Process for removing heavy metal compounds from heavy crude oil
Cha, Chang Y.; Boysen, John E.; Branthaver, Jan F.
1991-01-01
A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.
Process for converting heavy oil deposited on coal to distillable oil in a low severity process
Ignasiak, Teresa; Strausz, Otto; Ignasiak, Boleslaw; Janiak, Jerzy; Pawlak, Wanda; Szymocha, Kazimierz; Turak, Ali A.
1994-01-01
A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.
Catalytic hydroprocessing of heavy oil feedstocks
NASA Astrophysics Data System (ADS)
Okunev, A. G.; Parkhomchuk, E. V.; Lysikov, A. I.; Parunin, P. D.; Semeikina, V. S.; Parmon, V. N.
2015-09-01
A grave problem of modern oil refining industry is continuous deterioration of the produced oil quality, on the one hand, and increase in the demand for motor fuels, on the other hand. This necessitates processing of heavy oil feedstock with high contents of sulfur, nitrogen and metals and the atmospheric residue. This feedstock is converted to light oil products via hydrogenation processes catalyzed by transition metal compounds, first of all, cobalt- or nickel-promoted molybdenum and tungsten compounds. The processing involves desulfurization, denitrogenation and demetallization reactions as well as reactions converting heavy hydrocarbons to lighter fuel components. The review discusses the mechanisms of reactions involved in the heavy feedstock hydroprocessing, the presumed structure and state of the catalytically active components and methods for the formation of supports with the desired texture. Practically used and prospective approaches to catalytic upgrading of heavy oil feedstock as well as examples of industrial processing of bitumen and vacuum residues in the presence of catalysts are briefly discussed. The bibliography includes 140 references.
Premuzic, Eugene T.; Lin, Mow S.
1999-01-12
A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.
Premuzic, E.T.; Lin, M.S.
1999-01-12
A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.
Unraveling heavy oil desulfurization chemistry: targeting clean fuels.
Choudhary, Tushar V; Parrott, Stephen; Johnson, Byron
2008-03-15
The sulfur removal chemistry of heavy oils has been unraveled by systematically investigating several heavy oils with an extremely wide range of properties. The heavy oil feed and product properties have been characterized by advanced analytical methods, and these properties have been related to the sulfur conversion data observed in pilot hydrotreating units. These studies coupled with kinetic treatment of the data have revealed that the desulfurization chemistry of heavy oils is essentially controlled by the strongly inhibiting three and larger ring aromatic hydrocarbon content and surprisingly not by the content of the "hard-to-remove" sulfur compounds. Such enhanced understanding of the heavy oil sulfur removal is expected to open new avenues for catalyst/process optimization for heavy oil desulfurization and thereby assist the efficent production of clean transporation fuels.
Using Polymer Alternating Gas to Enhance Oil Recovery in Heavy Oil
NASA Astrophysics Data System (ADS)
Yang, Yongzhi; Li, Weirong; Zhou, Tiyao; Dong, Zhenzhen
2018-02-01
CO2 has been used to recover oil for more than 40 years. Currently, about 43% of EOR production in U.S. is from CO2 flooding. CO2 flooding is a well-established EOR technique, but its density and viscosity nature are challenges for CO2 projects. Low density (0.5 to 0.8 g/cm3) causes gas to rise upward in reservoirs and bypass many lower portions of the reservoir. Low viscosity (0.02 to 0.08 cp) leads to poor volumetric sweep efficiency. So water-alternating-gas (WAG) method was used to control the mobility of CO2 and improve sweep efficiency. However, WAG process has some other problems in heavy oil reservoir, such as poor mobility ratio and gravity overriding. To examine the applicability of carbon dioxide to recover viscous oil from highly heterogeneous reservoirs, this study suggests a new EOR method--polymer-alternating gas (PAG) process. The process involves a combination of polymer flooding and CO2 injection. To confirm the effectiveness of PAG process in heavy oils, a reservoir model from Liaohe Oilfield is used to compare the technical and economic performance among PAG, WAG and polymer flooding. Simulation results show that PAG method would increase oil recovery over 10% compared with other EOR methods and PAG would be economically success based on assumption in this study. This study is the first to apply PAG to enhance oil recovery in heavy oil reservoir with highly heterogeneous. Besides, this paper provides detailed discussions and comparison about PAG with other EOR methods in this heavy oil reservoir.
Oil palm biomass as an adsorbent for heavy metals.
Vakili, Mohammadtaghi; Rafatullah, Mohd; Ibrahim, Mahamad Hakimi; Abdullah, Ahmad Zuhairi; Salamatinia, Babak; Gholami, Zahra
2014-01-01
Many industries discharge untreated wastewater into the environment. Heavy metals from many industrial processes end up as hazardous pollutants of wastewaters.Heavy metal pollution has increased in recent decades and there is a growing concern for the public health risk they may pose. To remove heavy metal ions from polluted waste streams, adsorption processes are among the most common and effective treatment methods. The adsorbents that are used to remove heavy metal ions from aqueous media have both advantages and disadvantages. Cost and effectiveness are two of the most prominent criteria for choosing adsorbents. Because cost is so important, great effort has been extended to study and find effective lower cost adsorbents.One class of adsorbents that is gaining considerable attention is agricultural wastes. Among many alternatives, palm oil biomasses have shown promise as effective adsorbents for removing heavy metals from wastewater. The palm oil industry has rapidly expanded in recent years, and a large amount of palm oil biomass is available. This biomass is a low-cost agricultural waste that exhibits, either in its raw form or after being processed, the potential for eliminating heavy metal ions from wastewater. In this article, we provide background information on oil palm biomass and describe studies that indicate its potential as an alternative adsorbent for removing heavy metal ions from wastewater. From having reviewed the cogent literature on this topic we are encouraged that low-cost oil-palm-related adsorbents have already demonstrated outstanding removal capabilities for various pollutants.Because cost is so important to those who choose to clean waste streams by using adsorbents, the use of cheap sources of unconventional adsorbents is increasingly being investigated. An adsorbent is considered to be inexpensive when it is readily available, is environmentally friendly, is cost-effective and be effectively used in economical processes. The advantages that oil palm biomass has includes the following:available and exists in abundance, appears to be effective technically, and can be integrated into existing processes. Despite these advantages, oil palm biomasses have disadvantages such as low adsorption capacity, increased COD, BOD and TOC. These disadvantages can be overcome by modifying the biomass either chemically or thermally. Such modification creates a charged surface and increases the heavy metal ion binding capacity of the adsorbent.
Aviation Turbine Fuels from Tar Sands Bitumen and Heavy Oils. Part 3. Laboratory Sample Production.
1987-12-01
FILD7 ar Sands, Heavy Ois Jet Fue - - - etF IE L D G R O U P S U B -G R O U P , u e -. IT - 3 seC m ) A s h l GROUP SB-RP Fue-i-T-33-A Reduced Crude...connec- tion with processes for heavy oil cracking and related catalysts. * program which allowed processing of bitumen stocks . The overall process flow
Upgrading and Refining of Crude Oils and Petroleum Products by Ionizing Irradiation.
Zaikin, Yuriy A; Zaikina, Raissa F
2016-06-01
A general trend in the oil industry is a decrease in the proven reserves of light crude oils so that any increase in future oil exploration is associated with high-viscous sulfuric oils and bitumen. Although the world reserves of heavy oil are much greater than those of sweet light oils, their exploration at present is less than 12 % of the total oil recovery. One of the main constraints is very high expenses for the existing technologies of heavy oil recovery, upgrading, transportation, and refining. Heavy oil processing by conventional methods is difficult and requires high power inputs and capital investments. Effective and economic processing of high viscous oil and oil residues needs not only improvements of the existing methods, such as thermal, catalytic and hydro-cracking, but the development of new technological approaches for upgrading and refining of any type of problem oil feedstock. One of the perspective approaches to this problem is the application of ionizing irradiation for high-viscous oil processing. Radiation methods for upgrading and refining high-viscous crude oils and petroleum products in a wide temperature range, oil desulfurization, radiation technology for refining used oil products, and a perspective method for gasoline radiation isomerization are discussed in this paper. The advantages of radiation technology are simple configuration of radiation facilities, low capital and operational costs, processing at lowered temperatures and nearly atmospheric pressure without the use of any catalysts, high production rates, relatively low energy consumption, and flexibility to the type of oil feedstock.
NASA Astrophysics Data System (ADS)
Shannon, R. H.; Richardson, R. D.
The Resource and Energy Management System (REM), which uses electrolytic H2 and O2 to produce synthetic crude and light oils from heavy hydrocarbons is described. The heavy hydrocarbon feedstocks include heavy oils, tar sand bitumens, heavy residual oils, oil shale kerogens, liquefied coal, and pyrolytically-extracted coal liquids. The system includes mini-upgraders, which can be implemented in modular form, to pump electrolytically-derived H2 into heavy oils to upgrade their energy content. Projected costs for the production of synthetic light oils using U.S. coal reserves with the REM process after liquefaction are $30-35/bbl, with the H2 costs being a controlling factor. The modular systems could be built in a much shorter time frame than much larger projects, and would be instrumental in establishing the electrolytic H2 production infrastructure needed for eventual full conversion to an H2-based economy.
Simulated oil release from oil-contaminated marine sediment in the Bohai Sea, China.
Yuan, Lingling; Han, Longxi; Bo, Wenjie; Chen, Hua; Gao, Wenshen; Chen, Bo
2017-05-15
There is a high degree of heavy oil partitioning into marine sediments when an oil spill occurs. Contaminated sediment, as an endogenous pollution source, can re-pollute overlying water slowly. In this study, a static oil release process and its effects in marine sediment was investigated through a series of experiments with reproductive heavy oil-contaminated marine sediment. The oil release process was accurately simulated with a Lagergren first-order equation and reached equilibration after 48h. The fitted curve for equilibrium concentration (C 0 ) and first-order rate constant (k 1 ) for sediment pollution levels exhibited a first-order log relationship. The instantaneous release rate (dC t dt) was also calculated. The C 0 increased with increases in temperature and dissolved organic matter (DOM), and decreasing salinity. The k 1 increased with temperature, but was not affected by DOM and salinity. These results can be used to better understand the fate of heavy oil in contaminated sediments of the Bohai Sea. Copyright © 2017. Published by Elsevier Ltd.
Process for tertiary oil recovery using tall oil pitch
Radke, Clayton J.
1985-01-01
Compositions and process employing same for enhancing the recovery of residual acid crudes, particularly heavy crudes, by injecting a composition comprising caustic in an amount sufficient to maintain a pH of at least about 11, preferably at least about 13, and a small but effective amount of a multivalent cation for inhibiting alkaline silica dissolution with the reservoir. Preferably a tall oil pitch soap is included and particularly for the heavy crudes a polymeric mobility control agent.
The report describes the second phase of studies on the CAFB process for desulfurizing gasification of heavy fuel oil in a bed of hot lime. The first continuous pilot plant test with U.S. limestone BCR 1691 experienced local stone sintering and severe production of sticky dust du...
Chaohe, Yang; Xiaobo, Chen; Jinhong, Zhang; Chunyi, Li; Honghong, Shan
Two-stage riser catalytic cracking of heavy oil for maximizing propylene yield (TMP) process proposed by State Key Laboratory of Heavy oil Processing, China University of Petroleum, can remarkably enhance the propylene yield and minimize the dry gas and coke yields, and obtain high-quality light oils (gasoline and diesel). It has been commercialized since 2006. Up to now, three TMP commercial units have been put into production and other four commercial units are under design and construction. The commercial data showed that taking paraffinic based Daqing (China) atmospheric residue as the feedstock, the propylene yield reached 20.31 wt%, the liquid products yield (the total yield of liquefied petroleum gas, gasoline, and diesel) was 82.66 wt%, and the total yield of dry gas and coke was 14.28 wt%. Moreover, the research octane number of gasoline could be up to 96.
Leng, Lijian; Yuan, Xingzhong; Shao, Jianguang; Huang, Huajun; Wang, Hou; Li, Hui; Chen, Xiaohong; Zeng, Guangming
2016-01-01
Demetalization of sewage sludge (SS) by sequential extraction before liquefaction was implemented to produce cleaner bio-char and bio-oil. Demetalization steps 1 and 2 did not cause much organic matter loss on SS, and thus the bio-oil and bio-char yields and the compositions of bio-oils were also not affected significantly. However, the demetalization procedures resulted in the production of cleaner bio-chars and bio-oils. The total concentrations and the acid soluble/exchangeable fraction (F1 fraction, the most toxic heavy metal fraction) of heavy metals (Cu, Cr, Pb, Zn, and Cd) in these products were significantly reduced and the environmental risks of these products were also relived considerably compared with those produced from raw SS, respectively. Additionally, these bio-oils had less heavy fractions. Demetalization processes with removal of F1 and F2 fractions of heavy metals would benefit the production of cleaner bio-char and bio-oil by liquefaction of heavy metal abundant biomass like SS. Copyright © 2015 Elsevier Ltd. All rights reserved.
Minimising hydrogen sulphide generation during steam assisted production of heavy oil
Montgomery, Wren; Sephton, Mark A.; Watson, Jonathan S.; Zeng, Huang; Rees, Andrew C.
2015-01-01
The majority of global petroleum is in the form of highly viscous heavy oil. Traditionally heavy oil in sands at shallow depths is accessed by large scale mining activities. Recently steam has been used to allow heavy oil extraction with greatly reduced surface disturbance. However, in situ thermal recovery processes can generate hydrogen sulphide, high levels of which are toxic to humans and corrosive to equipment. Avoiding hydrogen sulphide production is the best possible mitigation strategy. Here we use laboratory aquathermolysis to reproduce conditions that may be experienced during thermal extraction. The results indicate that hydrogen sulphide generation occurs within a specific temperature and pressure window and corresponds to chemical and physical changes in the oil. Asphaltenes are identified as the major source of sulphur. Our findings reveal that for high sulphur heavy oils, the generation of hydrogen sulphide during steam assisted thermal recovery is minimal if temperature and pressure are maintained within specific criteria. This strict pressure and temperature dependence of hydrogen sulphide release can allow access to the world's most voluminous oil deposits without generating excessive amounts of this unwanted gas product. PMID:25670085
Minimising hydrogen sulphide generation during steam assisted production of heavy oil
NASA Astrophysics Data System (ADS)
Montgomery, Wren; Sephton, Mark A.; Watson, Jonathan S.; Zeng, Huang; Rees, Andrew C.
2015-02-01
The majority of global petroleum is in the form of highly viscous heavy oil. Traditionally heavy oil in sands at shallow depths is accessed by large scale mining activities. Recently steam has been used to allow heavy oil extraction with greatly reduced surface disturbance. However, in situ thermal recovery processes can generate hydrogen sulphide, high levels of which are toxic to humans and corrosive to equipment. Avoiding hydrogen sulphide production is the best possible mitigation strategy. Here we use laboratory aquathermolysis to reproduce conditions that may be experienced during thermal extraction. The results indicate that hydrogen sulphide generation occurs within a specific temperature and pressure window and corresponds to chemical and physical changes in the oil. Asphaltenes are identified as the major source of sulphur. Our findings reveal that for high sulphur heavy oils, the generation of hydrogen sulphide during steam assisted thermal recovery is minimal if temperature and pressure are maintained within specific criteria. This strict pressure and temperature dependence of hydrogen sulphide release can allow access to the world's most voluminous oil deposits without generating excessive amounts of this unwanted gas product.
Minimising hydrogen sulphide generation during steam assisted production of heavy oil.
Montgomery, Wren; Sephton, Mark A; Watson, Jonathan S; Zeng, Huang; Rees, Andrew C
2015-02-11
The majority of global petroleum is in the form of highly viscous heavy oil. Traditionally heavy oil in sands at shallow depths is accessed by large scale mining activities. Recently steam has been used to allow heavy oil extraction with greatly reduced surface disturbance. However, in situ thermal recovery processes can generate hydrogen sulphide, high levels of which are toxic to humans and corrosive to equipment. Avoiding hydrogen sulphide production is the best possible mitigation strategy. Here we use laboratory aquathermolysis to reproduce conditions that may be experienced during thermal extraction. The results indicate that hydrogen sulphide generation occurs within a specific temperature and pressure window and corresponds to chemical and physical changes in the oil. Asphaltenes are identified as the major source of sulphur. Our findings reveal that for high sulphur heavy oils, the generation of hydrogen sulphide during steam assisted thermal recovery is minimal if temperature and pressure are maintained within specific criteria. This strict pressure and temperature dependence of hydrogen sulphide release can allow access to the world's most voluminous oil deposits without generating excessive amounts of this unwanted gas product.
Method of refining cracked oil by using metallic soaps. [desulfurization of cracked oils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masakichi, M.; Marunouchi, K.K.; Yoshimura, T.
1937-04-13
The method of refining cracked oil consists in dissolving oil-soluble heavy metallic soap of oleic acid in a volatile organic solvent which will disperse homogeneously in cracked oil; pouring the solution thus obtained slowly into cracked oil to effect dispersion naturally and homogeneously at room temperature in the cracked oil. This process serves to react the mercaptans in the cracked oil with the heavy metallic soap by a double decomposition reaction and to precipitate the mercaptans as insoluble metallic salts. The remaining liquid is distilled to separate it from the remaining solvent.
Turbine Fuels from Tar Sands Bitumen and Heavy Oil. Phase I. Preliminary Process Analysis.
1985-04-09
OIL RESERVOIRS OF THE UNITED STATES Resource: Oil -in-Place State Field Name (County) (Million Bbls.) Arkansas Smackover Old (Union) 1,6U0 California...Flow Schematic for Gas Oil Feed Hydrotreater 94 14 Summary of Case Studies for Processing Bitumen from New Mexico 95 15 Summary of Case Studies for...Naphtha Hydrotreating Process Estimates 112 14 Gas Oil Hydrocracking Process Estimates 113 l! Gas Oil Hydrotreating Process Estimate 114 16 Fluid
Method for controlling boiling point distribution of coal liquefaction oil product
Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.
1982-12-21
The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships. 3 figs.
Method for controlling boiling point distribution of coal liquefaction oil product
Anderson, Raymond P.; Schmalzer, David K.; Wright, Charles H.
1982-12-21
The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships.
Co-processing of olive bagasse with crude rapeseed oil via pyrolysis.
Uçar, Suat; Karagöz, Selhan
2017-05-01
The co-pyrolysis of olive bagasse with crude rapeseed oil at different blend ratios was investigated at 500ºC in a fixed bed reactor. The effect of olive bagasse to crude rapeseed oil ratio on the product distributions and properties of the pyrolysis products were comparatively investigated. The addition of crude rapeseed oil into olive bagasse in the co-pyrolysis led to formation of upgraded biofuels in terms of liquid yields and properties. While the pyrolysis of olive bagasse produced a liquid yield of 52.5 wt %, the highest liquid yield of 73.5 wt % was obtained from the co-pyrolysis of olive bagasse with crude rapeseed oil at a blend ratio of 1:4. The bio-oil derived from olive bagasse contained 5% naphtha, 10% heavy naphtha, 30% gas oil, and 55% heavy gas oil. In the case of bio-oil obtained from the co-pyrolysis of olive bagasse with crude rapeseed oil at a blend ratio of 1:4, the light naphtha, heavy naphtha, and light gas oil content increased. This is an indication of the improved characteristics of the bio-oil obtained from the co-processing. The heating value of bio-oil from the pyrolysis of olive bagasse alone was 34.6 MJ kg -1 and the heating values of bio-oils obtained from the co-pyrolysis of olive bagasse with crude rapeseed oil ranged from 37.6 to 41.6 MJ kg -1 . It was demonstrated that the co-processing of waste biomass with crude plant oil is a good alternative to improve bio-oil yields and properties.
Polymer-Coated Nanoparticles for Reversible Emulsification and Recovery of Heavy Oil.
Qi, Luqing; Song, Chen; Wang, Tianxiao; Li, Qilin; Hirasaki, George J; Verduzco, Rafael
2018-06-05
Heavy crude oil has poor solubility and a high density, making recovery and transport much more difficult and expensive than for light crude oil. Emulsifiers can be used to produce low viscosity oil-in-water emulsions for recovery and transport, but subsequent demulsification can be challenging. Here, we develop and implement interfacially active, pH-responsive polymer-coated nanoparticles (PNPs) to reversibly stabilize, recover, and break oil/water emulsions through variation of solution pH. Silica particles with poly(2-(dimethylamino)ethyl methacrylate) (DMAEMA) chains covalently grafted to the surface are prepared although a reversible addition fragmentation chain transfer grafting-through technique. The resulting DMAEMA PNPs can stabilize emulsions of high viscosity Canadian heavy oil at PNP concentrations as low as 0.1 wt % and at neutral pH. The performance of the DMAEMA PNPs exceeds that of DMAEMA homopolymer additives, which we attribute to the larger size and irreversible adsorption of DMAEMA PNPs to the oil/water interface. After recovery, the emulsion can be destabilized by the addition of acid to reduce pH, resulting in separation and settling of the heavy oil from the aqueous phase. Recovery of more than 10 wt % of the crude heavy oil-in-place is achieved by flooding with aqueous solution of 0.1 wt % DMAEMA PNPs without any additional surfactant or chemical. This work demonstrates the applicability of PNPs as surface active materials for enhanced oil recovery processes and for heavy oil transport.
Hydrocarbonaceous material processing methods and apparatus
Brecher, Lee E [Laramie, WY
2011-07-12
Methods and apparatus are disclosed for possibly producing pipeline-ready heavy oil from substantially non-pumpable oil feeds. The methods and apparatus may be designed to produce such pipeline-ready heavy oils in the production field. Such methods and apparatus may involve thermal soaking of liquid hydrocarbonaceous inputs in thermal environments (2) to generate, though chemical reaction, an increased distillate amount as compared with conventional boiling technologies.
Detailed analysis of acidic compounds in Mayan gas oil and hydrotreated products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sturm, G.P. Jr.; Green, J.B.; Grigsby, R.D.
1989-04-01
The present and future importance of heavy crude as a primary energy resource is widely recognized in spite of the current oversupply of crude oil. Along with coal and shale oil, heavy crudes and heavy ends of conventional crude produced by primary and enhanced oil recovery methods are considered important and dependable resources to meet their nation's long-term energy needs. Heavy crudes impose more severe requirements upon refining technology to produce end products meeting current specifications in terms of stability, compatibility, and corrosiveness. This study is based on the premise that knowledge of the problem components in the feedstocks, intermediatemore » process streams, and products can aid in the development of efficient and economical means of producing higher quality products.« less
Bitumen and heavy oil upgrading in Canada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chrones, J.; Germain, R.R.
1989-01-01
A review is presented of the heavy oil upgrading industry in Canada. Up to now it has been based on the processing of bitumen extracted from oil sands mining operations at two sites, to produce a residue-free, low sulphur, synthetic crude. Carbon rejection has been the prime process technology with delayed coking being used by Suncor and FLUID COKING at Syncrude. Alternative processes for recovering greater amounts of synthetic crude are examined. These include a variety of hydrogen addition processes and combinations which produce pipelineable materials requiring further processing in downstream refineries with expanded capabilities. The Newgrade Energy Inc. upgradermore » now under construction in Regina, will use fixed-bed, catalytic, atmospheric-residue, hydrogen processing. Two additional projects, also based on hydrogenation, will use ebullated bed catalyst systems; the expansion of Syncrude, now underway, is using the LC Fining Process whereas the announced Husky Bi-Provincial upgrader is based on H-Oil.« less
Bitumen and heavy oil upgrading in Canada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chrones, J.
1988-06-01
A review is presented of the heavy oil upgrading industry in Canada. Up to now it has been based on the processing of bitumen extracted from oil sands mining operations at two sites, to produce a residue-free, low sulfur, synthetic crude. Carbon rejection has been the prime process technology with delayed coking being used by Suncor and FLUID COKING at Syncrude. Alternative processes for recovering greater amounts of synthetic crude are examined. These include a variety of hydrogen addition processes and combinations which produce pipelineable materials requiring further processing in downstream refineries with expanded capabilities. The Newgrade Energy Inc. upgrader,more » now under construction in Regina, will use fixed-bed, catalytic, atmospheric-residue, hydrogen processing. Two additional products, also based on hydrogenation, will use ebullated bed catalyst systems: the expansion of Syncrude, now underway, is using the LC Fining Process whereas the announced Husky Bi-Provincial upgrader is based on H-Oil.« less
Al-Sayegh, Abdullah; Al-Wahaibi, Yahya; Al-Bahry, Saif; Elshafie, Abdulkadir; Al-Bemani, Ali; Joshi, Sanket
2015-09-16
Biodegradation is a cheap and environmentally friendly process that could breakdown and utilizes heavy crude oil (HCO) resources. Numerous bacteria are able to grow using hydrocarbons as a carbon source; however, bacteria that are able to grow using HCO hydrocarbons are limited. In this study, HCO degrading bacteria were isolated from an Omani heavy crude oil field. They were then identified and assessed for their biodegradation and biotransformation abilities under aerobic and anaerobic conditions. Bacteria were grown in five different minimum salts media. The isolates were identified by MALDI biotyper and 16S rRNA sequencing. The nucleotide sequences were submitted to GenBank (NCBI) database. The bacteria were identified as Bacillus subtilis and B. licheniformis. To assess microbial growth and biodegradation of HCO by well-assay on agar plates, samples were collected at different intervals. The HCO biodegradation and biotransformation were determined using GC-FID, which showed direct correlation of microbial growth with an increased biotransformation of light hydrocarbons (C12 and C14). Among the isolates, B. licheniformis AS5 was the most efficient isolate in biodegradation and biotransformation of the HCO. Therefore, isolate AS5 was used for heavy crude oil recovery experiments, in core flooding experiments using Berea core plugs, where an additional 16 % of oil initially in place was recovered. This is the first report from Oman for bacteria isolated from an oil field that were able to degrade and transform HCO to lighter components, illustrating the potential use in HCO recovery. The data suggested that biodegradation and biotransformation processes may lead to additional oil recovery from heavy oil fields, if bacteria are grown in suitable medium under optimum growth conditions.
Development of the Write Process for Pipeline-Ready Heavy Oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee Brecher; Charles Mones; Frank Guffey
Work completed under this program advances the goal of demonstrating Western Research Institute's (WRI's) WRITE{trademark} process for upgrading heavy oil at field scale. MEG Energy Corporation (MEG) located in Calgary, Alberta, Canada supported efforts at WRI to develop the WRITE{trademark} process as an oil sands, field-upgrading technology through this Task 51 Jointly Sponsored Research project. The project consisted of 6 tasks: (1) optimization of the distillate recovery unit (DRU), (2) demonstration and design of a continuous coker, (3) conceptual design and cost estimate for a commercial facility, (4) design of a WRITE{trademark} pilot plant, (5) hydrotreating studies, and (6) establishmore » a petroleum analysis laboratory. WRITE{trademark} is a heavy oil and bitumen upgrading process that produces residuum-free, pipeline ready oil from heavy material with undiluted density and viscosity that exceed prevailing pipeline specifications. WRITE{trademark} uses two processing stages to achieve low and high temperature conversion of heavy oil or bitumen. The first stage DRU operates at mild thermal cracking conditions, yielding a light overhead product and a heavy residuum or bottoms material. These bottoms flow to the second stage continuous coker that operates at severe pyrolysis conditions, yielding light pyrolyzate and coke. The combined pyrolyzate and mildly cracked overhead streams form WRITE{trademark}'s synthetic crude oil (SCO) production. The main objectives of this project were to (1) complete testing and analysis at bench scale with the DRU and continuous coker reactors and provide results to MEG for process evaluation and scale-up determinations and (2) complete a technical and economic assessment of WRITE{trademark} technology to determine its viability. The DRU test program was completed and a processing envelope developed. These results were used for process assessment and for scaleup. Tests in the continuous coker were intended to determine the throughput capability of the coker so a scaled design could be developed that maximized feed rate for a given size of reactor. These tests were only partially successful because of equipment problems. A redesigned coker, which addressed the problems, has been build but not operated. A preliminary economic analysis conducted by MEG and an their engineering consultant concluded that the WRITE{trademark} process is a technically feasible method for upgrading bitumen and that it produces SCO that meets pipeline specifications for density. When compared to delayed coking, the industry benchmark for thermal upgrading of bitumen, WRITE{trademark} produced more SCO, less coke, less CO{sub 2} per barrel of bitumen fed, and had lower capital and operating costs. On the other hand, WRITE{trademark}'s lower processing severity yielded crude with higher density and a different product distribution for naphtha, light gas oil and vacuum oil that, taken together, might reduce the value of the SCO. These issues plus the completion of more detailed process evaluation and economics need to be resolved before WRITE{trademark} is deployed as a field-scale pilot.« less
Wet separation processes as method to separate limestone and oil shale
NASA Astrophysics Data System (ADS)
Nurme, Martin; Karu, Veiko
2015-04-01
Biggest oil shale industry is located in Estonia. Oil shale usage is mainly for electricity generation, shale oil generation and cement production. All these processes need certain quality oil shale. Oil shale seam have interlayer limestone layers. To use oil shale in production, it is needed to separate oil shale and limestone. A key challenge is find separation process when we can get the best quality for all product types. In oil shale separation typically has been used heavy media separation process. There are tested also different types of separation processes before: wet separation, pneumatic separation. Now oil shale industry moves more to oil production and this needs innovation methods for separation to ensure fuel quality and the changes in quality. The pilot unit test with Allmineral ALLJIG have pointed out that the suitable new innovation way for oil shale separation can be wet separation with gravity, where material by pulsating water forming layers of grains according to their density and subsequently separates the heavy material (limestone) from the stratified material (oil shale)bed. Main aim of this research is to find the suitable separation process for oil shale, that the products have highest quality. The expected results can be used also for developing separation processes for phosphorite rock or all others, where traditional separation processes doesn't work property. This research is part of the study Sustainable and environmentally acceptable Oil shale mining No. 3.2.0501.11-0025 http://mi.ttu.ee/etp and the project B36 Extraction and processing of rock with selective methods - http://mi.ttu.ee/separation; http://mi.ttu.ee/miningwaste/
The extraction of bitumen from western oil sands. Annual report, July 1991--July 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.
1992-08-01
The University of Utah tar sand research and development program is concerned with research and development on Utah is extensive oil sands deposits. The program has been intended to develop a scientific and technological base required for eventual commercial recovery of the heavy oils from oil sands and processing these oils to produce synthetic crude oil and other products such as asphalt. The overall program is based on mining the oil sand, processing the mined sand to recover the heavy oils and upgrading them to products. Multiple deposits are being investigated since it is believed that a large scale (approximatelymore » 20,000 bbl/day) plant would require the use of resources from more than one deposit. The tasks or projects in the program are organized according to the following classification: Recovery technologies which includes thermal recovery methods, water extraction methods, and solvent extraction methods; upgrading and processing technologies which covers hydrotreating, hydrocracking, and hydropyrolysis; solvent extraction; production of specialty products; and environmental aspects of the production and processing technologies. These tasks are covered in this report.« less
NASA Technical Reports Server (NTRS)
Heinlein, Fritz
1926-01-01
This report presents a theoretical treatment of the vaporization process of medium and heavy oils. The results of this investigation, which were mostly obtained from the lighter components of the heavy fuels, require a 10- or 16-fold vaporization in comparison with gasoline. We must attain a still finer degree of atomization, in order to include the heavier components.
NASA Astrophysics Data System (ADS)
Okubo, M.; Fujishima, H.; Yamato, Y.; Kuroki, T.; Tanaka, A.; Otsuka, K.
2013-03-01
A pilot-scale low-emission boiler system consisting of a bio-fuel boiler and plasma-chemical hybrid NOx removal system is investigated. This system can achieve carbon neutrality because the bio-fuel boiler uses waste vegetable oil as one of the fuels. The plasma-chemical hybrid NOx removal system has two processes: NO oxidation by ozone produced from plasma ozonizers and NO2 removal using a Na2SO3 chemical scrubber. Test demonstrations of the system are carried out for mixed oils (mixture of A-heavy oil and waste vegetable oil). Stable combustion is achieved for the mixed oil (20 - 50% waste vegetable oil). Properties of flue gas—e.g., O2, CO2 and NOx—when firing mixed oils are nearly the same as those when firing heavy oil for an average flue gas flow rate of 1000 Nm3/h. NOx concentrations at the boiler outlet are 90 - 95 ppm. Furthermore, during a 300-min continuous operation when firing 20% mixed oil, NOx removal efficiency of more than 90% (less than 10 ppm NOx emission) is confirmed. In addition, the CO2 reduction when heavy oil is replaced with waste vegetable oil is estimated. The system comparison is described between the plasma-chemical hybrid NOx removal and the conventional technology.
Molecular design of high performance zwitterionic liquids for enhanced heavy-oil recovery processes.
Martínez-Magadán, J M; Cartas-Rosado, A R; Oviedo-Roa, R; Cisneros-Dévora, R; Pons-Jiménez, M; Hernández-Altamirano, R; Zamudio-Rivera, L S
2018-03-01
Branched gemini zwitterionic liquids, which contain two zwitterionic moieties of linked quaternary-ammonium and carboxylate groups, are proposed as chemicals to be applied in the Enhanced Oil Recovery (EOR) from fractured carbonate reservoirs. The zwitterionic moieties are bridged between them through an alkyl chain containing 12 ether groups, and each zwitterionic moiety has attached a long alkyl tail including a CC double bond. A theoretical molecular mechanism over which EOR could rest, consisting on both the disaggregation of heavy oil and the reservoir-rock wettability alteration, was suggested. Results show that chemicals can both reduce the viscosity and remove heavy-oil molecules from the rock surface. Copyright © 2018. Published by Elsevier Inc.
Hydroprocessing full-range of heavy oils and bitumen using ultradispersed catalysts at low severity
NASA Astrophysics Data System (ADS)
Peluso, Enzo
The progressive exhaustion of light crude oils is forcing the petroleum industry to explore new alternatives for the exploitation of unconventional oils. New approaches are searching for technologies able to produce, transport and refine these feedstocks at lower costs, in which symbiotic processes between the enhanced oil recovery (EOR) and the conventional upgrading technologies are under investigation. The process explored in this thesis is an interesting alternative for in-situ upgrading of these crude oils in the presence of ultradispersed (UD) catalysts, which are included as a disperse phase able to circulate along with the processed feed. The objectives of this work are: (a) study the performance of UD catalysts in the presence of a full range (non fractioned) heavy oil and bitumen and (b) evaluate the recyclability of the UD catalysts. Four different heavy crude oils were evaluated in the presence with UD catalysts at a total pressure of 2.8 MPa, residence time of 8 hours and reaction temperatures from 360 up to 400ºC. Thermal and catalytic hydro-processing were compared in terms of conversion and product stability. A comparison between the different crude oils was additionally derived in terms of SARA, initial micro-carbon content and virgin oil stability among other properties. Advantages of catalytic hydro-processing over thermal hydro-processing were evidenced, with UD catalysts playing an essential hydrogenating role while retarding coke formation; microcarbon and asphaltenes reduction in the presence of UD catalysts was observed. To evaluate the feasibility of recycling the UD catalysts, a micro-slurry recycled unit was developed as part of this research. These main results showed: (a) a successful design of this unit, (b) that temperature, LHSV and fractional recycling ratio have more impact on VGO conversion, while pressure has almost no effect, and (c) an UD catalysts agglomeration process was detected, however this process is slow and reversible.
Getty to tap heavy oil in diatomite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, B.
1982-01-18
Getty Oil Co. has launched a test program in California to mine a huge deposit of diatomaceous earth. The company will run side by side pilot plants incorporating 2 state-of-the-art extraction processes to extract virtually 100% of the heavy oil contained in the mined material. Economic success of either extraction process would lead to development of a commercial scale mine and plant to yield as much as 20,000 bpd of heavy oil during the next half century. More important success of the Getty project could serve as a springboard for development of other tight, shallow diatomite, oil shale, and tarmore » sands deposits hitherto thought uneconomic. The target is ca 380 million bbl of recoverable 14 to 17 gravity oil locked in tight, shallow diatomite deposits in McKittrick field. That is more than the 218 million bbl of cumulative production from the entire field since its discovery more than 80 yr ago. Although open pit mining of diatomite eventually will cover a 2.5-mile by one-mile surface area, going as deep as 1200 ft, extensive backfilling and reclamation work will leave the landscape restored.« less
Wang, Chunfeng; Zhu, Nengmin; Wang, Yanmin; Zhang, Fushen
2012-01-17
The simultaneous detoxification processes of transformer oil-contained PCBs and heavy metals in medical waste incinerator (MWI) fly ash were developed under sub- and supercritical water. The addition of MWI fly ash to transformer oil-contained PCBs was found to increase the destruction efficiency of PCBs, at the same time, it facilitated reducing the leaching concentration of toxic metals from residues (obtained after reaction) for harmless disposal. In this study, we elucidated primarily the catalysis possibility of heavy metals in raw MWI fly ash for PCBs degradation by adopting the sequential extraction procedure. For both MWI fly ashes, more than 90% destruction efficiency of PCBs was achieved at ≥375 °C for 30 min, and trichlorobenzene (TCB) existing in the transformer oil was also completely decomposed. The correlation of catalytic performance to PCBs degradation was discussed based on structural characteristics and dechlorinated products. Likewise, such process rendered residues innocuous through supercritical water treatment for reuse or disposal in landfill.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yortsos, Yanis C.
In this report, the thrust areas include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.
Gray, N D; Sherry, A; Hubert, C; Dolfing, J; Head, I M
2010-01-01
Hydrocarbons are common constituents of surface, shallow, and deep-subsurface environments. Under anaerobic conditions, hydrocarbons can be degraded to methane by methanogenic microbial consortia. This degradation process is widespread in the geosphere. In comparison with other anaerobic processes, methanogenic hydrocarbon degradation is more sustainable over geological time scales because replenishment of an exogenous electron acceptor is not required. As a consequence, this process has been responsible for the formation of the world's vast deposits of heavy oil, which far exceed conventional oil assets such as those found in the Middle East. Methanogenic degradation is also a potentially important component of attenuation in hydrocarbon contamination plumes. Studies of the organisms, syntrophic partnerships, mechanisms, and geochemical signatures associated with methanogenic hydrocarbon degradation have identified common themes and diagnostic markers for this process in the subsurface. These studies have also identified the potential to engineer methanogenic processes to enhance the recovery of energy assets as biogenic methane from residual oils stranded in petroleum systems. Copyright 2010 Elsevier Inc. All rights reserved.
Integrated oil production and upgrading using molten alkali metal
Gordon, John Howard
2016-10-04
A method that combines the oil retorting process (or other process needed to obtain/extract heavy oil or bitumen) with the process for upgrading these materials using sodium or other alkali metals. Specifically, the shale gas or other gases that are obtained from the retorting/extraction process may be introduced into the upgrading reactor and used to upgrade the oil feedstock. Also, the solid materials obtained from the reactor may be used as a fuel source, thereby providing the heat necessary for the retorting/extraction process. Other forms of integration are also disclosed.
Hollow Fibers Networked with Perovskite Nanoparticles for H2 Production from Heavy Oil
NASA Astrophysics Data System (ADS)
Jeon, Yukwon; Park, Dae-Hwan; Park, Joo-Il; Yoon, Seong-Ho; Mochida, Isao; Choy, Jin-Ho; Shul, Yong-Gun
2013-10-01
Design of catalytic materials has been highlighted to build ultraclean use of heavy oil including liquid-to-gas technology to directly convert heavy hydrocarbons into H2-rich gas fuels. If the H2 is produced from such heavy oil through high-active and durable catalysts in reforming process that is being constructed in hydrogen infrastructure, it will be addressed into renewable energy systems. Herein, the three different hollow fiber catalysts networked with perovskite nanoparticles, LaCr0.8Ru0.2O3, LaCr0.8Ru0.1Ni0.1O3, and LaCr0.8Ni0.2O3 were prepared by using activated carbon fiber as a sacrificial template for H2 production from heavy gas oil reforming. The most important findings were arrived at: (i) catalysts had hollow fibrous architectures with well-crystallized structures, (ii) hollow fibers had a high specific surface area with a particle size of ~50 nm, and (iii) the Ru substituted ones showed high efficiency for H2 production with substantial durability under high concentrations of S, N, and aromatic compounds.
Hollow fibers networked with perovskite nanoparticles for H2 production from heavy oil.
Jeon, Yukwon; Park, Dae-Hwan; Park, Joo-Il; Yoon, Seong-Ho; Mochida, Isao; Choy, Jin-Ho; Shul, Yong-Gun
2013-10-09
Design of catalytic materials has been highlighted to build ultraclean use of heavy oil including liquid-to-gas technology to directly convert heavy hydrocarbons into H2-rich gas fuels. If the H2 is produced from such heavy oil through high-active and durable catalysts in reforming process that is being constructed in hydrogen infrastructure, it will be addressed into renewable energy systems. Herein, the three different hollow fiber catalysts networked with perovskite nanoparticles, LaCr(0.8)Ru(0.2)O3, LaCr(0.8)Ru(0.1)Ni(0.1)O3, and LaCr(0.8)Ni(0.2)O3 were prepared by using activated carbon fiber as a sacrificial template for H2 production from heavy gas oil reforming. The most important findings were arrived at: (i) catalysts had hollow fibrous architectures with well-crystallized structures, (ii) hollow fibers had a high specific surface area with a particle size of ≈50 nm, and (iii) the Ru substituted ones showed high efficiency for H2 production with substantial durability under high concentrations of S, N, and aromatic compounds.
Liu, Wu-Jun; Tian, Ke; Jiang, Hong; Zhang, Xue-Song; Ding, Hong-Sheng; Yu, Han-Qing
2012-07-17
Heavy-metal-polluted biomass derived from phytoremediation or biosorption is widespread and difficult to be disposed of. In this work, simultaneous conversion of the waste woody biomass into bio-oil and recovery of Cu in a fast pyrolysis reactor were investigated. The results show that Cu can effectively catalyze the thermo-decomposition of biomass. Both the yield and high heating value (HHV) of the Cu-polluted fir sawdust biomass (Cu-FSD) derived bio-oil are significantly improved compared with those of the fir sawdust (FSD) derived bio-oil. The results of UV-vis and (1)H NMR spectra of bio-oil indicate pyrolytic lignin is further decomposed into small-molecular aromatic compounds by the catalysis of Cu, which is in agreement with the GC-MS results that the fractions of C7-C10 compounds in the bio-oil significantly increase. Inductively coupled plasma-atomic emission spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy analyses of the migration and transformation of Cu in the fast pyrolysis process show that more than 91% of the total Cu in the Cu-FSD is enriched in the char in the form of zerovalent Cu with a face-centered cubic crystalline phase. This study gives insight into catalytic fast pyrolysis of heavy metals, and demonstrates the technical feasibility of an eco-friendly process for disposal of heavy-metal-polluted biomass.
Successful performance of a refinery with Eureka unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirotani, Y.; Takeuchi, T.; Miyabuchi, Y.
1981-03-01
Since starting in February, 1976, 3,400,000 Kl of vacuum residue (13,000,000 Kl of crude oil equivalent) has been successfully processed in the Eureka unit of Fuji Oil refinery complex and more than 2,500,000 Kl of cracked oil and 1,000,000 tons of pitch have been produced. The operation rate has been 94 to 98% except for the annual shutdown period for inspection. The cracked oil is easily desulfurized to make naphta, diesel oil and a large amount of gas oil (low sulfur fuel oil, 0.1 wt % sulfur). As for the desulfurization of cracked oil, the increase in H/sub 2/ consumptionmore » and the decline of catalyst life are observed. However, the operation conditions do not differ much from those for straight run fractions. Processing both hydrotreated and untreated cracked heavy oil (CHO) with FCC unit has proved to be possible. In case of untreated CHO, however, it causes a slight increase in make up catalyst and coke yield. It is demonstrated that heavy crude oils, such as Bachaquero, can effectively be processed in this system. No additional pollution problems have occurred by introducing an Eureka unit to the refinery, although it is located in the district where the most stringent environmental regulations are urged.« less
Combustion Stages of a Single Heavy Oil Droplet in Microgravity
NASA Technical Reports Server (NTRS)
Ikegami, M.; Xu, G.; Ikeda, K.; Honma, S.; Nagaishi, H.; Dietrich, D. L.; Struk, P. M.; Takeshita, Y.
2001-01-01
Heavy oil is a common fuel for industrial furnaces, boilers, marines and diesel engines. Previous studies showed that the combustion of heavy oil involves not only the complete burning of volatile matters but also the burn-out of coke residues. Detailed knowledge about heavy oil combustion therefore requires an understanding of the different burning stages of heavy oil droplets in the burner. This in turn, demands knowledge about the single droplet evaporation and combustion characteristics. This study measured the temperature and size histories of heavy oil (C glass) droplets burning in microgravity to elucidate the various stages that occur during combustion. The elimination of the gravity-induced gas convection in microgravity allows the droplet combustion to be studied in greater detail. Noting that the compositions of heavy oil are various, we also tested the fuel blends of a diesel light oil (LO) and a heavy oil residue (HOR).
Solid fossil-fuel recovery by electrical induction heating in situ - A proposal
NASA Astrophysics Data System (ADS)
Fisher, S.
1980-04-01
A technique, termed electrical induction heating, is proposed for in situ processes of energy production from solid fossil fuels, such as bitumen production from underground distillation of oil sand; oil by underground distillation of oil shale; petroleum from heavy oil by underground mobilization of heavy oil, from either residues of conventional liquid petroleum deposits or new deposits of viscous oil; methane and coal tar from lignite and coal deposits by underground distillation of coal; and generation of electricity by surface combustion of low calorific-value gas from underground coke gasification by combustion of the organic residue left from the underground distillation of coal by induction heating. A method of surface distillation of mined coking coal by induction heating to produce coke, methane, and coal tar is also proposed.
The Research of New Environment-Friendly Oil-based Drilling Fluid Base Oil
NASA Astrophysics Data System (ADS)
Sui, Dianjie; Sun, Yuxue; Zhao, Jingyuan; Zhao, Fulei; Zhu, Xiuyu; Xu, Jianjun
2018-01-01
In this paper, the heavy hydrocarbon of Daqing is used, and the desulfurization and de-aromatization experiments and refining process are carried out, A base oil suitable for oil-based drilling fluid was developed, and the performance of base oil was evaluated, we can know the aromatics content of oil base is low, less toxic, less pollution and it can meet the requirement of environmental protection.
Shibulal, Biji; Al-Bahry, Saif N.; Al-Wahaibi, Yahya M.; Elshafie, Abdulkadir E.; Al-Bemani, Ali S.; Joshi, Sanket J.
2017-01-01
Microbial Enhanced Oil Recovery (MEOR) is a potential technology for residual heavy oil recovery. Many heavy oil fields in Oman and elsewhere have difficulty in crude oil recovery because it is expensive due to its high viscosity. Indigenous microbes are capable of improving the fluidity of heavy oil, by changing its high viscosity and producing lighter oil fractions. Many spore-forming bacteria were isolated from soil samples collected from oil fields in Oman. Among the isolates, an autochthonous spore-forming bacterium was found to enhance heavy oil recovery, which was identified by 16S rDNA sequencing as Paenibacillus ehimensis BS1. The isolate showed maximum growth at high heavy oil concentrations within four days of incubation. Biotransformation of heavy crude oil to light aliphatic and aromatic compounds and its potential in EOR was analyzed under aerobic and anaerobic reservoir conditions. The isolates were grown aerobically in Bushnell-Haas medium with 1% (w/v) heavy crude oil. The crude oil analyzed by GC-MS showed a significant biotransformation from the ninth day of incubation under aerobic conditions. The total biotransformation of heavy crude oil was 67.1% with 45.9% in aliphatic and 85.3% in aromatic fractions. Core flooding experiments were carried out by injecting the isolates in brine supplemented with Bushnell-Haas medium into Berea sandstone cores and were incubated for twelve days under oil reservoir conditions (50°C). The extra recovered oil was analyzed by GC-MS. The residual oil recovered from core flood experiments ranged between 10–13% compared to the control experiment. The GC-MS analyses of the extra recovered oil showed 38.99% biotransformation of heavy to light oil. The results also indicated the presence of 22.9% extra aliphatic compounds in the residual crude oil recovered compared to that of a control. The most abundant compound in the extra recovered crude oil was identified as 1-bromoeicosane. The investigations showed the potential of P. ehimensis BS1 in MEOR technology by the biotransformation of heavy to lighter crude oil under aerobic and reservoir conditions. Heavy oil recovery and biotransformation to lighter components are of great economic value and a few studies have been done. PMID:28196087
Hollow Fibers Networked with Perovskite Nanoparticles for H2 Production from Heavy Oil
Jeon, Yukwon; Park, Dae-Hwan; Park, Joo-Il; Yoon, Seong-Ho; Mochida, Isao; Choy, Jin-Ho; Shul, Yong-Gun
2013-01-01
Design of catalytic materials has been highlighted to build ultraclean use of heavy oil including liquid-to-gas technology to directly convert heavy hydrocarbons into H2–rich gas fuels. If the H2 is produced from such heavy oil through high-active and durable catalysts in reforming process that is being constructed in hydrogen infrastructure, it will be addressed into renewable energy systems. Herein, the three different hollow fiber catalysts networked with perovskite nanoparticles, LaCr0.8Ru0.2O3, LaCr0.8Ru0.1Ni0.1O3, and LaCr0.8Ni0.2O3 were prepared by using activated carbon fiber as a sacrificial template for H2 production from heavy gas oil reforming. The most important findings were arrived at: (i) catalysts had hollow fibrous architectures with well-crystallized structures, (ii) hollow fibers had a high specific surface area with a particle size of ≈50 nm, and (iii) the Ru substituted ones showed high efficiency for H2 production with substantial durability under high concentrations of S, N, and aromatic compounds. PMID:24104596
Characterization of fast-pyrolysis bio-oil distillation residues and their potential applications
USDA-ARS?s Scientific Manuscript database
A typical petroleum refinery makes use of the vacuum gas oil by cracking the large molecular weight compounds into light fuel hydrocarbons. For various types of fast pyrolysis bio-oil, successful analogous methods for processing heavy fractions could expedite integration into a petroleum refinery fo...
Xu, Chunbao; Lancaster, Jody
2008-03-01
The present work demonstrated that secondary pulp/paper sludge powder, with a higher heating value of 18.3MJ/kg on a dry basis, could be effectively converted into liquid oil products by direct liquefaction in hot-compressed water with and without catalyst. Treatments of secondary pulp/paper sludge in water at 250-380 degrees C for 15-120min in the presence of N(2) atmosphere resulted in yields of water-soluble oils at 20-45wt% and yields of heavy oils at 15-25wt%, with higher heating values of 10-15 and >35MJ/kg, respectively. The higher caloric values for the heavy oil products were accounted for by their compositions of long-chain carboxylic acids, heterocyclic nitrogen compounds and phenolic compounds and derivatives as evidenced by the gas chromatograph (GC)/MS measurements. The liquefaction product yields were significantly influenced by the liquefaction temperature, the residence time, the initial biomass concentration, catalysts and the liquefaction atmosphere (inert or reducing). Within the temperature range (250-380 degrees C) tested, the lowest temperature produced the highest yield of total oils (at 60wt%), while the greatest yield of heavy oil (at about 24wt%) was obtained at 350 degrees C. If the temperature was fixed at 280 degrees C, a greater yield of heavy oil (reaching as high as 25wt% for 120min) was obtained as the length of reaction time increased. Similarly, a higher initial biomass concentration produced a greater yield of heavy oil but a reduced yield of water-soluble oil. The presence of 0.1M K(2)CO(3) dramatically enhanced organic conversion, but suppressed the formation of both heavy oil and water-soluble oil. The use of the two alkaline earth metal catalysts, i.e., Ca(OH)(2) and Ba(OH)(2), did not alter organic conversion, but it catalyzed the formation of water-soluble oil and produced higher yields of total oil products. It was also demonstrated that the reducing atmosphere (i.e., H(2)) in the liquefaction process promoted the heavy oil formation while suppressing the water-soluble oil formation. With the presence of 0.1M Ca(OH)(2) and 2MPa H(2), liquefaction of the sludge powder in water at 280 degrees C for 60min produced a higher yield of heavy oil (26wt%), almost two times as high as that in N(2) (13.6wt%), resulting in a greater net energy efficiency. It was thus suggested that direct liquefaction of secondary pulp/paper sludge in hot-compressed water with Ca(OH)(2) catalyst and in the presence of H(2) could be an effective approach to recovering energy from the waste for production of liquid oil products.
Del Carmen Cuevas-Díaz, María; Vázquez-Luna, Dinora; Martínez-Hernández, Sergio; Guzmán-López, Oswaldo; Ortíz-Ceballos, Angel I
2017-08-01
Contamination of soil with petroleum is common in oil-producing areas across the tropical regions of the world. There is limited knowledge on the sensitivity of endogeic tropical earthworms to the contamination of soil with total petroleum hydrocarbons (TPH) present in crude oil. Pontoscolex corethrurus is a dominant species in tropical agroecosystems around oil-processing facilities. The sensitivity of P. corethrurus to soil artificially contaminated with "Maya" Mexican heavy crude oil was investigated through avoidance and acute ecotoxicity tests, using the following measured concentrations: 0 (reference soil), 551, 969, 4845, 9991 and 14,869 mg/kg. The avoidance test showed that P. corethrurus displayed a significant avoidance behavior to heavy crude oil at a concentration of 9991 mg/kg or higher. In contrast, acute toxicity tests indicate that the median lethal concentration (LC 50 ) was 3067.32 mg/kg; however, growth (weight loss) was more sensitive than mortality. Our study revealed that P. corethrurus is sensitive to TPH, thus highlighting the importance of P. corethrurus for petroleum ecotoxicological tests.
NASA Astrophysics Data System (ADS)
Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin
2012-09-01
Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.
Prospects for applications of electron beams in processing of gas and oil hydrocarbons
NASA Astrophysics Data System (ADS)
Ponomarev, A. V.; Pershukov, V. A.; Smirnov, V. P.
2015-12-01
Waste-free processing of oil and oil gases can be based on electron-beam technologies. Their major advantage is an opportunity of controlled manufacturing of a wide range of products with a higher utility value at moderate temperatures and pressures. The work considers certain key aspects of electron beam technologies applied for the chain cracking of heavy crude oil, for the synthesis of premium gasoline from oil gases, and also for the hydrogenation, alkylation, and isomerization of unsaturated oil products. Electronbeam processing of oil can be embodied via compact mobile modules which are applicable for direct usage at distant oil and gas fields. More cost-effective and reliable electron accelerators should be developed to realize the potential of electron-beam technologies.
Heavy Oil and Natural Bitumen Resources in Geological Basins of the World
Meyer, Richard F.; Attanasi, E.D.; Freeman, P.A.
2007-01-01
Heavy oil and natural bitumen are oils set apart by their high viscosity (resistance to flow) and high density (low API gravity). These attributes reflect the invariable presence of up to 50 weight percent asphaltenes, very high molecular weight hydrocarbon molecules incorporating many heteroatoms in their lattices. Almost all heavy oil and natural bitumen are alteration products of conventional oil. Total resources of heavy oil in known accumulations are 3,396 billion barrels of original oil in place, of which 30 billion barrels are included as prospective additional oil. The total natural bitumen resource in known accumulations amounts to 5,505 billion barrels of oil originally in place, which includes 993 billion barrels as prospective additional oil. This resource is distributed in 192 basins containing heavy oil and 89 basins with natural bitumen. Of the nine basic Klemme basin types, some with subdivisions, the most prolific by far for known heavy oil and natural bitumen volumes are continental multicyclic basins, either basins on the craton margin or closed basins along convergent plate margins. The former includes 47 percent of the natural bitumen, the latter 47 percent of the heavy oil and 46 percent of the natural bitumen. Little if any heavy oil occurs in fore-arc basins, and natural bitumen does not occur in either fore-arc or delta basins.
Study on nickel and vanadium removal in thermal conversion of oil sludge and oil shale sludge
NASA Astrophysics Data System (ADS)
Sombral, L. G. S.; Pickler, A. C.; Aires, J. R.; Riehl, C. A.
2003-05-01
The petroleum refining processes and of oil shale industrialization generate solid and semi-solid residues. In those residues heavy metals are found in concentrations that vary according to the production sector. The destination of those residues is encouraging researches looking for new technologies that reach the specifications of environmental organisms, and are being developed and applied to the industry. In this work it is shown that the heavy metals concentrations, previously in the petroleum oily solid residues and in those of the oils shale, treated by low temperature thermal conversion, obtaining in both cases concentrations below Ippm to Nickel and below 5ppm to vanadium.
Coreflood assay using extremophile microorganisms for recovery of heavy oil in Mexican oil fields.
Castorena-Cortés, Gladys; Roldán-Carrillo, Teresa; Reyes-Avila, Jesús; Zapata-Peñasco, Icoquih; Mayol-Castillo, Martha; Olguín-Lora, Patricia
2012-10-01
A considerable portion of oil reserves in Mexico corresponds to heavy oils. This feature makes it more difficult to recover the remaining oil in the reservoir after extraction with conventional techniques. Microbial enhanced oil recovery (MEOR) has been considered as a promising technique to further increase oil recovery, but its application has been developed mainly with light oils; therefore, more research is required for heavy oil. In this study, the recovery of Mexican heavy oil (11.1°API and viscosity 32,906 mPa s) in a coreflood experiment was evaluated using the extremophile mixed culture A7, which was isolated from a Mexican oil field. Culture A7 includes fermentative, thermophilic, and anaerobic microorganisms. The experiments included waterflooding and MEOR stages, and were carried out under reservoir conditions (70°C and 9.65 MPa). MEOR consisted of injections of nutrients and microorganisms followed by confinement periods. In the MEOR stages, the mixed culture A7 produced surface-active agents (surface tension reduction 27 mN m⁻¹), solvents (ethanol, 1738 mg L⁻¹), acids (693 mg L⁻¹), and gases, and also degraded heavy hydrocarbon fractions in an extreme environment. The interactions of these metabolites with the oil, as well as the bioconversion of heavy oil fractions to lighter fractions (increased alkanes in the C₈-C₃₀ range), were the mechanisms responsible for the mobility and recovery of heavy oil from the porous media. Oil recovery by MEOR was 19.48% of the residual oil in the core after waterflooding. These results show that MEOR is a potential alternative to heavy oil recovery in Mexican oil fields. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases
Gross, K.C.; Markun, F.; Zawadzki, M.T.
1998-04-28
An apparatus and method are disclosed for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir. 6 figs.
Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases
Gross, Kenneth C.; Markun, Francis; Zawadzki, Mary T.
1998-01-01
An apparatus and method for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Premuzic, E.T.
1996-08-01
During the past several years, a considerable amount of work has been carried out showing that microbially enhanced oil recovery (MEOR) is promising and the resulting biotechnology may be deliverable. At Brookhaven National Laboratory (BNL), systematic studies have been conducted which dealt with the effects of thermophilic and thermoadapted bacteria on the chemical and physical properties of selected types of crude oils at elevated temperatures and pressures. Current studies indicate that during the biotreatment several chemical and physical properties of crude oils are affected. The oils are (1) emulsified; (2) acidified; (3) there is a qualitative and quantitative change inmore » light and heavy fractions of the crudes; (4) there are chemical changes in fractions containing sulfur compounds; (5) there is an apparent reduction in the concentration of trace metals; and (6) the qualitative and quantitative changes appear to be microbial species dependent; and (7) there is a distinction between biodegraded and biotreated oils. The downstream biotechnological crude oil processing research performed thus far is of laboratory scale and has focused on demonstrating the technical feasibility of downstream processing with different types of biocatalysts under a variety of processing conditions. Quantitative economic analysis is the topic of the present project which investigates the economic feasibility of the various biochemical downstream processes which hold promise in upgrading of heavy crudes, such as those found in California, e.g., Monterey-type, Midway Sunset, Honda crudes, and others.« less
Yin, Fang; John, Gerald F; Hayworth, Joel S; Clement, T Prabhakar
2015-03-01
The 2010 Deepwater Horizon (DWH) catastrophe had considerable impact on the ∼ 50 km long sandy beach system located along the Alabama shoreline. We present a four-year dataset to characterize the temporal evolution of various polycyclic aromatic hydrocarbons (PAHs) and their alkylated homologs trapped in the residual oil buried along the shoreline. Field samples analyzed include the first arrival oil collected from Perdido Bay, Alabama in June 2010, and multiple oil spill samples collected until August 2014. Our field data show that, as of August 2014, DWH oil is still trapped along Alabama's beaches as submerged oil, predominately in the form of surface residual oil balls (SRBs). Chemical characterization data show that various PAHs present in the spilled oil (MC252 crude) weathered by about 45% to 100% when the oil was floating over the open ocean system in the Gulf of Mexico. Light PAHs, such as naphthalenes, were fully depleted, whereas heavy PAHs, such as chrysenes, were only partially depleted by about 45%. However, the rate of PAH weathering appears to have decreased significantly once the oil was buried within the partially-closed SRB environment. Concentration levels of several heavy PAHs have almost remained constant over the past 4 years. Our data also show that evaporation was most likely the primary weathering mechanism for PAH removal when the oil was floating over the ocean, although photo-degradation and other physico-chemical processes could have contributed to some additional weathering. Chemical data presented in this study indicate that submerged oil containing various heavy PAHs (for example, parent and alkylated chrysenes) is likely to remain in the beach system for several years. It is also likely that the organisms living in these beach environments would have an increased risk of exposure to heavy PAHs trapped in the non-recoverable form of buried DWH oil spill residues. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect of NTP Pretreatment on Thermal Resistance and Fouling Components of Oilfield Wastewater
NASA Astrophysics Data System (ADS)
Zhao, Jie; Li, Wenli; Zou, Longsheng; Fu, Honghun
2018-01-01
In order to prevent scaling in the process of oilfield wastewater evaporation, low temperature plasma is used for pretreatment of heavy oil wastewater. It reacts with the ions and radicals produced by the low-temperature plasma and then is send into the evaporator. The changes of various indexes of the distilled water and the distribution of fouling in the evaporation process of heavy oil wastewater after plasma pretreatment were studied. The results showed that the content and hardness of silica in wastewater were decreased after plasma pretreatment, which was more suitable for evaporation treatment. At the same time, the content of salt and oil in distilled water is reduced, and the quality is improved. In addition, when the steam concentration was 30∼40 times, the suspended solids in the concentrated solution of the wastewater increased significantly after the plasma treatment. Correspondingly, the fouling at the bottom of evaporator is greatly reduced. Comparing the various indexes of distilled water and the feed water index of gas injection boiler, it can be seen that the excessive oil content in distilled water is the biggest obstacle to the recovery of distilled water to boiler feed water. Low temperature plasma pretreatment can provide a quick and new way to solve the scaling problems and water quality problems in the recovery of distilled water from a large number of heavy oil wastewater.
Dilemma for high-tech refiners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The price difference between lighter and heavier crude oils, and between light and heavy refined products, amounts to the incentive for refiners to upgrade processing facilities. When that differential widens, the incentive to utilize lower price, lower quality crude is enhanced; when it narrows, the desirability of relying on light oil prices and supplies is intensified. The incentive to upgrade has been eroded ever since 1981 ushered in world-wide overproduction of crude oil. Lower demand due to recession met with increased pressure on producers to compete for market shares to maintain vital revenue levels - for private and national oilmore » companies alike. Light crude prices suffered, while heavy crude prices improved. As of mid-1984, the shrinkage of the price differential went into dormancy (see Energy Detente 8/8/84, A Hey-Day for Heavy Crudes) after both Mexico and Venezuela raised heavy oil prices by US $0.50 per barrel (bbl). Energy Detente refining netback data for the first half of October are presented for the US Gulf Coast and the US West Coast. The fuel price/tax series and the industrial fuel prices for October 1984 are included for countries of the Eastern Hemisphere.« less
Abolghasemi Mahani, A; Motahari, S; Mohebbi, A
2018-04-01
Oil spills are the most important threat to the sea ecosystem. The present study is an attempt to investigate the effects of sol-gel parameters on seawater decontamination from crude oil by use of flexible silica aerogel. To this goal, methyltrimethoxysilane (MTMS) based silica aerogels were prepared by two-step acid-base catalyzed sol-gel process, involving ambient pressure drying (APD) method. To investigate the effects of sol-gel parameters, the aerogels were prepared under two different acidic and basic pH values (i.e. 4 and 8) and varied ethanol/MTMS molar ratios from 5 to 15. The adsorption capacity of the prepared aerogels was evaluated for two heavy and light commercial crude oils under multiple adsorption-desorption cycles. To reduce process time, desorption cycles were carried out by using roll milling for the first time. At optimum condition, silica aerogels are able to uptake heavy and light crude oils with the order of 16.7 and 13.7, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Macro and microminerals of four Cuphea genotypes grown across the upper Midwest USA
USDA-ARS?s Scientific Manuscript database
Cuphea seed oil can be used for many purposes from motor oil and cosmetic components to jet fuel because its seeds are a rich source of medium-chain fatty acids (C8:0 to C14:0). Processing cuphea oil to biofuel and other bioproducts of high quality can depend on the heavy metal content of its seed. ...
2016-05-01
UNCLASSIFIED LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL... HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL REPORT TFLRF No. 477 by Adam C...August 2014 – March 2016 4. TITLE AND SUBTITLE LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FEUL EFFICIENT GEAR OILS
SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munroe, Norman
With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) atmore » the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the precipitate readily enables removal of asphaltenes. Thus, an upgraded crude low in heavy metal, sulfur and nitrogen is more conducive for further purification.« less
Vallejo-Cardona, Alba A; Cerón-Camacho, Ricardo; Karamath, James R; Martínez-Palou, Rafael; Aburto, Jorge
2017-07-01
Unconventional crude oil as heavy, extra heavy, bitumen, tight, and shale oils will meet 10% of worldwide needs for 2035, perhaps earlier. Petroleum companies will face problems concerning crude oil extraction, production, transport, and refining, and some of these are addressed by the use of surfactants and other chemicals. For example, water-in-crude oil emulsions are frequently found during the production of mature wells where enhanced recovery techniques have been deployed. Nevertheless, the selection of adequate surfactant, dosage, type of water (sea, tap or oilfield), kind of crude oil (light, heavy, extra heavy, tight, shale, bitumen) affect the effectivity of treatment and usual bottle tests give limited information. We developed a fluorescence technique to study the effect of surfactants on medium, heavy, and extra heavy crude oil employing the natural fluorophore molecules from petroleum. We first carried out the characterization of commercial and synthetic surfactants, then dispersions of petroleum in water were studied by steady-state fluorometry and the size of petroleum aggregates were measured. The aggregation of petroleum incremented from medium to extra heavy crude oil and we discussed the effect of different surfactants on such aggregation.
Potgieter, H; Bekker, R; Beigley, J; Rohwer, E
2017-08-04
Heavy petroleum fractions are produced during crude and synthetic crude oil refining processes and they need to be upgraded to useable products to increase their market value. Usually these fractions are upgraded to fuel products by hydrocracking, hydroisomerization and hydrogenation processes. These fractions are also upgraded to other high value commercial products like lubricant oils and waxes by distillation, hydrogenation, and oxidation and/or blending. Oxidation of hydrogenated heavy paraffinic fractions produces high value products that contain a variety of oxygenates and the characterization of these heavy oxygenates is very important for the control of oxidation processes. Traditionally titrimetric procedures are used to monitor oxygenate formation, however, these titrimetric procedures are tedious and lack selectivity toward specific oxygenate classes in complex matrices. Comprehensive two-dimensional gas chromatography (GC×GC) is a way of increasing peak capacity for the comprehensive analysis of complex samples. Other groups have used HT-GC×GC to extend the carbon number range attainable by GC×GC and have optimised HT-GC×GC parameters for the separation of aromatics, nitrogen-containing compounds as well as sulphur-containing compounds in heavy petroleum fractions. HT-GC×GC column combinations for the separation of oxygenates in oxidised heavy paraffinic fractions are optimised in this study. The advantages of the HT-GC×GC method in the monitoring of the oxidation reactions of heavy paraffinic fraction samples are illustrated. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Suhendrayatna; Darusman; Raihannah; Nurmala, D.
2018-04-01
In this study, the impact of contaminated soil from oil mine waste on survival, behavior, tolerance, and bioaccumulation of heavy metals by the tropical earthworm, Allobophora sp. has been quantified. Earthworm was isolated from heavy metals-contaminated soil, cultured in laboratory condition, and exposed to contaminated soil from oil mine waste for a couple of months. The behavior and response of earthworms to contaminated soil was monitored for 28 days and evaluated by the response criteria was expressed in scale index (SI) referred to Langdon method. Resistance test of the earthworm (LC50) to heavy metals also conducted with variation soil concentrations of 100%, 50%, 25%, 12.5%, and 6.25%, and 0% (Control). Results showed that contaminated soil extremely affected to the earthworm live, especially length and their body weight. The Lethal Concentration 50% (LC50) of earthworm against contaminated soil was 19.05% (w/w). When exposed to contaminated soil, earthworm accumulated chromium, barium, and manganese at the concentration of 88; 92.2; and 280 mg/kg-DW, respectively. Based on these results, earthworm Allobophora sp. has potential to reduce heavy metals from contaminated soil in the field of bioremediation process.
Wu, Yongsheng; Hannah, Charles G; Thupaki, Pramod; Mo, Ruping; Law, Brent
2017-01-15
Raindrops falling on the sea surface produce turbulence. The present study examined the influence of rain-induced turbulence on oil droplet size and dispersion of oil spills in Douglas Channel in British Columbia, Canada using hourly atmospheric data in 2011-2013. We examined three types of oils: a light oil (Cold Lake Diluent - CLD), and two heavy oils (Cold Lake Blend - CLB and Access Western Blend - AWB). We found that the turbulent energy dissipation rate produced by rainfalls is comparable to what is produced by wind-induced wave breaking in our study area. With the use of chemical dispersants, our results indicate that a heavy rainfall (rain rate>20mmh -1 ) can produce the maximum droplet size of 300μm for light oil and 1000μm for heavy oils, and it can disperse the light oil with fraction of 22-45% and the heavy oils of 8-13%, respectively. Heavy rainfalls could be a factor for the fate of oil spills in Douglas Channel, especially for a spill of light oil and the use of chemical dispersants. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Singh, Ajay
Recent advances in molecular biology of microbes have made possible in exploring and engineering improved biocatalysts (microbes and enzymes) suitable for the oil biorefining and recovery processes (Monticello, 2000; Van Hamme et al., 2003; Kilbane, 2006). Crude oil contains about 0.05-5% sulphur, 0.5-2.1% nitrogen and heavy metals such as nickel and vanadium associated with the asphaltene fraction. High temperature- and pressure-requiring expensive hydrotreatment processes are generally used to remove sulphur and nitrogen compounds from petroleum. Biorefining processes to improve oil quality have gained lots of interest and made a significant progress in the last two decades (Le Borgne and Quintero, 2003) and is the focus of this chapter.
The impact of multiphase behaviour on coke deposition in heavy oil hydroprocessing catalysts
NASA Astrophysics Data System (ADS)
Zhang, Xiaohui
Coke deposition in heavy oil catalytic hydroprocessing remains a serious problem. The influence of multiphase behaviour on coke deposition is an important but unresolved question. A model heavy oil system (Athabasca vacuum bottoms (ABVB) + decane) and a commercial heavy oil hydrotreating catalyst (NiMo/gamma-Al 2O3) were employed to study the impact of multiphase behaviour on coke deposition. The model heavy oil mixture exhibits low-density liquid + vapour (L1V), high-density liquid + vapour (L2V), as well as low-density liquid + high-density liquid + vapour (L1L2V) phase behaviour at a typical hydroprocessing temperature (380°C). The L2 phase only arises for the ABVB composition range from 10 to 50 wt %. The phase behaviour undergoes transitions from V to L2V, to L1L2V, to L1V with increasing ABVB compositions at the pressure examined. The addition of hydrogen into the model heavy oil mixtures at a fixed mass ratio (0.0057:1) does not change the phase behaviour significantly, but shifts the phase regions and boundaries vertically from low pressure to high pressure. In the absence of hydrogen, the carbon content, surface area and pore volume losses for catalyst exposed to the L1 phase are greater than for the corresponding L2 phase despite a higher coke precursor concentration in L2 than in L1. By contrast, in the presence of hydrogen, the carbon content, surface area and pore volume losses for the catalyst exposed to the L2 phase are greater than for the corresponding L1 phase. The higher hydrogen concentration in L1 appears to reverse the observed results. In the presence of hydrogen, L2 was most closely associated with coke deposition, L1 less associated with coke deposition, and V least associated with coke deposition. Coke deposition is maximized in the phase regions where the L2 phase arises. This key result is inconsistent with expectation and coke deposition models where the extent of coke deposition, at otherwise fixed reaction conditions, is asserted to be proportional to the nominal concentration of coke precursor present in the feed. These new findings are very significant both with respect to providing guidance concerning possible operation improvement for existing processes and for the development of new upgrading processes.
Low, Wan-Li; Kenward, Ken; Britland, Stephen T; Amin, Mohd Cim; Martin, Claire
2017-04-01
The increasing occurrence of hospital-acquired infections and the emerging problems posed by antibiotic-resistant microbial strains have both contributed to the escalating cost of treatment. The presence of infection at the wound site can potentially stall the healing process at the inflammatory stage, leading to the development of a chronic wound. Traditional wound treatment regimes can no longer cope with the complications posed by antibiotic-resistant strains; hence, there is a need to explore the use of alternative antimicrobial agents. Pre-antibiotic compounds, including heavy metal ions and essential oils, have been re-investigated for their potential use as effective antimicrobial agents. Essential oils have potent antimicrobial, antifungal, antiviral, anti-inflammatory, antioxidant and other beneficial therapeutic properties. Similarly, heavy metal ions have also been used as disinfecting agents because of their broad spectrum activities. Both of these alternative antimicrobials interact with many different intracellular components, thereby resulting in the disruption of vital cell functions and eventually cell death. This review will discuss the application of essential oils and heavy metal ions, particularly tea tree oil and silver ions, as alternative antimicrobial agents for the treatment of chronic, infected wounds. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Cho, Yunju; Ahmed, Arif; Islam, Annana; Kim, Sunghwan
2015-01-01
Because of the increasing importance of heavy and unconventional crude oil as an energy source, there is a growing need for petroleomics: the pursuit of more complete and detailed knowledge of the chemical compositions of crude oil. Crude oil has an extremely complex nature; hence, techniques with ultra-high resolving capabilities, such as Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), are necessary. FT-ICR MS has been successfully applied to the study of heavy and unconventional crude oils such as bitumen and shale oil. However, the analysis of crude oil with FT-ICR MS is not trivial, and it has pushed analysis to the limits of instrumental and methodological capabilities. For example, high-resolution mass spectra of crude oils may contain over 100,000 peaks that require interpretation. To visualize large data sets more effectively, data processing methods such as Kendrick mass defect analysis and statistical analyses have been developed. The successful application of FT-ICR MS to the study of crude oil has been critically dependent on key developments in FT-ICR MS instrumentation and data processing methods. This review offers an introduction to the basic principles, FT-ICR MS instrumentation development, ionization techniques, and data interpretation methods for petroleomics and is intended for readers having no prior experience in this field of study. © 2014 Wiley Periodicals, Inc.
System and method for preparing near-surface heavy oil for extraction using microbial degradation
Busche, Frederick D [Highland Village, TX; Rollins, John B [Southlake, TX; Noyes, Harold J [Golden, CO; Bush, James G [West Richland, WA
2011-04-12
A system and method for enhancing the recovery of heavy oil in an oil extraction environment by feeding nutrients to a preferred microbial species (bacteria and/or fungi). A method is described that includes the steps of: sampling and identifying microbial species that reside in the oil extraction environment; collecting fluid property data from the oil extraction environment; collecting nutrient data from the oil extraction environment; identifying a preferred microbial species from the oil extraction environment that can transform the heavy oil into a lighter oil; identifying a nutrient from the oil extraction environment that promotes a proliferation of the preferred microbial species; and introducing the nutrient into the oil extraction environment.
Multifunctional two-stage riser fluid catalytic cracking process.
Zhang, Jinhong; Shan, Honghong; Chen, Xiaobo; Li, Chunyi; Yang, Chaohe
This paper described the discovering process of some shortcomings of the conventional fluid catalytic cracking (FCC) process and the proposed two-stage riser (TSR) FCC process for decreasing dry gas and coke yields and increasing light oil yield, which has been successfully applied in 12 industrial units. Furthermore, the multifunctional two-stage riser (MFT) FCC process proposed on the basis of the TSR FCC process was described, which were carried out by the optimization of reaction conditions for fresh feedstock and cycle oil catalytic cracking, respectively, by the coupling of cycle oil cracking and light FCC naphtha upgrading processes in the second-stage riser, and the specially designed reactor for further reducing the olefin content of gasoline. The pilot test showed that it can further improve the product quality, increase the diesel yield, and enhance the conversion of heavy oil.
Testing Method of Degrading Heavy Oil Pollution by Microorganisms
NASA Astrophysics Data System (ADS)
Wu, Qi; Zhao, Lin; Ma, Aijin
2018-01-01
With the development of human society, we are more and more relying on the petrochemical energy. The use of petrochemical energy not only brings us great convenience, but is also accompanied by a series of environmental pollution problems, especially oil pollution. Since it is impractical to restore all pollution problems, the proper use of some remedial measures, under the guidance of functional orientation, may be sufficient to minimize the risk of persistent and diffusing pollutants. In recent years, bioremediation technology has been gradually developed into a promising stage and has played a crucial role in the degradation of heavy oil pollution. Specially, microbes in the degradation of heavy oil have made a great contribution. This paper mainly summarizes the different kinds of microorganisms for degrading heavy oil and the detection method for degradation efficiency of heavy oil pollution.
Modeling of cobalt-based catalyst use during CSS for low-temperature heavy oil upgrading
NASA Astrophysics Data System (ADS)
Kadyrov, R.; Sitnov, S.; Gareev, B.; Batalin, G.
2018-05-01
One of the methods, which is actively used on deposits of heavy oils of the Upper Kungurian (Ufimian) sandstones of the Republic of Tatarstan, is cyclic steam simulation (CSS). This method consists of 3 stages: injection, soaking, and production. Steam is injected into a well at a temperature of 300 to 340° C for a period of weeks to months. Then, the well is allowed to sit for days to weeks to allow heat to soak into the formation. Finally, the hot oil is pumped out of the well for a period of weeks or months. Once the production rate falls off, the well is put through another cycle. The injection of the catalyst solution before the injection of steam opens the possibility for upgrading the heavy oil in the process of aquathermolysis directly in the reservoir. In this paper, the possibility of using a catalyst precursor based on cobalt for upgrading the hydrocarbons of this field in the process of their extraction is represented. SARA analysis on oil saturated sandstones shows an increase in the proportion of saturated hydrocarbons by 11.1% due to the hydrogenation of aromatic hydrocarbons and their derivatives, the content of resins and asphaltenes are remained practically unchanged. A new method for estimating the adsorption of a catalyst based on taking into account the change in the concentration of the base metal before and after simulation of catalyst injection in the thermobaric conditions of the reservoir is proposed. During the study of catalyst adsorption in the rock, when simulating the CSS process, it is found that almost 28% of the cobalt, which is the main element of the catalyst precursor, is retained in the rock.
Steam-soak performance in south Oman
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, S.A.
1991-11-01
With about 2 {times} 10{sup 9} stock-tank m{sup 3} (12.6 {times} 10{sup 9} STB) of medium/heavy oil originally in place (OOIP) in south Oman, considerable scope exists for increasing oil recovery by thermal methods. The viability of thermal recovery in south Oman was tested with a steamflood pilot in the Al Khlata sands of the Marmul field and a 2-year steam-soak project to test the applicability of steam soak in five south Oman oil fields producing heavy oil. This paper describes the performance of the latter project. The wells selected for the test program included a wide range of southmore » Oman reservoir and oil characteristics i.e., the main reservoir drive mechanisms of depletion, solution-gas, and edge- and bottomwater drive, the reservoir sandbody types, and oil viscosities from 80 to 4000 mPa {center dot} s (80 to 4,000 cp). Steam-soak operations were successful, and oil production accelerated significantly, with an average stimulate production rate twice that before stimulation. Acceleration was less marked in wells where reservoir energy is limited or where the primary (cold) water cut is more than 30%. At primary (cold) water cuts {gt}50%, no increase in oil production rate was observed. The process was simulated numerically for several wells, with the results in close agreement with performance. Improved understanding of the process resulting from the simulation allowed the most important factors influencing performance to be identified and aided process optimization in the field test. Two small-scale steam-soak projects currently are being assessed for implementatioimplementation in the early 1990's.« less
NASA Astrophysics Data System (ADS)
Buerki, Peter R.; Gaelli, Brigitte C.; Nyffeler, Urs P.
In central Switzerland five types of emission sources are mainly responsible for airborne trace metals: traffic, industrial plants burning heavy oil, resuspension of soil particles, residential heatings and refuse incineration plants. The particulate emissions of each of these source types except refuse incineration were sampled using Berner impactors and the mass and elemental size distributions of Cd, Cu, Mn, Pb, Zn, As and Na determined. Cd, Na and Zn are not characteristic for any of these source types. As and Cu, occurring in the fine particle fractions are characteristic for heavy oil combustion, Mn for soil dust and sometimes for heavy and fuel oil combustion and Pb for traffic aerosols. The mass size distributions of aerosols originating from erosion and abrasion processes show a maximum mass fraction in the coarse particle range larger than about 1 μm aerodynamic equivalent diameters (A.E.D.). Aerosols originating from combustion processes show a second maximum mass fraction in the fine particle range below about 0.5μm A.E.D. Scanning electron microscopy combined with an EDS analyzer was used for the morphological characterization of emission and ambient aerosols.
Upgrading platform using alkali metals
Gordon, John Howard
2014-09-09
A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Naijia; Bezerra, Tais Lacerda; Wu, Qiong
Pyrolysis is a promising method for converting biomass to biofuels. However, some of pyrolysis oil's physiochemical properties still limit its commercial applications. Here, the autohydrolysis pretreatment at 175 ± 3 °C for 40 min was conducted to improve the resulting pine pyrolysis oil’s properties as a fuel. During autohydrolysis, deacetylation and decomposition of hemicellulose was observed by ion-exchange chromatography and Fourier transform infrared spectroscopy (FT-IR). Additionally, the cleavage of lignin ether bonds was clearly determined by 13C cross-polarization/magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR). Phosphitylation followed by 31P NMR analysis of the heavy oils gave detailed structural information ofmore » the hydroxyl groups; the results revealed that autohydrolysis pretreatment led to a reduction of carboxyl acids in the heavy oils generated at all three pyrolysis temperatures (400, 500, and 600 °C). The 31P NMR analysis also revealed that autohydrolysis pretreatment led to a reduction of condensed phenolic hydroxyl groups in the heavy oils produced at 600 °C. 1H- 13C heteronuclear single-quantum correlation (HSQC) NMR analysis showed that at a pyrolysis temperature of 600 °C, the pretreated pine produced lower methoxy group constituents. In both 31P and HSQC NMR results indicated that autohydrolysis pretreatment increased levoglucosan yields in the bio-oils.« less
Hao, Naijia; Bezerra, Tais Lacerda; Wu, Qiong; ...
2017-06-29
Pyrolysis is a promising method for converting biomass to biofuels. However, some of pyrolysis oil's physiochemical properties still limit its commercial applications. Here, the autohydrolysis pretreatment at 175 ± 3 °C for 40 min was conducted to improve the resulting pine pyrolysis oil’s properties as a fuel. During autohydrolysis, deacetylation and decomposition of hemicellulose was observed by ion-exchange chromatography and Fourier transform infrared spectroscopy (FT-IR). Additionally, the cleavage of lignin ether bonds was clearly determined by 13C cross-polarization/magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR). Phosphitylation followed by 31P NMR analysis of the heavy oils gave detailed structural information ofmore » the hydroxyl groups; the results revealed that autohydrolysis pretreatment led to a reduction of carboxyl acids in the heavy oils generated at all three pyrolysis temperatures (400, 500, and 600 °C). The 31P NMR analysis also revealed that autohydrolysis pretreatment led to a reduction of condensed phenolic hydroxyl groups in the heavy oils produced at 600 °C. 1H- 13C heteronuclear single-quantum correlation (HSQC) NMR analysis showed that at a pyrolysis temperature of 600 °C, the pretreated pine produced lower methoxy group constituents. In both 31P and HSQC NMR results indicated that autohydrolysis pretreatment increased levoglucosan yields in the bio-oils.« less
Effect of depletion rate on solution gas drive in shale
NASA Astrophysics Data System (ADS)
Zhang, Mingshan; Sang, Qian; Gong, Houjian; Li, Yajun; Dong, Mingzhe
2018-01-01
Solution gas drive process has been studied extensively in sand rocks and heavy oil reservoirs for a long time. Oil recovery is affected by several factors, such as depletion rate, initial GOR (gas oil ratio), oil viscosity, and temperature and so on. Before the solution gas drive tests, elastic drive without dissolved gas was carried out as a reference, which shows a limited oil recovery. Solution gas drive experiments were conducted in shale to study oil recovery with various depletion rates. Results show that oil recovery increases with the decrease of depletion rates because of the low permeability and desorption of methane.
Cyclic steaming in heavy oil diatomite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, M.; Beatty, F.D.
1995-12-31
Chevron currently uses cyclic steaming as a recovery method to produce economically its heavy oil diatomite resource in the Cymric field, San Joaquin Valley, California. A highly instrumented, cyclically steaming well from this field was simulated in this study to delineate important production mechanisms, to optimize operations, and to improve reservoir management. The model was constrained, as much as possible, by the available measured data. Results show that fluid flow from the well to the reservoir is primarily through the hydraulic fracture induced by the injected steam. Parameters with unique importance to modeling cyclic steaming in diatomites are: (1) inducedmore » fracture dimension (length and height), (2) matrix permeability, (3) oil/water capillary pressure, (4) grid size perpendicular to fracture face, and (5) producing bottomhole pressures. Additionally, parameters important for conventional steam injection processes, such as relative permeabilities and injected steam volume, quality, and rate, are important for diatomites also. Oil production rates and steam/oil ratios calculated by this model compare reasonably with field data.« less
Head, Ian M.; Gray, Neil D.; Larter, Stephen R.
2014-01-01
Our understanding of the processes underlying the formation of heavy oil has been transformed in the last decade. The process was once thought to be driven by oxygen delivered to deep petroleum reservoirs by meteoric water. This paradigm has been replaced by a view that the process is anaerobic and frequently associated with methanogenic hydrocarbon degradation. The thermal history of a reservoir exerts a fundamental control on the occurrence of biodegraded petroleum, and microbial activity is focused at the base of the oil column in the oil water transition zone, that represents a hotspot in the petroleum reservoir biome. Here we present a synthesis of new and existing microbiological, geochemical, and biogeochemical data that expands our view of the processes that regulate deep life in petroleum reservoir ecosystems and highlights interactions of a range of biotic and abiotic factors that determine whether petroleum is likely to be biodegraded in situ, with important consequences for oil exploration and production. Specifically we propose that the salinity of reservoir formation waters exerts a key control on the occurrence of biodegraded heavy oil reservoirs and introduce the concept of palaeopickling. We also evaluate the interaction between temperature and salinity to explain the occurrence of non-degraded oil in reservoirs where the temperature has not reached the 80–90°C required for palaeopasteurization. In addition we evaluate several hypotheses that might explain the occurrence of organisms conventionally considered to be aerobic, in nominally anoxic petroleum reservoir habitats. Finally we discuss the role of microbial processes for energy recovery as we make the transition from fossil fuel reliance, and how these fit within the broader socioeconomic landscape of energy futures. PMID:25426105
Guo, Jian; Huang, Siyao; Chen, Yefu; Guo, Xuewu; Xiao, Dongguang
2017-12-18
Pullulan produced by Aureobasidium pullulans presents various applications in food manufacturing and pharmaceutical industry. However, the pullulan biosynthesis mechanism remains unclear. This work proposed a pathway suggesting that heavy oil and melanin may correlate with pullulan production. The effects of overexpression or deletion of genes encoding apolipoprotein, UDPG-pyrophosphorylase, glucosyltransferase, and α-phosphoglucose mutase on the production of pullulan, heavy oil, and melanin were examined. Pullulan production increased by 16.93 and 8.52% with the overexpression of UDPG-pyrophosphorylase and apolipoprotein genes, respectively. Nevertheless, the overexpression or deletion of other genes exerted little effect on pullulan biosynthesis. Heavy oil production increased by 146.30, 64.81, and 33.33% with the overexpression of UDPG-pyrophosphorylase, α-phosphoglucose mutase, and apolipoprotein genes, respectively. Furthermore, the syntheses of pullulan, heavy oil, and melanin can compete with one another. This work may provide new guidance to improve the production of pullulan, heavy oil, and melanin through genetic approach.
NASA Technical Reports Server (NTRS)
Heinlein, Fritz
1926-01-01
While little has been accomplished in obtaining an abundant supply of light oils from coal and heavy oils, progress has been made on engine design to make use of the heavier oils. Progress has been made in two different directions which are outlined in this paper: the group of engines with medium and high-pressure carburetion in the cylinder; and the group of engines with low-pressure carburetion of the heavy oils before reaching the cylinder.
Heavy oil reservoirs recoverable by thermal technology
NASA Astrophysics Data System (ADS)
Kujawa, P.
1981-02-01
Data are presented on reservoirs that contain heavy oil in the 8 to 25(0) API gravity range, contain at least ten million barrels of oil currently in place, and are noncarbonate in lithology. The reservoirs within these constraints were analyzed in light of applicable recovery technology, either steam drive or in situ combustion, and then ranked hierarchically as candidate reservoirs. An extensive basis for heavy oil development is provided, however, it is recommended that data on carbonate reservoirs, and tar sands be compiled. It was discovered that operators, and industrial and government analysts will lump heavy oil reservoirs as poor producers, however, it was found that upon detailed analysis, a large number, so categorized, were producing very well. A big problem in producing heavy oil is that of regulation; specifically, it was found that the regulatory constraints are so fluid and changing that one cannot settle on a favorable recovery and production plan with enough confidence in the regulatory requirements to commit capital to the project.
Vacuum distillation residue upgrading by an indigenous bacillus cereus
2013-01-01
Background Biological processing of heavy fractions of crude oils offers less severe process conditions and higher selectivity for refining. Biochemical Processes are expected to be low demand energy processes and certainly ecofriendly. Results A strain of biosurfactant producing bacterium was isolated from an oil contaminated soil at Tehran refinery distillation unit. Based on selected phenotypic and genotypic characteristic including morphology, biochemical proprety, and 16 SrRNA sequencing identified as a novel strain of Bacillus cereus (JQ178332). This bacterium endures a wide range of pH, salinity and temperature. This specific strain utilizes both paraffin and anthracene as samples of aliphatic and polycyclic aromatic hydrocarbons. The ability of this bacterium to acquire all its energy and chemical requirements from Vacuum Distillation Residue (VR), as a net sample of problematic hydrocarbons in refineries, was studied. SARA test ASTM D4124-01 revealed 65.5% decrease in asphaltenic, 22.1% in aliphatics and 30.3% in Aromatics content of the VR in MSM medium. Further results with 0.9% saline showed 55% decrease in asphaltene content and 2.1% Aromatics respectively. Conclusion Remarkable abilities of this microorganism propose its application in an ecofriendly technology to upgrade heavy crude oils. PMID:24499629
Vacuum distillation residue upgrading by an indigenous Bacillus cereus.
Tabatabaee, Mitra Sadat; Mazaheri Assadi, Mahnaz
2013-07-16
Biological processing of heavy fractions of crude oils offers less severe process conditions and higher selectivity for refining. Biochemical Processes are expected to be low demand energy processes and certainly ecofriendly. A strain of biosurfactant producing bacterium was isolated from an oil contaminated soil at Tehran refinery distillation unit. Based on selected phenotypic and genotypic characteristic including morphology, biochemical proprety, and 16 SrRNA sequencing identified as a novel strain of Bacillus cereus (JQ178332). This bacterium endures a wide range of pH, salinity and temperature. This specific strain utilizes both paraffin and anthracene as samples of aliphatic and polycyclic aromatic hydrocarbons. The ability of this bacterium to acquire all its energy and chemical requirements from Vacuum Distillation Residue (VR), as a net sample of problematic hydrocarbons in refineries, was studied. SARA test ASTM D4124-01 revealed 65.5% decrease in asphaltenic, 22.1% in aliphatics and 30.3% in Aromatics content of the VR in MSM medium. Further results with 0.9% saline showed 55% decrease in asphaltene content and 2.1% Aromatics respectively. Remarkable abilities of this microorganism propose its application in an ecofriendly technology to upgrade heavy crude oils.
AMC’s Hydrogen Future: Sustainable Air Mobility
2009-06-01
by bacteria . The Orinoco heavy oil has been degraded less than the Canadian oil sands making it easier to extract. The Orinoco oil contains 300...molecules tend to evaporate. Bacteria at the surface modify the oil leaving ring compounds. This causes the oil to become more viscous than conventional...267 billion barrels recoverable (Mommer, 2004). The difference between the oil sands and heavy oil is the degree to which the oil has been degraded
Low-rank coal oil agglomeration product and process
Knudson, Curtis L.; Timpe, Ronald C.; Potas, Todd A.; DeWall, Raymond A.; Musich, Mark A.
1992-01-01
A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-decrepitating, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.
Low-rank coal oil agglomeration product and process
Knudson, C.L.; Timpe, R.C.; Potas, T.A.; DeWall, R.A.; Musich, M.A.
1992-11-10
A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-degradable, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.
Bowden, Stephen A; Wilson, Rab; Parnell, John; Cooper, Jonathan M
2009-03-21
Heavy oil utilisation is set to increase over the coming decades as reserves of conventional oil decline. Heavy oil differs from conventional oil in containing relatively large quantities of asphaltene and carboxylic acids. The proportions of these compounds greatly influence how oil behaves during production and its utilisation as a fuel or feedstock. We report the development of a microfluidic technique, based on a H-cell, that can extract the carboxylic acid components of an oil and assess its asphaltene content. Ultimately this technology could yield a field-deployable device capable of performing measurements that facilitate improved resource management at the point of resource-extraction.
Feasibility study: Liquid hydrogen plant, 30 tons per day
NASA Technical Reports Server (NTRS)
1975-01-01
The design considerations of the plant are discussed in detail along with management planning, objective schedules, and cost estimates. The processing scheme is aimed at ultimate use of coal as the basic raw material. For back-up, and to provide assurance of a dependable and steady supply of hydrogen, a parallel and redundant facility for gasifying heavy residual oil will be installed. Both the coal and residual oil gasifiers will use the partial oxidation process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Bauman; S. Burian; M. Deo
The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987more » technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.« less
Oil from hydrocracking as a raw material for the production of white oils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potanina, V.A.; Dremova, T.I.; Ponomareva, T.P.
1984-01-01
This article investigates the feasibility of using distillate oil from hydrocracking for white oil production. A process technology has been developed in the USSR for the manufacture of high-quality oils by hydrocracking a heavy distillate feed in high-pressure equipment. The neutral and hydrocracked oil sample and a blend of these stocks were subjected to treatment with oleum, neutralization with 65% ethyl alcohol, and contact finishing to obtain white oils. The physicochemical properties of the white oils are given. It is determined that the hydrocracked oil can be used as the raw material in manufacturing perfume oil meeting the standard GOSTmore » 4225-76, and that the blends can be used to obtain pharmaceutical white oil meeting the standard GOST 3164-78.« less
Preparing near-surface heavy oil for extraction using microbial degradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busche, Frederick D.; Rollins, John B.; Noyes, Harold J.
In one embodiment, the invention provides a system including at least one computing device for enhancing the recovery of heavy oil in an underground, near-surface crude oil extraction environment by performing a method comprising sampling and identifying microbial species (bacteria and/or fungi) that reside in the underground, near-surface crude oil extraction environment; collecting rock and fluid property data from the underground, near-surface crude oil extraction environment; collecting nutrient data from the underground, near-surface crude oil extraction environment; identifying a preferred microbial species from the underground, near-surface crude oil extraction environment that can transform the heavy oil into a lighter oil;more » identifying a nutrient from the underground, near-surface crude oil extraction environment that promotes a proliferation of the preferred microbial species; and introducing the nutrient into the underground, near-surface crude oil extraction environment.« less
1982-01-01
mg/l. 2.1.9.1.3.3 Nitrogen, I Mg 1. 2.1.9.1.3.4 Phosphorus (total and soluble), ag/l. 2.1.9.1.3.5 Oils and greases, mg/l. 2.1.9.1.3.6 Heavy metals , mg...greases, mg/I. 2.1.10.1.3.6 Heavy metals , m/l. 2.1.10.1.3.7 Toxic or special characteristics (e.g., phenols), mg/I. 2.1.10.1.3.8 Temperature, OF or °C...1 mg/l. 2.1.11.1.3.4 Phosphorus (total and soluble), mg/I. 2.1.11.1.3.5 Oils and greases, mgl. 2.1.11.1.3.6 Heavy metals , mg/l. 2.1.11.1.3.7 Toxic or
Suganthi, S Hepziba; Murshid, Shabnam; Sriram, Sriswarna; Ramani, K
2018-08-15
Petroleum hydrocarbon removal from tank bottom oil sludge is a major issue due to its properties. Conventional physicochemical treatment techniques are less effective. Though the bioremediation is considered for the hydrocarbon removal from tank bottom oil sludge, the efficiency is low and time taking due to the low yield of biocatalysts and biosurfactants. The focal theme of the present investigation is to modify the process by introducing the intermittent inoculation for the enhanced biodegradation of hydrocarbons in the tank bottom oil sludge by maintaining a constant level of biocatalysts such as oxidoreductase, catalase, and lipase as well as biosurfactants. In addition, the heavy metal removal was also addressed. The microbial consortia comprising Shewanalla chilikensis, Bacillus firmus, and Halomonas hamiltonii was used for the biodegradation of oil sludge. One variable at a time approach was used for the optimum of culture conditions. The bacterial consortia degraded the oil sludge by producing biocatalysts such as lipase (80 U/ml), catalase (46 U/ml), oxidoreductase (68 U/ml) along with the production of lipoprotein biosurfactant (152 mg/g of oil sludge) constantly and achieved 96% reduction of total petroleum hydrocarbon. The crude enzymes were characterized by FT-IR and the biosurfactant was characterized by surface tension reduction, emulsification index, FT-IR, TLC, and SDS-PAGE. GC-MS and NMR also revealed that the hydrocarbons present in the oil sludge were effectively degraded by the microbial consortia. The ICP-OES result indicated that the microbial consortium is also effective in removing the heavy metals. Hence, bioremediation using the hydrocarbonoclastic microbial consortium can be considered as an environmentally friendly process for disposal of tank bottom oil sludge from petroleum oil refining industry. Copyright © 2018 Elsevier Ltd. All rights reserved.
Surfactant-assisted liquefaction of particulate carbonaceous substances
NASA Technical Reports Server (NTRS)
Hsu, G. C. (Inventor)
1978-01-01
A slurry of carbonaceous particles such as coal containing an oil soluble polar substituted oleophilic surfactant, suitably an amine substituted long chain hydrocarbon, is liquefied at high temperature and high hydrogen presence. The pressure of surfactant results in an increase in yield and the conversion product contains a higher proportion of light and heavy oils and less asphaltene than products from other liquefaction processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konert, G.; Van Den Brink, H.A.; Visser, W.
1991-08-01
The prolific Eastern Flank Heavy Oil province east of the South Oman Salt basin is unique because of the widespread occurrence of Precambrian source rocks from which the hydrocarbons originated. Fission-track analysis and burial studies suggest that most of these source rocks became mature and generated hydrocarbons in the Ordovician; subsequently, the source beds were uplifted and did not re-enter the oil window. Its uniqueness is also based on the all-important role played by Precambrian salt. The traps in Palaeozoic clastics were initially structured by halokinesis, and subsequently by salt dissolution. The latter process gradually removed the salt from themore » area is largely responsible for the present-day structure with palaeo-withdrawal basins inverted in present-day turtles. Present-day traps are mainly post-Late Jurassic in age, significantly post-dating the time of oil generation. Detailed field studies indicate that charge phases appear to correlate with periods of increased salt dissolution in the Late Jurassic-Early Cretaceous, Late Cretaceous, and Tertiary. Oil was probably stored in intermediate traps below and within the salt. It was gradually released upon progressive tilting of the basin flank; it migrated updip toward the basinward retreating salt edge, and subsequently (back) spilled into the stratigraphically younger traps. Also, removal of the top seal of intra-salt and sub-salt traps by salt dissolution allowed upward remigration. It follows that charge concepts in the Eastern Flank Heavy Oil province depend on defining salt-edge-related hydrocarbon release areas, rather than on kitchen modeling.« less
Experimental Study on Oil Displacement Mechanism
NASA Astrophysics Data System (ADS)
Pi, Yanfu; Shao, Hongzhi; Pi, Yanming; Liu, Li
2018-02-01
In this work, the objective is enhancing oil recovery in offshore heavy oil after polymer flooding. The heterogeneous physical model is especially designed for oil fields with heavy oil. The comparative study of the two displacement experiments was carried out, and the experimental data was compared and analysed. The comparison between scheme one and scheme two was analysed from the production curve. The patterns of cores are analysed and compared with each other. It was found that the oil in the high permeability layer and medium permeability layer had been widely removed in the stage of binary combination flooding. There was a high degree of use in the low permeability layer. The recovery ratio is 66.29%. After polymer flooding, the addition of binary combination flooding in the heavy oil reservoir can greatly enhance oil recovery.
Pemex to acquire interest in Shell Texas refinery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-08-31
This paper reports that Petroleos Mexicanos and Shell Oil Co. have signed a memorandum of understanding to form a joint refining venture involving Shell's 225,000 b/d Deer Park, Tex., refinery. Under the agreement, Mexico's state owned oil company is to purchase a 50% interest in the refinery, and Shell is to sell Pemex unleaded gasoline on a long term basis. Under the venture, Shell and Pemex plan to add undisclosed conversion and upgrading units tailored to process heavy Mexican crude. The revamp will allow Pemex to place more than 100,000 b/d of Mayan heavy crude on the U.S. market. Mayanmore » accounts for 70% of Mexico's crude oil exports. In turn, Shell will sell Pemex as much as 45,000 b/d of unleaded gasoline to help meet Mexico's rapidly growing demand.« less
Impacts, recovery rates, and treatment options for spilled oil in marshes.
Michel, Jacqueline; Rutherford, Nicolle
2014-05-15
In a review of the literature on impacts of spilled oil on marshes, 32 oil spills and field experiments were identified with sufficient data to generate recovery curves and identify influencing factors controlling the rate of recovery. For many spills, recovery occurred within 1-2 growing seasons, even in the absence of any treatment. Recovery was longest for spills with the following conditions: Cold climate; sheltered settings; thick oil on the marsh surface; light refined products with heavy loading; oils that formed persistent thick residues; and intensive treatment. Recovery was shortest for spills with the following conditions: Warm climate; light to heavy oiling of the vegetation only; medium crude oils; and less-intensive treatment. Recommendations are made for treatment based on the following oiling conditions: Free-floating oil on the water in the marsh; thicker oil (>0.5 cm) on marsh surface; thinner oil (<0.5 cm) on marsh surface; heavy oil loading on vegetation; and light to moderate oil loading on vegetation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Analysis of heavy oils: Method development and application to Cerro Negro heavy petroleum
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1989-12-01
On March 6, 1980, the US Department of Energy (DOE) and the Ministry of Energy and Mines of Venezuela (MEMV) entered into a joint agreement which included analysis of heavy crude oils from the Venezuelan Orinoco oil belt. The purpose of this report is to present compositional data and describe new analytical methods obtained from work on the Cerro Negro Orinoco belt crude oil since 1980. Most of the chapters focus on the methods rather than the resulting data on Cerro Negro oil, and results from other oils obtained during the verification of the method are included. In addition, publishedmore » work on analysis of heavy oils, tar sand bitumens, and like materials is reviewed, and the overall state of the art in analytical methodology for heavy fossil liquids is assessed. The various phases of the work included: distillation and determination of routine'' physical/chemical properties (Chapter 1); preliminary separation of >200{degrees} C distillates and the residue into acid, base, neutral, saturated hydrocarbon and neutral-aromatic concentrates (Chapter 2); further separation of acid, base, and neutral concentrates into subtypes (Chapters 3--5); and determination of the distribution of metal-containing compounds in all fractions (Chapter 6).« less
Elliott, Douglas C.; Wang, Huamin; Rover, Majorie; ...
2015-04-13
Phenolic oils were produced from fast pyrolysis of two different biomass feedstocks, red oak and corn stover and evaluated in hydroprocessing tests for production of liquid hydrocarbon products. The phenolic oils were produced with a bio-oil fractionating process in combination with a simple water wash of the heavy ends from the fractionating process. Phenolic oils derived from the pyrolysis of red oak and corn stover were recovered with yields (wet biomass basis) of 28.7 wt% and 14.9 wt%, respectively, and 54.3% and 58.6% on a carbon basis. Both precious metal catalysts and sulfided base metal catalyst were evaluated for hydrotreatingmore » the phenolic oils, as an extrapolation from whole bio-oil hydrotreatment. They were effective in removing heteroatoms with carbon yields as high as 81% (unadjusted for the 90% carbon balance). There was nearly complete heteroatom removal with residual O of only 0.4% to 5%, while N and S were reduced to less than 0.05%. Use of the precious metal catalysts resulted in more saturated products less completely hydrotreated compared to the sulfided base metal catalyst, which was operated at higher temperature. The liquid product was 42-52% gasoline range molecules and about 43% diesel range molecules. Particulate matter in the phenolic oils complicated operation of the reactors, causing plugging in the fixed-beds especially for the corn stover phenolic oil. This difficulty contrasts with the catalyst bed fouling and plugging, which is typically seen with hydrotreatment of whole bio-oil. This problem was substantially alleviated by filtering the phenolic oils before hydrotreating. More thorough washing of the phenolic oils during their preparation from the heavy ends of bio-oil or on-line filtration of pyrolysis vapors to remove particulate matter before condensation of the bio-oil fractions is recommended.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Douglas C.; Wang, Huamin; Rover, Majorie
Phenolic oils were produced from fast pyrolysis of two different biomass feedstocks, red oak and corn stover and evaluated in hydroprocessing tests for production of liquid hydrocarbon products. The phenolic oils were produced with a bio-oil fractionating process in combination with a simple water wash of the heavy ends from the fractionating process. Phenolic oils derived from the pyrolysis of red oak and corn stover were recovered with yields (wet biomass basis) of 28.7 wt% and 14.9 wt%, respectively, and 54.3% and 58.6% on a carbon basis. Both precious metal catalysts and sulfided base metal catalyst were evaluated for hydrotreatingmore » the phenolic oils, as an extrapolation from whole bio-oil hydrotreatment. They were effective in removing heteroatoms with carbon yields as high as 81% (unadjusted for the 90% carbon balance). There was nearly complete heteroatom removal with residual O of only 0.4% to 5%, while N and S were reduced to less than 0.05%. Use of the precious metal catalysts resulted in more saturated products less completely hydrotreated compared to the sulfided base metal catalyst, which was operated at higher temperature. The liquid product was 42-52% gasoline range molecules and about 43% diesel range molecules. Particulate matter in the phenolic oils complicated operation of the reactors, causing plugging in the fixed-beds especially for the corn stover phenolic oil. This difficulty contrasts with the catalyst bed fouling and plugging, which is typically seen with hydrotreatment of whole bio-oil. This problem was substantially alleviated by filtering the phenolic oils before hydrotreating. More thorough washing of the phenolic oils during their preparation from the heavy ends of bio-oil or on-line filtration of pyrolysis vapors to remove particulate matter before condensation of the bio-oil fractions is recommended.« less
Lithium niobate ultrasonic transducer design for Enhanced Oil Recovery.
Wang, Zhenjun; Xu, Yuanming; Gu, Yuting
2015-11-01
Due to the strong piezoelectric effect possessed by lithium niobate, a new idea that uses lithium niobate to design high-power ultrasonic transducer for Enhanced Oil Recovery technology is proposed. The purpose of this paper is to lay the foundation for the further research and development of high-power ultrasonic oil production technique. The main contents of this paper are as follows: firstly, structure design technique and application of a new high-power ultrasonic transducer are introduced; secondly, the experiment for reducing the viscosity of super heavy oil by this transducer is done, the optimum ultrasonic parameters for reducing the viscosity of super heavy oil are given. Experimental results show that heavy large molecules in super heavy oil can be cracked into light hydrocarbon substances under strong cavitation effect caused by high-intensity ultrasonic wave. Experiment proves that it is indeed feasible to design high-power ultrasonic transducer for ultrasonic oil production technology using lithium niobate. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-02-01
This Supplement to AP-42 addresses pollutant-generating activity from Bituminous and Subbituminous Coal Combustion; Anthracite Coal Combustion; Fuel Oil Combustion; Natural Gas Combustion; Wood Waste Combustion in Boilers; Lignite Combustion; Waste Oil Combustion: Stationary Gas Turbines for Electricity Generation; Heavy-duty Natural Gas-fired Pipeline Compressor Engines; Large Stationary Diesel and all Stationary Dual-fuel engines; Natural Gas Processing; Organic Liquid Storage Tanks; Meat Smokehouses; Meat Rendering Plants; Canned Fruits and Vegetables; Dehydrated Fruits and Vegetables; Pickles, Sauces and Salad Dressing; Grain Elevators and Processes; Cereal Breakfast Foods; Pasta Manufacturing; Vegetable Oil Processing; Wines and Brandy; Coffee Roasting; Charcoal; Coal Cleaning; Frit Manufacturing; Sandmore » and Gravel Processing; Diatomite Processing; Talc Processing; Vermiculite Processing; paved Roads; and Unpaved Roads. Also included is information on Generalized Particle Size Distributions.« less
Advanced coal cleaning meets acid rain emission limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boron, D.J.; Matoney, J.P.; Albrecht, M.C.
1987-03-01
The following processes were selected for study: fine-coal, heavy-medium cyclone separation/flotation, advanced flotation, Dow true heavy liquid separation, Advanced Energy Dynamics (AED) electrostatic separation, and National Research Council of Canada oil agglomeration. Advanced coal cleaning technology was done for the state of New York to investigate methods to use high sulfur coal in view of anticipated lower SO/sub 2/ emission limits.
High-resolution NMR study of light and heavy crude oils: “structure-property” analysis
NASA Astrophysics Data System (ADS)
Rakhmatullin, I.; Efimov, S.; Varfolomeev, M.; Klochkov, V.
2018-05-01
Measurements of three light and one heavy crude oil samples were carried out by high-resolution nuclear magnetic resonance (NMR) spectroscopy methods. Quantitative fractions of aromatic molecules and functional groups constituting oil hydrocarbons were determined, and comparative analysis of the oil samples of different viscosity and origin was done.
Post Retort, Pre Hydro-treat Upgrading of Shale Oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, John
Various oil feedstocks, including oil from oil shale, bitumen from tar sands, heavy oil, and refin- ery streams were reacted with the alkali metals lithium or sodium in the presence of hydrogen or methane at elevated temperature and pressure in a reactor. The products were liquids with sub- stantially reduced metals, sulfur and nitrogen content. The API gravity typically increased. Sodi- um was found to be more effective than lithium in effectiveness. The solids formed when sodium was utilized contained sodium sulfide which could be regenerated electrochemically back to so- dium and a sulfur product using a "Nasicon", sodium ionmore » conducting membrane. In addition, the process was found to be effective reducing total acid number (TAN) to zero, dramatically reduc- ing the asphaltene content and vacuum residual fraction in the product liquid. The process has promise as a means of eliminating sulfur oxide and carbon monoxide emissions. The process al- so opens the possibility of eliminating the coking process from upgrading schemes and upgrad- ing without using hydrogen.« less
NASA Astrophysics Data System (ADS)
Davletbaev, Alfred; Kireev, Victor; Kovaleva, Liana; Zainullin, Aleksey; Minnigalimov, Rais
2016-12-01
Comparative analysis for "cold" heavy oil production from fractured well in low-permeability formation, as well as heavy oil production by radio-frequency electromagnetic heating has been carried out. The results of mathematical modeling for both these technologies taking into account different fracture's lengths show that the thermal method is most effective for more "short" fractures up to some their optimal size 5-10 m.
Production of distillate fuels from biomass-derived polyoxygenates
Kania, John; Blommel, Paul; Woods, Elizabeth; Dally, Brice; Lyman, Warren; Cortright, Randy
2017-03-14
The present invention provides methods, reactor systems and catalysts for converting biomass and biomass-derived feedstocks to C.sub.8+ hydrocarbons using heterogenous catalysts. The product stream may be separated and further processed for use in chemical applications, or as a neat fuel or a blending component in jet fuel and diesel fuel, or as heavy oils for lubricant and/or fuel oil applications.
Effective diffusion coefficients of gas mixture in heavy oil under constant-pressure conditions
NASA Astrophysics Data System (ADS)
Li, Huazhou Andy; Sun, Huijuan; Yang, Daoyong
2017-05-01
We develop a method to determine the effective diffusion coefficient for each individual component of a gas mixture in a non-volatile liquid (e.g., heavy oil) at high pressures with compositional analysis. Theoretically, a multi-component one-way diffusion model is coupled with the volume-translated Peng-Robinson equation of state to quantify the mass transfer between gas and liquid (e.g., heavy oil). Experimentally, the diffusion tests have been conducted with a PVT setup for one pure CO2-heavy oil system and one C3H8-CO2-heavy oil system under constant temperature and pressure, respectively. Both the gas-phase volume and liquid-phase swelling effect are simultaneously recorded during the measurement. As for the C3H8-CO2-heavy oil system, the gas chromatography method is employed to measure compositions of the gas phase at the beginning and end of the diffusion measurement, respectively. The effective diffusion coefficients are then determined by minimizing the discrepancy between the measured and calculated gas-phase composition at the end of diffusion measurement. The newly developed technique can quantify the contributions of each component of mixture to the bulk mass transfer from gas into liquid. The effective diffusion coefficient of C3H8 in the C3H8-CO2 mixture at 3945 ± 20 kPa and 293.85 K, i.e., 18.19 × 10^{ - 10} {{m}}^{ 2} / {{s}}, is found to be much higher than CO2 at 3950 ± 18 kPa and 293.85 K, i.e., 8.68 × 10^{ - 10} {{m}}^{ 2} / {{s}}. In comparison with pure CO2, the presence of C3H8 in the C3H8-CO2 mixture contributes to a faster diffusion of CO2 from the gas phase into heavy oil and consequently a larger swelling factor of heavy oil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, A.; Ray, S.; Rai, R.
1995-12-31
Crude oil treatment systems for heavy oil assume paramount importance due to the difficult nature of emulsions formed and presence of water in the form of small droplets. With the aging of heavy oil fields, operating under active water drive, water content in the emulsion produced increases substantially. This has a direct impact on heater-treater performance and treated crude quality. A typical problem is discussed in this paper where the gradual increase in emulsion production over a period of time in heavy oil belts of ONGC have affected the electrostatic heater-treater performance, treating light crude doped heavy crude, resulting inmore » increased BS&W (basic sediments and water) in the treated crude. Critical levels of water cut in both heavy and light crudes have been identified beyond which the existing emulsion treating system becomes ineffective. Analysis have also been carried out to identify optimum mixing proportion which result in the most effective demulsification.« less
An Estimate of Recoverable Heavy Oil Resources of the Orinoco Oil Belt, Venezuela
Schenk, Christopher J.; Cook, Troy A.; Charpentier, Ronald R.; Pollastro, Richard M.; Klett, Timothy R.; Tennyson, Marilyn E.; Kirschbaum, Mark A.; Brownfield, Michael E.; Pitman, Janet K.
2009-01-01
The Orinoco Oil Belt Assessment Unit of the La Luna-Quercual Total Petroleum System encompasses approximately 50,000 km2 of the East Venezuela Basin Province that is underlain by more than 1 trillion barrels of heavy oil-in-place. As part of a program directed at estimating the technically recoverable oil and gas resources of priority petroleum basins worldwide, the U.S. Geological Survey estimated the recoverable oil resources of the Orinoco Oil Belt Assessment Unit. This estimate relied mainly on published geologic and engineering data for reservoirs (net oil-saturated sandstone thickness and extent), petrophysical properties (porosity, water saturation, and formation volume factors), recovery factors determined by pilot projects, and estimates of volumes of oil-in-place. The U.S. Geological Survey estimated a mean volume of 513 billion barrels of technically recoverable heavy oil in the Orinoco Oil Belt Assessment Unit of the East Venezuela Basin Province; the range is 380 to 652 billion barrels. The Orinoco Oil Belt Assessment Unit thus contains one of the largest recoverable oil accumulations in the world.
NASA Astrophysics Data System (ADS)
Trifonova, T. A.; Zabelina, O. N.
2017-04-01
Urban recreation areas of different sizes were investigated in the city of Vladimir. The degree of their contamination with heavy metals and oil products was revealed. The content of heavy metals exceeded their maximum permissible concentrations by more than 2.5 times. The total content of heavy metals decreased in the sequence: Zn > Pb > Co > Mn > Cr > Ni. The mass fraction of oil products in the studied soils varied within the range of 0.016-0.28 mg/g. The reaction of soils in public gardens and a boulevard was neutral or close to neutral; in some soil samples, it was weakly alkaline. The top layer of all the soils significantly differed from the lower one by the higher alkalinity promoting the deposition of heavy metals there. As the content of Ni, Co, and Mn increased and exceeded the background concentrations, but did not reach the three-fold value of the maximum permissible concentrations, the activity of catalase was intensified. The stimulating effect of nickel on the catalase activity was mostly pronounced at the neutral soil reaction. The urease activity increased when heavy metals and oil products were present together in the concentrations above the background ones, but not higher than the three-fold maximal permissible concentrations for heavy metals and 0.3 mg/g for the content of oil products. The nitrifying activity was inhibited by oil hydrocarbons that were recorded in the soils in different amounts.
Dourado, Manuella Nobrega; Ferreira, Anderson; Araújo, Welington Luiz; Azevedo, João Lúcio; Lacava, Paulo Teixeira
2012-01-01
Methylobacterium strains were isolated from mangrove samples collected in Bertioga, SP, Brazil, from locations either contaminated or uncontaminated by oil spills. The tolerances of the strains to different heavy metals were assessed by exposing them to different concentrations of cadmium, lead, and arsenic (0.1 mM, 0.5 mM, 1 mM, 2 mM, 4 mM, and 8 mM). Additionally, the genetic diversity of Methylobacterium spp. was determined by sequence analysis of the 16S rRNA genes. The isolates from the contaminated locations were grouped, suggesting that oil can select for microorganisms that tolerate oil components and can change the methylotrophic bacterial community. Cadmium is the most toxic heavy metal assessed in this work, followed by arsenic and lead, and two isolates of Methylobacterium were found to be tolerant to all three metals. These isolates have the potential to bioremediate mangrove environments contaminated by oil spills by immobilizing the heavy metals present in the oil. PMID:22482056
Research on carrying capacity of hydrostatic slideway on heavy-duty gantry CNC machine
NASA Astrophysics Data System (ADS)
Cui, Chao; Guo, Tieneng; Wang, Yijie; Dai, Qin
2017-05-01
Hydrostatic slideway is a key part in the heavy-duty gantry CNC machine, which supports the total weight of the gantry and moves smoothly along the table. Therefore, the oil film between sliding rails plays an important role on the carrying capacity and precision of machine. In this paper, the oil film in no friction is simulated with three-dimensional CFD. The carrying capacity of heavy hydrostatic slideway, pressure and velocity characteristic of the flow field are analyzed. The simulation result is verified through comparing with the experimental data obtained from the heavy-duty gantry machine. For the requirement of engineering, the oil film carrying capacity is analyzed with simplified theoretical method. The precision of the simplified method is evaluated and the effectiveness is verified with the experimental data. The simplified calculation method is provided for designing oil pad on heavy-duty gantry CNC machine hydrostatic slideway.
NASA Astrophysics Data System (ADS)
Tick, G. R.; Ghosh, J.; Greenberg, R. R.; Akyol, N. H.
2015-12-01
A series of pore-scale experiments were conducted to understand the interfacial processes contributing to the removal of crude oil from various porous media during surfactant-induced remediation. Effects of physical heterogeneity (i.e. media uniformity) and carbonate soil content on oil recovery and distribution were evaluated through pore scale quantification techniques. Additionally, experiments were conducted to evaluate impacts of tetrachloroethene (PCE) content on crude oil distribution and recovery under these same conditions. Synchrotron X-ray microtomography (SXM) was used to obtain high-resolution images of the two-fluid-phase oil/water system, and quantify temporal changes in oil blob distribution, blob morphology, and blob surface area before and after sequential surfactant flooding events. The reduction of interfacial tension in conjunction with the sufficient increase in viscous forces as a result of surfactant flushing was likely responsible for mobilization and recovery of lighter fractions of crude oil. Corresponding increases in viscous forces were insufficient to initiate and maintain the displacement of the heavy crude oil in more homogeneous porous media systems during surfactant flushing. Interestingly, higher relative recoveries of heavy oil fractions were observed within more heterogeneous porous media indicating that wettability may be responsible for controlling mobilization in these systems. Compared to the "pure" crude oil experiments, preliminary results show that crude oil with PCE produced variability in oil distribution and recovery before and after each surfactant-flooding event. Such effects were likely influenced by viscosity and interfacial tension modifications associated with the crude-oil/solvent mixed systems.
Heavy Oils Produced by Aureobasidium pullulans
USDA-ARS?s Scientific Manuscript database
From a survey of more than 50 diverse strains of Aureobasidium pullulans, 21 strains were observed to produce extracellular heavy oils. These strains represented at least 6 phylogenetic clades, although more than half fell into clades 9 and 11. Oil colors ranged from bright yellow to malachite. M...
BMP UNIT PROCESS DESIGN, MONITORING, AND PERFORMANCE
Urbanization results in more impervious areas that cause larger quantities of stormwater runoff. This runoff can contribute significant amounts of pollutants (e.g., litter, oils, microorganisms, sediments, nutrients, organic matter, and heavy metals) to receiving waters. To impro...
Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes
NASA Astrophysics Data System (ADS)
Bicer, Yusuf; Dincer, Ibrahim; Vezina, Greg; Raso, Frank
2017-05-01
In the current study, conventional resources-based ammonia generation routes are comparatively studied through a comprehensive life cycle assessment. The selected ammonia generation options range from mostly used steam methane reforming to partial oxidation of heavy oil. The chosen ammonia synthesis process is the most common commercially available Haber-Bosch process. The essential energy input for the methods are used from various conventional resources such as coal, nuclear, natural gas and heavy oil. Using the life cycle assessment methodology, the environmental impacts of selected methods are identified and quantified from cradle to gate. The life cycle assessment outcomes of the conventional resources based ammonia production routes show that nuclear electrolysis-based ammonia generation method yields the lowest global warming and climate change impacts while the coal-based electrolysis options bring higher environmental problems. The calculated greenhouse gas emission from nuclear-based electrolysis is 0.48 kg CO2 equivalent while it is 13.6 kg CO2 per kg of ammonia for coal-based electrolysis method.
Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes.
Bicer, Yusuf; Dincer, Ibrahim; Vezina, Greg; Raso, Frank
2017-05-01
In the current study, conventional resources-based ammonia generation routes are comparatively studied through a comprehensive life cycle assessment. The selected ammonia generation options range from mostly used steam methane reforming to partial oxidation of heavy oil. The chosen ammonia synthesis process is the most common commercially available Haber-Bosch process. The essential energy input for the methods are used from various conventional resources such as coal, nuclear, natural gas and heavy oil. Using the life cycle assessment methodology, the environmental impacts of selected methods are identified and quantified from cradle to gate. The life cycle assessment outcomes of the conventional resources based ammonia production routes show that nuclear electrolysis-based ammonia generation method yields the lowest global warming and climate change impacts while the coal-based electrolysis options bring higher environmental problems. The calculated greenhouse gas emission from nuclear-based electrolysis is 0.48 kg CO 2 equivalent while it is 13.6 kg CO 2 per kg of ammonia for coal-based electrolysis method.
Tuvikene, A; Huuskonen, S; Koponen, K; Ritola, O; Mauer, U; Lindström-Seppä, P
1999-01-01
The biologic effects of the oil shale industry on caged rainbow trout (Oncorhynchus mykiss) as well as on feral perch (Perca fluviatilis) and roach (Rutilus rutilus) were studied in the River Narva in northeast Estonia. The River Narva passes the oil shale mining and processing area and thus receives elevated amounts of polycyclic aromatic hydrocarbons (PAHs), heavy metals, and sulfates. The effects of the chemical load were monitored by measuring cytochrome P4501A (CYP1A)-dependent monooxygenase (MO) activities [7-ethoxyresorufin O-deethylase and aryl hydrocarbon hydroxylase (AHH)] as well as conjugation enzyme activities [glutathione S-transferase (GST) and UDP-glucuronosyltransferase] in the liver of fish. CYP1A induction was further studied by detecting the amount and occurrence of the CYP1A protein. Histopathology of tissues (liver, kidney, spleen, and intestine) and the percentage of micronuclei in fish erythrocytes were also determined. Selected PAHs and heavy metals (Cd, Cu, Hg, and Pb) were measured from fish muscle and liver. In spite of the significant accumulation of PAHs, there was no induction of MO activities in any studied fish species. When compared to reference samples, AHH activities were even decreased in feral fish at some of the exposed sites. Detection of CYP1A protein content and the distribution of the CYP1A enzyme by immunohistochemistry also did not show extensive CYP1A induction. Instead, GST activities were significantly increased at exposed sites. Detection of histopathology did not reveal major changes in the morphology of tissues. The micronucleus test also did not show any evidence of genotoxicity. Thus, from the parameters studied, GST activity was most affected. The lack of catalytic CYP1A induction in spite of the heavy loading of PAHs was not studied but has been attributed to the elevated content of other compounds such as heavy metals, some of which can act as inhibitors for MOs. Another possible explanation of this lack of induction is that through adaptation processes the fish could have lost some of their sensitivity to PAHs. Either complex pollution caused by oil shale processing masked part of the harmful effects measured in this study, or oil shale industry did not have any severe effects on fish in the River Narva. Our study illustrates the difficulties in estimating risk in cases where there are numerous various contaminants affecting the biota. Images Figure 1 Figure 2 PMID:10464075
Joo, Changkyu; Shim, Won Joon; Kim, Gi Beum; Ha, Sung Yong; Kim, Moonkoo; An, Joon Geon; Kim, Eunsic; Kim, Beom; Jung, Seung Won; Kim, Young-Ok; Yim, Un Hyuk
2013-03-15
The environmental fate of Iranian Heavy crude oil (IHC) with and without an added oil spill dispersant (OSD) has been studied using a 1000 kL capacity in situ mesocosm. Physical weathering and chemical composition changes of the oil were monitored for 77 days. Compound-specific effects of the OSD could be observed as changes over time in the content of the total petroleum hydrocarbon (TPH), unresolved complex mixture (UCM), alkanes, polycyclic aromatic hydrocarbons (PAHs), hopanes and steranes in the oil. As oil weathers, most hydrocarbons showed a rapid decreasing phase followed by a slowdown and stabilization. Recalcitrant biomarkers, however, showed a different trend. An increase in hydrocarbon contents in the form of UCM occurred after OSD treatment. The enhanced solubility of the low molecular weight PAHs by the OSD decreased the half-life of the alkylated PAHs in the OD. After 77 days of exposure at the sea surface, both the oils with and without the OSD exhibited moderate weathering. Most of the source diagnostic indices maintained their source information, and the weathering indices indicated that evaporation, dissolution, and dispersion were the major weathering processes. The mass balance of the weathered oil was calculated using laboratory and mesocosm data and the results demonstrate the importance of using a mesocosm for the production of environmentally realistic data. Copyright © 2013 Elsevier B.V. All rights reserved.
Upgrade of Long-chain Hydrocarbons by Low Pressure Oxygen Plasmas
NASA Astrophysics Data System (ADS)
Patiño, Pedro; Méndez, Bernardo; Gambús, Gloria
1998-10-01
Huge known heavy oil deposits in many countries remain largely untapped. The API gravity of crude oils has been decreasing by about 0.17% per year, this meaning that there will be an urgent need for economically viable new technologies to upgrade the heavy oil for the refineries. The same applies to the residues of several refineries processes. This work will present the results of the application of a plasma process to upgrade long-chain hydrocarbons, namely, tridecane, tetradecane, and squalane (shark oil). They are high boiling point alkanes, the latter being a C_30H_62 with six methyl groups attached to various carbon positions on the chain. An oxygen plasma, created by a high voltage glow discharge, reached the low vapor pressure surface of each liquid hydrocarbon. This (2 mL) was cooled down to temperatures close to its freezing point in a glass reactor. Applied power was 24 W for times of reaction between 30 and 60 minutes and oxygen pressures from 0.1 to 0.4 mbar. Products were analyzed by IR and NMR spectroscopies. The ^1H and ^13C NMR spectra showed that the most important products were secondary alcohols and the corresponding ketones, for tridecane and tetradecane. For squalane, tertiary alcohols were first. Total conversions are tipically 90 to 100%
Ng, Siauw H; Shi, Yu; Heshka, Nicole E; Zhang, Yi; Little, Edward
2016-09-02
The work is based on a reported study which investigates the processability of canola oil (bio-feed) in the presence of bitumen-derived heavy gas oil (HGO) for production of transportation fuels through a fluid catalytic cracking (FCC) route. Cracking experiments are performed with a fully automated reaction unit at a fixed weight hourly space velocity (WHSV) of 8 hr(-1), 490-530 °C, and catalyst/oil ratios of 4-12 g/g. When a feed is in contact with catalyst in the fluid-bed reactor, cracking takes place generating gaseous, liquid, and solid products. The vapor produced is condensed and collected in a liquid receiver at -15 °C. The non-condensable effluent is first directed to a vessel and is sent, after homogenization, to an on-line gas chromatograph (GC) for refinery gas analysis. The coke deposited on the catalyst is determined in situ by burning the spent catalyst in air at high temperatures. Levels of CO2 are measured quantitatively via an infrared (IR) cell, and are converted to coke yield. Liquid samples in the receivers are analyzed by GC for simulated distillation to determine the amounts in different boiling ranges, i.e., IBP-221 °C (gasoline), 221-343 °C (light cycle oil), and 343 °C+ (heavy cycle oil). Cracking of a feed containing canola oil generates water, which appears at the bottom of a liquid receiver and on its inner wall. Recovery of water on the wall is achieved through washing with methanol followed by Karl Fischer titration for water content. Basic results reported include conversion (the portion of the feed converted to gas and liquid product with a boiling point below 221 °C, coke, and water, if present) and yields of dry gas (H2-C2's, CO, and CO2), liquefied petroleum gas (C3-C4), gasoline, light cycle oil, heavy cycle oil, coke, and water, if present.
Solar Thermal Enhanced Oil Recovery, (STEOR) Volume 1: Executive summary
NASA Astrophysics Data System (ADS)
Elzinga, E.; Arnold, C.; Allen, D.; Garman, R.; Joy, P.; Mitchell, P.; Shaw, H.
1980-11-01
Thermal enhanced oil recovery is widely used in California to aid in the production of heavy oils. Steam injection either to stimulate individual wells or to drive oil to the producing wells, is by far the major thermal process today and has been in use for over 20 years. Since steam generation at the necessary pressures (generally below 4000 kPa (580 psia)) is within the capabilities of present day solar technology, it is logical to consider the possibilities of solar thermal enhanced oil recovery (STEOR). The present project consisted of an evaluation of STEOR. Program objectives, system selection, trade-off studies, preliminary design, cost estimate, development plan, and market and economic analysis are summarized.
Biomass fast pyrolysis for bio-oil production in a fluidized bed reactor under hot flue atmosphere.
Li, Ning; Wang, Xiang; Bai, Xueyuan; Li, Zhihe; Zhang, Ying
2015-10-01
Fast pyrolysis experiments of corn stalk were performed to investigate the optimal pyrolysis conditions of temperature and bed material for maximum bio-oil production under flue gas atmosphere. Under the optimized pyrolysis conditions, furfural residue, xylose residue and kelp seaweed were pyrolyzed to examine their yield distributions of products, and the physical characteristics of bio-oil were studied. The best flow rate of the flue gas at selected temperature is obtained, and the pyrolysis temperature at 500 degrees C and dolomite as bed material could give a maximum bio-oil yield. The highest bio-oil yield of 43.3% (W/W) was achieved from corn stalk under the optimal conditions. Two main fractions were recovered from the stratified bio-oils: light oils and heavy oils. The physical properties of heavy oils from all feedstocks varied little. The calorific values of heavy oils were much higher than that of light oils. The pyrolysis gas could be used as a gaseous fuel due to a relatively high calorific value of 6.5-8.5 MJ/m3.
Cai, Minmin; Hu, Ruiqi; Zhang, Ke; Ma, Shiteng; Zheng, Longyu; Yu, Ziniu; Zhang, Jibin
2018-01-01
Treating municipal sewage sludge (MSS) sustainably and economically in China remains a challenge because of risks associated with the heavy metals it contains. In this study, black solider fly larvae (BSFL) were used for MSS treatment. The resistance of larvae to combined heavy metals and their potential use in conversion of MSS were investigated. The results indicated that seven MSS samples contained large amounts of heavy metals, with the lead and nickel contents of several samples exceeding Chinese national discharge standards. BSFL were highly tolerant to an artificial diet spiked with combined heavy metals. Principal component analysis revealed that high concentrations of lead, nickel, boron, and mercury potentially interfered with larval weight gain, while zinc, copper, chromium, cadmium, and mercury slightly reduced larval survival. The addition of chicken manure and wheat bran as co-substrates improved the conversion process, which was influenced by the nature and amount of added co-substrate and especially the quantity of nitrogen added. With the amended substrate, the BSFL accumulated heavy metals into their bodies but not into extracted larval oil. The heavy metal content of the treatment residue was lower than that considered safe for organic-inorganic compound fertilizers standards in China and the harvested larvae could be used as a source of oil for industrial application.
Aviation Turbine Fuels from Tar Sands Bitumen and Heavy Oils. Part 2. Laboratory Sample Production.
1987-07-01
tar sand bitumen from West Central Kentucky; and Sunnyside tar sand bitumen from the Uinta Basin , Utah. Each of the feedstocks had unique...fuel and about 50 volume percent heavy gas oil (600-1000°F). The Westken bitumen was overall the heaviest of the four feedstocks evaluated. K factors...was 40 weight percent and about 20 weight percent in the total crude. 3. San Ardo Heavy oil The San Ardo field is located in the Coastal basin of the
Methods of making carbon fiber from asphaltenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohnert, George; Bowen, III, Daniel E.
2017-02-28
Making carbon fiber from asphaltenes obtained through heavy oil upgrading. In more detail, carbon fiber is made from asphaltenes obtained from heavy oil feedstocks undergoing upgrading in a continuous coking reactor.
Conversion of vegetable oils and animal fats into paraffinic cetane enhancers for diesel fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, A.; Feng, Y.; Hogan, E.
1995-11-01
The two principal methods of producing biodiesel fuels are (a) transesterification of vegetable oils and animal fats with a monohydric alcohol, and (b) direct hydrotreating of tree oils, vegetable oils and animal fats. The patented hydrotreating technology is based on the catalytic processing of biomass oils and fats with hydrogen, under elevated temperature and pressure conditions. The typical mix of hydrotreated products is as follows: 5-15% light distillate (naphta), 40-60% middle distillate (cetane), 5-15% heavy distillate and 5-10% burner gas. The naptha fraction may be used as a gasoline supplement. The middle distillate is designed for use as a cetanemore » booster for diesel fuels. Both heavy distillate and light hydrocarbon gases are usable as power boiler fuels. Typically, the cetane enhancer would be admixed with diesel fuel in the range of 5 to 30% by volume. This new diesel blend meets the essential quality characteristics of the basic diesel fuel, for direct use in diesel engines without any modifications. The basic hydrotreatment technology has been evaluated further in the laboratory on degummed soya oil, yellow grease and animal tallow. The preliminary findings suggest that the technology can provide efficient conversion of these materials into cetane enhancers for diesel fuels.« less
NASA Astrophysics Data System (ADS)
Goncharov, I. V.; Oblasov, N. V.
2015-02-01
Oil in layers Nkh 3-4, Nkh 1, Sd 9, Yak 3-7 and vYak 2-4 of the Vankor field occurs at the depth of -2,767 to -1,357 meters at strongly different temperatures: from 62 to 26 °C. Such temperature conditions contribute to oil biodegradation processes in the pool. Therefore, oils in different pools significantly differ from each other in terms of composition and properties depending on the intensity of biodegradation. At the same time, pools might embrace both oils that have practically been not exposed to biodegradation processes and significantly biodegraded oils. The most seriously altered oils are found in vYak 2-4 layer pools. They are the heaviest and the most viscous oils among the samples under study. Many typical oil components (alkanes, alkylbenzenes, naphthalenes, phenanthrenes, dibenzothiophenes) are absent in their composition. Besides, the initial distribution of hopanes in the composition of biomarkers is altered. Apart from the molecular composition of degassed oil samples, the work also studies the effect of biodegradation on the properties and the component and isotopic composition of oils, gases and formation fluid samples.
Chemically evolving systems for oil recovery enhancement in heavy oil deposits
NASA Astrophysics Data System (ADS)
Altunina, L. K.; Kuvshinov, I. V.; Kuvshinov, V. A.; Stasyeva, L. A.
2017-12-01
This work presents the results of laboratory studies and field tests of new physicochemical technologies for enhanced oil recovery of heavy oil fields under natural development conditions and with thermal-steam stimulation using oil-displacing "smart" systems. The systems are based on surfactants and buffer systems. Their rheological and acid-base properties can be regulated by their chemical evolution directly in the formation. Field tests of the technologies carried out on high-viscosity oil deposit in the Usinskoye oilfield have shown that the EOR technologies are environmentally friendly and technologically effective.
NASA Astrophysics Data System (ADS)
Komkov, M. A.; Moiseev, V. A.; Tarasov, V. A.; Timofeev, M. P.
2015-12-01
Some ecological problems related to heavy-oil extraction and ways for minimizing the negative impacts of this process on the biosphere are discussed. The ecological hazard of, for example, frequently used multistage hydraulic fracturing of formation is noted and the advantages and perspectives of superheated steam injection are considered. Steam generators of a new type and ecologically clean and costeffective insulating for tubing pipes (TPs) are necessary to develop the superheated steam injection method. The article is devoted to solving one of the most important and urgent tasks, i.e., the development and usage of lightweight, nonflammable, environmentally safe, and cost-effective insulating materials. It is shown that, for tubing shielding operating at temperatures up to 420°C, the most effective thermal insulation is a highly porous material based on basalt fiber. The process of filtration deposition of short basalt fibers with a bunch of alumina thermal insulation tubing pipe coatings in the form of cylinders and cylindrical shells from liquid pulp is substantiated. Based on the thermophysical characteristics of basalt fibers and on the technological features of manufacturing highly porous coating insulation, the thickness of a tubing pipe is determined. During the prolonged pumping of the air at an operating temperature of 400°C in the model sample of tubing pipes with insulation and a protective layer, we find that the surface temperature of the thermal barrier coating does not exceed 60°C. Introducing the described technology will considerably reduce the negative impact of heavy-oil extraction on the biosphere.
Leng, Lijian; Li, Jun; Yuan, Xingzhong; Li, Jingjing; Han, Pei; Hong, Yuchun; Wei, Feng; Zhou, Wenguang
2018-03-01
Co-liquefaction of municipal sewage sludge (MSS) and lignocellulosic biomass such as rice straw or wood sawdust at different mixing ratios and the characterization of the obtained bio-oil and bio-char were investigated. Synergistic effects were found during co-processing of MSS with biomass for production of bio-oil with higher yield and better fuel properties than those from individual feedstock. The co-liquefaction of MSS/rice straw (4/4, wt) increased the bio-oil yield from 22.74% (bio-oil yield from liquefaction of MSS individually) or 23.67% (rice straw) to 32.45%. Comparable increase on bio-oil yield was also observed for MSS/wood sawdust mixtures (2/6, wt). The bio-oils produced from MSS/biomass mixtures were mainly composed of esters and phenols with lower boiling points (degradation temperatures) than those from individual feedstock (identified with higher heavy bio-oil fractions). These synergistic effects were probably resulted from the interactions between the intermittent products of MSS and those of biomass during processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bacterial interactions and implications for oil biodegradation process in mangrove sediments.
Grativol, Adriana Daudt; Marchetti, Albany A; Wetler-Tonini, Rita M; Venancio, Thiago M; Gatts, Carlos En; Thompson, Fabiano L; Rezende, Carlos E
2017-05-15
Mangrove sediment harbors a unique microbiome and is a hospitable environment for a diverse group of bacteria capable of oil biodegradation. Our goal was to understand bacterial community dynamics from mangrove sediments contaminated with heavy-oil and to evaluate patterns potentially associated with oil biodegradation is such environments. We tested the previously proposed hypothesis of a two-phase pattern of petroleum biodegradation, under which key events in the degradation process take place in the first three weeks after contamination. Two sample sites with different oil pollution histories were compared through T-RFLP analyses and using a pragmatic approach based on the Microbial Resource Management Framework. Our data corroborated the already reported two-phase pattern of oil biodegradation, although the original proposed explanation related to the biophysical properties of the soil is questioned, opening the possibility to consider other plausible hypotheses of microbial interactions as the main drivers of this pattern. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characterization of heavy oil by capillary supercritical fluid chromatography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuhr, B.J.; Holloway, L.R.; Reichert, C.
1989-01-01
Using supercritical CO/sub 2/ as the mobile phase with a 30m x 100{mu} ID SPB-5 capillary column and temperature of 90{sup 0}C, high boiling fractions of heavy oils could be characterized. A linear restrictor placed as close as possible to the flame ionization detector jet prevented the characteristic spiking often observed in these systems, and also allowed the study of high molecular weight material without plugging of the restrictor. The boiling points of model saturate and aromatic compounds correlate with retention time providing the capability to study heavy oils without exposing them to the high temperature necessary in gas chromatography.more » Individual peaks can be resolved for the n-paraffins in waxes up to C/sub 90/. Primary production, fireflood and steamflood heavy oils and bitumens were compared by this technique.« less
Catalytic cracking of a Wilmington vacuum oil gas and selected hydrotreated products: Topical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, J.W.; Zagula, E.J.
1987-05-01
The catalytic cracking of a Wilmington vacuum gas oil and the products from mild hydrotreating and severe hydrotreating of this gas oil was evaluated over a low metal equilibrium catalyst in a microconfined bed unit (MCBU). Two levels of catalytic cracking severity were evaluated for these three samples. The performance and product analysis showed that hydrotreating improves the quality of catalytic cracker feedstock and the resultant products. The results also indicated that a level of hydrotreating exists above which the quality of the liquid products and the yields of coke and heavy oil are not affected significantly by the severitymore » of the catalytic cracking process. As expected, the sulfur and nitrogen content of the liquid products (gasolines, light cycle oil, and heavy cycle oil) were found to decrease as the severity of the feed hydrotreating increased. The distribution of sulfur and nitrogen in the liquid products was found to be independent of cracking conditions or product yields for a given level of hydrogenation. Analysis of the gas products shows that the degree of hydrogen transfer increases with the severity of hydrogenation. As cracking severity increases, the apparent degree of hydrogen transfer decreases, and the concentration of olefinic compounds increases relative to the saturated compounds. In the future, these results will be compared to similar results from a Mayan vacuum gas oil. 10 refs., 17 figs., 10 tabs.« less
NASA Astrophysics Data System (ADS)
Ogi, Tomoko; Yokoyama, Shinya; Minowa, Tomoaki; Dote, Yutaka; Koguchi, Katsuya
1993-03-01
Various researches on the production of liquid fuels from biomass were undertaken. Carbon monoxide and/or hydrogen were used in most cases, while processes using a little or none of these reducing gas were investigated. The following results on thermochemical conversion of wood biomass are presented, in which wood is reacted in aqueous solution in the presence of an alkali catalyst without reducing gases, which yielded a liquid product: (1) the optimum reaction condition is determined from systematic studies carried out with reaction parameter and variety of catalyst; (2) the optimum organic solvents are determined from investigations concerning production of heavy oil which is easily separable from an aqueous layer; (3) the effectiveness of the repeated use of reaction solvent is indicated by experiments in which water or a 2-propanol/water mixture is used repeatedly as a reaction solvent; and (4) heavy oil obtained by the liquefaction process was analyzed by (1) H-NMR (Nuclear Magnetic Resonance), GC (Gas Chromatography) - MS (Mass Spectrometry), and acid-base extraction. The liquefaction technology may be evaluated as one of the highly promising biomass conversion technologies, although some technical problems, such as separation or upgrading of heavy oils need to be solved. For the promotion of a total system, in which biomass is planted and grown and then the biomass is used as fuel and/or chemicals, further development of technologies are needed not only for conversion itself but also for plantation, afforestation, and irrigation.
Liquefaction of lignocellulosic biomass: solvent, process parameter, and recycle oil screening.
van Rossum, Guus; Zhao, Wei; Castellvi Barnes, Maria; Lange, Jean-Paul; Kersten, Sascha R A
2014-01-01
The liquefaction of lignocellulosic biomass is studied for the production of liquid (transportation) fuels. The process concept uses a product recycle as a liquefaction medium and produces a bio-oil that can be co-processed in a conventional oil refinery. This all is done at medium temperature (≈ 300 °C) and pressure (≈ 60 bar). Solvent-screening experiments showed that oxygenated solvents are preferred as they allow high oil (up to 93% on carbon basis) and low solid yields (≈ 1-2% on carbon basis) and thereby outperform the liquefaction of biomass in compressed water and biomass pyrolysis. The following solvent ranking was obtained: guaiacol>hexanoic acid ≫ n-undecane. The use of wet biomass results in higher oil yields than dry biomass. However, it also results in a higher operating pressure, which would make the process more expensive. Refill experiments were also performed to evaluate the possibility to recycle the oil as the liquefaction medium. The recycled oil appeared to be very effective to liquefy the biomass and even surpassed the start-up solvent guaiacol, but became increasingly heavy and more viscous after each refill and eventually showed a molecular weight distribution that resembles that of refinery vacuum residue. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Exploration for heavy crude oil and natural bitumen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-01-01
Heavy oil and tar sand reserves are enormous, and this 700-page volume breaks the topic down into six emphasis areas of: regional resources worldwide; characterization, maturation, and degradation; geological environments and migration; exploration methods; exploration histories; and recovery. An appendix presents a guidebook to Santa Maria, Cuyama, Taft-McKettrick, and Edna oil districts, Coast Ranges, California.
Source apportionment of volatile organic compounds measured near a cold heavy oil production area
NASA Astrophysics Data System (ADS)
Aklilu, Yayne-abeba; Cho, Sunny; Zhang, Qianyu; Taylor, Emily
2018-07-01
This study investigated sources of volatile organic compounds (VOCs) observed during periods of elevated hydrocarbon concentrations adjacent to a cold heavy oil extraction area in Alberta, Canada. Elevated total hydrocarbon (THC) concentrations were observed during the early morning hours and were associated with meteorological conditions indicative of gravitational drainage flows. THC concentrations were higher during the colder months, an occurrence likely promoted by a lower mixing height. On the other hand, other VOCs had higher concentrations in the summer; this is likely due to increased evaporation and atmospheric chemistry during the summer months. Of all investigated VOC compounds, alkanes contributed the greatest in all seasons. A source apportionment method, positive matrix factorization (PMF), was used to identify the potential contribution of various sources to the observed VOC concentrations. A total of five factors were apportioned including Benzene/Hexane, Oil Evaporative, Toluene/Xylene, Acetone and Assorted Local/Regional Air Masses. Three of the five factors (i.e., Benzene/Hexane, Oil Evaporative, and Toluene/Xylene), formed 27% of the reconstructed and unassigned concentration and are likely associated with emissions from heavy oil extraction. The three factors associated with emissions were comparable to the available emission inventory for the area. Potential sources include solution gas venting, combustion exhaust and fugitive emissions from extraction process additives. The remaining two factors (i.e., Acetone and Assorted Local/Regional Air Mass), comprised 49% of the reconstructed and unassigned concentration and contain key VOCs associated with atmospheric chemistry or the local/regional air mass such as acetone, carbonyl sulphide, Freon-11 and butane.
Loads Limits Values of Soils with Petroleum Hydrocarbons
NASA Astrophysics Data System (ADS)
Dumitru, Mihail; Vladimirescu, Andreea
2017-04-01
The high demand for oil and associated products as a source of energy, resulting in increased oil exploitation, producing, refining, transportation, storage, marketing and use led to high levels of environmental pollution. The optimum bioremediation variant proved to be the one in which fertilizer (potassium humate in NPK matrix with microelements and 8% monosaccharides) applied in a 650 l/ha dose was used together with the Zeba absorbent in 32 kg/ha dose, where the TPH level dropped by 58% in 45 days from the pollution with 3% crude oil. Most of these areas are affected by historical pollution. Many organic contaminants may undergo an ongoing process in the soil, whereby over time contaminant become less and less subject to decomposition even though relatively can still be detected in the laboratory analyses. In Romania about 50.000 ha are polluted with oil and/or brine. The bioremediation was the main method of rehabilitation. The Regulation on the assessment of environmental pollution, the following are presented as guide values for total oil hydrocarbons content in soil: - normal: less than 100 mg/kg; - alert values for sensitive soils: 200 mg/kg; - alert values for less sensitive soils: 1000 mg/kg; - intervention values for sensitive soils: 500 mg/kg; - intervention values for less sensitive soils: 2000 mg/kg. Researches done in laboratory monitored the effect of various concentrations of oil (under 2000 mg/kg, 3000 mg/kg, 5000 mg/kg, 7000 mg/kg, 10 000 mg/kg) on germination of wheat seeds at 5 and 7 days after seeding and (fresh and dry) biomass production after 40 days. Tree experiments were done: one with recently contaminated light oil, one with recently contaminated heavy oil and one with old contamination. After 5 days from sowing, the largest number of germinated seeds was found in the experiments with old contamination. The fewest germinated seeds was found in the experience with light oil. The experience with heavy oil showed an intermediate number of emerged plants. In all cases fertilization led to a significant increase of the wheat biomass. After 40 days, the level of total hydrocarbons was reduced on average by 55% in the case of contamination with light oil, by 42% for heavy oil contamination and 12% for old contamination. The BTEX concentration in soil had the lowest values in the experiment with heavy oil contamination, intermediate values in the experiment with historic contamination and higher values within experiment with light oil. We make proposal to change intervention thresholds for sensitive land uses from 500 mg/kg for total oil hydrocarbons to 1000 mg/kg for recently pollution and 2000 mg/kg for old pollution (historical > 5 years). For less sensitive land uses intervention thresholds from 2000 mg/kg of total oil hydrocarbons, values increase to 500 mg/kg for recently pollution and 1000 mg/kg old pollution.
Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction
MacArthur, J.B.; Comolli, A.G.; McLean, J.B.
1989-10-17
A process is described for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600--750 F to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650 F and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710--800 F temperature, 1,000--4,000 psig hydrogen partial pressure, and 10-90 lb/hr per ft[sup 3] catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760--860 F temperature for further hydrogenation and hydroconversion reactions. A 600--750 F[sup +] fraction containing 0--20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials. 2 figs.
Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction
MacArthur, James B.; Comolli, Alfred G.; McLean, Joseph B.
1989-01-01
A process for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600.degree.-750.degree. F. to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650.degree. F. and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure, and 10-90 lb/hr per ft.sup.3 catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760.degree.-860.degree. F. temperature for further hydrogenation and hydroconversion reactions. A 600.degree.-750.degree. F..sup.+ fraction containing 0-20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials.
Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons
Gordon, John Howard
2014-09-09
A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.
Osuji, Leo C; Onojake, Chukunedum M
2006-04-01
Field reconnaissance of the Ebocha-8 oil spill-affected site at Obiobi/Obrikom in the Niger Delta region of Nigeria was carried out to assess the extent of damage to the terrestrial ecosystem and delimit the epicenter of oil spillage. Following three successive reconnaissance surveys, the area to be sampled was delimited (200 x 200 m2), and soil samples were collected using the grid method from three replicate quadrats at two depths, surface (0-15 cm) and subsurface (15-30 cm). A geographically similar area located 50 m adjacent to the oil-polluted area was used as a reference (control) site. Total hydrocarbon content (THC) and heavy metal concentrations were later determined in the laboratory by extraction and spetrophotemetric techniques. Generally, the THC of soils at surface and subsurface depths of the oil-polluted plots was 2.06 x 10(4) +/- 4.97 x 10(3) mg/kg and 1.67 x 10(3) +/- 3.61 x 10(2) mg/kg soil, respectively, (no overlap in standard errors at 95% confidence limit) while concentrations of heavy metals(Pb, Cd, V, Cu and Ni) were enhanced, especially at the surface. The high levels of THC and heavy metals may predispose the site, which hitherto served as arable agricultural land, to impaired fertility and possible conflagration. When concentrations of heavy metals reach the levels obtained in this study, they may become toxic to plants or possibly bio-accumulate, thus leading to toxic reactions along the food chain. While the spilled-oil may have contributed to the enhanced levels of the metals in the affected soils, physico-chemical properties of the soils, mobility of metals, and the intense rainfall and flooding that preceded the period of study may have also contributed in part to their enhanced concentrations. The presence of high hydrocarbon content may cause oxygen deprivation, which may result in the death of soil fauna by asphyxiation. There is, therefore, an urgent need to clear the affected site of these excess hydrocarbon deposits so as to enhance the rehabilitation process of the affected mat layer of soils. Other appropriate mitigating measures, such as subsequent monitoring of hydrocarbon levels at suitable intervals after the clean up activities, are also recommended, with reference to the findings of this study, for effective management of the affected area.
Chand, Sukhmal; Singh, Geetu; Patra, D D
2016-08-02
An investigation was carried out to evaluate the effect of heavy metal toxicity on growth, herb, oil yield and quality and metal accumulation in rose scented geranium (Pelargonium graveolens) grown in heavy metal enriched soils. Four heavy metals (Cd, Ni, Cr, and Pb) each at two levels (10 and 20 mg kg-1 soil) were tested on geranium. Results indicated that Cr concentration in soil at 20 mg kg-1 reduced leaves, stem and root yield by 70, 83, and 45%, respectively, over control. Root growth was significantly affected in Cr stressed soil. Nickel, Cr, and Cd concentration and accumulation in plant increased with higher application of these metals. Chromium, nickel and cadmium uptake was observed to be higher in leaves than in stem and roots. Essential oil constituents were generally not significantly affected by heavy metals except Pb at 10 and 20 ppm, which significantly increased the content of citronellol and Ni at 20 ppm increased the content of geraniol. Looking in to the higher accumulation of toxic metals by geranium and the minimal impact of heavy metals on quality of essential oil, geranium can be commercially cultivated in heavy metal polluted soil for production of high value essential oil.
Coal-oil coprocessing at HTI - development and improvement of the technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stalzer, R.H.; Lee, L.K.; Hu, J.
1995-12-31
Co-Processing refers to the combined processing of coal and petroleum-derived heavy oil feedstocks. The coal feedstocks used are those typically utilized in direct coal liquefaction: bituminous, subbituminous, and lignites. Petroleum-derived oil, is typically a petroleum residuum, containing at least 70 W% material boiling above 525{degrees}C. The combined coal and oil feedstocks are processed simultaneously with the dual objective of liquefying the coal and upgrading the petroleum-derived residuum to lower boiling (<525{degrees}C) premium products. HTI`s investigation of the Co-Processing technology has included work performed in laboratory, bench and PDU scale operations. The concept of co-processing technology is quite simple and amore » natural outgrowth of the work done with direct coal liquefaction. A 36 month program to evaluate new process concepts in coal-oil coprocessing at the bench-scale was begun in September 1994 and runs until September 1997. Included in this continuous bench-scale program are provisions to examine new improvements in areas such as: interstage product separation, feedstock concentrations (coal/oil), improved supported/dispersed catalysts, optimization of reactor temperature sequencing, and in-line hydrotreating. This does not preclude other ideas from DOE contracts and other sources that can lead to improved product quality and economics. This research work has led to important findings which significantly increased liquid yields, improved product quality, and improved process economics.« less
Zengel, Scott; Bernik, Brittany M.; Rutherford, Nicolle; Nixon, Zachary; Michel, Jacqueline
2015-01-01
The Deepwater Horizon oil spill affected hundreds of kilometers of coastal wetland shorelines, including salt marshes with persistent heavy oiling that required intensive shoreline “cleanup” treatment. Oiled marsh treatment involves a delicate balance among: removing oil, speeding the degradation of remaining oil, protecting wildlife, fostering habitat recovery, and not causing further ecological damage with treatment. To examine the effectiveness and ecological effects of treatment during the emergency response, oiling characteristics and ecological parameters were compared over two years among heavily oiled test plots subject to: manual treatment, mechanical treatment, natural recovery (no treatment, oiled control), as well as adjacent reference conditions. An additional experiment compared areas with and without vegetation planting following treatment. Negative effects of persistent heavy oiling on marsh vegetation, intertidal invertebrates, and shoreline erosion were observed. In areas without treatment, oiling conditions and negative effects for most marsh parameters did not considerably improve over two years. Both manual and mechanical treatment were effective at improving oiling conditions and vegetation characteristics, beginning the recovery process, though recovery was not complete by two years. Mechanical treatment had additional negative effects of mixing oil into the marsh soils and further accelerating erosion. Manual treatment appeared to strike the right balance between improving oiling and habitat conditions while not causing additional detrimental effects. However, even with these improvements, marsh periwinkle snails showed minimal signs of recovery through two years, suggesting that some ecosystem components may lag vegetation recovery. Planting following treatment quickened vegetation recovery and reduced shoreline erosion. Faced with comparable marsh oiling in the future, we would recommend manual treatment followed by planting. We caution against the use of intensive treatment methods with lesser marsh oiling. Oiled controls (no treatment “set-asides”) are essential for judging marsh treatment effectiveness and ecological effects; we recommend their use when applying intensive treatment methods. PMID:26200349
Bioluminescent bioreporter integrated circuit
Simpson, Michael L.; Sayler, Gary S.; Paulus, Michael J.
2000-01-01
Disclosed are monolithic bioelectronic devices comprising a bioreporter and an OASIC. These bioluminescent bioreporter integrated circuit are useful in detecting substances such as pollutants, explosives, and heavy-metals residing in inhospitable areas such as groundwater, industrial process vessels, and battlefields. Also disclosed are methods and apparatus for environmental pollutant detection, oil exploration, drug discovery, industrial process control, and hazardous chemical monitoring.
Ruiz, Pamela; Ortiz-Zarragoitia, Maren; Orbea, Amaia; Theron, Michael; Le Floch, Stéphane; Cajaraville, Miren P
2012-07-15
Several accidental spills in European coastal areas have resulted in the release of different toxic compounds into the marine environment, such as heavy fuel oil type no. 6 in the "Erika" and "Prestige" oil spills and the highly toxic styrene after the loss of the "Ievoli Sun". There is a clear need to develop tools that might allow assessing the biological impact of these accidental spills on aquatic organisms. The aim of the present study was to determine the short-term effects and recovery after exposure of juvenile fish (Scophthalmus maximus) to heavy fuel oil no. 6 and styrene by using a battery of molecular, cell and tissue level biomarkers. Turbots were exposed to styrene for 7 days and to the diluted soluble fraction of the oil (10%) for 14 days, and then allowed to recover in clean seawater for the same time periods. cyp1a1 transcript was overexpressed in turbots after 3 and 14 days of exposure to heavy fuel oil, whereas ahr transcription was not modulated after heavy fuel oil and styrene exposure. pparα transcription level was significantly up-regulated after 3 days of treatment with styrene. Liver activity of peroxisomal acyl-CoA oxidase (AOX) was significantly induced after 14 days of oil exposure, but it was not affected by styrene. Hepatocyte lysosomal membrane stability (LMS) was significantly reduced after exposure to both treatments, indicating that the tested compounds significantly impaired fish health. Both AOX and LMS values returned to control levels after the recovery period. No differences in gamete development were observed between fuel- or styrene- exposed fish and control fish, and vitellogenin plasma levels were low, suggesting no xenoestrogenic effects of fuel oil or styrene. While styrene did not cause any increase in the prevalence of liver histopathological alterations, prevalence of extensive cell vacuolization increased after exposure to heavy fuel oil for 14 days. In conclusion, the suite of selected biomarkers proved to be useful to determine the early impact of and recovery from exposure to tested compounds in turbot. Copyright © 2012. Published by Elsevier B.V.
Chand, Sukhmal; Yaseen, M; Rajkumari; Patra, D D
2015-01-01
A field experiment was conducted to evaluate the effective utilization of tannery sludge for cultivation of clarysage (Salvia sclarea) at CIMAP research farm, Lucknow, India during the year 2012-2013. Six doses (0, 20, 40, 60, 80, 100 tha(-1)) of processed tannery sludge were tested in randomised block design with four replications. Results revealed that maximum shoot, root, dry matter and oil yield were obtained with application of 80 tha(-1)of tannery sludge and these were 94, 113 and 61% higher respectively, over control. Accumulation of heavy metals (Cr, Ni, Fe, Pb) were relatively high in shoot portion of the plant than root. Among heavy metals, magnitude of chromium accumulation was higher than nickel, iron and lead in shoot as well as in root. Linalool, linalyl acetate and sclareol content in oil increased by 13,8 and 27% respectively over control, with tannery sludge application at 80 tha(-1). Heavy metals such as chromium, cadmium and lead content reduced in postharvest soil when compared to initial status. Results indicated that clarysage (Salvia sclarea) can be grown in soil amended with 80 tha(-1)sludge and this can be a suitable accumulator of heavy metals for phytoremediation of metal polluted soils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
City of Long Beach; Tidelands Oil Production Company; University of Southern California
2002-09-30
The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.
NASA Astrophysics Data System (ADS)
Ramohalli, K.
1981-05-01
The solar thermal fuels and chemicals program at Jet Propulsion Laboratory are described. High technology is developed and applied to displace fossil fuel (oil) use in the production/processing of valuable fuels and chemicals. The technical and economic feasibility is demonstrated to extent that enables the industry to participate and commercialize the product. A representative process, namely Furfural production with a bottoming of acetone, butanol and ethanol, is described. Experimental data from all solar production of furfural is discussed. Estimates are given to show the attractiveness of this process, considering its flexibility to be adaptable to dishes, troughs or central receivers. Peat, lignite and low rank coal processing, heavy oil stripping and innovative technologies for process diagnostics and control are mentioned as examples of current projects under intensive development.
NASA Technical Reports Server (NTRS)
Ramohalli, K.
1981-01-01
The solar thermal fuels and chemicals program at Jet Propulsion Laboratory are described. High technology is developed and applied to displace fossil fuel (oil) use in the production/processing of valuable fuels and chemicals. The technical and economic feasibility is demonstrated to extent that enables the industry to participate and commercialize the product. A representative process, namely Furfural production with a bottoming of acetone, butanol and ethanol, is described. Experimental data from all solar production of furfural is discussed. Estimates are given to show the attractiveness of this process, considering its flexibility to be adaptable to dishes, troughs or central receivers. Peat, lignite and low rank coal processing, heavy oil stripping and innovative technologies for process diagnostics and control are mentioned as examples of current projects under intensive development.
HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony R. Kovscek
2003-04-01
This technical progress report describes work performed from January 1 through March 31, 2003 for the project ''Heavy and Thermal Oil Recovery Production Mechanisms,'' DE-FC26-00BC15311. In this project, a broad spectrum of research is undertaken related to thermal and heavy-oil recovery. The research tools and techniques span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history matching techniques. During this period, previous analysis of experimental data regarding multidimensional imbibition to obtain shape factors appropriate for dual-porosity simulation was verified by comparison among analytic, dual-porosity simulation, and fine-grid simulation. We continued to study the mechanismsmore » by which oil is produced from fractured porous media at high pressure and high temperature. Temperature has a beneficial effect on recovery and reduces residual oil saturation. A new experiment was conducted on diatomite core. Significantly, we show that elevated temperature induces fines release in sandstone cores and this behavior may be linked to wettability. Our work in the area of primary production of heavy oil continues with field cores and crude oil. On the topic of reservoir definition, work continued on developing techniques that integrate production history into reservoir models using streamline-based properties.« less
Shibulal, Biji; Al-Bahry, Saif N.; Al-Wahaibi, Yahya M.; Elshafie, Abdulkader E.; Al-Bemani, Ali S.; Joshi, Sanket J.
2014-01-01
Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil recovery (MEOR) is an important tertiary oil recovery method which is cost-effective and eco-friendly technology to drive the residual oil trapped in the reservoirs. The potential of microorganisms to degrade heavy crude oil to reduce viscosity is considered to be very effective in MEOR. Earlier studies of MEOR (1950s) were based on three broad areas: injection, dispersion, and propagation of microorganisms in petroleum reservoirs; selective degradation of oil components to improve flow characteristics; and production of metabolites by microorganisms and their effects. Since thermophilic spore-forming bacteria can thrive in very extreme conditions in oil reservoirs, they are the most suitable organisms for the purpose. This paper contains the review of work done with thermophilic spore-forming bacteria by different researchers. PMID:24550702
Shibulal, Biji; Al-Bahry, Saif N; Al-Wahaibi, Yahya M; Elshafie, Abdulkader E; Al-Bemani, Ali S; Joshi, Sanket J
2014-01-01
Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil recovery (MEOR) is an important tertiary oil recovery method which is cost-effective and eco-friendly technology to drive the residual oil trapped in the reservoirs. The potential of microorganisms to degrade heavy crude oil to reduce viscosity is considered to be very effective in MEOR. Earlier studies of MEOR (1950s) were based on three broad areas: injection, dispersion, and propagation of microorganisms in petroleum reservoirs; selective degradation of oil components to improve flow characteristics; and production of metabolites by microorganisms and their effects. Since thermophilic spore-forming bacteria can thrive in very extreme conditions in oil reservoirs, they are the most suitable organisms for the purpose. This paper contains the review of work done with thermophilic spore-forming bacteria by different researchers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
City of Long Beach; Tidelands Oil Production Company; University of Southern California
2002-09-30
The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.
Heavy and Thermal Oil Recovery Production Mechanisms, SUPRI TR-127
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovscek, Anthony R.; Brigham, William E.; Castanier, Louis M.
The program spans a spectrum of topics and is divided into five categories: (i) multiphase flow and rock properties, (ii) hot fluid injection, (iii) primary heavy-oil production, (iv) reservoir definition, and (v) in-situ combustion.
Li, Hailiang; Cui, Xiaoli; Tong, Yan; Gong, Muxin
2012-04-01
To compare inclusion effects and process conditions of two preparation methods-colloid mill and saturated solution-for beta-CD inclusion compound of four traditional Chinese medicine volatile oils and study the relationship between each process condition and volatile oil physical properties and the regularity of selective inclusion of volatile oil components. Volatile oils from Nardostachyos Radix et Rhizoma, Amomi Fructus, Zingiberis Rhizoma and Angelicaesinensis Radix were prepared using two methods in the orthogonal test. These inclusion compounds by optimized processes were assessed and compared by such methods as TLC, IR and scanning electron microscope. Inclusion oils were extracted by steam distillation, and the components found before and after inclusion were analyzed by GC-MS. Analysis showed that new inclusion compounds, but inclusion compounds prepared by the two processes had differences to some extent. The colloid mill method showed a better inclusion effect than the saturated solution method, indicating that their process conditions had relations with volatile oil physical properties. There were differences in the inclusion selectivity of components between each other. The colloid mill method for inclusion preparation is more suitable for industrial requirements. To prepare volatile oil inclusion compounds with heavy gravity and high refractive index, the colloid mill method needs longer time and more water, while the saturated solution method requires higher temperature and more beta-cyclodextrin. The inclusion complex prepared with the colloid mill method contains extended molecular weight chemical composition, but the kinds of components are reduced.
Hostettler, Frances D.; Kvenvolden, Keith A.
1994-01-01
North Slope crude oil spilled from the T/V Exxon Valdez in March 1989 and contaminated about 500 km of Prince William Sound shoreline. Aliphatic and aromatic hydrocarbons in oil samples collected in August 1990 and June 1992 from beaches on six islands impacted by the spill have been compared with the hydrocarbons from North Slope crude oil taken from the stricken tanker. Degradation processes have changed the physical appearance of this residual spilled oil; the beached oil as collected ranged from a light brown color, to a heavy black viscous oil, to a black, powder-like residue. In these physically different samples, terpane, sterane, and aromatic sterane distributions, as well as carbon isotope values, are similar and correlate with the original Exxon Valdez oil. On the other hand, n-alkanes, isoprenoids, and many of the polycyclic aromatic hydrocarbons which are present in the original crude oil are dramatically altered in the oil samples collected from the beaches.
Process to separate alkali metal salts from alkali metal reacted hydrocarbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, John Howard; Alvare, Javier; Larsen, Dennis
A process to facilitate gravimetric separation of alkali metal salts, such as alkali metal sulfides and polysulfides, from alkali metal reacted hydrocarbons. The disclosed process is part of a method of upgrading a hydrocarbon feedstock by removing heteroatoms and/or one or more heavy metals from the hydrocarbon feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase containing alkali metal salts and reduced heavy metals, and an upgraded hydrocarbon feedstock. The inorganic phasemore » may be gravimetrically separated from the upgraded hydrocarbon feedstock after mixing at a temperature between about 350.degree. C. to 400.degree. C. for a time period between about 15 minutes and 2 hours.« less
Method of producing a colloidal fuel from coal and a heavy petroleum fraction
Longanbach, James R.
1983-08-09
A method is provided for combining coal as a colloidal suspension within a heavy petroleum fraction. The coal is broken to a medium particle size and is formed into a slurry with a heavy petroleum fraction such as a decanted oil having a boiling point of about 300.degree.-550.degree. C. The slurry is heated to a temperature of 400.degree.-500.degree. C. for a limited time of only about 1-5 minutes before cooling to a temperature of less than 300.degree. C. During this limited contact time at elevated temperature the slurry can be contacted with hydrogen gas to promote conversion. The liquid phase containing dispersed coal solids is filtered from the residual solids and recovered for use as a fuel or feed stock for other processes. The residual solids containing some carbonaceous material are further processed to provide hydrogen gas and heat for use as required in this process.
NASA Astrophysics Data System (ADS)
Shelton, J.; McIntosh, J. C.; Warwick, P.; McCray, J. E.
2014-12-01
Technologies that serve as a bridge between renewable energy and fossil fuels are needed to meet growing energy demands and to mitigate climate change. Many reservoirs contain difficult to produce residual and/or heavily biodegraded (i.e., geochemically altered) crude oil, which remains a relatively untapped resource. Production of this residual crude oil via unconventional methods, such as enhanced oil recovery (EOR), has offset some of the decline in conventional oil production. EOR is not efficient enough to recover all of the original oil in place, and some methods are not effective for very heavy crude oils. Stimulation of in-situ microorganisms to convert the residual crude oil to natural gas (i.e., microbial methane) is one promising strategy to "extract" residual and /or heavy crude oil. Although the hydrogeochemical conditions necessary for the occurrence of both crude oil biodegradation and microbial methanogenesis in various reservoirs have been studied, there are still gaps in research. Many hydrogeochemical factors have been researched individually (not as part of a multifactor or lithologically similar system) and little work has assessed the microbiological limitations of both processes. Our goal is to determine the hydrogeochemical and microbiological conditions required for maximum crude oil biodegradation and microbial methanogenesis across a lithologically similar unit. Produced water, oil, gas, and microbial biomass samples were collected from wells completed in the Paleocene—Eocene Wilcox Group in central Louisiana. Initial results indicate potential relationships between the amount of crude oil biodegradation, indicators of microbial methanogenesis, and aqueous geochemistry. For example, produced waters with the lowest salinity had the highest crude oil biodegradation, and wells exhibiting the most microbial methane generation produce waters with hydrogeochemical conditions most fit for methanogenesis to occur. In sampled wells displaying similar hydrogeochemical conditions (e.g., similar temperatures), indicators of methanogenesis, such as δ13C dissolved inorganic carbon values, are more pronounced in wells displaying oils that are more biodegraded, suggesting methanogenesis may be accelerated with greater amounts of crude oil biodegradation.
NASA Astrophysics Data System (ADS)
Nezhad, Javad Razavi; Jafari, Arezou; Abdollahi, Mahdi
2018-01-01
Enhanced heavy oil recovery methods are widely utilized to increase oil recovery. For this purpose, polymer and surfactant flooding have been used extensively. Recently, polymeric surfactant flooding has become an attractive alternative to sole polymer flooding due to their capability of providing an increase in solution viscosity and a decrease in interfacial tension, which are both beneficial for efficiency of the process. Applying nanoparticles as an additive to polymer solutions is a method to improve viscosity and alter rock wettability. Therefore, in this research, multi-walled carbon nanotube (MWCNT) was mixed with a polymeric surfactant of polyacrylamide-graft-lignin copolymer (PAM-g-L) synthesized via radical grafting reaction. Moreover, several solutions with different concentrations of nanoparticles with PAM-g-L were prepared. The solutions were injected into a micromodel to evaluate the PAM-g-L flooding efficiency in presence of the multi-walled carbon nanotubes. The results of micromodel flooding showed that increasing MWCNT concentration results in lower sweep efficiencies; and consequently, oil production will decrease. Therefore, MWCNT along with PAM-g-L has an unacceptable performance in enhanced heavy oil recovery. But data of wettability tests revealed that MWCNT can change the wettability from oil-wet to water-wet. In addition, the combination of the PAM-g-L and MWCNT in a solution will cause more water-wet condition.
Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery.
Al-Wahaibi, Yahya; Joshi, Sanket; Al-Bahry, Saif; Elshafie, Abdulkadir; Al-Bemani, Ali; Shibulal, Biji
2014-02-01
The fermentative production of biosurfactants by Bacillus subtilis strain B30 and the evaluation of biosurfactant based enhanced oil recovery using core-flood were investigated. Different carbon sources (glucose, sucrose, starch, date molasses, cane molasses) were tested to determine the optimal biosurfactant production. The isolate B30 produced a biosurfactant that could reduce the surface tension and interfacial tension to 26.63±0.45 mN/m and 3.79±0.27 mN/m, respectively in less than 12h in both glucose or date molasses based media. A crude biosurfactant concentration of 0.3-0.5 g/l and critical micelle dilution (CMD) values of 1:8 were observed. The biosurfactants gave stable emulsions with wide range of hydrocarbons including light and heavy crude oil. The biosurfactants were partially purified and identified as a mixture of lipopeptides similar to surfactin, using high performance thin layer chromatography and Fourier transform infrared spectroscopy. The biosurfactants were stable over wide range of pH, salinity and temperatures. The crude biosurfactant preparation enhanced light oil recovery by 17-26% and heavy oil recovery by 31% in core-flood studies. The results are indicative of the potential of the strain for the development of ex situ microbial enhanced oil recovery processes using glucose or date molasses based minimal media. Copyright © 2013 Elsevier B.V. All rights reserved.
Demulsification of crude oil-in-water emulsions by means of fungal spores.
Vallejo-Cardona, Alba Adriana; Martínez-Palou, Rafael; Chávez-Gómez, Benjamín; García-Caloca, Graciela; Guerra-Camacho, Jairo; Cerón-Camacho, Ricardo; Reyes-Ávila, Jesús; Karamath, James Robert; Aburto, Jorge
2017-01-01
The present feature describes for the first time the application of spores from Aspergillus sp. IMPMS7 to break out crude oil-in-water emulsions (O/W). The fungal spores were isolated from marine sediments polluted with petroleum hydrocarbons. The spores exhibited the ability to destabilize different O/W emulsions prepared with medium, heavy or extra-heavy Mexican crude oils with specific gravities between 10.1 and 21.2°API. The isolated fungal spores showed a high hydrophobic power of 89.3 ± 1.9% and with 2 g of spores per liter of emulsion, the half-life for emulsion destabilization was roughly 3.5 and 0.7 h for extra-heavy and medium crude oil, respectively. Then, the kinetics of water separation and the breaking of the O/W emulsion prepared with heavy oil through a spectrofluorometric technique were studied. A decrease in the fluorescence ratio at 339 and 326 nm (I339/I326) was observed in emulsions treated with spores, which is similar to previously reported results using chemical demulsifiers.
Demulsification of crude oil-in-water emulsions by means of fungal spores
Vallejo-Cardona, Alba Adriana; Martínez-Palou, Rafael; Chávez-Gómez, Benjamín; García-Caloca, Graciela; Guerra-Camacho, Jairo; Cerón-Camacho, Ricardo; Reyes-Ávila, Jesús; Karamath, James Robert
2017-01-01
The present feature describes for the first time the application of spores from Aspergillus sp. IMPMS7 to break out crude oil-in-water emulsions (O/W). The fungal spores were isolated from marine sediments polluted with petroleum hydrocarbons. The spores exhibited the ability to destabilize different O/W emulsions prepared with medium, heavy or extra-heavy Mexican crude oils with specific gravities between 10.1 and 21.2°API. The isolated fungal spores showed a high hydrophobic power of 89.3 ± 1.9% and with 2 g of spores per liter of emulsion, the half-life for emulsion destabilization was roughly 3.5 and 0.7 h for extra-heavy and medium crude oil, respectively. Then, the kinetics of water separation and the breaking of the O/W emulsion prepared with heavy oil through a spectrofluorometric technique were studied. A decrease in the fluorescence ratio at 339 and 326 nm (I339/I326) was observed in emulsions treated with spores, which is similar to previously reported results using chemical demulsifiers. PMID:28234917
Radiation-induced desulfurization of Arabian crude oil and straight-run diesel
NASA Astrophysics Data System (ADS)
Basfar, A. A.; Mohamed, K. A.
2011-11-01
Radiation-induced desulfurization of four types of Arabian crude oils (heavy, medium, light and extra light) and straight-run diesel (SRD) was investigated over the range of 10-200 kGy. Results show that gamma radiation processing at absorbed doses up to 200 kGy without further treatment is not sufficient for desulfurization. However, the combination of gamma-irradiation with other physical/chemical processes (i.e. L/L extraction, adsorption and oxidation) may be capable of removing considerable levels of sulfur compounds in the investigated products. Currently, this approach of combined radiation/physical/chemical processes is under investigation. The findings of these attempts will be reported in the future.
40 CFR 227.6 - Constituents prohibited as other than trace contaminants.
Code of Federal Regulations, 2012 CFR
2012-07-01
... petroleum, oil sludge, oil refuse, crude oil, fuel oil, heavy diesel oil, lubricating oils, hydraulic fluids... undesirable effects due -either to chronic toxicity or to bio-ac-cumu-la-tion in marine organisms after...
40 CFR 227.6 - Constituents prohibited as other than trace contaminants.
Code of Federal Regulations, 2014 CFR
2014-07-01
... petroleum, oil sludge, oil refuse, crude oil, fuel oil, heavy diesel oil, lubricating oils, hydraulic fluids... undesirable effects due -either to chronic toxicity or to bio-ac-cumu-la-tion in marine organisms after...
40 CFR 227.6 - Constituents prohibited as other than trace contaminants.
Code of Federal Regulations, 2013 CFR
2013-07-01
... petroleum, oil sludge, oil refuse, crude oil, fuel oil, heavy diesel oil, lubricating oils, hydraulic fluids... undesirable effects due -either to chronic toxicity or to bio-ac-cumu-la-tion in marine organisms after...
Process for removing pyritic sulfur from bituminous coals
Pawlak, Wanda; Janiak, Jerzy S.; Turak, Ali A.; Ignasiak, Boleslaw L.
1990-01-01
A process is provided for removing pyritic sulfur and lowering ash content of bituminous coals by grinding the feed coal, subjecting it to micro-agglomeration with a bridging liquid containing heavy oil, separating the microagglomerates and separating them to a water wash to remove suspended pyritic sulfur. In one embodiment the coal is subjected to a second micro-agglomeration step.
Frey, Anna K; Saarnio, Karri; Lamberg, Heikki; Mylläri, Fanni; Karjalainen, Panu; Teinilä, Kimmo; Carbone, Samara; Tissari, Jarkko; Niemelä, Ville; Häyrinen, Anna; Rautiainen, Jani; Kytömäki, Jorma; Artaxo, Paulo; Virkkula, Aki; Pirjola, Liisa; Rönkkö, Topi; Keskinen, Jorma; Jokiniemi, Jorma; Hillamo, Risto
2014-01-01
Particle emissions affect radiative forcing in the atmosphere. Therefore, it is essential to know the physical and chemical characteristics of them. This work studied the chemical, physical, and optical characteristics of particle emissions from small-scale wood combustion, coal combustion of a heating and power plant, as well as heavy and light fuel oil combustion at a district heating station. Fine particle (PM1) emissions were the highest in wood combustion with a high fraction of absorbing material. The emissions were lowest from coal combustion mostly because of efficient cleaning techniques used at the power plant. The chemical composition of aerosols from coal and oil combustion included mostly ions and trace elements with a rather low fraction of absorbing material. The single scattering albedo and aerosol forcing efficiency showed that primary particles emitted from wood combustion and some cases of oil combustion would have a clear climate warming effect even over dark earth surfaces. Instead, coal combustion particle emissions had a cooling effect. Secondary processes in the atmosphere will further change the radiative properties of these emissions but are not considered in this study.
Membrane separation of hydrocarbons using cycloparaffinic solvents
Kulkarni, S.S.; Chang, Y.A.; Gatsis, J.G.; Funk, E.W.
1988-06-14
Heavy crude oils which contain metal contaminants such as nickel, vanadium and iron may be separated from light hydrocarbon oils by passing a solution of the crude oil dissolved in a cycloparaffinic hydrocarbon solvent containing from about 5 to about 8 carbon atoms by passing through a polymeric membrane which is capable of maintaining its integrity in the presence of hydrocarbon compounds. The light hydrocarbon oils which possess relatively low molecular weights will be recovered as the permeate while the heavy oils which possess relatively high molecular weights as well as the metal contaminants will be recovered as the retentate.
Membrane separation of hydrocarbons using cycloparaffinic solvents
Kulkarni, Sudhir S.; Chang, Y. Alice; Gatsis, John G.; Funk, Edward W.
1988-01-01
Heavy crude oils which contain metal contaminants such as nickel, vanadium and iron may be separated from light hydrocarbon oils by passing a solution of the crude oil dissolved in a cycloparaffinic hydrocarbon solvent containing from about 5 to about 8 carbon atoms by passing through a polymeric membrane which is capable of maintaining its integrity in the presence of hydrocarbon compounds. The light hydrocarbon oils which possess relatively low molecular weights will be recovered as the permeate while the heavy oils which possess relatively high molecular weights as well as the metal contaminants will be recovered as the retentate.
Study of high viscous multiphase phase flow in a horizontal pipe
NASA Astrophysics Data System (ADS)
Baba, Yahaya D.; Aliyu, Aliyu M.; Archibong, Archibong-Eso; Almabrok, Almabrok A.; Igbafe, A. I.
2018-03-01
Heavy oil accounts for a major portion of the world's total oil reserves. Its production and transportation through pipelines is beset with great challenges due to its highly viscous nature. This paper studies the effects of high viscosity on heavy oil two-phase flow characteristics such as pressure gradient, liquid holdup, slug liquid holdup, slug frequency and slug liquid holdup using an advanced instrumentation (i.e. Electrical Capacitance Tomography). Experiments were conducted in a horizontal flow loop with a pipe internal diameter (ID) of 0.0762 m; larger than most reported in the open literature for heavy oil flow. Mineral oil of 1.0-5.0 Pa.s viscosity range and compressed air were used as the liquid and gas phases respectively. Pressure gradient (measured by means differential pressure transducers) and mean liquid holdup was observed to increase as viscosity of oil is increased. Obtained results also revealed that increase in liquid viscosity has significant effects on flow pattern and slug flow features.
Pit and backfill: Getty's plan for a diatomite zone in an oil patch. [Dravo Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-06-01
Getty Oil Co. is investigating the recovery of oil from a diatomite deposit in California's McKittrick oil field, using a pair of newly built pilot plants - one a Dravo solvent extraction train and the other a Lurgi-Ruhrgas retort-condenser system. Both are sized to process approximately 240 short tons/day of mined feed, and each will be separately campaigned for a year during the evaluation program. The diatomite project has a number of advantages as a mine and materials-handling project compared to oil shale and tar sands. The deposit is soft, and in-transit handling will probably perform much of the necessarymore » crushing for the plant. The material is light, approximately 100 lb/cu ft in place and 90 lb/cu ft broken. The near-surface location contrasts to the more deeply buried oil shale deposits in other areas of the nation. At the same time, the traction surface and structural bearing strength for heavy earth movers should be somewhat better in diatomite.« less
Effect of pretreating of host oil on coprocessing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hajdu, P.E.; Tierney, J.W.; Wender, I.
1995-12-31
The principal objective of this research was to determine if coprocessing performance (i.e., coal conversion and oil yield) could be significantly improved by pretreating the heavy resid prior to reacting it with coal. For this purpose, two petroleum vacuum resids (1000{degrees}F+), one from the Amoco Co. and another from the Citgo Co., were used as such and after they had been pretreated by catalytic hydrogenation and hydrocracking reactions. The pretreatments were aimed at improving the host oil by; (1) converting any aromatic structures in the petroleum to hydroaromatic compounds capable of donating hydrogen, (2) cracking the heavy oil to lowermore » molecular weight material that might serve as a better solvent, (3) reducing the coking propensity of the heavy oil through the hydrogenation of polynuclear aromatic compounds, and (4) removing metals and heteroatoms that might poison a coprocessing catalyst. Highly dispersed catalysts, including fine particle Fe- and Mo-based, and dicobalt octacarbonyl, Co{sub 2}(CO){sub 8}, were used in this study. The untreated and pretreated resids were extensively characterized in order to determine chemical changes brought about by the pretreatments. The modified heavy oils were then coprocessed with an Illinois No. 6 coal as well as with a Wyodak coal, and compared to coprocessing with untreated resids under the same hydroliquefaction conditions. The amount of oil derived from coal was estimated by measuring the level of phenolic oxygen (derived mainly from coal) present in the oil products. Results are presented and discussed.« less
Processing of solid fossil-fuel deposits by electrical induction heating
NASA Astrophysics Data System (ADS)
Fisher, S. T.
1980-02-01
A study has been made to determine the feasibility of extracting the energy commodities electricity, gas, petroleum, chemical feedstocks, and coke from the solid fossil fuels coal, oil shale, oil sand, and heavy oil by the electrical induction heating of the deposits. Available electrical, physical, and chemical data indicate that this process may be technically and economically feasible. Some basic data are missing, and it has been necessary to indicate possible ranges of values for some parameters. The tentative conclusions drawn are the following. All four solid fossil fuels can be processed successfully underground. All five energy commodities can be produced economically in adequate quantities for a period of a century or more in North America, without recourse to any other major energy source. The development and construction time required is short enough to permit an uninterrupted supply of all energy commodities as present sources decline
... oil is a heavy oil used in diesel engines. Diesel oil poisoning occurs when someone swallows diesel ... people trying to suck (siphon) gas from an automobile tank using their mouth and a garden hose ( ...
The extraction of bitumen from western oil sands: Volume 2. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.
1997-11-26
The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery andmore » upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.« less
NASA Astrophysics Data System (ADS)
Neto, José Antônio Baptista; Gingele, Franz Xaver; Leipe, Thomas; Brehme, Isa
2006-04-01
Ninety-two surface sediment samples were collected in Guanabara Bay, one of the most prominent urban bays in SE Brazil, to investigate the spatial distribution of anthropogenic pollutants. The concentrations of heavy metals, organic carbon and particle size were examined in all samples. Large spatial variations of heavy metals and particle size were observed. The highest concentrations of heavy metals were found in the muddy sediments from the north western region of the bay near the main outlets of the most polluted rivers, municipal waste drainage systems and one of the major oil refineries. Another anomalous concentration of metals was found adjacent to Rio de Janeiro Harbour. The heavy metal concentrations decrease to the northeast, due to intact rivers and the mangrove systems in this area, and to the south where the sand fraction and open-marine processes dominate. The geochemical normalization of metal data to Li or Al has also demonstrated that the anthropogenic input of heavy metals have altered the natural sediment heavy metal distribution.
Potential of the green alga Chlorella vulgaris for biodegradation of crude oil hydrocarbons.
Xaaldi Kalhor, Aadel; Movafeghi, Ali; Mohammadi-Nassab, Adel Dabbagh; Abedi, Ehsan; Bahrami, Ahmad
2017-10-15
Oil production and/or transportation can cause severe environmental pollution and disrupt the populations of living organisms. In the present study, biodegradation of petroleum hydrocarbons is investigated using Chlorella vulgaris as a green algal species. The microalga was treated by 10 and 20g/l crude oil/water concentrations at two experimental durations (7 and 14days). Based on the results obtained, C. vulgaris owned not only considerable resistance against the pollutants but also high ability in remediation of crude oil hydrocarbons (~94% of the light and ~88% of heavy compounds in 14days). Intriguingly, dry weight of C. vulgaris increased by the rising crude oil concentration indicating the positive effect of crude oil on the growth of the algal species. This biodegradation process is remarkably a continuous progression over a period of time. Copyright © 2017 Elsevier Ltd. All rights reserved.
Magnetic susceptibility of petroleum fluids
NASA Astrophysics Data System (ADS)
Ivakhnenko, O. P.; Potter, D. K.
2003-04-01
Technological progress in petroleum exploration, production and processing requires a profound knowledge of the magnetic properties of the petroleum fluids. However, as far as we know there are not widely available constants of magnetic susceptibility for the majority of petroleum fluids. We have therefore measured the mass magnetic susceptibility (χ_m) of several petroleum fluids (such as crude oils, refined oil fractions, and formation waters) from local and worldwide sites. The magnetic features of natural reservoir petroleum fluids, together with fluids connected with the petroleum industry (such as drilling fluids etc.), fall into the following categories: diamagnetic solutions, paramagnetic suspensions and ferromagnetic "ferrofluid" suspensions. In the current investigations we have concentrated on the natural reservoir fluids, which are generally diamagnetic. There were distinct differences between the χ_m of the crude oils and the formation waters, with the oils having generally a more negative value of χ_m. The magnetic susceptibility of the oils appears to be related to their main physical and chemical properties, such as density, composition of group hydrocarbons, sulphur content and concentration of organometallic compounds. Low acidity and low sulphur oils have more negative values of χ_m. Light fractions of crude oil consisting mainly of paraffinic and naphtenic hydrocarbons are the most diamagnetic. The content of the less diamagnetic aromatics increases in the kerosene and gas oil fractions, and results in an increase in the magnetic susceptibility. Also, the magnetic susceptibility of the heavy oil fraction has a significantly higher χ_m than the light fractions, which appears to be connected with a higher concentration of paramagnetic components in the heavy fraction. The χ_m of the oil from various oil provinces were compared and found to be different. It seems that values of χ_m reflect specific features of the geological conditions for the oil and the geochemical history of the oil provinces.
Analysis of snow-cap pollution for air quality assessment in the vicinity of an oil refinery.
Krastinyte, Viktorija; Baltrenaite, Edita; Lietuvninkas, Arvydas
2013-01-01
Snow-cap can be used as a simple and effective indicator of industrial air pollution. In this study snow-cap samples were collected from 11 sites located in the vicinity of an oil refinery in Mazeikiai, a region in the north-west of Lithuania, in the winter of 2011. Analysis of snowmelt water and snow-dust was used to determine anthropogenic pollutants such as: sulphates and chlorides, nitrites, nitrates, ammonium nitrogen, total carbon, total nitrogen; heavy metals: lead (Pb), copper (Cu), chromium (Cr), cadmium (Cd). Concentrations of heavy metals in snow-dust were detected thousands of times higher than those in the snowmelt water. In this study, analysis of heavy metal concentration was conducted considering different distances and the wind direction within the impact zone of the oil refinery. The sequence of heavy metals according to their mean concentrations in the snow-dust samples was the following: Pb > Cr > Cu > Cd. Heavy metals highly correlated among each other. The load of snow-dust was evaluated to determine the pollution level in the study area. The highest daily load of snow-dust was 45.81 +/- 12.35 mg/m2 in the north-western direction from the oil refinery. According to classification of the daily load of snow-dust a lower than medium-risk level of pollution was determined in the vicinity of the oil refinery.
Determination of 129I in heavy residues of two crude oils
NASA Astrophysics Data System (ADS)
Fehn, Udo; Tullai, Sharon; Teng, Ray T. D.; Elmore, David; Kubik, Peter W.
1987-11-01
129I/ 127I ratios were determined in heavy residues of two crude oils which were produced from 10 Ma and 300 Ma old formations. The measured 129I/ 127I ratios were between 5 and 10 × 10 -12. These values are significantly above the ratios determined for marine sediments and, for the older oil, also above those supported by in situ production of 129I from uranium. We attribute the high level of 129I in the residues to addition of anthropogenic iodine during the production of the oils. The ratios indicate also that more than 90% of the iodine measured came originally from the oils.
NASA Technical Reports Server (NTRS)
Heinlein, Fritz
1926-01-01
The test equipment for studying the vaporization of heavy and medium oils is described as well as some of the experimental properties explored such as vaporization speed and diffusion coefficient. The experiemtal arrangement is also discussed.
Environmental impacts of the Chennai oil spill accident - A case study.
Han, Yuling; Nambi, Indumathi M; Prabhakar Clement, T
2018-06-01
Chennai, a coastal city in India with a population of over 7 million people, was impacted by a major oil spill on January 28th 2017. The spill occurred when two cargo ships collided about two miles away from the Chennai shoreline. The accident released about 75 metric tons of heavy fuel oil into the Bay of Bengal. This case study provides field observations and laboratory characterization data for this oil spill accident. Our field observations show that the seawalls and groins, which were installed along the Chennai shoreline to manage coastal erosion problems, played a significant role in controlling the oil deposition patterns. A large amount of oil was trapped within the relatively stagnant zone near the seawall-groin intersection region. The initial cleanup efforts used manual methods to skim the trapped oil and these efforts indeed helped recover large amount of oil. Our laboratory data show that the Chennai oil spill residues have unique fingerprints of hopanes and steranes which can be used to track the spill. Our weathering experiments show that volatilization processes should have played a significant role in degrading the oil during initial hours. The characterization data show that the source oil contained about 503,000 mg/kg of total petroleum hydrocarbons (TPH) and 17,586 mg/kg of total polycyclic aromatic hydrocarbons (PAHs). The field samples collected 6 and 62 days after the spill contained about 71,000 and 28,000 mg/kg of TPH and 4854 and 4016 mg/kg of total PAHs, respectively. The field samples had a relatively large percentage of heavy PAHs, and most of these PAHs are highly toxic compounds that are difficult to weather and their long-term effects on coastal ecosystems are largely unknown. Therefore, more detailed studies are needed to monitor and track the long term environmental impacts of the Chennai oil spill residues on the Bay of Bengal coastal ecosystem. Copyright © 2018 Elsevier B.V. All rights reserved.
Oh, Shinyoung; Hwang, Hyewon; Choi, Hang Seok; Choi, Joon Weon
2014-12-01
Miscanthus bio-oil was subjected to hydrodeoxygenation (HDO) with Pd/C at different temperatures (250, 300 and 350°C) and times (30, 45 and 60 min) to investigate the chemical modification of micro- and macromolecules in bio-oil. Four main products - char, gas and two immiscible oils (light and heavy oil) - were obtained from the HDO reaction. Yields of heavy oil as a targeting product of HDO varied from 60% to 13%, whereas those of gas and char were ranged from 7% to 36% and 6% to 17%, respectively. Water content was estimated to<1% and heating value was 26-31 MJ kg(-1). Reduction of unstable oxygen-containing compounds such as acids (2-hydroxy-butanoic acid), aldehydes (furfural), alcohols (butanedial) and sugars (levoglucosan) were characteristic in heavey oil. Apart from hydrogenation and deoxygenation, micromolecules in bio-oil were plausibly modified to stable ketones, esters and saturated components via demethoxylation, dealkylation, decarbonylation, dehydroxylation and ring opening. Macromolecular lignin fragments (referred to as pyrolytic lignins in bio-oil and phenol polymers in heavy oil) were extracted and subjected to several analyses. Approximately 60% of the pyrolytic lignins were decomposed into low molecular weight compounds during HDO reaction. Moreover, essential functional groups, OCH3 and phen-OH groups attached to pyrolytic lignin, were severely modified during HDO reaction. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Maksimov, German A.; Radchenko, Aleksei V.
2006-05-01
Acoustical stimulation (AS) of oil production rate from a well is perspective technology for oil industry but physical mechanisms of acoustical action are not understood clear due to complex character of the phenomena. In practice the role of these mechanisms is appeared non-directly in the form of additional oil output. Thus the validity examination of any physical model has to be carried out as with account of mechanism of acoustic action by itself as well with account of previous and consequent stages dealt with fluid filtration into a well. The advanced model of physical processes taking place at acoustical stimulation is considered in the framework of heating mechanism of acoustical action, but for two-component fluid in porous permeable media. The porous fluid is considered as consisted of light and heavy hydrocarbonaceous phases, which are in a thermodynamic equilibrium. Filtration or acoustical stimulation can change equilibrium balance between phases so the heavy phase can be precipitated on pores walls or dissolved. The set of acoustical, heat and filtration tasks were solved numerically to describe oil output from a well — the final result of acoustical action, which can be compared with experimental data. It is shown that the suggested numerical model allows us to reproduce the basic features of fluid filtration in a well before during and after acoustical stimulation.
On-line Analysis of Nitrogen Containing Compounds in Complex Hydrocarbon Matrixes.
Ristic, Nenad D; Djokic, Marko R; Van Geem, Kevin M; Marin, Guy B
2016-08-05
The shift to heavy crude oils and the use of alternative fossil resources such as shale oil are a challenge for the petrochemical industry. The composition of heavy crude oils and shale oils varies substantially depending on the origin of the mixture. In particular they contain an increased amount of nitrogen containing compounds compared to the conventionally used sweet crude oils. As nitrogen compounds have an influence on the operation of thermal processes occurring in coker units and steam crackers, and as some species are considered as environmentally hazardous, a detailed analysis of the reactions involving nitrogen containing compounds under pyrolysis conditions provides valuable information. Therefore a novel method has been developed and validated with a feedstock containing a high nitrogen content, i.e., a shale oil. First, the feed was characterized offline by comprehensive two-dimensional gas chromatography (GC × GC) coupled with a nitrogen chemiluminescence detector (NCD). In a second step the on-line analysis method was developed and tested on a steam cracking pilot plant by feeding pyridine dissolved in heptane. The former being a representative compound for one of the most abundant classes of compounds present in shale oil. The composition of the reactor effluent was determined via an in-house developed automated sampling system followed by immediate injection of the sample on a GC × GC coupled with a time-of-flight mass spectrometer (TOF-MS), flame ionization detector (FID) and NCD. A novel method for quantitative analysis of nitrogen containing compounds using NCD and 2-chloropyridine as an internal standard has been developed and demonstrated.
Collett, T.S.
1985-01-01
In 1973, during the drilling of the West Sak #1 well on the North Slope of Alaska, oil was first recovered from a shallow Cretaceous sand interval which was later informally named the West Sak sands by ARCO Alaska. Stratigraphically above the West Sak sands there are two additional oil bearing sands, and are informally referred to by ARCO as the Ugnu and the 2150 horizons. Gas hydrates are interpreted to exist in the West Sak #6 well in conjunction with heavy oil and the physical properties of this oil may have been influenced by the gas hydrate. Prior to this work, only experimental evidence suggested that hydrates and oil could exist in the same reservoir.
Low NO/x/ heavy fuel combustor program
NASA Technical Reports Server (NTRS)
Lister, E.; Niedzwiecki, R. W.; Nichols, L.
1980-01-01
The paper deals with the 'Low NO/x/ Heavy Fuel Combustor Program'. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen (NO/x/), improved combustor durability and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synfuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines.
Low NO(x) heavy fuel combustor program
NASA Technical Reports Server (NTRS)
Lister, E.; Niedzwiecki, R. W.; Nichols, L.
1979-01-01
The 'low nitrogen oxides heavy fuel combustor' program is described. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen, improved combustor durability, and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synfuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines.
Utilization of heavy metal-rich tannery sludge for sweet basil (Ocimum basilicum L.) cultivation.
Chand, Sukhmal; Singh, Shweta; Singh, Vinay Kumar; Patra, D D
2015-05-01
Unlike food crops, essential oil-bearing crops in which the oil is extracted through hydro-distillation can be a suitable crop to be grown in heavy metal-polluted soils as the oil does not carry any heavy metal. In a field experiment conducted at CIMAP, Lucknow, India during 2011 and 2012, influence of six doses of tannery sludge viz 0, 10, 20, 30, 40, and 50 t ha(-1) were tested, taking sweet basil (Ocimum basilicum) as the test crop. Maximum herb yield was obtained with the application of sludge at 20 t ha(-1). While in root, accumulation of Cd and Pb increased significantly up to 20 t ha(-1), Cr accumulation increased with increasing the dose of tannery sludge reaching maximum at 50 t ha(-1). Essential oil yield of basil (Ocimum basilicum) was significantly affected due to sludge application. Quality of essential oil, in term of chemical constituents, however, was marginally influenced due to tannery sludge application.
NASA Astrophysics Data System (ADS)
Yashchenko, I. G.; Polishchuk, Y. M.
2017-12-01
Using a global database on physical and chemical properties of oils, the distribution of viscous, heavy, waxy and highly resinous oils is analyzed in terms of volumes of their reserves. It is known that heavy and viscous oils account for slightly more than 33% of the total samples. Resinous and paraffin oils account for less than 30% in the total samples. The criteria necessary to classify oils as hard-to-recover oil reserves are determined. Features of physical and chemical properties of these oils are studied under various conditions. The results of a comparative analysis of hard-to-recover oils of a low quality from the main basins of the Arctic zone of Russia are given, which made it possible to establish features of physical and chemical properties of oil. The results of the research can be used to develop new and improve existing methods and technologies for oil production and refining.
Stabilization of Bio-Oil Fractions for Insertion into Petroleum Refineries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Robert C.; Smith, Ryan; Wright, Mark
This project is part of a collaboration effort between Iowa State University (ISU), University of Oklahoma (OK) and Pacific Northwest National Laboratory (PNNL). The purpose of this project is to stabilize bio-oil fractions and improve their suitability for insertion into petroleum refineries. Bio-oil from fast pyrolysis of biomass is a complex mixture of unstable organic compounds. These organic compounds react under standard room conditions resulting in increases in bio-oil viscosity and water content – both detrimental for bio-oil storage and transportation. This study employed fractionation and upgrading systems to improve the stability of bio-oil. The fractionation system consists of amore » series of condensers, and electrostatic precipitators designed to separate bio-oil into five fractions: soluble carbohydrates (SF1&2), clean phenolic oligomers (CPO) and middle fraction (SF3&4), light oxygenates (SF5). A two-stage upgrading process was designed to process bio-oil stage fractions into stable products that can be inserted into a refinery. In the upgrading system, heavy and middle bio-oil fractions were upgraded into stable oil via cracking and subsequent hydrodeoxygenation. The light oxygenate fraction was steam reformed to provide a portion of requisite hydrogen for hydroprocessing. Hydrotreating and hydrocracking employed hydrogen from natural gas, fuel gas and light oxygenates reforming. The finished products from this study consist of gasoline- and diesel-blend stock fuels.« less
Jang, Hui-Jeong; Ha, Bo-Kyung; Kim, Jin-Woong; Jung, Kyung-Hwa; Ahn, Jiyoon; Yoon, Sang-Hwal; Kim, Seon-Won
2014-03-01
To prevent degradation of intracellular retinoids through in situ extraction from the cells, a two-phase culture system was performed. Several organic solvents, including n-alkanes, mineral oils and cosmetic raw materials, were applied as the extraction phase. Of the n-alkanes, n-decane had the highest retinoid production as 134 mg/l after 72 h. For mineral oil, light and heavy mineral oil gave retinoid productions of 158 and 174 mg/l after 96 h, respectively. Of other materials, isopropyl myristate gave the highest retinoid production of 181 mg/l. These results indicate that many types of oils can be applied for retinoid production, and optimization of the in situ extraction process will lead to further improve of economical production for the industrial purpose.
40 CFR Table 3 to Subpart Ddddd of... - Work Practice Standards
Code of Federal Regulations, 2013 CFR
2013-07-01
...: natural gas, synthetic natural gas, propane, distillate oil, syngas, ultra-low sulfur diesel, fuel oil... start firing coal/solid fossil fuel, biomass/bio-based solids, heavy liquid fuel, or gas 2 (other) gases....While firing coal/solid fossil fuel, biomass/bio-based solids, heavy liquid fuel, or gas 2 (other) gases...
40 CFR Table 3 to Subpart Ddddd of... - Work Practice Standards
Code of Federal Regulations, 2014 CFR
2014-07-01
...: natural gas, synthetic natural gas, propane, distillate oil, syngas, ultra-low sulfur diesel, fuel oil... start firing coal/solid fossil fuel, biomass/bio-based solids, heavy liquid fuel, or gas 2 (other) gases....While firing coal/solid fossil fuel, biomass/bio-based solids, heavy liquid fuel, or gas 2 (other) gases...
Mercury (Hg) is a toxic heavy metal that is found associated with fossil fuel deposits and that can be released to the atmosphere during fossil fuel combustion and/or processing. Hg emitted to the atmosphere can be deposited to aquatic and terrestrial ecosystems where it can be m...
Longanbach, J.R.
1981-11-13
A method is provided for combining coal as a colloidal suspension within a heavy petroleum fraction. The coal is broken to a medium particle size and is formed into a slurry with a heavy petroleum fraction such as a decanted oil having a boiling point of about 300 to 550/sup 0/C. The slurry is heated to a temperature of 400 to 500/sup 0/C for a limited time of only about 1 to 5 minutes before cooling to a temperature of less than 300/sup 0/C. During this limited contact time at elevated temperature the slurry can be contacted with hydrogen gas to promote conversion. The liquid phase containing dispersed coal solids is filtered from the residual solids and recovered for use as a fuel or feed stock for other processes. The residual solids containing some carbonaceous material are further processed to provide hydrogen gas and heat for use as required in this process.
Fan, Wen-Ling; Guo, Li-Wei; Lin, Ying; Shen, Jie; Cao, Gui-Ping; Zhu, Yun; Xu, Min; Yang, Lei
2013-10-01
The membrane enrichment process of traditional Chinese medicine volatile oil is environmental friendly and practical, with a good application prospect. In this article, oil-bearing solutions of eight traditional Chinese medicines, namely Caryophylli Flos, Schizonepetae Herba, Eupatorii Herb, Acori Talarinowii Rhizoma, Magnoliae Flos, Chrysanthemum indicum, Cyperi Rhizoma and Citri Reticulatae Pericarpium Viride, were taken as the experimental system. Under unified conditions (membrane: PVDF-14W, temperature: 40 degreeC, pressure: 0. 1 MPa, membrane surface speed: 150 r min- 1), trans-membrane was conducted for above eight oil-bearing solutions to explore the effect of their oil-bearing solution environment on system flux and oil recovery rate. The results showed that systems with smaller pH had a lower flux, without significant effect on oil recovery rate. Greater differences between the surface tension of solutions and that of pure water contributed to a lower oil recovery rate. The conductivity had no notable effect on membrane enrichment process. Systems with high turbidity had a lower flux, without remarkable effect on oil recovery rat. Heavy oils showed lower flux than light ones, but with a slightly higher oil recovery rat. Systems with higher viscosity had a lower flux than those with lower viscosity. Except for Magnoliae Flos volatile oil, all of the remaining volatile oils showed a much higher oil recovery rat than systems with high viscosity. The above results could provide data support and theoretical basis for the industrialization of membrane enrichment volatile oil technology.
NASA Astrophysics Data System (ADS)
Ciz, Radim; Saenger, Erik H.; Gurevich, Boris; Shapiro, Serge A.
2009-03-01
We develop a new model for elastic properties of rocks saturated with heavy oil. The heavy oil is represented by a viscoelastic material, which at low frequencies and/or high temperatures behaves as a Newtonian fluid, and at high frequencies and/or low temperatures as a nearly elastic solid. The bulk and shear moduli of a porous rock saturated with such viscoelastic material are then computed using approximate extended Gassmann equations of Ciz and Shapiro by replacing the elastic moduli of the pore filling material with complex and frequency-dependent moduli of the viscoelastic pore fill. We test the proposed model by comparing its predictions with numerical simulations based on a direct finite-difference solution of equations of dynamic viscoelasticity. The simulations are performed for the reflection coefficient from an interface between a homogeneous fluid and a porous medium. The numerical tests are performed both for an idealized porous medium consisting of alternating solid and viscoelastic layers, and for a more realistic 3-D geometry of the pore space. Both sets of numerical tests show a good agreement between the predictions of the proposed viscoelastic workflow and numerical simulations for relatively high viscosities where viscoelastic effects are important. The results confirm that application of extended Gassmann equations in conjunction with the complex and frequency-dependent moduli of viscoelastic pore filling material, such as heavy oil, provides a good approximation for the elastic moduli of rocks saturated with such material. By construction, this approximation is exactly consistent with the classical Gassmann's equation for sufficiently low frequencies or high temperature when heavy oil behaves like a fluid. For higher frequencies and/or lower temperatures, the predictions are in good agreement with the direct numerical solution of equations of dynamic viscoelasticity on the microscale. This demonstrates that the proposed methodology provides realistic estimates of elastic properties of heavy oil rocks.
Residency of rhenium and osmium in a heavy crude oil
NASA Astrophysics Data System (ADS)
DiMarzio, Jenna M.; Georgiev, Svetoslav V.; Stein, Holly J.; Hannah, Judith L.
2018-01-01
Rhenium-osmium (Re-Os) isotope geochemistry is an emerging tool for the study of oil formation and migration processes, and a new technology for petroleum exploration. Little is known, however, about the residency of Re and Os within asphaltene and maltene sub-fractions of crude oil. This information is crucial for understanding the 187Re-187Os radiometric clock held in petroleum systems and for interpreting geochronology for key processes such as oil formation, migration, and biodegradation. In this study, a heavy crude oil was separated into soluble (maltene, MALT) and insoluble (asphaltene, ASPH) fractions using n-heptane as the asphaltene-precipitating agent. The asphaltenes were separated sequentially into sub-fractions using two different solvent pairs (heptane-dichloromethane and acetone-toluene), and the bulk maltenes were separated into saturate, aromatic, and resin (SAR) fractions using open column chromatography. Each asphaltene and maltene sub-fraction was analyzed for Re and Os. The asphaltene sub-fractions and the bulk ASPH, MALT, and crude oil were analyzed for a suite of trace metals by ICP-MS. Our results show that Re and Os concentrations co-vary between the asphaltene sub-fractions, and that both elements are found mostly in the more polar and aromatic sub-fractions. Significant Re and Os are also present in the aromatic and resin fractions of the maltenes. However, each asphaltene and maltene sub-fraction has a distinct isotopic composition, and sub-fractions are not isochronous. This suggests that asphaltene sub-fractionation separates Re-Os complexes to the point where the isotopic integrity of the geochronometer is compromised. The mobility of individual Re and Os isotopes and the decoupling possibilities between radiogenic 187Os produced from 187Re remain elusive, but their recognition in this study is a critical first step. Re and Os correlate strongly with Mo and Cd in the asphaltene sub-fractions, suggesting that these metals occupy similar sites. Re-Os and Ni-V budgets also show some similarities, indicating that at least some Re (and possibly Os) could be present in metalloporphyrin form. We conclude that progressive asphaltene precipitation during migration and mixing of oils can change the isotopic ratios of the resultant oil. A sense of process is key to interpretation of Re-Os data for tar mats and live oils, whether isochronous or scattered datasets result. Optimally, by combining data from source rocks, oils, and asphaltenes generated along the migration pathway, we can construct temporal histories for whole petroleum systems.
Hydrothermal degradation of lignin: products analysis for phenol formaldehyde adhesive synthesis.
Yang, Sheng; Yuan, Tong-Qi; Li, Ming-Fei; Sun, Run-Cang
2015-01-01
Corncob lignin was treated with pressurized hot water in a cylindrical autoclave in current investigation. With the aim of investigating the effect of reaction temperature and retention time on the distribution of degradation products, the products were divided into five fractions including gas, volatile organic compounds, water-soluble oil, heavy oil, and solid residue. It was found that hydrothermal degradation of corncob lignin in pressurized hot water produced a large amount of phenolic compounds with lower molecular weight than the raw lignin. Some phenolic and benzene derivatives monomers such as vanillin, 2-methoxy-phenol, 2-ethyl-phenol, p-xylene, and 1, 3-dimethyl-benzene were also identified in the degradation products. The products were further analyzed by GC-MS, GPC, 2D-HSQC, and (31)P-NMR to investigate their suitability for partial incorporation into phenol formaldehyde adhesive as a substitution of phenol. The results indicated that the reaction temperature had more effect on the products distribution than the retention time. The optimal condition for heavy oil production appeared at 290 °C with retention time 0 min. The compounds of heavy oil had more active sites than the raw lignin, suggesting that the heavy oil obtained from hydrothermal degradation of lignin is a promising material for phenol formaldehyde adhesive synthesis. Copyright © 2014 Elsevier B.V. All rights reserved.
Al-Mailem, Dina M.; Eliyas, Mohamed; Radwan, Samir S.
2018-01-01
The aim of this study was to explore the heavy-metal resistance and hydrocarbonoclastic potential of microorganisms in a hypersaline soil. For this, hydrocarbonoclastic microorganisms were counted on a mineral medium with oil vapor as a sole carbon source in the presence of increasing concentrations of ZnSO4, HgCl2, CdSO4, PbNO3, CuSO4, and Na2HAsO4. The colony-forming units counted decreased in number from about 150 g-1 on the heavy-metal-free medium to zero units on media with 40–100 mg l-1 of HgCl2, CdSO4, PbNO3, or Na2HAsO4. On media with CuSO4 or ZnSO4 on the other hand, numbers increased first reaching maxima on media with 50 mg l-1 CuSO4 and 90 mg l-1 ZnSO4. Higher concentrations reduced the numbers, which however, still remained considerable. Pure microbial isolates in cultures tolerated 200–1600 mg l-1 of HgCl2, CdSO4, PbNO3, CuSO4, and Na2HAsO4 in the absence of crude oil. In the presence of oil vapor, the isolates tolerated much lower concentrations of the heavy metals, only 10–80 mg l-1. The addition of 10 Fe2(SO4)3 and 200 mg l-1 proline (by up to two- to threefold) enhanced the tolerance of several isolates to heavy metals, and consequently their potential for oil biodegradation in their presence. The results are useful in designing bioremediation technologies for oil spilled in hypersaline areas. PMID:29563904
Feasibility Process for Remediation of the Crude Oil Contaminated Soil
NASA Astrophysics Data System (ADS)
Keum, H.; Choi, H.; Heo, H.; Lee, S.; Kang, G.
2015-12-01
More than 600 oil wells were destroyed in Kuwait by Iraqi in 1991. During the war, over 300 oil lakes with depth of up to 2m at more than 500 different locations which has been over 49km2. Therefore, approximately 22 million m3was crude oil contaminated. As exposure of more than 20 years under atmospheric conditions of Kuwait, the crude oil has volatile hydrocarbons and covered heavy oily sludge under the crude oil lake. One of crude oil contaminated soil which located Burgan Oilfield area was collected by Kuwait Oil Company and got by H-plus Company. This contaminated soil has about 42% crude oil and could not biodegraded itself due to the extremely high toxicity. This contaminated soil was separated by 2mm sieve for removal oil sludge ball. Total petroleum hydrocarbons (TPH) was analysis by GC FID and initial TPH concentration was average 48,783 mg/kg. Ten grams of the contaminated soil replaced in two micro reactors with 20mL of bio surfactant produce microorganism. Reactor 1 was added 0.1g powder hemoglobin and other reactor was not added hemoglobin at time 0 day. Those reactors shake 120 rpm on the shaker for 7 days and CO2 produced about 150mg/L per day. After 7 days under the slurry systems, the rest days operated by hemoglobin as primary carbon source for enhanced biodegradation. The crude oil contaminated soil was degraded from 48,783mg/kg to 20,234mg/kg by slurry process and final TPH concentration degraded 11,324mg/kg for 21days. Therefore, highly contaminated soil by crude oil will be combined bio slurry process and biodegradation process with hemoglobin as bio catalytic source. Keywords: crude-oil contaminated soil, bio slurry, biodegradation, hemoglobin ACKOWLEDGEMENTS This project was supported by the Korea Ministry of Environment (MOE) GAIA Program
NASA Astrophysics Data System (ADS)
Chan, Ngo Yeung
This study is aimed at improving the current ultrasound assisted oxidative desulfurization (UAOD) process by utilizing superoxide radical as oxidant. Research was also conducted to investigate the feasibility of ultraviolet (UV) irradiation-assisted desulfurization. These modifications can enhance the process with the following achievements: (1) Meet the upcoming sulfur standards on various fuels including diesel fuel oils and residual oils; (2) More efficient oxidant with significantly lower consumption in accordance with stoichiometry; (3) Energy saving by 90%; (4) Greater selectivity in petroleum composition. Currently, the UAOD process and subsequent modifications developed in University of Southern California by Professor Yen's research group have demonstrated high desulfurization efficiencies towards various fuels with the application of 30% wt. hydrogen peroxide as oxidant. The UAOD process has demonstrated more than 50% desulfurization of refractory organic sulfur compounds with the use of Venturella type catalysts. Application of quaternary ammonium fluoride as phase transfer catalyst has significantly improved the desulfurization efficiency to 95%. Recent modifications incorporating ionic liquids have shown that the modified UAOD process can produce ultra-low sulfur, or near-zero sulfur diesels under mild conditions with 70°C and atmospheric pressure. Nevertheless, the UAOD process is considered not to be particularly efficient with respect to oxidant and energy consumption. Batch studies have demonstrated that the UAOD process requires 100 fold more oxidant than the stoichiometic requirement to achieve high desulfurization yield. The expected high costs of purchasing, shipping and storage of the oxidant would reduce the practicability of the process. The excess use of oxidant is not economically desirable, and it also causes environmental and safety issues. Post treatments would be necessary to stabilize the unspent oxidant residual to prevent the waste stream from becoming reactive or even explosive. High energy consumption is another drawback in the UAOD process. A typical 10 minutes ultrasonication applied in the UAOD process to achieve 95% desulfurization for 20g of diesel requires 450 kJ of energy, which is equivalent to approximately 50% of the energy that can be provided by the treated diesel. This great expenditure of energy is impractical for industries to adopt. In this study, modifications of the UAOD process, including the application of superoxide and selection of catalysts, were applied to lower the oxidant dosage and to improve the applicability towards heavy-distillates such as residual oil. The results demonstrated that the new system required 80% less oxidant as compared to previous generations of UAOD process without the loss of desulfurization efficiency. The new system demonstrated its suitability towards desulfurizing commercial mid-distillates including jet fuels, marine gas oil and sour diesel. This process also demonstrated a new method to desulfurize residual oil with high desulfurization yields. The new process development has been supported by Eco Energy Solutions Inc., Reno, Nevada and Intelligent Energy Inc., Long Beach, California. A feasibility study on UV assisted desulfurization by replacing ultrasound with UV irradiation was also conducted. The study demonstrated that the UV assisted desulfurization process consumes 90% less energy than the comparable process using ultrasonication. These process modifications demonstrated over 98% desulfurization efficiency on diesel oils and more than 75% on residual oils with significantly less oxidant and energy consumption. Also the feasibility to desulfurize commercial sour heavy oil was demonstrated. Based on the UAOD process and the commercialized modifications by Wan and Cheng, the feasible applications of superoxide and UV irradiation in the UAOD process could provide deep-desulfurization on various fuels with practical cost.
Researchers at the U.S. Environmental Protection Agency's (EPA's) Office of Research and
Development (ORD) have conducted a series of tests to characterize the size and composition of primary particulate matter (PM) generated from the combustion of heavy fuel oil and pulverize...
Clerget 100 hp heavy-oil engine
NASA Technical Reports Server (NTRS)
Leglise, Pierre
1931-01-01
A complete technical description of the Clerget heavy-oil engine is presented along with the general characteristics. The general characteristics are: 9 cylinders, bore 120 mm, stroke 130 mm, four-stroke cycle engine, rated power limited to 100 hp at 1800 rpm; weight 228 kg; propeller with direct drive and air cooling. Moving parts, engine block, and lubrication are all presented.
Triple-layer configuration for stable high-speed lubricated pipeline transport
NASA Astrophysics Data System (ADS)
Sarmadi, Parisa; Hormozi, Sarah; Frigaard, Ian A.
2017-04-01
Lubricated transport of heavy viscous oils is a popular technology in the pipelining industry, where pumping pressures can be reduced significantly by concentrating the strain rate in a lubricating layer. However, the interface between the lubricating layer and heavy oil is vulnerable to any perturbations in the system as well as transients due to start up, shut down, temperature change, etc. We present a method in which we purposefully position an unyielded skin of a viscoplastic fluid between the oil and the lubricating fluid. The objective is to reduce the frictional pressure gradient while avoiding interfacial instability. We study this methodology in both concentric and eccentric configurations and show its feasibility for a wide range of geometric and flow parameters found in oil pipelining. The eccentric configuration benefits the transport process via generating lift forces to balance the density differences among the layers. We use classical lubrication theory to estimate the leading order pressure distribution in the lubricating layer and calculate the net force on the skin. We explore the effects of skin shape, viscosity ratio, and geometry on the pressure drop, the flow rates of skin and lubricant fluids, and the net force on the skin. We show that the viscosity ratio and the radius of the core fluid are the main parameters that control the pressure drop and consumptions of outer fluids, respectively. The shape of the skin and the eccentricity mainly affect the lubrication pressure. These predictions are essential in designing a stable transport process. Finally, we estimate the yield stress required in order that the skin remain unyielded and ensure interfacial stability.
Using supercritical fluids to refine hydrocarbons
Yarbro, Stephen Lee
2014-11-25
This is a method to reactively refine hydrocarbons, such as heavy oils with API gravities of less than 20.degree. and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure using a selected fluid at supercritical conditions. The reaction portion of the method delivers lighter weight, more volatile hydrocarbons to an attached contacting device that operates in mixed subcritical or supercritical modes. This separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques. This method produces valuable products with fewer processing steps, lower costs, increased worker safety due to less processing and handling, allow greater opportunity for new oil field development and subsequent positive economic impact, reduce related carbon dioxide, and wastes typical with conventional refineries.
Life cycle water demand coefficients for crude oil production from five North American locations.
Ali, Babkir; Kumar, Amit
2017-10-15
The production of liquid fuels from crude oil requires water. There has been limited focus on the assessment of life cycle water demand footprints for crude oil production and refining. The overall aim of this paper is address this gap. The objective of this research is to develop water demand coefficients over the life cycle of fuels produced from crude oil pathways. Five crude oil fields were selected in the three North American countries to reflect the impact of different spatial locations and technologies on water demand. These include the Alaska North Slope, California's Kern County heavy oil, and Mars in the U.S.; Maya in Mexico; and Bow River heavy oil in Alberta, Canada. A boundary for an assessment of the life cycle water footprint was set to cover the unit operations related to exploration, drilling, extraction, and refining. The recovery technology used to extract crude oil is one of the key determining factors for water demand. The amount of produced water that is re-injected to recover the oil is essential in determining the amount of fresh water that will be required. During the complete life cycle of one barrel of conventional crude oil, 1.71-8.25 barrels of fresh water are consumed and 2.4-9.51 barrels of fresh water are withdrawn. The lowest coefficients are for Bow River heavy oil and the highest coefficients are for Maya crude oil. Of all the unit operations, exploration and drilling require the least fresh water (less than 0.015 barrel of water per barrel of oil produced). A sensitivity analysis was conducted and uncertainty in the estimates was determined. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, John Howard; Alvare, Javier
A reactor has two chambers, namely an oil feedstock chamber and a source chamber. An ion separator separates the oil feedstock chamber from the source chamber, wherein the ion separator allows alkali metal ions to pass from the source chamber, through the ion separator, and into the oil feedstock chamber. A cathode is at least partially housed within the oil feedstock chamber and an anode is at least partially housed within the source chamber. A quantity of an oil feedstock is within the oil feedstock chamber, the oil feedstock comprising at least one carbon atom and a heteroatom and/or onemore » or more heavy metals, the oil feedstock further comprising naphthenic acid. When the alkali metal ion enters the oil feedstock chamber, the alkali metal reacts with the heteroatom, the heavy metals and/or the naphthenic acid, wherein the reaction with the alkali metal forms inorganic products.« less
Alisi, Chiara; Musella, Rosario; Tasso, Flavia; Ubaldi, Carla; Manzo, Sonia; Cremisini, Carlo; Sprocati, Anna Rosa
2009-04-01
The aim of the work is to assess the feasibility of bioremediation of a soil, containing heavy metals and spiked with diesel oil (DO), through a bioaugmentation strategy based on the use of a microbial formula tailored with selected native strains. The soil originated from the metallurgic area of Bagnoli (Naples, Italy). The formula, named ENEA-LAM, combines ten bacterial strains selected for multiple resistance to heavy metals among the native microbial community. The biodegradation process of diesel oil was assessed in biometer flasks by monitoring the following parameters: DO composition by GC-MS, CO2 evolution rate, microbial load and composition of the community by T-RFLP, physiological profile in Biolog ECOplates and ecotoxicity of the system. The application of this microbial formula allowed to obtain, in the presence of heavy metals, the complete degradation of n-C(12-20), the total disappearance of phenantrene, a 60% reduction of isoprenoids and an overall reduction of about 75% of the total diesel hydrocarbons in 42 days. Concurrently with the increase of metabolic activity at community level and the microbial load, the gradual abatement of the ecotoxicity was observed. The T-RFLP analysis highlighted that most of the ENEA-LAM strains survived and some minor native strains, undetectable in the soil at the beginning of the experiment, developed. Such a bioaugmentation approach allows the newly established microbial community to strike a balance between the introduced and the naturally present microorganisms. The results indicate that the use of a tailored microbial formula may efficiently facilitate and speed up the bioremediation of matrices co-contaminated with hydrocarbons and heavy metals. The study represents the first step for the scale up of the system and should be verified at a larger scale. In this view, this bioaugmentation strategy may contribute to overcome a critical bottleneck of the bioremediation technology.
Dollhopf, Ralph H.; Fitzpatrick, Faith A.; Kimble, Jeffrey W.; Capone, Daniel M.; Graan, Thomas P.; Zelt, Ronald B.; Johnson, Rex
2014-01-01
The Enbridge Line 6B pipeline release of diluted bitumen into the Kalamazoo River downstream of Marshall, MI in July 2010 is one of the largest freshwater oil spills in North American history. The unprecedented scale of impact and massive quantity of oil released required the development and implementation of new approaches for detection and recovery. At the onset of cleanup, conventional recovery techniques were employed for the initially floating oil and were successful. However, volatilization of the lighter diluent, along with mixing of the oil with sediment during flooded, turbulent river conditions caused the oil to sink and collect in natural deposition areas in the river. For more than three years after the spill, recovery of submerged oil has remained the predominant operational focus of the response. The recovery complexities for submerged oil mixed with sediment in depositional areas and long-term oil sheening along approximately 38 miles of the Kalamazoo River led to the development of a multiple-lines-of-evidence approach comprising six major components: geomorphic mapping, field assessments of submerged oil (poling), systematic tracking and mapping of oil sheen, hydrodynamic and sediment transport modeling, forensic oil chemistry, and net environmental benefit analysis. The Federal On-Scene Coordinator (FOSC) considered this information in determining the appropriate course of action for each impacted segment of the river. New sources of heavy crude oils like diluted bitumen and increasing transportation of those oils require changes in the way emergency personnel respond to oil spills in the Great Lakes and other freshwater ecosystems. Strategies to recover heavy oils must consider that the oils may suspend or sink in the water column, mix with fine-grained sediment, and accumulate in depositional areas. Early understanding of the potential fate and behavior of diluted bitumen spills when combined with timely, strong conventional recovery methods can significantly influence response success.
Hedayatipour, Mostafa; Jaafarzadeh, Neemat; Ahmadmoazzam, Mehdi
2017-12-01
Oil and gas well drilling industries discharge large volumes of contaminated wastewater produced during oil and gas exploration process. In this study, the effect of different operational variables, including temperature, pH and transmembrane pressure on process performance of a commercially available nanofiltration membrane (JCM-1812-50N, USA) for removing Ba, Ni, Cr, NaCl and TDS from produced wastewater by dewatering unit of an oil and gas well drilling industry was evaluated. In optimum experimental conditions (T = 25 °C, P = 170 psi and pH = 4) resulted from Thaguchi method, 85.3, 77.4, 58.5, 79.6 and 56.3% removal efficiencies were achieved for Ba, Ni, Cr, NaCl and TDS, respectively. Also, results from a comparison of the Schuller and Wilcox diagrams revealed that the effluent of the membrane system is usable for drinking water, irrigating and agriculture purposes. Moreover, the process effluent quality showed a scaling feature, according to Langelier saturation index and illustrated that the necessary proceedings should be taken to prevent scaling for industrial application. The nanofiltration membrane process with an acceptable recovery rate of 47.17% represented a good performance in the wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bai, Lingyun; Li, Chunyan; Korte, Caroline; Huibers, Britta M. J.; Pales, Ashley R.; Liang, Wei-zhen; Ladner, David; Daigle, Hugh; Darnault, Christophe J. G.
2017-11-01
Any efficient exploitation of new petroleum reservoirs necessitates developing methods to mobilize the crude oils from such reservoirs. Here silicon dioxide nanoparticles (SiO2 NPs) were used to improve the efficiency of the chemical-enhanced oil recovery process that uses surfactant flooding. Specifically, SiO2 NPs (i.e., 0, 0.001, 0.005, 0.01, 0.05, and 0.1 wt%) and Tween®20, a nonionic surfactant, at 0, 0.5, and 2 critical micelle concentration (CMC) were varied to determine their effect on the stability of nanofluids and the interfacial tension (IFT) at the oil-aqueous interface for 5 wt% brine-surfactant-SiO2 nanofluid-oil systems for West Texas Intermediate light crude oil, Prudhoe Bay medium crude oil, and Lloydminster heavy crude oil. Our study demonstrates that SiO2 NPs may either decrease, increase the IFT of the brine-surfactant-oil systems, or exhibit no effects at all. For the brine-surfactant-oil systems, the constituents of the oil and aqueous substances affected the IFT behavior, with the nanoparticles causing a contrast in IFT trends according to the type of crude oil. For the light oil system (0.5 and 2 CMC Tween®20), the IFT increased as a function of SiO2 NP concentration, while a threshold concentration of SiO2 NPs was observed for the medium (0.5 and 2 CMC Tween®20) and heavy (2 CMC Tween®20) oil systems in terms of IFT trends. Concentrations below the SiO2 NP threshold concentration resulted in a decrease in IFT, and concentrations above this threshold resulted in an increase in IFT. The IFT decreased until the NP concentration reached a threshold concentration where synergetic effects between nonionic surfactants and SiO2 NPs are the opposite and result in antagonistic effects. Adsorption of both SiO2 NPs and surfactants at an interface caused a synergistic effect and an increased reduction in IFT. The effectiveness of the brine-surfactant-SiO2 nanofluids in decreasing the IFT between the oil-aqueous phase for the three tested crude oils were ranked as follows: (1) Prudhoe Bay > (2) Lloydminster > and (3) West Texas Intermediate. The level of asphaltenes and resins in these crude oil samples reflected these rankings. A decrease in the IFT also indicated the potential of the SiO2 NPs to decrease capillary pressure and induce the movement and recovery of oil in original water-wet reservoirs. Conversely, an increase in IFT indicated the potential of SiO2 NPs to increase capillary pressure and oil recovery in reservoirs subject to wettability reversal under water-wet conditions. Raspberry-like morphology particles were discovered in 5 wt% brine-surfactant-SiO2 nanofluid-oil systems. The development of raspberry-like particles material with high surface area, high salt stability, and high capability of interfaces alteration and therefore wettability changes offers a wide range of applications in the fields of applied nanoscience, environmental engineering, and petroleum engineering.
Portable brine evaporator unit, process, and system
Hart, Paul John; Miller, Bruce G.; Wincek, Ronald T.; Decker, Glenn E.; Johnson, David K.
2009-04-07
The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.
Numerical simulation of the SAGD process coupled with geomechanical behavior
NASA Astrophysics Data System (ADS)
Li, Pingke
Canada has vast oil sand resources. While a large portion of this resource can be recovered by surface mining techniques, a majority is located at depths requiring the application of in situ recovery technologies. Although a number of in situ recovery technologies exist, the steam assisted gravity drainage (SAGD) process has emerged as one of the most promising technologies to develop the in situ oil sands resources. During the SAGD operations, saturated steam is continuously injected into the oil sands reservoir, which induces pore pressure and stress variations. As a result, reservoir parameters and processes may also vary, particularly when tensile and shear failure occur. This geomechanical effect is obvious for oil sands material because oil sands have the in situ interlocked fabric. The conventional reservoir simulation generally does not take this coupled mechanism into consideration. Therefore, this research is to improve the reservoir simulation techniques of the SAGD process applied in the development of oil sands and heavy oil reservoirs. The analyses of the decoupled reservoir geomechanical simulation results show that the geomechanical behavior in SAGD has obvious impact on reservoir parameters, such as absolute permeability. The issues with the coupled reservoir geomechanical simulations of the SAGD process have been clarified and the permeability variations due to geomechanical behaviors in the SAGD process investigated. A methodology of sequentially coupled reservoir geomechanical simulation technique was developed based on the reservoir simulator, EXOTHERM, and the geomechanical simulator, FLAC. In addition, a representative geomechanical model of oil sands material was summarized in this research. Finally, this reservoir geomechanical simulation methodology was verified with the UTF Phase A SAGD project and applied in a SAGD operation with gas-over-bitumen geometry. Based on this methodology, the geomechanical effect on the SAGD production performance can be quantified. This research program involves the analyses of laboratory testing results obtained from literatures. However, no laboratory testing was conducted in the process of this research.
Remedial processing of oil shale fly ash (OSFA) and its value-added conversion into glass-ceramics.
Zhang, Zhikun; Zhang, Lei; Li, Aimin
2015-12-01
Recently, various solid wastes such as sewage sludge, coal fly ash and slag have been recycled into various products such as sintered bricks, ceramics and cement concrete. Application of these recycling approaches is much better and greener than conventional landfills since it can solve the problems of storage of industrial wastes and reduce exploration of natural resources for construction materials to protect the environment. Therefore, in this study, an attempt was made to recycle oil shale fly ash (OSFA), a by-product obtained from the extracting of shale oil in the oil shale industry, into a value-added glass-ceramic material via melting and sintering method. The influence of basicity (CaO/SiO2 ratio) by adding calcium oxide on the performance of glass-ceramics was studied in terms of phase transformation, mechanical properties, chemical resistances and heavy metals leaching tests. Crystallization kinetics results showed that the increase of basicity reduced the activation energies of crystallization but did not change the crystallization mechanism. When increasing the basicity from 0.2 to 0.5, the densification of sintering body was enhanced due to the promotion of viscous flow of glass powders, and therefore the compression strength and bending strength of glass-ceramics were increased. Heavy metals leaching results indicated that the produced OSFA-based glass-ceramics could be taken as non-hazardous materials. The maximum mechanical properties of compression strength of 186 ± 3 MPa, bending strength of 78 ± 6 MPa, good chemical resistances and low heavy metals leaching concentrations showed that it could be used as a substitute material for construction applications. The proposed approach will be one of the potential sustainable solutions in reducing the storage of oil shale fly ash as well as converting it into a value-added product. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerin, M.R.; Griest, W.H.; Ho, C.H.
1986-06-01
Research here on the toxicological properties of coal-derived liquids focuses on characterizing the refining process and refined products. Principle attention is given to the potential tumorigenicity of coal-derived fuels and to the identification of means to further reduce tumorigenicity should this be found necessary. Hydrotreatment is studied most extensively because it will be almost certainly required to produce commercial products and because it is likely to also greatly reduce tumorigenic activity relative to that of crude coal-liquid feedstocks. This report presents the results of a lifetime C3H mouse skin tumorigenicity assay of an H-Coal series of oils and considers themore » relationships between tumorigenicity, chemistry, and processing. Lifetime assay results are reported for an H-Coal syncrude mode light oil/heavy oil blend, a low severity hydrotreatment product, a high severity hydrotreatment product, a naphtha reformate, a heating oil, a petroleum-derived reformate, and a petroleum derived heating oil. Data are compared with those for an earlier study of an SRC-II blend and products of its hydrotreatment. Adequate data are presented to allow an independent qualitative assessment of the conclusions while statistical evaluation of the data is being completed. The report also documents the physical and chemical properties of the oils tested. 33 refs., 14 figs., 53 tabs.« less
Pyrolysis characteristics and kinetics of oil-based drilling cuttings in shale gas developing
NASA Astrophysics Data System (ADS)
Huang, Chuan; Li, Tong; Xu, Tengtun; Zeng, Yunmin; Song, Xue
2018-03-01
In this paper, the thermal behavior of waste oil-based drilling cuttings (from shale gas fields in Chongqing) was examined at different heating rates ranging from 5 to 15 °C min-1 in inert atmosphere using a sync analyzer of thermogravimetry (TG) and differential scanning calorimetry (DSC). Four methods were used to analyze the distributions and variations of kinetics parameter (active energy (E) and frequency gene (A)): Coats-Redfern and other three iso-conversion rate methods (Flynn-Wall-Ozawa, Vyazovkin and Friedman). The experimental results indicated that the process consists of three steps, i.e., water evaporation, volatilization of light oil component and heavy oil cracking. TG curves moved toward higher temperature zone caused by thermal hysteresis with the increase of temperature rising rate. For volatilization of lightweight components, the E calculated by three iso-conversion rate methods changed a little with conversion, and had almost the same results as the CR method (14.39˜20.08 kJ.mol-1). For reactions of heavy oil cracking with mixed mechanism, corresponding E rose gradually with the increase of reaction time. The CR method shows nonlinear trends and the reaction models and kinetic parameters cannot be extracted from CR curves. The results by three iso-conversion methods showed that apparent activation energy was given as 155.74˜561.10 kJ.mol-1, 141.06˜524.96 kJ.mol-1 and 74.37˜605.10 kJ.mol-1, respectively.
Technical product bulletin: this hydrocarbon solvent based dispersant used in oil spill cleanups can be sprayed neat on the oil slick in atomized form. Effective with crude and residual heavy oil, and also at controlling volatile emissions.
Degradation and resilience in Louisiana salt marshes after the BP–Deepwater Horizon oil spill
Silliman, Brian R.; van de Koppel, Johan; McCoy, Michael W.; Diller, Jessica; Kasozi, Gabriel N.; Earl, Kamala; Adams, Peter N.; Zimmerman, Andrew R.
2012-01-01
More than 2 y have passed since the BP–Deepwater Horizon oil spill in the Gulf of Mexico, yet we still have little understanding of its ecological impacts. Examining effects of this oil spill will generate much-needed insight into how shoreline habitats and the valuable ecological services they provide (e.g., shoreline protection) are affected by and recover from large-scale disturbance. Here we report on not only rapid salt-marsh recovery (high resilience) but also permanent marsh area loss after the BP–Deepwater Horizon oil spill. Field observations, experimental manipulations, and wave-propagation modeling reveal that (i) oil coverage was primarily concentrated on the seaward edge of marshes; (ii) there were thresholds of oil coverage that were associated with severity of salt-marsh damage, with heavy oiling leading to plant mortality; (iii) oil-driven plant death on the edges of these marshes more than doubled rates of shoreline erosion, further driving marsh platform loss that is likely to be permanent; and (iv) after 18 mo, marsh grasses have largely recovered into previously oiled, noneroded areas, and the elevated shoreline retreat rates observed at oiled sites have decreased to levels at reference marsh sites. This paper highlights that heavy oil coverage on the shorelines of Louisiana marshes, already experiencing elevated retreat because of intense human activities, induced a geomorphic feedback that amplified this erosion and thereby set limits to the recovery of otherwise resilient vegetation. It thus warns of the enhanced vulnerability of already degraded marshes to heavy oil coverage and provides a clear example of how multiple human-induced stressors can interact to hasten ecosystem decline. PMID:22733752
Recent development in the treatment of oily sludge from petroleum industry: a review.
Hu, Guangji; Li, Jianbing; Zeng, Guangming
2013-10-15
Oily sludge is one of the most significant solid wastes generated in the petroleum industry. It is a complex emulsion of various petroleum hydrocarbons (PHCs), water, heavy metals, and solid particles. Due to its hazardous nature and increased generation quantities around the world, the effective treatment of oily sludge has attracted widespread attention. In this review, the origin, characteristics, and environmental impacts of oily sludge were introduced. Many methods have been investigated for dealing with PHCs in oily sludge either through oil recovery or sludge disposal, but little attention has been paid to handle its various heavy metals. These methods were discussed by dividing them into oil recovery and sludge disposal approaches. It was recognized that no single specific process can be considered as a panacea since each method is associated with different advantages and limitations. Future efforts should focus on the improvement of current technologies and the combination of oil recovery with sludge disposal in order to comply with both resource reuse recommendations and environmental regulations. The comprehensive examination of oily sludge treatment methods will help researchers and practitioners to have a good understanding of both recent developments and future research directions. Copyright © 2013 Elsevier B.V. All rights reserved.
Geothermal and heavy-oil resources in Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seni, S.J.; Walter, T.G.
1994-01-01
In a five-county area of South Texas, geopressured-geothermal reservoirs in the Paleocene-Eocene Wilcox Group lie below medium- to heavy-oil reservoirs in the Eocene Jackson Group. This fortuitous association suggests the use of geothermal fluids for thermally enhanced oil recovery (TEOR). Geothermal fairways are formed where thick deltaic sandstones are compartmentalized by growth faults. Wilcox geothermal reservoirs in South Texas are present at depths of 11,000 to 15,000 ft (3,350 to 4,570 m) in laterally continuous sandstones 100 to 200 ft (30 to 60 m) thick. Permeability is generally low (typically 1 md), porosity ranges from 12 to 24 percent, andmore » temperature exceeds 250{degrees}F (121{degrees}C). Reservoirs containing medium (20{degrees} to 25{degrees} API gravity) to heavy (10{degrees} to 20{degrees} API gravity) oil are concentrated along the Texas Coastal Plain in the Jackson-Yegua Barrier/Strandplain (Mirando Trend), Cap Rock, and Piercement Salt Dome plays and in the East Texas Basin in Woodbine Fluvial/Deltaic Strandplain and Paluxy Fault Line plays. Injection of hot, moderately fresh to saline brines will improve oil recovery by lowering viscosity and decreasing residual oil saturation. Smectite clay matrix could swell and clog pore throats if injected waters have low salinity. The high temperature of injected fluids will collapse some of the interlayer clays, thus increasing porosity and permeability. Reservoir heterogeneity resulting from facies variation and diagenesis must be considered when siting production and injection wells within the heavy-oil reservoir. The ability of abandoned gas wells to produce sufficient volumes of hot water over the long term will also affect the economics of TEOR.« less
Heavy metal absorbing Thioether-functionalized ligands derived from vegetable oils
USDA-ARS?s Scientific Manuscript database
Sulfur-functionalized vegetable oils containing thioether groups have been shown to effectively remove Ag+ from aqueous solution. Interestingly, the absorption capacity differs depending upon the choice of which vegetable oil precursor is functionalized. In this study, we will provide data for oils ...
Design and Implementation of a Coastal-Mounted Sensor for Oil Film Detection on Seawater
Hou, Yongchao; Li, Ying; Liu, Yu; Wang, Tong
2017-01-01
The routine surveillance of oil spills in major ports is important. However, existing techniques and sensors are unable to trace oil and micron-thin oil films on the surface of seawater. Therefore, we designed and studied a coastal-mounted sensor, using ultraviolet-induced fluorescence and fluorescence-filter systems (FFSs), to monitor oil spills and overcome the disadvantages of traditional surveillance systems. Using seawater from the port of Lingshui (Yellow Sea, China) and six oil samples of different types, we found that diesel oil’s relative fluorescence intensity (RFI) was significantly higher than those of heavy fuel and crude oils in the 180–300 nm range—in the 300–400 nm range, the RFI value of diesel is far lower. The heavy fuel and crude oils exhibited an opposite trend in their fluorescence spectra. A photomultiplier tube, employed as the fluorescence detection unit, efficiently monitored different oils on seawater in field experiments. On-site tests indicated that this sensor system could be used as a coastal-mounted early-warning detection system for oil spills. PMID:29283412
Decomposition of PCBs in transformer oil using an electron beam accelerator
NASA Astrophysics Data System (ADS)
Jung, In-Ha; Lee, Myun-Joo; Mah, Yoon-Jung
2012-07-01
Decomposition of PCBs in commercially used transformer oil used for more than 30 years has been carried out at normal temperature and pressure without any additives using an electron beam accelerator. The experiments were carried out in two ways: batch and continuous pilot plant with 1.5 MeV of energy, a 50 mA current, and 75 kW of power in a commercial scale accelerator. The electron beam irradiation seemed to transform large molecular weight compounds into lower ones, but the impact was considered too small on the physical properties of oil. Residual concentrations of PCBs after irradiation depend on the absorption dose of the electron beam energy, but aliphatic chloride compounds were produced at higher doses of irradiation. As the results from FT-NMR, chloride ions decomposed from the PCBs are likely to react with aliphatic hydro carbon compounds rather than existing as free radical ions in the transformer oil. Since this is a dry process, treated oil can be used as cutting oil or machine oil for heavy equipment without any additional treatments.
Composition and Properties of Deposits Formed on the Internal Surface of Oil Pipelines
NASA Astrophysics Data System (ADS)
Gulieva, N. K.; Mustafaev, I. I.; Sabzaliev, A. A.; Garibov, R. G.
2018-03-01
The composition and physicochemical properties of oil deposits formed in pipelines during the transport of oil from Azerbaijani fields were studied by atomic absorption, chromatography-mass spectrometry, gamma spectrometry, and scanning electron microscopy methods. Up to 20% of the deposits were shown to be composed of paraffins, tars, and other heavy oil fractions, while asphaltenes and mechanical impurities (iron, sulfur, manganese, calcium, and silicon compounds) comprise about 80%. The contents of polycyclic aromatic hydrocarbons and radionuclides are within permissible levels, while the content of some heavy metals exceeds the permissible level by a factor of 1000. These data should be used in the management of waste products in petroleum pipelines.
Joppert, Ney; da Silva, Alexsandro Araujo; da Costa Marques, Mônica Regina
2015-02-01
Factorial Design Methodology (FDM) was developed to enhance diesel fuel fraction (C9-C23) from waste high-density polyethylene (HDPE) and Heavy Gas Oil (HGO) through co-pyrolysis. FDM was used for optimization of the following reaction parameters: temperature, catalyst and HDPE amounts. The HGO amount was constant (2.00 g) in all experiments. The model optimum conditions were determined to be temperature of 550 °C, HDPE = 0.20 g and no FCC catalyst. Under such conditions, 94% of pyrolytic oil was recovered, of which diesel fuel fraction was 93% (87% diesel fuel fraction yield), no residue was produced and 6% of noncondensable gaseous/volatile fraction was obtained. Seeking to reduce the cost due to high process temperatures, the impact of using higher catalyst content (25%) with a lower temperature (500 °C) was investigated. Under these conditions, 88% of pyrolytic oil was recovered (diesel fuel fraction yield was also 87%) as well as 12% of the noncondensable gaseous/volatile fraction. No waste was produced in these conditions, being an environmentally friendly approach for recycling the waste plastic. This paper demonstrated the usefulness of using FDM to predict and to optimize diesel fuel fraction yield with a great reduction in the number of experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vásquez, Valeria; Báez, María E; Bravo, Manuel; Fuentes, Edwar
2013-09-01
Seven heavy polycyclic aromatic hydrocarbons (PAHs) of concern on the US Environmental Protection Agency priority pollutant list (benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene, and indeno[1,2,3-c,d]-pyrene) were simultaneously analyzed in extra virgin olive oil. The analysis is based on the measurement of excitation-emission matrices on nylon membrane and processing of data using unfolded partial least-squares regression with residual bilinearization (U-PLS/RBL). The conditions needed to retain the PAHs present in the oil matrix on the nylon membrane were evaluated. The limit of detection for the proposed method ranged from 0.29 to 1.0 μg kg(-1), with recoveries between 64 and 78 %. The predicted U-PLS/RBL concentrations compared favorably with those measured using high-performance liquid chromatography with fluorescence detection. The proposed method was applied to ten samples of edible oil, two of which presented PAHs ranging from 0.35 to 0.63 μg kg(-1). The principal advantages of the proposed analytical method are that it provides a significant reduction in time and solvent consumption with a similar limit of detection as compared with chromatography.
Brandt, Regine; Merkl, Nicole; Schultze-Kraft, Rainer; Infante, Carmen; Broll, Gabriele
2006-01-01
Venezuela is one of the largest oil producers in the world. For the rehabilitation of oil-contaminated sites, phytoremediation represents a promising technology whereby plants are used to enhance biodegradation processes in soil. A greenhouse study was conducted to determine the tolerance of vetiver (Vetiveria zizanioides (L.) Nash) to a Venezuelan heavy crude oil in soil. Additionally, the plant's potential for stimulating the biodegradation processes of petroleum hydrocarbons was tested under the application of two fertilizer levels. In the presence of contaminants, biomass and plant height were significantly reduced. As for fertilization, the lower fertilizer level led to higher biomass production. The specific root surface area was reduced under the effects of petroleum. However, vetiver was found to tolerate crude-oil contamination in a concentration of 5% (w/w). Concerning total oil and grease content in soil, no significant decrease under the influence of vetiver was detected when compared to the unplanted control. Thus, there was no evidence of vetiver enhancing the biodegradation of crude oil in soil under the conditions of this trial. However, uses of vetiver grass in relation to petroleum-contaminated soils are promising for amelioration of slightly polluted sites, to allow other species to get established and for erosion control.
Laser-structured Janus wire mesh for efficient oil-water separation.
Liu, Yu-Qing; Han, Dong-Dong; Jiao, Zhi-Zhen; Liu, Yan; Jiang, Hao-Bo; Wu, Xuan-Hang; Ding, Hong; Zhang, Yong-Lai; Sun, Hong-Bo
2017-11-23
We report here the fabrication of a Janus wire mesh by a combined process of laser structuring and fluorosilane/graphene oxide (GO) modification of the two sides of the mesh, respectively, toward its applications in efficient oil/water separation. Femtosecond laser processing has been employed to make different laser-induced periodic surface structures (LIPSS) on each side of the mesh. Surface modification with fluorosilane on one side and GO on the other side endows the two sides of the Janus mesh with distinct wettability. Thus, one side is superhydrophobic and superoleophilic in air, and the other side is superhydrophilic in air and superoleophobic under water. As a proof of concept, we demonstrated the separation of light/heavy oil and water mixtures using this Janus mesh. To realize an efficient separation, the intrusion pressure that is dominated by the wire mesh framework and the wettability should be taken into account. Our strategy may open up a new way to design and fabricate Janus structures with distinct wettability; and the resultant Janus mesh may find broad applications in the separation of oil contaminants from water.
Impact of heavy metals on the oil products biodegradation process.
Zukauskaite, Audrone; Jakubauskaite, Viktorija; Belous, Olga; Ambrazaitiene, Dalia; Stasiskiene, Zaneta
2008-12-01
Oil products continue to be used as a principal source of energy. Wide-scale production, transport, global use and disposal of petroleum have made them major contaminants in prevalence and quantity in the environment. In accidental spills, actions are taken to remove or remediate or recover the contaminants immediately, especially if they occur in environmentally sensitive areas, for example, in coastal zones. Traditional methods to cope with oil spills are confined to physical containment. Biological methods can have an advantage over the physical-chemical treatment regimes in removing spills in situ as they offer biodegradation of oil fractions by the micro-organisms. Recently, biological methods have been known to play a significant role in bioremediation of oil-polluted coastal areas. Such systems are likely to be of significance in the effective management of sensitive coastal ecosystems chronically subjected to oil spillage. For this reason the aim of this paper is to present an impact of Mn, Cu, Co and Mo quantities on oil biodegradation effectiveness in coastal soil and to determine the relationship between metal concentrations and degradation of two oil products (black oil and diesel fuel). Soil was collected in the Baltic Sea coastal zone oil products degradation area (Klaipeda, Lithuania). The experiment consisted of two parts: study on the influence of micro-elements on the oil product biodegradation process; and analysis of the influence of metal concentration on the number of HDMs. The analysis performed and results obtained address the following areas: impact of metal on a population of hydrocarbon degrading micro-organisms, impact of metals on residual concentrations of oil products, influence of metals on the growth of micro-organisms, inter-relation of metal concentrations with degradation rates. Statistical analysis was made using ;Statgraphics plus' software. The influence of metals on the growth of micro-organisms, the biodegradation process rate and the oil product concentrations were evaluated with analysis of variance. The impact has been investigated separately and synergetically.
Aviation Turbine Fuels from Tar Sands Bitumen and Heavy Oils. Part 1. Process Analysis.
1984-09-01
Uinta Basin .......................too.... 11 b . Asphalt Ridge ........................ 13 c.* Tar Sand Triangle ..... to .. .. . .. .. . 15 e...Estimated ............**..* 7 3 CHARACTERISTICS OF UTAH’S MAJOR TAR SANDS ....... 12 4 UINTA BASIN DEPOSITS ................... *........ 13 *.5 UINTA ...7 UINTA BASIN , UTAH PROPERTIES -SUNNYSIDE ........ 20 8 UINTA BASIN , UTAH PROPERTIES -P. R. SPRINGS . 22 r9 ESTIMATED CALIFORNIA TAR SAND DISTRIBUTION
Effects-driven chemical fractionation of heavy fuel oil to isolate compounds toxic to trout embryos.
Bornstein, Jason M; Adams, Julie; Hollebone, Bruce; King, Thomas; Hodson, Peter V; Brown, R Stephen
2014-04-01
Heavy fuel oil (HFO) spills account for approximately 60% of ship-source oil spills and are up to 50 times more toxic than medium and light crude oils. Heavy fuel oils contain elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and alkyl-PAHs, known to be toxic to fish; however, little direct characterization of HFO toxicity has been reported. An effects-driven chemical fractionation was conducted on HFO 7102 to separate compounds with similar chemical and physical properties, including toxicity, to isolate the groups of compounds most toxic to trout embryos. After each separation, toxicity tests directed the next phase of fractionation, and gas chromatography-mass spectrometry analysis correlated composition with toxicity, with a focus on PAHs. Low-temperature vacuum distillation permitted the separation of HFO into 3 fractions based on boiling point ranges. The most toxic of these fractions underwent wax precipitation to remove long-chain n-alkanes. The remaining PAH-rich extract was further separated using open column chromatography, which provided distinct fractions that were grouped according to increasing aromatic ring count. The most toxic of these fractions was richest in PAHs and alkyl-PAHs. The results of the present study were consistent with previous crude oil studies that identified PAH-rich fractions as the most toxic. © 2013 SETAC.
NASA Astrophysics Data System (ADS)
Wang, Guan; Wang, Rui; Fu, Yaxiu; Duan, Lisha; Yuan, Xizhi; Zheng, Ya; Wang, Ai; Huo, Ran; Su, Na
2018-06-01
Mengulin sandstone reservoir in Huabei oilfield is low- temperature heavy oil reservoir. Recently, it is at later stage of waterflooding development. The producing degree of water flooding is poor, and it is difficult to keep yield stable. To improve oilfield development effect, according to the characteristics of reservoir geology, microbial enhanced oil recovery to improve oil displacement efficiency is researched. 2 microbial strains suitable for the reservoir conditions were screened indoor. The growth characteristics of strains, compatibility and function mechanism with crude oil were studied. Results show that the screened strains have very strong ability to utilize petroleum hydrocarbon to grow and metabolize, can achieve the purpose of reducing oil viscosity, and can also produce biological molecules with high surface activity to reduce the oil-water interfacial tension. 9 oil wells had been chosen to carry on the pilot test of microbial stimulation, of which 7 wells became effective with better experiment results. The measures effective rate is 77.8%, the increased oil is 1,093.5 tons and the valid is up to 190 days.
Shi, Wen; Gao, Yahui; Yang, Guohui; Zhao, Yaping
2013-08-07
An ultrasonic pretreatment method was developed to enhance the yield of bio-oil obtained from the liquefaction of cornstalks in hot-compressed water at different reaction temperatures (260-340 °C) and residence times (0-40 min). Influences of ultrasonic pretreatment on the physicochemical properties of cornstalks and bio-oil yields were investigated. The results show that ultrasonic pretreatment obviously increases surface areas of cornstalks, decreases crystallinities, and erodes the structures of lignin, leading to more exposure of cellulose and hemicellulose. The yield of bio-oil was increased remarkably by 10.1% for 40 min sonicated cornstalks under the optimum liquefied conditions (300 °C for 0 min of residence time). Carbon balance indicates that ultrasonic pretreatment increases the carbon conversion of cornstalks to heavy oil and water-soluble oil. Energy balance indicates that the sonicated cornstalks have positive energy efficiencies. GC-MS analyses demonstrate ultrasonic pretreatment increases the contents of the phenols in heavy oil and water-soluble oil.
Rincón, Guillermo J; La Motta, Enrique J
2014-11-01
US and international regulations pertaining to the control of bilge water discharges from ships have concentrated their attention to the levels of oil and grease rather than to the heavy metal concentrations. The consensus is that any discharge of bilge water (and oily water emulsion within 12 nautical miles from the nearest land cannot exceed 15 parts per million (ppm). Since there is no specific regulation for metal pollutants under the bilge water section, reference standards regulating heavy metal concentrations are taken from the ambient water quality criteria to protect aquatic life. The research herein presented discusses electro-coagulation (EC) as a method to treat bilge water, with a focus on oily emulsions and heavy metals (copper, nickel and zinc) removal efficiency. Experiments were run using a continuous flow reactor, manufactured by Ecolotron, Inc., and a synthetic emulsion as artificial bilge water. The synthetic emulsion contained 5000 mg/L of oil and grease, 5 mg/L of copper, 1.5 mg/L of nickel, and 2.5 mg/l of zinc. The experimental results demonstrate that EC is very efficient in removing oil and grease. For oil and grease removal, the best treatment and cost efficiency was obtained when using a combination of carbon steel and aluminum electrodes, at a detention time less than one minute, a flow rate of 1 L/min and 0.6 A/cm(2) of current density. The final effluent oil and grease concentration, before filtration, was always less than 10 mg/L. For heavy metal removal, the combination of aluminum and carbon steel electrodes, flow rate of 1 L/min, effluent recycling, and 7.5 amps produced 99% zinc removal efficiency. Copper and nickel are harder to remove, and a removal efficiency of 70% was achieved. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mazumder, B; Devi, Sasmita Rani
2008-07-01
Aluminum smelter plants employ Hall-Heroult electrolysis cells for electrolysis of molten cryolite to recover aluminum metal by electrolysis. These cells use carbon cathode blocks as a lining material inside. At the end of service life of the cells, pot lines are discarded and new carbon blocks are laid for fresh charging. These used carbon cathode blocks, known as spent pot liners, are heavily infested with toxic elements such as fluoride, cyanide, alkali, etc. Therefore, their disposal in open field poses great environmental risk. A simple process has been developed for decontamination of these spent pot liners and to recover its carbon value. The experiments indicated that this carbon, in the form of fine powder (around 20 micron in size) can absorb toxic elements like heavy metals, dyes, oils, etc. to a great extent and thus can be used for mitigating environmental pollution occuring due to various toxic wastes.
Problems in processing Rheinische Braunkohle (soft coal) (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Hartmann, G.B.
At Wesseling, difficulties were encountered with the hydrogenation of Rhine brown coal. The hydrogenation reaction was proceeding too rapidly at 600 atm pressure under relatively low temperature and throughput conditions. This caused a build-up of ''caviar'' deposits containing ash and asphalts. This flocculation of asphalt seemed to arise because the rapid reaction produced a liquid medium unable to hold the heavy asphalt particles in suspension. A stronger paraffinic character of the oil was also a result. To obtain practical, problem-free yields, throughput had to be increased (from .4 kg/liter/hr to more than .5), and temperature had to be increased (frommore » 24.0 MV to 24,8 MV). Further, a considerable increase in sludge recycling was recommended. The Wesseling plant was unable to increase the temperature and throughput. However, more sludge was recycled, producing a paste better able to hold higher-molecular-weight particles in suspension. If this were not to solve the ''caviar'' deposit problems, further recommendations were suggested including addition of more heavy oil.« less
Investigation of foam flow in a 3D printed porous medium in the presence of oil.
Osei-Bonsu, Kofi; Grassia, Paul; Shokri, Nima
2017-03-15
Foams demonstrate great potential for displacing fluids in porous media which is applicable to a variety of subsurface operations such as the enhanced oil recovery and soil remediation. The application of foam in these processes is due to its unique ability to reduce gas mobility by increasing its effective viscosity and to divert gas to un-swept low permeability zones in porous media. The presence of oil in porous media is detrimental to the stability of foams which can influence its success as a displacing fluid. In the present work, we have conducted a systematic series of experiments using a well-characterised porous medium manufactured by 3D printing technique to evaluate the influence of oil on the dynamics of foam displacement under different boundary conditions. The effects of the type of oil, foam quality and foam flow rate were investigated. Our results reveal that generation of stable foam is delayed in the presence of light oil in the porous medium compared to heavy oil. Additionally, it was observed that the dynamics of oil entrapment was dictated by the stability of foam in the presence of oil. Furthermore, foams with high gas fraction appeared to be less stable in the presence of oil lowering its recovery efficiency. Pore-scale inspection of foam-oil dynamics during displacement revealed formation of a less stable front as the foam quality increased, leading to less oil recovery. This study extends the physical understanding of oil displacement by foam in porous media and provides new physical insights regarding the parameters influencing this process. Copyright © 2016. Published by Elsevier Inc.
Crude oil degradation as an explanation of the depth rule
Price, L.C.
1980-01-01
Previous studies of crude oil degradation by water washing and bacterial attack have documented the operation of these processes in many different petroleum basins of the world. Crude oil degradation substantially alters the chemical and physical makeup of a crude oil, changing a light paraffinic low-S "mature" crude to a heavy naphthenic or asphalt base, "immature appearing" high-S crude. Rough calculations carried out in the present study using experimentally determined solubility data of petroleum in water give insight into the possible magnitude of water washing and suggest that the process may be able to remove large amounts of petroleum in small divisions of geologic time. Plots of crude oil gravity vs. depth fail to show the expected correlation of increasing API gravity (decreasing specific gravity) with depth below 2.44 km (8000 ft.). Previous studies which have been carried out to document in-reservoir maturation have used crude oil gravity data shallower than 2.44 km (8000 ft.). The changes in crude oil composition as a function of depth which have been attributed to in-reservoir maturation over these shallower depths, are better explained by crude oil degradation. This study concludes that changes in crude oil composition that result from in-reservoir maturation are not evident from existing crude oil gravity data over the depth and temperature range previously supposed, and that the significant changes in crude oil gravity which are present over the shallow depth range are due to crude oil degradation. Thus the existence of significant quantities of petroleum should not necessarily be ruled out below an arbitrarily determined depth or temperature limit when the primary evidence for this is the change in crude oil gravity at shallow depths. ?? 1980.
Heavy Oil Detection (Prototypes)
2009-06-01
accomplish a variety of tasks to be successful. These include detecting the oil, possibly concentrating/ corralling the oil for collection, and...structures (e.g., reefs , cables, and pipelines). Other non-contact seafloor survey techniques such as ROV video surveys pose the additional
Chemical Methods for Ugnu Viscous Oils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kishore Mohanty
2012-03-31
The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in Ugnu, West Sak and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir on top of Milne Point varies from 200 cp to 10,000 cp and the depth is about 3300 ft. The same reservoir extends to the west on the top of the Kuparuk River Unit and onto the Beaufort Sea. The depth of the reservoir decreases and the viscosity increases towards the west. Currently, the operators are testing coldmore » heavy oil production with sand (CHOPS) in Ugnu, but oil recovery is expected to be low (< 10%). Improved oil recovery techniques must be developed for these reservoirs. The proximity to the permafrost is an issue for thermal methods; thus nonthermal methods must be considered. The objective of this project is to develop chemical methods for the Ugnu reservoir on the top of Milne Point. An alkaline-surfactant-polymer (ASP) formulation was developed for a viscous oil (330 cp) where as an alkaline-surfactant formulation was developed for a heavy oil (10,000 cp). These formulations were tested in one-dimensional and quarter five-spot Ugnu sand packs. Micromodel studies were conducted to determine the mechanisms of high viscosity ratio displacements. Laboratory displacements were modeled and transport parameters (such as relative permeability) were determined that can be used in reservoir simulations. Ugnu oil is suitable for chemical flooding because it is biodegraded and contains some organic acids. The acids react with injected alkali to produce soap. This soap helps in lowering interfacial tension between water and oil which in turn helps in the formation of macro and micro emulsions. A lower amount of synthetic surfactant is needed because of the presence of organic acids in the oil. Tertiary ASP flooding is very effective for the 330 cp viscous oil in 1D sand pack. This chemical formulation includes 1.5% of an alkali, 0.4% of a nonionic surfactant, and 0.48% of a polymer. The secondary waterflood in a 1D sand pack had a cumulative recovery of 0.61 PV in about 3 PV injection. The residual oil saturation to waterflood was 0.26. Injection of tertiary alkaline-surfactant-polymer slug followed by tapered polymer slugs could recover almost 100% of the remaining oil. The tertiary alkali-surfactant-polymer flood of the 330 cp oil is stable in three-dimensions; it was verified by a flood in a transparent 5-spot model. A secondary polymer flood is also effective for the 330 cp viscous oil in 1D sand pack. The secondary polymer flood recovered about 0.78 PV of oil in about 1 PV injection. The remaining oil saturation was 0.09. The pressure drops were reasonable (<2 psi/ft) and depended mainly on the viscosity of the polymer slug injected. For the heavy crude oil (of viscosity 10,000 cp), low viscosity (10-100 cp) oil-in-water emulsions can be obtained at salinity up to 20,000 ppm by using a hydrophilic surfactant along with an alkali at a high water-to-oil ratio of 9:1. Very dilute surfactant concentrations (~0.1 wt%) of the synthetic surfactant are required to generate the emulsions. It is much easier to flow the low viscosity emulsion than the original oil of viscosity 10,000 cp. Decreasing the WOR reverses the type of emulsion to water-in-oil type. For a low salinity of 0 ppm NaCl, the emulsion remained O/W even when the WOR was decreased. Hence a low salinity injection water is preferred if an oil-in-water emulsion is to be formed. Secondary waterflood of the 10,000 cp heavy oil followed by tertiary injection of alkaline-surfactants is very effective. Waterflood has early water breakthrough, but recovers a substantial amount of oil beyond breakthrough. Waterflood recovers 20-37% PV of the oil in 1D sand pack in about 3 PV injection. Tertiary alkali-surfactant injection increases the heavy oil recovery to 50-70% PV in 1D sand packs. As the salinity increased, the oil recovery due to alkaline surfactant flood increased, but water-in-oil emulsion was produced and pressure drop increased. With low salinity (deionized) water, the oil recovery was lower, but so was the pressure drop because only oil-in-water emulsion was produced. Secondary waterflood of the 10,000 cp heavy oil in 5-spot sand packs recovers 30-35% OOIP of the oil in about 2.5 PV injection. Tertiary injection of the alkaline-surfactant solution increases the cumulative oil recovery from 51 to 57% OOIP in 5-spot sand packs. As water displaces the heavy oil, it fingers through the oil with a fractal structure (fractal dimension = 1.6), as seen in the micromodel experiments. Alkaline-surfactant solution emulsifies the oil around the brine fingers and flows them to the production well. A fractional flow model incorporating the effect of viscous fingering was able to match the laboaratory experiments and can be used in reservoir simulators. The chemical techniques look promising in the laboratory and should be tested in the fields.« less
Emissions from cold heavy oil production with sands (CHOPS) facilities in Alberta, Canada
NASA Astrophysics Data System (ADS)
Roscioli, J. R.; Herndon, S. C.; Yacovitch, T. I.; Knighton, W. B.; Zavala-Araiza, D.; Johnson, M. R.; Tyner, D. R.
2017-12-01
Cold heavy oil production with sands (CHOPS) is generally characterized as a pump driven oil extraction method producing a mixture of sand, water, and heavy oil to heated liquid storage tanks. In addition to fluids, CHOPS sites also produce solution gas, primarily composed of methane, through the well annulus. Depending on formation and well production characteristics, large volumes of this solution gas are frequently vented to the atmosphere without flaring or conservation. To better understand these emission we present measurements of methane, ethane, propane and aromatic emission rates from CHOPS sites using dual tracer flux ratio methodology. The use of two tracers allowed on-site emission sources to be accurately identified and in one instance indicated that the annular vent was responsible for >75% of emissions at the facility. Overall, a measurement survey of five CHOPS sites finds that the methane emissions are in general significantly under-reported by operators. This under-reporting may arise from uncertainties associated with measured gas-to-oil ratios upon which the reported vent volume is based. Finally, measurements of ethane, propane and aromatics from these facilities indicates surprisingly low non-methane hydrocarbon content.
Generation of Hot Water from Hot-Dry for Heavy-Oil Recovery in Northern Alberta, Canada
NASA Astrophysics Data System (ADS)
Pathak, V.; Babadagli, T.; Majorowicz, J. A.; Unsworth, M. J.
2011-12-01
The focus of prior applications of hot-dry-rock (HDR) technology was mostly aimed at generating electricity. In northern Alberta, the thermal gradient is low and, therefore, this technology is not suitable for electricity generation. On the other hand, the cost of steam and hot water, and environmental impacts, are becoming critical issues in heavy-oil and bitumen recovery in Alberta. Surface generation of steam or hot-water accounts for six percent of Canada's natural gas consumption and about 50 million tons of CO2 emission. Lowered cost and environmental impacts are critical in the widespread use of steam (for in-situ recovery) and hot-water (for surface extraction of bitumen) in this region. This paper provides an extensive analysis of hot-water generation to be used in heavy-oil/bitumen recovery. We tested different modeling approaches used to determine the amount of energy produced during HDR by history matching to example field data. The most suitable numerical and analytical models were used to apply the data obtained from different regions containing heavy-oil/bitumen deposits in northern Alberta. The heat generation capacity of different regions was determined and the use of this energy (in the form of hot-water) for surface extraction processes was evaluated. Original temperature gradients were applied as well as realistic basement formation characteristics through an extensive hydro thermal analysis in the region including an experimental well drilled to the depth of 2,500m. Existing natural fractures and possible hydraulic fracturing scenarios were evaluated from the heat generation capacity and the economics points of view. The main problem was modeling difficulties, especially determination and representation of fracture network characteristics. A sensitivity analysis was performed for the selected high temperature gradient regions in Alberta. In this practice, the characteristics of hydraulic fractures, injection rate, depth, the distance between injection and production wells and formation thickness were used as variables and an optimization study was carried out based on these variables. The results showed that the hot water (50 C at surface) needed in Fort McMurray for extraction could be obtained at lower costs than the generation of it using natural gas.
On the modeling of the 2010 Gulf of Mexico Oil Spill
NASA Astrophysics Data System (ADS)
Mariano, A. J.; Kourafalou, V. H.; Srinivasan, A.; Kang, H.; Halliwell, G. R.; Ryan, E. H.; Roffer, M.
2011-09-01
Two oil particle trajectory forecasting systems were developed and applied to the 2010 Deepwater Horizon Oil Spill in the Gulf of Mexico. Both systems use ocean current fields from high-resolution numerical ocean circulation model simulations, Lagrangian stochastic models to represent unresolved sub-grid scale variability to advect oil particles, and Monte Carlo-based schemes for representing uncertain biochemical and physical processes. The first system assumes two-dimensional particle motion at the ocean surface, the oil is in one state, and the particle removal is modeled as a Monte Carlo process parameterized by a one number removal rate. Oil particles are seeded using both initial conditions based on observations and particles released at the location of the Maconda well. The initial conditions (ICs) of oil particle location for the two-dimensional surface oil trajectory forecasts are based on a fusing of all available information including satellite-based analyses. The resulting oil map is digitized into a shape file within which a polygon filling software generates longitude and latitude with variable particle density depending on the amount of oil present in the observations for the IC. The more complex system assumes three (light, medium, heavy) states for the oil, each state has a different removal rate in the Monte Carlo process, three-dimensional particle motion, and a particle size-dependent oil mixing model. Simulations from the two-dimensional forecast system produced results that qualitatively agreed with the uncertain "truth" fields. These simulations validated the use of our Monte Carlo scheme for representing oil removal by evaporation and other weathering processes. Eulerian velocity fields for predicting particle motion from data-assimilative models produced better particle trajectory distributions than a free running model with no data assimilation. Monte Carlo simulations of the three-dimensional oil particle trajectory, whose ensembles were generated by perturbing the size of the oil particles and the fraction in a given size range that are released at depth, the two largest unknowns in this problem. 36 realizations of the model were run with only subsurface oil releases. An average of these results yields that after three months, about 25% of the oil remains in the water column and that most of the oil is below 800 m.
Biocatalytic desulfurization of thiophenic compounds and crude oil by newly isolated bacteria
Mohamed, Magdy El-Said; Al-Yacoub, Zakariya H.; Vedakumar, John V.
2015-01-01
Microorganisms possess enormous highly specific metabolic activities, which enable them to utilize and transform nearly every known chemical class present in crude oil. In this context, one of the most studied biocatalytic processes is the biodesulfurization (BDS) of thiophenic sulfur-containing compounds such as benzothiophene (BT) and dibenzothiophene (DBT) in crude oils and refinery streams. Three newly isolated bacterial strains, which were affiliated as Rhodococcus sp. strain SA11, Stenotrophomonas sp. strain SA21, and Rhodococcus sp. strain SA31, were enriched from oil contaminated soil in the presence of DBT as the sole S source. GC-FID analysis of DBT-grown cultures showed consumption of DBT, transient formation of DBT sulfone (DBTO2) and accumulation of 2-hydroxybiphenyl (2-HBP). Molecular detection of the plasmid-borne dsz operon, which codes for the DBT desulfurization activity, revealed the presence of dszA, dszB, and dszC genes. These results point to the operation of the known 4S pathway in the BDS of DBT. The maximum consumption rate of DBT was 11 μmol/g dry cell weight (DCW)/h and the maximum formation rate of 2-HBP formation was 4 μmol/g DCW/h. Inhibition of both cell growth and DBT consumption by 2-HBP was observed for all isolates but SA11 isolate was the least affected. The isolated biocatalysts desulfurized other model DBT alkylated homologs. SA11 isolate was capable of desulfurizing BT as well. Resting cells of SA11 exhibited 10% reduction in total sulfur present in heavy crude oil and 18% reduction in total sulfur present in the hexane-soluble fraction of the heavy crude oil. The capabilities of the isolated bacteria to survive and desulfurize a wide range of S compounds present in crude oil are desirable traits for the development of a robust BDS biocatalyst to upgrade crude oils and refinery streams. PMID:25762990
Proceedings: Fourteenth annual EPRI conference on fuel science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-05-01
EPRI's Fourteenth Annual Contractors' Conference on Fuel Science was held on May 18--19, 1989 in Palo Alto, CA. The conference featured results of work on coal science, coal liquefaction, methanol production, and coal oil coprocessing and coal upgrading. The following topics were discussed: recent development in coal liquefaction at the Wilsonville Clean Coal Research Center; British coal's liquid solvent extraction (LSE) process; feedstock reactivity in coal/oil co-processing; utility applications for coal-oil coprocessed fuels; effect of coal rank and quality on two-stage liquefaction; organic sulfur compounds in coals; the perchloroethylene refining process of high-sulfur coals; extraction of sulfur coals; extraction ofmore » sulfur from coal; agglomeration of bituminous and subbituminous coals; solubilization of coals by cell-free extracts derived from polyporus versicolor; remediation technologies and services; preliminary results from proof-of-concept testing of heavy liquid cyclone cleaning technology; clean-up of soil contaminated with tarry/oily organics; midwest ore processing company's coal benefication technology: recent prep plant, scale and laboratory activities; combustion characterization of coal-oil agglomerate fuels; status report on the liquid phase methanol project; biomimetic catalysis; hydroxylation of C{sub 2} {minus} C{sub 3} and cycloc{sub 6} hydrocarbons with Fe cluster catalysts as models for methane monooxygenase enzyme; methanol production scenarios; and modeling studies of the BNL low temperature methanol catalyst. Individual projects are processed separately for the data bases.« less
Oil geochemistry of the northern Llanos Basin, Colombia. A model for migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramon, J.C.; Dzou, L.
1996-12-31
The chemical composition of 23 crude oils and one oil seep from Llanos Basin, Colombia were studied in detail by geochemical methods in order to understand their genetic relationship. A filling history model is proposed to explain the observed composition variations in Llanos Basin oils. Geochemical fingerprinting indicates that there are six families of crude oils. The biomarker compositions have been used to identify characteristics of the source rocks. The Llanos oils contain marine algal- derived {open_quotes}C30 steranes{close_quotes} (i.e., 24-n-propylcholestanes), which are diagnostic for oils generated from marine Cretaceous source rocks. A significant HC-contribution from a Tertiary source is alsomore » indicated by the presence of high concentration of the {open_quotes}flowering plant{close_quotes}-markers oleanane, bicadinanes and oleanoids. Low DBT/Phen, %sulfur values and high diasteranes concentration indicate that the source rock is clay-rich. Biomarker maturity parameters indicate a wide range of source-rock thermal maturities from early to late oil window. Heavy biodegradation has been particularly common among the first oils to fill reservoirs in central Llanos oil fields. The older altered heavy oils were mixed with a second pulse of oil explaining the wide range of oil gravities measured in the central Llanos Basin.« less
Disentangling oil weathering using GC x GC. 1. chromatogram analysis.
Arey, J Samuel; Nelson, Robert K; Reddy, Christopher M
2007-08-15
Historically, the thousands of compounds found in oils constituted an "unresolved complex mixture" that frustrated efforts to analyze oil weathering. Moreover, different weathering processes inflict rich and diverse signatures of compositional change in oil, and conventional methods do not effectively decode this elaborate record. Using comprehensive two-dimensional gas chromatography (GC x GC), we can separate thousands of hydrocarbon components and simultaneously estimate their chemical properties. We investigated 13 weathered field samples collected from the Bouchard 120 heavy fuel oil spill in Buzzards Bay, Massachusetts in 2003. We first mapped hydrocarbon vapor pressures and aqueous solubilities onto the compositional space explored by GC x GC chromatograms of weathered samples. Then we developed methods to quantitatively decouple mass loss patterns associated with evaporation and dissolution. The compositional complexity of oil, traditionally considered an obstacle, was now an advantage. We exploited the large inventory of chemical information encoded in oil to robustly differentiate signatures of mass transfer to air and water. With this new approach, we can evaluate mass transfer models (the Part 2 companion to this paper) and more properly account for evaporation, dissolution, and degradation of oil in the environment.
NASA Astrophysics Data System (ADS)
Li, Jian; Long, Yifei; Xu, Changcheng; Tian, Haifeng; Wu, Yanxia; Zha, Fei
2018-03-01
To resolve the drawbacks that single-mesh involved for oil/water separation, such as batch processing mode, only one phase was purified and the quick decrease in flux et al., herein, a two-way separation T-tube device was designed by integrating a pair of meshes with opposite wettability, i.e., underwater superoleophobic and superhydrophobic/superoleophilic properties. Such integrated system can continuously separate both oil and water phase from the oil/water mixtures simultaneously through one-step procedure with high flux (above 3.675 L m-2 s-1) and high separation efficiency larger than 99.8% regardless of the heavy oil or light oil involved in the mixture. Moreover, the as-prepared two meshes still maintained high separation efficiency larger than above 98.9% even after 50 cycle-usages. It worthy mentioned that this two-way separation mode essentially solves the oil liquid accumulation problem that is the single separation membrane needs to tolerate a large hydrostatic pressure caused by the accumulated liquid. We deeply believe this two-way separation system would provide a new strategy for realizing practical applications in oil spill clean-up via a continuous mode.
Development of clean coal and clean soil technologies using advanced agglomeration techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ignasiak, B.; Ignasiak, T.; Szymocha, K.
1990-01-01
Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gondouin, M.
1991-10-31
The West Sak (Upper Cretaceous) sands, overlaying the Kuparuk field, would rank among the largest known oil fields in the US, but technical difficulties have so far prevented its commercial exploitation. Steam injection is the most successful and the most commonly-used method of heavy oil recovery, but its application to the West Sak presents major problems. Such difficulties may be overcome by using a novel approach, in which steam is generated downhole in a catalytic Methanator, from Syngas made at the surface from endothermic reactions (Table 1). The Methanator effluent, containing steam and soluble gases resulting from exothermic reactions (Tablemore » 1), is cyclically injected into the reservoir by means of a horizontal drainhole while hot produced fluids flow form a second drainhole into a central production tubing. The downhole reactor feed and BFW flow downward to two concentric tubings. The large-diameter casing required to house the downhole reactor assembly is filled above it with Arctic Pack mud, or crude oil, to further reduce heat leaks. A quantitative analysis of this production scheme for the West Sak required a preliminary engineering of the downhole and surface facilities and a tentative forecast of well production rates. The results, based on published information on the West Sak, have been used to estimate the cost of these facilities, per daily barrel of oil produced. A preliminary economic analysis and conclusions are presented together with an outline of future work. Economic and regulatory conditions which would make this approach viable are discussed. 28 figs.« less
43 CFR 3103.4-3 - Heavy oil royalty reductions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... must certify that the API oil gravity for the initial and subsequent 12-month periods was not subject... reduction for a property if BLM determines that the API oil gravity was manipulated or adulterated by the... effective date of the royalty rate reduction resulting from a manipulated or adulterated API oil gravity so...
43 CFR 3103.4-3 - Heavy oil royalty reductions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... must certify that the API oil gravity for the initial and subsequent 12-month periods was not subject... reduction for a property if BLM determines that the API oil gravity was manipulated or adulterated by the... effective date of the royalty rate reduction resulting from a manipulated or adulterated API oil gravity so...
43 CFR 3103.4-3 - Heavy oil royalty reductions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... must certify that the API oil gravity for the initial and subsequent 12-month periods was not subject... reduction for a property if BLM determines that the API oil gravity was manipulated or adulterated by the... effective date of the royalty rate reduction resulting from a manipulated or adulterated API oil gravity so...
43 CFR 3103.4-3 - Heavy oil royalty reductions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... must certify that the API oil gravity for the initial and subsequent 12-month periods was not subject... reduction for a property if BLM determines that the API oil gravity was manipulated or adulterated by the... effective date of the royalty rate reduction resulting from a manipulated or adulterated API oil gravity so...
Biodegradation of asphalt by Garciaella petrolearia TERIG02 for viscosity reduction of heavy oil.
Lavania, Meeta; Cheema, Simrita; Sarma, Priyangshu Manab; Mandal, Ajoy Kumar; Lal, Banwari
2012-02-01
Petroleum hydrocarbon is an important energy resource, but it is difficult to exploit due to the presence of dominated heavy constituents such as asphaltenes. In this study, viscosity reduction of Jodhpur heavy oil (2,637 cP at 50°C) has been carried out by the biodegradation of asphalt using a bacterial strain TERIG02. TERIG02 was isolated from sea buried oil pipeline known as Mumbai Uran trunk line (MUT) located on western coast of India and identified as Garciaella petrolearia by 16S rRNA full gene sequencing. TERIG02 showed 42% viscosity reduction when asphalt along with molasses was used as a sole carbon source compared to only asphalt (37%). The viscosity reduction by asphaltene degradation has been structurally characterized by Fourier transform infrared spectroscopy (FTIR). This strain also shows an additional preference to degrade toxic asphalt and aromatics compounds first unlike the other known strains. All these characteristics makes TERIG02 a potential candidate for enhanced oil recovery and a solution to degrading toxic aromatic compounds.
Molnárné Guricza, Lilla; Schrader, Wolfgang
2017-02-10
Simplification of highly complex mixtures such as crude oil by using chromatographic methods makes it possible to get more detailed information about the composition of the analyte. Separation by argentation chromatography can be achieved based on the interaction of different strength between the silver ions (Ag + ) immobilized through a spacer on the silica gel surface and the π-bonds of the analytes. Heavy crude oils contain compounds with a high number of heteroatoms (N, O, S) and a high degree of unsaturation thus making them the perfect analyte for argentation chromatography. The direct coupling of argentation chromatography and ultrahigh-resolution mass spectrometry allows to continuously tracking the separation of the many different compounds by retention time and allows sensitive detection on a molecular level. Direct injection of a heavy crude oil into a ultrahigh-resolution mass spectrometer showed components with DBE of up to 25, whereas analytes with DBE of up to 35 could be detected only after separation with argentation chromatography. The reduced complexity achieved by the separation helps increasing the information depth. Copyright © 2016. Published by Elsevier B.V.
Heavy metals screening of rice bran oils and its relation to composition
USDA-ARS?s Scientific Manuscript database
Rice bran oil contains beneficial compounds that contribute to the high stability of the oil itself, as well as the health of consumers. As a result, rice bran oil has been growing in popularity and is now widely used in many countries. However, concerns have surfaced in recent years related to the ...
Ismail, Wael Ahmed; Mohamed, Magdy El-Said; Awadh, Maysoon N; Obuekwe, Christian; El Nayal, Ashraf M
2017-11-01
Heavy vacuum gas oil (HVGO) is a complex and viscous hydrocarbon stream that is produced as the bottom side product from the vacuum distillation units in petroleum refineries. HVGO is conventionally treated with thermochemical process, which is costly and environmentally polluting. Here, we investigate two petroleum biotechnology applications, namely valorization and bioupgrading, as green approaches for valorization and upgrading of HVGO. The Pseudomonas aeruginosa AK6U strain grew on 20% v/v of HVGO as a sole carbon and sulfur source. It produced rhamnolipid biosurfactants in a growth-associated mode with a maximum crude biosurfactants yield of 10.1 g l -1 , which reduced the surface tension of the cell-free culture supernatant to 30.6 mN m -1 within 1 week of incubation. The rarely occurring dirhamnolipid Rha-Rha-C 12 -C 12 dominated the congeners' profile of the biosurfactants produced from HVGO. Heavy vacuum gas oil was recovered from the cultures and abiotic controls and the maltene fraction was extracted for further analysis. Fractional distillation (SimDist) of the biotreated maltene fraction showed a relative decrease in the high-boiling heavy fuel fraction (BP 426-565 °C) concomitant with increase in the lighter distillate diesel fraction (BP 315-426 °C). Analysis of the maltene fraction revealed compositional changes. The number-average (Mn) and weight-average (Mw) molecular weights, as well as the absolute number of hydrocarbons and sulfur heterocycles were higher in the biotreated maltene fraction of HVGO. These findings suggest that HVGO can be potentially exploited as a carbon-rich substrate for production of the high-value biosurfactants by P. aeruginosa AK6U and to concomitantly improve/upgrade its chemical composition. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Balsamo, Ronald A; Kelly, William J; Satrio, Justinus A; Ruiz-Felix, M Nydia; Fetterman, Marisa; Wynn, Rodd; Hagel, Kristen
2015-01-01
This research focuses on investigating the use of common biofuel grasses to assess their potential as agents of long-term remediation of contaminated soils using lead as a model heavy metal ion. We present evidence demonstrating that switch grass and Timothy grass may be potentially useful for long-term phytoremediation of heavy metal contaminated soils and describe novel techniques to track and remove contaminants from inception to useful product. Enzymatic digestion and thermochemical approaches are being used to convert this lignocellulosic feedstock into useful product (sugars, ethanol, biocrude oil+biochar). Preliminary studies on enzymatic hydrolysis and fast pyrolysis of the Switchgrass materials that were grown in heavy metal contaminated soil and non-contaminated soils show that the presence of lead in the Switchgrass material feedstock does not adversely affect the outcomes of the conversion processes. These results indicate that the modest levels of contaminant uptake allow these grass species to serve as phytoremediation agents as well as feedstocks for biofuel production in areas degraded by industrial pollution.
Changes in PAH levels during production of rapeseed oil.
Cejpek, K; Hajslová, J; Kocourek, V; Tomaniová, M; Cmolík, J
1998-07-01
The influence of technological operations during rapeseed oil production on polycyclic aromatic hydrocarbon (PAH) concentrations in by-products, intermediate and final oils was evaluated. The decrease of light PAHs, benz(a)anthracene and benzo(a)pyrene during processing of crude oil to the deodorized product was significant at the 95% confidence interval in most batches analysed. Deodorization and alkali-refining were the steps contributing most to the PAH decrease. The relationship between PAH levels in rapeseed (and consequently in refined oil) and the duration of storage period was studied. The contamination of raw material processed a short time after harvesting was significantly higher than that of the rapeseed stored in silos for several months. Analyses of rapeseed samples, which were re-purified in the laboratory, revealed that solid particles, which contaminate rapeseed during harvesting, initial treatment, transport and storage, contributed to PAH contamination to the extent of 36% (light PAHs) to 64% (heavy PAHs) on average. Further experiments demonstrated that PAHs in re-purified rapeseed were concentrated in the cuticular layer, because they were removed well from the whole seeds by simple rinsing with organic solvent in an ultrasonic bath without losses of rapeseed oil. Alternative expressions of total PAH contamination (e.g. various PAH groups and/or differently defined B(a)P toxic equivalents) are discussed and their effect on drawing conclusions about PAH elimination rate has been demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Naijia; Bezerra, Tais Lacerda; Wu, Qiong
Pyrolysis is a promising method for converting biomass to biofuels. However, some of pyrolysis oil's physiochemical properties still limit its commercial applications. Here, the autohydrolysis pretreatment at 175 ± 3 °C for 40 min was conducted to improve the resulting pine pyrolysis oil’s properties as a fuel. During autohydrolysis, deacetylation and decomposition of hemicellulose was observed by ion-exchange chromatography and Fourier transform infrared spectroscopy (FT-IR). Additionally, the cleavage of lignin ether bonds was clearly determined by 13C cross-polarization/magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR). Phosphitylation followed by 31P NMR analysis of the heavy oils gave detailed structural information ofmore » the hydroxyl groups; the results revealed that autohydrolysis pretreatment led to a reduction of carboxyl acids in the heavy oils generated at all three pyrolysis temperatures (400, 500, and 600 °C). The 31P NMR analysis also revealed that autohydrolysis pretreatment led to a reduction of condensed phenolic hydroxyl groups in the heavy oils produced at 600 °C. 1H- 13C heteronuclear single-quantum correlation (HSQC) NMR analysis showed that at a pyrolysis temperature of 600 °C, the pretreated pine produced lower methoxy group constituents. In both 31P and HSQC NMR results indicated that autohydrolysis pretreatment increased levoglucosan yields in the bio-oils.« less
Dang, Qi; Mba Wright, Mark; Brown, Robert C
2015-12-15
This study investigates a novel strategy of reducing carbon emissions from coal-fired power plants through co-firing bio-oil and sequestering biochar in agricultural lands. The heavy end fraction of bio-oil recovered from corn stover fast pyrolysis is blended and co-fired with bituminous coal to form a bio-oil co-firing fuel (BCF). Life-cycle greenhouse gas (GHG) emissions per kWh electricity produced vary from 1.02 to 0.26 kg CO2-eq among different cases, with BCF heavy end fractions ranging from 10% to 60%, which corresponds to a GHG emissions reduction of 2.9% to 74.9% compared with that from traditional bituminous coal power plants. We found a heavy end fraction between 34.8% and 37.3% is required to meet the Clean Power Plan's emission regulation for new coal-fired power plants. The minimum electricity selling prices are predicted to increase from 8.8 to 14.9 cents/kWh, with heavy end fractions ranging from 30% to 60%. A minimum carbon price of $67.4 ± 13 per metric ton of CO2-eq was estimated to make BCF power commercially viable for the base case. These results suggest that BCF co-firing is an attractive pathway for clean power generation in existing power plants with a potential for significant reductions in carbon emissions.
Performance of mesoporous organosilicates on the adsorption of heavy oil from produced water
NASA Astrophysics Data System (ADS)
Twaiq, Farouq A.; Nasser, Mustafa S.; Al-Ryiami, Samyia; Al-Ryiami, Hanan
2012-09-01
The performance of mesoporous organosilicate materials in removal of soluble oil from wastewater is investigated. The aim of the study is to evaluate the oil adsorption over organosilicate prepared using pre-synthesis methods and compare the results with adsorption over pure siliceous mesoporous material. The materials were prepared using sol-gel technique using Dodecylamine (D) and Cetyltrimethylammonium bromide (CTAB) as surfactant templates, and Tetraethylorthosilicate (TEOS) as silica precursor. The as-synthesized mesoporous materials were treated using three different methods to remove the surfactant from the mesoporous silica including calcinations method for total removal of the surfactant, the water vapor stripping and ethanol vapor stripping were used for partial removal of the surfactants. The synthesized materials were characterized using X-ray diffraction (XRD) and nitrogen adsorption. The materials were tested for heavy oils removal from oil-water solution. The results showed that neutral surfactant organosilicates have less adsorption compare to cationic surfactant organosilicates. The results also showed that among organosilicates prepared using neutral surfactant, treated organosilicate by ethanol vapor have the highest activity in removing the oil from the oil-water solution.
Reactive Transport Modeling of Microbe-mediated Fe (II) Oxidation for Enhanced Oil Recovery
NASA Astrophysics Data System (ADS)
Surasani, V.; Li, L.
2011-12-01
Microbially Enhanced Oil Recovery (MEOR) aims to improve the recovery of entrapped heavy oil in depleted reservoirs using microbe-based technology. Reservoir ecosystems often contain diverse microbial communities those can interact with subsurface fluids and minerals through a network of nutrients and energy fluxes. Microbe-mediated reactions products include gases, biosurfactants, biopolymers those can alter the properties of oil and interfacial interactions between oil, brine, and rocks. In addition, the produced biomass and mineral precipitates can change the reservoir permeability profile and increase sweeping efficiency. Under subsurface conditions, the injection of nitrate and Fe (II) as the electron acceptor and donor allows bacteria to grow. The reaction products include minerals such as Fe(OH)3 and nitrogen containing gases. These reaction products can have large impact on oil and reservoir properties and can enhance the recovery of trapped oil. This work aims to understand the Fe(II) oxidation by nitrate under conditions relevant to MEOR. Reactive transport modeling is used to simulate the fluid flow, transport, and reactions involved in this process. Here we developed a complex reactive network for microbial mediated nitrate-dependent Fe (II) oxidation that involves both thermodynamic controlled aqueous reactions and kinetic controlled Fe (II) mineral reaction. Reactive transport modeling is used to understand and quantify the coupling between flow, transport, and reaction processes. Our results identify key parameter controls those are important for the alteration of permeability profile under field conditions.
Zhang, Zhikun; Zhang, Lei; Li, Aimin
2015-04-01
Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2h) showed the properties of density of 1.92 ± 0.05 g/cm(3), weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fuel purpose hydrotreating of sunflower oil on CoMo/Al2O3 catalyst.
Krár, Márton; Kovács, Sándor; Kalló, Dénes; Hancsók, Jeno
2010-12-01
The importance of the economical production and usage of new generation biofuels, the so-called bio gas oil (paraffins from triglycerides) and the results of the investigation for their productability on the CoMo/Al(2)O(3) catalyst, which was activated by reduction, are presented. The conversion of triglycerides, the yield of total organic fractions and the target product, furthermore the type and ratio of deoxygenation reactions were determined as a function of process parameters. The advantageous process parameters were found (380 degrees C, 40-60 bar, 500-600 Nm(3)/m(3) H(2)/sunflower oil ratio, 1.0 h(-1)), where the conversion of triglycerides was 100% and the yield of the target fraction [high paraffin containing (>99%) gas oil boiling range product] was relatively high (73.7-73.9%). The deoxygenation of triglycerides the reduction as well as the decarboxylation/decarbonylation reactions took place. The yield of the target fractions did not achieve the theoretical values (81.4-86.5%). That is why it is necessary to separate the target fraction and recirculate the heavy fraction. 2010 Elsevier Ltd. All rights reserved.
A study on the dewatering of industrial waste sludge by fry-drying technology.
Ohm, Tae-In; Chae, Jong-Seong; Kim, Jeong-Eun; Kim, Hee-Kyum; Moon, Seung-Hyun
2009-08-30
In sludge treatment, drying sludge using typical technology with high water content to a water content of approximately 10% is always difficult because of adhesive characteristics of sludge. Many methods have been applied, including direct and indirect heat drying, but these approaches of reducing water content to below 40% after drying is very inefficient in energy utilization of drying sludge. In this study, fry-drying technology with a high heat transfer coefficient of approximately 500 W/m(2) degrees C was used to dry industrial wastewater sludge. Also waste oil was used in the fry-drying process, and because the oil's boiling point is between 240 and 340 degrees C and the specific heat is approximately 60% of that of water. In the fry-drying system, the sludge is input by molding it into a designated form after heating the waste oil at temperatures between 120 and 170 degrees C. At these temperatures, the heated oil rapidly evaporates the water contained in the sludge, leaving the oil itself. After approximately 10 min, the water content of the sludge was less than 10%, and its heating value surpassed 5300 kcal/kg. Indeed, this makes the organic sludge appropriate for use as a solid fuel. The wastewater sludge used in this study was the designated waste discharged from chemical, leather and plating plants. These samples varied in characteristics, especially with regard to heavy metal concentration. After drying the three kinds of wastewater sludge at oil temperatures 160 degrees C for 10 min, it was found that the water content in the sludge from the chemical, leather, and plating plants reduced from 80.0 to 5.5%, 81.6 to 1.0%, and 65.4 to 0.8%, respectively. Furthermore, the heat values of the sludge from the chemical, leather, and plating plants prior to fry-drying were 217, 264, and 428 kcal/kg, respectively. After drying, these values of sludge increased to 5317, 5983 and 6031 kcal/kg, respectively. The heavy metals detected in the sludge after drying were aluminum, lead, zinc, mercury, and cadmium. Most importantly, if the dried sludge is used as a solid fuel, these heavy metals can be collected from the dust collector after combustion.
Economic incentive for applying vetiver grass to remediate lead, copper and zinc contaminated soils.
Danh, Luu Thai; Truong, Paul; Mammucari, Raffaella; Fostert, Neil
2011-01-01
The application of vetiver grass (Chrysopogon zizaniodes) for phytoremediation of heavy metal contaminated soils can be promoted by economic return through essential oil production. Four levels of lead (0, 500, 2000, and 8000 mg kg(-1) dry soil), copper (0, 100, 400, and 1600 mg kg(-1) dry soil) and zinc (0, 400, 1600, and 6400 mg kg(-1) dry soil) were used to study their effects on vetiver growth, essential oil composition and yield. This study also investigated the effect of nitrogen concentrations on vetiver oil yield. Vetiver accumulated high concentrations of Pb, Cu and Zn in roots (3246, 754 and 2666 mg kg(-1), respectively) and small amounts of contaminants in shoots (327, 55, and 642 mg kg(-1), respectively). Oil content and yield were not affected at low and moderate concentrations of Cu and Zn. Only the application of Pb had a significant detrimental effect on oil composition. Extraction of vetiver essential oils by hydrodistillation produced heavy metal free products. High level of nitrogen reduced oil yields. Results show that phytoremediation of Cu and Zn contaminated soils by vetiver can generate revenue from the commercialization of oil extracts.
ASSESSMENT OF TOXICITY OF OIL COMBUSTION EMISSION EXPOSURE IN NORMAL AND HYPERTENSIVE RATS
It has been suggested that the increased morbidity and mortality associated with exposure to airborne particulates (PM) is related to materials derived from combustion sources such as gasoline, diesel, oil, wood and coal. In these studies heavy oil # 5 was burned in a residual oi...
Assessment of soil pollution based on total petroleum hydrocarbons and individual oil substances.
Pinedo, J; Ibáñez, R; Lijzen, J P A; Irabien, Á
2013-11-30
Different oil products like gasoline, diesel or heavy oils can cause soil contamination. The assessment of soils exposed to oil products can be conducted through the comparison between a measured concentration and an intervention value (IV). Several national policies include the IV based on the so called total petroleum hydrocarbons (TPH) measure. However, the TPH assessment does not indicate the individual substances that may produce contamination. The soil quality assessment can be improved by including common hazardous compounds as polycyclic aromatic hydrocarbons (PAHs) and aromatic volatile hydrocarbons like benzene, toluene, ethylbenzene and xylenes (BTEX). This study, focused on 62 samples collected from different sites throughout The Netherlands, evaluates TPH, PAH and BTEX concentrations in soils. Several indices of pollution are defined for the assessment of individual variables (TPH, PAH, B, T, E, and X) and multivariables (MV, BTEX), allowing us to group the pollutants and simplify the methodology. TPH and PAH concentrations above the IV are mainly found in medium and heavy oil products such as diesel and heavy oil. On the other hand, unacceptable BTEX concentrations are reached in soils contaminated with gasoline and kerosene. The TPH assessment suggests the need for further action to include lighter products. The application of multivariable indices allows us to include these products in the soil quality assessment without changing the IV for TPH. This work provides useful information about the soil quality assessment methodology of oil products in soils, focussing the analysis into the substances that mainly cause the risk. Copyright © 2013 Elsevier Ltd. All rights reserved.
Direct use of methane in coal liquefaction
Sundaram, Muthu S.; Steinberg, Meyer
1987-01-01
This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20-120 minutes at a temperature of 250.degree.-750.degree. C., preferably 350.degree.-450.degree. C., pressurized up to 6000 psi, and preferably in the 1000-2500 psi range, preferably directly utilizing methane 50-100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0-100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems.
Technical product bulletin: this dispersant is used in oil spill cleanups on salt water, sprayed onto slick in atomized form using moderately coarse droplets rather than fine mist. Effective with crude and residual heavy oil spills.
Skierszkan, Elliott K; Irvine, Graham; Doyle, James R; Kimpe, Linda E; Blais, Jules M
2013-03-01
The extraction of oil sands by in-situ methods in Alberta has expanded dramatically in the past two decades and will soon overtake surface mining as the dominant bitumen production process in the province. While concerns regarding regional metal emissions from oil sand mining and bitumen upgrading have arisen, there is a lack of information on emissions from the in-situ industry alone. Here we show using lake sediment records and regionally-distributed soil samples that in the absence of bitumen upgrading and surface mining, there has been no significant metal (As, Cd, Cu, Hg, Ni, Pb, V) enrichment from the Cold Lake in-situ oil field. Sediment records demonstrate post-industrial Cd, Hg and Pb enrichment beginning in the early Twentieth Century, which has leveled off or declined since the onset of commercial in-situ bitumen production at Cold Lake in 1985. Copyright © 2013 Elsevier B.V. All rights reserved.
Oil residue contamination of continental shelf sediments of the Gulf of Mexico.
Harding, V; Camp, J; Morgan, L J; Gryko, J
2016-12-15
We have investigated the distribution of a heavy oil residue in the coastal sediments of the Gulf of Mexico. The amount of the contamination was determined by high-temperature pyrolysis coupled with the Gas Chromatography-Mass Spectrometry (GCMS) of air-dried sediments. The pyrolysis products contain straight-chain saturated and unsaturated hydrocarbons, such as dodecane and 1-dodecene, resulting in a very characteristic pattern of double peaks in the GCMS. Hydrocarbons containing 8 to 23 carbon atoms were detected in the pyrolysis products. Using thermal pyrolysis we have found that the sediment samples collected along Texas, Louisiana, and Mississippi shores contain no detectable traces of oil residue, but most of the samples collected along Alabama and Florida shores contain ~200ppm of heavy oil residue. Copyright © 2016 Elsevier Ltd. All rights reserved.
Burgos-Núñez, Saudith; Navarro-Frómeta, Amado; Marrugo-Negrete, José; Enamorado-Montes, Germán; Urango-Cárdenas, Iván
2017-07-15
The concentrations of polycyclic aromatic hydrocarbons and heavy metals were evaluated in shallow sediments, water, fish and seabird samples from the Cispata Bay, Colombia. The heavy metals concentrations in the sediment was in the following order: Cu>Pb>Hg>Cd. The heavy metal concentration was different (p<0.05) in juvenile and adult birds. High concentrations of mercury were registered in the seabird (10.19±4.99mgkg -1 ) and fish (0.67μgg -1 ) samples. The total concentration of polycyclic aromatic hydrocarbons ranged from 7.0-41ngg -1 in sediment, 0.03-0.34ngmL -1 in water samples, 53.24ngg -1 in fish, and 66ngg -1 in seabirds. The high concentrations of heavy metals in seabirds may be explained by their feeding habits. The presence of polycyclic aromatic hydrocarbons in the Cispata Bay may be due to hydrocarbon spills during oil transport at the nearby oil port. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tajmiri, M.; Ehsani, M. R.; Mousavi, S. M.; Roayaei, E.; Emadi, A.
2015-07-01
Spontaneous imbibition (SI) gets a controversial subject in oil- wet carbonate reservoirs. The new concept of nanoparticles applications in an EOR area have been recently raised by researches about oil viscosity reduction and generate emulsion without surfactant. But a lot of questions have been remained about which nanoparticles can alter wettability from oil- wet to water- wet to improve oil recovery. This study introduces the new idea of adding ZnO nanoparticles (0.2%wt concentration) by experimental work on oil recovery. The main goals of this research were to prove that ZnO nanoparticles have the ability to reduce viscosity and also alter wettability. The ultimate objective was to determine the potential of these nanoparticles to imbibe into and displace oil. Through the use of Amott- cell, laboratory tests were conducted in two experiments on four cylindrical core samples (three sandstones and one carbonate) were taken from real Iranian heavy oil reservoir. In the first experiment, core samples were saturated by crude oil and in the second experiment, nanoparticles were flooding into core samples and then saturated by crude oil for about two weeks and after that they were immersed in distilled water and the amount of recovery was monitored during 30 days for both tests. We expected that ZnO nanoparticles decreased the surface tension which reduced the capillary forces through SI and wettability alteration took place towards a more water-wet system and caused the oil relative permeability to increase which dominated the gravitational forces to pull out the oil. Our results proved this expectation from ZnO nanoparticles clearly because carbonate core was oil- wet and the capillary pressure was high and negative to push water into the core so the original oil in place (OOIP) was zero whereas by adding ZnO nanoparticles OOIP was increased to 8.89%. SI yielded recovery values from 17.3, 2 and 15 without nanoparticles to 20.68, 17.57 and 36.2 % OOIP with nanoparticles respectively for sandstone cores. The results of this paper are the good evidence that in addition to remarkable potential of ZnO nanoparticles on viscosity reduction, they have the ability to alter wettability toward water- wet through heavy oil.
World Oil Prices and Production Trends in AEO2010 (released in AEO2010)
2010-01-01
In Annual Energy Outlook 2010, the price of light, low-sulfur (or "sweet") crude oil delivered at Cushing, Oklahoma, is tracked to represent movements in world oil prices. The Energy Information Administration makes projections of future supply and demand for "total liquids,"" which includes conventional petroleum liquids -- such as conventional crude oil, natural gas plant liquids, and refinery gain -- in addition to unconventional liquids, which include biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil.
NASA Astrophysics Data System (ADS)
Chen, Xueming; Chen, Guohua
Electroflotation (EF) is the flotation using electrolytically generated bubbles of hydrogen and oxygen for separating suspended substances from aqueous phases. This process was first proposed by Elmore in 1905 for flotation of valuable minerals from ores. Compared with the conventional dissolved air flotation (DAF), EF has many advantages, including high flotation efficiency, compact units, easy operation, and less maintenance. Therefore, EF is an attractive alternative to DAF. This technique has been proven very effective in treating oily wastewater or oil-water emulsion, mining wastewater, groundwater, food processing wastewater, restaurant wastewater, industrial sewage, heavy metals containing effluent, and many other water and wastewaters.
The evaporative drying of sludge by immersion in hot oil: Effects of oil type and temperature.
Ohm, Tae-In; Chae, Jong-Seong; Lim, Kwang-Soo; Moon, Seung-Hyun
2010-06-15
We investigated the evaporative drying by immersion in hot oil (EDIHO) method for drying sludge. This involved heating oil to a temperature higher than that needed for moisture to be evaporated from the sludge by turbulent heat and mass transfer. We fry-dried sewage and leather plant sludge for 10 min in each of four different oils (waste engine, waste cooking, refined waste, and B-C heavy) and three different temperatures (140 degrees C, 150 degrees C, and 160 degrees C). Drying efficiency was found to be greater for higher temperatures. However, giving consideration to energy efficiency we suggest that the optimal temperature for fry-drying sludge is 150 degrees C. At 150 degrees C, the water content of sewage sludge reduced from 78.9% to between 1.5% (with waste cooking oil) and 3.8% (with waste engine oil). The reduction in water content for leather plant sludge fry-dried at 150 degrees C was from 81.6% to between 1% (with waste cooking oil) and 6.5% (with refined waste oil). The duration of the constant rate-drying period was also influenced by the type of oil used: refined waste oil>waste engine oil>B-C heavy oil>waste cooking oil. The duration at 150 degrees C with waste cooking oil was 3 min for sewage sludge and 2 min for leather plant sludge. It is likely that the drying characteristics of oil are influenced by its thermal properties, including its specific heat, and molecular weight. Copyright 2010 Elsevier B.V. All rights reserved.
Naser, Humood A
2013-07-15
The Arabian Gulf is considered among the highest anthropogenically impacted regions in the world. Heavy metals contamination in coastal and marine environments is becoming an increasingly serious threat to both the naturally stressed marine ecosystems and humans that rely on marine resources for food, industry and recreation. Heavy metals are introduced to coastal and marine environments through a variety of sources and activities including sewage and industrial effluents, brine discharges, coastal modifications and oil pollution. The present paper reviews heavy metal contamination in a variety of marine organisms, and sediments, and suggests measures for environmental management of heavy metal pollution in the Arabian Gulf. Most of the reviewed literature confirmed that heavy metal concentrations in marine organisms were generally within allowable concentrations and pose no threat to public health. Likewise, studies suggested that levels of heavy metals in marine sediments are similar or lower compared to other regions. However, localized hotspots of chronic metal pollution in areas influenced by industrial facilities, desalination plants, and oil refineries have been reported. Holistic spatial and temporal monitoring and comprehensive national and regional strategies are critical to combat and manage heavy metal pollution in the Arabian Gulf. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, F.N. Jr.
The Dynacracking process developed by Hydrocarbon Research, Inc., is a non-catalytic process capable of upgrading heavy oil whose sulfur, metal, and carbon contents may be high. It converts residual stocks to distillates with high naphtha yields, and to synthetic fuel gas of high quality (700-800 Btu/ft/sup 3/). It has esentially no air polution emissions and requires a relatively small amount of water and utilities. The process generates sufficient heat internally such that, except for start-up, no boilers, furnaces, or external heaters are required to operate the plant. Several aspects of the process are discussed: chemistry, hardware, feedstock, flexibility in themore » product mix, product quality, and economics.« less
Application of a low-cost biosurfactant in heavy metal remediation processes.
da Rocha Junior, Rivaldo B; Meira, Hugo M; Almeida, Darne G; Rufino, Raquel D; Luna, Juliana M; Santos, Valdemir A; Sarubbo, Leonie A
2018-05-04
The industrial interest in microbial surfactants has intensified in recent years due to the characteristics of these compounds, such as biodegradability, low toxicity, and effectiveness in removing heavy metals and hydrophobic organic compounds from soil and water. This paper describes the production of a biosurfactant by the yeast Candida tropicalis grown in distilled water with 2.5% molasses, 2.5% frying oil and 4% corn steep liquor. The production of the biosurfactant reached 27 g/l in a 50-l bioreactor with a surface tension of 30 mN/m. Surface tension and engine oil emulsification assays demonstrated the stability of biosurfactant under extreme conditions of temperature and pH as well as in the presence of NaCl. Chemical structures of the biosurfactant were identified using GC-MS and NMR. The isolated biosurfactant was characterised as an anionic molecule capable of reducing the surface tension of water from 70 to 30 mN/m at 0.5% of the critical micelle concentration, with no toxic effects on plant seeds or brine shrimp. In tests involving both the crude and isolated biosurfactant for the removal of heavy metals from contaminated sand under dynamic conditions, the removal rates for Zn and Cu ranged from 30 to 80%, while the best removal rate for Pb was 15%. Tests in packed columns also confirmed the ability of biosurfactant to remove Cu and Zn at rates ranging from 45 to 65%. However, lead was not removed under static conditions. The removal kinetics demonstrated that 30 min was sufficient for the removal of metals and a single washing with the biosurfactant achieved greater removal efficiency. The use of the biosurfactant led to a significant reduction in the electrical conductivity of solutions containing heavy metals. The present findings as well as a brief economic analysis suggest the great potential of this agent for industrial remediation processes of soil and water polluted with inorganic contaminants.
Production of petroleum bitumen by oxidation of heavy oil residue with sulfur
NASA Astrophysics Data System (ADS)
Tileuberdi, Ye.; Akkazyn, Ye. A.; Ongarbayev, Ye. K.; Imanbayev, Ye. I.; Mansurov, Z. A.
2018-03-01
In this paper production of bitumen adding elemental sulfur at oxidation of oil residue are investigated. The objects of research were distilled residue of Karazhanbas crude oil and elemental sulfur. These oil residue characterized by a low output of easy fractions and the high content of tar-asphaltene substances, therefore is the most comprehensible feedstock for producing bitumen. The sulfur is one of the oil product collected in oil extraction regions. Oxidation process of hydrocarbons carried out at temperatures from 180 up to 210 °С without addition of sulfur and with the addition of sulfur (5-10 wt. %) for 4 hours. At 200 °С oxidation of hydrocarbons with 5, 7 and 10 wt.% sulfur within 3-4 h allows receiving paving bitumen on the mark BND 200/300, BND 130/200, BN 90/130 and BN 70/30. Physical and mechanical characteristics of oxidation products with the addition of 5-7 wt. % sulfur corresponds to grade of paving bitumen BND 40/60. At the given temperature oxidized for 2.5-3 h, addition of 10 wt. % sulfur gave the products of oxidation describing on parameters of construction grades of bitumen (BN 90/10).
GREEN BEAST™ OIL SPILL & ODOR REMEDIATOR
Technical product bulletin: this surface washing agent used in oil spill cleanups works best applied at high pressure, for treating hydrocarbons on beaches, rocks, and hard surfaces. Preferably applied over 3 consecutive days on heavy spills.
Technical product bulletin: this miscellaneous oil spill control agent used in cleanups makes heavy crudes more pumpable, and breaks adhesion between oils and soil, rock, or sand. Works best on soil/sand placed into a device that can mechanically agitate.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-24
... associated with climate change in addition to securing energy independence through reduction of oil imports... (NHTSA) is denying the petition of Plant Oil Powered Diesel Fuel Systems, Inc. (``POP Diesel'') to amend... petitioner's assertion that a failure to specifically consider pure vegetable oil, and technology to enable...
Pyrolysis oil combustion in a horizontal box furnace with an externally mixed nozzle
USDA-ARS?s Scientific Manuscript database
Combustion characteristics of neat biomass fast-pyrolysis oil were studied in a horizontal combustion chamber with a rectangular cross-section. An air-assisted externally mixed nozzle known to successfully atomize heavy fuel oils was installed in a modified nominal 100 kW (350,000 BTU/h nominal cap...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhikun; Zhang, Lei; Li, Aimin, E-mail: leeam@dlut.edu.cn
Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment.more » In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm{sup 3}, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications.« less
Experimental and numerical investigation of the Fast-SAGD process
NASA Astrophysics Data System (ADS)
Shin, Hyundon
The SAGD process has been tested in the field, and is now in a commercial stage in Western Canadian oil sands areas. The Fast-SAGD method can partly solve the drilling difficulty and reduce costs in a SAGD operation requiring paired parallel wells one above the other. This method also enhances the thermal efficiency in the reservoir. In this research, the reservoir parameters and operating conditions for the SAGD and Fast-SAGD processes are investigated by numerical simulation in the three Alberta oil sands areas. Scaled physical model experiments, which are operated by an automated process control system, are conducted under high temperature and high pressure conditions. The results of the study indicate that the shallow Athabasca-type reservoir, which is thick with high permeability (high kxh), is a good candidate for SAGD application, whereas Cold Lake- and Peace River-type reservoirs, which are thin with low permeability, are not as good candidates for conventional SAGD implementation. The simulation results indicate improved energy efficiency and productivity in most cases for the Fast-SAGD process; in those cases, the project economics were enhanced compared to the SAGD process. Both Cold Lake- and Peace River-type reservoirs are good candidates for a Fast-SAGD application rather than a conventional SAGD application. This new process demonstrates improved efficiency and lower costs for extracting heavy oil from these important reservoirs. A new economic indicator, called simple thermal efficiency parameter (STEP), was developed and validated to evaluate the performance of a SAGD project. STEP is based on cumulative steam-oil ratio (CSOR), calendar day oil rate (CDOR) and recovery factor (RF) for the time prior to the steam-oil ratio (SOR) attaining 4. STEP can be used as a financial metric quantitatively as well as qualitatively for this type of thermal project. An automated process control system was set-up and validated, and has the capability of controlling and handling steam injection processes like the steam-assisted gravity drainage process. The results of these preliminary experiments showed the overall cumulative oil production to be larger in the Fast-SAGD case, but end-point CSOR to be lower in the SAGD case. History matching results indicated that the steam quality was as low as 0.3 in the SAGD experiments, and even lower in the Fast-SAGD experiments after starting the CSS.
Offshore industry: management of health hazards in the upstream petroleum industry.
Niven, Karen; McLeod, Ron
2009-08-01
Upstream oil and gas operations involve a range of activities, including exploration and drilling, conventional oil and gas production, extraction and processing of 'tar sands', heavy oil processing and pipeline operations. Firstly, to outline the nature of health risks in the offshore oil and gas industry to date. Secondly, to outline the commercial, technical and social challenges that could influence the future context of health management in the industry. Thirdly, to speculate how the health function within the industry needs to respond to these challenges. A review of the published literature was supplemented with industry subject matter and expert opinion. There was a relatively light peer-reviewed published literature base in an industry which is perceived as having changed little over three decades, so far as offshore health hazards for physical, chemical, biological hazards are concerned. Recent focus has been on musculoskeletal disorders and stress. The relative stability of the knowledge base regarding health hazards offshore may change as more innovative methods are employed to develop hydrocarbon resources in more 'difficult' environments. Society's willingness to accept risk is changing. Addressing potential health risks should be done much earlier in the planning process of major projects. This may reveal a skills gap in health professionals as a consequence of needing to employ more anticipatory tools, such as modelling exposure estimations and the skills and willingness to engage effectively with engineers and other HSSE professionals.
Analysis of Level of Technogenic Impact on Water Area of Uglovoy Bay
NASA Astrophysics Data System (ADS)
Petukhov, V. I.; Petrova, E. A.; Losev, O. V.
2017-11-01
Industrial effluent discharge and man-induced soil fills play a decisive role in increased pollutant concentrations. Several areas which are unfavorable in terms of the heavy metal and oil product content have been identified by the environmental monitoring results in the Uglovoy Bay in February 2015. Maximum permissible concentrations (MPC) of heavy metals and oil products were exceeded in the northeastern part of the Uglovoy Bay in locations where the Peschanka River and the Aerodromnaya River drain into the sea. Integral heavy-metal index calculations showed that this area is the most polluted in the Uglovoy Bay. Other significantly polluted areas were identified off the Zima Yuzhnaya settlement in the mouth of the bay and in vicinity of the low-level bridge.
Interfacial sciences in unconventional petroleum production: from fundamentals to applications.
He, Lin; Lin, Feng; Li, Xingang; Sui, Hong; Xu, Zhenghe
2015-08-07
With the ever increasing demand for energy to meet the needs of growth in population and improvement in the living standards in particular in developing countries, the abundant unconventional oil reserves (about 70% of total world oil), such as heavy oil, oil/tar sands and shale oil, are playing an increasingly important role in securing global energy supply. Compared with the conventional reserves unconventional oil reserves are characterized by extremely high viscosity and density, combined with complex chemistry. As a result, petroleum production from unconventional oil reserves is much more difficult and costly with more serious environmental impacts. As a key underpinning science, understanding the interfacial phenomena involved in unconventional petroleum production, such as oil liberation from host rocks, oil-water emulsions and demulsification, is critical for developing novel processes to improve oil production while reducing GHG emission and other environmental impacts at a lower operating cost. In the past decade, significant efforts and advances have been made in applying the principles of interfacial sciences to better understand complex unconventional oil-systems, while many environmental and production challenges remain. In this critical review, the recent research findings and progress in the interfacial sciences related to unconventional petroleum production are critically reviewed. In particular, the chemistry of unconventional oils, liberation mechanisms of oil from host rocks and mechanisms of emulsion stability and destabilization in unconventional oil production systems are discussed in detail. This review also seeks to summarize the current state-of-the-art characterization techniques and brings forward the challenges and opportunities for future research in this important field of physical chemistry and petroleum.
Methanogenic Hydrocarbon Degradation: Evidence from Field and Laboratory Studies.
Jiménez, Núria; Richnow, Hans H; Vogt, Carsten; Treude, Tina; Krüger, Martin
2016-01-01
Microbial transformation of hydrocarbons to methane is an environmentally relevant process taking place in a wide variety of electron acceptor-depleted habitats, from oil reservoirs and coal deposits to contaminated groundwater and deep sediments. Methanogenic hydrocarbon degradation is considered to be a major process in reservoir degradation and one of the main processes responsible for the formation of heavy oil deposits and oil sands. In the absence of external electron acceptors such as oxygen, nitrate, sulfate or Fe(III), fermentation and methanogenesis become the dominant microbial metabolisms. The major end product under these conditions is methane, and the only electron acceptor necessary to sustain the intermediate steps in this process is CO2, which is itself a net product of the overall reaction. We are summarizing the state of the art and recent advances in methanogenic hydrocarbon degradation research. Both the key microbial groups involved as well as metabolic pathways are described, and we discuss the novel insights into methanogenic hydrocarbon-degrading populations studied in laboratory as well as environmental systems enabled by novel cultivation-based and molecular approaches. Their possible implications on energy resources, bioremediation of contaminated sites, deep-biosphere research, and consequences for atmospheric composition and ultimately climate change are also addressed. © 2016 S. Karger AG, Basel.
Improved oilfield GHG accounting using a global oilfield database
NASA Astrophysics Data System (ADS)
Roberts, S.; Brandt, A. R.; Masnadi, M.
2016-12-01
The definition of oil is shifting in considerable ways. Conventional oil resources are declining as oil sands, heavy oils, and others emerge. Technological advances mean that these unconventional hydrocarbons are now viable resources. Meanwhile, scientific evidence is mounting that climate change is occurring. The oil sector is responsible for 35% of global greenhouse gas (GHG) emissions, but the climate impacts of these new unconventional oils are not well understood. As such, the Oil Climate Index (OCI) project has been an international effort to evaluate the total life-cycle environmental GHG emissions of different oil fields globally. Over the course of the first and second phases of the project, 30 and 75 global oil fields have been investigated, respectively. The 75 fields account for about 25% of global oil production. For the third phase of the project, it is aimed to expand the OCI to contain closing to 100% of global oil production; leading to the analysis of 8000 fields. To accomplish this, a robust database system is required to handle and manipulate the data. Therefore, the integration of the data into the computer science language SQL (Structured Query Language) was performed. The implementation of SQL allows users to process the data more efficiently than would be possible by using the previously established program (Microsoft Excel). Next, a graphic user interface (gui) was implemented, in the computer science language of C#, in order to make the data interactive; enabling people to update the database without prior knowledge of SQL being necessary.
Santos, Danyelle K. F.; Resende, Ana H. M.; de Almeida, Darne G.; Soares da Silva, Rita de Cássia F.; Rufino, Raquel D.; Luna, Juliana M.; Banat, Ibrahim M.; Sarubbo, Leonie A.
2017-01-01
The aim of the present study was to investigate the potential application of the biosurfactant from Candida lipolytica grown in low-cost substrates, which has previously been produced and characterized under optimized conditions as an adjunct material to enhance the remediation processes of hydrophobic pollutants and heavy metals generated by the oil industry and propose the formulation of a safe and stable remediation agent. In tests carried out with seawater, the crude biosurfactant demonstrated 80% oil spreading efficiency. The dispersion rate was 50% for the biosurfactant at a concentration twice that of the CMC. The biosurfactant removed 70% of motor oil from contaminated cotton cloth in detergency tests. The crude biosurfactant also removed 30–40% of Cu and Pb from standard sand, while the isolated biosurfactant removed ~30% of the heavy metals. The conductivity of solutions containing Cd and Pb was sharply reduced after biosurfactants' addition. A product was prepared through adding 0.2% potassium sorbate as preservative and tested over 120 days. The formulated biosurfactant was analyzed for emulsification and surface tension under different pH values, temperatures, and salt concentrations and tested for toxicity against the fish Poecilia vivipara. The results showed that the formulation had no toxicity and did not cause significant changes in the tensoactive capacity of the biomolecule while maintaining activity demonstrating suitability for potential future commercial product formulation. PMID:28507538
NASA Astrophysics Data System (ADS)
Lapshenkov, E. M.; Volkov, V. Y.; Kulagin, V. P.
2018-05-01
The article is devoted to the problem of pattern creation of the NMR sensor signal for subsequent recognition by the artificial neural network in the intelligent device "the electronic tongue". The specific problem of removing redundant data from the spin-spin relaxation signal pattern that is used as a source of information in analyzing the composition of oil and petroleum products is considered. The method is proposed that makes it possible to remove redundant data of the relaxation decay pattern but without introducing additional distortion. This method is based on combining some relaxation decay curve intervals that increment below the noise level such that the increment of the combined intervals is above the noise level. In this case, the relaxation decay curve samples that are located inside the combined intervals are removed from the pattern. This method was tested on the heavy-oil NMR signal patterns that were created by using the Carr-Purcell-Meibum-Gill (CPMG) sequence for recording the relaxation process. Parameters of CPMG sequence are: 100 μs - time interval between 180° pulses, 0.4s - duration of measurement. As a result, it was revealed that the proposed method allowed one to reduce the number of samples 15 times (from 4000 to 270), and the maximum detected root mean square error (RMS error) equals 0.00239 (equivalent to signal-to-noise ratio 418).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott Hara
2007-03-31
The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibilitymore » problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the geomechanical characteristics of the producing formations. The objectives were to further improve reservoir characterization of the heterogeneous turbidite sands, test the proficiency of the three-dimensional geologic and thermal reservoir simulation models, identify the high permeability thief zones to reduce water breakthrough and cycling, and analyze the nonuniform distribution of the remaining oil in place. This work resulted in the redevelopment of the Tar II-A and Tar V post-steamflood projects by drilling several new wells and converting idle wells to improve injection sweep efficiency and more effectively drain the remaining oil reserves. Reservoir management work included reducing water cuts, maintaining or increasing oil production, and evaluating and minimizing further thermal-related formation compaction. The BP2 project utilized all the tools and knowledge gained throughout the DOE project to maximize recovery of the oil in place.« less
Elles-Pérez, Cindy J; Muñoz-Acevedo, Amner; Guzmán, Andrés; Camargo, Hernando; Henao, José
2017-07-01
In this work, NaY zeolite is explored as a possible "template" to obtain porous materials type ZTC from the adsorption of heavy crude oil in a water-oil model system (emulsion). In order to produce the adsorbents, a cationic surfactant is selected to facilitate the adsorption of the crude oil into the pores of the zeolite and to get the composite, which was activated with controlled thermal treatments (T: 700-800 °C and t: 0.5-1 h) in inert conditions (N 2 gaseous). The starting materials, composite and porous carbons were characterized using structural/surface analysis techniques (API Gravity, SARA, IR, XRD, XRF, TGA, Langmuir isotherms, BET and SEM). The results showed that four types of mesoporous carbons were produced with specific surface areas between 70 ± 1 m 2 /g and 220 ± 3 m 2 /g, average pore volumes between 0.144 cm 3 /g and 0.40 cm 3 /g and average pore widths between 4.9 nm and 8.3 nm. The activation conditions of 800 °C and 1 h allowed to make the carbonaceous material with the best surface characteristics (220 ± 3 m 2 /g, 0.27 cm 3 /g, and 4.9 nm). Therefore, it is concluded that under assay conditions employed, the heavy crude oil, as a mixed model (water-oil), from an aqueous environment is a starting material suitable for preparation of "mesoporous" carbons. Copyright © 2017 Elsevier Ltd. All rights reserved.
Co-Liquefaction of Elbistan Lignite with Manure Biomass; Part 1. Effect of Catalyst Concentration
NASA Astrophysics Data System (ADS)
Koyunoglu, Cemil; Karaca, Hüseyin
2017-12-01
The hydrogenation of coal by molecular hydrogen has not been appreciable unless a catalyst has been used, especially at temperatures below 500 °C. Conversion under these conditions is essentially the result of the pyrolysis of coal, although hydrogen increases the yield of conversion due to the stabilization of radicals and other reactive species. Curtis and his co-workers has shown that highly effective and accessible catalyst are required to achieve high levels of oil production from the coprocessing of coal and heavy residua. In their work, powdered hydrotreating catalyst at high loadings an oil-soluble metal salts of organic acids as catalyst precursors achieved the highest levels of activity for coal conversion and oil production. Red mud which is iron-based catalysed has been used in several co-processing studies. It was used as an inexpensive sulphur sink for the H2S evolved to convert Fe into pyrrohotite during coal liquefaction. In this study, Elbistan Lignite (EL) processed with manure using red mud as a catalyst with the range of concentration from 3% to 12%. The main point of using red mud catalyst is to enhance oil products yield of coal liquefaction, which deals with its catalytic activity. On the other hand, red mud acts on EL liquefaction with manure as a catalyst and represents an environmental option to produce lower sulphur content oil products as well.
El Hanandeh, Ali
2013-04-01
The olive oil industry in Australia has been growing at a rapid rate over the past decade. It is forecast to continue growing due to the steady increase in demand for olive oil and olive products in the local and regional market. However, the olive oil extraction process generates large amounts of solid waste called olive husk which is currently underutilized. This paper uses life-cycle methodology to analyse the carbon emission reduction potential of utilizing olive husk as a feedstock in a mobile pyrolysis unit. Four scenarios, based on different combinations of pyrolysis technologies (slow versus fast) and end-use of products (land application versus energy utilization), are constructed. The performance of each scenario under conditions of uncertainty was also investigated. The results show that all scenarios result in significant carbon emission abatement. Processing olive husk in mobile fast pyrolysis units and the utilization of bio-oil and biochar as substitutes for heavy fuel oil and coal is likely to realize a carbon offset greater than 32.3 Gg CO2-eq annually in 90% of the time. Likewise, more than 3.2 Gg-C (11.8 Gg CO2-eq) per year could be sequestered in the soil in the form of fixed carbon if slow mobile pyrolysis units were used to produce biochar.
21 CFR 172.723 - Epoxidized soybean oil.
Code of Federal Regulations, 2014 CFR
2014-04-01
... incorporation by reference is given in paragraph (b)(1) of this section. (3) The heavy metals (as Pb) content cannot be more than 10 parts per million, as determined by the “Heavy Metals Test,” of the “Food...
Separations and characterizations of fractions from Mayan, Heavy Arabian, and Hondo crude oils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kircher, C.C.
1991-01-01
This paper reports on Mayan, Heavy Arabian, and Hondo crude oil resids separated with a modified, extended ASTM D2007 procedure. The fractions obtained have been characterized with various analytical techniques. Chemical properties, hydrodesulfurization, and hydrodemetallation activities of the resids have been correlated with the chemical properties of the separated fractions. Many correlations were indicative of the overall bulk properties of the resids and the broad chemical classes obtained from the separation schemes. Other correlations reflected the unique chemical nature of each crude oil resid. Some potentially important correlations were found between hydrodesulfurization activity and sulfur concentration in polars and asphaltenes,more » and between hydrodemetallation activity and nitrogen concentration in the acid and bases fractions.« less
Impact of 50% Synthesized Iso-Paraffins (SIP) on Middle Distillate Fuel Filtration and Coalescence
2014-10-30
Paraffins DEFINITIONS Coalescence - the ability to shed water Conventional Material Source - crude oil, natural gas liquid condensates...heavy oil, shale oil, and oil sands Effluent - stream leaving a system Influent - stream entering a system Turnover - time required to flow the...separators are used onboard naval vessels (required onboard gas turbine ships and some diesel engine ships) and at shore stations to reduce solid and free
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott Hara
2001-06-27
The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands,more » high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.« less
Yuan, Xingzhong; Leng, Lijian; Huang, Huajun; Chen, Xiaohong; Wang, Hou; Xiao, Zhihua; Zhai, Yunbo; Chen, Hongmei; Zeng, Guangming
2015-02-01
Liquefaction bio-oil (LBO) produced with ethanol (or acetone) as the solvent and pyrolysis bio-oil (PBO) produced at 550°C (or 850°C) from sewage sludge (SS) were produced, and were characterized and evaluated in terms of their heavy metal (HM) composition. The total concentration, speciation and leaching characteristic of HMs (Cu, Cr, Pb, Zn, Cd, and Ni) in both LBO and PBO were investigated. The total concentration and exchangeable fraction of Zn and Ni in bio-oils were at surprisingly high levels. Quantitative risk assessment of HM in bio-oils was performed by the method of risk assessment code (RAC), potential ecological risk index (PERI) and geo-accumulation index (GAI). Ni in bio-oil produced by pyrolysis at 850°C (PBO850) and Zn in bio-oil by liquefaction at 360°C with ethanol as solvent (LBO-360E) were evaluated to possess very high risk to the environment according to RAC. Additionally, Cd in PBO850 and LBO-360E were evaluated by PERI to have very high risk and high risk, respectively, while Cd in all bio-oils was assessed moderately contaminated according to GAI. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, S.C.; Manwani, P.
Coal-water slurries have been regarded as a potential substitute for heavy fuel oil. Various demonstrations of coal-water slurry combustion have been performed; however, a fundamental understanding of how the combustion process of a slurry fuel is enhanced is still not adequate. The combustion of coal-water mixture droplets suspended on microthermocouples has been investigated. It was found that droplets of lignite coal (which is a noncaking coal) burn effectively; however, droplets of bituminous coal (which is a caking coal) are relatively difficult to burn. During the heat-up of bituminous coal-water slurry droplets may turn to ''popcorn'' and show significant agglomeration. Themore » incomplete combustion of coal-water slurry droplets in furnaces has been reported, and this is a drawback of this process. The objective of the present study is to explore the possibility of enhancing the combustion of coal-water slurry droplets with the use of a combustible emulsified oil.« less
Direct use of methane in coal liquefaction
Sundaram, M.S.; Steinberg, M.
1985-06-19
This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20 to 120 minutes at a temperature of 250 to 750/sup 0/C, preferably 350 to 450/sup 0/C, pressurized up to 6000 psi, and preferably in the 1000 to 2500 psi range, preferably directly utilizing methane 50 to 100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0 to 100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems. 1 fig.
Applications of de-oiled microalgal biomass towards development of sustainable biorefinery.
Maurya, Rahulkumar; Paliwal, Chetan; Ghosh, Tonmoy; Pancha, Imran; Chokshi, Kaumeel; Mitra, Madhusree; Ghosh, Arup; Mishra, Sandhya
2016-08-01
In view of commercialization of microalgal biofuel, the de-oiled microalgal biomass (DMB) is a surplus by-product in the biorefinery process that needs to be exploited to make the process economically attractive and feasible. This DMB, rich in carbohydrates, proteins, and minerals, can be used as feed, fertilizer, and substrate for the production of bioethanol/bio-methane. Further, thermo-chemical conversion of DMB results into fuels and industrially important chemicals. Future prospects of DMB also lie with its conversion into novel biomaterials like nanoparticles and carbon-dot which have biomedical importance. The lowest valued application of DMB is to use it for adsorption of dyes and heavy metals from industrial effluents. This study reviews how DMB can be utilized for different applications and in the generation of valuable co-products. The value addition of DMB would thereby improve the overall cost economics of the microalgal bio-refinery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Emulsion of an in-situ surfactant in petroleum. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-12-01
Three emulsifiers were tested for their ability to reduce the viscosity of heavy oils. A reduction of 25% viscosity is achieved using polybutene. A reduction of 50% viscosity is achieved using a concentrated ionic detergent obtained from SANDOZ. The most promising emulsifiers is a lipopeptide. Preliminary studies show this emulsifier reduces the viscosity of heavy oils by as much as 80%. It is also able to reduce the surface tension of water by 35%. This emulsifier is also biodegradable and less toxic than synthetic surfactants. (DMC)
Impacts of the Venezuelan Crude Oil Production Loss
2003-01-01
This assessment of the Venezuelan petroleum loss examines two areas. The first part of the analysis focuses on the impact of the loss of Venezuelan crude production on crude oil supply for U.S. refiners who normally run a significant fraction of Venezuelan crude oil. The second part of the analysis looks at the impact of the Venezuelan production loss on crude markets in general, with particular emphasis on crude oil imports, refinery crude oil throughput levels, stock levels, and the changes in price differences between light and heavy crude oils.
Hindered diffusion of coal liquids. Quarterly report No. 12, June 18, 1995--September 17, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsotsis, T.T.; Sahimi, M.; Webster, I.A.
1995-12-31
The design of industrial catalysts requires that the diffusivity of the reacting species within the catalyst be accurately known. Nowhere is this more important than in the area of coal liquefaction and upgrading of coal liquids. In this area one is faced with the task of processing a number of heavy oils, containing metals and other contaminants, in a variety of process dependent solvents. It is important, therefore, on the basis of predicting catalyst activity, selectivity, and optimizing reactor performance, that the diffusivities of these oil species be accurately known. It is the purpose of the project described here tomore » provide such a correct concept of coal asphaltenes by careful and detailed investigations of asphaltene transport through porous systems under realistic process temperature and pressure conditions. The experimental studies will be coupled with detailed, in-depth statistical and molecular dynamics models intended to provide a fundamental understanding of the overall transport mechanisms.« less
Escaping America’s Future: A Clarion Call for a National Energy Security Strategy
2010-06-01
the heavy oils, the air by means of the ultra refined oils, and the land by means of the petrol and the illuminating oils. And in addition to these he... Deepwater Horizon oil spill incident in the Gulf, although classified an accident, demonstrates how damaging a potential attack on infrastructure could...energy, but has suffered recent setbacks due to the Deepwater Horizon oil spill in the Gulf of Mexico. The Outer Continental Shelf surrounding the
Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis.
Vogt, E T C; Weckhuysen, B M
2015-10-21
Fluid catalytic cracking (FCC) is one of the major conversion technologies in the oil refinery industry. FCC currently produces the majority of the world's gasoline, as well as an important fraction of propylene for the polymer industry. In this critical review, we give an overview of the latest trends in this field of research. These trends include ways to make it possible to process either very heavy or very light crude oil fractions as well as to co-process biomass-based oxygenates with regular crude oil fractions, and convert these more complex feedstocks in an increasing amount of propylene and diesel-range fuels. After providing some general background of the FCC process, including a short history as well as details on the process, reactor design, chemical reactions involved and catalyst material, we will discuss several trends in FCC catalysis research by focusing on ways to improve the zeolite structure stability, propylene selectivity and the overall catalyst accessibility by (a) the addition of rare earth elements and phosphorus, (b) constructing hierarchical pores systems and (c) the introduction of new zeolite structures. In addition, we present an overview of the state-of-the-art micro-spectroscopy methods for characterizing FCC catalysts at the single particle level. These new characterization tools are able to explain the influence of the harsh FCC processing conditions (e.g. steam) and the presence of various metal poisons (e.g. V, Fe and Ni) in the crude oil feedstocks on the 3-D structure and accessibility of FCC catalyst materials.
Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis
2015-01-01
Fluid catalytic cracking (FCC) is one of the major conversion technologies in the oil refinery industry. FCC currently produces the majority of the world's gasoline, as well as an important fraction of propylene for the polymer industry. In this critical review, we give an overview of the latest trends in this field of research. These trends include ways to make it possible to process either very heavy or very light crude oil fractions as well as to co-process biomass-based oxygenates with regular crude oil fractions, and convert these more complex feedstocks in an increasing amount of propylene and diesel-range fuels. After providing some general background of the FCC process, including a short history as well as details on the process, reactor design, chemical reactions involved and catalyst material, we will discuss several trends in FCC catalysis research by focusing on ways to improve the zeolite structure stability, propylene selectivity and the overall catalyst accessibility by (a) the addition of rare earth elements and phosphorus, (b) constructing hierarchical pores systems and (c) the introduction of new zeolite structures. In addition, we present an overview of the state-of-the-art micro-spectroscopy methods for characterizing FCC catalysts at the single particle level. These new characterization tools are able to explain the influence of the harsh FCC processing conditions (e.g. steam) and the presence of various metal poisons (e.g. V, Fe and Ni) in the crude oil feedstocks on the 3-D structure and accessibility of FCC catalyst materials. PMID:26382875
21 CFR 172.723 - Epoxidized soybean oil.
Code of Federal Regulations, 2013 CFR
2013-04-01
... given in paragraph (b)(1) of this section. (3) The heavy metals (as Pb) content cannot be more than 10 parts per million, as determined by the “Heavy Metals Test,” of the “Food Chemicals Codex,” 4th ed...
Berdugo-Clavijo, Carolina; Gieg, Lisa M.
2014-01-01
The methanogenic biodegradation of crude oil is an important process occurring in petroleum reservoirs and other oil-containing environments such as contaminated aquifers. In this process, syntrophic bacteria degrade hydrocarbon substrates to products such as acetate, and/or H2 and CO2 that are then used by methanogens to produce methane in a thermodynamically dependent manner. We enriched a methanogenic crude oil-degrading consortium from production waters sampled from a low temperature heavy oil reservoir. Alkylsuccinates indicative of fumarate addition to C5 and C6 n-alkanes were identified in the culture (above levels found in controls), corresponding to the detection of an alkyl succinate synthase encoding gene (assA/masA) in the culture. In addition, the enrichment culture was tested for its ability to produce methane from residual oil in a sandstone-packed column system simulating a mature field. Methane production rates of up to 5.8 μmol CH4/g of oil/day were measured in the column system. Amounts of produced methane were in relatively good agreement with hydrocarbon loss showing depletion of more than 50% of saturate and aromatic hydrocarbons. Microbial community analysis revealed that the enrichment culture was dominated by members of the genus Smithella, Methanosaeta, and Methanoculleus. However, a shift in microbial community occurred following incubation of the enrichment in the sandstone columns. Here, Methanobacterium sp. were most abundant, as were bacterial members of the genus Pseudomonas and other known biofilm forming organisms. Our findings show that microorganisms enriched from petroleum reservoir waters can bioconvert crude oil components to methane both planktonically and in sandstone-packed columns as test systems. Further, the results suggest that different organisms may contribute to oil biodegradation within different phases (e.g., planktonic vs. sessile) within a subsurface crude oil reservoir. PMID:24829563
Chen, Chun-Chi; Lee, Wen-Jhy
2008-01-01
The limited data for using emulsified oil have demonstrated its effectiveness in reducing flue gas pollutant emissions. The presence of a high concentration of toxic organic compounds in industrial wastewaters always presents significant problems. Therefore, this study was undertaken by using wastewater with COD of 9600 mg/L and total petroleum hydrocarbons-gasoline 440 mg/L for making an emulsified oil (wastewater content 20% with 0.1% surfactant) to evaluate the extent of reductions in both criteria pollutants and polycyclic aromatic hydrocarbons. For comparison, two other systems (heavy oil fuel and water-emulsified oil) were also conducted. The wastewater-emulsified oil fuel results in significant reductions in particulate matter (PM), NO(x), SO2, and CO as compared to heavy oil fuel and similar to those from water/oil emulsified fuel; for PM, it is better in wastewater-emulsified oil. The reductions of total PAH flue gas emissions are 38 and 30% for wastewater- and water-emulsified fuel, respectively; they are 63 and 44% for total BaP(eq), respectively. In addition to reducing flue gas pollutant emissions, the results also demonstrate that the use of wastewater-emulsified fuel in boiler operation provides several advantages: (1) safe disposal of industrial wastewater; and (2) energy savings of about 13%. Thus, wastewater/oil-emulsified fuel is highly suitable for use in boilers.
Yihan, Sun; Mingming, Liu; Guo, Zhiguang
2018-05-19
Herein, a catalytic mesh with unique wettability, high oil-water separation efficiency and excellent catalytic performance towards aromatic dyes was fabricated. Polypyrrole (PPy) was firstly pre-coated on pristine stainless-steel mesh (SSM) surface via cyclic voltammetry approach. Subsequently, a simple electrodeposition process was performed to prepare and anchor Ag nanoparticles (AgNPs) onto the PPy-coated SSM surface. The PPy-coated mesh with anchored AgNPs was denoted as PPy/AgNPs-coated SSM. The obtained PPy/AgNPs-coated SSM exhibited dual superlyophobic properties and were able to achieve on-demand separation to deal with various of light oil (ρ oil < ρ water ) and heavy oil (ρ oil > ρ water )-water mixtures. Importantly, benefitting from AgNPs on mesh surface, the obtained PPy/AgNPs-coated SSM exhibits exceptional catalytic activity. As proof-of-concept three typical aromatic dye molecules (methylene blue, rhodamine B and Congo red) can be effectivity degraded. Additionally, the degradation of aromatic dyes and oil-water separation were achieved simultaneously when the PPy/AgNPs-coated SSM was converted to water-removing mode. Therefore, the present work is of great significance to the development of novel oil-water filtration membranes and can open a new avenue towards the practicability of metal nanoparticle catalysts in wastewater treatment. Copyright © 2018 Elsevier Inc. All rights reserved.
Luan, Jingde; Li, Aimin; Su, Tong; Li, Xuan
2009-07-30
Oil shale and fly ash collected from two thermal power plants located in Huadian, the northeast city of China were subjected to fraction distribution, translocation regularity and toxicity assessment to provide preliminary assessment of suitability for land application. By Tessier sequential extraction, the results showed that Ni, Cr, Pb and Zn were mostly bounded with iron-manganese and organic bound in oil shale, but Cu and Cd were mostly associated with iron-manganese bound and residue fraction. Through circulated fluidized-bed combustion, high concentration of heavy metals (Cu, Cd, Ni, Cr, Pb, and Zn) was found in iron-manganese bound and residue fraction in fly ash. There was accumulation of all studied metals except Ni and Cr in fly ash and translocation mass of metals were as follows: Pb>Zn>Cu>Cd during circulated fluidized-bed combustion. Fly ash was contaminated with Cd higher than the pollution concentration limits listed in GB15168-1995, China. This work demonstrated that it was unadvisable way to carry out landfill without any treatment. By means of STI model, toxicity assessment of heavy metals was carried out to show that there was notable increase in toxicity from oil shale to fly ash.
21 CFR 172.723 - Epoxidized soybean oil.
Code of Federal Regulations, 2012 CFR
2012-04-01
... paragraph (b)(1) of this section. (3) The heavy metals (as Pb) content cannot be more than 10 parts per million, as determined by the “Heavy Metals Test,” of the “Food Chemicals Codex,” 4th ed. (1996), pp. 760...
Rüger, Christopher P; Schwemer, Theo; Sklorz, Martin; O'Connor, Peter B; Barrow, Mark P; Zimmermann, Ralf
2017-02-01
The analysis of petrochemical materials and particulate matter originating from combustion sources remains a challenging task for instrumental analytical techniques. A detailed chemical characterisation is essential for addressing health and environmental effects. Sophisticated instrumentation, such as mass spectrometry coupled with chromatographic separation, is capable of a comprehensive characterisation, but needs advanced data processing methods. In this study, we present an improved data processing routine for the mass chromatogram obtained from gas chromatography hyphenated to atmospheric pressure chemical ionisation and ultra high resolution mass spectrometry. The focus of the investigation was the primary combustion aerosol samples, i.e. particulate matter extracts, as well as the corresponding fossil fuels fed to the engine. We demonstrate that utilisation of the entire transient and chromatographic information results in advantages including minimisation of ionisation artefacts and a reliable peak assignment. A comprehensive comparison of the aerosol and the feed fuel was performed by applying intensity weighted average values, compound class distribution and principle component analysis. Certain differences between the aerosol generated with the two feed fuels, diesel fuel and heavy fuel oil, as well as between the aerosol and the feed were revealed. For the aerosol from heavy fuel oil, oxidised species from the CHN and CHS class precursors of the feed were predominant, whereas the CHO x class is predominant in the combustion aerosol from light fuel oil. Furthermore, the complexity of the aerosol increases significantly compared to the feed and incorporating a higher chemical space. Coupling of atmospheric pressure chemical ionisation to gas chromatography was found to be a useful additional approach for characterisation of a combustion aerosol, especially with an automated utilisation of the information from the ultra-high resolution mass spectrometer and the chromatographic separation.
Heavy Duty Diesel Exhaust Particles during Engine Motoring Formed by Lube Oil Consumption.
Karjalainen, Panu; Ntziachristos, Leonidas; Murtonen, Timo; Wihersaari, Hugo; Simonen, Pauli; Mylläri, Fanni; Nylund, Nils-Olof; Keskinen, Jorma; Rönkkö, Topi
2016-11-15
This study reports high numbers of exhaust emissions particles during engine motoring. Such particles were observed in the exhaust of two heavy duty vehicles with no diesel particle filter (DPF), driven on speed ramp tests and transient cycles. A significant fraction of these particles was nonvolatile in nature. The number-weighted size distribution peak was below 10 nm when a thermodenuder was used to remove semivolatile material, growing up to 40 nm after semivolatile species condensation. These particles were found to contribute to 9-13% of total particle number emitted over a complete driving cycle. Engine motoring particles originated from lube oil and evidence suggests that these are of heavy organic or organometallic material. Particles of similar characteristics have been observed in the core particle mode during normal fired engine operation. Their size and chemical character has implications primarily on the environmental toxicity of non-DPF diesel and, secondarily, on the performance of catalytic devices and DPFs. Lube oil formulation measures can be taken to reduce the emission of such particles.
Review of the development of laser fluorosensors for oil spill application.
Brown, Carl E; Fingas, Mervin F
2003-01-01
As laser fluorosensors provide their own source of excitation, they are known as active sensors. Being active sensors, laser fluorosensors can be employed around the clock, in daylight or in total darkness. Certain compounds, such as aromatic hydrocarbons, present in petroleum oils absorb ultraviolet laser light and become electronically excited. This excitation is quickly removed by the process of fluorescence emission, primarily in the visible region of the spectrum. By careful choice of the excitation laser wavelength and range-gated detection at selected emission wavelengths, petroleum oils can be detected and classified into three broad categories: light refined, crude or heavy refined. This paper will review the development of laser fluorosensors for oil spill application, with emphasis on system components such as excitation laser source, and detection schemes that allow these unique sensors to be employed for the detection and classification of petroleum oils. There have been a number of laser fluorosensors developed in recent years, many of which are strictly research and development tools. Certain of these fluorosensors have been ship-borne instruments that have been mounted in aircraft for the occasional airborne mission. Other systems are mounted permanently on aircraft for use in either surveillance or spill response roles.
Hernández-Bravo, R; Miranda, A D; Martínez-Magadán, J-M; Domínguez, J M
2018-04-19
A combined study for understanding the molecular interactions of asphaltenes with molecular species such as ionic liquids (ILs) comprised experimental measurements and computational numerical simulation calculations, using density-functional theory (DFT) with dispersion corrections, molecular dynamics (MD) calculations, and experimental rheological characterization of the heavy crude oils (HCOs), before and after doping with ILs, respectively. The main results show that ILs influence the asphaltenic dimer association by forming supramolecular complexes that modify the properties of crude oils such as viscosity and interfacial tension. The IL-cation and asphaltene-π ligand molecular interactions seem to dominate the interactions between ionic liquids and asphaltenes, where ILs' high aromaticity index induces a strong interaction with the aromatic hard core of asphaltenes.
NASA Astrophysics Data System (ADS)
Jiménez, Núria; Cai, Minmin; Straaten, Nontje; Yao, Jun; Richnow, Hans H.; Krüger, Martin
2015-04-01
Microbial transformation of oil to methane is one of the main degradation processes taking place in oil reservoirs, and it has important consequences as it negatively affects the quality and economic value of the oil. Nevertheless, methane could constitute a recovery method of carbon from exhausted reservoirs. Previous studies combining geochemical and isotopic analysis with molecular methods showed evidence for in situ methanogenic oil degradation in the Dagang oil field, China (Jiménez et al., 2012). However, the main key microbial players and the underlying mechanisms are still relatively unknown. In order to better characterize these processes and identify the main microorganisms involved, laboratory biodegradation experiments under methanogenic conditions were performed. Microcosms were inoculated with production and injection waters from the reservoir, and oil or 13C-labelled single hydrocarbons (e.g. n-hexadecane or 2-methylnaphthalene) were added as sole substrates. Indigenous microbiota were able to extensively degrade oil within months, depleting most of the n-alkanes in 200 days, and producing methane at a rate of 76 ± 6 µmol day-1 g-1 oil added. They could also produce heavy methane from 13C-labeled 2-methylnaphthalene, suggesting that further methanogenesis may occur from the aromatic and polyaromatic fractions of Dagang reservoir fluids. Microbial communities from oil and 2-methyl-naphthalene enrichment cultures were slightly different. Although, in both cases Deltaproteobacteria, mainly belonging to Syntrophobacterales (e.g. Syntrophobacter, Smithella or Syntrophus) and Clostridia, mostly Clostridiales, were among the most represented taxa, Gammaproteobacteria could be only identified in oil-degrading cultures. The proportion of Chloroflexi, exclusively belonging to Anaerolineales (e.g. Leptolinea, Bellilinea) was considerably higher in 2-methyl-naphthalene degrading cultures. Archaeal communities consisted almost exclusively of representatives of Methanomicrobia (mainly belonging to genera Methanosaeta and Methanoculleus). As both syntrophic Bacteria and methanogenic Archaea are abundant in Dagang, the studied areas of this oil field may have a significant potential to test the in situ conversion of oil into methane as a possible way to increase total hydrocarbon recovery.
Distribution and quantitative assessment of world crude oil reserves and resources
Masters, Charles D.; Root, David H.; Dietzman, William D.
1983-01-01
World Demonstrated Reserves of crude oil are approximately 723 billion barrels of oil (BBO). Cumulative production is 445 BBO and annual production is 20 BBO. Demonstrated Reserves of crude-oil have declined over the past 10 years consistent with discoveries lagging production over the same period. The assessment of Undiscovered Resources shows a 90 percent probability that the amount discoverable lies between 321 and 1,417 BBO, 550 BBO being the most likely value. The most likely value for Ultimate recoverable resources is 1,718 BBO. The distribution of Ultimate Resources of crude oil will remain highly skewed toward the Middle East; no frontier areas that have potentials large enough to significantly affect present distribution are recognized. Rates of discovery have continued to decline over the past 20 years even though exploration activity has increased in recent years. Prudence dictates, therefore, that the low side of the assessment of Undiscovered Resources be responsibly considered and that alternate energy sources be a part of future planning. Extra-heavy oil and bitumen are assessed separately, with Reserves being figured as the annual productive capacity of installed facilities times 25 years. The annual production of extra-heavy oil is about 8 million barrels and of bitumen about 60 million barrels.
[Identification of automotive lubricants and other heavy oils by isotachophoresis].
Ishizawa, F; Misawa, S
1989-06-01
Automotive lubricants were analysed by isotachophoresis for the purpose of identification of lubricants and suspected stains adhered to victims in traffic accidents. As the results, it was found that each lubricant showed a characteristic isotachophreogram even if they were manufactured by the same maker, and that the isotachopherogram of the lubricant changed in proportion to the running distance of an automobile. Each lubricant had its own changing rate. Moreover, A, B, C heavy oils, asphalt, soy sauce and sauce, which apparently resembled lubricants when they adhered to victims, were analysed with this method. They were found to be clearly different from lubricants in isotachopherogram and they could be discriminated from lubricants. Therefore, it was found that lubricants could be easily identified or discriminated from other lubricants such as engine oils, gear oils and other oils by comparing their isotachopherograms obtained with this method in a short time. It was, however, difficult to suggest the maker of a lubricant from isotachopherogram. We conclude from these observations that isotachophoresis method is useful for the analysis of lubricants in case of traffic accidents.
Treatment of snorers with a volatile oil: a randomized, double-blind placebo-controlled trial.
Ulfberg, J; Nyström, B
2001-01-01
Snoring is a significant problem both for the patient and for the bed partner. Seventy-two male and female heavy snorers and their bed partners participated in a double-blinded, placebo-controlled study on the effects of a volatile oil administered by gargling. The patients were diagnosed as heavy snorers after they underwent overnight polysomnography showing that their apnea indexes were below 5, thus sleep apnea patients were not included in the study. The participants and their partners filled out evaluations concerning snoring intensity, mouth dryness, nasal stuffiness and the Epworth Sleepiness Scale prior to and after using the volatile oil or placebo for 14 consecutive nights. There were no statistically significant decreases in snoring as graded by the bed partner or in mouth dryness, nasal stuffiness, or the Epworth Sleepiness Scale scores graded by the patients who were randomized to use the volatile oil. The results of this study indicate that this volatile oil is not an effective treatment in patients presenting with symptoms of snoring. Copyright 2001 S. Karger AG, Basel
Li, Zhengkai; Lee, Kenneth; King, Thomas; Boufadel, Michel C; Venosa, Albert D
2010-09-01
The effectiveness of chemical dispersants (Corexit 9500 and SPC 1000) on heavy fuel oil (IFO180 as test oil) has been evaluated under different wave conditions in a flow-through wave tank. The dispersant effectiveness was determined by measuring oil concentrations and droplet size distributions. An analysis of covariance (ANCOVA) model indicated that wave type and temperature significantly (p<0.05) affected the dynamic dispersant effectiveness (DDE). At higher temperatures (16 degrees C), the test IFO180 was effectively dispersed under breaking waves with a DDE of 90% and 50% for Corexit 9500 and SPC 1000, respectively. The dispersion was ineffective under breaking waves at lower temperature (10 degrees C), and under regular wave conditions at all temperatures (10-17 degrees C), with DDE<15%. Effective chemical dispersion was associated with formation of smaller droplets (with volumetric mean diameters or VMD < or = 200 microm), whereas ineffective dispersion produced large oil droplets (with VMD > or = 400 microm). Copyright 2010 Elsevier Ltd. All rights reserved.
Venezuela recasts itself as a new frontier in the Americas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinsch, A.E.
1996-09-01
In January of this year, Venezuela captured the attention of the international energy community by welcoming back the foreign oil companies that, 20 years earlier, it had shut out of the country by nationalizing the hydrocarbon sector. The tool used to attract that attention, a new exploration bidding round, is the most publicized event staged to date in the country`s aperture process. However, it is only the latest in a series of steps taken by officials to bring international oil and gas companies back to Caracas. Venezuela`s physical attraction is easily understood. The country possesses roughly one-half of Latin America`smore » (including Mexico) 125 billion bbl of established, conventional crude oil reserves, plus an estimated 300 billion bbl of additional, nonconventional reserves in the ultra-heavy crude belt of the Orinoco basin. Averaging 2.8 million bpd in 1996, Venezuelan crude production represents over 35% of regional oil output. Natural gas reserves total 138 Tcf, or just over one-half of the region`s total reserves of 274 Tcfg. Annual gas output averages just under 5 Tcf, of which roughly 30% is reinjected as part of tertiary oil recovery schemes. This paper reviews the incentives, deregulation, and government policies to restore the oil and gas industry to the country.« less
2014-05-09
state or reflect those of the United States Government or the DoA, and shall not be used for advertising or product endorsement purposes...Engine Control Module FMTV Family of Medium Tactical Vehicles GO Gear Oil GPS Global Positioning System GVW Gross Vehicle Weight HDO Heavy Duty Oil
Floating Heavy Oil Recovery: Current State Analysis
2006-07-27
recovered oil to a chute cause some build-up of oil, but the retained amount was not considered substantial enough to warrant any design changes. The GT...unit was the Lamor Brush Conveyor (shown in Figure 7) which uses a yellow V- brush design to recover oils and uses a propeller to draw water through...deals with the transfer of product that has already been collected and contained (Moffatt et al., 2004). The Coast Guard Research and Development
NASA Astrophysics Data System (ADS)
Muñoz Pinto, D. A.; Cuervo Camargo, S. M.; Orozco Parra, M.; Laverde, D.; García Vergara, S.; Blanco Pinzon, C.
2016-02-01
Fouling in heat exchangers is produced by the deposition of undesired materials on metal surfaces. As fouling progresses, pressure drop and heat transfer resistance is observed and therefore the overall thermal efficiency of the equipment diminishes. Fouling is mainly caused by the deposition of suspended particles, such as those from chemical reactions, crystallization of certain salts, and some corrosion processes. In order to understand the formation of fouling deposits from Colombian heavy oil (API≈12.3) on carbon steel SA 516 Gr 70, a batch stirred tank reactor was used. The reactor was operated at a constant pressure of 340psi while varying the temperature and reaction times. To evaluate the formation of deposits on the metal surfaces, the steel samples were characterized by gravimetric analysis and Scanning Electron Microscopy (SEM). On the exposed surfaces, the results revealed an increase in the total mass derived from the deposition of salt compounds, iron oxides and alkaline metals. In general, fouling was modulated by both the temperature and the reaction time, but under the experimental conditions, the temperature seems to be the predominant variable that controls and accelerates fouling.
Nitrate-Mediated Microbially Enhanced Oil Recovery (N-MEOR) from model upflow bioreactors.
Gassara, Fatma; Suri, Navreet; Voordouw, Gerrit
2017-02-15
Microbially Enhanced Oil Recovery (MEOR) can enhance oil production with less energy input and less costs than other technologies. The present study used different aqueous electron donors (acetate, glucose, molasses) and an aqueous electron acceptor (nitrate) to stimulate growth of heterotrophic nitrate reducing bacteria (hNRB) to improve production of oil. Initial flooding of columns containing heavy oil (viscosity of 3400cP at 20°C) with CSBK (Coleville synthetic brine medium) produced 0.5 pore volume (PV) of oil. Bioreactors were then inoculated with hNRB with 5.8g/L of molasses and 0, 10, 20, 40, 60 or 80mM nitrate, as well as with 17mM glucose or 57mM acetate and 80mM nitrate. During incubations no oil was produced in the bioreactors that received 5.8g/L of molasses and 0, 10, 20, 40 or 60mM nitrate. However, the bioreactors injected with 5.8g/L of molasses, 17mM glucose or 57mM acetate and 80mM nitrate produced 13.9, 11.3±3.1 and 17.8±6.6% of residual oil, respectively. The significant production of oil from these bioreactors may be caused by N 2 -CO 2 gas production. Following continued injection with CSBK without nitrate, subsequent elution of significant residual oil (5-30%) was observed. These results also indicate possible involvement of fermentation products (organic acids, alcohols) to enhance heavy oil recovery. Copyright © 2016 Elsevier B.V. All rights reserved.
Ko, Young Gun; Kim, Choong Hyun
2006-09-01
In order to prevent engine failure, the oil must be changed before it loses its protective properties. It is necessary to monitor the actual physical and chemical condition of the oil to reliably determine the optimum oil-change interval. Our study focuses on the condition of the lubricating oil in an operated car engine. Shear stress curves and viscosity curves as a function of the shear rate for fresh and used lubricating oil were examined. Metal nitrate was detected in the lubricating oil from the operated car engine through the use of a chelating self-assembled monolayer.
Merox catalyst innovation solves difficult kerosene treating problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verachtert, T.A.; Salazar, J.R.; Staehle, B.E.
1985-03-01
The UOP* Merox* process has enjoyed more than 25 years of successful commercial application. It is applied to treatment of mercaptanrich hydrocarbon streams ranging from a light gas to liquids as heavy as 350/sup 0/C (650/sup 0/F) endpoint diesel fuel. Although Merox has been applied successfully to many kerosenes, there are kerosenes from certain crudes that could not be treated using the standard Merox system. Recent UOP Merox research has centered on the development of new catalysts. From this research, an improved catalyst system (Merox 10*) for kerosene treatment now makes the Merox process applicable to the sweetening of anymore » kerosene boiling range material from any crude oil source now in production. This Merox catalyst innovation also could replace the more expensive hydrotreating still being used by refiners for reducing the mercaptan content of distillates. This paper discusses the application of the Merox process to the treatment of higher boiling fuels, particularly kerosene and jet fuel; however, it should be understood that the treatment of illuminating kerosene, stove oil, diesel fuel, and light furnace oil is quite similar although generally less complicated. Comparative economics and commercial data are provided for the Merox 10 and conventional fixed bed Merox systems. The well established superior economics of Merox over an equivalent duty hydrotreater are presented.« less
Ye, Mao; Sun, Mingming; Liu, Zongtang; Ni, Ni; Chen, Yinwen; Gu, Chengang; Kengara, Fredrick Orori; Li, Huixin; Jiang, Xin
2014-08-01
An innovative ex situ soil washing technology was developed in this study to remediate organochlorine pesticides (OCPs) and heavy metals in a mixed contaminated site. Elevated temperature (60 °C) combined with ultrasonication (40 kHz, 20 min) at 50 mL L(-1) maize oil and 45 g L(-1) carboxylmethyl-β-cyclodextrin were effective in extracting pollutants from the soil. After two successive washing cycles, the removal efficiency rates for total OCPs, mirex, endosulfans, chlordanes, Cd, and Pb were approximately 94.7%, 87.2%, 98.5%, 92.3%, 91.6%, and 87.3%, respectively. Cultivation of vetiver grass and addition of nutrients for 3 months further degraded 34.7% of the residual total OCPs and partially restored the microbiological functions of the soil. This result was indicated by the significant increase in the number, biomass C, N, and functioning diversity of soil microorganisms (p < 0.05). After the treatment, the residual OCPs and heavy metals existed as very slowly desorbing fraction and residual fraction, as evaluated by Tenax extraction combined with a first-three-compartment model and sequential extraction. Moreover, the secondary environmental risk of residual pollutants in the remediated soil was at an acceptable level. The proposed combined cleanup strategy proved to be effective and environmentally friendly. Copyright © 2014 Elsevier Ltd. All rights reserved.
Some Results from Studies of Microwave Discharges in Liquid Heavy Hydrocarbons
NASA Astrophysics Data System (ADS)
Averin, K. A.; Lebedev, Yu. A.; Shakhatov, V. A.
2018-01-01
Some results from studies of microwave discharges in heavy hydrocarbons are presented. Microwave energy was introduced into liquid hydrocarbon via a coaxial line. The pressure above the liquid surface was equal to the atmospheric pressure. The discharge was ignited in a mixture of argon and hydrocarbon vapor. Argon was supplied through a channel in the central conductor of the coaxial line. The emission spectra of discharges in different liquid hydrocarbons were studied. It is shown that the emission spectra mainly consist of sequences of Swan bands, while radiation of other plasma components is on the noise level. Spectra of plasma emission are presented for discharges in liquid n-heptane, nefras, and C-9 oil used to produce chemical fibers. The rotational (gas) and vibrational temperatures are determined by processing the observed spectra.
Biogeochemistry of anaerobic crude oil biodegradation
NASA Astrophysics Data System (ADS)
Head, Ian; Gray, Neil; Aitken, Caroline; Sherry, Angela; Jones, Martin; Larter, Stephen
2010-05-01
Anaerobic degradation of crude oil and petroleum hydrocarbons is widely recognized as a globally significant process both in the formation of the world's vast heavy oil deposits and for the dissipation of hydrocarbon pollution in anoxic contaminated environments. Comparative analysis of crude oil biodegradation under methanogenic and sulfate-reducing conditions has revealed differences not only in the patterns of compound class removal but also in the microbial communities responsible. Under methanogenic conditions syntrophic associations dominated by bacteria from the Syntropheaceae are prevalent and these are likely key players in the initial anaerobic degradation of crude oil alkanes to intermediates such as hydrogen and acetate. Syntrophic acetate oxidation plays an important role in these systems and often results in methanogenesis dominated by CO2 reduction by members of the Methanomicrobiales. By contrast the bacterial communities from sulfate-reducing crude oil-degrading systems were more diverse and no single taxon dominated the oil-degrading sulfate-reducing systems. All five proteobacterial subdivisions were represented with Delta- and Gammaproteobacteria being detected most consistently. In sediments which were pasteurized hydrocarbon degradation continued at a relatively low rate. Nevertheless, alkylsuccinates characteristic of anaerobic hydrocarbon degradation accumulated to high concentrations. This suggested that the sediments harbour heat resistant, possibly spore-forming alkane degrading sulfate-reducers. This is particularly interesting since it has been proposed recently, that spore-forming sulfate-reducing bacteria found in cold arctic sediments may have originated from seepage of geofluids from deep subsurface hydrocarbon reservoirs.
Dispersant Effectiveness Of Heavy Fuel Oils Using The Baffled Flask Test
Dispersants have been widely used as a primary response measure for marine oil spills around the world. Recently, the U.S. Environmental Protection Agency (EPA) developed an improved laboratory dispersant testing protocol, called the Baffled Flask Test (BFT). The BFT protocol w...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearson, C.D.; Green, J.A.; Green, J.B.
1988-01-01
Nickel, vanadium, and iron were determined in distilled and chromatographically separated fractions from Cerro Negro heavy petroleum. Corresponding data were also obtained on two samples of Wilmington, California, heavy crude and one Mayan, Mexico, heavy oil for comparison. For the Cerro Negro crude, the ratio of porphyrinic to nonporphyrinic forms of metals was also determined on selected fractions using visible spectroscopy. In all four heavy petroleums, significant levels of metals were found only in the highest boiling distillate available, ca. 550-700/sup 0/C (1000-1300/sup 0/F), and the residue. Typically, the distillation residue contained >95 percent of a given metal. All crudesmore » contained metalloorganics of the following types: strongly acidic, weakly acidic, strongly basic, weakly basic, and neutral, but the relative distribution of metals among each class was crude dependent. Generally, nickel and vanadium distributions for a given crude followed one another very closely, while those for iron were often inconclusive because of poor mass balances for that element. Attempts to concentrate metalloorganics through liquid chromatographic separation methods largely unsuccessful. The wide variety of types of metal-containing compounds in the crudes examined precluded the use of a single approach for their isolation or preconcentration. 21 refs., 1 fig., 12 tabs.« less
Studies of soil and ecohydrological processes in oil-gas production regions.
NASA Astrophysics Data System (ADS)
Khodyreva, E. Ya.; Khodyrev, Yu. P.
2009-04-01
For a better understanding and describing of the functional interactions between processes in soil and drinking, underground and stratum waters in oil-gas production regions we used laboratory and field monitoring methods of studies. The control of ecological situation dynamics in oil-gas production regions proposes a presence of primary data about parameter-indicators, which characterize a state of the object under investigation. One of these parameters is the concentration of heavy metal salts in drinking and stratum waters. Isolation of some compounds, which are extracted as impurities of oil and water during recovery of hydrocarbons from productive horizons, would enhance profitableness of recovery. Because accompanying impurities are a mixture of different salts and complexes, the methods of multielement analysis give the most objective evaluation of total content of some elements by search and prospecting. The developed method of laser mass-spectrometric analysis of oil and drinking, underground and industrial waters allows to investigate the samples on all elements of the periodical system simultaneously with limit sensitivity 0.1 mkg/l. The preparation of the oil and water probes was carried out by sublimation of highly volatile fractions in vacuum at 100 0C. The samples of drinking and underground waters, oils and industrial waters from wells of oil field Romashkin (Tatarstan) were chosen as the object for the research. In respect to possible metal extraction scandium is of most interest in inspected area because it's very high cost and availability of water-soluble pattern, most probably chloride. Its concentration in one well was 1 mg/l in water and 0.01 mg/l in oil. According to the received data of laser mass-spectrometric analysis, industrial waters on the activity investigated territory joint-stock company "Tatneft" contain 220-330 kg / ton of salts of metals that does by their potential source of alternative raw material for the chemical industry. Soil is an important component of the earth's biosphere because of its crucial role in the hydrological cycle. For revealing possible correlation between spatial distributions of the valuable elements contained both in industrial waters and in tests of soils, 79 samples are prepared and investigated. These tests are selected at superficial geochemical shooting (field monitoring methods of studies) Aznakaevskoi, Karamalinskoi and Sabanchinskoi areas of joint-stock company " Tatneft ". Circuits of distribution of valuable elements on the investigated territory are constructed also a quantitative estimation of the maintenance makro- and microcomponents is given. From the found out elements the greatest interest Na, Mg, K, Ca, Cl, Br and their connections represent because of very high concentration and scandium owing to the cost. Now cost of scandium in the world market approximately in 25 times exceeds cost of gold and is not observed yet tendencies to its decrease. Presence of impurity of salts of heavy metals and their connections in soils, drinking, underground and stratum waters, definition of their concentration and comparison from maximum concentration limit allows to establish the control over dynamics of ecohydrological conditions and in due time to take measures on reduction of negative influence of processes of development of hydrocarbon raw material by an environment.
Soil recycling paves the way for treating brownfields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gladdys, R.
A soil recycling and stabilization process allows once-contaminated soil to be incorporated into paving materials. Contaminated soils is more widespread than often realized, with one of the more common sources being petroleum products such as fuel oil and gasoline. Until recently, the conventional solution was to have the material excavated, separated from remining soil and trucked to a hazardous waste landfill. This article describes an alternative approach under the following topics: move the solution, not the problem; on site recycling; heavy metals stabilization; economics.
NASA Technical Reports Server (NTRS)
Buchner,
1926-01-01
Three questions relating to the technical progress in the utilization of heavy oils are discussed. The first question considers solid injection in high-speed automobile engines, the second concerns the development of the hot-bulb engine, and the third question relates to the need for a more thorough investigation of the processes on which the formatation of combustible, rapidly-burning mixtures depend.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suryanti, Venty, E-mail: venty@mipa.uns.ac.id; Hastuti, Sri; Pujiastuti, Dwi
The potential application of biosurfactants to remove heavy metal ion from aqueous solution by batch technique was examined. The glycolipids type biosurfactants were grown in a media containing of 20% v/v corn oil with 7 days of fermentation by Rhodococcus rhodochrous. The biosurfactants reduced the surface tension of water of about 51% from 62 mN/m to 30 mN/m. The biosurfactant increased the E24 of water-palm oil emulsion of about 55% from 43% to 97% and could maintain this E24 value of above 50% for up to 9 days. Heavy metal ion removal, in this case cadmium ion, by crude andmore » patially purified biosurfactants has been investigated from aqueous solution at pH 6. Adsorption capacity of Cd(II) ion by crude biosurfactant with 5 and 10 minutes of contact times were 1.74 and 1.82 mg/g, respectively. Additionally, the adsorption capacity of Cd(II) ion by partially purified biosurfactant with 5 and 10 minutes of contact times were 0.79 and 1.34 mg/g, respectively. The results demonstrated that the adsorption capacity of Cd(II) ion by crude biosurfactant was higher than that of by partially purified biosurfactant. The results suggested that the biosurfactant could be used in the removal of heavy metal ions from aqueous solution.« less
NASA Astrophysics Data System (ADS)
Suryanti, Venty; Hastuti, Sri; Pujiastuti, Dwi
2016-02-01
The potential application of biosurfactants to remove heavy metal ion from aqueous solution by batch technique was examined. The glycolipids type biosurfactants were grown in a media containing of 20% v/v corn oil with 7 days of fermentation by Rhodococcus rhodochrous. The biosurfactants reduced the surface tension of water of about 51% from 62 mN/m to 30 mN/m. The biosurfactant increased the E24 of water-palm oil emulsion of about 55% from 43% to 97% and could maintain this E24 value of above 50% for up to 9 days. Heavy metal ion removal, in this case cadmium ion, by crude and patially purified biosurfactants has been investigated from aqueous solution at pH 6. Adsorption capacity of Cd(II) ion by crude biosurfactant with 5 and 10 minutes of contact times were 1.74 and 1.82 mg/g, respectively. Additionally, the adsorption capacity of Cd(II) ion by partially purified biosurfactant with 5 and 10 minutes of contact times were 0.79 and 1.34 mg/g, respectively. The results demonstrated that the adsorption capacity of Cd(II) ion by crude biosurfactant was higher than that of by partially purified biosurfactant. The results suggested that the biosurfactant could be used in the removal of heavy metal ions from aqueous solution.
Co-pyrolysis of polypropylene waste with Brazilian heavy oil.
Assumpção, Luiz C F N; Carbonell, Montserrat M; Marques, Mônica R C
2011-01-01
To evaluate the chemical recycling of plastic residues, co-pyrolysis of polypropylene (PP) waste with Brazilian crude oil was evaluated varying the temperature (400°C to 500°C) and the amount of PP fed to the reactor. The co-pyrolysis of plastic waste in an inert atmosphere provided around 80% of oil pyrolytic, and of these, half represent the fraction of diesel oil. This study can be used as a reference in chemical recycling of plastics, specially associated with plastics co-pyrolysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unknown
2001-08-08
The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which aremore » common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.« less
Distributed acoustic sensing technique and its field trial in SAGD well
NASA Astrophysics Data System (ADS)
Han, Li; He, Xiangge; Pan, Yong; Liu, Fei; Yi, Duo; Hu, Chengjun; Zhang, Min; Gu, Lijuan
2017-10-01
Steam assisted gravity drainage (SAGD) is a very promising way for the development of heavy oil, extra heavy oil and tight oil reservoirs. Proper monitoring of the SAGD operations is essential to avoid operational issues and improve efficiency. Among all the monitoring techniques, micro-seismic monitoring and related interpretation method can give useful information about the steam chamber development and has been extensively studied. Distributed acoustic sensor (DAS) based on Rayleigh backscattering is a newly developed technique that can measure acoustic signal at all points along the sensing fiber. In this paper, we demonstrate a DAS system based on dual-pulse heterodyne demodulation technique and did field trial in SAGD well located in Xinjiang Oilfield, China. The field trail results validated the performance of the DAS system and indicated its applicability in steam-chamber monitoring and hydraulic monitoring.
Analysis of heavy metals in rice bran oil by inductively coupled plasma (ICP) spectrometry
USDA-ARS?s Scientific Manuscript database
Rice is one of the most important staple crops in the world. Nevertheless, health-conscious consumers have expressed concern regarding the presence of heavy metals, specifically arsenic, in rice. The United Nations Food and Agriculture Organization (UNFAO) limits the arsenic concentration at 0.2 mg/...
[Analysis of terpineol and improvement of technology process in terpineol production].
Liang, Ming; Chen, Min; Cai, Chun-ping; Weng, Ruo-rong
2002-11-01
A method for the separation and determination of terpineol oil by temperature programming capillary gas chromatography has been established. An OV-1 fused silica capillary column (30 m x 0.32 mm i.d. x 0.25 microns) was used with a temperature increase rates of 1.5 degrees C/min from 70 degrees C to 100 degrees C, 5 degrees C/min from 100 degrees C to 160 degrees C, 10 degrees C/min from 160 degrees C to 220 degrees C and then hold for 2 min. The main chemical components and their relative contents of the terpineol oil, terpinene oil, red and yellow oils of middle oils in the terpineol production and natural terpineol were analyzed by capillary gas chromatography-Fourier transform infrared spectrometry (GC-FTIR) and gas chromatography-mass spectrometry (GC-MS). The typical chromatograms of these oils are given. It has offered the information of the boiling points of the chemical compounds, and it is helpful to reutilize them after their separation by rectification. The results showed that the main compounds of the heavy cut of terpineol were longifolene and beta-caryophyllene. They are from the raw material, terpinene oil. The main compounds in the natural terpineol oil were eucalyptol, trans-4-thujanol, p-isopropenyl toluene, cis-4-thujanol, linalool, camphor, borneol, 4-terpineol, alpha-terpineol and safrole. The contents of beta-terpineol and gamma-terpineol were not so high as in synthetic terpineol.
Pandey, Janhvi; Chand, Sukhmal; Pandey, Shipra; Rajkumari; Patra, D D
2015-12-01
A field experiment using tannery sludge as a soil amendment material and palmarosa (Cymbopogon martinii) as a potential phytostabilizer was conducted to investigate their synergistic effect in relation to the improvement in soil quality/property. Three consecutive harvests of two cultivars of palmarosa-PRC-1 and Trishna, were examined to find out the influence of different tannery sludge doses on their herb, dry matter, essential oil yield and heavy metal accumulation. Soil fertility parameters (N, P, K, Organic carbon) were markedly affected by different doses of sludge. Enhanced soil nitrogen was positively correlated with herb yield (0.719*) and plant height (0.797*). The highest dose of tannery sludge (100 t ha(-1)) exhibited best performance than other treatments with respect to herb, dry matter and oil yield in all three harvests. Trishna was found to be superior to PRC-1 in relation to same studied traits. Quality of oil varied, but was insignificant statistically. Uptake of heavy metals followed same order (Cr>Ni>Pb>Cd) in roots and shoots. Translocation factor <1 for all trace elements and Bioconcentration factor >1 was observed in case of all heavy metals. Overall, tannery sludge enhanced the productivity of crop and metal accumulation occurred in roots with a meager translocation to shoots, hence it can be used as a phytostabiliser. The major advantage of taking palmarosa in metal polluted soil is that unlike food and agricultural crops, the product (essential oil) is extracted by hydro-distillation and there is no chance of oil contamination, thus is commercially acceptable. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sanabria-Cala, J. A.; Montañez, N. D.; Laverde Cataño, D.; Y Peña Ballesteros, D.; Mejía, C. A.
2017-12-01
Naphthenic acids present in oil from most regions worldwide currently stand as the main responsible for the naphthenic corrosion problems, affecting the oil-refining industry. The phenomenon of sulfidation, accompanying corrosion processes brought about by naphthenic acids in high-temperature refining plant applications, takes place when the combination of sulfidic acid (H2S) with Fe forms layers of iron sulphide (FeS) on the material surface, layers with the potential to protect the material from attack by other corrosive species like naphthenic acids. This work assessed corrosion products formed by sulfidation as inhibitors of naphthenic corrosion rate in AISI-316 steel exposed to processing conditions of simulated crude oil in a dynamic autoclave. Calculation of the sulfidation and naphthenic corrosion rates were determined by gravimetry. The surfaces of the AISI-316 gravimetric coupons exposed to acid systems; were characterized morphologically by X-Ray Diffraction (XRD) and X-ray Fluorescence by Energy Dispersive Spectroscopy (EDS) combined with Scanning Electron Microscopy (SEM). One of the results obtained was the determination of an inhibiting effect of corrosion products at 250 and 300°C, where lower corrosion rate levels were detected. For the temperature of 350°C, naphthenic corrosion rates increased due to deposition of naphthenic acids on the areas where corrosion products formed by sulfidation have lower homogeneity and stability on the surface, thus accelerating the destruction of AISI-316 steel. The above provides an initial contribution to oil industry in search of new alternatives to corrosion control by the attack of naphthenic acids, from the formation of FeS layers on exposed materials in the processing of heavy crude oils with high sulphur content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borole, A P
The recovery and conversion of heavy oils is limited due to the high viscosity of these crudes and their high heteroatom content. Conventional technology relies on thermochemical hydrogenation and hydrodesulfurization to address these problems and is energy intensive due to the high operating temperature and pressure. This project was initiated to explore biological catalysts for adding hydrogen to the heavy oil molecules. Biological enzymes are efficient at hydrogen splitting at very mild conditions such as room temperature and pressure, however, they are very specific in terms of the substrates they hydrogenate. The goal of the project was to investigate howmore » the specificity of these enzymes can be altered to develop catalysts for oil upgrading. Three approaches were used. First was to perform chemical modification of the enzyme surface to improve binding of other non-natural substrates. Second approach was to expose the deeply buried catalytic active site of the enzyme by removal of protein scaffolding to enable better interaction with other substrates. The third approach was based on molecular biology to develop genetically engineered systems for enabling targeted structural changes in the enzyme. The first approach was found to be limited in success due to the non-specificity of the chemical modification and inability to target the region near the active site or the site of substrate binding. The second approach produced a smaller catalyst capable of catalyzing hydrogen splitting, however, further experimentation is needed to address reproducibility and stability issues. The third approach which targeted cloning of hydrogenase in alternate hosts demonstrated progress, although further work is necessary to complete the cloning process. The complex nature of the hydrogenase enzyme structure-function relationship and role of various ligands in the protein require significant more research to better understand the enzyme and to enable success in strategies in developing catalysts with broader specificity as that required for crude upgrading.« less
NASA Astrophysics Data System (ADS)
Ding, Wenhua; Li, Shaopo; Li, Jiading; Li, Qun; Chen, Tieqiang; Zhang, Hai
In recent years, there has been development of several significant pipeline projects for the transmission of oil and gas from deep water environments. The production of gas transmission pipelines for application demands heavy wall, high strength, good lower temperature toughness and good weldability. To overcome the difficulty of producing consistent mechanical property in heavy wall pipe Shougang Steel Research in cooperation with the Shougang Steel Qinhuangdao China (Shouqin) 4.3m heavy wide plate mill research was conducted.
Frankel, Mathew L.; Demeter, Marc A.; Lemire, Joe A.; Turner, Raymond J.
2016-01-01
Anthropogenic activities have resulted in the intensified use of water resources. For example, open pit bitumen extraction by Canada’s oil sands operations uses an estimated volume of three barrels of water for every barrel of oil produced. The waste tailings–oil sands process water (OSPW)–are stored in holding ponds, and present an environmental concern as they are comprised of residual hydrocarbons and metals. Following the hypothesis that endogenous OSPW microbial communities have an enhanced tolerance to heavy metals, we tested the capacity of planktonic and biofilm populations from OSPW to withstand metal ion challenges, using Cupriavidus metallidurans, a known metal-resistant organism, for comparison. The toxicity of the metals toward biofilm and planktonic bacterial populations was determined by measuring the minimum biofilm inhibitory concentrations (MBICs) and planktonic minimum inhibitory concentrations (MICs) using the MBEC ™ assay. We observed that the OSPW community and C. metallidurans had similar tolerances to 22 different metals. While thiophillic elements (Te, Ag, Cd, Ni) were found to be most toxic, the OSPW consortia demonstrated higher tolerance to metals reported in tailings ponds (Al, Fe, Mo, Pb). Metal toxicity correlated with a number of physicochemical characteristics of the metals. Parameters reflecting metal-ligand affinities showed fewer and weaker correlations for the community compared to C. metallidurans, suggesting that the OSPW consortia may have developed tolerance mechanisms toward metals present in their environment. PMID:26849649
Adams, Julie; Bornstein, Jason M; Munno, Keenan; Hollebone, Bruce; King, Thomas; Brown, R Stephen; Hodson, Peter V
2014-04-01
The present study isolated and identified compounds in heavy fuel oil 7102 (HFO 7102) that are bioavailable and chronically toxic to rainbow trout embryos (Oncorhynchus mykiss). An effects-driven chemical fractionation combined the chemical separation of oil with toxicity testing and chemical analyses of each fraction to identify the major classes of compounds associated with embryo toxicity. Toxicity was assessed with 2 exposure methods, a high-energy chemical dispersion of oil in water, which included oil droplets in test solutions, and water accommodated fractions which were produced by oiled gravel desorption columns, and which did not contain visible oil droplets. Fractions of HFO with high concentrations of naphthalenes, alkanes, asphaltenes, and resins were nontoxic to embryos over the range of concentrations tested. In contrast, fractions enriched with 3- to 4-ringed alkyl polycyclic aromatic hydrocarbons (PAHs) were embryotoxic, consistent with published studies of crude oils and individual alkyl PAHs. The rank order of fraction toxicity did not vary between the exposure methods and was consistent with their PAH content; fractions with higher-molecular weight alkyl PAHs were the most toxic. Exposure of juvenile trout to most fractions of HFO induced higher activities of cytochrome P450 enzymes, with a rank order of potency that varied with exposure method and differed somewhat from that of embryotoxicity. Induction reflected the bioavailability of PAHs but did not accurately predict embryotoxicity. © 2013 SETAC.
NASA Astrophysics Data System (ADS)
Shaw, John M.
2013-06-01
While the production, transport and refining of oils from the oilsands of Alberta, and comparable resources elsewhere is performed at industrial scales, numerous technical and technological challenges and opportunities persist due to the ill defined nature of the resource. For example, bitumen and heavy oil comprise multiple bulk phases, self-organizing constituents at the microscale (liquid crystals) and the nano scale. There are no quantitative measures available at the molecular level. Non-intrusive telemetry is providing promising paths toward solutions, be they enabling technologies targeting process design, development or optimization, or more prosaic process control or process monitoring applications. Operation examples include automated large object and poor quality ore during mining, and monitoring the thickness and location of oil water interfacial zones within separation vessels. These applications involve real-time video image processing. X-ray transmission video imaging is used to enumerate organic phases present within a vessel, and to detect individual phase volumes, densities and elemental compositions. This is an enabling technology that provides phase equilibrium and phase composition data for production and refining process development, and fluid property myth debunking. A high-resolution two-dimensional acoustic mapping technique now at the proof of concept stage is expected to provide simultaneous fluid flow and fluid composition data within porous inorganic media. Again this is an enabling technology targeting visualization of diverse oil production process fundamentals at the pore scale. Far infrared spectroscopy coupled with detailed quantum mechanical calculations, may provide characteristic molecular motifs and intermolecular association data required for fluid characterization and process modeling. X-ray scattering (SAXS/WAXS/USAXS) provides characteristic supramolecular structure information that impacts fluid rheology and process fouling. The intent of this contribution is to present some of the challenges and to provide an introduction grounded in current work on non-intrusive telemetry applications - from a mine or reservoir to a refinery!
Guo, Jian; Wang, Yuanhua; Li, Baozhong; Huang, Siyao; Chen, Yefu; Guo, Xuewu; Xiao, Dongguang
2017-06-10
Aureobasidium pullulans is an increasingly attractive host for bio-production of pullulan, heavy oil, polymalic acid, and a large spectrum of extracellular enzymes. To date, genetic manipulation of A. pullulans mainly relies on time-consuming conventional restriction enzyme digestion and ligation methods. In this study, we present a one-step homologous recombination-based method for rapid genetic manipulation in A. pullulans. Overlaps measuring >40bp length and 10μg DNA segments for homologous recombination provided maximum benefits to transformation of A. pullulans. This optimized method was successfully applied to PKSIII gene (encodes polyketide synthase) knock-out and gltP gene (encodes glycolipid transfer protein) knock-in. After disruption of PKSIII gene, secretion of melanin decreased slightly. The melanin purified from disruptant showed lower reducing capacity compared with that of the parent strain, leading to a decrease in exopolysaccharide production. Knock-in of gltP gene resulted in at least 4.68-fold increase in heavy oil production depending on the carbon source used, indicating that gltP can regulate heavy oil synthesis in A. pullulans. Copyright © 2017 Elsevier B.V. All rights reserved.
Hydrodesulphurization of Light Gas Oil using hydrogen from the Water Gas Shift Reaction
NASA Astrophysics Data System (ADS)
Alghamdi, Abdulaziz
2009-12-01
The production of clean fuel faces the challenges of high production cost and complying with stricter environmental regulations. In this research, the ability of using a novel technology of upgrading heavy oil to treat Light Gas Oil (LGO) will be investigated. The target of this project is to produce cleaner transportation fuel with much lower cost of production. Recently, a novel process for upgrading of heavy oil has been developed at University of Waterloo. It is combining the two essential processes in bitumen upgrading; emulsion breaking and hydroprocessing into one process. The water in the emulsion is used to generate in situ hydrogen from the Water Gas Shift Reaction (WGSR). This hydrogen can be used for the hydrogenation and hydrotreating reaction which includes sulfur removal instead of the expensive molecular hydrogen. This process can be carried out for the upgrading of the bitumen emulsion which would improve its quality. In this study, the hydrodesulphurization (HDS) of LGO was conducted using in situ hydrogen produced via the Water Gas Shift Reaction (WGSR). The main objective of this experimental study is to evaluate the possibility of producing clean LGO over dispersed molybdenum sulphide catalyst and to evaluate the effect of different promoters and syn-gas on the activity of the dispersed Mo catalyst. Experiments were carried out in a 300 ml Autoclave batch reactor under 600 psi (initially) at 391°C for 1 to 3 hours and different amounts of water. After the hydrotreating reaction, the gas samples were collected and the conversion of carbon monoxide to hydrogen via WGSR was determined using a refinery gas analyzer. The sulphur content in liquid sample was analyzed via X-Ray Fluorescence. Experimental results showed that using more water will enhance WGSR but at the same time inhibits the HDS reaction. It was also shown that the amount of sulfur removed depends on the reaction time. The plan is to investigate the effect of synthesis gas (syngas) molar ratio by varying CO to H2 ratio. It is also planned to use different catalysts promoters and compare them with the un-promoted Mo based catalysts to achieve the optimum reaction conditions for treating LGO. The results of this study showed that Ni and Co have a promoting effect over unpromoted Mo catalysts for both HDS and WGSR. Ni was found to be the best promoter for both reactions. Fe showed no significant effect for both WGSR and HDS. V and K have a good promoting effect in WGSR but they inhibited the HDS reaction. Potassium was found to be the strongest inhibitor for the HDS reaction since no sulfur was removed during the reaction. Keywords. LGO, HDS, in situ H2, WGSR, oil upgrading, syn-gas.
Miedico, Oto; Iammarino, Marco; Paglia, Giuseppe; Tarallo, Marina; Mangiacotti, Michele; Chiaravalle, A Eugenio
2016-06-01
In this work, environmental heavy metal contamination in the Val d'Agri area of Southern Italy was monitored, measuring the accumulation of 18 heavy metals (U, Hg, Pb, Cd, As, Sr, Sn, V, Ni, Cr, Mo, Co, Cu, Zn, Ca, Mn, Fe, and Al) in the organs of animals raised in the surrounding area (kidney, lung, and liver of bovine and ovine species). Val d'Agri features various oil processing centers which are potentially a significant source of environmental pollution, making it essential to perform studies that will outline the state of the art on which any recovery plans and interventions may be developed. The analysis was carried out using official and accredited analytical methods based on inductively coupled plasma mass spectrometry, and the measurements were statistically processed in order to give a contribution to risk assessment. Even though five samples showed Pb and Cd concentrations above the limits defined in the European Commission Regulation (EC) No 1881/2006, the mean concentrations of most elements suggest that contamination in this area is low. Consequently, these results also suggest that there is no particular risk for human exposure to toxic trace elements. Nevertheless, the findings of this work confirm that element accumulation in ovine species is correlated with geographical livestock area. Therefore, ovine-specific organs might be used as bioindicators for monitoring contamination by specific toxic elements in exposed areas.
Assessing pollution-related effects of oil spills from ships in the Chinese Bohai Sea.
Liu, Xin; Guo, Mingxian; Wang, Yebao; Yu, Xiang; Guo, Jie; Tang, Cheng; Hu, Xiaoke; Wang, Chuanyuan; Li, Baoquan
2016-09-15
An analysis of the effects of potential oil spills will provide data in support of decisions related to improving the response to oil spills and its emergency management. We selected the Chinese Bohai Sea, especially the Bohai Strait, as our investigation region to provide an assessment of the effects of pollution from ship-related oil spills on adjacent coastal zones. Ship-related accidents are one of the major factors causing potential oil spills in this area. A three dimensional oil transport and transformation model was developed using the Estuary, Coastal, and Ocean Model. This proposed model was run 90 times and each run lasted for 15days to simulate the spread and weathering processes of oil for each of four potential spill sites, which represented potential sites of ship collisions along heavy traffic lanes in the Bohai Sea. Ten neighboring coastal areas were also considered as target zones that potentially could receive pollutants once oil spilled in the study areas. The statistical simulations showed that spills in winter were much worse than those in summer; they resulted in very negative effects on several specific target zones coded Z7, Z8, Z9, and Z10 in this paper. In addition, sites S3 (near the Penglai city) and S4 (near the Yantai city) were the two most at-risk sites with a significantly high probability of pollution if spills occurred nearby during winter. The results thus provided practical guidelines for local oil spill prevention, as well as an emergency preparedness and response program. Copyright © 2016 Elsevier Ltd. All rights reserved.
Physical and chemical characterization of petroleum products by GC-MS.
Mendez, A; Meneghini, R; Lubkowitz, J
2007-01-01
There is a need for reliable and fast means of monitoring refining, conversion, and upgrading processes aiming to increase the yield of light distillates, and thus, reducing the oil barrel bottoms. By simultaneously utilizing the FID and mass selective detectors while splitting the column effluent in a controlled way, it is possible to obtain identical gas chromatograms and total ion chromatograms from a single run. This means that besides the intensity vs. time graphs, the intensity vs. mass and boiling point can also be obtained. As a result, physical and chemical characterization can be performed in a simple and rapid manner. Experimental results on middle, heavy distillates, and crude oil fractions show clearly the effect of upgrading processes on the chemical composition and yields of diesel, jet fuels, and high vacuum gasoil fractions. The methodology is fully compliant with ASTM D-2887, D-7213, D-6352, and D7169 for simulated distillation and the previously mentioned mass spectrometry standards. The group type analysis correlated satisfactorily with high-performance liquid chromatography data.
Base Program on Energy Related Research
NASA Astrophysics Data System (ADS)
1998-07-01
The Base Research Program at Western Research Institute (WRI) is planned to develop technologies to a level that will attract industrial sponsors for continued development under the Jointly Sponsored Research (JSR) Program. The Base Cooperative Agreement (DE-FC26-98FT40322) was initiated on April 10, with funding of 500,000.Tasks approved for funding, FY 98 include the following: 1.1 CROW Process Application for Sites Contaminated With LNAPL and Chlorinated Solvents -50,000; 1.2 Petroleum residual Solubility Parameter/Polarity Map-75,000; 1.3 Laboratory and Bench-Scale Testing for Treating Used Motor Oil-135,000; 1.4 Development and Testing of a Coal-Fired Gas Turbine System- 140,000; 2.1 Evaluation of a Method Using Colloidal Gas Aphrons to Remediate Metals-Contaminated Mine Drainage Waters-15,000; 2.2 Development of a Procedure for Production of a Protective Covering for PEAC Units - 15,000; and 3.1 Heavy Oil/Plastics Co-Processing -70,000 TOTALS-500,000
Weng, Na; Wan, Shan; Wang, Huitong; Zhang, Shuichang; Zhu, Guangyou; Liu, Jingfu; Cai, Di; Yang, Yunxu
2015-06-12
The aromatic hydrocarbon fractions of five crude oils representing a natural sequence of increasing degree of biodegradation from the Liaohe Basin, NE, China, were analyzed using conventional gas chromatography-mass spectrometry (GC-MS) and comprehensive two-dimensional gas chromatography (GC×GC). Because of the limited peak capability and low resolution, compounds in the aromatic fraction of a heavily biodegraded crude oil that were analyzed by GC-MS appeared as unresolved complex mixtures (UCMs) or GC "humps". They could be separated based on their polarity by GC×GC. UCMs are composed mainly of aromatic biomarkers and aromatic hydrocarbons with branched alkanes or cycloalkanes substituents. The quantitative results achieved by GC×GC-FID were shown that monoaromatic hydrocarbons account for the largest number and mass of UCMs in the aromatic hydrocarbon fraction of heavily biodegraded crude oil, at 45% by mass. The number and mass of diaromatic hydrocarbons ranks second at 33% by mass, followed by the aromatic biomarker compounds, triaromatic, tetraaromatic, and pentaaromatic hydrocarbons, that account for 10%, 6%, 1.5%, and 0.01% of all aromatic compounds by mass, respectively. In the heavily biodegraded oil, compounds with monocyclic cycloalkane substituents account for the largest proportion of mono- and diaromatic hydrocarbons, respectively. The C4-substituted compounds account for the largest proportion of naphthalenes and the C3-substituted compounds account for the largest proportion of phenanthrenes, which is very different from non-biodegraded, slightly biodegraded, and moderately biodegraded crude oil. It is inferred that compounds of monoaromatic, diaromatic and triaromatic hydrocarbons are affected by biodegradation, that compounds with C1-, C2-substituents are affected by the increase in degree of biodegradation, and that their relative content decreased, whereas compounds with C3-substituents or more were affected slightly or unaffected, and their relative content also increased. The varying regularity of relative content of substituted compounds may be used to reflect the degree of degradation of heavy oil. Moreover, biomarkers for the aromatic hydrocarbons of heavily biodegraded crude oil are mainly aromatic steranes, aromatic secohopanes, aromatic pentacyclotriterpanes, and benzohopanes. According to resultant data, aromatic secohopanes could be used as a specific marker because of their relatively high concentration. This aromatic compound analysis of a series of biodegraded crude oil is useful for future research on the quantitative characterization of the degree of biodegradation of heavy oil, unconventional oil maturity evaluation, oil source correlation, depositional environment, and any other geochemical problems. Copyright © 2015 Elsevier B.V. All rights reserved.
Attenuation of iodine 125 radiation with vitreous substitutes in the treatment of uveal melanoma.
Oliver, Scott C N; Leu, Min Y; DeMarco, John J; Chow, Philip E; Lee, Steve P; McCannel, Tara A
2010-07-01
To demonstrate attenuation of radiation from iodine 125 ((125)I) to intraocular structures using liquid vitreous substitutes. Four candidate vitreous substitutes were tested for attenuation using empirical measurement and theoretical calculation. In vitro and ex vivo cadaveric dosimetry measurements were obtained with lithium fluoride thermoluminescent dosimeters to demonstrate the attenuation effect of vitreous substitution during (125)I simulated plaque brachytherapy. Theoretical dosimetry calculations were based on Monte Carlo simulation. In a cylindrical phantom at a 17-mm depth, liquid vitreous substitutes as compared with saline showed significant reduction of radiation penetration (48% for 1000-centistoke [cSt] silicone oil [polydimethyl-n-siloxane], 47% for 5000-cSt silicone oil [polydimethyl-n-siloxane], 40% for heavy oil [perfluorohexyloctane/polydimethyl-n-siloxane], and 35% for perfluorocarbon liquid [perfluoro-n-octane]). Human cadaveric ex vivo measurements demonstrated a 1000-cSt silicone oil to saline dose ratio of 35%, 52%, 55%, and 48% at arc lengths of 7.6, 10.6, 22.3, and 28.6 mm from the plaque edge, respectively, along the surface of the globe. Monte Carlo simulation of a human globe projected attenuation as high as 57% using 1000-cSt silicone oil. Intraocular vitreous substitutes including silicone oil, heavy oil, and perfluorocarbon liquid attenuate the radiation dose from (125)I. Cadaveric ex vivo measurements and Monte Carlo simulation both demonstrate radiation attenuation using 1000-cSt silicone oil at distances corresponding to vital ocular structures. Clinical Relevance Attenuation of radiation with silicone oil endotamponade in the treatment of uveal melanoma may significantly reduce radiation-induced injury to vital ocular structures.
A Transversely Isotropic Thermo-mechanical Framework for Oil Shale
NASA Astrophysics Data System (ADS)
Semnani, S. J.; White, J. A.; Borja, R. I.
2014-12-01
The present study provides a thermo-mechanical framework for modeling the temperature dependent behavior of oil shale. As a result of heating, oil shale undergoes phase transformations, during which organic matter is converted to petroleum products, e.g. light oil, heavy oil, bitumen, and coke. The change in the constituents and microstructure of shale at high temperatures dramatically alters its mechanical behavior e.g. plastic deformations and strength, as demonstrated by triaxial tests conducted at multiple temperatures [1,2]. Accordingly, the present model formulates the effects of changes in the chemical constituents due to thermal loading. It is well known that due to the layered structure of shale its mechanical properties in the direction parallel to the bedding planes is significantly different from its properties in the perpendicular direction. Although isotropic models simplify the modeling process, they fail to accurately describe the mechanical behavior of these rocks. Therefore, many researchers have studied the anisotropic behavior of rocks, including shale [3]. The current study presents a framework to incorporate the effects of transverse isotropy within a thermo-mechanical formulation. The proposed constitutive model can be readily applied to existing finite element codes to predict the behavior of oil shale in applications such as in-situ retorting process and stability assessment in petroleum reservoirs. [1] Masri, M. et al."Experimental Study of the Thermomechanical Behavior of the Petroleum Reservoir." SPE Eastern Regional/AAPG Eastern Section Joint Meeting. Society of Petroleum Engineers, 2008. [2] Xu, B. et al. "Thermal impact on shale deformation/failure behaviors---laboratory studies." 45th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2011. [3] Crook, AJL et al. "Development of an orthotropic 3D elastoplastic material model for shale." SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers, 2002.
Viscoplastic sculpting in stable triple layer heavy oil transport flow
NASA Astrophysics Data System (ADS)
Sarmadi, Parisa; Hormozi, Sarah; A. Frigaard, Ian
2017-11-01
In we introduced a novel methodology for efficient transport of heavy oil via a triple layer core-annular flow. Pumping pressures are significantly reduced by concentrating high shear rates to a lubricating layer, while ideas from Visco-Plastic Lubrication are used to eliminate interfacial instabilities. We purposefully position a shaped unyielded skin of a viscoplastic fluid between the transported oil and the lubricating fluid layer to balance the density difference between the fluids. Here we address the sculpting of the shaped skin within a concentric inflow manifold. We use the quasi-steady model to provide inputs to an axisymmetric triple layer computation, showing the development of the streamwise skin profile and establishment of the flow. For this, we use a finite element discretization with the augmented-Lagrangian method to represent the yield surface behaviour accurately and a PLIC method to track the interface motion.
Dmitrienko, Margarita A; Strizhak, Pavel A
2018-02-01
This introductory study presents the analysis of the environmental, economic and energy performance indicators of burning high-potential coal water slurries containing petrochemicals (CWSP) instead of coal, fuel oil, and natural gas at typical thermal power stations (TPS) and a boiler plant. We focus on the most hazardous anthropogenic emissions of coal power industry: sulfur and nitrogen oxides. The research findings show that these emissions may be several times lower if coal and oil processing wastes are mixed with water as compared to the combustion of traditional pulverized coal, even of high grades. The study focuses on wastes, such as filter cakes, oil sludge, waste industrial oils, heavy coal-tar products, resins, etc., that are produced and stored in abundance. Their deep conversion is very rare due to low economic benefit. Effective ways are necessary to recover such industrial wastes. We present the cost assessment of the changes to the heat and power generation technologies that are required from typical power plants for switching from coal, fuel oil and natural gas to CWSPs based on coal and oil processing wastes. The corresponding technological changes pay off after a short time, ranging from several months to several years. The most promising components for CWSP production have been identified, which provide payback within a year. Among these are filter cakes (coal processing wastes), which are produced as a ready-made coal-water slurry fuel (a mixture of flocculants, water, and fine coal dust). These fuels have the least impact on the environment in terms of the emissions of sulfur and nitrogen oxides as well as fly ash. An important conclusion of the study is that using CWSPs based on filter cakes is worthwhile both as the main fuel for thermal power stations and boiler plants and as starting fuel. Copyright © 2017 Elsevier B.V. All rights reserved.
Schinus molle: a new source of natural fungitoxicant.
Dikshit, A; Naqvi, A A; Husain, A
1986-05-01
The oil of Schinus molle exhibited the maximum fungitoxic activity during the screening of some essential oils against some common storage and animal pathogenic fungi. It showed absolute toxicity against animal pathogens and mild activity against storage fungi. The effective concentrations of the oil varied from 200 to 900 ppm. The toxicity of the oil persisted up to 80 degrees C and 90 days of storage but declined when autoclaved. It withstood heavy inoculum density. The oil exhibited a narrow range of activity and was found to be more effective than Multifungin, an antifungal drug. The oil was characterized by its various physicochemical properties. It was found to comprise 50 constituents. It appeared that some changes in the oil constituents during storage affected its fungitoxic potency.
USE OF CHEMICAL OXIDATION AND BIOREMEDIATION FOR TREATING INDIANA HARBOR CANAL SEDIMENT
The Indiana Harbor Canal is a man-made canal that connects Lake Michigan with the Calumet River. It is the recipient of extremely heavy hydrocarbon and steel slag contamination from oil refineries and steel mills dating back to the 19th century. The oil is heavily weathered and i...
Suri, Navreet; Voordouw, Johanna; Voordouw, Gerrit
2017-01-01
The injection of nitrate is one of the most commonly used technologies to impact the sulfur cycle in subsurface oil fields. Nitrate injection enhances the activity of nitrate-reducing bacteria, which produce nitrite inhibiting sulfate-reducing bacteria (SRB). Subsequent reduction of nitrate to di-nitrogen (N2) alleviates the inhibition of SRB by nitrite. It has been shown for the Medicine Hat Glauconitic C (MHGC) field, that alkylbenzenes especially toluene are important electron donors for the reduction of nitrate to nitrite and N2. However, the rate and extent of reduction of nitrate to nitrite and of nitrite to nitrogen have not been studied for multiple oil fields. Samples of light oil (PNG, CPM, and Tundra), light/heavy oil (Gryphon and Obigbo), and of heavy oil (MHGC) were collected from locations around the world. The maximum concentration of nitrate in the aqueous phase, which could be reduced in microcosms inoculated with MHGC produced water, increased with the toluene concentration in the oil phase. PNG, Gryphon, CPM, Obigbo, MHGC, and Tundra oils had 77, 17, 5.9, 4.0, 2.6, and 0.8 mM toluene, respectively. In incubations with 49 ml of aqueous phase and 1 ml of oil these were able to reduce 22.2, 12.3, 7.9, 4.6, 4.0, and 1.4 mM of nitrate, respectively. Nitrate reduced increased to 35 ± 4 mM upon amendment of all these oils with 570 mM toluene prior to incubation. Souring control by nitrate injection requires that the nitrate is directed toward oxidation of sulfide, not toluene. Hence, the success of nitrate injections will be inversely proportional to the toluene content of the oil. Oil composition is therefore an important determinant of the success of nitrate injection to control souring in a particular field. PMID:28620357
Fluid flow analysis of E-glass fiber reinforced pipe joints in oil and gas industry
NASA Astrophysics Data System (ADS)
Bobba, Sujith; Leman, Z.; Zainuddin, E. S.; Sapuan, S. M.
2018-04-01
Glass Fiber reinforced composites have become increasingly important over the past few years and now they are the first choice materials for fabricating pipes with low weight in combination with high strength and stiffness. In Oil And Gas Industry, The Pipelines transporting heavy crude oil are subjected to variable pressure waves causing fluctuating stress levels in the pipes. Computational Fluid Dynamics (CFD) analysis was performed using solid works flow stimulation software to study the effects of these pressure waves on some specified joints in the pipes. Depending on the type of heavy crude oil being used, the flow behavior indicated a considerable degree of stress levels in certain connecting joints, causing the joints to become weak over a prolonged period of use. This research proposes a new perspective that is still required to be developed regarding the change of the pipe material, fiber winding angle in those specified joints and finally implementing cad wind technology to check the output result of the stress levels so that the life of the pipes can be optimized.
The determination of trace elements in crude oil and its heavy fractions by atomic spectrometry
NASA Astrophysics Data System (ADS)
Duyck, Christiane; Miekeley, Norbert; Porto da Silveira, Carmem L.; Aucélio, Ricardo Q.; Campos, Reinaldo C.; Grinberg, Patrícia; Brandão, Geisamanda P.
2007-09-01
A literature review on the determination of trace elements in crude oil and heavy molecular mass fractions (saturates, aromatics, resins and asphaltenes) by ICP-MS, ICP OES and AAS is presented. Metal occurrences, forms and distributions are examined as well as their implications in terms of reservoir geochemistry, oil refining and environment. The particular analytical challenges for the determination of metals in these complex matrices by spectrochemical techniques are discussed. Sample preparation based on ashing, microwave-assisted digestion and combustion decomposition procedures is noted as robust and long used. However, the introduction of non-aqueous solvents and micro-emulsions into inductively coupled plasmas is cited as a new trend for achieving rapid and accurate analysis. Separation procedures for operationally defined fractions in crude oil are more systematically applied for the observation of metal distributions and their implications. Chemical speciation is of growing interest, achieved by the coupling of high efficiency separation techniques (e.g., HPLC and GC) to ICP-MS instrumentation, which allows the simultaneous determination of multiple organometallic species of geochemical and environmental importance.
Naranjo, Leopoldo; Urbina, Hector; De Sisto, Angela; Leon, Vladimir
2007-01-01
The increasing world demand for fuels makes it necessary to exploit the largest reserve of extra-heavy crude oil (EHCO) of the Orinoco Oil Belt from Venezuela. We propose the use of extracellular oxidative enzymes, in particular, lignin-degrading enzyme systems (LDS) of fungi, for enzymatic improvement of EHCO. Autochthonous non-white rot fungal strains able to use EHCO, and several polycyclic aromatic hydrocarbons (PAHs) as sole carbon source and energy, were isolated from EHCO-polluted soils and identified as belonging to the genera Fusarium, Penicillium , Trichoderma , Aspergillus , Neosartorya, Pseudallescheria, Cladosporium, Pestalotiopsis , Phoma and Paecillomyces. Phenotypic and biochemical assays revealed the ability of these filamentous fungi to synthesize extracellular oxidative enzymes, and suggested a relationship between the LDS and EHCO bioconversion. This work reports, for the first time, the use of o-phenylenediamine dihydrochloride (OPD) as substrate to measure extracellular ligninolytic peroxidases (ELP) in culture broths of filamentous fungi (Fusarium solani HP-1), and constitutes the first formal study of the fungal community associated with the EHCO of the Orinoco Oil Belt. PMID:18833334
Wei, Bing
2015-12-10
This proof of concept research evaluates an approach to improve the enhanced heavy oil recovery performance of conventional polymers. Three associated polymeric systems, based on hydrolyzed polyacrylamide, xanthan gum, and a novel hydrophobic copolymer, were proposed in this work. The results of the theoretically rheology study indicate that these systems offer superior viscoelasticity and pronounced shear-thinning behavior due to the "interlocking effect". As a result of the surfactant collaboration, the dynamic interfacial tension between oil and polymer solution can be reduced by two orders of magnitude. Sandpack flooding tests demonstrated the capacity of the developed systems in mobility control during propagating in porous media, and the adsorption behavior was represented by the thickness of the adsorbed layer. The relationship between microscopic efficiency and capillary number indicated that the associated systems can significantly reduce the residual oil saturation due to the synergistic effect of the mobility reduction and surface activity, and the overall recovery efficiency was raised by 2-20% OOIP compared to the baseline polymers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effects of switching to lower sulfur marine fuel oil on air quality in the San Francisco Bay area.
Tao, Ling; Fairley, David; Kleeman, Michael J; Harley, Robert A
2013-09-17
Ocean-going vessels burning high-sulfur heavy fuel oil are an important source of air pollutants, such as sulfur dioxide and particulate matter. Beginning in July 2009, an emission control area was put into effect at ports and along the California coastline, requiring use of lower sulfur fuels in place of heavy fuel oil in main engines of ships. To assess impacts of the fuel changes on air quality at the Port of Oakland and in the surrounding San Francisco Bay area, we analyzed speciated fine particle concentration data from four urban sites and two more remote sites. Measured changes in concentrations of vanadium, a specific marker for heavy fuel oil combustion, are related to overall changes in aerosol emissions from ships. We found a substantial reduction in vanadium concentrations after the fuel change and a 28-72% decrease in SO2 concentrations, with the SO2 decrease varying depending on proximity to shipping lanes. We estimate that the changes in ship fuel reduced ambient PM2.5 mass concentrations at urban sites in the Bay area by about 3.1 ± 0.6% or 0.28 ± 0.05 μg/m(3). The largest contributing factor to lower PM mass concentrations was reductions in particulate sulfate. Absolute sulfate reductions were fairly consistent across sites, whereas trace metal reductions were largest at a monitoring site in West Oakland near the port.
Development of Viscosity Model for Petroleum Industry Applications
NASA Astrophysics Data System (ADS)
Motahhari, Hamed reza
Heavy oil and bitumen are challenging to produce and process due to their very high viscosity, but their viscosity can be reduced either by heating or dilution with a solvent. Given the key role of viscosity, an accurate viscosity model suitable for use with reservoir and process simulators is essential. While there are several viscosity models for natural gases and conventional oils, a compositional model applicable to heavy petroleum and diluents is lacking. The objective of this thesis is to develop a general compositional viscosity model that is applicable to natural gas mixtures, conventional crudes oils, heavy petroleum fluids, and their mixtures with solvents and other crudes. The recently developed Expanded Fluid (EF) viscosity correlation was selected as a suitable compositional viscosity model for petroleum applications. The correlation relates the viscosity of the fluid to its density over a broad range of pressures and temperatures. The other inputs are pressure and the dilute gas viscosity. Each fluid is characterized for the correlation by a set of fluid-specific parameters which are tuned to fit data. First, the applicability of the EF correlation was extended to asymmetric mixtures and liquid mixtures containing dissolved gas components. A new set of mass-fraction based mixing rules was developed to calculate the fluid-specific parameters for mixtures. The EF correlation with the new set of mixing rules predicted the viscosity of over 100 mixtures of hydrocarbon compounds and carbon dioxide with overall average absolute relative deviations (AARD) of less than 10% either with measured densities or densities estimated by Advanced Peng-Robinson equation of state (APR EoS). To improve the viscosity predictions with APR EoS-estimated densities, general correlations were developed for non-zero viscosity binary interaction parameters. The EF correlation was extended to non-hydrocarbon compounds typically encountered in natural gas industry. It was demonstrated that the framework of the correlation is valid for these compounds, except for compounds with strong hydrogen bonding such as water. A temperature dependency was introduced into the correlation for strongly hydrogen bonding compounds. The EF correlation fit the viscosity data of pure non-hydrocarbon compounds with AARDs below 6% and predicted the viscosity of sour and sweet natural gases and aqueous solutions of organic alcohols with overall AARDs less than 9%. An internally consistent estimation method was also developed to calculate the fluid-specific parameters for hydrocarbons when no experimental viscosity data are available. The method correlates the fluid-specific parameters to the molecular weight and specific gravity. The method was evaluated against viscosity data of over 250 pure hydrocarbon compounds and petroleum distillations cuts. The EF correlation predictions were found to be within the same order of magnitude of the measurements with an overall AARD of 31%. A methodology was then proposed to apply the EF viscosity correlation to crude oils characterized as mixtures of the defined components and pseudo-components. The above estimation methods are used to calculate the fluid-specific parameters for pseudo-components. Guidelines are provided for tuning of the correlation to available viscosity data, calculating the dilute gas viscosities, and improving the densities calculated with the Peng-Robinson EoS. The viscosities of over 10 dead and live crude oils and bitumen were predicted within a factor of 3 of the measured values using the measured density of the oils as the input. It was shown that single parameter tuning of the model improved the viscosity prediction to within 30% of the measured values. Finally, the performance of the EF correlation was evaluated for diluted heavy oils and bitumens. The required density and viscosity data were collected for over 20 diluted dead and live bitumen mixtures using an in-house capillary viscometer also equipped with an in-line density-meter at temperatures and pressures up to 175 °C and 10 MPa. The predictions of the correlation were found within the same order of magnitude of the measured values with overall AARDs less than 20%. It was shown that the predictions of the correlation with generalized non-zero interaction parameters for the solvent-oil pairs were improved to overall AARDs less than 10%.
Nano-catalysts for upgrading bio-oil: Catalytic decarboxylation and hydrodeoxygenation
NASA Astrophysics Data System (ADS)
Uemura, Yoshimitsu; Tran, Nga T. T.; Naqvi, Salman Raza; Nishiyama, Norikazu
2017-09-01
Bio-oil is a mixture of oxygenated chemicals produced by fast pyrolysis of lignocellulose, and has attracted much attention recently because the raw material is renewable. Primarily, bio-oil can be used as a replacement of heavy oil. But it is not highly recommended due to bio-oil's inferior properties: high acidity and short shelf life. Upgrading of bio-oil is therefore one of the important technologies nowadays, and is categorized into the two: (A) decrarboxylation/decarbonylation by solid acid catalysts and (B) hydrodeoxygenation (HDO) by metallic catalysts. In our research group, decarboxylation of bio-oil by zeolites and HDO of guaiacol (a model compound of bio-oil) have been investigated. In this paper, recent developments of these upgrading reactions in our research group will be introduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This document contains emission factors and process information for more than 200 air pollution source categories. This Supplement to AP-42 addresses pollutant-generating activity from Bituminous And Subbituminous Coal Combustion, Anthracite Coal Combustion, Fuel Oil Combustion, Natural Gas Combustion, Liquefied Petroleum Gas Combustion, Wood Waste Combustion In Boilers, Lignite Combustion, Bagasse Combustion In Sugar Mills, Residential Fireplaces, Residential Wood Stoves, Waste Oil Combustion, Stationary Gas Turbines For Electricity Generation, Heavy-duty Natural Gas-fired Pipeline Compressor Engines And Turbines, Gasoline and Diesel Industrial Engines, Large Stationary Diesel And All Stationary Dual-fuel Engines, Adipic Acid, Cotton Ginning, Alfafalfa Dehydrating, Malt Beverages, Ceramic Products Manufacturing,more » Electroplating, Wildfires And Prescribed Burning, Emissions From Soils-Greenhouse Gases, Termites-Greenhouse Gases, and Lightning Emissions-Greenhouse Gases.« less
Identification of alkyl carbazoles and alkyl benzocarbazoles in Brazilian petroleum derivatives.
Oliveira, Eniz Conceição; Vaz de Campos, Maria Cecília; Rodrigues, Maria Regina Alves; Pérez, Valéria Flores; Melecchi, Maria Inês Soares; Vale, Maria Goreti Rodrigues; Zini, Cláudia Alcaraz; Caramão, Elina Bastos
2006-02-10
Carbozoles are important compounds in crude oils, as they may be used as geochemical tracers, being the major type of nitrogen compounds in petroleum. At the same time, they are regarded as undesirable due to the problems they may cause in the refining process, such as catalyst poisoning, corrosion, gum or color formation in final products. As separation and identification of carbazoles are challenging goals, this work presents a chromatographic method, made of a pre-fractionation on neutral alumina followed by the separation and identification of two classes of carbazoles using FeCl(3)/Chromossorb W and gas chromatograph with mass spectrometer (GC/MS) (SIM-single ion monitoring mode) analysis. For the first time, a series of alkyl carbazoles and alkyl benzocarbazoles were identified in heavy gas oil (HGO) and atmospheric residue of distillation (ARD) obtained from Brazilian petroleum.
Escobar-Alvarado, Luisa F; Vaca-Mier, Mabel; López-Callejas, Raymundo; Rojas-Valencia, Ma Neftalí
2018-01-28
Industrial pollutants such as heavy metals and hydrocarbons in soils represent a serious concern due to their persistence and negative effects on the environment, affecting cellular processes in living organisms and even causing mutations and cancer. The main objectives of this work were to evaluate the efficiency of Opuntia ficus in the phytoremediation of a soil polluted with used motor oil. Two other species, one with different and one with similar characteristics, relatively, were used for comparison purposes: Lolium perenne and Aloe barbadensis. The effect of the plants on lead solubility and bioaccumulation, the biomass production of each specie and the microbial counts and bacterial identification for each experiment was studied. Total petroleum hydrocarbons (TPH) were measured every 5 weeks throughout the 20-week phytoremediation experiment. At the end of the experiment soluble Pb, Pb extracted by the plant species, microbiological counts, total biomass and bacterial species in soil were analyzed. Even though Lolium perenne showed the highest TPH removal (47%), Opuntia ficus produced the highest biomass and similar removal (46%). Since Opuntia ficus requires low amounts of water and grows fast, it would be a suitable option in the remediation of soils polluted with hydrocarbons and/or heavy metals.
Removal of Heavy Metal Ions with Acid Activated Carbons Derived from Oil Palm and Coconut Shells
Rahman, Mokhlesur M.; Adil, Mohd; Yusof, Alias M.; Kamaruzzaman, Yunus B.; Ansary, Rezaul H.
2014-01-01
In this work, batch adsorption experiments were carried out to investigate the suitability of prepared acid activated carbons in removing heavy metal ions such as nickel(II), lead(II) and chromium(VI). Acid activated carbons were obtained from oil palm and coconut shells using phosphoric acid under similar activation process while the differences lie either in impregnation condition or in both pretreatment and impregnation conditions. Prepared activated carbons were modified by dispersing hydrated iron oxide. The adsorption equilibrium data for nickel(II) and lead(II) were obtained from adsorption by the prepared and commercial activated carbons. Langmuir and Freundlich models fit the data well. Prepared activated carbons showed higher adsorption capacity for nickel(II) and lead(II). The removal of chromium(VI) was studied by the prepared acid activated, modified and commercial activated carbons at different pH. The isotherms studies reveal that the prepared activated carbon performs better in low concentration region while the commercial ones in the high concentration region. Thus, a complete adsorption is expected in low concentration by the prepared activated carbon. The kinetics data for Ni(II), Pb(II) and Cr(VI) by the best selected activated carbon fitted very well to the pseudo-second-order kinetic model. PMID:28788640
NASA Astrophysics Data System (ADS)
Dolomatov, M.; Gafurov, M.; Rodionov, A.; Mamin, G.; González, L. Miquel; Vakhin, A.; Petrov, A.; Bakhtizin, R.; Khairudinov, I.; Orlinskii, S.
2018-05-01
Changes of paramagnetic centers (PC) concentration in petroleum dispersed systems (PDS) are studied in the process of low-temperature thermolysis. Complex investigation of physicochemical, rheological and electrophysical properties of high-boiling oil fractions is performed. Based on the analysis of the experimental results it can be concluded that the PDS under investigation can be regarded as amorphous broadband organic semiconductors for which PC plays a role of dopant. It shows the perspectives of the asphaltenes usage as a basis for the photovoltaic devices.
2011-12-01
fuel saving technologies that may be on the civilian market but have not been vetted through the Army procurement process. Some are also military...global market . 18 This heavy dependence also requires that the U.S. use military forces to ensure access to oil both for the health of the U.S...the market price. However, what the cost per gallon does not include is the transparent costs that the FBCF captures. Using the AEPI Reports’ value of
Pre-feasibility study for construction of a commercial coal hydrogenation plant
NASA Astrophysics Data System (ADS)
Hahn, W.; Wilhelm, H.; Kleinhueckelkotten, H.; Schmedeshagen, B.
1982-11-01
The technical problems, a suitable site and the unsatisfactory economics hinder the realization of a commercial coal liquefaction plant in Germany were identified. It is found that a plant for hydrogenation of coal and heavy oil according to the updated bergius-Pier process can be built. The improvement of acceptable reactor loading and increase of product yield was considered. The infrastructure aspects of a site for the plant which covers 300 hectars as well as eventually existing atmospheric pollution conditions in the environment are also considered.
Liu, Hua-Min; Feng, Bing; Sun, Run-Cang
2011-10-12
In this study, cornstalk was pretreated by an acid-chlorite delignification procedure to enhance the conversion of cornstalk to bio-oil in hot-compressed water liquefaction. The effects of the pretreatment conditions on the compositional and structural changes of the cornstalk and bio-oil yield were investigated. It was found that acid-chlorite pretreatment changed the main components and physical structures of cornstalk and effectively enhanced the bio-oil yield. Shorter residence time favored production of the total bio-oil products, whereas longer time led to cracking of the products. A high water loading was found to be favorable for high yields of total bio-oil and water-soluble oil. GC-MS analysis showed that the water-soluble oil and heavy oil were the complicated products of C(5-10) and C(8-11) organic compounds.
Roscioli, Joseph R; Herndon, Scott C; Yacovitch, Tara I; Knighton, W Berk; Zavala-Araiza, Daniel; Johnson, Matthew R; Tyner, David R
2018-03-07
Cold heavy oil production with sands (CHOPS) is a common oil extraction method in the Canadian provinces of Alberta and Saskatchewan that can result in significant methane emissions due to annular venting. Little is known about the magnitude of these emissions, nor their contributions to the regional methane budget. Here the authors present the results of field measurements of methane emissions from CHOPS wells and compare them with self-reported venting rates. The tracer ratio method was used not only to analyze total site emissions but at one site it was also used to locate primary emission sources and quantify their contributions to the facility-wide emission rate, revealing the annular vent to be a dominant source. Emissions measured from five different CHOPS sites in Alberta showed large discrepancies between the measured and reported rates, with emissions being mainly underreported. These methane emission rates are placed in the context of current reporting procedures and the role that gas-oil ratio (GOR) measurements play in vented volume estimates. In addition to methane, emissions of higher hydrocarbons were also measured; a chemical "fingerprint" associated with CHOPS wells in this region reveals very low emission ratios of ethane, propane, and aromatics versus methane. The results of this study may inform future studies of CHOPS sites and aid in developing policy to mitigate regional methane emissions. Methane measurements from cold heavy oil production with sand (CHOPS) sites identify annular venting to be a potentially major source of emissions at these facilities. The measured emission rates are generally larger than reported by operators, with uncertainty in the gas-oil ratio (GOR) possibly playing a large role in this discrepancy. These results have potential policy implications for reducing methane emissions in Alberta in order to achieve the Canadian government's goal of reducing methane emissions by 40-45% below 2012 levels within 8 yr.
NASA Astrophysics Data System (ADS)
Czech, Hendryk; Schnelle-Kreis, Jürgen; Streibel, Thorsten; Zimmermann, Ralf
2017-08-01
During the oil crises of the 70s and the associated increase of the oil price, the usage of marine fuels shifted from middle distillates of the crude oil refinery, such as marine diesel oil (MDO) or marine gas oil (MGO), towards cheaper heavy fuel oils (HFO), or also called residual fuel oil. The latter refers to the vacuum residue of the crude oil refinery blended by lighter refinery products, such as kerosene, to meet a certain maximum viscosity. Those HFOs are rich in sulphur and heavy metals which end up as significant constituents in emitted fine particulate matter (PM2.5) after the combustion. Especially for harbour cities or highly frequented ship traffic routes, HFO-derived PM2.5 has been identified as a globally important perpetrator of increased mortality by cardiopulmonary diseases and lung cancer (e.g. Corbett et al., 2007). However, the emitted hazardous species provide reliable markers to assess the contribution of this emission source to air pollution in source apportionment studies. Such studies are often performed utilising positive matrix factorisation, whose score matrix can be interpreted as temporal contribution of k identified emission sources and factors represent the k corresponding emission profiles. If one of the k factors contains moderate to high amounts of sulphate, vanadium and nickel with a high ratio of the two latter ones, the ship identification was unambiguous (e.g. Viana et al., 2009). Even more sensitive towards emission profiles are receptor models such as chemical mass balance, which require detailed prior knowledge about the assumed emission sources (Jeong et al., 2017).
Sun, Chen; Hou, Jian; Pan, Guangming; Xia, Zhizeng
2016-01-01
A successful cross-linked polymer flooding has been implemented in JD reservoir, an ordinary heavy oil reservoir with high permeability zones. For all that, there are still significant volumes of continuous oil remaining in place, which can not be easily extracted due to stronger vertical heterogeneity. Considering selective plugging feature, polymer enhanced foam (PEF) flooding was taken as following EOR technology for JD reservoir. For low cost and rich source, natural gas was used as foaming gas in our work. In the former work, the surfactant systems CEA/FSA1 was recommended as foam agent for natural gas foam flooding after series of compatibility studies. Foam performance evaluation experiments showed that foaming volume reached 110 mL, half-life time reached 40 min, and dimensionless filter coefficient reached 1.180 when CEA/FSA1 reacted with oil produced by JD reservoir. To compare the recovery efficiency by different EOR technologies, series of oil displacement experiments were carried out in a parallel core system which contained cores with relatively high and low permeability. EOR technologies concerned in our work include further cross-linked polymer (C-P) flooding, surfactant-polymer (S-P) flooding, and PEF flooding. Results showed that PEF flooding had the highest enhanced oil recovery of 19.2 % original oil in place (OOIP), followed by S-P flooding (9.6 % OOIP) and C-P flooding (6.1 % OOIP). Also, produced liquid percentage results indicated PEF flooding can efficiently promote the oil recovery in the lower permeability core by modifying the injection profile.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-06
...-241A.00] RIN 1004-AE04 Promotion of Development, Reduction of Royalty Rates for Stripper Well and Heavy... economy, productivity, competition, jobs, the environment, public health or safety, or State, local, or..., investment, productivity, innovation, or the ability of U.S.-based enterprises to compete with foreign-based...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-04
... organisms to the surrounding water. Coatings used to deter organism growth on vessel hulls can release heavy metals and/or other biocides, which can lead to acute or chronic toxicity in non-targeted organisms. Bilgewater can contain oils, dissolved heavy metals, and other chemical constituents that can result in toxic...
NASA Astrophysics Data System (ADS)
Cadillon, Jérémy; Saksena, Rajat; Pearlstein, Arne J.
2016-12-01
By replacing the "heavy" silicone oil used in the oil phase of Saksena, Christensen, and Pearlstein ["Surrogate immiscible liquid pairs with refractive indexes matchable over a wide range of density and viscosity ratios," Phys. Fluids 27, 087103 (2015)] by one with a twentyfold higher viscosity, and replacing the "light" silicone oil in that work by one with a viscosity fivefold lower and a density about 10% lower, we have greatly extended the range of viscosity ratio accessible by index-matching the adjustable-composition oil phase to an adjustable-composition 1,2-propanediol + CsBr + H2O aqueous phase and have also extended the range of accessible density ratios. The new system of index-matchable surrogate immiscible liquids is capable of achieving the density and viscosity ratios for liquid/liquid systems consisting of water with the entire range of light or medium crude oils over the temperature range from 40 °F (4.44 °C) to 200 °F (93.3 °C) and can access the density and viscosity ratios for water with some heavy crude oils over part of the same temperature range. It also provides a room-temperature, atmospheric-pressure surrogate for the liquid CO2 + H2O system at 0 °C over almost all of the pressure range of interest in sub-seabed CO2 sequestration.
Duan, Meina; Xiong, Deqi; Yang, Mengye; Xiong, Yijun; Ding, Guanghui
2018-05-03
The present study investigated the toxic effects of parental (maternal/paternal) exposure to heavy fuel oil (HFO) on the adult reproductive state, gamete quality and development of the offspring of the sea urchin Strongylocentrotus intermedius. Adult sea urchins were exposed to effluents from HFO-oiled gravel columns for 7 days to simulate an oil-contaminated gravel shore, and then gametes of adult sea urchins were used to produce embryos to determine developmental toxicity. For adult sea urchins, no significant difference in the somatic size and weight was found between the various oil loadings tested, while the gonad weight and gonad index were significantly decreased at higher oil loadings. The spawning ability of adults and fecundity of females significantly decreased. For gametes, no effect was observed on the egg size and fertilization success in any of the groups. However, a significant increase in the percentage of anomalies in the offspring was observed and then quantified by an integrative toxicity index (ITI) at 24 and 48 h post fertilization. The offspring from exposed parents showed higher ITI values with more malformed embryos. The results confirmed that parental exposure to HFO can cause adverse effects on the offspring and consequently affect the recruitment and population maintenance of sea urchins. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kornacki, A.S.; McNeil, R.I.
1996-12-31
The Santa Cruz (La Honda) Basin is a small {open_quote}slice{close_quote} of the San Joaquin Basin that has been displaced c. 300 km to the northwest by the San Andreas Fault. The poorly-explored offshore area that now lies within the Monterey Bay NMS includes portions of the Outer Santa Cruz and Bodega basins. A modest amount (c. 1.3 MM bbl) of variable-quality oil has been produced from Eocene and Pliocene pay zones in the La Honda Field. Much smaller amounts of light oil ({ge}40{degrees} API) have been produced from three other fields (Oil Creek; Moody Gulch; Half Moon Bay). Large tarmore » deposits also outcrop near the city of Santa Cruz. Proven source rocks in this basin include the Eocene Twobar Shale and three Miocene units: the Lambert Shale, Monterey Formation, and the Santa Cruz Mudstone. A high-gravity oil sample from the Oil Creek Field contains isotopically-light carbon ({delta}{sup 13}C = - 28.2 per mil) and has a relatively high pristane/phytane ratio. This oil was generated at high temperature (c. 140{degrees}C) by pre-Miocene source rocks (probably the Twobar Shale). The presence of isotopically-heavy carbon in all other oil and tar samples demonstrates they were generated by Miocene source rocks. But the C{sub 7} oil-generation temperatures, sulfur content, vanadium/nickel ratios, and biomarker chemistry of these Miocene oils are significantly different than in Monterey oils from the prolific Santa Maria Basin (SMB). The sulfur content (8.0 wt%) and V-Ni chemistry of tarry petroleum recovered in the P-036-1 well (Outer Santa Cruz Basin) resembles the chemistry of very heavy (<15{degrees}API) oils generated by phosphatic Monterey shales in the SMB.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kornacki, A.S.; McNeil, R.I.
1996-01-01
The Santa Cruz (La Honda) Basin is a small [open quote]slice[close quote] of the San Joaquin Basin that has been displaced c. 300 km to the northwest by the San Andreas Fault. The poorly-explored offshore area that now lies within the Monterey Bay NMS includes portions of the Outer Santa Cruz and Bodega basins. A modest amount (c. 1.3 MM bbl) of variable-quality oil has been produced from Eocene and Pliocene pay zones in the La Honda Field. Much smaller amounts of light oil ([ge]40[degrees] API) have been produced from three other fields (Oil Creek; Moody Gulch; Half Moon Bay).more » Large tar deposits also outcrop near the city of Santa Cruz. Proven source rocks in this basin include the Eocene Twobar Shale and three Miocene units: the Lambert Shale, Monterey Formation, and the Santa Cruz Mudstone. A high-gravity oil sample from the Oil Creek Field contains isotopically-light carbon ([delta][sup 13]C = - 28.2 per mil) and has a relatively high pristane/phytane ratio. This oil was generated at high temperature (c. 140[degrees]C) by pre-Miocene source rocks (probably the Twobar Shale). The presence of isotopically-heavy carbon in all other oil and tar samples demonstrates they were generated by Miocene source rocks. But the C[sub 7] oil-generation temperatures, sulfur content, vanadium/nickel ratios, and biomarker chemistry of these Miocene oils are significantly different than in Monterey oils from the prolific Santa Maria Basin (SMB). The sulfur content (8.0 wt%) and V-Ni chemistry of tarry petroleum recovered in the P-036-1 well (Outer Santa Cruz Basin) resembles the chemistry of very heavy (<15[degrees]API) oils generated by phosphatic Monterey shales in the SMB.« less
Wave Velocities in Hydrocarbons and Hydrocarbon Saturated - Applications to Eor Monitoring.
NASA Astrophysics Data System (ADS)
Wang, Zhijing
In order to effectively utilize many new seismic technologies and interpret the results, acoustic properties of both reservoir fluids and rocks must be well understood. It is the main purpose of this dissertation to investigate acoustic wave velocities in different hydrocarbons and hydrocarbon saturated rocks under various reservoir conditions. The investigation consists of six laboratory experiments, followed by a series of theoretical and application analyses. All the experiments involve acoustic velocity measurements in hydrocarbons and rocks with different hydrocarbons, using the ultrasonic pulse-transmission methods, at elevated temperatures and pressures. In the experiments, wave velocities are measured versus both temperature and pressure in 50 hydrocarbons. The relations among the acoustic velocity, temperature, pressure, API gravity, and the molecular weight of the hydrocarbons are studied, and empirical equations are established which allow one to calculate the acoustic velocities in hydrocarbons with known API gravities. Wave velocities in hydrocarbon mixtures are related to the composition and the velocities in the components. The experimental results are also analyzed in terms of various existing theories and models of the liquid state. Wave velocities are also measured in various rocks saturated with different hydrocarbons. The compressional wave velocities in rocks saturated with pure hydrocarbons increase with increasing the carbon number of the hydrocarbons. They decrease markedly in all the heavy hydrocarbon saturated rocks as temperature increases. Such velocity decreases set the petrophysical basis for in-situ seismic monitoring thermal enhanced oil recovery processes. The effects of carbon dioxide flooding and different pore fluids on wave velocities in rocks are also investigated. It is highly possible that there exist reflections of seismic waves at the light-heavy oil saturation interfaces in-situ. It is also possible to use seismic methods to monitor carbon dioxide flooding processes. Velocity dispersions are analyzed theoretically in rocks saturated with different pore fluids. The results are discussed in terms of the Biot theory and the "local flow" mechanism. Applications of the results and the applicability of using seismic methods to monitor various enhanced oil recovery and production processes are also discussed.
Bioremediation by composting of heavy oil refinery sludge in semiarid conditions.
Marín, José A; Moreno, José L; Hernández, Teresa; García, Carlos
2006-06-01
The present work attempts to ascertain the efficacy of low cost technology (in our case, composting) as a bioremediation technique for reducing the hydrocarbon content of oil refinery sludge with a large total hydrocarbon content (250-300 g kg(-1)), in semiarid conditions. The oil sludge was produced in a refinery sited in SE Spain The composting system designed, which involved open air piles turned periodically over a period of 3 months, proved to be inexpensive and reliable. The influence on hydrocarbon biodegradation of adding a bulking agent (wood shavings) and inoculation of the composting piles with pig slurry (a liquid organic fertiliser which adds nutrients and microbial biomass to the pile) was also studied. The most difficult part during the composting process was maintaining a suitable level of humidity in the piles. The most effective treatment was the one in which the bulking agent was added, where the initial hydrocarbon content was reduced by 60% in 3 months, compared with the 32% reduction achieved without the bulking agent. The introduction of the organic fertiliser did not significantly improve the degree of hydrocarbon degradation (56% hydrocarbon degraded). The composting process undoubtedly led to the biodegradation of toxic compounds, as was demonstrated by ecotoxicity tests using luminescent bacteria and tests on plants in Petri dishes.
Toth, Courtney R. A.; Gieg, Lisa M.
2018-01-01
Biodegradation of crude oil in subsurface petroleum reservoirs has adversely impacted most of the world's oil, converting this resource to heavier forms that are of lower quality and more challenging to recover. Oil degradation in deep reservoir environments has been attributed to methanogenesis over geological time, yet our understanding of the processes and organisms mediating oil transformation in the absence of electron acceptors remains incomplete. Here, we sought to identify hydrocarbon activation mechanisms and reservoir-associated microorganisms that may have helped shape the formation of biodegraded oil by incubating oilfield produced water in the presence of light (°API = 32) or heavy crude oil (°API = 16). Over the course of 17 months, we conducted routine analytical (GC, GC-MS) and molecular (PCR/qPCR of assA and bssA genes, 16S rRNA gene sequencing) surveys to assess microbial community composition and activity changes over time. Over the incubation period, we detected the formation of transient hydrocarbon metabolites indicative of alkane and alkylbenzene addition to fumarate, corresponding with increases in methane production and fumarate addition gene abundance. Chemical and gene-based evidence of hydrocarbon biodegradation under methanogenic conditions was supported by the enrichment of hydrocarbon fermenters known to catalyze fumarate addition reactions (e.g., Desulfotomaculum, Smithella), along with syntrophic bacteria (Syntrophus), methanogenic archaea, and several candidate phyla (e.g., “Atribacteria”, “Cloacimonetes”). Our results reveal that fumarate addition is a possible mechanism for catalyzing the methanogenic biodegradation of susceptible saturates and aromatic hydrocarbons in crude oil, and we propose the roles of community members and candidate phyla in our cultures that may be involved in hydrocarbon transformation to methane in crude oil systems. PMID:29354103
Lemkau, Karin L; McKenna, Amy M; Podgorski, David C; Rodgers, Ryan P; Reddy, Christopher M
2014-04-01
Recent studies have highlighted a critical need to investigate oil weathering beyond the analytical window afforded by conventional gas chromatography (GC). In particular, techniques capable of detecting polar and higher molecular weight (HMW; > 400 Da) components abundant in crude and heavy fuel oils (HFOs) as well as transformation products. Here, we used atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (APPI FT-ICR MS) to identify molecular transformations in oil-residue samples from the 2007 M/V Cosco Busan HFO spill (San Francisco, CA). Over 617 days, the abundance and diversity of oxygen-containing compounds increased relative to the parent HFO, likely from bio- and photodegradation. HMW, highly aromatic, alkylated compounds decreased in relative abundance concurrent with increased relative abundance of less alkylated stable aromatic structures. Combining these results with GC-based data yielded a more comprehensive understanding of oil spill weathering. For example, dealkylation trends and the overall loss of HMW species observed by FT-ICR MS has not previously been documented and is counterintuitive given losses of lower molecular weight species observed by GC. These results suggest a region of relative stability at the interface of these techniques, which provides new indicators for studying long-term weathering and identifying sources.
Al-Masri, M S; Haddad, Kh; Doubal, A W; Awad, I; Al-Khatib, Y
2014-06-01
Soil contamination by (210)Pb and (210)Po around heavy oil and natural gas power plants has been investigated; fly and bottom ash containing enhanced levels of (210)Pb and (210)Po were found to be the main source of surface soil contamination. The results showed that (210)Pb and (210)Po in fly-ash (economizer, superheater) is highly enriched with (210)Pb and (210)Po, while bottom-ash (boiler) is depleted. The highest (210)Pb and (210)Po activity concentrations were found to be in economizer ash, whereas the lowest activity concentration was in the recirculator ash. On the other hand, (210)Pb and (210)Po activity concentrations in soil samples were found to be higher inside the plant site area than those samples collected from surrounding areas. The highest levels were found in the vicinity of Mhardeh and Tishreen power plants; both plants are operated by heavy oil and natural fuels, while the lowest values were found to be in those samples collected from Nasrieh power plant, which is only operated by one type of fuel, viz. natural gas. In addition, the levels of surface soil contamination have decreased as the distance from the power plant site center increased. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kim, Gibaek; Kwak, Jihyun; Kim, Ki-Rak; Lee, Heesung; Kim, Kyoung-Woong; Yang, Hyeon; Park, Kihong
2013-12-15
A laser induced breakdown spectroscopy (LIBS) coupled with the chemometric method was applied to rapidly discriminate between soils contaminated with heavy metals or oils and clean soils. The effects of the water contents and grain sizes of soil samples on LIBS emissions were also investigated. The LIBS emission lines decreased by 59-75% when the water content increased from 1.2% to 7.8%, and soil samples with a grain size of 75 μm displayed higher LIBS emission lines with lower relative standard deviations than those with a 2mm grain size. The water content was found to have a more pronounced effect on the LIBS emission lines than the grain size. Pelletizing and sieving were conducted for all samples collected from abandoned mining areas and military camp to have similar water contents and grain sizes before being analyzed by the LIBS with the chemometric analysis. The data show that three types of soil samples were clearly discerned by using the first three principal components from the spectral data of soil samples. A blind test was conducted with a 100% correction rate for soil samples contaminated with heavy metals and oil residues. Copyright © 2013 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-01-01
... gravity of 20.0 degrees API or lower, at an average volume not to exceed 25 MB/D, will be authorized as... that the California heavy crude oil: (i) Has a gravity of 20.0 degrees API or lower; (ii) Was produced... least 2,000 meters water depth). Exceptions can be made at the discretion of the captain only in order...
Code of Federal Regulations, 2012 CFR
2012-01-01
... gravity of 20.0 degrees API or lower, at an average volume not to exceed 25 MB/D, will be authorized as... that the California heavy crude oil: (i) Has a gravity of 20.0 degrees API or lower; (ii) Was produced... least 2,000 meters water depth). Exceptions can be made at the discretion of the captain only in order...
Code of Federal Regulations, 2014 CFR
2014-01-01
... gravity of 20.0 degrees API or lower, at an average volume not to exceed 25 MB/D, will be authorized as... that the California heavy crude oil: (i) Has a gravity of 20.0 degrees API or lower; (ii) Was produced... least 2,000 meters water depth). Exceptions can be made at the discretion of the captain only in order...
1987-10-29
nonferrous ores in quarries and underground; Installations for desulfurization , cleaning, and dry- ing of gas , turbocompressors for methane gas ; Mining...Products Exportation Bucharest Minis- "Indus- try of trial- Foreign Drilling installations and equipment for oil and gas ; export- Trade...equipment; try of Refineries, complex installations, parts, and equip- the ment for the oil- and gas -refining industry; Heavy Factories, complex
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-30
..., electrical resistance, and fire extinguishing including cooking oil fires for light duty and heavy duty... operation and will not create a hazardous condition even with cooking oil in the cooktop. Discussion of... the cooktop is unattended, which would prohibit a single person from cooking on the cooktop and...
Schinus molle: a new source of natural fungitoxicant.
Dikshit, A; Naqvi, A A; Husain, A
1986-01-01
The oil of Schinus molle exhibited the maximum fungitoxic activity during the screening of some essential oils against some common storage and animal pathogenic fungi. It showed absolute toxicity against animal pathogens and mild activity against storage fungi. The effective concentrations of the oil varied from 200 to 900 ppm. The toxicity of the oil persisted up to 80 degrees C and 90 days of storage but declined when autoclaved. It withstood heavy inoculum density. The oil exhibited a narrow range of activity and was found to be more effective than Multifungin, an antifungal drug. The oil was characterized by its various physicochemical properties. It was found to comprise 50 constituents. It appeared that some changes in the oil constituents during storage affected its fungitoxic potency. PMID:3729389
Production-related petroleum microbiology: progress and prospects.
Voordouw, Gerrit
2011-06-01
Microbial activity in oil reservoirs is common. Methanogenic consortia hydrolyze low molecular weight components to methane and CO2, transforming light oil to heavy oil to bitumen. The presence of sulfate in injection water causes sulfate-reducing bacteria to produce sulfide. This souring can be reversed by nitrate, stimulating nitrate-reducing bacteria. Removing biogenic sulfide is important, because it contributes to pitting corrosion and resulting pipeline failures. Increased water production eventually makes oil production uneconomic. Microbial fermentation products can lower oil viscosity or interfacial tension and produced biomass can block undesired flow paths to produce more oil. These biotechnologies benefit from increased understanding of reservoir microbial ecology through new sequence technologies and help to decrease the environmental impact of oil production. Copyright © 2010 Elsevier Ltd. All rights reserved.
Pollution control of industrial wastewater from soap and oil industries: a case study.
Abdel-Gawad, S; Abdel-Shafy, M
2002-01-01
Industrial wastewater from soap and oil industries represents a heavy pollution source on their receiving water body. This paper studies a case of pollution control at Tanta Soap and Oil Company, Banha Factory, Egypt. The factory production includes soap, edible oil, and animal fodder. About 4,347 m3/day of industrial wastewater effluent was discharged via gravity sewers to the public sewerage system. Most of the effluent was cooling water because the cooling process in the factory was open circle. In spite of the huge quantity of cooling water being disposed of, disposal of wastewater was violating pertinent legislation. Three procedures were used for controlling the pollution at the Banha Factory. Firstly, all open circuit cooling systems were converted to closed circuit thus reducing the quantity of the discharged wastewater down to 767 m3/day. Secondly, the heavily polluted oil and grease (O&G) wastewater from the refinery unit is treated via two gravity oil separator (GOS) units, dissolved air floatation (DAF), and biological units in order to reduce the high levels of O&G, BOD, COD, and SS to the allowable limits. Thirdly, the heavily polluted waste effluent from the 'red water' saponification unit is treated separately by acidification to convert the emulsified fatty acid to free form in order to be separated through an oil separation unit. The effluent is then passed to liming stage to neutralize excess acidity and precipitate some of the dissolved matters. The mixture is finally clarified and the pH is adjusted to the allowable limits. The effluent wastewater from the three processes is collected and mixed in a final equalization tank for discharging effluent to the public sewerage system. The characteristics of the effluent water are very good with respect to the allowable Egyptian limits for discharging effluent to the public sewerage system.
Failure Prevention of Hydraulic System Based on Oil Contamination
NASA Astrophysics Data System (ADS)
Singh, M.; Lathkar, G. S.; Basu, S. K.
2012-07-01
Oil contamination is the major source of failure and wear of hydraulic system components. As per literature survey, approximately 70 % of hydraulic system failures are caused by oil contamination. Hence, to operate the hydraulic system reliably, the hydraulic oil should be of perfect condition. This requires a proper `Contamination Management System' which involves monitoring of various parameters like oil viscosity, oil temperature, contamination level etc. A study has been carried out on vehicle mounted hydraulically operated system used for articulation of heavy article, after making the platform levelled with outrigger cylinders. It is observed that by proper monitoring of contamination level, there is considerably increase in reliability, economy in operation and long service life. This also prevents the frequent failure of hydraulic system.
Renny, Andrew; Santhosh, Viswanathan; Somkuwar, Nitin; Gokak, D T; Sharma, Pankaj; Bhargava, Sanjay
2016-11-01
The aim of this work was to study the pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen. As per literature, presence of heavy nitrogenous and oxygenated compounds leads to catalyst deactivation. Here, an attempt has been made to tune pyrolytic reactions to optimize the N and O content of the pyrolytic bio-oil. Bio-oil conversion and hydrogen yield decreased as reaction progressed, which attributes to temporary loss of catalytic activity by blockage of catalyst pores by carbon deposition. Further, retention of steam reforming activity after repetitive steam activation suggests long-term catalyst usage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Engineering kinetics of short residence time coal liquefaction processes
NASA Astrophysics Data System (ADS)
Traeger, R. K.
1980-06-01
Conversion of coal to liquid products occurs rapidly at temperatures over 350 C and can be significant in preheaters or short residence time reactors. The extent of conversion can have an effect on the operation of preheaters or effectiveness of subsequent reactors. To obtain process information, Illinois No. 6 coal in SRC II heavy distillate was reacted at 13.8 MPa, temperatures of 400, 425, and 450 C, and at slurry space velocities of 3200-96,000 kg/h-cu m. Product compositions and viscosities were measured. High concentrations of preasphaltenes occur in early reactions resulting in a high viscosity product, but subsequent reactions to asphaltenes and oils are less rapid.
Martinkosky, Luke; Barkley, Jaimie; Sabadell, Gabriel; Gough, Heidi; Davidson, Seana
2017-02-15
Crude oil contamination widely impacts soil as a result of release during oil and gas exploration and production activities. The success of bioremediation methods to meet remediation goals often depends on the composition of the crude oil, the soil, and microbial community. Earthworms may enhance bioremediation by mixing and aerating the soil, and exposing soil microorganisms to conditions in the earthworm gut that lead to increased activity. In this study, the common composting earthworm Eisenia fetida was tested for utility to improve remediation of oil-impacted soil. E. fetida survival in soil contaminated with two distinct crude oils was tested in an artificial (lab-mixed) sandy loam soil, and survival compared to that in the clean soil. Crude oil with a high fraction of light-weight hydrocarbons was more toxic to earthworms than the crude oil with a high proportion of heavy polyaromatic and aliphatic hydrocarbons. The heavier crude oil was added to soil to create a 30,000mg/kg crude oil impacted soil, and degradation in the presence of added earthworms and feed, feed alone, or no additions was monitored over time and compared. Earthworm feed was spread on top to test effectiveness of no mixing. TPH degradation rate for the earthworm treatments was ~90mg/day slowing by 200days to ~20mg/day, producing two phases of degradation. With feed alone, the rate was ~40mg/day, with signs of slowing after 500days. Both treatments reached the same end point concentrations, and exhibited faster degradation of aliphatic hydrocarbons
Hamidi, Hossein; Mohammadian, Erfan; Junin, Radzuan; Rafati, Roozbeh; Manan, Mohammad; Azdarpour, Amin; Junid, Mundzir
2014-02-01
Theoretically, Ultrasound method is an economical and environmentally friendly or "green" technology, which has been of interest for more than six decades for the purpose of enhancement of oil/heavy-oil production. However, in spite of many studies, questions about the effective mechanisms causing increase in oil recovery still existed. In addition, the majority of the mechanisms mentioned in the previous studies are theoretical or speculative. One of the changes that could be recognized in the fluid properties is viscosity reduction due to radiation of ultrasound waves. In this study, a technique was developed to investigate directly the effect of ultrasonic waves (different frequencies of 25, 40, 68 kHz and powers of 100, 250, 500 W) on viscosity changes of three types of oil (Paraffin oil, Synthetic oil, and Kerosene) and a Brine sample. The viscosity calculations in the smooth capillary tube were based on the mathematical models developed from the Poiseuille's equation. The experiments were carried out for uncontrolled and controlled temperature conditions. It was observed that the viscosity of all the liquids was decreased under ultrasound in all the experiments. This reduction was more significant for uncontrolled temperature condition cases. However, the reduction in viscosity under ultrasound was higher for lighter liquids compare to heavier ones. Pressure difference was diminished by decreasing in the fluid viscosity in all the cases which increases fluid flow ability, which in turn aids to higher oil recovery in enhanced oil recovery (EOR) operations. Higher ultrasound power showed higher liquid viscosity reduction in all the cases. Higher ultrasound frequency revealed higher and lower viscosity reduction for uncontrolled and controlled temperature condition experiments, respectively. In other words, the reduction in viscosity was inversely proportional to increasing the frequency in temperature controlled experiments. It was concluded that cavitation, heat generation, and viscosity reduction are three of the promising mechanisms causing increase in oil recovery under ultrasound. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Leshchyshyn, Theodore Henry
The oil sands of Alberta contain some one trillion barrels of bitumen-in-place, most contained in the McMurray, Wabiskaw, Clearwater, and Grand Rapids formations. Depth of burial is 0--550 m, 10% of which is surface mineable, the rest recoverable by in-situ technology-driven enhanced oil recovery schemes. To date, significant commercial recovery has been attributed to Cyclic Steam Stimulation (CSS) using vertical wellbores. Other techniques, such as Steam Assisted Gravity Drainage (SAGD) are proving superior to other recovery methods for increasing early oil production but at initial higher development and/or operating costs. Successful optimization of bitumen production rates from the entire reservoir is ultimately decided by the operator's understanding of the reservoir in its original state and/or the positive and negative changes which occur in oil sands and heavy oil deposits upon heat stimulation. Reservoir description is the single most important factor in attaining satisfactory history matches and forecasts for optimized production of the commercially-operated processes. Reservoir characterization which lacks understanding can destroy a project. For example, incorrect assumptions in the geological model for the Wolf Lake Project in northeast Alberta resulted in only about one-half of the predicted recovery by the original field process. It will be shown here why the presence of thin calcite streaks within oil sands can determine the success or failure of a commercial cyclic steam project. A vast amount of field data, mostly from the Primrose Heavy Oil Project (PHOP) near Cold Lake, Alberta, enabled the development a simple set of correlation curves for predicting bitumen production using CSS. A previously calibtrated thermal numerical simulation model was used in its simplist form, that is, a single layer, radial grid blocks, "fingering" or " dilation" adjusted permeability curves, and no simulated fracture, to generate the first cycle production correlation curves. The key reservoir property used to develop a specific curve was to vary the initial mobile water saturation. Individual pilot wells were then history-matched using these correlation curves, adjusting for thermal net pay using perforation height and a fundamentally derived "net pay factor". Operating days (injection plus production) were required to complete the history matching calculations. Subsequent cycles were then history-matched by applying an Efficiency Multiplication Factor (EMF) to the original first cycle prediction method as well as selecting the proper correlation curve for the specific cycle under analysis by using the appropriate steam injection rates and slug sizes. History matches were performed on eight PHOP wells (two back-to-back, five-spot patterns) completed in the Wabiskaw and, three single-well tests completed just below in the McMurray Formation. Predictions for the PHOP Wabiskaw Formation first cycle bitumen production averaged within 1% of the actual pilot total. Bitumen recovery from individual wells for second cycle onwards, was within 20% of actual values. For testing the correlations, matching was also performed on cyclic steam data from British Petroleum's Wolf Lake Project, the Esso Cold Lake Project, and the PCEJ Fort McMurray Pilot, a joint venture of Petro-Canada, Cities Services (Canadian Occidental), Esso, and Japan-Canada Oil Sands with reasonable results.
Code of Federal Regulations, 2011 CFR
2011-01-01
... electrically heated, gas-heated, or oil-heated water. The water consumption for the sensor normal cycle, V, is.... 1.16Truncated sensor heavy response means the sensor heavy response interrupted to eliminate the power-dry feature after the termination of the last rinse operation. 1.17Truncated sensor light response...
Code of Federal Regulations, 2010 CFR
2010-01-01
... electrically heated, gas-heated, or oil-heated water. The water consumption for the sensor normal cycle, V, is.... 1.16Truncated sensor heavy response means the sensor heavy response interrupted to eliminate the power-dry feature after the termination of the last rinse operation. 1.17Truncated sensor light response...
Effective Recovery of Vanadium from Oil Refinery Waste into Vanadium-Based Metal-Organic Frameworks.
Zhan, Guowu; Ng, Wei Cheng; Lin, Wenlin Yvonne; Koh, Shin Nuo; Wang, Chi-Hwa
2018-03-06
Carbon black waste, an oil refinery waste, contains a high concentration of vanadium(V) leftover from the processing of crude oil. For the sake of environmental sustainability, it is therefore of interest to recover the vanadium as useful products instead of disposing of it. In this work, V was recovered in the form of vanadium-based metal-organic frameworks (V-MOFs) via a novel pathway by using the leaching solution of carbon black waste instead of commercially available vanadium chemicals. Two different types of V-MOFs with high levels of crystallinity and phase purity were fabricated in very high yields (>98%) based on a coordination modulation method. The V-MOFs exhibited well-defined and controlled shapes such as nanofibers (length: > 10 μm) and nanorods (length: ∼270 nm). Furthermore, the V-MOFs showed high catalytic activities for the oxidation of benzyl alcohol to benzaldehyde, indicating the strong potential of the waste-derived V-MOFs in catalysis applications. Overall, our work offers a green synthesis pathway for the preparation of V-MOFs by using heavy metals of industrial waste as the metal source.
Zeng, Yubin; Yang, Changzhu; Zhang, Jingdong; Pu, Wenhong
2007-08-25
Poly-zinc silicate (PZSS) is a new type of coagulant with cationic polymer synthesized by polysilicic acid and zinc sulfate. It has been used in several sorts of wastewaters treatment, but not used in oily wastewater treatment. In this study, we investigated the coagulation/flocculation of oil and suspended solids in heavy oil wastewater (HOW) by PZSS and anion polyacrylamide (A-PAM). The properties of PZSS cooperated with A-PAM were compared with PAC and PFS in dosages, PAMs amount, settling time, pH value and flocs morphology. The results showed that PZSS was more efficient than PAC and PFS. Under the optimum experimental conditions of coagulation/flocculation (dosage: 100mg/L, A-PAM dosage: 1.0mg/L, settling time time: 40min and pH 6.5-9.5), more than 99% of oil was removed and suspended solid value less than 5mg/L by using PZSS cooperated with A-PAM, which could satisfy the demands of the pre-treatment process for HOW to be reused in the steam boiler or recycled into the injecting well.
Studies of the effect of selected nondonor solvents on coal liquefaction yields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolley, R. L.; Rodgers, B. R.; Benjamin, B. M.
The objective of this research program was to evaluate the effectiveness of selected nondonor solvents (i.e., solvents that are not generally considered to have hydrogen available for hydrogenolysis reactions) for the solubilization of coals. Principal criteria for selection of candidate solvents were that the compound should be representative of a major chemical class, should be present in reasonable concentration in coal liquid products, and should have the potential to participate in hydrogen redistribution reactions. Naphthalene, phenanthrene, pyrene, carbazole, phenanthridine, quinoline, 1-naphthol, and diphenyl ether were evaluated to determine their effect on coal liquefaction yields and were compared with phenol andmore » two high-quality process solvents, Wilsonville SRC-I recycle solvent and Lummus ITSL heavy oil solvent. The high conversion efficacy of 1-naphthol may be attributed to its condensation to binaphthol and the consequent availability of hydrogen. The effectiveness of both the nitrogen heterocycles and the polycyclic aromatic hydrocarbon (PAH) compounds may be due to their polycyclic aromatic nature (i.e., possible hydrogen shuttling or transfer agents) and their physical solvent properties. The relative effectiveness for coal conversion of the Lummus ITSL heavy oil solvent as compared with the Wilsonville SRC-I process solvent may be attributed to the much higher concentration of 3-, 4-, and 5-ring PAH and hydroaromatic constituents in Lummus solvent. The chemistry of coal liquefaction and the development of recycle, hydrogen donor, and nondonor solvents are reviewed. The experimental methodology for tubing-bomb tests is outlined, and experimental problem areas are discussed.« less
NASA Astrophysics Data System (ADS)
Pereira, Juliana S. F.; Mello, Paola A.; Moraes, Diogo P.; Duarte, Fábio A.; Dressler, Valderi L.; Knapp, Guenter; Flores, Érico M. M.
2009-06-01
In this study, microwave-induced combustion (MIC) of extra-heavy crude oil is proposed for further chlorine and sulfur determination by inductively coupled plasma optical emission spectrometry (ICP OES). Combustion was carried out under oxygen pressure (20 bar) in quartz vessels using ammonium nitrate (50 µl of 6 mol l - 1 solution) as ignition aid. Samples were wrapped with polyethylene film and placed on a quartz holder positioned inside the quartz vessels. The need for an additional reflux step after combustion and the type and concentration of absorbing solution (water, 0.02 to 0.9 mmol l - 1 H 2O 2, 10 to 100 mmol l - 1 (NH 4) 2CO 3 or 0.1 to 14 mol l - 1 HNO 3) were studied. The influence of sample mass, O 2 pressure and maximum pressure attained during the combustion process were investigated. Recoveries from 92 to 102% were obtained for Cl and S for all absorbing solutions. For comparison, Cl and S determination was also performed by ion chromatography (IC) using 25 mmol l - 1 (NH 4) 2CO 3 as absorbing solution. Using MIC with a reflux step the agreement was better than 95% for certified reference materials of similar composition (crude oil, petroleum coke, coal and residual fuel oil). Microwave-assisted digestion and water extraction in high pressure closed vessels were also evaluated. Using these procedures the maximum recoveries were 30 and 98% for Cl and S, respectively, using microwave-assisted digestion and 70% for Cl and less than 1% for S by water extraction procedure. Limits of detection by ICP OES were 12 and 5 µg g - 1 for Cl and S, respectively, and the corresponding values by IC were 1.2 and 8 µg g - 1 . Using MIC it was possible to digest simultaneously up to eight samples resulting in a solution suitable for the determination of both analytes with a single combustion step.
NASA Astrophysics Data System (ADS)
Valyaev, Boris; Dremin, Ivan
2016-04-01
More than half a century ago, Academician PN Kropotkin substantiated the relationship of the formation and distribution of oil and gas fields with the processes of emanation hydrocarbon degassing of the Earth. Over the years, the concept of PN Kropotkin received further development and recognition of studies based on new factual material. Of particular importance are the following factors: a) the results of studies on global and regional uneven processes of traditional oil and gas and the role of deep faults in controlling the spread of oil and gas fields; b) the results of the research on gigantic volumes and localization of the discharges of hydrocarbon fluids (mud volcanoes, seeps) on land and into the atmosphere and through the bottom of the World ocean; c) the results of the studies on grand volumes of the spread of unconventional hydrocarbon resources in their non-traditional fields, especially on near-surface interval of unconventional oil and gas accumulation with gas hydrates, heavy oil and bitumen, as well as extraordinary resources of oil and gas in the shale and tight rocks. Deep mantle-crust nature of oil and gas in traditional and nontraditional deposits thus received further substantiation of geological and geophysical data and research results. However, isotopic and geochemical data are still interpreted in favor of the concept of the genesis of oil and gas in the processes of thermal catalytic conversion of organic matter of sedimentary rocks, at temperatures up to 200°C. In this report an alternative interpretation of the isotope carbon-hydrogen system (δ13C-δD) for gas and of oil deposits, isotope carbon system for methane and carbon dioxide (δ13C1-δ13C0) will be presented. An alternative interpretation will also be presented for the data on carbon-helium isotope geochemical system for oil and gas fields, volcanoes and mud volcanoes. These constructions agree with the geological data on the nature of deep hydrocarbon fluids involved in the formation of traditional and nontraditional hydrocarbon accumulations. The genesis of hydrocarbon fluids turn up to be associated with a hydrocarbon branch of deep degassing and recycling of crustal materials and processes of crust-mantle interaction [1,2,3]. The study was supported by the Russian Foundation for Basic Research (RFBR), grant № 14-05-00869. 1. Valyaev B.M., Dremin I.S. Deep Roots of the Fluid Systems and Oil-Gas Fields (Isotope Geochemical and Geodynamic Aspects) // International Conference Goldschmidt2015, Prague, Czech Republic, August 16-21, 2015. Abstracts. P. 3221. 2. Valyaev B., Dremin I. Recycling of crustal matter and the processes of mantle-crust interaction in the genesis of hydrocarbon fluids // International Conference on Gas Geochemistry 2013, Patras, Greece, 1-7 September 2013, Book of abstracts. P. 32. 3. Degassing of the Earth: Geotectonics, Geodynamics, Geofluids; Oil and Gas; Hydrocarbon and Life. Proceedings of the all-Russian with International Participation Conference, devoted the centenary of Academician P.N. Kropotkin, October 18-22, 2010, Moscow. Responsible editors: Academician A.N. Dmitrievsky, senior doctorate B.M. Valyaev. -Moscow: GEOS, 2010. 712 p.
Gentes, Marie-Line; Whitworth, Terry L; Waldner, Cheryl; Fenton, Heather; Smits, Judit E
2007-04-01
Oil sands mining is steadily expanding in Alberta, Canada. Major companies are planning reclamation strategies for mine tailings, in which wetlands will be used for the bioremediation of water and sediments contaminated with polycyclic aromatic hydrocarbons and naphthenic acids during the extraction process. A series of experimental wetlands were built on companies' leases to assess the feasibility of this approach, and tree swallows (Tachycineta bicolor) were designated as upper trophic biological sentinels. From May to July 2004, prevalence and intensity of infestation with bird blow flies Protocalliphora spp. (Diptera: Calliphoridae) were measured in nests on oil sands reclaimed wetlands and compared with those on a reference site. Nestling growth and survival also were monitored. Prevalence of infestation was surprisingly high for a small cavity nester; 100% of the 38 nests examined were infested. Nests on wetlands containing oil sands waste materials harbored on average from 60% to 72% more blow fly larvae than those on the reference site. Nestlings on reclaimed sites suffered mean parasitic burdens about twice that of those on the reference site; and for comparable parasitic load, they exhibited greater pathologic effects (e.g., decreased body mass) than control nestlings. The heavy blow fly infestation on oil sands-impacted wetlands suggests that oil sands mining disturbs several components of the local ecosystem, including habitat characteristics, blow fly predators, and host resistance to parasites.
Reaction pathways for the deoxygenation of vegetable oils and related model compounds.
Gosselink, Robert W; Hollak, Stefan A W; Chang, Shu-Wei; van Haveren, Jacco; de Jong, Krijn P; Bitter, Johannes H; van Es, Daan S
2013-09-01
Vegetable oil-based feeds are regarded as an alternative source for the production of fuels and chemicals. Paraffins and olefins can be produced from these feeds through catalytic deoxygenation. The fundamentals of this process are mostly studied by using model compounds such as fatty acids, fatty acid esters, and specific triglycerides because of their structural similarity to vegetable oils. In this Review we discuss the impact of feedstock, reaction conditions, and nature of the catalyst on the reaction pathways of the deoxygenation of vegetable oils and its derivatives. As such, we conclude on the suitability of model compounds for this reaction. It is shown that the type of catalyst has a significant effect on the deoxygenation pathway, that is, group 10 metal catalysts are active in decarbonylation/decarboxylation whereas metal sulfide catalysts are more selective to hydrodeoxygenation. Deoxygenation studies performed under H2 showed similar pathways for fatty acids, fatty acid esters, triglycerides, and vegetable oils, as mostly deoxygenation occurs indirectly via the formation of fatty acids. Deoxygenation in the absence of H2 results in significant differences in reaction pathways and selectivities depending on the feedstock. Additionally, using unsaturated feedstocks under inert gas results in a high selectivity to undesired reactions such as cracking and the formation of heavies. Therefore, addition of H2 is proposed to be essential for the catalytic deoxygenation of vegetable oil feeds. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Osnos, V. B.; Kuneevsky, V. V.; Larionov, V. M.; Saifullin, E. R.; Gainetdinov, A. V.; Vankov, Yu V.; Larionova, I. V.
2017-01-01
The method of natural thermal convection with heat agent recirculation (NTC HAR) in oil reservoirs is described. The analysis of the effectiveness of this method for oil reservoir heating with the values of water saturation from 0 to 0.5 units is conducted. As the test element Ashalchinskoye oil field is taken. CMG STARS software was used for calculations. Dynamics of cumulative production, recovery factor and specific energy consumption per 1 m3 of crude oil produced in the application of the heat exchanger with heat agent in cases of different initial water saturation are defined and presented as graphs.
Kloos, Karin; Schloter, Michael; Meyer, Ortwin
2006-11-01
Acid resins are residues produced in a recycling process for used oils that was in use in the forties and fifties of the last century. The resin-like material is highly contaminated with mineral oil hydrocarbons, extremely acidic and co-contaminated with substituted and aromatic hydrocarbons, and heavy metals. To determine the potential for microbial biodegradation the acid resin deposit and its surroundings were screened for microbial activity by soil respiration measurements. No microbial activity was found in the core deposit. However, biodegradation of hydrocarbons was possible in zones with a lower degree of contamination surrounding the deposit. An extreme acidophilic microbial community was detected close to the core deposit. With a simple ecotoxicological approach it could be shown that the pure acid resin that formed the major part of the core deposit, was toxic to the indigenous microflora due to its extremely low pH of 0-1.
NASA Astrophysics Data System (ADS)
Gammon, P. R.; Savard, M. M.; Ahad, J. M.; Girard, I.
2016-12-01
The Athabasca Oil Sands (AOS) industry in Alberta, Canada deposits voluminous waste streams in Earth's largest tailings ponds (TPs). Detecting and tracing contaminant discharge from TPs to subsurface aquifers has proven difficult because tailings have the same composition as the surrounding environment of unmined oil sand. To trace pond discharge to the subsurface therefore relies on the waste stream hosting additions or alterations induced by mining or industrial processes. Inorganic element or contaminant concentration data have proven ineffective at tracing because there is insufficient alteration of the chemical constituents or their ratios. Metal isotopes have not generally been applied to tracing emissions even though isotopic fractionation is likely induced via the high temperature and pH industrial process. We have generated Mg, Li, Pb and Zn isotopic data for a range of groundwater wells and TPs. Mg isotopes are excellent for distinguishing deep saline brines that are pumped into the waste stream during mine dewatering. Li isotopes appear to be heavily fractionated during processing, which produces a heavy isotopic signature that is an excellent tracer of production water. Pb isotopes discriminate Pb derived from oil-sand versus bedrock carbonate. Juxtapositions of TPs, carbonates and near-surface aquifers are common and of significant regulatory concern, making Pb isotopes particularly useful. Zn isotopic data indicates similarities to Pb isotopes, but are difficult to obtain due to low concentrations. Combining the isotopic data with concentration data and hydrologic models will assist in determining the fluxes of discharges from the TPs to near-surface aquifers. The range of environmental contexts of AOS TPs is limited and thus monitoring discharges to nearby aquifers from TPs could feasibly be accomplished using tailored suites of metal isotopes.
Hostettler, F.D.; Rapp, J.B.; Kvenvolden, K.A.
1992-01-01
In April 1988, approximately 1500 m3 of a San Joaquin Valley crude oil were accidentally released from a Shell Oil Co. refinery near Martinez, Californa. The oil flowed into Carquinez Strait and Suisun Bay in northern San Francisco Bay Sediment and oil samples were collected within a week and analysed for geochemical marker compounds in order to track the molecular signature of the oil spill in the bottom sediment. Identification of the spilled oil in the sediment was complicated by the degraded nature of the oil and the similarity of the remaining, chromatographically resolvable constituents to those already present in the sediments from anthropogenic petroleum contamination, pyrogenic sources, and urban drainage. Ratios of hopane and sterane biomarkers, and of polycyclic aromatic hydrocarbons and their alkylated derivatives best identified the oil impingement. They showed the oil impact at this early stage to be surficial only, and to be patchy even within an area of heavy oil exposure.
Slurry hydrocracking of Arab heavy vacuum resid with new bifunctional catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rankel, L.A.
1993-12-31
Co-processing coal with hydrogenated vacuum resids can solubilize coal and aid in metals removals from the hydrotreated resid. Several bifunctional NiW catalysts were evaluated for resid hydrocracking in a slurry reactor. Autoclave runs were made to determine whether a hydrogenative metal function (NiW) plus support with cracking activity might be an effective catalyst for high resid 1000F{degrees}{sup +} conversion, H-content enrichment, deS, and demetallation at low coke make. An Arab Heavy 895{degrees}F{sup +} vacuum resid (262 ppm Ni+V, 5.3% S and 24% CCR) was hydrocracked over sulfided and unsulfided NiW catalysts on alumina, silica-alumina, US-Y, etc. at 800{degrees}F and 2000more » psig hydrogen in a batch reactor and compared to oil soluble mixtures of Ni and W homogenous organometallics. Of the catalysts tested here, results indicate that addition of sulfided NiW/aluminum to slurry type processing might improve hydrogenation activity and produce more 1000{degrees}F{sup +} conversion at a particular severity while generating the low coke make necessary for a continuous process. Once the resid is hydrotreated, coal could be added to the NiW bifunctional catalyst/resid slurry for co-processing.« less
HAZARDOUS AIR POLLUTANTS FROM THE COMBUSTION OF AN EMULSIFIED HEAVY FUEL OIL IN A FIRETUBE BOILER
The report gives results of measuring emissions of hazardous air pollutants (HAPs) from the combustion flue gases of a No. 6 fuel oil, both with and without an emulsifying agent, in a 2.5 million Btu/hr (732 kW) firetube boiler with the purpose of determining the impacts of the e...
Yang, Fan; Sun, Shuiyu; Zhong, Sheng; Li, Shenyong; Wang, Yi; Wu, Jiaqi
2013-09-15
The focus of this research was the development of efficient and affordable asphalt modifiers. Pyrolysis oil was produced as a byproduct from the pyrolysis of waste printed circuit boards (WPCBs). The high boiling point fraction was separated from the pyrolysis oil through distillation and is referred to as the heavy fraction of pyrolysis oil (HFPO). The HFPO was tested as an asphalt modifier. Three asphalt modifiers were tested: HFPO; styrene-butadiene rubber (SBR); and HFPO + SBR (1:1). The physical properties and road performance of the three modified asphalts were measured and evaluated. The results have shown that when the amount of modifier was less than 10%, the HFPO modified asphalt had the highest softening point of the three. The dynamic stability (DS) and water resistance of the asphalt mixture with the HFPO modified asphalt was 10,161 cycles/mm and 87.2%, respectively. The DS was much larger than for the HFPO + SBR and SBR modified asphalt mixtures. These results indicate that using HFPO as an asphalt modifier has significant benefits not only for road engineering but also for resource recycling. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chemical Relationship On Detection Of Ganoderma Disease On Oil Palm Tree System
NASA Astrophysics Data System (ADS)
Imran, S. N. M.; Baharudin, F.; Ali, M. F.; Rahiman, M. H. F.
2018-04-01
Detection of fungal disease is the major issues in agricultural management and production. This disease would attack the plantation area and damaging the based root or the stem tissue of the trees. In oil palm industry, Basal Stem Rot (BSR) is the major disease in Malaysia that caused by a fungal named Ganoderma Boninense species. Since agricultural areas in Malaysia are the great factors that contribute in the economic sector, therefore the prevention and controlling this disease situation are needed to reduce the extent of the infection. These plant diseases are mostly being caused by the inflectional disease form such as viruses, viroids, bacteria, protozoa and even parasitic plants. It also could included mites and vertebrate or small insects that consume the plant tissues. Studies focused more on the breeding and relationship of the disease in the stumps, roots and soil system if oil palm trees by identifying the heavy metal; Phosphorus, copper, Iron, Manganese, Potassium and Zinc characteristic. Samples were taken from various types of physical appearance of the trees. It shows the relationship of the fungal disease breeding between oil palm trees and the heavy metals does affect the tree’s system.
TA-60-1 Heavy Equipment Shop Areas SWPPP Rev 2 Jan 2017-Final
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgin, Jillian Elizabeth
The primary activities and equipment areas at the facility that are potential stormwater pollution sources include; The storage of vehicles and heavy equipment awaiting repair; or repaired vehicles waiting to be picked up; The storage and handling of oils, anti-freeze, solvents, degreasers, batteries and other chemicals for the maintenance of vehicles and heavy equipment; and Equipment cleaning operations including exterior vehicle wash-down. Steam cleaning is only done on the steam cleaning pad area located at the north east end of Building 60-0001.
Pirlo, G; Carè, S; Casa, G Della; Marchetti, R; Ponzoni, G; Faeti, V; Fantin, V; Masoni, P; Buttol, P; Zerbinatti, L; Falconi, F
2016-09-15
Four breeding piggeries and eight growing-fattening piggeries were analyzed to estimate potential environmental impacts of heavy pig production (>160kg of live height at slaughtering). Life Cycle Assessment methodology was adopted in the study, considering a system from breeding phase to growing fattening phase. Environmental impacts of breeding phase and growing-fattening phase were accounted separately and then combined to obtain the impacts of heavy pig production. The functional unit was 1kg of live weight gain. Impact categories investigated were global warming (GW), acidification (AC), eutrophication (EU), abiotic depletion (AD), and photochemical ozone formation (PO). The total environmental impact of 1kg of live weight gain was 3.3kg CO2eq, 4.9E-2kg SO2eq, 3.1E-2kg PO4(3-)eq, 3.7E-3kg Sbeq, 1.7E-3kg C2H4eq for GW, AC, EU, AD, and PO respectively. Feed production was the main hotspot in all impact categories. Greenhouse gases responsible for GW were mainly CH4, N2O, and CO2. Ammonia was the most important source of AC, sharing about 90%. Nitrate and NH3 were the main emissions responsible for EU, whereas P and NOx showed minor contributions. Crude oil and natural gas consumption was the main source of AD. A large spectrum of pollutants had a significant impact on PO: they comprised CH4 from manure fermentation, CO2 caused by fossil fuel combustion in agricultural operations and industrial processes, ethane and propene emitted during oil extraction and refining, and hexane used in soybean oil extraction. The farm characteristics that best explained the results were fundamentally connected with performance indicators Farms showed a wide variability of results, meaning that there was wide margin for improving the environmental performance of either breeding or growing-fattening farms. The effectiveness of some mitigation measures was evaluated and the results that could be obtained by their introduction have been presented. Copyright © 2016 Elsevier B.V. All rights reserved.
PETROLEUM RESIDUA SOLUBILITY PARAMETER/POLARITY MAP: STABILITY STUDIES OF RESIDUA PYROLYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
John F. Schabron; A. Troy Pauli; Joseph F. Rovani, Jr.
1999-04-30
A new molecular weight/polarity map based on the Scatchard-Hildebrand solubility equation has been developed for petroleum residua. A series of extractions are performed with solvents of increasing solubility parameter, and the fractions are analyzed by vapor pressure osmometry for number average molecular weight and by analytical-scale size exclusion chromatography for molecular weight spread. Work was performed for a heavy oil material subjected to three increasing severities of thermal treatment prior to and through the onset of coke formation. The results are diagnostic of the layers of solvations by resin-type molecules around a central asphaltene core. Two additional stability diagnostic methodsmore » were also used. These were the Heithaus titration ''P-index'' and Gaestel ''G'' index, which have been applied to paving asphalts for decades. The Heithaus titration involves the titration of three toluene solutions of a residuum at three concentrations with a poor solvent, such as isooctane, to the point of asphaltene flocculation. In the present work, the significance of the data are developed in terms of the Hildebrand solubility parameter. The Heithaus results are combined with data from the new molecular weight/polarity map. The solubility parameters for the toluene-soluble asphaltene components are measured, and the solubility parameters of the maltenes can be calculated. As thermal treatment progresses, the solubility parameters of asphaltene materials increase and the molecular weights decrease. A new coking index is proposed based on Heithaus titration data. Preliminary results suggest that an alternative, simpler coking index may be developed by measuring the weight percent of cyclohexane solubles in heptane asphaltenes. Coking onset appears to coincide with the depletion of these resin-type asphaltene solubilizing components of residua. The objective of the present study was to develop a mapping tool that will enhance understanding of the changes that occur in residua during upgrading and support the industry-sponsored work in which Western Research Institute is engaged. WRI performs proprietary industry-sponsored residua and heavy oil upgrading process development and optimization research. The new mapping tool can be used for evaluating heavy oils and residua in both upstream and downstream operations.« less
Analysis of energy use and CO2 emissions in the U.S. refining sector, with projections for 2025.
Hirshfeld, David S; Kolb, Jeffrey A
2012-04-03
This analysis uses linear programming modeling of the U.S. refining sector to estimate total annual energy consumption and CO(2) emissions in 2025, for four projected U.S. crude oil slates. The baseline is similar to the current U.S. crude slate; the other three contain larger proportions of higher density, higher sulfur crudes than the current or any previous U.S. crude slates. The latter cases reflect aggressive assumptions regarding the volumes of Canadian crudes in the U.S. crude slate in 2025. The analysis projects U.S. refinery energy use 3.7%-6.3% (≈ 0.13-0.22 quads/year) higher and refinery CO(2) emissions 5.4%-9.3% (≈ 0.014-0.024 gigatons/year) higher in the study cases than in the baseline. Refining heavier crude slates would require significant investments in new refinery processing capability, especially coking and hydrotreating units. These findings differ substantially from a recent estimate asserting that processing heavy oil or bitumen blends could increase industry CO(2) emissions by 1.6-3.7 gigatons/year.
Electron beam technology for multipollutant emissions control from heavy fuel oil-fired boiler.
Chmielewski, Andrzej G; Ostapczuk, Anna; Licki, Janusz
2010-08-01
The electron beam treatment technology for purification of exhaust gases from the burning of heavy fuel oil (HFO) mazout with sulfur content approximately 3 wt % was tested at the Institute of Nuclear Chemistry and Technology laboratory plant. The parametric study was conducted to determine the sulfur dioxide (SO2), oxides of nitrogen (NO(x)), and polycyclic aromatic hydrocarbon (PAH) removal efficiency as a function of temperature and humidity of irradiated gases, absorbed irradiation dose, and ammonia stoichiometry process parameters. In the test performed under optimal conditions with an irradiation dose of 12.4 kGy, simultaneous removal efficiencies of approximately 98% for SO2, and 80% for NO(x) were recorded. The simultaneous decrease of PAH and one-ringed aromatic hydrocarbon (benzene, toluene, and xylenes [BTX]) concentrations was observed in the irradiated flue gas. Overall removal efficiencies of approximately 42% for PAHs and 86% for BTXs were achieved with an irradiation dose 5.3 kGy. The decomposition ratio of these compounds increased with an increase of absorbed dose. The decrease of PAH and BTX concentrations was followed by the increase of oxygen-containing aromatic hydrocarbon concentrations. The PAH and BTX decomposition process was initialized through the reaction with hydroxyl radicals that formed in the electron beam irradiated flue gas. Their decomposition process is based on similar principles as the primary reaction concerning SO2 and NO(x) removal; that is, free radicals attack organic compound chains or rings, causing volatile organic compound decomposition. Thus, the electron beam flue gas treatment (EBFGT) technology ensures simultaneous removal of acid (SO2 and NO(x)) and organic (PAH and BTX) pollutants from flue gas emitted from burning of HFO. This technology is a multipollutant emission control technology that can be applied for treatment of flue gas emitted from coal-, lignite-, and HFO-fired boilers. Other thermal processes such as metallurgy and municipal waste incinerators are potential candidates for this technology application.
Park, Won; Feng, Yufeng; Kim, Hyojin; Suh, Mi Chung; Ahn, Sung-Ju
2015-09-01
Under heavy-metal stress, CsHMA3 overexpressing transgenic Camelina plants displayed not only a better quality, but also a higher quantity of unsaturated fatty acids in their seeds compared with wild type. Camelina sativa L. belongs to the Brassicaceae family and is frequently used as a natural vegetable oil source, as its seeds contain a high content of fatty acids. In this study, we observed that, when subjected to heavy metals (Cd, Co, Zn and Pb), the seeds of CsHMA3 (Heavy-Metal P1B-ATPase 3) transgenic lines retained their original golden yellow color and smooth outline, unlike wild-type seeds. Furthermore, we investigated the fatty acids content and composition of wild type and CsHMA3 transgenic lines after heavy metal treatments compared to the control. The results showed higher total fatty acid amounts in seeds of CsHMA3 transgenic lines compared with those in wild-type seeds under heavy-metal stresses. In addition, the compositions of unsaturated fatty acids-especially 18:1 (oleic acid), 18:2 (linoleic acid; only in case of Co treatment), 18:3 (linolenic acid) and 20:1 (eicosenoic acid)-in CsHMA3 overexpressing transgenic lines treated with heavy metals were higher than those of wild-type seeds under the same conditions. Furthermore, reactive oxygen species (ROS) contents in wild-type leaves and roots when treated with heavy metal were higher than in CsHMA3 overexpressing transgenic lines. These results indicate that overexpression of CsHMA3 affects fatty acid composition and content-factors that are responsible for the fuel properties of biodiesel-and can alleviate ROS accumulation caused by heavy-metal stresses in Camelina. Due to these factors, we propose that CsHMA3 transgenic Camelina can be used for phytoremediation of metal-contaminated soil as well as for oil production.
Ghana refinery expansion and modernization project. Export trade information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-11-01
The U.S. Trade and Development Program (TDP) is considering the provision of funds to the Ghanaian Ministry of Fuel and Power (MFP) to conduct a study of the scope and feasibility of expanding and modernizing its Tema Refinery to meet future demands for gasoline and to minimize heavy fuel oil production. All of the needed licensed process technology and process know-how could be provided by U.S. sources and this, coupled with U.S. equipment and catalyst supply, meets the TDP criteria for funding the feasibility study. Europe aggressively offers alternate licensable technology for some of the processes. U.S. manufacturers of specialtymore » equipment are marginally competitive in the international market, where competition is fierce. The Definitional Mission recommends that full feasibility study be undertaken.« less
Naranjo-Briceño, Leopoldo; Pernía, Beatriz; Guerra, Mayamaru; Demey, Jhonny R; De Sisto, Ángela; Inojosa, Ysvic; González, Meralys; Fusella, Emidio; Freites, Miguel; Yegres, Francisco
2013-01-01
Large amount of drilling waste associated with the expansion of the Orinoco Oil Belt (OOB), the biggest proven reserve of extra-heavy crude oil (EHCO) worldwide, is usually impregnated with EHCO and highly salinized water-based drilling fluids. Oxidative exoenzymes (OE) of the lignin-degrading enzyme system (LDS) of fungi catalyse the oxidation of a wide range of toxic pollutants. However, very little evidences on fungal degradation or biotransformation of EHCO have been reported, which contain high amounts of asphaltenes and its biodegradation rate is very limited. The aims of this work were to study the ability of Pestalotiopsis palmarum BM-04 to synthesize OE, its potential to biotransform EHCO and to survive in extreme environmental conditions. Enzymatic studies of the LDS showed the ability of this fungus to overproduce high amounts of laccase (LACp) in presence of wheat bran or lignin peroxidase (LIPp) with EHCO as sole carbon and energy source (1300 U mgP−1 in both cases). FT-IR spectroscopy with Attenuated Total Reflectance (ATR) analysis showed the enzymatic oxidation of carbon and sulfur atoms in both maltenes and asphaltenes fractions of biotreated EHCO catalysed by cell-free laccase-enriched OE using wheat bran as inducer. UV-visible spectrophotometry analysis revealed the oxidation of the petroporphyrins in the asphaltenes fraction of biotreated EHCO. Tolerance assays showed the ability of this fungus to grow up to 50 000 p.p.m. of EHCO and 2000 mM of NaCl. These results suggest that P. palmarum BM-04 is a hopeful alternative to be used in remediation processes in extreme environmental conditions of salinity and EHCO contamination, such as the drilling waste from the OOB. PMID:23815379
Low Impact Development for Industrial Areas
2015-07-01
Stormwater program managers are faced with increasingly stringent stormwater discharge limits for heavy metals such as copper, zinc , nutrients, total...limits for heavy metals such as copper, zinc , nutrients, total suspended solids (TSS), oil and grease. These limits are required to reduce...U.S. EPA), state agencies, and local agencies set permit limits as part of the total mass daily loading regulatory framework. Copper, zinc , lead
A gallery of oil components, their metals and Re-Os signatures
NASA Astrophysics Data System (ADS)
Stein, Holly J.; Hannah, Judith L.
2016-04-01
Most sediment-hosted metallic ore deposits are one degree of freedom from hydrocarbon. That is, sulfide fluid inclusions may contain vestiges of travel in tandem with hydrocarbon-bearing fluids. For metallic ore deposits of stated metamorphic and magmatic origin, the degrees of freedom are several times more or, in some cases, no relationship exists. Still, the fetish for stereotyping and classifying ore types into hardline ore deposit models (or hybrid models when the data are wildly uncooperative) impedes our ability to move toward a better understanding of source rock. Fluids in the deeper earth, fluids in the crust, and the extraterrestrial rain of metals provide the Re-Os template for oil. So, too, this combination ultimately drives the composition of many metallic ore deposits. The world of crude oil and its complex history of maturation, migration, mixing, metal-rich asphaltene precipitation, and subsequent mobility of lighter and metal-poor components, is an untapped resource for students of ore geology. In the same way that Mississippi Valley-type lead and zinc deposits are described as the outcome of two converging and mixing fluids (metal-bearing and sulfur-bearing fluids), asphaltene precipitation can be an outcome of a lighter oil meeting and mixing with a heavier one. In the petroleum industry, this can spell economic disaster if the pore-space becomes clogged with a non-producible heavy oil or solid bitumen. In ore geology, sulfide precipitation on loss of permeability may create a Pb-Zn deposit. Petroleum systems provide a gallery of successive time-integrated Re-Os results. Heavy or biodegraded oils, if intersected by lighter oil or gas, can generate asphaltite or tar mats, and release a reservoir of still lighter oil (or gas). During this process there are opportunities for separation of metal-enriched aqueous fluids that may retain an imprint of their earlier hydrocarbon history, ultimately trapped in fluid inclusions. Salinity, temperature and pH are part of the equation controlling composition of metal-bearing aqueous fluids siphoned from residual hydrocarbons. The Re-Os isotopic behavior of oil components is generally specific to location and may differ within a single oil field, or even within discrete fractions of a single sample of oil [1]. Different fractions in a crude oil, for example maltenes and asphaltenes, can preserve signatures of unique sources. This should not be surprising, since economic geologists have long called upon meeting and mixing of metal-bearing with sulfur-bearing fluids from different sources. A time-integrated geologic history can also be derived from bitumen veins, with the Re-Os age of the metal source cached in these veins. Preservation of early metal and hydrocarbon history, and intact Re-Os systematics preserved in younger-formed systems have enormous potential for the resource industry. Several examples will be presented. [1] Georgiev, S.V., Stein, H.J., Hannah, J.L., Galimberti, R., Nali, M., Yang, G., and Zimmerman, A. (returned post revision, 11 Jan 2016) Re-Os dating of maltenes and asphaltenes within single samples of crude oils: Geochimica et Comochimica Acta. Supported by a consortium of petroleum companies under the CHRONOS project.
Canada: irrational energy policies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paehlke, R.C.
1982-09-01
Despite energy shortages, recent weeks have seen the collapse or at least postponement of three major energy projects in Canada: the Cold Lake (Alberta) heavy oil plant, the Alsands oil sands plant, and the Alaska Highway natural gas pipeline. All have fallen victim to the combination of high interest rates and increasing doubts that oil prices will continue to rise at an annual rate of five percent in real terms. Current energy problems and policies are discussed including decline of oil reserves, expanded domestic use and export of Canadian natural gas, expansion of the nuclear energy program, demand for electricity,more » and energy conservation. (JMT)« less
Using supercritical fluids to refine hydrocarbons
Yarbro, Stephen Lee
2015-06-09
A system and method for reactively refining hydrocarbons, such as heavy oils with API gravities of less than 20 degrees and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure, using a selected fluid at supercritical conditions. A reaction portion of the system and method delivers lightweight, volatile hydrocarbons to an associated contacting unit which operates in mixed subcritical/supercritical or supercritical modes. Using thermal diffusion, multiphase contact, or a momentum generating pressure gradient, the contacting unit separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allouis, C.; Beretta, F.; L'Insalata, A.
2007-04-15
The combustion of heavy fuel oil for power generation is a great source of carbonaceous and inorganic particle emissions, even though the combustion technologies and their efficiency are improving. The information about the size distribution function of the particles originated by trace metals present into the fuels is not adequate. In this paper, we focused our attention the influence of emulsion oil-water on the larger distribution mode of both the carbonaceous and metallic particles. Isokinetic sampling was performed at the exhausts of flames of a low-sulphur content heavy oil and its emulsion with water produced in two large pilot plants.more » The samples were size-segregated by mean of an 8-stages Andersen impactor. Further investigation performed on the samples using electronic microscopy (SEM) coupled with X-ray analysis (EDX) evidenced the presence of solid spherical particles, plerosphere, with typical dimensions ranging between 200 nm and 2-3 {mu}m, whose atomic composition contains a large amount of the trace metals present in the parent oils (Fe, V, Ni, etc.). EDX analyses revealed that the metal concentration increases as the plerosphere dimension decreases. We also observed that the use of emulsion slightly reduce the emission of fine particles (D{sub 50} < 8 {mu}m) in the large scale plant. (author)« less
Ma, Xiao-Kui; Ding, Ning; Peterson, Eric Charles
2015-06-01
Heavy contamination of soil with crude oil has caused significant negative environmental impacts and presents substantial hazards to human health. To explore a highly efficient bioaugmentation strategy for these contaminations, experiments were conducted over 180 days in soil heavily contaminated with crude oil (50,000 mg kg(-1)), with four treatments comprised of Bacillus subtilis inoculation with no further inoculation (I), or reinoculation after 100 days with either B. subtilis (II), Acremonium sp.(III), or a mixture of both organisms (IV). The removal values of total petroleum hydrocarbons were 60.1 ± 2.0, 60.05 ± 3.0, 71.3 ± 5.2 and 74.2 ± 2.7 % for treatment (I-IV), respectively. Treatments (III-IV) significantly enhanced the soil bioremediation compared with treatments (I-II) (p < 0.05). Furthermore, significantly (p < 0.05) greater rates of degradation for petroleum hydrocarbon fractions were observed in treatments (III-IV) compared to treatments (I-II), and this was especially the case with the degradative rates for polycyclic aromatic hydrocarbons and crude oil heavy fractions. Dehydrogenase activity in treatment (III-IV) containing Acremonium sp. showed a constant increase until the end of experiments. Therefore reinoculation with pure fungus or fungal-bacterial consortium should be considered as an effective strategy in bioaugmentation for soil heavily contaminated with crude oil.
Separations and characterizations of fractions from Mayan, Heavy Arabian, and Hondo crude oils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kircher, C.C.
1989-04-01
The results from hydrotreating the atmospheric residua of Hondo, Heavy Arabian, and Mayan crude oils have been reported recently. Over the same fixed-bed catalyst, the hydrosulfurization activities varied by a factor of two and the hydrodemetallation activities varied almost four-fold. Correlations among the relative activities and the elemental compositions of the feed oils showed a direct relationship between the hydrodemetallation activity and the metals content of the petroleum resins fractions, hereafter called polars. Thus, to discover chemical differences in feed oils and polars that may affect a catalysts activity, they have developed separation schemes to separate the oils into theirmore » component fractions and used various analytical techniques to characterize the fractions. The separation scheme developed is a modification and extension of the ASTM D2007 procedure. The sample is separated into saturates, aromatics, polars, and asphaltenes by precipitation/filtration and chromatography with Attapulgus cla and silica gel; then the polars are separated into various acids, bases, and neutral polars with macroporous ion exchange resins. This separation scheme has been applied to 650{degree}F + cut from Hondo (offshore California) crude. The fractions were characterized with carbon and hydrogen elemental analysis, XRF spectrometry for nickel, vanadium, and sulfur, chemiluminescence spectrometry for nitrogen. GC simulated distillations (saturates only), vapor pressure osmetry (number-average molecular weight) in toluene, flame emission spectrometry, and {sup 13}C-NMR spectroscopy.« less
Toxicology of oil field wastes. Hazards to livestock associated with the petroleum industry.
Edwards, W C
1989-07-01
In oil-producing states, the proximity of livestock to drilling operations and production sites often results in poisoning of animals from ingestion of crude oil, condensate, salt water, heavy metals, and caustic chemicals. The heavy metals encountered most frequently are lead from pipe joint compound and arsenicals and chromates used as corrosion inhibitors. Numerous toxic and caustic chemicals are used in drilling muds and fluids. Crude oil and salt water spills are common occurrences around production sites. Pipeline breaks may result in exposure of livestock to crude oil or refined petroleum hydrocarbons. Ingestion of petroleum hydrocarbons may result in sudden death from peracute bloat. The most common cause of illness or death following exposure to petroleum hydrocarbons is aspiration pneumonia, which may cause a chronic progressive deterioration of health, with death after several days or weeks. Cases in which livestock are exposed to oil, salt water, or caustic chemicals, but do not die acutely or from aspiration pneumonia are more frustrating to diagnose. In these cases, parasitism, poor nutrition, and other debilitating diseases must be considered. Anorexia, weight loss, and decreased rumen motility may be caused by a disruption of normal rumen function. Petroleum hydrocarbons, salt water, and caustic chemicals have the potential of altering rumen flora and enzymatic processes as well as damaging the ruminal and gastrointestinal epithelium. The toxicity of petroleum hydrocarbons appears to be related more closely to the volatility and viscosity of the product than to other factors. The more volatile straight chain and aromatic petroleum hydrocarbons have a greater potential for aspiration pneumonia and may produce an anesthetic-like action if absorbed systemically. The more volatile petroleum hydrocarbons also are more irritating to skin and mucous membranes and appear to be more damaging to rumen flora. Treatment of petroleum hydrocarbon ingestion is aimed at preventing aspiration pneumonia and the animal's absorption of highly volatile components. Activated charcoal slurries and, in some instances, vegetable oil may be used to absorb the ingested petroleum or alter its viscosity to minimize absorption and aspiration. These procedures should be followed by the administration of rumenatories or saline cathartics to hasten the evacuation of the gastrointestinal tract. Chronic poor performance animals with anorexia and rumen dysfunction may respond to fresh rumen inoculant, intravenous glucose, and B-complex vitamins. Prognosis primarily hinges on whether or not aspiration pneumonia has occurred. Treatment of aspiration pneumonia rarely is effe
NASA Astrophysics Data System (ADS)
Sin, Kuek Jia; Cheong, Chin Wen; Hooi, Tan Siow
2017-04-01
This study aims to investigate the crude oil volatility using a two components autoregressive conditional heteroscedasticity (ARCH) model with the inclusion of abrupt jump feature. The model is able to capture abrupt jumps, news impact, clustering volatility, long persistence volatility and heavy-tailed distributed error which are commonly observed in the crude oil time series. For the empirical study, we have selected the WTI crude oil index from year 2000 to 2016. The results found that by including the multiple-abrupt jumps in ARCH model, there are significant improvements of estimation evaluations as compared with the standard ARCH models. The outcomes of this study can provide useful information for risk management and portfolio analysis in the crude oil markets.
Neutron scattering studies of crude oil viscosity reduction with electric field
NASA Astrophysics Data System (ADS)
Du, Enpeng
Small-angle neutron scattering (SANS) is a very powerful laboratory technique for micro structure research which is similar to the small angle X-ray scattering (SAXS) and light scattering for microstructure investigations in various materials. In small-angle neutron scattering (SANS) technique, the neutrons are elastically scattered by changes of refractive index on a nanometer scale inside the sample through the interaction with the nuclei of the atoms present in the sample. Because the nuclei of all atoms are compact and of comparable size, neutrons are capable of interacting strongly with all atoms. This is in contrast to X-ray techniques where the X-rays interact weakly with hydrogen, the most abundant element in most samples. The SANS refractive index is directly related to the scattering length density and is a measure of the strength of the interaction of a neutron wave with a given nucleus. It can probe inhomogeneities in the nanometer scale from 1nm to 1000nm. Since the SANS technique probes the length scale in a very useful range, this technique provides valuable information over a wide variety of scientific and technological applications, including chemical aggregation, defects in materials, surfactants, colloids, ferromagnetic correlations in magnetism, alloy segregation, polymers, proteins, biological membranes, viruses, ribosome and macromolecules. Quoting the Nobel committee, when awarding the prize to C. Shull and B. Brockhouse in 1994: "Neutrons tell you where the atoms are and what the atoms do". At NIST, there is a single beam of neutrons generated from either reactor or pulsed neutron source and selected by velocity selector. The beam passes through a neutron guide then scattered by the sample. After the sample chamber, there are 2D gas detectors to collect the elastic scattering information. SANS usually uses collimation of the neutron beam to determine the scattering angle of a neutron, which results in an even lower signal-to-noise ratio for data that contains information on the properties of a sample. We can analyze the data acquisition from the detectors and get the information on size, shape, etc. This is why we choose SANS as our research tool. The world's top energy problems are security concerns, climate concerns and environmental concerns. So far, oil (37%) is still the No.1 fuel in world energy consumption (Oil 37%, Coal 25%, Bio-fuels 0.2%, Gas 23%, Nuclear 6%, Biomass 4%, Hydro 3%, Solar heat 0.5%, Wind 0.3%, Geothermal 0.2% and Solar photovoltaic 0.04%). Even more and more alternative energy: bio-fuels, nuclear and solar energy will be used in the future, but nuclear energy has a major safety issue after the Japanese Fukushima I nuclear accidents, and other energies contribute only a small percent. Thus, it is very important to improve the efficiency and reduce the population of petroleum products. There is probably one thing that we can all agree on: the world's energy reserves are not unlimited. Even though it is limited, only 30% of the oil reserves is conventional oil, so in order to produce, transport, and refine of heavy crude oil without wasting huge amounts of energy, we need to reduce the viscosity without using high temperature stream heating or diluent; As more and more off-shore oil is exploited at that we need reduce the viscosity without increasing temperature. The whole petroleum consumed in U.S. in 2009 was 18.7 million barrels per day and 35% of all the energy we consumed. Diesel is one of the very important fossil fuel which is about 20% of petroleum consumed. Most of the world's oils are non-conventional, 15 % of heavy oil, 25 % of extra heavy oil, 30 % of the oil sands and bitumen, and the conventional oil reserves is only 30%. The oil sand is closely related to the heavy crude oil, the main difference being that oil sands generally do not flow at all. For efficient energy production and conservation, how to lower the liquated fuel and crude oil viscosity is a very important topic. Dr. Tao with his group at Temple University, using his electro or magnetic rheological viscosity theory has developed a new technology, which utilizes electric or magnetic fields to change the rheology of complex fluids to reduce the viscosity, while keeping the temperature unchanged. After we successfully reduced the viscosity of crude oil with field and investigated the microstructure changing in various crude oil samples with SANS, we have continued to reduce the viscosity of heavy crude oil, bunker diesel, ultra low sulfur diesel, bio-diesel and crude oil and ultra low temperature with electric field treatment. Our research group developed the viscosity electrorheology theory and investigated flow rate with laboratory and field pipeline. But we never visualize this aggregation. The small angle neutron scattering experiment has confirmed the theoretical prediction that a strong electric field induces the suspended nano-particles inside crude oil to aggregate into short chains along the field direction. This aggregation breaks the symmetry, making the viscosity anisotropic: along the field direction, the viscosity is significantly reduced. The experiment enables us to determine the induced chain size and shape, verifies that the electric field works for all kinds of crude oils, paraffin-based, asphalt-based, and mix-based. The basic physics of such field induced viscosity reduction is applicable to all kinds of suspensions.
Characterization of coal liquids derived from the H-coal process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmes, S.A.; Woodward, P.W.; Sturm, G.P. Jr.
1976-11-01
Compositional data of coal liquid products derived from the H-Coal process were obtained. Two overhead products (one from the fuel oil mode of operation and the other from the syncrude mode of operation) were prepared by Hydrocarbon Research, Inc. from Illinois No. 6 coal. The compositional data of these products are tabulated, and characteristics of the materials are discussed. Separation and characterization methods, with slight modification, as developed by the Bureau of Mines-API Research Project 60 for characterizing heavy ends of petroleum, were successfully used in analyzing coal liquid distillates within the boiling range 200/sup 0/ to 540/sup 0/C. Distillatesmore » boiling below 200/sup 0/C were separated and analyzed using chromatographic and spectral techniques.« less
Technical product bulletin: this biological additive used in oil spill cleanups is a powder containing granules of bacterial product for bioremediation of heavy refined and crude hydrocarbon contaminants in both soil and water environments.
NASA Astrophysics Data System (ADS)
Burr, K. K.
1981-04-01
The Canadian federal government announced a National Energy Program (NEP) for oil and natural gas to achieve energy self sufficiency. The program deals with two major political and economic influences in Canadian energy: provincial ownership of natural resources and 70% of foreign ownership in the Canadian petroleum industry. The objectives to achieve national energy security, create opportunities for Canadian participation, and share resource benefits among the provinces. The major provisions include: a 80% federal tax on oil and gas production; a natural gas federal excise tax; a pricing scheme which holds conventional oil prices down but gives incentives for oil sands, heavy oil, and tertiary recovery production; a gas pricing scheme which encourages substitution of gas for oil; a 25% carried interest for the government on federal leases; and a Canadianization incentives grant system which replace the depletion allowance system.
Method for recovery of petroleum oil from confining structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, R.H.
1969-09-02
Injected ammonia spontaneously reacts with the acid content of heavy crude petroleum oil to produce ammonium soaps in situ. The soaps cause an oil-in-water emulsion to be formed in the presence of reservoir (or flood) water, reducing the effective viscosity of the crude oil. If the ammonia slug is followed by steam, an advancing emulsion barrier is created by the thermal decomposition of part of the emulsion, freeing ammonia which can then react with additional crude in advance of the emulsion. Packs of 20-30 mesh Ottawa sand were saturated with water, flooded with Tulare crude oil from North Midway fieldmore » in California (high specific gravity), and waterflooded. A slug of 5.71 percent PV of 17 N ammonium hydroxide followed by water gave a total oil recovery of about 90 percent of the original oil.« less
Adesodun, J K; Mbagwu, J S C
2008-05-01
Contamination of soil and groundwater with mineral oil-based products is among the most common sources of pollution in Nigeria. This study evaluated the distribution of some heavy metals and hydrocarbon content in soil contaminated with waste-lubricating oil (spent oil), and the effectiveness of some abundantly available organic wastes from animal source as remediation alternative to the expensive chemical and physical methods. The main-plot treatments include control (C), cow dung (CD), poultry manure (PM) and pig waste (PW) applied at 10Mg/ha each; while the sub-plot treatments were control (0%), 0.5%, 2.5% and 5% spent oil (SP) applied at 10, 50 and 100 Mg/ha, respectively arranged in a split-plot in Randomized Complete Block Design (RCBD) with four replications. These treatments were applied once each year for two consecutive years. Soil samples (0-20 cm) were collected at 3, 6 and 12 months each year and analyzed for Cr, Ni, Pb and Zn, while the residual total hydrocarbon content (THC) was determined at the end of the 2 years study. Results show significant (p<0.05) accumulation of these metals with spent oil pollution following the sequence 5%SP>2.5%SP>0.5%SP, indicating higher metal pollution with increase in oil pollution. General distribution of Cr, Ni, Pb and Zn, relative to sampling periods, followed 3 months>6 months>12 months in the 1st year indicating reduction in metal levels with time. The trend for 2nd year indicated higher accumulation of Cr and Ni in 12 months, while Pb and Zn decreased with time of sampling. The results further showed higher accumulation of Cr followed by Zn, relative to other metals, with oil pollution. However, addition of organic wastes to the oil polluted soils significantly (p<0.05) led to reduction in the levels of the metals and THC following the order PM>PW>CD.
Smart responsive microcapsules capable of recognizing heavy metal ions.
Pi, Shuo-Wei; Ju, Xiao-Jie; Wu, Han-Guang; Xie, Rui; Chu, Liang-Yin
2010-09-15
Smart responsive microcapsules capable of recognizing heavy metal ions are successfully prepared with oil-in-water-in-oil double emulsions as templates for polymerization in this study. The microcapsules are featured with thin poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) (P(NIPAM-co-BCAm)) membranes, and they can selectively recognize special heavy metal ions such as barium(II) or lead(II) ions very well due to the "host-guest" complexation between the BCAm receptors and barium(II) or lead(II) ions. The stable BCAm/Ba(2+) or BCAm/Pb(2+) complexes in the P(NIPAM-co-BCAm) membrane cause a positive shift of the volume phase transition temperature of the crosslinked P(NIPAM-co-BCAm) hydrogel to a higher temperature, and the repulsion among the charged BCAm/Ba(2+) or BCAm/Pb(2+) complexes and the osmotic pressure within the P(NIPAM-co-BCAm) membranes result in the swelling of microcapsules. Induced by recognizing barium(II) or lead(II) ions, the prepared microcapsules with P(NIPAM-co-BCAm) membranes exhibit isothermal and significant swelling not only in outer and inner diameters but also in the membrane thickness. The proposed microcapsules in this study are highly attractive for developing smart sensors and/or carriers for detection and/or elimination of heavy metal ions. Copyright 2010 Elsevier Inc. All rights reserved.
Han, Jeonghoon; Won, Eun-Ji; Kang, Hye-Min; Lee, Min-Chul; Jeong, Chang-Bum; Kim, Hui-Su; Hwang, Dae-Sik; Lee, Jae-Seong
2017-11-30
Recently, accidental spills of heavy oil have caused adverse effects in marine organisms. Oil pollution can induce damages on development and reproduction, linking with detrimental effects on diverse molecular levels of genes and proteins in plankton and fish. However, most information was mainly focused on marine vertebrates and consequently, limited information was available in marine invertebrates. Furthermore, there is still a lack of knowledge bridging in vivo endpoints with the functional regulation of cytochrome P450 (CYP) genes in response to oil spill pollution in marine invertebrates. In this paper, adverse effects of oil spill pollution in marine invertebrates are summarized with the importance of CYP genes as a potential biomarker, applying for environmental monitoring to detect oil spill using marine copepods. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sulfur transfer in the distillate fractions of Arabian crude oils under gamma-irradiation
NASA Astrophysics Data System (ADS)
Basfar, Ahmed A.; Soliman, Yasser S.; Alkhuraiji, Turki S.
2017-05-01
Desulfurization of light distillation fractions including gasoline, kerosene and diesel obtained from the four Arabian crude oils (heavy, medium, light and extra light) upon γ-rays irradiation to different doses was investigated. In addition, yields vol%, FTIR analysis, kinematic viscosity and density of all distillation fractions of irradiated crude oils were evaluated. Limited radiation-induced desulfurization of those fractions was observed up to an irradiation dose of 200 kGy. FTIR analysis of those fractions indicates the absence of oxidized sulfur compounds, represented by S=O of sulfone group, indicating that γ-irradiation of the Arabian crude oils at normal conditions does not induce an oxidative desulfurization in those distillation fractions. Radiation-induced sulfur transfer decreases by 28.56% and increases in total sulfur by 16.8% in Arabian extra light oil and Arabian medium crude oil respectively.
Computer simulation of the probability that endangered whales will interact with oil spills
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, M.; Jayko, K.; Bowles, A.
1987-03-01
A numerical model system was developed to assess quantitatively the probability that endangered bowhead and gray whales will encounter spilled oil in Alaskan waters. Bowhead and gray whale migration and diving-surfacing models, and an oil-spill trajectory model comprise the system. The migration models were developed from conceptual considerations, then calibrated with and tested against observations. The movement of a whale point is governed by a random walk algorithm which stochastically follows a migratory pathway. The oil-spill model, developed under a series of other contracts, accounts for transport and spreading behavior in open water and in the presence of sea ice.more » Historical wind records and heavy, normal, or light ice cover data sets are selected at random to provide stochastic oil-spill scenarios for whale-oil interaction simulations.« less
Brigmon, Robin L.; Berry, Christopher J.; Wade, Arielle; ...
2016-05-04
Oil sands are a major source of oil, but their industrial processing generates tailings ponds that are an environmental hazard. The main concerns are mature fine tailings (MFT) composed of residual hydrocarbons, water, and fine clay. Tailings ponds include toxic contaminants such as heavy metals, and toxic organics including naphthenics. Naphthenic acids and polyaromatic hydrocarbons (PAHs) degrade very slowly and pose a long-term threat to surface and groundwater, as they can be transported in the MFT. Research into improved technologies that would enable densification and settling of the suspended particles is ongoing. In batch tests, BioTiger™, a microbial consortium thatmore » can metabolize PAHs, demonstrated improved oil sands tailings settling from a Canadian tailings pond. Results also showed, depending on the timing of the measurements, lower suspended solids and turbidity. Elevated total organic carbon was observed in the first 48 hours in the BioTiger™-treated columns and then decreased in overlying water. Oil sands tailings mixed with BioTiger™ showed a two-fold reduction in suspended solids within 24 hours as compared to abiotic controls. The tailings treated with BioTiger™ increased in microbial densities three orders of magnitude from 8.5 × 105 CFU/mL to 1.2 × 108 CFU/mL without any other carbon or energy source added, indicating metabolism of hydrocarbons and other available nutrients. Results demonstrated that bioaugmentation of BioTiger™ increased separation of organic carbon from particles in oil sands and enhanced settling with tailings with improved water quality.« less
Generation and migration of petroleum in the Mahakam delta, Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durand, B.; Bessereau, G.; Doligez, B.
1988-08-01
The Mahakam delta, located east of Kalimantan, Indonesia, contains sediments of Miocene-Pliocene age. Their thickness may reach more than 8,000 m in places, and sections which have been drilled are generally overpressured below 3,000 to 4,000 m. Petroleum was formed essentially from a kerogen originating in terrestrial land plants grown in an equatorial climate. The kerogen may occur either dispersed in clays or concentrated in humic coal beds. Petroleum potential (oil and gas) of this kerogen at the beginning of catagenesis is 200-250 mg HC/g organic carbon on the average (as measured by Rock-Eval pyrolysis) but is highly variable aroundmore » this mean value (100-400 mg HC/g organic carbon approximately). Although the kerogen is of terrestrial origin, the kerogen-containing sediments have the capacity to produce and expel oil at depth, as shown by large quantities of oil pooled in sandy reservoirs together with gas in a relatively small area. Depth of top oil kitchen varies from 2,500 to 4,000 m and is greater in synclines than on top of structures. Present isotherms follow more or less the same pattern. Migration is very recent and is till at work. Light hydrocarbons have migrated farther from their source than heavy ones did. Thus condensate in pooled gas and the density of pooled oil tend to increase with depth. These variations of oil and gas compositions along secondary and tertiary migration routes are likely to be provoked by evaporative fractionation processes.« less
Dashti, Narjes; Ali, Nedaa; Khanafer, Majida; Al-Awadhi, Husain; Sorkhoh, Naser; Radwan, Samir
2015-05-15
Olive-pomace, a waste by-product of olive oil industry, took up >40% of its weight crude oil. Meanwhile, this material harbored a rich and diverse hydrocarbonoclastic bacterial population in the magnitude of 10(6) to 10(7) cells g(-1). Using this material for bioaugmentation of batch cultures in crude oil-containing mineral medium, resulted in the consumption of 12.9, 21.5, 28.3, and 43% oil after 2, 4, 6 and 8 months, respectively. Similar oil-consumption values, namely 11.0, 29.3, 34.7 and 43.9%, respectively, were recorded when a NaNO3-free medium was used instead of the complete medium. Hydrocarbonoclastic bacteria involved in those bioremediation processes, as characterized by their 16S rRNA-gene sequences, belonged to the genera Agrococcus, Pseudomonas, Cellulosimicrobium, Streptococcus, Sinorhizobium, Olivibacter, Ochrobactrum, Rhizobium, Pleomorphomonas, Azoarcus, Starkeya and others. Many of the bacterial species belonging to those genera were diazotrophic; they proved to contain the nifH-genes in their genomes. Still other bacterial species could tolerate the heavy metal mercury. The dynamic changes of the proportions of various species during 8 months of incubation were recorded. The culture-independent, phylogenetic analysis of the bacterioflora gave lists different from those recorded by the culture-dependent method. Nevertheless, those lists comprised among others, several genera known for their hydrocarbonoclastic potential, e.g. Pseudomonas, Mycobacterium, Sphingobium, and Citrobacter. It was concluded that olive-pomace could be applied in oil-remediation, not only as a physical sorbent, but also for bioaugmentation purposes as a biological source of hydrocarbonoclastic bacteria. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhao, Xu; Shi, Quan; Gray, Murray R.; Xu, Chunming
2014-01-01
Metalloporphyrins are ubiquitous in nature, particularly iron porphyrins (hemes) and magnesium dihydroporphyrins or chlorophylls. Oxovanadium (IV) complexes of alkyl porphyrins are widely distributed in petroleum, oil shales and maturing sedimentary bitumen. Here we identify new vanadium compounds in Venezuela Orinoco heavy crude oil detected by Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). These compounds likely have the main structure of porphyrin, with the addition of more aromatic rings, thiophene and amino functional groups, corresponding to molecular series of CnH2n-40N4V1O1 (36 ≤ n ≤ 58),CnH2n-42N4V1O1 (37 ≤ n ≤ 57),CnH2n-44N4V1O1 (38 ≤ n ≤ 59),CnH2n-46N4V1O1 (43 ≤ n ≤ 54),CnH2n-48N4V1O1 (45 ≤ n ≤ 55),CnH2n-38N4V1S1O1 (36 ≤ n ≤ 41),CnH2n-40N4V1S1O1 (35 ≤ n ≤ 51),CnH2n-42N4V1S1O1 (36 ≤ n ≤ 54),CnH2n-44N4V1S1O1 (41 ≤ n ≤ 55),CnH2n-46N4V1S1O1 (39 ≤ n ≤ 55),CnH2n-27N5V1O1 (29 ≤ n ≤ 40),CnH2n-29N5V1O1 (34 ≤ n ≤ 42),CnH2n-33N5V1O1 (31 ≤ n ≤ 38),CnH2n-35N5V1O1 (32 ≤ n ≤ 41),CnH2n-27N5V1O2 (32 ≤ n ≤ 41) and CnH2n-29N5V1O2 (33 ≤ n ≤ 42). These findings are significant for the understanding of the existing form of vanadium species in nature, and are helpful for enhancing the amount of information on palaeoenvironments and improving the level of applied basic theory for the processing technologies of heavy oils. PMID:24948028
Rezaei Somee, Maryam; Shavandi, Mahmoud; Dastgheib, Seyed Mohammad Mehdi; Amoozegar, Mohammad Ali
2018-05-01
Oil-based drill cuttings are hazardous wastes containing complex hydrocarbons, heavy metals, and brine. Their remediation is a crucial step before release to the environment. In this work, we enriched a halophilic consortium, from oil-polluted saline soil, which is capable of degrading diesel as the main pollutant of oil-based drill cuttings. The degradation ability of the consortium was evaluated in microcosms using two different diluting agents (fine sand and biologically active soil). During the bioremediation process, the bacterial community dynamics of the microcosms was surveyed using PCR amplification of a fragment of 16S rRNA gene followed by denaturing gradient gel electrophoresis (DGGE). The diesel degradation rates were monitored by total petroleum hydrocarbon (TPH) measurement and the total count of heterotrophic and diesel-degrading bacteria. After 3 months, the microcosm containing fine sand and drill cuttings with the ratio of 1:1 (initial TPH of 36,000 mg/kg) showed the highest TPH removal (40%) and its dominant bacterial isolates belonged to the genera Dietzia, Arthrobacter , and Halomonas . DGGE results also confirmed the role of these genera in drill cuttings remediation. DGGE analysis of the bacterial diversity showed that Propionibacterium, Salinimicrobium, Marinobacter , and Dietzia are dominant in active soil microcosm; whereas Bacillus, Salinibacillus , and Marinobacter are abundant in sand microcosm. Our results suggest that the bioaugmentation strategy would be more successful if the diluting agent does not contain a complex microbial community.
Microbial Biotechnology 2020; microbiology of fossil fuel resources.
Head, Ian M; Gray, Neil D
2016-09-01
This roadmap examines the future of microbiology research and technology in fossil fuel energy recovery. Globally, the human population will be reliant on fossil fuels for energy and chemical feedstocks for at least the medium term. Microbiology is already important in many areas relevant to both upstream and downstream activities in the oil industry. However, the discipline has struggled for recognition in a world dominated by geophysicists and engineers despite widely known but still poorly understood microbially mediated processes e.g. reservoir biodegradation, reservoir souring and control, microbial enhanced oil recovery. The role of microbiology is even less understood in developing industries such as shale gas recovery by fracking or carbon capture by geological storage. In the future, innovative biotechnologies may offer new routes to reduced emissions pathways especially when applied to the vast unconventional heavy oil resources formed, paradoxically, from microbial activities in the geological past. However, despite this potential, recent low oil prices may make industry funding hard to come by and recruitment of microbiologists by the oil and gas industry may not be a high priority. With regards to public funded research and the imperative for cheap secure energy for economic growth in a growing world population, there are signs of inherent conflicts between policies aimed at a low carbon future using renewable technologies and policies which encourage technologies which maximize recovery from our conventional and unconventional fossil fuel assets. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Compartment A19, paint & oils locker from bulkhead #9 aft ...
Compartment A-19, paint & oils locker from bulkhead #9 aft to forward; wood storage shelves at center of photograph are for storing containers. Sea valve at lower right is on the starboard side. This would be opened if it was necessary to scuttle the vessel. Heavy frame marked "A-2" supports armored protective deck. (03) - USS Olympia, Penn's Landing, 211 South Columbus Boulevard, Philadelphia, Philadelphia County, PA
1968-01-01
whenever necessary, there is round-the-clock air patrolling by heavy barbers , carrying nu- clear bombs, along the northern coasts of Greenland, Canada...aa well as highly developed machine building industries. In them Is con- centrated 75 percent o* all coal, SO percent of the oil , about 70 percent...the import of many types of alloy metals and code oil from the de- 120 Military Strategy veloping countries in the Near East, Far East, Africa, and
Chemical demulsification of tanker crude emulsions. Memorandum report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Little, R.C.
1980-02-13
The chemical demulsification of tanker crude emulsions was studied as a function of oil type (light vs. heavy crude), demulsifier concentrations, and temperature. Aerosol OT shows promise as a chemical demulsifier of tanker crude emulsions provided that ambient temperatures are not too cold and that an appropriate concentration range is used for specific oil. The evaporation rates and viscosities of the six crudes studied are also reported in the text.
Monitoring coastal pollution associated with the largest oil refinery complex of Venezuela
Bone, David; Bastidas, Carolina; Ramos, Ruth
2016-01-01
This study evaluated pollution levels in water and sediments of Península de Paraguaná and related these levels with benthic macrofauna along a coastal area where the largest Venezuelan oil refineries have operated over the past 60 years. For this, the concentration of heavy metals, of hydrocarbon compounds and the community structure of the macrobenthos were examined at 20 sites distributed along 40 km of coastline for six consecutive years, which included windy and calm seasons. The spatial variability of organic and inorganic compounds showed considerably high coastal pollution along the study area, across both years and seasons. The southern sites, closest to the refineries, had consistently higher concentrations of heavy metals and organic compounds in water and sediments when compared to those in the north. The benthic community was dominated by polychaetes at all sites, seasons and years, and their abundance and distribution were significantly correlated with physical and chemical characteristics of the sediments. Sites close to the oil refineries were consistently dominated by families known to tolerate xenobiotics, such as Capitellidae and Spionidae. The results from this study highlight the importance of continuing long-term environmental monitoring programs to assess the impact of effluent discharge and spill events from the oil refineries that operate in the western coast of Paraguaná, Venezuela. PMID:27375970
Monitoring coastal pollution associated with the largest oil refinery complex of Venezuela.
Croquer, Aldo; Bone, David; Bastidas, Carolina; Ramos, Ruth; García, Elia
2016-01-01
This study evaluated pollution levels in water and sediments of Península de Paraguaná and related these levels with benthic macrofauna along a coastal area where the largest Venezuelan oil refineries have operated over the past 60 years. For this, the concentration of heavy metals, of hydrocarbon compounds and the community structure of the macrobenthos were examined at 20 sites distributed along 40 km of coastline for six consecutive years, which included windy and calm seasons. The spatial variability of organic and inorganic compounds showed considerably high coastal pollution along the study area, across both years and seasons. The southern sites, closest to the refineries, had consistently higher concentrations of heavy metals and organic compounds in water and sediments when compared to those in the north. The benthic community was dominated by polychaetes at all sites, seasons and years, and their abundance and distribution were significantly correlated with physical and chemical characteristics of the sediments. Sites close to the oil refineries were consistently dominated by families known to tolerate xenobiotics, such as Capitellidae and Spionidae. The results from this study highlight the importance of continuing long-term environmental monitoring programs to assess the impact of effluent discharge and spill events from the oil refineries that operate in the western coast of Paraguaná, Venezuela.
Zhai, Yunbo; Chen, Hongmei; Xu, Bibo; Xiang, Bobin; Chen, Zhong; Li, Caiting; Zeng, Guangming
2014-05-01
The influence of sewage sludge-based activated carbons (SSAC) on sewage sludge liquefaction has been carried out at 350 and 400°C. SSAC increased the yield and energy density of bio-oil at 350°C. The metallic compounds were the catalytic factor of SSAC obtained at 550°C (SSAC-550), while carbon was the catalytic factor of SSAC obtained at 650°C. Liquefaction with SSAC redistributed the species of heavy metals in solid residue (SR). With the addition of SSAC, the risk of Cu, Zn and Pb decreased at 350°C, while at 400°C the risk of Cd, Cu, and Zn were decreased. Ecological risk index indicated that 400°C was preferable for the toxicity decrement of SR, while risk assessment code indicated that SR obtained at 350°C contained lower risk. Considering the bio-oil yield, liquefaction at 350°C with SSAC-550 was preferable. Copyright © 2014 Elsevier Ltd. All rights reserved.
Technical product bulletin: this bioremediation agent (microbiological culture) for oil spill cleanups can be applied to surface water, beaches, marsh, or wetland. It is effective even on heavy petroleum compounds, and does not damage marsh or wetlands.
NASA Astrophysics Data System (ADS)
Yashchenko, I. G.; Polishchuk, Yu. M.; Peremitina, T. O.
2015-10-01
The dependence of the population and activity of reservoir microflora upon the chemical composition and viscosity of crude oils has been investigated, since it allows the problem of improvement in the technologies and enhancement of oil recovery as applied to production of difficult types of oils with anomalous properties (viscous, heavy, waxy, high resin) to be solved. The effect of the chemical composition of the oil on the number, distribution, and activity of reservoir microflora has been studied using data on the microbiological properties of reservoir water of 16 different fields in oil and gas basins of Russia, Mongolia, China, and Vietnam. Information on the physicochemical properties of crude oils of these fields has been obtained from the database created at the Institute of Petroleum Chemistry, Siberian Branch on the physicochemical properties of oils throughout the world. It has been found that formation water in viscous oil reservoirs is char acterized by a large population of heterotrophic and sulfate reducing bacteria and the water of oil fields with a high paraffin content, by population of denitrifying bacteria.
Fluorescence emission spectral measurements for the detection of oil on shore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balick, L.K.; Di Benedetto, J.A.; Lutz, S.S.
1997-06-01
The US DOE Special Technologies Laboratory is developing an airborne Laser-Induced Fluorescence Imaging (LIFI) system to support environmental management of government Utilities. This system, or a system to be derived from it, is being evaluated for its potential to detect spilled oils on shore, in wetlands, and on ice. To more fully understand the detectivity of oil spills, emphasis has been placed on the spectral contrast between the oil signatures and signatures associated with the natural backgrounds (sand, vegetation, etc.). To support this evaluation, two series of controlled measurements have been performed to provide rigorous characterization of the excitation-emission propertiesmore » of some oils and background materials, and to look at the effects of weathering of oil on terrestrial background materials. Oil targets included a heavy crude oil, diesel, kerosene, and aviation fuel and backgrounds included beach sand, straw, mud, tar and kelp. Fluorescence of oil on background materials decreases rapidly over the first few days of exposure to the environment and is more rapid than for neat oil samples.« less
Fluorescence emission spectral measurements for the detection of oil on shore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balick, L.K.; Di Benedetto, J.A.; Lutz, S.S.
1996-12-31
The U.S. DOE Special Technologies Laboratory is developing an airborne Laser-Induced Fluorescence Imaging (LIFI) system to support environmental management of government facilities. This system, or a system to be derived from it, is being evaluated for its potential to detect spilled oils oN shore, in wetlands, and on ice. To more fully understand the detectivity of oil spills, emphasis has been placed on the spectral contrast between the oil signatures and signatures associated with the natural backgrounds (sand, vegetation, etc.). To support this evaluation, two series of controlled measurements have been performed to provide rigorous characterization of the excitation-emission propertiesmore » of some oils and background materials, and to look at the effects of weathering of oil on terrestrial background materials. Oil targets included a heavy crude oil, diesel, kerosene, and aviation fuel and backgrounds included beach sand, straw, mud, tar and kelp. Fluorescence of oil on background materials decreases rapidly over the first few days of exposure to the environment and is more rapid than for neat oil samples.« less
Use of Heavy Lift Ships as Modular Casualty Receiving Ships
2007-04-01
ship. • Combination product tanker and heavy lift ship. • Specialist dock or yacht transport ship. The M.V. Black Marlin, CombiDock, and the...regulations. • Pollution must be disposed of properly as set by various organizations. Pollutants include oil, noxious liquid substances in bulk, sewage ...pictured in Figure 21, is typically used to ship yachts from one location to another, and yacht owners have the option to travel with their yachts
NASA Astrophysics Data System (ADS)
Sosnovski, Oleg; Suresh, Pooja; Dudelzak, Alexander E.; Green, Benjamin
2018-02-01
Lubrication oil is a vital component of heavy rotating machinery defining the machine's health, operational safety and effectiveness. Recently, the focus has been on developing sensors that provide real-time/online monitoring of oil condition/lubricity. Industrial practices and standards for assessing oil condition involve various analytical methods. Most these techniques are unsuitable for online applications. The paper presents the results of studying degradation of antioxidant additives in machinery lubricants using Fluorescence Excitation-Emission Matrix (EEM) Spectroscopy and Machine Learning techniques. EEM Spectroscopy is capable of rapid and even standoff sensing; it is potentially applicable to real-time online monitoring.
Gamal El-Din, Mohamed; Fu, Hongjing; Wang, Nan; Chelme-Ayala, Pamela; Pérez-Estrada, Leonidas; Drzewicz, Przemysław; Martin, Jonathan W; Zubot, Warren; Smith, Daniel W
2011-11-01
The Athabasca Oil Sands industry produces large volumes of oil sands process-affected water (OSPW) as a result of bitumen extraction and upgrading processes. Constituents of OSPW include chloride, naphthenic acids (NAs), aromatic hydrocarbons, and trace heavy metals, among other inorganic and organic compounds. To address the environmental issues associated with the recycling and/or safe return of OSPW into the environment, water treatment technologies are required. This study examined, for the first time, the impacts of pretreatment steps, including filtration and petroleum-coke adsorption, on ozonation requirements and performance. The effect of the initial OSPW pH on treatment performance, and the evolution of ozonation and its impact on OSPW toxicity and biodegradability were also examined. The degradation of more than 76% of total acid-extractable organics was achieved using a semi-batch ozonation system at a utilized ozone dose of 150 mg/L. With a utilized ozone dose of 100 mg/L, the treated OSPW became more biodegradable and showed no toxicity towards Vibrio fischeri. Changes in the NA profiles in terms of carbon number and number of rings were observed after ozonation. The filtration of the OSPW did not improve the ozonation performance. Petroleum-coke adsorption was found to be effective in reducing total acid-extractable organics by a 91%, NA content by an 84%, and OSPW toxicity from 4.3 to 1.1 toxicity units. The results of this study indicate that the combination of petroleum-coke adsorption and ozonation is a promising treatment approach to treat OSPW. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stein, H. J.; Hannah, J. L.
2017-12-01
The application of Re-Os isotope geochemistry to dating single oils is a nascent field [1,2]. Challenges include dissection of oils into asphaltene-maltene (ASPH-MALT) components in a way that preserves meaningful chronologic and source information. Significantly, oil-water mixing rapidly transfers Os to the oil, while Re exchange is sluggish [3]. The Os initial ratio of the oil is shifted in the direction of Os carried in the aqueous fluid, whereas the Re-Os isotopic age is preserved. We show that this phenomenon is operative in natural systems. Further, we show that deserpentinization of old oceanic slabs [4], may be linked to expulsion of Os-enriched waters into overlying sedimentary sections - a process that may be of fundamental importance for oil generation. This conclusion does not diminish the role of traditional organic-rich shales as source rocks for the hydrocarbon, but shows that external fluids are essential to petroleum generation. Moreover, the external fluids may be an important driver for expulsion and migration of oils. We have taken apart several petroleum systems from source rock, to residual oil, to tar mat development, to in situ live oil, through to produced oil. In many cases, a fluid with low 187Os/188Os - unlike that of normal basinal brines - provides a critical component to the oil-water mixture. Funding - CHRONOS project supported by Norwegian petroleum industry (Eni-Norge, Lundin, Aker BP) Acknowledgement - Christine Fichler [4], who first queried us on old slabs and oil, and stimulated ideas. [1] Georgiev, S.V., Stein, H.J., Hannah, J.L., Galimberti, R., Nali, M., Yang, G., and Zimmerman, A. (2016) Re-Os dating of maltenes and asphaltenes within single samples of crude oil: Geochim. Cosmochim. Acta 179: 53-75. [doi.org/10.1016/j.gca.2016.01.016] [2] DiMarzio, J., Georgiev, S.V., Stein, H.J., and Hannah, J.L. (in press) Residency of rhenium and osmium in a heavy crude oil: Geochim. Cosmochim. Acta. [3] Hurtig, N.C., Georgiev, S.V., Stein, H.J., and Hannah, J.L. (in review) Re-Os in oil - in the company of water. [4] Fichler, C., Odinsen, T., Rueslåtten, H., Olesen, O., Vingstad, J.-E., Wienecke, S. (2011) Crustal inhomogenities in the northern North Sea from potential field modeling: inherited structure and serpentinites: Tectonophysics 510: 172-185. [doi:10.1016/j.tecto.2011.06.026