solar-driven technology with good public acceptance. Phytoremediation is an area of active current research. New efficient metal hyperaccumulators are being explored for applications in phytoremediation and phytomining. Molecular tools are being used to better understand the mechanisms of metal uptake, translocation, sequestration and tolerance in plants. This review article comprehensively discusses the background, concepts and future trends in phytoremediation of heavy metals.

  9. Heavy metals in the volcanic environment and thyroid cancer.

    PubMed

    Vigneri, R; Malandrino, P; Gianì, F; Russo, M; Vigneri, P

    2016-10-26

    In the last two decades thyroid cancer incidence has increased worldwide more than any other cancer. Overdiagnosis of subclinical microcarcinomas has certainly contributed to this increase but many evidences indicate that a true increase, possibly due to environmental factors, has also occurred. Thyroid cancer incidence is markedly increased in volcanic areas. Thus, the volcanic environment is a good model to investigate the possible factors favoring thyroid cancer. In the volcanic area of Mt. Etna in Sicily, as well as in other volcanic areas, a non-anthropogenic pollution with heavy metals has been documented, a consequence of gas, ash and lava emission. Soil, water and atmosphere contamination, via the food chain, biocontaminate the residents as documented by high levels in the urines and the scalp hair compared to individuals living in adjacent non-volcanic areas. Trace amounts of metals are essential nutrients but, at higher concentrations, can be toxic for living cells. Metals can behave both as endocrine disruptors, perturbing the hormonal system, and as carcinogens, promoting malignant transformation. Similarly to other carcinogens, the transforming effect of heavy metals is higher in developing organisms as the fetus (contaminated via the mother) and individuals in early childhood. In the last decades environment metal pollution has greatly increased in industrialized countries. Although still within the "normal" limits for each single metal the hormesis effect (heavy metal activity at very low concentration because of biphasic, non linear cell response) and the possible potentiation effect resulting from the mixture of different metals acting synergistically can explain cell damage at very low concentrations. The effect of metals on the human thyroid is poorly studied: for some heavy metals no data are available. The scarce studies that have been performed mainly focus on metal effect as thyroid endocrine disruptors. The metal concentration in tissues has

  10. Assessment of Heavy Metal Pollution in Topsoil around Beijing Metropolis

    PubMed Central

    Sun, Ranhao; Chen, Liding

    2016-01-01

    The topsoil around Beijing metropolis, China, is experiencing impacts of rapid urbanization, intensive farming, and extensive industrial emissions. We analyzed the concentrations of Cu, Ni, Pb, Zn, Cd, and Cr from 87 topsoil samples in the pre-rainy season and 115 samples in the post-rainy season. These samples were attributed to nine land use types: forest, grass, shrub, orchard, wheat, cotton, spring maize, summer maize, and mixed farmland. The pollution index (PI) of heavy metals was calculated from the measured and background concentrations. The ecological risk index (RI) was assessed based on the PI values and toxic-response parameters. The results showed that the mean PI values of Pb, Cr, and Cd were > 1 while those of Cu, Ni, and Zn were < 1. All the samples had low ecological risk for Cu, Ni, Pb, Zn, and Cr while only 15.35% of samples had low ecological risk for Cd. Atmospheric transport rather than land use factors best explained the seasonal variations in heavy metal concentrations and the impact of atmospheric transport on heavy metal concentrations varied according to the heavy metal types. The concentrations of Cu, Cd, and Cr decreased from the pre- to post-rainy season, while those of Ni, Pb, and Zn increased during this period. Future research should be focused on the underlying atmospheric processes that lead to these spatial and seasonal variations in heavy metals. The policymaking on environmental management should pay close attention to potential ecological risks of Cd as well as identifying the transport pathways of different heavy metals. PMID:27159454

  11. Simultaneous removal of nitrate and heavy metals by iron metal.

    PubMed

    Hao, Zhi-Wei; Xu, Xin-Hua; Jin, Jian; He, Ping; Liu, Yong; Wang, Da-Hui

    2005-05-01

    Great attention should be paid now to simultaneously removing common pollutants, especially inorganic pollutants such as nitrate and heavy metals, as individual removal has been investigated extensively. Removing common pollutants simultaneously by iron metal is a very effective alternative method. Near neutral pH, heavy metals, such as copper and nickel, can be removed rapidly by iron metal, while nitrate removal very much slower than that of copper and nickel, and copper can accelerate nitrate removal when both are removed simultaneously. Even a little amount of copper can enhance nitrate removal efficiently. Different mechanisms of these contaminants removal by iron metal were also discussed.

  12. Heavy metal-induced glutathione accumulation and its role in heavy metal detoxification in Phanerochaete chrysosporium.

    PubMed

    Xu, Piao; Liu, Liang; Zeng, Guangming; Huang, Danlian; Lai, Cui; Zhao, Meihua; Huang, Chao; Li, Ningjie; Wei, Zhen; Wu, Haipeng; Zhang, Chen; Lai, Mingyong; He, Yibin

    2014-01-01

    Phanerochaete chrysosporium are known to be vital hyperaccumulation species for heavy metal removal with admirable intracellular bioaccumulation capacity. This study analyzes the heavy metal-induced glutathione (GSH) accumulation and the regulation at the intracellular heavy metal level in P. chrysosporium. P. chrysosporium accumulated high levels of GSH, accompanied with high intracellular concentrations of Pb and Cd. Pb bioaccumulation lead to a narrow range of fluctuation in GSH accumulation (0.72-0.84 μmol), while GSH plummeted under Cd exposure at the maximum value of 0.37 μmol. Good correlations between time-course GSH depletion and Cd bioaccumulation were determined (R (2) > 0.87), while no significant correlations have been found between GSH variation and Pb bioaccumulation (R (2) < 0.38). Significantly, concentration-dependent molar ratios of Pb/GSH ranging from 0.10 to 0.18 were observed, while molar ratios of Cd/GSH were at the scope of 1.53-3.32, confirming the dominant role of GSH in Cd chelation. The study also demonstrated that P. chrysosporium showed considerable hypertolerance to Pb ions, accompanied with demand-driven stimulation in GSH synthesis and unconspicuous generation of reactive oxygen stress. GSH plummeted dramatically response to Cd exposure, due to the strong affinity of GSH to Cd and the involvement of GSH in Cd detoxification mechanism mainly as Cd chelators. Investigations into GSH metabolism and its role in ameliorating metal toxicity can offer important information on the application of the microorganism for wastewater treatment.

  13. Impacts of burial by sediment on decomposition and heavy metal concentrations of Suaeda salsa in intertidal zone of the Yellow River estuary, China.

    PubMed

    Sun, Zhigao; Mou, Xiaojie; Zhang, Dangyu; Sun, Wanlong; Hu, Xingyun; Tian, Liping

    2017-03-15

    Three one-off burial treatments were designed in intertidal zone of the Yellow River estuary to determine the effects of sediment burial on decomposition and heavy metal levels of Suaeda salsa. Sediment burial showed significant effect on decomposition rate of S. salsa. With increasing burial depth, Cu, Zn, Cd and Co levels generally increased, while Cr and Mn levels decreased. Except for Zn, Mn, Cd and Co, stocks of Pb, Cr, Cu, Ni and V in S. salsa among burials were greatly different. The S. salsa in three burials was particular efficient in binding V and Co and releasing Pb, Zn and Cd, and, with increasing burial depth, stocks of Cr, Cu, Ni and Mn shifted from accumulation to release. In future, the eco-toxic risk of Pb, Cr, Cu, Zn, Ni, Mn and Cd exposure might be serious as the strong burial episodes occurred in S. salsa marsh.

  14. ANALYSIS OF HEAVY METALS IN STORMWATER

    EPA Science Inventory

    Stormwater sampling for colloidal and dissolved metals and organic carbon has been initiated at six outfalls draining locally-designated, nonindustrial land uses in Monmouth County, NJ. Of the heavy metals, only Cu and Zn were found in all samples, mostly in dissolved form. Large...

  15. HEAVY METAL, ORGANOCHLORINE PESTICIDE AND POLYCHLORINATED BIPHENYL CONTAMINATION IN ARCTIC GROUND SQUIRRELS (SPERMOPHILUS PARRYI) IN NORTHERN ALASKA

    EPA Science Inventory

    Heavy metal and organochlorine (OC)concentrations, including organochlorine pesticides and polychlorinated biphenyl congeners (PCBs), were determined in arctic ground squirrels (Spermophilus parryi) from three sites in the Brooks Range of northern Alaska in 1991-93. Heavy metals ...

  16. Biomonitoring heavy metal contaminations by moss visible parameters.

    PubMed

    Chen, Yang-Er; Cui, Jun-Mei; Yang, Jin-Chuan; Zhang, Zhong-Wei; Yuan, Ming; Song, Chun; Yang, Hui; Liu, Han-Mei; Wang, Chang-Quan; Zhang, Huai-Yu; Zeng, Xian-Yin; Yuan, Shu

    2015-10-15

    Traditional sampling for heavy metal monitoring is a time-consuming and inconvenient method, which also does not indicate contaminants non-invasively and instantaneously. Moss is sensitive to heavy metals and is therefore considered a pollution indicator. However, it is unknown what kind physiological parameters can indicate metal contaminations quickly and non-invasively. Here, we systematically examined the effects of six heavy metals on physiological parameters and photosynthetic activities of two moss species grown in aquatic media or moist soil surface. We suggest that a phenotype with anthocyanin accumulation pattern and chlorosis pattern and two chlorophyll fluorescence parameters with their images can roughly reflect metal species groups, concentrations and differences between the two moss species. In other words, metal contaminations could be roughly estimated visually using the naked eye. Enzymatic and non-enzymatic anti-oxidative abilities and photosynthetic protein contents of Eurhynchium eustegium were higher than those of Taxiphyllum taxirameum, indicating their differential metal tolerance. Neither anti-oxidative abilities nor photosynthetic proteins were found to be ideal indicators. This study provides new ideas to monitor heavy metals rapidly and non-invasively in water or on wetland and moist soil surface.

  17. The heavy metal subculture and suicide.

    PubMed

    Stack, S; Gundlach, J; Reeves, J L

    1994-01-01

    The impact of the heavy metal music subculture on suicide has been the subject of much public debate but little scholarly research. The present paper assesses this relationship with data on heavy metal magazine subscriptions and youth suicide in the 50 states. We find that, controlling for other predictors of suicide, the greater the strength of the metal subculture, the higher the youth suicide rate. The music perhaps nurtures suicidal tendencies already present in the subculture. The model explains 51% of the variance in youth suicide.

  18. Heavy metal accumulation in some aquatic insects (Coleoptera: Hydrophilidae) and tissues of Chondrostoma regium (Heckel, 1843) relevant to their concentration in water and sediments from Karasu River, Erzurum, Turkey.

    PubMed

    Aydoğan, Zeynep; Şişman, Turgay; İncekara, Ümit; Gürol, Ali

    2017-02-28

    The objectives of this research were to determine and compare the heavy element concentrations in two study areas in Erzurum, Turkey (Aşkale and Dumlu sites). Assessment of some heavy elements in sediment, water, fish (Chondrostoma regium) tissues, and some aquatic insects (Coleoptera: Hydrophilidae) were carried out in June to August 2014. Heavy element levels in aquatic insect samples and their associated water and sediment were analyzed by energy dispersive X-ray fluorescence (EDXRF) spectrometer. Fish tissues, from the same habitat, were measured by inductively coupled plasma mass spectrometry (ICP-MS). Eleven elements (Al, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Hg, Pb) were measured in fish tissues, and 14 elements (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Br, Pb) were measured in insects. According to the results, it can be said that insects were contaminated by water and sediment, thus accumulated higher concentration of some elements than their environment. The fish, which was caught from Aşkale station, accumulates significantly higher level of heavy metals than Dumlu station's fish. The results were compared with national and international standards. The values of some heavy elements were found at higher concentration than the acceptable limits. The possible consequences of these results are briefly discussed from the point of potential hazards to ecology and human health. Element concentrations in fish tissue are below the limits, which are proposed by Turkish Food Codex, FAO/WHO, and EC, and safe for human consumption in the edible parts of fish species in the regions.

  19. Heavy metals and arsenic concentrations in ten fish species from the Šalek lakes (Slovenia): assessment of potential human health risk due to fish consumption.

    PubMed

    Al Sayegh Petkovšek, Samar; Mazej Grudnik, Zdenka; Pokorny, Boštjan

    2012-05-01

    The study, which measured the concentrations of Hg, Pb, Cd, Zn and As in various fish tissues (muscle, gill and liver) of 10 fish species (Abramis brama danubii, Alburnus alburnus alburnus, Barbus meridionalis petenyi, Carassius auratius gibelio, Cyprinus carpio, Lepomis gibossus, Leuciscius cephalus cephalus, Perca fluviatilis fluviatilis, Rutilus rutilus, Scardinus erythrophtlalmus erythrophtlalmus) collected in the Šalek lakes, is the first survey regarding metal concentrations in fish species with samples originating from Slovene lakes, while only a limited number of such studies have been carried out in southeastern Europe. Since these lakes are situated in the close vicinity of the largest Slovene thermal power plant, the study provides an insight into the potential impact of increased levels of metals in the environment as well as an estimate of the contamination of fish tissues with metals. Furthermore, it was possible to compare the results obtained with those from other studies regarding metal levels in freshwater fish species. The mean metal concentrations of different tissues irrespective of species varied in the following ranges: Zn 4.31-199 mg/kg ww, Pb 0.01-0.48 mg/kg ww, As 0.02-0.44 mg/kg ww, Hg <0.01-0.31 mg/kg ww, Cd < 0.01-0.19 mg/kg ww. In general, higher contents of Hg were found in muscles and livers than in gills and higher contents of As in gills and livers than in muscles, respectively. The accumulation of Pb and Zn was most pronounced in gills. The result obtained regarding metal concentrations in fish revealed that the ecosystems of the Šalek lakes are not polluted with Hg and Pb, slightly loaded with As and Cd and moderately polluted with Zn. In addition, the potential human health risk due to fish consumption was assessed. This showed that the estimated weekly intakes for all metals were far below provisional permissible tolerable weekly intakes determined by WHO/FAO. The consumption of fish from the Šalek lakes, therefore

  20. Bismuth film electrodes for heavy metals determination

    NASA Astrophysics Data System (ADS)

    Rehacek, Vlastimil; Hotovy, Ivan; Vojs, Marian; Mika, Fedor

    2007-05-01

    Bismuth film electrodes (BiFEs) have a potential to replace toxic mercury used most frequently for determination of heavy metals (Cd, Pb, Zn) by anodic stripping voltammetry. We prepared a graphite disc electrode (0.5 mm in diameter) from a pencil-lead rod and developed a nitrogen doped diamond-like carbon (NDLC) microelectrode array consisting of 50 625 microdiscs with 3 μm in diameter and interelectrode distances of 20 μm on a highly conductive silicon substrate as a support for BiFEs. The disc graphite BiFE was used for simultaneous determination of Pb(II), Cd(II) and Zn(II) by square wave voltammetry (SWV) in an aqueous solution. We found the optimum bismuth-to-metal concentration ratio in the solution to be 20. The dependence of the stripping responses on the concentration of target metals was linear in the range from 1×10 -8 to 1.2×10 -7 mol/L. Detection limits 2.4×10 -9 mol/L for Pb(II), 2.9×10 -9 mol/L for Cd(II) and 1.2×10 -8 mol/L for Zn(II) were estimated. A bismuth-plated NDLC microelectrode array was used for Pb(II) determination by differential pulse voltammetry (DPV) in an aqueous solution. We found that the stripping current for bismuth-plated NDLC array was linear in the concentration range of Pb(II) from 2×10 -8 to 1.2×10 -7 mol/L. The detection limit 2.2×10 -8 mol/L was estimated from a calibration plot.

  1. Heavy metal bioaccumulation in two passerines with differing migration strategies.

    PubMed

    Cooper, Zoë; Bringolf, Robert; Cooper, Robert; Loftis, Kathy; Bryan, Albert L; Martin, James A

    2017-03-11

    Various anthropogenic activities have resulted in concentration of heavy metals and contamination of surrounding environments. Historically, heavy metal contamination at the Savannah River Site (SRS) in South Carolina has resulted from accidental releases of stored waste generated from nuclear weapon production in the early 1950s. Songbirds inhabiting and using resources from these areas have the potential to bioaccumulate metals but there is limited information on metal concentration levels in areas suspected of contamination as well as uncontaminated sites. Nonlethal tissues samples from avian blood and feathers provide a reliable approach for determining the bioavailability of these pollutants (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn). The objectives of this study were to survey terrestrial heavy metal contamination at the SRS on potentially bioavailable contaminated (PBC) sites through blood and feather samples from resident Northern Cardinals (Cardinalis cardinalis) and migratory Great Crested Flycatchers (Myiarchus crinitus) and quantify sex-specific concentrations within species. Samples were collected in April to June of 2016. Cardinals had lower blood concentrations of Hg (β=-0.17, 85% CL=-0.26, -0.09) and Se (β=-0.33, 85% CL=-0.50, -0.16) than flycatchers. Cr feather concentrations were less in cardinals (β=-1.46, 85% CL=-2.44, -0.49) and all feathers of both species from reference locations had significantly less Zn (β=-67.92, 85% CL=-128.71, -7.14). Results indicate flycatchers were exposed to differing heavy metal levels during feather formation on their wintering grounds as compared to their recent exposure (through bloods samples) on their breeding grounds. Sex of individuals did not have a significant impact on bioaccumulation in either species. Overall, metal concentration levels in both species indicate minimal risk for acute toxicity; however, there is limited research on wild passerine populations with similar concentration levels. Therefore

  2. Heavy Metal Distribution in Street Dust from Traditional Markets and the Human Health Implications

    PubMed Central

    Kim, Jin Ah; Park, Jin Hee; Hwang, Won Ju

    2016-01-01

    Street dust is a hazard for workers in traditional markets. Exposure time is longer than for other people, making them vulnerable to heavy metals in street dust. This study investigated heavy metal concentrations in street dust samples collected from different types of markets. It compared the results with heavy metal concentrations in heavy traffic and rural areas. Street dust was significantly enriched with most heavy metals in a heavy traffic area while street dust from a fish market was contaminated with cupper (Cu), lead (Pb) and zinc (Zn). Street dust from medicinal herb and fruit markets, and rural areas were not contaminated. Principal component and cluster analyses indicated heavy metals in heavy traffic road and fish market dust had different sources. Relatively high heavy metal concentration in street dust from the fish market may negatively affect worker’s mental health, as depression levels were higher compared with workers in other markets. Therefore, intensive investigation of the relationship between heavy metal concentrations in street dust and worker’s health in traditional marketplaces should be conducted to elucidate the effect of heavy metals on psychological health in humans. PMID:27529268

  3. Heavy Metal Distribution in Street Dust from Traditional Markets and the Human Health Implications.

    PubMed

    Kim, Jin Ah; Park, Jin Hee; Hwang, Won Ju

    2016-08-13

    Street dust is a hazard for workers in traditional markets. Exposure time is longer than for other people, making them vulnerable to heavy metals in street dust. This study investigated heavy metal concentrations in street dust samples collected from different types of markets. It compared the results with heavy metal concentrations in heavy traffic and rural areas. Street dust was significantly enriched with most heavy metals in a heavy traffic area while street dust from a fish market was contaminated with cupper (Cu), lead (Pb) and zinc (Zn). Street dust from medicinal herb and fruit markets, and rural areas were not contaminated. Principal component and cluster analyses indicated heavy metals in heavy traffic road and fish market dust had different sources. Relatively high heavy metal concentration in street dust from the fish market may negatively affect worker's mental health, as depression levels were higher compared with workers in other markets. Therefore, intensive investigation of the relationship between heavy metal concentrations in street dust and worker's health in traditional marketplaces should be conducted to elucidate the effect of heavy metals on psychological health in humans.

  4. Identification of soil contamination hotspots with veterinary antibiotics using heavy metal concentrations and leaching data--a field study in China.

    PubMed

    Ostermann, Anne; Gao, Jing; Welp, Gerhard; Siemens, Jan; Roelcke, Marco; Heimann, Lisa; Nieder, Rolf; Xue, Qiaoyun; Lin, Xianyong; Sandhage-Hofmann, Alexandra; Amelung, Wulf

    2014-11-01

    In regions with high livestock densities, the usage of antibiotics and metals for veterinary purposes or as growth promoters poses a risk in manured soils. We investigated to which degree the concentrations and depth distributions of Cu, Zn, Cr and As could be used as a tracer to discover contaminations with sulfonamides, tetracyclines and fluoroquinolones. Besides, we estimated the potential vertical translocation of antibiotics and compared the results to measured data. In the peri-urban region of Beijing, China, soil was sampled from agricultural fields and a dry riverbed contaminated by organic waste disposal. The antibiotic concentrations reached 110 μg kg(-1) sulfamethazine, 111 μg kg(-1) chlortetracycline and 62 μg kg(-1) enrofloxacin in the topsoil of agricultural fields. Intriguingly, total concentrations of Cu, Zn, Cr and As were smaller than 65, 130, 36 and 10 mg kg(-1) in surface soil, respectively, therewith fulfilling Chinese quality standards. Correlations between sulfamethazine concentrations and Cu or Zn suggest that in regions with high manure applications, one might use the frequently existing monitoring data for metals to identify potential pollution hotspots for antibiotics in topsoils. In the subsoils, we found sulfamethazine down to ≥2 m depth on agricultural sites and down to ≥4 m depth in the riverbed. As no translocation of metals was observed, subsoil antibiotic contamination could not be predicted from metal data. Nevertheless, sulfonamide stocks in the subsoil could be estimated with an accuracy of 35-200 % from fertilisation data and potential leaching rates. While this may not be sufficient for precise prediction of antibiotic exposure, it may very well be useful for the pre-identification of risk hotspots for subsequent in-depth assessment studies.

  5. Statistical study of the influence of fungicide treatments (mancozeb, zoxamide and copper oxychloride) on heavy metal concentrations in Sicilian red wine.

    PubMed

    La Pera, L; Dugo, G; Rando, R; Di Bella, G; Maisano, R; Salvo, F

    2008-03-01

    The aim was to assess the influence of mancozeb, zoxamide and copper oxychloride fungicide treatments on Mn, Zn, Cu, Cd and Pb concentrations in Sicilian red wines, grapes, marcs and grape stalks. The experimentation was carried out over two crop years: 2003 and 2004. Trace metals analysis was performed by derivative stripping chronopotentiometry, which allowed detection of concentrations lower than 1 ng g(-1). The data obtained gave evidence that the levels of Mn and Zn in wines from plots treated with zoxamide-mancozeb were about threefold higher than those observed in the control. Wines treated with Cu oxychloride had a significant increase in Cu(II) concentrations with respect to the control; in particular, samples from 2004 showed a 50% increase in Cu levels. Furthermore, as shown in a previous paper, the fungicides treatments studied led to a moderate increase in Pb(II) and Cd(II) levels in treated samples with respect to the control. Wines from 2004 had higher Cu and Pb amounts than wines from 2003; but the concentrations of all the other metals were similar. Statistical analysis of the data by linear discriminant analysis (LDA) and the Kruskal-Wallis test confirmed that both zoxamide-mancozeb treatments and copper oxychloride treatments exerted a significant influence on Mn(II), Zn(II) Cu(II), Pb(II) and Cd(II) concentrations in wines, grapes, marcs and grape stalks samples from both the studied vintages.

  6. Kinetics of heavy metal inhibition of 1,2-dichloroethane biodegradation in co-contaminated water.

    PubMed

    Arjoon, Ashmita; Olaniran, Ademola Olufolahan; Pillay, Balakrishna

    2015-03-01

    Sites co-contaminated with heavy metals and 1,2-DCA may pose a greater challenge for bioremediation, as the heavy metals could inhibit the activities of microbes involved in biodegradation. Therefore, this study was undertaken to quantitatively assess the effects of heavy metals (arsenic, cadmium, mercury, and lead) on 1,2-DCA biodegradation in co-contaminated water. The minimum inhibitory concentrations (MICs) and concentrations of the heavy metals that caused half-life doubling (HLDs) of 1,2-DCA as well as the degradation rate coefficient (k(1)) and half-life (t(½)) of 1,2-DCA were measured and used to predict the toxicity of the heavy metals in the water microcosms. An increase in heavy metal concentration resulted in a progressive increase in the t(½) and relative t(½) and a decrease in k(1). The MICs and HLDs of the heavy metals were found to vary, depending on the heavy metals type. In addition, the presence of heavy metals was shown to inhibit 1,2-DCA biodegradation in a dose-dependent manner, with the following order of decreasing inhibitory effect: Hg(2+)  > As(3+)  > Cd(2+)  > Pb(2+). Findings from this study have significant implications for the development of bioremediation strategies for effective degradation of 1,2-DCA and other related compounds in wastewater co-contaminated with heavy metals.

  7. Heavy Metal Poisoning and Cardiovascular Disease

    PubMed Central

    Alissa, Eman M.; Ferns, Gordon A.

    2011-01-01

    Cardiovascular disease (CVD) is an increasing world health problem. Traditional risk factors fail to account for all deaths from CVD. It is mainly the environmental, dietary and lifestyle behavioral factors that are the control keys in the progress of this disease. The potential association between chronic heavy metal exposure, like arsenic, lead, cadmium, mercury, and CVD has been less well defined. The mechanism through which heavy metals act to increase cardiovascular risk factors may act still remains unknown, although impaired antioxidants metabolism and oxidative stress may play a role. However, the exact mechanism of CVD induced by heavy metals deserves further investigation either through animal experiments or through molecular and cellular studies. Furthermore, large-scale prospective studies with follow up on general populations using appropriate biomarkers and cardiovascular endpoints might be recommended to identify the factors that predispose to heavy metals toxicity in CVD. In this review, we will give a brief summary of heavy metals homeostasis, followed by a description of the available evidence for their link with CVD and the proposed mechanisms of action by which their toxic effects might be explained. Finally, suspected interactions between genetic, nutritional and environmental factors are discussed. PMID:21912545

  8. Cocoa shells for heavy metal removal from acidic solutions.

    PubMed

    Meunier, N; Laroulandie, J; Blais, J F; Tyagi, R D

    2003-12-01

    The development of economic and efficient processes for the removal of heavy metals present in acidic effluents from industrial sources or decontamination technologies has become a priority. The purpose of this work was to study the efficiency with which cocoa shells remove heavy metals from acidic solutions (pH 2) and to investigate how the composition of these solutions influences heavy metal uptake efficiency. Adsorption tests were conducted in agitated flasks with single-metal solutions (0.25 mM Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn), multi-metal solution (comprised of 0.25 mM of each of the cations above) and an effluent obtained from chemical leaching of metal-contaminated soil, in the presence of different cocoa shell concentrations (5-40 g/l). Results from the single-metal solution assays indicated that the fixation capacity of heavy metals by cocoa shells followed a specific order: Pb>Cr>Cd=Cu=Fe>Zn=Co>Mn=Ni=Al. Cocoa shells are particularly efficient in the removal of lead from very acidic solutions (q(max)=6.2 mg Pb/g, pH(i)=2.0 and T=22 degrees C). The presence of other metals and cations in solution did not seem to affect the recovery of lead. It was also observed that the maximum metal uptake was reached in less than 2 h. This research has also demonstrated that the removal of metals caused a decline in solution proton concentration (pH increase) and release of calcium, magnesium, potassium and sodium from the cocoa shells.

  9. Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem.

    PubMed

    Chaturvedi, Amiy Dutt; Pal, Dharm; Penta, Santhosh; Kumar, Awanish

    2015-10-01

    Water is the most important and vital molecule of our planet and covers 75% of earth surface. But it is getting polluted due to high industrial growth. The heavy metals produced by industrial activities are recurrently added to it and considered as dangerous pollutants. Increasing concentration of toxic heavy metals (Pb(2+), Cd(2+), Hg(2+), Ni(2+)) in water is a severe threat for human. Heavy metal contaminated water is highly carcinogenic and poisonous at even relatively low concentrations. When they discharged in water bodies, they dissolve in the water and are distributed in the food chain. Bacteria and fungi are efficient microbes that frequently transform heavy metals and remove toxicity. The application of bacteria and fungi may offer cost benefit in water treatment plants for heavy metal transformation and directly related to public health and environmental safety issues. The heavy metals transformation rate in water is also dependent on the enzymatic capability of microorganisms. By transforming toxic heavy metals microbes sustain aquatic and terrestrial life. Therefore the application of microbiological biomass for heavy metal transformation and removal from aquatic ecosystem is highly significant and striking. This paper reviews the microbial transformation of heavy metal, microbe metal interaction and different approaches for microbial heavy metal remediation from water bodies.

  10. Screening Capsicum chinense fruits for heavy metals bioaccumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated concentrations of heavy metals in edible plants could expose consumers to excessive levels of potentially hazardous chemicals. Sixty-three accessions (genotypes) of Capsicum chinense Jacq, collected from 8 countries of origin, were grown in a silty-loam soil under field conditions. At matur...

  11. Heavy metal contamination in the Delhi segment of Yamuna basin.

    PubMed

    Sehgal, Meena; Garg, Ankur; Suresh, R; Dagar, Priya

    2012-01-01

    Concentration of heavy metals (Cd, Ni, Zn, Fe, Cu, Mn, Pb, Cr, Hg and As) in the waters of River Yamuna and in the soil of agricultural fields along its course in Delhi are reported from 13 sites, spread through the Delhi stretch of Yamuna, starting from the Wazirabad barrage till the Okhla barrage. Varying concentration of heavy metals was found. Peaks were observed in samples collected downstream of Wazirabad and Okhla barrage, indicating the anthropogenic nature of the contamination. The Wazirabad section of the river receives wastewater from Najafgarh and its supplementary drains, whereas the Shahdara drain releases its pollution load upstream of the Okhla barrage. Average heavy metal concentration at different locations in the river water varied in the order of Fe>Cr>Mn>Zn>Pb>Cu>Ni>Hg>As>Cd. The river basin soil shows higher level of contamination with lesser variation than the water samples among sampling locations, thereby suggesting deposition over long periods of time through the processes of adsorption and absorption. The average heavy metal concentration at different locations in soil varied in the order of Fe>Mn>Zn>Cr>Pb>Ni>Hg>Cu>As>Cd.

  12. Reflection of the Physiochemical Characteristics of 1-(2-pyridylazo)-2-naphthol on the Pre-concentration of Trace Heavy Metals.

    PubMed

    Laskar, Mohammad Asaduddin; Siddiqui, Sana; Islam, Aminul

    2016-09-02

    1-(2-pyridylazo)-2-naphthol (PAN) is a heterocyclic azo compound that forms inner, mostly reddish colored, water-insoluble chelates with many transition metal ions with metal ion-ligand ratios of 1:1 or 1:2. PAN is rather unselective but it does not form complexes with the alkali and alkaline earth metals, Ge(IV), As, Se and Te. Numerous reported techniques of pre-concentration have been considered for analyzing the role of PAN on the physiochemical outcome of the procedures. PAN been used as a chelating precipitant, flocculant, auxiliary complexing agent, as a ligand for anchoring on other supports with the purpose of introducing chelating property as well as selectivity. The role of PAN in the different techniques of pre-concentration, namely co-precipitation, membrane filtration, micro-extraction, cloud point extraction and solid phase extraction, has been investigated. PAN influences the optimum experimental parameters, namely pH, temperature, time, amount, tolerance limit, etc.

  13. Determination of heavy metals in soil and different parts of Diplazium esculentum (medicinal fern)

    NASA Astrophysics Data System (ADS)

    Jasim, Hind S.; Idris, Mushrifah; Abdullah, Aminah; Kadhum, A. A. H.

    2014-09-01

    Diplazium esculentum is a widely used medicinal fern in Malaysia and other regions worldwide. Heavy metals in plants should be determined because prolonged human intake of toxic trace elements, even at low doses, results in organ malfunction and causes chronic toxicity. Hence, substantial information should be obtained from plants that grow on soils containing high concentrations of heavy metals. This study aimed to determine the physicochemical characteristics of soil and heavy metal concentrations (Pb, Cr, Mn, Cu, and Zn) in different parts of D. esculentum and soil, which were collected from the fern garden of Universiti Kebangsaan Malaysia. Results showed that heavy metals were highly accumulated in D. esculentum roots.

  14. Implications of soil pollution with heavy metals for public health

    NASA Astrophysics Data System (ADS)

    Juozulynas, Algirdas; Jurgelėnas, Antanas; Butkienė, Birutė; Greičiūtė, Kristina; Savičiūtė, Rasa

    2008-01-01

    Soil of military grounds is often polluted with heavy metals. Their concentrations may be dosens of times higher in polluted regions. The affected soils are permeable, so the pollutions can get into water and spread to the environment. Into human and animal organisms they can get with food and water. Heavy metals are very dangerous for people's health, and we must know their accumulation places, intensity of scatter and integral risk for health. The purpose of this work was to establish links between zones polluted with heavy metals and morbidity caused by pollution with heavy metals. The morbidity caused by heavy metals (Pb, Cu, Zn, Ca and other) in the polluted regions is 1.4-1.5 times higher for adults and teenagers and 1.5-3.9 times higher for children aged under 14 years than the mean morbidity of the same diseases in Lithuania. Hypothetically, it is possible to prognosticate that this problem will grow in future because the ratio of the newly registered and the existing cases of morbidity for children aged under 14 years is 1.3-1.5 times higher than for adults.

  15. Heavy metal accumulation in soils, plants, and hair samples: an assessment of heavy metal exposure risks from the consumption of vegetables grown on soils previously irrigated with wastewater.

    PubMed

    Massaquoi, Lamin Daddy; Ma, Hui; Liu, Xue Hui; Han, Peng Yu; Zuo, Shu-Mei; Hua, Zhong-Xian; Liu, Dian-Wu

    2015-12-01

    It is common knowledge that soils irrigated with wastewater accumulate heavy metals more than those irrigated with cleaner water sources. However, little is known on metal concentrations in soils and cultivars after the cessation of wastewater use. This study assessed the accumulation and health risk of heavy metals 3 years post-wastewater irrigation in soils, vegetables, and farmers' hair. Soils, vegetables, and hair samples were collected from villages previously irrigating with wastewater (experimental villages) and villages with no history of wastewater irrigation (control villages). Soil samples were digested in a mixture of HCL/HNO3/HCLO4/HF. Plants and hair samples were digested in HNO3/HCLO4 mixture. Inductive coupled plasma-optical emission spectrometer (ICP-OES) was used to determine metal concentrations of digested extracts. Study results indicate a persistence of heavy metal concentration in soils and plants from farms previously irrigated with wastewater. In addition, soils previously irrigated with wastewater were severely contaminated with cadmium. Hair metal concentrations of farmers previously irrigating with wastewater were significantly higher (P < 0.05) than farmers irrigating with clean water, but metal concentrations in hair samples of farmers previously irrigating with wastewater were not associated with current soil metal concentrations. The study concludes that there is a persistence of heavy metals in soils and plants previously irrigated with wastewater, but high metal concentrations in hair samples of farmers cannot be associated with current soil metal concentrations.

  16. Use of cestodes as indicator of heavy-metal pollution.

    PubMed

    Yen Nhi, Tran Thi; Mohd Shazili, Noor Azhar; Shaharom-Harrison, Faizah

    2013-01-01

    Thirty snakehead fish, Channa micropeltes (Cuvier, 1831) were collected at Lake Kenyir, Malaysia. Muscle, liver, intestine and kidney tissues were removed from each fish and the intestine was opened to reveal cestodes. In order to assess the concentration of heavy metal in the environment, samples of water in the surface layer and sediment were also collected. Tissues were digested and the concentrations of manganese (Mn), zinc (Zn), copper (Cu), cadmium (Cd) and lead (Pb) were analysed by using inductively-coupled plasma mass-spectrometry (ICP-MS) equipment. The results demonstrated that the cestode Senga parva (Fernando and Furtado, 1964) from fish hosts accumulated some heavy metals to a greater extent than the water and some fish tissues, but less than the sediment. In three (Pb, Zn and Mn) of the five elements measured, cestodes accumulated the highest metal concentrations, and in remaining two (Cu and Cd), the second highest metal accumulation was recorded in the cestodes when compared to host tissues. Therefore, the present study indicated that Senga parva accumulated metals and might have potential as a bioindicator of heavy-metal pollution.

  17. Complete genome sequence of Bacillus oceanisediminis 2691, a reservoir of heavy-metal resistance genes.

    PubMed

    Jung, Jaejoon; Jeong, Haeyoung; Kim, Hyun Ju; Lee, Dong-Woo; Lee, Sang Jun

    2016-12-01

    Ocean sediments are commonly subject to the pollution of various heavy metals. Intracellular heavy metal concentrations in marine microorganisms should be kept within allowable concentrations. Here, we report redundant heavy metal resistance related genes encoding heavy metal-sensing transcriptional regulators (i.e. cadC), heavy metal efflux pumps, and detoxifying enzymes in the complete genome sequence of Bacillus oceanisediminis 2691. By comparing CadC sequences of strain 2691 with those from other bacterial genomes, we demonstrated that each cadC gene located in the chromosome or plasmid of 2691 cells are similar to those of various near or distant microbes, which might shed light on evolutionary trajectories of redundant heavy metal resistance genes. In application aspects, these diverse heavy metal sensing genes can be harnessed as synthetic biological parts, modules, and devices for the development of heavy metal-specific biosensors. Heavy metal bioremediation technologies or platform cells can be also developed based on the marine genomic information of heavy metal resistance and/or detoxification genes in a bacterial isolate from ocean sediments.

  18. A fluorometric paper-based sensor array for the discrimination of heavy-metal ions.

    PubMed

    Feng, Liang; Li, Hui; Niu, Li-Ya; Guan, Ying-Shi; Duan, Chun-Feng; Guan, Ya-Feng; Tung, Chen-Ho; Yang, Qing-Zheng

    2013-04-15

    A fluorometric paper-based sensor array has been developed for the sensitive and convenient determination of seven heavy-metal ions at their wastewater discharge standard concentrations. Combining with nine cross-reactive BODIPY fluorescent indicators and array technologies-based pattern-recognition, we have obtained the discrimination capability of seven different heavy-metal ions at their wastewater discharge standard concentrations. After the immobilization of indicators and the enrichment of analytes, identification of the heavy-metal ions was readily acquired using a standard chemometric approach. Clear differentiation among heavy-metal ions as a function of concentration was also achieved, even down to 10(-7)M. A semi-quantitative estimation of the heavy-metal ion concentration was obtained by comparing color changes with a set of known concentrations. The sensor array was tentatively investigated in spiked tap water and sea water, and showed possible feasibility for real sample testing.

  19. Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance

    PubMed Central

    Fashola, Muibat Omotola; Ngole-Jeme, Veronica Mpode; Babalola, Olubukola Oluranti

    2016-01-01

    Mining activities can lead to the generation of large quantities of heavy metal laden wastes which are released in an uncontrolled manner, causing widespread contamination of the ecosystem. Though some heavy metals classified as essential are important for normal life physiological processes, higher concentrations above stipulated levels have deleterious effects on human health and biota. Bacteria able to withstand high concentrations of these heavy metals are found in the environment as a result of various inherent biochemical, physiological, and/or genetic mechanisms. These mechanisms can serve as potential tools for bioremediation of heavy metal polluted sites. This review focuses on the effects of heavy metal wastes generated from gold mining activities on the environment and the various mechanisms used by bacteria to counteract the effect of these heavy metals in their immediate environment. PMID:27792205

  20. Magnetic evidence for heavy metal pollution of topsoil in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Wang, Guan; Liu, Yuan; Chen, Jiao; Ren, Feifan; Chen, Yuying; Ye, Fangzhou; Zhang, Weiguo

    2017-03-01

    This study presents the results obtained from magnetic susceptibility and heavy metal (Cu, Zn, Pb, and Cr) concentration measurements of soil profiles collected from arable land and urban parks in Baoshan District, an industrial district of Shanghai, China. The study focuses on the investigation of vertical variations in magnetic susceptibilities and heavy metal concentrations and on correlations between magnetic susceptibilities and heavy metal concentrations in soil profiles. The results demonstrate that magnetic enhancement in the surface layer of the soil profile is associated with increased heavy metal pollution. The enrichment factors (EF) and the Tomlinson Pollution Load Index (PLI-EF) are calculated for estimating the level of heavy metal pollution of soil profiles in the study. The significant positive correlations between heavy metal contents, enrichment factors (EF), Tomlinson pollution load index (PLI-CF), modified Tomlinson pollution load index (PLI-EF), and magnetic susceptibility (c) indicate that much of the heavy metal contamination in the study area is linked to combustion derived particulate emissions. The results confirm that the combined magnetic measurement and heavy metal concentration analysis could provide useful information for soil monitoring in urban environments. However, the use of magnetic technique to locate the heavy metal pollution boundary in the soil profile of this studied area should be confirmed by further geochemical analysis.

  1. Rhizobacteria of Populus euphratica Promoting Plant Growth Against Heavy Metals.

    PubMed

    Zhu, Donglin; Ouyang, Liming; Xu, Zhaohui; Zhang, Lili

    2015-01-01

    The heavy metal-resistant bacteria from rhizospheric soils of wild Populus euphratica forest growing in arid and saline area of northwestern China were investigated by cultivation-dependent methods. After screening on medium sparked with zinc, copper, nickel and lead, 146 bacteria strains with different morphology were isolated and most of them were found to be resistant to at least two kinds of heavy metals. Significant increase in fresh weight and leaf surface area of Arabidopsis thaliana seedlings under metal stress were noticed after inoculated with strains especially those having multiple-resistance to heavy metals such as Phyllobacterium sp. strain C65. Investigation on relationship between auxin production and exogenous zinc concentration revealed that Phyllobacterium sp. strain C65 produced auxin, and production decreased as the concentration of zinc in medium increased. For wheat seedlings treated with zinc of 2 mM, zinc contents in roots of inoculated plants decreased by 27% (P < 0.05) compared to the uninoculated control. Meanwhile, zinc accumulation in the above-ground tissues increased by 22% (P < 0.05). The translocation of zinc from root to above-ground tissues induced by Phyllobacterium sp. strain C65 helped host plants extract zinc from contaminated environments more efficiently thus alleviated the growth inhibition caused by heavy metals.

  2. Acid-volatile sulfide and simultaneously extracted metals in surface sediments of the southwestern coastal Laizhou Bay, Bohai Sea: concentrations, spatial distributions and the indication of heavy metal pollution status.

    PubMed

    Zhuang, Wen; Gao, Xuelu

    2013-11-15

    Surface sediments were collected from the coastal waters of southwestern Laizhou Bay and the rivers it connects with during summer and autumn 2012. The acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) were measured to assess the sediment quality. The results showed that not all sediments with [SEM]-[AVS]>0 were capable of causing toxicity because the organic carbon is also an important metal-binding phase in sediments. Suppose the sediments had not been disturbed and the criteria of US Environmental Protection Agency had been followed, heavy metals in this area had no adverse biological effects in both seasons except for few riverine samples. The major ingredient of SEM was Zn, whereas the contribution of Cd - the most toxic metal studied - to SEM was <1%. The distributions of AVS and SEM in riverine sediments were more easily affected by anthropogenic activity compared with those in marine sediments.

  3. Sequential extraction of heavy metals during composting of sewage sludge.

    PubMed

    Amir, Soumia; Hafidi, Mohamed; Merlina, Georges; Revel, Jean-Claude

    2005-05-01

    The major limitation of soil application of sewage sludge compost is the total heavy metal contents and their bioavailability to the soil-plant system. This study was conducted to determine the heavy metal speciation and the influence of changing the physico-chemical properties of the medium in the course of composting on the concentrations, bioavailability or chemical forms of Cu, Zn, Pb and Ni in sewage sludge. Principal physical and chemical properties and FTIR spectroscopical characterization of sludge compost during treatment show the stability and maturity of end product. The total metal contents in the final compost were much lower than the limit values of composts to be used as good soil fertilizer. Furthermore, it was observed by using a sequential extraction procedure in sludge compost at different steps of treatment, that a large proportion of the heavy metals were associated to the residual fraction (70-80%) and more resistant fractions to extraction X-NaOH, X-EDTA, X-HNO3 (12-29%). Less than 2% of metals bound to bioavailable fractions X-(KNO3+H2O). Heavy metal distribution and bioavailability show some changes during composting depending on the metal itself and the physico-chemical properties of the medium. Bioavailable fractions of all elements tend to decrease except Ni-H2O. Zn and mainly Cu present more affinity to organic and carbonate fractions. In contrast, Pb is usually preferentially bound to sulfide forms X-HNO3. Nickel shows a significant decrease of organic form. Significant degrees of correlation were found between heavy metal fractions and changes of some selected variables (e.g. pH, ash, organic matter, humic substance) during the course of composting. Mobile fractions of metals are poorly predictable from the total content. The R2 value was significantly increased by the inclusion of other variables such as the amount of organic matter (OM) and pH.

  4. Determination of heavy metals concentrations in airborne particulates matter (APM) from Manjung district, Perak using energy dispersive X-ray fluorescence (EDXRF) spectrometer

    NASA Astrophysics Data System (ADS)

    Arshad, Nursyairah; Hamzah, Zaini; Wood, Ab. Khalik; Saat, Ahmad; Alias, Masitah

    2015-04-01

    Airborne particulates trace metals are considered as public health concern as it can enter human lungs through respiratory system. Generally, any substance that has been introduced to the atmosphere that can cause severe effects to living things and the environment is considered air pollution. Manjung, Perak is one of the development districts that is active with industrial activities. There are many industrial activities surrounding Manjung District area such as coal fired power plant, quarries and iron smelting which may contribute to the air pollution into the environment. This study was done to measure the concentrations of Hg, U, Th, K, Cu, Fe, Cr, Zn, As, Se, Pb and Cd in the Airborne Particulate Matter (APM) collected at nine locations in Manjung District area within 15 km radius towards three directions (North, North-East and South-East) in 5 km intervals. The samples were collected using mini volume air sampler with cellulose filter through total suspended particulate (TSP). The sampler was set up for eight hours with the flow rate of 5 L/min. The filter was weighed before and after sample collection using microbalance, to get the amount of APM and kept in desiccator before analyzing. The measurement was done using calibrated Energy Dispersive X-Ray Fluorescence (EDXRF) Spectrometer. The air particulate concentrations were found below the Malaysia Air Quality Guidelines for TSP (260 µg/m3). All of the metals concentrations were also lower than the guidelines set by World Health Organization (WHO), Ontario Ministry of the Environment and Argonne National Laboratory, USA NCRP (1975). From the concentrations, the enrichment factor were calculated.

  5. Removal of heavy metal from industrial effluents using Baker's yeast

    NASA Astrophysics Data System (ADS)

    Ferdous, Anika; Maisha, Nuzhat; Sultana, Nayer; Ahmed, Shoeb

    2016-07-01

    Bioremediation of wastewater containing heavy metals is one of the major challenges in environmental biotechnology. Heavy metals are not degraded and as a result they remain in the ecosystem, and pose serious health hazards as it comes in contact with human due to anthropogenic activities. Biological treatment with various microorganisms has been practiced widely in recent past, however, accessing and maintaining the microorganisms have always been a challenge. Microorganisms like Baker's yeast can be very promising biosorbents as they offer high surface to volume ratio, large availability, rapid kinetics of adsorption and desorption and low cost. The main aim of this study is to evaluate the applicability of the biosorption process using baker's yeast. Here we present an experimental investigation of biosorption of Chromium (Cr) from water using commercial Baker's Yeast. It was envisaged that yeast, dead or alive, would adsorb heavy metals, however, operating parameters could play vital roles in determining the removal efficiency. Parameters, such as incubation time, pH, amount of biosorbent and heavy metal concentration were varied to investigate the impacts of those parameters on removal efficiency. Rate of removal was found to be inversely proportional to the initial Cr (+6) concentrations but the removal rate per unit biomass was a weakly dependent on initial Cr(+6) concentrations. Biosorption process was found to be more efficient at lower pH and it exhibited lower removal with the increase in solution pH. The optimum incubation time was found to be between 6-8 hours and optimum pH for the metal ion solution was 2. The effluents produced in leather industries are the major source of chromium pollution in Bangladesh and this study has presented a very cost effective yet efficient heavy metal removal approach that can be adopted for such kind of wastewater.

  6. Chelate-Assisted Heavy Metal Movement Through the Root Zone

    NASA Astrophysics Data System (ADS)

    Kirkham, M.; Madrid, F.; Liphadzi, M. S.

    2001-12-01

    Chelating agents are added to soil as a means to mobilize heavy metals for plant uptake during phytoremediation. Yet almost no studies follow the displacement of heavy metals through the vadose zone following solubilization with chelating agents. The objective of this work was to determine the movement of heavy metals through the soil profile and their absorption by barley (Hordeum vulgare L.) in a soil amended with biosolids and in the presence of a chelating agent (EDTA). Twelve columns 75 cm in height and 17 in diameter were packed with a Haynie very fine sandy loam (coarse-silty, mixed, calcareous, mesic Mollic Udifluvents) and watered with liquid biosolids applied at the surface at a rate of 120 kg N/ha. Three weeks after plants germinated, soil was irrigated with a solution of the disodium salt of EDTA added at a rate of 0.5 g/kg soil. Four treatments were imposed: columns with no plants and no EDTA; columns with no plants plus EDTA; columns with plants and no EDTA; and columns with plants and EDTA. Columns were watered intensively for 35 days until two pore volumes of water had been added, and the leachates were collected daily. With or without plants, columns with EDTA had lower total concentrations of Cu, Zn, Cd, Ni, and Pb in the surface 20 cm than columns without EDTA. Concentrations of the heavy metals in this layer were not afffected by the presence of roots. Iron in leachate was followed as an indicator metal for movement to groundwater. No iron appeared in the leachate without EDTA, either in the columns with plants or without plants. The peak concentration of iron in the leachate occurred three days earlier in the columns without plants and EDTA compared to the columns with plants and EDTA. The results indicated the importance of vegetation on retarding heavy metal leaching to groundwater during chelate-facilitated phytoremediation.

  7. Heavy metal, religiosity, and suicide acceptability.

    PubMed

    Stack, S

    1998-01-01

    There has been little work at the national level on the subject of musical subcultures and suicide acceptability. The present work explores the link between "heavy metal" rock fanship and suicide acceptability. Metal fanship is thought to elevate suicide acceptability through such means as exposure to a culture of personal and societal chaos marked by hopelessness, and through its associations with demographic risk factors such as gender, socioeconomic status, and education. Data are taken from the General Social Survey. A link between heavy metal fanship and suicide acceptability is found. However, this relationship becomes nonsignificant once level of religiosity is controlled. Metal fans are low in religiosity, which contributes, in turn, to greater suicide acceptability.

  8. Carbon based secondary compounds do not provide protection against heavy metal road pollutants in epiphytic macrolichens.

    PubMed

    Gauslaa, Yngvar; Yemets, Olena A; Asplund, Johan; Solhaug, Knut Asbjørn

    2016-01-15

    Lichens are useful monitoring organisms for heavy metal pollution. They are high in carbon based secondary compounds (CBSCs) among which some may chelate heavy metals and thus increase metal accumulation. This study quantifies CBSCs in four epiphytic lichens transplanted for 6months on stands along transects from a highway in southern Norway to search for relationships between concentrations of heavy metals and CBSCs along a gradient in heavy metal pollutants. Viability parameters and concentrations of 21 elements including nutrients and heavy metals in these lichen samples were reported in a separate paper. Medullary CBSCs in fruticose lichens (Ramalina farinacea, Usnea dasypoga) were reduced in the most polluted sites, but not in foliose ones (Parmelia sulcata, Lobaria pulmonaria), whereas cortical CBSC did not change with distance from the road in any species. Strong positive correlations only occurred between the major medullary compound stictic acid present in L. pulmonaria and most heavy metals, consistent with a chelating role of stictic acid, but not of other studied CBSCs or in other species. However, heavy metal chelating did not protect L. pulmonaria against damage because this species experienced the strongest reduction in viability in the polluted sites. CBSCs with an accumulation potential for heavy metals should be quantified in lichen biomonitoring studies of heavy metals because they, like stictic acid, could overshadow pollutant inputs in some species rendering biomonitoring data less useful. In the two fruticose lichen species, CBSCs decreased with increasing heavy metal concentration, probably because heavy metal exposure impaired secondary metabolism. Thus, we found no support for a heavy metal protection role of any CBSCs in studied epiphytic lichens. No intraspecific relationships occurred between CBSCs versus N or C/N-ratio. Interspecifically, medullary CBSCs decreased and cortical CBSCs increased with increasing C/N-ratio.

  9. Investigation of (235)U, (226)Ra, (232)Th, (40)K, (137)Cs, and heavy metal concentrations in Anzali international wetland using high-resolution gamma-ray spectrometry and atomic absorption spectroscopy.

    PubMed

    Zare, Mohammad Reza; Kamali, Mahdi; Fallahi Kapourchali, Maryam; Bagheri, Hashem; Khoram Bagheri, Mahdi; Abedini, Ali; Pakzad, Hamid Reza

    2016-02-01

    Measurements of natural radioactivity levels and heavy metals in sediment and soil samples of the Anzali international wetland were carried out by two HPGe-gamma ray spectrometry and atomic absorption spectroscopy techniques. The concentrations of (235)U, (226)Ra, (232)Th, (40)K, and (137)Cs in sediment samples ranged between 1.05 ± 0.51-5.81 ± 0.61, 18.06 ± 0.63-33.36 ± .0.34, 17.57 ± 0.38-45.84 ± 6.23, 371.88 ± 6.36-652.28 ± 11.60, and 0.43 ± 0.06-63.35 ± 0.94 Bq/kg, while in the soil samples they vary between 2.36-5.97, 22.71-38.37, 29.27-42.89, 472.66-533, and 1.05-9.60 Bq/kg for (235)U, (226)Ra, (232)Th, (40)K, and (137)Cs, respectively. Present results are compared with the available literature data and also with the world average values. The radium equivalent activity was well below the defined limit of 370 Bq/kg. The external hazard indices were found to be less than 1, indicating a low dose. Heavy metal concentrations were found to decrease in order as Fe > Mn > Sr > Zn > Cu > Cr > Ni > Pb > Co > Cd. These measurements will serve as background reference levels for the Anzali wetland.

  10. Species-specific heavy metal accumulation patterns of earthworms on a floodplain in Japan.

    PubMed

    Kamitani, Takafumi; Kaneko, Nobuhiro

    2007-01-01

    We identified all earthworm species found on a floodplain contaminated by heavy metals (Cu, Zn, Cd, and Pb) from an old mine in central Japan and compared their abundance, biomass, and heavy metal concentrations in tissue. There were six species belonging to three families: Megascolecidae, Moniligastridae, and Lumbricidae. Earthworm community structure seemed to be influenced mostly by soil properties, especially pH and clay fraction. Despite the same endogeic characteristics, species-specific patterns of heavy metal accumulation were observed: species in Megascolecidae and Lumbricidae had relatively lower concentrations compared to those in Moniligastridae. Within Moniligastridae, Drawida sp. accumulated Cu and Pb markedly higher than Drawida japonica. Based on heavy metal concentrations in extracts of CaCl(2) and diethylenetriaminepentaacetic acid, the aging caused remarkably low concentrations in pore water, indicating low availability by dermal uptake. Therefore the different patterns of heavy metal accumulation among species would partly result from species-specific gut process.

  11. Diffuse sources of heavy metals entering an urban wastewater catchment.

    PubMed

    Rule, K L; Comber, S D W; Ross, D; Thornton, A; Makropoulos, C K; Rautiu, R

    2006-03-01

    New legislation such as the Water Framework Directive (WFD) will require Member States to better understand the concentrations and loads of contaminants entering surface waters. This will include inputs from wastewater treatment plants (WWTP) as well as from other urban, industrial and agricultural sources. A review of available literature revealed a shortage of data on the levels and sources of heavy metals entering WWTP from urban sources. As a consequence, the concentrations of heavy metals (cadmium, chromium, copper, mercury, nickel, lead and zinc) were determined in the wastewater from an urban catchment located in the UK, as part of a project undertaken for UK Water Industry Research (UKWIR). Both foul and surface water samples were taken. Metal concentrations varied considerably in the foul water samples, both between sources and over the course of the week. Concentrations of most metals were higher in the Monday town centre samples, attributed to leaching from stagnant water remaining in the pipework of office buildings over the weekend. Runoff concentrations were higher in the light industrial estate samples than in the domestic samples for all the metals, and exhibited highest levels in the 'first flush' samples, coincident with the initial flow of runoff containing the highest concentrations of suspended solids.

  12. Phytoremediation of heavy metal contaminated soil by Jatropha curcas.

    PubMed

    Chang, Fang-Chih; Ko, Chun-Han; Tsai, Ming-Jer; Wang, Ya-Nang; Chung, Chin-Yi

    2014-12-01

    This study employed Jatropha curcas (bioenergy crop plant) to assist in the removal of heavy metals from contaminated field soils. Analyses were conducted on the concentrations of the individual metals in the soil and in the plants, and their differences over the growth periods of the plants were determined. The calculation of plant biomass after 2 years yielded the total amount of each metal that was removed from the soil. In terms of the absorption of heavy metal contaminants by the roots and their transfer to aerial plant parts, Cd, Ni, and Zn exhibited the greatest ease of absorption, whereas Cu, Cr, and Pb interacted strongly with the root cells and remained in the roots of the plants. J. curcas showed the best absorption capability for Cd, Cr, Ni, and Zn. This study pioneered the concept of combining both bioremediation and afforestation by J. curcas, demonstrated at a field scale.

  13. Heavy Metals and Related Trace Elements.

    ERIC Educational Resources Information Center

    Leland, Harry V.; And Others

    1978-01-01

    Presents a literature review of heavy metals and related trace elements in the environment, covering publications of 1976-77. This review includes: (1) trace treatment in natural water and in sediments; and (2) bioaccumulation and toxicity of trace elements. A list of 466 references is presented. (HM)

  14. Phytoremediation potential of Lemna minor L. for heavy metals.

    PubMed

    Bokhari, Syeda Huma; Ahmad, Iftikhar; Mahmood-Ul-Hassan, Muhammad; Mohammad, Ashiq

    2016-01-01

    Phytoremediation potential of L. minor for cadmium (Cd), copper (Cu), lead (Pb), and nickel (Ni) from two different types of effluent in raw form was evaluated in a glass house experiment using hydroponic studies for a period of 31 days. Heavy metals concentration in water and plant sample was analyzed at 3, 10, 17, 24, and 31 day. Removal efficiency, metal uptake and bio-concentration factor were also calculated. Effluents were initially analyzed for physical, chemical and microbiological parameters and results indicated that municipal effluent (ME) was highly contaminated in terms of nutrient and organic load than sewage mixed industrial effluent (SMIE). Results confirmed the accumulation of heavy metals within plant and subsequent decrease in the effluents. Removal efficiency was greater than 80% for all metals and maximum removal was observed for nickel (99%) from SMIE. Accumulation and uptake of lead in dry biomass was significantly higher than other metals. Bio-concentration factors were less than 1000 and maximum BCFs were found for copper (558) and lead (523.1) indicated that plant is a moderate accumulator of both metals. Overall, L. minor showed better performance from SMIE and was more effective in extracting lead than other metals.

  15. Atmospheric deposition of heavy metals in Wuxi, China: estimation based on native moss analysis.

    PubMed

    Yan, Yun; Zhang, Qiang; Wang, G Geoff; Fang, Yan-Ming

    2016-06-01

    We studied atmospheric deposition of heavy metals in Wuxi, China, using moss (Haplocladium microphyllum and H. angustifolium) as a biomonitoring agent. Moss samples were collected from 49 sites determined by a systematic sampling method. The top layer of soil on each site was also sampled. No significant correlation (P < 0.05) was observed between the moss and soil concentrations for any of the six heavy metal elements (Cd, Cr, Cu, Ni, Pb, and Zn), indicating that the soil substrate had little effect on the heavy metal concentrations in the moss materials. The metal enrichment capacity of the moss material, characterized by the concentration ratio between the moss and soil samples for each heavy metal, was topped by Cd and then followed by Zn, Pb, Cu, Cr, and Ni, respectively. Significant (P < 0.05) correlations were found among the six elements in mosses, suggesting potential anthropogenic inputs of these heavy metal pollutants. Based on concentrations of the heavy metals in mosses and the calculated contamination factors, we evaluated the contamination level of each heavy metal on the 49 sampling sites. Spatial distribution maps of heavy metal deposition for each element were interpolated using ArcGIS 9.0. A total pollution coefficient was calculated for each sampling site to identify the seriously polluted areas in the region.

  16. Heavy metal characterization of circulating fluidized bed derived biomass ash.

    PubMed

    Li, Lianming; Yu, Chunjiang; Bai, Jisong; Wang, Qinhui; Luo, Zhongyang

    2012-09-30

    Although the direct combustion of biomass for energy that applies circulating fluidized bed (CFB) technology is steadily expanding worldwide, only few studies have conducted an environmental assessment of biomass ash thus far. Therefore, this study aims to integrate information on the environmental effects of biomass ash. We investigated the concentration of heavy metal in biomass ash samples (bottom ash, cyclone ash, and filter ash) derived from a CFB boiler that combusted agricultural and forest residues at a biomass power plant (2×12 MW) in China. Ash samples were gathered for the digestion and leaching test. The heavy metal content in the solution and the leachate was studied via an inductively coupled plasma-mass spectrometer and a Malvern Mastersizer 2000 mercury analyzer. Measurements for the chemical composition, particle size distribution, and the surface morphology were carried out. Most of the metals in cyclone ash particles were enriched, whereas Ti and Hg were enriched in filter ash. Residence time contributed most to heavy metal enrichment. Under HJ/T 300 conditions, the heavy metals showed serious leaching characteristics. Under EN 12457-2 conditions, leaching behavior was hardly detected.

  17. Heavy Metals in the Environment-Historical Trends

    NASA Astrophysics Data System (ADS)

    Callender, E.

    2003-12-01

    These six metals, commonly classified as heavy metals, are a subset of a larger group of trace elements that occur in low concentration in the Earth's crust. These heavy metals were mined extensively for use in the twentieth century Industrial Society. Nriagu (1988a) estimated that between 0.5 (Cd) and 310 (Cu) million metric tons of these metals were mined and ultimately deposited in the biosphere. In many instances, the inputs of these metals from anthropogenic sources exceed the contributions from natural sources (weathering, volcanic eruptions, forest fires) by several times ( Adriano, 1986). In this chapter, heavy metals (elements having densities greater than 5) and trace elements (elements present in the lithosphere in concentrations less than 0.1%) are considered synonymous.It has been observed in the past that the rate of emission of these trace metals into the atmosphere is low due to their low volatility. However, with the advent of large-scale metal mining and smelting as well as fossil-fuel combustion in the twentieth century, the emission rate of these metals has increased dramatically. As most of these emissions are released into the atmosphere where the mammals live and breathe, we see a great increase in the occurrence of health problems such as lead (Pb) poisoning, cadmium (Cd) Itai-itai disease, chromium (Cr), and nickel (Ni) carcinogenesis.In this chapter, the author has attempted to present a synopsis of the importance of these metals in the hydrocycle, their natural and anthropogenic emissions into the environment, their prevalent geochemical form incorporated into lacustrine sediments, and their time-trend distributions in watersheds that have been impacted by urbanization, mining and smelting, and other anthropogenic activities. These time trends are reconstructed from major-minor-trace-element distributions in age-dated sediment cores, mainly from reservoirs where the mass sedimentation rates (MSRs) are orders of magnitude greater than

  18. Heavy metal pollution in various canals originating from river Yamuna in Haryana.

    PubMed

    Kaushik, A; Jain, S; Dawra, J; Sharma, P

    2003-07-01

    Heavy metal pollution due to Fe, Ni, Pb, Cd, Co and Zn in the water of major canals originating from the river Yamuna in Haryana was studied. All these metals except Zn were found to be present in the Western Yamuna Canal (WYC) exceeding the maximum permissible limits. In the Sunder branch (SB), the heavy metal concentration was relatively more. Concentrations of the metals were, however, relatively less in the highly eutrophicated waters of Agra canal and Gurgaon canal as compared to that in WYC but Fe concentration were much higher. Except Zn and Ni the metal concentrations exceeded the standard permissible limits in these canals also.

  19. Compost amendment of Cu-Zn minespoil reduces toxic bioavailable heavy metal concentrations and promotes establishment and biomass production of Bromus carinatus (Hook and Arn.).

    PubMed

    O'Dell, Ryan; Silk, Wendy; Green, Peter; Claassen, Victor

    2007-07-01

    A series of lab and greenhouse studies were undertaken to understand how Cu and Zn toxicity influences Bromus carinatus (Hook and Arn.) growth, to what degree an organic amendment (yard waste compost) may reduce Cu and Zn bioavailability in Cu-Zn minespoil and promote plant growth in combination with fertilizer, and how the vertical distribution of compost in the minespoil influences rooting depth. Root Cu and Zn toxicity thresholds were determined to be 1 mgL(-1) and 10 mgL(-1) in solution, respectively. The compost amendment had exceptionally high Cu and Zn binding capacities (0.17 and 0.08 g metal g C(-1), for Cu and Zn, respectively) that were attributed to high compost humic and fulvic acid concentrations. Maximum plant biomass was achieved when minespoil was amended with compost and fertilizer in combination. Fertilizer alone had no effect on plant growth. Mixing compost into the minespoil was essential to promote adequate rooting depth.

  20. Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing

    DOEpatents

    Gay, Eddie C.

    1995-01-01

    An electrochemical method of separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500.degree. C. The method comprises positioning a solid Li--Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode.

  1. Heavy Metal Bioaccumulation in an Atypical Primitive Neuroectodermal Tumor of the Abdominal Wall.

    PubMed

    Roncati, Luca; Gatti, Antonietta Morena; Capitani, Federico; Barbolini, Giuseppe; Maiorana, Antonio; Palmieri, Beniamino

    2015-01-01

    Heavy metals are able to interfere with the function of vital cellular components. Besides in trace heavy metals, which are essential at low concentration for humans, there are heavy metals with a well-known toxic and oncogenic potential. In this study, for the first time in literature, we report the unique adulthood case of an atypical primitive neuroectodermal tumor of the abdominal wall, diagnosed by histology and immunohistochemistry, with the molecular hybridization support. The neoplasia occurred in a patient chronically exposed to a transdermal delivery of heavy metal salts (aluminum and bismuth), whose intracellular bioaccumulation has been revealed by elemental microanalysis.

  2. Factorial experimental design for recovering heavy metals from sludge with ion-exchange resin.

    PubMed

    Lee, I Hsien; Kuan, Yu-Chung; Chern, Jia-Ming

    2006-12-01

    Wastewaters containing heavy metals are usually treated by chemical precipitation method in Taiwan. This method can remove heavy metals form wastewaters efficiently, but the resultant heavy metal sludge is classified as hazardous solid waste and becomes another environmental problem. If we can remove heavy metals from sludge, it becomes non-hazardous waste and the treatment cost can be greatly reduced. This study aims at using ion-exchange resin to remove heavy metals such as copper, zinc, cadmium, and chromium from sludge generated by a PCB manufacturing plant. Factorial experimental design methodology was used to study the heavy metal removal efficiency. The total metal concentrations in the sludge, resin, and solution phases were measured respectively after 30 min reaction with varying leaching agents (citric acid and nitric acid); ion-exchange resins (Amberlite IRC-718 and IR-120), and temperatures (50 and 70 degrees C). The experimental results and statistical analysis show that a stronger leaching acid and a higher temperature both favor lower heavy metal residues in the sludge. Two-factors and even three-factor interaction effects on the heavy metal sorption in the resin phase are not negligible. The ion-exchange resin plays an important role in the sludge extraction or metal recovery. Empirical regression models were also obtained and used to predict the heavy metal profiles with satisfactory results.

  3. miRNA-based heavy metal homeostasis and plant growth.

    PubMed

    Noman, Ali; Aqeel, Muhammad

    2017-02-22

    Plants have been naturally gifted with mechanisms to adjust under very high or low nutrient concentrations. Heavy metal toxicity is considered as a major growth and yield-limiting factor for plants. This stress includes essential as well as non-essential metals. MicroRNAs (miRNAs) are known for mediating post-transcriptional regulation by cleaving transcripts or translational inhibition. It is commonly agreed that an extensive understanding of plant miRNAs will significantly help in the induction of tolerance against environmental stresses. With the introduction of the latest technology like next generation sequencing (NGS), a growing figure of miRNAs has been productively recognized in several plants for their diverse roles. These miRNAs are well-known modulators of plant responses to heavy metal (HM) stress. Data regarding metal-responsive miRNAs point out the vital role of plant miRNAs in supplementing metal detoxification by means of transcription factors (TF) or gene regulation. Acting as systemic signals, miRNAs also synchronize different physiological processes for plant responses to metal toxicities. In contrast to practicing techniques, using miRNA is a greatly helpful, pragmatic, and feasible approach. The earlier findings point towards miRNAs as a prospective target to engineer heavy metal tolerance in plants. Therefore, there is a need to augment our knowledge about the orchestrated functions of miRNAs during HM stress. We reviewed the deterministic significance of plant miRNAs in heavy metal tolerance and their role in mediating plant responses to HM toxicities. This review also summarized the topical developments by identification and validation of different metal stress-responsive miRNAs.

  4. Heavy metals in vegetables and respective soils irrigated by canal, municipal waste and tube well waters.

    PubMed

    Ismail, Amir; Riaz, Muhammad; Akhtar, Saeed; Ismail, Tariq; Amir, Mamoona; Zafar-ul-Hye, Muhammad

    2014-01-01

    Heavy metal contamination in the food chain is of serious concern due to the potential risks involved. The results of this study revealed the presence of maximum concentration of heavy metals in the canal followed by sewerage and tube well water. Similarly, the vegetables and respective soils irrigated with canal water were found to have higher heavy metal contamination followed by sewerage- and tube-well-watered samples. However, the heavy metal content of vegetables under study was below the limits as set by FAO/WHO, except for lead in canal-water-irrigated spinach (0.59 mg kg(-1)), radish pods (0.44 mg kg(-1)) and bitter gourd (0.33 mg kg(-1)). Estimated daily intakes of heavy metals by the consumption of selected vegetables were found to be well below the maximum limits. However, a complete estimation of daily intake requires the inclusion of other dietary and non-dietary exposure sources of heavy metals.

  5. Heavy metal pollution and assessment in the tidal flat sediments of Haizhou Bay, China.

    PubMed

    Zhang, Rui; Zhou, Li; Zhang, Fan; Ding, Yingjun; Gao, Jinrong; Chen, Jing; Yan, Hongqiang; Shao, Wei

    2013-09-15

    The heavy metal inventory and the ecological risk of the tidal flat sediments in Haizhou Bay were investigated. Results show that the average concentrations of heavy metals in the surface sediments exceeded the environment background values of Jiangsu Province coastal soil, suggesting that the surface sediments were mainly polluted by heavy metals (Cd, Cr, Cu, Mn, Pb and Zn). In addition, the profiles of heavy metals fluxes can reflect the socio-economic development of Lianyungang City, and heavy metals inputs were attributed to anthropogenic activities. Cr, Cu, Pb and Zn were mainly present in the non-bioavailable residual form in surface sediments, whereas Cd and Mn were predominantly in the highly mobile acid soluble and reducible fractions. The ecological risk of the polluted sediments stemmed mainly from Cd and Pb. According to the Sediment quality guidelines (SQGs), however, the adverse biological effects caused by the heavy metals occasionally occurred in tidal flat.

  6. Measuring Hydrogen Concentrations in Metals

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1985-01-01

    Commercial corrosion-measurement system adapted to electrochemical determination of hydrogen concentrations in metals. New technique based on diffusion of hydrogen through foil specimen of metal. In sample holder, hydrogen produced on one side of foil, either by corrosion reaction or by cathodic current. Hydrogen diffused through foil removed on other side by constant anode potential, which leads to oxidation of hydrogen to water. Anode current is measure of concentration of hydrogen diffusing through foil. System used to study hydrogen uptake, hydrogen elimination by baking, effect of heat treatment, and effect of electroplating on high-strength steels.

  7. Heavy metal removal from sediments by biosurfactants.

    PubMed

    Mulligan, C N; Yong, R N; Gibbs, B F

    2001-07-30

    Batch washing experiments were used to evaluate the feasibility of using biosurfactants for the removal of heavy metals from sediments. Surfactin from Bacillus subtilis, rhamnolipids from Pseudomonas aeruginosa and sophorolipid from Torulopsis bombicola were evaluated using a metal-contaminated sediment (110mg/kg copper and 3300mg/kg zinc). A single washing with 0.5% rhamnolipid removed 65% of the copper and 18% of the zinc, whereas 4% sophorolipid removed 25% of the copper and 60% of the zinc. Surfactin was less effective, removing 15% of the copper and 6% of the zinc. The technique of ultrafiltration and zeta potential measurements were used to determine the mechanism of metal removal by the surfactants. It was then postulated that metal removal by the biosurfactants occurs through sorption of the surfactant on to the soil surface and complexation with the metal, detachment of the metal from the soil into the soil solution and hence association with surfactant micelles. Sequential extraction procedures were used on the sediment to determine the speciation of the heavy metals before and after surfactant washing. The carbonate and oxide fractions accounted for over 90% of the zinc present in the sediments. The organic fraction constituted over 70% of the copper. Sequential extraction of the sediments after washing with the various surfactants indicated that the biosurfactants, rhamnolipid and surfactin could remove the organically-bound copper and that the sophorolipid could remove the carbonate and oxide-bound zinc. Therefore, heavy metal removal from sediments is feasible and further research will be conducted.

  8. Heavy Metal Contamination in the Taimyr Peninsula, Siberian Arctic

    SciTech Connect

    Allen-Gil, Susan M.; Ford, Jesse; Lasorsa, Brenda K.; Monetti, Matthew; Vlasova, Tamara; Landers, Dixon H.

    2003-01-01

    The Taimyr Peninsula is directly north of the world's largest heavy metal smelting complex (Norilsk, Russia). Despite this proximity, there has been little research to examine the extent of contamination of the Taimyr Peninsula. We analyzed heavy metal concentrations in lichen (Cetraria cucullata), moss (Hylocomium splendens), soils, lake sediment, freshwater fish (Salvelinus alpinus, Lota lota, and Coregonus spp.) and collared lemming (Dicrostonyx torquatus) from 13 sites between 30 and 300 km from Norilsk. Element concentrations were low in both C. cucullata and H. splendens, although concentrations of Al, Fe, Cu, Ni, and Pb were significantly higher than those in Arctic Alaska, probably due to natural differences in the geochemical environments. Inorganic surface soils had significantly higher concentrations of Cd, Zn, Pb, and Mg than inorganic soils at depth, although a lake sediment core from the eastern Taimyr Peninsula indicated no recent enrichment by atmospherically transported elements. Tissue concentrations of heavy metals in fish and lemming were not elevated relative to other Arctic sites. Our results show that the impact of the Norilsk smelting complex is primarily localized rather than regional, and does not extend northward beyond 100 km.

  9. Distribution and bioaccumulation of heavy metals in marine organisms in east and west Guangdong coastal regions, South China.

    PubMed

    Zhang, Ling; Shi, Zhen; Jiang, Zhijian; Zhang, Jingping; Wang, Fei; Huang, Xiaoping

    2015-12-30

    Heavy metal (Cu, Pb, Zn, Cr, Cd, As) concentrations, distribution and bioaccumulation were studied in marine organisms in Guangdong coastal regions. Heavy metal concentrations and distribution in organisms showed characteristics according to areas and species. Heavy metal concentrations in most organisms were higher in west than in east, tightly related to the local industry structure and the disequilibrium of metal discharge. Generally, high heavy metal concentrations were detected in molluscs and low concentrations were detected in fish. Bioaccumulation factor was used to assess the accumulation level of marine organisms to heavy metals, of which Cd, Cu and As were the most accumulated elements. Accumulation abilities to heavy metals varied among organism species, such as Distorsio reticulate accumulating Cu, Zn, Cd, As, Loligo beka Sasaki accumulating Pb, Cu, Cr, and Turritella bacillum Kiener accumulating Zn, Cd, As. By comparison, Johnius belengeri, Argyrosomus argentatus, Cynoglossus sinicus Wu had relatively low accumulation abilities.

  10. Environmental and ecological risk of heavy metals in the marine sediment from Dakhla Bay, Morocco.

    PubMed

    Hakima, Zidane; Mohamed, Maanan; Aziza, Mouradi; Mehdi, Maanan; Meryem, El Barjy; Bendahhou, Zourarah; Jean-Francois, Blais

    2017-03-01

    Heavy metal assessment in Dakhla Bay (Atlantic coast) was carried out using different environmental and ecological indices. Heavy metal concentrations were measured using ICP-AES and were compared with consensus-based sediment quality guidelines. The distribution of heavy metal concentrations varies for the three groups: (i) lead distribution is dominated by its associations with copper and chromium. These elements have the same source, most probably related to anthropogenic activities. (ii) Nickel, zinc and cobalt are associated with aluminium and iron indicating their terrigenous origin (natural content), and (iii) cadmium concentration is related to upwelling currents. This paper systematically studied the distributions and pollution levels of heavy metals in sediment in the coastal areas in Dakhla Bay, which is of scientific significance, to discuss the changing rules and the affecting factors of the harmful heavy metals and can be adopted for reference to other coastal areas.

  11. Heavy metal concentration of river sediment in the light of the environmental quality standard value of Japan from the river in and around the Tokyo Japan: A case study at the Tama, Tsurumi, Edo and Ara rivers

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Matsumoto, I.

    2008-12-01

    The river sediment is basically composed of clastic materials derived from the surface of the Earth. Purpose of our study is clarify the quantitative estimation of ratio of influence given to river sediment of nature and human activity by using of heavy metals. We show the geochemical and geological characteristics of stream sediments from the Tama, Tsurumi, Edo and Ara Rivers that flow in Tokyo bay, Japan. We show research results of the degree of contamination in above four rivers that are the relativery polluted river in Japan. Sediment samples collected from various points along the upper and lower streams were subjected to content analysis and elution analysis (using liquate (flow) out test) on the heavy metals like Cd, CN, Pb, Cr(6+), As and Hg from the river sediment for the purpose of environment assessment. Content of Cd, CN, Pb, Cr(6+), As, and Hg except Pb was above the environmental quality limit in few locations of the Tsurumi river. However, in the down-river part (mouth region) Pb-concentration was 10 times higher than at the source regions as the result of human impact; for Hg the same tendency was detected at the all rivers. This study is the first research that investigated river sediment in the light of the envirnomental quality standard in Tokyo area, Japan.

  12. Remediation processes for heavy metals contaminated soils

    SciTech Connect

    Torma, G.A.; Torma, A.E.; Hsu, Pei-Cheng

    1996-12-31

    This paper provides information on selected technologies available for remediation of metal contaminated soils and industrial effluent solutions. Because some of the industrial sites are contaminated with organics (solvents, gasolines and oils), an effort has been made to introduce the most frequently used cost-effective cleanup methods, such as {open_quotes}bioventing{close_quotes} and {open_quotes}composting.{close_quotes} The microorganisms involved in these processes are capable of degrading organic soil contaminants to environmentally harmless compounds: water and carbon dioxide. Heavy metals and radionuclides contaminated mining and industrial sites can be remediated by using adapted heap and dump leaching technologies, which can be chemical in nature or bio-assisted. The importance of volume reduction by physical separation is discussed. A special attention is devoted to the remediation of soils by leaching (soil washing) to remove heavy metal contaminants, such as chromium, lead, nickel and cadmium. Furthermore, the applicability of biosorption technology in the remediation of heavy metals and radionuclides contaminated industrial waste waters and acidic mining effluent solutions was indicated. 60 refs., 9 figs.

  13. Heavy metals and the origin of life

    NASA Astrophysics Data System (ADS)

    Nriagu, J.

    2003-05-01

    The functional value of heavy metals in proto-cells was immense and involved critical roles in catalysis of molecular synthesis, translation, electrical neutrality and conduction, energy capture, cross-linking and precipitation (stabilizers of protective cell walls), and to a limited extent, osmotic pressure control. Metals must have modulated the evolutionary choices of the types of building blocks, such as ribose sugars as a constituent of RNA, or the the chirality and enantiopurity of many biomolecules. The formation of an enclosing membrane led to intracellular prokaryotic life (believed to have originated in an anaerobic environment) and much enhanced control over primary metabolism, the uptake and incorporation of heavy metals and the management of biomolecules (especially RNA, DNA and proteins) that were formed. Cells of the most primitive organisms (archaebacteria) reveal complex mechanisms designed specifically to deal with selective pressures from metal-containing environments including intra- and extra-cellular sequestration, exclusion by cell wall barrier, removal through active efflux pumps, enzymatic detoxification, and reduction in sensitivity of cellular targets to metal ions. Adaptation to metals using a variety of chromosomal, and transposon and plasmid-mediated systems began early in the evolution of life on Earth. Recent studies, however, show that the roles played by many heavy metals have changed over time. Divalent lead, for instance, has relinquished its unique catalytic role in the conversion of carbohydrates into ribose in the prebiotic world. The putative elements that dominated the primordial biochemistry were V, Mo, W, Co, Fe(II) and Ni; with the development of oxygenated atmosphere, these elements gave way to Zn, Cu and Fe(Ill) in their metabolic functions.

  14. Phytomining of heavy metals from soil by Croton bonplandianum using phytoremediation technology

    NASA Astrophysics Data System (ADS)

    Panchal, K. J.; Dave, B. R.; Parmar, P. P.; Subramanian, R. B.

    2015-12-01

    Metal ions are not only valuable intermediates in metal extraction, but also important raw materials for technical applications. They possess some unique but, identical physical and chemical properties, which make them useful probes of low temperature geochemical reactions. Heavy metals are natural constituents of the earth's crust, but indiscriminate human activities have drastically altered their geochemical cycles and biochemical balance. Metal concentration in soil typically ranges from less than one to as high as 100,000 mg/kg. Heavy metal contaminations of land resources continue to be the focus of numerous environmental studies and attract a great deal of attention worldwide. This is attributed to no--biodegradability and persistence of heavy metals in soils. Prolonged exposure to heavy metals such as cadmium, copper, lead, nickel, and zinc can cause deleterious health effects in humans. Complexation, separation, and removal of metal ions have become increasingly attractive areas of research and have led to new technical developments like phytoremediation that has numerous biotechnological implications of understanding of plant metal accumulation. Croton bonplandianum is newly identified as a potential heavy metal hypreaccumulator. In this study Croton bonplandianum was subjected for in vitro heavy metal accumulation, to explore the accumulation pattern of four heavy metals viz Cadmium, Lead, Nickel and Zinc in various parts of Croton bonplandianum plant parts. It was found that the efficiency of Croton bonplandianum to accumulate heavy metals is Cd>Pb>Zn>Ni. The absorption of these heavy metals in plant parts revealed that the highest translocation of metals from ground to root was ground to be in the order of Pb (1.12) > Zn (0.26) > Ni (0.18) > Cd (0.15). The distribution of Cd in Croton bonplandianum followed the trend Root>Stem>Leaf; with Ni it was Root>Leaf>Stem, while Pb showed leaf>stem>root. Translocation of metals in Croton bonplandianum plant parts

  15. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents.

    PubMed

    Ayangbenro, Ayansina Segun; Babalola, Olubukola Oluranti

    2017-01-19

    Persistent heavy metal pollution poses a major threat to all life forms in the environment due to its toxic effects. These metals are very reactive at low concentrations and can accumulate in the food web, causing severe public health concerns. Remediation using conventional physical and chemical methods is uneconomical and generates large volumes of chemical waste. Bioremediation of hazardous metals has received considerable and growing interest over the years. The use of microbial biosorbents is eco-friendly and cost effective; hence, it is an efficient alternative for the remediation of heavy metal contaminated environments. Microbes have various mechanisms of metal sequestration that hold greater metal biosorption capacities. The goal of microbial biosorption is to remove and/or recover metals and metalloids from solutions, using living or dead biomass and their components. This review discusses the sources of toxic heavy metals and describes the groups of microorganisms with biosorbent potential for heavy metal removal.

  16. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents

    PubMed Central

    Ayangbenro, Ayansina Segun; Babalola, Olubukola Oluranti

    2017-01-01

    Persistent heavy metal pollution poses a major threat to all life forms in the environment due to its toxic effects. These metals are very reactive at low concentrations and can accumulate in the food web, causing severe public health concerns. Remediation using conventional physical and chemical methods is uneconomical and generates large volumes of chemical waste. Bioremediation of hazardous metals has received considerable and growing interest over the years. The use of microbial biosorbents is eco-friendly and cost effective; hence, it is an efficient alternative for the remediation of heavy metal contaminated environments. Microbes have various mechanisms of metal sequestration that hold greater metal biosorption capacities. The goal of microbial biosorption is to remove and/or recover metals and metalloids from solutions, using living or dead biomass and their components. This review discusses the sources of toxic heavy metals and describes the groups of microorganisms with biosorbent potential for heavy metal removal. PMID:28106848

  17. Stabilize heavy metals in soils and sludges

    SciTech Connect

    1995-03-01

    To stabilize heavy metals in soils, sludges, ash from incinerators and power plants, and baghouse dusts, Solucorp Industries (Saddle Brook, N.J.) has developed the Molecular Bonding System (MBS). Using a patented mix of chemical additives, the MBS process bonds highly reactive metal ions to form non-leachable molecules, rendering the metals inert. The chemical reactions are said to be permanent, and for each application, the additive mix is specially formulated to meet site-specific conditions. Recently, the MBS process was accepted into the US Environmental Protection Agency`s Site Demonstration Program as an innovative technology for stabilizing heavy metals. Bench-scale and pilot tests have proven the effectiveness of the MBS process for a wide array of metals, including arsenic, cadmium, chromium, copper, lead, mercury, nickel, silver and zinc. The process is designed for wastes classified as D004 through D011, as well as K-listed wastes associated with metal-plating operations. It can treat waste in drums or in bulk, says the firm, but is not suitable for liquid streams.

  18. An effective means of biofiltration of heavy metal contaminated water bodies using aquatic weed Eichhornia crassipes.

    PubMed

    Tiwari, Suchi; Dixit, Savita; Verma, Neelam

    2007-06-01

    Various aquatic plant species are known to accumulate heavy metals through the process of bioaccumulation. World's most troublesome aquatic weed water hyacinth (Eichhornia crassipes) has been studied for its tendency to bio-accumulate and bio-magnify the heavy metal contaminants present in water bodies. The chemical investigation of plant parts has shown that it accumulates heavy metals like lead (Pb), chromium (Cr), zinc (Zn), manganese (Mn) and copper (Cu) to a large extent. Of all the heavy metals studied Pb, Zn and Mn tend to show greater affinity towards bioaccumulation. The higher concentration of metal in the aquatic weed signifies the biomagnification that lead to filtration of metallic ions from polluted water. The concept that E. crassipes can be used as a natural aquatic treatment system in the uptake of heavy metals is explored.

  19. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries.

    PubMed

    Chowdhury, Shakhawat; Mazumder, M A Jafar; Al-Attas, Omar; Husain, Tahir

    2016-11-01

    Heavy metals in drinking water pose a threat to human health. Populations are exposed to heavy metals primarily through water consumption, but few heavy metals can bioaccumulate in the human body (e.g., in lipids and the gastrointestinal system) and may induce cancer and other risks. To date, few thousand publications have reported various aspects of heavy metals in drinking water, including the types and quantities of metals in drinking water, their sources, factors affecting their concentrations at exposure points, human exposure, potential risks, and their removal from drinking water. Many developing countries are faced with the challenge of reducing human exposure to heavy metals, mainly due to their limited economic capacities to use advanced technologies for heavy metal removal. This paper aims to review the state of research on heavy metals in drinking water in developing countries; understand their types and variability, sources, exposure, possible health effects, and removal; and analyze the factors contributing to heavy metals in drinking water. This study identifies the current challenges in developing countries, and future research needs to reduce the levels of heavy metals in drinking water.

  20. Heavy metals distribution in an Iowa suburban landscape.

    PubMed

    Langner, A N; Manu, A; Tabatabai, M A

    2011-01-01

    This study investigated the degree to which human activities through urbanization influence heavy metal concentrations in a suburban landscape in Ankeny, IA. Residential areas from different years in nine time periods of development were identified from aerial photos. Soil cores were collected from the center of the front yard of 10 randomly selected homes. Cores were subdivided into 0- to 5-, 5- to 10-, and 10- to 20-cm increments from a composite of five cores. The soils were analyzed for organic C, pH, and total Cd, Co, Cr, Cu, Ni, Pb, and Zn. Results showed that organic C increased and pH decreased with time, and that there was a general decreasing trend in heavy metal concentrations from the pre-1939 period until 1983-1990, after which there was a sharp increase in the concentrations of most of the metals. The mean Cu concentration ranged from 21 mg kg(-1) for the pre-1939 time period of development to 14.9 mg kg(-1) for the recent period of development (2003-2005). Nickel concentrations increased significantly with depth with means of 21.3 mg kg(-1) at depth 0 to 5 cm, 22.5 mg kg(-1) at depth 5 to 10 cm, and 23.0 mg kg(-1) at depth 10 to 20 cm. The concentrations of heavy metals were significantly intercorrelated, except Zn, suggesting their coexistence as mineral constituents or common contamination source. The concentrations of Cu and Pb in some locations could be due to anthropogenic inputs or higher organic matter content in soils adjacent to older homes. There appears to have been a source that caused an increase in Cd, Cr, Co, Cu, Pb, and Ni concentrations in soil adjacent to homes built between 1983 and 1990.

  1. A review of heavy metals in indoor dust and its human health-risk implications.

    PubMed

    Tan, Sock Yin; Praveena, Sarva Mangala; Abidin, Emilia Zainal; Cheema, Manraj Singh

    2016-12-01

    Indoor dust acts as a media for heavy metal deposition. Past studies have shown that heavy metal concentration in indoor dust is affected by local human activities and atmospheric transport can have harmful effects on human health. Additionally, children are more sensitive to heavy metals due to their hand-to-mouth behaviour and rapid body development. However, limited information on health risks were found in past dust studies as these studies aimed to identify heavy metal concentrations and sources of indoor dust. The objective of this review is to discuss heavy metal concentration and sources influencing its concentration in indoor dust. Accordingly, high lead (Pb) concentration (639.10 μg/g) has been reported in heavy traffic areas. In addition, this review paper aims to estimate the health risk to children from heavy metals in indoor dust via multiple exposure pathways using the health-risk assessment (HRA). Urban areas and industrial sites have revealed high heavy metal concentration in comparison to rural areas. Hazard index (HI) values found in arsenic (As), chromium (Cr) and Pb were 21.30, 1.10 and 2.40, respectively, indicate that non-carcinogenic elements are found in children. Furthermore, most of the past studies have found that carcinogenic risks for As, cadmium (Cd), Cr and Pb were below the acceptable total lifetime cancer risk (TLCR) range (1×10-6-1×10-4). The results of health risk assessment in this review show that carcinogenic risk exists among children. Hence, this proves that future studies need to focus on children's carcinogenic risk in indoor dust studies in order to find out the sources of heavy metals in indoor dust. This review highlights the importance of having the HRA application using bioavailable heavy metal concentration as it provides more accurate health-risk estimation. Moreover, this review is also useful as a reference for policy decision making in protecting children's health.

  2. Optimization of heavy metals total emission, case study: Bor (Serbia)

    NASA Astrophysics Data System (ADS)

    Ilić, Ivana; Bogdanović, Dejan; Živković, Dragana; Milošević, Novica; Todorović, Boban

    2011-07-01

    The town of Bor (Serbia) is one of the most polluted towns in southeastern Europe. The copper smelter which is situated in the centre of the town is the main pollutant, mostly because of its old technology, which leads to environmental pollution caused by higher concentrations of SO 2 and PM 10. These facts show that the word is about a very polluted region in Europe which, apart from harming human health in the region itself, poses a particular danger for wider area of southeastern Europe. Optimization of heavy metal's total emission was undertaken because years of long contamination of the soil with heavy metals of anthropogenic origin created a danger that those heavy metals may enter the food chains of animals and people, which can lead to disastrous consequences. This work represents the usage of Geographic Information System (GIS) for establishing a multifactor assessment model to quantitatively divide polluted zones and for selecting control sites in a linear programming model, combined with PROMETHEE/GAIA method, Screen View modeling system, and linear programming model. The results show that emissions at some control sites need to be cut for about 40%. In order to control the background of heavy metal pollution in Bor, the ecological environment must be improved.

  3. Bioaccumulation of heavy metals in macroinvertebrates living in stormwater wetlands

    SciTech Connect

    Karouna, N.K.; Sparling, D.W.

    1995-12-31

    The design of stormwater wetlands and ponds as wildlife habitats has prompted concern over the potential uptake of runoff contaminants by aquatic fauna. Stormwater wetlands provide a diverse array of habitat for aquatic macroinvertebrates. The importance of macroinvertebrates in aquatic communities has been well documented. Aquatic macroinvertebrates also serve as a major food source of many aquatic vertebrates, including fish and birds. The objectives of the study were to: (1) examine the responses of the macroinvertebrate community to water and sediment concentrations of heavy metals, and other water quality parameters; (2) determine whether macroinvertebrates living in stormwater wetlands bioaccumulate significant concentrations of heavy metals; (3) relate the concentrations of heavy metals in sediment, water and macroinvertebrates to land use in the surrounding watershed; (4) determine sediment and water toxicity to macroinvertebrates. Twenty stormwater wetlands, representing four land uses commercial, residential, highway and control, were monitored in this study. Water quality parameters, including pH, DO, turbidity, conductivity, hardness and metal concentrations were monitored bi-weekly for six months. Sediment samples were collected three times during the same period. Macroinvertebrate communities were sampled during alternate weeks after water collections. Ten-day sediment bioassays were conducted using the amphipod Hyalella azteca. Preliminary data analyses have indicated no significant difference in sediment and water metal concentrations between land uses. However, Zn concentrations in macroinvertebrates were significantly higher (p < 0.05) in wetlands serving commercial watersheds than in those serving the remaining three land uses. No differences have been detected in composition of invertebrate communities due to land use category.

  4. [Heavy metals in water of the Skikda Bay].

    PubMed

    Kehal, M; Mennour, A; Reinert, L; Fuzellier, H

    2004-09-01

    The region of Skikda is one of the most important industrial poles of Algeria. The aim of the study is a qualitative and quantitative evaluation of the pollution by heavy metals of the marine water of the bay. The pollutants investigated are lead, cadmium and mercury because of their toxicity. The study is concerned mainly with the spatiotemporal evolution of the pollution on the extent of the bay. Concentrations of heavy metals metals vary from 4 microg l(-1) to 55 microg l(-1) for lead, 1 microg l(-1) to 17 microg l(-1) for cadmium and 0,1 to 1,1 microg l(-1) for mercury, which indicates a beginning of pollution of the site. Only small variation of the contents have been noted in a second investigation carried out one decade after the first one.

  5. [Oxidative stress in plants exposed to heavy metals].

    PubMed

    Rucińiska-Sobkowiak, Renata

    2010-01-01

    Oxidative stress has been involved in the toxicity of heavy metals in different plant species. Exposure to metal ions can intensify the production of reactive oxygen species (ROS) such as: superoxide radicals, hydroxyl radicals or hydrogen peroxide. These species can react with cellular components (lipids, proteins, nucleic acids) and cause lipid peroxidation, membrane damage and inactivation of enzymes thus affect many physiological processes as well as cell viability. Plants have evolved a complex array of mechanisms to maintain low ROS level and avoid the detrimental effects of excessively high ROS concentrations. This antioxidant network includes numerous soluble (ascorbate, glutathione) and membrane (tocopherol) compounds as well as enzymes involved in ROS scavenging (superoxide dismutase, catalase, ascorbate peroxidase). ROS must be efficiently detoxified to ameliorate the harmful effects of heavy metals in the cells. However they cannot be eliminated completely because plants use ROS as second messengers in signal transduction cascades in diverse physiological processes.

  6. Heavy metal contamination of river Yamuna, Haryana, India: Assessment by Metal Enrichment Factor of the Sediments.

    PubMed

    Kaushik, A; Kansal, Ankur; Santosh; Meena; Kumari, Shiv; Kaushik, C P

    2009-05-15

    Concentration of Heavy Metals (Cd, Cr, Fe, Ni) in water, plants and sediments of river Yamuna flowing in Haryana through Delhi are reported here selecting 14 stations covering the upstream and downstream sites of major industrial complexes of the State. Some important characteristics of river water and sediments (pH, EC, Cl(-), SO(3)(2-), and PO(4)(3-) in water and sediments, COD of water and organic matter content of sediments) were also analysed and inter-relationships of all these parameters with heavy metal concentration in different compartments were examined. The sediments of the river show significant enrichment with Cd and Ni indicating inputs from industrial sources. Concentrations of Cr are moderate and show high enrichment values only at a few sites. Enrichment factor for Fe is found to be <1, showing insignificant effect of anthropogenic flux. Concentrations of these metals in river water are generally high exceeding the standard maximum permissible limits prescribed for drinking water, particularly in the downstream sites. The aquatic plants show maximum accumulation of Fe. The other heavy metals Cd, Cr and Ni, though less in concentration, show some accumulation in the plants growing in contaminated sites. Interrelationships of metal concentration with important characteristics of water and sediment have been analysed. Analysis of heavy metals in water, sediments and littoral flora in the stretch of river Yamuna is first study of itself and interrelationship of metal concentration and other important characteristics make the study significant and interesting in analysing the pollution load at different points of the river body.

  7. Heavy metals in Ratnapura alluvial gem sediments, Sri Lanka

    NASA Astrophysics Data System (ADS)

    Vithanage, M. S.; Hettiarachchi, J. K.; Rajapaksha, A. U.; Wijesekara, H.; Hewawasam, T.

    2011-12-01

    The valuable gems in Sri Lanka are found from the sedimentary gem deposits in Ratnapura District, which are found as alluvial deposits some are about >50 m deep. Gem bearing gravel layer is taken out from the mine, washed by panning to recover the gem minerals in the heavy mineral fraction, is a common practice in the gem mining area. Gem bearing sediment layer is associated with different heavy minerals in which different trace metals as Co, Cr, Cu, Al, Zr, Pb and As also can be present. During panning, the sediment is washed away and the heavy metals attached to the sediments are released into the environment. Hence we studied the lability and bioavailability of arsenic and other heavy metals from the gem sediments. Sediment samples were collected from 15 small scale gem mines (3 soil layers- top, gem mineral layer and layer below gem bearing gravel layer), air dried and sieved to obtain <63μm fraction. Bioavailable, exchangeable and residual fractions were 0.01M CaCl2, 1M NaOAc, pH 8.2 and microwave digestion using HF, HNO3 and HClO4. Filtered samples were analyzed for As, Co, Zn, Mn, Cu, Ni, Pb and Fe using atomic absorption spectrophotometer (GBC 933AA). Total digestion results in different layers indicated that heavy metals show an increasing pattern with depth. About 4 gem bearing gravel layers were consist of high concentrations of Ni (>150 mg/kg), Cu (>150 mg/kg), Pb (>400 mg/kg), Zn (>600 mg/kg) and Co ions (>100 mg/kg). Arsenite in the gem sediments were low and recorded as <5mg/kg. Total arsenic analysis is under investigation. Highest concentrations for bioavailable and exchangeable (leach to water) metals were Fe>Co>Zn>Mn>Ni>Cu>Pb. Sediments from few gem pits showed considerably high concentrations of metals analyzed. In some places Fe, Ni, Cu, Zn reported high in bioavailable fractions 70, 25, 20, 10 mg/kg respectively. Mobilization of these metals may increase due to changes in the pH and the presence of other ions in the environment. High

  8. Heavy metals fractionation in Ganga River sediments, India.

    PubMed

    Purushothaman, P; Chakrapani, G J

    2007-09-01

    The Ganga River is the largest river in India which, originates in the Himalayas and along with the Brahmaputra River, another Himalayan river, transports enormous amounts of sediments from the Indian sub-continent to the Bay of Bengal. Because of the important role of river sediments in the biogeochemical cycling of elements, the Ganga river sediments, collected from its origin to the down stretches, were studied in the present context, to assess the heavy metals associated with different chemical fractions of sediments. The fractionation of metals were studied in the sediments using SM&T protocol for the extraction of heavy metals and geo-accumulation index (GAI) (Muller, Schwermetalle in den sedimenten des rheins - Veranderungen seit. Umschau, 79, 778-783, 1979) and Metal Enrichment Factor (MEF) in different fractions were calculated. As with many river systems, residual fractions constitute more than 60% of total metals, except Zn, Cu and Cr. However, the reducible and organic and sulfide components also act as major sinks for metals in the down stretches of the river, which is supported by the high GAI and MEF values. The GAI values range between 4 and 5 and MEF exceed more than 20 for almost all the locations in the downstream locations indicating to the addition of metals through urban and industrial effluents, as compared to the low metals concentrations with less GAI and MEF in the pristine river sediments from the rivers in Himalayas.

  9. Analysis of heavy metal sources in soil using kriging interpolation on principal components.

    PubMed

    Ha, Hoehun; Olson, James R; Bian, Ling; Rogerson, Peter A

    2014-05-06

    Anniston, Alabama has a long history of operation of foundries and other heavy industry. We assessed the extent of heavy metal contamination in soils by determining the concentrations of 11 heavy metals (Pb, As, Cd, Cr, Co, Cu, Mn, Hg, Ni, V, and Zn) based on 2046 soil samples collected from 595 industrial and residential sites. Principal Component Analysis (PCA) was adopted to characterize the distribution of heavy metals in soil in this region. In addition, a geostatistical technique (kriging) was used to create regional distribution maps for the interpolation of nonpoint sources of heavy metal contamination using geographical information system (GIS) techniques. There were significant differences found between sampling zones in the concentrations of heavy metals, with the exception of the levels of Ni. Three main components explaining the heavy metal variability in soils were identified. The results suggest that Pb, Cd, Cu, and Zn were associated with anthropogenic activities, such as the operations of some foundries and major railroads, which released these heavy metals, whereas the presence of Co, Mn, and V were controlled by natural sources, such as soil texture, pedogenesis, and soil hydrology. In general terms, the soil levels of heavy metals analyzed in this study were higher than those reported in previous studies in other industrial and residential communities.

  10. Heavy metal speciation and toxicity characteristics of tannery sludge

    NASA Astrophysics Data System (ADS)

    Juel, Md. Ariful Islam; Chowdhury, Zia Uddin Md.; Ahmed, Tanvir

    2016-07-01

    Heavy metals present in tannery sludge can get mobilized in the environment in various forms and can be a cause for concern for the natural ecosystem and human health. The speciation of metals in sludge provides valuable information regarding their toxicity in the environment and determines their suitability for land application or disposal in landfills. Concentrations of seven heavy metals (Cr, Pb, Cd, Ni, Zn, As and Cu) in tannery sludge were determined to evaluate their toxicity levels. Metal contents ranged over the following intervals: As: 1.52-2.07 mg/kg; Pb: 57.5-67 mg/kg; Cr: 15339-26501 mg/kg; Cu: 261.3-579.5 mg/kg; Zn: 210.2-329.1 mg/kg and Ni: 137.5-141.3 mg/kg (dry weight basis). The concentrations of all heavy metals in the sludge samples were lower compared to EPA guidelines except chromium which was found to be several orders of magnitude higher than the guideline value. Toxicity Characteristics Leaching Procedure (TCLP) test indicated that the leaching potential of chromium was higher compared to the other heavy metals and exceeded the EPA land disposal restriction limits. To quantitatively assess the environmental burden of the chromium associated with tannery sludge, the IMPACT 2002+ methodology was adopted under the SimaPro software environment. Considering the USEPA limit for chromium as the baseline scenario, it was found that chromium in the tannery sludge had 6.41 times higher impact than the baseline in the categories of aquatic ecotoxicity, terrestrial ecotoxicity and non-carcinogens. Chromium has the highest contribution to toxicity in the category of aquatic ecotoxicity while copper is the major contributor to the category of terrestrial ecotoxicity in the tannery sludge.

  11. Effect of heavy metals on bacterial transport

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Olson, M. S.

    2010-12-01

    Adsorption of metals onto bacteria and soil takes place as stormwater runoff infiltrates into the subsurface. Changes in both bacterial surfaces and soil elemental content have been observed, and may alter the attachment of bacteria to soil surfaces. In this study, scanning electron microscopy (SEM) and Energy Dispersive X-ray Spectrometry (EDS) analyses were performed on soil samples equilibrated with synthetic stormwater amended with copper, lead and zinc. The results demonstrate the presence of copper and zinc on soil surfaces. To investigate bacterial attachment behavior, sets of batch sorption experiments were conducted on Escherichia Coli (E. coli) under different chemical conditions by varying solution compositions (nutrient solution vs synthetic stormwater). The adsorption data is best described using theoretical linear isotherms. The equilibrium coefficient (Kd) of E. coli is higher in synthetic stormwater than in nutrient solution without heavy metals. The adsorption of heavy metals onto bacterial surfaces significantly decreases their negative surface charge as determined via zeta potential measurements (-17.0±5.96mv for E. coli equilibrated with synthetic stormwater vs -21.6±5.45mv for E. coli equilibrated with nutrient solution), indicating that bacterial attachment may increase due to the attachment of metals onto bacterial surfaces and their subsequent change in surface charge. The attachment efficiency (α) of bacteria was also calculated and compared for both solution chemistries. Bacterial attachment efficiency (α) in synthetic stormwater is 0.997, which is twice as high as that in nutrient solution(α 0.465). The ratio of bacterial diameter : collector diameter suggests minimal soil straining during bacterial transport. Results suggest that the presence of metals in synthetic stormwater leads to an increase in bacterial attachment to soil surfaces. In terms of designing stormwater infiltration basins, the presence of heavy metals seems to

  12. Heavy metals in soils of the Russian North

    NASA Astrophysics Data System (ADS)

    Alexander, Evseev; Tatiana, Krasovskaya

    2014-05-01

    Results of soil cover studies in different regions of the Russian North from the Kola peninsula at the West and the Chuckchi peninsula at the East are presented. Heavy metals distribution in soils of both impact (technogenically disturbed) and background regions were studied. It was demonstrated that microelement soil content is closely connected with that of parent rocks which differ in different regions of the Arctic. Noticeable increase of heavy metals in the upper soil horizons are marked near large industrial sites, sometime exceeding background for more than 10-100 times. Each region and soil type has its own background concentration level. That is why no general subregional background concentration patterns may be revealed based on numerous soils sampling in different regions of the discussed territory.

  13. Environmental impact of mercury and other heavy metals

    NASA Astrophysics Data System (ADS)

    Lindqvist, Oliver

    The environmental impact of heavy metals is reviewed. One significant source of emissions of heavy metals to air is waste incineration. Consumer batteries contributes significantly to this problem, as well as to heavy metal leakage to groundwater from landfill deposits. The situation in Sweden is used as an example to describe how the deposition from the atmosphere still is increasing the load of heavy metals, like mercury, cadmium and lead, in top soils and aquatic sediments. Critical factors and effect levels for Hg, Cd, Pb, Cu, Zn and As are discussed. Specific questions like mercury contents in present battery waste and heavy metal contents in new and future secondary batteries are addressed.

  14. To study the recovery of L-Cysteine using halloysite nanotubes after heavy metal removal

    NASA Astrophysics Data System (ADS)

    Thakur, Juhi

    2016-04-01

    Industrial wastes are a major source of soil and water pollution that originate from mining industries, chemical industries, metal processing industries, etc. These wastes consist of a variety of chemicals including phenolics, heavy metals, etc. Use of industrial effluent and sewage sludge on agricultural land has become a common practice in the world which results in these toxic metals being transferred and ultimately concentrate in plant tissues from water and the soil. The metals that get accumulated, prove detrimental to plants themselves and may also cause damage to the healths of animals as well as man. This is because the heavy metals become toxins above certain concentrations, over a narrow range. As a further matter, these metals negatively affect the natural microbial populations as well, that leads to the disruption of fundamental ecological processes. However, many techniques and methods have been advanced to clear the heavy metal polluted soils and waters. One important method is by removing heavy metals with the help of amino acids like L-Cysteine and L-Penicillamine. But also, economy of removal of pollutant heavy metals from soils and waters is a major concern. Present study helps in decreasing the cost for large-scale removal of heavy metals from polluted water by recovering the amino acid (L-Cysteine) after removal of nickel (Ni+2) at a fixed pH, by binding the Ni+2 with halloysite nanotubes(HNT), so that L-Cysteine can be reused again for removal of heavy metals.

  15. [Effect of arbuscular mycorrhizae on growth, heavy metal uptake and accumulation of Zenia insignis Chun seedlings].

    PubMed

    Li, Xia; Peng, Xia-Wei; Wu, Song-Lin; Li, Zhi-Ru; Feng, Hong-Mei; Jiang, Ze-Ping

    2014-08-01

    To solve the trace metal pollution of a Pd/Zn mine in Hunan province, a greenhouse pot experiment was conducted to investigate the effect of two arbuscular mycorrhizal fungi, Glomus mosseae (Gm) and Glomus intraradices (Gi), on the growth, heavy metal uptake and accumulation of Zenia insignis Chun, the pioneer plant there. The results showed that symbiotic associations were successfully established between the two isolates and Z. insignis in heavy metal contaminated soil. AM fungi improved P absorption, biomass and changed heavy metal uptake and distribution of Z. insignis. AM fungi-inoculated plants had significantly lower Fe, Cu, Zn, Pd concentrations and higher Fe, Cu, Zn, Pd accumulation than non-inoculated plants. However, Gm and Gi showed different mycorrhizal effects on the distribution of heavy metal in hosts, depending on the species of heavy metal. Gi-inoculated Z. insignis showed significantly lower TF values of Fe, Zn, Pd than Gm and non-inoculated plants, while both strains had no effect on TF value of Cu, which indicated that Gi enhanced trace metal accumulation in root system, playing a filtering/sequestering role in the presence of trace metals. The overall results demonstrated that AM fungi had positive effect on Z. insignis in enhancing the ability to adapt the heavy metal contaminated soil and played potential role in the revegetation of heavy metal contaminated soil. But in practical application, the combination of AM, hosts and heavy metal should be considered.

  16. Disposable cuvette test for enzymatic determination of heavy metals

    NASA Astrophysics Data System (ADS)

    Wolfbeis, Otto S.; Preininger, Claudia

    1995-10-01

    We report on an optical cuvette test for total heavy metals based on the inhibition of the enzyme urease by metals ions including silver(I), mercury(II), copper(II), nickel(II), cobalt(II), and cadmium(II). The enzymatic action is monitored using an optical ammonia transducer deposited on the wall of a disposable cuvette. This results in a rapid and inexpensive single-shot device for heavy metal sensing. A solution of urease and buffer is placed in the cuvette with the ammonium sensor membrane fixed on one of its walls. Enzymatic action starts after addition of a defined quantity of urea. This is indicated by the increase in the absorption of the ammonia sensor membrane whose color changes from yellow to blue. The slop of the increase in signal is the information for the un-inhibited reaction. After several minutes,the sample (containing the heavy metal) is added to the cuvette. Heavy metal ions inhibit the enzyme (by binding to the sulfhydryl groups) and cause a decrease in the slope. The ratio of slopes of un-inhibited and inhibited reactions is a direct parameter for detecting and calculating total heavy metals. The optimum pH was a trade-off between optimum enzyme activity (pH 7 at 25 degree(s)C) and the relative signal change of the ammonia-sensor (highest at pH 8). pH 7.5 was found to be optimal. The system was calibrated at optimized activities of urease (1.5 (mu) ) and an optimized urea concentration (0.5 mmol). Heavy metals inhibit in the following order: Ag(I) > Hg(II) > Cu(II) >> Ni(II) > Co(II) > Cd(II) > Fe(III) > Pb(II), Zn(II). The following concentrations that cause 50% inhibition were found: Ag(I) (0.1 ppm), Hg(II) (0.5 ppm), Cu(II) (0.5 ppm), Ni(II) (7 ppm), Co(II) (30 ppm), Cd(II) (95 ppm), Fe(III) (50 ppm), Zn(II) (85 ppm) and Pb(II) (210 ppm). We also studied the inhibitory effect of combinations of metal ions, the influence of ionic strength, and the effect of incubation time.

  17. Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana.

    PubMed

    Gola, Deepak; Dey, Priyadarshini; Bhattacharya, Arghya; Mishra, Abhishek; Malik, Anushree; Namburath, Maneesh; Ahammad, Shaikh Ziauddin

    2016-10-01

    Towards the development of a potential remediation technology for multiple heavy metals [Zn(II), Cu(II), Cd(II), Cr(VI) and Ni(II)] from contaminated water, present study examined the growth kinetics and heavy metal removal ability of Beauveria bassiana in individual and multi metals. The specific growth rate of B. bassiana varied from 0.025h(-1) to 0.039h(-1) in presence of individual/multi heavy metals. FTIR analysis indicated the involvement of different surface functional groups in biosorption of different metals, while cellular changes in fungus was reflected by various microscopic (SEM, AFM and TEM) analysis. TEM studies proved removal of heavy metals via sorption and accumulation processes, whereas AFM studies revealed increase in cell surface roughness in fungal cells exposed to heavy metals. Present study delivers first report on the mechanism of bioremediation of heavy metals when present individually as well as multi metal mixture by entomopathogenic fungi.

  18. Heavy metals in Australian grown and imported rice and vegetables on sale in Australia: health hazard.

    PubMed

    Rahman, M Azizur; Rahman, Mohammad Mahmudur; Reichman, Suzie M; Lim, Richard P; Naidu, Ravi

    2014-02-01

    Dietary exposure to heavy metals is a matter of concern for human health risk through the consumption of rice, vegetables and other major foodstuffs. In the present study, we investigated concentrations of cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) in Australian grown and imported rice and vegetables on sale in Australia. The mean concentrations of Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn in Australian grown rice were 7.5 µg kg(-1), 21 µg kg(-1), 144 µg kg(-1), 2.9 mg kg(-1), 24.4 mg kg(-1), 166 µg kg(-1), 375 µg kg(-1), and 17.1 mg kg(-1) dry weight (d. wt.), respectively. Except Cd, heavy metal concentrations in Australian grown rice were higher than Bangladeshi rice on sale in Australia. However, the concentrations of Cd, Cr, Cu, and Ni in Indian rice on sale in Australia were higher than Australian grown rice. The concentrations of Cu and Ni in Vietnamese rice, and that of Cd, Cr, Cu, Ni, and Pb in Thai rice on sale in Australia were also higher than Australian grown rice. Heavy metal concentrations in Pakistani rice on sale in Australia were substantially lower than that in Australian grown rice. In Australian grown rice varieties, the concentrations of heavy metals were considerably higher in brown rice varieties than white rice varieties, indicating Australian brown rice as a potential source of dietary heavy metals for Australian consumers. The mean concentrations of heavy metals in Australian grown and Bangladeshi vegetables on sale in Australia were also determined. Some of the Australian grown and Bangladeshi vegetables contained heavy metals higher than Australian standard maximum limits indicating them as potential sources of dietary heavy metals for Australian consumers. Further investigation is required to estimate health risks of heavy metals from rice and vegetables consumption for Australian consumers.

  19. Near-shore distribution of heavy metals in the Albanian part of Lake Ohrid.

    PubMed

    Malaj, Egina; Rousseau, Diederik P L; Du Laing, Gijs; Lens, Piet N L

    2012-04-01

    The heavy metal contamination in Lake Ohrid, a lake shared between Albania and Macedonia, was studied. Lake Ohrid is believed to be one of the oldest lakes in the world, with a large variety of endemic species. Different anthropogenic pressures, especially heavy metal influxes from mining activities, might have influenced the fragile equilibrium of the lake ecosystem. Heavy metal concentrations in water, sediment, emergent vegetation, and fish were investigated at selected sites of the lake and a study of the heavy metals in five tributaries was conducted. The lake surface water was found to have low levels of heavy metals, but sediments contained very high levels mostly near river mouths and mineral dump areas with concentrations reaching 1,501 mg/kg for Ni, 576 mg/kg for Cr, 116.8 mg/kg for Co and 64.8 g/kg for Fe. Sequential extraction of metals demonstrates that heavy metals in the sediment are mainly present in the residual fraction varying from 75% to 95% in different sites. High heavy metal levels (400 mg/kg Ni, 89 mg/kg Cr, and 39 mg/kg Co) were found in plants (stem of Phragmites australis), but heavy metals could not be detected in fish tissue (gill, muscle, and liver of Salmo letnica and Salmothymus ohridanus).

  20. Modeling heavy metal removal in wetlands

    SciTech Connect

    Lung, W.S.; Light, R.N.

    1994-12-31

    Although the use of wetland ecosystems to purify water has gained increased attention only recently, it has been recognized as a wastewater treatment technique for centuries. While considerable research has occurred to quantify the nutrient (nitrogen and phosphorus) removal mechanisms of wetlands, relatively few investigators have focused on the mechanisms of heavy metal removal and uptake by wetland sediments and plants. The quantification of the assimilative capacity of heavy metals by wetland ecosystems is a critical component in the design and use of wetlands for this purpose. A computer model has been developed to simulate the fate and transport of heavy metals introduced to a wetland ecosystem. Modeled water quality variables include phytoplankton biomass and productivity; macrophyte (Nulumbo lutea) biomass; total phosphorus in the water column; dissolved copper in the water column and sediments; particulate copper in the water column and sediments; and suspended solids. These variables directly affect the calculated rate of copper uptake by macrophytes, and the rate of copper recycling as a function of the decomposition of copper-laden biomass litter. The model was calibrated using total phosphorus and chlorophyll a data from the Old Woman Creek Wetland in Ohio. Verification of the model was achieved using data on the copper content of the macrophyte Nelumbo lutea.

  1. Heavy metals and its chemical speciation in sewage sludge at different stages of processing.

    PubMed

    Tytła, Malwina; Widziewicz, Kamila; Zielewicz, Ewa

    2016-01-01

    The analysis of heavy metal concentrations and forms in sewage sludge constitutes an important issue in terms of both health and environmental hazards the metals pose. The total heavy metals concentration enables only the assessment of its contamination. Hence the knowledge of chemical forms is required to determine their environmental mobility and sludge final disposal. Heavy metals speciation was studied by using four-stage sequential extraction BCR (Community Bureau of Reference). This study was aimed at determining the total concentration of selected heavy metals (Zn, Cu, Ni, Pb, Cd, Cr and Hg) and their chemical forms (except for Hg) in sludge collected at different stages of its processing at two municipal Wastewater Treatment Plants in southern Poland. Metals contents in sludge samples were determined by using flame atomic absorption spectrometry (FAAS) and electrothermal atomic absorption spectrometry (ETAAS). This study shows that Zn and Cu appeared to be the most abundant in sludge, while Cd and Hg were in the lowest concentrations. The sewage sludge revealed the domination of immobile fractions over the mobile ones. The oxidizable and residual forms were dominant for all the heavy metals. There was also a significant difference in metals speciation between sludges of different origin which was probably due to differences in wastewater composition and processes occurring in biological stage of wastewater treatment. The results indicate a negligible capability of metals to migrate from sludge into the environment. Our research revealed a significant impact of thickening, stabilization and hygienization on the distribution of heavy metals in sludge and their mobility.

  2. [Research advances in heavy metals pollution ecology of diatom].

    PubMed

    Ding, Teng-Da; Ni, Wan-Min; Zhang, Jian-Ying

    2012-03-01

    Diatom, due to its high sensitivity to environmental change, is one of the bio-indicators of aquatic ecosystem health, and some typical diatom species have been applied to indicate the heavy metals pollution of water body. With the focus on the surface water heavy metals pollution, this paper reviewed the research advances in the toxic effect of heavy metals pollution on diatom, biosorption and bioaccumulation of heavy metals by diatom, ecological adaptation mechanisms of diatom to heavy metals pollution, and roles of diatom as bio-indicator and in ecological restoration of heavy metals pollution. The growth tendency of diatom and the morphological change of frustule under heavy metals pollution as well as the differences in heavy metals biosorption and bioaccumulation by diatom, the ecological adaptation mechanisms of diatom on heavy metals surface complexation and ion exchange, and the roles of diatom as bio-indicator and in ecological restoration of heavy metals polluted water body were also discussed. This review could provide scientific evidences for the prevention of aquatic ecosystems heavy metals pollution and related early warning techniques.

  3. Accumulation of heavy metals in water, sediments and wetland plants of kizilirmak delta (samsun, Turkey).

    PubMed

    Engin, M S; Uyanik, A; Kutbay, H G

    2015-01-01

    In this study, concentrations of heavy metals (Fe, Mn, Ni, Co, Zn, Cu, and Pb) were measured in water bodies including streams, bottom sediments and various wetland plants of Kızılırmak Delta. Kızılırmak Delta is one of the largest and the most important natural wetlands in Turkey and has been protected by Ramsar convention since 1993. The heavy metal concentrations in water were found lower than that of national standards for protected lakes and reserves. In bottom sediments and wetland plants, however, the accumulated amounts of different heavy metals varied in the following order: Fe>Mn>Zn>Ni>Co>Cu>Pb, and Fe>Mn>Zn>Ni>Co respectively. Heavy metal uptake of Hydrocharis morsus-ranae and Myriophyllum verticillatum plants among others were found far above the toxic levels and they might be used as bio-indicators and heavy metal accumulators in polluted natural areas.

  4. Plant rhamnogalacturonan II complexation of heavy metal cations

    DOEpatents

    O`Neill, M.A.; Pellerin, P.J.M.; Warrenfeltz, D.; Vidal, S.; Darvill, A.G.; Albersheim, P.

    1999-03-02

    The present invention provides rhamnogalacturonan-II (RG-II) and relates to its ability to complex specific multivalent heavy metal cations. In the presence of boric acid, RG-II monomers form dimers that are cross-linked by a borate ester. The yield of such borate ester cross-linked dimers of RG-II is enhanced in the presence of specific heavy metal cations. The present invention further relates to the utility of RG-II in assays for the detection of specific heavy metal contamination; as a reagent useful in the removal of specific heavy metal cations contaminating foods and liquids, for example, fish, wines, etc.; as a pharmaceutical composition useful as an antidote in specific heavy metal cation poisoning; as a treatment for the detoxification of specific heavy metal cations from blood and/or tissues; and in a method of remediation of waters and soils contaminated with specific heavy metal cations. 15 figs.

  5. Plant rhamnogalacturonan II complexation of heavy metal cations

    DOEpatents

    O'Neill, Malcolm A.; Pellerin, Patrice J. M.; Warrenfeltz, Dennis; Vidal, Stephane; Darvill, Alan G.; Albersheim, Peter

    1999-01-01

    The present invention provides rhamnogalacturonan-II (RG-II) and relates to its ability to complex specific multivalent heavy metal cations. In the presence of boric acid, RG-II monomers form dimers that are cross-linked by a borate ester. The yield of such borate ester cross-linked dimers of RG-II is enhanced in the presence of specific heavy metal cations. The present invention further relates to the utility of RG-II in assays for the detection of specific heavy metal contamination; as a reagent useful in the removal of specific heavy metal cations contaminating foods and liquids, for example, fish, wines, etc.; as a pharmaceutical composition useful as an antidote in specific heavy metal cation poisoning; as a treatment for the detoxification of specific heavy metal cations from blood and/or tissues; and in a method of remediation of waters and soils contaminated with specific heavy metal cations.

  6. Bismuth nanoparticles integration into heavy metal electrochemical stripping sensor.

    PubMed

    Cadevall, Miquel; Ros, Josep; Merkoçi, Arben

    2015-08-01

    Between their many applications bismuth nanoparticles (BiNPs) are showing interest as pre-concentrators in heavy metals detection while being applied as working electrode modifiers used in electrochemical stripping analysis. From the different reported methods to synthesize BiNPs we are focused on the typical polyol method, largely used in these types of metallic and semi-metallic nanoparticles. This study presents the strategy for an easy control of the shape and size of BiNPs including nanocubes, nanosferes and triangular nanostructures. To improve the BiNP size and shape, different reducing agents (ethylene glycol or sodium hypophosphite) and stabilizers (polyvinyl pyrrolidone, PVP, in different amounts) have been studied. The efficiency of BiNPs for heavy metals analysis in terms of detection sensitivity while being used as modifiers of screen-printed carbon electrodes including the applicability of the developed device in real sea water samples is shown. A parallel study between the obtained nanoparticles and their performance in heavy metal sensing has been described in this communication.

  7. Evaluation of the interaction mechanisms between red muds and heavy metals.

    PubMed

    Santona, Laura; Castaldi, Paola; Melis, Pietro

    2006-08-21

    This paper investigated the heavy metal adsorption of non-treated (RM(nt)) and acid-treated red muds (RM(a)), bauxite ore processing waste, in order to evaluate how efficient they are in reducing metal solubility and bioavaliability in polluted soils. Red mud samples were artificially polluted with solutions containing increasing concentrations of Pb, Cd and Zn. Cancrinite and hematite were the main phases of the red muds, and were also the components which adsorbed most heavy metals. The results showed that the RM(nt) adsorption capacity for the three heavy metals was Zn> or =Pb>Cd. Acid treatment with HCl decreased the red mud's capacity to adsorb the heavy metals by 30%. In order to study the different heavy metal-RM interaction mechanisms, all samples after artificial contamination were treated with solutions with gradually increasing extraction capacity. H(2)O and Ca(NO(3))(2) treatments only extracted very low concentrations of Pb, Cd and Zn, while EDTA treatment extracted the most adsorbed heavy metals from the sorbent particles. In particular the water-soluble and exchangeable metal fractions were higher in the RM(a) than they were in the RM(nt), while the concentrations of Pb, Cd and Zn extracted with EDTA were lower. The results showed that red muds can be used successfully to reduce the solubility and bioavailability of heavy metals in polluted soils.

  8. Heavy metal analysis in commercial Spirulina products for human consumption

    PubMed Central

    Al-Dhabi, Naif Abdullah

    2013-01-01

    For consumption of health foods of Spirulina, by the general public, health food stores are increasingly offering more exotic products. Though Spirulina consumption is growing worldwide, relatively few studies have reported on the quantities of heavy metals/minerals they contain and/or their potential effects on the population’s health. This study reveals the concentrations of six typical heavy metals/minerals (Ni, Zn, Hg, Pt, Mg, and Mn) in 25 Spirulina products commercialized worldwide for direct human consumption. Samples were ground, digested and quantified by Coupled Plasma Mass Spectroscopy (ICP–MS). The concentrations (mg/kg d.w.) were range from 0.001 to 0.012 (Pt) followed by 0.002–0.028 (Hg), 0.002–0.042 (Mg), 0.005–2.248 (Mn), 0.211–4.672 (Ni) and 0.533–6.225 (Zn). The inorganic elements of the present study were significantly lower than the recommended daily intake (RDI) level of heavy metal elements (mg/daily) Ni (0.4), Zn (13), Hg (0.01), Pt (0.002), Mg (400) and Mn (4). Based on this study the concentration of inorganic elements was not found to exceed the present regulation levels, and they can be considered as safe food. PMID:24235875

  9. Enhancement stabilization of heavy metals (Zn, Pb, Cr and Cu) during vermifiltration of liquid-state sludge.

    PubMed

    Yang, Jian; Zhao, Chunhui; Xing, Meiyan; Lin, Yanan

    2013-10-01

    This paper illustrated the potential effect of earthworms on heavy metal stabilization after vermifiltration of liquid-state sludge. Significant enhancement of organics degradation in sludge caused an increase of heavy metal concentrations in VF effluent sludge. However, the analysis of heavy metal chemical speciation indicated earthworms made unstable fractions of heavy metals transformed into stable fractions. Further investigation using principal component analysis revealed that transformations of heavy metal fractions were mainly due to the changes in sludge physico-chemical properties of pH, soluble chemical oxygen demand and available phosphorus. The bioassay of earthworms indicated that only zinc was accumulated by earthworms because the unstable fraction was its main chemical speciation. Furthermore, risk analysis demonstrated that earthworm activities weakened heavy metal risk due to the formation of stable fractions although their total concentrations increased. These results indicated that earthworms in vermifilter had a positive role in stabilizing heavy metals in sewage sludge.

  10. [Heavy metals in the surface sediment of the dumping ground outside Jiaozhou Bay and their potential ecological risk].

    PubMed

    Cao, Cong-hua; Zhang, Nai-xing; Wu, Feng-cong; Sun, Bin; Ren, Rong-zhu; Sun, Xu; Lin, Sen; Zhang, Shao-ping

    2011-05-01

    Based on the monitoring data of heavy metals (Cr, Hg, Cd, Pb, Zn, Cu) in the surface sediment of the dumping ground outside Jiaozhou Bay from 2003 to 2008, the distribution patterns, factors controlling the distribution, and the potential ecological risks of heavy metals were studied with the data in 2007-08, and the fluctuation trends of heavy metals in the surface sediment over the 6 years were also discussed. The average concentrations of heavy metals Cr, Hg, Cd, Pb, Zn, Cu in the surface sediment were 29.47, 0.065, 0.105, 1.145, 9.63, 3.355 microg/g, respectively. Except for Cr, the concentration of heavy metals was high in the central dumping area while low outside the dumping ground, suggesting that the dredged material dumped was the main source of heavy metals. Organic carbon content in the surface sediment had a significant positive correlation with heavy metals except for Cr. Based on the results of ecological risk assessment, Hg had a medium potential ecological risk, while the other heavy metals had low potential ecological risk. The overall risk index (RI) of the heavy metals was 100.50, which was considered as a level of low potential ecological risk. The average concentration of heavy metals showed a decreasing trend over the 6 years, except Hg. In conclusion, the quality of surface sediment in term of heavy metals in the dumping ground outside Jiaozhou Bay is relatively good.

  11. Utilizing heavy metal-laden water hyacinth biomass in vermicomposting.

    PubMed

    Tereshchenko, Natalya N; Akimova, Elena E; Pisarchuk, Anna D; Yunusova, Tatyana V; Minaeva, Oksana M

    2015-05-01

    We studied the efficiency of water treatment by water hyacinth (Eichhornia crassipes) from heavy metals (Zn, Cd, Pb, Cu), as well as a possibility of using water hyacinth biomass obtained during treatment for vermicomposting by Eisenia fetida and the vermicompost quality in a model experiment. The results showed that the concentration of heavy metals in the trials with water hyacinth decreased within 35 days. We introduced water hyacinth biomass to the organic substrate for vermicomposting, which promoted a significant weight gain of earthworms and growth in their number, as well as a 1.5- to 3-fold increase in coprolite production. In the trial with 40 % of Eichhornia biomass in the mixture, we observed a 26-fold increase in the number and a 16-fold weight gain of big mature individuals with clitellum; an increase in the number of small individuals 40 times and in the number of cocoons 140 times, as compared to the initial substrate. The utilization of water hyacinth biomass containing heavy metals in the mixture led to a 10-fold increase in the number of adult individuals and cocoons, which was higher than in control. We found out that adding 10 % of Eichhornia biomass to the initial mixture affected slightly the number of microorganisms and their species diversity in the vermicompost. Adding Eichhornia biomass with heavy metals reduced the total number of microorganisms and sharply diminished their species diversity. In all trials, adding water hyacinth in the mixture for vermicomposting had a positive impact on wheat biometric parameters in a 14-day laboratory experiment, even in the trial with heavy metals.

  12. Monitoring of heavy metal burden in mute swan (Cygnus olor).

    PubMed

    Grúz, Adrienn; Szemerédy, Géza; Kormos, Éva; Budai, Péter; Majoros, Szilvia; Tompai, Eleonóra; Lehel, József

    2015-10-01

    Concentrations of heavy metals (especially arsenic, cadmium, chromium, copper, mercury and lead) were measured in the contour (body) feathers of mute swans (Cygnus olor) and in its nutrients (fragile stonewort [Chara globularis], clasping leaf pondweed [Potamogeton perfoliatus], Eurasian watermilfoil [Myriophyllum spicatum], fennel pondweed [Potamogeton pectinatus]) to investigate the accumulation of metals during the food chain. The samples (17 feathers, 8 plants) were collected at Keszthely Bay of Lake Balaton, Hungary. Dry ashing procedure was used for preparing of sample and the heavy metal concentrations were analysed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Copper (10.24 ± 2.25 mg/kg) and lead (1.11 ± 1.23 mg/kg) were detected the highest level in feathers, generally, the other metals were mostly under the detection limit (0.5 mg/kg). However, the concentrations of the arsenic (3.17 ± 1.87 mg/kg), cadmium (2.41 ± 0.66 mg/kg) and lead (2.42 ± 0.89 mg/kg) in the plants were low but the chromium (198.27 ± 102.21 mg/kg) was detected in high concentration.

  13. Assessment of heavy metals contamination in roadside topsoil along Qinghai-Tibetan highway, China

    NASA Astrophysics Data System (ADS)

    Zeng, C.; Zhang, F.; Yan, X.; Gao, D.

    2012-12-01

    With the rapid development of road construction and increase of vehicles on the Qinghai-Tibetan Plateau over last few decades, traffic source heavy metals have been continuously emitted into roadside soils and caused a growing concern on potential pollution of soils. In this study, a soil survey was conducted along the Qinghai-Tibet highway (Xining-Maduo-Budongquan-Naqu-Lhasa), China, to investigate the status and influence factors of heavy metals (Cu, Cd, Pb and Zn) in roadside topsoil. A total of 32 sampling sites, 144 topsoil (0~2 cm) samples were collected at different distances to the highway edge (0 m, 10 m, 30 m, 50 m and 100m). Vehicle volume, soil types and road types have significantly impacts on concentrations of the four heavy metals. On the whole, heavy metal concentrations were higher in Budongquan-Naqu-Lhasa (BNL) segment with higher traffic volume than Xining-Maduo-Budongquan (XMB) segment with lower traffic volume. The heavy metals concentrations also show higher levels for asphalt roads than gravel roads, and a sequence of severely degraded meadow soil (MS) > slightly degraded MS > desert soil > non-degraded MS. Besides, concentrations of all the four heavy metals show exponentially decreasing relationships with roadside distances. Compared to the background values of heavy metals in the soils of Qinghai-Tibet Plateau, traffic source heavy metals pollution only exists within 10 m to the road edge in most segments. However, the maximum polluted distance can reach 30 m along the TMP segment. It should be noted that heavy metals pollution was more harmful to this high-altitude segment with fragile ecology. Keywords: Heavy Metal (Cu, Cd, Pb, Zn); Roadside soil; Qinghai-Tibet highway; Qinghai-Tibetan Plateau.

  14. [Pollution Characteristics and Potential Ecological Risk of Heavy Metals in Urban Surface Water Sediments from Yongkang].

    PubMed

    Qi, Peng; Yu, Shu-quan; Zhang, Chao; Liang, Li-cheng; Che, Ji-lu

    2015-12-01

    In order to understand the pollution characteristics of heavy metals in surface water sediments of Yongkang, we analyzed the concentrations of 10 heavy metals including Ti, Cr, Mn, Co, Ni, Cu, Zn, As, Pb and Fe in 122 sediment samples, explored the underlying source of heavy metals and then assessed the potential ecological risks of those metals by methods of the index of geo-accumulation and the potential ecological risk. The study results showed that: 10 heavy metal contents followed the order: Fe > Ti > Mn > Zn > Cr > Cu > Ph > Ni > As > Co, all heavy metals except for Ti were 1. 17 to 3.78 times higher than those of Zhejiang Jinhua- Quzhou basin natural soils background values; The concentrations of all heavy metals had a significantly correlation between each other, indicating that those heavy metals had similar sources of pollution, and it mainly came from industrial and vehicle pollutions; The pollution extent of heavy metals in sediments by geo-accumulation index (Igeo) followed the order: Cr > Zn > Ni > Cu > Fe > As > Pb >Mn > Ti, thereinto, Cr, Zn, Cu and Ni were moderately polluted or heavily polluted at some sampling sites; The potential ecological risk of 9 heavy metals in sediments were in the following order: Cu > As > Ni > Cr > Pb > Co > Zn > Mn > Ti, Cu and As contributed the most to the total potential ecological risk, accounting for 22.84% and 21. 62% , others had a total of 55.54% , through the ecological risk assessment, 89. 34% of the potential ecological risk indexes ( RI) were low and 10. 66% were higher. The contamination level of heavy metals in Yongkang was slight in total, but was heavy in local areas.

  15. Heavy Metal Bioabsorption Capacity of Intestinal Helminths in Urban Rats

    PubMed Central

    TEIMOORI, Salma; SABOUR YARAGHI, Aliakbar; MAKKI, Mahsa Sadat; SHAHBAZI, Farideh; NAZMARA, Shahrokh; ROKNI, Mohhamad Bagher; MESDAGHINIA, Alireza; SALAHI MOGHADDAM, Abdoreza; HOSSEINI, Mostafa; RAKHSHANPOUR, Arash; MOWLAVI, Gholamreza

    2014-01-01

    Abstract Background The aim of the present study was to evaluate the capability of helminths to absorb heavy metals in comparison with that of the host tissues. Methods We compared the concentration of cadmium (Cd) and chromium (Cr) in urban rats and in their harboring helminthes —Moniliformis moniliformis, Hymenolepis diminuta and larval stage of Taenia taenaeiformis (Cysticercus fasciolaris). The heavy metal absorption was evaluated in 1g wet weight of parasites and tissues digested in nitric acid, using Inductivity Coupled Plasma (ICP_OES). Results A higher concentration of heavy metals was revealed in the helminths than in the host tissues. Bioconcentration factor (BF= C in parasite/C in tissue) for both Cd and Cr absorption was more than 10-fold higher in M. moniliformis than in the three compared host tissues. The BF of Cd in M. moniliformis compared to the liver, kidney and muscle of the host was 9.16, 14.14 and 17.09, respectively. BF in Cr in the same parasite and the same host tissues ranged from 10.67, 7.06 and 4.6. High level of absorption in H. diminuta was significantly likewise; the individual BF of Cd and Cr in H. diminuta compared to the liver, kidney and muscle of the hosts was 4.95, 5.94 and 4.67 vs. 2.67, 11.56 and 5.59. The mean concentration of Cd and Cr in C. fasciolaris was also significantly higher than that in the rat livers (P<0.007 and P<0.004, respectively). Conclusion This study claims that parasites of terrestrial animals exposed to heavy metals can be more accurate indicators than the host tissues as new environmental monitoring agents. PMID:25988090

  16. Soil heavy metal contamination in an industrial area: analysis of the data collected during a decade.

    PubMed

    D'Emilio, Mariagrazia; Caggiano, Rosa; Macchiato, Maria; Ragosta, Maria; Sabia, Serena

    2013-07-01

    Soil contamination by heavy metals has become a serious problem mainly because, above certain concentrations, all metals have adverse effects on human health. In particular, the accumulation of heavy metals in agricultural soils leads to elevated uptake by crops and affects food quality and safety. In this paper, we present the results of a study carried out over a decade for evaluating the impact of a new industrial settlement in an area geared to agriculture and livestock and far from urban sites. We focus our study on the bioavailable fraction of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in soil samples. Heavy metal concentrations in soil are analysed with both univariate and multivariate statistical procedures. The main goal of this paper is the development of a statistical procedure, based on a mix of multivariate analysis, able to compare field surveys carried out during different years and to characterize spatial and temporal changes in soil heavy metals concentrations.

  17. Mosses as biomonitors of atmospheric heavy metal deposition: spatial patterns and temporal trends in Europe.

    PubMed

    Harmens, H; Norris, D A; Steinnes, E; Kubin, E; Piispanen, J; Alber, R; Aleksiayenak, Y; Blum, O; Coşkun, M; Dam, M; De Temmerman, L; Fernández, J A; Frolova, M; Frontasyeva, M; González-Miqueo, L; Grodzińska, K; Jeran, Z; Korzekwa, S; Krmar, M; Kvietkus, K; Leblond, S; Liiv, S; Magnússon, S H; Mankovská, B; Pesch, R; Rühling, A; Santamaria, J M; Schröder, W; Spiric, Z; Suchara, I; Thöni, L; Urumov, V; Yurukova, L; Zechmeister, H G

    2010-10-01

    In recent decades, mosses have been used successfully as biomonitors of atmospheric deposition of heavy metals. Since 1990, the European moss survey has been repeated at five-yearly intervals. Although spatial patterns were metal-specific, in 2005 the lowest concentrations of metals in mosses were generally found in Scandinavia, the Baltic States and northern parts of the UK; the highest concentrations were generally found in Belgium and south-eastern Europe. The recent decline in emission and subsequent deposition of heavy metals across Europe has resulted in a decrease in the heavy metal concentration in mosses for the majority of metals. Since 1990, the concentration in mosses has declined the most for arsenic, cadmium, iron, lead and vanadium (52-72%), followed by copper, nickel and zinc (20-30%), with no significant reduction being observed for mercury (12% since 1995) and chromium (2%). However, temporal trends were country-specific with sometimes increases being found.

  18. Magnetoresistance in paramagnetic heavy fermion metals.

    PubMed

    Parihari, D; Vidhyadhiraja, N S

    2009-10-07

    A theoretical study of magnetic field (h) effects on single-particle spectra and the transport quantities of heavy fermion metals in the paramagnetic phase is carried out. We have employed a non-perturbative local moment approach (LMA) to the asymmetric periodic Anderson model within the dynamical mean field framework. The lattice coherence scale ω(L), which is proportional within the LMA to the spin-flip energy scale, and has been shown in earlier studies to be the energy scale at which crossover to single-impurity physics occurs, increases monotonically with increasing magnetic field. The many body Kondo resonance in the density of states at the Fermi level splits into two, with the splitting being proportional to the field itself. For h≥0, we demonstrate adiabatic continuity from the strongly interacting case to a corresponding non-interacting limit, thus establishing Fermi liquid behaviour for heavy fermion metals in the presence of a magnetic field. In the Kondo lattice regime, the theoretically computed magnetoresistance is found to be negative in the entire temperature range. We argue that such a result could be understood at [Formula: see text] by field-induced suppression of spin-flip scattering and at [Formula: see text] through lattice coherence. The coherence peak in the heavy fermion resistivity diminishes and moves to higher temperatures with increasing field. Direct comparison of the theoretical results to the field dependent resistivity measurements in CeB(6) yields good agreement.

  19. Heavy metal contamination in sandy beach macrofauna communities from the Rio de Janeiro coast, Southeastern Brazil.

    PubMed

    Cabrini, Tatiana M B; Barboza, Carlos A M; Skinner, Viviane B; Hauser-Davis, Rachel A; Rocha, Rafael C; Saint'Pierre, Tatiana D; Valentin, Jean L; Cardoso, Ricardo S

    2017-02-01

    We evaluated concentrations of eight heavy metals Cr, Zn, Pb, Ni, Cu, Cd, Co and V, in tissues of representative macrofauna species from 68 sandy beaches from the coast of Rio de Janeiro state. The links between contamination levels and community descriptors such as diversity, evenness, density and biomass, were also investigated. Metal concentrations from macrofaunal tissues were compared to maximum permissible limits for human ingestion stipulated by the Brazilian regulatory agency (ANVISA). Generalized linear models (GLM's) were used to investigate the variability in macrofauna density, richness, eveness and biomass in the seven different regions. A non-metric multidimensional scaling analysis (n-MDS) was used to investigate the spatial pattern of heavy metal concentrations along the seven regions of Rio de Janeiro coast. Variation partitioning was applied to evaluate the variance in the community assemblage explained by the environmental variables and the heavy metal concentrations. Our data suggested high spatial variation in the concentration of heavy metals in macrofauna species from the beaches of Rio de Janeiro. This result highlighted a diffuse source of contamination along the coast. Most of the metals concentrations were under the limits established by ANVISA. The variability in community descriptors was related to morphodynamic variables, but not with metal contamination values, indicating the lack of direct relationships at the community level. Concentration levels of eight heavy metals in macrofauna species from 68 sandy beaches on Rio de Janeiro coast (Brazil) were spatially correlated with anthropogenic activities such as industrialization and urbanization.

  20. Advances in Understanding How Heavy Metal Pollution Triggers Gastric Cancer.

    PubMed

    Yuan, Wenzhen; Yang, Ning; Li, Xiangkai

    2016-01-01

    With the development of industrialization and urbanization, heavy metals contamination has become a major environmental problem. Numerous investigations have revealed an association between heavy metal exposure and the incidence and mortality of gastric cancer. The mechanisms of heavy metals (lead, cadmium, mercury, chromium, and arsenic) contamination leading to gastric cancer are concluded in this review. There are four main potential mechanisms: (1) Heavy metals disrupt the gastric mucosal barrier by decreasing mucosal thickness, mucus content, and basal acid output, thereby affecting the function of E-cadherin and inducing reactive oxygen species (ROS) damage. (2) Heavy metals directly or indirectly induce ROS generation and cause gastric mucosal and DNA lesions, which subsequently alter gene regulation, signal transduction, and cell growth, ultimately leading to carcinogenesis. Exposure to heavy metals also enhances gastric cancer cell invasion and metastasis. (3) Heavy metals inhibit DNA damage repair or cause inefficient lesion repair. (4) Heavy metals may induce other gene abnormalities. In addition, heavy metals can induce the expression of proinflammatory chemokine interleukin-8 (IL-8) and microRNAs, which promotes tumorigenesis. The present review is an effort to underline the human health problem caused by heavy metal with recent development in order to garner a broader perspective.

  1. Advances in Understanding How Heavy Metal Pollution Triggers Gastric Cancer

    PubMed Central

    Yuan, Wenzhen; Yang, Ning

    2016-01-01

    With the development of industrialization and urbanization, heavy metals contamination has become a major environmental problem. Numerous investigations have revealed an association between heavy metal exposure and the incidence and mortality of gastric cancer. The mechanisms of heavy metals (lead, cadmium, mercury, chromium, and arsenic) contamination leading to gastric cancer are concluded in this review. There are four main potential mechanisms: (1) Heavy metals disrupt the gastric mucosal barrier by decreasing mucosal thickness, mucus content, and basal acid output, thereby affecting the function of E-cadherin and inducing reactive oxygen species (ROS) damage. (2) Heavy metals directly or indirectly induce ROS generation and cause gastric mucosal and DNA lesions, which subsequently alter gene regulation, signal transduction, and cell growth, ultimately leading to carcinogenesis. Exposure to heavy metals also enhances gastric cancer cell invasion and metastasis. (3) Heavy metals inhibit DNA damage repair or cause inefficient lesion repair. (4) Heavy metals may induce other gene abnormalities. In addition, heavy metals can induce the expression of proinflammatory chemokine interleukin-8 (IL-8) and microRNAs, which promotes tumorigenesis. The present review is an effort to underline the human health problem caused by heavy metal with recent development in order to garner a broader perspective. PMID:27803929

  2. Quantification of Heavy Metals in Mining Affected Soil and Their Bioaccumulation in Native Plant Species.

    PubMed

    Nawab, Javed; Khan, Sardar; Shah, Mohammad Tahir; Khan, Kifayatullah; Huang, Qing; Ali, Roshan

    2015-01-01

    Several anthropogenic and natural sources are considered as the primary sources of toxic metals in the environment. The current study investigates the level of heavy metals contamination in the flora associated with serpentine soil along the Mafic and Ultramafic rocks northern-Pakistan. Soil and wild native plant species were collected from chromites mining affected areas and analyzed for heavy metals (Cr, Ni, Fe, Mn, Co, Cu and Zn) using atomic absorption spectrometer (AAS-PEA-700). The heavy metal concentrations were significantly (p < 0.01) higher in mine affected soil as compared to reference soil, however Cr and Ni exceeded maximum allowable limit (250 and 60 mg kg(-1), respectively) set by SEPA for soil. Inter-metal correlations between soil, roots and shoots showed that the sources of contamination of heavy metals were mainly associated with chromites mining. All the plant species accumulated significantly higher concentrations of heavy metals as compared to reference plant. The open dumping of mine wastes can create serious problems (food crops and drinking water contamination with heavy metals) for local community of the study area. The native wild plant species (Nepeta cataria, Impatiens bicolor royle, Tegetis minuta) growing on mining affected sites may be used for soil reclamation contaminated with heavy metals.

  3. Earliest evidence of pollution by heavy metals in archaeological sites

    NASA Astrophysics Data System (ADS)

    Monge, Guadalupe; Jimenez-Espejo, Francisco J.; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-09-01

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called “Anthropocene”. According to its heavy metal concentration, these sediments meet the present-day standards of “contaminated soil”. Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence.

  4. Ecological risk assessment of soil pollution with heavy metals

    SciTech Connect

    Kuperman, R.G.

    1995-12-31

    The structure and function of soil ecosystems in an area with a wide range of concentrations of heavy metals were studied in portions of the US Army`s Aberdeen Proving Ground, Maryland. The objective of this project was to develop and test the efficacy of a comprehensive methodology for assessing ecological impacts of soil contamination. A hierarchical approach which integrated biotic parameters and ecosystem processes was used to give insight into the mechanisms that lead to alterations in the structure and function of soil ecosystems in contaminated areas. This approach involved (1) a thorough survey of the soil biota to establish community structure, (2) laboratory and field tests on critical ecosystem processes, (3) toxicity trials, and (4) the use of spatial analyses to provide input in the decision making process. Soil invertebrate communities showed significant reductions in the abundance of several taxonomic and trophic groups in contaminated areas. The numbers of soil microorganisms were lower in areas of soil contamination. Ten-to-fifty fold reductions in enzyme activities were observed as heavy metal concentrations increased. These results suggest that soil contamination with heavy metals may have detrimental effects on soil biota and the rates of organic matter degradation and subsequent release of nutrients to aboveground communities in the area. The proposed methodology appears to offer an efficient and potentially cost saving tool for remedial investigations at contaminated sites.

  5. Earliest evidence of pollution by heavy metals in archaeological sites

    PubMed Central

    Monge, Guadalupe; Jimenez-Espejo, Francisco J.; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-01-01

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called “Anthropocene”. According to its heavy metal concentration, these sediments meet the present-day standards of “contaminated soil”. Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence. PMID:26388184

  6. Earliest evidence of pollution by heavy metals in archaeological sites.

    PubMed

    Monge, Guadalupe; Jimenez-Espejo, Francisco J; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-09-21

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called "Anthropocene". According to its heavy metal concentration, these sediments meet the present-day standards of "contaminated soil". Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence.

  7. Survey of heavy metal pollution in four chinese crude drugs and their cultivated soils.

    PubMed

    Wu, Jialun; Zou, Yaohua; Zhan, Xiuping; Chen, Shifei; Lu, Guangzhao; Lai, Fugen

    2008-12-01

    A two-year survey on the residues of heavy metals in four Chinese crude drugs and their cultivated soils was conducted. Targeted heavy metals were copper (Cu), arsenic (As), lead (Pb), nickel (Ni), and cadmium (Cd). Herbs surveyed include White Peony Root (Radix Paeoniae Alba), Turmeric Root Tuber (Radix Curcumae), Thunberg Fritillary Bulb (Bulbus Fritillariae Thumbergii), and Tuber of Dwarf Lilyturf (Radix Ophiopogonis). Concentrations of all heavy metals were under the permitted levels except cadmium, which exceeded the permitted level in some samples of Thunberg Fritillary Bulb, White Peony Root, and Turmeric Root Tuber. Concentration coefficients were less than 1.0 for all heavy metals except cadmium. The concentration coefficient of cadmium in Turmeric Root Tuber was 14.0. Lower pH and high Zn concentration in the soil may facilitate the transfer of cadmium from cultivated soil into the herbs.

  8. Cytogenetic response of Scots pine (Pinus sylvestris Linnaeus, 1753) (Pinaceae) to heavy metals.

    PubMed

    Belousov, Mikhail Vladimirovich; Mashkina, Olga Sergeyevna; Popov, Vasily Nikolayevich

    2012-01-01

    We studied cytogenetic reactions of Scots pine seedlings to heavy metals - lead, cupric and zinc nitrates applied at concentrations 0.5 to 2000 µM. We determined the range of concentrations of heavy metals that causes mutagenic effect. Lead was found to cause the strongest genotoxicity as manifested by significant increase in the frequency of pathological mitosis, occurrence of fragmentations and agglutinations of chromosomes, various types of bridges, and a significant number of the micronuclei which were absent in the control. Possible cytogenetic mechanisms of the cytotoxic action of heavy metals are discussed.

  9. Cytogenetic response of Scots pine (Pinus sylvestris Linnaeus, 1753) (Pinaceae) to heavy metals

    PubMed Central

    Belousov, Mikhail Vladimirovich; Mashkina, Olga Sergeyevna; Popov, Vasily Nikolayevich

    2012-01-01

    Abstract We studied cytogenetic reactions of Scots pine seedlings to heavy metals – lead, cupric and zinc nitrates applied at concentrations 0.5 to 2000 µM. We determined the range of concentrations of heavy metals that causes mutagenic effect. Lead was found to cause the strongest genotoxicity as manifested by significant increase in the frequency of pathological mitosis, occurrence of fragmentations and agglutinations of chromosomes, various types of bridges, and a significant number of the micronuclei which were absent in the control. Possible cytogenetic mechanisms of the cytotoxic action of heavy metals are discussed. PMID:24260654

  10. Distribution and contamination of heavy metals in surface sediments of the South Yellow Sea.

    PubMed

    Yuan, Huamao; Song, Jinming; Li, Xuegang; Li, Ning; Duan, Liqin

    2012-10-01

    The distributions, annual sedimentation and atmospheric deposition flux of heavy metals have been studied in sediments of the South Yellow Sea (SYS), in order to evaluate their levels and pollution status. The higher concentrations of heavy metals were generally found in the central part of the SYS, which may be associated with the organic matters due to their high affinity to the metals. According to the calculated enrichment factor (EF) of the studied metals, Cd in the sediments posed a high risk to local environments, while Mn, Hg, Pb and Zn were at moderate risk levels. Sedimentation fluxes study in the SYS showed that most heavy metals were deposited in the Chinese offshore. Annual dry deposition flux of these metals indicated that the particulate heavy metals deposition via atmosphere also play an important role in biogeochemical cycles in the SYS.

  11. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation.

    PubMed

    Göhre, Vera; Paszkowski, Uta

    2006-05-01

    High concentrations of heavy metals (HM) in the soil have detrimental effects on ecosystems and are a risk to human health as they can enter the food chain via agricultural products or contaminated drinking water. Phytoremediation, a sustainable and inexpensive technology based on the removal of pollutants from the environment by plants, is becoming an increasingly important objective in plant research. However, as phytoremediation is a slow process, improvement of efficiency and thus increased stabilization or removal of HMs from soils is an important goal. Arbuscular mycorrhizal (AM) fungi provide an attractive system to advance plant-based environmental clean-up. During symbiotic interaction the hyphal network functionally extends the root system of their hosts. Thus, plants in symbiosis with AM fungi have the potential to take up HM from an enlarged soil volume. In this review, we summarize current knowledge about the contribution of the AM symbiosis to phytoremediation of heavy metals.

  12. Bioremediation of toxic heavy metals using acidothermophilic autotrophes.

    PubMed

    Umrania, Valentina V

    2006-07-01

    Investigations were carried out to isolate microbial strains from soil, mud and water samples from metallurgically polluted environment for bioremediation of toxic heavy metals. As a result of primary and secondary screening various 72 acidothermophilic autotrophic microbes were isolated and adapted for metal tolerance and biosorption potentiality. The multi-metal tolerance was developed with higher gradient of concentrations of Ag, As, Bi, Cd, Cr, Co, Cu, Hg, Li, Mo, Pb, Sn and Zn. The isolates were checked for their biosolubilization ability with copper containing metal sulfide ores. In case of chalcopyrite 85.82% and in covellite as high as 97.5% copper solubilization occurred in presence of 10(-3) M multi-heavy metals on fifth day at 55 degrees C and pH 2.5. Chemical analyses were carried out by inductively coupled plasma spectroscopy (ICP) for metal absorption. The selected highly potential isolate (ATh-14) showed maximum adsorption of Ag 73%, followed by Pb 35%, Zn 34%, As 19%, Ni 15% and Cr 9% in chalcopyrite.

  13. Study of heavy metal poisoning in frequent users of Chinese medicines in Hong Kong and Macau.

    PubMed

    Chui, S H; Wong, Y H; Chio, H I; Fong, M Y; Chiu, Y M; Szeto, Y T; Vong, W T; Lam, C W K

    2013-06-01

    This study is a direct assessment of blood heavy metal concentrations of frequent users of Chinese medicines (CM), who had been taking prescribed CM at least 6 days per week for not less than 3 months, to determine whether their intake of CM could cause an increased load of toxic heavy metals in the body. From November 2009 to June 2010, 85 subjects were recruited with informed consent, and their blood samples were collected for measurement of arsenic, cadmium, lead and mercury concentrations. Results showed that blood concentrations of four heavy metals of nearly all 85 subjects were within reference ranges. Only one subject who had consumed plentiful seafood was found to have transiently increased blood arsenic concentration (29% higher than the upper limit of the reference range). However, after refraining from eating seafood for 1 month, his blood arsenic concentration returned to normal. Eighty commonly prescribed CM in both raw medicine and powder concentrate supplied by local distributors were also tested for the four heavy metals. Twelve out of the 80 raw medicines were found to contain one or more of the heavy metals that exceeded the respective maximum permitted content. Cadmium was most frequently found in the contaminated samples. None of the powder concentrates had heavy metal content exceeding their respective maximum permitted level.

  14. Interactions between arbuscular mycorrhizae and heavy metals under sand culture experiment.

    PubMed

    Liao, J P; Lin, X G; Cao, Z H; Shi, Y Q; Wong, M H

    2003-02-01

    A sand culture experiment was established to determine interactions between arbuscular mycorrhizae and heavy metals. Mycorrhizal infection rates, spore densities, maize root and shoot weights, and heavy metal contents in maize were as indexes of responses of arbuscular mycorrhizal fungi (Acaulospora laevis, Glomus caledonium and Glomus manihotis) to heavy metals (Cu and Cd). The mycorrhizal infection rates of G. caledonium were the highest among these three mycorrhizal fungi, but the sporulating ability of G. caledonium was the poorest in the heavy metal treatments. The shoot and root weights of non-mycorrhizal plants were usually greater than those of mycorrhizal plants when the Cu concentrations in solutions are less than 3 mg l(-1) or Cd concentrations less than 1 mg l(-1). When Cd concentrations were 0.5 and 1 mg(-1), the root and shoot weights of plants inoculated with A. laevis were significantly (p < 0.05) lower than those of other treatments. Copper concentrations in shoots of mycorrhizal plants were higher than those of non-mycorrhizal ones at all Cu concentrations in solution, especially at low Cu concentrations. As to A. laevis, Cu concentrations in roots and shoots of the host were higher than those of non-mycorrhizal plants in these treatments. Thus A. laevis was sensitive to Cu and Cd, especially Cd, and G. caledonium was more tolerant to these two heavy metals. It is suggested that G. caledonium might be a promising mycorrhizal fungus for bioremediation of heavy metal contaminated soil.

  15. Performance of rose scented geranium (Pelargonium graveolens) in heavy metal polluted soil vis-à-vis phytoaccumulation of metals.

    PubMed

    Chand, Sukhmal; Singh, Geetu; Patra, D D

    2016-08-02

    An investigation was carried out to evaluate the effect of heavy metal toxicity on growth, herb, oil yield and quality and metal accumulation in rose scented geranium (Pelargonium graveolens) grown in heavy metal enriched soils. Four heavy metals (Cd, Ni, Cr, and Pb) each at two levels (10 and 20 mg kg-1 soil) were tested on geranium. Results indicated that Cr concentration in soil at 20 mg kg-1 reduced leaves, stem and root yield by 70, 83, and 45%, respectively, over control. Root growth was significantly affected in Cr stressed soil. Nickel, Cr, and Cd concentration and accumulation in plant increased with higher application of these metals. Chromium, nickel and cadmium uptake was observed to be higher in leaves than in stem and roots. Essential oil constituents were generally not significantly affected by heavy metals except Pb at 10 and 20 ppm, which significantly increased the content of citronellol and Ni at 20 ppm increased the content of geraniol. Looking in to the higher accumulation of toxic metals by geranium and the minimal impact of heavy metals on quality of essential oil, geranium can be commercially cultivated in heavy metal polluted soil for production of high value essential oil.

  16. Unusual sources of aluminium and heavy metals in potable waters.

    PubMed

    Fuge, R; Pearce, N J; Perkins, W T

    1992-04-01

    Aluminium in water supplies derives from natural sources and from the use of Al2(SO4)3 in water treatment. Heavy metals such as Pb, Cu, Zn and Cd can be added to water from pipework and solder. However, it is apparent that AI and other metals in potable waters can derive from deposits on pipe walls which can be subsequently mobilised when the supply and/or treatment process is changed. Concentrations of Al in domestic supply water of the Llanbrynmair area have been shown to increase from 1 μg to 50 μg L(-1) during its 18 km journey along the water main. Similarly, Pb concentrations in a public building in the Aberystwyth area are found to be extremely elevated due to the metal's mobilisation from encrustations occurring on the copper pipework.

  17. Facultative hyperaccumulation of heavy metals and metalloids.

    PubMed

    Pollard, A Joseph; Reeves, Roger D; Baker, Alan J M

    2014-03-01

    Approximately 500 species of plants are known to hyperaccumulate heavy metals and metalloids. The majority are obligate metallophytes, species that are restricted to metalliferous soils. However, a smaller but increasing list of plants are "facultative hyperaccumulators" that hyperaccumulate heavy metals when occurring on metalliferous soils, yet also occur commonly on normal, non-metalliferous soils. This paper reviews the biology of facultative hyperaccumulators and the opportunities they provide for ecological and evolutionary research. The existence of facultative hyperaccumulator populations across a wide edaphic range allows intraspecific comparisons of tolerance and uptake physiology. This approach has been used to study zinc and cadmium hyperaccumulation by Noccaea (Thlaspi) caerulescens and Arabidopsis halleri, and it will be instructive to make similar comparisons on species that are distributed even more abundantly on normal soil. Over 90% of known hyperaccumulators occur on serpentine (ultramafic) soil and accumulate nickel, yet there have paradoxically been few experimental studies of facultative nickel hyperaccumulation. Several hypotheses suggested to explain the evolution of hyperaccumulation seem unlikely when most populations of a species occur on normal soil, where plants cannot hyperaccumulate due to low metal availability. In such species, it may be that hyperaccumulation is an ancestral phylogenetic trait or an anomalous manifestation of physiological mechanisms evolved on normal soils, and may or may not have direct adaptive benefits.

  18. The potential for heavy metal decontamination

    SciTech Connect

    Baker, A.J.M.; McGrath, S.P.; Sidoli, C.M.D.; Reeves, R.D.

    1996-12-31

    Preliminary trials to assess the ability of plant species to extract metals are presented. A range of zinc and nickel hyperaccumulator plants from the Brassicaceae family, collected from diverse populations in Europe, were grown on plots along with nonaccumulating crop plants from the same family. Extraction efficiencies and the number of croppings required to reduce the total zinc in the soil to a concentration of 300 mg/kg are tabulated. Zinc accumulation remained high over a wide range of soil metal concentration. However, the concentration of nickel in the hyperaccumulators increased in accordance with increasing total nickel concentrations in the soil. Calculations suggest that there is an excellent potential for using hyperaccumulator species to remove metals from the rhizosphere where remediation can be considered over a period of years and multiple cropping is a viable option.

  19. Study on the law of heavy metal leaching in municipal solid waste landfill.

    PubMed

    Liu, Hui-Hu; Sang, Shu-Xun

    2010-06-01

    Comparative leaching experiments were carried out using leaching medium with different pH to municipal solid waste in the landfill columns in order to investigate the mobility of heavy metals. The leachate pH and oxidation-reduction potential were measured by oxidation-reduction potential analyzer; the contents of heavy metals were measured by inductively coupled plasma mass spectrometry. It is very different in leaching concentrations of heavy metals; the dynamic leaching of heavy metals decreased with the rise of the leaching amount on the whole. Acid leaching medium had definite influence on the leaching of heavy metals in the early landfill, but it had the obvious inhibition effect on the leaching in the middle and late period of landfill; the neutral and alkaline leaching medium are more beneficial to the leaching of heavy metals. Due to the influence of the environment of landfill, the differences of the results in cumulative leaching amount, leaching rate, and leaching intensity of heavy metals are very big. The calculation results of the release rates of heavy metals prove that the orders of the release rates are not identical under different leaching conditions. Acid rain made heavy metals migrate from municipal solid waste to soil and detain in soil more easily; approached neutral and alkaline leaching mediums are more beneficial to leaching of heavy metals in the municipal solid waste and soil with leachate. The field verification of experimental data showed that the law of heavy metal leaching in municipal solid waste revealed by the experiment has a good consistency with the data obtained by municipal solid waste landfill.

  20. Assessment of heavy metal pollution in vegetables and relationships with soil heavy metal distribution in Zhejiang province, China.

    PubMed

    Ye, Xuezhu; Xiao, Wendan; Zhang, Yongzhi; Zhao, Shouping; Wang, Gangjun; Zhang, Qi; Wang, Qiang

    2015-06-01

    There are increasing concerns on heavy metal contaminant in soils and vegetables. In this study, we investigated heavy metal pollution in vegetables and the corresponding soils in the main vegetable production regions of Zhejiang province, China. A total of 97 vegetable samples and 202 agricultural soil samples were analyzed for the concentrations of Cd, Pb, As, Hg, and Cr. The average levels of Cd, Pb, and Cr in vegetable samples [Chinese cabbage (Brassica campestris spp. Pekinensis), pakchoi (Brassica chinensis L.), celery (Apium graveolens), tomato (Lycopersicon esculentum), cucumber (Colletotrichum lagenarium), cowpea (Vigna unguiculata), pumpkin (Cucurbita pepo L.), and eggplant (Solanum melongena)] were 0.020, 0.048, and 0.043 mg kg(-1), respectively. The Pb and Cr concentrations in all vegetable samples were below the threshold levels of the Food Quality Standard (0.3 and 0.5 mg kg(-1), respectively), except that two eggplant samples exceeded the threshold levels for Cd concentrations (0.05 mg kg(-1)). As and Hg contents in vegetables were below the detection level (0.005 and 0.002 mg kg(-1), respectively). Soil pollution conditions were assessed in accordance with the Chinese Soil Quality Criterion (GB15618-1995, Grade II); 50 and 68 soil samples from the investigated area exceeded the maximum allowable contents for Cd and Hg, respectively. Simple correlation analysis revealed that there were significantly positive correlations between the metal concentrations in vegetables and the corresponding soils, especially for the leafy and stem vegetables such as pakchoi, cabbage, and celery. Bio-concentration factor values for Cd are higher than those for Pb and Cr, which indicates that Cd is more readily absorbed by vegetables than Pb and Cr. Therefore, more attention should be paid to the possible pollution of heavy metals in vegetables, especially Cd.

  1. Laboratory and field magnetic evaluation of the heavy metal contamination on Shilaoren Beach, China.

    PubMed

    Wang, Yonghong; Huang, Qinghui; Lemckert, Charles; Ma, Ying

    2017-02-09

    This study uses magnetic measurements to evaluate the heavy metal contamination of the surface sediments on Shilaoren Beach. The values of the laboratory magnetic measurements have a positive relationship with the concentrations of Fe, Mn, Cr, Ni, As and Pb. The field magnetic parameter provides an effective and rapid method for evaluating the distribution and dispersal of heavy metal. Sediments with higher heavy metal contents generally accumulate near higher and lower tide lines on the beach, reflecting the control of waves and tides. The sewage and stormwater outlets are the primary sources of the heavy metal contamination. Variations in seasonal waves and winds affect the sediment transport and the heavy metal distribution patterns. Based on the Australian ISQG-Low sediment quality criteria, Fe, Mn and Cr generally exhibit intermediate accumulation levels, whereas Pb and Zn exhibit higher accumulation levels because of the socioeconomic status of the area surrounding the beach.

  2. [Bioaccumulation of heavy metals in macrofungi and its application in ecological remediation].

    PubMed

    An, Xin-Long; Zhou, Qi-Xing

    2007-08-01

    As an important type of environmental biological resources, macrofungi are vitally useful in our life. Compared with green plants, macrofungi can accumulate high concentrations of heavy metals such as Cd, Pb and Hg. In this paper, the bioaccumulation of heavy metals in macrofungi and the advantages of using macrofungi in ecological remediation of heavy metals pollution were discussed. The main factors affecting the bioaccumulation of heavy metals in macrofungi, include the species, ecological types, bioaccumulation characteristics and genetic potentials of macrofungi, the morphologic traits, parts and lifetime of mycelium and fruiting bodies, the intervals between fructifications, and the ecological environments. It was suggested that to screen out the macrofungi with effective bioaccumulation of heavy metals, be prone to artificially cultured, better adjustable to environments and easily post-disposed would be the important domain to be explored in the future.

  3. Understanding the factors influencing the removal of heavy metals in urban stormwater runoff.

    PubMed

    Maniquiz-Redillas, Marla C; Kim, Lee-Hyung

    2016-01-01

    In this research, an infiltration trench equipped with an extensive pretreatment and filter bed consisting of woodchip, sand and gravel was utilized as a low impact development technique to manage stormwater runoff from a highly impervious road with particular emphasis on heavy metal removal. Findings revealed that the major factors influencing the removal of heavy metals were the concentration of the particulate matters and heavy metals in runoff, runoff volume and flow rates. The reduction of heavy metals was enhanced by sedimentation of particulates through pretreatment. Fine particles (<2 mm) had the most significant amount of heavy metals, thus, enhanced adsorption and filtration using various filter media were important design considerations. Sediment was most highly attached on the surface area of woodchip than to other filter media like sand, gravel and geotextile. It is suggested that maintenance must be performed after the end of the winter season wherein high sediment rate was observed to maintain the efficiency of the treatment system.

  4. An artificial tongue fluorescent sensor array for identification and quantitation of various heavy metal ions.

    PubMed

    Xu, Wang; Ren, Changliang; Teoh, Chai Lean; Peng, Juanjuan; Gadre, Shubhankar Haribhau; Rhee, Hyun-Woo; Lee, Chi-Lik Ken; Chang, Young-Tae

    2014-09-02

    Herein, a small-molecule fluorescent sensor array for rapid identification of seven heavy metal ions was designed and synthesized, with its sensing mechanism mimicking that of a tongue. The photoinduced electron transfer and intramolecular charge transfer mechanism result in combinatorial interactions between sensor array and heavy metal ions, which lead to diversified fluorescence wavelength shifts and emission intensity changes. Upon principle component analysis (PCA), this result renders clear identification of each heavy metal ion on a 3D spatial dispersion graph. Further exploration provides a concentration-dependent pattern, allowing both qualitative and quantitative measurements of heavy metal ions. On the basis of this information, a "safe-zone" concept was proposed, which provides rapid exclusion of versatile hazardous species from clean water samples based on toxicity characteristic leaching procedure standards. This type of small-molecule fluorescent sensor array could open a new avenue for multiple heavy metal ion detection and simplified water quality analysis.

  5. Native Australian species are effective in extracting multiple heavy metals from biosolids.

    PubMed

    Mok, Hoi-Fei; Majumder, Ramaprasad; Laidlaw, W Scott; Gregory, David; Baker, Alan J M; Arndt, Stefan K

    2013-01-01

    Selecting native plant species with characteristics suitable for extraction of heavy metals may have multiple advantages over non-native plants. Six Australian perennial woody plant species and one willow were grown in a pot trial in heavy metal-contaminated biosolids and a potting mix. The plants were harvested after fourteen months and above-ground parts were analysed for heavy metal concentrations and total metal contents. All native species were capable of growing in biosolids and extracted heavy metals to varying degrees. No single species was able to accumulate heavy metals at particularly high levels and metal extraction depended upon the bioavailability of the metal in the substrate. Metal extraction efficiency was driven by biomass accumulation, with the species extracting the most metals also having the greatest biomass yield. The study demonstrated that Grevillea robusta, Acacia mearnsii, Eucalyptus polybractea, and E. cladocalyx have the greatest potential as phytoextractor species in the remediation of heavy metal-contaminated biosolids. Species survival and growth were the main determinants of metal extraction efficiency and these traits will be important for future screening of native species.

  6. Heavy metals distribution in sediments of Nador lagoon (Morocco)

    NASA Astrophysics Data System (ADS)

    Bloundi, K.; Duplay, J.

    2003-04-01

    The Nador lagoon is a paralic system, located North-East of Morocco. At the present time this ecosystem undergoes an anthropic stress induced by urban, industrial and agricultural releases, and also by fishery activity which enriches this ecosystem in organic and inorganic wastes. A geochemical study has been undertaken, first to define the areas contaminated by heavy metals (Zn, Cu, Co, Cr and V), and second to caracterize the different mineral phases, which trap these elements. Sediment samples were collected on twenty-eight stations scattered all over the lagoon, and each core (30 cm) was subdivided in two horizons (surface and depth). Mineralogical analyses as well as major and trace elements analyses were performed on surface and deep sediments. The results on major element analyses (Si, Al, Ca, Mg, Na, P) show an enrichment in halite and phosphates in the surface sediments. This highlights on one hand, low water exchange rates between the lagoon and the Mediterranean sea, and on the other hand, an increase in organic releases related to the urban, agricultural and fishery activities. The highest concentrations in inorganic micro-pollutant were recorded N-E of the lagoon and close to Nador city. With reference to the geochemical background, it can be concluded that there is a slight contamination in heavy metals. Moreover, enrichment factor calculations (EF) for heavy metals point out an increase in metal elements as following: Zn>Co>Cr>V>Cu. Sequential extractions were performed to determine the behaviour of these micro-pollutants. Thus, it was shown that carbonates, oxides and phosphates are the preferential mineral phases for trapping these heavy metals.

  7. Heavy metal bioaccumulation by wild edible saprophytic and ectomycorrhizal mushrooms.

    PubMed

    Širić, Ivan; Humar, Miha; Kasap, Ante; Kos, Ivica; Mioč, Boro; Pohleven, Franc

    2016-09-01

    Heavy metals cause serious problems in the environment, and they can be accumulated in organisms, especially in the higher fungi. The concentration of Ni, Cr, Pb, Cd, and Hg in 10 species of edible mushrooms in Medvednica Nature Park, Croatia was therefore determined. In addition, the similarity between the studied species was determined by cluster analysis based on concentrations of the aforementioned metals in the fruiting bodies. The contents of nickel, chromium, lead, cadmium, and mercury in the fruiting bodies of mushrooms were obtained by X-ray fluorescence spectrometry. The highest concentrations of Ni (3.62 mg kg(-1)), Cr (3.01 mg kg(-1)), and Cd (2.67 mg kg(-1)) were determined in Agaricus campestris. The highest concentration of Pb (1.67 mg kg(-1)) was determined in Macrolepiota procera, and the highest concentration of Hg (2.39 mg kg(-1)) was determined in Boletus edulis. The concentration of all heavy metals significantly differed (p < 0.001) between examined saprophytic and ectomycorrhizal mushrooms. Considering anatomical part of the fruiting body (cap-stipe), a considerably higher concentration of the analyzed elements was found in the cap for all mushroom species. According to calculated bioconcentration factors, all the examined species were found to be bioexclusors of Ni, Cr, and Pb and bioaccumulators of Cd and Hg. Cluster analysis performed on the basis of the accumulation of the studied metals revealed great phenotypic similarity of mushroom species belonging to the same genus and partial similarity of species of the same ecological affiliation.

  8. Estimation of Heavy Metal Contamination in Groundwater and Development of a Heavy Metal Pollution Index by Using GIS Technique.

    PubMed

    Tiwari, Ashwani Kumar; Singh, Prasoon Kumar; Singh, Abhay Kumar; De Maio, Marina

    2016-04-01

    Heavy metal (Al, As, Ba, Cr, Cu, Fe, Mn, Ni, Se and Zn) concentration in sixty-six groundwater samples of the West Bokaro coalfield were analyzed using inductively coupled plasma-mass spectroscopy for determination of seasonal fluctuation, source apportionment and