Science.gov

Sample records for heavy metals behavior

  1. Heavy metal music and reckless behavior among adolescents.

    PubMed

    Arnett, J

    1991-12-01

    Adolescents who liked heavy metal music were compared to those who did not on a variety of outcome variables, particularly focusing on reckless behavior. Boys who liked heavy metal music reported a higher rate of a wide range of reckless behavior, including driving behavior, sexual behavior, and drug use. They were also less satisfied with their family relationships. Girls who liked heavy metal music were more reckless in the areas of shoplifting, vandalism, sexual behavior, and drug use, and reported lower self-esteem. Both boys and girls who liked heavy metal music were higher in sensation seeking and more self-assured with regard to sexuality and dating. In regression analyses, the relation between reckless behavior and liking heavy metal music was sustained for five out of twelve variables concerning reckless behavior, including three of four among girls, when sensation seeking and family relationships were entered into the equation before liking or not liking heavy metal music.

  2. Heavy Metal Music and Reckless Behavior among Adolescents.

    ERIC Educational Resources Information Center

    Arnett, Jeffrey

    1991-01-01

    Fifty-four male and 30 female adolescents who like heavy metal music were compared on various outcome variables to 56 male and 105 female peers who do not like it. Those who like heavy metal report a wider range of reckless behavior than those who do not like it. (SLD)

  3. Adsorption behavior of heavy metals on biomaterials.

    PubMed

    Minamisawa, Mayumi; Minamisawa, Hiroaki; Yoshida, Shoichiro; Takai, Nobuharu

    2004-09-08

    We have investigated adsorption of Cd(II) and Pb(II) at pH 2-6.7 onto the biomaterials chitosan, coffee, green tea, tea, yuzu, aloe, and Japanese coarse tea, and onto the inorganic adsorbents, activated carbon and zeolite. High adsorptive capabilities were observed for all of the biomaterials at pH 4 and 6.7. In the adsorption of Cd(II), blend coffee, tea, green tea, and coarse tea have comparable loading capacities to activated carbon and zeolite. Although activated carbon, zeolite, and chitosan are utilized in a variety of fields such as wastewater treatment, chemical and metallurgical engineering, and analytical chemistry, these adsorbents are costly. On the other hand, processing of the test biomaterials was inexpensive, and all the biomaterials except for chitosan were able to adsorb large amounts of Pb(II) and Cd(II) ions after a convenient pretreatment of washing with water followed by drying. The high adsorption capability of the biomaterials prepared from plant materials is promising in the development of a novel, low-cost adsorbent. From these results, it is concluded that heavy metal removal using biomaterials would be an effective method for the economic treatment of wastewater. The proposed adsorption method was applied to the determination of amounts of Cd(II) and Pb(II) in water samples.

  4. Synthesis and heavy metal immobilization behaviors of slag based geopolymer.

    PubMed

    Yunsheng, Zhang; Wei, Sun; Qianli, Chen; Lin, Chen

    2007-05-08

    In this paper, two aspects of studies are carried out: (1) synthesis of geopolymer by using slag and metakaolin; (2) immobilization behaviors of slag based geopolymer in a presence of Pb and Cu ions. As for the synthesis of slag based geopolymer, four different slag content (10%, 30%, 50%, 70%) and three types of curing regimes (standard curing, steam curing and autoclave curing) are investigated to obtain the optimum synthesis condition based on the compressive and flexural strength. The testing results showed that geopolymer mortar containing 50% slag that is synthesized at steam curing (80 degrees C for 8h), exhibits higher mechanical strengths. The compressive and flexural strengths of slag based geopolymer mortar are 75.2 MPa and 10.1 MPa, respectively. Additionally, Infrared (IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques are used to characterize the microstructure of the slag based geopolymer paste. IR spectra show that the absorptive band at 1086 cm(-1) shifts to lower wave number around 1007 cm(-1), and some six-coordinated Als transforms into four-coordination during the synthesis of slag based geopolymer paste. The resulting slag based geopolymeric products are X-ray amorphous materials. SEM observation shows that it is possible to have geopolymeric gel and calcium silicate hydrate (C-S-H) gel forming simultaneously within slag based geopolymer paste. As for immobilization of heavy metals, the leaching tests are employed to investigate the immobilization behaviors of the slag based geopolymer mortar synthesized under the above optimum condition. The leaching tests show that slag based geopolymer mortar can effectively immobilize Cu and Pb heavy metal ions, and the immobilization efficiency reach 98.5% greater when heavy metals are incorporated in the slag geopolymeric matrix in the range of 0.1-0.3%. The Pb exhibits better immobilization efficiency than the Cu in the case of large dosages of heavy metals.

  5. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge.

    PubMed

    Huang, Hua-Jun; Yuan, Xing-Zhong

    2016-01-01

    Various hydrothermal treatment methods, including hydrothermal carbonization, liquefaction and sub/super-critical water gasification, have been applied to the disposal of sewage sludge for producing bio-materials or bio-fuels. It has become a research hotspot whether the heavy metals contained in sewage sludge can be well treated/stabilized after the hydrothermal treatments. This review firstly summarized the methods of assessing heavy metals' contamination level/risk and then discussed the migration and transformation behaviors of heavy metals from the following aspects: the effect of reaction temperature, the effect of additives (catalysts and other biomass), the effect of the type of solvent and the effect of reaction time. This review can provide an important reference for the further study of the migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge.

  6. Content, mineral allocation and leaching behavior of heavy metals in urban PM2.5

    NASA Astrophysics Data System (ADS)

    Mazziotti Tagliani, Simona; Carnevale, Monica; Armiento, Giovanna; Montereali, Maria Rita; Nardi, Elisa; Inglessis, Marco; Sacco, Fabrizio; Palleschi, Simonetta; Rossi, Barbara; Silvestroni, Leopoldo; Gianfagna, Antonio

    2017-03-01

    To clarify the relationship between airborne particulate exposure and negative impacts on human health, focusing on the heavy metal content alone might not be sufficient. To address this issue, in the present work, mineral allocation and leaching behavior of heavy metals in the PM2.5 were investigated. This work, therefore, provides a novel perspective in the field of urban airborne particle investigation that is not currently found in the literature. Four sampling campaigns were performed in the urban area of Rome (Central Italy) during the winter and summer seasons (February and July 2013 and 2014, respectively). The measured concentrations of the regulated elements of As, Cd, Ni and Pb were consistent with those reported by the local Environmental Agency (ARPA Lazio), but non-regulated heavy metals, including Fe, Cu, Cr and Zn, were also found in PM2.5 and analyzed in detail. As a novelty, heavy metals were associated with the host-identified mineral phases, primarily oxides and alloys, and to a lesser extent, other minerals, such as sulfates, carbonates and silicates. Leaching tests of the collected samples were conducted in a buffered solution mimicking the bodily physiological environment. Despite the highest concentration of heavy metals found during the winter sampling period, all of the elements showed a leaching trend leading to major mobility during the summer period. To explain this result, an interesting comparative analysis between the leaching test behavior and innovative mineral allocation was conducted. Both the heavy metal content and mineral allocation in PM2.5 might contribute to the bioavailability of toxic elements in the pulmonary environment. Hence, for regulatory purposes, the non-linear dependency of heavy metal bioavailability on the total metal content should be taken into account.

  7. Study on the behavior of heavy metals during thermal treatment of municipal solid waste (MSW) components.

    PubMed

    Yu, Jie; Sun, Lushi; Wang, Ben; Qiao, Yu; Xiang, Jun; Hu, Song; Yao, Hong

    2016-01-01

    Laboratory experiments were conducted to investigate the volatilization behavior of heavy metals during pyrolysis and combustion of municipal solid waste (MSW) components at different heating rates and temperatures. The waste fractions comprised waste paper (Paper), disposable chopstick (DC), garbage bag (GB), PVC plastic (PVC), and waste tire (Tire). Generally, the release trend of heavy metals from all MSW fractions in rapid-heating combustion was superior to that in low-heating combustion. Due to the different characteristics of MSW fractions, the behavior of heavy metals varied. Cd exhibited higher volatility than the rest of heavy metals. For Paper, DC, and PVC, the vaporization of Cd can reach as high as 75% at 500 °C in the rapid-heating combustion due to violent combustion, whereas a gradual increase was observed for Tire and GB. Zn and Pb showed a moderate volatilization in rapid-heating combustion, but their volatilities were depressed in slow-heating combustion. During thermal treatment, the additives such as kaolin and calcium can react or adsorb Pb and Zn forming stable metal compounds, thus decreasing their volatilities. The formation of stable compounds can be strengthened in slow-heating combustion. The volatility of Cu was comparatively low in both high and slow-heating combustion partially due to the existence of Al, Si, or Fe in residuals. Generally, in the reducing atmosphere, the volatility of Cd, Pb, and Zn was accelerated for Paper, DC, GB, and Tire due to the formation of elemental metal vapor. TG analysis also showed the reduction of metal oxides by chars forming elemental metal vapor. Cu2S was the dominant Cu species in reducing atmosphere below 900 °C, which was responsible for the low volatility of Cu. The addition of PVC in wastes may enhance the release of heavy metals, while GB and Tire may play an opposite effect. In controlling heavy metal emission, aluminosilicate- and calcium-based sorbents can be co-treated with fuels. Moreover

  8. Heavy metal behavior during circulating fluidized bed combustion of willow (Salix)

    SciTech Connect

    Lind, T.; Kauppinen, E.I.; Nilsson, K.; Sfiris, G.; Maenhaut, W.; Huggins, F.E.

    1999-07-01

    The behavior of the heavy metals Cd, Pb, Cu and Zn was studied experimentally at a 35 MW circulating fluidized bed boiler. The fuel was a Swedish willow (Salix) and quartz sand was used as an additional bed material. Almost no Cd was retained in the bottom ash, whereas Zn was clearly enriched in the bottom ash. 15--27% of Pb was in the gas phase downstream of the cyclone at T = 810 C, but less than 3% of Cd, Cu, or Zn. In the convective pass the gas phase Pb reacted with the coarse fly ash particles. Consequently, all the heavy metals were found entirely in the coarse fly ash particles downstream of the convective pass at T = 150 C. The heavy metals were not enriched in the fine fly ash particles. The coarse fly ash particles were large agglomerates consisting of up to thousands of submicron primary particles. These agglomerates were very effective in capturing volatile heavy metals into the coarse fly ash fraction hindering their condensation and subsequent enrichment in the fine particles.

  9. Comparative thermodynamic and experimental study of some heavy metal behaviors during automotive shredder residues incineration

    SciTech Connect

    Trouve, G.; Kauffmann, A.; Delfosse, L.

    1998-12-31

    Experimental and theoretical studies of the behavior of some heavy metals were undertaken during Automotive Shredder Residues (ASR) incineration. A thermodynamic study at equilibrium was performed using a software minimizing the free Gibbs energy. The metals studied were barium, copper, lead and zinc. The studies were performed mostly at two temperatures: 1123 and 1373 K. The thermodynamic study showed that the chlorine content is the most important parameter influencing the volatility of the studied metals. It also showed that in default of chlorine in a system containing several metals, barium chloride in its condensed form is the most easily formed. Other metals remained in their metallic form or in the form of oxides. The presence of hydrogen in the system has a general limiting influence on the metal volatility because, especially at high temperatures, hydrogen chloride is more likely to be formed. In the experimental field, the behaviors of metals were studied using commercial polymers as waste models: a PVC mastic, a polyurethane mastic and a rubber powder. Copper and barium presented a non volatile behavior during the incineration of waste matrixes as ASR, being present also in residual ash. On the other hand, lead was completely formed in the gas phase and zinc showed an equal partitioning between the two principal phases of the treatment.

  10. Influence of chlorine, sulfur and phosphorus on the volatilization behavior of heavy metals during sewage sludge thermal treatment.

    PubMed

    Luan, Jingde; Li, Rundong; Zhang, Zhihui; Li, Yanlong; Zhao, Yun

    2013-10-01

    Chlorine, sulfur and phosphorus were selected as element donators to investigate their effect on the volatilization behavior of heavy metals in sludge sewage incineration. Principal component analysis indicated that the promotive effect on the volatilization of heavy metals was followed by chlorine, sulfur and phosphorus. This result was proved to be correct by total release of heavy metals in sewage sludge incineration using different element donators. The release of heavy metals was very chlorine dependent, especially cadmium (Cd), lead (Pb) and nickel (Ni). When chlorine content was in the range of 0.1-0.5wt%, the increase of the volatilization rate was 44.9% for Cd, 6.8% for Pb and 4.6% for Ni, respectively. Although sulfur contributed to the promotion of the volatilization of heavy metals, excess oxygen impaired the promotive effect of sulfur on the release of heavy metals from the condensed phase. For phosphorus, solidifying heavy metals was dominant. Energy analysis showed that metal chlorides and sulfides were prone to volatilize or to be decomposed at elevated temperature compared with sulfates and phosphates owing to low binding energy in absolute value (VLFA). It was the difference of binding energy that led to the different volatilization behavior of metal compounds in a high temperature, oxygen-enriched atmosphere.

  11. Heavy Metal.

    ERIC Educational Resources Information Center

    Shoemaker, W. Lee

    1998-01-01

    Discusses the advantages, both functional and economic, of using a standing-seam metal roof in both new roof installations and reroofing projects of educational facilities. Structural versus non-structural standing-seam roofs are described as are the types of insulation that can be added and roof finishes used. (GR)

  12. Fractionation behavior of heavy metals in soil during bioleaching with Acidithiobacillus thiooxidans.

    PubMed

    Naresh Kumar, R; Nagendran, R

    2009-09-30

    The effects of bioleaching on the fractionation of soil heavy metals were investigated in this study. Bioleaching of heavy metals from contaminated soil was carried out in shake flask experiments. Acidophilic sulfur oxidizing bacteria Acidithiobacillus thiooxidans isolated from soil was used for bioleaching. Bioleaching resulted in removal of heavy metals at higher levels. Variations in the binding forms of heavy metals before, during and after bioleaching were evaluated. It was noticed that bioleaching affected the binding forms of all the heavy metals present in the soil. The major contaminant chromium bound mainly to the fractions of soil which are not very reactive (organic and residual fractions) also showed good removal efficiency. Bioleaching influenced the fractionation of metals in soil after treatment and most of the remnant heavy metals were bound either to residual fraction or to other not easily mobile fractions of soil. The results of this study indicated that the bioleaching process can be useful for efficient removal of heavy metals from soil. Further, the soil with remnant metals can be disposed off safely.

  13. Studying the evaporation behavior of heavy metals by thermo-desorption spectrometry.

    PubMed

    Ludwig, C; Lutz, H; Wochele, J; Stucki, S

    2001-12-01

    "Thermal desorption experiments" were carried out during which heavy metal evaporation was studied by on-line monitoring. This could be achieved by the use of a tubular furnace connected to a heavy metal detector, i.e. an ICP-OES (inductively coupled plasma optical emission spectrometer), by a specially designed and patented interface. The spectrograms typically had a time resolution of four different elements per minute using a conventional (sequentially operating) ICP-OES. This study shows how thermo-desorption spectrometry (TDS) can be applied to study the evaporation of high boiling substances, such as heavy metal and alkali metal compounds. The future scope of the method is discussed.

  14. Behavior and distribution of heavy metals including rare Earth elements, thorium, and uranium in sludge from industry water treatment plant and recovery method of metals by biosurfactants application.

    PubMed

    Gao, Lidi; Kano, Naoki; Sato, Yuichi; Li, Chong; Zhang, Shuang; Imaizumi, Hiroshi

    2012-01-01

    In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1) Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2) Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90-100% using a precipitation method with alkaline solution.

  15. Irradiation effect on leaching behavior and form of heavy metals in fly ash of municipal solid waste incinerator.

    PubMed

    Nam, Sangchul; Namkoong, Wan

    2012-01-15

    Fly ash from a municipal solid waste incinerator (MSWI) is commonly classified as hazardous waste. High-energy electron beam irradiation systems have gained popularity recently as a clean and promising technology to remove environmental pollutants. Irradiation effects on leaching behavior and form of heavy metals in MSWI fly ash have not been investigated in any significant detail. An electron beam accelerator was used in this research. Electron beam irradiation on fly ash significantly increased the leaching potential of heavy metals from fly ash. The amount of absorbed dose and the metal species affected leaching behavior. When electron beam irradiation intensity increased gradually up to 210 kGy, concentration of Pb and Zn in the leachate increased linearly as absorbed dose increased, while that of Cu underwent no significant change. Concentration of Pb and Zn in the leachate increased up to 15.5% (10.7 mg/kg), and 35.6% (9.6 mg/kg) respectively. However, only 4.8% (0.3mg/kg) increase was observed in the case of Cu. The results imply that irradiation has significant effect on the leaching behavior of heavy metals in fly ash, and the effect is quite different among the metal species tested in this study. A commonly used sequential extraction analysis which can classify a metal species into five forms was conducted to examine any change in metal form in the irradiated fly ash. Notable change in metal form in fly ash was observed when fly ash was irradiated. Change in Pb form was much greater than that of Cu form. Change in metal form was related to leaching potential of the metals. Concentration of heavy metal in leachate was positively related to the exchangeable form which is the most mobile. It may be feasible to treat fly ash by electron beam irradiation for selective recovery of valuable metals or for pretreatment prior to conventional processes.

  16. MINTEQ modeling for evaluating the leaching behavior of heavy metals in MSWI fly ash.

    PubMed

    Zhang, Yan; Jiang, Jianguo; Chen, Maozhe

    2008-01-01

    At present, all kinds of municipal solid waste incineration (MSWI) fly ash stabilization technology has been reported and successfully applied in many countries. However, leaching procedures are very different that the technologies lack uniform standard, and it is even impossible to predict the long-term stabilization. Geochemical model can explain the environmental stabilization based on chemical phase and thermodynamic crystal structure, and it is also able to guide the development of environment-friendly stabilization technology and choosing of chemical agents. Both experiment analysis and geochemical modeling were used to study the correlation between leaching behavior of MSWI fly ash and variation of pH. Dissolution/precipitation mechanism was applied in the simulation. The result indicated that the pH-dependent leaching behavior predicted by Visual MINTEQ is well in agreement with the result of pH-dependent test. pH value of leachate can significantly change the leaching behavior of MSWI fly ash. The leaching behavior of heavy metals for Pb and Cd is controlled by dissolution/precipitation mechanism, whereas for Zn and Ni, it is effected by surface adsorption reaction over a special extent of pH value.

  17. Heavy Metal and Hip-Hop Style Preferences and Externalizing Problem Behavior: A Two-Wave Longitudinal Study

    ERIC Educational Resources Information Center

    Selfhout, Maarten H. W.; Delsing, Marc J. M. H.; ter Bogt, Tom F. M.; Meeus, Wim H. J.

    2008-01-01

    This study examines (a) the stability of Dutch adolescents' preferences for heavy metal and hip-hop youth culture styles, (b) longitudinal associations between their preferences and externalizing problem behavior, and (c) the moderating role of gender in these associations. Questionnaire data were gathered from 931 adolescents between the ages of…

  18. Selective heavy metals removal from waters by amorphous zirconium phosphate: behavior and mechanism.

    PubMed

    Pan, Bingcai; Zhang, Qingrui; Du, Wei; Zhang, Weiming; Pan, Bingjun; Zhang, Qingjian; Xu, Zhengwen; Zhang, Quanxing

    2007-07-01

    Selective removal of heavy metals from water has been of considerable concern for several decades. In the present study, the amorphous zirconium phosphate (ZrP) was synthesized and characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron micrography (SEM), thermogravimetric analysis (TGA) as well as pH-titration experiments. Uptake of heavy metals including lead, cadmium, and zinc onto ZrP was studied by using a polystyrene sulfonic-acid exchanger D-001 as a reference sorbent and Ca(2+) as a competing cation due to its ubiquity in natural or industrial waters. The results indicated that the uptake of heavy metals onto ZrP is essentially an ion-exchange process and dependent upon solution pH. In comparison with D-001, ZrP exhibited more favorable sorption of heavy metals particularly in terms of high selectivity, as indicated by the distribution coefficients of ZrP even several orders higher than D-001 towards heavy metals when calcium ion coexisted at a high level in solution. The Fourier transform-infrared (FT-IR) spectroscopic investigation indicated that the uptake of calcium, cadmium, and zinc ions onto ZrP is only driven by the electrostatic interaction, while that of lead ion is possibly dependent upon the inner-sphere complex formation with ZrP. XPS results further elucidated that ZrP displays different sorption affinity towards heavy metals in the same order as selectivity sequence of Pb(2+)>Zn(2+) approximately Cd(2+)>Ca(2+), which can be explained by hard and soft acids and bases (HASB) theory. Moreover, uptake of heavy metals onto ZrP approached to equilibrium quickly and the used ZrP could be readily regenerated for reuse by the dilute HCl solution. Thus, all the results suggest that amorphous ZrP has excellent potential as a sorption material for water treatment.

  19. The behavior of heavy metals in tidal flat sediments during fresh water leaching.

    PubMed

    Li, QuSheng; Liu, YaNan; Du, YeFeng; Cui, ZhiHong; Shi, Lei; Wang, LiLi; Li, HongJie

    2011-02-01

    Many of the coastal tidal flats in China that were polluted with heavy metals are now being reclaimed for arable land. The safety of these soils for agriculture is of great concern. The present study investigated the sediment chemical properties, concentrations, and speciation of heavy metals at different levels of desalination during a controlled leaching experiment. After leaching with fresh water, the average reductions in the heavy metal species examined in 0-65 cm depth sediment were 32.1% for Pb, 26.2% for Cd, 14.0% for Zn, 13.8% for Cu, and 11.0% for Cr, while the Ni concentration in sediment did not change significantly. The amounts of Cd, Pb, Cr, Cu, and Zn bound to the reducible fraction, the amounts of Cd, Pb, and Zn bound to the exchangeable fraction, the amounts of Pb, Cr, Cu, and Zn associated with the carbonate fraction, and the Cu associated with the oxidizable fraction all decreased significantly. Complexation with salt anions, ion exchange between the cations and the metal ions, removal of SO4(2-), dissolution of carbonate, and the redox potential variations all contributed to the decreases in Pb, Cd, Zn, Cu, and Cr. These results suggest that leaching with fresh water can also remove a fraction of the heavy metal contamination when it diminishes sediment salinity.

  20. The Effects of Gravity on the Crystallization Behavior of Heavy Metal Fluoride Glasses

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Smith, Guy A.

    2004-01-01

    Heavy metal fluoride glasses are used in such applications as fiber lasers and laser amplifiers. ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) is one of the more commonly used heavy metal fluoride glasses. ZBLAN is an infrared transmitter and has a theoretical attenuation coefficient of 0.002 db/km. However, due to impurities and small crystallites this attenuation coefficient has not been achieved to date. ZBLAN is a fragile glass which can lead to rapid crystallization, if the glass is not cooled rapidly to below the glass transition temperature or if the glass is reheated near the crystallization temperature for any period of time. Studies carried on at Marshall Space Flight Center and the University of Alabama in Huntsville since 1993 have shown that heating ZBLAN glass at the crystallization temperature in reduced gravity results in a suppression of crystallization when compared to ZBLAN processed in unit gravity. These studies utilized NASA's KC-135 aircraft and the Conquest sounding rocket. In the first series of experiments, short lengths of ZBLAN fiber were heated to the crystallization temperature in reduced gravity on board the KC- 135 and the Conquest sounding rocket and compared with fibers heated in unit gravity. The fibers processed in reduced gravity showed no evidence of crystallization when studied with x-ray diffraction and scanning electron microscopy. However, the fibers processed in unit gravity were completely crystallized. Subsequent experiments included heating small pieces of ZBLAN glass at the crystallization temperature while viewing with a video camera to follow the crystallization phenomenon. In this experiment crystallization was observed in reduced gravity, however, it was suppressed when compared to heating in unit gravity. In the most recent experiment on board the KC-135, rapid thermal analysis of ZBLAN was performed. A mechanism to explain the observations has been proposed. This mechanism is based on shear thinning whereby, the glass

  1. Leaching Behavior of Heavy Metals from Cement Pastes Using a Modified Toxicity Characteristic Leaching Procedure (TCLP).

    PubMed

    Huang, Minrui; Feng, Huajun; Shen, Dongsheng; Li, Na; Chen, Yingqiang; Shentu, Jiali

    2016-03-01

    As the standard toxicity characteristic leaching procedure (TCLP) can not exhaust the acid neutralizing capacity of the cement rotary kiln co-processing solid wastes products which is particularly important for the assessment of the leaching concentrations of heavy metals. A modified TCLP was proposed. The extent of leaching of heavy metals is low using the TCLP and the leaching performance of the different metals can not be differentiated. Using the modified TCLP, however, Zn leaching was negligible during the first 180 h and then sharply increased (2.86 ± 0.18 to 3.54 ± 0.26 mg/L) as the acidity increased (pH < 6.0). Thus, Zn leaching is enhanced using the modified TCLP. While Pb leached readily during the first 126 h and then leachate concentrations decreased to below the analytical detection limit. To conclude, this modified TCLP is a more suitable method for these cement rotary kiln co-processing products.

  2. Partitioning behavior of heavy metals and persistent organic pollutants among feto-maternal bloods and tissues.

    PubMed

    Kim, Jun-Tae; Son, Min-Hui; Lee, Duk-Hee; Seong, Won Joon; Han, Seunghee; Chang, Yoon-Seok

    2015-06-16

    Heavy metals and persistent organic pollutants (POPs), including Pb, Cd, T-Hg, MeHg, PCDD/Fs, PCBs, PBDEs, PCNs, and PBDD/Fs, were analyzed in 20 paired samples of cord blood, maternal blood, maternal urine, and placenta. The samples were collected from pregnant mothers and neonates from South Korea in 2010. The distribution of heavy metals among the samples varied with their physicochemical characteristics. The concentrations of Pb and Hg in the maternal and the cord blood samples were significantly correlated each other, implying efficient transplacental transport (TPT). Cd and Hg were accumulated in the placenta, forming protein conjugates, and T-Hg was higher in the cord blood samples than the maternal blood samples due to the binding affinity of Hg with fetal proteins. POPs generally showed the highest concentrations in the maternal serum samples, and the POPs levels in the cord serum and the placenta samples were dependent on the degree of halogenation. The TPT of POPs was seemingly related to lipoprotein transportation. Some PBDE congeners, however, showed their highest concentrations in the cord serum samples, suggesting an additional TPT mechanism. This is the first study to detect PCNs and PBDD/Fs in the cord serum samples, showing that the PCN levels were comparable to other POPs. According to the principal component analysis (PCA) results of the contaminant levels, POPs and heavy metals showed significantly different characteristics, whereas PBDEs had an intermediate attribute. Despite the limited number of participants, the comprehensive analysis of trace contaminants in the paired sample sets enabled us to infer the distribution and TPT mechanism of various contaminants.

  3. Leaching behavior and solubility -- Controlling solid phases of heavy metals in municipal solid waste incinerator ash

    SciTech Connect

    Johnson, C.A.; Ziegler, F.; Kersten, M.; Moor, H.C.

    1996-12-31

    This paper highlights the uses and limitations of thermodynamic calculations in the planning of leach tests in the laboratory or for research in the field. Heavy metal solubility has been studied in leachate from Landfill Lostorf, AG, Switzerland. Also, the influence of pH on the solubility of Cu, Pb, Cd and Zn has been determined in the laboratory. The results have been compared with the maximum allowable heavy metal concentrations in equilibrium with the appropriate (hydr)oxides and carbonates. Copper is supersaturated with respect to Cu(OH){sub 2} in both laboratory and field studies. Complexation with organic ligands is a probable explanation for this observation. Both Zn and Pb are undersaturated with respect to pure (hydr)oxides and carbonates, though agreement between calculations and measurements are close enough, that PbCO{sub 3} could be controlling the solubility in the laboratory experiments. The markedly lower concentrations of Pb in the field in comparison with the laboratory data could be explained by the affinity for Pb to bind to solids and the higher solid:solution ratio in field conditions. The solubility of Cd could be controlled by the formation of CdCO{sub 3}. The relatively high concentrations of Mo in the landfill leachate could be limited by the precipitation of CaMoO{sub 4}.

  4. Heavy metals extraction by microemulsions.

    PubMed

    Dantas, T N Castro; Dantas Neto, A A; Moura, M C P A; Barros Neto, E L; Forte, K R; Leite, R H L

    2003-06-01

    The objective of this study is the heavy metal extraction by microemulsion, using regional vegetable oils as surfactants. Firstly, the main parameters, which have influence in the microemulsion region, such as: nature of cosurfactant, influence of cosurfactant (C)/surfactant (S) ratio and salinity were studied, with the objective of choosing the best extraction system. The extraction/reextraction process by microemulsion consists of two stages. In the first one, the heavy metal ion present in the aqueous phase is extracted by the microemulsion. In a second step, the reextraction process occurs: the microemulsion phase, rich in metal, is acidified and the metal is recovered in a new aqueous phase, with higher concentration. The used system had the following parameters: surfactant-saponified coconut oil; cosurfactant-n-butanol; oil phase-kerosene; C/S ratio=4; salinity-2% (NaCl); temperature of 27+/-1 degrees C; water phase-aqueous solution that varied according to the heavy metal in study (Cr, Cu, Fe, Mn, Ni and Pb). A methodology of experimental planning was used (Scheffé Net) to study the behavior of the extraction in a chosen domain. The extraction was accomplished in one step and yielded extraction percentage higher than 98% for all metals. In the reextraction HCl-8M was used as reextraction agent and the influence of the pH and time were verified. This work showed the great efficiency of the microemulsion, indicating that it is possible to extract selectively the heavy metals from the aqueous phase.

  5. A long-term static immersion experiment on the leaching behavior of heavy metals from waste printed circuit boards.

    PubMed

    Zhao, Guo-Hua; Luo, Xing-Zhang; Chen, Gui; Zhao, Yong-Jun

    2014-08-01

    Printed circuit boards (PCBs) are the main components of electrical and electronic equipment (EEE). Waste PCBs contain several kinds of heavy metals, including Cu, Pb and Zn. We characterize the leaching of heavy metals (Cu, Pb, Zn and Ni) from waste PCBs in a pH range of 3.0 to 5.6 using a novel approach based on batch pH-static leaching experiments in this work. The results indicate that the leaching behavior of Cu, Pb, Zn and Ni is strongly dependent on pH. Leaching behavior also varies with different pH values and leaching times. The maximum concentrations of Cu, Pb, Zn and Ni in leachate from waste PCBs were 335.00, 17.57, 2.40 and 2.33 mg L(-1), respectively. The highest Pb, Ni, and Cu concentrations leached significantly exceeded the European Union waste-acceptance limit values with respect to inert waste landfills. The leaching of metals follows the shrinking core model with surface reaction control.

  6. Effect of the behavior and availability of heavy metals on the characteristics of the coastal soils developed from alluvial deposits.

    PubMed

    Li, Jinling; He, Ming; Sun, Shouqin; Han, Wei; Zhang, Youchi; Mao, Xiaohui; Gu, Yifan

    2009-09-01

    An investigation of the behavior and availability of heavy metals (HMs), i.e., Cu, Zn, Ni, Pb, Cr, and Cd, based on the analysis of correlation between HMs and physical and chemical properties of coastal soils developed from alluvial deposits in Shanghai, China, has been conducted, in order to reveal the effect of the soil formation and development and the unsuited human activities on the activities and mobility of HMs in agricultural soils. The results showed that (1) the soils still meet the needs of plant growth due to the moderate fertility with a soil texture of silty loam although the content of organic matters is lower, (2) total heavy metal content had a increase trend from the inland area to the coastal area, indicating the impact of alluvial deposits related to the soil formation on the distribution of HMs; (3) a significant positive correlation was found between HMs and some soil properties (i.e., clay content, cation exchange capacity, organic matters, total Phosphorous content, etc.), indicating that the regulation of these properties could give some great effect on the behavior and availability of HMs; (4) the positive correlation among Cu, Zn, Ni, and Cd, and between Pb and Cr is very significant, suggesting the most similar, if not the same, origins of HMs; These findings are helpful to the soil remediation, fertility adjustment, and plant cultivation.

  7. Resorcarene-based receptor: versatile behavior in its interaction with heavy and soft metal cations.

    PubMed

    Danil de Namor, Angela F; Chaaban, Jinane K; Piro, Oscar E; Castellano, Eduardo E

    2006-02-09

    Standard solution Gibbs energies, DeltasG degrees, of the resorcarene-based receptor 5,11,17,23-ethylthiomethylated calix[4]resorcarene, (characterized by 1H NMR and X-ray diffraction studies) in its monomeric state (established through partition experiments) in various solvents are for the first time reported in the area of resorcarene chemistry. Transfer Gibbs energies of from hexane (reference solvent) to other medium are calculated. Agreement between DeltatG degrees (referred to the pure solvents) and standard partition Gibbs energies, DeltapG degrees (solvent mutually saturated) is found. Cation-ligand interactions were investigated through 1H NMR (CD3CN and CD3OD) and conductometric titrations in acetonitrile and methanol. 1H NMR data revealed the sites of interaction of with the metal cation. The composition of the metal-ion complexes (Ag+ and Pb2+ in acetonitrile and Ag+ and Cu2+ in methanol) was established through conductometric titrations. Thus, complexes of 1:1 stoichiometry were formed between and Ag+ and Pb2+ in acetonitrile and Cu2+ in methanol. However, in moving from acetonitrile to methanol, the composition of the silver complex was altered. Thus, two metal cations are hosted by a unit of the ligand. As far as Cu2+ and in acetonitrile is concerned, conductance data suggest that metalates are formed in which up to four units of Cu2+ are taken up per unit of resorcarene. The contrasting behavior of with Cu2+ in acetonitrile relative to methanol is discussed. As far as mercury (II) is concerned, the unusual jump in conductance observed in the titration of Hg2+ with in acetonitrile and methanol after the formation of a multicharged complex (undefined composition) is attributed to the presence of highly charged smaller units (higher mobility) resulting from the departure of pendant arms from the resorcarene backbone. Isolation of these species followed by X-ray diffraction studies corroborated this statement. The thermodynamic characterization of metal

  8. Environmental behaviors and potential ecological risks of heavy metals (Cd, Cr, Cu, Pb, and Zn) in multimedia in an oilfield in China.

    PubMed

    Hu, Yan; Wang, Dazhou; Li, Yu

    2016-07-01

    The environmental behaviors of five heavy metals (Cd, Cr, Cu, Pb, and Zn) in a Chinese oilfield were investigated using a steady-state multimedia aquivalence (SMA) model. The modeling results showed good agreement with the actual measured values, with average residual errors of 0.69, 0.83, 0.35, 0.16, and 0.54 logarithmic units for air, water, soil, sediment, and vegetation compartments, respectively. Model results indicated that most heavy metals were buried in sediment, and that transfers between adjacent compartments were mainly deposition from the water to the sediment compartment (48.59 %) and from the air to the soil compartment (47.74 %) via atmospheric dry/wet deposition. Sediment and soil were the dominant sinks, accounting for 68.80 and 25.26 % of all the heavy metals in the multimedia system, respectively. The potential ecological risks from the five heavy metals in the sediment and soil compartments were assessed by the potential ecological risk index (PERI). The assessment results demonstrate that the heavy metals presented low levels of ecological risk in the sediment compartment, and that Cd was the most significant contributor to the integrated potential ecological risk in the oilfield. The SMA model provided useful simulations of the transport and fate of heavy metals and is a useful tool for ecological risk assessment and contaminated site management.

  9. Disorders of heavy metals.

    PubMed

    Woimant, France; Trocello, Jean-Marc

    2014-01-01

    Heavy metals and trace elements play an important role in relation to the physiology and pathology of the nervous system. Neurologic diseases related to disorders of metabolism of copper and iron are reviewed. Copper disorders are divided into two classes: ATP7A- or ATP7B-related inherited copper transport disorders (Menkes disease, occipital horn syndrome, ATP7A-related distal motor neuropathy, and Wilson disease) and acquired diseases associated with copper deficiency or copper excess. Iron brain disorders are divided into genetic neurodegeneration with brain iron accumulation (NBIA, neuroferritinopathy, and aceruloplasminemia), genetic systemic iron accumulation with neurologic features (hemochromatosis), and acquired diseases associated with iron excess (superficial siderosis) or iron deficiency (restless leg syndrome). The main features of cadmium, lead, aluminum, mercury, and manganese toxicity are summarized.

  10. Transfer of heavy metals through terrestrial food webs: a review.

    PubMed

    Gall, Jillian E; Boyd, Robert S; Rajakaruna, Nishanta

    2015-04-01

    Heavy metals are released into the environment by both anthropogenic and natural sources. Highly reactive and often toxic at low concentrations, they may enter soils and groundwater, bioaccumulate in food webs, and adversely affect biota. Heavy metals also may remain in the environment for years, posing long-term risks to life well after point sources of heavy metal pollution have been removed. In this review, we compile studies of the community-level effects of heavy metal pollution, including heavy metal transfer from soils to plants, microbes, invertebrates, and to both small and large mammals (including humans). Many factors contribute to heavy metal accumulation in animals including behavior, physiology, and diet. Biotic effects of heavy metals are often quite different for essential and non-essential heavy metals, and vary depending on the specific metal involved. They also differ for adapted organisms, including metallophyte plants and heavy metal-tolerant insects, which occur in naturally high-metal habitats (such as serpentine soils) and have adaptations that allow them to tolerate exposure to relatively high concentrations of some heavy metals. Some metallophyte plants are hyperaccumulators of certain heavy metals and new technologies using them to clean metal-contaminated soil (phytoextraction) may offer economically attractive solutions to some metal pollution challenges. These new technologies provide incentive to catalog and protect the unique biodiversity of habitats that have naturally high levels of heavy metals.

  11. Failure Engineered Heavy Metal Penetrators

    DTIC Science & Technology

    1992-12-01

    ARMY RESEARCH LABORATORY Failure Engineered Heavy Metal Penetrators, Phase I, SBIR ARL-CR-5· R. Cavalieri, W. Tiarn, and D. Nicholson prepared...REPORT DATE S. REPORT TYPE AND DATES COVERED December 1992 Final Report-1/1/92 - 7/31/92 4. TITLE AND SUBTITLE FAILURE ENGINEERED HEAVY METAL PENETRATORS

  12. Heavy Metals Exposure and Hygienic Behaviors of Workers in Sanitary Landfill Areas in Southern Thailand

    PubMed Central

    Decharat, Somsiri

    2016-01-01

    Objectives. The main objective of this study was to assess the cadmium and lead exposure levels in subject workers that work in sanitary landfill areas in southern Thailand. The study evaluated the blood cadmium and lead levels in terms of their possible role in worker contamination and transfer of cadmium and lead to the body. Materials and Methods. A cross-sectional study was conducted with 114 subjects. Whole blood samples were collected to determine cadmium and lead levels by graphite furnaces atomic absorption spectrometer chromium analyzer. Results and Discussion. The mean blood cadmium levels and blood lead levels of subjects workers were 2.95 ± 0.58 μg/L (range 1.58–7.03 μg/L) and 8.58 ± 2.58 μg/dL (range 1.98–11.12 μg/dL), respectively. Gender, income, smoked cigarettes, work position, duration of work, personal protective equipment (PPE), and personal hygiene were significantly associated with blood cadmium level and blood lead levels (p < 0.001 and p < 0.001). A multiple regression model was constructed. Significant predictors of blood cadmium levels and blood lead levels included smoked cigarettes, hours worked per day, days worked per week, duration of work (years), work position, use of PPE (mask and gloves), and personal hygiene behavior (ate snacks or drank water at work and washed hands before lunch). Conclusion. The elevated body burden of toxic metals in the solid waste exposure of subject workers is an indication of occupational metal toxicity associated with personal hygiene practices. PMID:27313961

  13. Heavy Metal Pumps in Plants

    SciTech Connect

    Harper, J.F.

    2000-10-01

    The long term goal of the funded research is to understand how heavy metals are taken up from the soil and translocated throughout the plant. The potential application of this research is to create plants with better heavy metal uptake systems and thereby improve the ability of these plants to help clean up toxic metals from soils. A rate limiting step is using plant for bioremediation is the normally poor capacity of plants to concentrate toxic metals. Our interest in metal ion transport systems includes those for essential mineral nutrients such as molybdenum, copper, iron, manganese, as well as toxic metals such as cerium, mercury, cesium, cadmium, arsenic and selenium. Understanding the pathways by which toxic metals accumulate in plants will enable the engineering of plants to exclude toxic metals and create healthier food sources, or to extract toxic metals from the soil as a strategy to clean up polluted lands and water.

  14. Heavy Metal Stars

    NASA Astrophysics Data System (ADS)

    2001-08-01

    thereafter dies as a burnt-out, dim "white dwarf" . Stars with masses between 0.8 and 8 times that of the Sun are believed to evolve to AGB-stars and to end their lives in this particular way. At the same time, they produce beautiful nebulae like the "Dumbbell Nebula". Our Sun will also end its active life this way, probably some 7 billion years from now. Low-metallicity stars The detailed understanding of the "s-process" and, in particular, where it takes place inside an AGB-star, has been an area of active research for many years. Current state-of-the-art computer-based stellar models predict that the s-process should be particularly efficient in stars with a comparatively low content of metals ("metal-poor" or "low-metallicity" stars) . In such stars - which were born at an early epoch in our Galaxy and are therefore quite old - the "s-process" is expected to effectively produce atomic nuclei all the way up to the most heavy, stable ones, like Lead (atomic number 82 [2]) and Bismuth (atomic number 83) - since more neutrons are available per Iron-seed nucleus when there are fewer such nuclei (as compared to the solar composition). Once these elements have been produced, the addition of more s-process neutrons to those nuclei will only produce unstable elements that decay back to Lead. Hence, when the s-process is sufficiently efficient, atomic nuclei with atomic numbers around 82, that is, the Lead region, just continue to pile up. As a result, when compared to stars with "normal" abundances of the metals (like our Sun), those low-metallicity stars should thus exhibit a significant "over-abundance" of those very heavy elements with respect to Iron, in particular of Lead . Looking for Lead Direct observational support for this theoretical prediction would be the discovery of some low-metallicity stars with a high abundance of Lead. At the same time, the measured amounts of all the heavy elements and their relative abundances would provide very valuable information and

  15. Heavy Metal in Children's Tooth Enamel: Related to Autism and Disruptive Behaviors?

    ERIC Educational Resources Information Center

    Abdullah, Maryam M.; Ly, Agnes R.; Goldberg, Wendy A.; Clarke-Stewart, K. Alison; Dudgeon, John V.; Mull, Christopher G.; Chan, Tony J.; Kent, Erin E.; Mason, Andrew Z.; Ericson, Jonathon E.

    2012-01-01

    To examine possible links between neurotoxicant exposure and neuropsychological disorders and child behavior, relative concentrations of lead, mercury, and manganese were examined in prenatal and postnatal enamel regions of deciduous teeth from children with Autism Spectrum Disorders (ASDs), high levels of disruptive behavior (HDB), and typically…

  16. Heavy metals and coal combustion

    SciTech Connect

    Danihelka, P.; Ochodek, T.; Noskievic, P.; Seidlerova, J.

    1998-07-01

    Combustion of coal may be an important source of heavy metals pollution. The distribution of heavy metals during combustion process has been studied in six power plants, where fuel, bottom ash, fly ash and emissions have been analyzed and the relative concentrations of heavy metals have been estimated. For the most volatile metals (arsenic, antimony, lead, and zinc), the redistribution process involving condensation on surface is probable. Some metals like manganese or chromium are concentrated rather in coarse particles. In such cases, no clear conclusion can be made and probably several mechanisms are involved, including mineral form of metal. Typical results of low chlorine coal (0.01--0.03% Cl) exhibit increasing concentration of volatile metals in the magnitude of around one order when going from bottom ash to emissions. Different results have been found in similar operation conditions in the case of high content of chlorine in coal (0.3% of Cl in coal). In this case, the concentration of metals in emissions is significantly higher and also nickel, copper and manganese concentrations increase. It seems to be probable that chlorine in the coal increases the redistribution of metals by volatile chlorides formation. At three operation condition (nominal output, 70% and 40% respectively) emission factors of heavy metals have been estimated for 35 MW stoker-fired boiler. Ba, Pb, Sb and Zn increased their emission factors and Cr and Mn decreased when output was decreased. Heavy metals pollution caused by emissions from combustion of coal may be decreased by fine particles removal, other possibilities (metals extraction from the coal, changes of condition in the flame) are rather limited.

  17. Prediction of heavy metal behavior in soil by means of simple field tests

    SciTech Connect

    Blume, H.P.; Bruemmer, G. )

    1991-10-01

    Binding and retention against uptake by plants, and groundwater pollution of the metal ions Cd, Mn, Ni, Co, Zn, Cu, Cr(III), Pb, Hg, Fe(III), and Al by soils in relation to pH, redox potential, texture, organic matter, and iron oxide contents can be diagnosed in the form of rough relative values with simple field methods. A comparison with the results of some pot and field trials showed the practicability of this method.

  18. Changes in speciation and leaching behaviors of heavy metals in dredged sediment solidified/stabilized with various materials.

    PubMed

    Bao, Jianping; Wang, Liang; Xiao, Man

    2016-05-01

    Solidification/stabilization (S/S) of sediments is frequently used to treat contaminants in dredged sediments. In this study, sediment collected from the Pearl River Delta (China) was solidified/stabilized with three different kinds of functional materials: cement, lime and bentonite. Lime primarily acted via induced increases in pH, while cements stabilization occurred through their silicate-based systems and the main function of bentonite was adsorption. The speciation and leaching behaviors of specific heavy metals before and after S/S were analyzed and the results showed that the residual speciation of Cd, Cr, Ni, Pb and Zn increased in all treatments except for Cu, as the exchangeable speciation, carbonate-bound speciation and Fe-Mn-oxide-bound speciation of Cu (all of which could be stabilized) were less than 2 % of the total amount. Pb leaching only decreased when pH increased, while the mobility of Cr and Ni only decreased in response to the silicate-based systems. The leached portion of the Fe-Mn-oxide-bound speciation followed the order Zn > Cu > Ni/Cd > Pb > Cr. The leached portion of organic-matter-bound species was less than 4 % for Cd, Cr, Ni and Pb, but 35.1 % and 20.6 % for Cu and Zn, respectively.

  19. Leaching behavior of heavy metals and transformation of their speciation in polluted soil receiving simulated acid rain.

    PubMed

    Zheng, Shun-an; Zheng, Xiangqun; Chen, Chun

    2012-01-01

    Heavy metals that leach from contaminated soils under acid rain are of increasing concern. In this study, simulated acid rain (SAR) was pumped through columns of artificially contaminated purple soil. Column leaching tests and sequential extraction were conducted for the heavy metals Cu, Pb, Cd, and Zn to determine the extent of their leaching as well as to examine the transformation of their speciation in the artificially contaminated soil columns. Results showed that the maximum leachate concentrations of Cu, Pb, Cd, and Zn were less than those specified in the Chinese Quality Standards for Groundwater (Grade IV), thereby suggesting that the heavy metals that leached from the polluted purple soil receiving acid rain may not pose as risks to water quality. Most of the Pb and Cd leachate concentrations were below their detection limits. By contrast, higher Cu and Zn leachate concentrations were found because they were released by the soil in larger amounts as compared with those of Pb and Cd. The differences in the Cu and Zn leachate concentrations between the controls (SAR at pH 5.6) and the treatments (SAR at pH 3.0 and 4.5) were significant. Similar trends were observed in the total leached amounts of Cu and Zn. The proportions of Cu, Pb, Cd, and Zn in the EXC and OX fractions were generally increased after the leaching experiment at three pH levels, whereas those of the RES, OM, and CAR fractions were slightly decreased. Acid rain favors the leaching of heavy metals from the contaminated purple soil and makes the heavy metal fractions become more labile. Moreover, a pH decrease from 5.6 to 3.0 significantly enhanced such effects.

  20. Leaching Behavior of Heavy Metals and Transformation of Their Speciation in Polluted Soil Receiving Simulated Acid Rain

    PubMed Central

    Zheng, Shun-an; Zheng, Xiangqun; Chen, Chun

    2012-01-01

    Heavy metals that leach from contaminated soils under acid rain are of increasing concern. In this study, simulated acid rain (SAR) was pumped through columns of artificially contaminated purple soil. Column leaching tests and sequential extraction were conducted for the heavy metals Cu, Pb, Cd, and Zn to determine the extent of their leaching as well as to examine the transformation of their speciation in the artificially contaminated soil columns. Results showed that the maximum leachate concentrations of Cu, Pb, Cd, and Zn were less than those specified in the Chinese Quality Standards for Groundwater (Grade IV), thereby suggesting that the heavy metals that leached from the polluted purple soil receiving acid rain may not pose as risks to water quality. Most of the Pb and Cd leachate concentrations were below their detection limits. By contrast, higher Cu and Zn leachate concentrations were found because they were released by the soil in larger amounts as compared with those of Pb and Cd. The differences in the Cu and Zn leachate concentrations between the controls (SAR at pH 5.6) and the treatments (SAR at pH 3.0 and 4.5) were significant. Similar trends were observed in the total leached amounts of Cu and Zn. The proportions of Cu, Pb, Cd, and Zn in the EXC and OX fractions were generally increased after the leaching experiment at three pH levels, whereas those of the RES, OM, and CAR fractions were slightly decreased. Acid rain favors the leaching of heavy metals from the contaminated purple soil and makes the heavy metal fractions become more labile. Moreover, a pH decrease from 5.6 to 3.0 significantly enhanced such effects. PMID:23185399

  1. Selective reduction of heavy metals

    SciTech Connect

    Bjorling, G.

    1984-12-11

    The present invention relates to selective reduction of heavy metals out of finey grained, substantially oxidic material by blowing the oxidic material into a furnace together with an amount of reducing agent required for obtaining desired selectivity while simultaneously heat energy is supplied by a gas heated in a plasma generator, the temperature being adjusted to such a level as to correspond to the oxygen potential at which the desired metals are transformed into a particular, isolatable phase as metal melt, metal vapor, speiss or matte and at which the remaining metals enter into a slag phase and can be isolated as slag melt.

  2. Heavy Metal Poisoning and Cardiovascular Disease

    PubMed Central

    Alissa, Eman M.; Ferns, Gordon A.

    2011-01-01

    Cardiovascular disease (CVD) is an increasing world health problem. Traditional risk factors fail to account for all deaths from CVD. It is mainly the environmental, dietary and lifestyle behavioral factors that are the control keys in the progress of this disease. The potential association between chronic heavy metal exposure, like arsenic, lead, cadmium, mercury, and CVD has been less well defined. The mechanism through which heavy metals act to increase cardiovascular risk factors may act still remains unknown, although impaired antioxidants metabolism and oxidative stress may play a role. However, the exact mechanism of CVD induced by heavy metals deserves further investigation either through animal experiments or through molecular and cellular studies. Furthermore, large-scale prospective studies with follow up on general populations using appropriate biomarkers and cardiovascular endpoints might be recommended to identify the factors that predispose to heavy metals toxicity in CVD. In this review, we will give a brief summary of heavy metals homeostasis, followed by a description of the available evidence for their link with CVD and the proposed mechanisms of action by which their toxic effects might be explained. Finally, suspected interactions between genetic, nutritional and environmental factors are discussed. PMID:21912545

  3. Heavy metals and coal combustion

    SciTech Connect

    Danihelka, P.; Ochodek, T.; Noskievic, P.; Seidlerova, J.

    1998-04-01

    Combustion of coal may be an important source of heavy metals pollution. The distribution of heavy metals during combustion process has been studied in six power plants, where fuel, bottom ash, fly ash and emissions have been analysed and the relative concentrations of heavy metals have been estimated. For the most volatile metals (arsenic, antimony, lead, and zinc), the redistribution process involving condensation on surface is probable. Some metals like manganese or chromium are concentrated rather in coarse particles. In such cases, no clear conclusion can be made and probably several mechanisms are involved, including mineral form of metal. Typical results of low chlorine coal (0.01-0.03% Cl) exhibit increasing concentration of volatile metals in the magnitude of around one order when going from bottom ash to emissions. Different results have been found in similar operation conditions in the case of high content of chlorine in coal (0.3 % of Cl in coal). In this case, the concentration of metals in emissions is significantly higher and also nickel, copper and manganese concentrations increase. It seems to be probable that chlorine in the coal increases the redistribution of metals by volatile chlorides formation.

  4. Transgenerational effects of heavy metals on L3 larva of Caenorhabditis elegans with greater behavior and growth inhibitions in the progeny.

    PubMed

    Yu, ZhenYang; Chen, XiaoXue; Zhang, Jing; Wang, Rui; Yin, DaQiang

    2013-02-01

    Heavy metals are ubiquitous environmental pollutants, and their toxic effects have been widely studied. However, their transgenerational effects between parent and progeny at environmental relevant concentrations need further investigations. Currently, L3 stage of Caenorhabditis elegans was exposed to aqueous metals (Cd, Cu, Pb and Zn) at environmentally realistic concentrations for 96 h. The whole exposure time covered the formation of sperm, ovum and eggs. Subsequently the behavior and growth indicators were measured. The parent nematodes were then bleached to gain synchronized eggs, which were cultured under non-toxic conditions to L3 stage when the same indicators were measured in the progeny. The parent suffered concentration-dependent inhibitions on behavior and growth. Based on the median effective concentration (EC(50)) values, body bending frequency showed relatively higher sensitivity than other behavior indicators. The inhibitions on growth and behavior of progeny were more severe than those of the parent, based on their respective EC(50) values. Interestingly, Cd was not the most toxic metal in either parent or progeny according to EC(50) values, but its EC(50) ratios between parent and progeny (EC(50, parent)/EC(50, progeny)) were the most significant, indicating its greatest transgenerational effects. The results demonstrated the higher sensitivity of L3 larva stage of C. elegans in the transgenerational effect studies than other life stages used before. Our findings suggested that parental exposure to heavy metals can multiply their harmful effects in following generations.

  5. Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(III) oxides: behavior and XPS study.

    PubMed

    Pan, Bingjun; Qiu, Hui; Pan, Bingcai; Nie, Guangze; Xiao, Lili; Lv, Lu; Zhang, Weiming; Zhang, Quanxing; Zheng, Shourong

    2010-02-01

    The present study developed a polymer-based hybrid sorbent (HFO-001) for highly efficient removal of heavy metals [e.g., Pb(II), Cd(II), and Cu(II)] by irreversibly impregnating hydrated Fe(III) oxide (HFO) nanoparticles within a cation-exchange resin D-001 (R-SO(3)Na), and revealed the underlying mechanism based on X-ray photoelectron spectroscopy (XPS) study. HFO-001 combines the excellent handling, flow characteristics, and attrition resistance of conventional cation-exchange resins with the specific affinity of HFOs toward heavy metal cations. As compared to D-001, sorption selectivity of HFO-001 toward Pb(II), Cu(II), and Cd(II) was greatly improved from the Ca(II) competition at greater concentration. Column sorption results indicated that the working capacity of HFO-001 was about 4-6 times more than D-001 with respect to removal of three heavy metals from simulated electroplating water (pH approximately 4.0). Also, HFO-001 is particularly effective in removing trace Pb(II) and Cd(II) from simulated natural waters to meet the drinking water standard, with treatment volume orders of magnitude higher than D-001. The superior performance of HFO-001 was attributed to the Donnan membrane effect exerted by the host D-001 as well as to the impregnated HFO nanoparticles of specific interaction toward heavy metal cations, as further confirmed by XPS study on lead sorption. More attractively, the exhausted HFO-001 beads can be effectively regenerated by HCl-NaCl solution (pH 3) for repeated use without any significant capacity loss.

  6. Heavy metal behavior and dissolved organic matter (DOM) characterization of vermicomposted pig manure amended with rice straw.

    PubMed

    Zhu, Weiqin; Yao, Wu; Zhang, Zhi; Wu, Yang

    2014-11-01

    Vermicomposting is an eco-friendly method for disposing of livestock and poultry manure. In addition, dissolved organic matter (DOM) can serve as a carrier that enhances the migration and transformation of heavy metals. Here, pig manure amended with rice straw was vermicomposted with Eisenia fetida. The DOM content, molecular weight distribution, and spectroscopic properties of the amended pig manure were measured before and after vermicomposting. The Cu and Zn concentrations in the earthworms increased from 8.24 and 17.63 to 40.75 and 362.78 mg/kg separately after vermicomposting, and the earthworms also increased the heavy metal availability in the vermicompost. Relative to the DOM properties of conventional compost, the DOM molecular weight decreased and varied widely following vermicomposting, and the C/N ratio of the DOM in the vermicompost treatments decreased from 10.37 to 8.60. The Fourier transform far-infrared (FTIR) and fluorescence spectra of the DOM indicated that the amounts of oxygen-containing structures increased while the ratio of humic acid to fulvic acid decreased following vermicomposting. Accordingly, the earthworms augmented the heavy metal mitigation risk in the pig manure. This augment potentially resulted from the decreased humic acid-to-fulvic acid (HA/FA) ratio from DOM structural changes.

  7. Process for removing heavy metal compounds from heavy crude oil

    DOEpatents

    Cha, Chang Y.; Boysen, John E.; Branthaver, Jan F.

    1991-01-01

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  8. Abatement of Marine Coatings Containing Heavy Metals

    DTIC Science & Technology

    1995-06-01

    in the abatement of heavy metal containing marine coatings. Funding for this...shipyards to be proactive in the area of heavy metal coating systems abatement as current regulations were not "user friendly" in shipboard applications.

  9. Sorption behavior of heavy metal species by soakaway sediment receiving urban road runoff from residential and heavily trafficked areas.

    PubMed

    Murakami, Michio; Fujita, Makoto; Furumai, Hiroaki; Kasuga, Ikuro; Kurisu, Futoshi

    2009-05-30

    Groundwater contamination by heavy metals from infiltration facilities receiving road runoff is of potential concern. In this study, sorption tests were conducted to evaluate the influence of the water quality of road runoff, especially dissolved organic matter (DOM), on the sorption of heavy metal species by soakaway sediment. Sequential batch tests were conducted to assess metal sorption by the soakaway sediment receiving road runoff from residential and heavily trafficked areas. Ni was adsorbed by the sediment, indicating that soakaway sediments function to prevent groundwater contamination by Ni. In contrast, Zn was released from the soakaway sediment in sorption tests using heavily trafficked road dust leachates. Ni, Cu, Zn, and dissolved organic carbon concentrations were higher in soakaway sediment leachates obtained by sorption tests using heavily trafficked road dust leachates than those using residential road dust leachates, suggesting traffic activities contaminate these pollutants. A large portion of Zn, released from the soakaway sediment, existed as stable complexes. DOM in road runoff possibly enhances the release of Zn from the sediments within infiltration facilities and might cause groundwater contamination.

  10. Biochar soil amendment: Impact of soil types on heavy metal sorption-desorption behaviors and repeated nutrient leaching

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Depending on soil types, properties of chars especially pH and leachable organic/inorganic components can have varying impacts when used as a soil amendment. We have investigated sorption-desorption behaviors of metal contaminant of concern in shooting ranges and urban soils (Cu), nutrient supply (...

  11. Influence of heavy metals on the formation and the distribution behavior of PAH and PCDD/F during simulated fires.

    PubMed

    Wobst, M; Wichmann, H; Bahadir, M

    2003-04-01

    Combustion experiments were performed with an artificial fire load (polystyrene and quartz powder) in a laboratory scale incinerator in the presence of gaseous HCl to simulate accidental fire conditions. The aim of this investigation was to trace back the alterations of the formation and the distribution behavior of PAH and PCDD/PCDF to the presence of CuO or a mixture of metal oxides (CdO, CuO, Fe(2)O(3), PbO, MoO(3), ZnO). The total amount of the 16 PAH target compounds was reduced by the factor of 5-9 when the mixture of metal oxides was present rather than merely CuO. PAH patterns as well as their distribution behavior were significantly influenced by these oxides. In general, transportation inside the installation was enhanced for most of the 16 analyzed PAH. Only fluorene and dibenzo[a,h]anthracene were transported to a smaller extent. In contrast to PAH, total concentrations of PCDD were increased by factor 9 and of PCDF by factor 10, respectively, when CuO was present. Adding the mixture of metal oxides resulted in an increase of PCDD by factor 14 and of PCDF by factor 7. CuO and the mixture of metal oxides had a different influence on the PCDD/F homologue patterns. For instance, the HxCDF to OCDF ratio after incineration without any metal oxide was 1 to 6, whereas addition of CuO or the mixture of the metal oxides shifted the HxCDF to OCDF ratios towards 1 to 40 or 1 to 17, respectively. Combustion along with CuO increased transportation of higher chlorinated PCDF congeners, whereas the mixture of the metal oxides caused a strong decrease of PCDF distribution throughout the system.

  12. Polyamines and heavy metal stress: the antioxidant behavior of spermine in cadmium- and copper-treated wheat leaves.

    PubMed

    Groppa, María D; Tomaro, María L; Benavides, María P

    2007-04-01

    Polyamine metabolism, as well as spermine (Spm) antioxidant properties, were studied in wheat leaves under Cd2+ or Cu2+ stress. The oxidative damage produced by both metals was evidenced by an increased of thiobarbituric acid reactive substances (TBARS) and a significant decrease in glutathione under both metal treatments. Ascorbate peroxidase (APOX) and glutathione reductase (GR) activities were reduced by both metals to values ranging from 30% to 64% of the control values. Conversely, copper produced a raise in superoxide dismutase activity. The high putrescine (Put) content detected under Cd2+ stress (282% over the control) was induced by the increased activity of both enzymes involved in Put biosynthesis, arginine decarboxylase (ADC) and ornithine decarboxylase (ODC). However, only ODC activity was increased in wheat leaves subjected to Cu2+ stress, leading to a lower Put rise (89% over the controls). Spermidine (Spd) content was not affected by metal treatments, while Spm was significantly reduced. Pretreatment with Spm completely reverted the metals-induced TBARS increase whereas metals-dependent H2O2 deposition on leaf segments (revealed using diaminobenzidine), was considerably reduced in Spm pretreated leaf segments. This polyamine failed to reverse the depletion in APOX activity and glutathione (GSH) content produced by Cd2+ and Cu2+, although it showed an efficient antioxidant behavior in the restoration of GR activity to control values. These results suggest that Spm could be exerting a certain antioxidant function by protecting the tissues from the metals-induced oxidative damage, though this effect was not enough to completely avoid Cd2+ and Cu2+ effect on certain antioxidant enzymes, though the precise mechanism of protection still needs to be elucidated.

  13. The Heavy Metal Subculture and Suicide.

    ERIC Educational Resources Information Center

    Stack, Steven; And Others

    1994-01-01

    Assessed relationship between heavy metal music and suicide with data on heavy metal magazine subscriptions and youth suicide in 50 states. Found that, controlling for other predictors of suicide, greater strength of metal subculture, higher youth suicide rate, suggests that music perhaps nurtures suicidal tendencies already present in subculture.…

  14. Industrial hygiene of selected heavy metals

    SciTech Connect

    Woodring, J.L.

    1993-08-01

    The industrial hygiene of heavy metals consists of recognition, evaluation, and control of exposures in the occupational environment. Several of these metals have been in use since ancient times. Reports of health effects and poisonings from overexposures also have a long history. This report discusses the industrial hygiene of the heavy metals, lead, cadmium, mercury, and manganese.

  15. Effect of heavy metals on bacterial transport

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Olson, M. S.

    2010-12-01

    Adsorption of metals onto bacteria and soil takes place as stormwater runoff infiltrates into the subsurface. Changes in both bacterial surfaces and soil elemental content have been observed, and may alter the attachment of bacteria to soil surfaces. In this study, scanning electron microscopy (SEM) and Energy Dispersive X-ray Spectrometry (EDS) analyses were performed on soil samples equilibrated with synthetic stormwater amended with copper, lead and zinc. The results demonstrate the presence of copper and zinc on soil surfaces. To investigate bacterial attachment behavior, sets of batch sorption experiments were conducted on Escherichia Coli (E. coli) under different chemical conditions by varying solution compositions (nutrient solution vs synthetic stormwater). The adsorption data is best described using theoretical linear isotherms. The equilibrium coefficient (Kd) of E. coli is higher in synthetic stormwater than in nutrient solution without heavy metals. The adsorption of heavy metals onto bacterial surfaces significantly decreases their negative surface charge as determined via zeta potential measurements (-17.0±5.96mv for E. coli equilibrated with synthetic stormwater vs -21.6±5.45mv for E. coli equilibrated with nutrient solution), indicating that bacterial attachment may increase due to the attachment of metals onto bacterial surfaces and their subsequent change in surface charge. The attachment efficiency (α) of bacteria was also calculated and compared for both solution chemistries. Bacterial attachment efficiency (α) in synthetic stormwater is 0.997, which is twice as high as that in nutrient solution(α 0.465). The ratio of bacterial diameter : collector diameter suggests minimal soil straining during bacterial transport. Results suggest that the presence of metals in synthetic stormwater leads to an increase in bacterial attachment to soil surfaces. In terms of designing stormwater infiltration basins, the presence of heavy metals seems to

  16. Biomolecules for removal of heavy metal.

    PubMed

    Singh, Namita Ashish

    2017-02-23

    Heavy metals are natural constituents of the earth's crust, but some heavy metals like cadmium, lead, mercury, arsenic etc. are injurious to living organisms at higher concentration. Nowadays, anthropogenic activities have altered geochemical cycles and biochemical balance of heavy metals. Biomolecules are used nowadays for removal of heavy metals compared to other synthetic biosorbents due to their environmental friendly nature and cost effectiveness. The goal of this work is to review research work and patents related to adsorption through biomolecules like polysaccharides, polypeptides, lignin etc. and bio-sorption by biological material that are used for heavy metal removal. Biomolecules are cost effective and there have been significant progresses in the remediation of heavy metals but, still there are some problems that need to be rectified for its application at industrial processes.

  17. Heavy metals, islet function and diabetes development.

    PubMed

    Chen, Ya Wen; Yang, Ching Yao; Huang, Chun Fa; Hung, Dong Zong; Leung, Yuk Man; Liu, Shing Hwa

    2009-01-01

    It has long been believed that heavy metals possess many adverse health effects. Uncontrolled industrialization has released heavy metal pollution in the world. Heavy metal pollutants damage organ functions and disrupt physiological homeostasis. Diabetes mellitus is growing in prevalence worldwide. Several studies have indicated that the deficiency and efficiency of some essential trace metals may play a role in the islet function and development of diabetes mellitus. Some toxic metals have also been shown to be elevated in biological samples of diabetes mellitus patients. In the present work, we review the important roles of heavy metals in islet function and diabetes development in which the in vitro, in vivo or human evidences are associated with exposure to zinc, arsenic, cadmium, mercury and nickel. Through this work, we summarize the evidence which suggests that some heavy metals may play an important role in diabetes mellitus as environmental risk factors.

  18. Heavy metal music and drug abuse in adolescents.

    PubMed

    King, P

    1988-04-01

    A large number of adolescents in a psychiatric population, particularly those who are chemically dependent, prefer to listen to heavy metal music. Young people who do not identify with traditional values may find simple but unconventional answers to complex problems in the lyrics of this type of music. While a clearcut relationship cannot be established between heavy metal music and destructive behavior, evidence shows that such music promotes and supports patterns of drug abuse, promiscuous sexual activity, and violence.

  19. An optical dosimeter for monitoring heavy metal ions in water

    NASA Astrophysics Data System (ADS)

    Mignani, Anna G.; Regan, Fiona; Leamy, D.; Mencaglia, A. A.; Ciaccheri, L.

    2005-05-01

    This work presents an optochemical dosimeter for determining and discriminating nickel, copper, and cobalt ions in water that can be used as an early warning system for water pollution. An inexpensive fiber optic spectrophotometer monitors the sensor's spectral behavior under exposure to water solutions of heavy metal ions in the 1-10 mg/l concentration range. The Principal Component Analysis (PCA) method quantitatively determines the heavy metals and discriminates their type and combination.

  20. Heavy metal uptake of Geosiphon pyriforme

    NASA Astrophysics Data System (ADS)

    Scheloske, Stefan; Maetz, Mischa; Schüßler, Arthur

    2001-07-01

    Geosiphon pyriforme represents the only known endosymbiosis between a fungus, belonging to the arbuscular mycorrhizal (AM) fungi, and cyanobacteria (blue-green algae). Therefore we use Geosiphon as a model system for the widespread AM symbiosis and try to answer some basic questions regarding heavy metal uptake or resistance of AM fungi. We present quantitative micro-PIXE measurements of a set of heavy metals (Cu, Cd, Tl, Pb) taken up by Geosiphon-cells. The uptake is studied as a function of the metal concentration in the nutrient solution and of the time Geosiphon spent in the heavy metal enriched medium. The measured heavy metal concentrations range from several ppm to some hundred ppm. Also the influence of the heavy metal uptake on the nutrition transfer of other elements will be discussed.

  1. Arbuscular mycorrhiza and heavy metal tolerance.

    PubMed

    Hildebrandt, Ulrich; Regvar, Marjana; Bothe, Hermann

    2007-01-01

    Arbuscular mycorrhizal fungi (AMF) have repeatedly been demonstrated to alleviate heavy metal stress of plants. The current manuscript summarizes results obtained to date on the colonization of plants by AMF in heavy metal soils, the depositions of heavy metals in plant and fungal structures and the potential to use AMF-plant combinations in phytoremediation, with emphasis on pennycresses (Thlaspi ssp.). The focus of this manuscript is to describe and discuss studies on the expression of genes in plants and fungi under heavy metal stress. The summary is followed by data on differential gene expression in extraradical mycelia (ERM) of in vitro cultured Glomus intraradices Sy167 supplemented with different heavy metals (Cd, Cu or Zn). The expression of several genes encoding proteins potentially involved in heavy metal tolerance varied in their response to different heavy metals. Such proteins included a Zn transporter, a metallothionein, a 90 kD heat shock protein and a glutathione S-transferase (all assignments of protein function are putative). Studies on the expression of the selected genes were also performed with roots of Medicago truncatula grown in either a natural, Zn-rich heavy metal "Breinigerberg" soil or in a non-polluted soil supplemented with 100 microM ZnSO(4). The transcript levels of the genes analyzed were enhanced up to eight fold in roots grown in the heavy metal-containing soils. The data obtained demonstrate the heavy metal-dependent expression of different AMF genes in the intra- and extraradical mycelium. The distinct induction of genes coding for proteins possibly involved in the alleviation of damage caused by reactive oxygen species (a 90 kD heat shock protein and a glutathione S-transferase) might indicate that heavy metal-derived oxidative stress is the primary concern of the fungal partner in the symbiosis.

  2. Coal combustion and heavy metals pollution

    SciTech Connect

    Danihelka, P.; Ochodek, T.; Borovec, K.

    1996-12-31

    Combustion of coal may be an important source of heavy metals pollution. The major environmental risks of heavy metals are connected to their toxicity and mobility in the environment. In the flame, heavy metals are re-distributed with respect to their volatility. Enrichment of fine particles by volatile metals is the most important mechanism for most of the metals. Nevertheless, Hg is emitted mainly in gaseous form and some metals like Mn are concentrated rather in coarse particles. Heavy metals pollution caused by emissions from combustion of coal may be decreased by fine particles removal; other possibilities (metals extraction from the coal, changes of condition in the flame) are limited. Fly ashes from the most important Czech power plants were examined with respect to the heavy metals content. The easily leachable elements with high volatility in the flame (arsenic, zinc, lead) were recognized as the most important fly ash pollutants. The average concentrations of these metals in fly ash were: bituminous coal 46{+-}18 ppm As, 196{+-}93 ppm Zn, 126{+-}46 ppm Pb; brown coal 283{+-}260 ppm As, 60{+-}28 ppm Pb and 212{+-}116 ppm Zn. When ESP and cyclones are used in series, fly ashes from ESP have higher concentration of volatile heavy metals, mainly Pb, Zn and As. Presence of chlorine in fuel increases the volatility of metals.

  3. Heavy Metal, Religiosity, and Suicide Acceptability.

    ERIC Educational Resources Information Center

    Stack, Steven

    1998-01-01

    Reports on data taken from the General Social Survey that found a link between "heavy metal" rock fanship and suicide acceptability. Finds that relationship becomes nonsignificant once level of religiosity is controlled. Heavy metal fans are low in religiosity, which contributes to greater suicide acceptability. (Author/JDM)

  4. Heavy Metal Music and Adolescent Suicidal Risk.

    ERIC Educational Resources Information Center

    Lacourse, Eric; Claes, Michel; Villeneuve, Martine

    2001-01-01

    Studied differentiating characteristics of youth who prefer heavy metal music, worship music, and use music for vicarious release. Data for 275 secondary school students suggest that heavy metal music preference and worshipping is not related to suicidal risk when controlling for other suicide factors. Discusses findings in the context of…

  5. Effect of heavy metals on soil fungi

    NASA Astrophysics Data System (ADS)

    Sosak-Świderska, Bożena

    2010-05-01

    Fungi constitute a high proportion of the microbial biomass in soil.Being widespread in soil their large surface-to-volume ratio and high metabolic activity, fungi can contribute significantly to heavy metal dynamics in soil. At neutral pH heavy metals in soils tend to be immobilized to precipitation and/or absorption to cation exchange sites of clay minerals. In the acidic soils, metals are more mobile and enter food webs easier. Microbial production of acids and chelating agents can mobilize to toxic metals. Mobilization is often by uptake and intracellular accumulation of the heavy metlas, and in this way, the bioavailability of metals towards other organisms can be more reduced. Fungi were isolated from soils from Upper Silesia in Poland and belonged to widespread genera: Aspergillus, Cladosporium, Penicillium and Trichoderma. Fungi from different taxonomic groups differ greatly in their tolerance to heavy metals. This could be related to their wall structure and chemistry as well as biochemical and physiological characteristics of fungi. Localization of metals in fungal cells was studied using electron microscopy analysis. Metal biosorption in the cell wall can be complex as melanin granules. Fungal vacuoles have an important role in the regulation of the cytosolic concentration of metal ions, and may contribute to heavy metal tolerance.In polluted soils with heavy metals, fungal species composition can be changed and their physiological activity can be changed, too.

  6. The comparison of the migration and transformation behavior of heavy metals during pyrolysis and liquefaction of municipal sewage sludge, paper mill sludge, and slaughterhouse sludge.

    PubMed

    Shao, Jianguang; Yuan, Xingzhong; Leng, Lijian; Huang, Huajun; Jiang, Longbo; Wang, Hou; Chen, Xiaohong; Zeng, Guangming

    2015-12-01

    Municipal sewage sludge, paper mill sludge, and slaughterhouse sludge were pyrolyzed and liquefied for the production of bio-char. The migration and transformation behavior of Cu, Cr, and Zn during pyrolysis and liquefaction of these sludges were studied. Pyrolysis and liquefaction promoted mobile fraction (F1 and F2) to stable fraction (F3 and F4). The results showed that pyrolysis and liquefaction largely affected the redistribution of Cu and Zn in raw materials. The environmental risk assessment results indicated that the environmental risk levels of Cu and Zn were significantly reduced in bio-char, and risk level of Cr was slightly decreased after pyrolysis or liquefaction. Both pyrolysis and liquefaction were promising detoxification technologies for the three sludges in terms of the mitigation of heavy metals toxicity. It was suggested that dewatered sludge could be reduced toxicity/risk before utilization by pyrolysis or liquefaction technology, especially for Cu and Zn in slaughterhouse sludge.

  7. Visualizing plumes of heavy metals and radionuclides

    NASA Astrophysics Data System (ADS)

    Prigiobbe, V.; Liu, T.; Bryant, S. L.; Hesse, M. A.

    2015-12-01

    The understanding of the transport behaviors in porous media resides on the ability to reproduce fundamental phenomena in a lab setting. Experiments with quasi 2D tanks filled with beads are performed to study physical phenomena induced by chemical and fluid dynamic processes. When an alkaline solution containing heavy metals or radionuclides invades a low pH region, mixing due to longitudinal dispersion induces destabilization of the front forming a fast travelling pulse [1]. When the two fluids travel in parallel, instead, mixing induced by transverse dispersion creates a continuous leakage from the alkaline region into the acidic one forming a fast travelling plume [2] (Figure 1). Impact of these phenomena are on aquifers upon leaking of alkaline fluids, rich in heavy metals and radionuclides, from waste storage sites. Here, we report the results from a study where experiments with a quasi 2D tank are performed to analyze the effect of transverse mixing on strontium (Sr2+) transport. To visualize the leaking plume, a fluorescent dye (Fura-2) is added the acidic solution, which has been widely used in biomedical applications [3]. It is the aim of this work to optimize its application under the conditions relevant to this work. Spectrometric measurements of absorption and fluorescence show sensitivity of the dye to the presence of Sr2+ throughout a broad range of pH and Sr2+ concentration (Figure 2). In the absence of Sr2+, no significant absorption and fluorescence was measured, but as Sr2+ was added the relevant peaks increase significantly and sample dilution of tenfold was required to remain within the measuring threshold. These results show a strong sensitivity of the dye to the cation opening the opportunity to use Fura-2 as a tool to visualize heavy metals and radionuclides plumes. References[1] Prigiobbe et al. (2012) GRL 39, L18401. [2] Prigiobbe and Hesse (2015) in preparation. [3] Xu-Friedman and Regehr (2000) J. Neurosci. 20(12) 4414-4422.

  8. Heavy metal contamination from geothermal sources.

    PubMed Central

    Sabadell, J E; Axtmann, R C

    1975-01-01

    Liquid-dominated hydrothermal reservoirs, which contain saline fluids at high temperatures and pressures, have a significant potential for contamination of the environment by heavy metals. The design of the power conversion cycle in a liquid-dominated geothermal plant is a key factor in determining the impact of the installation. Reinjection of the fluid into the reservoir minimizes heavy metal effluents but is routinely practiced at few installations. Binary power cycles with reinjection would provide even cleaner systems but are not yet ready for commercial application. Vapor-dominated systems, which contain superheated steam, have less potential for contamination but are relatively uncommon. Field data on heavy metal effluents from geothermal plants are sparse and confounded by contributions from "natural" sources such as geysers and hot springs which often exist nearby. Insofar as geothermal power supplies are destined to multiply, much work is required on their environmental effects including those caused by heavy metals. PMID:1227849

  9. Removal of heavy metals from waste streams

    SciTech Connect

    Spence, M.D.; Kozaruk, J.M.; Melvin, M.; Gardocki, S.M.

    1988-07-19

    A method for removing heavy metals from effluent water is described comprising performing sequentially the following steps: (a) adding from 7-333 ppm of an anionic surfactant to the effluent water to provide coagulatable heavy metal ion; (b) adjusting the effluent water pH to within the range of 8 to 10, (c) providing from 10-200 ppm of a cationic coagulant to coagulate the heavy metal ion, (d) providing from 0.3 to 5.0 ppm of a polymeric flocculant whereby a heavy metal containing floc is formed for removal from the effluent water, and, (e) then removing the floc from the effluent water, wherein the anionic surfactant is sodium lauryl ether sulfate. The cationic coagulant is selected from the group consisting of diallyl dimethylammonium chloride polymer, epichlorohydrin dimethylamine polymer, ethylene amine polymer, polyaluminum chloride, and alum; and the flocculant is an acrylamide/sodium acrylate copolymer having an RSV greater than 23.

  10. Phytoremediation of heavy metals--concepts and applications.

    PubMed

    Ali, Hazrat; Khan, Ezzat; Sajad, Muhammad Anwar

    2013-05-01

    The mobilization of heavy metals by man through extraction from ores and processing for different applications has led to the release of these elements into the environment. Since heavy metals are nonbiodegradable, they accumulate in the environment and subsequently contaminate the food chain. This contamination poses a risk to environmental and human health. Some heavy metals are carcinogenic, mutagenic, teratogenic and endocrine disruptors while others cause neurological and behavioral changes especially in children. Thus remediation of heavy metal pollution deserves due attention. Different physical and chemical methods used for this purpose suffer from serious limitations like high cost, intensive labor, alteration of soil properties and disturbance of soil native microflora. In contrast, phytoremediation is a better solution to the problem. Phytoremediation is the use of plants and associated soil microbes to reduce the concentrations or toxic effects of contaminants in the environments. It is a relatively recent technology and is perceived as cost-effective, efficient, novel, eco-friendly, and solar-driven technology with good public acceptance. Phytoremediation is an area of active current research. New efficient metal hyperaccumulators are being explored for applications in phytoremediation and phytomining. Molecular tools are being used to better understand the mechanisms of metal uptake, translocation, sequestration and tolerance in plants. This review article comprehensively discusses the background, concepts and future trends in phytoremediation of heavy metals.

  11. Topological basis for understanding the behavior of the heavy-fermion metal β -YbAlB4 under application of magnetic field and pressure

    NASA Astrophysics Data System (ADS)

    Shaginyan, V. R.; Msezane, A. Z.; Popov, K. G.; Clark, J. W.; Khodel, V. A.; Zverev, M. V.

    2016-05-01

    Informative recent measurements on the heavy-fermion metal β -YbAlB4 performed with applied magnetic field and pressure as control parameters are analyzed with the goal of establishing a sound theoretical explanation for the inferred scaling laws and non-Fermi-liquid (NFL) behavior, which demonstrate some unexpected features. Most notably, the robustness of the NFL behavior of the thermodynamic properties and of the anomalous T3 /2 temperature dependence of the electrical resistivity under applied pressure P in zero magnetic field is at variance with the fragility of the NFL phase under application of a field B . We show that a consistent topological basis for this combination of observations, as well as the empirical scaling laws, may be found within fermion-condensation theory in the emergence and destruction of a flat band, and explains that the paramagnetic NFL phase takes place without magnetic criticality, not from quantum critical fluctuations. Schematic T -B and T -P phase diagrams are presented to illuminate this scenario.

  12. Aging effect on the leaching behavior of heavy metals (Cu, Zn, and Cd) in red paddy soil.

    PubMed

    Huang, Bin; Li, Zhongwu; Huang, Jinquan; Chen, Guiqiu; Nie, Xiaodong; Ma, Wenming; Yao, Hongbo; Zhen, Jiamei; Zeng, Guangming

    2015-08-01

    Aging effect can influence the fractions distribution and mobility of metals after they are added into soil. In this study, incubation and soil column experiments under simulated acid rain condition were conducted to evaluate aging effect on the leaching characteristic of Cu, Zn, and Cd in artificial polluted red paddy soil. Our results showed that aging effect reduced metal contents in exchangeable and HoAc soluble fractions. Power function was the most excellent to describe the variation of exchangeable fraction, while pseudo first- and second-order functions were more successful to describe the leaching characteristic of metals from soil columns. The leaching amount of the metals from the polluted soil only accounted for a small part of their total content in soil, and the leachability of Cu was the weakest. Both the exchangeable and HoAc soluble fraction were available as indicators to evaluate the leachability of metals in red paddy soil. The shorter time the soil was contaminated, the more amounts of metals released from the soil. The reduction of exchangeable fraction caused by aging effect was the main reason for the decrease of metal mobility in soil.

  13. Heavy metals and living systems: An overview

    PubMed Central

    Singh, Reena; Gautam, Neetu; Mishra, Anurag; Gupta, Rajiv

    2011-01-01

    Heavy metals are natural constituents of the earth's crust, but indiscriminate human activities have drastically altered their geochemical cycles and biochemical balance. This results in accumulation of metals in plant parts having secondary metabolites, which is responsible for a particular pharmacological activity. Prolonged exposure to heavy metals such as cadmium, copper, lead, nickel, and zinc can cause deleterious health effects in humans. Molecular understanding of plant metal accumulation has numerous biotechnological implications also, the long term effects of which might not be yet known. PMID:21713085

  14. Heavy metal removal and recovery using microorganisms

    SciTech Connect

    Wilde, E.W. ); Benemann, J.R. , Pinole, CA )

    1991-02-01

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding.

  15. Increased Tolerance to Heavy Metals Exhibited by Swarming Bacteria

    NASA Astrophysics Data System (ADS)

    Anyan, M.; Shrout, J. D.

    2014-12-01

    Pseudomonas aeruginosa is a ubiquitous, Gram-negative bacterium that utilizes several different modes of motility to colonize surfaces, including swarming, which is the coordinated movement of cells over surfaces in groups. Swarming facilitates surface colonization and biofilm development for P. aeruginosa, and it is known that swarming behavior is influenced by changes in nutrient composition and surface moisture. To understand the fate and cycling of heavy metals in the environment, it is important to understand the interaction and toxicity of these metals upon bacteria. While previous studies have shown surface-attached bacterial biofilms to be highly resistant to heavy metal toxicity, little is known about the influence of heavy metals upon surface motile bacteria and developing biofilms. Using a combination of laboratory assays we examined differences in bacterial behavior in response to two metals, Cd and Ni. We find that surface swarming bacteria are able to grow on 4x and 2.5x more Cd and Ni, respectively, than planktonic cells (i.e., test tube cultures). P. aeruginosa was able to swarm in the presence ≤0.051mM Ni and ≤0.045mM Cd. To investigate the bioavailability of metals to bacteria growing under our examined conditions, we separated cell and supernatant fractions of P. aeruginosa cultures, and used ICP-MS techniques to measure Cd and Ni sorption. A greater percentage of Cd than Ni was sorbed by both cells and supernatant (which contains rhamnolipid, a surfactant known to sorb some metals and improve swarming). While we show that cell products such as rhamnolipid bind heavy metals (as expected) and should limit metal bioavailability, our results suggest at least one additional mechanism (as yet undetermined) that promotes cell survival during swarming in the presence of these heavy metals.

  16. Simultaneous removal of nitrate and heavy metals by iron metal.

    PubMed

    Hao, Zhi-Wei; Xu, Xin-Hua; Jin, Jian; He, Ping; Liu, Yong; Wang, Da-Hui

    2005-05-01

    Great attention should be paid now to simultaneously removing common pollutants, especially inorganic pollutants such as nitrate and heavy metals, as individual removal has been investigated extensively. Removing common pollutants simultaneously by iron metal is a very effective alternative method. Near neutral pH, heavy metals, such as copper and nickel, can be removed rapidly by iron metal, while nitrate removal very much slower than that of copper and nickel, and copper can accelerate nitrate removal when both are removed simultaneously. Even a little amount of copper can enhance nitrate removal efficiently. Different mechanisms of these contaminants removal by iron metal were also discussed.

  17. ANALYSIS OF HEAVY METALS IN STORMWATER

    EPA Science Inventory

    Stormwater sampling for colloidal and dissolved metals and organic carbon has been initiated at six outfalls draining locally-designated, nonindustrial land uses in Monmouth County, NJ. Of the heavy metals, only Cu and Zn were found in all samples, mostly in dissolved form. Large...

  18. Prediction of Heavy Metal Uptake by Marsh Plants Based on Chemical Extraction of Heavy Metals from Dredged Material.

    DTIC Science & Technology

    1978-02-01

    A field and laboratory study was conducted to establish the extent of heavy metal absorption and uptake by marsh plant species from dredged material...emphasizes the need for a method to predict heavy metal availability from dredged material to plants. DTPA extraction of heavy metals gave the best correlations with actual heavy metal concentrations in marsh plants.

  19. The heavy metal subculture and suicide.

    PubMed

    Stack, S; Gundlach, J; Reeves, J L

    1994-01-01

    The impact of the heavy metal music subculture on suicide has been the subject of much public debate but little scholarly research. The present paper assesses this relationship with data on heavy metal magazine subscriptions and youth suicide in the 50 states. We find that, controlling for other predictors of suicide, the greater the strength of the metal subculture, the higher the youth suicide rate. The music perhaps nurtures suicidal tendencies already present in the subculture. The model explains 51% of the variance in youth suicide.

  20. Community Heavy Metal Exposure, San Francisco, California

    NASA Astrophysics Data System (ADS)

    Chavez, A.; Devine, M.; Ho, T.; Zapata, I.; Bissell, M.; Neiss, J.

    2008-12-01

    Heavy metals are natural elements that generally occur in minute concentrations in the earth's crust. While some of these elements, in small quantities, are vital to life, most are harmful in larger doses. Various industrial and agricultural processes can result in dangerously high concentrations of heavy metals in our environment. Consequently, humans can be exposed to unsafe levels of these elements via the air we breathe, the water and food we consume, and the many products we use. During a two week study we collected numerous samples of sediments, water, food, and household items from around the San Francisco Bay Area that represent industrial, agricultural, and urban/residential settings. We analyzed these samples for Mercury (Hg), Lead (Pb), and Arsenic (As). Our goal was to examine the extent of our exposure to heavy metals in our daily lives. We discovered that many of the common foods and materials in our lives have become contaminated with unhealthy concentrations of these metals. Of our food samples, many exceeded the EPA's Maximum Contaminant Levels (MCL) set for each metal. Meats (fish, chicken, and beef) had higher amounts of each metal than did non-meat items. Heavy metals were also prevalent in varying concentrations in the environment. While many of our samples exceeded the EPA's Sediment Screening Level (SSL) for As, only two other samples surpassed the SSL set for Pb, and zero of our samples exceeded the SSL for Hg. Because of the serious health effects that can result from over-exposure to heavy metals, the information obtained in this study should be used to influence our future dietary and recreational habits.

  1. Extended study of DETA-functionalized PGMA adsorbent in the selective adsorption behaviors and mechanisms for heavy metal ions of Cu, Co, Ni, Zn, and Cd.

    PubMed

    Liu, Changkun; Bai, Renbi

    2010-10-01

    In this paper, the adsorption selectivity and mechanism of diethylenetriamine (DETA)-functionalized PGMA adsorbent (denoted as P-DETA) toward a number of heavy metal ions, including Cu, Co, Ni, Zn, and Cd ions, were experimentally and analytically examined. Experimental results showed a selective adsorption sequence, based on the adsorption affinity, of Cu>Co>Ni>Zn>Cd ions on P-DETA. X-ray absorption fine structure (XAFS) analysis was used to reveal the adsorption coordination geometry, bond length, and coordination number of each type of metal ion with the DETA group. The analysis indicated that Cu, Ni, and Zn ions formed tetrahedral geometry (fourfold coordination) when adsorbed, while Co ion showed an octahedral geometry (sixfold coordination). However, the coordination geometry for Cd could not be obtained in the analysis due to the lack of reference information. The analysis from EXAFS further confirmed that the ratio of DETA ligand to the adsorbed metal ion was probably 1 for Cu, Ni, or Zn ions, while that ratio was 2 for Co ion. From the stability constant (in the log K form) for a metal ion-DETA ligand coordination (denoted as ML(n), where M indicates a heavy metal ion, and L(n) indicates n numbers of ligands involved), a relationship of log K (CuL)>log K (CoL(2))>log K (NiL)>log K (ZnL)>log K (CdL) is suggested. This sequence is in good correlation with the experimentally derived adsorption selective sequence of Cu>Co>Ni>Zn>Cd ions, indicating that the coordination geometry played an important role in the determination of the adsorption selectivity for heavy metal ions by the polyamine-functionalized adsorbent of P-DETA.

  2. Heavy metal, religiosity, and suicide acceptability.

    PubMed

    Stack, S

    1998-01-01

    There has been little work at the national level on the subject of musical subcultures and suicide acceptability. The present work explores the link between "heavy metal" rock fanship and suicide acceptability. Metal fanship is thought to elevate suicide acceptability through such means as exposure to a culture of personal and societal chaos marked by hopelessness, and through its associations with demographic risk factors such as gender, socioeconomic status, and education. Data are taken from the General Social Survey. A link between heavy metal fanship and suicide acceptability is found. However, this relationship becomes nonsignificant once level of religiosity is controlled. Metal fans are low in religiosity, which contributes, in turn, to greater suicide acceptability.

  3. Transformation of heavy metal speciation during sludge drying: mechanistic insights

    SciTech Connect

    Weng, Huanxin; Ma, Xue-Wen; Fu, Feng-Xia; Zhang, Jin-Jun; Liu, Zan; Tian, Li-Xun; Liu, Chongxuan

    2014-01-30

    Speciation can fundamentally affect on the stability and toxicity of heavy metals in sludge from wastewater treatment plants. This research investigated the speciation of heavy metals in sludge from both municipal and industrial sources, and metal speciation change as a result of drying process to reduce sludge volume. The changes in sludge properties including sludge moisture content, temperature, density, and electrical conductivity were also monitored to provide insights into the mechanisms causing the change in heavy metal speciation. The results show that the drying process generally stabilized the Cr, Cu, Cd and Pb in sludge by transforming acid-soluble, reducible and oxidizable species into structurally stable forms. Such transformation and stabilization occurred regardless of the sludge source and type, and were primarily caused by the changes in sludge properties associated with decomposition of organic matter and sulfide. The results enhanced our understanding of the geochemical behavior of heavy metals in municipal sludge, and are useful for designing a treatment system for environment-friendly disposal of sludge.

  4. Heavy metal characterization of circulating fluidized bed derived biomass ash.

    PubMed

    Li, Lianming; Yu, Chunjiang; Bai, Jisong; Wang, Qinhui; Luo, Zhongyang

    2012-09-30

    Although the direct combustion of biomass for energy that applies circulating fluidized bed (CFB) technology is steadily expanding worldwide, only few studies have conducted an environmental assessment of biomass ash thus far. Therefore, this study aims to integrate information on the environmental effects of biomass ash. We investigated the concentration of heavy metal in biomass ash samples (bottom ash, cyclone ash, and filter ash) derived from a CFB boiler that combusted agricultural and forest residues at a biomass power plant (2×12 MW) in China. Ash samples were gathered for the digestion and leaching test. The heavy metal content in the solution and the leachate was studied via an inductively coupled plasma-mass spectrometer and a Malvern Mastersizer 2000 mercury analyzer. Measurements for the chemical composition, particle size distribution, and the surface morphology were carried out. Most of the metals in cyclone ash particles were enriched, whereas Ti and Hg were enriched in filter ash. Residence time contributed most to heavy metal enrichment. Under HJ/T 300 conditions, the heavy metals showed serious leaching characteristics. Under EN 12457-2 conditions, leaching behavior was hardly detected.

  5. Transformation of heavy metal speciation during sludge drying: mechanistic insights.

    PubMed

    Weng, Huan-Xin; Ma, Xue-Wen; Fu, Feng-Xia; Zhang, Jin-Jun; Liu, Zan; Tian, Li-Xun; Liu, Chongxuan

    2014-01-30

    Speciation can fundamentally affect on the stability and toxicity of heavy metals in sludge from wastewater treatment plants. This research investigated the speciation of heavy metals in sludge from both municipal and industrial sources, and metal speciation change as a result of drying process to reduce sludge volume. The changes in sludge properties including sludge moisture content, temperature, density, and electrical conductivity were also monitored to provide insights into the mechanisms causing the change in heavy metal speciation. The results show that the drying process generally stabilized Cr, Cu, Cd, and Pb in sludge by transforming acid-soluble, reducible, and oxidizable species into structurally stable forms. Such transformation and stabilization occurred regardless of the sludge source and type, and were primarily caused by the changes in sludge properties associated with decomposition of organic matter and sulfide. The results enhanced our understanding of the geochemical behavior of heavy metals in municipal sludge, and are useful for designing a treatment system for environment-friendly disposal of sludge.

  6. Hydroponics reducing effluent's heavy metals discharge.

    PubMed

    Rababah, Abdellah; Al-Shuha, Ahmad

    2009-01-01

    This paper investigates the capacity of Nutrient Film Technique (NFT) to control effluent's heavy metals discharge. A commercial hydroponic system was adapted to irrigate lettuces with primary treated wastewater for studying the potential heavy metals removal. A second commercial hydroponic system was used to irrigate the same type of lettuces with nutrient solution and this system was used as a control. Results showed that lettuces grew well when irrigated with primary treated effluent in the commercial hydroponic system. The NFT-plant system heavy metals removal efficiency varied amongst the different elements, The system's removal efficiency for Cr was more than 92%, Ni more than 85%, in addition to more than 60% reduction of B, Pb, and Zn. Nonetheless, the NFT-plants system removal efficiencies for As, Cd and Cu were lower than 30%. Results show that lettuces accumulated heavy metals in leaves at concentrations higher than the maximum acceptable European and Australian levels. Therefore, non-edible plants such as flowers or pyrethrum are recommended as value added crops for the proposed NFT.

  7. ANALYSIS OF HEAVY METALS IN STORMWATER

    EPA Science Inventory

    Sampling has been undertaken to determine the concentrations of heavy metals, both particle-associated and dissolved, in stormwater from several storm sewer outfalls in Monmouth County, NJ. This project is ongoing in concert with coordinated studies of pathogen and nutrient input...

  8. Heavy Metals and Related Trace Elements.

    ERIC Educational Resources Information Center

    Leland, Harry V.; And Others

    1978-01-01

    Presents a literature review of heavy metals and related trace elements in the environment, covering publications of 1976-77. This review includes: (1) trace treatment in natural water and in sediments; and (2) bioaccumulation and toxicity of trace elements. A list of 466 references is presented. (HM)

  9. Heavy metals in the environment

    SciTech Connect

    Storm, G.L.; Fosmire, G.J.; Bellis, E.D.

    1994-05-01

    Concentration (Cd, Pb, Zn, and Cu) in soil and wildlife at the Palmerton zinc smelter site in eastern Pennsylvania were determined 6 yr after zinc smelting was terminated in 1980. Levels of the four metals were higher in litter (01 and 02 horizon) than in soil (A1 horizon), and the metals were at or near levels when the smelters were still in operation. Levels of metals in sod weft highest at sites close to the smelters and decreased as distances from the smelters increased. The relation of decreasing amounts of metals in body tissues with increasing distance from the smelters also held true for amphibians and mammals. An exception to this relation was higher level of Cu in red-lacked salamanders (Plethodon cinereus) captured {approx}17 km downwind than those captured {approx}12 km downwind. Levels of Zn, Pb, and Co in liver, kidney, and muscle tissue of white-footed mice (Peromyscus leucopus) were not different (P >0.05) among sites. Cadmium in kidneys in white-footed mice exceeded 10 mg&& which is reportedly considered an indication of environmental contamination. Levels of Cd in kidneys and liver of white-tailed deer (Odocoileus virginianus) at Palmerton were five times higher than those for white-tailed deer collected 180 km southwest of Palmerton in southcentral Pennsylvania. The abnormal amounts of metals in the tissues of terrestrial vertebrates, and the absence or low abundance of wildlife at Palmerton indicated that ecological processes within 5 km of the smelters were markedly influenced 6 yr after zinc smelting was discontinued. 41 refs., 5 figs., 4 tabs.

  10. How composting affects heavy metal content

    SciTech Connect

    Canarutto, S.; Petruzzelli, G.; Lubrano, L.; Guidi, G.V.

    1991-06-01

    This paper describes ways in which a properly conducted composting process can alter the chemical forms of heavy metals and consequently the quality of the compost. This process is of particular interest in the Italian policy of waste management due to the low level of organic matter in Italian agricultural soils. Results of the studies show that the proper process of compost maturation seems to increase the concentrations of humic acids with respect to those of fulvic acids. These variations in the quantity and quality of humic substances influence the speciation of heavy metals with a large part of the metals complexed and reaching the soil in a less mobile form. The distribution of copper, cadmium, zinc, nickel, lead and chromium among humic fractions is compared in two composting procedures.

  11. Heavy metal fates in laboratory bioretention systems.

    PubMed

    Sun, Xueli; Davis, Allen P

    2007-01-01

    Key to managing heavy metals in bioretention is to understand their fates in bioretention facilities. In this study, pot prototypes filled with bioretention media were built to simulate the conditions of natural growth of plants. Synthetic runoff with different heavy metal loadings (copper, cadmium, lead, and zinc) was periodically applied. Metal accumulations in tissues of grasses -Panicum virgatum, Kentucky-31, and Bromus ciliatus, were investigated after 230d of growth and multiple runoff treatment events. After 183d of periodic runoff application, the concentrations of Zn, Cu, Pb and Cd with low and high loadings had the same trends in the plant tissues, Zn>Cu>Pb>Cd, following the trend of the input metal concentrations. The fates of input metals were 88-97% captured in soil media, 2.0-11.6% not captured by bioretention media, and 0.5-3.3% accumulated in plants. Compared to the metals retained by the soil, the percentages of input metals taken up by plants were relatively low due to the low plant biomass produced in this study. Greater biomass density would be required for the vegetation to have a valuable impact in prolonging the lifetime of a bioretention cell.

  12. Heavy metal removal from sediments by biosurfactants.

    PubMed

    Mulligan, C N; Yong, R N; Gibbs, B F

    2001-07-30

    Batch washing experiments were used to evaluate the feasibility of using biosurfactants for the removal of heavy metals from sediments. Surfactin from Bacillus subtilis, rhamnolipids from Pseudomonas aeruginosa and sophorolipid from Torulopsis bombicola were evaluated using a metal-contaminated sediment (110mg/kg copper and 3300mg/kg zinc). A single washing with 0.5% rhamnolipid removed 65% of the copper and 18% of the zinc, whereas 4% sophorolipid removed 25% of the copper and 60% of the zinc. Surfactin was less effective, removing 15% of the copper and 6% of the zinc. The technique of ultrafiltration and zeta potential measurements were used to determine the mechanism of metal removal by the surfactants. It was then postulated that metal removal by the biosurfactants occurs through sorption of the surfactant on to the soil surface and complexation with the metal, detachment of the metal from the soil into the soil solution and hence association with surfactant micelles. Sequential extraction procedures were used on the sediment to determine the speciation of the heavy metals before and after surfactant washing. The carbonate and oxide fractions accounted for over 90% of the zinc present in the sediments. The organic fraction constituted over 70% of the copper. Sequential extraction of the sediments after washing with the various surfactants indicated that the biosurfactants, rhamnolipid and surfactin could remove the organically-bound copper and that the sophorolipid could remove the carbonate and oxide-bound zinc. Therefore, heavy metal removal from sediments is feasible and further research will be conducted.

  13. Arbuscular Mycorrhizal Fungi Can Benefit Heavy Metal Tolerance and Phytoremediation

    ERIC Educational Resources Information Center

    Forgy, David

    2012-01-01

    Sites contaminated by heavy metals, such as industrial waste sites, create unwelcoming environments for plant growth. Heavy metals can have a wide range of toxic effects such as replacing essential elements or disrupting enzyme function. While some heavy metals are essential to plant nutrition at low concentrations, high concentrations of any…

  14. Bacterial sorption of heavy metals

    SciTech Connect

    Mullen, M.D.; Wolf, D.C.; Ferris, F.G.; Beveridge, T.J.; Flemming, C.A.

    1989-01-01

    Four bacteria, Bacillus cereus, B. subtilis, Escherichia coli, and Pseudomonas aeruginosa, were examined for the ability to remove Ag{sup +}, Cd{sup 2+}, Cu{sup 2+}, and La{sup 3+} from solution by batch equilibration methods. Cd and Cu sorption over the concentration range 0.001 to 1 mM was described by Freundlich isotherms. At 1 mM concentrations of both Cd{sup 2+} and Cu{sup 2+}, P. aeruginosa and B. cereus were the most and least efficient at metal removal, respectively. Freundlich K constants indicated that E. coli was most efficient at Cd{sup 2+} removal and B. subtilis removed the most Cu{sup 2+}. Removal of Ag{sup +} from solution by bacteria was very efficient; an average of 89% of the total Ag{sup +} was removed from the 1 mM solution, whereas only 12, 29, and 27% of the total Cd{sup 2+}, Cu{sup 2+}, and La{sup 3+}, respectively, were sorbed from 1 mM solutions. Electron microscopy indicated that La{sup 3+} accumulated at the cell surface as needlelike, crystalline precipitates. Silver precipitated as discrete colloidal aggregates at the cell surface and occasionally in the cytoplasma. The results indicate that bacterial cells are capable of binding large quantities of different metals.

  15. Customizable Biopolymers for Heavy Metal Remediation

    NASA Astrophysics Data System (ADS)

    Kostal, Jan; Prabhukumar, Giridhar; Lao, U. Loi; Chen, Alin; Matsumoto, Mark; Mulchandani, Ashok; Chen*, Wilfred

    2005-10-01

    Nanoscale materials have been gaining increasing interest in the area of environmental remediation because of their unique physical, chemical and biological properties. One emerging area of research has been the development of novel materials with increased affinity, capacity, and selectivity for heavy metals because conventional technologies are often inadequate to reduce concentrations in wastewater to acceptable regulatory standards. Genetic and protein engineering have emerged as the latest tools for the construction of nanoscale materials that can be controlled precisely at the molecular level. With the advent of recombinant DNA techniques, it is now possible to create `artificial' protein polymers with fundamentally new molecular organization. The most significant feature of these nanoscale biopolymers is that they are specifically pre-programmed within a synthetic gene template and can be controlled precisely in terms of sizes, compositions and functions at the molecular level. In this review, the use of specifically designed protein-based nano-biomaterials with both metal-binding and tunable properties for heavy metal removal is summarized. Several different strategies for the selective removal of heavy metals such as cadmium and mercury are highlighted.

  16. Remediation processes for heavy metals contaminated soils

    SciTech Connect

    Torma, G.A.; Torma, A.E.; Hsu, Pei-Cheng

    1996-12-31

    This paper provides information on selected technologies available for remediation of metal contaminated soils and industrial effluent solutions. Because some of the industrial sites are contaminated with organics (solvents, gasolines and oils), an effort has been made to introduce the most frequently used cost-effective cleanup methods, such as {open_quotes}bioventing{close_quotes} and {open_quotes}composting.{close_quotes} The microorganisms involved in these processes are capable of degrading organic soil contaminants to environmentally harmless compounds: water and carbon dioxide. Heavy metals and radionuclides contaminated mining and industrial sites can be remediated by using adapted heap and dump leaching technologies, which can be chemical in nature or bio-assisted. The importance of volume reduction by physical separation is discussed. A special attention is devoted to the remediation of soils by leaching (soil washing) to remove heavy metal contaminants, such as chromium, lead, nickel and cadmium. Furthermore, the applicability of biosorption technology in the remediation of heavy metals and radionuclides contaminated industrial waste waters and acidic mining effluent solutions was indicated. 60 refs., 9 figs.

  17. Heavy metals and the origin of life

    NASA Astrophysics Data System (ADS)

    Nriagu, J.

    2003-05-01

    The functional value of heavy metals in proto-cells was immense and involved critical roles in catalysis of molecular synthesis, translation, electrical neutrality and conduction, energy capture, cross-linking and precipitation (stabilizers of protective cell walls), and to a limited extent, osmotic pressure control. Metals must have modulated the evolutionary choices of the types of building blocks, such as ribose sugars as a constituent of RNA, or the the chirality and enantiopurity of many biomolecules. The formation of an enclosing membrane led to intracellular prokaryotic life (believed to have originated in an anaerobic environment) and much enhanced control over primary metabolism, the uptake and incorporation of heavy metals and the management of biomolecules (especially RNA, DNA and proteins) that were formed. Cells of the most primitive organisms (archaebacteria) reveal complex mechanisms designed specifically to deal with selective pressures from metal-containing environments including intra- and extra-cellular sequestration, exclusion by cell wall barrier, removal through active efflux pumps, enzymatic detoxification, and reduction in sensitivity of cellular targets to metal ions. Adaptation to metals using a variety of chromosomal, and transposon and plasmid-mediated systems began early in the evolution of life on Earth. Recent studies, however, show that the roles played by many heavy metals have changed over time. Divalent lead, for instance, has relinquished its unique catalytic role in the conversion of carbohydrates into ribose in the prebiotic world. The putative elements that dominated the primordial biochemistry were V, Mo, W, Co, Fe(II) and Ni; with the development of oxygenated atmosphere, these elements gave way to Zn, Cu and Fe(Ill) in their metabolic functions.

  18. Stabilize heavy metals in soils and sludges

    SciTech Connect

    1995-03-01

    To stabilize heavy metals in soils, sludges, ash from incinerators and power plants, and baghouse dusts, Solucorp Industries (Saddle Brook, N.J.) has developed the Molecular Bonding System (MBS). Using a patented mix of chemical additives, the MBS process bonds highly reactive metal ions to form non-leachable molecules, rendering the metals inert. The chemical reactions are said to be permanent, and for each application, the additive mix is specially formulated to meet site-specific conditions. Recently, the MBS process was accepted into the US Environmental Protection Agency`s Site Demonstration Program as an innovative technology for stabilizing heavy metals. Bench-scale and pilot tests have proven the effectiveness of the MBS process for a wide array of metals, including arsenic, cadmium, chromium, copper, lead, mercury, nickel, silver and zinc. The process is designed for wastes classified as D004 through D011, as well as K-listed wastes associated with metal-plating operations. It can treat waste in drums or in bulk, says the firm, but is not suitable for liquid streams.

  19. Determination of heavy metals in the ambient atmosphere.

    PubMed

    Suvarapu, Lakshmi Narayana; Baek, Sung-Ok

    2017-01-01

    Heavy metal determination in ambient air is an important task for environmental researchers because of their toxicity to human beings. Some heavy metals (hexavalent chromium (Cr), arsenic (As), cadmium (Cd) and nickel (Ni)) have been listed as carcinogens. Furthermore, heavy metals in the atmosphere can accumulate in various plants and animals and enter humans through the food chain. This article reviews the determination of heavy metals in the atmosphere in different areas of the world since 2006. The results showed that most researchers concentrated on toxic metals, such as Cr, Cd, Ni, As and lead. A few studies used plant materials as bio-monitors for the atmospheric levels of heavy metals. Some researchers found higher concentrations of heavy metals surrounding industrial areas compared with residential and/or commercial areas. Most studies reported the major sources of the particulate matter and heavy metals in the atmosphere to be industrial emissions, vehicular emissions and secondary aerosols.

  20. Environmental impact of mercury and other heavy metals

    NASA Astrophysics Data System (ADS)

    Lindqvist, Oliver

    The environmental impact of heavy metals is reviewed. One significant source of emissions of heavy metals to air is waste incineration. Consumer batteries contributes significantly to this problem, as well as to heavy metal leakage to groundwater from landfill deposits. The situation in Sweden is used as an example to describe how the deposition from the atmosphere still is increasing the load of heavy metals, like mercury, cadmium and lead, in top soils and aquatic sediments. Critical factors and effect levels for Hg, Cd, Pb, Cu, Zn and As are discussed. Specific questions like mercury contents in present battery waste and heavy metal contents in new and future secondary batteries are addressed.

  1. Heavy metal pollutants and chemical ecology: exploring new frontiers.

    PubMed

    Boyd, Robert S

    2010-01-01

    Heavy metals are an important class of pollutants with both lethal and sublethal effects on organisms. The latter are receiving increased attention, as these may have harmful ecological outcomes. For example, recent explorations of heavy metals in freshwater habitats reveal that they can modify chemical communication between individuals, resulting in "info-disruption" that can impact ecological relationships within and between species. Info-disruption can affect animal behavior and social structure, which in turn can modify both intraspecies and interspecies interactions. In terrestrial habitats, info-disruption by metals is not well studied, but recent demonstrations of chemical signaling between plants via both roots and volatile organic molecules provide potential opportunities for info-disruption. Metals in terrestrial habitats also can form elemental plant defenses, in which they can defend a plant against natural enemies. For example, hyperaccumulation of metals by terrestrial plants has been shown to provide defensive benefits, although in almost all known cases the metals are not anthropogenic pollutants but are naturally present in soils inhabited by these plants. Info-disruption among microbes is another arena in which metal pollutants may have ecological effects, as recent discoveries regarding quorum sensing in bacteria provide an avenue for metals to affect interactions among bacteria or between bacteria and other organisms. Metal pollutants also may influence immune responses of organisms, and thus affect pathogen/host relationships. Immunomodulation (modification of immune system function) has been tied to some metal pollutants, although specific metals may boost or reduce immune system function depending on dose. Finally, the study of metal pollutants is complicated by their frequent occurrence as mixtures, either with other metals or with organic pollutants. Most studies of metal pollutants focus on single metals and therefore oversimplify complex

  2. Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana.

    PubMed

    Gola, Deepak; Dey, Priyadarshini; Bhattacharya, Arghya; Mishra, Abhishek; Malik, Anushree; Namburath, Maneesh; Ahammad, Shaikh Ziauddin

    2016-10-01

    Towards the development of a potential remediation technology for multiple heavy metals [Zn(II), Cu(II), Cd(II), Cr(VI) and Ni(II)] from contaminated water, present study examined the growth kinetics and heavy metal removal ability of Beauveria bassiana in individual and multi metals. The specific growth rate of B. bassiana varied from 0.025h(-1) to 0.039h(-1) in presence of individual/multi heavy metals. FTIR analysis indicated the involvement of different surface functional groups in biosorption of different metals, while cellular changes in fungus was reflected by various microscopic (SEM, AFM and TEM) analysis. TEM studies proved removal of heavy metals via sorption and accumulation processes, whereas AFM studies revealed increase in cell surface roughness in fungal cells exposed to heavy metals. Present study delivers first report on the mechanism of bioremediation of heavy metals when present individually as well as multi metal mixture by entomopathogenic fungi.

  3. Earthworm contamination by PCBs and heavy metals

    SciTech Connect

    Diercxsens, P.; de Weck, D.; Borsinger, N.; Rosset, B.; Tarradellas, J.

    1985-01-01

    A comparison is made of soil and earthworm contamination by PCBs and heavy metals between a nature reserve and two sites conditioned by the addition of sewage sludge and compost. The tissues and gut content of the earthworms shows a higher PCB concentration than that of the surrounding soil and also a difference in the fingerprint of some single PCB compounds. Earthworms display a selective accumulation of cadmium and zinc in their tissues and gut content.

  4. Modeling heavy metal removal in wetlands

    SciTech Connect

    Lung, W.S.; Light, R.N.

    1994-12-31

    Although the use of wetland ecosystems to purify water has gained increased attention only recently, it has been recognized as a wastewater treatment technique for centuries. While considerable research has occurred to quantify the nutrient (nitrogen and phosphorus) removal mechanisms of wetlands, relatively few investigators have focused on the mechanisms of heavy metal removal and uptake by wetland sediments and plants. The quantification of the assimilative capacity of heavy metals by wetland ecosystems is a critical component in the design and use of wetlands for this purpose. A computer model has been developed to simulate the fate and transport of heavy metals introduced to a wetland ecosystem. Modeled water quality variables include phytoplankton biomass and productivity; macrophyte (Nulumbo lutea) biomass; total phosphorus in the water column; dissolved copper in the water column and sediments; particulate copper in the water column and sediments; and suspended solids. These variables directly affect the calculated rate of copper uptake by macrophytes, and the rate of copper recycling as a function of the decomposition of copper-laden biomass litter. The model was calibrated using total phosphorus and chlorophyll a data from the Old Woman Creek Wetland in Ohio. Verification of the model was achieved using data on the copper content of the macrophyte Nelumbo lutea.

  5. [Research advances in heavy metals pollution ecology of diatom].

    PubMed

    Ding, Teng-Da; Ni, Wan-Min; Zhang, Jian-Ying

    2012-03-01

    Diatom, due to its high sensitivity to environmental change, is one of the bio-indicators of aquatic ecosystem health, and some typical diatom species have been applied to indicate the heavy metals pollution of water body. With the focus on the surface water heavy metals pollution, this paper reviewed the research advances in the toxic effect of heavy metals pollution on diatom, biosorption and bioaccumulation of heavy metals by diatom, ecological adaptation mechanisms of diatom to heavy metals pollution, and roles of diatom as bio-indicator and in ecological restoration of heavy metals pollution. The growth tendency of diatom and the morphological change of frustule under heavy metals pollution as well as the differences in heavy metals biosorption and bioaccumulation by diatom, the ecological adaptation mechanisms of diatom on heavy metals surface complexation and ion exchange, and the roles of diatom as bio-indicator and in ecological restoration of heavy metals polluted water body were also discussed. This review could provide scientific evidences for the prevention of aquatic ecosystems heavy metals pollution and related early warning techniques.

  6. Plant rhamnogalacturonan II complexation of heavy metal cations

    DOEpatents

    O`Neill, M.A.; Pellerin, P.J.M.; Warrenfeltz, D.; Vidal, S.; Darvill, A.G.; Albersheim, P.

    1999-03-02

    The present invention provides rhamnogalacturonan-II (RG-II) and relates to its ability to complex specific multivalent heavy metal cations. In the presence of boric acid, RG-II monomers form dimers that are cross-linked by a borate ester. The yield of such borate ester cross-linked dimers of RG-II is enhanced in the presence of specific heavy metal cations. The present invention further relates to the utility of RG-II in assays for the detection of specific heavy metal contamination; as a reagent useful in the removal of specific heavy metal cations contaminating foods and liquids, for example, fish, wines, etc.; as a pharmaceutical composition useful as an antidote in specific heavy metal cation poisoning; as a treatment for the detoxification of specific heavy metal cations from blood and/or tissues; and in a method of remediation of waters and soils contaminated with specific heavy metal cations. 15 figs.

  7. Plant rhamnogalacturonan II complexation of heavy metal cations

    DOEpatents

    O'Neill, Malcolm A.; Pellerin, Patrice J. M.; Warrenfeltz, Dennis; Vidal, Stephane; Darvill, Alan G.; Albersheim, Peter

    1999-01-01

    The present invention provides rhamnogalacturonan-II (RG-II) and relates to its ability to complex specific multivalent heavy metal cations. In the presence of boric acid, RG-II monomers form dimers that are cross-linked by a borate ester. The yield of such borate ester cross-linked dimers of RG-II is enhanced in the presence of specific heavy metal cations. The present invention further relates to the utility of RG-II in assays for the detection of specific heavy metal contamination; as a reagent useful in the removal of specific heavy metal cations contaminating foods and liquids, for example, fish, wines, etc.; as a pharmaceutical composition useful as an antidote in specific heavy metal cation poisoning; as a treatment for the detoxification of specific heavy metal cations from blood and/or tissues; and in a method of remediation of waters and soils contaminated with specific heavy metal cations.

  8. Detection of heavy metal resistance bioluminescence bacteria using microplate bioassay method.

    PubMed

    Ranjitha, P; Karthy, E S

    2012-01-01

    Effects of different heavy metals on Vibrio harveyi, V. fischeri, Photobacterium phosphoreum and P. leiognathi were examined. Checkerboard assay was used for the detection of the natural metal tolerance levels of a large number of marine luminous eubacteria. 57 strains of luminous bacteria were investigated for their natural patterns of heavy metal tolerance. The behaviors of these strains were not homogeneous with respect to all metals tested, even within the strains belonging to the same genus. At least 1 to 4 different MICs were detected for every metal except barium and cobalt. Isolated bacteria were tested for the presence of plasmids using the modified alkaline lysis method, was effective for identification of plasmids of different sizes. This study revealed the frequency of the occurrence of plasmids in heavy metal resistance bacteria and inferred that plasmids are highly ubiquitous and predominant in most heavy metal resistant bacteria.

  9. Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite.

    PubMed

    Shi, Wei-yu; Shao, Hong-bo; Li, Hua; Shao, Ming-an; Du, Sheng

    2009-10-15

    Hazardous heavy metal pollution of soils is an increasingly urgent problem all over the world. The zeolite as a natural amendment has been studied extensively for the remediation of hazardous heavy metal-polluted soils with recycling. But its theory and application dose are not fully clear. This paper reviews the related aspects of theory and application progress for the remediation of hazardous heavy metal-polluted soils by natural zeolite, with special emphasis on single/co-remediation. Based on the comments on hazardous heavy metal behavior characteristics in leaching and rhizosphere and remediation with zeolite for heavy metal-polluted soils, it indicated that the research of rhizosphere should be strengthened. Theory of remediation with natural zeolite could make breakthroughs due to the investigation on synthetic zeolite. Co-remediation with natural zeolite may be applied and studied with more prospect and sustainable recycling.

  10. Material Removes Heavy Metal Ions From Water

    NASA Technical Reports Server (NTRS)

    Philipp, Warren H., Jr.; Street, Kenneth W.; Hill, Carol; Savino, Joseph M.

    1995-01-01

    New high capacity ion-exchange polymer material removes toxic metal cations from contaminated water. Offers several advantages. High sensitivities for such heavy metals as lead, cadmium, and copper and capable of reducing concentrations in aqueous solutions to parts-per-billion range. Removes cations even when calcium present. Material made into variety of forms, such as thin films, coatings, pellets, and fibers. As result, adapted to many applications to purify contaminated water, usually hard wherever found, whether in wastewater-treatment systems, lakes, ponds, industrial plants, or homes. Another important feature that adsorbed metals easily reclaimed by either destructive or nondestructive process. Other tests show ion-exchange polymer made inexpensively; easy to use; strong, flexible, not easily torn; and chemically stable in storage, in aqueous solutions, and in acidic or basic solution.

  11. Competitive sorption of heavy metals by water hyacinth roots.

    PubMed

    Zheng, Jia-Chuan; Liu, Hou-Qi; Feng, Hui-Min; Li, Wen-Wei; Lam, Michael Hon-Wah; Lam, Paul Kwan-Sing; Yu, Han-Qing

    2016-12-01

    Heavy metal pollution is a global issue severely constraining aquaculture practices, not only deteriorating the aquatic environment but also threatening the aquaculture production. One promising solution is adopting aquaponics systems where a synergy can be established between aquaculture and aquatic plants for metal sorption, but the interactions of multiple metals in such aquatic plants are poorly understood. In this study, we investigated the absorption behaviors of Cu(II) and Cd(II) in water by water hyacinth roots in both single- and binary-metal systems. Cu(II) and Cd(II) were individually removed by water hyacinth roots at high efficiency, accompanied with release of protons and cations such as Ca(2+) and Mg(2+). However, in a binary-metal arrangement, the Cd(II) sorption was significantly inhibited by Cu(II), and the higher sorption affinity of Cu(II) accounted for its competitive sorption advantage. Ionic exchange was identified as a predominant mechanism of the metal sorption by water hyacinth roots, and the amine and oxygen-containing groups are the main binding sites accounting for metal sorption via chelation or coordination. This study highlights the interactive impacts of different metals during their sorption by water hyacinth roots and elucidates the underlying mechanism of metal competitive sorption, which may provide useful implications for optimization of phytoremediation system and development of more sustainable aquaculture industry.

  12. Magnetoresistance in paramagnetic heavy fermion metals.

    PubMed

    Parihari, D; Vidhyadhiraja, N S

    2009-10-07

    A theoretical study of magnetic field (h) effects on single-particle spectra and the transport quantities of heavy fermion metals in the paramagnetic phase is carried out. We have employed a non-perturbative local moment approach (LMA) to the asymmetric periodic Anderson model within the dynamical mean field framework. The lattice coherence scale ω(L), which is proportional within the LMA to the spin-flip energy scale, and has been shown in earlier studies to be the energy scale at which crossover to single-impurity physics occurs, increases monotonically with increasing magnetic field. The many body Kondo resonance in the density of states at the Fermi level splits into two, with the splitting being proportional to the field itself. For h≥0, we demonstrate adiabatic continuity from the strongly interacting case to a corresponding non-interacting limit, thus establishing Fermi liquid behaviour for heavy fermion metals in the presence of a magnetic field. In the Kondo lattice regime, the theoretically computed magnetoresistance is found to be negative in the entire temperature range. We argue that such a result could be understood at [Formula: see text] by field-induced suppression of spin-flip scattering and at [Formula: see text] through lattice coherence. The coherence peak in the heavy fermion resistivity diminishes and moves to higher temperatures with increasing field. Direct comparison of the theoretical results to the field dependent resistivity measurements in CeB(6) yields good agreement.

  13. Advances in Understanding How Heavy Metal Pollution Triggers Gastric Cancer.

    PubMed

    Yuan, Wenzhen; Yang, Ning; Li, Xiangkai

    2016-01-01

    With the development of industrialization and urbanization, heavy metals contamination has become a major environmental problem. Numerous investigations have revealed an association between heavy metal exposure and the incidence and mortality of gastric cancer. The mechanisms of heavy metals (lead, cadmium, mercury, chromium, and arsenic) contamination leading to gastric cancer are concluded in this review. There are four main potential mechanisms: (1) Heavy metals disrupt the gastric mucosal barrier by decreasing mucosal thickness, mucus content, and basal acid output, thereby affecting the function of E-cadherin and inducing reactive oxygen species (ROS) damage. (2) Heavy metals directly or indirectly induce ROS generation and cause gastric mucosal and DNA lesions, which subsequently alter gene regulation, signal transduction, and cell growth, ultimately leading to carcinogenesis. Exposure to heavy metals also enhances gastric cancer cell invasion and metastasis. (3) Heavy metals inhibit DNA damage repair or cause inefficient lesion repair. (4) Heavy metals may induce other gene abnormalities. In addition, heavy metals can induce the expression of proinflammatory chemokine interleukin-8 (IL-8) and microRNAs, which promotes tumorigenesis. The present review is an effort to underline the human health problem caused by heavy metal with recent development in order to garner a broader perspective.

  14. Advances in Understanding How Heavy Metal Pollution Triggers Gastric Cancer

    PubMed Central

    Yuan, Wenzhen; Yang, Ning

    2016-01-01

    With the development of industrialization and urbanization, heavy metals contamination has become a major environmental problem. Numerous investigations have revealed an association between heavy metal exposure and the incidence and mortality of gastric cancer. The mechanisms of heavy metals (lead, cadmium, mercury, chromium, and arsenic) contamination leading to gastric cancer are concluded in this review. There are four main potential mechanisms: (1) Heavy metals disrupt the gastric mucosal barrier by decreasing mucosal thickness, mucus content, and basal acid output, thereby affecting the function of E-cadherin and inducing reactive oxygen species (ROS) damage. (2) Heavy metals directly or indirectly induce ROS generation and cause gastric mucosal and DNA lesions, which subsequently alter gene regulation, signal transduction, and cell growth, ultimately leading to carcinogenesis. Exposure to heavy metals also enhances gastric cancer cell invasion and metastasis. (3) Heavy metals inhibit DNA damage repair or cause inefficient lesion repair. (4) Heavy metals may induce other gene abnormalities. In addition, heavy metals can induce the expression of proinflammatory chemokine interleukin-8 (IL-8) and microRNAs, which promotes tumorigenesis. The present review is an effort to underline the human health problem caused by heavy metal with recent development in order to garner a broader perspective. PMID:27803929

  15. Facultative hyperaccumulation of heavy metals and metalloids.

    PubMed

    Pollard, A Joseph; Reeves, Roger D; Baker, Alan J M

    2014-03-01

    Approximately 500 species of plants are known to hyperaccumulate heavy metals and metalloids. The majority are obligate metallophytes, species that are restricted to metalliferous soils. However, a smaller but increasing list of plants are "facultative hyperaccumulators" that hyperaccumulate heavy metals when occurring on metalliferous soils, yet also occur commonly on normal, non-metalliferous soils. This paper reviews the biology of facultative hyperaccumulators and the opportunities they provide for ecological and evolutionary research. The existence of facultative hyperaccumulator populations across a wide edaphic range allows intraspecific comparisons of tolerance and uptake physiology. This approach has been used to study zinc and cadmium hyperaccumulation by Noccaea (Thlaspi) caerulescens and Arabidopsis halleri, and it will be instructive to make similar comparisons on species that are distributed even more abundantly on normal soil. Over 90% of known hyperaccumulators occur on serpentine (ultramafic) soil and accumulate nickel, yet there have paradoxically been few experimental studies of facultative nickel hyperaccumulation. Several hypotheses suggested to explain the evolution of hyperaccumulation seem unlikely when most populations of a species occur on normal soil, where plants cannot hyperaccumulate due to low metal availability. In such species, it may be that hyperaccumulation is an ancestral phylogenetic trait or an anomalous manifestation of physiological mechanisms evolved on normal soils, and may or may not have direct adaptive benefits.

  16. Ion exchange extraction of heavy metals from wastewater sludges.

    PubMed

    Al-Enezi, G; Hamoda, M F; Fawzi, N

    2004-01-01

    Heavy metals are common contaminants of some industrial wastewater. They find their way to municipal wastewaters due to industrial discharges into the sewerage system or through household chemicals. The most common heavy metals found in wastewaters are lead, copper, nickel, cadmium, zinc, mercury, arsenic, and chromium. Such metals are toxic and pose serious threats to the environment and public health. In recent years, the ion exchange process has been increasingly used for the removal of heavy metals or the recovery of precious metals. It is a versatile separation process with the potential for broad applications in the water and wastewater treatment field. This article summarizes the results obtained from a laboratory study on the removal of heavy metals from municipal wastewater sludges obtained from Ardhiya plant in Kuwait. Data on heavy metal content of the wastewater and sludge samples collected from the plant are presented. The results obtained from laboratory experiments using a commercially available ion exchange resin to remove heavy metals from sludge were discussed. A technique was developed to solubilize such heavy metals from the sludge for subsequent treatment by the ion exchange process. The results showed high efficiency of extraction, almost 99.9%, of heavy metals in the concentration range bound in wastewater effluents and sludges. Selective removal of heavy metals from a contaminated wastewater/sludge combines the benefits of being economically prudent and providing the possibility of reuse/recycle of the treated wastewater effluents and sludges.

  17. Synthesis and adsorption behavior of chitosan-coated MnFe2O4 nanoparticles for trace heavy metal ions removal

    NASA Astrophysics Data System (ADS)

    Xiao, Yanzhen; Liang, Hanfeng; Chen, Wei; Wang, Zhoucheng

    2013-11-01

    Chitosan-coated MnFe2O4 nanoparticles (CCMNPs) of uniform size were synthesized by an eco-friendly method. The obtained product was characterized by XRD, TEM, FTIR and SQUID. The results show that NaOH played a key role in the formation of CCMNPs. The as-prepared CCMNPs with a saturation magnetization of 16.5 emu/g were used as magnetic nanoadsorbents to remove toxic Cu(II) and Cr(VI) ions from aqueous solution. Factors influencing the adsorption of heavy metal ions, such as pH value, agitation time and initial metal concentration were investigated. The maximum adsorption capacities of Cu(II) and Cr(VI) on CCMNPs were 22.6 and 15.4 mg/g, respectively. The competitive adsorption of Cu(II) and Cr(VI) from binary solution by CCMNPs was also studied, and the result shows that the affinity between Cu(II) and CCMNPs was much higher than that between Cr(VI) and CCMNPs.

  18. Heavy metal pumps in plants. 1998 annual progress report

    SciTech Connect

    Harper, J.F.

    1998-06-01

    'The purpose of the proposed DOE research is to determine the function of AMA1, a novel heavy metal pump identified in a model plant system, Arabidopsis. Heavy metal pumps belong to a superfamily of P-type ATPases which include the plasma membrane Na/K-ATPase in animals and the plasma membrane H + ATPase in plants and fungi. Heavy metal pumps have been implicated in heavy metal resistance (e.g., cadmium) and regulation of essential micronutrients (e.g., copper). Although several heavy metal pumps have now been identified in plants, their isoform specific functions have not been investigated. The results suggest that AMA1 is a molydenum uptake pump. The authors are exploring the possibility to engineer the ion specificity of these pumps to take up other heavy metals from the soil. This report summarizes work after 2 years of a 3 year project.'

  19. [Bioremediation of heavy metal pollution by edible fungi: a review].

    PubMed

    Liu, Jian-Fei; Hu, Liu-Jie; Liao, Dun-Xiu; Su, Shi-Ming; Zhou, Zheng-Ke; Zhang, Sheng

    2011-02-01

    Bioremediation is the method of using organisms and their derivatives to absorb heavy metals from polluted environment, with the characteristics of low cost, broad sources, and no secondary pollution. Heavy metals enrichment by edible fungi is an important research focus of bioremediation, because it can decrease the eco-toxicity of heavy metals via the uptake by edible fungi, and thereby, take a definite role in heavy metal remediation. This paper reviewed the research progress on the enrichment of heavy metal copper, cadmium, lead, zinc, arsenic, and chromium by edible fungi and the possible enrichment mechanisms, and prospected the development and applications of heavy metal enrichment by edible fungi in the management of polluted environment.

  20. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals.

    PubMed

    Miransari, Mohammad

    2011-01-01

    Use of plants, with hyperaccumulating ability or in association with soil microbes including the symbiotic fungi, arbuscular mycorrhiza (AM), are among the most common biological methods of treating heavy metals in soil. Both hyperaccumulating plants and AM fungi have some unique abilities, which make them suitable to treat heavy metals. Hyperaccumulator plants have some genes, being expressed at the time of heavy metal pollution, and can accordingly localize high concentration of heavy metals to their tissues, without showing the toxicity symptoms. A key solution to the issue of heavy metal pollution may be the proper integration of hyperaccumulator plants and AM fungi. The interactions between the soil microbes and the host plant can also be important for the treatment of soils polluted with heavy metals.

  1. Diel behavior of iron and other heavy metals in a mountain stream with acidic to neutral pH: Fisher Creek, Montana, USA

    USGS Publications Warehouse

    Gammons, C.H.; Nimick, D.A.; Parker, S.R.; Cleasby, T.E.; McCleskey, R.B.

    2005-01-01

    Three simultaneous 24-h samplings at three sites over a downstream pH gradient were conducted to examine diel fluctuations in heavy metal concentrations in Fisher Creek, a small mountain stream draining abandoned mine lands in Montana. Average pH values at the upstream (F1), middle (F2), and downstream (F3) monitoring stations were 3.31, 5.46, and 6.80, respectively. The downstream increase in pH resulted in precipitation of hydrous ferric oxide (HFO) and hydrous aluminum oxide (HAO) on the streambed. At F1 and F2, Fe showed strong diel cycles in dissolved concentration and Fe(II)/Fe(III) ratio; these cycles were attributed to daytime photoreduction of Fe(III) to Fe(II), reoxidation of Fe(II) to Fe(III), and temperature-dependent hydrolysis and precipitation of HFO. At the near-neutral downstream station, no evidence of Fe(III) photoreduction was observed, and suspended particles of HFO dominated the total Fe load. HFO precipitation rates between F2 and F3 were highest in the afternoon, due in part to reoxidation of a midday pulse of Fe2+ formed by photoreduction in the upper, acidic portions of the stream. Dissolved concentrations of Fe(II) and Cu decreased tenfold and 2.4-fold, respectively, during the day at F3. These changes were attributed to sorption onto fresh HFO surfaces. Results of surface complexation modeling showed good agreement between observed and predicted Cu concentrations at F3, but only when adsorption enthalpies were added to the thermodynamic database to take into account diel temperature variations. The field and modeling results illustrate that the degree to which trace metals adsorb onto actively forming HFO is strongly temperature dependent. This study is an example of how diel Fe cycles caused by redox and hydrolysis reactions can induce a diel cycle in a trace metal of toxicological importance in downstream waters. Copyright ?? 2005 Elsevier Ltd.

  2. Removal of dissolved heavy metals and radionuclides by microbial spores

    SciTech Connect

    Revis, N.W.; Hadden, C.T.; Edenborn, H.

    1997-11-01

    Microbial systems have been shown to remove specific heavy metals from contaminated aqueous waste to levels acceptable to EPA for environmental release. However, systems capable of removing a variety of heavy metals from aqueous waste to environmentally acceptable levels remain to be reported. The present studies were performed to determine the specificity of spores of the bacterium Bacillus megaterium for the adsorption of dissolved metals and radionuclides from aqueous waste. The spores effectively adsorbed eight heavy metals from a prepared metal mix and from a plating rinse waste to EPA acceptable levels for waste water. These results suggest that spores have multiple binding sites for the adsorption of heavy metals. Spores were also effective in adsorbing the radionuclides {sup 85}strontium and {sup 197}cesium. The presence of multiple sites in spores for the adsorption of heavy metals and radionuclides makes this biosorbent a good candidate for the treatment of aqueous wastes associated with the plating and nuclear industries. 17 refs., 4 tabs.

  3. Heavy metals in the cell nucleus - role in pathogenesis.

    PubMed

    Sas-Nowosielska, Hanna; Pawlas, Natalia

    2015-01-01

    People are exposed to heavy metals both in an occupational and natural environment. The most pronounced effects of heavy metals result from their interaction with cellular genetic material packed in form of chromatin. Heavy metals influence chromatin, mimicking and substituting natural microelements in various processes taking place in the cell, or interacting chemically with nuclear components: nucleic acids, proteins and lipids. This paper is a review of current knowledge on the effects of heavy metals on chromatin, exerted at the level of various nuclear components.

  4. [Underlying mechanisms of the heavy metal tolerance of mycorrhizal fungi].

    PubMed

    Chen, Bao-Dong; Sun, Yu-Qing; Zhang, Xin; Wu, Song-Lin

    2015-03-01

    Mycorrhizal fungi are ubiquitous in natural ecosystems and can form symbiotic associations with the majority of terrestrial plants. They can be detected even in heavy metal-contaminated soils, while some fungal strains show strong heavy metal tolerance and could potentially be used in bioremediation of contaminated soils. We reviewed current research progresses in the underlying mechanisms of heavy metal tolerance of mycorrhizal fungi, with focuses on habitat selection, physiological adaptation and functional genes. Future research perspectives were proposed to promote the basic research and development of mycorrhizal technology for remediation of heavy metal-contaminated soils.

  5. Peltier effect in normal metal-insulator-heavy fermion metal junctions

    NASA Astrophysics Data System (ADS)

    Goltsev, A. V.; Rowe, D. M.; Kuznetsov, V. L.; Kuznetsova, L. A.; Min, Gao

    2003-04-01

    A theoretical study has been undertaken of the Peltier effect in normal metal-insulator-heavy fermion metal junctions. The results indicate that, at temperatures below the Kondo temperature, such junctions can be used as electronic microrefrigerators to cool the normal metal electrode and are several times more efficient in cooling than the normal metal-heavy fermion metal junctions.

  6. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review.

    PubMed

    Mahar, Amanullah; Wang, Ping; Ali, Amjad; Awasthi, Mukesh Kumar; Lahori, Altaf Hussain; Wang, Quan; Li, Ronghua; Zhang, Zengqiang

    2016-04-01

    Mining operations, industrial production and domestic and agricultural use of metal and metal containing compound have resulted in the release of toxic metals into the environment. Metal pollution has serious implications for the human health and the environment. Few heavy metals are toxic and lethal in trace concentrations and can be teratogenic, mutagenic, endocrine disruptors while others can cause behavioral and neurological disorders among infants and children. Therefore, remediation of heavy metals contaminated soil could be the only effective option to reduce the negative effects on ecosystem health. Thus, keeping in view the above facts, an attempt has been made in this article to review the current status, challenges and opportunities in the phytoremediation for remediating heavy metals from contaminated soils. The prime focus is given to phytoextraction and phytostabilization as the most promising and alternative methods for soil reclamation.

  7. Comparative characterization of sewage sludge compost and soil: Heavy metal leaching characteristics.

    PubMed

    Fang, Wen; Wei, Yonghong; Liu, Jianguo

    2016-06-05

    The leaching and accumulation of heavy metals are major concerns following the land application of sewage sludge compost (SSC). We comparatively characterized SSC, the reference soil, and the SSC amended soil to investigate their similarities and differences regarding heavy metal leaching behavior and then to evaluate the effect of SSC land application on the leaching behavior of soil. Results showed that organic matter, including both of particulate organic matter (POM) and dissolved organic matter (DOM), were critical factors influencing heavy metal leaching from both of SSC and the soil. When SSC was applied to soil at the application rate of 48t/ha, the increase of DOM content slightly enhanced heavy metal leaching from the amended soil over the applicable pH domain (6behavior of heavy metals. The geochemical speciation modeling revealed that heavy metal speciation in the solid phase were similar between the reference soil and the amended soil.

  8. [Biological activity of selenorganic compounds at heavy metal salts intoxication].

    PubMed

    Rusetskaya, N Y; Borodulin, V B

    2015-01-01

    Possible mechanisms of the antitoxic action of organoselenium compounds in heavy metal poisoning have been considered. Heavy metal toxicity associated with intensification of free radical oxidation, suppression of the antioxidant system, damage to macromolecules, mitochondria and the genetic material can cause apoptotic cell death or the development of carcinogenesis. Organic selenium compounds are effective antioxidants during heavy metal poisoning; they exhibit higher bioavailability in mammals than inorganic ones and they are able to activate antioxidant defense, bind heavy metal ions and reactive oxygen species formed during metal-induced oxidative stress. One of promising organoselenium compounds is diacetophenonyl selenide (DAPS-25), which is characterized by antioxidant and antitoxic activity, under conditions including heavy metal intoxication.

  9. Structure regulation of silica nanotubes and their adsorption behaviors for heavy metal ions: pH effect, kinetics, isotherms and mechanism.

    PubMed

    Wang, Pan; Du, Mingliang; Zhu, Han; Bao, Shiyong; Yang, Tingting; Zou, Meiling

    2015-04-09

    Silica nanotubes (SNTs) with controlled nanotubular structure were synthesized via an electrospinning and calcination process. In this regard, SNTs were found to be ideal adsorbents for Pb(II) removal with a higher adsorption capacity, and surface modification of the SNTs by sym-diphenylcarbazide (SD-SNTs) markedly enhanced the adsorption ability due to the chelating interaction between imino groups and Pb(II). The pH effect, kinetics, isotherms and adsorption mechanism of SNTs and SD-SNTs on Pb(II) adsorption were investigated and discussed detailedly. The adsorption capacity for Pb(II) removal was found to be significantly improved with the decrease of pH value. The Langmuir adsorption model agreed well with the experimental data. As for kinetic study, the adsorption onto SNTs and SD-SNTs could be fitted to pseudo-first-order and pseudo-second-order model, respectively. In addition, the as-prepared SNTs and SD-SNTs also exhibit high adsorption ability for Cd(II) and Co(II). The experimental results demonstrate that the SNTs and SD-SNTs are potential adsorbents and can be used effectively for the treatment of heavy-metal-ions-containing wastewater.

  10. Magnesium oxide for improved heavy metals removal

    SciTech Connect

    Schiller, J.E.; Khalafalla, S.E.

    1984-01-01

    To improve technology for treating process water, US Bureau of Mines research has shown that magnesium oxide (MgO) has many advantages over lime or caustic soda for precipitating heavy metals. Sludge produced by MgO occupies only 0.2-0.3 times as much volume as the precipitate made using a soluble base. While a settled, lime-formed precipitate is easily resuspended, the MgO-metal hydroxide sludge becomes cemented together on standing. Settling of the metal hydroxides from a dilute suspension is more complete than precipitates formed with other bases. Virtually any metal that can be precipitated by raising the pH can be treated using MgO. A three-fold to four-fold stoichiometric excess of solid reagent is added. The mixture is reacted for five to 10 minutes. Polymer is added, and settling or filtration completes the process. Because of the greater cost of MgO compared with lime, large-scale practice of this technology will probably be limited to water containing 50 mg/L (3 gr per gal) or less of dissolved metals. For such dilute solutions, chemicals are not a large fraction of total treatment costs, so more desirable sludge properties might justify higher chemical expenses. While the MgO process is technically suitable for widespread application, the extent to which it is adopted will probably be determined by a trade-off between the greater cost of MgO compared with lime and the superior properties of the precipitates and their corresponding ultimate disposal costs.

  11. Emissions of heavy metals into river basins of Germany.

    PubMed

    Scherer, U; Fuchs, S; Behrendt, H; Hillenbrand, T

    2003-01-01

    The input of seven heavy metals (Cd, Cr, Cu, Hg, Ni, Pb and Zn) into the large river basins of Germany via various point and diffuse pathways were estimated for the period of 1985 through 2000. To quantify the emissions via point sources a nationwide survey on heavy metal data of municipal wastewater treatment plants and industrial direct discharges was carried out. The input via diffuse pathways was calculated using an adapted version of the model MONERIS. This model accounts for the significant transport processes, and it includes a Geographical Information System (GIS) that provides digital maps as well as extensive statistical information. For a comparison of the calculated heavy metal emission with the measured heavy metal load at monitoring stations the losses of heavy metals due to retention processes within the river systems have to be considered. Therefore heavy metal retention was calculated according to the retention functions given by Vink and Behrendt. For the large river basins a good correspondence could be found between estimated and measured heavy metal loads in rivers. The total emission into the North Sea decreased for each metal during the period of 1986 to 2000. The reduction varies between 87% for Hg and 41% for Ni mainly caused by the decline via point sources. Today's emissions of heavy metals into river basins of Germany are dominated by the input via diffuse pathways. The most important diffuse emission pathways are "paved urban areas" and "erosion".

  12. Heavy Metal Induced Antibiotic Resistance in Bacterium LSJC7.

    PubMed

    Chen, Songcan; Li, Xiaomin; Sun, Guoxin; Zhang, Yingjiao; Su, Jianqiang; Ye, Jun

    2015-09-29

    Co-contamination of antibiotics and heavy metals prevails in the environment, and may play an important role in disseminating bacterial antibiotic resistance, but the selective effects of heavy metals on bacterial antibiotic resistance is largely unclear. To investigate this, the effects of heavy metals on antibiotic resistance were studied in a genome-sequenced bacterium, LSJC7. The results showed that the presence of arsenate, copper, and zinc were implicated in fortifying the resistance of LSJC7 towards tetracycline. The concentrations of heavy metals required to induce antibiotic resistance, i.e., the minimum heavy metal concentrations (MHCs), were far below (up to 64-fold) the minimum inhibition concentrations (MIC) of LSJC7. This finding indicates that the relatively low heavy metal levels in polluted environments and in treated humans and animals might be sufficient to induce bacterial antibiotic resistance. In addition, heavy metal induced antibiotic resistance was also observed for a combination of arsenate and chloramphenicol in LSJC7, and copper/zinc and tetracycline in antibiotic susceptible strain Escherichia coli DH5α. Overall, this study implies that heavy metal induced antibiotic resistance might be ubiquitous among various microbial species and suggests that it might play a role in the emergence and spread of antibiotic resistance in metal and antibiotic co-contaminated environments.

  13. Heavy Metal Induced Antibiotic Resistance in Bacterium LSJC7

    PubMed Central

    Chen, Songcan; Li, Xiaomin; Sun, Guoxin; Zhang, Yingjiao; Su, Jianqiang; Ye, Jun

    2015-01-01

    Co-contamination of antibiotics and heavy metals prevails in the environment, and may play an important role in disseminating bacterial antibiotic resistance, but the selective effects of heavy metals on bacterial antibiotic resistance is largely unclear. To investigate this, the effects of heavy metals on antibiotic resistance were studied in a genome-sequenced bacterium, LSJC7. The results showed that the presence of arsenate, copper, and zinc were implicated in fortifying the resistance of LSJC7 towards tetracycline. The concentrations of heavy metals required to induce antibiotic resistance, i.e., the minimum heavy metal concentrations (MHCs), were far below (up to 64-fold) the minimum inhibition concentrations (MIC) of LSJC7. This finding indicates that the relatively low heavy metal levels in polluted environments and in treated humans and animals might be sufficient to induce bacterial antibiotic resistance. In addition, heavy metal induced antibiotic resistance was also observed for a combination of arsenate and chloramphenicol in LSJC7, and copper/zinc and tetracycline in antibiotic susceptible strain Escherichia coli DH5α. Overall, this study implies that heavy metal induced antibiotic resistance might be ubiquitous among various microbial species and suggests that it might play a role in the emergence and spread of antibiotic resistance in metal and antibiotic co-contaminated environments. PMID:26426011

  14. Heavy Metals Toxicity and the Environment

    PubMed Central

    Tchounwou, Paul B; Yedjou, Clement G; Patlolla, Anita K; Sutton, Dwayne J

    2013-01-01

    Heavy metals are naturally occurring elements that have a high atomic weight and a density at least 5 times greater than that of water. Their multiple industrial, domestic, agricultural, medical and technological applications have led to their wide distribution in the environment; raising concerns over their potential effects on human health and the environment. Their toxicity depends on several factors including the dose, route of exposure, and chemical species, as well as the age, gender, genetics, and nutritional status of exposed individuals. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. These metallic elements are considered systemic toxicants that are known to induce multiple organ damage, even at lower levels of exposure. They are also classified as human carcinogens (known or probable) according to the U.S. Environmental Protection Agency, and the International Agency for Research on Cancer. This review provides an analysis of their environmental occurrence, production and use, potential for human exposure, and molecular mechanisms of toxicity, genotoxicity, and carcinogenicity. PMID:22945569

  15. Toxic heavy metals: materials cycle optimization.

    PubMed Central

    Ayres, R U

    1992-01-01

    Long-term ecological sustainability is incompatible with an open materials cycle. The toxic heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, silver, uranium/plutonium, zinc) exemplify the problem. These metals are being mobilized and dispersed into the environment by industrial activity at a rate far higher than by natural processes. Apart from losses to the environment resulting from mine wastes and primary processing, many of these metals are utilized in products that are inherently dissipative. Examples of such uses include fuels, lubricants, solvents, fire retardants, stabilizers, flocculants, pigments, biocides, and preservatives. To close the materials cycle, it will be necessary to accomplish two things. The first is to ban or otherwise discourage (e.g., by means of high severance taxes on virgin materials) dissipative uses of the above type. The second is to increase the efficiency of recycling of those materials that are not replaceable in principle. Here, also, economic instruments (such as returnable deposits) can be effective in some cases. A systems view of the problem is essential to assess the cost and effectiveness of alternative strategies. PMID:11607259

  16. Hydroponic phytoremediation of heavy metals and radionuclides

    SciTech Connect

    Hartong, J.; Szpak, J.; Hamric, T.; Cutright, T.

    1998-07-01

    It is estimated that the Departments of Defense, Energy, and Agriculture will spend up to 300 billion federal dollars on environmental remediation during the next century. Current remediation processes can be expensive, non-aesthetic, and non-versatile. Therefore, the need exists for more innovative and cost effective solutions. Phytoremediation, the use of vegetation for the remediation of contaminated sediments, soils, and ground water, is an emerging technology for treating several categories of persistent, toxic contaminants. Although effective, phytoremediation is still in a developmental stage, and therefore is not a widely accepted technology by regulatory agencies and public groups. Research is currently being conducted to validate the processes effectiveness as well as increase regulatory and community acceptance. This research will focus on the ability of plants to treat an aquifer contaminated with heavy metals and radionuclides. Specifically, the effectiveness of hydroponically grown dwarf sunflowers and mustard seed will be investigated.

  17. Plant productivity and heavy metal contamination

    SciTech Connect

    Guidi, G.V.; Petruzzelli, G.; Vallini, G.; Pera, A.

    1990-06-01

    This article describes the potential for use of composts from green waste and from municipal solid wastes for agricultural use in Italy. The accumulation of heavy metals in compost-amended soils and crops was evaluated and the influence of these composts on plant productivity was studied. Green compost was obtained from vegetable organic residues; municipal solid waste derived compost was obtained from the aerobic biostabilization of a mixture of the organic biodegradable fraction of municipal solid waste and sewage sludge. The two composts had good chemical characteristics and their use caused no pollution to soil and plants. The overall fertilizing effect was higher for green compost even though green compost and municipal solid waste derived compost had similar contents of primary elements of fertility.

  18. Heavy Metals Resisting Gravity in White Dwarfs?

    NASA Astrophysics Data System (ADS)

    Rauch, T.; Gamrath, S.; Quinet, P.; Hoyer, D.; Werner, K.; Kruk, J. W.

    2017-03-01

    Spectral lines of heavy metals, identified in high-resolution ultraviolet spectra of the DO-type white dwarf RX J0503.9–2854 (RE 0503–289), allow precise abundance determinations of these species by means of advanced non-local thermodynamic equilibrium stellar-atmosphere models – provided that reliable atomic data is available. Such analyses of Zn (atomic number Z = 30), Ga (31), Ge (32), As (33), Mo (42), Kr (36), Zr (40), Xe (54), and Ba (56) have recently shown that, without exception, their abundances are unexpectedly strongly supersolar (up to about 5 dex). This is much higher than predicted by recent asymptotic giant branch nucleosynthesis calculations. Thus, the interplay of gravitational settling and radiative levitation may play an important role for their photospheric prominence.

  19. Heavy Metal Music and Adolescent Suicidality: An Empirical Investigation.

    ERIC Educational Resources Information Center

    Scheel, Karen R.; Westefeld, John S.

    1999-01-01

    Investigates the relationship between preference for heavy metal music and vulnerability to suicide among high school students. Results indicate that preference for heavy metal music among adolescents may be sign of increased suicidal vulnerability, but also suggests that the source of the problem may lie more in personal and familial…

  20. Species sensitivity analysis of heavy metals to freshwater organisms.

    PubMed

    Xin, Zheng; Wenchao, Zang; Zhenguang, Yan; Yiguo, Hong; Zhengtao, Liu; Xianliang, Yi; Xiaonan, Wang; Tingting, Liu; Liming, Zhou

    2015-10-01

    Acute toxicity data of six heavy metals [Cu, Hg, Cd, Cr(VI), Pb, Zn] to aquatic organisms were collected and screened. Species sensitivity distributions (SSD) curves of vertebrate and invertebrate were constructed by log-logistic model separately. The comprehensive comparisons of the sensitivities of different trophic species to six typical heavy metals were performed. The results indicated invertebrate taxa to each heavy metal exhibited higher sensitivity than vertebrates. However, with respect to the same taxa species, Cu had the most adverse effect on vertebrate, followed by Hg, Cd, Zn and Cr. When datasets from all species were included, Cu and Hg were still more toxic than the others. In particular, the toxicities of Pb to vertebrate and fish were complicated as the SSD curves of Pb intersected with those of other heavy metals, while the SSD curves of Pb constructed by total species no longer crossed with others. The hazardous concentrations for 5 % of the species (HC5) affected were derived to determine the concentration protecting 95 % of species. The HC5 values of the six heavy metals were in the descending order: Zn > Pb > Cr > Cd > Hg > Cu, indicating toxicities in opposite order. Moreover, potential affected fractions were calculated to assess the ecological risks of different heavy metals at certain concentrations of the selected heavy metals. Evaluations of sensitivities of the species at various trophic levels and toxicity analysis of heavy metals are necessary prior to derivation of water quality criteria and the further environmental protection.

  1. Heavy metals alter the potency of medicinal plants.

    PubMed

    Nasim, Sekh Abdul; Dhir, Bhupinder

    2010-01-01

    There has been increased use of herbal drugs in recent years. Because of increasing demand and wider use, it is essential that the quality of plant-based drugs should be assured prior to use. When heavy metals contaminate the plants from which herbal drugs are derived, they affect both plant growth characteristics and production of secondary plant metabolites. Plants exposed to heavy metal stress show changes in production of secondary metabolites. High levels of heavy metal contamination in medicinal or other plants may suppress secondary metabolite production. Alternatively, the presence of heavy metals in medicinal plants may stimulate production of bioactive compounds in many plant species. Moreover, some research results suggest that heavy metals may play an important role in triggering plant genes to alter the titers or nature of secondary plant metabolites, although the exact mechanism by which this happens remains unclear. Oxidative stress induced by heavy metals triggers signaling pathways that affect production of specific plant metabolites. In particular, reactive oxygen species (ROS), generated during heavy metal stress, may cause lipid peroxidation that stimulates formation of highly active signaling compounds capable of triggering production of bioactive compounds (secondary metabolites) that enhances the medicinal value of the plant. As usual, further research is needed to clarify the mechanism by which heavy metals induce responses that result in enhanced secondary metabolite production.

  2. Heavy Metal Toxicity in Bioremediation: Microbial Cultures and Microscopy.

    DTIC Science & Technology

    1997-12-01

    This research employed a variety of microscopy and spread plating techniques to observe the effects of heavy metal treatments on a toluene-selected...of bacteria and offered new techniques for potential heavy metal toxicity measurements as well as differentiation methods.

  3. A Process for Making Bulk Heavy Metal Fluoride Glasses.

    DTIC Science & Technology

    This invention relates to the preparation of glasses, and, in particular, relates to the preparation of heavy metal fluoride glasses with...reproducible high optical qualities. Considerable effort has been expended to develop heavy metal fluoride glasses ( HMFG ) as a viable family of infrared

  4. Water-soluble organophosphorus reagents for mineralization of heavy metals.

    SciTech Connect

    Nash, K. L.

    1999-02-26

    In this report, we have described the principal stages of a two-step process for the in-situ stabilization of actinide ions in the environment. The combination of cation exchange and mineralization appears likely to provide a long-term solution to environments contaminated with heavy metals. Relying on a naturally occurring sequestering agent has obvious potential advantages from a regulatory standpoint. There are additional aspects of this technology requiring further elucidation, including the demonstration of the effect of these treatment protocols on the geohydrology of soil columns, further examination of the influence of humates and other colloidal species on cation uptake, and microbiological studies of phytate hydrolysis. We have learned during the course of this investigation that phytic acid is potentially available in large quantities. In the US alone, phytic acid is produced at an annual rate of several hundred thousand metric tons as a byproduct of fermentation processes (11). This material presently is not isolated for use. Instead, most of the insoluble phyate (as phytin) is being recycled along with the other solid fermentation residues for animal feed. This material is in fact considered undesirable in animal feed. The details of possible separation processes for phytate from these residues would have to be worked out before this untapped resource would be available for application to heavy metal sequestration. The results described emphasize the behavior of actinide and trivalent lanthanide metal ions, as these species are of primary interest to the Department of Energy for the cleanup of the former nuclear weapons production complex. While the specific demonstration includes this limited selection of metal ions, the technique should be readily applicable to any class of metal ions that form insoluble phosphate compounds under appropriate conditions. Further, though this demonstration has been conducted in the pH 5-8 range, it is conceivable that

  5. Heavy metal retention of different roadside soils

    NASA Astrophysics Data System (ADS)

    Werkenthin, Moritz; Kluge, Björn; Wessolek, Gerd

    2014-05-01

    Emissions from major highways contain different kinds of contaminants such as heavy metals, polycyclic aromatic hydrocarbons and road salts which can occur in both particulate and dissolved form. Pollutants are transferred to the environment via aerial transport or the infiltration of road runoff and spray water. A significant rate of the road runoff infiltrates into the Embankment which is usually built during road construction and located next to the road edge. Especially in the long term development there is an increasing problem of soil contamination and groundwater pollution. According to valid German law, newly constructed hard shoulders have to provide a specific bear-ing capacity to enable trafficability in emergency cases. Therefore the applicable materials consist of accurately defined gravel-soil mixtures, which can fulfil this requirement. To determine and com-pare the total and dissolved concentrations of Pb, Cd, Zn, Cu, Ni, Cr in the road runoff and seep-age water of newly constructed embankments, we installed 6 Lysimeter along the edge of the German highway A115. Three lysimeter were filled with different materials which are recently used for embankment construction in Germany. Three further lysimeter where installed and filled with plain gravel, to observe the distribution, quantity and quality of road runoff. Fist results showed that heavy metal concentrations determined in the road runoff were compara-ble to literature values. The solute concentrations in the seepage water of the different embank-ment materials do not show considerable differences and exceed the trigger values of the German Federal Soil Protection & Contamination Ordinance (BBodSchV) only sporadically. Total concentra-tions of the seepage water are significantly higher than solute concentrations and clearly differ be-tween stable and non stable variant. In order to estimate the risk of groundwater pollution further monitoring of seepage water quality is necessary.

  6. Removal of heavy metal ions from wastewaters: a review.

    PubMed

    Fu, Fenglian; Wang, Qi

    2011-03-01

    Heavy metal pollution has become one of the most serious environmental problems today. The treatment of heavy metals is of special concern due to their recalcitrance and persistence in the environment. In recent years, various methods for heavy metal removal from wastewater have been extensively studied. This paper reviews the current methods that have been used to treat heavy metal wastewater and evaluates these techniques. These technologies include chemical precipitation, ion-exchange, adsorption, membrane filtration, coagulation-flocculation, flotation and electrochemical methods. About 185 published studies (1988-2010) are reviewed in this paper. It is evident from the literature survey articles that ion-exchange, adsorption and membrane filtration are the most frequently studied for the treatment of heavy metal wastewater.

  7. Dietary heavy metal uptake by the least shrew, Cryptotis parva

    SciTech Connect

    Brueske, C.C.; Barrett, G.W. )

    1991-12-01

    Heavy metals from sewage sludge have been reported to concentrate in producers, in primary consumers, and in detritivores. Little research, however, has focused on the uptake of heavy metals from sewage sludge by secondary consumers. The Family Soricidae represents an ideal mammalian taxonomic group to investigate rates of heavy metal transfer between primary and secondary consumers. The least shrew (Cryptotis parva) was used to evaluate the accumulation of heavy metals while maintained on a diet of earthworms collected from long-term sludge-treated old-field communities. This secondary consumer is distributed widely through the eastern United States and its natural diet includes earthworms which makes it a potentially good indicator of heavy metal transfer in areas treated with municipal sludge.

  8. Reducing hazardous heavy metal ions using mangium bark waste.

    PubMed

    Khabibi, Jauhar; Syafii, Wasrin; Sari, Rita Kartika

    2016-08-01

    The objective of this study was to evaluate the characteristics of mangium bark and its biosorbent ability to reduce heavy metal ions in standard solutions and wastewater and to assess changes in bark characteristics after heavy metal absorption. The experiments were conducted to determine heavy metal absorption from solutions of heavy metals alone and in mixtures as well as from wastewater. The results show that mangium bark can absorb heavy metals. Absorption percentages and capacities from single heavy metal solutions showed that Cu(2+) > Ni(2+) > Pb(2+) > Hg(2+), while those from mixture solutions showed that Hg(2+) > Cu(2+) > Pb(2+) > Ni(2+). Wastewater from gold mining only contained Cu, with an absorption percentage and capacity of 42.87 % and 0.75 mg/g, respectively. The highest absorption percentage and capacity of 92.77 % and 5.18 mg/g, respectively, were found for Hg(2+) in a mixture solution and Cu(2+) in single-metal solution. The Cu(2+) absorption process in a single-metal solution changed the biosorbent characteristics of the mangium bark, yielding a decreased crystalline fraction; changed transmittance on hydroxyl, carboxyl, and carbonyl groups; and increased the presence of Cu. In conclusion, mangium bark biosorbent can reduce hazardous heavy metal ions in both standard solutions and wastewater.

  9. Characterisation of heavy metal discharge into the Ria of Huelva.

    PubMed

    Sainz, A; Grande, J A; de la Torre, M L

    2004-06-01

    The Ria of Huelva estuary, in SW Spain, is known to be one of the most heavy metal contaminated estuaries in the world. River contribution to the estuary of dissolved Cu, Zn, Mn, Cr, Ni, Cd, and As were analysed for the period 1988-2001. The obtained mean values show that this contribution, both because of the magnitude of total metals (895.1 kg/h), composition, toxicity (8.7 kg/h of As+Cd+Pb) and persistence, is an incomparable case in heavy metal contamination of estuaries. The amount and typology of heavy metal discharge to the Ria of Huelva are related to freshwater flow (and, consequently, to rainfall); as a result, two different types of heavy metal discharge can be distinguished in the estuary: during low water (50% of the days), with only 19.3 kg/h of heavy metals, and during high water or flood (17% of the days), where daily maximum discharge of 72,475 kg of heavy metals were recorded, from which 1481 kg were of As, 470 kg of Pb, and 170 kg of Cd. In the most frequent situation (77% of the days), the Odiel River discharges from 90% to 100% of the freshwater received by the estuary. Despite this, the high concentration of heavy metals in the Tinto River water causes this river to discharge into the Ria of Huelva 12.5% of fluvial total dissolved metal load received by the estuary.

  10. Bioindication of a surplus of heavy metals in terrestrial ecosystems.

    PubMed

    Ernst, W H; Verkleij, J A; Vooijs, R

    1983-09-01

    A survey of the methods of boindication of heavy metals in terrestrial ecosystems and their effectiveness for predicting the consequences of environmental stress on organisms is presented. Two main inputs of heavy metals for terrestrial ecosystems have been considered: airborne and soil-borne.Airborne metals can be monitored due to physical adsorption on plant surfaces or due to chemical exchange processes in cell walls. Active biomonitoring widely uses both aspects, however, without predictive values.Meaningful bioindication of soilborne heavy metals can only be achieved by passive monitoring. Due to the different functions of heavy metals in organisms-micronutrients and trace elements-the knowledge of natural background values is important, considering the qualitative aspects of metals in the soil. In exceptional situations morphological and anatomical changes of plant organs will facilitate bioindication; in every case chemical analysis of the concentration of heavy metals is an essential part of the monitoring program.A long-term exposure of organisms to heavy metals will influence the genetic structure of populations. Therefore measurement of heavy metal tolerance of plants has to be a standard procedure in monitoring programs.

  11. [Beijing common green tree leaves' accumulation capacity for heavy metals].

    PubMed

    Li, Shao-Ning; Kong, Ling-Wei; Lu, Shao-Wei; Chen, Bo; Gao, Chen; Shi, Yuan

    2014-05-01

    Seasonal variation of heavy metal contents in leaves and their relationships with soil heavy metal pollution levels were studied through measuring and analyzing the leaves of the common tree species in Beijing and soil heavy metal contents, to detect heavy metal accumulation ability of plant leaves. The results showed that: (1) the contents of Cu, Pb, Zn in plant leaves first decreased and then increased, again declined with changing the seasons (from spring to winter). Cr concentration showed the trend of first increase and then decrease from spring to winter, and the highest in the autumn; the accumulation capacities of Cu for Babylonica and Japonica were higher in the spring, summer and autumn, while Tabuliformis was in winter; the higher accumulation capacities for Cr, Pb were Japonica and Platycladus, and in winter were Platycladus and Bungeana; the higher accumulation capacities for Zn were Babylonica and Bungeana, while Platycladus in winter; (2) the pollution degree of four kinds of heavy metals (Cu, Cr, Pb, Zn) from downtown to suburbs showed that: Jingshan (C =2.48, C is contamination factor) > Olympic (C = 1.27) > Songshan (C = 1.20) > Shuiguan (C = 1. 18); (3) the heavy metals concentration of same plant leaves in the water of the Great Wall changed larger, but those in the other three areas showed that: Jingshan > Olympic > Songshan; the ability of same species leaf to absorb different sorts of heavy metals showed that: Zn >Cu >Pb >Cr; the difference between Zn content and Cr content was significant (P <0.01); (4) the relationship between heavy metal content in plant leaves and soil heavy metal pollution levels presented a quadratic polynomial relation; the significant correlation was found between other three heavy metal contents of plant samples and soil samples, but they were not the case for the Cu, and the correlation coefficients were above 0. 9.

  12. Heavy metals in Tuskegee Lake crayfish

    SciTech Connect

    Khan, A.T.

    1995-12-31

    The crayfish, Onconectes virifis, is a bottom dweller and eats insect larvae, worms, crustaceans, small snails, fishes, and dead animal matter. They can be used to monitor the aquatic environment such as lakes, ponds and creeks. To monitor the environmental contamination of heavy metals (Hg, Pb, Cd, Cu, Co, Ni, and Zn) in Tuskegee Lake, Tuskegee, Alabama, adult crayfish were collected and analyzed for these metals. The Pb, Cd, Cu, Ni, and Zn concentrations were 3.91, 0.22, 8.06, 1.11, and 33.37 ppm in muscle and 28.98, 1.15, 9.86, 2.1 8, and 32.62 ppm in exoskeleton of crayfish, respectively. The concentrations of Pb and Cd were significantly higher in exoskeleton than those of muscle. However, the concentrations of Cu, Ni, and Zn did not show any significant difference between the muscle and the exoskeleton of the crayfish. The concentrations of Hg and Co were undetected in both the exoskeleton and muscle of the crayfish.

  13. Remediation technologies for heavy metal contaminated groundwater.

    PubMed

    Hashim, M A; Mukhopadhyay, Soumyadeep; Sahu, Jaya Narayan; Sengupta, Bhaskar

    2011-10-01

    The contamination of groundwater by heavy metal, originating either from natural soil sources or from anthropogenic sources is a matter of utmost concern to the public health. Remediation of contaminated groundwater is of highest priority since billions of people all over the world use it for drinking purpose. In this paper, thirty five approaches for groundwater treatment have been reviewed and classified under three large categories viz chemical, biochemical/biological/biosorption and physico-chemical treatment processes. Comparison tables have been provided at the end of each process for a better understanding of each category. Selection of a suitable technology for contamination remediation at a particular site is one of the most challenging job due to extremely complex soil chemistry and aquifer characteristics and no thumb-rule can be suggested regarding this issue. In the past decade, iron based technologies, microbial remediation, biological sulphate reduction and various adsorbents played versatile and efficient remediation roles. Keeping the sustainability issues and environmental ethics in mind, the technologies encompassing natural chemistry, bioremediation and biosorption are recommended to be adopted in appropriate cases. In many places, two or more techniques can work synergistically for better results. Processes such as chelate extraction and chemical soil washings are advisable only for recovery of valuable metals in highly contaminated industrial sites depending on economical feasibility.

  14. Biomedical implications of heavy metals induced imbalances in redox systems.

    PubMed

    Sharma, Bechan; Singh, Shweta; Siddiqi, Nikhat J

    2014-01-01

    Several workers have extensively worked out the metal induced toxicity and have reported the toxic and carcinogenic effects of metals in human and animals. It is well known that these metals play a crucial role in facilitating normal biological functions of cells as well. One of the major mechanisms associated with heavy metal toxicity has been attributed to generation of reactive oxygen and nitrogen species, which develops imbalance between the prooxidant elements and the antioxidants (reducing elements) in the body. In this process, a shift to the former is termed as oxidative stress. The oxidative stress mediated toxicity of heavy metals involves damage primarily to liver (hepatotoxicity), central nervous system (neurotoxicity), DNA (genotoxicity), and kidney (nephrotoxicity) in animals and humans. Heavy metals are reported to impact signaling cascade and associated factors leading to apoptosis. The present review illustrates an account of the current knowledge about the effects of heavy metals (mainly arsenic, lead, mercury, and cadmium) induced oxidative stress as well as the possible remedies of metal(s) toxicity through natural/synthetic antioxidants, which may render their effects by reducing the concentration of toxic metal(s). This paper primarily concerns the clinicopathological and biomedical implications of heavy metals induced oxidative stress and their toxicity management in mammals.

  15. Biomedical Implications of Heavy Metals Induced Imbalances in Redox Systems

    PubMed Central

    Singh, Shweta; Siddiqi, Nikhat J.

    2014-01-01

    Several workers have extensively worked out the metal induced toxicity and have reported the toxic and carcinogenic effects of metals in human and animals. It is well known that these metals play a crucial role in facilitating normal biological functions of cells as well. One of the major mechanisms associated with heavy metal toxicity has been attributed to generation of reactive oxygen and nitrogen species, which develops imbalance between the prooxidant elements and the antioxidants (reducing elements) in the body. In this process, a shift to the former is termed as oxidative stress. The oxidative stress mediated toxicity of heavy metals involves damage primarily to liver (hepatotoxicity), central nervous system (neurotoxicity), DNA (genotoxicity), and kidney (nephrotoxicity) in animals and humans. Heavy metals are reported to impact signaling cascade and associated factors leading to apoptosis. The present review illustrates an account of the current knowledge about the effects of heavy metals (mainly arsenic, lead, mercury, and cadmium) induced oxidative stress as well as the possible remedies of metal(s) toxicity through natural/synthetic antioxidants, which may render their effects by reducing the concentration of toxic metal(s). This paper primarily concerns the clinicopathological and biomedical implications of heavy metals induced oxidative stress and their toxicity management in mammals. PMID:25184144

  16. Cell surface engineering of microorganisms towards adsorption of heavy metals.

    PubMed

    Li, Peng-Song; Tao, Hu-Chun

    2015-06-01

    Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed.

  17. Bismuth film electrodes for heavy metals determination

    NASA Astrophysics Data System (ADS)

    Rehacek, Vlastimil; Hotovy, Ivan; Vojs, Marian; Mika, Fedor

    2007-05-01

    Bismuth film electrodes (BiFEs) have a potential to replace toxic mercury used most frequently for determination of heavy metals (Cd, Pb, Zn) by anodic stripping voltammetry. We prepared a graphite disc electrode (0.5 mm in diameter) from a pencil-lead rod and developed a nitrogen doped diamond-like carbon (NDLC) microelectrode array consisting of 50 625 microdiscs with 3 μm in diameter and interelectrode distances of 20 μm on a highly conductive silicon substrate as a support for BiFEs. The disc graphite BiFE was used for simultaneous determination of Pb(II), Cd(II) and Zn(II) by square wave voltammetry (SWV) in an aqueous solution. We found the optimum bismuth-to-metal concentration ratio in the solution to be 20. The dependence of the stripping responses on the concentration of target metals was linear in the range from 1×10 -8 to 1.2×10 -7 mol/L. Detection limits 2.4×10 -9 mol/L for Pb(II), 2.9×10 -9 mol/L for Cd(II) and 1.2×10 -8 mol/L for Zn(II) were estimated. A bismuth-plated NDLC microelectrode array was used for Pb(II) determination by differential pulse voltammetry (DPV) in an aqueous solution. We found that the stripping current for bismuth-plated NDLC array was linear in the concentration range of Pb(II) from 2×10 -8 to 1.2×10 -7 mol/L. The detection limit 2.2×10 -8 mol/L was estimated from a calibration plot.

  18. Heavy metal pollution of ambient air in Nagpur City.

    PubMed

    Chaudhari, Pramod R; Gupta, Rakhi; Gajghate, Daulat Ghilagi; Wate, Satish R

    2012-04-01

    Heavy metals released from different sources in urban environment get adsorbed on respirable particulate matter less than 10 μm in size (PM(10)) and are important from public health point of view causing morbidity and mortality. Therefore, the ambient air quality monitoring was carried out to study the temporal and special pattern in the distribution of PM(10) and associated heavy metal content in the atmosphere of Nagpur, Maharashtra State, India during 2001 as well as in 2006. PM(10) fraction was observed to exceed the stipulated standards in both years. It was also observed that minimum range of PM(10) was observed to be increased in 2006 indicating increase in human activity during nighttime also. Six heavy metals were analyzed and were observed to occur in the order Zn > Fe > Pb > Ni > Cd > Cr in 2006, similar to the trend in other metro cities in India. Lead and Nickel were observed to be within the stipulated standards. Poor correlation coefficient (R(2)) between lead and PM(10) indicated that automobile exhaust is not the source of metals to air pollution. Commercial and industrial activity as well as geological composition may be the potential sources of heavy metal pollution. Total load of heavy metals was found to be increased in 2006 with prominent increase in zinc, lead, and nickel in the environment. Public health impacts of heavy metals as well as certain preventive measures to mitigate the impact of heavy metals on public health are also summarized.

  19. The effects of fire temperatures on water soluble heavy metals.

    NASA Astrophysics Data System (ADS)

    Pereira, P.; Ubeda, X.; Martin, D. A.

    2009-04-01

    Fire ash are majority composed by base cations, however the mineralized organic matter, led also available to transport a higher quantity of heavy metals that potentially could increase a toxicity in soil and water resources. The amount availability of these elements depend on the environment were the fire took place, burning temperature and combusted tree specie. The soil and water contamination from fire ash has been neglected, because the majority of studies are focused on base cations dynamic. Our research, beside contemplate major elements, is focused in to study the behavior of heavy metals released from ash slurries created at several temperatures under laboratory environment, prescribed fires and wildland fires. The results presented in these communication are preliminary and study the presence of Aluminium (Al3+), Manganese (Mn2+), Iron (Fe2+) and Zinc (Zn2+) of ash slurries generated in laboratory environment at several temperatures (150°, 200°, 250°, 300°, 350°, 400°,450°, 500°, 550°C) from Quercus suber, Quercus robur, Pinus pinea and Pinus pinaster and from a low medium temperature prescribed fire in a forest dominated Quercus suber trees. We observed that ash produced at lower and medium temperatures (<300-400°C) released in water higher contents of Al3+ than unburned sample, especially in Quercus species and Mn2+ in Pinus ashes. Fe2+ and Zn2+ showed a reduced concentration in test solution in relation to unburned sample at all temperatures of exposition. In the results obtained from prescribed fire, we identify a higher release of Al3+ and a decrease of the remain elements. The solubilization of these elements are related with pH levels and ash calcite content, because their ability to capture ions in solution. Moreover, the amount and the type of ions released in relation to unburned sample vary in each specie. In this study Al3+ release is related with Quercus species and Mn2+ with Pinus species. Fire ashes can be an environmental problem

  20. Contamination, toxicity and speciation of heavy metals in an industrialized urban river: Implications for the dispersal of heavy metals.

    PubMed

    Wu, Qihang; Zhou, Haichao; Tam, Nora F Y; Tian, Yu; Tan, Yang; Zhou, Song; Li, Qing; Chen, Yongheng; Leung, Jonathan Y S

    2016-03-15

    Urban rivers are often utilized by the local residents as water source, but they can be polluted by heavy metals due to industrialization. Here, the concentrations, toxicity, speciation and vertical profiles of heavy metals in sediment were examined to evaluate their impact, dispersal and temporal variation in Dongbao River. Results showed that the sediment in the industrialized areas was seriously contaminated with Cr, Cu and Ni which posed acute toxicity. Heavy metals, except Cr and Pb, were mainly associated with non-residual fractions, indicating their high mobility and bioavailability. The non-industrialized areas were also seriously contaminated, suggesting the dispersal of heavy metals along the river. The surface sediment could be more contaminated than the deep sediment, indicating the recent pollution events. Overall, when the point sources are not properly regulated, intense industrialization can cause both serious contamination and dispersal of heavy metals, which have far-reaching consequences in public health and environment.

  1. Heavy metals in surface sediments of the Jialu River, China: their relations to environmental factors.

    PubMed

    Fu, Jie; Zhao, Changpo; Luo, Yupeng; Liu, Chunsheng; Kyzas, George Z; Luo, Yin; Zhao, Dongye; An, Shuqing; Zhu, Hailiang

    2014-04-15

    This work investigated heavy metal pollution in surface sediments of the Jialu River, China. Sediment samples were collected at 19 sites along the river in connection with field surveys and the total concentrations were determined using atomic fluorescence spectrometer and inductively coupled plasma optical emission spectrometer. Sediment samples with higher metal concentrations were collected from the upper reach of the river, while sediments in the middle and lower reaches had relatively lower metal concentrations. Multivariate techniques including Pearson correlation, hierarchical cluster and principal components analysis were used to evaluate the metal sources. The ecological risk associated with the heavy metals in sediments was rated as moderate based on the assessments using methods of consensus-based Sediment Quality Guidelines, Potential Ecological Risk Index and Geo-accumulation Index. The relations between heavy metals and various environmental factors (i.e., chemical properties of sediments, water quality indices and aquatic organism indices) were also studied. Nitrate nitrogen, total nitrogen, and total polycyclic aromatic hydrocarbons concentrations in sediments showed a co-release behavior with heavy metals. Ammonia nitrogen, total nitrogen, orthophosphate, total phosphate and permanganate index in water were found to be related to metal sedimentation. Heavy metals in sediments posed a potential impact on the benthos community.

  2. Optical methods for the detection of heavy metal ions

    NASA Astrophysics Data System (ADS)

    Uglov, A. N.; Bessmertnykh-Lemeune, A.; Guilard, R.; Averin, A. D.; Beletskaya, I. P.

    2014-03-01

    The review covers an important area of the modern chemistry, namely, the detection of heavy metal ions using optical molecular detectors. The role of this method in metal ion detection and the physicochemical grounds of operation of chemosensors are discussed, and examples of detection of most abundant heavy metal ions and synthetic approaches to molecular detectors are presented. The immobilization of molecular detectors on solid substrates for the design of analytical sensor devices is described. The bibliography includes 178 references.

  3. Emergent heavy fermion behavior at the Wigner-Mott transition.

    PubMed

    Merino, Jaime; Ralko, Arnaud; Fratini, Simone

    2013-09-20

    We study charge ordering driven by Coulomb interactions on triangular lattices relevant to the Wigner-Mott transition in two dimensions. Dynamical mean-field theory reveals the pinball liquid phase, a charge ordered metallic phase containing quasilocalized (pins) coexisting with itinerant (balls) electrons. Based on an effective periodic Anderson model for this phase, we find an antiferromagnetic Kondo coupling between pins and balls and strong quasiparticle renormalization. Non-Fermi liquid behavior can occur in such charge ordered systems due to the spin-flip scattering of itinerant electrons off the pins in analogy with heavy fermion compounds.

  4. [Application of ICP-MS to determination of heavy metal content of heavy metals in two kinds of N fertilizer].

    PubMed

    Rui, Yu-kui; Shen, Jian-bo; Zhang, Fu-suo

    2008-10-01

    Environmental safety has been the focus worldwide, where involved are the pollutions of heavy metals, pesticides and persistent organic pollutants. Fertilizer has become one of the polluting sources of heavy metals, which are very deleterious to human health and environmental safety. Heavy metals are difficult to metabolize in human body and very harmful, so research on the pollution of heavy metals is considered increasingly important. The pollution sources of heavy metals include waste residue, waste water and exhaust gas from industry and automobile, and garbage from human life. The heavy metals in fertilizer can endanger the human body by the crop containing heavy metals. Two kinds of nitrogen fertilizer were analyzed in terms of the content of heavy metals by ICP-MS, and the results showed that the content of 10 kinds of heavy metals (Al, Ti, Cr, Ni, Cu, Zn, As, Cd, Hg and Pb) in (NH4)2SO4 was 1345.13, 35.12, 2539.27, 287.26, 674.05, 270.79, 42.54, 22.13, 27.20 and 123.87 ng x g(-1) respectively; and in CO(NH2)2 it is 71.59, 5.36, 1167.71, 188.60, 7.46, 64.45, 10.55, 0.00, 0.09 and 3.71 ng x g(-1) respectively. All the data showed that CO(NH2)2 contained much less heavy metals than (NH4)2SO4, so we should select CO(NH2)2 as the nitrogen fertilizer in agricultural production.

  5. Heavy metal displacement in chelate-irrigated soil during phytoremediation

    NASA Astrophysics Data System (ADS)

    Madrid, F.; Liphadzi, M. S.; Kirkham, M. B.

    2003-03-01

    Heavy metals in wastewater sewage sludge (biosolids), applied to land, contaminate soils. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with and without roots following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals in biosolids applied to the surface of soil columns (76 cm long; 17 cm diam.) with or without plants (barley; Hordeum vulgare L.). Three weeks after barley was planted, all columns were irrigated with the disodium salt of the chelating agent, EDTA (ethylenediamine tetraacetic acid) (0.5 g/kg soil). Drainage water, soil, and plants were analyzed for heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, Zn). Total concentrations of the heavy metals in all columns at the end of the experiment generally were lower in the top 30 cm of soil with EDTA than without EDTA. The chelate increased concentrations of heavy metals in shoots. With or without plants, the EDTA mobilized Cd, Fe, Mn, Ni, Pb, and Zn, which leached to drainage water. Drainage water from columns without EDTA had concentrations of these heavy metals below detection limits. Only Cu did not leach in the presence of EDTA. Even though roots retarded the movement of Cd, Fe, Mn, Ni, Pb, and Zn through the EDTA-treated soil from 1 d (Cd) to 5 d (Fe), the drainage water from columns with EDTA had concentrations of Cd, Fe, Mn, and Pb that exceeded drinking water standards by 1.3, 500, 620, and 8.6 times, respectively. Because the chelate rendered Cd, Fe, Mn, Ni, Pb, and Zn mobile, it is suggested that the theory for leaching of soluble salts, put forward by Nielsen and associates in 1965, could be applied to control movement of the heavy metals for maximum uptake during chelate-assisted phytoremediation.

  6. Heavy metal-induced glutathione accumulation and its role in heavy metal detoxification in Phanerochaete chrysosporium.

    PubMed

    Xu, Piao; Liu, Liang; Zeng, Guangming; Huang, Danlian; Lai, Cui; Zhao, Meihua; Huang, Chao; Li, Ningjie; Wei, Zhen; Wu, Haipeng; Zhang, Chen; Lai, Mingyong; He, Yibin

    2014-01-01

    Phanerochaete chrysosporium are known to be vital hyperaccumulation species for heavy metal removal with admirable intracellular bioaccumulation capacity. This study analyzes the heavy metal-induced glutathione (GSH) accumulation and the regulation at the intracellular heavy metal level in P. chrysosporium. P. chrysosporium accumulated high levels of GSH, accompanied with high intracellular concentrations of Pb and Cd. Pb bioaccumulation lead to a narrow range of fluctuation in GSH accumulation (0.72-0.84 μmol), while GSH plummeted under Cd exposure at the maximum value of 0.37 μmol. Good correlations between time-course GSH depletion and Cd bioaccumulation were determined (R (2) > 0.87), while no significant correlations have been found between GSH variation and Pb bioaccumulation (R (2) < 0.38). Significantly, concentration-dependent molar ratios of Pb/GSH ranging from 0.10 to 0.18 were observed, while molar ratios of Cd/GSH were at the scope of 1.53-3.32, confirming the dominant role of GSH in Cd chelation. The study also demonstrated that P. chrysosporium showed considerable hypertolerance to Pb ions, accompanied with demand-driven stimulation in GSH synthesis and unconspicuous generation of reactive oxygen stress. GSH plummeted dramatically response to Cd exposure, due to the strong affinity of GSH to Cd and the involvement of GSH in Cd detoxification mechanism mainly as Cd chelators. Investigations into GSH metabolism and its role in ameliorating metal toxicity can offer important information on the application of the microorganism for wastewater treatment.

  7. Leaching Properties of Naturally Occurring Heavy Metals from Soils

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Hoshino, M.; Yoshikawa, M.; Hara, J.; Sugita, H.

    2014-12-01

    The major threats to human health from heavy metals are associated with exposure to arsenic, lead, cadmium, chromium, mercury, as well as some other elements. The effects of such heavy metals on human health have been extensively studied and reviewed by international organizations such as WHO. Due to their toxicity, heavy metal contaminations have been regulated by national environmental standards in many countries, and/or laws such as the Soil Contamination Countermeasures Act in Japan. Leaching of naturally occurring heavy metals from the soils, especially those around abandoned metal mines into surrounding water systems, either groundwater or surface water systems, is one of the major pathways of exposure. Therefore, understanding the leaching properties of toxic heavy metals from naturally polluted soils is of fundamentally importance for effectively managing abandoned metal mines, excavated rocks discharged from infrastructure constructions such as tunneling, and/or selecting a pertinent countermeasure against pollution when it is necessary. In this study, soil samples taken from the surroundings of abandoned metal mines in different regions in Japan were collected and analyzed. The samples contained multiple heavy metals such as lead, arsenic and chromium. Standard leaching test and sequential leaching test considering different forms of contaminants, such as trivalent and pentavalent arsenics, and trivalent and hexavalent chromiums, together with standard test for evaluating total concentration, X-ray Fluorescence Analysis (XRF), X-ray diffraction analysis (XRD) and Cation Exchange Capacity (CEC) tests were performed. In addition, sequential leaching tests were performed to evaluate long-term leaching properties of lead from representative samples. This presentation introduces the details of the above experimental study, discusses the relationships among leaching properties and chemical and mineral compositions, indicates the difficulties associated with

  8. Microalgae - A promising tool for heavy metal remediation.

    PubMed

    Suresh Kumar, K; Dahms, Hans-Uwe; Won, Eun-Ji; Lee, Jae-Seong; Shin, Kyung-Hoon

    2015-03-01

    Biotechnology of microalgae has gained popularity due to the growing need for novel environmental technologies and the development of innovative mass-production. Inexpensive growth requirements (solar light and CO2), and, the advantage of being utilized simultaneously for multiple technologies (e.g. carbon mitigation, biofuel production, and bioremediation) make microalgae suitable candidates for several ecofriendly technologies. Microalgae have developed an extensive spectrum of mechanisms (extracellular and intracellular) to cope with heavy metal toxicity. Their wide-spread occurrence along with their ability to grow and concentrate heavy metals, ascertains their suitability in practical applications of waste-water bioremediation. Heavy metal uptake by microalgae is affirmed to be superior to the prevalent physicochemical processes employed in the removal of toxic heavy metals. In order to evaluate their potential and to fill in the loopholes, it is essential to carry out a critical assessment of the existing microalgal technologies, and realize the need for development of commercially viable technologies involving strategic multidisciplinary approaches. This review summarizes several areas of heavy metal remediation from a microalgal perspective and provides an overview of various practical avenues of this technology. It particularly details heavy metals and microalgae which have been extensively studied, and provides a schematic representation of the mechanisms of heavy metal remediation in microalgae.

  9. Toxicity of heavy metals and metal-containing nanoparticles on plants.

    PubMed

    Mustafa, Ghazala; Komatsu, Setsuko

    2016-08-01

    Plants are under the continual threat of changing climatic conditions that are associated with various types of abiotic stresses. In particular, heavy metal contamination is a major environmental concern that restricts plant growth. Plants absorb heavy metals along with essential elements from the soil and have evolved different strategies to cope with the accumulation of heavy metals. The use of proteomic techniques is an effective approach to investigate and identify the biological mechanisms and pathways affected by heavy metals and metal-containing nanoparticles. The present review focuses on recent advances and summarizes the results from proteomic studies aimed at understanding the response mechanisms of plants under heavy metal and metal-containing nanoparticle stress. Transport of heavy metal ions is regulated through the cell wall and plasma membrane and then sequestered in the vacuole. In addition, the role of different metal chelators involved in the detoxification and sequestration of heavy metals is critically reviewed, and changes in protein profiles of plants exposed to metal-containing nanoparticles are discussed in detail. Finally, strategies for gaining new insights into plant tolerance mechanisms to heavy metal and metal-containing nanoparticle stress are presented. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.

  10. Improving crop tolerance to heavy metal stress by polyamine application.

    PubMed

    Soudek, Petr; Ursu, Marina; Petrová, Šárka; Vaněk, Tomáš

    2016-12-15

    Many areas have been heavily contaminated by heavy metals from industry and are not suitable for food production. The consumption of contaminated foods represents a health risk in humans, although some heavy metals are essential at low concentrations. Increasing the concentrations of essential elements in foods is one goal to improve nutrition. The aim of this study was to increase the accumulation of heavy metals in plant foods by the external application of putrescine. The levels of cadmium, zinc and iron were measured in different vegetables grown in hydroponic medium supplemented with heavy metals and compared with those grown in a reference medium. The estimated daily intake, based on the average daily consumption for various vegetable types, and the influence of polyamines on metal uptake were calculated.

  11. Heavy metal music and adolescent suicidality: an empirical investigation.

    PubMed

    Scheel, K R; Westefeld, J S

    1999-01-01

    This study investigated the relationship between preference for heavy metal music and vulnerability to suicide among 121 high school students. Heavy metal fans had less strong reasons for living (especially male fans) and had more thoughts of suicide (especially female fans). For a large majority, listening to music (all types) had a positive effect on mood. Overall, the results indicate that preference for heavy metal music among adolescents may be a "red flag" for increased suicidal vulnerability, but also suggest that the source of the problem may lie more in personal and familial characteristics than in any direct effects of the music. Implications for intervention and for future research are discussed.

  12. Trace metals in heavy crude oils and tar sand bitumens

    SciTech Connect

    Reynolds, J.G.

    1990-11-28

    Fe, Ni, and V are considered trace impurities in heavy crude oils and tar sand bitumens. In order to understand the importance of these metals, we have examined several properties: (1) bulk metals levels, (2) distribution in separated fractions, (3) size behavior in feeds and during processing, (4) speciation as a function of size, and (5) correlations with rheological properties. Some of the results of these studies show: (1) V and Ni have roughly bimodal size distributions, (2) groupings were seen based on location, size distribution, and Ni/V ratio of the sample, (3) Fe profiles are distinctively different, having a unimodal distribution with a maximum at relatively large molecular size, (4) Fe concentrations in the tar sand bitumens suggest possible fines solubilization in some cases, (5) SARA separated fractions show possible correlations of metals with asphaltene properties suggesting secondary and tertiary structure interactions, and (6) ICP-MS examination for soluble ultra-trace metal impurities show the possibility of unexpected elements such as U, Th, Mo, and others at concentrations in the ppB to ppM range. 39 refs., 13 figs., 5 tabs.

  13. Heavy metal removal from MSS fly ash by thermal and chlorination treatments

    PubMed Central

    Liu, Jingyong; Chen, Jiacong; Huang, Limao

    2015-01-01

    The thermal behavior of heavy metals in the co-incineration of municipal solid waste-sludge incinerator fly ash (MSS fly ash) was studied using a laboratory-scale tube furnace. The results indicate that without the addition of chlorinating agents, temperature was an important parameter and had significantly influenced on heavy metal removal, whereas the residence time had a weak effect. Between 900 and 1000 °C for 60 to 300 min, heavy metals reacted with chloride-inherent in the fly ash, and approximately 80 to 89% of Pb, 48% to 56% of Cd, 27% to 36% of Zn and 6% to 24% of Cu were removed. After the adding chlorinating agents, the evaporation rate of the heavy metals improved dramatically, where the evaporation rates of Cu and Zn were larger than that of Pb and Cd. As the amount of added chlorinating agents increased, the removal rate of heavy metals increased. However, the effect of the type of chlorinating agent on the chlorination of heavy metals differed considerably, where NaCl had the weakest effect on the removal rate of Cu, Cd and Zn. In terms of resource recovery and decontamination, MgCl2 and CaCl2 are the best choices due to their efficient removal of Zn. PMID:26602592

  14. Heavy metal removal from MSS fly ash by thermal and chlorination treatments

    NASA Astrophysics Data System (ADS)

    Liu, Jingyong; Chen, Jiacong; Huang, Limao

    2015-11-01

    The thermal behavior of heavy metals in the co-incineration of municipal solid waste-sludge incinerator fly ash (MSS fly ash) was studied using a laboratory-scale tube furnace. The results indicate that without the addition of chlorinating agents, temperature was an important parameter and had significantly influenced on heavy metal removal, whereas the residence time had a weak effect. Between 900 and 1000 °C for 60 to 300 min, heavy metals reacted with chloride-inherent in the fly ash, and approximately 80 to 89% of Pb, 48% to 56% of Cd, 27% to 36% of Zn and 6% to 24% of Cu were removed. After the adding chlorinating agents, the evaporation rate of the heavy metals improved dramatically, where the evaporation rates of Cu and Zn were larger than that of Pb and Cd. As the amount of added chlorinating agents increased, the removal rate of heavy metals increased. However, the effect of the type of chlorinating agent on the chlorination of heavy metals differed considerably, where NaCl had the weakest effect on the removal rate of Cu, Cd and Zn. In terms of resource recovery and decontamination, MgCl2 and CaCl2 are the best choices due to their efficient removal of Zn.

  15. Theory of unidirectional spin Hall magnetoresistance in heavy-metal/ferromagnetic-metal bilayers

    NASA Astrophysics Data System (ADS)

    Zhang, Steven S.-L.; Vignale, Giovanni

    2016-10-01

    Recent experiments have revealed nonlinear features of the magnetoresistance in metallic bilayers consisting of a heavy metal (HM) and a ferromagnetic metal (FM). A small change in the longitudinal resistance of the bilayer has been observed when reversing the direction of either the applied in-plane current or the magnetization. We attribute such nonlinear transport behavior to the spin-polarization dependence of the electron mobility in the FM layer acting in concert with the spin accumulation induced in that layer by the spin Hall current originating in the bulk of the HM layer. An explicit expression for the nonlinear magnetoresistance is derived based on a simple drift-diffusion model, which shows that the nonlinear magnetoresistance appears at the first order of the spin Hall angle, and changes sign when the current is reversed, in agreement with the experimental observations. We also discuss possible ways to control sign of the nonlinear magnetoresistance and to enhance the magnitude of the effect.

  16. Heavy Metals and Epigenetic Alterations in Brain Tumors

    PubMed Central

    Caffo, Maria; Caruso, Gerardo; Fata, Giuseppe La; Barresi, Valeria; Visalli, Maria; Venza, Mario; Venza, Isabella

    2014-01-01

    Heavy metals and their derivatives can cause various diseases. Numerous studies have evaluated the possible link between exposure to heavy metals and various cancers. Recent data show a correlation between heavy metals and aberration of genetic and epigenetic patterns. From a literature search we noticed few experimental and epidemiological studies that evaluate a possible correlation between heavy metals and brain tumors. Gliomas arise due to genetic and epigenetic alterations of glial cells. Changes in gene expression result in the alteration of the cellular division process. Epigenetic alterations in brain tumors include the hypermethylation of CpG group, hypomethylation of specific genes, aberrant activation of genes, and changes in the position of various histones. Heavy metals are capable of generating reactive oxygen assumes that key functions in various pathological mechanisms. Alteration of homeostasis of metals could cause the overproduction of reactive oxygen species and induce DNA damage, lipid peroxidation, and alteration of proteins. In this study we summarize the possible correlation between heavy metals, epigenetic alterations and brain tumors. We report, moreover, the review of relevant literature. PMID:25646073

  17. Estimation of heavy metal transformations in municipal solid waste.

    PubMed

    Flyhammar, P

    1997-05-30

    The behaviour of heavy metals bound to municipal solid waste (MSW) and exposed to 2 decades of anaerobic waste stabilization processes have been estimated. Heavy metal solid forms in a waste degradation residue have been compared with a reconstructed waste similar to that initially disposed of in 1973. The initial waste was composed of a mixture of shredded MSW (95% dry wt.) and anaerobic sewage sludge (5% dry wt.). A sequential chemical extraction method has been used to fractionate the heavy metals into five categories of available and reactive solid forms. The results imply that these forms can be ascribed to approximately 30% of the total content of the heavy metals in the degraded waste and the portion of heavy metals bound to oxidizable solid forms seems to be higher in the degraded than the fresh MSW. The bulk of the remaining heavy metals are assumed to be less available and bound into resistant lattice structures, such as metal and polymer items. A comparison between fractionation patterns of the waste in this study and of a few sediments collected from different environments imply similarities between the fresh MSW and an oxic sediment from one site and the sewage sludge and anoxic sediments from another site. Fractionation patterns of the degraded waste are found to be quite similar to those of the anoxic sediments, except for Pb, Ni and Cd which are more similar to fresh MSW.

  18. Selection of ectomycorrhizal willow genotype in phytoextraction of heavy metals.

    PubMed

    Hrynkiewicz, Katarzyna; Baum, Christel

    2013-01-01

    Willow clones are used for the phytoextraction of heavy metals from contaminated soils and are usually mycorrhizal. The receptiveness of willow clones for mycorrhizal inoculum varies specific to genotype; however, it is unknown if this might have a significant impact on their efficiency in phytoextraction of heavy metals. Therefore, a model system with mycorrhizal and non-mycorrhizal willows of two different genotypes--one with usually stronger natural mycorrhizal colonization (Salix dasyclados), and one with lower natural mycorrhizal colonization (S. viminalis)--was investigated for its efficiency of phytoextraction of heavy metals (Cd, Pb, Cu, Zn) from contaminated soil. Inoculation with the ectomycorrhizal fungus Amanita muscaria significantly decreased the biomass of leaves of both inoculated willow clones, and increased or had no effect on the biomass of trunks and roots of S. dasyclados and S. viminalis, respectively. The concentrations of heavy metals in the biomass of S. dasyclados were in general higher than in S. viminalis irrespective of inoculation with the ectomycorrhizal fungus. Inoculation with A. muscaria significantly decreased the concentration of Cu in the trunks of both Salix taxa, but did not affected the concentrations of other heavy metals in the biomass. In conclusion, stronger receptiveness of willow clones for mycorrhizal inoculum was correlated with an increased total extraction of heavy metals from contaminated soils. Therefore, this seems to be a suitable criterion for effective willow clone selection for phytoremediation. Increased biomass production with relatively constant metal concentrations seems to be a major advantage of mycorrhizal formation of willows in phytoremediation of contaminated soils.

  19. Heavy metals content of municipal wastewater and sludges in Kuwait.

    PubMed

    Al Enezi, G; Hamoda, M F; Fawzi, N

    2004-01-01

    Municipal wastewater may contain heavy metals, which are hazardous to the environment and humans. With stringent regulations concerning water reuse and sludge utilization in agriculture, there is a great need to determine levels of heavy metals in liquid wastes, sludges and agricultural crops. The state of Kuwait has programs to utilize waste sludge produced at wastewater treatment plants as soil conditioner and fertilizer for greenery and agricultural development projects and to reuse treated wastewater effluents in irrigation. The common metals found in Kuwait's raw wastewater and sludge are Cd, Cr, Cu, Hg, Ni, Pb, and Zn. The effects of accumulation of heavy metals in soil are long lasting and even permanent. In this study, the variations in the concentration levels of heavy metals were measured in wastewater and sludge produced at Ardiya municipal wastewater treatment plant in Kuwait. A relationship was observed between the concentrations of heavy metals in treated wastewater and sludge used for agriculture and the level of accumulated heavy metals found in residual tissues of some crops.

  20. Contamination of Polish national parks with heavy metals.

    PubMed

    Staszewski, Tomasz; Łukasik, Włodzimierz; Kubiesa, Piotr

    2012-07-01

    The paper presents results of screening analysis of all Polish national parks (23) contamination with Cd, Cu, Pb and Zn on the basis of a three-level characteristic of heavy metal presence in Norway spruce stands: accumulation on the needle surface, concentration of heavy metals in spruce needles and concentration of bioavailable heavy metals in the soil. Based on the obtained results, the classification of forest ecosystem hazard in national parks with heavy metals was made using synthetic indicators. It was found out that Babiogórski, Magurski, Ojcowski and Gorczański National Parks, located in the southern part of the country, were the most polluted with heavy metals. It is probably due to a higher industrial activity in this part of Poland and the transboundary transport of air pollutants. A little lower level of pollution was observed in Kampinoski National Park located in the middle of the country. The concentration of heavy metals found in needles from national parks does not seem to be harmful for the health status of the trees. Statistically significant correlation between all parameters, which was found for cadmium--the most mobile of the analysed elements--shows that this metal can be proposed as a marker to reflect present effect of industrial emission on forests.

  1. Heavy metals in livers and kidneys of goats in Alabama

    SciTech Connect

    Khan, A.T.; Diffay, B.C.; Datiri, B.C.

    1995-10-01

    The popularity of goat farming is increasing in the southeastern region of the United States. Baseline values of Hg, Pb, and Cd are not available in goat tissues in the United States. These values are needed when monitoring food for heavy metal contamination which may be associated with urbanization and industrialization. Due to human activities or anthropogenic sources of metals in the environment, high concentrations of these metals have been observed in herbage and animal tissues. It has also been reported that toxic heavy metals are concentrated mostly in kidneys and livers of animals. The risk of exposure of humans to heavy metals contained in edible organs of animals has received widespread concern. The objectives of this study were to (i) measure the levels of Hg,Pb, and Cd in livers and kidneys of goats; and (ii) determine whether accumulation of these metals is related to age and/or sex. 20 refs., 3 tabs.

  2. Detection of heavy metal by paper-based microfluidics.

    PubMed

    Lin, Yang; Gritsenko, Dmitry; Feng, Shaolong; Teh, Yi Chen; Lu, Xiaonan; Xu, Jie

    2016-09-15

    Heavy metal pollution has shown great threat to the environment and public health worldwide. Current methods for the detection of heavy metals require expensive instrumentation and laborious operation, which can only be accomplished in centralized laboratories. Various microfluidic paper-based analytical devices have been developed recently as simple, cheap and disposable alternatives to conventional ones for on-site detection of heavy metals. In this review, we first summarize current development of paper-based analytical devices and discuss the selection of paper substrates, methods of device fabrication, and relevant theories in these devices. We then compare and categorize recent reports on detection of heavy metals using paper-based microfluidic devices on the basis of various detection mechanisms, such as colorimetric, fluorescent, and electrochemical methods. To finalize, the future development and trend in this field are discussed.

  3. View of interior detail; in kitchen; builtiniron and heavy metal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of interior detail; in kitchen; built-in-iron and heavy metal clock. - Mare Island Naval Shipyard, Quarters P, Walnut Avenue, northwest corner of Walnut Avenue & Fifth Street, Vallejo, Solano County, CA

  4. DETERMINATION OF HEAVY METALS AND PESTICIDES IN GINSENG PRODUCTS

    EPA Science Inventory

    Medicinal plants may carry residuals of environmentally persistent pesticides or assimilate heavy metals in varying degrees. Several factors may influence contaminant accumulation, including species, level and duration of contaminant exposure, and topography. As part of a progra...

  5. NMR microscopy of heavy metal absorption in calcium alginate beads

    SciTech Connect

    Nestle, N.; Kimmich, R.

    1996-01-01

    In recent years, heavy metal uptake by biopolymer gels, such as Cal-Alginate or chitosan, has been studied by various methods. This is of interest because such materials might be an alternative to synthetical ion-exchange resins in the treatment of industrial waste waters. Most of the work done in this field consisted of studies of equilibrium absorption of different heavy metal ions with dependence on various experimental parameters. In some publications, the kinetics of absorption were studied, too. However, no experiments on the spatial distribution of heavy metals during the absorption process are known to us. Using Cu as an example, it is demonstrated in this article that NMR microscopy is an appropriate tool for such studies. By the method presented here, it is possible to monitor the spatial distribution of heavy metal ions with a time resolution of about 5 min and a spatial resolution of 100 {mu}m or even better. 14 refs., 10 figs.

  6. Heavy metals testing in active pharmaceutical ingredients: an alternate approach.

    PubMed

    Raghuram, P; Soma Raju, I V; Sriramulu, J

    2010-01-01

    The principle of the pharmacopoeial heavy metals test is detection and estimation of the metallic impurities colored by sulfide ion by comparison against lead standard. The test suffers from a loss of analytes upon ashing and from having varied responses for various metals. An inductively coupled plasma-optical emission spectroscopy (ICP-OES) for estimating 23 metals in active pharmaceutical ingredients is being proposed. The method covers the metals listed in USP, Ph. Eur and EMEA guidance on "Residues of Metal Catalysts or Metal Reagents".

  7. Combined toxicity of heavy metal mixtures in liver cells.

    PubMed

    Lin, Xialu; Gu, Yuanliang; Zhou, Qi; Mao, Guochuan; Zou, Baobo; Zhao, Jinshun

    2016-09-01

    With rapid industrialization, China is now facing great challenges in heavy metal contamination in the environment. Human exposure to heavy metals through air, water and food commonly involves a mixture consisting of multiple heavy metals. In this study, eight common heavy metals (Pb, Cd, Hg, Cu, Zn, Mn, Cr, Ni) that cause environmental contamination were selected to investigate the combined toxicity of different heavy metal mixtures in HL7702 cells. Toxicity (24 h LC50 ) of each individual metal on the cells ranked Hg > Cr = Cd > Cu > Zn > Ni > Mn > Pb; toxicity of the different mixtures ranked: M5 > M3PbHgCd > M5+Mn > M5+Cu > M2CdNi > M4A > M8-Mn > M8 > M5+Zn > M4B > M8-Cr > M8-Zn > M8-Cu > M8-Pb > M8-Cd > M8-Hg > M8-Ni > M3PbHgNi > M3CuZnMn. The cytotoxicity data of individual metals were successfully used to build the additive models of two- to eight-component metal mixtures. The comparison between additive model and combination model or partly additive model was useful to evaluate the combined effects in mixture. Synergistic, antagonistic or additive effects of the toxicity were observed in different mixtures. These results suggest that the combined effects should be considered in the risk assessment of heavy metal co-exposure, and more comprehensive investigations on the combined effects of different heavy metal mixtures are needed in the future. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Collective motion of humans in mosh and circle pits at heavy metal concerts.

    PubMed

    Silverberg, Jesse L; Bierbaum, Matthew; Sethna, James P; Cohen, Itai

    2013-05-31

    Human collective behavior can vary from calm to panicked depending on social context. Using videos publicly available online, we study the highly energized collective motion of attendees at heavy metal concerts. We find these extreme social gatherings generate similarly extreme behaviors: a disordered gaslike state called a mosh pit and an ordered vortexlike state called a circle pit. Both phenomena are reproduced in flocking simulations demonstrating that human collective behavior is consistent with the predictions of simplified models.

  9. Collective Motion of Humans in Mosh and Circle Pits at Heavy Metal Concerts

    NASA Astrophysics Data System (ADS)

    Silverberg, Jesse L.; Bierbaum, Matthew; Sethna, James P.; Cohen, Itai

    2013-05-01

    Human collective behavior can vary from calm to panicked depending on social context. Using videos publicly available online, we study the highly energized collective motion of attendees at heavy metal concerts. We find these extreme social gatherings generate similarly extreme behaviors: a disordered gaslike state called a mosh pit and an ordered vortexlike state called a circle pit. Both phenomena are reproduced in flocking simulations demonstrating that human collective behavior is consistent with the predictions of simplified models.

  10. Variation in dry grassland communities along a heavy metals gradient.

    PubMed

    Woch, Marcin W; Kapusta, Paweł; Stefanowicz, Anna M

    2016-01-01

    The aim of this study was to investigate the variation in plant communities growing on metal-enriched sites created by historical Zn–Pb mining. The study sites were 65 small heaps of waste rock covered by grassland vegetation and scattered mostly over agricultural land of southern Poland. The sites were described in terms of plant coverage, species richness and composition, and the composition of plant traits. They were classified using phytosociological methods and detrended correspondence analysis. Identified plant communities were compared for vegetation parameters and habitat properties (soil characteristics, distance from the forest) by analysis of variance. The variation in plant community parameters was explained by multiple regression, in which the predictors were properties of the habitat selected on the basis of factor analysis. Grasslands that developed at low and high concentrations of heavy metals in soil were similar to some extent: they were composed on average of 17–20 species (per 4 m(2)), and their total coverage exceeded 90%. The species composition changed substantially with increasing contamination with heavy metals; metal-sensitive species withdrew, while the metal-tolerant became more abundant. Other important predictors of community structure were: proximity to the forest (responsible for the encroachment of competitive forest species and ruderals), and the thickness of the surface soil (shallow soil favored the formation of the heavy metal grassland). The heavy metal grassland was closely related to the dry calcareous grasslands. The former was an earlier succession stage of the latter at low contamination with heavy metals.

  11. Human health risk assessment of heavy metals in urban stormwater.

    PubMed

    Ma, Yukun; Egodawatta, Prasanna; McGree, James; Liu, An; Goonetilleke, Ashantha

    2016-07-01

    Toxic chemical pollutants such as heavy metals (HMs) are commonly present in urban stormwater. These pollutants can pose a significant risk to human health and hence a significant barrier for urban stormwater reuse. The primary aim of this study was to develop an approach for quantitatively assessing the risk to human health due to the presence of HMs in stormwater. This approach will lead to informed decision making in relation to risk management of urban stormwater reuse, enabling efficient implementation of appropriate treatment strategies. In this study, risks to human health from heavy metals were assessed as hazard index (HI) and quantified as a function of traffic and land use related parameters. Traffic and land use are the primary factors influencing heavy metal loads in the urban environment. The risks posed by heavy metals associated with total solids and fine solids (<150μm) were considered to represent the maximum and minimum risk levels, respectively. The study outcomes confirmed that Cr, Mn and Pb pose the highest risks, although these elements are generally present in low concentrations. The study also found that even though the presence of a single heavy metal does not pose a significant risk, the presence of multiple heavy metals could be detrimental to human health. These findings suggest that stormwater guidelines should consider the combined risk from multiple heavy metals rather than the threshold concentration of an individual species. Furthermore, it was found that risk to human health from heavy metals in stormwater is significantly influenced by traffic volume and the risk associated with stormwater from industrial areas is generally higher than that from commercial and residential areas.

  12. Distribution of heavy metals from flue gas in algal bioreactor

    NASA Astrophysics Data System (ADS)

    Napan, Katerine

    Flue gas from coal-fired power plants is a major source of CO2 to the atmosphere. Microalgae can use this enriched form of CO2 as carbon source and in turn the biomass can be used to produce food, feed, fertilizer and biofuels. However, along with CO2, coal-based flue gas will inevitably introduce heavy metals, which have a high affinity to bind algal cells, could be toxic to the organisms and if transferred to the products could limit their uses. This study seeks to address the distribution and impact of heavy metals present in flue gas on microalgae production systems. To comprehend its effects, algae Scenedesmus obliquus was grown in batch reactors in a multimetal system. Ten heavy metals (Cu, Co, Zn, Pb, As, Se, Cr, Hg, Ni and Cd) were selected and were evaluated at four concentrations (1X, 2X, 5X and 10X). Results show that most heavy metals accumulated mainly in biomass and were found in very low concentrations in media. Hg was shown to be lost from the culture, with low amounts present in the biomass. An upper limit for As uptake was observed, suggesting its likelihood to build-up in the system during medium recycle. The As limited bioaccumulation was overcome by addition of sulfur to the algal medium. Heavy metal at 2X, 5X and 10X inhibited both growth and lipid production, while at the reference concentration both biomass and lipids yields were increased. Heavy metal concentrations in the medium and biomass were time dependent, and at the end of the cultivation most heavy metals in the supernatant solution complied with the recommendations for irrigation water, while biomass was below limits for cattle and poultry feed, fertilizer, plastic and paper. This research shows that bioremediation of CO2 and heavy metals in combination with energy production can be integrated, which is an environmentally friendly form of biotechnology.

  13. Staining of Tissue Sections for Electron Microscopy with Heavy Metals

    PubMed Central

    Watson, Michael L.

    1958-01-01

    Heavy metals may be incorporated from solution into tissue sections for electron microscopy. The resulting increase in density of the tissue provides greatly enhanced contrast with minimal distortion. Relative densities of various structures are found to depend on the heavy metal ions present and on the conditions of staining. Certain hitherto unobserved details are revealed and some sort of specificity exists, although the factors involved are not yet understood. PMID:13563554

  14. Heavy metal ions are potent inhibitors of protein folding

    SciTech Connect

    Sharma, Sandeep K.; Goloubinoff, Pierre; Christen, Philipp

    2008-07-25

    Environmental and occupational exposure to heavy metals such as cadmium, mercury and lead results in severe health hazards including prenatal and developmental defects. The deleterious effects of heavy metal ions have hitherto been attributed to their interactions with specific, particularly susceptible native proteins. Here, we report an as yet undescribed mode of heavy metal toxicity. Cd{sup 2+}, Hg{sup 2+} and Pb{sup 2+} proved to inhibit very efficiently the spontaneous refolding of chemically denatured proteins by forming high-affinity multidentate complexes with thiol and other functional groups (IC{sub 50} in the nanomolar range). With similar efficacy, the heavy metal ions inhibited the chaperone-assisted refolding of chemically denatured and heat-denatured proteins. Thus, the toxic effects of heavy metal ions may result as well from their interaction with the more readily accessible functional groups of proteins in nascent and other non-native form. The toxic scope of heavy metals seems to be substantially larger than assumed so far.

  15. Comparison of Eleven Heavy Metals in Moringa Oleifera Lam. Products

    PubMed Central

    Limmatvapirat, C.; Limmatvapirat, S.; Charoenteeraboon, J.; Wessapan, C.; Kumsum, A.; Jenwithayaamornwech, S.; Luangthuwapranit, P.

    2015-01-01

    Eleven heavy metals in various products of Moringa oleifera were analyzed to determine eleven heavy metals (Al, As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, and Zn) using Inductively Coupled Plasma-Mass Spectrometry. The products of M. oleifera were purchased in Nakhon Pathom, Thailand. All products were digested with nitric acid solution before determining the concentrations of heavy metals. The recoveries of all heavy metals were found to be in the range of 99.89-103.05%. Several criteria such as linearity, limits of detection, limits of quantification, specificity, precision under repeatability conditions and intermediate precision reproducibility were evaluated. Results indicate that this method could be used in the laboratory for determination of eleven heavy metals in M. oleifera products with acceptable analytical performance. The results of analysis showed that the highest concentrations of As, Cr, Hg, and Mn were found in tea leaves while the highest concentrations of Al, Cd, Cu, Fe, Ni, Pb, and Zn were found in leaf capsules. Continuous monitoring of heavy metals in M. oleifera products is crucial for consumer health. PMID:26664066

  16. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil.

    PubMed

    Jiang, Chun-yu; Sheng, Xia-fang; Qian, Meng; Wang, Qing-ya

    2008-05-01

    A heavy metal-resistant bacterial strain was isolated from heavy metal-contaminated soils and identified as Burkholderia sp. J62 based on the 16S rDNA gene sequence analysis. The heavy metal- and antibiotic resistance, heavy metal solubilization of the isolate were investigated. The isolate was also evaluated for promoting plant growth and Pb and Cd uptakes of the plants from heavy metal-contaminated soils in pot experiments. The isolate was found to exhibit different multiple heavy metal and antibiotic resistance characteristics. Atomic absorption spectrometer analysis showed increased bacterial solubilization of lead and cadmium in solution culture and in soils. The isolate produced indole acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase. The isolate also solubilized inorganic phosphate. Inoculation with the isolate was found to significantly (p<0.05) increase the biomass of maize and tomato plants. Increase in tissue Pb and Cd contents varied from 38% to 192% and from 5% to 191% in inoculated plants growing in heavy metal-contaminated soils compared to the uninoculated control, respectively. These results show that heavy metal-solubilizing and plant growth promoting bacteria are important for plant growth and heavy metal uptake which may provide a new microbial enhanced-phytoremediation of metal-polluted soils.

  17. Assessment of heavy metals in sediments of the Don Hoi Lot area in the Mae Klong estuary, Thailand.

    PubMed

    Pengthamkeerati, Patthra; Kornkanitnan, Narumol; Sawangarreruks, Suchat; Wanichacheva, Nantanit; Wainiphithapong, Chantana; Sananwai, Nipawan

    2013-01-01

    The status and seasonal variation of heavy metals in surface sediment were investigated at Don Hoi Lot, located in the Mae Klong estuary, Thailand. Results revealed that all the measured heavy metals, except Zn, in the sediments had lower concentrations than in other nearby estuaries. Only Zn may be of concern for potential negative effects on estuarine biota in the study area. With the exception of Fe, all the studied heavy metals showed seasonal variation, but the patterns were diverse. Organic matter and the clay fraction in sediments were good sinks for heavy metals, excluding Zn, while Fe and Mn were good catchers. Principal component analysis suggested that Zn might have different origins and/or mechanisms of transport, accumulation and circulation, compared with the other heavy metals studied. A better understanding of sources and the behavior of Zn would enhance the efficiency of the estuary management plan in this study area.

  18. Heavy metal music meets complexity and sustainability science.

    PubMed

    Angeler, David G

    2016-01-01

    This paper builds a bridge between heavy metal music, complexity theory and sustainability science to show the potential of the (auditory) arts to inform different aspects of complex systems of people and nature. The links are described along different dimensions. This first dimension focuses on the scientific aspect of heavy metal. It uses complex adaptive systems theory to show that the rapid diversification and evolution of heavy metal into multiple subgenres leads to a self-organizing and resilient socio-musicological system. The second dimension builds on the recent use of heavy metal as a critical thinking model and educational tool, emphasizing the artistic component of heavy metal and its potential to increase people's awareness of environmental sustainability challenges. The relationships between metal, complexity theory and sustainability are first discussed independently to specifically show mechanistic links and the reciprocal potential to inform one domain (science) by the other (metal) within these dimensions. The paper concludes by highlighting that these dimensions entrain each other within a broader social-cultural-environmental system that cannot be explained simply by the sum of independent, individual dimensions. Such a unified view embraces the inherent complexity with which systems of people and nature interact. These lines of exploration suggest that the arts and the sciences form a logical partnership. Such a partnership might help in endeavors to envision, understand and cope with the broad ramifications of sustainability challenges in times of rapid social, cultural, and environmental change.

  19. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    PubMed

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  20. Heavy metals in urban soils of East St. Louis, IL, Part I: Total concentration of heavy metals in soils.

    PubMed

    Kaminski, M D; Landsberger, S

    2000-09-01

    The city of East St. Louis, IL, has a history of abundant industrial activities including smelters of ferrous and non-ferrous metals, a coal-fired power plant, companies that produce organic and inorganic chemicals, and petroleum refineries. A protocol for soil analysis was developed to produce sufficient information on the extent of heavy metal contamination in East St. Louis soils. Soil cores representing every borough of East St. Louis were analyzed for heavy metals--As, Cd, Cu, Cr, Hg, Ni, Pb, Sb, Sn, and Zn. The topsoil contained heavy metal concentrations as high as 12.5 ppm Cd, 14,400 ppm Cu, ppm quantities of Hg, 1860 ppm Pb, 40 ppm Sb, 1130 ppm Sn, and 10,360 ppm Zn. Concentrations of Sb, Cu, and Cd were well correlated with Zn concentrations, suggesting a similar primary industrial source. In a sandy loam soil from a vacated rail depot near the bank of the Mississippi River, the metals were evenly distributed down to a 38-cm depth. The clay soils within a half-mile downwind of the Zn smelter and Cu products company contained elevated Cd (81 ppm), Cu (340 ppm), Pb (700 ppm), and Zn (6000 ppm) and displayed a systematic drop in concentration of these metals with depth. This study demonstrates the often high concentration of heavy metals heterogeneously distributed in the soil and provides baseline data for continuing studies of heavy metal soil leachability.

  1. The Relationship between Heavy Metal and Rap Music and Adolescent Turmoil: Real or Artifact?

    ERIC Educational Resources Information Center

    Took, Kevin J.; Weiss, David S.

    1994-01-01

    Investigated association between 87 adolescents' music preferences and psychosocial turmoil. Adolescents who preferred heavy metal and rap music had higher incidence of below-average school grades, school behavior problems, sexual activity, drug and alcohol use, and arrests. When gender was controlled, only below-average school grades and history…

  2. Body burdens of heavy metals in Lake Michigan wetland turtles.

    PubMed

    Smith, Dayna L; Cooper, Matthew J; Kosiara, Jessica M; Lamberti, Gary A

    2016-02-01

    Tissue heavy metal concentrations in painted (Chrysemys picta) and snapping (Chelydra serpentina) turtles from Lake Michigan coastal wetlands were analyzed to determine (1) whether turtles accumulated heavy metals, (2) if tissue metal concentrations were related to environmental metal concentrations, and (3) the potential for non-lethal sampling techniques to be used for monitoring heavy metal body burdens in freshwater turtles. Muscle, liver, shell, and claw samples were collected from painted and snapping turtles and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, and zinc. Turtle tissues had measurable quantities of all eight metals analyzed. Statistically significant correlations between tissue metal concentrations and sediment metal concentrations were found for a subset of metals. Metals were generally found in higher concentrations in the larger snapping turtles than in painted turtles. In addition, non-lethal samples of shell and claw were found to be possible alternatives to lethal liver and muscle samples for some metals. Human consumption of snapping turtles presents potential health risks if turtles are harvested from contaminated areas. Overall, our results suggest that turtles could be a valuable component of contaminant monitoring programs for wetland ecosystems.

  3. Biomonitoring heavy metal contaminations by moss visible parameters.

    PubMed

    Chen, Yang-Er; Cui, Jun-Mei; Yang, Jin-Chuan; Zhang, Zhong-Wei; Yuan, Ming; Song, Chun; Yang, Hui; Liu, Han-Mei; Wang, Chang-Quan; Zhang, Huai-Yu; Zeng, Xian-Yin; Yuan, Shu

    2015-10-15

    Traditional sampling for heavy metal monitoring is a time-consuming and inconvenient method, which also does not indicate contaminants non-invasively and instantaneously. Moss is sensitive to heavy metals and is therefore considered a pollution indicator. However, it is unknown what kind physiological parameters can indicate metal contaminations quickly and non-invasively. Here, we systematically examined the effects of six heavy metals on physiological parameters and photosynthetic activities of two moss species grown in aquatic media or moist soil surface. We suggest that a phenotype with anthocyanin accumulation pattern and chlorosis pattern and two chlorophyll fluorescence parameters with their images can roughly reflect metal species groups, concentrations and differences between the two moss species. In other words, metal contaminations could be roughly estimated visually using the naked eye. Enzymatic and non-enzymatic anti-oxidative abilities and photosynthetic protein contents of Eurhynchium eustegium were higher than those of Taxiphyllum taxirameum, indicating their differential metal tolerance. Neither anti-oxidative abilities nor photosynthetic proteins were found to be ideal indicators. This study provides new ideas to monitor heavy metals rapidly and non-invasively in water or on wetland and moist soil surface.

  4. Nitrification and Heavy Metal Removal in the Activated Sludge Treatment Process.

    DTIC Science & Technology

    1976-08-01

    parameters to heavy metal removal in the activated sludge waste treatment process. The heavy metals studied were chromium and silver. Analyses...performed on the influent, mixed liquor, return sludge, and effluent included heavy metal concentration, pH, dissolved oxygen, temperature, suspended solids...related to heavy metal removal. Nitrification is only indirectly related. A theory for the mechanisms contributing to heavy metal removal is developed.

  5. Heavy metals removal from automobile shredder residues (ASR).

    PubMed

    Kurose, Keisuke; Okuda, Tetsuji; Nishijima, Wataru; Okada, Mitsumasa

    2006-10-11

    The fate of heavy metals during a separation process for automobile shredder residues (ASR) was investigated. A washing method to remove heavy metals from the ASR was also investigated. Although the separation process was not designed for removal of heavy metals, but for the recovery of reusable materials, the heavy metal content in the ASR was efficiently decreased. The concentrations of Pb, Cr and Cd in ASR were effectively reduced by a nonferrous metals removal process, and the As concentration was reduced by the removal of light dusts during the separation process. Five heavy metals (As, Se, Pb, Cr, Cd) remaining in the ASR after the separation process satisfied the content criteria of the Environmental Quality Standards for Soil (EQSS), while the concentrations of As, Se, Pb in the leachate from the remaining ASR did not satisfy the elution criteria of the EQSS. After additional washing of the remaining ASR with a pH 1 acid buffer solution, the As, Se, and Pb concentrations satisfied the EQSS for elution. These results indicate that an ASR residue can be safely recycled after a separation process, followed by washing at acidic pH.

  6. Phytochemicals Mediated Remediation of Neurotoxicity Induced by Heavy Metals.

    PubMed

    Gupta, Vivek Kumar; Singh, Shweta; Agrawal, Anju; Siddiqi, Nikhat Jamal; Sharma, Bechan

    2015-01-01

    Almost all the environmental components including both the abiotic and biotic factors have been consistently threatened by excessive contamination of heavy metals continuously released from various sources. Different heavy metals have been reported to generate adverse effects in many ways. Heavy metals induced neurotoxicity and impairment in signalling cascade leading to cell death (apoptosis) has been indicated by several workers. On one hand, these metals are required by the cellular systems to regulate various biological functions of normal cells, while on the other their biomagnification in the cellular systems produces adverse effects. The mechanism by which the heavy metals induce neurotoxicity follows free radicals production pathway(s) specially the generation of reactive oxygen species and reactive nitrogen species. These free radicals produced in excess have been shown to create an imbalance between the oxidative and antioxidative systems leading to emergence of oxidative stress, which may cause necrosis, DNA damage, and many neurodegenerative disorders. This mini review summarizes the current knowledge available on the protective role of varied natural products isolated from different herbs/plants in imparting protection against heavy metals (cadmium, lead, arsenic, and mercury) mediated neurotoxicity.

  7. Multivariate analysis of heavy metals concentrations in river estuary.

    PubMed

    Alkarkhi, Abbas F M; Ahmad, Anees; Ismail, Norli; Easa, Azhar Mat

    2008-08-01

    Multivariate statistical techniques such as multivariate analysis of variance (MANOVA) and discriminant analysis (DA) were applied for analyzing the data obtained from two rivers in the Penang State of Malaysia for the concentration of heavy metal ions (As, Cr, Cd, Zn, Cu, Pb, and Hg) using a flame atomic absorption spectrometry (F-AAS) for Cr, Cd, Zn, Cu, Pb, As and cold vapor atomic absorption spectrometry (CV-AAS) for Hg. The two locations of interest with 20 sampling points of each location were Kuala Juru (Juru River) and Bukit Tambun (Jejawi River). MANOVA showed a strong significant difference between the two rivers in terms of heavy metal concentrations in water samples. DA gave the best result to identify the relative contribution for all parameters in discriminating (distinguishing) the two rivers. It provided an important data reduction as it used four parameters (Zn, Pb, Cd and Cr) affording 100% correct assignations. Results indicated that the two rivers were different in terms of heavy metals concentrations in water, and the major difference was due to the contribution of Zn. A negative correlation was found between discriminate functions (DF) and Cr and As, whereas positive correlation was exhibited with other heavy metals. Therefore, DA allowed a reduction in the dimensionality of the data set, delineating a few indicator parameters responsible for large variations in heavy metal concentrations. Correlation matrix between the parameters exhibited a strong evidence of mutual dependence of these metals.

  8. Physiological sensitivity of freshwater macroinvertebrates to heavy metals.

    PubMed

    Malaj, Egina; Grote, Matthias; Schäfer, Ralf B; Brack, Werner; von der Ohe, Peter Carsten

    2012-08-01

    Macroinvertebrate species traits, such as physiological sensitivity, have successfully been introduced in trait-based bioassessment approaches and are important predictors of species sensitivity in the field. The authors ranked macroinvertebrate species according to their physiological sensitivity to heavy metals using toxicity data from acute laboratory assays. Rankings for each of the heavy metals, Cd, Cu, Cr, Ni, Pb, Zn, and Hg, were standardized based on all available species data. Rankings for different heavy metals on the species level showed no significant difference between compounds and were reasonably well correlated pairwise (0.50heavy metal ranking was developed, which assigns a single physiological sensitivity value (S(metal) ) to macroinvertebrate taxa. Considering the high variation, especially for higher taxonomic levels, that is, in the order level, it is recommended to use S values of the genus or species level for meaningful analyses. In terms of taxonomic ranking, crustaceans were overall the most sensitive taxonomic group, whereas insects were generally the most tolerant group. Species in the order of Cladocera were three orders of magnitude more sensitive than insects of the order of Trichoptera. By contrast, mollusks covered a wide range of sensitivities, with bivalves being on average one order of magnitude more sensitive than gastropods. The authors concluded that physiological sensitivity represents a promising trait for trait-based risk assessment that together with other demographic and recolonization traits may help to identify the effects of heavy metal pollution in aquatic ecosystems.

  9. Magnetic process for removing heavy metals from water employing magnetites

    DOEpatents

    Prenger, F. Coyne; Hill, Dallas D.; Padilla, Dennis D.; Wingo, Robert M.; Worl, Laura A.; Johnson, Michael D.

    2003-07-22

    A process for removing heavy metals from water is provided. The process includes the steps of introducing magnetite to a quantity of water containing heavy metal. The magnetite is mixed with the water such that at least a portion of, and preferably the majority of, the heavy metal in the water is bound to the magnetite. Once this occurs the magnetite and absorbed metal is removed from the water by application of a magnetic field. In most applications the process is achieved by flowing the water through a solid magnetized matrix, such as steel wool, such that the magnetite magnetically binds to the solid matrix. The magnetized matrix preferably has remnant magnetism, but may also be subject to an externally applied magnetic field. Once the magnetite and associated heavy metal is bound to the matrix, it can be removed and disposed of, such as by reverse water or air and water flow through the matrix. The magnetite may be formed in-situ by the addition of the necessary quantities of Fe(II) and Fe(III) ions, or pre-formed magnetite may be added, or a combination of seed and in-situ formation may be used. The invention also relates to an apparatus for performing the removal of heavy metals from water using the process outlined above.

  10. Magnetic process for removing heavy metals from water employing magnetites

    DOEpatents

    Prenger, F. Coyne; Hill, Dallas D.

    2006-12-26

    A process for removing heavy metals from water is provided. The process includes the steps of introducing magnetite to a quantity of water containing heavy metal. The magnetite is mixed with the water such that at least a portion of, and preferably the majority of, the heavy metal in the water is bound to the magnetite. Once this occurs the magnetite and absorbed metal is removed from the water by application of a magnetic field. In most applications the process is achieved by flowing the water through a solid magnetized matrix, such as steel wool, such that the magnetite magnetically binds to the solid matrix. The magnetized matrix preferably has remnant magnetism, but may also be subject to an externally applied magnetic field. Once the magnetite and associated heavy metal is bound to the matrix, it can be removed and disposed of, such as by reverse water or air and water flow through the matrix. The magnetite may be formed in-situ by the addition of the necessary quantities of Fe(II) and Fe(III) ions, or pre-formed magnetite may be added, or a combination of seed and in-situ formation may be used. The invention also relates to an apparatus for performing the removal of heavy metals from water using the process outlined above.

  11. Phytochemicals Mediated Remediation of Neurotoxicity Induced by Heavy Metals

    PubMed Central

    Gupta, Vivek Kumar; Singh, Shweta; Agrawal, Anju; Siddiqi, Nikhat Jamal; Sharma, Bechan

    2015-01-01

    Almost all the environmental components including both the abiotic and biotic factors have been consistently threatened by excessive contamination of heavy metals continuously released from various sources. Different heavy metals have been reported to generate adverse effects in many ways. Heavy metals induced neurotoxicity and impairment in signalling cascade leading to cell death (apoptosis) has been indicated by several workers. On one hand, these metals are required by the cellular systems to regulate various biological functions of normal cells, while on the other their biomagnification in the cellular systems produces adverse effects. The mechanism by which the heavy metals induce neurotoxicity follows free radicals production pathway(s) specially the generation of reactive oxygen species and reactive nitrogen species. These free radicals produced in excess have been shown to create an imbalance between the oxidative and antioxidative systems leading to emergence of oxidative stress, which may cause necrosis, DNA damage, and many neurodegenerative disorders. This mini review summarizes the current knowledge available on the protective role of varied natural products isolated from different herbs/plants in imparting protection against heavy metals (cadmium, lead, arsenic, and mercury) mediated neurotoxicity. PMID:26618004

  12. Water hyacinth as indicator of heavy metal pollution the tropics

    SciTech Connect

    Gonzalez, H.; Otero, M. ); Lodenius, M. )

    1989-12-01

    The water hyacinth (Eichhornia crassipes) is a common aquatic plant in many tropical countries. Its ability absorb nutrients and other elements from the water has made it possible to use it for water purification purposes. Eichhornia, especially stems and leaves, have been successfully used as indicators of heavy metal pollution in tropical countries. The uptake of heavy metals in this plant is stronger in the roots than in the floating shoots. Metallothionein-like compounds have been found from roots of this species after cadmium exposure. The purpose of this investigation was to study the possibilities of using roots of water hyacinth as a biological indicator of metal pollution in tropical aquatic ecosystems.

  13. Ecotoxicology of heavy metals: Liquid-phase extraction by nanosorbents

    NASA Astrophysics Data System (ADS)

    Burakov, A.; Romantsova, I.; Babkin, A.; Neskoromnaya, E.; Kucherova, A.; Kashevich, Z.

    2015-11-01

    The paper considers the problem of extreme toxicity heavy metal compounds dissolved in wastewater and liquid emissions of industrial enterprises to living organisms and environment as a whole. The possibility of increasing extraction efficiency of heavy metal ions by sorption materials was demonstrated. The porous space of the latter was modified by carbon nanotubes (CNTs) during process of the chemical vapour deposition (CVD) of carbon on metal oxide catalysts. The increasing of the sorption capacity (10-30%) and the sorption rate of nanomodified activated carbons in comparison with standard materials in the example of absorption of Co2+ and Ni2+ ions from aqueous solutions was proven.

  14. Heavy metal toxicity to bacteria - are the existing growth media accurate enough to determine heavy metal toxicity?

    PubMed

    Rathnayake, I V N; Megharaj, Mallavarapu; Krishnamurti, G S R; Bolan, Nanthi S; Naidu, Ravi

    2013-01-01

    A new minimal medium was formulated considering the limitations of the existing media for testing heavy metal sensitivity to bacteria. Toxicity of cadmium and copper to three bacteria was investigated in the new medium and compared with three other media commonly used to study the effect of the toxic metals. Based on speciation data arrived at using ion-selective electrodes, the available free-metal concentration in solution was highest in the MES-buffered medium. This finding was strongly supported by the estimated EC(50) values for the metals tested based on the toxicity bioassays. The free-ionic cadmium and copper concentrations in the medium provide more accurate determination of metal concentrations that affects the bacteria, than with most of other existing media. This will avoid doubts on other media and misleading conclusions relevant to the toxicity of heavy metals to bacteria and provides a better option for the study of metal-bacteria interactions.

  15. Magnetic properties of alluvial soils polluted with heavy metals

    NASA Astrophysics Data System (ADS)

    Dlouha, S.; Petrovsky, E.; Boruvka, L.; Kapicka, A.; Grison, H.

    2012-04-01

    Magnetic properties of soils, reflecting mineralogy, concentration and grain-size distribution of Fe-oxides, proved to be useful tool in assessing the soil properties in terms of various environmental conditions. Measurement of soil magnetic properties presents a convenient method to investigate the natural environmental changes in soils as well as the anthropogenic pollution of soils with several risk elements. The effect of fluvial pollution with Cd, Cu, Pb and Zn on magnetic soil properties was studied on highly contaminated alluvial soils from the mining/smelting district (Příbram; CZ) using a combination of magnetic and geochemical methods. The basic soil characteristics, the content of heavy metals, oxalate, and dithionite extractable iron were determined in selected soil samples. Soil profiles were sampled using HUMAX soil corer and the magnetic susceptibility was measured in situ, further detailed magnetic analyses of selected distinct layers were carried out. Two types of variations of magnetic properties in soil profiles were observed corresponding to indentified soil types (Fluvisols, and Gleyic Fluvisols). Significantly higher values of topsoil magnetic susceptibility compared to underlying soil are accompanied with high concentration of heavy metals. Sequential extraction analysis proved the binding of Pb, Zn and Cd in Fe and Mn oxides. Concentration and size-dependent parameters (anhysteretic and isothermal magnetization) were measured on bulk samples in terms of assessing the origin of magnetic components. The results enabled to distinguish clearly topsoil layers enhanced with heavy metals from subsoil samples. The dominance of particles with pseudo-single domain behavior in topsoil and paramagnetic/antiferromagnetic contribution in subsoil were observed. These measurements were verified with room temperature hysteresis measurement carried out on bulk samples and magnetic extracts. Thermomagnetic analysis of magnetic susceptibility measured on

  16. Heavy metal capture and accumulation in bioretention media.

    PubMed

    Li, Houng; Davis, Allen P

    2008-07-15

    Heavy metal capture and accumulation in bioretention media were investigated through the use of a one-dimensional filtration equation for particulate metals, advection/dispersion/adsorption transport equations for dissolved metals, and sequential extractions. Predicted spatial profiles and partitioning patterns of captured metals were compared to data derived from a bioretention cell in the District of Columbia. Zinc, lead, and copper profiles showed a high surface accumulation, significantly decreasing with the media depth. Surface street particle-enriched areas had the highest heavy metal levels, demonstrating a close relationship between capture of metals and runoff particles. Sequential extractions suggested that most captured metals were of anthropogenic origin. Soluble-exchangeable bound metals from the sequential extraction correlated well with predicted aqueous dissolved metals; the more strongly associated metal fractions correlated with modeled runoff and media particulate metals. A simple risk evaluation indicated thatlead isthe limiting metal in bioretention accumulation. On the basis of information collected in this study, a shallow bioretention cell design is suggested for systems with a focus on metal capture.

  17. Molecular Indicators of Soil Humification and Interaction with Heavy Metals

    SciTech Connect

    Fan, Teresa W.-M.; Higashi, Richard M.; Cassel, Teresa; Green, Peter; Lane, Andrew N.

    2003-03-26

    For stabilization of heavy metals at contaminated sites, interaction of soil organic matter (SOM) with heavy metal ions is critically important for long-term sustainability, a factor that is poorly understood at the molecular level. Using 13C- and 15N-labeled soil humates (HS), we investigated the turnover of five organic amendments (celluose, wheat straw, pine shavings, chitin and bone meal) in relation to heavy metal ion leaching in soil column experiments. The labeled molecular substructures in HS were examined by multinuclear 2-D NMR and pyrolysis GC-MS while the element profile in the leachates was analyzed by ICP-MS. Preliminary analysis revealed that peptidic and polysaccharidic structures were highly enriched, which suggests their microbial origin. Cd(II) leaching was significantly attenuated with humification of lignocellulosic materials. Correlation of 13C and 15N turnovers of HS substructures to metal leaching is underway.

  18. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions.

    PubMed

    Park, Jong-Hwan; Ok, Yong Sik; Kim, Seong-Heon; Cho, Ju-Sik; Heo, Jong-Soo; Delaune, Ronald D; Seo, Dong-Cheol

    2016-01-01

    Objective of this research was to evaluate adsorption of heavy metals in mono and multimetal forms onto sesame straw biochar (SSB). Competitive sorption of metals by SSB has never been reported previously. The maximum adsorption capacities (mgg(-1)) of metals by SSB were in the order of Pb (102)≫Cd (86)≫Cr (65)>Cu (55)≫Zn (34) in the monometal adsorption isotherm and Pb (88)≫Cu (40)≫Cr (21)>Zn (7)⩾Cd (5) in the multimetal adsorption isotherm. Based on data obtained from the distribution coefficients, Freundlich and Langmuir adsorption models, and three-dimensional simulation, multimetal adsorption behaviors differed from monometal adsorption due to competition. Especially, during multimetal adsorption, Cd was easily exchanged and substituted by other metals. Further competitive adsorption studies are necessary in order to accurately estimate the heavy metal adsorption capacity of biochar in natural environments.

  19. Transport and deposition of heavy metals in the Ross Sea Region, Antarctica

    NASA Astrophysics Data System (ADS)

    Tuohy, Andrea; Bertler, Nancy; Neff, Peter; Edwards, Ross; Emanuelsson, Daniel; Beers, Thomas; Mayewski, Paul

    2015-10-01

    Emissions and long-range transport of toxic metals and metalloids pose a global threat to ecosystems and human health. Global industrialization occurring from the late nineteenth century releases large quantities of pollutants into the Earth's atmosphere. Despite international efforts to mitigate emissions, accumulation of metals is still observed in the most remote regions of the planet. New baseline studies are needed to determine (i) natural background concentration of pollutants, (ii) contributions of anthropogenic emissions, and (iii) potential remobilization of previously deposited metals. Constructing such records requires distinguishing source strength from transport efficiency to the recording site and accounting for local depositional effects. Here we investigate the sensitivity and representation of Southern Hemisphere atmospheric concentrations of heavy metals (Fe, Al, Mn, Pb, Tl, and As) in the Roosevelt Island Climate Evolution (RICE) ice core, a new coastal Antarctic ice core site. Concentration variability with precipitation is explored in daily surface snow samples collected over 70 days, while seasonal deposition is investigated through snow pit sampling. We find that snow sample concentrations increase with particular snow precipitation types (rime and fog) and enhanced meridional atmospheric transport to the site. Snow pit heavy metals peak in summer and also show variable intraannual peaks. Seasonal airmass modeling based on ERA Interim reanalysis data indicates a synoptic shift during the spring and summer months. We conclude that modern heavy metal concentrations are influenced by transport efficiency and scavenging behavior; and thus, time series records from RICE have the potential to provide representative data of regional changes in heavy metals.

  20. Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands - A review.

    PubMed

    Oyuela Leguizamo, Mayerly Alexandra; Fernández Gómez, Wilmar Darío; Sarmiento, Martha Cecilia Gutiérrez

    2017-02-01

    Soil, air and water pollution caused by the mobility and solubility of heavy metals significantly damages the environment, human health, plants and animals. One common in situ method used for the decontamination of heavy metals is phytoremediation. This usually involves the use of exotic species. However, these species may exhibit invasive behavior, thereby, affect the environmental and ecological dynamics of the ecosystem into which they are introduced. This paper focuses on some native herbaceous plant species reported on the wetlands of Bogota, Colombia, with potential use in phytoremediation of heavy metals. To do that, the authors identified and searched a bibliography based on key words related to heavy metal decontamination. In addition, authors gathered and analyzed relevant information that allowed the comprehension of the phytoremediation process. This paper suggests the study of 41 native or endemic species regarding their behavior towards heavy metal contamination. From a survey of herbaceous plants reported in Bogota, native and endemic species that belong to predominant families in heavy metal accumulation processes were selected. Although found in Colombian's wetlands, these can also be found worldwide. Therefore, they are of great interest due to their global presence and their potential for use in phytoremediation. The current research about the development of phytoremediation focuses on the identification of new herbaceous species able to decontaminate substratum polluted with heavy metals to contribute with the investigation of the ecology and environment of the nature's remnants in urban wetland ecosystems.

  1. Heavy metals in the volcanic environment and thyroid cancer.

    PubMed

    Vigneri, R; Malandrino, P; Gianì, F; Russo, M; Vigneri, P

    2016-10-26

    In the last two decades thyroid cancer incidence has increased worldwide more than any other cancer. Overdiagnosis of subclinical microcarcinomas has certainly contributed to this increase but many evidences indicate that a true increase, possibly due to environmental factors, has also occurred. Thyroid cancer incidence is markedly increased in volcanic areas. Thus, the volcanic environment is a good model to investigate the possible factors favoring thyroid cancer. In the volcanic area of Mt. Etna in Sicily, as well as in other volcanic areas, a non-anthropogenic pollution with heavy metals has been documented, a consequence of gas, ash and lava emission. Soil, water and atmosphere contamination, via the food chain, biocontaminate the residents as documented by high levels in the urines and the scalp hair compared to individuals living in adjacent non-volcanic areas. Trace amounts of metals are essential nutrients but, at higher concentrations, can be toxic for living cells. Metals can behave both as endocrine disruptors, perturbing the hormonal system, and as carcinogens, promoting malignant transformation. Similarly to other carcinogens, the transforming effect of heavy metals is higher in developing organisms as the fetus (contaminated via the mother) and individuals in early childhood. In the last decades environment metal pollution has greatly increased in industrialized countries. Although still within the "normal" limits for each single metal the hormesis effect (heavy metal activity at very low concentration because of biphasic, non linear cell response) and the possible potentiation effect resulting from the mixture of different metals acting synergistically can explain cell damage at very low concentrations. The effect of metals on the human thyroid is poorly studied: for some heavy metals no data are available. The scarce studies that have been performed mainly focus on metal effect as thyroid endocrine disruptors. The metal concentration in tissues has

  2. The relationship between heavy metal and rap music and adolescent turmoil: real or artifact?

    PubMed

    Took, K J; Weiss, D S

    1994-01-01

    Adolescents and their parents were surveyed to investigate the association between heavy metal and rap music and adolescent psychosocial turmoil. Subjects were asked about current and past psychosocial functioning, as well as their music preferences. Adolescents who preferred heavy metal and rap music were compared with those who preferred other types of music. Results indicated that adolescents who preferred heavy metal and rap had a higher incidence of below-average school grades, school behavior problems, sexual activity, drug and alcohol use, and arrests. However, when gender was controlled, only below-average current and elementary school grades and a history of counseling in elementary school for school problems remained significant. Implications of these findings are discussed.

  3. Heavy metals in composts of separated municipal wastes

    SciTech Connect

    Liao, W.P.; Huang, W.C.; Fan, W.H.; Hsu, C.C.

    1997-12-31

    This study is to examine the influence of the metal components on the contents of heavy metals in composts of Municipal Solid Wastes (MSW). Fresh MSW used in composting was obtained from the city landfill of Taichung in Taiwan. Compost 1 was from as-collected MSW; Compost 2 was from degradable fraction in MSW; Compost 3 was from MSW without metal. The results show that the total concentration of zinc is the highest among the five heavy metals examined. Paper wastes are main sources of lead and copper with average concentrations of 18.53 mg/kg and 26.92 mg/kg of compost on dry weight. The contents of nickel and cadmium are relatively low. The total concentrations of the five heavy metals in composts increase by typical ratios between 1.72 and 2.58 for Composts 2 and 3, but 3.16 to 4.69 for Compost 1. The increase of concentration around a ratio of 2.0 is due to the loss of degraded organic matter. For the ratios above 2.0, fractions of some heavy metals have corroded from the surfaces of metal components into the Compost 1 in the early phase of acidic fermentation.

  4. Heavy metal bioaccumulation and toxicity with special reference to microalgae

    NASA Astrophysics Data System (ADS)

    Arunakumara, K. K. I. U.; Zhang, Xuecheng

    2008-02-01

    The bioaccumulation and toxicity of heavy metals were reviewed with special reference to microalgae, the key component of the food web in aquatic ecosystems. Heavy metals enter algal cells either by means of active transport or by endocytosis through chelating proteins and affect various physiological and biochemical processes of the algae. The toxicity primarily results from their binding to the sulphydryl groups in proteins or disrupting protein structure or displacing essential elements. Metals can break the oxidative balance of the algae, inducing antioxidant enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and ascorbate peroxidase (APX). The amount of oxidized proteins and lipids in the algal cells thus indicates the severity of the stress. Algal tolerance to heavy metal is highly dependent upon the defense response against the probable oxidative damages. Production of binding factors and proteins, exclusion of metals from cells by ion-selective transporters and excretion or compartmentalization have been suggested with regard to reducing heavy metal toxicity. However, a comprehensive description on the mechanisms underlining metal toxicity of microalgae and gaining tolerance is yet to be elaborated.

  5. Perspectives in endocrine toxicity of heavy metals--a review.

    PubMed

    Rana, S V S

    2014-07-01

    An attempt has been made to review the endocrine/hormonal implications of a few environmentally significant metals, viz, lead, mercury, cadmium, copper, arsenic and nickel, in man and animals. Special emphasis has been given to the adrenals, thyroid, testis, ovary and pancreas. Toxic metals can cause structural and functional changes in the adrenal glands. Their effects on steroidogenesis have been reviewed. It has been reported that thyroid hormone kinetics are affected by a number of metallic compounds. Occupational exposure to a few of these metals can cause testicular injury and sex hormone disturbances. Protective effects of a few antioxidants on their reproductive toxicity have also been discussed. Information gathered on female reproductive toxicity of heavy metals shows that exposure to these metals can lead to disturbances in reproductive performance in exposed subjects. Certain metals can cause injury to the endocrine pancreas. Exposure to them can cause diabetes mellitus and disturb insulin homeostasis. The need to develop molecular markers of endocrine toxicity of heavy metals has been suggested. Overall information described in this review is expected to be helpful in planning future studies on endocrine toxicity of heavy metals.

  6. Implications of soil pollution with heavy metals for public health

    NASA Astrophysics Data System (ADS)

    Juozulynas, Algirdas; Jurgelėnas, Antanas; Butkienė, Birutė; Greičiūtė, Kristina; Savičiūtė, Rasa

    2008-01-01

    Soil of military grounds is often polluted with heavy metals. Their concentrations may be dosens of times higher in polluted regions. The affected soils are permeable, so the pollutions can get into water and spread to the environment. Into human and animal organisms they can get with food and water. Heavy metals are very dangerous for people's health, and we must know their accumulation places, intensity of scatter and integral risk for health. The purpose of this work was to establish links between zones polluted with heavy metals and morbidity caused by pollution with heavy metals. The morbidity caused by heavy metals (Pb, Cu, Zn, Ca and other) in the polluted regions is 1.4-1.5 times higher for adults and teenagers and 1.5-3.9 times higher for children aged under 14 years than the mean morbidity of the same diseases in Lithuania. Hypothetically, it is possible to prognosticate that this problem will grow in future because the ratio of the newly registered and the existing cases of morbidity for children aged under 14 years is 1.3-1.5 times higher than for adults.

  7. New trends in removing heavy metals from wastewater.

    PubMed

    Zhao, Meihua; Xu, Ying; Zhang, Chaosheng; Rong, Hongwei; Zeng, Guangming

    2016-08-01

    With the development of researches, the treatments of wastewater have reached a certain level. Whereas, heavy metals in wastewater cause special concern in recent times due to their recalcitrance and persistence in the environment. Therefore, it is important to get rid of the heavy metals in wastewater. The previous studies have provided many alternative processes in removing heavy metals from wastewater. This paper reviews the recent developments and various methods for the removal of heavy metals from wastewater. It also evaluates the advantages and limitations in application of these techniques. A particular focus is given to innovative removal processes including adsorption on abiological adsorbents, biosorption, and photocatalysis. Because these processes have leaded the new trends and attracted more and more researches in removing heavy metals from wastewater due to their high efficency, pluripotency and availability in a copious amount. In general, the applicability, characteristic of wastewater, cost-effectiveness, and plant simplicity are the key factors in selecting the most suitable method for the contaminated wastewater.

  8. Heavy metal content of combustible municipal solid waste in Denmark.

    PubMed

    Riber, Christian; Fredriksen, Gry S; Christensen, Thomas H

    2005-04-01

    Data on the heavy metal composition of outlets from Danish incinerators was used to estimate the concentration of Zn, Cu, Pb, Cr, Ni, Cd, As and Hg in combustible waste (wet as received) at 14 Danish incinerators, representing about 80% of the waste incinerated in Denmark. Zn (1020 mg kg(-1)), Cu (620 mg kg(-1)) and Pb (370 mg kg(-1)) showed the highest concentration, whereas Hg (0.6 mg kg(-1)) showed the lowest concentration. The variation among the incinerators was in most cases within a factor of two to three, except for Cr that in two cases showed unexplained high concentrations. The fact that the data represent many incinerators and, in several cases, observations from a period of 4 to 5 years provides a good statistical basis for evaluating the content of heavy metals in combustible Danish waste. Such data may be used for identifying incinerators receiving waste with high concentrations of heavy metals suggesting the introduction of source control, or, if repeated in time, the data must also be used for monitoring the impacts of national regulation controlling heavy metals. It is recommended that future investigations consider the use of sample digestion methods that ensure complete digestion in order to use the data for determining the total heavy metal content of waste.

  9. Heavy metal contamination in the Western Indian Ocean (a review)

    NASA Astrophysics Data System (ADS)

    Mamboya, F. A.; Pratap, H. B.; Björk, M.

    2003-05-01

    Western Indian Ocean Coast has many potential marine ecosystems such as mangrove, seagrass meadows, macroalgae, and coral reefs. It is largely unspoiled environment however, tourism and population growth in coastal urban centres, industrialization, are presenting a risk of pollutants input to the marine environment of the Western Indian Ocean. Mining, shipping and agricultural activities also input contaminants into the marine environment via runoff, vessel operations and accidental spillage. Heavy metals are among the pollutants that are expected to increase in the marine environment of the Western Indian Ocean. The increase in heavy metal pollution can pose a serious health problem to marine organism and human through food chain. This paper reviews studies on heavy metal contamination in the Western Indian Ocean. It covers heavy metal studies in the sediments, biota, particulates and seawater collected in different sites. In comparison to other regions, only few studies have been conducted in the Western Indian Ocean and are localized in some certain areas. Most of these studies were conducted in Kenyan and Tanzanian coasts while few of them were conducted in Mauritius, Somalia and Reunion. No standard or common method has been reported for the analysis or monitoring of heavy metals in the Western Indian Ocean.

  10. Heavy Metals in Seafood and Farm Produce from Uyo, Nigeria

    PubMed Central

    Orisakwe, Orish E.; Mbagwu, Herbert O. C.; Ajaezi, Godwin C.; Edet, Ukeme W.; Uwana, Patrick U.

    2015-01-01

    Objectives: This study aimed to obtain representative data on the levels of heavy metals in seafood and farm produce consumed by the general population in Uyo, Akwa Ibom State, Nigeria, a region known for the exploration and exploitation of crude oil. Methods: In May 2012, 25 food items, including common types of seafood, cereals, root crops and vegetables, were purchased in Uyo or collected from farmland in the region. Dried samples were ground, digested and centrifuged. Levels of heavy metals (lead, cadmium, nickel, cobalt and chromium) were analysed using an atomic absorption spectrophotometer. Average daily intake and target hazard quotients (THQ) were estimated. Results: Eight food items (millet, maize, periwinkle, crayfish, stock fish, sabina fish, bonga fish and pumpkin leaf) had THQ values over 1.0 for cadmium, indicating a potential health risk in their consumption. All other heavy metals had THQ values below 1.0, indicating insignificant health risks. The total THQ for the heavy metals ranged from 0.389 to 2.986. There were 14 items with total THQ values greater than 1.0, indicating potential health risks in their consumption. Conclusion: The regular consumption of certain types of farm produce and seafood available in Uyo, Akwa Ibom State, Nigeria, is likely adding to the body burden of heavy metals among those living in this region. PMID:26052462

  11. Effect of heavy metals on germination of seeds

    PubMed Central

    Sethy, Sunil Kumar; Ghosh, Shyamasree

    2013-01-01

    With the expansion of the world population, the environmental pollution and toxicity by chemicals raises concern. Rapid industrialization and urbanization processes has led to the incorporation of pollutants such as pesticides, petroleum products, acids and heavy metals in the natural resources like soil, water and air thus degrading not only the quality of the environment, but also affecting both plants and animals. Heavy metals including lead, nickel, cadmium, copper, cobalt, chromium and mercury are important environmental pollutants that cause toxic effects to plants; thus, lessening productivity and posing dangerous threats to the agro-ecosystems. They act as stress to plants and affect the plant physiology. In this review, we have summarized the effects of heavy metals on seeds of different plants affecting the germination process. Although reports exist on mechanisms by which the heavy metals act as stress and how plants have learnt to overcome, the future scope of this review remains in excavating the signaling mechanisms in germinating seeds in response to heavy metal stress. PMID:24082715

  12. Sequential extraction of heavy metals during composting of sewage sludge.

    PubMed

    Amir, Soumia; Hafidi, Mohamed; Merlina, Georges; Revel, Jean-Claude

    2005-05-01

    The major limitation of soil application of sewage sludge compost is the total heavy metal contents and their bioavailability to the soil-plant system. This study was conducted to determine the heavy metal speciation and the influence of changing the physico-chemical properties of the medium in the course of composting on the concentrations, bioavailability or chemical forms of Cu, Zn, Pb and Ni in sewage sludge. Principal physical and chemical properties and FTIR spectroscopical characterization of sludge compost during treatment show the stability and maturity of end product. The total metal contents in the final compost were much lower than the limit values of composts to be used as good soil fertilizer. Furthermore, it was observed by using a sequential extraction procedure in sludge compost at different steps of treatment, that a large proportion of the heavy metals were associated to the residual fraction (70-80%) and more resistant fractions to extraction X-NaOH, X-EDTA, X-HNO3 (12-29%). Less than 2% of metals bound to bioavailable fractions X-(KNO3+H2O). Heavy metal distribution and bioavailability show some changes during composting depending on the metal itself and the physico-chemical properties of the medium. Bioavailable fractions of all elements tend to decrease except Ni-H2O. Zn and mainly Cu present more affinity to organic and carbonate fractions. In contrast, Pb is usually preferentially bound to sulfide forms X-HNO3. Nickel shows a significant decrease of organic form. Significant degrees of correlation were found between heavy metal fractions and changes of some selected variables (e.g. pH, ash, organic matter, humic substance) during the course of composting. Mobile fractions of metals are poorly predictable from the total content. The R2 value was significantly increased by the inclusion of other variables such as the amount of organic matter (OM) and pH.

  13. Cocoa shells for heavy metal removal from acidic solutions.

    PubMed

    Meunier, N; Laroulandie, J; Blais, J F; Tyagi, R D

    2003-12-01

    The development of economic and efficient processes for the removal of heavy metals present in acidic effluents from industrial sources or decontamination technologies has become a priority. The purpose of this work was to study the efficiency with which cocoa shells remove heavy metals from acidic solutions (pH 2) and to investigate how the composition of these solutions influences heavy metal uptake efficiency. Adsorption tests were conducted in agitated flasks with single-metal solutions (0.25 mM Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn), multi-metal solution (comprised of 0.25 mM of each of the cations above) and an effluent obtained from chemical leaching of metal-contaminated soil, in the presence of different cocoa shell concentrations (5-40 g/l). Results from the single-metal solution assays indicated that the fixation capacity of heavy metals by cocoa shells followed a specific order: Pb>Cr>Cd=Cu=Fe>Zn=Co>Mn=Ni=Al. Cocoa shells are particularly efficient in the removal of lead from very acidic solutions (q(max)=6.2 mg Pb/g, pH(i)=2.0 and T=22 degrees C). The presence of other metals and cations in solution did not seem to affect the recovery of lead. It was also observed that the maximum metal uptake was reached in less than 2 h. This research has also demonstrated that the removal of metals caused a decline in solution proton concentration (pH increase) and release of calcium, magnesium, potassium and sodium from the cocoa shells.

  14. Lithium vanadium oxide: A heavy fermion transition metal oxide

    NASA Astrophysics Data System (ADS)

    Kondo, Shinichiro

    LiVsb2Osb4 has the face-centered-cubic normal-spinel structure and is a metal. The preparative method and characterization of high-purity polycrystalline samples are herein reported. The intrinsic susceptibility chi, electronic heat capacity Csbe, nuclear magnetic resonance and thermal expansion measurements revealed that LiVsb2Osb4 shows a crossover from high temperature T localized magnetic moment behavior to low-T heavy Fermi liquid behavior. chi follows the Curie-Weiss law above ˜50 K with a Curie constant corresponding to a V S=1/2 spin and g-factor ˜2. The Weiss temperature indicates antiferromagnetic interactions between V local moments. chi becomes nearly T independent below ˜30K with a shallow broad maximum at T≈16K. Field-cooled and zero-field-cooled magnetization measurements in low applied magnetic fields H=10{-}100 G from 1.8 to 50 K showed no evidence for spin-glass ordering. The small amounts of paramagnetic impurities (S=3/2 to 4) in the samples were characterized using low-T isothermal magnetization Mspobs(H) measurement data. The observed electronic heat capacity coefficient gammaequiv Csbe/T≈0.42 J/mol Ksp2 at 1 K is extraordinarily large for a transition metal compound, the Wilson ratio ≈1.7, and the Korringa ratio ≈0.5. X-ray and neutron diffraction measurements down to 4 K found no distortion from the cubic structure. Neutron diffraction and dilatometry measurements indicate a strong enhancement of the thermal expansion coefficient and Gruneisen parameter below ˜20 K. Muon spin relaxation for a magnetically pure sample showed no evidence of static magnetic ordering above 0.02 K. Superconductivity was not observed above 0.01 K. All these measurements are consistent with a heavy Fermi liquid (HF) interpretation at low T. Theories which apply to some conventional f-electron HF compounds, the Kondo and Coqblin-Schrieffer models, fail to self-consistently explain chi(T) and Csbe(T) of LiVsb2Osb4. Geometric frustration inherent in the V

  15. Heavy Metal Exposure Influences Double Strand Break DNA Repair Outcomes

    PubMed Central

    Morales, Maria E.; Derbes, Rebecca S.; Ade, Catherine M.; Ortego, Jonathan C.; Stark, Jeremy; Deininger, Prescott L.; Roy-Engel, Astrid M.

    2016-01-01

    Heavy metals such as cadmium, arsenic and nickel are classified as carcinogens. Although the precise mechanism of carcinogenesis is undefined, heavy metal exposure can contribute to genetic damage by inducing double strand breaks (DSBs) as well as inhibiting critical proteins from different DNA repair pathways. Here we take advantage of two previously published culture assay systems developed to address mechanistic aspects of DNA repair to evaluate the effects of heavy metal exposures on competing DNA repair outcomes. Our results demonstrate that exposure to heavy metals significantly alters how cells repair double strand breaks. The effects observed are both specific to the particular metal and dose dependent. Low doses of NiCl2 favored resolution of DSBs through homologous recombination (HR) and single strand annealing (SSA), which were inhibited by higher NiCl2 doses. In contrast, cells exposed to arsenic trioxide preferentially repaired using the “error prone” non-homologous end joining (alt-NHEJ) while inhibiting repair by HR. In addition, we determined that low doses of nickel and cadmium contributed to an increase in mutagenic recombination-mediated by Alu elements, the most numerous family of repetitive elements in humans. Sequence verification confirmed that the majority of the genetic deletions were the result of Alu-mediated non-allelic recombination events that predominantly arose from repair by SSA. All heavy metals showed a shift in the outcomes of alt-NHEJ repair with a significant increase of non-templated sequence insertions at the DSB repair site. Our data suggest that exposure to heavy metals will alter the choice of DNA repair pathway changing the genetic outcome of DSBs repair. PMID:26966913

  16. Heavy Metal Exposure Influences Double Strand Break DNA Repair Outcomes.

    PubMed

    Morales, Maria E; Derbes, Rebecca S; Ade, Catherine M; Ortego, Jonathan C; Stark, Jeremy; Deininger, Prescott L; Roy-Engel, Astrid M

    2016-01-01

    Heavy metals such as cadmium, arsenic and nickel are classified as carcinogens. Although the precise mechanism of carcinogenesis is undefined, heavy metal exposure can contribute to genetic damage by inducing double strand breaks (DSBs) as well as inhibiting critical proteins from different DNA repair pathways. Here we take advantage of two previously published culture assay systems developed to address mechanistic aspects of DNA repair to evaluate the effects of heavy metal exposures on competing DNA repair outcomes. Our results demonstrate that exposure to heavy metals significantly alters how cells repair double strand breaks. The effects observed are both specific to the particular metal and dose dependent. Low doses of NiCl2 favored resolution of DSBs through homologous recombination (HR) and single strand annealing (SSA), which were inhibited by higher NiCl2 doses. In contrast, cells exposed to arsenic trioxide preferentially repaired using the "error prone" non-homologous end joining (alt-NHEJ) while inhibiting repair by HR. In addition, we determined that low doses of nickel and cadmium contributed to an increase in mutagenic recombination-mediated by Alu elements, the most numerous family of repetitive elements in humans. Sequence verification confirmed that the majority of the genetic deletions were the result of Alu-mediated non-allelic recombination events that predominantly arose from repair by SSA. All heavy metals showed a shift in the outcomes of alt-NHEJ repair with a significant increase of non-templated sequence insertions at the DSB repair site. Our data suggest that exposure to heavy metals will alter the choice of DNA repair pathway changing the genetic outcome of DSBs repair.

  17. Heavy Metal Contaminated Soil Treatment: Conceptual Development

    DTIC Science & Technology

    1987-02-01

    circuit without trans- ferring hear from a metallic resistance element. Contaminated soils may be accepted directly with little or (to pretreatment ...with metals has been demon-- strated. No pretreatment for organics destruction would be required. The system can also readily handle liquid wastes and...applications as a pretreatment /recovery step. J 38 0458Bi 3.7.3 Long term stability/performance. The process would remove metals from the soil. Therefore, if

  18. Sublethal Toxicity Endpoints of Heavy Metals to the Nematode Caenorhabditis elegans.

    PubMed

    Jiang, Ying; Chen, Jiandong; Wu, Yue; Wang, Qiang; Li, Huixin

    2016-01-01

    Caenorhabditis elegans, a free-living nematode, is commonly used as a model organism in ecotoxicological studies. The current literatures have provided useful insight into the relative sensitivity of several endpoints, but few direct comparisons of multiple endpoints under a common set of experimental conditions. The objective of this study was to determine appropriate sublethal endpoints to develop an ecotoxicity screening and monitoring system. C. elegans was applied to explore the sublethal toxicity of four heavy metals (copper, zinc, cadmium and chromium). Two physiological endpoints (growth and reproduction), three behavioral endpoints (head thrash frequency, body bend frequency and feeding) and two enzymatic endpoints (acetylcholine esterase [AChE] and superoxide dismutase [SOD]) were selected for the assessment of heavy metal toxicity. The squared correlation coefficients (R2) between the responses observed and fitted by Logit function were higher than 0.90 and the RMSE were lower than 0.10, indicating a good significance statistically. There was no significant difference among the half effect concentration (EC50) endpoints in physiological and behavioral effects of the four heavy metals, indicating similar sensitivity of physiological and behavioral effects. AChE enzyme was more sensitive to copper, zinc, and cadmium than to other physiological and behavioral effects, and SOD enzyme was most sensitive to chromium. The EC50 of copper, zinc, and cadmium, to the AChE enzyme in the nematodes were 0.68 mg/L, 2.76 mg/L, and 0.92 mg/L respectively and the EC50 of chromium to the SOD enzyme in the nematode was 1.58 mg/L. The results of this study showed that there was a good concentration-response relationship between all four heavy metals and the sublethal toxicity effects to C. elegans. Considering these sublethal endpoints in terms of simplicity, accuracy, repeatability and costs of the experiments, feeding is the relatively ideal sublethal toxicity endpoint of

  19. The environmental impact of gold mines: pollution by heavy metals

    NASA Astrophysics Data System (ADS)

    Abdul-Wahab, Sabah Ahmed; Marikar, Fouzul Ameer

    2012-06-01

    The gold mining plant of Oman was studied to assess the contribution of gold mining on the degree of heavy metals into different environmental media. Samples were collected from the gold mining plant area in tailings, stream waters, soils and crop plants. The collected samples were analyzed for 13 heavy metals including vanadium (V), chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), cadmium (Cd), cobalt (Co), lead (Pb), zinc (Zn), aluminium (Al), strontium (Sr), iron (Fe) and barium (Ba). The water in the acid evaporation pond showed a high concentration of Fe as well as residual quantities of Zn, V, and Al, whereas water from the citizens well showed concentrations of Al above those of Omani and WHO standards. The desert plant species growing closed to the gold pit indicated high concentrations of heavy metals (Mn, Al, Ni, Fe, Cr, and V), while the similar plant species used as a control indicated lesser concentrations of all heavy metals. The surface water (blue) indicated very high concentrations of copper and significant concentrations of Mn, Ni, Al, Fe, Zn, lead, Co and Cd. The results revealed that some of the toxic metals absorbed by plants indicated significant metal immobilization.

  20. Beneficial effect of sesame oil on heavy metal toxicity.

    PubMed

    Chandrasekaran, Victor Raj Mohan; Hsu, Dur-Zong; Liu, Ming-Yie

    2014-02-01

    Heavy metals become toxic when they are not metabolized by the body and accumulate in the soft tissue. Chelation therapy is mainly for the management of heavy metal-induced toxicity; however, it usually causes adverse effects or completely blocks the vital function of the particular metal chelated. Much attention has been paid to the development of chelating agents from natural sources to counteract lead- and iron-induced hepatic and renal damage. Sesame oil (a natural edible oil) and sesamol (an active antioxidant) are potently beneficial for treating lead- and iron-induced hepatic and renal toxicity and have no adverse effects. Sesame oil and sesamol significantly inhibit iron-induced lipid peroxidation by inhibiting the xanthine oxidase, nitric oxide, superoxide anion, and hydroxyl radical generation. In addition, sesame oil is a potent inhibitor of proinflammatory mediators, and it attenuates lead-induced hepatic damage by inhibiting nitric oxide, tumor necrosis factor-α, and interleukin-1β levels. Because metal chelating therapy is associated with adverse effects, treating heavy metal toxicity in addition with sesame oil and sesamol may be better alternatives. This review deals with the possible use and beneficial effects of sesame oil and sesamol during heavy metal toxicity treatment.

  1. Dustfall Heavy Metal Pollution During Winter in North China.

    PubMed

    Xiong, Qiu-lin; Zhao, Wen-ji; Guo, Xiao-yu; Shu, Tong-tong; Chen, Fan-tao; Zheng, Xiao-xia; Gong, Zhao-ning

    2015-10-01

    In order to study heavy metal pollution in dustfall during Winter in North China, forty-four dustfall samples were collected in North China Region from November 2013 to March 2014. Then forty trace elements content were measured for each sample by inductively coupled plasma-mass spectrometry. Finally, the contamination characteristics of the main heavy metals were studied through a multi-method analysis, including variability analysis, Pearson correlation analysis and principal component analysis. Results showed that the relative contents of cadmium (Cd), zinc (Zn), copper (Cu), bismuth (Bi), lead (Pb) exceeded the standards stipulated in Chinese soil elements background values by amazing 4.9 times. In this study, conclusions were drawn that dustfall heavy metal pollution in the region was mainly caused by transport pollution, metallurgy industrial pollution, coal pollution and steel industrial pollution.

  2. Baker's yeast assay procedure for testing heavy metal toxicity

    SciTech Connect

    Bitton, G.; Koopman, B.; Wang, H.D.

    1984-01-01

    Baker's yeast (Saccharomyces cerevisiae) is microorganism which is commercially available and sold as packaged dry pellets in any food store at low cost. Studies have been undertaken on the effects of organic xenobiotics as well as heavy metals on yeast metabolism. This type of study has been generally useful in examining the mechanism(s) of chemical toxicity. However, a rapid and quantitative toxicity test using S. cerevisiae as the test organism has not been developed. The purpose of this study was to develop a toxicity assay for heavy metals, using commercial dry yeast as the test microorganism. This rapid and simple procedure is based on the reduction of 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyltetrazolium chloride (INT) to INT-formazan by the yeast electron transport system. The scoring of active cells following exposure to heavy metals was undertaken according to the MINT (malachite green-INT) method developed by Bitton and Koopman.

  3. Heavy metals intake by cultured mushrooms growing in model system.

    PubMed

    Ozcan, Mehmet Musa; Dursun, Nesim; Al Juhaimi, Fahad Y

    2013-10-01

    Micro element and heavy metal contents of mushrooms were determined by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). It was seen an increase in the heavy metal contents (except Cu and Zn) of the mushrooms until the second dose. A decrease was seen in heavy metal intake of the mushroom in the application of the third dose. The highest accumulation occurred from the upper soils treated with the second dose. Amounts of Cd, Cr, Cu, Pb and Zn, which were accumulated in the mushroom after the application of this dose, were detected as 5.7, 23.1, 75.7, 62.8 and 99.3 ppm, respectively.

  4. Heavy metals in canned tuna from Italian markets.

    PubMed

    Russo, R; Lo Voi, A; De Simone, A; Serpe, F P; Anastasio, A; Pepe, T; Cacace, D; Severino, L

    2013-02-01

    Fish is a good source of nutrients for humans but can pose a risk to human health because of the possible presence of some xenobiotics such as heavy metals and persistent organic contaminants. Constant monitoring is needed to minimize health risks and ensure product quality and consumer safety. The aim of the present study was to use atomic absorption spectrometry to determine the concentrations of some heavy metals (Hg, Pb, and Cd) in tuna packaged in different kinds of packages (cans or glass) in various countries (Italy and elsewhere). Concentrations of Cd and Hg were within the limits set by European Commission Regulation (EC) No 1881/2006 and in many samples were below the detection limit. Pb concentrations exceeded European limits in 9.8% of the analyzed samples. These results are reassuring in terms of food safety but highlighted the need to constantly monitor the concentrations of heavy metals in fish products that could endanger consumer health.

  5. Separation Characteristics of Heavy Metal Compounds by Hot Gas Cleaning System

    SciTech Connect

    Sakano, T.; Kanaoka, C.; Furuuchi, M.; Yang, K-S.; Hata, M.

    2002-09-20

    The purpose of this research is the basic study for the development of separation technology of heavy metal compounds from hot flue gas. While the hot flue gas containing heavy metals from a melting furnace of industrial waste passes through the high temperature dust collector which can be varied the operating temperature. The heavy metals can be separated due to different boiling point of each heavy metal. On the basis of this concept, the concentration of heavy metals in the flue gas were sampled and measured at inlet, outlet of the ceramic filter housing in the actual industrial waste processing system. Speciation of heavy metals in collected ashes was clarified by separating heavy metals according to compounds using their elution characteristics. Moreover, equilibrium analysis was performed to determine the effect of temperature, flue gases conditions on heavy metals speciation, and it was compared with experimental data. From these results, we discussed about separation performance of heavy metal compounds by hot gas cleaning.

  6. Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge.

    PubMed

    Yuan, Xingzhong; Huang, Huajun; Zeng, Guangming; Li, Hui; Wang, Jingyu; Zhou, Chunfei; Zhu, Huina; Pei, Xiaokai; Liu, Zhifeng; Liu, Zhantao

    2011-03-01

    The risk (including bioavailability and eco-toxicity) of heavy metals (Pb, Zn, Cu, Cd, Cr and Ni) in liquefaction residues (LR) of sewage sludge (SS) was estimated, according to both the speciation of heavy metals and the local environmental characteristics. The amount of organic matters in LR was lower than that in SS, resulting in a smaller calorific value, while the total content of heavy metals in LR nearly doubled. High residual rates of heavy metals (about 80%) indicated that the heavy metals in SS were concentrated into LR after liquefaction. The comparisons of sequential extraction results between SS and LR showed that after liquefaction, the mobile and easily available heavy metal fractions (acid soluble/exchangeable and reducible fractions) were mainly transformed into the relatively stable heavy metal fractions (oxidizable and residual fractions). The bioavailability and eco-toxicity of heavy metals in LR were relieved, though the total concentrations of heavy metals increased.

  7. Heavy metal pollution in coastal areas of South China: a review.

    PubMed

    Wang, Shuai-Long; Xu, Xiang-Rong; Sun, Yu-Xin; Liu, Jin-Ling; Li, Hua-Bin

    2013-11-15

    Coastal areas of South China face great challenges due to heavy metal contamination caused by rapid urbanization and industrialization. In this paper, more than 90 articles on levels, distributions, and sources of heavy metals in sediments and organisms were collected to review the status of heavy metal pollution along coastal regions of South China. The results show that heavy metal levels were closely associated with local economic development. Hong Kong and the Pearl River Estuary were severely contaminated by heavy metals. However, concentrations of heavy metals in sediments from Hong Kong have continually decreased since the early 1990 s. High levels of heavy metals were found in biota from Lingdingyang in Guangdong province. Mollusks had higher concentrations of heavy metals than other species. Human health risk assessments suggested that levels of heavy metals in some seafood from coastal areas of South China exceeded the safety limit.

  8. Behavior of metal ions in bioelectrochemical systems: A review

    NASA Astrophysics Data System (ADS)

    Lu, Zhihao; Chang, Dingming; Ma, Jingxing; Huang, Guangtuan; Cai, Lankun; Zhang, Lehua

    2015-02-01

    Bioelectrochemical systems (BESs) have been focused on by many researchers to treat wastewater and recover energy or valuable chemicals from wastes. In BESs, metal ions play an important role in the conductivity of solution, reactors' internal resistance, power generation, chemical production and activity of microorganisms. Additionally, the metal ions are also involved in anodic or cathodic reaction processes directly or indirectly in BESs. This paper reviews the behavior of metal ions in BESs, including (1) increase of the conductivity of electrolyte and decrease of internal resistance, (2) transfer for desalination, (3) enhancement or inhibition of the biocatalysis in anode, (4) improvement of cathodic performance by metal ions through electron acceptance or catalysis in cathodic process and (5) behavior of metal ions on membranes. Moreover, the perspectives of BESs removing heavy metal ions in wastewater or solid waste are discussed to realize recovery, reduction and detoxification simultaneously.

  9. Characterization of a heavy metal translocating P-type ATPase gene from an environmental heavy metal resistance Enterobacter sp. isolate.

    PubMed

    Chien, Chih-Ching; Huang, Chia-Hsuan; Lin, Yi-Wei

    2013-03-01

    Heavy metals are common contaminants found in polluted areas. We have identified a heavy metal translocating P-type ATPase gene (hmtp) via fosmid library and in vitro transposon mutagenesis from an Enterobacter sp. isolate. This gene is believed to participate in the bacterium's heavy metal resistance traits. The complete gene was identified, cloned, and expressed in a suitable Escherichia coli host cell. E. coli W3110, RW3110 (zntA::Km), GG48 (ΔzitB::Cm zntA::Km), and GG51 (ΔzitB::Cm) were used to study the possible effects of this gene for heavy metal (cadmium and zinc in particular) resistance. Among the E. coli strains tested, RW3110 and GG48 showed more sensitivity to cadmium and zinc compared to the wild-type E. coli W3110 and strain GG51. Therefore, strains RW3110 and GG48 were chosen for the reference hosts for further evaluation of the gene's effect. The results showed that expression of this heavy metal translocating P-type ATPase gene could increase the ability for zinc and cadmium resistance in the tested microorganisms.

  10. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review.

    PubMed

    Tang, Wang-Wang; Zeng, Guang-Ming; Gong, Ji-Lai; Liang, Jie; Xu, Piao; Zhang, Chang; Huang, Bin-Bin

    2014-01-15

    Nowadays nanomaterials have been widely used to remove heavy metals from water/wastewater due to their large surface area and high reactivity. Humic acid (HA) and fulvic acid (FA) exist ubiquitously in aquatic environments and have a variety of functional groups which allow them to complex with metal ions and interact with nanomaterials. These interactions can not only alter the environmental behavior of nanomaterials, but also influence the removal and transportation of heavy metals by nanomaterials. Thus, the interactions and the underlying mechanisms involved warrant specific investigations. This review outlined the effects of HA/FA on the removal of heavy metals from aqueous solutions by various nanomaterials, mainly including carbon-based nanomaterials, iron-based nanomaterials and photocatalytic nanomaterials. Moreover, mechanisms involved in the interactions were discussed and potential environmental implications of HA/FA to nanomaterials and heavy metals were evaluated.

  11. Assessment of Heavy Metal Pollution in Topsoil around Beijing Metropolis

    PubMed Central

    Sun, Ranhao; Chen, Liding

    2016-01-01

    The topsoil around Beijing metropolis, China, is experiencing impacts of rapid urbanization, intensive farming, and extensive industrial emissions. We analyzed the concentrations of Cu, Ni, Pb, Zn, Cd, and Cr from 87 topsoil samples in the pre-rainy season and 115 samples in the post-rainy season. These samples were attributed to nine land use types: forest, grass, shrub, orchard, wheat, cotton, spring maize, summer maize, and mixed farmland. The pollution index (PI) of heavy metals was calculated from the measured and background concentrations. The ecological risk index (RI) was assessed based on the PI values and toxic-response parameters. The results showed that the mean PI values of Pb, Cr, and Cd were > 1 while those of Cu, Ni, and Zn were < 1. All the samples had low ecological risk for Cu, Ni, Pb, Zn, and Cr while only 15.35% of samples had low ecological risk for Cd. Atmospheric transport rather than land use factors best explained the seasonal variations in heavy metal concentrations and the impact of atmospheric transport on heavy metal concentrations varied according to the heavy metal types. The concentrations of Cu, Cd, and Cr decreased from the pre- to post-rainy season, while those of Ni, Pb, and Zn increased during this period. Future research should be focused on the underlying atmospheric processes that lead to these spatial and seasonal variations in heavy metals. The policymaking on environmental management should pay close attention to potential ecological risks of Cd as well as identifying the transport pathways of different heavy metals. PMID:27159454

  12. Heavy Metals in the Environment-Historical Trends

    NASA Astrophysics Data System (ADS)

    Callender, E.

    2003-12-01

    These six metals, commonly classified as heavy metals, are a subset of a larger group of trace elements that occur in low concentration in the Earth's crust. These heavy metals were mined extensively for use in the twentieth century Industrial Society. Nriagu (1988a) estimated that between 0.5 (Cd) and 310 (Cu) million metric tons of these metals were mined and ultimately deposited in the biosphere. In many instances, the inputs of these metals from anthropogenic sources exceed the contributions from natural sources (weathering, volcanic eruptions, forest fires) by several times ( Adriano, 1986). In this chapter, heavy metals (elements having densities greater than 5) and trace elements (elements present in the lithosphere in concentrations less than 0.1%) are considered synonymous.It has been observed in the past that the rate of emission of these trace metals into the atmosphere is low due to their low volatility. However, with the advent of large-scale metal mining and smelting as well as fossil-fuel combustion in the twentieth century, the emission rate of these metals has increased dramatically. As most of these emissions are released into the atmosphere where the mammals live and breathe, we see a great increase in the occurrence of health problems such as lead (Pb) poisoning, cadmium (Cd) Itai-itai disease, chromium (Cr), and nickel (Ni) carcinogenesis.In this chapter, the author has attempted to present a synopsis of the importance of these metals in the hydrocycle, their natural and anthropogenic emissions into the environment, their prevalent geochemical form incorporated into lacustrine sediments, and their time-trend distributions in watersheds that have been impacted by urbanization, mining and smelting, and other anthropogenic activities. These time trends are reconstructed from major-minor-trace-element distributions in age-dated sediment cores, mainly from reservoirs where the mass sedimentation rates (MSRs) are orders of magnitude greater than

  13. [Heavy metal poisoning and renal injury in children].

    PubMed

    Rong, Li-Ping; Xu, Yuan-Yuan; Jiang, Xiao-Yun

    2014-04-01

    Along with global environmental pollution resulting from economic development, heavy metal poisoning in children has become an increasingly serious health problem in the world. It can lead to renal injury, which tends to be misdiagnosed due to the lack of obvious or specific early clinical manifestations in children. Early prevention, diagnosis and intervention are valuable for the recovery of renal function and children's good health and growth. This paper reviews the mechanism of renal injury caused by heavy metal poisoning in children, as well as the clinical manifestations, diagnosis, and prevention and treatment of renal injury caused by lead, mercury, cadmium, and chromium.

  14. Brassinosteroids and Response of Plants to Heavy Metals Action

    PubMed Central

    Rajewska, Iwona; Talarek, Marta; Bajguz, Andrzej

    2016-01-01

    Brassinosteroids (BRs) are a widespread group of plant hormones. These phytohormones play a crucial role in the regulation of growth and development of various plant species, and they demonstrate high biological activity. BRs are considered to demonstrate protective activity in the plants exposed to various stresses. Due to rapid industrialization and urbanization, heavy metals have become one of the most important plant stressors. In plants, accumulation of heavy metals beyond the critical levels leads to oxidative stress. However, BRs may inhibit the degradation of lipids, resulted from the overproduction of reactive oxygen species under stress conditions, and increase the activity of antioxidants. They also have the ability to promote phytochelatins synthesis. PMID:27242833

  15. Oil palm biomass as an adsorbent for heavy metals.

    PubMed

    Vakili, Mohammadtaghi; Rafatullah, Mohd; Ibrahim, Mahamad Hakimi; Abdullah, Ahmad Zuhairi; Salamatinia, Babak; Gholami, Zahra

    2014-01-01

    Many industries discharge untreated wastewater into the environment. Heavy metals from many industrial processes end up as hazardous pollutants of wastewaters.Heavy metal pollution has increased in recent decades and there is a growing concern for the public health risk they may pose. To remove heavy metal ions from polluted waste streams, adsorption processes are among the most common and effective treatment methods. The adsorbents that are used to remove heavy metal ions from aqueous media have both advantages and disadvantages. Cost and effectiveness are two of the most prominent criteria for choosing adsorbents. Because cost is so important, great effort has been extended to study and find effective lower cost adsorbents.One class of adsorbents that is gaining considerable attention is agricultural wastes. Among many alternatives, palm oil biomasses have shown promise as effective adsorbents for removing heavy metals from wastewater. The palm oil industry has rapidly expanded in recent years, and a large amount of palm oil biomass is available. This biomass is a low-cost agricultural waste that exhibits, either in its raw form or after being processed, the potential for eliminating heavy metal ions from wastewater. In this article, we provide background information on oil palm biomass and describe studies that indicate its potential as an alternative adsorbent for removing heavy metal ions from wastewater. From having reviewed the cogent literature on this topic we are encouraged that low-cost oil-palm-related adsorbents have already demonstrated outstanding removal capabilities for various pollutants.Because cost is so important to those who choose to clean waste streams by using adsorbents, the use of cheap sources of unconventional adsorbents is increasingly being investigated. An adsorbent is considered to be inexpensive when it is readily available, is environmentally friendly, is cost-effective and be effectively used in economical processes. The

  16. [Hyperspectral remote sensing in monitoring the vegetation heavy metal pollution].

    PubMed

    Li, Na; Lü, Jian-sheng; Altemann, W

    2010-09-01

    Mine exploitation aggravates the environment pollution. The large amount of heavy metal element in the drainage of slag from the mine pollutes the soil seriously, doing harm to the vegetation growing and human health. The investigation of mining environment pollution is urgent, in which remote sensing, as a new technique, helps a lot. In the present paper, copper mine in Dexing was selected as the study area and China sumac as the study plant. Samples and spectral data in field were gathered and analyzed in lab. The regression model from spectral characteristics for heavy metal content was built, and the feasibility of hyperspectral remote sensing in environment pollution monitoring was testified.

  17. Can heavy metal pollution defend seed germination against heat stress? Effect of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination under high temperature.

    PubMed

    Deng, Benliang; Yang, Kejun; Zhang, Yifei; Li, Zuotong

    2016-09-01

    Heavy metal pollution, as well as greenhouse effect, has become a serious threat today. Both heavy metal and heat stresses can arrest seed germination. What response can be expected for seed germination under both stress conditions? Here, the effects of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination were investigated at 20 °C and 40 °C. Compared with 20 °C, heat stress induced thermodormancy. However, this thermodormancy could be significantly alleviated by the addition of a low concentration of heavy metals. Heavy metals, as well as heat stress induced H2O2 accumulation in germinating seeds. Interestingly, this low concentration of heavy metal that promoted seed germination could be partly blocked by DMTU (a specific ROS scavenger), irrespective of temperature. Accordingly, H2O2 addition reinforced this promoting effect on seed germination, which was induced by a low concentration of heavy metal. Furthermore, we found that the NADPH oxidase derived ROS was required for seed germination promoted by the heavy metals. Subsequently, treatment of seeds with fluridone (a specific inhibitor of ABA) or ABA significantly alleviated or aggravated thermodormancy, respectively. However, this alleviation or aggravation could be partly attenuated by a low concentration of heavy metals. In addition, germination that was inhibited by high concentrations of heavy metals was also partly reversed by fluridone. The obtained results support the idea that heavy metal-mediated ROS and hormone interaction can finally affect the thermodormancy release or not.

  18. miRNA-based heavy metal homeostasis and plant growth.

    PubMed

    Noman, Ali; Aqeel, Muhammad

    2017-02-22

    Plants have been naturally gifted with mechanisms to adjust under very high or low nutrient concentrations. Heavy metal toxicity is considered as a major growth and yield-limiting factor for plants. This stress includes essential as well as non-essential metals. MicroRNAs (miRNAs) are known for mediating post-transcriptional regulation by cleaving transcripts or translational inhibition. It is commonly agreed that an extensive understanding of plant miRNAs will significantly help in the induction of tolerance against environmental stresses. With the introduction of the latest technology like next generation sequencing (NGS), a growing figure of miRNAs has been productively recognized in several plants for their diverse roles. These miRNAs are well-known modulators of plant responses to heavy metal (HM) stress. Data regarding metal-responsive miRNAs point out the vital role of plant miRNAs in supplementing metal detoxification by means of transcription factors (TF) or gene regulation. Acting as systemic signals, miRNAs also synchronize different physiological processes for plant responses to metal toxicities. In contrast to practicing techniques, using miRNA is a greatly helpful, pragmatic, and feasible approach. The earlier findings point towards miRNAs as a prospective target to engineer heavy metal tolerance in plants. Therefore, there is a need to augment our knowledge about the orchestrated functions of miRNAs during HM stress. We reviewed the deterministic significance of plant miRNAs in heavy metal tolerance and their role in mediating plant responses to HM toxicities. This review also summarized the topical developments by identification and validation of different metal stress-responsive miRNAs.

  19. Coal burning leaves toxic heavy metal legacy in the Arctic.

    PubMed

    McConnell, Joseph R; Edwards, Ross

    2008-08-26

    Toxic heavy metals emitted by industrial activities in the midlatitudes are transported through the atmosphere and deposited in the polar regions; bioconcentration and biomagnification in the food chain mean that even low levels of atmospheric deposition may threaten human health and Arctic ecosystems. Little is known about sources and long-term trends of most heavy metals before approximately 1980, when modern measurements began, although heavy-metal pollution in the Arctic was widespread during recent decades. Lacking detailed, long-term measurements until now, ecologists, health researchers, and policy makers generally have assumed that contamination was highest during the 1960s and 1970s peak of industrial activity in North America and Europe. We present continuous 1772-2003 monthly and annually averaged deposition records for highly toxic thallium, cadmium, and lead from a Greenland ice core showing that atmospheric deposition was much higher than expected in the early 20th century, with tenfold increases from preindustrial levels by the early 1900s that were two to five times higher than during recent decades. Tracer measurements indicate that coal burning in North America and Europe was the likely source of these metals in the Arctic after 1860. Although these results show that heavy-metal pollution in the North Atlantic sector of the Arctic is substantially lower today than a century ago, contamination of other sectors may be increasing because of the rapid coal-driven growth of Asian economies.

  20. Coal burning leaves toxic heavy metal legacy in the Arctic

    SciTech Connect

    McConnell, J.R.; Edwards, R.

    2008-08-26

    Toxic heavy metals emitted by industrial activities in the midlatitudes are transported through the atmosphere and deposited in the polar regions; bioconcentration and biomagnification in the food chain mean that even low levels of atmospheric deposition may threaten human health and Arctic ecosystems. Little is known about sources and long-term trends of most heavy metals before approximate to 1980, when modern measurements began, although heavy-metal pollution in the Arctic was widespread during recent decades. Lacking detailed, long-term measurements until now, ecologists, health researchers, and policy makers generally have assumed that contamination was highest during the 1960s and 1970s peak of industrial activity in North America and Europe. We present continuous 1772-2003 monthly and annually averaged deposition records for highly toxic thallium, cadmium, and lead from a Greenland ice core showing that atmospheric deposition was much higher than expected in the early 20th century, with tenfold increases from preindustrial levels by the early 1900s that were two to five times higher than during recent decades. Tracer measurements indicate that coal burning in North America and Europe was the likely source of these metals in the Arctic after 1860. Although these results show that heavy-metal pollution in the North Atlantic sector of the Arctic is substantially lower today than a century ago, contamination of other sectors may be increasing because of the rapid coal-driven growth of Asian economies.

  1. Rhizobacteria of Populus euphratica Promoting Plant Growth Against Heavy Metals.

    PubMed

    Zhu, Donglin; Ouyang, Liming; Xu, Zhaohui; Zhang, Lili

    2015-01-01

    The heavy metal-resistant bacteria from rhizospheric soils of wild Populus euphratica forest growing in arid and saline area of northwestern China were investigated by cultivation-dependent methods. After screening on medium sparked with zinc, copper, nickel and lead, 146 bacteria strains with different morphology were isolated and most of them were found to be resistant to at least two kinds of heavy metals. Significant increase in fresh weight and leaf surface area of Arabidopsis thaliana seedlings under metal stress were noticed after inoculated with strains especially those having multiple-resistance to heavy metals such as Phyllobacterium sp. strain C65. Investigation on relationship between auxin production and exogenous zinc concentration revealed that Phyllobacterium sp. strain C65 produced auxin, and production decreased as the concentration of zinc in medium increased. For wheat seedlings treated with zinc of 2 mM, zinc contents in roots of inoculated plants decreased by 27% (P < 0.05) compared to the uninoculated control. Meanwhile, zinc accumulation in the above-ground tissues increased by 22% (P < 0.05). The translocation of zinc from root to above-ground tissues induced by Phyllobacterium sp. strain C65 helped host plants extract zinc from contaminated environments more efficiently thus alleviated the growth inhibition caused by heavy metals.

  2. Flow analysis of heavy metals in a pilot-scale incinerator for residues from waste electrical and electronic equipment dismantling.

    PubMed

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi; Ding, Wei-Xu; Shen, Dong-Sheng

    2013-10-15

    The large amount of residues generated from dismantling waste electrical and electronic equipment (WEEE) results in a considerable environmental burden. We used material flow analysis to investigate heavy metal behavior in an incineration plant in China used exclusively to incinerate residues from WEEE dismantling. The heavy metals tested were enriched in the bottom and fly ashes after incineration. However, the contents of heavy metals in the bottom ash, fly ash and exhaust gas do not have a significant correlation with that of the input waste. The evaporation and recondensation behavior of heavy metals caused their contents to differ with air pollution control equipment because of the temperature difference during gas venting. Among the heavy metals tested, Cd had the strongest tendency to transfer during incineration (TCd=69.5%) because it had the lowest melting point, followed by Cu, Ni, Pb and Zn. The exchangeable and residual fractions of heavy metals increased substantially in the incineration products compared with that of the input residues. Although the mass of residues from WEEE dismantling can be reduced by 70% by incineration, the safe disposal of the metal-enriched bottom and fly ashes is still required.

  3. Phytoremediation of heavy metal contaminated soil by Jatropha curcas.

    PubMed

    Chang, Fang-Chih; Ko, Chun-Han; Tsai, Ming-Jer; Wang, Ya-Nang; Chung, Chin-Yi

    2014-12-01

    This study employed Jatropha curcas (bioenergy crop plant) to assist in the removal of heavy metals from contaminated field soils. Analyses were conducted on the concentrations of the individual metals in the soil and in the plants, and their differences over the growth periods of the plants were determined. The calculation of plant biomass after 2 years yielded the total amount of each metal that was removed from the soil. In terms of the absorption of heavy metal contaminants by the roots and their transfer to aerial plant parts, Cd, Ni, and Zn exhibited the greatest ease of absorption, whereas Cu, Cr, and Pb interacted strongly with the root cells and remained in the roots of the plants. J. curcas showed the best absorption capability for Cd, Cr, Ni, and Zn. This study pioneered the concept of combining both bioremediation and afforestation by J. curcas, demonstrated at a field scale.

  4. Characterization of disposable optical sensors for heavy metal determination.

    PubMed

    Vuković, Jadranka; Avidad, María Ariza; Capitán-Vallvey, Luis Fermín

    2012-05-30

    This paper presents the development, characterization and quality control of analytical methods based on the use of disposable optical sensors for determination of heavy metals. Chromogenic reagents such as 1-(2-pyridylazo)-2-naphthol, (2-pyridylazo)resorcinol, Zincon, Ferrozine, and Chromazurol S were used to develop optical sensors of heavy metal ions found as contaminants in pharmaceutical substances and products, such as Zn(II), Cu(II), Ni(II), Fe(II), and Fe(III). The chromogenic reagents were immobilized in polymeric membranes by spin-coating from cocktails containing all reagents needed. The methods were prevalidated using a comprehensive quality control strategy based on a system of mathematical/statistical testing and diagnosis of each prevalidation step. This system involved characterization of analytical groups; checking of two limiting groups; testing of data homogeneity; recognition of outliers; and determination of analytical functions, limiting values, precision and accuracy. The prevalidation strategy demonstrated the reliability of the proposed method and pointed out some limitations. Combining the optical sensors with multicomponent linear regression allowed simultaneous determination of multiple metals in synthetic mixtures with different compositions. Good agreement between experimental and theoretical amounts of heavy metals in the mixtures was obtained for the majority of sensors and metals. Even better agreement was obtained between the experimental and theoretical total amounts of metals in the mixtures. The proposed analytical methods were successfully applied to the determination of zinc in pharmaceutical preparations of insulin and the determination of metal mixtures in a commercial nasal spray of isotonic seawater. The reliable and sensitive individual optical sensors developed in this study may be useful for designing a multimembrane optical tongue that with appropriate further optimization can be used for screening heavy metals in

  5. Biosorption of heavy metals by Fucus spiralis.

    PubMed

    Romera, E; González, F; Ballester, A; Blázquez, M L; Muñoz, J A

    2008-07-01

    The sorption uptake of cadmium, nickel, zinc, copper and lead by marine brown alga Fucus spiralis was investigated in bimetallic, trimetallic and multimetallic solutions. The experimental data fitted very well to Langmuir model. In bimetallic systems, the affinity of biomass for lead and copper increased and the sorption uptake of these metals was not affected by increasing concentrations of cadmium, nickel or zinc. However, in solutions with both metals there was a significant mutual decrease of their sorption levels at high concentrations of the other metal. The sorption uptake of cadmium, nickel and copper was investigated in trimetallic aqueous systems. Based on the kinetic parameter b, the affinity of F. spiralis for copper was considerably higher than for cadmium or nickel: bCd=6.39, bNi=1.82 and bCu=17.89. In all tests, the maximum sorption uptake remained practically constant around 1 mmol/g, indicating that the number of active sites on the biomass was limited. Tests with four and five metals showed that copper was preferentially adsorbed. The differences between the experimental sorption data and those given by the chemical speciation program PHREEQCI were negligible. In general, the software used provided satisfactory estimated data for each metal and hence can be a useful tool to predict or simulate the real process.

  6. Removal of heavy metal from industrial effluents using Baker's yeast

    NASA Astrophysics Data System (ADS)

    Ferdous, Anika; Maisha, Nuzhat; Sultana, Nayer; Ahmed, Shoeb

    2016-07-01

    Bioremediation of wastewater containing heavy metals is one of the major challenges in environmental biotechnology. Heavy metals are not degraded and as a result they remain in the ecosystem, and pose serious health hazards as it comes in contact with human due to anthropogenic activities. Biological treatment with various microorganisms has been practiced widely in recent past, however, accessing and maintaining the microorganisms have always been a challenge. Microorganisms like Baker's yeast can be very promising biosorbents as they offer high surface to volume ratio, large availability, rapid kinetics of adsorption and desorption and low cost. The main aim of this study is to evaluate the applicability of the biosorption process using baker's yeast. Here we present an experimental investigation of biosorption of Chromium (Cr) from water using commercial Baker's Yeast. It was envisaged that yeast, dead or alive, would adsorb heavy metals, however, operating parameters could play vital roles in determining the removal efficiency. Parameters, such as incubation time, pH, amount of biosorbent and heavy metal concentration were varied to investigate the impacts of those parameters on removal efficiency. Rate of removal was found to be inversely proportional to the initial Cr (+6) concentrations but the removal rate per unit biomass was a weakly dependent on initial Cr(+6) concentrations. Biosorption process was found to be more efficient at lower pH and it exhibited lower removal with the increase in solution pH. The optimum incubation time was found to be between 6-8 hours and optimum pH for the metal ion solution was 2. The effluents produced in leather industries are the major source of chromium pollution in Bangladesh and this study has presented a very cost effective yet efficient heavy metal removal approach that can be adopted for such kind of wastewater.

  7. Chelate-Assisted Heavy Metal Movement Through the Root Zone

    NASA Astrophysics Data System (ADS)

    Kirkham, M.; Madrid, F.; Liphadzi, M. S.

    2001-12-01

    Chelating agents are added to soil as a means to mobilize heavy metals for plant uptake during phytoremediation. Yet almost no studies follow the displacement of heavy metals through the vadose zone following solubilization with chelating agents. The objective of this work was to determine the movement of heavy metals through the soil profile and their absorption by barley (Hordeum vulgare L.) in a soil amended with biosolids and in the presence of a chelating agent (EDTA). Twelve columns 75 cm in height and 17 in diameter were packed with a Haynie very fine sandy loam (coarse-silty, mixed, calcareous, mesic Mollic Udifluvents) and watered with liquid biosolids applied at the surface at a rate of 120 kg N/ha. Three weeks after plants germinated, soil was irrigated with a solution of the disodium salt of EDTA added at a rate of 0.5 g/kg soil. Four treatments were imposed: columns with no plants and no EDTA; columns with no plants plus EDTA; columns with plants and no EDTA; and columns with plants and EDTA. Columns were watered intensively for 35 days until two pore volumes of water had been added, and the leachates were collected daily. With or without plants, columns with EDTA had lower total concentrations of Cu, Zn, Cd, Ni, and Pb in the surface 20 cm than columns without EDTA. Concentrations of the heavy metals in this layer were not afffected by the presence of roots. Iron in leachate was followed as an indicator metal for movement to groundwater. No iron appeared in the leachate without EDTA, either in the columns with plants or without plants. The peak concentration of iron in the leachate occurred three days earlier in the columns without plants and EDTA compared to the columns with plants and EDTA. The results indicated the importance of vegetation on retarding heavy metal leaching to groundwater during chelate-facilitated phytoremediation.

  8. Heavy metal removal from water/wastewater by nanosized metal oxides: a review.

    PubMed

    Hua, Ming; Zhang, Shujuan; Pan, Bingcai; Zhang, Weiming; Lv, Lu; Zhang, Quanxing

    2012-04-15

    Nanosized metal oxides (NMOs), including nanosized ferric oxides, manganese oxides, aluminum oxides, titanium oxides, magnesium oxides and cerium oxides, provide high surface area and specific affinity for heavy metal adsorption from aqueous systems. To date, it has become a hot topic to develop new technologies to synthesize NMOs, to evaluate their removal of heavy metals under varying experimental conditions, to reveal the underlying mechanism responsible for metal removal based on modern analytical techniques (XAS, ATR-FT-IR, NMR, etc.) or mathematical models, and to develop metal oxide-based materials of better applicability for practical use (such as granular oxides or composite materials). The present review mainly focuses on NMOs' preparation, their physicochemical properties, adsorption characteristics and mechanism, as well as their application in heavy metal removal. In addition, porous host supported NMOs are particularly concerned because of their great advantages for practical application as compared to the original NMOs. Also, some magnetic NMOs were included due to their unique separation performance.

  9. The potential for heavy metal decontamination

    SciTech Connect

    Baker, A.J.M.; McGrath, S.P.; Sidoli, C.M.D.; Reeves, R.D.

    1996-12-31

    Preliminary trials to assess the ability of plant species to extract metals are presented. A range of zinc and nickel hyperaccumulator plants from the Brassicaceae family, collected from diverse populations in Europe, were grown on plots along with nonaccumulating crop plants from the same family. Extraction efficiencies and the number of croppings required to reduce the total zinc in the soil to a concentration of 300 mg/kg are tabulated. Zinc accumulation remained high over a wide range of soil metal concentration. However, the concentration of nickel in the hyperaccumulators increased in accordance with increasing total nickel concentrations in the soil. Calculations suggest that there is an excellent potential for using hyperaccumulator species to remove metals from the rhizosphere where remediation can be considered over a period of years and multiple cropping is a viable option.

  10. Use of cestodes as indicator of heavy-metal pollution.

    PubMed

    Yen Nhi, Tran Thi; Mohd Shazili, Noor Azhar; Shaharom-Harrison, Faizah

    2013-01-01

    Thirty snakehead fish, Channa micropeltes (Cuvier, 1831) were collected at Lake Kenyir, Malaysia. Muscle, liver, intestine and kidney tissues were removed from each fish and the intestine was opened to reveal cestodes. In order to assess the concentration of heavy metal in the environment, samples of water in the surface layer and sediment were also collected. Tissues were digested and the concentrations of manganese (Mn), zinc (Zn), copper (Cu), cadmium (Cd) and lead (Pb) were analysed by using inductively-coupled plasma mass-spectrometry (ICP-MS) equipment. The results demonstrated that the cestode Senga parva (Fernando and Furtado, 1964) from fish hosts accumulated some heavy metals to a greater extent than the water and some fish tissues, but less than the sediment. In three (Pb, Zn and Mn) of the five elements measured, cestodes accumulated the highest metal concentrations, and in remaining two (Cu and Cd), the second highest metal accumulation was recorded in the cestodes when compared to host tissues. Therefore, the present study indicated that Senga parva accumulated metals and might have potential as a bioindicator of heavy-metal pollution.

  11. Screening Capsicum chinense fruits for heavy metals bioaccumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated concentrations of heavy metals in edible plants could expose consumers to excessive levels of potentially hazardous chemicals. Sixty-three accessions (genotypes) of Capsicum chinense Jacq, collected from 8 countries of origin, were grown in a silty-loam soil under field conditions. At matur...

  12. Adolescents and Heavy Metal Music: From the Mouths of Metalheads.

    ERIC Educational Resources Information Center

    Arnett, Jeffrey

    1991-01-01

    Attitudes and characteristics of adolescents who like heavy metal music (HMM) were explored in a study of 52 adolescents (largely White males) who liked HMM and 123 who did not in suburban Atlanta (Georgia). HMM is discussed as a reflection of, rather than a cause of, adolescent alienation. (SLD)

  13. MICROBIAL SEQUESTRATION OF LEAD AND OTHER HEAVY METALS

    EPA Science Inventory

    Human activity resulting in heavy metal contamination is a worldwide concern. Lead is a potent neurotoxin that can cause heart problems, kidney damage, and mental retardation. Mercury causes toxicity based on its form and route of exposure. Effects range from allergic reactions t...

  14. Antibiogram and heavy metal tolerance of bullfrog bacteria in Malaysia

    PubMed Central

    Tee, L.W.; Najiah, M.

    2011-01-01

    Bacterial isolates from 30 farmed bullfrogs (Lithobates catesbeianus) weighing 500-600 g at Johore, Malaysia with external clinical signs of ulcer, red leg and torticollis were tested for their antibiograms and heavy metal tolerance patterns. A total of 17 bacterial species with 77 strains were successfully isolated and assigned to 21 antibiotics and 4 types of heavy metal (Hg2+, Cr6+, Cd2+, Cu2+). Results revealed that bacteria were resistant against lincomycin (92%), oleandomycin (72.7%) and furazolidone (71.4%) while being susceptible to chloramphenicol and florfenicol at 97.4%. The multiple antibiotic resistance (MAR) index for C. freundii, E. coli and M. morganii was high with the value up to 0.71. Bacterial strains were found to exhibit 100 % resistance to chromium and mercury. High correlation of resistance against both antibiotics and heavy metals was found (71.4 to 100%) between bullfrog bacteria isolates, except bacteria that were resistant to kanamycin showed only 25% resistance against Cu2+. Based on the results in this study, bacterial pathogens of bullfrog culture in Johore, Malaysia, were highly resistant to both antibiotics and heavy metals. PMID:26623279

  15. Phenol degradation and heavy metal tolerance of Antarctic yeasts.

    PubMed

    Fernández, Pablo Marcelo; Martorell, María Martha; Blaser, Mariana G; Ruberto, Lucas Adolfo Mauro; de Figueroa, Lucía Inés Castellanos; Mac Cormack, Walter Patricio

    2017-03-07

    In cold environments, biodegradation of organic pollutants and heavy metal bio-conversion requires the activity of cold-adapted or cold-tolerant microorganisms. In this work, the ability to utilize phenol, methanol and n-hexadecane as C source, the tolerance to different heavy metals and growth from 5 to 30 °C were evaluated in cold-adapted yeasts isolated from Antarctica. Fifty-nine percent of the yeasts were classified as psychrotolerant as they could grow in all the range of temperature tested, while the other 41% were classified as psychrophilic as they only grew below 25 °C. In the assimilation tests, 32, 78, and 13% of the yeasts could utilize phenol, n-hexadecane, and methanol as C source, respectively, but only 6% could assimilate the three C sources evaluated. In relation to heavy metals ions, 55, 68, and 80% were tolerant to 1 mM of Cr(VI), Cd(II), and Cu(II), respectively. Approximately a half of the isolates tolerated all of them. Most of the selected yeasts belong to genera previously reported as common for Antarctic soils, but several other genera were also isolated, which contribute to the knowledge of this cold environment mycodiversity. The tolerance to heavy metals of the phenol-degrading cold-adapted yeasts illustrated that the strains could be valuable as inoculant for cold wastewater treatment in extremely cold environments.

  16. Heavy metal resistant strains are widespread along Streptomyces phylogeny.

    PubMed

    Alvarez, Analía; Catalano, Santiago A; Amoroso, María Julia

    2013-03-01

    The genus Streptomyces comprises a group of bacteria species with high economic importance. Several of these species are employed at industrial scale for the production of useful compounds. Other characteristic found in different strains within this genus is their capability to tolerate high level of substances toxic for humans, heavy metals among them. Although several studies have been conducted in different species of the genus in order to disentangle the mechanisms associated to heavy metal resistance, little is known about how they have evolved along Streptomyces phylogeny. In this study we built the largest Streptomyces phylogeny generated up to date comprising six genes, 113 species of Streptomyces and 27 outgroups. The parsimony-based phylogenetic analysis indicated that (i) Streptomyces is monophyletic and (ii) it appears as sister clade of a group formed by Kitasatospora and Streptacidiphilus species, both genera also monophyletic. Streptomyces strains resistant to heavy metals are not confined to a single lineage but widespread along Streptomyces phylogeny. Our result in combination with genomic, physiological and biochemical data suggest that the resistance to heavy metals originated several times and by different mechanisms in Streptomyces history.

  17. TREATMENT OF HEAVY METALS USING AN ORGANIC SULFATE REDUCING PRB

    EPA Science Inventory

    A mpilot-scale permeable reactive wall consisting of a leaf-rich compost-pea gravel mixture was installed at a site in the Vancouver area, Canada to evaluate its potential use for treatment of a large dissolved heavy metal plume. The compost based permeable reactive wall promote...

  18. Impact of heavy metals and PCBs on marine picoplankton.

    PubMed

    Caroppo, Carmela; Stabili, Loredana; Aresta, Michele; Corinaldesi, Cinzia; Danovaro, Roberto

    2006-12-01

    Synergistic/antagonistic effects of multiple contaminants in marine environments are almost completely unexplored. In the present study, we investigated the effects of heavy metals (Zn and Pb) and PCBs on picoplankton abundance, biomass, cell size distribution, and bacterial C production. Natural picoplankton assemblages were exposed to heavy metals (Zn or Pb), organic contaminants (PCBs, Aroclor 1260), and to a mixture of different contaminants. The results of the present study indicate that Zn addition stimulated heterotrophic growth, whereas Pb has a negative impact on heterotrophic picoplankton, particularly significant in the first 24 h. Heavy metals had no effects on the autotrophic component. The addition of Aroclor 1260 had a significant impact on abundance, biomass, and cell size of autotrophic and heterotrophic picoplankton, and reduced significantly bacterial secondary production. Three weeks after PCB treatment, heterotrophic bacteria displayed a clear resilience, both in terms of abundance and biomass, reaching values comparable to those of the controls, but not in terms of bacterial C production. Our results indicate that picoplankton can be sensitive indicators of impact determined by heavy metals and PCBs in coastal marine systems.

  19. HEAVY METAL CONTAMINATION IN THE TAIMYR PENINSULA, SIBERIAN ARCTIC

    EPA Science Inventory

    The Taimyr Peninsula is directly north of the world's largest heavy metal smelting complex (Norilsk, Russia). Despite this proximity, there has been little research to examine the extent of contamination of the Taimyr Peninsula, primarily because of the remoteness of this area. W...

  20. Optimization of heavy metals total emission, case study: Bor (Serbia)

    NASA Astrophysics Data System (ADS)

    Ilić, Ivana; Bogdanović, Dejan; Živković, Dragana; Milošević, Novica; Todorović, Boban

    2011-07-01

    The town of Bor (Serbia) is one of the most polluted towns in southeastern Europe. The copper smelter which is situated in the centre of the town is the main pollutant, mostly because of its old technology, which leads to environmental pollution caused by higher concentrations of SO 2 and PM 10. These facts show that the word is about a very polluted region in Europe which, apart from harming human health in the region itself, poses a particular danger for wider area of southeastern Europe. Optimization of heavy metal's total emission was undertaken because years of long contamination of the soil with heavy metals of anthropogenic origin created a danger that those heavy metals may enter the food chains of animals and people, which can lead to disastrous consequences. This work represents the usage of Geographic Information System (GIS) for establishing a multifactor assessment model to quantitatively divide polluted zones and for selecting control sites in a linear programming model, combined with PROMETHEE/GAIA method, Screen View modeling system, and linear programming model. The results show that emissions at some control sites need to be cut for about 40%. In order to control the background of heavy metal pollution in Bor, the ecological environment must be improved.

  1. Heavy metal contamination in the Delhi segment of Yamuna basin.

    PubMed

    Sehgal, Meena; Garg, Ankur; Suresh, R; Dagar, Priya

    2012-01-01

    Concentration of heavy metals (Cd, Ni, Zn, Fe, Cu, Mn, Pb, Cr, Hg and As) in the waters of River Yamuna and in the soil of agricultural fields along its course in Delhi are reported from 13 sites, spread through the Delhi stretch of Yamuna, starting from the Wazirabad barrage till the Okhla barrage. Varying concentration of heavy metals was found. Peaks were observed in samples collected downstream of Wazirabad and Okhla barrage, indicating the anthropogenic nature of the contamination. The Wazirabad section of the river receives wastewater from Najafgarh and its supplementary drains, whereas the Shahdara drain releases its pollution load upstream of the Okhla barrage. Average heavy metal concentration at different locations in the river water varied in the order of Fe>Cr>Mn>Zn>Pb>Cu>Ni>Hg>As>Cd. The river basin soil shows higher level of contamination with lesser variation than the water samples among sampling locations, thereby suggesting deposition over long periods of time through the processes of adsorption and absorption. The average heavy metal concentration at different locations in soil varied in the order of Fe>Mn>Zn>Cr>Pb>Ni>Hg>Cu>As>Cd.

  2. Semax prevents learning and memory inhibition by heavy metals.

    PubMed

    Inozemtsev, A N; Bokieva, S B; Karpukhina, O V; Gumargalieva, K Z; Kamensky, A A; Myasoedov, N F

    2016-05-01

    Separate and joint effect of Semax, ascorbic acid, lead diacetate, and ammonium molybdate on avoidance conditioning in rats was studied. It was established that the heavy metal salts inhibited the avoidance response, and the peptide counteracted this inhibition as strongly as ascorbic acid or to a comparable degree. These findings confirm the antioxidant properties of Semax.

  3. Using biopolymers to remove heavy metals from soil and water

    SciTech Connect

    Krishnamurthy, S.; Frederick, R.M.

    1993-11-19

    Chemical remediation of soil may involve the use of harsh chemicals that generate waste streams, which may adversely affect the soil's integrity and ability to support vegetation. This article reviews the potential use of benign reagents, such as biopolymers, to extract heavy metals. The biopolymers discussed are chitin and chitosan, modified starch, cellulose, and polymer-containing algae. (Copyright (c) Remediation 1994.)

  4. HEAVY METAL CONTENT OF AYURVEDIC HERBAL MEDICINE PRODUCTS

    EPA Science Inventory

    Case reports of individuals taking Ayurvedic herbal medicine products (HMPs) suggest that they may contain lead, mercury, and/or arsenic. We analyzed the heavy metal content of Ayurvedic HMPs manufactured in India and Pakistan, available in South Asian grocery stores in the Bost...

  5. Heavy metals pollution in the environment of Kathmandu

    NASA Astrophysics Data System (ADS)

    Shrestha, H. D.

    2003-05-01

    Nepal situated on the lap of mighty Himalayas is now threatened by heavy metals pollution in her atmosphere, land and river system. The indigenious technology of Nepal heavily depends on the use of mercury in gold plating technique. The mercury vapours are released to the atmosphere, when gold-amalgam smeared untesils and idols are strongly heated. Absence of control mechanism to collect mercury vapours has not only polluted atmosphere but it has also caused health hazard to the workers working in the poorly ventilated workshop. The craftsmen and articians have been victim of mercury poisoining. Another heavy metal that has caused atmospheric pollution in Nepal is lead. The lead containing gasoline used in greater amount in vehicles has released more and more lead in the from of exhaust gas into the atmosphere. The atmospheric pollution has been more acute in Nepal due to the use of lead gasoline in used vehicles. Likewise the river system of the urban areas of Nepal is polluted by heavy metals like cadmium, lead salt, ferrous salt, etc. The effulents of battery industries, leather factories, dye factories are directly dumped into the river system of urban areas. This has killed many aquatic animals of rivers. Thus Nepal is facing the problem of heavy metals pollution in her environnent.

  6. Fate of heavy metals and agrochemicals in biochar amended soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heavy metals and agrochemicals are the key targets for biochar-induced mitigation of runoff/groundwater contamination. Inorganic and organic contaminants interact differently with biochars as well as soil components. Mechanistic understandings are needed on sorption, desorption, and competitive sor...

  7. Heavy metals fractionation in Ganga River sediments, India.

    PubMed

    Purushothaman, P; Chakrapani, G J

    2007-09-01

    The Ganga River is the largest river in India which, originates in the Himalayas and along with the Brahmaputra River, another Himalayan river, transports enormous amounts of sediments from the Indian sub-continent to the Bay of Bengal. Because of the important role of river sediments in the biogeochemical cycling of elements, the Ganga river sediments, collected from its origin to the down stretches, were studied in the present context, to assess the heavy metals associated with different chemical fractions of sediments. The fractionation of metals were studied in the sediments using SM&T protocol for the extraction of heavy metals and geo-accumulation index (GAI) (Muller, Schwermetalle in den sedimenten des rheins - Veranderungen seit. Umschau, 79, 778-783, 1979) and Metal Enrichment Factor (MEF) in different fractions were calculated. As with many river systems, residual fractions constitute more than 60% of total metals, except Zn, Cu and Cr. However, the reducible and organic and sulfide components also act as major sinks for metals in the down stretches of the river, which is supported by the high GAI and MEF values. The GAI values range between 4 and 5 and MEF exceed more than 20 for almost all the locations in the downstream locations indicating to the addition of metals through urban and industrial effluents, as compared to the low metals concentrations with less GAI and MEF in the pristine river sediments from the rivers in Himalayas.

  8. Magnetoresistance of heavy and light metal/ferromagnet bilayers

    SciTech Connect

    Avci, Can Onur; Garello, Kevin; Mendil, Johannes; Ghosh, Abhijit; Blasakis, Nicolas; Gabureac, Mihai; Trassin, Morgan; Fiebig, Manfred; Gambardella, Pietro

    2015-11-09

    We studied the magnetoresistance of normal metal (NM)/ferromagnet (FM) bilayers in the linear and nonlinear (current-dependent) regimes and compared it with the amplitude of the spin-orbit torques and thermally induced electric fields. Our experiments reveal that the magnetoresistance of the heavy NM/Co bilayers (NM = Ta, W, and Pt) is phenomenologically similar to the spin Hall magnetoresistance (SMR) of YIG/Pt, but has a much larger anisotropy of the order of 0.5%, which increases with the atomic number of the NM. This SMR-like behavior is absent in light NM/Co bilayers (NM = Ti and Cu), which present the standard anisotropic magnetoresistance expected from polycrystalline FM layers. In the Ta, W, and Pt/Co bilayers, we find an additional magnetoresistance directly proportional to the current and to the transverse component of the magnetization. This so-called unidirectional SMR, of the order of 0.005%, is largest in W and correlates with the amplitude of the antidamping spin-orbit torque. The unidirectional SMR is below the accuracy of our measurements in YIG/Pt.

  9. Assessing phytotoxicity of heavy metals in remediated soil.

    PubMed

    Branzini, A; Zubillaga, M S

    2010-01-01

    Copper (Cu), zinc (Zn) and chromium (Cr) are pollutants that usually are accumulated in soils. Their toxicity can be decreased by applying amendments. We proposed to evaluate changes in Cu, Zn, and Cr availability, due to the application of amendments, through chemical analysis and phytotoxicity tests. The phytotoxicity test was carried out using species belonging to Sesbania genus; plant parameters were measured 48, 72, 96, and 168 hours after the start of incubation. The treatments included enriched soil, in addition to biosolid compost and triple superphosphate. Cu and Zn amounts were higher in treatments without amendments, indicating immobilization on the part of these. The amounts of Cr tended to decrease with amendments application. The amendments increased pH values and decreased EC; however, this had no impact on the results. No relationship was found among pH, EC, and plant parameters. Different behaviors were observed. S. virgata showed germination seed delay. In addition, while in S. virgata the IG increased during the assay, in S. punicea it diminished. The application of compost, fertilizer or both combined could be of interest for contaminated soils remediation. The use of chemical analysis and phytotoxicity tests allowed to estimate heavy metal availability and the effect on both Sesbania species.

  10. Heavy metal bioaccumulation in two passerines with differing migration strategies.

    PubMed

    Cooper, Zoë; Bringolf, Robert; Cooper, Robert; Loftis, Kathy; Bryan, Albert L; Martin, James A

    2017-03-11

    Various anthropogenic activities have resulted in concentration of heavy metals and contamination of surrounding environments. Historically, heavy metal contamination at the Savannah River Site (SRS) in South Carolina has resulted from accidental releases of stored waste generated from nuclear weapon production in the early 1950s. Songbirds inhabiting and using resources from these areas have the potential to bioaccumulate metals but there is limited information on metal concentration levels in areas suspected of contamination as well as uncontaminated sites. Nonlethal tissues samples from avian blood and feathers provide a reliable approach for determining the bioavailability of these pollutants (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn). The objectives of this study were to survey terrestrial heavy metal contamination at the SRS on potentially bioavailable contaminated (PBC) sites through blood and feather samples from resident Northern Cardinals (Cardinalis cardinalis) and migratory Great Crested Flycatchers (Myiarchus crinitus) and quantify sex-specific concentrations within species. Samples were collected in April to June of 2016. Cardinals had lower blood concentrations of Hg (β=-0.17, 85% CL=-0.26, -0.09) and Se (β=-0.33, 85% CL=-0.50, -0.16) than flycatchers. Cr feather concentrations were less in cardinals (β=-1.46, 85% CL=-2.44, -0.49) and all feathers of both species from reference locations had significantly less Zn (β=-67.92, 85% CL=-128.71, -7.14). Results indicate flycatchers were exposed to differing heavy metal levels during feather formation on their wintering grounds as compared to their recent exposure (through bloods samples) on their breeding grounds. Sex of individuals did not have a significant impact on bioaccumulation in either species. Overall, metal concentration levels in both species indicate minimal risk for acute toxicity; however, there is limited research on wild passerine populations with similar concentration levels. Therefore

  11. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals.

    PubMed

    Wu, Qihang; Leung, Jonathan Y S; Geng, Xinhua; Chen, Shejun; Huang, Xuexia; Li, Haiyan; Huang, Zhuying; Zhu, Libin; Chen, Jiahao; Lu, Yayin

    2015-02-15

    Illegal e-waste recycling activity has caused heavy metal pollution in many developing countries, including China. In recent years, the Chinese government has strengthened enforcement to impede such activity; however, the heavy metals remaining in the abandoned e-waste recycling site can still pose ecological risk. The present study aimed to investigate the concentrations of heavy metals in soil and water in the vicinity of an abandoned e-waste recycling site in Longtang, South China. Results showed that the surface soil of the former burning and acid-leaching sites was still heavily contaminated with Cd (>0.39 mg kg(-1)) and Cu (>1981 mg kg(-1)), which exceeded their respective guideline levels. The concentration of heavy metals generally decreased with depth in both burning site and paddy field, which is related to the elevated pH and reduced TOM along the depth gradient. The pond water was seriously acidified and contaminated with heavy metals, while the well water was slightly contaminated since heavy metals were mostly retained in the surface soil. The use of pond water for irrigation resulted in considerable heavy metal contamination in the paddy soil. Compared with previous studies, the reduced heavy metal concentrations in the surface soil imply that heavy metals were transported to the other areas, such as pond. Therefore, immediate remediation of the contaminated soil and water is necessary to prevent dissemination of heavy metals and potential ecological disaster.

  12. Anaerobes into heavy metal: Dissimilatory metal reduction in anoxic environments

    USGS Publications Warehouse

    Lovley, D.R.

    1993-01-01

    Within the last decade, a novel form of microbial metabolism of major environmental significance has been elucidated. In this process, known as dissimilatory metal reduction, specialized microorganisms, living in anoxic aquatic sediments and ground water, oxidize organic compounds to carbon dioxide with metals serving as the oxidant. Recent studies have demonstrated that this metabolism explains a number of important geochemical phenomena in ancient and modern sedimentary environments, affecting not only the cycling of metals but also the fate of organic matter. Furthermore, this metabolism may have practical application in remediation of environments contaminated with toxic metals and/or organics.

  13. Utilizing heavy metal-laden water hyacinth biomass in vermicomposting.

    PubMed

    Tereshchenko, Natalya N; Akimova, Elena E; Pisarchuk, Anna D; Yunusova, Tatyana V; Minaeva, Oksana M

    2015-05-01

    We studied the efficiency of water treatment by water hyacinth (Eichhornia crassipes) from heavy metals (Zn, Cd, Pb, Cu), as well as a possibility of using water hyacinth biomass obtained during treatment for vermicomposting by Eisenia fetida and the vermicompost quality in a model experiment. The results showed that the concentration of heavy metals in the trials with water hyacinth decreased within 35 days. We introduced water hyacinth biomass to the organic substrate for vermicomposting, which promoted a significant weight gain of earthworms and growth in their number, as well as a 1.5- to 3-fold increase in coprolite production. In the trial with 40 % of Eichhornia biomass in the mixture, we observed a 26-fold increase in the number and a 16-fold weight gain of big mature individuals with clitellum; an increase in the number of small individuals 40 times and in the number of cocoons 140 times, as compared to the initial substrate. The utilization of water hyacinth biomass containing heavy metals in the mixture led to a 10-fold increase in the number of adult individuals and cocoons, which was higher than in control. We found out that adding 10 % of Eichhornia biomass to the initial mixture affected slightly the number of microorganisms and their species diversity in the vermicompost. Adding Eichhornia biomass with heavy metals reduced the total number of microorganisms and sharply diminished their species diversity. In all trials, adding water hyacinth in the mixture for vermicomposting had a positive impact on wheat biometric parameters in a 14-day laboratory experiment, even in the trial with heavy metals.

  14. Speciation studies and toxicity assessment of complex heavy metal mixtures

    SciTech Connect

    Bundy, K.J.; Mowat, F.

    1996-12-31

    The Microtox{trademark} bioassay and polarographic techniques were used together to identify specific oxidation states and toxicity of metals. The bioassay is based on light reduction by bioluminescent bacteria upon exposure to toxicants. In polarography, a mercury drop substrate`s potential is changed, and the substance of interest is electrochemically reduced. Reduction current is proportional to its concentration. The toxicity of solutions containing heavy metal pollutants was measured. Mercury was found to be most toxic with an acute one minute EC{sub 50} of 0.0162 mg/l. Cu(I) was least toxic. Speciation effects were observed; e.g., Cr(III) was less toxic than Cr(VI); Cu(II) was more toxic than Cu(I). Polarography (which is usually not used for multielement analysis) has been extended to Pb(II) and Cd(II) solution mixtures. Various mixtures were tested to determine if toxicity was predictable from that of individual components, or whether synergistic/antagonistic reactions occur. The resultant EC{sub 50} for a 50-50 As(V)/Cd(II) mixture was consistent with additive behavior; Pb(II)/Cd(II) and Pb(II)/Cu(I) mixtures exhibited antagonistic and synergistic interactions, respectively. Sediments soaked with Pb(II) and Cr(III) have been studied to determine the toxicity. For competitive sorption, the EC{sub 50} value is twice that for Cr(III) alone, presumably because preferential Cr(III) adsorption occurs, blocking Pb(II) adsorption to kaolin.

  15. Disposable cuvette test for enzymatic determination of heavy metals

    NASA Astrophysics Data System (ADS)

    Wolfbeis, Otto S.; Preininger, Claudia

    1995-10-01

    We report on an optical cuvette test for total heavy metals based on the inhibition of the enzyme urease by metals ions including silver(I), mercury(II), copper(II), nickel(II), cobalt(II), and cadmium(II). The enzymatic action is monitored using an optical ammonia transducer deposited on the wall of a disposable cuvette. This results in a rapid and inexpensive single-shot device for heavy metal sensing. A solution of urease and buffer is placed in the cuvette with the ammonium sensor membrane fixed on one of its walls. Enzymatic action starts after addition of a defined quantity of urea. This is indicated by the increase in the absorption of the ammonia sensor membrane whose color changes from yellow to blue. The slop of the increase in signal is the information for the un-inhibited reaction. After several minutes,the sample (containing the heavy metal) is added to the cuvette. Heavy metal ions inhibit the enzyme (by binding to the sulfhydryl groups) and cause a decrease in the slope. The ratio of slopes of un-inhibited and inhibited reactions is a direct parameter for detecting and calculating total heavy metals. The optimum pH was a trade-off between optimum enzyme activity (pH 7 at 25 degree(s)C) and the relative signal change of the ammonia-sensor (highest at pH 8). pH 7.5 was found to be optimal. The system was calibrated at optimized activities of urease (1.5 (mu) ) and an optimized urea concentration (0.5 mmol). Heavy metals inhibit in the following order: Ag(I) > Hg(II) > Cu(II) >> Ni(II) > Co(II) > Cd(II) > Fe(III) > Pb(II), Zn(II). The following concentrations that cause 50% inhibition were found: Ag(I) (0.1 ppm), Hg(II) (0.5 ppm), Cu(II) (0.5 ppm), Ni(II) (7 ppm), Co(II) (30 ppm), Cd(II) (95 ppm), Fe(III) (50 ppm), Zn(II) (85 ppm) and Pb(II) (210 ppm). We also studied the inhibitory effect of combinations of metal ions, the influence of ionic strength, and the effect of incubation time.

  16. A sensitive rapid on-site immunoassay for heavy metal contamination

    SciTech Connect

    Blake, R.; Blake, D.; Flowers, G.

    1996-05-02

    This project concerns the development of immunoassays for heavy metals that will permit the rapid on-site analysis of specific heavy metals, including lead and chromium in water and soil samples. 2 refs.

  17. PROCESS FOR SEPARATION OF HEAVY METALS

    DOEpatents

    Duffield, R.B.

    1958-04-29

    A method is described for separating plutonium from aqueous acidic solutions of neutron-irradiated uranium and the impurities associated therewith. The separation is effected by adding, to the solution containing hexavalent uranium and plutonium, acetate ions and the ions of an alkali metal and those of a divalent metal and thus forming a complex plutonium acetate salt which is carried by the corresponding complex of uranium, such as sodium magnesium uranyl acetate. The plutonium may be separated from the precipitated salt by taking the same back into solution, reducing the plutonium to a lower valent state on reprecipitating the sodium magnesium uranyl salt, removing the latter, and then carrying the plutonium from ihe solution by means of lanthanum fluoride.

  18. Two-stage anaerobic digestion enables heavy metal removal.

    PubMed

    Selling, Robert; Håkansson, Torbjörn; Björnsson, Lovisa

    2008-01-01

    To fully exploit the environmental benefits of the biogas process, the digestate should be recycled as biofertiliser to agriculture. This practice can however be jeopardized by the presence of unwanted compounds such as heavy metals in the digestate. By using two-stage digestion, where the first stage includes hydrolysis/acidification and liquefaction of the substrate, heavy metals can be transferred to the leachate. From the leachate, metals can then be removed by adsorption. In this study, up to 70% of the Ni, 40% of the Zn and 25% of the Cd present in maize was removed when the leachate from hydrolysis was circulated over a macroporous polyacrylamide column for 6 days. For Cu and Pb, the mobilization in the hydrolytic stage was lower which resulted in a low removal. A more efficient two-stage process with improved substrate hydrolysis would give lower pH and/or longer periods with low pH in the hydrolytic stage. This is likely to increase metal mobilisation, and would open up for an excellent opportunity of heavy metal removal.

  19. Bismuth nanoparticles integration into heavy metal electrochemical stripping sensor.

    PubMed

    Cadevall, Miquel; Ros, Josep; Merkoçi, Arben

    2015-08-01

    Between their many applications bismuth nanoparticles (BiNPs) are showing interest as pre-concentrators in heavy metals detection while being applied as working electrode modifiers used in electrochemical stripping analysis. From the different reported methods to synthesize BiNPs we are focused on the typical polyol method, largely used in these types of metallic and semi-metallic nanoparticles. This study presents the strategy for an easy control of the shape and size of BiNPs including nanocubes, nanosferes and triangular nanostructures. To improve the BiNP size and shape, different reducing agents (ethylene glycol or sodium hypophosphite) and stabilizers (polyvinyl pyrrolidone, PVP, in different amounts) have been studied. The efficiency of BiNPs for heavy metals analysis in terms of detection sensitivity while being used as modifiers of screen-printed carbon electrodes including the applicability of the developed device in real sea water samples is shown. A parallel study between the obtained nanoparticles and their performance in heavy metal sensing has been described in this communication.

  20. Plasma polymer-functionalized silica particles for heavy metals removal.

    PubMed

    Akhavan, Behnam; Jarvis, Karyn; Majewski, Peter

    2015-02-25

    Highly negatively charged particles were fabricated via an innovative plasma-assisted approach for the removal of heavy metal ions. Thiophene plasma polymerization was used to deposit sulfur-rich films onto silica particles followed by the introduction of oxidized sulfur functionalities, such as sulfonate and sulfonic acid, via water-plasma treatments. Surface chemistry analyses were conducted by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. Electrokinetic measurements quantified the zeta potentials and isoelectric points (IEPs) of modified particles and indicated significant decreases of zeta potentials and IEPs upon plasma modification of particles. Plasma polymerized thiophene-coated particles treated with water plasma for 10 min exhibited an IEP of less than 3.5. The effectiveness of developed surfaces in the adsorption of heavy metal ions was demonstrated through copper (Cu) and zinc (Zn) removal experiments. The removal of metal ions was examined through changing initial pH of solution, removal time, and mass of particles. Increasing the water plasma treatment time to 20 min significantly increased the metal removal efficiency (MRE) of modified particles, whereas further increasing the plasma treatment time reduced the MRE due to the influence of an ablation mechanism. The developed particulate surfaces were capable of removing more than 96.7% of both Cu and Zn ions in 1 h. The combination of plasma polymerization and oxidative plasma treatment is an effective method for the fabrication of new adsorbents for the removal of heavy metals.

  1. Heavy metal distribution in an urban wetland impacted by combined sewer overflow.

    PubMed

    Rouff, Ashaki A; Eaton, Timothy T; Lanzirotti, Antonio

    2013-11-01

    The heavy metal content and distribution in an urban wetland affected by combined sewer overflow (CSO) discharge during dry conditions was evaluated. Metals identified in the CSO discharge were also measured upstream and downstream of the CSO. Metals were detected in the acid-extractable fraction of the wetland sediments and the roots of Phragmites australis plants. Sediment from the banks of a pool created by the CSO, and from a clay bed upstream were found to be moderately contaminated with Cu, Pb and Zn. Micro X-ray fluorescence (μ-XRF) of Phragmites roots from the CSO banks showed a correlation in the spatial distribution of Fe and Mn, attributed to the formation of mineral plaques on the root surface. Micro X-ray absorption near edge spectroscopy (μ-XANES) revealed that Cu and Zn were complexed with the organic ligands phytate and cysteine. The findings indicated that continuous discharge from the CSO is a source of heavy metals to the wetland. Metals bound to sediments are susceptible to remobilization and subsequent transport, whereas those associated with Phragmites roots may be more effectively sequestered. These observations provide insight into the behavior of heavy metals in urban areas where CSOs discharge into wetlands.

  2. Bioleaching of heavy metals from sewage sludge: a review.

    PubMed

    Pathak, Ashish; Dastidar, M G; Sreekrishnan, T R

    2009-06-01

    During the treatment of sewage, a huge volume of sludge is generated, which is disposed of on land as soil fertilizer/conditioner due to the presence of nitrogen, phosphorus, potassium and other nutrients. However, the presence of toxic heavy metals and other toxic compounds in the sludge restricts its use as a fertilizer. Over the years, bioleaching has been developed as an environmentally friendly and cost-effective technology for the removal of heavy metals from the sludge. The present paper gives an overview of the various bioleaching studies carried out in different modes of operation. The various important aspects such as pathogen destruction, odor reduction and metal recovery from acidic leachate also have been discussed. Further, a detailed discussion was made on the various technical problems associated with the bioleaching process, which need to be addressed while developing the process on a larger scale.

  3. [Heavy metals in water of the Skikda Bay].

    PubMed

    Kehal, M; Mennour, A; Reinert, L; Fuzellier, H

    2004-09-01

    The region of Skikda is one of the most important industrial poles of Algeria. The aim of the study is a qualitative and quantitative evaluation of the pollution by heavy metals of the marine water of the bay. The pollutants investigated are lead, cadmium and mercury because of their toxicity. The study is concerned mainly with the spatiotemporal evolution of the pollution on the extent of the bay. Concentrations of heavy metals metals vary from 4 microg l(-1) to 55 microg l(-1) for lead, 1 microg l(-1) to 17 microg l(-1) for cadmium and 0,1 to 1,1 microg l(-1) for mercury, which indicates a beginning of pollution of the site. Only small variation of the contents have been noted in a second investigation carried out one decade after the first one.

  4. [Oxidative stress in plants exposed to heavy metals].

    PubMed

    Rucińiska-Sobkowiak, Renata

    2010-01-01

    Oxidative stress has been involved in the toxicity of heavy metals in different plant species. Exposure to metal ions can intensify the production of reactive oxygen species (ROS) such as: superoxide radicals, hydroxyl radicals or hydrogen peroxide. These species can react with cellular components (lipids, proteins, nucleic acids) and cause lipid peroxidation, membrane damage and inactivation of enzymes thus affect many physiological processes as well as cell viability. Plants have evolved a complex array of mechanisms to maintain low ROS level and avoid the detrimental effects of excessively high ROS concentrations. This antioxidant network includes numerous soluble (ascorbate, glutathione) and membrane (tocopherol) compounds as well as enzymes involved in ROS scavenging (superoxide dismutase, catalase, ascorbate peroxidase). ROS must be efficiently detoxified to ameliorate the harmful effects of heavy metals in the cells. However they cannot be eliminated completely because plants use ROS as second messengers in signal transduction cascades in diverse physiological processes.

  5. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops*

    PubMed Central

    Islam, Ejaz ul; Yang, Xiao-e; He, Zhen-li; Mahmood, Qaisar

    2007-01-01

    Heavy metals, such as cadmium, copper, lead, chromium and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. Their presence in the atmosphere, soil and water, even in traces can cause serious problems to all organisms, and heavy metal bioaccumulation in the food chain especially can be highly dangerous to human health. Heavy metals enter the human body mainly through two routes namely: inhalation and ingestion, ingestion being the main route of exposure to these elements in human population. Heavy metals intake by human populations through food chain has been reported in many countries. Soil threshold for heavy metal toxicity is an important factor affecting soil environmental capacity of heavy metal and determines heavy metal cumulative loading limits. For soil-plant system, heavy metal toxicity threshold is the highest permissible content in the soil (total or bioavailable concentration) that does not pose any phytotoxic effects or heavy metals in the edible parts of the crops does not exceed food hygiene standards. Factors affecting the thresholds of dietary toxicity of heavy metal in soil-crop system include: soil type which includes soil pH, organic matter content, clay mineral and other soil chemical and biochemical properties; and crop species or cultivars regulated by genetic basis for heavy metal transport and accumulation in plants. In addition, the interactions of soil-plant root-microbes play important roles in regulating heavy metal movement from soil to the edible parts of crops. Agronomic practices such as fertilizer and water managements as well as crop rotation system can affect bioavailability and crop accumulation of heavy metals, thus influencing the thresholds for assessing dietary toxicity of heavy metals in the food chain. This paper reviews the phytotoxic effects and bioaccumulation of heavy metals in vegetables and food crops and assesses soil heavy metal thresholds for potential dietary

  6. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops.

    PubMed

    Islam, Ejaz ul; Yang, Xiao-e; He, Zhen-li; Mahmood, Qaisar

    2007-01-01

    Heavy metals, such as cadmium, copper, lead, chromium and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. Their presence in the atmosphere, soil and water, even in traces can cause serious problems to all organisms, and heavy metal bioaccumulation in the food chain especially can be highly dangerous to human health. Heavy metals enter the human body mainly through two routes namely: inhalation and ingestion, ingestion being the main route of exposure to these elements in human population. Heavy metals intake by human populations through food chain has been reported in many countries. Soil threshold for heavy metal toxicity is an important factor affecting soil environmental capacity of heavy metal and determines heavy metal cumulative loading limits. For soil-plant system, heavy metal toxicity threshold is the highest permissible content in the soil (total or bioavailable concentration) that does not pose any phytotoxic effects or heavy metals in the edible parts of the crops does not exceed food hygiene standards. Factors affecting the thresholds of dietary toxicity of heavy metal in soil-crop system include: soil type which includes soil pH, organic matter content, clay mineral and other soil chemical and biochemical properties; and crop species or cultivars regulated by genetic basis for heavy metal transport and accumulation in plants. In addition, the interactions of soil-plant root-microbes play important roles in regulating heavy metal movement from soil to the edible parts of crops. Agronomic practices such as fertilizer and water managements as well as crop rotation system can affect bioavailability and crop accumulation of heavy metals, thus influencing the thresholds for assessing dietary toxicity of heavy metals in the food chain. This paper reviews the phytotoxic effects and bioaccumulation of heavy metals in vegetables and food crops and assesses soil heavy metal thresholds for potential dietary

  7. Phytoremediation potential of Lemna minor L. for heavy metals.

    PubMed

    Bokhari, Syeda Huma; Ahmad, Iftikhar; Mahmood-Ul-Hassan, Muhammad; Mohammad, Ashiq

    2016-01-01

    Phytoremediation potential of L. minor for cadmium (Cd), copper (Cu), lead (Pb), and nickel (Ni) from two different types of effluent in raw form was evaluated in a glass house experiment using hydroponic studies for a period of 31 days. Heavy metals concentration in water and plant sample was analyzed at 3, 10, 17, 24, and 31 day. Removal efficiency, metal uptake and bio-concentration factor were also calculated. Effluents were initially analyzed for physical, chemical and microbiological parameters and results indicated that municipal effluent (ME) was highly contaminated in terms of nutrient and organic load than sewage mixed industrial effluent (SMIE). Results confirmed the accumulation of heavy metals within plant and subsequent decrease in the effluents. Removal efficiency was greater than 80% for all metals and maximum removal was observed for nickel (99%) from SMIE. Accumulation and uptake of lead in dry biomass was significantly higher than other metals. Bio-concentration factors were less than 1000 and maximum BCFs were found for copper (558) and lead (523.1) indicated that plant is a moderate accumulator of both metals. Overall, L. minor showed better performance from SMIE and was more effective in extracting lead than other metals.

  8. Heavy Metal Stress and Some Mechanisms of Plant Defense Response

    PubMed Central

    Emamverdian, Abolghassem; Ding, Yulong; Mokhberdoran, Farzad; Xie, Yinfeng

    2015-01-01

    Unprecedented bioaccumulation and biomagnification of heavy metals (HMs) in the environment have become a dilemma for all living organisms including plants. HMs at toxic levels have the capability to interact with several vital cellular biomolecules such as nuclear proteins and DNA, leading to excessive augmentation of reactive oxygen species (ROS). This would inflict serious morphological, metabolic, and physiological anomalies in plants ranging from chlorosis of shoot to lipid peroxidation and protein degradation. In response, plants are equipped with a repertoire of mechanisms to counteract heavy metal (HM) toxicity. The key elements of these are chelating metals by forming phytochelatins (PCs) or metallothioneins (MTs) metal complex at the intra- and intercellular level, which is followed by the removal of HM ions from sensitive sites or vacuolar sequestration of ligand-metal complex. Nonenzymatically synthesized compounds such as proline (Pro) are able to strengthen metal-detoxification capacity of intracellular antioxidant enzymes. Another important additive component of plant defense system is symbiotic association with arbuscular mycorrhizal (AM) fungi. AM can effectively immobilize HMs and reduce their uptake by host plants via binding metal ions to hyphal cell wall and excreting several extracellular biomolecules. Additionally, AM fungi can enhance activities of antioxidant defense machinery of plants. PMID:25688377

  9. Toxicity, mechanism and health effects of some heavy metals

    PubMed Central

    Jaishankar, Monisha; Tseten, Tenzin; Anbalagan, Naresh; Beeregowda, Krishnamurthy N.

    2014-01-01

    Heavy metal toxicity has proven to be a major threat and there are several health risks associated with it. The toxic effects of these metals, even though they do not have any biological role, remain present in some or the other form harmful for the human body and its proper functioning. They sometimes act as a pseudo element of the body while at certain times they may even interfere with metabolic processes. Few metals, such as aluminium, can be removed through elimination activities, while some metals get accumulated in the body and food chain, exhibiting a chronic nature. Various public health measures have been undertaken to control, prevent and treat metal toxicity occurring at various levels, such as occupational exposure, accidents and environmental factors. Metal toxicity depends upon the absorbed dose, the route of exposure and duration of exposure, i.e. acute or chronic. This can lead to various disorders and can also result in excessive damage due to oxidative stress induced by free radical formation. This review gives details about some heavy metals and their toxicity mechanisms, along with their health effects. PMID:26109881

  10. Toxicity, mechanism and health effects of some heavy metals.

    PubMed

    Jaishankar, Monisha; Tseten, Tenzin; Anbalagan, Naresh; Mathew, Blessy B; Beeregowda, Krishnamurthy N

    2014-06-01

    Heavy metal toxicity has proven to be a major threat and there are several health risks associated with it. The toxic effects of these metals, even though they do not have any biological role, remain present in some or the other form harmful for the human body and its proper functioning. They sometimes act as a pseudo element of the body while at certain times they may even interfere with metabolic processes. Few metals, such as aluminium, can be removed through elimination activities, while some metals get accumulated in the body and food chain, exhibiting a chronic nature. Various public health measures have been undertaken to control, prevent and treat metal toxicity occurring at various levels, such as occupational exposure, accidents and environmental factors. Metal toxicity depends upon the absorbed dose, the route of exposure and duration of exposure, i.e. acute or chronic. This can lead to various disorders and can also result in excessive damage due to oxidative stress induced by free radical formation. This review gives details about some heavy metals and their toxicity mechanisms, along with their health effects.

  11. Heavy metal stress and some mechanisms of plant defense response.

    PubMed

    Emamverdian, Abolghassem; Ding, Yulong; Mokhberdoran, Farzad; Xie, Yinfeng

    2015-01-01

    Unprecedented bioaccumulation and biomagnification of heavy metals (HMs) in the environment have become a dilemma for all living organisms including plants. HMs at toxic levels have the capability to interact with several vital cellular biomolecules such as nuclear proteins and DNA, leading to excessive augmentation of reactive oxygen species (ROS). This would inflict serious morphological, metabolic, and physiological anomalies in plants ranging from chlorosis of shoot to lipid peroxidation and protein degradation. In response, plants are equipped with a repertoire of mechanisms to counteract heavy metal (HM) toxicity. The key elements of these are chelating metals by forming phytochelatins (PCs) or metallothioneins (MTs) metal complex at the intra- and intercellular level, which is followed by the removal of HM ions from sensitive sites or vacuolar sequestration of ligand-metal complex. Nonenzymatically synthesized compounds such as proline (Pro) are able to strengthen metal-detoxification capacity of intracellular antioxidant enzymes. Another important additive component of plant defense system is symbiotic association with arbuscular mycorrhizal (AM) fungi. AM can effectively immobilize HMs and reduce their uptake by host plants via binding metal ions to hyphal cell wall and excreting several extracellular biomolecules. Additionally, AM fungi can enhance activities of antioxidant defense machinery of plants.

  12. Heavy metal speciation and toxicity characteristics of tannery sludge

    NASA Astrophysics Data System (ADS)

    Juel, Md. Ariful Islam; Chowdhury, Zia Uddin Md.; Ahmed, Tanvir

    2016-07-01

    Heavy metals present in tannery sludge can get mobilized in the environment in various forms and can be a cause for concern for the natural ecosystem and human health. The speciation of metals in sludge provides valuable information regarding their toxicity in the environment and determines their suitability for land application or disposal in landfills. Concentrations of seven heavy metals (Cr, Pb, Cd, Ni, Zn, As and Cu) in tannery sludge were determined to evaluate their toxicity levels. Metal contents ranged over the following intervals: As: 1.52-2.07 mg/kg; Pb: 57.5-67 mg/kg; Cr: 15339-26501 mg/kg; Cu: 261.3-579.5 mg/kg; Zn: 210.2-329.1 mg/kg and Ni: 137.5-141.3 mg/kg (dry weight basis). The concentrations of all heavy metals in the sludge samples were lower compared to EPA guidelines except chromium which was found to be several orders of magnitude higher than the guideline value. Toxicity Characteristics Leaching Procedure (TCLP) test indicated that the leaching potential of chromium was higher compared to the other heavy metals and exceeded the EPA land disposal restriction limits. To quantitatively assess the environmental burden of the chromium associated with tannery sludge, the IMPACT 2002+ methodology was adopted under the SimaPro software environment. Considering the USEPA limit for chromium as the baseline scenario, it was found that chromium in the tannery sludge had 6.41 times higher impact than the baseline in the categories of aquatic ecotoxicity, terrestrial ecotoxicity and non-carcinogens. Chromium has the highest contribution to toxicity in the category of aquatic ecotoxicity while copper is the major contributor to the category of terrestrial ecotoxicity in the tannery sludge.

  13. Modification of porous starch for the adsorption of heavy metal ions from aqueous solution.

    PubMed

    Ma, Xiaofei; Liu, Xueyuan; Anderson, Debbie P; Chang, Peter R

    2015-08-15

    Porous starch xanthate (PSX) and porous starch citrate (PSC) were prepared in anticipation of the attached xanthate and carboxylate groups respectively forming chelation and electrostatic interactions with heavy metal ions in the subsequent adsorption process. The lead(II) ion was selected as the model metal and its adsorption by PSX and PSC was characterized. The adsorption capacity was highly dependent on the carbon disulfide/starch and citric acid/starch mole ratios used during preparation. The adsorption behaviors of lead(II) ion on PSXs and PSCs fit both the pseudo-second-order kinetic model and the Langmuir isotherm model. The maximum adsorption capacity from the Langmuir isotherm equation reached 109.1 and 57.6 mg/g for PSX and PSC when preparation conditions were optimized, and the adsorption times were just 20 and 60 min, respectively. PSX and PSC may be used as effective adsorbents for removal of heavy metals from contaminated liquid.

  14. Heavy metal enrichment characteristics in ash of municipal solid waste combustion in CO2/O2 atmosphere.

    PubMed

    Tang, YuTing; Ma, XiaoQian; Yu, QuanHeng; Zhang, Can; Lai, Zhiyi; Zhang, Xiaoshen

    2015-09-01

    This paper investigated the behavior of six heavy metals (Cd, Pb, Cu, Cr, Ni and Zn) in the bottom ashes of recycled polyvinyl chloride pellets (PVC), wood sawdust (WS) and paper mixture (PM), representing the common components of municipal solid waste (MSW), obtained during combustion in CO2/O2 atmosphere in a lab-scale electrically heated tube furnace. Replacement of N2 by CO2 did not obviously change the shape of relative enrichment factor (RE) curves and subsequent order of heavy metals, but increased enrichment of these heavy metals in bottom ashes of WS, PM and PVC. The increment of O2 concentration in CO2/O2 atmosphere further increased RE values. It was only when the temperature was higher than or equal to 700°C that the increment of the combustion temperature reduced the RE values of heavy metals. The effect of temperature on heavy metals evaporation was the most pronounced for the medium volatile metal Pb, and the least for the low volatiles Cr and Ni. The effect of temperature was more pronounced for PVC ash than for WS and PM ashes. This paper contributes to the control of heavy metals during MSW incineration and management of MSW oxy-fuel residues.

  15. Effects of rare earth elements on the distribution of mineral elements and heavy metals in horseradish.

    PubMed

    Wang, Lihong; Huang, Xiaohua; Zhou, Qing

    2008-09-01

    In order to investigate the effects of rare earth elements (REEs) on horseradish, the distribution of the mineral elements and heavy metals in different organs of horseradish have been studied by using inductively coupled plasma-atomic emission spectrometry (ICP-AES). Meanwhile, three variable major parameters, namely the concentration of REEs, the type of REEs, and the growth stage of plant were chosen. The results indicated that the test REEs, Ce(III) and Tb(III), could be accumulated in leaves, stems and roots of horseradish. In addition, we found that the content of mineral elements was increased in horseradish treated with 20mgl(-1) of Ce(III), but not those with the 20mgl(-1) of Tb(III). Moreover, the content of mineral elements in horseradish was decreased with the increasing concentration of REEs (100, 300mgl(-1)). Furthermore, we found that there were the opposite effects on the content of the heavy metals in horseradish treated with REEs. Finally, we found that the effect of REEs on the accumulation of REEs, and the content of mineral elements or heavy metals of horseradish during vigorous growth stage, no matter positive or negative, was more obvious than that of the other growth stages. These results demonstrated that the distribution behaviors of mineral elements and heavy metals in horseradish can be affected by the type and concentration of REEs, and the growth period of plant.

  16. Bacterial sorption of heavy metals. [Bacillus cereus

    SciTech Connect

    Mullen, M.D.; Wolf, D.C. ); Ferris, F.G.; Beveridge, T.J.; Flemming, C.A. ); Bailey, G.W. )

    1989-12-01

    Four bacteria, Bacillus cereus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa, were examined for the ability to remove Ag{sup +}, Cd{sup 2+}, Cu{sup 2+}, and La{sup 3+} from solution by batch equilibration methods. Cd and Cu sorption over the concentration range 0.001 to 1 mM was described by Freundlich isotherms. At 1 mM concentrations of both Cd{sup 2+} and Cu{sup 2+}, P. aeruginosa and B. cereus were the most and least efficient at metal removal, respectively. Freundlich K constants indicated that E. coli was most efficient at Cd{sup 2+} removal and B. subtilis removed the most Cu{sup 2+}. Removal of Ag{sup +} from solution by bacteria was very efficient; an average of 89% of the total Ag{sup +} was removed from the 1 mM solution, while only 12, 29, and 27% of the total Cd{sup 2+}, Cu{sup 2+}, and La{sup 3+}, respectively, were sorbed from 1 mM solutions. Electron microscopy indicated that La{sup 3+} accumulated at the cell surface as needlelike, crystalline precipitates. Silver precipitated as discrete colloidal aggregates at the cell surface and occasionally in the cytoplasm. Neither Cd{sup 2+} nor Cu{sup 2+} provided enough electron scattering to identify the location of sorption. The affinity series for bacterial removal of these metals decreased in the order Ag > La > Cu > Cd. The results indicate that bacterial cells are capable of binding large quantities of different metals.

  17. Stabilization of heavy metals in MSWI fly ash using silica fume

    SciTech Connect

    Li, Xinying; Chen, Quanyuan; Zhou, Yasu; Tyrer, Mark; Yu, Yang

    2014-12-15

    Highlights: • The stabilization of heavy metals in MSWI fly ash was investigated. • The addition of silica fume effectively reduced the leaching of Pb and Cd. • The relation of solid phase transformation and leaching behavior of heavy metals was discussed. - Abstract: The objective of this work was to investigate the feasibility and effectiveness of silica fume on stabilizing heavy metals in municipal solid waste incineration (MSWI) fly ash. In addition to compressive strength measurements, hydrated pastes were characterized by X-ray diffraction (XRD), thermal-analyses (DTA/TG), and MAS NMR ({sup 27}Al and {sup 29}Si) techniques. It was found that silica fume additions could effectively reduce the leaching of toxic heavy metals. At the addition of 20% silica fume, leaching concentrations for Cu, Pb and Zn of the hydrated paste cured for 7 days decreased from 0.32 mg/L to 0.05 mg/L, 40.99 mg/L to 4.40 mg/L, and 6.96 mg/L to 0.21 mg/L compared with the MSWI fly ash. After curing for 135 days, Cd and Pb in the leachates were not detected, while Cu and Zn concentrations decreased to 0.02 mg/L and 0.03 mg/L. The speciation of Pb and Cd by the modified version of the European Community Bureau of Reference (BCR) extractions showed that these metals converted into more stable state in hydrated pastes of MSWI fly ash in the presence of silica fume. Although exchangeable and weak-acid soluble fractions of Cu and Zn increased with hydration time, silica fume addition of 10% can satisfy the requirement of detoxification for heavy metals investigated in terms of the identification standard of hazardous waste of China.

  18. Ecological risk and pollution history of heavy metals in Nansha mangrove, South China.

    PubMed

    Wu, Qihang; Tam, Nora F Y; Leung, Jonathan Y S; Zhou, Xizhen; Fu, Jie; Yao, Bo; Huang, Xuexia; Xia, Lihua

    2014-06-01

    Owing to the Industrial Revolution in the late 1970s, heavy metal pollution has been regarded as a serious threat to mangrove ecosystems in the region of the Pearl River Estuary, potentially affecting human health. The present study attempted to characterize the ecological risk of heavy metals (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in Nansha mangrove, South China, by estimating their concentrations in the surface sediment. In addition, the pollution history of heavy metals was examined by determining the concentrations of heavy metals along the depth gradient. The phytoremediation potential of heavy metals by the dominant plants in Nansha mangrove, namely Sonneratia apetala and Cyperus malaccensis, was also studied. Results found that the surface sediment was severely contaminated with heavy metals, probably due to the discharge of industrial sewage into the Pearl River Estuary. Spatial variation of heavy metals was generally unobvious. The ecological risk of heavy metals was very high, largely due to Cd contamination. All heavy metals, except Mn, decreased with depth, indicating that heavy metal pollution has been deteriorating since 1979. Worse still, the dominant plants in Nansha mangrove had limited capability to remove the heavy metals from sediment. Therefore, we propose that immediate actions, such as regulation of discharge standards of industrial sewage, should be taken by the authorities concerned to mitigate the ecological risk posed by heavy metals.

  19. Beneficial role of bacterial endophytes in heavy metal phytoremediation.

    PubMed

    Ma, Ying; Rajkumar, Mani; Zhang, Chang; Freitas, Helena

    2016-06-01

    Phytoremediation is an emerging technology that uses plants and their associated microbes to clean up pollutants from the soil, water and air. In recent years, phytoremediation assisted by bacterial endophytes has been highly recommended for cleaning up of metal polluted soils since endophytic bacteria can alleviate metal toxicity in plant through their own metal resistance system and facilitate plant growth under metal stress. Endophytic bacteria improve plant growth in metal polluted soils in two different ways: 1) directly by producing plant growth beneficial substances including solubilization/transformation of mineral nutrients (phosphate, nitrogen and potassium), production of phytohormones, siderophores and specific enzymes; and 2) indirectly through controlling plant pathogens or by inducing a systemic resistance of plants against pathogens. Besides, they also alter metal accumulation capacity in plants by excreting metal immobilizing extracellular polymeric substances, as well as metal mobilizing organic acids and biosurfactants. The present work aims to review the progress of recent research on the isolation, identification and diversity of metal resistant endophytic bacteria and illustrate various mechanisms responsible for plant growth promotion and heavy metal detoxification/phytoaccumulation/translocation in plants.

  20. Heavy metals in garden soils along roads in Szeged, Hungary

    NASA Astrophysics Data System (ADS)

    Szolnoki, Zsuzsanna; Farsang, Andrea

    2010-05-01

    The soils of the urban environment, owing to the various anthropogenic activities, can be contaminated by heavy metals. The traffic is well-known for more decades to be main source of heavy metals mostly in cities. The accumulation of these elements can have different effects, either directly endangering the natural soil functions, or indirectly endangering the biosphere by bio-accumulation and inclusion in the food chain. The hobby gardens and the vegetable gardens directly along roads can be potential risky for people since unknown amount of heavy metals can be accumulated into organization of local residents due to consumption of vegetables and fruits grown in their own garden. The aim of this study was to determine the heavy metal content of garden soils directly along roads with heavy traffic in order to assess possible risk for human health. The total content and the mobile content of Cd, Co, Cr, Cu, Ni, Pb and Zn have been determined in samples from garden soils along 5 busy roads of Szeged, South Hungary. Enrichment factor has been calculated with the help of control soil samples far from roads. The soil properties basically influencing on metal mobility have also been examined. Finally, the human health risk of these garden soils has been modelled by determination of health risk quotient (HRQ). As a result of our investigations, it can be claimed that mostly Cu, Zn and to a lesser degree the Ni, Cr and Pb accumulated in garden soils along roads depending on the traffic density. In general, the topsoils (0-10 cm) had higher amount of these metals rather than the subsoils (40-50 cm). Ni of these metals has approached; Cu has exceeded limit value while Pb is under it. Cd is very high in both soils along roads and control ones far from roads. Garden soils along the roads have such basic soil parameters (pH, mechanical soil type, humus content) that prove fairly high metal-binding capacity for these soils. Total risk of usage of these gardens (ingestion of soil

  1. Heavy metals in Ratnapura alluvial gem sediments, Sri Lanka

    NASA Astrophysics Data System (ADS)

    Vithanage, M. S.; Hettiarachchi, J. K.; Rajapaksha, A. U.; Wijesekara, H.; Hewawasam, T.

    2011-12-01

    The valuable gems in Sri Lanka are found from the sedimentary gem deposits in Ratnapura District, which are found as alluvial deposits some are about >50 m deep. Gem bearing gravel layer is taken out from the mine, washed by panning to recover the gem minerals in the heavy mineral fraction, is a common practice in the gem mining area. Gem bearing sediment layer is associated with different heavy minerals in which different trace metals as Co, Cr, Cu, Al, Zr, Pb and As also can be present. During panning, the sediment is washed away and the heavy metals attached to the sediments are released into the environment. Hence we studied the lability and bioavailability of arsenic and other heavy metals from the gem sediments. Sediment samples were collected from 15 small scale gem mines (3 soil layers- top, gem mineral layer and layer below gem bearing gravel layer), air dried and sieved to obtain <63μm fraction. Bioavailable, exchangeable and residual fractions were 0.01M CaCl2, 1M NaOAc, pH 8.2 and microwave digestion using HF, HNO3 and HClO4. Filtered samples were analyzed for As, Co, Zn, Mn, Cu, Ni, Pb and Fe using atomic absorption spectrophotometer (GBC 933AA). Total digestion results in different layers indicated that heavy metals show an increasing pattern with depth. About 4 gem bearing gravel layers were consist of high concentrations of Ni (>150 mg/kg), Cu (>150 mg/kg), Pb (>400 mg/kg), Zn (>600 mg/kg) and Co ions (>100 mg/kg). Arsenite in the gem sediments were low and recorded as <5mg/kg. Total arsenic analysis is under investigation. Highest concentrations for bioavailable and exchangeable (leach to water) metals were Fe>Co>Zn>Mn>Ni>Cu>Pb. Sediments from few gem pits showed considerably high concentrations of metals analyzed. In some places Fe, Ni, Cu, Zn reported high in bioavailable fractions 70, 25, 20, 10 mg/kg respectively. Mobilization of these metals may increase due to changes in the pH and the presence of other ions in the environment. High

  2. Botanical plants could rid soil of heavy metals

    SciTech Connect

    Brennan, M.

    1993-04-20

    A new technology that is now emerging holds promise of revolutionizing the remediation of soils contaminated with heavy metals. Called phytoremediation, it would use green plants to remove the metals. Plants take up the metals in their roots and translocate them to their shoots, which are harvested, burned in a kiln, and the metals recovered and recycled. The challenge is finding or engineering plants that can absorb, translocate, and tolerate heavy metals while producing enough foliage to make the process efficient. All plants take up small amounts of metals, he notes. What he looks for are weird plants that can accumulate them. Such plants exist, he says, giving credence to the feasibility of phytoremediation. Naturally occurring plants with spectacular metal uptake have been found growing on ore outcroppings, he explains. Cunningham scouts waste repositories and mining and industrial sites for metal-accumulating plant species. So far, he has identified two common weeds - hemp dogbane and ragweed - as candidates for remediating lead-contaminated soils. Both plants accumulate lead, he says, but their abilities vary across soils because lead exists in several forms in soil, and not all of its forms are easily absorbed. He finds that lowering the pH and the phosphate and sulfate content of the soil enhances uptake of the metal. The downside is these changes can impair the plant's nutritional environment. So, the chemistry of the soil must be carefully manipulated to boost metal uptake without losing plant biomass, he emphasizes. Cunningham's scheme is being field-tested at Chambers Works, a Due Pont facility in New Jersey. If ragweed proves to be the species of choice for remediating weapons sites and other lead-contaminated sites, he says allergy sufferers needn't worry. Only mutants of the weed that don't pollinate will be grown.

  3. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake.

    PubMed

    Shahid, Muhammad; Dumat, Camille; Khalid, Sana; Schreck, Eva; Xiong, Tiantian; Niazi, Nabeel Khan

    2017-03-05

    Anthropologic activities have transformed global biogeochemical cycling of heavy metals by emitting considerable quantities of these metals into the atmosphere from diverse sources. In spite of substantial and progressive developments in industrial processes and techniques to reduce environmental emissions, atmospheric contamination by toxic heavy metals and associated ecological and health risks are still newsworthy. Atmospheric heavy metals may be absorbed via foliar organs of plants after wet or dry deposition of atmospheric fallouts on plant canopy. Unlike root metal transfer, which has been largely studied, little is known about heavy metal uptake by plant leaves from the atmosphere. To the best of our understanding, significant research gaps exist regarding foliar heavy metal uptake. This is the first review regarding biogeochemical behaviour of heavy metals in atmosphere-plant system. The review summarizes the mechanisms involved in foliar heavy metal uptake, transfer, compartmentation, toxicity and in plant detoxification. We have described the biological and environmental factors that affect foliar uptake of heavy metals and compared the biogeochemical behaviour (uptake, translocation, compartmentation, toxicity and detoxification) of heavy metals for root and foliar uptake. The possible health risks associated with the consumption of heavy metal-laced food are also discussed.

  4. Interaction of heavy metals and pyrene on their fates in soil and tall fescue (Festuca arundinacea).

    PubMed

    Lu, Mang; Zhang, Zhong-Zhi; Wang, Jing-Xiu; Zhang, Min; Xu, Yu-Xin; Wu, Xue-Jiao

    2014-01-21

    90-Day growth chamber experiments were performed to investigate the interactive effect of pyrene and heavy metals (Cu, Cd, and Pb) on the growth of tall fescue and its uptake, accumulation, and dissipation of heavy metals and pyrene. Results show that plant growth and phytomass production were impacted by the interaction of heavy metals and pyrene. They were significantly decreased with heavy metal additions (100-2000 mg/kg), but they were only slightly declined with pyrene spiked up to 100 mg/kg. The addition of a moderate dosage of pyrene (100 mg/kg) lessened heavy metal toxicity to plants, resulting in enhanced plant growth and increased metal accumulation in plant tissues, thus improving heavy metal removal by plants. In contrast, heavy metals always reduced both plant growth and pyrene dissipation in soils. The chemical forms of Cu, Cd, and Pb in plant organs varied with metal species and pyrene addition. The dissipation and mineralization of pyrene tended to decline in both planted soil and unplanted soils with the presence of heavy metals, whereas they were enhanced with planting. The results demonstrate the complex interactive effects of organic pollutants and heavy metals on phytoremediation in soils. It can be concluded that, to a certain extent, tall fescue may be useful for phytoremediation of pyrene-heavy metal-contaminated sites. Further work is needed to enhance methods for phytoremediation of heavy metal-organics co-contaminated soil.

  5. Competitive adsorption of dyes and heavy metals on zeolitic structures.

    PubMed

    Hernández-Montoya, V; Pérez-Cruz, M A; Mendoza-Castillo, D I; Moreno-Virgen, M R; Bonilla-Petriciolet, A

    2013-02-15

    The adsorption of Acid blue 25, basic blue 9, basic violet 3, Pb(2+), Ni(2+), Zn(2+) and Cd(2+) ions has been studied in single and dye-metal binary solutions using two mineral materials: Clinoptilolite (CL) and ER (Erionite). These zeolites were characterized by FT-IR spectroscopy; potentiometric titration and nitrogen adsorption isotherms at 77 K to obtain their textural parameters. Results indicated that ER has an acidic character and a high specific surface (401 m(2) g(-1)) in contrast with the zeolite CL (21 m(2) g(-1)). Surprisingly, the removal of dyes was very similar for the two zeolites and they showed a considerable selectivity by the basic dyes in comparison with the acid dyes. In the case of heavy metals, ER was more effective in the adsorption process showing a selectivity of: Pb(2+) > Ni(2+) > Zn(2+) > Cd(2+). In the multicomponent adsorption experiments an antagonistic effect was observed in the removal of basic dyes and heavy metals. Particularly, the adsorbed amount of basic violet 3 decreased more significantly when the heavy metals are presents in contrast with the basic blue 9.

  6. Diazotrophs-assisted phytoremediation of heavy metals: a novel approach.

    PubMed

    Ullah, Abid; Mushtaq, Hafsa; Ali, Hazrat; Munis, Muhammad Farooq Hussain; Javed, Muhammad Tariq; Chaudhary, Hassan Javed

    2015-02-01

    Heavy metals, which have severe toxic effects on plants, animals, and human health, are serious pollutants of the modern world. Remediation of heavy metal pollution is utmost necessary. Among different approaches used for such remediation, phytoremediation is an emerging technology. Research is in progress to enhance the efficiency of this plant-based technology. In this regard, the role of rhizospheric and symbiotic microorganisms is important. It was assessed by enumeration of data from the current studies that efficiency of phytoremediation can be enhanced by assisting with diazotrophs. These bacteria are very beneficial because they bring metals to more bioavailable form by the processes of methylation, chelation, leaching, and redox reactions and the production of siderophores. Diazotrophs also posses growth-promoting traits including nitrogen fixation, phosphorous solubilization, phytohormones synthesis, siderophore production, and synthesis of ACC-deaminase which may facilitate plant growth and increase plant biomass, in turn facilitating phytoremediation technology. Thus, the aim of this review is to highlight the potential of diazotrophs in assisting phytoremediation of heavy metals in contaminated soils. The novel current assessment of literature suggests the winning combination of diazotroph with phytoremediation technology.

  7. Perspectives of plant-associated microbes in heavy metal phytoremediation.

    PubMed

    Rajkumar, M; Sandhya, S; Prasad, M N V; Freitas, H

    2012-01-01

    "Phytoremediation" know-how to do-how is rapidly expanding and is being commercialized by harnessing the phyto-microbial diversity. This technology employs biodiversity to remove/contain pollutants from the air, soil and water. In recent years, there has been a considerable knowledge explosion in understanding plant-microbes-heavy metals interactions. Novel applications of plant-associated microbes have opened up promising areas of research in the field of phytoremediation technology. Various metabolites (e.g., 1-aminocyclopropane-1-carboxylic acid deaminase, indole-3-acetic acid, siderophores, organic acids, etc.) produced by plant-associated microbes (e.g., plant growth promoting bacteria, mycorrhizae) have been proposed to be involved in many biogeochemical processes operating in the rhizosphere. The salient functions include nutrient acquisition, cell elongation, metal detoxification and alleviation of biotic/abiotic stress in plants. Rhizosphere microbes accelerate metal mobility, or immobilization. Plants and associated microbes release inorganic and organic compounds possessing acidifying, chelating and/or reductive power. These functions are implicated to play an essential role in plant metal uptake. Overall the plant-associated beneficial microbes enhance the efficiency of phytoremediation process directly by altering the metal accumulation in plant tissues and indirectly by promoting the shoot and root biomass production. The present work aims to provide a comprehensive review of some of the promising processes mediated by plant-associated microbes and to illustrate how such processes influence heavy metal uptake through various biogeochemical processes including translocation, transformation, chelation, immobilization, solubilization, precipitation, volatilization and complexation of heavy metals ultimately facilitating phytoremediation.

  8. Heavy metals distribution in sediments of Nador lagoon (Morocco)

    NASA Astrophysics Data System (ADS)

    Bloundi, K.; Duplay, J.

    2003-04-01

    The Nador lagoon is a paralic system, located North-East of Morocco. At the present time this ecosystem undergoes an anthropic stress induced by urban, industrial and agricultural releases, and also by fishery activity which enriches this ecosystem in organic and inorganic wastes. A geochemical study has been undertaken, first to define the areas contaminated by heavy metals (Zn, Cu, Co, Cr and V), and second to caracterize the different mineral phases, which trap these elements. Sediment samples were collected on twenty-eight stations scattered all over the lagoon, and each core (30 cm) was subdivided in two horizons (surface and depth). Mineralogical analyses as well as major and trace elements analyses were performed on surface and deep sediments. The results on major element analyses (Si, Al, Ca, Mg, Na, P) show an enrichment in halite and phosphates in the surface sediments. This highlights on one hand, low water exchange rates between the lagoon and the Mediterranean sea, and on the other hand, an increase in organic releases related to the urban, agricultural and fishery activities. The highest concentrations in inorganic micro-pollutant were recorded N-E of the lagoon and close to Nador city. With reference to the geochemical background, it can be concluded that there is a slight contamination in heavy metals. Moreover, enrichment factor calculations (EF) for heavy metals point out an increase in metal elements as following: Zn>Co>Cr>V>Cu. Sequential extractions were performed to determine the behaviour of these micro-pollutants. Thus, it was shown that carbonates, oxides and phosphates are the preferential mineral phases for trapping these heavy metals.

  9. Bioremediation of toxic heavy metals using acidothermophilic autotrophes.

    PubMed

    Umrania, Valentina V

    2006-07-01

    Investigations were carried out to isolate microbial strains from soil, mud and water samples from metallurgically polluted environment for bioremediation of toxic heavy metals. As a result of primary and secondary screening various 72 acidothermophilic autotrophic microbes were isolated and adapted for metal tolerance and biosorption potentiality. The multi-metal tolerance was developed with higher gradient of concentrations of Ag, As, Bi, Cd, Cr, Co, Cu, Hg, Li, Mo, Pb, Sn and Zn. The isolates were checked for their biosolubilization ability with copper containing metal sulfide ores. In case of chalcopyrite 85.82% and in covellite as high as 97.5% copper solubilization occurred in presence of 10(-3) M multi-heavy metals on fifth day at 55 degrees C and pH 2.5. Chemical analyses were carried out by inductively coupled plasma spectroscopy (ICP) for metal absorption. The selected highly potential isolate (ATh-14) showed maximum adsorption of Ag 73%, followed by Pb 35%, Zn 34%, As 19%, Ni 15% and Cr 9% in chalcopyrite.

  10. Natural Jordanian zeolite: removal of heavy metal ions from water samples using column and batch methods.

    PubMed

    Baker, Hutaf M; Massadeh, Adnan M; Younes, Hammad A

    2009-10-01

    The adsorption behavior of natural Jordanian zeolites with respect to Cd(2 + ), Cu(2 + ), Pb(2 + ), and Zn(2 + ) was studied in order to consider its application to purity metal finishing drinking and waste water samples under different conditions such as zeolite particle size, ionic strength and initial metal ion concentration. In the present work, a new method was developed to remove the heavy metal by using a glass column as the one that used in column chromatography and to make a comparative between the batch experiment and column experiment by using natural Jordanian zeolite as adsorbent and some heavy metals as adsorbate. The column method was used using different metal ions concentrations ranged from 5 to 20 mg/L with average particle size of zeolite ranged between 90 and 350 mum, and ionic strength ranged from 0.01 to 0.05. Atomic absorption spectrometry was used for analysis of these heavy metal ions, the results obtained in this study indicated that zeolitic tuff is an efficient ion exchanger for removing heavy metals, in particular the fine particle sizes of zeolite at pH 6, whereas, no clear effect of low ionic strength values is noticed on the removal process. Equilibrium modeling of the removal showed that the adsorption of Cd(2 + ), Cu(2 + ), Pb(2 + ), and Zn(2 + ) were fitted to Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich (DKR). The sorption energy E determined in the DKR equation (9.129, 10.000, 10.541, and 11.180 kJ/mol for Zn(2 + ), Cu(2 + ), Cd(2 + ) and Pb(2 + ) respectively) which revealed the nature of the ion-exchange mechanism.

  11. Fish consumption, fish atopy and related heavy metals in childhood eczema.

    PubMed

    Hon, Kam Lun; Lui, Heike; Wang, Shuxin Susan; Lam, Hugh Simon; Leung, Ting Fan

    2012-09-01

    Due to increasing worldwide water pollution, fish might be a source of excessive zinc, mercury, arsenic or manganese intake. The aim of this study was to evaluate if fish atopy/sensitization and fish consumption behavior are associated with eczema severity and blood levels of the 4 heavy metals.One-hundred and nineteen patients with eczema and 43 patients with miscellaneous non-eczema skin diseases were studied. There were no differences in average weekly fish consumption and blood levels of the 4 heavy metals between eczema and non-eczema groups. Blood levels of these metals were generally within the upper limits of local reference ranges in all these patients. In eczema patients, freshwater fish consumption behavior in days-per-week was correlated with blood arsenic and mercury levels (rho=0.17, p<0.01 for both metals), but not with zinc or manganese. Levels of arsenic and mercury were also correlated with days of seawater fish consumption per week (arsenic: 0.38, mercury: 0.24, p <0.05).Fish sensitization was present in 25% of patients with eczema. Nevertheless, there was no difference in terms of fish consumption behavior, eczema severity, quality of life, and heavy metal levels between eczema patients with or without fish sensitization. We conclude that without exceeding local normal reference ranges, blood arsenic and mercury levels correlated with fish consumption behavior. There is no evidence to suggest that fish sensitization is associated with more severe eczema (bad for eczema), or that patients have milder eczema with more days of fish consumption (good for eczema).

  12. Heavy liquid metals: Research programs at PSI

    SciTech Connect

    Takeda, Y.

    1996-06-01

    The author describes work at PSI on thermohydraulics, thermal shock, and material tests for mechnical properties. In the presentation, the focus is on two main programs. (1) SINQ LBE target: The phase II study program for SINQ is planned. A new LBE loop is being constructed. The study has the following three objectives: (a) Pump study - design work on an electromagnetic pump to be integrated into the target. (b) Heat pipe performance test - the use of heat pipes as an additional component of the target cooling system is being considered, and it may be a way to futher decouple the liquid metal and water coolant loops. (c) Mixed convection experiment - in order to find an optimal configuration of the additional flow guide for window cooling, mixed convection around the window is to be studied. The experiment will be started using water and then with LBE. (2) ESS Mercury target: For ESS target study, the following experimental studies are planned, some of which are exampled by trial experiments. (a) Flow around the window: Flow mapping around the hemi-cylindrical window will be made for optimising the flow channels and structures, (b) Geometry optimisation for minimizing a recirculation zone behind the edge of the flow separator, (c) Flow induced vibration and buckling problem for a optimised structure of the flow separator and (d) Gas-liquid two-phase flow will be studied by starting to establish the new experimental method of measuring various kinds of two-phase flow characteristics.

  13. Biochar Mechanisms of Heavy Metal Sorption and Potential Utility

    NASA Astrophysics Data System (ADS)

    Ippolito, J.

    2015-12-01

    Mining-affected lands are a global issue; in the USA alone there are an estimated 500,000 abandoned mines encompassing hundreds of thousands of hectares. Many of these sites generate acidic mine drainage that causes release of heavy metals, and subsequently degradation in environmental quality. Because of its potential liming characteristics, biochar may play a pivotal role as a soil amendment in future mine land reclamation. However, to date, most studies have focused on the use of biochar to sorb metals from solution. Previous studies suggest that metals are complexed by biochar surface function groups (leading to ion exchange, complexation), coordination with Pi electrons (C=C) of carbon, and precipitation of inorganic mineral phases. Several recent studies have focused on the use of biochar for amending mine land soils, showing that biochar can indeed reduce heavy metal lability, yet the mechanism(s) behind labile metal reduction have yet to be established. In a proof-of-concept study, we added lodgepole pine, tamarisk, and switchgrass biochar (0, 5, 10, 15% by weight; 500 oC) to four different western US mine land soils affected by various heavy metals (Cd, Cu, Mn, Pb, Zn). Extraction with 0.01M CaCl2 showed that increasing biochar application rate significantly decreased 'bioaccessible' metals in almost all instances. A concomitant increase in solution pH was observed, suggesting that metals may be rendered bio-inaccessible through precipitation as carbonate or (hydr)oxide phases, or sorbed onto mineral surfaces. However, this was only supposition and required further research. Thus, following the 0.01M CaCl2 extraction, biochar-soil mixtures were air-dried and metals were further extracted using the four-step BCR sequential removal procedure. Results from selective extraction suggest that, as compared to the controls, most metals in the biochar-amended mine land soils were associated with exchange sites, carbonate, and oxide phases. Biochar may play a

  14. Research Progress of Artificial Forest in the Remediation of Heavy Metal Contaminated Soils

    NASA Astrophysics Data System (ADS)

    Jiafang, MA; Guangtao, MENG; Liping, HE; Guixiang, LI

    2017-01-01

    (1) Remediation of soil contaminated by heavy metals has become a hot topic in the world, and phytoremediation technology is the most widely used. (2) In addition to traditional economic benefits, ecological benefits of artificial forest have been more and more important, which are very helpful to soil polluted with heavy metals in the environment. (3) The characteristics of heavy metal pollution of soil and plantations of repair mechanism have been reviewed, and the current mining areas, wetlands, urban plantations on heavy metal elements have enriched the research results. The purpose is to find a new path for governance of heavy metal soil pollution.

  15. Situ formation of apatite for sequestering radionuclides and heavy metals

    DOEpatents

    Moore, Robert C.

    2003-07-15

    Methods for in situ formation in soil of a permeable reactive barrier or zone comprising a phosphate precipitate, such as apatite or hydroxyapatite, which is capable of selectively trapping and removing radionuclides and heavy metal contaminants from the soil, while allowing water or other compounds to pass through. A preparation of a phosphate reagent and a chelated calcium reagent is mixed aboveground and injected into the soil. Subsequently, the chelated calcium reagent biodegrades and slowly releases free calcium. The free calcium reacts with the phosphate reagent to form a phosphate precipitate. Under the proper chemical conditions, apatite or hydroxyapatite can form. Radionuclide and heavy metal contaminants, including lead, strontium, lanthanides, and uranium are then selectively sequestered by sorbing them onto the phosphate precipitate. A reducing agent can be added for reduction and selective sequestration of technetium or selenium contaminants.

  16. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation.

    PubMed

    Göhre, Vera; Paszkowski, Uta

    2006-05-01

    High concentrations of heavy metals (HM) in the soil have detrimental effects on ecosystems and are a risk to human health as they can enter the food chain via agricultural products or contaminated drinking water. Phytoremediation, a sustainable and inexpensive technology based on the removal of pollutants from the environment by plants, is becoming an increasingly important objective in plant research. However, as phytoremediation is a slow process, improvement of efficiency and thus increased stabilization or removal of HMs from soils is an important goal. Arbuscular mycorrhizal (AM) fungi provide an attractive system to advance plant-based environmental clean-up. During symbiotic interaction the hyphal network functionally extends the root system of their hosts. Thus, plants in symbiosis with AM fungi have the potential to take up HM from an enlarged soil volume. In this review, we summarize current knowledge about the contribution of the AM symbiosis to phytoremediation of heavy metals.

  17. Heavy metals in soils of the Russian North

    NASA Astrophysics Data System (ADS)

    Alexander, Evseev; Tatiana, Krasovskaya

    2014-05-01

    Results of soil cover studies in different regions of the Russian North from the Kola peninsula at the West and the Chuckchi peninsula at the East are presented. Heavy metals distribution in soils of both impact (technogenically disturbed) and background regions were studied. It was demonstrated that microelement soil content is closely connected with that of parent rocks which differ in different regions of the Arctic. Noticeable increase of heavy metals in the upper soil horizons are marked near large industrial sites, sometime exceeding background for more than 10-100 times. Each region and soil type has its own background concentration level. That is why no general subregional background concentration patterns may be revealed based on numerous soils sampling in different regions of the discussed territory.

  18. [Antimony and other heavy metals in metallic kitchen ware].

    PubMed

    Ishiwata, H; Sugita, T; Yoshihira, K

    1989-01-01

    The antimony in metallic kitchen ware was determined. The content of this element in metals used for the production or repairing of utensils, containers and packaging which come in contact with foods is regulated and should be less than 5% in under the Japanese Food Sanitation Law. In eight metallic samples, antimony was detected in solder used for the production of a can for green tea and an eggbeater. The contents were 1.30% in the former and 1.90% in the latter. No antimony was detected in solder used for a cookie cutter. A sample of solder used for electric work, not for food utensils, contained 0.81% of antimony. In other metallic utensils which come in contact with food such as aluminum foil, a brass spoon, a stainless steel fork, a wire netting, and an iron rock for vegetable color stabilizing, antimony was not detected at a 0.05% detection limit. A qualitative test using rhodamine B also showed positive results in only three solder samples. Lead concentrations in solder used for the kitchen ware were from 39.3 to 51.3%. These concentrations were higher than the limit (20%) of lead content by the Law. No cadmium was detected in any samples.

  19. A novel heavy metal ATPase peptide from Prosopis juliflora is involved in metal uptake in yeast and tobacco.

    PubMed

    Keeran, Nisha S; Ganesan, G; Parida, Ajay K

    2017-04-01

    Heavy metal pollution of agricultural soils is one of the most severe ecological problems in the world. Prosopis juliflora, a phreatophytic tree species, grows well in heavy metal laden industrial sites and is known to accumulate heavy metals. Heavy Metal ATPases (HMAs) are ATP driven heavy metal pumps that translocate heavy metals across biological membranes thus helping the plant in heavy metal tolerance and phytoremediation. In the present study we have isolated and characterized a novel 28.9 kDa heavy metal ATPase peptide (PjHMT) from P. juliflora which shows high similarity to the C-terminal region of P1B ATPase HMA1. It also shows the absence of the invariant signature sequence DKTGT, and the metal binding CPX motif but the presence of conserved regions like MVGEGINDAPAL (ATP binding consensus sequence), HEGGTLLVCLNS (metal binding domain) and MLTGD, GEGIND and HEGG motifs which play important roles in metal transport or ATP binding. PjHMT, was found to be upregulated under cadmium and zinc stress. Heterologous expression of PjHMT in yeast showed a higher accumulation and tolerance of heavy metals in yeast. Further, transgenic tobacco plants constitutively expressing PjHMT also showed increased accumulation and tolerance to cadmium. Thus, this study suggests that the transport peptide from P. juliflora may have an important role in Cd uptake and thus in phytoremediation.

  20. Heavy metal transport in the hindon river basin, India.

    PubMed

    Jain, C K; Sharma, M K

    2006-01-01

    Total mass transfers of heavy metal in dissolved and particulate form has been determined in the downstream section of river Hindon, an important tributary of river Yamuna (India). The contribution of different point sources to the river Hindon has also been assessed. The river Kali has the largest contribution to the river Hindon. The highest metal loads were related to the highest flow of the river and thereby increased both by surface runoff and sediment resuspension. The contribution of monsoon months to the total transported load was also calculated and it was observed that monsoon months contributes more than 40% of total loading annually for all the metals. The metal fluxes from the river Hindon were compared with other rivers of Indian sub-continent.

  1. Identification of weed plants excluding the uptake of heavy metals.

    PubMed

    Wei, Shuhe; Zhou, Qixing; Wang, Xin

    2005-08-01

    Using the field pot-culture and sample-analysis method, 54 weed species belonging to 20 families and 31 weed species belonging to 17 families were systematically examined as to whether they can exclude the uptake of heavy metals. After a systematic identification, it was determined that Oenothera biennis and Commelina communis were Cd-excluders and Taraxacum mongolicum was a Zn-excluder. O. biennis is a potential Cd-excluder, but also a potential Cu-excluder. The research raises the possibility of making a major breakthrough in the application of metal excluders for safe agro-production in the future.

  2. Effects of Gravity on Processing Heavy Metal Fluoride Fibers

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.

    1997-01-01

    The effects of gravity on the crystal nucleation of heavy metal fluoride fibers have been studied in preliminary experiments utilizing NASA's KC-135 reduced gravity aircraft and a microgravity sounding rocket flight. Commercially produced fibers were heated to the crystallization temperature in normal and reduced gravity. The fibers processed in normal gravity showed complete crystallization while the fibers processed in reduced gravity did not show signs of crystallization.

  3. Heavy Metals in the Vegetables Collected from Production Sites

    PubMed Central

    Taghipour, Hassan; Mosaferi, Mohammad

    2013-01-01

    Background: Contamination of vegetable crops (as an important part of people's diet) with heavy metals is a health concern. Therefore, monitoring levels of heavy metals in vegetables can provide useful information for promoting food safety. The present study was carried out in north-west of Iran (Tabriz) on the content of heavy metals in vegetable crops. Methods: Samples of vegetables including kurrat (n=20) (Allium ampeloprasumssp. Persicum), onion (n=20) (Allium cepa) and tomato (n=18) (Lycopersiconesculentum var. esculentum), were collected from production sites in west of Tabriz and analyzed for presence of Cd, Cr, Cu, Ni, Pb and Zn by atomic absorption spectroscopy (AAS) after extraction by aqua regia method (drying, grounding and acid diges­tion). Results: Mean ± SD (mg/kg DW) concentrations of Cd, Cu, Cr, Ni and Zn were 0.32 ± 0.58, 28.86 ± 28.79, 1.75 ± 2.05, 6.37± 5.61 and 58.01 ± 27.45, respec­tively. Cr, Cu and Zn were present in all the samples and the highest concentra­tions were observed in kurrat (leek). Levels of Cd, Cr and Cu were higher than the acceptable limits. There was significant difference in levels of Cr (P<0.05) and Zn (P<0.001) among the studied vegetables. Positive correlation was observed be­tween Cd:Cu (R=0.659, P<0.001) Cr:Ni (R=0.326, P<0.05) and Cr:Zn (R=0.308, P<0.05).   Conclusion: Level of heavy metals in some of the analyzed vegetables, especially kurrat samples, was higher than the standard levels. Considering the possi­ble health outcomes due to the consumption of contaminated vegetables, it is re­quired to take proper actions for avoiding people's chronic exposure. PMID:24688968

  4. Sorption of heavy metals onto hydrophobic parts of aquatic plants

    SciTech Connect

    Smith, R.W.; Robichaud, K.; Misra, M.

    1995-12-31

    The ability of the roots of Eichhornia crassipes (water hyacinth), Tripha latifolia (common cattail) and Sparganium minimum (burr reed) to accumulate lead and mercury ions from aqueous solution was investigated. The relative abilities of the hydrophilic and hydrophobic portions of the root material to accumulate these ions was studied and it was found that the hydrophilic portion accumulates substantially more of the heavy metal ions than the hydrophobic portion. An attempt is made to explain this better sorption ability.

  5. Heavy Metal Bioabsorption Capacity of Intestinal Helminths in Urban Rats

    PubMed Central

    TEIMOORI, Salma; SABOUR YARAGHI, Aliakbar; MAKKI, Mahsa Sadat; SHAHBAZI, Farideh; NAZMARA, Shahrokh; ROKNI, Mohhamad Bagher; MESDAGHINIA, Alireza; SALAHI MOGHADDAM, Abdoreza; HOSSEINI, Mostafa; RAKHSHANPOUR, Arash; MOWLAVI, Gholamreza

    2014-01-01

    Abstract Background The aim of the present study was to evaluate the capability of helminths to absorb heavy metals in comparison with that of the host tissues. Methods We compared the concentration of cadmium (Cd) and chromium (Cr) in urban rats and in their harboring helminthes —Moniliformis moniliformis, Hymenolepis diminuta and larval stage of Taenia taenaeiformis (Cysticercus fasciolaris). The heavy metal absorption was evaluated in 1g wet weight of parasites and tissues digested in nitric acid, using Inductivity Coupled Plasma (ICP_OES). Results A higher concentration of heavy metals was revealed in the helminths than in the host tissues. Bioconcentration factor (BF= C in parasite/C in tissue) for both Cd and Cr absorption was more than 10-fold higher in M. moniliformis than in the three compared host tissues. The BF of Cd in M. moniliformis compared to the liver, kidney and muscle of the host was 9.16, 14.14 and 17.09, respectively. BF in Cr in the same parasite and the same host tissues ranged from 10.67, 7.06 and 4.6. High level of absorption in H. diminuta was significantly likewise; the individual BF of Cd and Cr in H. diminuta compared to the liver, kidney and muscle of the hosts was 4.95, 5.94 and 4.67 vs. 2.67, 11.56 and 5.59. The mean concentration of Cd and Cr in C. fasciolaris was also significantly higher than that in the rat livers (P<0.007 and P<0.004, respectively). Conclusion This study claims that parasites of terrestrial animals exposed to heavy metals can be more accurate indicators than the host tissues as new environmental monitoring agents. PMID:25988090

  6. Site Characterization and Analysis Penetrometer System (SCAPS) Heavy Metal Sensors

    DTIC Science & Technology

    2003-04-01

    bleaches, hydrochloric acid, sulfuric acid, nitric acid, explosive compounds (e.g., lead azide and lead styphnate ), phosphate cleaners, petroleum and...products of these chemicals. Previous investigations have indicated that heavy metals, including arsenic (As), barium (Ba), beryllium (Be), cadmium (Cd...Lake City. It was used by the LCAAP fire department from 1951 to 1967 to burn wooden boxes. Antimony, barium , cadmium, copper, lead, mercury, silver

  7. Surfactant biocatalyst for remediation of recalcitrant organics and heavy metals

    DOEpatents

    Brigmon, Robin L.; Story, Sandra; Altman, Denis J.; Berry, Christopher J.

    2011-05-03

    Novel strains of isolated and purified bacteria have been identified which have the ability to degrade petroleum hydrocarbons including a variety of PAHs. Several isolates also exhibit the ability to produce a biosurfactant. The combination of the biosurfactant-producing ability along with the ability to degrade PAHs enhances the efficiency with which PAHs may be degraded. Additionally, the biosurfactant also provides an additional ability to bind heavy metal ions for removal from a soil or aquatic environment.

  8. Surfactant biocatalyst for remediation of recalcitrant organics and heavy metals

    DOEpatents

    Brigmon, Robin L [North Augusta, SC; Story, Sandra [Greenville, SC; Altman, Denis J [Evans, GA; Berry, Christopher J [Aiken, SC

    2011-03-15

    Novel strains of isolated and purified bacteria have been identified which have the ability to degrade petroleum hydrocarbons including a variety of PAHs. Several isolates also exhibit the ability to produce a biosurfactant. The combination of the biosurfactant-producing ability along with the ability to degrade PAHs enhances the efficiency with which PAHs may be degraded. Additionally, the biosurfactant also provides an additional ability to bind heavy metal ions for removal from a soil or aquatic environment.

  9. Surfactant biocatalyst for remediation of recalcitrant organics and heavy metals

    DOEpatents

    Brigmon, Robin L.; Story, Sandra; Altman, Denis; Berry, Christopher J.

    2009-01-06

    Novel strains of isolated and purified bacteria have been identified which have the ability to degrade petroleum hydrocarbons including a variety of PAHs. Several isolates also exhibit the ability to produce a biosurfactant. The combination of the biosurfactant-producing ability along with the ability to degrade PAHs enhances the efficiency with which PAHs may be degraded. Additionally, the biosurfactant also provides an additional ability to bind heavy metal ions for removal from a soil or aquatic environment.

  10. Surfactant biocatalyst for remediation of recalcitrant organics and heavy metals

    DOEpatents

    Brigmon, Robin L [North Augusta, SC; Story, Sandra [Greenville, SC; Altman,; Denis, J [Evans, GA; Berry, Christopher J [Aiken, SC

    2011-03-29

    Novel strains of isolated and purified bacteria have been identified which have the ability to degrade petroleum hydrocarbons including a variety of PAHs. Several isolates also exhibit the ability to produce a biosurfactant. The combination of the biosurfactant-producing ability along with the ability to degrade PAHs enhances the efficiency with which PAHs may be degraded. Additionally, the biosurfactant also provides an additional ability to bind heavy metal ions for removal from a soil or aquatic environment.

  11. Deformation Behavior of Nanoporous Metals

    SciTech Connect

    Biener, J; Hodge, A M; Hamza, A V

    2007-11-28

    Nanoporous open-cell foams are a rapidly growing class of high-porosity materials (porosity {ge} 70%). The research in this field is driven by the desire to create functional materials with unique physical, chemical and mechanical properties where the material properties emerge from both morphology and the material itself. An example is the development of nanoporous metallic materials for photonic and plasmonic applications which has recently attracted much interest. The general strategy is to take advantage of various size effects to introduce novel properties. These size effects arise from confinement of the material by pores and ligaments, and can range from electromagnetic resonances to length scale effects in plasticity. In this chapter we will focus on the mechanical properties of low density nanoporous metals and how these properties are affected by length scale effects and bonding characteristics. A thorough understanding of the mechanical behavior will open the door to further improve and fine-tune the mechanical properties of these sometimes very delicate materials, and thus will be crucial for integrating nanoporous metals into products. Cellular solids with pore sizes above 1 micron have been the subject of intense research for many years, and various scaling relations describing the mechanical properties have been developed.[4] In general, it has been found that the most important parameter in controlling their mechanical properties is the relative density, that is, the density of the foam divided by that of solid from which the foam is made. Other factors include the mechanical properties of the solid material and the foam morphology such as ligament shape and connectivity. The characteristic internal length scale of the structure as determined by pores and ligaments, on the other hand, usually has only little effect on the mechanical properties. This changes at the submicron length scale where the surface-to-volume ratio becomes large and the effect

  12. Diffuse sources of heavy metals entering an urban wastewater catchment.

    PubMed

    Rule, K L; Comber, S D W; Ross, D; Thornton, A; Makropoulos, C K; Rautiu, R

    2006-03-01

    New legislation such as the Water Framework Directive (WFD) will require Member States to better understand the concentrations and loads of contaminants entering surface waters. This will include inputs from wastewater treatment plants (WWTP) as well as from other urban, industrial and agricultural sources. A review of available literature revealed a shortage of data on the levels and sources of heavy metals entering WWTP from urban sources. As a consequence, the concentrations of heavy metals (cadmium, chromium, copper, mercury, nickel, lead and zinc) were determined in the wastewater from an urban catchment located in the UK, as part of a project undertaken for UK Water Industry Research (UKWIR). Both foul and surface water samples were taken. Metal concentrations varied considerably in the foul water samples, both between sources and over the course of the week. Concentrations of most metals were higher in the Monday town centre samples, attributed to leaching from stagnant water remaining in the pipework of office buildings over the weekend. Runoff concentrations were higher in the light industrial estate samples than in the domestic samples for all the metals, and exhibited highest levels in the 'first flush' samples, coincident with the initial flow of runoff containing the highest concentrations of suspended solids.

  13. Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions.

    PubMed

    Ding, Qian; Cheng, Gong; Wang, Yong; Zhuang, Dafang

    2017-02-01

    Various studies have shown that soils surrounding mining areas are seriously polluted with heavy metals. Determining the effects of natural factors on spatial distribution of heavy metals is important for determining the distribution characteristics of heavy metals in soils. In this study, an 8km buffer zone surrounding a typical non-ferrous metal mine in Suxian District of Hunan Province, China, was selected as the study area, and statistical, spatial autocorrelation and spatial interpolation analyses were used to obtain descriptive statistics and spatial autocorrelation characteristics of As, Pb, Cu, and Zn in soil. Additionally, the distributions of soil heavy metals under the influences of natural factors, including terrain (elevation and slope), wind direction and distance from a river, were determined. Layout of sampling sites, spatial changes of heavy metal contents at high elevations and concentration differences between upwind and downwind directions were then evaluated. The following results were obtained: (1) At low elevations, heavy metal concentrations decreased slightly, then increased considerably with increasing elevation. At high elevations, heavy metal concentrations first decreased, then increased, then decreased with increasing elevation. As the slope increased, heavy metal contents increased then decreased. (2) Heavy metal contents changed consistently in the upwind and downwind directions. Heavy metal contents were highest in 1km buffer zone and decreased with increasing distance from the mining area. The largest decrease in heavy metal concentrations was in 2km buffer zone. Perennial wind promotes the transport of heavy metals in downwind direction. (3) The spatial extent of the influence of the river on Pb, Zn and Cu in the soil was 800m. (4) The influence of the terrain on the heavy metal concentrations was greater than that of the wind. These results provide a scientific basis for preventing and mitigating heavy metal soil pollution in

  14. Alcohol and risky sexual behavior among heavy drinking college students.

    PubMed

    Scott-Sheldon, Lori A J; Carey, Michael P; Carey, Kate B

    2010-08-01

    Multiple event-level methodology was used to examine the relation between risky sexual behavior and alcohol use among sexually active, heavy drinking college students (N = 221). Using a structured timeline follow-back interview, participants reported their sexual, alcohol, and drug use behaviors over a 3-month period. Over 2,700 vaginal or anal sexual events were reported from 177 participants. Overall, condom use was not associated with heavy or non-heavy alcohol consumption among those reporting both sexual events concurrent with heavy drinking and when no alcohol was consumed. Results from multilevel regression analyses revealed a more complex pattern. Among women, but not men, less condom use was associated with steady versus casual sexual partners, but partner type interacted with alcohol consumption such that less condom use occurred when heavy drinking preceded sex with steady partners. At the event-level, alcohol consumption among heavy drinking college students leads to risky sexual behavior but the relation differs by gender and partner type.

  15. Effect of fertilizer application on soil heavy metal concentration.

    PubMed

    Atafar, Zahra; Mesdaghinia, Alireza; Nouri, Jafar; Homaee, Mehdi; Yunesian, Masoud; Ahmadimoghaddam, Mehdi; Mahvi, Amir Hossein

    2010-01-01

    A large amount of chemicals is annually applied at the agricultural soils as fertilizers and pesticides. Such applications may result in the increase of heavy metals particularly Cd, Pb, and As. The objective of this study was to investigate the variability of chemical applications on Cd, Pb, and As concentrations of wheat-cultivated soils. Consequently, a study area was designed and was divided into four subareas (A, B, C, and D). The soil sampling was carried out in 40 points of cultivated durum wheat during the 2006-2007 periods. The samples were taken to the laboratory to measure their heavy metal concentration, soil texture, pH, electrical conductivity, cationic exchange capacity, organic matter, and carbonate contents. The result indicated that Cd, Pb, and As concentrations were increased in the cultivated soils due to fertilizer application. Although the statistical analysis indicates that these heavy metals increased significantly (P value<0.05), the lead and arsenic concentrations were increased dramatically compared to Cd concentration. This can be related to overapplication of fertilizers as well as the pesticides that are used to replant plant pests, herbs, and rats.

  16. Heavy metals and pain in the dysfunctional patient

    PubMed Central

    Di Paolo, Carlo; Serritella, Emanuela; Panti, Fabrizio; Falisi, Giovanni; Manna, Fedele

    2014-01-01

    Summary Aims The aim of this research is to verify the quality and quantity of heavy metals (HM) of dental origin in TMD patients. Methods A population of 100 subject was studied and divided in two homogeneous groups: Study Group (SG) and Control Group (CG). Organism heavy metals were tested by a spot sampling method in which the first urine of the day, through Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), were analyzed. The results obtained were compared with reference values (RV) of Italian people. Descriptive statistical analysis and student’s t-test has been applied (statistical significance for p > 0.05). Results The SG presented the absolute highest levels of HM compared to the CG (p=0.787). As regards the relation between pain and HM, the subjects that refer “severe/very severe” values of pain present the highest levels of HM in urines. Conclusions The obtained results seem to highlight a possible direct proportionality between the level of pain the increase of the concentration of heavy metals in all the examined groups and subgroups. PMID:25002917

  17. Earliest evidence of pollution by heavy metals in archaeological sites

    NASA Astrophysics Data System (ADS)

    Monge, Guadalupe; Jimenez-Espejo, Francisco J.; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-09-01

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called “Anthropocene”. According to its heavy metal concentration, these sediments meet the present-day standards of “contaminated soil”. Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence.

  18. Transgenerational adaptation to heavy metal salts in Arabidopsis.

    PubMed

    Rahavi, Mohammad Reza; Migicovsky, Zoë; Titov, Viktor; Kovalchuk, Igor

    2011-01-01

    Exposure to abiotic and biotic stress results in changes in plant physiology and triggers genomic instability. Recent reports suggest that the progeny of stressed plants also exhibit changes in genome stability, stress tolerance, and methylation. Here we analyzed whether exposure to Ni(2+), Cd(2+), and Cu(2+) salts leads to transgenerational changes in homologous recombination frequency and stress tolerance. We found that the immediate progeny of stressed plants exhibited an increased rate of recombination. However, when the progeny of stressed plants was propagated without stress, recombination reverted to normal levels. Exposure of plants to heavy metals for five consecutive generations (S1-S5) resulted in recombination frequency being maintained at a high level. Skipping stress following two to three generations of propagation with 50 mM Ni(2+) or Cd(2+) did not decrease the recombination frequency, suggesting plant acclimation to upregulated recombination. Analysis of the progeny of plants exposed to Cu(2+) and Ni(2+) indicated higher stress tolerance to the heavy metal parental plants were exposed to. Tolerance was higher in plants propagated with stress for three to five generations, which resulted in longer roots than plants propagated on heavy metals for only one to two generations. Tolerance was also more prominent upon exposure to a higher concentration of salts. The progeny of stressed plants were also more tolerant to NaCl and methyl methane sulfonate.

  19. Ecological risk assessment of soil pollution with heavy metals

    SciTech Connect

    Kuperman, R.G.

    1995-12-31

    The structure and function of soil ecosystems in an area with a wide range of concentrations of heavy metals were studied in portions of the US Army`s Aberdeen Proving Ground, Maryland. The objective of this project was to develop and test the efficacy of a comprehensive methodology for assessing ecological impacts of soil contamination. A hierarchical approach which integrated biotic parameters and ecosystem processes was used to give insight into the mechanisms that lead to alterations in the structure and function of soil ecosystems in contaminated areas. This approach involved (1) a thorough survey of the soil biota to establish community structure, (2) laboratory and field tests on critical ecosystem processes, (3) toxicity trials, and (4) the use of spatial analyses to provide input in the decision making process. Soil invertebrate communities showed significant reductions in the abundance of several taxonomic and trophic groups in contaminated areas. The numbers of soil microorganisms were lower in areas of soil contamination. Ten-to-fifty fold reductions in enzyme activities were observed as heavy metal concentrations increased. These results suggest that soil contamination with heavy metals may have detrimental effects on soil biota and the rates of organic matter degradation and subsequent release of nutrients to aboveground communities in the area. The proposed methodology appears to offer an efficient and potentially cost saving tool for remedial investigations at contaminated sites.

  20. Heavy Metal Contamination in the Taimyr Peninsula, Siberian Arctic

    SciTech Connect

    Allen-Gil, Susan M.; Ford, Jesse; Lasorsa, Brenda K.; Monetti, Matthew; Vlasova, Tamara; Landers, Dixon H.

    2003-01-01

    The Taimyr Peninsula is directly north of the world's largest heavy metal smelting complex (Norilsk, Russia). Despite this proximity, there has been little research to examine the extent of contamination of the Taimyr Peninsula. We analyzed heavy metal concentrations in lichen (Cetraria cucullata), moss (Hylocomium splendens), soils, lake sediment, freshwater fish (Salvelinus alpinus, Lota lota, and Coregonus spp.) and collared lemming (Dicrostonyx torquatus) from 13 sites between 30 and 300 km from Norilsk. Element concentrations were low in both C. cucullata and H. splendens, although concentrations of Al, Fe, Cu, Ni, and Pb were significantly higher than those in Arctic Alaska, probably due to natural differences in the geochemical environments. Inorganic surface soils had significantly higher concentrations of Cd, Zn, Pb, and Mg than inorganic soils at depth, although a lake sediment core from the eastern Taimyr Peninsula indicated no recent enrichment by atmospherically transported elements. Tissue concentrations of heavy metals in fish and lemming were not elevated relative to other Arctic sites. Our results show that the impact of the Norilsk smelting complex is primarily localized rather than regional, and does not extend northward beyond 100 km.

  1. Heavy metal analysis in commercial Spirulina products for human consumption

    PubMed Central

    Al-Dhabi, Naif Abdullah

    2013-01-01

    For consumption of health foods of Spirulina, by the general public, health food stores are increasingly offering more exotic products. Though Spirulina consumption is growing worldwide, relatively few studies have reported on the quantities of heavy metals/minerals they contain and/or their potential effects on the population’s health. This study reveals the concentrations of six typical heavy metals/minerals (Ni, Zn, Hg, Pt, Mg, and Mn) in 25 Spirulina products commercialized worldwide for direct human consumption. Samples were ground, digested and quantified by Coupled Plasma Mass Spectroscopy (ICP–MS). The concentrations (mg/kg d.w.) were range from 0.001 to 0.012 (Pt) followed by 0.002–0.028 (Hg), 0.002–0.042 (Mg), 0.005–2.248 (Mn), 0.211–4.672 (Ni) and 0.533–6.225 (Zn). The inorganic elements of the present study were significantly lower than the recommended daily intake (RDI) level of heavy metal elements (mg/daily) Ni (0.4), Zn (13), Hg (0.01), Pt (0.002), Mg (400) and Mn (4). Based on this study the concentration of inorganic elements was not found to exceed the present regulation levels, and they can be considered as safe food. PMID:24235875

  2. Superhydrogels of nanotubes capable of capturing heavy-metal ions.

    PubMed

    Song, Shasha; Wang, Haiqiao; Song, Aixin; Hao, Jingcheng

    2014-01-01

    Self-assembly regulated by hydrogen bonds was successfully achieved in the system of lithocholic acid (LCA) mixed with three organic amines, ethanolamine (EA), diethanolamine (DEA), and triethanolamine (TEA), in aqueous solutions. The mixtures of DEA/LCA exhibit supergelation capability and the hydrogels consist of plenty of network nanotubes with uniform diameters of about 60 nm determined by cryogenic TEM. Interestingly, the sample with the same concentration in a system of EA and LCA is a birefringent solution, in which spherical vesicles and can be transformed into nanotubes as the amount of LCA increases. The formation of hydrogels could be driven by the delicate balance of diverse noncovalent interactions, including electrostatic interactions, hydrophobic interactions, steric effects, van der Waals forces, and mainly hydrogen bonds. The mechanism of self-assembly from spherical bilayer vesicles into nanotubes was proposed. The dried hydrogels with nanotubes were explored to exhibit the excellent capability for capturing heavy-metal ions, for example, Cu(2+), Co(2+), Ni(2+), Pb(2+), and Hg(2+). The superhydrogels of nanotubes from the self-assembly of low-molecular-weight gelators mainly regulated by hydrogen bonds used for the removal of heavy-metal ions is simple, green, and high efficiency, and provide a strategic approach to removing heavy-metal ions from industrial sewage.

  3. Heavy metal concentrations in Louisiana waterways, sediments, and biota

    SciTech Connect

    Bundy, K.J.; Berzins, D.

    1994-12-31

    In this investigation polarographic methods (along with GFAAS and ICP) have been used to study the distribution of lead and chromium in Bayou Trepagnier and Devil`s Swamp. Both laboratory and field research have been conducted. Separation and extraction methodology appropriate for analysis of the contaminants at these sites have been developed. Particular attention has been paid to extraction methods for chromium which do not lead to valence state conversion. The availability of such techniques is essential to take full advantage of polarography, a method capable of performing speciation analysis. The results indicate that there is a very inhomogeneous distribution of heavy metals in these environments. In Devil`s Swamp, for example, separation and analysis of aqueous and variously sized particulate moieties in the water and sediment compartments were conducted to determine the partition of lead between them. The results showed that the average lead content was 14.7 ppb and 19.8 ppm, respectively, in these compartments. Apparently bull frogs in Devil`s Swamp can bioaccumulate lead (compared to the measured water level), since the muscle concentration was found to be about 0.6 ppm. This phenomenon is being investigated in a Xenopus frog laboratory model of heavy metal uptake. The basic methodology validated in this study should be fairly generally applicable to assays of other heavy metals.

  4. Earliest evidence of pollution by heavy metals in archaeological sites

    PubMed Central

    Monge, Guadalupe; Jimenez-Espejo, Francisco J.; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-01-01

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called “Anthropocene”. According to its heavy metal concentration, these sediments meet the present-day standards of “contaminated soil”. Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence. PMID:26388184

  5. Earliest evidence of pollution by heavy metals in archaeological sites.

    PubMed

    Monge, Guadalupe; Jimenez-Espejo, Francisco J; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-09-21

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called "Anthropocene". According to its heavy metal concentration, these sediments meet the present-day standards of "contaminated soil". Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence.

  6. Cultivable endophytic bacteria from heavy metal(loid)-tolerant plants.

    PubMed

    Román-Ponce, Brenda; Ramos-Garza, Juan; Vásquez-Murrieta, María Soledad; Rivera-Orduña, Flor Nohemí; Chen, Wen Feng; Yan, Jun; Estrada-de Los Santos, Paulina; Wang, En Tao

    2016-12-01

    To evaluate the interactions among endophytes, plants and heavy metal/arsenic contamination, root endophytic bacteria of Prosopis laevigata (Humb and Bonpl. ex Willd) and Sphaeralcea angustifolia grown in a heavy metal(loid)-contaminated zone in San Luis Potosi, Mexico, were isolated and characterized. Greater abundance and species richness were found in Prosopis than in Sphaeralcea and in the nutrient Pb-Zn-rich hill than in the poor nutrient and As-Cu-rich mine tailing. The 25 species identified among the 60 isolates formed three groups in the correspondence analysis, relating to Prosopis/hill (11 species), Prosopis/mine tailing (4 species) and Sphaeralcea/hill (4 species), with six species ungrouped. Most of the isolates showed high or extremely high resistance to arsenic, such as ≥100 mM for As(V) and ≥20 mM for As(III), in mineral medium. These results demonstrated that the abundance and community composition of root endophytic bacteria were strongly affected by the concentration and type of the heavy metals and metalloids (arsenic), as well as the plant species.

  7. Smart responsive microcapsules capable of recognizing heavy metal ions.

    PubMed

    Pi, Shuo-Wei; Ju, Xiao-Jie; Wu, Han-Guang; Xie, Rui; Chu, Liang-Yin

    2010-09-15

    Smart responsive microcapsules capable of recognizing heavy metal ions are successfully prepared with oil-in-water-in-oil double emulsions as templates for polymerization in this study. The microcapsules are featured with thin poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) (P(NIPAM-co-BCAm)) membranes, and they can selectively recognize special heavy metal ions such as barium(II) or lead(II) ions very well due to the "host-guest" complexation between the BCAm receptors and barium(II) or lead(II) ions. The stable BCAm/Ba(2+) or BCAm/Pb(2+) complexes in the P(NIPAM-co-BCAm) membrane cause a positive shift of the volume phase transition temperature of the crosslinked P(NIPAM-co-BCAm) hydrogel to a higher temperature, and the repulsion among the charged BCAm/Ba(2+) or BCAm/Pb(2+) complexes and the osmotic pressure within the P(NIPAM-co-BCAm) membranes result in the swelling of microcapsules. Induced by recognizing barium(II) or lead(II) ions, the prepared microcapsules with P(NIPAM-co-BCAm) membranes exhibit isothermal and significant swelling not only in outer and inner diameters but also in the membrane thickness. The proposed microcapsules in this study are highly attractive for developing smart sensors and/or carriers for detection and/or elimination of heavy metal ions.

  8. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils.

    PubMed

    Jing, Yan-de; He, Zhen-li; Yang, Xiao-e

    2007-03-01

    Heavy metal pollution of soil is a significant environmental problem and has its negative impact on human health and agriculture. Rhizosphere, as an important interface of soil and plant, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria have received more and more attention. This article paper reviews some recent advances in effect and significance of rhizobacteria in phytoremediation of heavy metal contaminated soils. There is also a need to improve our understanding of the mechanisms involved in the transfer and mobilization of heavy metals by rhizobacteria and to conduct research on the selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes.

  9. An improved transfection assay for evaluating the effects of heavy metals.

    PubMed

    Suzuki, Kaoru; Koizumi, Shinji

    2009-08-01

    The transfection assay is an important tool for evaluating the health effects of industrial chemicals, with the reporter gene expression as an indicator. However, heavy metals often influence the expression of the reference plasmids used to correct variations in transfection efficiency between assay plates, reducing the reliability of this assay. We found that the target of heavy metals is the reporter, rather than the promoter used in the reference plasmid. Of the reporters we tested, luciferase (Luc) enzyme activity was affected by heavy metals, whereas gene product levels of the chloramphenicol acetyltransferase (CAT) or beta-galactosidase (betaGal) gene were not. Neither heavy metals nor extracts from cells exposed to heavy metals showed an effect when directly added to the Luc enzyme, suggesting that heavy metals act through an indirect mechanism. These data indicate that the use of CAT or betaGal as a reporter is appropriate for a reliable assay of heavy metal effects.

  10. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils*

    PubMed Central

    Jing, Yan-de; He, Zhen-li; Yang, Xiao-e

    2007-01-01

    Heavy metal pollution of soil is a significant environmental problem and has its negative impact on human health and agriculture. Rhizosphere, as an important interface of soil and plant, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria have received more and more attention. This article paper reviews some recent advances in effect and significance of rhizobacteria in phytoremediation of heavy metal contaminated soils. There is also a need to improve our understanding of the mechanisms involved in the transfer and mobilization of heavy metals by rhizobacteria and to conduct research on the selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes. PMID:17323432

  11. Concentration and transportation of heavy metals in vegetables and risk assessment of human exposure to bioaccessible heavy metals in soil near a waste-incinerator site, South China.

    PubMed

    Li, Ning; Kang, Yuan; Pan, Weijian; Zeng, Lixuan; Zhang, Qiuyun; Luo, Jiwen

    2015-07-15

    There is limited study focusing on the bioaccumulation of heavy metals in vegetables and human exposure to bioaccessible heavy metals in soil. In the present study, heavy metal concentrations (Cr, Ni, Cu, Pb and Cd) were measured in five types of vegetables, soil, root, and settled air particle samples from two sites (at a domestic waste incinerator and at 20km away from the incinerator) in Guangzhou, South China. Heavy metal concentrations in soil were greater than those in aerial parts of vegetables and roots, which indicated that vegetables bioaccumulated low amount of heavy metals from soil. The similar pattern of heavy metal (Cr, Cd) was found in the settled air particle samples and aerial parts of vegetables from two sites, which may suggest that foliar uptake may be an important pathway of heavy metal from the environment to vegetables. The highest levels of heavy metals were found in leaf lettuce (125.52μg/g, dry weight) and bitter lettuce (71.2μg/g) for sites A and B, respectively, followed by bitter lettuce and leaf lettuce for sites A and B, respectively. Swamp morning glory accumulated the lowest amount of heavy metals (81.02μg/g for site A and 53.2μg/g for site B) at both sites. The bioaccessibility of heavy metals in soil ranged from Cr (2%) to Cu (71.78%). Risk assessment showed that Cd and Pb in soil samples resulted in the highest non-cancer risk and Cd would result in unacceptable cancer risk for children and risk. The non-dietary intake of soil was the most important exposure pathway, when the bioaccessibility of heavy metals was taken into account.

  12. Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils.

    PubMed

    Hong-Bo, Shao; Li-Ye, Chu; Cheng-Jiang, Ruan; Hua, Li; Dong-Gang, Guo; Wei-Xiang, Li

    2010-03-01

    Heavy metal pollution of soil is a significant environmental problem with a negative potential impact on human health and agriculture. Rhizosphere, as an important interface of soil and plants, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria or mycorrhizas have received more and more attention. In addition, some plants possess a range of potential mechanisms that may be involved in the detoxification of heavy metals, and they manage to survive under metal stresses. High tolerance to heavy metal toxicity could rely either on reduced uptake or increased plant internal sequestration, which is manifested by an interaction between a genotype and its environment.A coordinated network of molecular processes provides plants with multiple metal-detoxifying mechanisms and repair capabilities. The growing application of molecular genetic technologies has led to an increased understanding of mechanisms of heavy metal tolerance/accumulation in plants and, subsequently, many transgenic plants with increased heavy metal resistance, as well as increased uptake of heavy metals, have been developed for the purpose of phytoremediation. This article reviews advantages, possible mechanisms, current status and future direction of phytoremediation for heavy-metal-contaminated soils.

  13. Bioaccumulation of heavy metals in macroinvertebrates living in stormwater wetlands

    SciTech Connect

    Karouna, N.K.; Sparling, D.W.

    1995-12-31

    The design of stormwater wetlands and ponds as wildlife habitats has prompted concern over the potential uptake of runoff contaminants by aquatic fauna. Stormwater wetlands provide a diverse array of habitat for aquatic macroinvertebrates. The importance of macroinvertebrates in aquatic communities has been well documented. Aquatic macroinvertebrates also serve as a major food source of many aquatic vertebrates, including fish and birds. The objectives of the study were to: (1) examine the responses of the macroinvertebrate community to water and sediment concentrations of heavy metals, and other water quality parameters; (2) determine whether macroinvertebrates living in stormwater wetlands bioaccumulate significant concentrations of heavy metals; (3) relate the concentrations of heavy metals in sediment, water and macroinvertebrates to land use in the surrounding watershed; (4) determine sediment and water toxicity to macroinvertebrates. Twenty stormwater wetlands, representing four land uses commercial, residential, highway and control, were monitored in this study. Water quality parameters, including pH, DO, turbidity, conductivity, hardness and metal concentrations were monitored bi-weekly for six months. Sediment samples were collected three times during the same period. Macroinvertebrate communities were sampled during alternate weeks after water collections. Ten-day sediment bioassays were conducted using the amphipod Hyalella azteca. Preliminary data analyses have indicated no significant difference in sediment and water metal concentrations between land uses. However, Zn concentrations in macroinvertebrates were significantly higher (p < 0.05) in wetlands serving commercial watersheds than in those serving the remaining three land uses. No differences have been detected in composition of invertebrate communities due to land use category.

  14. Chitosan removes toxic heavy metal ions from cigarette mainstream smoke

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Xu, Ying; Wang, Dongfeng; Zhou, Shilu

    2013-09-01

    This study investigated the removal of heavy metal ions from cigarette mainstream smoke using chitosan. Chitosan of various deacetylation degrees and molecular weights were manually added to cigarette filters in different dosages. The mainstream smoke particulate matter was collected by a Cambridge filter pad, digested by a microwave digestor, and then analyzed for contents of heavy metal ions, including As(III/V), Pb(II), Cd(II), Cr(III/VI) and Ni(II), by graphite furnace atomic absorption spectrometry (GFAAS). The results showed that chitosan had a removal effect on Pb(II), Cd(II), Cr(III/VI) and Ni(II). Of these, the percent removal of Ni(II) was elevated with an increasing dosage of chitosan. Chitosan of a high deace tylation degree exhibited good binding performance toward Cd(II), Cr(III/VI) and Ni(II), though with poor efficiency for Pb(II). Except As(III/V), all the tested metal ions showed similar tendencies in the growing contents with an increasing chitosan molecular weight. Nonetheless, the percent removal of Cr(III/VI) peaked with a chitosan molecular weight of 200 kDa, followed by a dramatic decrease with an increasing chitosan molecular weight. Generally, chitosan had different removal effects on four out of five tested metal ions, and the percent removal of Cd(II), Pb(II), Cr(III/VI) and Ni(II) was approximately 55%, 45%, 50%, and 16%, respectively. In a word, chitosan used in cigarette filter can remove toxic heavy metal ions in the mainstream smoke, improve cigarette safety, and reduce the harm to smokers.

  15. Some Case Studies on Metal-Microbe Interactions to Remediate Heavy Metals- Contaminated Soils in Korea

    NASA Astrophysics Data System (ADS)

    Chon, Hyo-Taek

    2015-04-01

    Conventional physicochemical technologies to remediate heavy metals-contaminated soil have many problems such as low efficiency, high cost and occurrence of byproducts. Recently bioremediation technology is getting more and more attention. Bioremediation is defined as the use of biological methods to remediate and/or restore the contaminated land. The objectives of bioremediation are to degrade hazardous organic contaminants and to convert hazardous inorganic contaminants to less toxic compounds of safe levels. The use of bioremediation in the treatment of heavy metals in soils is a relatively new concept. Bioremediation using microbes has been developed to remove toxic heavy metals from contaminated soils in laboratory scale to the contaminated field sites. Recently the application of cost-effective and environment-friendly bioremediation technology to the heavy metals-contaminated sites has been gradually realized in Korea. The merits of bioremediation include low cost, natural process, minimal exposure to the contaminants, and minimum amount of equipment. The limitations of bioremediation are length of remediation, long monitoring time, and, sometimes, toxicity of byproducts for especially organic contaminants. From now on, it is necessary to prove applicability of the technologies to contaminated sites and to establish highly effective, low-cost and easy bioremediation technology. Four categories of metal-microbe interactions are generally biosorption, bioreduction, biomineralization and bioleaching. In this paper, some case studies of the above metal-microbe interactions in author's lab which were published recently in domestic and international journals will be introduced and summarized.

  16. Heavy metal transport in large river systems: heavy metal emissions and loads in the Rhine and Elbe river basins

    NASA Astrophysics Data System (ADS)

    Vink, Rona; Behrendt, Horst

    2002-11-01

    Pollutant transport and management in the Rhine and Elbe basins is still of international concern, since certain target levels set by the international committees for protection of both rivers have not been reached. The analysis of the chain of emissions of point and diffuse sources to river loads will provide policy makers with a tool for effective management of river basins. The analysis of large river basins such as the Elbe and Rhine requires information on the spatial and temporal characteristics of both emissions and physical information of the entire river basin. In this paper, an analysis has been made of heavy metal emissions from various point and diffuse sources in the Rhine and Elbe drainage areas. Different point and diffuse pathways are considered in the model, such as inputs from industry, wastewater treatment plants, urban areas, erosion, groundwater, atmospheric deposition, tile drainage, and runoff. In most cases the measured heavy metal loads at monitoring stations are lower than the sum of the heavy metal emissions. This behaviour in large river systems can largely be explained by retention processes (e.g. sedimentation) and is dependent on the specific runoff of a catchment. Independent of the method used to estimate emissions, the source apportionment analysis of observed loads was used to determine the share of point and diffuse sources in the heavy metal load at a monitoring station by establishing a discharge dependency. The results from both the emission analysis and the source apportionment analysis of observed loads were compared and gave similar results. Between 51% (for Hg) and 74% (for Pb) of the total transport in the Elbe basin is supplied by inputs from diffuse sources. In the Rhine basin diffuse source inputs dominate the total transport and deliver more than 70% of the total transport. The diffuse hydrological pathways with the highest share are erosion and urban areas.

  17. Heavy metal and organochlorine compound concentrations in tissues of raccoons from east-central Michigan

    SciTech Connect

    Herbert, G.B.; Peterle, T.J. )

    1990-02-01

    Organochlorine (OC) pesticides and related compounds and heavy metals are persistent contaminants in the environment. Bioconcentration and biomagnification are well reported for organochlorine compounds. These compounds have a great potential for causing wildlife mortality or serious behavioral, reproductive, carcinogenic, teratogenic, and mutagenic effects, along with specific organ toxicity. The pervasive nature of toxic substances in the environment necessitates some knowledge for potential exposure of wildlife species. Without baseline values of contaminant loads for selected indicator species it is impossible to determine when abnormal or pathological conditions exist in wild populations. The purpose of this study was to provide baseline values for selected environmental contaminants in the raccoon (Procyon lotor), a potential indicator species for wildlife and to see if heavy metal accumulation was related to age or sex.

  18. Differential accumulation of heavy metals by web spiders and ground spiders in an old-field

    SciTech Connect

    Larsen, K.J.; Brewer, S.R.; Taylor, D.H. . Dept. of Zoology)

    1994-03-01

    Accumulation of the heavy metals Cd, Cu, Pb, and Zn by web spiders (orb weavers: Araneidae) and ground spiders was examined in an old-field that had been subjected to 11 years of nutrient enrichment. The study area consistent of six 0.1-ha plots treated from 1978 to 1988 with municipal sewage sludge containing heavy-metal contaminants, urea-phosphate fertilizer, or left as untreated controls. In 1991 and 1992, heavy-metal concentrations in the soil, ground spiders, and web spiders were measured with a flame AA spectrophotometer. Spiders accumulated Cd, Cu, and Zn to concentrations greater than those present in the soil but did not accumulate Pb. Ground spiders contained significantly higher levels of Cd and Cu than web spiders, whereas web spiders contained slightly greater levels of Pb than ground spiders. No trend between spider guilds was apparent for Zn accumulation. To understand the impact of the application of metal-contaminated municipal sludge on ecosystem, the toxicological effects on the biology and behavior of major biotic components in terrestrial food webs must be known.

  19. Effects of sewage sludge fertilizer on heavy metal accumulation and consequent responses of sunflower (Helianthus annuus).

    PubMed

    Belhaj, Dalel; Elloumi, Nada; Jerbi, Bouthaina; Zouari, Mohamed; Abdallah, Ferjani Ben; Ayadi, Habib; Kallel, Monem

    2016-10-01

    Use of sewage sludge, a biological residue produced from sewage treatment processes in agriculture, is an alternative disposal technique of waste. To study the usefulness of sewage sludge amendment for Helianthus annuus, a pot experiment was conducted by mixing sewage sludge at 2.5, 5, and 7.5 % (w/w) amendment ratios to the agricultural soil. Soil pH decreased whereas electrical conductivity, organic matter, total N, available P, and exchangeable Na, K, and Ca increased in soil amended with sewage sludge in comparison to unamended soil. Sewage sludge amendment led to significant increase in Pb, Ni, Cu, Cr, and Zn concentrations of soil. The increased concentration of heavy metals in soil due to sewage sludge amendment led to increases in shoot and root concentrations of Cr, Cu, Ni, and Zn in plant as compared to those grown on unamended soil. Accumulation was more in roots than shoots for most of the heavy metals. Moreover, high metal removal for the harvestable parts of the crops was recorded. Sewage sludge amendment increased root and shoot length, leaves number, biomass, and antioxidant activities of sunflower. Significant increases in the activities of antioxidant enzymes and in the glutathione, proline, and soluble sugar content in response to amendment with sewage sludge may be defense mechanisms induced in response to heavy metal stress. Graphical abstract Origin, fate and behavior of sewage sludge fertilizer.

  20. Removal of heavy metal ions from aqueous solution using red loess as an adsorbent.

    PubMed

    Xing, Shengtao; Zhao, Meiqing; Ma, Zichuan

    2011-01-01

    The adsorption behaviors of heavy metals onto novel low-cost adsorbent, red loess, were investigated. Red loess was characterized by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectra. The results indicated that red loess mainly consisted of silicate, ferric and aluminum oxides. Solution pH, adsorbent dosage, initial metal concentration, contact time and temperature significantly influenced the efficiency of heavy metals removal. The adsorption reached equilibrium at 4 hr, and the experimental equilibrium data were fitted to Langmuir monolayer adsorption model. The adsorption of Cu(II) and Zn(II) onto red loess was endothermic, while the adsorption of Pb(II) was exothermic. The maximum adsorption capacities of red loess for Pb(II), Cu(II) and Zn(II) were estimated to be 113.6, 34.2 and 17.5 mg/g, respectively at 25 degrees C and pH 6. The maximum removal efficiencies were 100% for Pb(II) at pH 7, 100% for Cu(II) at pH 8, and 80% for Zn(II) at pH 8. The used adsorbents were readily regenerated using dilute HCl solution, indicating that red loess has a high reusability. All the above results demonstrated that red loess could be used as a possible alternative low-cost adsorbent for the removal of heavy metals from aqueous solution.

  1. Immobilization of Penaeus merguiensis alkaline phosphatase on gold nanorods for heavy metal detection.

    PubMed

    Homaei, Ahmad

    2017-02-01

    Biotechnology of enzyme has gained popularity due to the growing need for novel environmental technologies and the development of innovative mass-production. The work describes the original application of biosensors based on Penaeus merguiensis alkaline phosphatase (PM ALP) immobilized on gold nanorods (GNRs) to heavy metal determination. Penaeus merguiensis alkaline phosphatase (PM ALP) was immobilized on gold nanorods (GNRs) by ionic exchange and hydrophobic interactions. The optimum pH and temperature for maximum enzyme activity for the immobilized PM ALP are identified to be 11.0 and 60°C, respectively, for the hydrolysis of para-Nitrophenylphosphate (p-NPP). The kinetic studies confirm the Michaelis-Menten behavior and suggests overall slightly decrease in the performance of the immobilized enzyme with reference to the free enzyme. Km and Vmax values were 0.32µm and 54µm. min(-1) for free and 0.39µm and 48µmmin(-1) for immobilized enzymes, respectively. Similarly, the thermal stability, storage stability and stability at extreme pH of the enzyme is found to increase after the immobilization. The inhibitory effect heavy metal ions was studied on free and immobilized PM ALP. The bi-enzymatic biosensor were tested to study the influence of heavy metal ions and pesticides on the corresponding enzyme. The obtained high stability and lower decrease in catalytic efficiency suggested the great potential and feasibility of immobilized PM ALP nanobiocatalyst in efficient and apply the biosensor in total toxic metal content determination.

  2. Broom fibre PRB for heavy metals groundwater remediation

    NASA Astrophysics Data System (ADS)

    Molinari, A.; Troisi, S.; Fallico, C.; Paparella, A.; Straface, S.

    2009-04-01

    Soil contamination by heavy metal and, though it, of groundwater represent a serious alteration of original geochemical levels owing to various human activities as: particular industrial processes and their non-correct treatment emission, urban traffic, use of phytosanitary product and mineral fertilizer. Heavy metals are genotoxic contaminants who can be found by environmental matrix analysis or by examination of the genetic damage inducted, after exposition, to sentry organism. In this last case we use a relative quantitation of the gene expression monitoring the mitochondrial oxidative metabolism hepatopancreas's gene of the organism used by bioindicator. This test is based on consideration that the hepatopancreas is the first internal organ affected by heavy metals or any other pollutant that the organism is exposed. In this work, the organism used by bioindicator to evalutate the pollutant contamination of waste water is Danio rerio (Zebrafish) that is a little tropical fish of 2-3 cm, native on asiatic south-east rivers. This organism has a large use in scientific field because its genoma is almost completely mapped and, above all, because the congenital gene cause in human, if it was mutated in zebrafish, similar damage or almost similar mutation that happens in human being so you can develop a dose - response curve. To do this, after prepared a cadmium solution with a concentration 10 times the Italian normative limit, the organisms have been put in the aquarium to recreate the optimal condition to survival of zebrafish observed by continuous monitoring by web-cam. After one month exposition, that we took little by little sample fish to analyzing, for different exposition time, the hepatopancreas's fish. First results shows considerable variation of the gene expression by interested gene in mitochondrial oxidative metabolism compared to control, highlighting the mutagenity caused by heavy metals on Danio rerio's hepatopancreas and, mutatis mutandis, also in

  3. Binding of heavy metal ions in aggregates of microbial cells, EPS and biogenic iron minerals measured in-situ using metal- and glycoconjugates-specific fluorophores

    NASA Astrophysics Data System (ADS)

    Hao, Likai; Guo, Yuan; Byrne, James M.; Zeitvogel, Fabian; Schmid, Gregor; Ingino, Pablo; Li, Jianli; Neu, Thomas R.; Swanner, Elizabeth D.; Kappler, Andreas; Obst, Martin

    2016-05-01

    Aggregates consisting of bacterial cells, extracellular polymeric substances (EPS) and Fe(III) minerals formed by Fe(II)-oxidizing bacteria are common at bulk or microscale chemical interfaces where Fe cycling occurs. The high sorption capacity and binding capacity of cells, EPS, and minerals controls the mobility and fate of heavy metals. However, it remains unclear to which of these component(s) the metals will bind in complex aggregates. To clarify this question, the present study focuses on 3D mapping of heavy metals sorbed to cells, glycoconjugates that comprise the majority of EPS constituents, and Fe(III) mineral aggregates formed by the phototrophic Fe(II)-oxidizing bacteria Rhodobacter ferrooxidans SW2 using confocal laser scanning microscopy (CLSM) in combination with metal- and glycoconjugates-specific fluorophores. The present study evaluated the influence of glycoconjugates, microbial cell surfaces, and (biogenic) Fe(III) minerals, and the availability of ferrous and ferric iron on heavy metal sorption. Analyses in this study provide detailed knowledge on the spatial distribution of metal ions in the aggregates at the sub-μm scale, which is essential to understand the underlying mechanisms of microbe-mineral-metal interactions. The heavy metals (Au3+, Cd2+, Cr3+, CrO42-, Cu2+, Hg2+, Ni2+, Pd2+, tributyltin (TBT) and Zn2+) were found mainly sorbed to cell surfaces, present within the glycoconjugates matrix, and bound to the mineral surfaces, but not incorporated into the biogenic Fe(III) minerals. Statistical analysis revealed that all ten heavy metals tested showed relatively similar sorption behavior that was affected by the presence of sorbed ferrous and ferric iron. Results in this study showed that in addition to the mineral surfaces, both bacterial cell surfaces and the glycoconjugates provided most of sorption sites for heavy metals. Simultaneously, ferrous and ferric iron ions competed with the heavy metals for sorption sites on the organic

  4. Improving the sensitivity of bacterial bioreporters for heavy metals.

    PubMed

    Hynninen, Anu; Tönismann, Karmen; Virta, Marko

    2010-01-01

    Whole-cell bacterial bioreporters represent a convenient testing method for quantifying the bioavailability of contaminants in environmental samples. Despite the fact that several bioreporters have been constructed for measuring heavy metals, their application to environmental samples has remained minimal. The major drawbacks of the available bioreporters include a lack of sensitivity and specificity. Here, we report an improvement in the limit of detection of bacterial bioreporters by interfering with the natural metal homeostasis system of the host bacterium. The limit of detection of a Pseudomonas putida KT2440-based Zn/Cd/Pb-biosensor was improved by a factor of up to 45 by disrupting four main efflux transporters for Zn/Cd/Pb and thereby causing the metals to accumulate in the cell. The specificity of the bioreporter could be modified by changing the sensor element. A Zn-specific bioreporter was achieved by using the promoter of the cadA1 gene from P. putida as a sensor element. The constructed transporter-deficient P. putida reporter strain detected Zn(2+) concentrations about 50 times lower than that possible with other available Zn-bioreporters. The achieved detection limits were significantly below the permitted limit values for Zn and Pb in water and in soil, allowing for reliable detection of heavy metals in the environment.

  5. Monitoring of heavy metal burden in mute swan (Cygnus olor).

    PubMed

    Grúz, Adrienn; Szemerédy, Géza; Kormos, Éva; Budai, Péter; Majoros, Szilvia; Tompai, Eleonóra; Lehel, József

    2015-10-01

    Concentrations of heavy metals (especially arsenic, cadmium, chromium, copper, mercury and lead) were measured in the contour (body) feathers of mute swans (Cygnus olor) and in its nutrients (fragile stonewort [Chara globularis], clasping leaf pondweed [Potamogeton perfoliatus], Eurasian watermilfoil [Myriophyllum spicatum], fennel pondweed [Potamogeton pectinatus]) to investigate the accumulation of metals during the food chain. The samples (17 feathers, 8 plants) were collected at Keszthely Bay of Lake Balaton, Hungary. Dry ashing procedure was used for preparing of sample and the heavy metal concentrations were analysed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Copper (10.24 ± 2.25 mg/kg) and lead (1.11 ± 1.23 mg/kg) were detected the highest level in feathers, generally, the other metals were mostly under the detection limit (0.5 mg/kg). However, the concentrations of the arsenic (3.17 ± 1.87 mg/kg), cadmium (2.41 ± 0.66 mg/kg) and lead (2.42 ± 0.89 mg/kg) in the plants were low but the chromium (198.27 ± 102.21 mg/kg) was detected in high concentration.

  6. A ferritin from Dendrorhynchus zhejiangensis with heavy metals detoxification activity.

    PubMed

    Li, Chenghua; Li, Zhen; Li, Ye; Zhou, Jun; Zhang, Chundan; Su, Xiurong; Li, Taiwu

    2012-01-01

    Ferritin, an iron homeostasis protein, has important functions in transition and storage of toxic metal ions. In this study, the full-length cDNA of ferritin was isolated from Dendrorhynchus zhejiangensis by cDNA library and RACE approaches. The higher similarity and conserved motifs for ferritin were also identified in worm counterparts, indicating that it belonged to a new member of ferritin family. The temporal expression of worm ferritin in haemocytes was analyzed by RT-PCR, and revealed the ferritin could be induced by Cd(2+), Pb(2+) and Fe(2+). The heavy metal binding activity of recombinant ferritin was further elucidated by atomic force microscopy (AFM). It was observed that the ferritin protein could form a chain of beads with different size against three metals exposure, and the largest one with 35~40 nm in height was identified in the Cd(2+) challenge group. Our results indicated that worm ferritin was a promising candidate for heavy metals detoxification.

  7. Effects of heavy metal pollution on oak leaf microorganisms.

    PubMed

    Bewley, R J

    1980-12-01

    During the growing season, comparisons were made of the leaf surface microflora of (i) two groups of mature oak trees, one in the vicinity of a smelting complex contaminated by heavy metals and the other at a relatively uncontaminated site, and (ii) two groups of oak saplings at the uncontaminated site, one of which was sprayed with zinc, lead, and cadmium to simulate the heavy metal pollution from the smelter without the complicating effects of other pollutants. Total viable counts of bacteria, yeasts, and filamentous fungi (isolated by leaf washing) were generally little affected by the spraying treatment, whereas polluted leaves of mature trees supported fewer bacteria compared with leaves of mature trees at the uncontaminated site. Numbers of pigmented yeasts were lower on polluted oaks and on metal-dosed saplings compared with their respective controls. Polluted leaves of mature trees supported both greater numbers of Aureobasidium pullulans and Cladosporium spp. and a greater percentage of metal-tolerant fungi compared with oak leaves at the uncontaminated site. There were no significant overall differences in the degree of mycelial growth between the two groups of saplings or the mature trees.

  8. A Ferritin from Dendrorhynchus zhejiangensis with Heavy Metals Detoxification Activity

    PubMed Central

    Li, Chenghua; Li, Zhen; Li, Ye; Zhou, Jun; Zhang, Chundan; Su, Xiurong; Li, Taiwu

    2012-01-01

    Ferritin, an iron homeostasis protein, has important functions in transition and storage of toxic metal ions. In this study, the full-length cDNA of ferritin was isolated from Dendrorhynchus zhejiangensis by cDNA library and RACE approaches. The higher similarity and conserved motifs for ferritin were also identified in worm counterparts, indicating that it belonged to a new member of ferritin family. The temporal expression of worm ferritin in haemocytes was analyzed by RT-PCR, and revealed the ferritin could be induced by Cd2+, Pb2+ and Fe2+. The heavy metal binding activity of recombinant ferritin was further elucidated by atomic force microscopy (AFM). It was observed that the ferritin protein could form a chain of beads with different size against three metals exposure, and the largest one with 35∼40 nm in height was identified in the Cd2+ challenge group. Our results indicated that worm ferritin was a promising candidate for heavy metals detoxification. PMID:23284696

  9. Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem.

    PubMed

    Chaturvedi, Amiy Dutt; Pal, Dharm; Penta, Santhosh; Kumar, Awanish

    2015-10-01

    Water is the most important and vital molecule of our planet and covers 75% of earth surface. But it is getting polluted due to high industrial growth. The heavy metals produced by industrial activities are recurrently added to it and considered as dangerous pollutants. Increasing concentration of toxic heavy metals (Pb(2+), Cd(2+), Hg(2+), Ni(2+)) in water is a severe threat for human. Heavy metal contaminated water is highly carcinogenic and poisonous at even relatively low concentrations. When they discharged in water bodies, they dissolve in the water and are distributed in the food chain. Bacteria and fungi are efficient microbes that frequently transform heavy metals and remove toxicity. The application of bacteria and fungi may offer cost benefit in water treatment plants for heavy metal transformation and directly related to public health and environmental safety issues. The heavy metals transformation rate in water is also dependent on the enzymatic capability of microorganisms. By transforming toxic heavy metals microbes sustain aquatic and terrestrial life. Therefore the application of microbiological biomass for heavy metal transformation and removal from aquatic ecosystem is highly significant and striking. This paper reviews the microbial transformation of heavy metal, microbe metal interaction and different approaches for microbial heavy metal remediation from water bodies.

  10. Snails from heavy-metal polluted environments have reduced sensitivity to carbon dioxide-induced acidity.

    PubMed

    Lefcort, Hugh; Cleary, David A; Marble, Aaron M; Phillips, Morgan V; Stoddard, Timothy J; Tuthill, Lara M; Winslow, James R

    2015-01-01

    Anthropogenic atmospheric CO2 reacts with water to form carbonic acid (H2CO3) which increases water acidity. While marine acidification has received recent consideration, less attention has been paid to the effects of atmospheric carbon dioxide on freshwater systems-systems that often have low buffering potential. Since many aquatic systems are already impacted by pollutants such as heavy metals, we wondered about the added effect of rising atmospheric CO2 on freshwater organisms. We studied aquatic pulmonate snails (Physella columbiana) from both a heavy-metal polluted watershed and snails from a reference watershed that has not experienced mining pollution. We used gaseous CO2 to increase water acidity and we then measured changes in antipredatory behavior and also survival. We predicted a simple negative additive effect of low pH. We hypothesized that snails from metal-polluted environments would be physiologically stressed and impaired due to defense responses against heavy metals. Instead, snails from populations that acclimated or evolved in the presence of heavy metal mining pollution were more robust to acidic conditions than were snails from reference habitats. Snails from mining polluted sites seemed to be preadapted to a low pH environment. Their short-term survival in acidic conditions was better than snails from reference sites that lacked metal pollution. In fact, the 48 h survival of snails from polluted sites was so high that it did not significantly differ from the 24 h survival of snails from control sites. This suggests that the response of organisms to a world with rising anthropogenic carbon dioxide levels may be complex and difficult to predict. Snails had a weaker behavioral response to stressful stimuli if kept for 1 month at a pH that differed from their lake of origin. We found that snails raised at a pH of 5.5 had a weaker response (less of a decrease in activity) to concentrated heavy metals than did snails raised at their natal pH of

  11. Saccharomyces cerevisiae and Neurospora crassa contain heavy metal sequestering phytochelatin.

    PubMed

    Kneer, R; Kutchan, T M; Hochberger, A; Zenk, M H

    1992-01-01

    In fungi, cellular resistance to heavy metal cytotoxicity is mediated either by binding of metal ions to proteins of the metallothionein type or by chelation to phytochelatin-peptides of the general formula (gamma-Glu-Cys)n-Gly. Hitherto, only one fungus, Candida glabrata has been shown to contain both metal inactivating systems. Here we show by unambiguous FAB-MS analysis that both a metallothionein-free mutant of Saccharomyces cerevisiae as well as a wildtype strain synthesize phytochelatin (PC2) upon exposure to 250 microM Cd2+ ions. The presence of Zn and/or Cu ions in the nutrient broth also induces PC2 synthesis in this organism. By 109Cd exchange and subsequent monobromobimane fluorescence HPLC, it could be shown that the presence of Cd2+ in the growth medium also induces phytochelatin synthesis in Neurospora crassa, which contains metallothioneins.

  12. Unusual sources of aluminium and heavy metals in potable waters.

    PubMed

    Fuge, R; Pearce, N J; Perkins, W T

    1992-04-01

    Aluminium in water supplies derives from natural sources and from the use of Al2(SO4)3 in water treatment. Heavy metals such as Pb, Cu, Zn and Cd can be added to water from pipework and solder. However, it is apparent that AI and other metals in potable waters can derive from deposits on pipe walls which can be subsequently mobilised when the supply and/or treatment process is changed. Concentrations of Al in domestic supply water of the Llanbrynmair area have been shown to increase from 1 μg to 50 μg L(-1) during its 18 km journey along the water main. Similarly, Pb concentrations in a public building in the Aberystwyth area are found to be extremely elevated due to the metal's mobilisation from encrustations occurring on the copper pipework.

  13. Heavy fermion behavior explained by bosons

    NASA Technical Reports Server (NTRS)

    Kallio, A.; Poykko, S.; Apaja, V.

    1995-01-01

    Conventional heavy fermion (HF) theories require existence of massive fermions. We show that heavy fermion phenomena can also be simply explained by existence of bosons with moderate mass but temperature dependent concentration below the formation temperature T(sub B), which in turn is close to room temperature. The bosons B(++) are proposed to be in chemical equilibrium with a system of holes h(+): B(++) = h(+) + h(+). This equilibrium is governed by a boson breaking function f(T), which determines the decreasing boson density and the increasing fermion density with increasing temperature. Since HF-compounds are hybridized from minimum two elements, we assume in addition existence of another fermion component h(sub s)(+) with temperature independent density. This spectator component is thought to be the main agent in binding the bosons in analogy with electronic or muonic molecules. Using a linear boson breaking function we can explain temperature dependence of the giant linear specific heat coefficient gamma(T) coming essentially from bosons. The maxima in resistivity, Hall coefficient, and susceptibility are explained by boson localization effects due to the Wigner crystallization. The antiferromagnetic transitions in turn are explained by similar localization of the pairing fermion system when their density n(sub h)(T(sub FL)) becomes lower than n(sub WC), the critical density of Wigner crystallization. The model applies irrespective whether a compound is superconducting or not. The same model explains the occurrence of low temperature antiferromagnetism also in high-T(sub c) superconductors. The double transition in UPt3 is proposed to be due to the transition of the pairing fermion liquid from spin polarized to unpolarized state.

  14. Heavy metals distribution in an Iowa suburban landscape.

    PubMed

    Langner, A N; Manu, A; Tabatabai, M A

    2011-01-01

    This study investigated the degree to which human activities through urbanization influence heavy metal concentrations in a suburban landscape in Ankeny, IA. Residential areas from different years in nine time periods of development were identified from aerial photos. Soil cores were collected from the center of the front yard of 10 randomly selected homes. Cores were subdivided into 0- to 5-, 5- to 10-, and 10- to 20-cm increments from a composite of five cores. The soils were analyzed for organic C, pH, and total Cd, Co, Cr, Cu, Ni, Pb, and Zn. Results showed that organic C increased and pH decreased with time, and that there was a general decreasing trend in heavy metal concentrations from the pre-1939 period until 1983-1990, after which there was a sharp increase in the concentrations of most of the metals. The mean Cu concentration ranged from 21 mg kg(-1) for the pre-1939 time period of development to 14.9 mg kg(-1) for the recent period of development (2003-2005). Nickel concentrations increased significantly with depth with means of 21.3 mg kg(-1) at depth 0 to 5 cm, 22.5 mg kg(-1) at depth 5 to 10 cm, and 23.0 mg kg(-1) at depth 10 to 20 cm. The concentrations of heavy metals were significantly intercorrelated, except Zn, suggesting their coexistence as mineral constituents or common contamination source. The concentrations of Cu and Pb in some locations could be due to anthropogenic inputs or higher organic matter content in soils adjacent to older homes. There appears to have been a source that caused an increase in Cd, Cr, Co, Cu, Pb, and Ni concentrations in soil adjacent to homes built between 1983 and 1990.

  15. Chelant extraction of heavy metals from contaminated soils.

    PubMed

    Peters, R W

    1999-04-23

    The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple-stage batch extraction

  16. Heavy metal concentrations in edible barnacles exposed to natural contamination.

    PubMed

    Dionísio, M; Costa, A; Rodrigues, A

    2013-04-01

    The giant barnacle Megabalanus azoricus is a popular seafood in the Azores. It is mainly caught in coastal environments and sold for domestic human consumption. This species is a filter feeder and can be used as a biomonitor of trace metal bioavailabilities. To investigate consumption safety, the concentrations of 10 trace metals - As, Cd, Cr, Cu, Mn, Pb, Rb, Se, Sr and Zn - were evaluated in 3 body tissues of M. azoricus from 3 sites on 2 islands. There were no significant differences between the metal loads of the barnacles from the different sites. However, the concentrations of the total trace metal loads revealed significant differences among the tissues (cirrus, muscles and ovaries). The concentrations of some metals in the body were not within the safety levels for consumers, based on the allowable standard levels for crustaceans issued by the European Union and of legislations in several countries. Alarming levels of As and Cd were found. Considering the absence of heavy industry in the region, a non-anthropogenic volcanic source was assumed to be the reason for the observed metal levels. Barnacles, in particular M. azoricus, seem to be useful as bioindicators in this peculiar environment.

  17. Heavy metal concentration and speciation of seven representative municipal sludges from wastewater treatment plants in Northeast China.

    PubMed

    Tu, Jiangcheng; Zhao, Qingliang; Wei, Liangliang; Yang, Qianqian

    2012-03-01

    The analysis of heavy metals is very important for assessing the feasibility of the agricultural utilization for the municipal sludge. In this paper, a four-step sequential extraction method was applied to extract heavy metals (Cu, Zn, Mn, Cr, and Ni) in municipal sludges from seven individual wastewater treatment plants located in Jilin and Heilongjiang Province, China, for estimating the mobility and bioavailability of the metal ions in the agricultural application. The total concentrations of heavy metals and their chemical fractions after the sequential extraction were determined. Principal component analysis (PCA) was applied to analyze the relations of heavy metals fractions in the municipal sludges. Experimental results indicated that the total concentrations of Cu, Zn, Cr, and Ni in all sludge samples were below the threshold values set out by the Chinese legislation (GB18918-2002). Specially, Zn had a high bioavailability and mobility, Cu and Cr had potential bioavailability, while Mn mainly existed in the residual fraction of municipal sludge. On the other hand, Ni had different mobility in different municipal sludge. PCA results were confirmed by the environmental behavior of heavy metals.

  18. Complete genome sequence of Bacillus oceanisediminis 2691, a reservoir of heavy-metal resistance genes.

    PubMed

    Jung, Jaejoon; Jeong, Haeyoung; Kim, Hyun Ju; Lee, Dong-Woo; Lee, Sang Jun

    2016-12-01

    Ocean sediments are commonly subject to the pollution of various heavy metals. Intracellular heavy metal concentrations in marine microorganisms should be kept within allowable concentrations. Here, we report redundant heavy metal resistance related genes encoding heavy metal-sensing transcriptional regulators (i.e. cadC), heavy metal efflux pumps, and detoxifying enzymes in the complete genome sequence of Bacillus oceanisediminis 2691. By comparing CadC sequences of strain 2691 with those from other bacterial genomes, we demonstrated that each cadC gene located in the chromosome or plasmid of 2691 cells are similar to those of various near or distant microbes, which might shed light on evolutionary trajectories of redundant heavy metal resistance genes. In application aspects, these diverse heavy metal sensing genes can be harnessed as synthetic biological parts, modules, and devices for the development of heavy metal-specific biosensors. Heavy metal bioremediation technologies or platform cells can be also developed based on the marine genomic information of heavy metal resistance and/or detoxification genes in a bacterial isolate from ocean sediments.

  19. Kinetics of heavy metal inhibition of 1,2-dichloroethane biodegradation in co-contaminated water.

    PubMed

    Arjoon, Ashmita; Olaniran, Ademola Olufolahan; Pillay, Balakrishna

    2015-03-01

    Sites co-contaminated with heavy metals and 1,2-DCA may pose a greater challenge for bioremediation, as the heavy metals could inhibit the activities of microbes involved in biodegradation. Therefore, this study was undertaken to quantitatively assess the effects of heavy metals (arsenic, cadmium, mercury, and lead) on 1,2-DCA biodegradation in co-contaminated water. The minimum inhibitory concentrations (MICs) and concentrations of the heavy metals that caused half-life doubling (HLDs) of 1,2-DCA as well as the degradation rate coefficient (k(1)) and half-life (t(½)) of 1,2-DCA were measured and used to predict the toxicity of the heavy metals in the water microcosms. An increase in heavy metal concentration resulted in a progressive increase in the t(½) and relative t(½) and a decrease in k(1). The MICs and HLDs of the heavy metals were found to vary, depending on the heavy metals type. In addition, the presence of heavy metals was shown to inhibit 1,2-DCA biodegradation in a dose-dependent manner, with the following order of decreasing inhibitory effect: Hg(2+)  > As(3+)  > Cd(2+)  > Pb(2+). Findings from this study have significant implications for the development of bioremediation strategies for effective degradation of 1,2-DCA and other related compounds in wastewater co-contaminated with heavy metals.

  20. Effect of heavy metal-solubilizing microorganisms on zinc and cadmium extractions from heavy metal contaminated soil with Tricholoma lobynsis.

    PubMed

    Ji, Ling-yun; Zhang, Wei-wei; Yu, Dong; Cao, Yan-ru; Xu, Heng

    2012-01-01

    The macrofungus, Tricholoma lobynsis, was chosen to remedy Zn-Cd-Pb contaminated soil. To enhance its metal-extracting efficiency, two heavy metal resistant microbes M6 and K1 were applied owing to their excellent abilities to solubilize heavy metal salts. The two isolated microbial strains could also produce indole acetic acid (IAA), siderophore and solubilize inorganic phosphate, but neither of them showed 1-aminocyclopropane-1-carboxylate deaminase activity. The strains M6 and K1 were identified as Serratia marcescens and Rhodotorula mucilaginosa based on 16S rDNA and ITS sequence analysis respectively. Pot experiment showed that spraying to T. lobynsis-inoculated soil with M6 and K1 respectively could increase total Cd accumulations of this mushroom by 216 and 61%, and Zn by 153 and 49% compared to the uninoculated control. Pb accumulation however, was too low (<1 mg kg(-1)) to be determined. The results illustrated that special microbes and macrofungi can work together to remedy polluted soil as plant and plant growth promoting microbes do, probably because of excellent metal-accumulating abilities of macrofungi and IAA-siderophore production, phosphate solubilization abilities of the assisted-microbes. This kind of macrofungi-microbe interaction can be developed into a novel bioremediation strategy.

  1. Estimation of Heavy Metal Contamination in Groundwater and Development of a Heavy Metal Pollution Index by Using GIS Technique.

    PubMed

    Tiwari, Ashwani Kumar; Singh, Prasoon Kumar; Singh, Abhay Kumar; De Maio, Marina

    2016-04-01

    Heavy metal (Al, As, Ba, Cr, Cu, Fe, Mn, Ni, Se and Zn) concentration in sixty-six groundwater samples of the West Bokaro coalfield were analyzed using inductively coupled plasma-mass spectroscopy for determination of seasonal fluctuation, source apportionment and heavy metal pollution index (HPI). Metal concentrations were found higher in the pre-monsoon season as compared to the post-monsoon season. Geographic information system (GIS) tool was attributed to study the metals risk in groundwater of the West Bokaro coalfield. The results show that 94 % of water samples were found as low class and 6 % of water samples were in medium class in the post-monsoon season. However, 79 % of water samples were found in low class, 18 % in medium class and 3 % in high class in the pre-monsoon season. The HPI values were below the critical pollution index value of 100. The concentrations of Al, Fe, Mn, and Ni are exceeding the desirable limits in many groundwater samples in both seasons.

  2. Chemometric interpretation of heavy metal patterns in soils worldwide.

    PubMed

    Skrbić, Biljana; Durisić-Mladenović, Natasa

    2010-09-01

    Principal component analysis (PCA) was applied on data sets containing levels of six heavy metals (Pb, Cu, Zn, Cd, Ni, Cr) in soils from different parts of the world in order to investigate the information captured in the global heavy metal patterns. Data used in this study consisted of the heavy metal contents determined in 23 soil samples from and around the Novi Sad city area in the Vojvodina Province, northern part of Serbia, together with those from the city of Banja Luka, the second largest city in Bosnia and Herzegovina, and the ones reported previously in the relevant literature in order to evaluate heavy metal distribution pattern in soils of different land-use types, as well as spatial and temporal differences in the patterns. The chemometric analysis was applied on the following input data sets: the overall set with all data gathered in this study containing 264 samples, and two sub sets obtained after dividing the overall set in accordance to the soil metal index, SMI, calculated here, i.e. the set of unpolluted soils having SMIs<100%, and the set of polluted soils with SMIs>100%. Additionally, univariate descriptive statistics and the Spearman's non-parametric rank correlation coefficients were calculated for these three sets. A Box-Cox transformation was used as a data pretreatment before the statistical methods applied. According to the results, it was seen that anthropogenic and background sources had different impact on the data variability in the case of polluted and unpolluted soils. The sample discrimination regarding the land-use types was more evident for the unpolluted soils than for the polluted ones. Using linear discriminant analysis, content of Cu was determined as a variable with a major discriminant capacity. The correct classification of 73.3% was achieved for predefined land-use types. Classification of the samples in accordance to the pollution level expressed as SMI was necessary in order to avoid the "masking" effect of the

  3. Heavy metal-binding proteins from metal-stimulated bacteria as a novel adsorbent for metal removal technology.

    PubMed

    Sano, D; Myojo, K; Omura, T

    2006-01-01

    Water pollution with toxic heavy metals is of growing concern because heavy metals could bring about serious problems for not only ecosystems in the water environment but also human health. Some metal removal technologies have been in practical use, but much energy and troublesome treatments for chemical wastes are required to operate these conventional technologies. In this study, heavy metal-binding proteins (HMBPs) were obtained from metal-stimulated activated sludge culture with affinity chromatography using copper ion as a ligand. Two-dimensional electrophoresis revealed that a number of proteins in activated sludge culture were recovered as HMBPs for copper ion. N-termini of five HMBPs were determined, and two of them were found to be newly discovered proteins for which no amino acid sequences in protein databases were retrieved at more than 80% identities. Metal-coordinating amino acids occupied 38% of residues in one of the N-terminal sequences of the newly discovered HMBPs. Since these HMBPs were expected to be stable under conditions of water and wastewater treatments, it would be possible to utilize HMBPs as novel adsorbents for heavy metal removal if mass volume of HMBPs can be obtained with protein cloning techniques.

  4. Sexual Risk Behavior and Heavy Drinking Among Weekly Marijuana Users

    PubMed Central

    Metrik, Jane; Caswell, Amy J.; Magill, Molly; Monti, Peter M.; Kahler, Christopher W.

    2016-01-01

    Objective: Sexual behavior that incurs increased risk for sexually transmitted infections and HIV incidence is associated with both heavy alcohol and marijuana use. Whereas detrimental effects of alcohol on increased sexual risk have been documented in event-level and laboratory studies, less is known about the combined use of alcohol and marijuana and their relative impact on sexual risk behavior. We examined the degree to which both heavy drinking and marijuana use were associated with condomless sexual intercourse with casual versus main partners in a sample of weekly marijuana smokers. Method: Participants reported substance use and sexual activity using a 60-day Timeline Followback interview method (n = 112). Results: Results of generalized estimating equations indicated that both alcohol and marijuana use were independently associated with greater odds of having sexual intercourse but were not associated with greater odds of unprotected sex with a casual partner. Heavy drinking on a given day was associated with increased odds of having casual protected sex. Using both substances synergistically increased the likelihood of unprotected sex with a main partner. Conclusions: Findings suggest that behaviors posing higher sexual risk (condomless intercourse or sex with casual partners) occur on days when alcohol use exceeds moderate drinking guidelines. Interventions designed to reduce sexual risk behaviors may need to specifically target heavy drinking alone or when used with marijuana. PMID:26751360

  5. Heavy metals in urban soils of the Granada city (Spain)

    NASA Astrophysics Data System (ADS)

    Delgado, Gabriel; Sánchez-Marañón, Manuel; Bech, Jaume; Sartini, Alessandra; Martín-García, Juan Manuel; Delgado, Rafael

    2013-04-01

    Urban soils (Anthrosols, Technosols, and the remaining natural patches) are essential components of the city ecosystems influencing the quality of life for people. Unfortunately, because of the high concentration of matter and energy that occurs in any city, these soils might accumulate potentially toxic pollutants such as heavy metals, organic compounds, pathogens, pharmaceuticals, and soluble salts. Contamination by heavy metals has been considered especially dangerous because they can affect human health via inhalation of dust, ingestion, or skin contact with soils. Children are the more exposed citizens in gardens and parks. Accordingly, our objective was to analyze the content of heavy metals in soils of the two most emblematic, extensive, and visited landscaped areas of the Granada city (Salón Garden, which dates back to 1612, and Federico García Lorca Park, opened since 1993) for assessing the health hazard. Using a composite sampling of 20-30 points chosen at random, we collected the upper soil (10 cm) of five representative plots for each landscaped area. We determined soil characteristics by routine procedures and metal elements using ICP-mass. From high to low concentration we found Mn, Ba, Pb, Zn, V, Sn, Cr, Cu, Ni, Sb, Y, As, Sc, Co, Th, Au, U, Mo, Be, Bi, Tl, Cd, and In; the first 10 metals ranging between 478 and 22 ppm. Mn, Ba, and other trace elements were strongly correlated with soil properties suggesting the inheritance as a possible source of metal variation, especially in the soils of younger Park, where the materials used to build gardens in the five sampled plots seemed to be more variable (carbonates: 10-40%, clay: 18-26%, pH: 7.6-7.9, organic matter: 3-7%, free iron 0.5-1.1%). The content of many other metals measured in the sampled plots, however, were independent of soil material and management. On the other hand, compared to agricultural and native soils of the surroundings, our urban soils had obviously greater content in organic

  6. Heavy metals in edible seaweeds commercialised for human consumption

    NASA Astrophysics Data System (ADS)

    Besada, Victoria; Andrade, José Manuel; Schultze, Fernando; González, Juan José

    2009-01-01

    Though seaweed consumption is growing steadily across Europe, relatively few studies have reported on the quantities of heavy metals they contain and/or their potential effects on the population's health. This study focuses on the first topic and analyses the concentrations of six typical heavy metals (Cd, Pb, Hg, Cu, Zn, total As and inorganic As) in 52 samples from 11 algae-based products commercialised in Spain for direct human consumption ( Gelidium spp.; Eisenia bicyclis; Himanthalia elongata; Hizikia fusiforme; Laminaria spp.; Ulva rigida; Chondrus crispus; Porphyra umbilicales and Undaria pinnatifida). Samples were ground, homogenised and quantified by atomic absorption spectrometry (Cu and Zn by flame AAS; Cd, Pb and total As by electrothermal AAS; total mercury by the cold vapour technique; and inorganic As by flame-hydride generation). Accuracy was assessed by participation in periodic QUASIMEME (Quality Assurance of Information in Marine Environmental Monitoring in Europe) and IAEA (International Atomic Energy Agency) intercalibration exercises. To detect any objective differences existing between the seaweeds' metal concentrations, univariate and multivariate studies (principal component analysis, cluster analysis and linear discriminant analysis) were performed. It is concluded that the Hizikia fusiforme samples contained the highest values of total and inorganic As and that most Cd concentrations exceeded the French Legislation. The two harvesting areas (Atlantic and Pacific oceans) were differentiated using both univariate studies (for Cu, total As, Hg and Zn) and a multivariate discriminant function (which includes Zn, Cu and Pb).

  7. Wastewaters at SRS where heavy metals are a potential problem

    SciTech Connect

    Wilde, E.W.; Radway, J.C.

    1994-11-01

    The principal objective of this report is to identify and prioritize heavy metal-containing wastewaters at the Savannah River Site (SRS) in terms of their suitability for testing of and clean-up by a novel bioremediation process being developed by SRTC. This process involves the use of algal biomass for sequestering heavy metal and radionuclides from wastewaters. Two categories of SRS wastewaters were considered for this investigation: (1) waste sites (primarily non-contained wastes managed by Environmental Restoration), and (2) waste streams (primarily contained wastes managed by Waste Management). An attempt was made to evaluate all sources of both categories of waste throughout the site so that rational decisions could be made with regard to selecting the most appropriate wastewaters for present study and potential future treatment. The investigation included a review of information on surface and/or groundwater associated with all known SRS waste sites, as well as waters associated with all known SRS waste streams. Following the initial review, wastewaters known or suspected to contain potentially problematic concentrations of one or more of the toxic metals were given further consideration.

  8. Biomonitoring of heavy metals in fish from the Danube River.

    PubMed

    Zrnčić, Snježana; Oraić, Dražen; Ćaleta, Marko; Mihaljević, Željko; Zanella, Davor; Bilandžić, Nina

    2013-02-01

    The Croatian part of the Danube River extends over 188 km and comprises 58 % of the country's overall area used for commercial freshwater fishing. To date, the heavy metal contamination of fish in the Croatian part of the Danube has not been studied. The main purpose of this study was to determine heavy metal levels in muscle tissue of sampled fish species and to analyze the measured values according to feeding habits of particular groups. Lead ranged from 0.015 μg(-1) dry weight in planktivorous to 0.039 μg(-1) dry weight in herbivorous fish, cadmium from 0.013 μg(-1) dry weight in herbivorous to 0.018 μg(-1) dry weight in piscivorous fish, mercury from 0.191 μg(-1) dry weight in omnivorous to 0.441 μg(-1) dry weight in planktivorous fish and arsenic from 0.018 μg(-1) dry weight in planktivorous to 0.039 μg(-1) dry weight in omnivorous fish. Among the analyzed metals in muscle tissue of sampled fish, only mercury exceeded the maximal level (0.5 mg kg(-1)) permitted according to the national and EU regulations determining maximum levels for certain contaminants in foodstuffs, indicating a hazard for consumers of fish from the Danube River.

  9. Factorial experimental design for recovering heavy metals from sludge with ion-exchange resin.

    PubMed

    Lee, I Hsien; Kuan, Yu-Chung; Chern, Jia-Ming

    2006-12-01

    Wastewaters containing heavy metals are usually treated by chemical precipitation method in Taiwan. This method can remove heavy metals form wastewaters efficiently, but the resultant heavy metal sludge is classified as hazardous solid waste and becomes another environmental problem. If we can remove heavy metals from sludge, it becomes non-hazardous waste and the treatment cost can be greatly reduced. This study aims at using ion-exchange resin to remove heavy metals such as copper, zinc, cadmium, and chromium from sludge generated by a PCB manufacturing plant. Factorial experimental design methodology was used to study the heavy metal removal efficiency. The total metal concentrations in the sludge, resin, and solution phases were measured respectively after 30 min reaction with varying leaching agents (citric acid and nitric acid); ion-exchange resins (Amberlite IRC-718 and IR-120), and temperatures (50 and 70 degrees C). The experimental results and statistical analysis show that a stronger leaching acid and a higher temperature both favor lower heavy metal residues in the sludge. Two-factors and even three-factor interaction effects on the heavy metal sorption in the resin phase are not negligible. The ion-exchange resin plays an important role in the sludge extraction or metal recovery. Empirical regression models were also obtained and used to predict the heavy metal profiles with satisfactory results.

  10. Metal-organic framework templated inorganic sorbents for rapid and efficient extraction of heavy metals.

    PubMed

    Abney, C W; Gilhula, J C; Lu, K; Lin, W

    2014-12-17

    An innovative wet-treatment with Na2 S transforms two indium metal-organic frameworks (MOFs) into a series of porous inorganic sorbents. These MOF-templated materials display remarkable affinity for heavy metals with saturation occurring in less than 1 h. The saturation capacity for Hg(II) exceeds 2 g g(-1) , more than doubling the best thiol-functionalized sorbents in the literature.

  11. Heavy metal and abiotic stress inducible metallothionein isoforms from Prosopis juliflora (SW) D.C. show differences in binding to heavy metals in vitro.

    PubMed

    Usha, B; Venkataraman, Gayatri; Parida, Ajay

    2009-01-01

    Prosopis juliflora is a tree species that grows well in heavy metal laden industrial sites and accumulates heavy metals. To understand the possible contribution of metallothioneins (MTs) in heavy metal accumulation in P. juliflora, we isolated and compared the metal binding ability of three different types of MTs (PjMT1-3). Glutathione S-transferase fusions of PjMTs (GSTMT1-3) were purified from Escherichia coli cells grown in the presence of 0.3 mM cadmium, copper or zinc. Analysis of metal bound fusion proteins using atomic absorption spectrometry showed that PjMT1 bound higher levels of all three heavy metals as compared to PjMT2 and PjMT3. A comparative analysis of the genomic regions (including promoter for all three PjMTs) is also presented. All three PjMTs are induced by H(2)O(2) and ABA applications. PjMT1 and PjMT2 are induced by copper and zinc respectively while PjMT3 is induced by copper, zinc and cadmium. Variation in induction of PjMTs in response to metal exposure and their differential binding to metals suggests that each MT has a specific role in P. juliflora. Of the three MTs analyzed, PjMT1 shows maximum heavy metal sequestration and is thus a potential candidate for use in heavy metal phytoremediation.

  12. Heavy Metal Distribution in Street Dust from Traditional Markets and the Human Health Implications

    PubMed Central

    Kim, Jin Ah; Park, Jin Hee; Hwang, Won Ju

    2016-01-01

    Street dust is a hazard for workers in traditional markets. Exposure time is longer than for other people, making them vulnerable to heavy metals in street dust. This study investigated heavy metal concentrations in street dust samples collected from different types of markets. It compared the results with heavy metal concentrations in heavy traffic and rural areas. Street dust was significantly enriched with most heavy metals in a heavy traffic area while street dust from a fish market was contaminated with cupper (Cu), lead (Pb) and zinc (Zn). Street dust from medicinal herb and fruit markets, and rural areas were not contaminated. Principal component and cluster analyses indicated heavy metals in heavy traffic road and fish market dust had different sources. Relatively high heavy metal concentration in street dust from the fish market may negatively affect worker’s mental health, as depression levels were higher compared with workers in other markets. Therefore, intensive investigation of the relationship between heavy metal concentrations in street dust and worker’s health in traditional marketplaces should be conducted to elucidate the effect of heavy metals on psychological health in humans. PMID:27529268

  13. Heavy Metal Distribution in Street Dust from Traditional Markets and the Human Health Implications.

    PubMed

    Kim, Jin Ah; Park, Jin Hee; Hwang, Won Ju

    2016-08-13

    Street dust is a hazard for workers in traditional markets. Exposure time is longer than for other people, making them vulnerable to heavy metals in street dust. This study investigated heavy metal concentrations in street dust samples collected from different types of markets. It compared the results with heavy metal concentrations in heavy traffic and rural areas. Street dust was significantly enriched with most heavy metals in a heavy traffic area while street dust from a fish market was contaminated with cupper (Cu), lead (Pb) and zinc (Zn). Street dust from medicinal herb and fruit markets, and rural areas were not contaminated. Principal component and cluster analyses indicated heavy metals in heavy traffic road and fish market dust had different sources. Relatively high heavy metal concentration in street dust from the fish market may negatively affect worker's mental health, as depression levels were higher compared with workers in other markets. Therefore, intensive investigation of the relationship between heavy metal concentrations in street dust and worker's health in traditional marketplaces should be conducted to elucidate the effect of heavy metals on psychological health in humans.

  14. Assessment of heavy metal pollution in vegetables and relationships with soil heavy metal distribution in Zhejiang province, China.

    PubMed

    Ye, Xuezhu; Xiao, Wendan; Zhang, Yongzhi; Zhao, Shouping; Wang, Gangjun; Zhang, Qi; Wang, Qiang

    2015-06-01

    There are increasing concerns on heavy metal contaminant in soils and vegetables. In this study, we investigated heavy metal pollution in vegetables and the corresponding soils in the main vegetable production regions of Zhejiang province, China. A total of 97 vegetable samples and 202 agricultural soil samples were analyzed for the concentrations of Cd, Pb, As, Hg, and Cr. The average levels of Cd, Pb, and Cr in vegetable samples [Chinese cabbage (Brassica campestris spp. Pekinensis), pakchoi (Brassica chinensis L.), celery (Apium graveolens), tomato (Lycopersicon esculentum), cucumber (Colletotrichum lagenarium), cowpea (Vigna unguiculata), pumpkin (Cucurbita pepo L.), and eggplant (Solanum melongena)] were 0.020, 0.048, and 0.043 mg kg(-1), respectively. The Pb and Cr concentrations in all vegetable samples were below the threshold levels of the Food Quality Standard (0.3 and 0.5 mg kg(-1), respectively), except that two eggplant samples exceeded the threshold levels for Cd concentrations (0.05 mg kg(-1)). As and Hg contents in vegetables were below the detection level (0.005 and 0.002 mg kg(-1), respectively). Soil pollution conditions were assessed in accordance with the Chinese Soil Quality Criterion (GB15618-1995, Grade II); 50 and 68 soil samples from the investigated area exceeded the maximum allowable contents for Cd and Hg, respectively. Simple correlation analysis revealed that there were significantly positive correlations between the metal concentrations in vegetables and the corresponding soils, especially for the leafy and stem vegetables such as pakchoi, cabbage, and celery. Bio-concentration factor values for Cd are higher than those for Pb and Cr, which indicates that Cd is more readily absorbed by vegetables than Pb and Cr. Therefore, more attention should be paid to the possible pollution of heavy metals in vegetables, especially Cd.

  15. Phytomining of heavy metals from soil by Croton bonplandianum using phytoremediation technology

    NASA Astrophysics Data System (ADS)

    Panchal, K. J.; Dave, B. R.; Parmar, P. P.; Subramanian, R. B.

    2015-12-01

    Metal ions are not only valuable intermediates in metal extraction, but also important raw materials for technical applications. They possess some unique but, identical physical and chemical properties, which make them useful probes of low temperature geochemical reactions. Heavy metals are natural constituents of the earth's crust, but indiscriminate human activities have drastically altered their geochemical cycles and biochemical balance. Metal concentration in soil typically ranges from less than one to as high as 100,000 mg/kg. Heavy metal contaminations of land resources continue to be the focus of numerous environmental studies and attract a great deal of attention worldwide. This is attributed to no--biodegradability and persistence of heavy metals in soils. Prolonged exposure to heavy metals such as cadmium, copper, lead, nickel, and zinc can cause deleterious health effects in humans. Complexation, separation, and removal of metal ions have become increasingly attractive areas of research and have led to new technical developments like phytoremediation that has numerous biotechnological implications of understanding of plant metal accumulation. Croton bonplandianum is newly identified as a potential heavy metal hypreaccumulator. In this study Croton bonplandianum was subjected for in vitro heavy metal accumulation, to explore the accumulation pattern of four heavy metals viz Cadmium, Lead, Nickel and Zinc in various parts of Croton bonplandianum plant parts. It was found that the efficiency of Croton bonplandianum to accumulate heavy metals is Cd>Pb>Zn>Ni. The absorption of these heavy metals in plant parts revealed that the highest translocation of metals from ground to root was ground to be in the order of Pb (1.12) > Zn (0.26) > Ni (0.18) > Cd (0.15). The distribution of Cd in Croton bonplandianum followed the trend Root>Stem>Leaf; with Ni it was Root>Leaf>Stem, while Pb showed leaf>stem>root. Translocation of metals in Croton bonplandianum plant parts

  16. The Chemophytostabilisation Process of Heavy Metal Polluted Soil.

    PubMed

    Grobelak, Anna; Napora, Anna

    2015-01-01

    Industrial areas are characterised by soil degradation processes that are related primarily to the deposition of heavy metals. Areas contaminated with metals are a serious source of risk due to secondary pollutant emissions and metal leaching and migration in the soil profile and into the groundwater. Consequently, the optimal solution for these areas is to apply methods of remediation that create conditions for the restoration of plant cover and ensure the protection of groundwater against pollution. Remediation activities that are applied to large-scale areas contaminated with heavy metals should mainly focus on decreasing the degree of metal mobility in the soil profile and metal bioavailability to levels that are not phytotoxic. Chemophytostabilisation is a process in which soil amendments and plants are used to immobilise metals. The main objective of this research was to investigate the effects of different doses of organic amendments (after aerobic sewage sludge digestion in the food industry) and inorganic amendments (lime, superphosphate, and potassium phosphate) on changes in the metals fractions in soils contaminated with Cd, Pb and Zn during phytostabilisation. In this study, the contaminated soil was amended with sewage sludge and inorganic amendments and seeded with grass (tall fescue) to increase the degree of immobilisation of the studied metals. The contaminated soil was collected from the area surrounding a zinc smelter in the Silesia region of Poland (pH 5.5, Cd 12 mg kg-1, Pb 1100 mg kg-1, Zn 700 mg kg-1). A plant growth experiment was conducted in a growth chamber for 5 months. Before and after plant growth, soil subsamples were subjected to chemical and physical analyses. To determine the fractions of the elements, a sequential extraction method was used according to Zeien and Brümmer. Research confirmed that the most important impacts on the Zn, Cd and Pb fractions included the combined application of sewage sludge from the food industry and

  17. The Chemophytostabilisation Process of Heavy Metal Polluted Soil

    PubMed Central

    Grobelak, Anna; Napora, Anna

    2015-01-01

    Industrial areas are characterised by soil degradation processes that are related primarily to the deposition of heavy metals. Areas contaminated with metals are a serious source of risk due to secondary pollutant emissions and metal leaching and migration in the soil profile and into the groundwater. Consequently, the optimal solution for these areas is to apply methods of remediation that create conditions for the restoration of plant cover and ensure the protection of groundwater against pollution. Remediation activities that are applied to large-scale areas contaminated with heavy metals should mainly focus on decreasing the degree of metal mobility in the soil profile and metal bioavailability to levels that are not phytotoxic. Chemophytostabilisation is a process in which soil amendments and plants are used to immobilise metals. The main objective of this research was to investigate the effects of different doses of organic amendments (after aerobic sewage sludge digestion in the food industry) and inorganic amendments (lime, superphosphate, and potassium phosphate) on changes in the metals fractions in soils contaminated with Cd, Pb and Zn during phytostabilisation. In this study, the contaminated soil was amended with sewage sludge and inorganic amendments and seeded with grass (tall fescue) to increase the degree of immobilisation of the studied metals. The contaminated soil was collected from the area surrounding a zinc smelter in the Silesia region of Poland (pH 5.5, Cd 12 mg kg-1, Pb 1100 mg kg-1, Zn 700 mg kg-1). A plant growth experiment was conducted in a growth chamber for 5 months. Before and after plant growth, soil subsamples were subjected to chemical and physical analyses. To determine the fractions of the elements, a sequential extraction method was used according to Zeien and Brümmer. Research confirmed that the most important impacts on the Zn, Cd and Pb fractions included the combined application of sewage sludge from the food industry and

  18. [Heavy metal concentrations in mosses from Qiyi Glacier region].

    PubMed

    Ma, Juan-Juan; Li, Zhen

    2014-06-01

    Heavy metal (Cr, Fe, Cu, Zn, As, Cd and Pb) concentrations were measured in 17 moss samples which were collected at Qiyi Glacier Region in July, August and September, 2009 in a preliminary investigation of heavy metal pollution situation in this area. The results indicated that heavy metal concentrations in mosses were relatively high and concentrations of Fe were at the highest level (varied between 15 160.00 and 34 960.00 microg x g(-1)), followed by Zn, Cu, Cr, Pb, As, with average concentrations of 169.56, 134.81, 34.52, 26.16, 9.15 microg x g(-1). Enrichment factor analysis and correlation analysis indicated that Fe and Cr in mosses mainly stemmed from crustal dust, and concentrations of Cu, Pb, Zn and Cd were influenced by human activities; As was moderately enriched which means As in mosses was mainly originated from anthropogenic pollution. According to the Global Data Assimilation System (GDAS) meteorological data from the National Center for Environmental Prediction (NCEP) of 2009 and the simulation of the HYSPLIT v4.9 Model on 3-dimension back trajectories of air mass at Qiyi glacier district, several trajectories reflecting the main characteristics of air flow were obtained based on the classification of cluster analysis on the hundreds of back trajectories. The back trajectories revealed that atmospheric transport characteristics in the study area changed obviously by season. Compared to Spring and Autumn, atmospheric transmission sources were relatively more in Winter and Summer. The main sources of atmospheric pollutants in Qiyi Glacier region were transported from Jiuquan and Jiayuguan regions.

  19. Heavy metal partitioning in a municipal solid waste incinerator

    SciTech Connect

    Sorum, L.; Fossum, M.; Hustad, J.E.; Evensen, E.

    1997-12-01

    Norway has the following priorities for management of municipal solid waste (MSW) (1) Reduce waste generation and toxic components in waste, (2) Encourage re-use, recycling and energy recovery, and (3) Secure an environmentally safe management of residues. MSW consists of household waste and waste from the service and trade industry delivered to municipal waste treatment plants or recycling schemes. In 1995, a total of 2.7 million tons of MSW (1.26 million tons of household waste and 1.44 million tons of waste from service and trade industry) was handled as follows: 68% was deposited on landfills, 18% was combusted, 13% recycled and 1% composted. Combustion of MSW is handled in five larger plants with energy recovery located in different cities in Norway. In addition, a new incinerator for MSW is planned. This incinerator will have to meet the new emission regulations given by the European Union which are more stringent than the present regulations. Hence, Norway is moving towards more stringent regulations, leading to an increased interest in the environmental aspects of MSW incinerators. During 1995 Trondheim Energy Company carried out an investigation program to examine the residues from the incinerator. Primary attention was on the heavy metals in the bottom ash, fly ash and the landfill leacate. The program was conducted in order to establish more information about characteristics of the residues and thus be able to undertake a sounder evaluation of the environmental aspects of the final treatment of these products. This program was supplementary to the emission analysis done periodically for the flue gas and drain water. The objective of this work has been to establish knowledge about the partitioning of heavy metals through the incinerator and calculate the concentrations of heavy metal in the input MSW.

  20. Representing soil pollution by heavy metals using continuous limitation scores

    NASA Astrophysics Data System (ADS)

    Romić, Marija; Hengl, Tomislav; Romić, Davor; Husnjak, Stjepan

    2007-10-01

    The paper suggests a methodology to represent overall soil pollution in a sampled area using continuous limitation scores. The interpolated heavy metal concentrations are first transformed to limitation scores using the exponential transfer function determined by using two threshold values: permissible concentration (0 limitation points) and seriously polluted soil (4 limitation points). The limitation scores can then be summed to produce the map of cumulative limitation scores and visualize the most critically polluted areas. The methodology was illustrated using the 784 soil samples analyzed for Cd, Cr, Cu, Ni, Pb and Zn in the central region of Croatia. The samples were taken at 1×1 and 2×2 km grids and at fixed depths of 20 cm. Heavy metal concentrations in soil were determined by ICP-OES after microwave assisted aqua regia digestion. The sampled concentrations were interpolated using block regression-kriging with geology and land cover maps, terrain parameters and industrialization parameters as auxiliary predictors. The results showed that the best auxiliary predictors are geological map, ground water depth, NDVI and slope map and distance to urban areas. The spatial prediction was satisfactory for Cd, Ni, Pb and Zn, and somewhat less satisfactory for Cu and Cr. The final map of cumulative limitation scores showed that 33.5% of the total area is suitable for organic agriculture and 7.2% of the total area is seriously polluted by one or more heavy metals. This procedure can be used to assess suitability of soils for agricultural production and as a basis for possible legal commitments to maintain the soil quality.

  1. Heavy metals in wild rice from northern Wisconsin

    USGS Publications Warehouse

    Bennett, J.P.; Chiriboga, E.; Coleman, J.; Waller, D.M.

    2000-01-01

    Wild rice grain samples from various parts of the world have been found to have elevated concentrations of heavy metals, raising concern for potential effects on human health. It was hypothesized that wild rice from north-central Wisconsin could potentially have elevated concentrations of some heavy metals because of possible exposure to these elements from the atmosphere or from water and sediments. In addition, no studies of heavy metals in wild rice from Wisconsin had been performed, and a baseline study was needed for future comparisons. Wild rice plants were collected from four areas in Bayfield, Forest, Langlade, Oneida, Sawyer and Wood Counties in September, 1997 and 1998 and divided into four plant parts for elemental analyses: roots, stems, leaves and seeds. A total of 194 samples from 51 plants were analyzed across the localities, with an average of 49 samples per part depending on the element. Samples were cleaned of soil, wet digested, and analyzed by ICP for Ag, As, Cd, Cr, Cu, Hg, Mg, Pb, Se and Zn. Roots contained the highest concentrations of Ag, As, Cd, Cr, Hg, Pb, and Se. Copper was highest in both roots and seeds, while Zn was highest just in seeds. Magnesium was highest in leaves. Seed baseline ranges for the 10 elements were established using the 95% confidence intervals of the medians. Wild rice plants from northern Wisconsin had normal levels of the nutritional elements Cu, Mg and Zn in the seeds. Silver, Cd, Hg, Cr, and Se were very low in concentration or within normal limits for food plants. Arsenic and Pb, however, were elevated and could pose a problem for human health. The pathway for As, Hg and Pb to the plants could be atmospheric.

  2. Using semivariogram scaled to the sample design of heavy metals

    NASA Astrophysics Data System (ADS)

    Medeiros Bezerra, Joel; Machado Siqueira, Glécio; Dafonte Dafonte, Jorge; Vidal Vazquez, Eva; Paz González, Antonio

    2013-04-01

    The "sampling intensity" issue is of important application to precision agriculture. About 80%-85 % of the total error in precision in agriculture results from the field sampling preceding the application of fertilizers and corrective practices. The spatial sampling design used to characterize the spatial variability of soil attributes is crucial to science studies. The sample planning for interpolation of a regionalized variable may use several criteria, which could be best selected from the estimated semivariogram from a previously established grid. The objective of this study was to evaluate the use of the semivariogram scaled to improve the sample design of heavy metals in an experimental plot. The study area surface is 6 ha and is located at Castro Ribeiras de Lea, Lugo, Spain. The geographical coordinates of the study area are: latitude 43° 09 '49''N and longitude 7° 29' 47''W, with average elevation of 410 m and average slope of 2 %. The mean annual temperature is 11.2 °C and mean annual rainfall is 930 mm (data 1961-1990). The soil is classified with Cambisol and the parent material are sediments from tertiary and quaternary. Heavy metals were initially sampled at 40 points randomly distributed in the study area. The heavy metals analyzed in this study were: Pb, Cd, Cu and Ni. Data were initially analyzed using descriptive statistics and geostatistical tools. The scaled semivariogram was built with the aim of setting a single theoretical semivariogram all elements studied. Subsequently, the software SANOS was used to determine the sampling optimization of new sampling points of the heavy metals. The spatial variability analysis of the studied elements using the scaled semivariogram showed the existence of a relationship between the spatial variability of these elements. The gaussian model was adjusted for Pb, Cd and Ni, and spherical models for the Cu element. The semivariogram scaled theoretical adjusted to elements in four study was Gaussian, with a

  3. Carbon based secondary compounds do not provide protection against heavy metal road pollutants in epiphytic macrolichens.

    PubMed

    Gauslaa, Yngvar; Yemets, Olena A; Asplund, Johan; Solhaug, Knut Asbjørn

    2016-01-15

    Lichens are useful monitoring organisms for heavy metal pollution. They are high in carbon based secondary compounds (CBSCs) among which some may chelate heavy metals and thus increase metal accumulation. This study quantifies CBSCs in four epiphytic lichens transplanted for 6months on stands along transects from a highway in southern Norway to search for relationships between concentrations of heavy metals and CBSCs along a gradient in heavy metal pollutants. Viability parameters and concentrations of 21 elements including nutrients and heavy metals in these lichen samples were reported in a separate paper. Medullary CBSCs in fruticose lichens (Ramalina farinacea, Usnea dasypoga) were reduced in the most polluted sites, but not in foliose ones (Parmelia sulcata, Lobaria pulmonaria), whereas cortical CBSC did not change with distance from the road in any species. Strong positive correlations only occurred between the major medullary compound stictic acid present in L. pulmonaria and most heavy metals, consistent with a chelating role of stictic acid, but not of other studied CBSCs or in other species. However, heavy metal chelating did not protect L. pulmonaria against damage because this species experienced the strongest reduction in viability in the polluted sites. CBSCs with an accumulation potential for heavy metals should be quantified in lichen biomonitoring studies of heavy metals because they, like stictic acid, could overshadow pollutant inputs in some species rendering biomonitoring data less useful. In the two fruticose lichen species, CBSCs decreased with increasing heavy metal concentration, probably because heavy metal exposure impaired secondary metabolism. Thus, we found no support for a heavy metal protection role of any CBSCs in studied epiphytic lichens. No intraspecific relationships occurred between CBSCs versus N or C/N-ratio. Interspecifically, medullary CBSCs decreased and cortical CBSCs increased with increasing C/N-ratio.

  4. Accumulation, availability, and uptake of heavy metals in a red soil after 22-year fertilization and cropping.

    PubMed

    Zhou, Shiwei; Liu, Jing; Xu, Minggang; Lv, Jialong; Sun, Nan

    2015-10-01

    Fertilization is important to increase crop yields, but long-term application of fertilizers probably aggravated the risk of heavy metals in acidic soils. In this study, the effect of 22-year fertilization and cropping on accumulation, availability, and uptake of heavy metals in red soil was investigated. The results showed that pig manure promoted significantly cadmium (Cd) accumulation (average 1.1 mg kg(-1)), nearly three times higher than national soil standards and, thus, increased metal availability. But the enrichment of heavy metals decreased remarkably by 50.5 % under manure fertilization, compared with CK (control without fertilization). On the contrary, chemical fertilizers increased greatly lead (Pb) availability and Cd activity; in particular, exceeding 85 % of soil Cd became available to plant under N (nitrogen) treatment during 9-16 years of fertilization, which correspondingly increased their enrichment by 29.5 %. Long-term application of chemical fertilizers caused soil acidification and manure fertilization led to the increase in soil pH, soil organic matter (SOM), and available phosphorus (Olsen P), which influenced strongly metal behavior in red soil, and their effect had extended to deeper soil layer (20∼40 cm). It is advisable to increase application of manure alone with low content of heavy metals or in combination with chemical fertilizers to acidic soils in order to reduce toxic metal risk.

  5. Removal of heavy metals from acid mine drainage using chicken eggshells in column mode.

    PubMed

    Zhang, Ting; Tu, Zhihong; Lu, Guining; Duan, Xingchun; Yi, Xiaoyun; Guo, Chuling; Dang, Zhi

    2017-03-01

    Chicken eggshells (ES) as alkaline sorbent were immobilized in a fixed bed to remove typical heavy metals from acid mine drainage (AMD). The obtained breakthrough curves showed that the breakthrough time increased with increasing bed height, but decreased with increasing flow rate and increasing particle size. The Thomas model and bed depth service time model could accurately predict the bed dynamic behavior. At a bed height of 10 cm, a flow rate of 10 mL/min, and with ES particle sizes of 0.18-0.425 mm, for a multi-component heavy metal solution containing Cd(2+), Pb(2+) and Cu(2+), the ES capacities were found to be 1.57, 146.44 and 387.51 mg/g, respectively. The acidity of AMD effluent clearly decreased. The ES fixed-bed showed the highest removal efficiency for Pb with a better adsorption potential. Because of the high concentration in AMD and high removal efficiency in ES fixed-bed of iron ions, iron floccules (Fe2(OH)2CO3) formed and obstructed the bed to develop the overall effectiveness. The removal process was dominated by precipitation under the alkaline reaction of ES, and the co-precipitation of heavy metals with iron ions. The findings of this work will aid in guiding and optimizing pilot-scale application of ES to AMD treatment.

  6. The study of partitioning of heavy metals during fluidized bed combustion of sewage sludge and coal

    SciTech Connect

    Gulyurtlu, I.; Lopes, M.H.; Abelha, P.; Cabrita, I.; Oliveira, J.F.S.

    2006-06-15

    The behavior of Cd, Cr, Cu, Co, Mn, Ni, Pb, Zn, and Hg during the combustion tests of a dry granular sewage sludge on a fluidized bed combustor pilot (FBC) of about 0.3 MW was evaluated. The emissions of these heavy metals from mono-combustion were compared with those of co-combustion of the sludge with a bituminous coal. The effect of the addition of limestone was also studied in order to retain sulphur compounds and to verify its influence on the retention of heavy metals (HM). Heavy metals were collected and analyzed from different locations of the installation, which included the stack, the two cyclones, and the material removed from the bed. The results showed that the volatility of metals was rather low, resulting in emissions below the legal limits of the new directive on incineration, with the exception of Hg during the mono-combustion tests. The partitioning of metals, except for Hg, appeared to follow that of ashes, amounting to levels above 90% in the bed streams in the mono-combustion case. For co-combustion, there was a lower fixation of HM in the bed ashes, mostly originating essentially from the sewage sludge, ranging between 40% and 80%. It is believed that in this latter case, a slightly higher temperature could have enhanced the volatilization, especially of Cd and Pb. However these metals were then retained in fly ashes captured in the cyclones. In the case of Hg, the volatilisation was complete. The bed ashes were free of Hg and part of Hg was retained in the cyclones and the rest was emitted either with fine ash particles or in gaseous forms. In mono-combustion the Hg emissions from the stack (particles and gas) accounted, for about 50%. This appeared to have significantly decreased in the case of co-combustion, as only about 75% has been emitted, due to the retention effect of cyclone ashes.

  7. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries.

    PubMed

    Chowdhury, Shakhawat; Mazumder, M A Jafar; Al-Attas, Omar; Husain, Tahir

    2016-11-01

    Heavy metals in drinking water pose a threat to human health. Populations are exposed to heavy metals primarily through water consumption, but few heavy metals can bioaccumulate in the human body (e.g., in lipids and the gastrointestinal system) and may induce cancer and other risks. To date, few thousand publications have reported various aspects of heavy metals in drinking water, including the types and quantities of metals in drinking water, their sources, factors affecting their concentrations at exposure points, human exposure, potential risks, and their removal from drinking water. Many developing countries are faced with the challenge of reducing human exposure to heavy metals, mainly due to their limited economic capacities to use advanced technologies for heavy metal removal. This paper aims to review the state of research on heavy metals in drinking water in developing countries; understand their types and variability, sources, exposure, possible health effects, and removal; and analyze the factors contributing to heavy metals in drinking water. This study identifies the current challenges in developing countries, and future research needs to reduce the levels of heavy metals in drinking water.

  8. Heavy metal contamination of river Yamuna, Haryana, India: Assessment by Metal Enrichment Factor of the Sediments.

    PubMed

    Kaushik, A; Kansal, Ankur; Santosh; Meena; Kumari, Shiv; Kaushik, C P

    2009-05-15

    Concentration of Heavy Metals (Cd, Cr, Fe, Ni) in water, plants and sediments of river Yamuna flowing in Haryana through Delhi are reported here selecting 14 stations covering the upstream and downstream sites of major industrial complexes of the State. Some important characteristics of river water and sediments (pH, EC, Cl(-), SO(3)(2-), and PO(4)(3-) in water and sediments, COD of water and organic matter content of sediments) were also analysed and inter-relationships of all these parameters with heavy metal concentration in different compartments were examined. The sediments of the river show significant enrichment with Cd and Ni indicating inputs from industrial sources. Concentrations of Cr are moderate and show high enrichment values only at a few sites. Enrichment factor for Fe is found to be <1, showing insignificant effect of anthropogenic flux. Concentrations of these metals in river water are generally high exceeding the standard maximum permissible limits prescribed for drinking water, particularly in the downstream sites. The aquatic plants show maximum accumulation of Fe. The other heavy metals Cd, Cr and Ni, though less in concentration, show some accumulation in the plants growing in contaminated sites. Interrelationships of metal concentration with important characteristics of water and sediment have been analysed. Analysis of heavy metals in water, sediments and littoral flora in the stretch of river Yamuna is first study of itself and interrelationship of metal concentration and other important characteristics make the study significant and interesting in analysing the pollution load at different points of the river body.

  9. Heavy metal content in rubbish bags used for separate collection of biowaste.

    PubMed

    Huerta-Pujol, Oscar; Soliva, Montserrat; Giró, Francesc; López, Marga

    2010-01-01

    The heavy metal content of several rubbish bags used to collect the organic fraction of municipal solid waste (OFMSW) is shown in this paper. Nowadays, several public awareness campaigns carried out by municipalities have promoted rubbish bags based mainly on their appearance, without concern for their heavy metal content. A high amount of heavy metals was detected in some polyethylene bags promoted in different campaigns for OFMSW source-sorted collection, while compostable bags presented low quantities of heavy metals. Some other rubbish bags, as well as commercial bags, were also analysed for comparison. These results should be taken into account before promoting the use of one or other type of bag. Moreover, the rubbish bag manufacturers should reduce the heavy metal content in order to avoid heavy metal scattering in the environment, and also to reduce the consumption of raw materials.

  10. Heavy metals in vegetables and respective soils irrigated by canal, municipal waste and tube well waters.

    PubMed

    Ismail, Amir; Riaz, Muhammad; Akhtar, Saeed; Ismail, Tariq; Amir, Mamoona; Zafar-ul-Hye, Muhammad

    2014-01-01

    Heavy metal contamination in the food chain is of serious concern due to the potential risks involved. The results of this study revealed the presence of maximum concentration of heavy metals in the canal followed by sewerage and tube well water. Similarly, the vegetables and respective soils irrigated with canal water were found to have higher heavy metal contamination followed by sewerage- and tube-well-watered samples. However, the heavy metal content of vegetables under study was below the limits as set by FAO/WHO, except for lead in canal-water-irrigated spinach (0.59 mg kg(-1)), radish pods (0.44 mg kg(-1)) and bitter gourd (0.33 mg kg(-1)). Estimated daily intakes of heavy metals by the consumption of selected vegetables were found to be well below the maximum limits. However, a complete estimation of daily intake requires the inclusion of other dietary and non-dietary exposure sources of heavy metals.

  11. Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance

    PubMed Central

    Fashola, Muibat Omotola; Ngole-Jeme, Veronica Mpode; Babalola, Olubukola Oluranti

    2016-01-01

    Mining activities can lead to the generation of large quantities of heavy metal laden wastes which are released in an uncontrolled manner, causing widespread contamination of the ecosystem. Though some heavy metals classified as essential are important for normal life physiological processes, higher concentrations above stipulated levels have deleterious effects on human health and biota. Bacteria able to withstand high concentrations of these heavy metals are found in the environment as a result of various inherent biochemical, physiological, and/or genetic mechanisms. These mechanisms can serve as potential tools for bioremediation of heavy metal polluted sites. This review focuses on the effects of heavy metal wastes generated from gold mining activities on the environment and the various mechanisms used by bacteria to counteract the effect of these heavy metals in their immediate environment. PMID:27792205

  12. Heavy metal pollution and assessment in the tidal flat sediments of Haizhou Bay, China.

    PubMed

    Zhang, Rui; Zhou, Li; Zhang, Fan; Ding, Yingjun; Gao, Jinrong; Chen, Jing; Yan, Hongqiang; Shao, Wei

    2013-09-15

    The heavy metal inventory and the ecological risk of the tidal flat sediments in Haizhou Bay were investigated. Results show that the average concentrations of heavy metals in the surface sediments exceeded the environment background values of Jiangsu Province coastal soil, suggesting that the surface sediments were mainly polluted by heavy metals (Cd, Cr, Cu, Mn, Pb and Zn). In addition, the profiles of heavy metals fluxes can reflect the socio-economic development of Lianyungang City, and heavy metals inputs were attributed to anthropogenic activities. Cr, Cu, Pb and Zn were mainly present in the non-bioavailable residual form in surface sediments, whereas Cd and Mn were predominantly in the highly mobile acid soluble and reducible fractions. The ecological risk of the polluted sediments stemmed mainly from Cd and Pb. According to the Sediment quality guidelines (SQGs), however, the adverse biological effects caused by the heavy metals occasionally occurred in tidal flat.

  13. Use of dried aquatic plant roots to adsorb heavy metals

    SciTech Connect

    Robichaud, K.D.

    1996-12-31

    The removal of heavy metal ions by dried aquatic macrophytes was investigated. The ability of the biomass, Eichhornia crassipes (water hyacinth), Typha latifolia (cattail), Sparganium minimum (burr reed) and Menyanthes trifoliata to abstract lead and mercury ions is presented here, along with a conceptual filter design. This paper examines an alternative to both the traditional and recent systems designed for metal removal. It involves the use of dried aquatic macrophytes. There are numerous advantages for the use of dried macrophytes in the treatment of industrial wastewater. First, it is cost-effective. There are also funding opportunities through a variety of Environmental Protection Agency`s (EPA) programs. It is more environmentally conscious because a wetland, the harvesting pond, has been created. And, it creates public goodwill by providing a more appealing, less hardware-intensive, natural system.

  14. Genetic manipulation of a cyanobacterium for heavy metal detoxivication

    SciTech Connect

    McCormick, P.; Cannon, G.; Heinhorst, S.

    1995-12-31

    Increasing heavy metal contamination of soil and water has produced a need for economical and effective methods to reduce toxic buildup of these materials. Biological systems use metallothionein proteins to sequester such metals as Cu, Cd, and Zn. Studies are underway to genetically engineer a cyanobacteria strain with increased ability for metallothionein production and increased sequestration capacity. Cyanobacteria require only sunlight and CO{sub 2}. Vector constructs are being developed in a naturally competent, unicellular cyanobacterium Anacystis nidulans R2. Closed copies of a yeast copper metallothionein gene have been inserted into a cyanobacterial shuttle vector as well as a vector designed for genomic integration. Transformation studies have produced recombinant cyanobacteria from both of these systems, and work is currently underway to assess the organism`s ability to withstand increasing Cu, Cd, and Zn concentrations.

  15. Natural and technogenic compounds of heavy metals in soils

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.

    2014-04-01

    The existing geological classification of heavy metals (HMs) is not suitable for their characterization in soils. The carriers of HMs in soils differ from those in the lithosphere. These are clay minerals; iron oxides, whose composition varies between the background and urban soils; various manganese oxides; and different groups of organic substances. The mineral composition of HM carriers can vary significantly. The main iron oxides are ferrihydrite, goethite, feroxyhyte, and lepidocrocite in the background soils and technogenic magnetite in the urban soils. The different structures of manganese oxides determine their affinity for specific HMs. Metallic iron and green rust are very efficient in artificial geochemical barriers, although they act as strong reducers there. HM compounds strongly vary in soils because of the unstable conditions.

  16. Heavy Metal Removal in a Detention Basin for Road Runoff

    NASA Astrophysics Data System (ADS)

    Belizario, Paulo; Scalize, Paulo; Albuquerque, Antonio

    2016-11-01

    Road runoff produced during rainfalls has significant pollutant load, which can cause important environmental impacts on waste and soil. The efficiency of a detention basin for removing heavy metals (Cr, Cu and Zn) in road runoffwas evaluated for 8 rainfalls over one year with different intensities (between 16mmand 103 mm) and durations (higher than 3 hours). The basin showed good performance for removing all metals for precipitation intensities between 16mmand 103mmand rainfall durations up to 3 hours. The volume of the basin is suitable for retaining all the road runoff coming from rainfalls with intensities lower than 29.4mmand duration longer than 6 hours. This type of monitoring should be introduced in Environmental Monitoring Plans of roads because it allows evaluating the effectiveness of treatment systems and preventing the possible impacts of discharges into the environment.

  17. Mosh pits and Circle pits: Collective motion at heavy metal concerts

    NASA Astrophysics Data System (ADS)

    Bierbaum, Matthew; Silverberg, Jesse L.; Sethna, James P.; Cohen, Itai

    2013-03-01

    Heavy metal concerts present an extreme environment in which large crowds (~102 -105) of humans experience very loud music (~ 130 dB) in sync with bright, flashing lights, often while intoxicated. In this setting, we find two types of collective motion: mosh pits, in which participants collide with each other randomly in a manner resembling an ideal gas, and circle pits, in which participants run collectively in a circle forming a vortex of people. We model these two collective behaviors using a flocking model and find qualitative and quantitative agreement with the behaviors found in videos of metal concerts. Futhermore, we find a phase diagram showing the transition from a mosh pit to a circle pit as well as a predicted third phase, lane formation.

  18. Facet-dependent electrochemical properties of Co3O4 nanocrystals toward heavy metal ions

    PubMed Central

    Yu, Xin-Yao; Meng, Qiang-Qiang; Luo, Tao; Jia, Yong; Sun, Bai; Li, Qun-Xiang; Liu, Jin-Huai; Huang, Xing-Jiu

    2013-01-01

    We revealed an interesting facet-dependent electrochemical behavior toward heavy metal ions (HMIs) based on their adsorption behaviors. The (111) facet of Co3O4 nanoplates has better electrochemical sensing performance than that of the (001) facet of Co3O4 nanocubes. Adsorption measurements and density-functional theory (DFT) calculations reveals that adsorption of HMIs is responsible for the difference of electrochemical properties. Our combined experimental and theoretical studies provide a solid hint to explain the mechanism of electrochemical detection of HMIs using nanoscale metal oxides. Furthermore, this study not only suggests a promising new strategy for designing high performance electrochemical sensing interface through the selective synthesis of nanoscale materials exposed with different well-defined facets, but also provides a deep understanding for a more sensitive and selective electroanalysis at nanomaterials modified electrodes. PMID:24097175

  19. Comparison of bioleaching and electrokinetic remediation processes for removal of heavy metals from wastewater treatment sludge.

    PubMed

    Xu, Ying; Zhang, Chaosheng; Zhao, Meihua; Rong, Hongwei; Zhang, Kefang; Chen, Qiuli

    2017-02-01

    Heavy metals prevent the growing amount of sewage sludge from being disposed as fertilizeron land. The electrokinetic remediation and bioleaching technology are the promising methods to remove heavy metals. In recent years, some innovation has been made to achieve better efficiency, including the innovation of processes and agents. This paper reviews the development of the electrokinetic remediation and bioleaching technology and analyses their advantages and limitation, pointing out the need of the future research for the heavy metals-contaminated sewage sludge.

  20. Triboelectrification-Enabled Self-Powered Detection and Removal of Heavy Metal Ions in Wastewater.

    PubMed

    Li, Zhaoling; Chen, Jun; Guo, Hengyu; Fan, Xing; Wen, Zhen; Yeh, Min-Hsin; Yu, Chongwen; Cao, Xia; Wang, Zhong Lin

    2016-04-20

    A fundamentally new working principle into the field of self-powered heavy-metal-ion detection and removal using the triboelectrification effect is introduced. The as-developed tribo-nanosensors can selectively detect common heavy metal ions. The water-driven triboelectric nanogenerator is taken as a sustainable power source for heavy-metal-ion removal by recycling the kinetic energy from flowing wastewater.

  1. The National Shipbuilding Research Program, Heavy Metal Adsorbents for Storm Water Pollution Prevention

    DTIC Science & Technology

    1997-12-01

    Heavy Metal Adsorbents for Storm Water Pollution Prevention U.S. DEPARTMENT OF THE NAVY CARDEROCK DIVISION, NAVAL SURFACE WARFARE CENTER in...National Shipbuilding Research Program, Heavy Metal Adsorbents for Storm Water Pollution Prevention 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...States Navy. ANY POSSIBLE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR PURPOSE ARE SPECIFICALLY DISCLAIMED. FINAL REPORT HEAVY METAL ADSORBENTS

  2. Benzylamine-Free, Heavy-Metal-Free Synthesis of CL-20

    DTIC Science & Technology

    2006-12-28

    Approved for public release; distribution is unlimited Benzylamine-Free, Heavy - Metal -Free Synthesis of CL-20 SERDP SEED Project WP-1518...PERSON 19b. TELEPHONE NUMBER (Include area code) 28-12-2006 Final Dec 2005–Dec 2006 Benzylamine-Free, Heavy - Metal -Free Synthesis of CL-20 603716D WP...17 Figure 5. Benzylamine-free, heavy - metal -free route to CL-20..................................................... 21 Figure A-1. 1H NMR spectrum of

  3. Heavy metals processing near-net-forming summary progress report

    SciTech Connect

    Watson, L.D.; Thompson, J.E.

    1994-09-01

    This study utilized a converging-diverging nozzle to spray-form an alloy having a weight percent composition of 49.6% iron, 49.6% tungsten, and 0.8% carbon into samples for analysis. The alloy was a surrogate that displayed metallurgical characteristics similar to the alloys used in the heavy metals processing industry. US DOE facilities are evaluating advanced technologies which can simplify component fabrication, reduce handling steps, and minimize final machining. The goal of producing net-shaped components can be approached from several directions. In spray forming, molten metal is converted by a nozzle into a plume of fine droplets which quickly cool in flight and solidify against a substrate. The near-final dimension product that is formed receives additional benefits from rapid solidification. This single-step processing approach would aid the heavy metals industry by streamlining fabrication, improving production yields, and minimizing the generation of processing wastes. This Program effort provided a large selection of as-sprayed specimens. These samples were sprayed with gas-to-metal mass ratios ranging from 0.8:1 to 4:1. Samples targeted for analysis were produced from different spray conditions. Metallography on some samples revealed areas that were fully dense and homogeneous at 5,000X. These areas averaged grain sizes of 1 micron diameter. Other samples when viewed at 2,000X were highly segregated in the 10 micron diameter range. Deposit efficiencies of greater than 90% were demonstrated using the untailored spray system. Discharge gases were analyzed and two categories of particles were identified. One category of particle had a chemical composition characteristic of the alloy being sprayed and the second type of particle had a chemical composition characteristic of the ceramics used in the spray system component fabrication. Particles ranged in size from 0.07 to 3 microns in diameter. 8 refs., 67 figs., 20 tabs.

  4. Heavy metal bioaccumulation by wild edible saprophytic and ectomycorrhizal mushrooms.

    PubMed

    Širić, Ivan; Humar, Miha; Kasap, Ante; Kos, Ivica; Mioč, Boro; Pohleven, Franc

    2016-09-01

    Heavy metals cause serious problems in the environment, and they can be accumulated in organisms, especially in the higher fungi. The concentration of Ni, Cr, Pb, Cd, and Hg in 10 species of edible mushrooms in Medvednica Nature Park, Croatia was therefore determined. In addition, the similarity between the studied species was determined by cluster analysis based on concentrations of the aforementioned metals in the fruiting bodies. The contents of nickel, chromium, lead, cadmium, and mercury in the fruiting bodies of mushrooms were obtained by X-ray fluorescence spectrometry. The highest concentrations of Ni (3.62 mg kg(-1)), Cr (3.01 mg kg(-1)), and Cd (2.67 mg kg(-1)) were determined in Agaricus campestris. The highest concentration of Pb (1.67 mg kg(-1)) was determined in Macrolepiota procera, and the highest concentration of Hg (2.39 mg kg(-1)) was determined in Boletus edulis. The concentration of all heavy metals significantly differed (p < 0.001) between examined saprophytic and ectomycorrhizal mushrooms. Considering anatomical part of the fruiting body (cap-stipe), a considerably higher concentration of the analyzed elements was found in the cap for all mushroom species. According to calculated bioconcentration factors, all the examined species were found to be bioexclusors of Ni, Cr, and Pb and bioaccumulators of Cd and Hg. Cluster analysis performed on the basis of the accumulation of the studied metals revealed great phenotypic similarity of mushroom species belonging to the same genus and partial similarity of species of the same ecological affiliation.

  5. Mapping of available heavy metals in Catamarca (Argentina)

    NASA Astrophysics Data System (ADS)

    Roca, N.; Pazos, M. S.; Bech, J.

    2009-04-01

    Copper, iron, manganese and zinc are four essential elements for plant growth. Mapping heavy metal migration and distribution in soils is a preliminary step in assessing heavy metal availability in soils. However, data of qualitative and quantitative trace elements composition of soils of Argentina are scarce. Despite the small amounts required by plants, agricultural soils are usually deficient in one or more micronutrients, therefore, their concentration in plant tissues falls below the levels that allow optimal growth. Soil nature plays a fundamental role in the availability of micronutrients and their behaviour at a soil-plant level. The aim of this study is to determine the plant availability and areas of deficiency in agricultural soils with risk of salinization. The presented maps have been elaborated on the basis of the information provided by the monochromatic aerial photographs, scale 1:7000 and projected using the topographic information of the National Topographic Maps. Soils were sampled according to the spatial variation of soil types and land use. Sampling points were geo-referenced. Soil samples were analyzed at the laboratory for complete physicochemical and mineralogical characteristics. The percentage of organic matter is the determining factor in the presence and distribution of the available metals in the soils of the studied area, being the top horizon the one of greatest accumulation. CuDTPA, FeDPTA and MnDPTA are mobile within the profile, whereas ZnDPTA remains adsorbed without vertical displacement. ZnDTPA is the only available metal which also shows differences due to soil salinity and textural classes. However, soil geochemical conditions imply low extractability and a certain difficulty for micronutrient absorption by plants.

  6. [Effect of arbuscular mycorrhizae on growth, heavy metal uptake and accumulation of Zenia insignis Chun seedlings].

    PubMed

    Li, Xia; Peng, Xia-Wei; Wu, Song-Lin; Li, Zhi-Ru; Feng, Hong-Mei; Jiang, Ze-Ping

    2014-08-01

    To solve the trace metal pollution of a Pd/Zn mine in Hunan province, a greenhouse pot experiment was conducted to investigate the effect of two arbuscular mycorrhizal fungi, Glomus mosseae (Gm) and Glomus intraradices (Gi), on the growth, heavy metal uptake and accumulation of Zenia insignis Chun, the pioneer plant there. The results showed that symbiotic associations were successfully established between the two isolates and Z. insignis in heavy metal contaminated soil. AM fungi improved P absorption, biomass and changed heavy metal uptake and distribution of Z. insignis. AM fungi-inoculated plants had significantly lower Fe, Cu, Zn, Pd concentrations and higher Fe, Cu, Zn, Pd accumulation than non-inoculated plants. However, Gm and Gi showed different mycorrhizal effects on the distribution of heavy metal in hosts, depending on the species of heavy metal. Gi-inoculated Z. insignis showed significantly lower TF values of Fe, Zn, Pd than Gm and non-inoculated plants, while both strains had no effect on TF value of Cu, which indicated that Gi enhanced trace metal accumulation in root system, playing a filtering/sequestering role in the presence of trace metals. The overall results demonstrated that AM fungi had positive effect on Z. insignis in enhancing the ability to adapt the heavy metal contaminated soil and played potential role in the revegetation of heavy metal contaminated soil. But in practical application, the combination of AM, hosts and heavy metal should be considered.

  7. Sources of heavy metals in urban wastewater in Stockholm.

    PubMed

    Sörme, L; Lagerkvist, R

    2002-10-21

    The sources of heavy metals to a wastewater treatment plant was investigated. Sources can be actual goods, e.g. runoff from roofs, wear of tires, food, or activities, e.g. large enterprises, car washes. The sources were identified by knowing the metals content in various goods and the emissions from goods to sewage or stormwater. The sources of sewage water and stormwater were categorized to enable comparison with other research and measurements. The categories were households, drainage water, businesses, pipe sediment (all transported in sewage water), atmospheric deposition, traffic, building materials and pipe sediment (transported in stormwater). Results show that it was possible to track the sources of heavy metals for some metals such as Cu and Zn (110 and 100% found, respectively) as well as Ni and Hg (70% found). Other metals sources are still poorly understood or underestimated (Cd 60%, Pb 50%, Cr 20% known). The largest sources of Cu were tap water and roofs. For Zn the largest sources were galvanized material and car washes. In the case of Ni, the largest sources were chemicals used in the WTP and drinking water itself. And finally, for Hg the most dominant emission source was the amalgam in teeth. For Pb, Cr and Cd, where sources were more poorly understood, the largest contributors for all were car washes. Estimated results of sources from this study were compared with previously done measurements. The comparison shows that measured contribution from households is higher than that estimated (except Hg), leading to the conclusion that the sources of sewage water from households are still poorly understood or that known sources are underestimated. In the case of stormwater, the estimated contributions are rather well in agreement with measured contributions, although uncertainties are large for both estimations and measurements. Existing pipe sediments in the plumbing system, which release Hg and Pb, could be one explanation for the missing amount of

  8. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents.

    PubMed

    Ayangbenro, Ayansina Segun; Babalola, Olubukola Oluranti

    2017-01-19

    Persistent heavy metal pollution poses a major threat to all life forms in the environment due to its toxic effects. These metals are very reactive at low concentrations and can accumulate in the food web, causing severe public health concerns. Remediation using conventional physical and chemical methods is uneconomical and generates large volumes of chemical waste. Bioremediation of hazardous metals has received considerable and growing interest over the years. The use of microbial biosorbents is eco-friendly and cost effective; hence, it is an efficient alternative for the remediation of heavy metal contaminated environments. Microbes have various mechanisms of metal sequestration that hold greater metal biosorption capacities. The goal of microbial biosorption is to remove and/or recover metals and metalloids from solutions, using living or dead biomass and their components. This review discusses the sources of toxic heavy metals and describes the groups of microorganisms with biosorbent potential for heavy metal removal.

  9. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents

    PubMed Central

    Ayangbenro, Ayansina Segun; Babalola, Olubukola Oluranti

    2017-01-01

    Persistent heavy metal pollution poses a major threat to all life forms in the environment due to its toxic effects. These metals are very reactive at low concentrations and can accumulate in the food web, causing severe public health concerns. Remediation using conventional physical and chemical methods is uneconomical and generates large volumes of chemical waste. Bioremediation of hazardous metals has received considerable and growing interest over the years. The use of microbial biosorbents is eco-friendly and cost effective; hence, it is an efficient alternative for the remediation of heavy metal contaminated environments. Microbes have various mechanisms of metal sequestration that hold greater metal biosorption capacities. The goal of microbial biosorption is to remove and/or recover metals and metalloids from solutions, using living or dead biomass and their components. This review discusses the sources of toxic heavy metals and describes the groups of microorganisms with biosorbent potential for heavy metal removal. PMID:28106848

  10. Comprehensive assessment of heavy metal contamination in sediment of the Pearl River Estuary and adjacent shelf.

    PubMed

    Yang, Yongqiang; Chen, Fanrong; Zhang, Ling; Liu, Jinsong; Wu, Shijun; Kang, Mingliang

    2012-09-01

    Total metal concentrations (Cr, Ni, Cu, Zn, and Pb), acid volatile sulfide and simultaneously extracted metals (AVS-SEM), and heavy metal fractionation were used to assess the heavy metals contamination status and ecological risk in the sediments of the Pearl River Estuary (PRE) and adjacent shelf. Elevated concentrations at estuarine sites and lower concentrations at adjacent shelf sites are observed, especially for Cu and Zn. Within the PRE, the concentration of heavy metals in the western shore was mostly higher than that in the middle shore. The metals from anthropogenic sources mainly occur in the labile fraction and may be taken up by organisms as the environmental parameters change. A combination of total metal concentrations, metal contamination index and sequential extraction analysis is necessary to get the comprehensive information on the baseline, anthropogenic discharge and bioavailability of heavy metals.

  11. An effective means of biofiltration of heavy metal contaminated water bodies using aquatic weed Eichhornia crassipes.

    PubMed

    Tiwari, Suchi; Dixit, Savita; Verma, Neelam

    2007-06-01

    Various aquatic plant species are known to accumulate heavy metals through the process of bioaccumulation. World's most troublesome aquatic weed water hyacinth (Eichhornia crassipes) has been studied for its tendency to bio-accumulate and bio-magnify the heavy metal contaminants present in water bodies. The chemical investigation of plant parts has shown that it accumulates heavy metals like lead (Pb), chromium (Cr), zinc (Zn), manganese (Mn) and copper (Cu) to a large extent. Of all the heavy metals studied Pb, Zn and Mn tend to show greater affinity towards bioaccumulation. The higher concentration of metal in the aquatic weed signifies the biomagnification that lead to filtration of metallic ions from polluted water. The concept that E. crassipes can be used as a natural aquatic treatment system in the uptake of heavy metals is explored.

  12. Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing

    DOEpatents

    Gay, Eddie C.

    1995-01-01

    An electrochemical method of separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500.degree. C. The method comprises positioning a solid Li--Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode.

  13. Magnetic evidence for heavy metal pollution of topsoil in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Wang, Guan; Liu, Yuan; Chen, Jiao; Ren, Feifan; Chen, Yuying; Ye, Fangzhou; Zhang, Weiguo

    2017-03-01

    This study presents the results obtained from magnetic susceptibility and heavy metal (Cu, Zn, Pb, and Cr) concentration measurements of soil profiles collected from arable land and urban parks in Baoshan District, an industrial district of Shanghai, China. The study focuses on the investigation of vertical variations in magnetic susceptibilities and heavy metal concentrations and on correlations between magnetic susceptibilities and heavy metal concentrations in soil profiles. The results demonstrate that magnetic enhancement in the surface layer of the soil profile is associated with increased heavy metal pollution. The enrichment factors (EF) and the Tomlinson Pollution Load Index (PLI-EF) are calculated for estimating the level of heavy metal pollution of soil profiles in the study. The significant positive correlations between heavy metal contents, enrichment factors (EF), Tomlinson pollution load index (PLI-CF), modified Tomlinson pollution load index (PLI-EF), and magnetic susceptibility (c) indicate that much of the heavy metal contamination in the study area is linked to combustion derived particulate emissions. The results confirm that the combined magnetic measurement and heavy metal concentration analysis could provide useful information for soil monitoring in urban environments. However, the use of magnetic technique to locate the heavy metal pollution boundary in the soil profile of this studied area should be confirmed by further geochemical analysis.

  14. [Rhizospheria bacteria of Poplus euphratica improve resistance of wood plants to heavy metals].

    PubMed

    Chen, Wen; Ouyang, Li-ming; Kong, Pei-jun; Yang, Ze-yu; Wu, Wei; Zhu, Dong-lin; Zhang, Li-li

    2015-09-01

    Populus euphratica is a special kind of woody plant, which lives in desert area of northwestern China and is strongly resistant to multiple abiotic stresses. However, the knowledge about the ecology and physiological roles of microbes associated with P. euphratica is still not enough. In this paper, we isolated 72 strains resistant to heavy metals from rhizospheric soil of wild P. euphratica forest in Shaya County of Xinjiang. There were 50 strains conveying resistance to one of four heavy metals (Cu2+, Ni2+, Pb2+ or Zn2+), and 9 strains were resistant to at least three kinds of these heavy metals. Five of the multi-heavy metal resistant bacteria were inoculated to bamboo willow and the growth inhibition of plant under stresses of Cu2+ or Zn2+ was found to be alleviated to different extent. Among the 5 strains, Pseudomonas sp. Z30 and Cupriavidus sp. N8 significantly improved the growth of plant under stresses of both zinc and copper when compared to the uninoculated controls. The results showed the diversity of heavy metal resistant bacteria associated with P. euphratica which lived in a non-heavy metal polluted area and some of the multi-heavy metal resistant bacteria may greatly improve the growth of host plant under heavy metal.stress. The PGPB associated with P. euphratica has potential application in the xylophyte-microbe remediation of environmental heavy metal pollution.

  15. Heavy Metal Bioaccumulation in an Atypical Primitive Neuroectodermal Tumor of the Abdominal Wall.

    PubMed

    Roncati, Luca; Gatti, Antonietta Morena; Capitani, Federico; Barbolini, Giuseppe; Maiorana, Antonio; Palmieri, Beniamino

    2015-01-01

    Heavy metals are able to interfere with the function of vital cellular components. Besides in trace heavy metals, which are essential at low concentration for humans, there are heavy metals with a well-known toxic and oncogenic potential. In this study, for the first time in literature, we report the unique adulthood case of an atypical primitive neuroectodermal tumor of the abdominal wall, diagnosed by histology and immunohistochemistry, with the molecular hybridization support. The neoplasia occurred in a patient chronically exposed to a transdermal delivery of heavy metal salts (aluminum and bismuth), whose intracellular bioaccumulation has been revealed by elemental microanalysis.

  16. Bioaccumulation of heavy metals in the wolf spider, Pardosa astrigera L. Koch (Araneae: Lycosidae).

    PubMed

    Jung, Myung-Pyo; Lee, Joon-Ho

    2012-03-01

    Previous studies have proposed that Pardosa astrigera L. Koch (Lycosidae) can be used as a biological indicator of heavy metal contamination in soil. In this study, we estimated the bioaccumulation levels and the bioconcentration factors (BCF) of four heavy metals (Cd, Cu, Pb, and Zn) in adult female P. astrigera collected from various field sites according to heavy metal content gradient and broods. The relationship between heavy metal content in the soil and that in spiders was different depending on the heavy metals and the broods. However, heavy metal content in P. astrigera increased with increasing heavy metal content in the soil. While the heavy metal content in the soil was in the order of Zn > Pb > Cu > Cd, its content in P. astrigera was in the order Zn > Cu > Cd > Pb. The BCF for Cd in both of the broods was distinctly higher than those of the other heavy metals evaluated. These results indicate that P. astrigera may be useful as a biological indicator of Cd soil contamination.

  17. Determination of heavy metals in soil and different parts of Diplazium esculentum (medicinal fern)

    NASA Astrophysics Data System (ADS)

    Jasim, Hind S.; Idris, Mushrifah; Abdullah, Aminah; Kadhum, A. A. H.

    2014-09-01

    Diplazium esculentum is a widely used medicinal fern in Malaysia and other regions worldwide. Heavy metals in plants should be determined because prolonged human intake of toxic trace elements, even at low doses, results in organ malfunction and causes chronic toxicity. Hence, substantial information should be obtained from plants that grow on soils containing high concentrations of heavy metals. This study aimed to determine the physicochemical characteristics of soil and heavy metal concentrations (Pb, Cr, Mn, Cu, and Zn) in different parts of D. esculentum and soil, which were collected from the fern garden of Universiti Kebangsaan Malaysia. Results showed that heavy metals were highly accumulated in D. esculentum roots.

  18. Adaptive Engineering of Phytochelatin-based Heavy Metal Tolerance*

    PubMed Central

    Cahoon, Rebecca E.; Lutke, W. Kevin; Cameron, Jeffrey C.; Chen, Sixue; Lee, Soon Goo; Rivard, Rebecca S.; Rea, Philip A.; Jez, Joseph M.

    2015-01-01

    Metabolic engineering approaches are increasingly employed for environmental applications. Because phytochelatins (PC) protect plants from heavy metal toxicity, strategies directed at manipulating the biosynthesis of these peptides hold promise for the remediation of soils and groundwaters contaminated with heavy metals. Directed evolution of Arabidopsis thaliana phytochelatin synthase (AtPCS1) yields mutants that confer levels of cadmium tolerance and accumulation greater than expression of the wild-type enzyme in Saccharomyces cerevisiae, Arabidopsis, or Brassica juncea. Surprisingly, the AtPCS1 mutants that enhance cadmium tolerance and accumulation are catalytically less efficient than wild-type enzyme. Metabolite analyses indicate that transformation with AtPCS1, but not with the mutant variants, decreases the levels of the PC precursors, glutathione and γ-glutamylcysteine, upon exposure to cadmium. Selection of AtPCS1 variants with diminished catalytic activity alleviates depletion of these metabolites, which maintains redox homeostasis while supporting PC synthesis during cadmium exposure. These results emphasize the importance of metabolic context for pathway engineering and broaden the range of tools available for environmental remediation. PMID:26018077

  19. Adaptive Engineering of Phytochelatin-based Heavy Metal Tolerance.

    PubMed

    Cahoon, Rebecca E; Lutke, W Kevin; Cameron, Jeffrey C; Chen, Sixue; Lee, Soon Goo; Rivard, Rebecca S; Rea, Philip A; Jez, Joseph M

    2015-07-10

    Metabolic engineering approaches are increasingly employed for environmental applications. Because phytochelatins (PC) protect plants from heavy metal toxicity, strategies directed at manipulating the biosynthesis of these peptides hold promise for the remediation of soils and groundwaters contaminated with heavy metals. Directed evolution of Arabidopsis thaliana phytochelatin synthase (AtPCS1) yields mutants that confer levels of cadmium tolerance and accumulation greater than expression of the wild-type enzyme in Saccharomyces cerevisiae, Arabidopsis, or Brassica juncea. Surprisingly, the AtPCS1 mutants that enhance cadmium tolerance and accumulation are catalytically less efficient than wild-type enzyme. Metabolite analyses indicate that transformation with AtPCS1, but not with the mutant variants, decreases the levels of the PC precursors, glutathione and γ-glutamylcysteine, upon exposure to cadmium. Selection of AtPCS1 variants with diminished catalytic activity alleviates depletion of these metabolites, which maintains redox homeostasis while supporting PC synthesis during cadmium exposure. These results emphasize the importance of metabolic context for pathway engineering and broaden the range of tools available for environmental remediation.

  20. Mussel Shell Evaluation as Bioindicator For Heavy Metals

    NASA Astrophysics Data System (ADS)

    Andrello, Avacir Casanova; Lopes, Fábio; Galvão, Tiago Dutra

    2010-05-01

    Recently, in Brazil, it has appeared a new and unusual "plague" in lazer and commercial fishing. It is caused by the parasitic larval phase of certain native bivalve mollusks of fresh water known as "Naiades" and its involves the presence of big bivalve of fresh water, mainly Anodontites trapesialis, in the tanks and dams of the fish creation. These bivalve mollusks belong to the Unionoida Order, Mycetopodidae Family. The objective of the present work was to analyze the shells of these mollusks to verify the possibility of use as bioindicators for heavy metals in freshwater. The mollusks shells were collected in a commercial fishing at Londrina-PR. A qualitative analysis was made to determine the chemical composition of the shells and verify a possible correlation with existent heavy metals in the aquatic environment. In the inner part of the shells were identified the elements Ca, P, Fe, Mn and Sr and in the outer part were identified Ca, P, Fe, Mn, Sr and Cu. The Ca ratio of the outer part by inner part of the analyzed shells is around of 1, as expected, because Ca is the main compound of mollusks shells. The ratio of P, Fe, Mn, and Sr to the Ca were constant in all analyzed shells, being close to 0.015. The ratio Cu/Ca varied among the shells, showing that this mollusk is sensitive to concentration of this element in the aquatic environment.

  1. EM Task 13 - Cone Penetrometer for Subsurface Heavy Metals Detection

    SciTech Connect

    Ames A. Grisanti; Charlene R. Crocker

    1998-11-01

    Surface and subsurface contamination of soils by heavy metals, including Pb, Cr, Cu, Zn, and Cd has become an area of concern for many industrial and government organizations (1) Conventional sampling and analysis techniques for soil provide a high degree of sensitivity and selectivity for individual analytes. However, obtaining a representative sampling and analysis from a particular site using conventional techniques is time consuming and costly (2) Additionally, conventional methods are difficult to implement in the field for in situ and/or real-time applications. Therefore, there is a need for characterization and monitoring techniques for heavy metals in soils that allow cost-effective, rapid, in situ measurements. The overall objectives of this project are to evaluate potential calibration techniques for the laser-induced breakdown spectroscopy (LIBS)-CPT instrument, to provide a preliminary evaluation of the LIBS instrument calibration using samples obtained from the field and to provide technical support to field demonstration of the LIBS-CPT instrument at a DOE facility.

  2. Chemical methods and phytoremediation of soil contaminated with heavy metals.

    PubMed

    Chen, H M; Zheng, C R; Tu, C; Shen, Z G

    2000-07-01

    The effects of chemical amendments (calcium carbonate (CC), steel sludge (SS) and furnace slag (FS)) on the growth and uptake of cadmium (Cd) by wetland rice, Chinese cabbage and wheat grown in a red soil contaminated with Cd were investigated using a pot experiment. The phytoremediation of heavy metal contaminated soil with vetiver grass was also studied in a field plot experiment. Results showed that treatments with CC, SS and FS decreased Cd uptake by wetland rice, Chinese cabbage and wheat by 23-95% compared with the unamended control. Among the three amendments, FS was the most efficient at suppressing Cd uptake by the plants, probably due to its higher content of available silicon (Si). The concentrations of zinc (Zn), lead (Pb) and Cd in the shoots of vetiver grass were 42-67%, 500-1200% and 120-260% higher in contaminated plots than in control, respectively. Cadmium accumulation by vetiver shoots was 218 g Cd/ha at a soil Cd concentration of 0.33 mg Cd/kg. It is suggested that heavy metal-contaminated soil could be remediated with a combination of chemical treatments and plants.

  3. Bioindication of heavy metals in soil by liverworts.

    PubMed

    Samecka-Cymerman, A; Marczonek, A; Kempers, A J

    1997-08-01

    Studies were made of the accumulation of the heavy metals Ba, Cd, Co, Cr, Cu, Fe, Hg, Ni, Pb, Sr, V, and Zn and the macroelements N, P, K, Ca, and Mg in liverworts Conocephalum conicum, Marchantia polymorphia, and Pellia epiphylla collected from 57 microhabitats in Poland (Lower Silesia, Tatry Mts., and Puszcza Augustowska forest) and one microhabitat in the Czech Republic (Moravsky Kras). Ecological differentiation of Conocephalum conicum, Marchantia polymorpha and Pellia epiphylla populations is closely correlated with the soil chemistry. The evidence for this assumption are the significant positive correlations between concentrations of elements in soil and in the examined liverworts. In particular, correlations between contents of chromium and cobalt in soil and in Conocephalum conicum and between nickel, chromium, copper, and barium in soil and in Pellia epiphylla prove that these plants can be useful in monitoring of contamination of soil with elements mentioned above. Concentrations of cobalt in almost all the examined liverworts surpass the average background values of this element established for terrestrial bryophytes what proves that these plants tolerate increased accumulated amounts of this element and may therefore act as bioindicator for this heavy metal. Cationic equilibrium of Conocephalum conicum, Marchantia polymorpha and Pellia epiphylla examined according to Czarnowski (1977) pointed to the existence of some disturbances in ionic balance of these plants caused probably by elevated concentrations of microelements (especially iron, cobalt, lead, and copper) in their tissues.

  4. Joint toxicity of heavy metals and chlorobenzenes to pyriformis Tetrahymena.

    PubMed

    Zhang, Tian; Li, Xi; Lu, Yang; Liu, Peng; Zhang, Chaocan; Luo, Hui

    2014-06-01

    Chlorobenzens and heavy metals are frequently detected in the environment, but few studies have assessed the joint toxicity of organic and inorganic contaminants. The joint toxicity of heavy metals and chlorobenzenes was evaluated in the present study. Growth metabolism of the joint toxicity was studied by microcalorimetry at 28°C, the growth constant (k) and inhibitory ratio (I) were calculated. Toxic unit (TU) and additional index (AI) were introduced to determine the outcome in combined tests, and the coexistence of Cu, Cd, Cr(III) and p-chlorobenzene was antagonism, and the effect of Cu, Cd, Cr(III) and o-chlorobenzene, Cu and 1,2,4-trichlorobenzene were synergism. In addition, micro-situation of the cell membrane surface of pyriformis Tetrahymena was observed by SEM. The cells suffered serious damage after sufficient acting time. ATR-FTIR spectra revealed that amide groups and PO2(-) of the phospholipid phospho-diester, both in the hydrophobic end exposed to the outer layer, were the easiest to be damaged.

  5. [Immobilization of heavy metal Pb2+ with geopolymer].

    PubMed

    Jin, Man-tong; Jin, Zan-fang; Huang, Cai-ju

    2011-05-01

    A series of geopolymers were synthesized by mixing metakaolinite, water glass, sodium hydroxide and water, and the lead ion solidification experiments were performed with the geopolymer. Then, the immobilization efficiency was characterized by monitoring the leaching concentration and compressive strength of solidified products. Additionally, the structure and properties of the solidified products were studied by X-ray diffraction (XRD), scan electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Furthermore, based on the analysis of immobilization efficiency, microstructure and mineral structure, the difference between geopolymer and cement on the performance of immobilizing heavy metals was discussed. The results of lead ion immobilization experiments showed that over 99.7% of heavy metal was captured by the geopolymer as the doping concentration of lead ion was less than 3%. Meanwhile, the compressive strength of the solidified product ranged from 40 MPa to 50 MPa. Furthermore, by using the same Pb2+ concentration, the geopolymer showed higher compressive strength and lower leaching concentration compared to the cement. Because lead ion participated in constitution of structure of geopolymer, or Pb2+ was adsorbed by the aluminium ions on the geopolymeric skeleton and held in geopolymer. However, cement mainly solidified lead ion by physical encapsulation and adsorption mechanism. Therefore, both from the compressive strength and leaching concentration and from the microstructure characterization as well as the mechanism of the geopolymerization reaction, the geopolymer has more advantages in immobilizing Pb2+ than the cement.

  6. Effective Removal of Heavy Metals from Wastewater Using Modified Clay.

    PubMed

    Song, Mun-Seon; Vijayarangamuthu, K; Han, EunJi; Jeon, Ki-Joon

    2016-05-01

    We report an economical and eco-friendly way to remove the heavy metal pollutant using modified clay. The modification of clay was done by calcining the natural clay from Kyushu region in Japan. Further, the removal efficiency for various pH and contact time was evaluated. The morphology of the clays was studied using the scanning electron microscopy (SEM). The structural and chemical analyses of modified clay were done by using X-ray diffraction (XRD), Raman spectroscopy, and Energy dispersion analysis (EDAX) to understand the properties related to the removal of heavy metal pollutant. Further, we studied the absorption efficiency of clay for various pH and contacting time using Ni polluted water. The modified clays show better removal efficiency for all pH with different saturation time. The adsorption follows pseudo-second order kinetics and the adsorption capacity of modified clay is 1.5 times larger than that of natural clay. The increase in the adsorption efficiency of modified clay was correlated to the increase in hematite phase along with increase in surface area due to surface morphological changes.

  7. Behavior of Metals in Soils

    EPA Pesticide Factsheets

    One of the major issues of concern to the Forum is the mobility of metals in soils as related to subsurface remediation. For the purposes of this Issue Paper, those metals most commonly found at Superfund sites will be discussed in terms of the processes..

  8. Chelation: Harnessing and Enhancing Heavy Metal Detoxification—A Review

    PubMed Central

    Sears, Margaret E.

    2013-01-01

    Toxic