Sample records for heavy s-process elements

  1. Separation Process of Fine Coals by Ultrasonic Vibration Gas-Solid Fluidized Bed

    PubMed Central

    Wei, Hua; Xie, Weining

    2017-01-01

    Ultrasonic vibration gas-solid fluidized bed was proposed and introduced to separate fine coals (0.5–0.125 mm fraction). Several technological methods such as XRF, XRD, XPS, and EPMA were used to study the composition of heavy products to evaluate the separation effect. Results show that the ultrasonic vibration force field strengthens the particle separation process based on density when the vibration frequency is 35 kHz and the fluidization number is 1.8. The ash difference between the light and heavy products and the recovery of combustible material obtain the maximum values of 47.30% and 89.59%, respectively. The sulfur content of the heavy product reaches the maximum value of 6.78%. Chemical state analysis of sulfur shows that organic sulfur (-C-S-), sulfate-sulfur (-SO4), and pyrite-sulfur (-S2) are confirmed in the original coal and heavy product. Organic sulfur (-C-S-) is mainly concentrated in the light product, and pyrite-sulfur (-S2) is significantly enriched in the heavy product. The element composition, phase composition, backscatter imagery, and surface distribution of elements for heavy product show concentration of high-density minerals including pyrite, quartz, and kaolinite. Some harmful elements such as F, Pb, and As are also concentrated in the heavy product. PMID:28845160

  2. The Ubiquity of the Rapid Neutron-capture Process

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Cowan, John J.; Karakas, Amanda I.; Kratz, Karl-Ludwig; Lugaro, Maria; Simmerer, Jennifer; Farouqi, Khalil; Sneden, Christopher

    2010-12-01

    To better characterize the abundance patterns produced by the r-process, we have derived new abundances or upper limits for the heavy elements zinc (Zn, Z= 30), yttrium (Y, Z= 39), lanthanum (La, Z= 57), europium (Eu, Z= 63), and lead (Pb, Z= 82). Our sample of 161 metal-poor stars includes new measurements from 88 high-resolution and high signal-to-noise spectra obtained with the Tull Spectrograph on the 2.7 m Smith Telescope at the McDonald Observatory, and other abundances are adopted from the literature. We use models of the s-process in asymptotic giant branch stars to characterize the high Pb/Eu ratios produced in the s-process at low metallicity, and our new observations then allow us to identify a sample of stars with no detectable s-process material. In these stars, we find no significant increase in the Pb/Eu ratios with increasing metallicity. This suggests that s-process material was not widely dispersed until the overall Galactic metallicity grew considerably, perhaps even as high as [Fe/H] =-1.4, in contrast with earlier studies that suggested a much lower mean metallicity. We identify a dispersion of at least 0.5 dex in [La/Eu] in metal-poor stars with [Eu/Fe] <+0.6 attributable to the r-process, suggesting that there is no unique "pure" r-process elemental ratio among pairs of rare earth elements. We confirm earlier detections of an anti-correlation between Y/Eu and Eu/Fe bookended by stars strongly enriched in the r-process (e.g., CS 22892-052) and those with deficiencies of the heavy elements (e.g., HD 122563). We can reproduce the range of Y/Eu ratios using simulations of high-entropy neutrino winds of core-collapse supernovae that include charged-particle and neutron-capture components of r-process nucleosynthesis. The heavy element abundance patterns in most metal-poor stars do not resemble that of CS 22892-052, but the presence of heavy elements such as Ba in nearly all metal-poor stars without s-process enrichment suggests that the r-process is a common phenomenon. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.

  3. The r-, s-, and p-Processes in Nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Meyer, Bradley S.

    1994-01-01

    A goal of this paper is to review the recent progress astrophysicists, astronomers, and physicists have made in the r-, s-, and p-processes in nucleosynthesis and to point out the problems that remain in our understanding of the formation of the heavy nuclei. Another, perhaps deeper, goal is to to seek some understanding of why there are three major processes available to nature for synthesis of heavy elements.

  4. Abundances in the Very Metal Poor s-Process-rich Star CS 22183-015

    NASA Astrophysics Data System (ADS)

    Johnson, Jennifer A.; Bolte, Michael

    2002-11-01

    We report on the abundances for 13 elements in CS 22183-015, the most metal-poor, s-process-rich star yet discovered. We measure [Fe/H]=-3.12 and large overabundances compared to scaled solar values for 11 heavy elements with s-process origin. The low luminosity of the star suggests that it is a CH star, a giant that has accreted s-processed material from an evolved, very metal poor companion. We find a [Pb/Ba] value of 1.1 dex and, more generally, that the ratio of heavy to light s-process elements is larger than seen in the solar system. This result is consistent with theoretical expectations for the s-process in metal-poor stars. [Eu/La] is higher than predicted from the solar system s-process abundance ratios. We argue that the s-process in metal-poor stars is more efficient at producing Eu that in asymptotic giant branch stars of solar metallicity. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  5. Genesis of the heaviest elements in the Milky Way Galaxy.

    PubMed

    Sneden, Christopher; Cowan, John J

    2003-01-03

    We review the origin and evolution of the heavy elements, those with atomic numbers greater than 30, in the early history of the Milky Way. There is a large star-to-star bulk scatter in the concentrations of heavy elements with respect to the lighter metals, which suggests an early chemically unmixed and inhomogeneous Galaxy. The relative abundance patterns among the heavy elements are often very different from the solar system mix, revealing the characteristics of the first element donors in the Galaxy. Abundance comparisons among several halo stars show that the heaviest neutron-capture elements (including barium and heavier) are consistent with a scaled solar system rapid neutron-capture abundance distribution, whereas the lighter such elements do not conform to the solar pattern. The stellar abundances indicate an increasing contribution from the slow neutron-capture process (s-process) at higher metallicities in the Galaxy. The detection of thorium in halo and globular cluster stars offers a promising, independent age-dating technique that can put lower limits on the age of the Galaxy.

  6. Abundances in very metal-poor stars

    NASA Astrophysics Data System (ADS)

    Johnson, Jennifer Anne

    We measured the abundances of 35 elements in 22 field red giants and a red giant in the globular cluster M92. We found the [Zn/Fe] ratio increases with decreasing [Fe/H], reaching ~0.3 at [Fe/H] = -3.0. While this is a larger [Zn/Fe] than found by previous investigators, it is not sufficient to account for the [Zn/Fe] observed in the damped Lyα systems. We test different models for the production of the s-process elements by comparing our [Y/Zr] values, which have been produced by the r- process, to predictions of what the s-process does not produce. We find that the models of Arlandini et al. (1999), which calculate s-process production in a model AGB star, agree the best. We then look at the r-process abundances across a wide range in mass. The [Y/Ba] values for most of our stars cluster around -0.30, but there are three outliers with [Y/Ba] values up to 1 dex higher. Thus the heavy element abundances do not show the same pattern from Z = 39 to Z = 56. However, our abundances ratios from Pd (Z = 46) to Yb (Z = 70) are consistent with a scaled solar system r- process pattern, arguing that at least the heavy r- process elements are made in a universal pattern. If we assume that this same pattern hold through thorium, we can determine the ages of our stars from the present abundance of radioactive thorium and an initial thorium abundance based on the abundance of stable heavy elements. Our results for five stars are consistent with those stars being the same age. Our mean age is 10.8 +/- 2 Gyr. However that result depends critically on the assumed Th/stable ratio, which we adopt from models of the r-process. For an average age of 15 Gyrs, the initial Th/Eu ratio we would need is 0.590. Finally, the [element/Fe] ratios for elements in the iron group and lower do not show any dispersion, unlike for the r- process elements such as Y and Ba. Therefore the individual contributions of supernovae have been erased for the lighter elements.

  7. Chemical abundances and kinematics of TYC 5619-109-1

    NASA Astrophysics Data System (ADS)

    Pereira, C. B.; Smith, V. V.; Drake, N. A.; Roig, F.; Hasselquist, S.; Cunha, K.; Jilinski, E.

    2017-07-01

    Previous determinations of chemical abundances of the metal-poor red giant TYC 5619-109-1, derived via high-resolution near-infrared spectra from the Apache Point Observatory Galactic Evolution Experiment survey, indicate that this star is strongly enriched in the elements N and Al. Here, we obtain and analyse high-resolution optical spectra of TYC 5619-109-1 to verify these large N and Al overabundances and to measure abundances of a wider range of chemical elements. Our analysis confirms the N- and Al-rich nature of this star, and shows that the abundances of the s-process elements are also strongly enhanced, particularly in the heavy second s-process peak elements (Ba, La, Ce, Nd). Lighter s-process elements (Y, Zr) show smaller overabundances, and the ratio of the light-to-heavy s-process elements is consistent with the 13C(α, n)16O neutron source operating in a low-metallicity environment. The lack of Tc I lines and the abundance of Nb compared to Zr indicate that this red giant is probably not a thermally pulsing asymptotic giant branch (TP-AGB) star. Mass transfer from a former s-process-rich TP-AGB companion may produce the observed overabundances, but our radial velocity analysis provides no evidence that TYC 5619-109-1 is a binary with a white dwarf companion. We suggest that TYC 5619-109-1 formed from gas already strongly enriched in s-process elements, as found in many dwarf galaxies and globular clusters. A dynamical analysis reveals that there is only a small probability that TYC 5619-109-1 is an escaped member of a globular cluster, and in this case the most likely candidate would be ω Cen.

  8. Stellar Abundance Observations and Heavy Element Formation

    NASA Astrophysics Data System (ADS)

    Cowan, J. J.

    2005-05-01

    Abundance observations indicate the presence of rapid-neutron capture (i.e., r-process) elements in old Galactic halo and globular cluster stars. These observations provide insight into the nature of the earliest generations of stars in the Galaxy -- the progenitors of the halo stars -- responsible for neutron-capture synthesis of the heavy elements. Abundance comparisons among the r-process-rich halo stars show that the heaviest neutron-capture elements (i.e., Ba and above) are consistent with a scaled solar system r-process abundance distribution, while the lighter neutron-capture elements do not conform to the solar pattern. These comparisons suggest the possibility of two r-process sites in stars. The large star-to-star scatter observed in the abundances of neutron-capture element/iron ratios at low metallicities -- which disappears with increasing metallicity or [Fe/H] -- suggests the formation of these heavy elements (presumably from certain types of supernovae) was rare in the early Galaxy. The stellar abundances also indicate a change from the r-process to the slow neutron capture (i.e., s-) process at higher metallicities in the Galaxy and provide insight into Galactic chemical evolution. Finally, the detection of thorium and uranium in halo and globular cluster stars offers an independent age-dating technique that can put lower limits on the age of the Galaxy, and hence the Universe. This work has been supported in part by NSF grant AST 03-07279 (J.J.C.) and by STScI grants GO-8111, GO-8342 and GO-9359.

  9. Nuclear Reactions and the ν p-Process

    NASA Astrophysics Data System (ADS)

    Fröhlich, Carla; Hatcher, Daniel; Perdikakis, Georgios; Nikas, Stylianos

    In understanding the origin of the heavy elements, the "light heavy elements" pose a particular challenge: The two neutron-capture processes, r- and s-process, cannot explain the abundances patterns seen in very old galactic halo stars. A proposed solution to this problem is the ν p-process, which takes place in the strong neutrino-driven winds of core-collapse supernovae. In the ν p-process, a sequence of (n, p) and (p, γ ) reactions allows for the synthesis of elements with atomic numbers A > 64, which includes Sr, Y, Zr, and others possibly up to Sn. The relevant reaction rates are all based on statistical model predictions and carry some uncertainty. Here, the sensitivity of the final ν p-process abundance pattern on modifications of (n, p), (p, γ ), and (n, γ ) reactions are characterized. Only few reactions affect the final abundance pattern and hence warrant a more detailed study of the reaction rate.

  10. THE INTERMEDIATE NEUTRON-CAPTURE PROCESS AND CARBON-ENHANCED METAL-POOR STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampel, Melanie; Stancliffe, Richard J.; Lugaro, Maria

    Carbon-enhanced metal-poor (CEMP) stars in the Galactic Halo display enrichments in heavy elements associated with either the s (slow) or the r (rapid) neutron-capture process (e.g., barium and europium, respectively), and in some cases they display evidence of both. The abundance patterns of these CEMP- s / r stars, which show both Ba and Eu enrichment, are particularly puzzling, since the s and the r processes require neutron densities that are more than ten orders of magnitude apart and, hence, are thought to occur in very different stellar sites with very different physical conditions. We investigate whether the abundance patternsmore » of CEMP- s / r stars can arise from the nucleosynthesis of the intermediate neutron-capture process (the i process), which is characterized by neutron densities between those of the s and the r processes. Using nuclear network calculations, we study neutron capture nucleosynthesis at different constant neutron densities n ranging from 10{sup 7}–10{sup 15} cm{sup -3}. With respect to the classical s process resulting from neutron densities on the lowest side of this range, neutron densities on the highest side result in abundance patterns, which show an increased production of heavy s -process and r -process elements, but similar abundances of the light s -process elements. Such high values of n may occur in the thermal pulses of asymptotic giant branch stars due to proton ingestion episodes. Comparison to the surface abundances of 20 CEMP- s / r stars shows that our modeled i -process abundances successfully reproduce observed abundance patterns, which could not be previously explained by s -process nucleosynthesis. Because the i -process models fit the abundances of CEMP- s / r stars so well, we propose that this class should be renamed as CEMP- i .« less

  11. r-process enhanched metal-poor stars

    NASA Astrophysics Data System (ADS)

    Cowan, John; Sneden, Christopher; Lawler, James E.; Den Hartog, Elizabeth A.

    Abundance observations indicate the presence of rapid-neutron capture (i.e., r-process) elements in old Galactic halo and globular cluster stars. These observations provide insight into the nature of the earliest generations of stars in the Galaxy - the progenitors of the halo stars - responsible for neutron-capture synthesis of the heavy elements. The large star-to-star scatter observed in the abundances of neutron-capture element/iron ratios at low metallicities - which diminishes with in- creasing metallicity or [Fe/H] - suggests the formation of these heavy elements (presumably from certain types of supernovae) was rare in the early Galaxy. The stellar abundances also indicate a change from the r-process to the slow neutron capture (i.e., s-) process at higher metallicities in the Galaxy and provide insight into Galactic chemical evolution. Finally, the detection of thorium and uranium in halo and globular cluster stars offers an independent age-dating technique that can put lower limits on the age of the Galaxy, and hence the Universe.

  12. Chemical evolution with rotating massive star yields - I. The solar neighbourhood and the s-process elements

    NASA Astrophysics Data System (ADS)

    Prantzos, N.; Abia, C.; Limongi, M.; Chieffi, A.; Cristallo, S.

    2018-05-01

    We present a comprehensive study of the abundance evolution of the elements from H to U in the Milky Way halo and local disc. We use a consistent chemical evolution model, metallicity-dependent isotopic yields from low and intermediate mass stars and yields from massive stars which include, for the first time, the combined effect of metallicity, mass loss, and rotation for a large grid of stellar masses and for all stages of stellar evolution. The yields of massive stars are weighted by a metallicity-dependent function of the rotational velocities, constrained by observations as to obtain a primary-like 14N behaviour at low metallicity and to avoid overproduction of s-elements at intermediate metallicities. We show that the Solar system isotopic composition can be reproduced to better than a factor of 2 for isotopes up to the Fe-peak, and at the 10 per cent level for most pure s-isotopes, both light ones (resulting from the weak s-process in rotating massive stars) and the heavy ones (resulting from the main s-process in low and intermediate mass stars). We conclude that the light element primary process (LEPP), invoked to explain the apparent abundance deficiency of the s-elements with A < 100, is not necessary. We also reproduce the evolution of the heavy to light s-elements abundance ratio ([hs/ls]) - recently observed in unevolved thin disc stars - as a result of the contribution of rotating massive stars at sub-solar metallicities. We find that those stars produce primary F and dominate its solar abundance and we confirm their role in the observed primary behaviour of N. In contrast, we show that their action is insufficient to explain the small observed values of ^{12}C/^{13}C in halo red giants, which is rather due to internal processes in those stars.

  13. Dwarf galaxies: a lab to investigate the neutron capture elements production

    NASA Astrophysics Data System (ADS)

    Cescutti, Gabriele

    2018-06-01

    In this contribution, I focus on the neutron capture elements observed in the spectra of old halo and ultra faint galaxies stars. Adopting a stochastic chemical evolution model and the Galactic halo as a benchmark, I present new constraints on the rate and time scales of r-process events, based on the discovery of the r-process rich stars in the ultra faint galaxy Reticulum 2. I also show that an s-process activated by rotation in massive stars can play an important role in the production of heavy elements.

  14. Neutron-capture Nucleosynthesis in the First Stars

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Sneden, Christopher

    2014-04-01

    Recent studies suggest that metal-poor stars enhanced in carbon but containing low levels of neutron-capture elements may have been among the first to incorporate the nucleosynthesis products of the first generation of stars. We have observed 16 stars with enhanced carbon or nitrogen using the MIKE Spectrograph on the Magellan Telescopes at Las Campanas Observatory and the Tull Spectrograph on the Smith Telescope at McDonald Observatory. We present radial velocities, stellar parameters, and detailed abundance patterns for these stars. Strontium, yttrium, zirconium, barium, europium, ytterbium, and other heavy elements are detected. In four stars, these heavy elements appear to have originated in some form of r-process nucleosynthesis. In one star, a partial s-process origin is possible. The origin of the heavy elements in the rest of the sample cannot be determined unambiguously. The presence of elements heavier than the iron group offers further evidence that zero-metallicity rapidly rotating massive stars and pair instability supernovae did not contribute substantial amounts of neutron-capture elements to the regions where the stars in our sample formed. If the carbon- or nitrogen-enhanced metal-poor stars with low levels of neutron-capture elements were enriched by products of zero-metallicity supernovae only, then the presence of these heavy elements indicates that at least one form of neutron-capture reaction operated in some of the first stars. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, and The McDonald Observatory of The University of Texas at Austin.

  15. The Odd Isotope Fractions of Barium in the Strongly r-process-enhanced (r-II) Stars

    NASA Astrophysics Data System (ADS)

    Wenyuan, Cui; Xiaohua, Jiang; Jianrong, Shi; Gang, Zhao; Bo, Zhang

    2018-02-01

    We determined the f odd,Ba values, 0.46 ± 0.08, 0.51 ± 0.09, 0.50 ± 0.13, and 0.48 ± 0.12, that correspond to the r-contribution 100% for four r-II stars, CS 29491-069, HE 1219-0312, HE 2327-5642, and HE 2252-4225, respectively. Our results suggest that almost all of the heavy elements (in the range from Ba to Pb) in r-II stars have a common origin, that is, from a single r-process (the main r-process). We found that the f odd,Ba has an intrinsic nature, and should keep a constant value of about 0.46 in the main r-process yields, which is responsible for the heavy element enhancement of r-II stars and of our Galaxy chemical enhancement. In addition, except for the abundance ratio [Ba/Eu] the f odd,Ba is also an important indicator, which can be used to study the relative contributions of the r- and s-processes during the chemical evolution history of the Milky Way and the enhancement mechanism in stars with peculiar abundances of heavy elements. Based on observations carried out at the European Southern Observatory, Paranal, Chile (Proposal number 170.D-0010 and 280.D-5011).

  16. Actinide targets for the synthesis of super-heavy elements

    DOE PAGES

    Roberto, J.; Alexander, Charles W.; Boll, Rose Ann; ...

    2015-06-18

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing themore » production of rare actinides including 249Bk, 251Cf, and 254Es are described.« less

  17. Assessment of water-soluble thiourea-formaldehyde (WTF) resin for stabilization/solidification (S/S) of heavy metal contaminated soils.

    PubMed

    Liu, She-Jiang; Jiang, Jia-Yu; Wang, Shen; Guo, Yu-Peng; Ding, Hui

    2018-03-15

    Stabilization/Solidification (S/S) can be regarded as necessary for remediation of heavy metal contaminated soil. There is, however, solid agent is not very convenient to use. Water-soluble thiourea-formaldehyde (WTF) is a novel chelating agent, which has more practical applications. The process of WTF resin for S/S process of heavy metal contaminated soils was studied. Laboratory-prepared slurries, made of field soils spiked with Cd 2+ and Cr 6+ were treated with WTF resin. The toxicity characteristic leaching procedure (TCLP) showed that with 2 wt% WTF, in the neutral condition of soil after treatment for 7 d, the leaching concentrations of Cd 2+ and Cr 6+ in contaminated soil were decreased by 80.3% and 92.6% respectively. Moreover, Tessier sequence extraction procedure showed WTF resin reduced the leaching concentration by transforming heavy metal from exchange form to organic form. The structure of WTF is obtained according to elemental analysis result and reaction mechanism. Through analysis of the infrared spectrogram of WTF and WTF heavy mental chelating precipitation, WTF can form stable chelate with heavy mental through coordination. The significant groups are hydroxyl, nitrogen and sulphur function groups in WTF mainly. Toxicology test revealed that the WTF resin is nontoxic to microorganism in the soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Biomedical Implications of Heavy Metals Induced Imbalances in Redox Systems

    PubMed Central

    Singh, Shweta; Siddiqi, Nikhat J.

    2014-01-01

    Several workers have extensively worked out the metal induced toxicity and have reported the toxic and carcinogenic effects of metals in human and animals. It is well known that these metals play a crucial role in facilitating normal biological functions of cells as well. One of the major mechanisms associated with heavy metal toxicity has been attributed to generation of reactive oxygen and nitrogen species, which develops imbalance between the prooxidant elements and the antioxidants (reducing elements) in the body. In this process, a shift to the former is termed as oxidative stress. The oxidative stress mediated toxicity of heavy metals involves damage primarily to liver (hepatotoxicity), central nervous system (neurotoxicity), DNA (genotoxicity), and kidney (nephrotoxicity) in animals and humans. Heavy metals are reported to impact signaling cascade and associated factors leading to apoptosis. The present review illustrates an account of the current knowledge about the effects of heavy metals (mainly arsenic, lead, mercury, and cadmium) induced oxidative stress as well as the possible remedies of metal(s) toxicity through natural/synthetic antioxidants, which may render their effects by reducing the concentration of toxic metal(s). This paper primarily concerns the clinicopathological and biomedical implications of heavy metals induced oxidative stress and their toxicity management in mammals. PMID:25184144

  19. Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event.

    PubMed

    Kasen, Daniel; Metzger, Brian; Barnes, Jennifer; Quataert, Eliot; Ramirez-Ruiz, Enrico

    2017-11-02

    The cosmic origin of elements heavier than iron has long been uncertain. Theoretical modelling shows that the matter that is expelled in the violent merger of two neutron stars can assemble into heavy elements such as gold and platinum in a process known as rapid neutron capture (r-process) nucleosynthesis. The radioactive decay of isotopes of the heavy elements is predicted to power a distinctive thermal glow (a 'kilonova'). The discovery of an electromagnetic counterpart to the gravitational-wave source GW170817 represents the first opportunity to detect and scrutinize a sample of freshly synthesized r-process elements. Here we report models that predict the electromagnetic emission of kilonovae in detail and enable the mass, velocity and composition of ejecta to be derived from observations. We compare the models to the optical and infrared radiation associated with the GW170817 event to argue that the observed source is a kilonova. We infer the presence of two distinct components of ejecta, one composed primarily of light (atomic mass number less than 140) and one of heavy (atomic mass number greater than 140) r-process elements. The ejected mass and a merger rate inferred from GW170817 imply that such mergers are a dominant mode of r-process production in the Universe.

  20. Contribution of fission to heavy-element nucleosynthesis in an astrophysical r-process

    NASA Astrophysics Data System (ADS)

    Korneev, I. Yu.; Panov, I. V.

    2011-12-01

    During the formation of heavy elements in the neutron star merger (NSM) scenario with a fairly long duration of the r-process, most of the seed nuclei rapidly burn out at the initial stage. The nucleosynthesis wave rapidly reaches the region of actinoids, where beta-delayed, neutron-induced, and spontaneous fission are the main reaction channels. The fission products of transuranium elements are again drawn into the r-process as new seed nuclei to form the yields of elements with mass numbers A > 100. The contribution from the various types of fission to the formation of heavy and superheavy nuclei is investigated. The proposed r-process model applied to the NSM scenario describes well the observed abundances of chemical elements, which confirms the formation of the main r-process component in the NSM scenario. Simple extrapolations of the spontaneous fission half-lives are shown to be inapplicable for the region of nuclei with N ˜ 184, because the formulas do not reflect the increase in half-life when the shell structure changes as the number of neutrons approaches 184. The formation of superheavy elements in the r-process is possible, but their survival depends to a large extent on how reliable the predictions of nuclear parameters, including the half-lives of the forming nuclei from the island of long-lived isotopes, are. The contributions from various types of fission—neutron-induced, beta-delayed, and spontaneous one—to the formation of heavy elements in the main r-process have been determined.

  1. Colliding Neutron Stars as the Source of Heavy Elements

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    Where do the heavy elements the chemical elements beyond iron in our universe come from? One of the primary candidate sources is the merger of two neutron stars, but recent observations have cast doubt on this model. Can neutron-star mergers really be responsible?Elements from Collisions?Periodic table showing the origin of each chemical element. Those produced by the r-process are shaded orange and attributed to supernovae in this image; though supernovae are one proposed source of r-process elements, an alternative source is the merger of two neutron stars. [Cmglee]When a binary-neutron-star system inspirals and the two neutron stars smash into each other, a shower of neutrons are released. These neutrons are thought to bombard the surrounding atoms, rapidly producing heavy elements in what is known as r-process nucleosynthesis.So could these mergers be responsible for producing the majority of the universes heavy r-process elements? Proponents of this model argue that its supported by observations. The overall amount of heavy r-process material in the Milky Way, for instance, is consistent with the expected ejection amounts from mergers, based both on predicted merger rates for neutron stars in the galaxy, and on the observed rates of soft gamma-ray bursts (which are thought to accompany double-neutron-star mergers).Challenges from Ultra-Faint DwarfsRecently, however, r-process elements have been observed in ultra-faint dwarf satellite galaxies. This discovery raises two major challenges to the merger model for heavy-element production:When neutron stars are born during a core-collapse supernova, mass is ejected, providing the stars with asymmetric natal kicks. During the second collapse in a double-neutron-star binary, wouldnt the kick exceed the low escape velocity of an ultra-faint dwarf, ejecting the binary before it could merge and enrich the galaxy?Ultra-faint dwarfs have very old stellar populations and the observation of r-process elements in these stars requires mergers to have occurred very early in the galaxys history. Can double-neutron-star systems merge quickly enough to account for the observed chemical enrichment?Small Kicks and Fast MergersFraction of double-neutron-star systems that remain bound, vs. the magnitude of the kick they receive. A typical escape velocity for an ultra-faint dwarf is ~15 km/s; roughly 55-65% of binaries receive smaller kicks than that and wouldnt be ejected from an ultra-faint dwarf. [Beniamini et al. 2016]Led by Paz Beniamini, a team of scientists from the Racah Institute of Physics at the Hebrew University of Jerusalem has set out to answer these questions. Using the statistics of our galaxys double-neutron-star population, the team performed Monte Carlo simulations to estimate the distributions of mass ejection and kick velocities for the systems.Beniamini and collaborators find that, for typical initial separations, more than half of neutron star binaries are born with small enough kicks that they remain bound and arent ejected even from small, ultra-faint dwarf galaxies.The team also used their statistics to calculate the time until merger for the population of binaries, finding that ~90% of the double-neutron-star systems merge within 300 Myr, and around 15% merge within 100 Myr quick enough to enrich even the old population of stars.This population of systems that remain confined to the galaxy and merge rapidly can therefore explain the observations of r-process material in ultra-faint dwarf galaxies. Beniamini and collaborators work suggests that the merger of neutron stars is indeed a viable model for the production of heavy elements in our universe.CitationPaz Beniamini et al 2016 ApJ 829 L13. doi:10.3847/2041-8205/829/1/L13

  2. Cosmological quantum chromodynamics, neutron diffusion, and the production of primordial heavy elements

    NASA Technical Reports Server (NTRS)

    Applegate, J. H.; Hogan, Craig J.; Scherrer, R. J.

    1988-01-01

    A simple one-dimensional model is used to describe the evolution of neutron density before and during nucleosynthesis in a high-entropy bubble left over from the cosmic quark-hadron phase transition. It is shown why cosmic nucleosynthesis in such a neutron-rich environment produces a surfeit of elements heavier than lithium. Analytical and numerical techniques are used to estimate the abundances of carbon, nitrogen, and heavier elements up to Ne-22. A high-density neutron-rich region produces enough primordial N-14 to be observed in stellar atmospheres. It shown that very heavy elements may be created in a cosmological r-process; the neutron exposure in the neutron-rich regions is large enough for the Ne-22 to trigger a catastrophic r-process runaway in which the quantity of heavy elements doubles in much less than an expansion time due to fission cycling. A primordial abundance of r-process elements is predicted to appear as an excess of rare earth elements in extremely metal-poor stars.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roederer, Ian U.; Karakas, Amanda I.; Pignatari, Marco

    We present a detailed analysis of the composition and nucleosynthetic origins of the heavy elements in the metal-poor ([Fe/H] = −1.62 ± 0.09) star HD 94028. Previous studies revealed that this star is mildly enhanced in elements produced by the slow neutron-capture process (s process; e.g., [Pb/Fe] = +0.79 ± 0.32) and rapid neutron-capture process (r process; e.g., [Eu/Fe] = +0.22 ± 0.12), including unusually large molybdenum ([Mo/Fe] = +0.97 ± 0.16) and ruthenium ([Ru/Fe] = +0.69 ± 0.17) enhancements. However, this star is not enhanced in carbon ([C/Fe] = −0.06 ± 0.19). We analyze an archival near-ultraviolet spectrum of HD 94028, collected using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope, and other archival optical spectra collected frommore » ground-based telescopes. We report abundances or upper limits derived from 64 species of 56 elements. We compare these observations with s-process yields from low-metallicity AGB evolution and nucleosynthesis models. No combination of s- and r-process patterns can adequately reproduce the observed abundances, including the super-solar [As/Ge] ratio (+0.99 ± 0.23) and the enhanced [Mo/Fe] and [Ru/Fe] ratios. We can fit these features when including an additional contribution from the intermediate neutron-capture process (i process), which perhaps operated through the ingestion of H in He-burning convective regions in massive stars, super-AGB stars, or low-mass AGB stars. Currently, only the i process appears capable of consistently producing the super-solar [As/Ge] ratios and ratios among neighboring heavy elements found in HD 94028. Other metal-poor stars also show enhanced [As/Ge] ratios, hinting that operation of the i process may have been common in the early Galaxy.« less

  4. The Fuzziness of Giant Planets’ Cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helled, Ravit; Stevenson, David

    2017-05-01

    Giant planets are thought to have cores in their deep interiors, and the division into a heavy-element core and hydrogen–helium envelope is applied in both formation and structure models. We show that the primordial internal structure depends on the planetary growth rate, in particular, the ratio of heavy elements accretion to gas accretion. For a wide range of likely conditions, this ratio is in one-to-one correspondence with the resulting post-accretion profile of heavy elements within the planet. This flux ratio depends sensitively on the assumed solid-surface density in the surrounding nebula. We suggest that giant planets’ cores might not bemore » distinct from the envelope and includes some hydrogen and helium, and the deep interior can have a gradual heavy-element structure. Accordingly, Jupiter’s core may not be well defined. Accurate measurements of Jupiter’s gravitational field by Juno could put constraints on Jupiter’s core mass. However, as we suggest here, the definition of Jupiter’s core is complex, and the core’s physical properties (mass, density) depend on the actual definition of the core and on the planet’s growth history.« less

  5. Neutron capture and stellar synthesis of heavy elements.

    PubMed

    Gibbons, J H; Macklin, R L

    1967-05-26

    The neutron buildup processes of heavy-element synthesis in stars have left us a number of tantalizing nuclear clues to the early history of solarsystem material. Considerable illumination of our past history has been achieved through studying the correlations between abundance and neutroncapture cross section. Measurement of these cross sections required the development of new techniques for measuring time of flight of pulsed neutron beams. A clear conclusion is that many of our heavy elements were produced inside stars, which can be thought of as giant fast reactors. Extensions of these capture studies have given a clearer picture of additional. violent processes which produced some heavy elements, particularly thorium and uranium. In addition, the correlations have been used for obtaining an independent measure of the time that has elapsed since the solar-system material was synthesized. Finally, data on capture cross section relative to abundance will enable us to determine rather accurately the solar-system abundances of gaseous, volatile, and highly segregated elements.

  6. Atomic Data for Nebular Abundance Determinations: Photoionization and Recombination Properties of Xenon Ions

    NASA Astrophysics Data System (ADS)

    Sterling, Nicholas C.; Kerlin, Austin B.

    2016-01-01

    We present preliminary results of a study of the photoionization (PI) and recombination properties of low-charge Xe ions. The abundances of neutron(n)-capture elements (atomic number Z > 30) are of interest in planetary nebulae (PNe) since they can be enriched by slow n-capture nucleosynthesis (the ``s-process'') in the progenitor asymptotic giant branch (AGB) stars. Xe is particularly valuable, because it is the most widely-observed ``heavy-s'' species (Z > 40) in PNe. Its abundance relative to lighter n-capture elements can be used to determine s-process neutron exposures, and constrain s-process enrichment patterns as a function of progenitor metallicity. Using the atomic structure code AUTOSTRUCTURE (Badnell 2011, Comp. Phys. Comm., 182, 1528), we have computed multi-configuration Breit-Pauli distorted-wave PI cross sections and radiative recombination (RR) and dielectronic recombination (DR) rate coefficients for neutral through six-times ionized Xe, data which are critically needed for accurate Xe abundance determinations in ionized nebulae. We find good agreement between our computed direct PI cross sections and experimental measurements. Internal uncertainties are estimated for our calculations by using three different configuration interaction expansions for each ion, and by testing the sensitivity of our results to the radial orbital scaling parameters. As found for other n-capture elements (Sterling & Witthoeft 2011, A&A, 529, A147; Sterling 2011, A&A, 533, A62), DR is the dominant recombination mechanism for Xe ions at nebular temperatures (~104 K). Following Sterling et al. (2015, ApJS, 218, 25), these data will be added to nebular modeling codes to compute ionization correction factors for unobserved Xe ions in PNe, which will enable elemental Xe abundances to be determined with much higher accuracy than is currently possible. This work is supported by NSF award AST-1412928.

  7. Uncertainties in s -process nucleosynthesis in low mass stars determined from Monte Carlo variations

    NASA Astrophysics Data System (ADS)

    Cescutti, G.; Hirschi, R.; Nishimura, N.; den Hartogh, J. W.; Rauscher, T.; Murphy, A. St J.; Cristallo, S.

    2018-05-01

    The main s-process taking place in low mass stars produces about half of the elements heavier than iron. It is therefore very important to determine the importance and impact of nuclear physics uncertainties on this process. We have performed extensive nuclear reaction network calculations using individual and temperature-dependent uncertainties for reactions involving elements heavier than iron, within a Monte Carlo framework. Using this technique, we determined the uncertainty in the main s-process abundance predictions due to nuclear uncertainties link to weak interactions and neutron captures on elements heavier than iron. We also identified the key nuclear reactions dominating these uncertainties. We found that β-decay rate uncertainties affect only a few nuclides near s-process branchings, whereas most of the uncertainty in the final abundances is caused by uncertainties in neutron capture rates, either directly producing or destroying the nuclide of interest. Combined total nuclear uncertainties due to reactions on heavy elements are in general small (less than 50%). Three key reactions, nevertheless, stand out because they significantly affect the uncertainties of a large number of nuclides. These are 56Fe(n,γ), 64Ni(n,γ), and 138Ba(n,γ). We discuss the prospect of reducing uncertainties in the key reactions identified in this study with future experiments.

  8. Cosmic-ray abundances of the even charge elements from Sn-50 to Ce-58 measured on HEAO-3

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Garrard, T. L.; Krombel, K. E.; Binns, W. R.; Israel, M. H.; Klarmann, J.; Brewster, N. R.; Fickle, R. K.; Waddington, C. J.

    1983-01-01

    Elements with even atomic number (Z) in the interval Z = 50-58 have been resolved in the cosmic radiation using the Heavy Nuclei Experiment on the HEAO-3 satellite. The observation that Sn-50 and Ba-56 are more abundant than Te-52 and Xe-54 indicates a substantial s-process contribution to the cosmic ray source. A significant abundance of Ce-58 provides further support for this finding.

  9. The R-process Alliance: First Release from the Southern Search for R-process-enhanced Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Hansen, Terese T.; Holmbeck, Erika M.; Beers, Timothy C.; Placco, Vinicius M.; Roederer, Ian U.; Frebel, Anna; Sakari, Charli M.; Simon, Joshua D.; Thompson, Ian B.

    2018-05-01

    The recent detection of a binary neutron star merger and the clear evidence of the decay of radioactive material observed in this event have, after 60 years of effort, provided an astrophysical site for the rapid neutron-capture (r-) process which is responsible for the production of the heaviest elements in our universe. However, observations of metal-poor stars with highly enhanced r-process elements have revealed abundance patterns suggesting that multiple sites may be involved. To address this issue, and to advance our understanding of the r-process, we have initiated an extensive search for bright (V < 13.5), very metal-poor ([Fe/H] < ‑2) stars in the Milky Way halo exhibiting strongly enhanced r-process signatures. This paper presents the first sample collected in the southern hemisphere using the echelle spectrograph on du Pont 2.5 m telescope at Las Campanas Observatory. We have observed and analyzed 107 stars with ‑3.13 < [Fe/H] < ‑0.79. Of those, 12 stars are strongly enhanced in heavy r-process elements (r-II), 42 stars show moderate enhancements of heavy r-process material (r-I), and 20 stars exhibit low abundances of the heavy r-process elements and higher abundances of the light r-process elements relative to the heavy ones (limited-r). This search is more successful at finding r-process-enhanced stars compared to previous searches, primarily due to a refined target selection procedure that focuses on red giants. This paper includes data gathered with the 2.5 m du Pont telescope located at Las Campanas Observatory, Chile.

  10. Diversity of abundance patterns of neutron-capture elements in very metal-poor stars

    NASA Astrophysics Data System (ADS)

    Aoki, Misa; Aoki, Wako; Ishimaru, Yuhri; Wanajo, Shinya

    2014-05-01

    Observations of Very Metal-Poor stars indicate that there are at least two sites to r-process; "weak r-process" and "main r-process". A question is whether these two are well separated or there exists a variation in the r-process. We present the results of abundance analysis of neutron-capture elements in the two Very Metal-Poor stars HD107752 and HD110184 in the Milky Way halo observed with the Subaru Telescope HDS. The abundance patterns show overabundace at light n-capture elements (e.g. Sr, Y), inferring the element yielding of weak r-process, while heavy neutron-capture elements (e.g. Ba, Eu) are deficient; however, the overabundance of light ones is not as significant as that previously found in stars representing the weak r-process (e.g. HD122563; Honda et al. 2006). Our study show diversity in the abundance patterns from light to heavy neutron-capture elements in VMP stars, suggesting a variation in r-process, which may depend on electron fraction of environment.

  11. Correct definition of color singlet P-wave non-perturbative matrix element of heavy quarkonium production

    NASA Astrophysics Data System (ADS)

    Nayak, Gouranga C.

    2017-09-01

    Recently we have proved factorization of infrared divergences in NRQCD S-wave heavy quarkonium production at high energy colliders at all orders in coupling constant. One of the problem which still exists in the higher order pQCD calculation of color singlet P-wave heavy quarkonium production/anihillation is the appearance of noncanceling infrared divergences due to real soft gluons exchange, although no such infrared divergences are present in the color singlet S-wave heavy quarkonium. In this paper we find that since the non-perturbative matrix element of the color singlet P-wave heavy quarkonium production contains derivative operators, the gauge links are necessary to make it gauge invariant and be consistent with the factorization of such non-canceling infrared divergences at all orders in coupling constant.

  12. Cadmium--influence on biochemical processes of the human organism.

    PubMed

    Boguszewska, Anna; Pasternak, Kazimierz

    2004-01-01

    Heavy metals are too well-known environmental pollutants of particularly dangerous effect to human health. Because of their wide usage in many industrial branches they are present everywhere in the air, water and soils. Food contamination by heavy elements is hard to avoid and it is a result of environmental contamination by dusts, industrial gases, sewage, waste and coal burning processes. One of the most harmful heavy metals, widely spread in nature is cadmium. Toxic cadmium action involves free oxygen generation and inactivation of protein containing cysteine residues with -SH groups. It influences many metabolic processes causing great damage in many organs. Cadmium can also interact with some essential elements leading to their homeostasis disorders.

  13. In-vivo analysis of the uptake process of heavy metals through maize roots by using synchrotron X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Hwang, Bae Geun; Lee, Sang Joon; Gil, Kyehwan

    2016-12-01

    The uptake of heavy metals by plants has been receiving much attention for crop contamination and phytoremediation. We employed synchrotron X-ray fluorescence (XRF) spectroscopy for an in-vivo analysis of heavy-metal uptake through a strand of maize root. A focused X-ray beam of 2.5 × 2.5 μm2 in physical dimensions was scanned along horizontal lines of the maize root at intervals of 3 μm at the 4B X-ray micro-diffraction beamline of the Pohang Accelerator Laboratory (PAL). Time-resolved mapping of the fluorescence intensities from multiple metallic elements in the root tissues provided information about the radial distributions of heavy-metal elements and their temporal variations. The concentrated core stream of heavy-metal elements spread radially up to roughly 500 μm, corresponding to 40 % of the root diameter. The absorption characteristics of three heavy metals, Cr, Mn and Ni, and their physiological features were analyzed. The absolute concentrations and the contents of the heavy-metal elements in the tested maize roots were quantitatively evaluated by using the calibration curve obtained from reference samples with preset concentrations. The uptake quantities of the tested heavy-metal elements are noticeably different, although their molecular weights are similar. This study should be helpful for understanding plant physiology related with heavy-metal uptake.

  14. Heavy element production in inhomogeneous big bang nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuura, Shunji; Fujimoto, Shin-ichirou; Nishimura, Sunao

    2005-12-15

    We present a new astrophysical site of the big bang nucleosynthesis (BBN) that are very peculiar compared with the standard BBN. Some models of the baryogenesis suggest that very high baryon density regions were formed in the early universe. On the other hand, recent observations suggest that heavy elements already exist in high red-shifts and the origin of these elements become a big puzzle. Motivated by these, we investigate BBN in very high baryon density regions. BBN proceeds in proton-rich environment, which is known to be like the p-process. However, by taking very heavy nuclei into account, we find thatmore » BBN proceeds through both the p-process and the r-process simultaneously. P-nuclei such as {sup 92}Mo, {sup 94}Mo, {sup 96}Ru, {sup 98}Ru whose origin is not well known are also synthesized.« less

  15. Heavy Metal Stars

    NASA Astrophysics Data System (ADS)

    2001-08-01

    La Silla Telescope Detects Lots of Lead in Three Distant Binaries Summary Very high abundances of the heavy element Lead have been discovered in three distant stars in the Milky Way Galaxy . This finding strongly supports the long-held view that roughly half of the stable elements heavier than Iron are produced in common stars during a phase towards the end of their life when they burn their Helium - the other half results from supernova explosions. All the Lead contained in each of the three stars weighs about as much as our Moon. The observations show that these "Lead stars" - all members of binary stellar systems - have been more enriched with Lead than with any other chemical element heavier than Iron. This new result is in excellent agreement with predictions by current stellar models about the build-up of heavy elements in stellar interiors. The new observations are reported by a team of Belgian and French astronomers [1] who used the Coude Echelle Spectrometer on the ESO 3.6-m telescope at the La Silla Observatory (Chile). PR Photo 26a/01 : A photo of HD 196944 , one of the "Lead stars". PR Photo 26b/01 : A CES spectrum of HD 196944 . The build-up of heavy elements Astronomers and physicists denote the build-up of heavier elements from lighter ones as " nucleosynthesis ". Only the very lightest elements (Hydrogen, Helium and Lithium [2]) were created at the time of the Big Bang and therefore present in the early universe. All the other heavier elements we now see around us were produced at a later time by nucleosynthesis inside stars. In those "element factories", nuclei of the lighter elements are smashed together whereby they become the nuclei of heavier ones - this process is known as nuclear fusion . In our Sun and similar stars, Hydrogen is being fused into Helium. At some stage, Helium is fused into Carbon, then Oxygen, etc. The fusion process requires positively charged nuclei to move very close to each other before they can unite. But with increasing atomic mass and hence, increasing positive charge of the nuclei, the electric repulsion between the nuclei becomes stronger and stronger. In fact, the fusion process only works up to a certain mass limit, corresponding to the element Iron [2]. All elements that are heavier than Iron cannot be produced via this path. But then, how were those heavy elements we now find on the Earth produced in the first place? From where comes the Zirconium in artificial diamonds, the Barium that colours fireworks, the Tungsten in the filaments in electric bulbs? Which process made the Lead in your car battery? Beyond iron The production of elements heavier than Iron takes place by adding neutrons to the atomic nuclei . These neutral particles do not feel any electrical repulsion from the charged nuclei. They can therefore easily approach them and thereby create heavier nuclei. This is indeed the way the heaviest chemical elements are built up. There are actually two different stellar environments where this process of "neutron capture" can happen. One place where this process occurs is inside very massive stars when they explode as supernovae . In such a dramatic event, the build-up proceeds very rapidly, via the so-called "r-process" ( "r" for rapid ). The AGB stars But not all heavy elements are created in such an explosive way. A second possibility follows a more "peaceful" road. It takes place in rather normal stars, when they burn their Helium towards the end of their lives. In the so-called "s-process" ( "s" for slow ), heavier elements are then produced by a rather gentle addition of neutral neutrons to atomic nuclei. In fact, roughly half of all the elements heavier than Iron are believed to be synthesized by this process during the late evolutionary phases of stars. This process takes place during a specific stage of stellar evolution, known as the "AGB" phase [3]. It occurs just before an old star expels its gaseous envelope into the surrounding interstellar space and sometime thereafter dies as a burnt-out, dim "white dwarf" . Stars with masses between 0.8 and 8 times that of the Sun are believed to evolve to AGB-stars and to end their lives in this particular way. At the same time, they produce beautiful nebulae like the "Dumbbell Nebula". Our Sun will also end its active life this way, probably some 7 billion years from now. Low-metallicity stars The detailed understanding of the "s-process" and, in particular, where it takes place inside an AGB-star, has been an area of active research for many years. Current state-of-the-art computer-based stellar models predict that the s-process should be particularly efficient in stars with a comparatively low content of metals ("metal-poor" or "low-metallicity" stars) . In such stars - which were born at an early epoch in our Galaxy and are therefore quite old - the "s-process" is expected to effectively produce atomic nuclei all the way up to the most heavy, stable ones, like Lead (atomic number 82 [2]) and Bismuth (atomic number 83) - since more neutrons are available per Iron-seed nucleus when there are fewer such nuclei (as compared to the solar composition). Once these elements have been produced, the addition of more s-process neutrons to those nuclei will only produce unstable elements that decay back to Lead. Hence, when the s-process is sufficiently efficient, atomic nuclei with atomic numbers around 82, that is, the Lead region, just continue to pile up. As a result, when compared to stars with "normal" abundances of the metals (like our Sun), those low-metallicity stars should thus exhibit a significant "over-abundance" of those very heavy elements with respect to Iron, in particular of Lead . Looking for Lead Direct observational support for this theoretical prediction would be the discovery of some low-metallicity stars with a high abundance of Lead. At the same time, the measured amounts of all the heavy elements and their relative abundances would provide very valuable information and strongly reinforce our current understanding of heavy element nucleosynthesis. But detecting the element Lead is not easy - the expected spectral lines of Lead in stellar spectra are relatively weak, and they are blended with many nearby absorption lines of other elements. Moreover, bona-fide, low-metallicity AGB stars appear to be extremely rare in the solar neighborhood . But if the necessary observations are so difficult, how is it then possible to probe nucleosynthesis in low-metallicity AGB stars? CH-stars in binary systems ESO PR Photo 26a/01 ESO PR Photo 26a/01 [Preview - JPEG: 350 x 400 pix - 232k] [Normal - JPEG: 700 x 800 pix - 616k] Caption : One of the three Lead stars, HD 196944 that was analyzed in the present research programme (at the center of the field). This star lies about 1600 light years away in the constellation Aquarius. At magnitude 9, it is not visible to the unaided eye, but easily seen through a small amateur telescope. Still, the detailed spectroscopic study reported in this Press release that revealed a high abundance of Lead in this star required a 4-m class telescope. This DSS-image are copyright by the UK SERC/PPARC (Particle Physics and Astronomy Research Council, formerly Science and Engineering Research Council), the Anglo-Australian Telescope Board and the Association of Universities for Research in Astronomy (AURA). The spikes seen in this photo are an optical effect in the telescope. In a determined effort in this direction, a team of Belgian and French astronomers [1] decided to try to detect the presence of Lead in some "CH-stars" [4] that are located about 1600 light-years away, high above the main plane of our Milky Way Galaxy. Over-abundance of some heavy elements has been observed in some "CH-stars". But CH-stars are not very luminous and have not yet evolved to the AGB phase. Hence they are totally unable to produce heavy elements. So how can there be heavy elements in the CH-stars? This mystery was solved when it was realized that the CH-stars all belong to binary systems and that they therefore have a companion star [5]. That companion is now a white dwarf star and was therefore at some earlier moment an AGB star ! During its AGB-phase, the companion star expelled much of its material, eventually producing the "planetary nebula" phenomenon, referred to above. In this process, a lot of its material, enriched with heavy elements produced by the "s-process" during the AGB phase, was deposited in the atmosphere of the CH-star that is now observed. The former AGB-star, now a slowly cooling, dim white-dwarf star, still orbits the CH-star. For this reason, the atmospheric composition of a CH-star actually carries the signature of the nucleosynthesis that took place deep inside the companion AGB star at an earlier epoch. Spectroscopic observations of CH-stars thus provide the opportunity to probe the predicted s-process in low-metallicity stars. Three stars with Lead ESO PR Photo 26b/01 ESO PR Photo 26b/01 [Preview - JPEG: 400 x 371 pix - 95k] [Normal - JPEG: 800 x 741 pix - 240k] Caption : A high-resolution spectrum of the CH-star HD 196944, obtained with the CES instrument on the ESO 3.6-m telescope in September 2000. The observed spectrum (dots) shows many absorption lines from elements that are usually seen in stars. The red line shows a model in which elements (in particular those produced by the s-process) are present in normal quantities, compared to Iron. The blue line instead shows a model where s-processing has occured. It is obvious that the red line does not fit, only the blue line reproduces the observed absorption line at wavelength 405.781 nm caused by Lead (Pb) atoms in the atmosphere of this star. A subsequent, detailed analysis demonstrated that HD 196944 is a true "Lead star". Technical information about this photo is available below. A necessary condition for these observations to succeed is a very high spectral resolution in order to detect the spectral line of Lead (Pb), in particular to "resolve" it among the many absorption lines from other elements, present in the stellar spectrum in this wavelength region. Moreover, a fairly large telescope is needed as the stars to be observed are relatively rare, hence distant and faint for this kind of demanding observations. The Belgian and French astronomers decided to use the Coude Echelle Spectrometer (CES) at the ESO 3.6-m telescope on La Silla, a telescope/instrument combination offering some hope of success for these difficult observations. Spectra of three southern stars, HD 187861, HD 196944 and HD 224959 , were obtained during two nights in September 2000 and found to be of excellent quality. The scientists were very pleased to find that the Lead absorption line was clearly present and very strong in the spectra of all three stars . A subsequent, detailed analysis demonstrated that the three stars all have a substantial overabundance of Lead. Moreover, from the measured abundances of other elements in these spectra, it is also clear that this Lead has been formed in the s-process . The astronomers were able to prove that the Lead cannot originate from the competing "r-process" that occurs in other environments like supernova explosions. " This is the first detection of a Lead-star ", explains Sophie Van Eck from the Institut d'Astronomie et d'Astrophysique of the Université Libre de Bruxelles (Belgium). " These stars are almost exclusively enriched with Lead. Moreover, the abundances in all three stars show a remarkable similarity ." How does the s-process operate? The high abundance of Lead in these otherwise low-metallicity stars also provides detailed clues on how the s-process operates inside the AGB stars. When a Carbon-13 nucleus (i.e. a nucleus with 6 protons and 7 neutrons [2]) is hit by a Helium-4 nucleus (2 protons and 2 neutrons), they fuse to form Oxygen-16 (8 protons and 8 neutrons). In this process - as can be seen by adding the numbers - one neutron is released. It is exactly these surplus neutrons that become the building-blocks for making heavier elements via the s-process. Hence the true source of the required neutrons is the Carbon-13 isotope, which is in turn produced by fusion of normal carbon (Carbon-12) and protons, i.e. hydrogen nuclei. However, an additional problem is that it seems that nowhere inside the star would there be sufficient Carbon and Hydrogen in the same place to allow this process to take off. Indeed most hydrogen nuclei have already been "used up" and have fused to heavier nuclei, including Carbon. But the observations now prove that the s-process does happen - how is this then possible? Mixing the star Current models of stellar interiors suggest that a moderate, "partial" mixing occurs that occasionally drags Hydrogen down to the Carbon-rich inner regions (and some Carbon moves up into the Hydrogen-rich region). It is still not clearly understood exactly how this process operates, but the Belgian astronomers independently predicted that if such a "partial mixing process" does take place in a low-metallicity star, then Lead-stars should exist and it should also be possible to observe them. " Our discovery of these Lead stars is without any doubt the clearest signature of that model prediction we have today ", states Sophie Van Eck . " The excellent agreement between predicted and observed abundances reinforces our current understanding of the detailed operation of the s-process in the deep interiors of the stars, and thus constitutes an important piece of information on how the heaviest stable elements in the universe are formed ." Three moons and your car battery The astronomers altogether found a mass of Lead in each of the three stars that is about the same as the mass of our Moon (7.4 x 10 22 kg). Stars like these were once the most efficient Lead factories in the Universe. It is likely that the Lead in your car battery was once produced in such a low-metallicity star. From that star, it was later dispersed into the interstellar medium and was present in the cloud of dust and gas from which the Solar System and hence our Earth was formed. More information The research described in this Press Release is reported in a scientific article ("Discovery of three Lead stars" by S. Van Eck, S. Goriely, A. Jorissen and B. Plez) that appears in the August 23, 2001 issue of the science journal "Nature". Notes [1]: The team consists of Sophie Van Eck , Stéphane Goriely , Alain Jorissen (all Institut d'Astronomie et d'Astrophysique de l'Université Libre de Bruxelles, Belgium) and Bertrand Plez (Groupe de Recherche en Astronomie et Astrophysique en Languedoc, Université de Montpellier II - GRAAL), France). Sophie Van Eck was an ESO fellow (1999-2000). [2] The "atomic mass" of a chemical element is the total mass of the positively charged protons and neutral neutrons in the atomic nucleus. The "atomic number" of a chemical element is equal to the number of protons in the nucleus. Different isotopes of a chemical element all have the same number of protons in the nuclei, but a different number of neutrons. For the principal (most abundant) isotopes of the elements mentioned in this text, the "atomic mass" (expressed in "atomic mass units" (amu)) is approximately: Hydrogen : 1 atomic mass unit (with 1 proton in the nucleus); Helium : 4 atomic mass units (2 protons + 2 neutrons); Lithium : 7 atomic mass units (3 protons + 4 neutrons); Carbon : 12 atomic mass units (6 protons + 6 neutrons); Oxygen : 16 atomic mass units (8 protons + 8 neutrons); Iron : 56 atomic mass units (26 protons + 30 neutrons); Zirconium : 90 atomic mass units (40 protons + 50 neutrons); Barium : 138 atomic mass units (56 protons + 82 neutrons); Tungsten : 184 atomic mass units (74 protons + 110 neutrons); Lead : 208 atomic mass units (82 protons + 126 neutrons); Bismuth : 209 atomic mass units (83 protons + 126 neutrons) [3] "AGB" stands for "Asymptotic Giant Branch"; a location in the HR-diagramme (a plot of stellar colours and luminosities) of evolved stars in which hydrogen and helium burning occurs in two concentric shells and elements heavier than iron are produced via the s-process. [4] The "CH-stars" owe their name to the prominent bands of the CH-molecule observed in their spectrum. [5] The fact that CH-stars are all double stars was discovered by the Canadian astronomer Robert McClure in 1984. Technical information about the photos PR Photo 26b/01 shows a small section of the reduced spectrum of the CH-star HD 196944, near wavelength 4050 Angstrom. It was obtained during a 90-min exposure with the Coude Echelle Spectrometer at the ESO 3.6-m telescope on La Silla in 16 September 2000. The spectral resolution is 135 000.

  16. Reduction of heavy metal from soil in Bakri Landfill, Muar, Johor by using Electrokinetic method

    NASA Astrophysics Data System (ADS)

    Azhar, ATS; Muhammad, E.; Zaidi, E.; Ezree, AM; Aziman, M.; Hazreek, ZAM; Nizam, ZM; Norshuhaila, MS

    2017-08-01

    The present study focuses on the contamination levels and distribution of heavy metals in soil samples located at Bakri Landfill area, Muar, Johor, Malaysia. The aim of this study is to determine the type of heavy metal elements that contribute towards soil contamination and to reduce them based on the comparison of elemental analysis between pre and post Electrokinetic (EK) processes. The ppm level concentration of elements in this landfill soil is measured by using X-ray Fluorescence analysis. ICP-MS testing was carried out for liquid samples analysis. There were two set of EK experiments conducted. In first phase, voltage was maintained at 3 Vcm-1 and prolonged for 3 hours, while second phase was operated at 1 Vcm-1 for 48 hours. In this work, distilled water was used as an electrolyte for the process and two identical copper foil were used as electrodes due to high electrical conductivity. The application of EK remediation revealed that successful removal of Rb and Ba elements in the soil were observed by 2-3%, however other heavy metals have not changed.

  17. The Heavy Nuclei eXplorer (HNX) Mission

    NASA Astrophysics Data System (ADS)

    Krizmanic, John; Mitchell, John; Binns, W. Robert; Hams, Thomas; Israel, Martin; Link, Jason; Rauch, Brian; Sakai, Kenichi; Sasaki, Makoto; Westphal, Andrew; Wiedenbeck, Mark; Heavy Nuclei eXplorer Collaboration

    2016-03-01

    The Heavy Nuclei eXplorer (HNX) will use two large high-precision instruments, the Extremely-heavy Cosmic-ray Composition Observer (ECCO) and the Cosmic-ray Trans-Iron Galactic Element Recorder (CosmicTIGER), designed to fly in a SpaceX DragonLab Capsule, to measure the cosmic-ray abundance of every individual element in the periodic table from carbon through curium, providing the first measurement of many of these elements. These measurements provide an investigation on the nature of the source material of cosmic rays, the processes that inject them into cosmic accelerators, and the acceleration mechanisms. HNX will measure several thousand ultra-heavy galactic cosmic ray (UHGCR) nuclei with Z >= 30 , including about 50 actinides (Z >= 79). These data allow for a measurement of the mix of new and old material that is accelerated to GCRs, determine their age, measure the mix of nucleosynthesis processes responsible for the UHGCRs, determine how UHGCR elements are selected for acceleration, and measure the mean integrated pathlength traversed by UHGCRs before observation. The scientific motivation and instrumentation of HNX will be discussed as well as recent beam test results.

  18. Ultra-heavy cosmic rays: Theoretical implications of recent observations

    NASA Technical Reports Server (NTRS)

    Blake, J. B.; Hainebach, K. L.; Schramm, D. N.; Anglin, J. D.

    1977-01-01

    Extreme ultraheavy cosmic ray observations (Z greater or equal 70) are compared with r-process models. A detailed cosmic ray propagation calculation is used to transform the calculated source distributions to those observed at the earth. The r-process production abundances are calculated using different mass formulae and beta-rate formulae; an empirical estimate based on the observed solar system abundances is used also. There is the continued strong indication of an r-process dominance in the extreme ultra-heavy cosmic rays. However it is shown that the observed high actinide/Pt ratio in the cosmic rays cannot be fit with the same r-process calculation which also fits the solar system material. This result suggests that the cosmic rays probably undergo some preferential acceleration in addition to the apparent general enrichment in heavy (r-process) material. As estimate also is made of the expected relative abundance of superheavy elements in the cosmic rays if the anomalous heavy xenon in carbonaceous chondrites is due to a fissioning superheavy element.

  19. Halogens in chondritic meteorites and terrestrial accretion

    NASA Astrophysics Data System (ADS)

    Clay, Patricia L.; Burgess, Ray; Busemann, Henner; Ruzié-Hamilton, Lorraine; Joachim, Bastian; Day, James M. D.; Ballentine, Christopher J.

    2017-11-01

    Volatile element delivery and retention played a fundamental part in Earth’s formation and subsequent chemical differentiation. The heavy halogens—chlorine (Cl), bromine (Br) and iodine (I)—are key tracers of accretionary processes owing to their high volatility and incompatibility, but have low abundances in most geological and planetary materials. However, noble gas proxy isotopes produced during neutron irradiation provide a high-sensitivity tool for the determination of heavy halogen abundances. Using such isotopes, here we show that Cl, Br and I abundances in carbonaceous, enstatite, Rumuruti and primitive ordinary chondrites are about 6 times, 9 times and 15-37 times lower, respectively, than previously reported and usually accepted estimates. This is independent of the oxidation state or petrological type of the chondrites. The ratios Br/Cl and I/Cl in all studied chondrites show a limited range, indistinguishable from bulk silicate Earth estimates. Our results demonstrate that the halogen depletion of bulk silicate Earth relative to primitive meteorites is consistent with the depletion of lithophile elements of similar volatility. These results for carbonaceous chondrites reveal that late accretion, constrained to a maximum of 0.5 ± 0.2 per cent of Earth’s silicate mass, cannot solely account for present-day terrestrial halogen inventories. It is estimated that 80-90 per cent of heavy halogens are concentrated in Earth’s surface reservoirs and have not undergone the extreme early loss observed in atmosphere-forming elements. Therefore, in addition to late-stage terrestrial accretion of halogens and mantle degassing, which has removed less than half of Earth’s dissolved mantle gases, the efficient extraction of halogen-rich fluids from the solid Earth during the earliest stages of terrestrial differentiation is also required to explain the presence of these heavy halogens at the surface. The hydropilic nature of halogens, whereby they track with water, supports this requirement, and is consistent with volatile-rich or water-rich late-stage terrestrial accretion.

  20. S-process studies using single and pulsed neutron exposures

    NASA Astrophysics Data System (ADS)

    Beer, H.

    The formation of heavy elements by slow neutron capture (s-process) is investigated. A pulsed neutron irradiation leading to an exponential exposure distribution is dominant for nuclei from A = 90 to 200. For the isotopes from iron to zirconium an additional 'weak' s-process component must be superimposed. Calculations using a single or another pulsed neutron exposure for this component have been carried out in order to reproduce the abundance pattern of the s-only and s-process dominant isotopes. For the adjustment of these calculations to the empirical values, the inclusion of new capture cross section data on Se76 and Y89 and the consideration of the branchings at Ni63, Se79, and Kr85 was important. The combination of an s-process with a single and a pulsed neutron exposure yielded a better representation of empirical abundances than a two component pulsed s-process.

  1. Spatio-temporal distribution and environmental risk of sedimentary heavy metals in the Yangtze River Estuary and its adjacent areas.

    PubMed

    Chen, Bin; Liu, Jian; Qiu, Jiandong; Zhang, Xilin; Wang, Shuang; Liu, Jinqing

    2017-03-15

    Twenty-five surface sediments and one sediment core sample were collected from the study area. Grain size, major elements, and heavy metals were determined. The content of fine-grained sediments (silt and clay), as well as the concentrations of major elements and heavy metals, showed seaward decreasing trends, with high content in the coastal areas of the East China Sea (ECS) and south west of Jeju Island. Low enrichment factor (EF) and geoaccumulation index (Igeo) values were found, indicating that the ecological risk of heavy metals was low. The EF values obtained from the high-resolution sedimentary records of heavy metals in the Yangtze River Estuary could be divided into Stage 1 (1950s to the late 1970s) and Stage 2 (late 1970s to the current sampling day), which coincided with economic development of the Yangtze River Basin, implementation of environmental protection, and impoundment of the Three Gorges Dam. Copyright © 2016. Published by Elsevier Ltd.

  2. Behavior and Distribution of Heavy Metals Including Rare Earth Elements, Thorium, and Uranium in Sludge from Industry Water Treatment Plant and Recovery Method of Metals by Biosurfactants Application

    PubMed Central

    Gao, Lidi; Kano, Naoki; Sato, Yuichi; Li, Chong; Zhang, Shuang; Imaizumi, Hiroshi

    2012-01-01

    In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1) Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2) Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90–100% using a precipitation method with alkaline solution. PMID:22693485

  3. The production of transuranium elements by the r-process nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Goriely, S.; Martínez Pinedo, G.

    2015-12-01

    The production of super-heavy transuranium elements by stellar nucleosynthesis processes remains an open question. The most promising process that could potentially give rise to the formation of such elements is the so-called rapid neutron-capture process, or r-process, known to be at the origin of approximately half of the A > 60 stable nuclei observed in nature. However, despite important efforts, the astrophysical site of the r-process remains unidentified. Here, we study the r-process nucleosynthesis in material that is dynamically ejected by tidal and pressure forces during the merging of binary neutron stars. Neutron star mergers could potentially be the dominant r-process site in the Galaxy, but also due to the extreme neutron richness found in such environment, could potentially synthesise super-heavy elements. R-process nucleosynthesis during the decompression is known to be largely insensitive to the detailed astrophysical conditions because of efficient fission recycling, producing a composition that closely follows the solar r-abundance distribution for nuclei with mass numbers A > 140. During the neutron irradiation, nuclei up to charge numbers Z ≃ 110 and mass number A ≃ 340 are produced, with a major peak production at the N = 184 shell closure, i.e. around A ≃ 280. Super-heavy nuclei with Z > 110 can hardly be produced due to the efficient fission taking place along those isotopic chains. Long-lived transuranium nuclei are inevitably produced by the r-process. The predictions concerning the production of transuranium nuclei remain however very sensitive to the predictions of fission barrier heights for such super-heavy nuclei. More nuclear predictions within different microscopic approaches are needed.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roederer, Ian U., E-mail: iur@umich.edu

    The heaviest metals found in stars in most ultra-faint dwarf (UFD) galaxies in the Milky Way halo are generally underabundant by an order of magnitude or more when compared with stars in the halo field. Among the heavy elements produced by n -capture reactions, only Sr and Ba can be detected in red giant stars in most UFD galaxies. This limited chemical information is unable to identify the nucleosynthesis process(es) responsible for producing the heavy elements in UFD galaxies. Similar [Sr/Ba] and [Ba/Fe] ratios are found in three bright halo field stars, BD−18°5550, CS 22185–007, and CS 22891–200. Previous studiesmore » of high-quality spectra of these stars report detections of additional n -capture elements, including Eu. The [Eu/Ba] ratios in these stars span +0.41 to +0.86. These ratios and others among elements in the rare Earth domain indicate an r -process origin. These stars have some of the lowest levels of r -process enhancement known, with [Eu/H] spanning −3.95 to −3.32, and they may be considered nearby proxies for faint stars in UFD galaxies. Direct confirmation, however, must await future observations of additional heavy elements in stars in the UFD galaxies themselves.« less

  5. REVIEWS OF TOPICAL PROBLEMS: The theory of nucleosynthesis in stars: the slow neutron capture process

    NASA Astrophysics Data System (ADS)

    Chechev, Valerii P.; Kramarovskiĭ, Ya M.

    1981-07-01

    The theory of the s process of nucleosynthesis has received considerable development during recent years, mainly as the result of more detailed physical and mathematical treatments and also as a result of the accumulation of new observational data on stellar evolution and the abundance of the elements in the solar system, and accumulation of experimental data on neutron-capture cross sections. The exact solution of the s process equations obtained recently by Newman (1978) is discussed. It confirms the correctness of the initial s process theory (Clayton, Fowler, Hull, and Zimmerman, 1961). At the same time for small neutron exposures the exact and initial solutions differ. The influence of branching of the s-process due to competition between β decay and neutron capture is analyzed; it is noted that at a temperature ~3·108 K and a density of free neutrons 1.6·107 cm-3 the s process theory is in good agreement with observational data on the yields of the various nuclides. Models are discussed for the pulsed neutron s process, which leads to formation of heavy elements in the interior of a star as the result of periodic flares of the helium shell and subsequent remixing of the material.

  6. The GOES-16 Energetic Heavy Ion Sensor (EHIS) Ion Composition and Flux Measurements

    NASA Astrophysics Data System (ADS)

    Connell, J. J.; Lopate, C.

    2017-12-01

    The Energetic Heavy Ion Sensor (EHIS) was built by the University of New Hampshire, subcontracted to Assurance Technology Corporation, as part of the Space Environmental In-Situ Suite (SEISS) on the new GOES-16 satellite (formerly GOES-R) in Geostationary orbit. EHIS measures energetic ions over the range 10-200 MeV for protons, and energy ranges for heavy ions corresponding to the same stopping range (e.g., 19-207 MeV/u for carbon and 38-488 MeV/u for iron). EHIS uses the Angle Detecting Inclined Sensors (ADIS) technique to provide single-element charge resolution. Though on an operational mission for Space Weather monitoring, EHIS can thus provide a new source of high quality Solar Particle Event (SPE) data for science studies. With a high rate of on-board processing ( 2000 events/s), EHIS will provide exceptional statistics for ion composition measurements in large SPEs. For the GOES Level 1-B and Level 2 data products, heavy ions are distinguished in EHIS using pulse-height analysis with on-board processing producing charge histograms for five energy bands. Fits to these data are normalized to priority rate data on the ground. The instrumental cadence for histograms is 1 minute and the primary Level 1-B heavy ion data products are 1-minute and 5-minute averages. We discuss the preliminary EHIS heavy ion data results which show elemental peaks from H to Fe, with peaks for the isotopes D and 3He. (GOES-16 was launched in 19 November, 2016 and data has, though July 2017, been dominated by Galactic Cosmic Rays.) The EHIS instrument development project was funded by NASA under contract NNG06HX01C.

  7. Evolution of heavy-element abundances in the Galactic halo and disk

    NASA Technical Reports Server (NTRS)

    Mathews, G. J.; Cowan, J. J.; Schramm, D. N.

    1988-01-01

    The constraints on the universal energy density and cosmological constant from cosmochronological ages and the Hubble age are reviewed. Observational evidence for the galactic chemical evolution of the heavy-element chronometers is descirbed in the context of numerical models. The viability of the recently discovered Th/Nd stellar chronometer is discussed, along with the suggestion that high r-process abundances in metal-poor stars may have resulted from a primordial r-process, as may be required by some inhomogeneous cosmologies.

  8. The Diverse Origins of Neutron-capture Elements in the Metal-poor Star HD 94028: Possible Detection of Products of I-Process Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Karakas, Amanda I.; Pignatari, Marco; Herwig, Falk

    2016-04-01

    We present a detailed analysis of the composition and nucleosynthetic origins of the heavy elements in the metal-poor ([Fe/H] = -1.62 ± 0.09) star HD 94028. Previous studies revealed that this star is mildly enhanced in elements produced by the slow neutron-capture process (s process; e.g., [Pb/Fe] = +0.79 ± 0.32) and rapid neutron-capture process (r process; e.g., [Eu/Fe] = +0.22 ± 0.12), including unusually large molybdenum ([Mo/Fe] = +0.97 ± 0.16) and ruthenium ([Ru/Fe] = +0.69 ± 0.17) enhancements. However, this star is not enhanced in carbon ([C/Fe] = -0.06 ± 0.19). We analyze an archival near-ultraviolet spectrum of HD 94028, collected using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope, and other archival optical spectra collected from ground-based telescopes. We report abundances or upper limits derived from 64 species of 56 elements. We compare these observations with s-process yields from low-metallicity AGB evolution and nucleosynthesis models. No combination of s- and r-process patterns can adequately reproduce the observed abundances, including the super-solar [As/Ge] ratio (+0.99 ± 0.23) and the enhanced [Mo/Fe] and [Ru/Fe] ratios. We can fit these features when including an additional contribution from the intermediate neutron-capture process (I process), which perhaps operated through the ingestion of H in He-burning convective regions in massive stars, super-AGB stars, or low-mass AGB stars. Currently, only the I process appears capable of consistently producing the super-solar [As/Ge] ratios and ratios among neighboring heavy elements found in HD 94028. Other metal-poor stars also show enhanced [As/Ge] ratios, hinting that operation of the I process may have been common in the early Galaxy. These data are associated with Program 072.B-0585(A), PI. Silva. Some data presented in this paper were obtained from the Barbara A. Mikulski Archive for Space Telescopes (MAST). The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. These data are associated with Programs GO-7402 and GO-8197. This work is based on data obtained from the European Southern Observatory (ESO) Science Archive Facility. These data are associated with Program 072.B-0585(A). This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.

  9. The relative abundances of Sn, Te, Xe, Ba and Ce. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Krombel, K. E.

    1983-01-01

    Elements with even atomic number (Z) in the interval 50 or = Z or = 58 were resolved in the cosmic radiation using the Heavy Nuclei Experiment on the HEAO-3 satellite. Their relative abundances were compared with the results expected from pure r-process material, pure s-process material, and solar system material, both with and without a modification due to possible first ionization potential effects. Such effects may be the result of the preferential acceleration, and hence enhancement in the cosmic rays, of those elements having low first ionization potentials. Measurements were found to be inconsistent with pure r-process material at the greater than 98% confidence level whether or not the first ionization potential adjustments are made.

  10. Atom-scale depth localization of biologically important chemical elements in molecular layers.

    PubMed

    Schneck, Emanuel; Scoppola, Ernesto; Drnec, Jakub; Mocuta, Cristian; Felici, Roberto; Novikov, Dmitri; Fragneto, Giovanna; Daillant, Jean

    2016-08-23

    In nature, biomolecules are often organized as functional thin layers in interfacial architectures, the most prominent examples being biological membranes. Biomolecular layers play also important roles in context with biotechnological surfaces, for instance, when they are the result of adsorption processes. For the understanding of many biological or biotechnologically relevant phenomena, detailed structural insight into the involved biomolecular layers is required. Here, we use standing-wave X-ray fluorescence (SWXF) to localize chemical elements in solid-supported lipid and protein layers with near-Ångstrom precision. The technique complements traditional specular reflectometry experiments that merely yield the layers' global density profiles. While earlier work mostly focused on relatively heavy elements, typically metal ions, we show that it is also possible to determine the position of the comparatively light elements S and P, which are found in the most abundant classes of biomolecules and are therefore particularly important. With that, we overcome the need of artificial heavy atom labels, the main obstacle to a broader application of high-resolution SWXF in the fields of biology and soft matter. This work may thus constitute the basis for the label-free, element-specific structural investigation of complex biomolecular layers and biological surfaces.

  11. Atom-scale depth localization of biologically important chemical elements in molecular layers

    PubMed Central

    Schneck, Emanuel; Scoppola, Ernesto; Drnec, Jakub; Mocuta, Cristian; Felici, Roberto; Novikov, Dmitri; Fragneto, Giovanna; Daillant, Jean

    2016-01-01

    In nature, biomolecules are often organized as functional thin layers in interfacial architectures, the most prominent examples being biological membranes. Biomolecular layers play also important roles in context with biotechnological surfaces, for instance, when they are the result of adsorption processes. For the understanding of many biological or biotechnologically relevant phenomena, detailed structural insight into the involved biomolecular layers is required. Here, we use standing-wave X-ray fluorescence (SWXF) to localize chemical elements in solid-supported lipid and protein layers with near-Ångstrom precision. The technique complements traditional specular reflectometry experiments that merely yield the layers’ global density profiles. While earlier work mostly focused on relatively heavy elements, typically metal ions, we show that it is also possible to determine the position of the comparatively light elements S and P, which are found in the most abundant classes of biomolecules and are therefore particularly important. With that, we overcome the need of artificial heavy atom labels, the main obstacle to a broader application of high-resolution SWXF in the fields of biology and soft matter. This work may thus constitute the basis for the label-free, element-specific structural investigation of complex biomolecular layers and biological surfaces. PMID:27503887

  12. Selenite reduction by the obligate aerobic bacterium Comamonas testosteroni S44 isolated from a metal-contaminated soil

    PubMed Central

    2014-01-01

    Background Selenium (Se) is an essential trace element in most organisms but has to be carefully handled since there is a thin line between beneficial and toxic concentrations. Many bacteria have the ability to reduce selenite (Se(IV)) and (or) selenate (Se(VI)) to red elemental selenium that is less toxic. Results A strictly aerobic bacterium, Comamonas testosteroni S44, previously isolated from metal(loid)-contaminated soil in southern China, reduced Se(IV) to red selenium nanoparticles (SeNPs) with sizes ranging from 100 to 200 nm. Both energy dispersive X-ray Spectroscopy (EDX or EDS) and EDS Elemental Mapping showed no element Se and SeNPs were produced inside cells whereas Se(IV) was reduced to red-colored selenium in the cytoplasmic fraction in presence of NADPH. Tungstate inhibited Se(VI) but not Se(IV) reduction, indicating the Se(IV)-reducing determinant does not contain molybdenum as co-factor. Strain S44 was resistant to multiple heavy and transition metal(loid)s such as Se(IV), As(III), Cu(II), and Cd(II) with minimal inhibitory concentrations (MIC) of 100 mM, 20 mM, 4 mM, and 0.5 mM, respectively. Disruption of iscR encoding a transcriptional regulator negatively impacted cellular growth and subsequent resistance to multiple heavy metal(loid)s. Conclusions C. testosteroni S44 could be very useful for bioremediation in heavy metal(loid) polluted soils due to the ability to both reduce toxic Se(VI) and Se(IV) to non-toxic Se (0) under aerobic conditions and to tolerate multiple heavy and transition metals. IscR appears to be an activator to regulate genes involved in resistance to heavy or transition metal(loid)s but not for genes responsible for Se(IV) reduction. PMID:25098921

  13. Enrichment of Thorium (Th) and Lead (Pb) in the early Galaxy

    NASA Astrophysics Data System (ADS)

    Aoki, Wako; Honda, Satoshi

    2010-03-01

    We have been determining abundances of Th, Pb and other neutron-capture elements in metal-deficient cool giant stars to constrain the enrichment of heavy elements by the r- and s-processes. Our current sample covers the metallicity range between [Fe/H] = -2.5 and -1.0. (1) The abundance ratios of Pb/Fe and Pb/Eu of most of our stars are approximately constant, and no increase of these ratios with increasing metallicity is found. This result suggests that the Pb abundances of our sample are determined by the r-process with no or little contribution of the s-process. (2) The Th/Eu abundance ratios of our sample show no significant scatter, and the average is lower by 0.2 dex in the logarithmic scale than the solar-system value. This result indicates that the actinides production by the r-process does not show large dispersion, even though r-process models suggest high sensitivity of the actinides production to the nucleosynthesis environment.

  14. THE PROPERTIES OF HEAVY ELEMENTS IN GIANT PLANET ENVELOPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soubiran, François; Militzer, Burkhard

    The core-accretion model for giant planet formation suggests a two-layer picture for the initial structure of Jovian planets, with heavy elements in a dense core and a thick H–He envelope. Late planetesimal accretion and core erosion could potentially enrich the H–He envelope in heavy elements, which is supported by the threefold solar metallicity that was measured in Jupiter’s atmosphere by the Galileo entry probe. In order to reproduce the observed gravitational moments of Jupiter and Saturn, models for their interiors include heavy elements, Z , in various proportions. However, their effect on the equation of state of the hydrogen–helium mixturesmore » has not been investigated beyond the ideal mixing approximation. In this article, we report results from ab initio simulations of fully interacting H–He– Z mixtures in order to characterize their equation of state and to analyze possible consequences for the interior structure and evolution of giant planets. Considering C, N, O, Si, Fe, MgO, and SiO{sub 2}, we show that the behavior of heavy elements in H–He mixtures may still be represented by an ideal mixture if the effective volumes and internal energies are chosen appropriately. In the case of oxygen, we also compute the effect on the entropy. We find the resulting changes in the temperature–pressure profile to be small. A homogeneous distribution of 2% oxygen by mass changes the temperature in Jupiter’s interior by only 80 K.« less

  15. Study of Heavy-ion Induced Fission for Heavy Element Synthesis

    NASA Astrophysics Data System (ADS)

    Nishio, K.; Ikezoe, H.; Hofmann, S.; Ackermann, D.; Aritomo, Y.; Comas, V. F.; Düllmann, Ch. E.; Heinz, S.; Heredia, J. A.; Heßberger, F. P.; Hirose, K.; Khuyagbaatar, J.; Kindler, B.; Kojouharov, I.; Lommel, B.; Makii, M.; Mann, R.; Mitsuoka, S.; Nishinaka, I.; Ohtsuki, T.; Saro, S.; Schädel, M.; Popeko, A. G.; Türler, A.; Wakabayashi, Y.; Watanabe, Y.; Yakushev, A.; Yeremin, A.

    2014-05-01

    Fission fragment mass distributions were measured in heavy-ion induced fission of 238U. The mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and quasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model for the reactions of 30Si+238U and 34S+238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections of 263,264Sg and 267,268Hs, produced by 30Si+238U and 34S+238U, respectively. It is also suggested that sub-barrier energies can be used for heavy element synthesis.

  16. HAT-P-26b: A Neptune-mass exoplanet with a well-constrained heavy element abundance

    NASA Astrophysics Data System (ADS)

    Wakeford, Hannah R.; Sing, David K.; Kataria, Tiffany; Deming, Drake; Nikolov, Nikolay; Lopez, Eric D.; Tremblin, Pascal; Amundsen, David S.; Lewis, Nikole K.; Mandell, Avi M.; Fortney, Jonathan J.; Knutson, Heather; Benneke, Björn; Evans, Thomas M.

    2017-05-01

    A correlation between giant-planet mass and atmospheric heavy elemental abundance was first noted in the past century from observations of planets in our own Solar System and has served as a cornerstone of planet-formation theory. Using data from the Hubble and Spitzer Space Telescopes from 0.5 to 5 micrometers, we conducted a detailed atmospheric study of the transiting Neptune-mass exoplanet HAT-P-26b. We detected prominent H2O absorption bands with a maximum base-to-peak amplitude of 525 parts per million in the transmission spectrum. Using the water abundance as a proxy for metallicity, we measured HAT-P-26b’s atmospheric heavy element content (4.8-4.0+21.5 times solar). This likely indicates that HAT-P-26b’s atmosphere is primordial and obtained its gaseous envelope late in its disk lifetime, with little contamination from metal-rich planetesimals.

  17. DANCEing with the Stars: Measuring Neutron Capture on Unstable Isotopes with DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, A.; Bond, E.; Bredeweg, T. A.

    2009-03-10

    Isotopes heavier than iron are known to be produced in stars through neutron capture processes. Two major processes, the slow (s) and rapid (r) processes are each responsible for 50% of the abundances of the heavy isotopes. The neutron capture cross sections of the isotopes on the s process path reveal information about the expected abundances of the elements as well as stellar conditions and dynamics. Until recently, measurements on unstable isotopes, which are most important for determining stellar temperatures and reaction flow, have not been experimentally feasible. The Detector for Advance Neutron Capture Experiments (DANCE) located at the Losmore » Alamos Neutron Science Center (LANSCE) was designed to perform time-of-flight neutron capture measurements on unstable isotopes for nuclear astrophysics, stockpile stewardship, and reactor development. DANCE is a 4-{pi}BaF{sub 2} scintillator array which can perform measurements on sub-milligram samples of isotopes with half-lives as short as a few hundred days. These cross sections are critical for advancing our understanding of the production of the heavy isotopes.« less

  18. PRIMORDIAL r-PROCESS DISPERSION IN METAL-POOR GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roederer, Ian U., E-mail: iur@obs.carnegiescience.edu

    Heavy elements, those produced by neutron-capture reactions, have traditionally shown no star-to-star dispersion in all but a handful of metal-poor globular clusters (GCs). Recent detections of low [Pb/Eu] ratios or upper limits in several metal-poor GCs indicate that the heavy elements in these GCs were produced exclusively by an r-process. Re-examining GC heavy element abundances from the literature, we find unmistakable correlations between the [La/Fe] and [Eu/Fe] ratios in four metal-poor GCs (M5, M15, M92, and NGC 3201), only two of which were known previously. This indicates that the total r-process abundances vary from star to star (by factors ofmore » 2-6) relative to Fe within each GC. We also identify potential dispersion in two other GCs (M3 and M13). Several GCs (M12, M80, and NGC 6752) show no evidence of r-process dispersion. The r-process dispersion is not correlated with the well-known light element dispersion, indicating that it was present in the gas throughout the duration of star formation. The observations available at present suggest that star-to-star r-process dispersion within metal-poor GCs may be a common but not ubiquitous phenomenon that is neither predicted by nor accounted for in current models of GC formation and evolution.« less

  19. Neutrino-heated winds from millisecond protomagnetars as sources of the weak r-process

    NASA Astrophysics Data System (ADS)

    Vlasov, Andrey D.; Metzger, Brian D.; Lippuner, Jonas; Roberts, Luke F.; Thompson, Todd A.

    2017-06-01

    We explore heavy element nucleosynthesis in neutrino-driven winds from rapidly rotating, strongly magnetized protoneutron stars ('millisecond protomagnetars') for which the magnetic dipole is aligned with the rotation axis, and the field is assumed to be a static force-free configuration. We process the protomagnetar wind trajectories calculated by Vlasov, Metzger & Thompson through the r-process nuclear reaction network SkyNet using contemporary models for the evolution of the wind electron fraction during the protoneutron star cooling phase. Although we do not find a successful second or third-peak r-process for any rotation period P, we show that protomagnetars with P ˜ 1-5 ms produce heavy element abundance distributions that extend to higher nuclear mass number than from otherwise equivalent spherical winds (with the mass fractions of some elements enhanced by factors of ≳100-1000). The heaviest elements are synthesized by outflows emerging along flux tubes that graze the closed zone and pass near the equatorial plane outside the light cylinder. Due to dependence of the nucleosynthesis pattern on the magnetic field strength and rotation rate of the protoneutron star, natural variations in these quantities between core collapse events could contribute to the observed diversity of the abundances of weak r-process nuclei in metal-poor stars. Further diversity, including possibly even a successful third-peak r-process, could be achieved for misaligned rotators with non-zero magnetic inclination with respect to the rotation axis. If protomagnetars are central engines for GRBs, their relativistic jets should contain a high-mass fraction of heavy nuclei of characteristic mass number \\bar{A}≈ 100, providing a possible source for ultrahigh energy cosmic rays comprised of heavy nuclei with an energy spectrum that extends beyond the nominal Grezin-Zatsepin-Kuzmin cut-off for protons or iron nuclei.

  20. Determination of heavy metals and halogens in plastics from electric and electronic waste.

    PubMed

    Dimitrakakis, Emmanouil; Janz, Alexander; Bilitewski, Bernd; Gidarakos, Evangelos

    2009-10-01

    The presence of hazardous substances and preparations in small waste electrical and electronic equipment (sWEEE) found in the residual household waste stream of the city of Dresden, Germany has been investigated. The content of sWEEE plastics in heavy metals and halogens is determined using handheld X-ray fluorescence analysis (HXRF), elemental analysis by means of atomic absorption spectrometry (AAS) and ion exchange chromatography (IEC). Mean value of results for heavy metals in samples (n=51) by AAS are 17.4 mg/kg for Pb, 5.7 mg/kg for Cd, 8.4 mg/kg for Cr. The mass fraction of an additive as shown by HXRF (n=161) can vary over a wide range. Precise deductions as regards sWEEE plastics content in hazardous substances and preparations cannot be made. Additional research would be expedient regarding the influence of hazardous substances to recycling processes, in particular regarding the contamination of clean fractions in the exit streams of a WEEE treatment plant. Suitable standards for calibrating HXRF for use on EEE plastics or complex electr(on)ic components do not exist and should be developed.

  1. R-process Element Cosmic Rays from Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Komiya, Yutaka; Shigeyama, Toshikazu

    2017-09-01

    Neutron star mergers (NSMs) are one of the most plausible sources of r-process elements in the universe. Therefore, NSMs can also be a major source of ultra-heavy elements in cosmic rays. In this paper, we first estimate the contribution of r-process elements synthesized in NSMs to the ultra-heavy element cosmic rays (UHCRs) by calculating transport equations that take into account energy loss processes and spallations. We show that the flux of UHCRs accelerated by the NSMs themselves fluctuates by many orders of magnitude on a timescale of several million years and can overwhelm UHCRs accelerated by supernova remnants (SNRs) after an NSM takes place within a few kiloparsec from the solar system. Experiments with very long exposure times using meteorites as UHCR detectors can detect this fluctuation. As a consequence, we show that if NSMs are the primary source of UHCRs, future experiments using meteorites may be able to reveal the event history of NSMs in the solar vicinity. We also describe a possible difference in the abundance pattern and energy spectrum of UHCRs between NSM and SNR accelerations.

  2. R -process Element Cosmic Rays from Neutron Star Mergers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komiya, Yutaka; Shigeyama, Toshikazu

    Neutron star mergers (NSMs) are one of the most plausible sources of r -process elements in the universe. Therefore, NSMs can also be a major source of ultra-heavy elements in cosmic rays. In this paper, we first estimate the contribution of r -process elements synthesized in NSMs to the ultra-heavy element cosmic rays (UHCRs) by calculating transport equations that take into account energy loss processes and spallations. We show that the flux of UHCRs accelerated by the NSMs themselves fluctuates by many orders of magnitude on a timescale of several million years and can overwhelm UHCRs accelerated by supernova remnantsmore » (SNRs) after an NSM takes place within a few kiloparsec from the solar system. Experiments with very long exposure times using meteorites as UHCR detectors can detect this fluctuation. As a consequence, we show that if NSMs are the primary source of UHCRs, future experiments using meteorites may be able to reveal the event history of NSMs in the solar vicinity. We also describe a possible difference in the abundance pattern and energy spectrum of UHCRs between NSM and SNR accelerations.« less

  3. DANCE : Device for Measurement of (n.g.) Reactions on radioactive Species /

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamberlin, E. P.; Dragowsky, M.; Fowler, Malcolm M.

    2001-01-01

    DANCE (Device for Advanced Neutron Capture Experiments) is a 4{pi} 162 element BaF{sub 2} array under development at Los Alamos National Laboratory. It is designed to provide high granularity, fast timing and high photon detection efficiency. It will be located at the Los Alamos Neutron Scattering Center where neutrons are produced using 800 MeV proton induced spallation reactions on heavy element production targets. Using the pulsed high neutron fluence available at this facility combined with time of flight techniques it will be possible to make neutron capture measurements in the neutron energy range from eV to 100's of keV onmore » rare and radioactive target material at the milligram and below level. These measurements will provide critically needed data for the interpretation of the astrophysical s-process 'branching point' nuclei as well as information for reactions needed in understanding transmutation processes of radioactive species.« less

  4. Analysis of the FF Aqr spectra

    NASA Astrophysics Data System (ADS)

    Shimanskaya, N. N.; Bikmaev, I. F.; Shimansky, V. V.

    2011-07-01

    We determine the atmospheric parameters of the secondary in the close binary system FF Aqr and analyze its chemical composition. A series of high-resolution spectra are taken at different orbital phases using the coude echelle spectrometer of the 1.5-m Russian-Turkish Telescope (RTT150). We show that the absorption line intensity of heavy elements varies with phase due to the spotty nature of the cool component. We determine the abundances of heavy elements in the star's atmosphere by modelling the synthetic spectra and performing a differential analysis of the chemical composition of FF Aqr relative to the solar composition. Our analysis of the averaged spectrum of FF Aqr yielded 539 abundance estimates for 21 chemical elements. We found the metallicity of the star ([ Fe/H] = -0.11 ± 0.08) to be close solar, in agreement with the hypothesis that FF Aqr should belong to the Galactic disk. The inferred chemical composition of the objects exhibits no anomalous abundances of the α-, r-, and s-process elements like those earlier found in other systems (IN Com, LW Hya, V471 Tau). The lack of such anomalies in FF Aqr must be due to the fact that the elements heavier than 16 O cannot be synthesized in the core of the primary during the last stages of its evolution.

  5. The Origin and Distribution of Heavy Elements in HCG 62

    NASA Technical Reports Server (NTRS)

    Vrtilek, Jan; Lavoie, Anthony R. (Technical Monitor)

    2000-01-01

    We present recent data on the compact group HCG 62 taken with AXAF CCD Imaging Spectrometer-S (ACIS-S) on Chandra. The sparseness of groups and their relatively simple dynamical history allow the properties of the Intergalatic Medium (IGM) to be more directly related to galaxy evolution than may be possible in clusters, and their lower gas temperatures produce strong lines from a broader range of elements than is the case in hotter clusters. This observation exploits the high X-ray brightness of HCG 62 to determine accurately the abundances of heavy elements as a function of position in the group, to test whether abundance variations are associated with individual galaxies, and to trace the origin of the enrichment.

  6. Diffusion in the chromosphere and the composition of the solar corona and energetic particles

    NASA Technical Reports Server (NTRS)

    Vauclair, S.; Meyer, J. P.

    1985-01-01

    Composition observations, in the solar photosphere, and in the upper transition region (TR) and corona imply a change of composition of the solar atmosphere somewhere between the photosphere and the upper TR. Heavy elements with first ionization potential (FIP) 9 eV (high-FIP element) are approx. 4 times less abundant in the TR and corona than in the photosphere, as compared to both hydrogen and heavy elements with lower low-FIP elements. A separation is suggested between neutral and ionized elements in a region where the high-FIP elements are mostly neutral, and the low-FIP elements ionized. This occurs in the chromosphere at altitudes above 600 km and below 2000 km above Photosphere. Whether the diffusion processes can explain the observed change in composition is investigated.

  7. Soil quality changes in response to their pollution by heavy metals, Georgia.

    PubMed

    Matchavariani, Lia; Kalandadze, Besik; Lagidze, Lamzira; Gokhelashvili, Nino; Sulkhanishvili, Nino; Paichadze, Nino; Dvalashvili, Giorgi

    2015-01-01

    The present study deals with the composition, migration and accumulation of heavy metals in irrigated soils, plants and partially natural waters; and also, establishing the possible sources of pollution and their impact on environmental situation. The content of toxic elements in the irrigated soils adjacent to ore mining and processing enterprise were studied. Content of toxic elements in the irrigated soils adjacent to ore mining, showed that more than half of territory was seriously polluted by copper and zinc. Some part of the area were considered catastrophically polluted. Expressed technogenesis taking place influenced irrigation. Heavy metals like copper, zinc and manganese negative by effected the properties of soil, thus composition and soil-forming processes taking place in the soil. It was especially well represented in the deterioration of hydro-physical potential of the soil. Irrigation of agricultural land plots by water, polluted with heavy metals changed the pH. Balanced correlation among solid, liquid and gas phases was disrupted. In highly polluted soil, the cementing processes took place that sharply increased the bulk density of the soil, deteriorated the porosity of soil and reduced water permeability critically.

  8. Sub-barrier quasifission in heavy element formation reactions with deformed actinide target nuclei

    NASA Astrophysics Data System (ADS)

    Hinde, D. J.; Jeung, D. Y.; Prasad, E.; Wakhle, A.; Dasgupta, M.; Evers, M.; Luong, D. H.; du Rietz, R.; Simenel, C.; Simpson, E. C.; Williams, E.

    2018-02-01

    Background: The formation of superheavy elements (SHEs) by fusion of two massive nuclei is severely inhibited by the competing quasifission process. Low excitation energies favor SHE survival against fusion-fission competition. In "cold" fusion with spherical target nuclei near 208Pb, SHE yields are largest at beam energies significantly below the average capture barrier. In "hot" fusion with statically deformed actinide nuclei, this is not the case. Here the elongated deformation-aligned configurations in sub-barrier capture reactions inhibits fusion (formation of a compact compound nucleus), instead favoring rapid reseparation through quasifission. Purpose: To determine the probabilities of fast and slow quasifission in reactions with prolate statically deformed actinide nuclei, through measurement and quantitative analysis of the dependence of quasifission characteristics at beam energies spanning the average capture barrier energy. Methods: The Australian National University Heavy Ion Accelerator Facility and CUBE fission spectrometer have been used to measure fission and quasifission mass and angle distributions for reactions with projectiles from C to S, bombarding Th and U target nuclei. Results: Mass-asymmetric quasifission occurring on a fast time scale, associated with collisions with the tips of the prolate actinide nuclei, shows a rapid increase in probability with increasing projectile charge, the transition being centered around projectile atomic number ZP=14 . For mass-symmetric fission events, deviations of angular anisotropies from expectations for fusion fission, indicating a component of slower quasifission, suggest a similar transition, but centered around ZP˜8 . Conclusions: Collisions with the tips of statically deformed prolate actinide nuclei show evidence for two distinct quasifission processes of different time scales. Their probabilities both increase rapidly with the projectile charge. The probability of fusion can be severely suppressed by these two quasifission processes, since the sub-barrier heavy element yield is likely to be determined by the product of the probabilities of surviving each quasifission process.

  9. Biogeochemistry of heavy metals in contaminated excessively moistened soils (Analytical review)

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.; Plekhanova, I. O.

    2014-03-01

    The biogeochemical behavior of heavy metals in contaminated excessively moistened soils depends on the development of reducing conditions (either moderate or strong). Upon the moderate biogenic reduction, Cr as the metal with variable valence forms low-soluble compounds, which decreases its availability to plants and prevents its penetration into surface- and groundwater. Creation of artificial barriers for Cr fixation on contaminated sites is based on the stimulation of natural metal-reducing bacteria. Arsenic, being a metalloid with a variable valence, is mobilized upon the moderate biogenic reduction. The mobility of siderophilic heavy metals with a constant valence grows under the moderate reducing conditions at the expense of dissolution of iron (hydr)oxides as carriers of these metals. Zinc, which can enter the newly formed goethite lattice, is an exception. Strong reduction processes in organic excessively moist and flooded soils (usually enriched in S) lead to the formation of low-soluble sulfides of heavy elements with both variable (As) and constant (Cu, Ni, Zn, and Pb) valence. On changing aquatic regime in overmoistened soils and their drying, sulfides of heavy metals are oxidized, and previously fixed metals are mobilized.

  10. Nucleosynthesis: Stellar and Solar Abundances and Atomic Data

    NASA Technical Reports Server (NTRS)

    Cowan, John J.; Lawler, James E.; Sneden, Christopher; DenHartog, E. A.; Collier, Jason; Dodge, Homer L.

    2006-01-01

    Abundance observations indicate the presence of often surprisingly large amounts of neutron capture (i.e., s- and r-process) elements in old Galactic halo and globular cluster stars. These observations provide insight into the nature of the earliest generations of stars in the Galaxy the progenitors of the halo stars responsible for neutron-capture synthesis. Comparisons of abundance trends can be used to understand the chemical evolution of the Galaxy and the nature of heavy element nucleosynthesis. In addition age determinations, based upon long-lived radioactive nuclei abundances, can now be obtained. These stellar abundance determinations depend critically upon atomic data. Improved laboratory transition probabilities have been recently obtained for a number of elements. These new gf values have been used to greatly refine the abundances of neutron-capture elemental abundances in the solar photosphere and in very metal-poor Galactic halo stars. The newly determined stellar abundances are surprisingly consistent with a (relative) Solar System r-process pattern, and are also consistent with abundance predictions expected from such neutron-capture nucleosynthesis.

  11. New experimental developments for s- and p-process research

    NASA Astrophysics Data System (ADS)

    Reifarth, R.; Ershova, O.; Glorius, J.; Göbel, K.; Langer, C.; Meusel, O.; Plag, R.; Schmidt, S.; Sonnabend, K.; Heil, M.

    2012-12-01

    Almost all of the heavy elements are produced via neutron-induced processes in a multitude of stellar production sites. The remaining minor part is produced via photon- and proton-induced reactions. The predictive power of the underlying stellar models is currently limited because they contain poorly constrained physics components such as convection, rotation or magnetic fields. An important tool to determine such components is the comparison of observed with modeled abundance distributions based on improved nuclear physics input. The FRANZ facility at the Goethe University Frankfurt, which is currently under construction will provide unprecedented neutron fluxes and proton currents available for nuclear astrophysics. It will be possible to investigate important branchpoint nuclei of the s-process nucleosynthesis path and proton-induced reactions important for p-process modeling. At the GSI close to Darmstadt radioactive isotopes can be investigated in inverse kinematics. This allows experiments such as proton-induced cross section measurements using a heavy-ion storage ring or measurements of gamma-induced reactions using the Coulomb dissociation method. The future FAIR facility will allow similar experiments on very exotic nuclei, since orders of magnitude higher radioactive ions beams will be possible.

  12. Recycling of spent adsorbents for oxyanions and heavy metal ions in the production of ceramics.

    PubMed

    Verbinnen, Bram; Block, Chantal; Van Caneghem, Jo; Vandecasteele, Carlo

    2015-11-01

    Spent adsorbents for oxyanion forming elements and heavy metals are classified as hazardous materials and they are typically treated by stabilization/solidification before landfilling. The use of lime or cement for stabilization/solidification entails a high environmental impact and landfilling costs are high. This paper shows that mixing spent adsorbents in the raw material for the production of ceramic materials is a valuable alternative to stabilize oxyanion forming elements and heavy metals. The produced ceramics can be used as construction material, avoiding the high economic and environmental impact of stabilization/solidification followed by landfilling. To study the stabilization of oxyanion forming elements and heavy metals during the production process, two series of experiments were performed. In the first series of experiments, the main pollutant, Mo was adsorbed onto iron-based adsorbents, which were then mixed with industrial sludge (3 w/w%) and heated at 1100°C for 30 min. Mo was chosen, as this element is easily adsorbed onto iron-based adsorbents and it is the element that is the most difficult to stabilize (i.e. the highest temperatures need to be reached before the concentrations in the leachate are reduced). Leaching concentration from the 97/3 sludge/adsorbent mixture before heating ranged between 85 and 154 mg/kg; after the heating process they were reduced to 0.42-1.48 mg/kg. Mo was actually stabilized, as the total Mo concentration after addition was not affected by the heat treatment. In the second series of experiments, the sludge was spiked with other heavy metals and oxyanion forming elements (Cr, Ni, Cu, Zn, As, Cd and Pb) in concentrations 5 times higher than the initial concentrations; after heat treatment the leachate concentrations were below the regulatory limit values. The incorporation of spent adsorbents in ceramic materials is a valuable and sustainable alternative to the existing treatment methods, saving raw materials in the ceramics production process and avoiding the use of stabilizing agents. Besides, spent adsorbents added to the raw material for ceramic products, may improve their aesthetic and structural properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The Heavy Nuclei eXplorer (HNX) Small Explorer Mission

    NASA Astrophysics Data System (ADS)

    Mitchell, John; Binns, W. Robert; Hams, Thomas; Israel, Martin; Krizmanic, John; Link, Jason; Rauch, Brian; Sakai, Kenichi; Sasaki, Makoto; Westphal, Andrew; Wiedenbeck, Mark; Heavy Nuclei eXplorer Collaboration

    2015-04-01

    The Heavy Nuclei eXplorer (HNX) will investigate the nature of the reservoirs of nuclei at the cosmic-ray sources, the mechanisms by which nuclei are removed from the reservoirs and injected into the cosmic accelerators, and the acceleration mechanism. HNX will use two large high-precision instruments, the Extremely-heavy Cosmic-ray Composition Observer (ECCO) and the Cosmic-ray Trans-Iron Galactic Element Recorder (CosmicTIGER), flying in the SpaceX DragonLab, to measure, for the first time, the abundance of every individual element in the periodic table from carbon through the actinides, providing the first measurement of many of these elements. HNX will measure several thousand ultra-heavy galactic cosmic ray (UHGCR) nuclei Z >= 30, including about 50 actinides, and will: determine whether GCRs are accelerated from new or old material, and find their age; measure the mix of nucleosynthesis processes responsible for the UHGCRs; determine how UHGCR elements are selected for acceleration, and measure the mean integrated pathlength traversed by UHGCRs before observation. The scientific motivation and instrument complement of HNX will be discussed.

  14. Heavy metals pollution status in surface sediments (rivers and artifical lakes, Serbia)

    NASA Astrophysics Data System (ADS)

    Sakan, Sanja; Đorđević, Dragana

    2017-04-01

    Potentially hazardous trace elements, often in literature referred as "heavy metals", are deemed serious pollutants due to their toxicity, persistence and non-degradability in the environment. These elements play an important role in extent of water pollution and threaten the health of populations and ecosystems. As the sink of heavy metals, sediment beds adsorb metals in quantities that are many times higher than those found in the water column in the long-term polluted water environment. It is believed that most of the metal content, as much as 90% in aquatic sediments is bound to sediments. Metal contamination in these sediments could be directly affect the river water quality, resulting in potential consequences to the sensitive lowest levels of the food chain and ultimately to human health. The objective of this research was the evaluation of heavy metal contamination level in sediments of the most important rivers and artificial lakes in Serbia. The heavy metal enrichment in studied sediments was conducted by using: determination of total metal content, sequential extraction procedure for the fractionation of studied elements, quantification of the metal enrichment degree in the sediments by calculating geo-accumulation indices, determination of actual and potential element availability and application of BRAI index for the assessment of heavy metal bioavailability. The sediments were found to be contaminated by heavy metals to various extents, mostly with Cd, Cu, and Zn. The significant variation in heavy metal distribution among samples collected in this large region, encompassing all Serbian watersheds, suggests the selective contamination of sediments by heavy metals. Elevated concentrations of elements in most cases were detected in samples of river sediments, since artificial lake reservoirs are usually built in rural areas, where the less anthropogenic pollution. Rivers often flow through the towns and these water basins less or more loaded micronutrients, toxic substances, organic or inorganic, waste materials, depending on the species and type of industrial processes that are often without the necessary technological and mandatory treatment directly discharged into them. Due to the potential risk of heavy metal pollution in studied sediments, pollution prevention and control measurements seems necessary, especially in areas where we found increased levels of these elements.

  15. Finite element modeling simulation-assisted design of integrated microfluidic chips for heavy metal ion stripping analysis

    NASA Astrophysics Data System (ADS)

    Hong, Ying; Zou, Jianhua; Ge, Gang; Xiao, Wanyue; Gao, Ling; Shao, Jinjun; Dong, Xiaochen

    2017-10-01

    In this article, a transparent integrated microfluidic device composed of a 3D-printed thin-layer flow cell (3D-PTLFC) and an S-shaped screen-printed electrode (SPE) has been designed and fabricated for heavy metal ion stripping analysis. A finite element modeling (FEM) simulation is employed to optimize the shape of the electrode, the direction of the inlet pipeline, the thin-layer channel height and the sample flow rate to enhance the electron-enrichment efficiency for stripping analysis. The results demonstrate that the S-shaped SPE configuration matches the channel in 3D-PTLFC perfectly for the anodic stripping behavior of the heavy metal ions. Under optimized conditions, a wide linear range of 1-80 µg l-1 is achieved for Pb2+ detection with a limit of 0.3 µg l-1 for the microfluidic device. Thus, the obtained integrated microfluidic device proves to be a promising approach for heavy metal ions stripping analysis with low cost and high performance.

  16. Constraining anomalous Higgs boson couplings to the heavy-flavor fermions using matrix element techniques

    NASA Astrophysics Data System (ADS)

    Gritsan, Andrei V.; Röntsch, Raoul; Schulze, Markus; Xiao, Meng

    2016-09-01

    In this paper, we investigate anomalous interactions of the Higgs boson with heavy fermions, employing shapes of kinematic distributions. We study the processes p p →t t ¯+H , b b ¯+H , t q +H , and p p →H →τ+τ- and present applications of event generation, reweighting techniques for fast simulation of anomalous couplings, as well as matrix element techniques for optimal sensitivity. We extend the matrix element likelihood approach (MELA) technique, which proved to be a powerful matrix element tool for Higgs boson discovery and characterization during Run I of the LHC, and implement all analysis tools in the JHU generator framework. A next-to-leading-order QCD description of the p p →t t ¯+H process allows us to investigate the performance of the MELA in the presence of extra radiation. Finally, projections for LHC measurements through the end of Run III are presented.

  17. The GALAH survey: scientific motivation

    NASA Astrophysics Data System (ADS)

    De Silva, G. M.; Freeman, K. C.; Bland-Hawthorn, J.; Martell, S.; de Boer, E. Wylie; Asplund, M.; Keller, S.; Sharma, S.; Zucker, D. B.; Zwitter, T.; Anguiano, B.; Bacigalupo, C.; Bayliss, D.; Beavis, M. A.; Bergemann, M.; Campbell, S.; Cannon, R.; Carollo, D.; Casagrande, L.; Casey, A. R.; Da Costa, G.; D'Orazi, V.; Dotter, A.; Duong, L.; Heger, A.; Ireland, M. J.; Kafle, P. R.; Kos, J.; Lattanzio, J.; Lewis, G. F.; Lin, J.; Lind, K.; Munari, U.; Nataf, D. M.; O'Toole, S.; Parker, Q.; Reid, W.; Schlesinger, K. J.; Sheinis, A.; Simpson, J. D.; Stello, D.; Ting, Y.-S.; Traven, G.; Watson, F.; Wittenmyer, R.; Yong, D.; Žerjal, M.

    2015-05-01

    The Galactic Archaeology with HERMES (GALAH) survey is a large high-resolution spectroscopic survey using the newly commissioned High Efficiency and Resolution Multi-Element Spectrograph (HERMES) on the Anglo-Australian Telescope. The HERMES spectrograph provides high-resolution (R ˜ 28 000) spectra in four passbands for 392 stars simultaneously over a 2 deg field of view. The goal of the survey is to unravel the formation and evolutionary history of the Milky Way, using fossil remnants of ancient star formation events which have been disrupted and are now dispersed throughout the Galaxy. Chemical tagging seeks to identify such dispersed remnants solely from their common and unique chemical signatures; these groups are unidentifiable from their spatial, photometric or kinematic properties. To carry out chemical tagging, the GALAH survey will acquire spectra for a million stars down to V ˜ 14. The HERMES spectra of FGK stars contain absorption lines from 29 elements including light proton-capture elements, α-elements, odd-Z elements, iron-peak elements and n-capture elements from the light and heavy s-process and the r-process. This paper describes the motivation and planned execution of the GALAH survey, and presents some results on the first-light performance of HERMES.

  18. Zirconium

    USGS Publications Warehouse

    Bedinger, G.M.

    2013-01-01

    Zirconium is the 20th most abundant element in the Earth’s crust. It occurs in a variety of rock types and geologic environments but most often in igneous rocks in the form of zircon (ZrSiO4). Zircon is recovered as a coproduct of the mining and processing of heavy mineral sands for the titanium minerals ilmenite and rutile. The sands are formed by the weathering and erosion of rock containing zircon and titanium heavy minerals and their subsequent concentration in sedimentary systems, particularly in coastal environments. A small quantity of zirconium, less than 10 kt/a (11,000 stpy), compared with total world production of 1.4 Mt (1.5 million st) in 2012, was derived from the mineral baddeleyite (ZrO2), produced from a single source in Kovdor, Russia.

  19. The nu-process

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.; Hartmann, D. H.; Hoffman, R. D.; Haxton, W. C.

    1990-01-01

    As the core of a massive star collapses to form a neutron star, the flux of neutrinos in the overlying shells of heavy elements becomes so great that, despite the small cross section, substantial nuclear transmutation is induced. Neutrinos excite heavy elements and even helium to particle unbound levels. The evaporation of a single neutron or proton, and the back reaction of these nucleons on other species present, significantly alters the outcome of traditional nucleosynthesis calculations leading to a new process: nu-nucleosynthesis. Modifications to traditional hydrostatic and explosive varieties of helium, carbon, neon, oxygen, and silicon burning are considered. The results show that a large number of rare isotopes, including many of the odd-Z nuclei from boron through copper, owe much of their present abundance in nature to this process.

  20. The CN–CH Positive Correlation in the Globular Cluster NGC 5286

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Dongwook; Hong, Seungsoo; Lee, Young-Wook, E-mail: dwlim@yonsei.ac.kr, E-mail: ywlee2@yonsei.ac.kr

    We performed low-resolution spectroscopy of the red giant stars in the Galactic globular cluster (GC) NGC 5286, which is known to show intrinsic heavy element abundance variations. We found that the observed stars in this GC are clearly divided into three subpopulations by CN index (CN-weak, CN-intermediate, and CN-strong). The CN-strong stars are also enhanced in the calcium HK′ (7.4 σ ) and CH (5.1 σ ) indices, while the CN-intermediate stars show no significant difference in the strength of the HK′ index from the CN-weak stars. From the comparison with high-resolution spectroscopic data, we found that the CN- andmore » HK′-strong stars are also enhanced in the abundances of Fe and s -process elements. It appears, therefore, that these stars are later-generation stars affected by some supernova enrichment in addition to the asymptotic giant branch ejecta. In addition, unlike normal GCs, sample stars in NGC 5286 show the CN–CH positive correlation, strengthening our previous suggestion that this positive correlation is only discovered in GCs with heavy element abundance variations, such as M22 and NGC 6273.« less

  1. High-resolution abundance analysis of HD 140283

    NASA Astrophysics Data System (ADS)

    Siqueira-Mello, C.; Andrievsky, S. M.; Barbuy, B.; Spite, M.; Spite, F.; Korotin, S. A.

    2015-12-01

    Context. HD 140283 is a reference subgiant that is metal poor and confirmed to be a very old star. The element abundances of this type of old star can constrain the nature and nucleosynthesis processes that occurred in its (even older) progenitors. The present study may shed light on nucleosynthesis processes yielding heavy elements early in the Galaxy. Aims: A detailed analysis of a high-quality spectrum is carried out, with the intent of providing a reference on stellar lines and abundances of a very old, metal-poor subgiant. We aim to derive abundances from most available and measurable spectral lines. Methods: The analysis is carried out using high-resolution (R = 81 000) and high signal-to-noise ratio (800

  2. Fusion-fission Study at JAEA for Heavy-element Synthesis

    NASA Astrophysics Data System (ADS)

    Nishio, K.

    Fission fragment mass distributions were measured in the heavy-ion induced fission using 238U target nucleus. The mass distribu- tions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and qasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their inci- dent energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si+238U and 34S+238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections of 263,264Sg and 267,268Hs, produced by 30Si+238U and 34S+238U, respectively. It is also suggested that the sub-barrier energies can be used for heavy element synthesis.

  3. In-beam fissio study at JAEA for heavy element synthesis

    NASA Astrophysics Data System (ADS)

    Nishio, K.; Ikezoe, H.; Hofmann, S.; Ackermann, D.; Aritomo, Y.; Comas, V. F.; Düllmann, Ch. E.; Heinz, S.; Heredia, J. A.; Heßberger, F. P.; Hirose, K.; Khuyagbaatar, J.; Kindler, B.; Kojouharov, I.; Lommel, B.; Makii, M.; Mann, R.; Mitsuoka, S.; Nishinaka, I.; Ohtsuki, T.; Saro, S.; Schädel, M.; Popeko, A. G.; Türler, A.; Wakabayashi, Y.; Watanabe, Y.; Yakushev, A.; Yeremin, A.

    2013-04-01

    Fission fragment mass distributions were measured in the heavy-ion induced fission using 238U target nucleus. The mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and qasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si+238U and 34S+238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections of 263,264Sg and 267,268Hs, produced by 30Si+238U and 34S+238U, respectively. It is also suggested that the sub-barrier energies can be used for heavy element synthesis.

  4. Pollution Assessment and Sources Identification of Heavy Metals in Surface Sediments from the Nantaizi Lake, Middle China

    NASA Astrophysics Data System (ADS)

    Ma, Jinlong; Li, Fei; Jia, Xiaolin; Zhang, Jingdong

    2018-01-01

    The total contents of heavy metal elements including Cr, Cd, Cu, Zn, Pb and As were investigated in sediments from the Nantaizi Lake in Hanyang district of Wuhan. The heavy metal pollution level of Nantaizi Lake was calculated by potential ecological risk index and the main sources of pollutants were researched by correlation analysis and principal component analysis. The results show that heavy metal concentration of Nantaizi Lake sediments is within the Chinese Environmental Quality Standard for Soils (GB 15618-1995) level-II standard limitation. According to the result of potential ecological risk index, ecological hazard rank of heavy metal element of Nantaizi Lake sediments is: Cd>Cu>As>Pb>Zn>Cr, and whole water environment of lake is slightly polluted. Through correlation analysis and principal component analysis, it is found that industrial sewage and domestic wastewater in human activities are the main contributors to heavy metal sources of Nantaizi Lake, and chemical processes, such as endogenous microbial activities of lake etc., also affect heavy metal sources in sediments simultaneously.

  5. Trojan Horse Method for neutrons-induced reaction studies

    NASA Astrophysics Data System (ADS)

    Gulino, M.; Asfin Collaboration

    2017-09-01

    Neutron-induced reactions play an important role in nuclear astrophysics in several scenario, such as primordial Big Bang Nucleosynthesis, Inhomogeneous Big Bang Nucleosynthesis, heavy-element production during the weak component of the s-process, explosive stellar nucleosynthesis. To overcome the experimental problems arising from the production of a neutron beam, the possibility to use the Trojan Horse Method to study neutron-induced reactions has been investigated. The application is of particular interest for reactions involving radioactive nuclei having short lifetime.

  6. HR 6094: A Young, Solar-Type, Solar-Metallicity Barium Dwarf Star

    NASA Astrophysics Data System (ADS)

    Porto de Mello, G. F.; da Silva, L.

    1997-02-01

    The young solar-type star HR 6094 is found to be a barium dwarf, overabundant in the s-process elements as well as deficient in C. It is a member of the solar-metallicity, 0.3 Gyr old Ursa Major kinematical group. Measurements of radial velocity and ultraviolet flux do not support the attribution of such abundance anomalies to an unseen degenerate companion. A common proper motion, V = 10, DA white dwarf (WD), located 5360 AU away, however, strongly supports the explanation of the origin of this barium star by the process of mass transfer in a binary system, in which the secondary component accreted matter from the primary one (now the WD) when it was an asymptotic giant branch (AGB) star self-enriched in the s-process elements. The membership in the UMa group of another s-process-rich and C-deficient star, HR 2047, suggests that these stars could have formed a multiple system in the past, which was disrupted by the mass-loss episode of the former AGB star. Their [C/Fe] deficiency could be explained by the action of the hot-bottomed envelope burning process in the late AGB, thereby reconverting it from a C-rich to an O-rich star, depleting C while enriching its envelope with Li and neutron capture elements. This is the first identification of the barium phenomenon in a near-zero-age star, besides being the first barium system in which the remnant of the late AGB star responsible for the heavy-element enrichment may have been directly spotted. Observations collected at the Cerro Tololo Inter-American Observatory (CTIO), Chile, and at the Observatório do Pico dos Dias, operated by the CNPq/Laboratório Nacional de Astrofísica, Brazil.

  7. Simultaneous heavy metals removal and municipal sewage sludge dewaterability improvement in bioleaching processes by various inoculums.

    PubMed

    Shi, Chaohong; Zhu, Nengwu; Shang, Ru; Kang, Naixin; Wu, Pingxiao

    2015-11-01

    The heavy metals content and dewaterability of municipal sewage sludge (MSS) are important parameters affecting its subsequent disposal and land application. Six kinds of inoculums were prepared to examine the characteristics of heavy metals removal and MSS dewaterability improvement in bioleaching processes. The results showed that Cu, Zn and Cd bioleaching efficiencies (12 days) were 81-91, 87-93 and 81-89%, respectively, which were significantly higher than those of Fe-S control (P < 0.05) and blank control (P < 0.01). The bioleaching boosted by the prepared inoculums could also significantly enhance MSS dewaterability (P < 0.01). The centrifugal dehydration efficiency of MSS rose from 73.00 to 90.00% at day 12. Microscopic observations and energy dispersive spectrum analysis demonstrated that the dewaterability improvement might be attributed to the changes of sludge structure from flocculent to obvious granular and the formation of secondary minerals mainly consisting of iron, oxygen and sulfur elements. The results above demonstrated that bacterial consortium enriched from acid mine drainage (AMD) was suitable to boost sludge bioleaching for heavy metals removal and dewaterability improvement. It also suggested that the synergy of sulfur/ferrous-oxidizing bacteria (SFOB) enriched from AMD and the cooperation of exogenous and indigenous SFOB significantly promoted bioleaching efficiencies.

  8. Soil contamination with emissions of non-ferrous metallurgical plants

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.; Plekhanova, I. O.; Prokopovich, E. V.; Savichev, A. T.

    2011-02-01

    The upper soil horizons are strongly contaminated in the area influenced by the Mid-Urals copper smelter. In the technogenic desert and impact zones, the contents of a number of elements (Cu, Zn, As, Pb, P, and S) by many times exceed their clarke values and the maximum permissible concentrations (or provisional permissible concentrations). The degree of technogeneity (Tg) for these elements is very high in these zones. In the far buffer zone, Tg is about zero for many elements and increases up to Tg = 27-42% for four heavy elements (Cu, Zn, Pb, and As) and up to 81-98% for P and S. The buffer capacity of the humus horizon depends on the soil's location within the technogeochemical anomaly and also on the particular pollutant. In the impact zone, it is equal to 70-77% for lead and arsenic, although other technogenic elements (Zn, Cr, S, and P) are poorly retained and readily migrate into the deeper horizons (the buffer capacity is equal to 14-25%). Nearly all the heavy metals enter the soil in the form of sulfides. The soils in the area affected by the Noril'sk mining and smelting metallurgical enterprise are subdivided into two groups according to the degree of their contamination, i.e., the soils within Noril'sk proper and the soils in its suburbs to a distance of 4-15 km. The strongest soil contamination is recorded in the city: the clarke values are exceeded by 287, 78, 16, 4.1, and 3.5 times for Cu, Ni, Cr, Fe, and S, respectively. The major pollutants enter the soil from the ferruginous slag. The soil's contamination degree is lower in the suburbs, where heavy metal sulfides reach the soils with the aerial emission from the enterprise.

  9. Fast elemental screening of soil and sediment profiles using small-spot energy-dispersive X-ray fluorescence: application to mining sediments geochemistry.

    PubMed

    Gonzalez-Fernandez, Oscar; Queralt, Ignacio

    2010-09-01

    Elemental analysis of different sediment cores originating from the Cartagena-La Union mining district in Spain was carried out by means of a programmable small-spot energy-dispersive X-ray fluorescence (EDXRF) spectrometer to study the distribution of heavy metals along soil profiles. Cores were obtained from upstream sediments of a mining creek, from the lowland sedimentation plain, and from a mining landfill dump (tailings pile). A programmable two-dimensional (2D) stage and a focal spot resolution of 600 μm allow us to obtain complete core mapping. Geochemical results were verified using a more powerful wavelength-dispersion X-ray fluorescence (WDXRF) technique. The data obtained was processed in order to study the statistical correlations within the elemental compositions. The results obtained allow us to observe the differential in-depth distribution of heavy metals among the sampled zones. Dump site cores exhibit a homogeneous distribution of heavy metals, whereas the alluvial plain core shows accumulation of heavy metals in the upper part. This approach can be useful for the fast screening of heavy metals in depositional environments around mining sites.

  10. Evaluation of Sources and Patterns of Elemental Composition of PM2.5 at Three Low-Income Neighborhood Schools and Residences in Quito, Ecuador

    PubMed Central

    Raysoni, Amit U.; Armijos, Rodrigo X.; Weigel, M. Margaret; Echanique, Patricia; Racines, Marcia; Pingitore, Nicholas E.; Li, Wen-Whai

    2017-01-01

    Elemental characterization of fine particulate matter was undertaken at schools and residences in three low income neighborhoods in Quito, Ecuador. The three zones were located in the northern (Cotocollao), south central (El Camal), and south east (Los Chillos) neighborhoods and were classified as zones 1–3, respectively. Forty elements were quantified via ICP-MS analysis. Amongst the geogenic elements, the concentration of Si was the most abundant followed by S, Al, and Ca. Elements with predominantly anthropogenic sources such as Zn, V, and Ni were higher in zone 3 school followed by zone 2 and zone 1 schools. Enrichment factors were calculated to study the role of crustal sources in the elemental concentrations. Geogenic elements, except K, all had values <10 and anthropogenic elements such as Ni, V, Zn, Pb, As, Cr had >10. Principal Component Analysis suggested that Ni and V concentrations were strongly attributable to pet coke and heavy oil combustion. Strong associations between As and Pb could be attributed to traffic and other industrial emissions. Resuspended dust, soil erosion, vehicular emissions (tailpipe, brake and tire wear, and engine abrasion), pet coke, heavy oil combustion, and heavy industrial operations were major contributors to air pollution. PMID:28644400

  11. Evaluation of Sources and Patterns of Elemental Composition of PM2.5 at Three Low-Income Neighborhood Schools and Residences in Quito, Ecuador.

    PubMed

    Raysoni, Amit U; Armijos, Rodrigo X; Weigel, M Margaret; Echanique, Patricia; Racines, Marcia; Pingitore, Nicholas E; Li, Wen-Whai

    2017-06-23

    Elemental characterization of fine particulate matter was undertaken at schools and residences in three low income neighborhoods in Quito, Ecuador. The three zones were located in the northern (Cotocollao), south central (El Camal), and south east (Los Chillos) neighborhoods and were classified as zones 1-3, respectively. Forty elements were quantified via ICP-MS analysis. Amongst the geogenic elements, the concentration of Si was the most abundant followed by S, Al, and Ca. Elements with predominantly anthropogenic sources such as Zn, V, and Ni were higher in zone 3 school followed by zone 2 and zone 1 schools. Enrichment factors were calculated to study the role of crustal sources in the elemental concentrations. Geogenic elements, except K, all had values <10 and anthropogenic elements such as Ni, V, Zn, Pb, As, Cr had >10. Principal Component Analysis suggested that Ni and V concentrations were strongly attributable to pet coke and heavy oil combustion. Strong associations between As and Pb could be attributed to traffic and other industrial emissions. Resuspended dust, soil erosion, vehicular emissions (tailpipe, brake and tire wear, and engine abrasion), pet coke, heavy oil combustion, and heavy industrial operations were major contributors to air pollution.

  12. Heavy ions in Jupiter's environment

    NASA Technical Reports Server (NTRS)

    Brown, R. A.

    1980-01-01

    The extended atmosphere of the Jupiter system consists of atoms and ions of heavy elements. This material originates on the satellite Io. Energy is lost from the thermal plasma in collisionally excited optical and ultraviolet emission. The juxtaposition of Earth and spacecraft measurements provide insight concerning the underlying processes of particle transport and energy supply.

  13. Adaptive Distributed Intelligent Control Architecture for Future Propulsion Systems (Preprint)

    DTIC Science & Technology

    2007-04-01

    weight will be reduced by replacing heavy harness assemblies and FADECs , with distributed processing elements interconnected. This paper reviews...Digital Electronic Controls ( FADECs ), with distributed processing elements interconnected through a serial bus. Efficient data flow throughout the...because intelligence is embedded in components while overall control is maintained in the FADEC . The need for Distributed Control Systems in

  14. Heavy metals effects on forage crops yields and estimation of elements accumulation in plants as affected by soil.

    PubMed

    Grytsyuk, N; Arapis, G; Perepelyatnikova, L; Ivanova, T; Vynograds'ka, V

    2006-02-01

    Heavy metals (Cu, Cd, Pb, Zn) effect on the productivity of forage crops (clover and perennial cereal grasses) and their accumulation in plants, depending on the concentration of these elements in a soil, has been studied in micro-field experiments on three types of soil. The principle objective was to determine regularities of heavy metals migration in a soil-plant system aiming the estimation of permissible levels of heavy metals content in soils with the following elaboration of methods, which regulate the toxicants transfer to plants. Methods of field experiments, agrochemical and atomic absorption analysis were used. Results were statistically treated by Statistica 6.0, S-Plus 6. Experimental results have shown that the intensity of heavy metals accumulation in plants depends on the type of the soil, the species of plants, the physicochemical properties of heavy metals and their content in the soil. Logarithmic interdependency of heavy metals concentration in soils and their accumulation in plants is suggested. However, the strong correlation between the different heavy metals concentrations in the various soils and the yield of crops was not observed. Toxicants accumulation in crops decreased in time.

  15. Heavy element synthesis in the Universe

    NASA Astrophysics Data System (ADS)

    Ramirez-Ruiz, Enrico

    2018-06-01

    The source of about half of the heaviest elements in the Universe has been a mystery for a long time. Although the general picture of element formation is well understood, many questions about the nuclear physics processes and particularly the astrophysical details remain to be answered. Here I focus on recent advances in our understanding of the origin of the heaviest and rarest elements in the Universe

  16. The interstellar abundances of tin and four other heavy elements

    NASA Technical Reports Server (NTRS)

    Hobbs, L. M.; Welty, D. E.; Morton, D. C.; Spitzer, L.; York, D. G.

    1993-01-01

    Spectra recorded at 1150-1600 A with an instrumental resolution near 16 km/s were obtained with the Goddard High-Resolution Spectrograph on board the HST. The gaseous interstellar abundances of five heavy elements along the light paths to 23 Ori, 15 Mon, 1 Sco, Pi Sco, and Pi Aqr were determined from the observations. The 1400.450 A line of Sn II was detected and identified toward three stars; at Z = 50, tin is the first element from the fifth row of the periodic table to be identified in the interstellar medium. One spectral line of each of Cu II (Z = 29) and Ga II (Z = 31), three lines of Ge II (Z = 32), and two lines of Kr I (Z = 36) were also detected toward some or all of the five stars. The depletions of these five heavy elements generally decrease monotonically with increasing atomic number toward each of the six stars, and tin is generally undepleted within the observational errors. The depletions of 26 elements from the interstellar gas in an average dense interstellar cloud appear to correlate with the elemental 'nebular' condensation temperatures more closely than with the first ionization potentials.

  17. ARM Cloud Aerosol Precipitation Experiment (ACAPEX) Science Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, L. R.; Prather, K.; Ralph, R.

    The western U.S. receives precipitation predominantly during the cold season when storms approach from the Pacific Ocean. The snowpack that accumulates during winter storms provides about 70-90% of water supply for the region. Understanding and modeling the fundamental processes that govern the large precipitation variability and extremes in the western U.S. is a critical test for the ability of climate models to predict the regional water cycle, including floods and droughts. Two elements of significant importance in predicting precipitation variability in the western U.S. are atmospheric rivers and aerosols. Atmospheric rivers (ARs) are narrow bands of enhanced water vapor associatedmore » with the warm sector of extratropical cyclones over the Pacific and Atlantic oceans. Because of the large lower-tropospheric water vapor content, strong atmospheric winds and neutral moist static stability, some ARs can produce heavy precipitation by orographic enhancement during landfall on the U.S. West Coast. While ARs are responsible for a large fraction of heavy precipitation in that region during winter, much of the rest of the orographic precipitation occurs in post-frontal clouds, which are typically quite shallow, with tops just high enough to pass the mountain barrier. Such clouds are inherently quite susceptible to aerosol effects on both warm rain and ice precipitation-forming processes.« less

  18. Prospecting for Precious Metals in Ultra-Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    French, R. S.

    2000-05-01

    The chemical compositions of the most metal-poor halo stars are living records of the very early nucleosynthetic history of the Galaxy. Only a few prior generations, if not a single one, of element-donating supernovae could have been responsible for the heavy elements observed in ultra-metal-poor (UMP; [Fe/H] < --2.5) stars. Abundances of the heavy neutron-capture elements (Z > 30) can yield direct information about the supernova progenitors to UMP stars, and abundances of unstable thorium and uranium (Z = 90, 92) can potentially provide age estimates for the Galactic halo. Already, many studies have demonstrated that abundances of rare-earth elements (56 <= Z <= 72) in UMP stars are completely consistent with their production in rapid neutron-capture synthesis (r-process) events, usually believed to occur during supernovae explosions. Therefore, mapping the entire abundance pattern of UMP stars is of significant interest. In particular, abundances of the most massive stable elements (Os -> Pb or 76 <= Z <= 82) could provide crucial information about the so-called ``third r-process peak,'' and are critical to the radioactive-dating technique that uses unstable thorium as a chronometer. Until recently, abundance determinations for these elements have been virtually non-existent, as the strongest relevant transitions lay in the vacuum UV, inaccessible to ground-based observation. The availability of high-resolution space-based spectrometers has opened up new regions of spectral coverage, including precisely the range in wavelength needed to make these sensitive measurements. We have undertaken a study of about 10 metal-poor halo giants to determine the abundances of several of the heaviest neutron-capture elements including platinum, osmium, lead, and gold. Preliminary results indicate that the abundance pattern of heavy neutron-capture elements (56 <= Z <= 82) in UMP stars does mimic a scaled solar system r-process. Thus, the ability to estimate the initial abundances of thorium and uranium is greatly reinforced.

  19. Temperature dependence of the isotope chemistry of the heavy elements.

    PubMed Central

    Bigeleisen, J

    1996-01-01

    The temperature coefficient of equilibrium isotope fractionation in the heavy elements is shown to be larger at high temperatures than that expected from the well-studied vibrational isotope effects. The difference in the isotopic behavior of the heavy elements as compared with the light elements is due to the large nuclear isotope field shifts in the heavy elements. The field shifts introduce new mechanisms for maxima, minima, crossovers, and large mass-independent isotope effects in the isotope chemistry of the heavy elements. The generalizations are illustrated by the temperature dependence of the isotopic fractionation in the redox reaction between U(VI) and U(IV) ions. PMID:8790340

  20. Understanding Nucleosynthesis in Neutron Star Mergers with Spitzer Observations

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi; Lau, Ryan; Cenko, Brad; Singer, Leo; Goobar, Ariel; Ofek, Eran; Kaplan, David; Andreoni, Igor; Adams, Scott; Perley, Daniel

    2018-05-01

    The discovery of the first electromagnetic counterpart to gravitational waves from merging neutron stars opened a new chapter in multi-messenger astrophysics. The infrared signature was key to unraveling the prolific production of heavy elements by r-process nucleosynthesis. Understanding the nuclear physics in the heavy element production requires observations a few weeks after the merger at longer wavelengths that are only accessible by Spitzer. In particular, Spitzer can address the question of whether or not the heaviest elements in the third abundance peak (such as gold and platinum) were synthesized. Here, we request 30 hours of Target of Opportunity time to undertake Spitzer follow-up of two neutron star mergers.

  1. Environmental assessment of Al-Hammar Marsh, Southern Iraq.

    PubMed

    Al-Gburi, Hind Fadhil Abdullah; Al-Tawash, Balsam Salim; Al-Lafta, Hadi Salim

    2017-02-01

    (a) To determine the spatial distributions and levels of major and minor elements, as well as heavy metals, in water, sediment, and biota (plant and fish) in Al-Hammar Marsh, southern Iraq, and ultimately to supply more comprehensive information for policy-makers to manage the contaminants input into the marsh so that their concentrations do not reach toxic levels. (b) to characterize the seasonal changes in the marsh surface water quality. (c) to address the potential environmental risk of these elements by comparison with the historical levels and global quality guidelines (i.e., World Health Organization (WHO) standard limits). (d) to define the sources of these elements (i.e., natural and/or anthropogenic) using combined multivariate statistical techniques such as Principal Component Analysis (PCA) and Agglomerative Hierarchical Cluster Analysis (AHCA) along with pollution analysis (i.e., enrichment factor analysis). Water, sediment, plant, and fish samples were collected from the marsh, and analyzed for major and minor ions, as well as heavy metals, and then compared to historical levels and global quality guidelines (WHO guidelines). Then, multivariate statistical techniques, such as PCA and AHCA, were used to determine the element sourcing. Water analyses revealed unacceptable values for almost all physio-chemical and biological properties, according to WHO standard limits for drinking water. Almost all major ions and heavy metal concentrations in water showed a distinct decreasing trend at the marsh outlet station compared to other stations. In general, major and minor ions, as well as heavy metals exhibit higher concentrations in winter than in summer. Sediment analyses using multivariate statistical techniques revealed that Mg, Fe, S, P, V, Zn, As, Se, Mo, Co, Ni, Cu, Sr, Br, Cd, Ca, N, Mn, Cr, and Pb were derived from anthropogenic sources, while Al, Si, Ti, K, and Zr were primarily derived from natural sources. Enrichment factor analysis gave results compatible with multivariate statistical techniques findings. Analysis of heavy metals in plant samples revealed that there is no pollution in plants in Al-Hammar Marsh. However, the concentrations of heavy metals in fish samples showed that all samples were contaminated by Pb, Mn, and Ni, while some samples were contaminated by Pb, Mn, and Ni. Decreasing of Tigris and Euphrates discharges during the past decades due to drought conditions and upstream damming, as well as the increasing stress of wastewater effluents from anthropogenic activities, led to degradation of the downstream Al-Hammar Marsh water quality in terms of physical, chemical, and biological properties. As such properties were found to consistently exceed the historical and global quality objectives. However, element concentration decreasing trend at the marsh outlet station compared to other stations indicate that the marsh plays an important role as a natural filtration and bioremediation system. Higher element concentrations in winter were due to runoff from the washing of the surrounding Sabkha during flooding by winter rainstorms. Finally, the high concentrations of heavy metals in fish samples can be attributed to bioaccumulation and biomagnification processes.

  2. The Universality of the Rapid Neutron-capture Process Revealed by a Possible Disrupted Dwarf Galaxy Star

    NASA Astrophysics Data System (ADS)

    Casey, Andrew R.; Schlaufman, Kevin C.

    2017-12-01

    The rapid neutron-capture or r-process is thought to produce the majority of the heavy elements (Z> 30) in extremely metal-poor stars. The same process is also responsible for a significant fraction of the heavy elements in the Sun. This universality of the r-process is one of its characteristic features, as well as one of the most important clues to its astrophysical origin. We report the discovery of an extremely metal-poor field giant with [{Sr},{Ba}/{{H}}]≈ -6.0 and [{Sr},{Ba}/{Fe}]≈ -3.0, the lowest abundances of strontium and barium relative to iron ever observed. Despite its low abundances, the star 2MASS J151113.24-213003.0 has [{Sr}/{Ba}]=-0.11+/- 0.14, therefore its neutron-capture abundances are consistent with the main solar r-process pattern that has [{Sr}/{Ba}]=-0.25. It has been suggested that extremely low neutron-capture abundances are a characteristic of dwarf galaxies, and we find that this star is on a highly eccentric orbit with an apocenter ≳100 kpc that lies in the disk of satellites in the halo of the Milky Way. We show that other extremely metal-poor stars with low [Sr, Ba/H] and [Sr, Ba/Fe] plus solar [Sr/Ba] tend to have orbits with large apocenters, consistent with a dwarf galaxy origin for this class of object. The nucleosynthesis event that produced the neutron-capture elements in 2MASS J151113.24-213003.0 must produce both strontium and barium together in the solar ratio. We exclude contributions from the s-process in intermediate-mass asymptotic giant branch or fast-rotating massive metal-poor stars, pair-instability supernovae, the weak r-process, and neutron-star mergers. We argue that the event was a Pop III or extreme Pop II core-collapse supernova explosion. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  3. A consumer`s guide to lattice QCD results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeGrand, T.

    1994-12-01

    The author presents an overview of recent lattice QCD results on hadron spectroscopy and matrix elements. Case studies include light quark spectroscopy, the determination of {alpha}{sub s} from heavy quark spectroscopy, the D-meson decay constant, a calculation of the Isgur-Wise function, and some examples of the (lack of) effect of sea quarks on matrix elements. The review is intended for the nonexpert.

  4. New developments in understanding the r-process from observations of metal-poor stars

    NASA Astrophysics Data System (ADS)

    Frebel, Anna

    2015-04-01

    In their atmospheres, old metal-poor Galactic stars retain detailed information about the chemical composition of the interstellar medium at the time of their birth. Extracting such stellar abundances enables us to reconstruct the beginning of the chemical evolution shortly after the Big Bang. About 5% of metal-poor stars with [Fe/H] < - 2 . 5 display in their spectrum a strong enhancement of neutron-capture elements associated with the rapid (r-) nucleosynthesis process that is responsible for the production of the heaviest elements in the Universe. This fortuity provides a unique opportunity of bringing together astrophysics and nuclear physics because these objects act as ``cosmic lab'' for both fields of study. The so-called r-process stars are thought to have formed from material enriched in heavy neutron-capture elements that were created during an r-process event in a previous generation supernova. It appears that the few stars known with this rare chemical signature all follow the scaled solar r-process pattern (for the heaviest elements with 56 <= Z <= 90 that is). This suggests that the r-process is universal - a surprising empirical finding and a solid result that can not be obtained from any laboratory on earth. While much research has been devoted to establishing this pattern, little attention has been given to the overall level of enhancement. New results will be presented on the full extent of r-process element enrichment as observed in metal-poor stars. The challenge lies in determining how the r-process material in the earliest gas clouds was mixed and diluted. Assuming individual r-process events to have contributed the observed r-process elements. We provide empirical estimates on the amount of r-process material produced. This should become a crucial constraint for theoretical nuclear physics models of heavy element nucleosynthesis.

  5. Element accumulation in boreal bryophytes, lichens and vascular plants exposed to heavy metal and sulfur deposition in Finland.

    PubMed

    Salemaa, Maija; Derome, John; Helmisaari, Heljä-Sisko; Nieminen, Tiina; Vanha-Majamaa, Ilkka

    2004-05-25

    Macronutrient (N, P, K, Mg, S, Ca), heavy metal (Fe, Zn, Mn, Cu, Ni, Cd, Pb) and Al concentrations in understorey bryophytes, lichens and vascular plant species growing in Scots pine forests at four distances from the Harjavalta Cu-Ni smelter (0.5, 2, 4 and 8 km) were compared to those at two background sites in Finland. The aim was to study the relationship between element accumulation and the distribution of the species along a pollution gradient. Elevated sulfur, nitrogen and heavy metal concentrations were found in all species groups near the pollution source. Macronutrient concentrations tended to decrease in the order: vascular plants>bryophytes>lichens, when all the species groups grew on the same plot. Heavy metal concentrations (except Mn) were the highest in bryophytes, followed by lichens, and were the lowest in vascular plants. In general, vascular plants, being capable of restricting the uptake of toxic elements, grew closer to the smelter than lichens, while bryophytes began to increase in the understorey vegetation at further distances from the smelter. A pioneer moss (Pohlia nutans) was an exception, because it accumulated considerably higher amounts of Cu and Ni than the other species and still survived close to the smelter. The abundance of most of the species decreased with increasing Cu and Ni concentrations in their tissues. Cetraria islandica, instead, showed a positive relationship between the abundance and Cu, Ni and S concentrations of the thallus. It is probable that, in addition to heavy metals, sporadically high SO(2) emissions have also affected the distribution of the plant species.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsujimoto, Takuji; Shigeyama, Toshikazu, E-mail: taku.tsujimoto@nao.ac.jp

    Growing interests in neutron star (NS) mergers as the origin of r-process elements have sprouted since the discovery of evidence for the ejection of these elements from a short-duration γ-ray burst. The hypothesis of a NS merger origin is reinforced by a theoretical update of nucleosynthesis in NS mergers successful in yielding r-process nuclides with A > 130. On the other hand, whether the origin of light r-process elements are associated with nucleosynthesis in NS merger events remains unclear. We find a signature of nucleosynthesis in NS mergers from peculiar chemical abundances of stars belonging to the Galactic globular cluster M15.more » This finding combined with the recent nucleosynthesis results implies a potential diversity of nucleosynthesis in NS mergers. Based on these considerations, we are successful in the interpretation of an observed correlation between [light r-process/Eu] and [Eu/Fe] among Galactic halo stars and accordingly narrow down the role of supernova nucleosynthesis in the r-process production site. We conclude that the tight correlation by a large fraction of halo stars is attributable to the fact that core-collapse supernovae produce light r-process elements while heavy r-process elements such as Eu and Ba are produced by NS mergers. On the other hand, stars in the outlier, composed of r-enhanced stars ([Eu/Fe] ≳ +1) such as CS22892-052, were exclusively enriched by matter ejected by a subclass of NS mergers that is inclined to be massive and consist of both light and heavy r-process nuclides.« less

  7. Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program. II. Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd, and Eu

    NASA Astrophysics Data System (ADS)

    Delgado Mena, E.; Tsantaki, M.; Adibekyan, V. Zh.; Sousa, S. G.; Santos, N. C.; González Hernández, J. I.; Israelian, G.

    2017-10-01

    Aims: To understand the formation and evolution of the different stellar populations within our Galaxy it is essential to combine detailed kinematical and chemical information for large samples of stars. The aim of this work is to explore the chemical abundances of neutron capture elements which are a product of different nucleosynthesis processes taking place in diverse objects in the Galaxy, such as massive stars, asymptotic giant branch (AGB) stars and supernovae (SNe) explosions. Methods: We derive chemical abundances of Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd, and Eu for a large sample of more than 1000 FGK dwarf stars with high-resolution (R 115 000) and high-quality spectra from the HARPS-GTO program. The abundances are derived by a standard local thermodynamic equilibrium (LTE) analysis using measured equivalent widths (EWs) injected to the code MOOG and a grid of Kurucz ATLAS9 atmospheres. Results: We find that thick disc stars are chemically disjunct for Zn and Eu and also show on average higher Zr but lower Ba and Y than the thin disc stars. We also discovered that the previously identified high-α metal-rich population is also enhanced in Cu, Zn, Nd, and Eu with respect to the thin disc but presents lower Ba and Y abundances on average, following the trend of thick disc stars towards higher metallities and further supporting the different chemical composition of this population. By making a qualitative comparison of O (pure α), Mg, Eu (pure r-process), and s-process elements we can distinguish between the contribution of the more massive stars (SNe II for α and r-process elements) and the lower mass stars (AGBs) whose contribution to the enrichment of the Galaxy is delayed, due to their longer lifetimes. The ratio of heavy-s to light-s elements of thin disc stars presents the expected behaviour (increasing towards lower metallicities) and can be explained by a major contribution of low-mass AGB stars for s-process production at disc metallicities. However, the opposite trend found for thick disc stars suggests that intermediate-mass AGB stars play an important role in the enrichment of the gas from where these stars formed. Previous works in the literature also point to a possible primary production of light-s elements at low metallicities to explain this trend. Finally, we also find an enhancement of light-s elements in the thin disc at super-solar metallicities which could be caused by the contribution of metal-rich AGB stars. Conclusions: This work proves the utility of homogeneous and high-quality data of modest sample sizes. We find some interesting trends that might help to differentiate thin and thick disc population (such as [Zn/Fe] and [Eu/Fe] ratios) and that can also provide useful constraints for Galactic chemical evolution models of the different populations in the Galaxy. Based on observations collected at the La Silla Observatory, ESO (Chile), with the HARPS spectrograph at the 3.6 m ESO telescope (ESO runs ID 72.C—0488, 082.C—0212, and 085.C—0063).Full Tables 1 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A94

  8. Influence of heavy natural radioactive nuclides introduced in soil with labelled fertilizers and ameliorants on cytogenetic effects in plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arkhipov, N.P.; Bazylev, V.V.; Bobrikova, E.T.

    1985-05-01

    The effect of heavy natural radioactive nuclides (STYU, STSTh, SSWRa, S Po, and S Pb) in labeled fertilizers and ameliorants on the number of meiotic chromosome aberrations was studied in field experiments on the major crop plants, wheat, barley and corn. The mining and use of coal and oil and the processing of raw materials in the production of rare and nonferrous metals produce high quantities of wastes with an elevated content of natural radionuclides. One possible way for technogenically altering the natural radiation background of soil is the active utilization of phosphorus fertilizers in agriculture, and also the use,more » as fertilizers and ameliorants of wastes from nonferrous metallurgy, of the ash from heat and power plants and various intermediates from the chemical industry. The authors conclude that the introduction of labeled ammophos, nitrophos and phosphogypsum, which raised the soil background concentration of the specified elements, produced an increase in the number of cells with meiotic chromosome aberrations.« less

  9. Wet extraction of heavy metals and chloride from MSWI and straw combustion fly ashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguiar del Toro, M.; Calmano, W.; Ecke, H.

    2009-09-15

    Fly ash residues from combustion often do not meet the criteria neither for reuse as construction materials nor landfilling as non-hazardous waste, mainly because of the high concentration of heavy metals and chlorides. This work aimed to technically evaluate an innovative wet treatment process for the extraction of chloride (Cl{sup -}), cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) from fly ashes from a municipal solid waste incineration (MSWI) plant and from a straw combustion (SC) facility. Factors investigated were liquid/solid (L/S) ratio, full carbonation (CO{sub 2} treatment), influence of pH and leaching time, using a two-level full factorialmore » design. The most significant factor for all responses was low pH, followed by L/S ratio. Multiple linear regression models describing the variation in extraction data had R{sup 2} values ranging from 58% to 98%. An optimization of the element extraction models was performed and a set of treatment conditions is suggested.« less

  10. Promising lines of research in the realms of laboratory nuclear astrophysics by means of powerful lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyaev, V. S., E-mail: belyaev@tsniimash.ru; Zagreev, B. V.; Kedrov, A. Yu.

    Basic nuclear-astrophysics problems that can be studied under laboratory conditions at a laserradiation intensity of 10{sup 18} W/cm{sup 2} or more are specified. These are the lithium problem, the problem of determining neutron sources for s-processes of heavy-element formation, the formation of bypassed stable p-nuclei, and nuclear reactions involving isotopes used by astronomers for diagnostics purposes. The results of experiments at the Neodym laser facility are presented, and proposals for further studies in these realms are formulated.

  11. The influence of molecular symmetry and topological factors on the internal heavy atom effect in aromatic and heteroaromatic compounds

    NASA Astrophysics Data System (ADS)

    Nijegorodov, N.; Mabbs, R.

    2001-06-01

    The absorption and fluorescence properties of 26 specially selected aromatic and heteroaromatic compounds, from different classes, are studied quantum chemically and experimentally at room temperature (293 K). Seven of these compounds have not been studied before. The compounds are arranged in seven groups, which illustrate different cases of the internal heavy atom effect. The quantum yield of fluorescence, γ and fluorescence decay time, τf of deaerated and non-deaerated cyclohexane or ethanol solutions are measured. The oscillator strength, fe, fluorescence rate constant, kf, natural lifetime, τ0t, and intersystem crossing rate constant, kST, were calculated for each compound. The orbital nature of the lowest excited singlet state and direction of polarization of the S0→ S1 transitions are determined using the PPP-CI method for each molecule. The investigation shows that substitution of a heavy atom(s) (Cl, S, Br, I etc.) into an aromatic or heteroaromatic molecule may produce different changes in all the fluorescence parameters (sometimes dramatically) and not necessarily lead to the quenching of fluorescence. Substitution of a heavy atom(s) may increase the value of the spin-orbit operator, \\Hcirc SO, if the S0→ S1 excitation is localized to some extent on a carbon atom bonded to a heavy atom(s) or on the heavy atom itself (Ö or S). Such substitution may change the symmetry of a molecule and hence the values of the ΨS 1\\HcircsoΨT i' matrix elements would change (in molecules of higher symmetry groups not all Ti states are able to mix with the perturbing S1 state). Such substitution may change the arrangement of Ti states below the S1, state and hence, the Franck-Condon factors would change. Such substitution may also change the value of the ΨS 0M jΨS 1 matrix element and, consequently, the oscillator strength of the S0→ S1 transition would change. A combination of all these possible changes determines the value of kf and kST and, consequently, determines the value of γ and τf. It is observed that in many cases, the value of the spin-orbit operator is related to the dipole moment operator, e.g. if the introduction of a heavy atom increases kST then, as a rule, it decreases fe( 1A→ 1La).

  12. [Predicting Spectra of Accretion Disks Around Galactic Black Holes

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    2004-01-01

    The purpose of this grant was to construct detailed atmosphere solutions in order to predict the spectra of accretion disks around Galactic black holes. Our plan of action was to take an existing disk atmosphere code (TLUSTY, created by Ivan Hubeny) and introduce those additional physical processes necessary to make it applicable to disks of this variety. These modifications include: treating Comptonization; introducing continuous opacity due to heavy elements; incorporating line opacity due to heavy elements; adopting a disk structure that reflects readjustments due to radiation pressure effects; and injecting heat via a physically-plausible vertical distribution.

  13. The trace element chemistry of CaS in enstatite chondrites and some implications regarding its origin

    NASA Technical Reports Server (NTRS)

    Larimer, John W.; Ganapathy, R.

    1987-01-01

    The trace element distribution in oldhamite (CaS) extracted from enstatite chondrites was determined by INAA. Prior to extraction, the petrologic setting of the grains was studied microscopically, and their minor element contents determined by microprobe analysis; samples that displayed a wide range of minor element contents were selected for detailed elementary analysis. Those samples of CaS suspected to be more primitive on the basis of their minor element and petrologic siting contain the entire inventory of the host meteorite's light REE (LREE) and Eu, plus 30-50 percent of the heavy-REE inventory. In less primitive samples, the LREE are less enriched although Eu remains highly concentrated. Several other elements, including lithophiles and chalcophiles, are most enriched in the most primitive CaS. It is suggested that oldhamite played a key role in the redistribution of these elements during the metamorphism and evolution of enstatite-rich material.

  14. Zirconium and hafnium

    USGS Publications Warehouse

    Jones, James V.; Piatak, Nadine M.; Bedinger, George M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Zirconium and hafnium are corrosion-resistant metals that are widely used in the chemical and nuclear industries. Most zirconium is consumed in the form of the main ore mineral zircon (ZrSiO4, or as zirconium oxide or other zirconium chemicals. Zirconium and hafnium are both refractory lithophile elements that have nearly identical charge, ionic radii, and ionic potentials. As a result, their geochemical behavior is generally similar. Both elements are classified as incompatible because they have physical and crystallochemical properties that exclude them from the crystal lattices of most rock-forming minerals. Zircon and another, less common, ore mineral, baddeleyite (ZrO2), form primarily as accessory minerals in igneous rocks. The presence and abundance of these ore minerals in igneous rocks are largely controlled by the element concentrations in the magma source and by the processes of melt generation and evolution. The world’s largest primary deposits of zirconium and hafnium are associated with alkaline igneous rocks, and, in one locality on the Kola Peninsula of Murmanskaya Oblast, Russia, baddeleyite is recovered as a byproduct of apatite and magnetite mining. Otherwise, there are few primary igneous deposits of zirconium- and hafnium-bearing minerals with economic value at present. The main ore deposits worldwide are heavy-mineral sands produced by the weathering and erosion of preexisting rocks and the concentration of zircon and other economically important heavy minerals, such as ilmenite and rutile (for titanium), chromite (for chromium), and monazite (for rare-earth elements) in sedimentary systems, particularly in coastal environments. In coastal deposits, heavy-mineral enrichment occurs where sediment is repeatedly reworked by wind, waves, currents, and tidal processes. The resulting heavy-mineral-sand deposits, called placers or paleoplacers, preferentially form at relatively low latitudes on passive continental margins and supply 100 percent of the world’s zircon. Zircon makes up a relatively small percentage of the economic heavy minerals in most deposits and is produced primarily as a byproduct of heavy-mineral-sand mining for titanium minerals.From 2003 to 2012, world zirconium mineral concentrates production increased by more than 40 percent, and Australia and South Africa were the leading producers. Global consumption of zirconium mineral concentrates generally increased during the same time period, largely as a result of increased demand in developing economies in Asia and the Middle East. Global demand weakened in 2012, causing a decrease in world production of zirconium mineral concentrates and delaying the development of several new mining projects. Global consumption is expected to increase in the future, however, as demand from the ceramics, chemicals, and metals industries increases (driven by renewed growth in developing economies) and demand for zirconium and hafnium metal increases (driven by the construction and operation of new nuclear powerplants).The behaviors of zirconium and hafnium in the environment are very similar to one another in that most zirconium- and hafnium-bearing minerals have limited solubility and reactivity. Anthropogenic sources of zirconium, and likely hafnium, are from industrial zirconium-containing byproducts and emissions from the processing of sponge zirconium, and exposure to the general population from these sources is small. Zirconium and hafnium are likely not essential to human health and generally are considered to be of low toxicity to humans. The main exposure risks are associated with industrial inhalation and dermal exposure. Because of the low solubility of zirconium and hafnium, ecological health concerns in the aquatic environment and in soils are minimal. Heavy-mineral-sand mining may lead to increased erosion rates when the mining is managed improperly. In addition, surface mining requires removal of the overlying organic soil layer and produces waste material that includes tailings and slimes. The soil removal and mining activity disturbs the surrounding ecosystem and alters the character of the landscape. Dry mineral separation processes create high amounts of airborne dust, whereas wet mineral separation processes do not. In operations that restore the landscape to pre-mining conditions, the volume of waste and the impact on the landscape may be relatively temporary.

  15. Fates of Chemical Elements in Biomass during Its Pyrolysis.

    PubMed

    Liu, Wu-Jun; Li, Wen-Wei; Jiang, Hong; Yu, Han-Qing

    2017-05-10

    Biomass is increasingly perceived as a renewable resource rather than as an organic solid waste today, as it can be converted to various chemicals, biofuels, and solid biochar using modern processes. In the past few years, pyrolysis has attracted growing interest as a promising versatile platform to convert biomass into valuable resources. However, an efficient and selective conversion process is still difficult to be realized due to the complex nature of biomass, which usually makes the products complicated. Furthermore, various contaminants and inorganic elements (e.g., heavy metals, nitrogen, phosphorus, sulfur, and chlorine) embodied in biomass may be transferred into pyrolysis products or released into the environment, arousing environmental pollution concerns. Understanding their behaviors in biomass pyrolysis is essential to optimizing the pyrolysis process for efficient resource recovery and less environmental pollution. However, there is no comprehensive review so far about the fates of chemical elements in biomass during its pyrolysis. Here, we provide a critical review about the fates of main chemical elements (C, H, O, N, P, Cl, S, and metals) in biomass during its pyrolysis. We overview the research advances about the emission, transformation, and distribution of elements in biomass pyrolysis, discuss the present challenges for resource-oriented conversion and pollution abatement, highlight the importance and significance of understanding the fate of elements during pyrolysis, and outlook the future development directions for process control. The review provides useful information for developing sustainable biomass pyrolysis processes with an improved efficiency and selectivity as well as minimized environmental impacts, and encourages more research efforts from the scientific communities of chemistry, the environment, and energy.

  16. Aviation Turbine Fuels from Tar Sands Bitumen and Heavy Oils. Part 3. Laboratory Sample Production.

    DTIC Science & Technology

    1987-12-01

    FILD7 ar Sands, Heavy Ois Jet Fue - - - etF IE L D G R O U P S U B -G R O U P , u e -. IT - 3 seC m ) A s h l GROUP SB-RP Fue-i-T-33-A Reduced Crude...connec- tion with processes for heavy oil cracking and related catalysts. * program which allowed processing of bitumen stocks . The overall process flow

  17. Trace element geochemistry and surface water chemistry of the Bon Air coal, Franklin County, Cumberland Plateau, southeast Tennessee

    USGS Publications Warehouse

    Shaver, S.A.; Hower, J.C.; Eble, C.F.; McLamb, E.D.; Kuers, K.

    2006-01-01

    Mean contents of trace elements and ash in channel, bench-column, and dump samples of the abandoned Bon Air coal (Lower Pennsylvanian) in Franklin County, Tennessee are similar to Appalachian COALQUAL mean values, but are slightly lower for As, Fe, Hg, Mn, Na, Th, and U, and slightly higher for ash, Be, Cd, Co, Cr, REEs, Sr, and V, at the 95% confidence level. Compared to channel samples, dump sample means are slightly lower in chalcophile elements (As, Cu, Fe, Ni, Pb, S, Sb, and V) and slightly higher in clay or heavy-mineral elements (Al, K, Mn, REEs, Th, Ti, U, and Y), but at the 95% confidence level, only As and Fe are different. Consistent abundances of clay or heavy-mineral elements in low-Br, high-S, high-ash benches that are relatively enriched in quartz and mire-to-levee species like Paralycopodites suggest trace elements are largely fluvial in origin. Factor analysis loadings and correlation coefficients between elements suggest that clays host most Al, Cr, K, Ti, and Th, significant Mn and V, and some Sc, U, Ba, and Ni. Heavy accessory minerals likely house most REEs and Y, lesser Sc, U, and Th, and minor Cr, Ni, and Ti. Pyrite appears to host As, some V and Ni, and perhaps some Cu, but Cu probably exists largely as chalcopyrite. Data suggest that organic debris houses most Be and some Ni and U, and that Pb and Sb occur as Pb-Sb sulfosalt(s) within organic matrix. Most Hg, and some Mn and Y, appear to be hosted by calcite, suggesting potential Hg remobilization from original pyrite, and Hg sorption by calcite, which may be important processes in abandoned coals. Most Co, Zn, Mo, and Cd, significant V and Ni, and some Mn probably occur in non-pyritic sulfides; Ba, Sr, and P are largely in crandallite-group phosphates. Selenium does not show organic or "clausthalite" affinities, but Se occurrence is otherwise unclear. Barium, Mn, Ni, Sc, U, and V, with strongly divided statistical affinities, likely occur subequally in multiple modes. For study area surface waters, highest levels of most trace elements occur in mine-adit or mine-dump drainage. Effluent flow rates strongly affect both acidity and trace element levels. Adit drainages where flow is only a trickle have the most acidic waters (pH 3.78-4.80) and highest trace element levels (up to two orders of magnitude higher than in non-mine site waters). Nonetheless, nearly all surface waters have low absolute concentrations of trace elements of environmental concern, and all waters sampled meet U.S. EPA primary drinking water standards and aquatic life criteria for all elements analyzed. Secondary drinking water standards are also met for all parameters except Al, pH, Fe, and Mn, but even in extreme cases (mine waters with pH as low as 3.78 and up to 1243 ppb Al, 6280 ppb Fe, and 721 ppb Mn, and non-mine dam-outflow waters with up to 18,400 ppb Fe and 1540 ppb Mn) downslope attenuation is apparently rapid, as down-drainage plateau-base streams show background levels for all these parameters. ?? 2005 Elsevier B.V. All rights reserved.

  18. Lunar surface cosmic ray experiment S-152, Apollo 16

    NASA Technical Reports Server (NTRS)

    Fleischer, R. L.; Hart, H. R., Jr.; Carter, M.; Comostock, G. M.; Renshaw, A.; Woods, R. T.

    1973-01-01

    This investigation was directed at determining the energy spectra and abundances of low energy heavy cosmic rays (0.03 E or = 150 MeV/nucleon). The cosmic rays were detected using plastic and glass particle track detectors. Particles emitted during the 17 April 1972 solar flare dominated the spectra for energies below about 70 MeV/nucleon. Two conclusions emerge from the low energy data: (1) The differential energy spectra for solar particles vary rapidly for energies as low as 0.05 MeV/nucleon for iron-group nuclei. (2) The abundance ratio of heavy elements changes with energy at low energies; heavy elements are enhanced relative to higher elements increasingly as the energy decreases. Galactic particle fluxes recorded within the spacecraft are in agreement with those predicted taking into account solar modulation and spacecraft shielding. The composition of the nuclei at energies above 70 MeV/nucleon imply that these particles originate outside the solar system and hence are galactic cosmic rays.

  19. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.

    PubMed

    Smith, Stephen R

    2009-01-01

    The content, behaviour and significance of heavy metals in composted waste materials is important from two potentially conflicting aspects of environmental legislation in terms of: (a) defining end-of-waste criteria and increasing recycling of composted residuals on land and (b) protecting soil quality by preventing contamination. This review examines the effects of heavy metals in compost and amended soil as a basis for achieving a practical and sustainable balance between these different policy objectives, with particular emphasis on agricultural application. All types of municipal solid waste (MSW) compost contain more heavy metals than the background concentrations present in soil and will increase their contents in amended soil. Total concentrations of heavy metals in source-segregated and greenwaste compost are typically below UK PAS100 limits and mechanical segregated material can also comply with the metal limits in UK PAS100, although this is likely to be more challenging. Zinc and Pb are numerically the elements present in the largest amounts in MSW-compost. Lead is the most limiting element to use of mechanically-segregated compost in domestic gardens, but concentrations are typically below risk-based thresholds that protect human health. Composted residuals derived from MSW and greenwaste have a high affinity for binding heavy metals. There is general consensus in the scientific literature that aerobic composting processes increase the complexation of heavy metals in organic waste residuals, and that metals are strongly bound to the compost matrix and organic matter, limiting their solubility and potential bioavailability in soil. Lead is the most strongly bound element and Ni the weakest, with Zn, Cu and Cd showing intermediate sorption characteristics. The strong metal sorption properties of compost produced from MSW or sewage sludge have important benefits for the remediation of metal contaminated industrial and urban soils. Compost and sewage sludge additions to agricultural and other soils, with background concentrations of heavy metals, raise the soil content and the availability of heavy metals for transfer into crop plants. The availability in soil depends on the nature of the chemical association between a metal with the organic residual and soil matrix, the pH value of the soil, the concentration of the element in the compost and the soil, and the ability of the plant to regulate the uptake of a particular element. There is no evidence of increased metal release into available forms as organic matter degrades in soil once compost applications have ceased. However, there is good experimental evidence demonstrating the reduced bioavailability and crop uptake of metals from composted biosolids compared to other types of sewage sludge. It may therefore be inferred that composting processes overall are likely to contribute to lowering the availability of metals in amended soil compared to other waste biostabilisation techniques. The total metal concentration in compost is important in controlling crop uptake of labile elements, like Zn and Cu, which increases with increasing total content of these elements in compost. Therefore, low metal materials, which include source-segregated and greenwaste composts, are likely to have inherently lower metal availabilities overall, at equivalent metal loading rates to soil, compared to composted residuals with larger metal contents. This is explained because the compost matrix modulates metal availability and materials low in metals have stronger sorption capacity compared to high metal composts. Zinc is the element in sewage sludge-treated agricultural soil identified as the main concern in relation to potential impacts on soil microbial activity and is also the most significant metal in compost with regard to soil fertility and microbial processes. However, with the exception of one study, there is no other tangible evidence demonstrating negative impacts of heavy metals applied to soil in compost on soil microbial processes and only positive effects of compost application on the microbial status and fertility of soil are reported. The negative impacts on soil microorganisms apparent in one long-term field experiment could be explained by the exceptionally high concentrations of Cd and other elements in the applied compost, and of Cd in the compost-amended soil, which are unrepresentative of current practice and compost quality. The metal contents of source-segregated MSW or greenwaste compost are smaller compared to mechanically-sorted MSW-compost and sewage sludge, and low metal materials also have the smallest potential metal availabilities. Composting processes also inherently reduce metal availability compared to other organic waste stabilisation methods. Therefore, risks to the environment, human health, crop quality and yield, and soil fertility, from heavy metals in source-segregated MSW or greenwaste-compost are minimal. Furthermore, composts produced from mechanically-segregated MSW generally contain fewer metals than sewage sludge used as an agricultural soil improver under controlled conditions. Consequently, the metal content of mechanically-segregated MSW-compost does not represent a barrier to end-use of the product. The application of appropriate preprocessing and refinement technologies is recommended to minimise the contamination of mechanically-segregated MSW-compost as far as practicable. In conclusion, the scientific evidence indicates that conservative, but pragmatic limits on heavy metals in compost may be set to encourage recycling of composted residuals and contaminant reduction measures, which at the same time, also protect the soil and environment from potentially negative impacts caused by long-term accumulation of heavy metals in soil.

  20. Fission and quasifission of composite systems with Z =108 -120 : Transition from heavy-ion reactions involving S and Ca to Ti and Ni ions

    NASA Astrophysics Data System (ADS)

    Kozulin, E. M.; Knyazheva, G. N.; Novikov, K. V.; Itkis, I. M.; Itkis, M. G.; Dmitriev, S. N.; Oganessian, Yu. Ts.; Bogachev, A. A.; Kozulina, N. I.; Harca, I.; Trzaska, W. H.; Ghosh, T. K.

    2016-11-01

    Background: Suppression of compound nucleus formation in the reactions with heavy ions by a quasifission process in dependence on the reaction entrance channel. Purpose: Investigation of fission and quasifission processes in the reactions 36S,48Ca,48Ti , and 64Ni+238U at energies around the Coulomb barrier. Methods: Mass-energy distributions of fissionlike fragments formed in the reaction 48Ti+238U at energies of 247, 258, and 271 MeV have been measured using the double-arm time-of-flight spectrometer CORSET at the U400 cyclotron of the Flerov Laboratory of Nuclear Reactions and compared with mass-energy distributions for the reactions 36S,48Ca,64Ni+238U . Results: The most probable fragment masses as well as total kinetic energies and their dispersions in dependence on the interaction energies have been investigated for asymmetric and symmetric fragments for the studied reactions. The fusion probabilities have been deduced from the analysis of mass-energy distributions. Conclusion: The estimated fusion probability for the reactions S, Ca, Ti, and Ni ions with actinide nuclei shows that it depends exponentially on the mean fissility parameter of the system. For the reactions with actinide nuclei leading to the formation of superheavy elements the fusion probabilities are of several orders of magnitude higher than in the case of cold fusion reactions.

  1. The Firework of Electromagnetic Counterparts from GW170817

    NASA Astrophysics Data System (ADS)

    Siegel, Daniel

    2018-01-01

    The gravitational-wave signal of the binary neutron star merger GW170817 was followed by a firework of electromagnetic transients across the entire electromagnetic spectrum. The gamma-ray emission has provided strong evidence for the association of short gamma-ray bursts (SGRBs) with binary neutron star mergers and the ultraviolet, optical, and near-infrared emission is consistent with a kilonova indicative of the formation of heavy elements in the merger ejecta by the rapid neutron capture process (r-process). In this talk, I will discuss and review theoretical scenarios to interpret the gamma-ray, X-ray, and radio observations. I will present recent results from general-relativistic magnetohydrodynamic simulations and discuss possible scenarios and mass ejection mechanisms that can give rise to the observed kilonova features. In particular, I will argue that massive winds from neutrino-cooled post-merger accretion disks most likely synthesized the heavy r-process elements in GW170817.

  2. A process for reducing rocks and concentrating heavy minerals

    USGS Publications Warehouse

    Strong, Thomas R.; Driscoll, Rhonda L.

    2016-03-30

    Once the rock is reduced to grains, it is necessary to separate the grains into paramagnetic and nonparamagnetic and heavy and light mineral fractions. In separating grains by property, those minerals chemically suited for radiometric dating are abundantly concentrated. Grams of mineralogical material can then be analyzed and characterized by multiple methods including trace element chemistry, laser ablation, and in particular, ion geochronology.

  3. Heavy Metal Pollution and Ecological Assessment around the Jinsha Coal-Fired Power Plant (China)

    PubMed Central

    Hu, Jiwei; Qin, Fanxin; Quan, Wenxuan; Cao, Rensheng; Wu, Xianliang

    2017-01-01

    Heavy metal pollution is a serious problem worldwide. In this study, 41 soil samples and 32 cabbage samples were collected from the area surrounding the Jinsha coal-fired power plant (JCFP Plant) in Guizhou Province, southwest China. Pb, Cd, Hg, As, Cu and Cr concentrations in soil samples and cabbage samples were analysed to study the pollution sources and risks of heavy metals around the power plant. The results indicate that the JCFP Plant contributes to the Pb, Cd, As, Hg, Cu, and Cr pollution in nearby soils, particularly Hg pollution. Cu and Cr in soils from both croplands and forestlands in the study area derive mainly from crustal materials or natural processes. Pb, Cd and As in soils from croplands arise partly through anthropogenic activities, but these elements in soils from forestlands originate mainly from crustal materials or natural processes. Hg pollution in soils from both croplands and forestlands is caused mainly by fly ash from the JCFP Plant. The cabbages grown in the study area were severely contaminated with heavy metals, and more than 90% of the cabbages had Pb concentrations exceeding the permissible level established by the Ministry of Health and the Standardization Administration of the People’s Republic of China. Additionally, 30% of the cabbages had As concentrations exceeding the permissible level. Because forests can protect soils from heavy metal pollution caused by atmospheric deposition, close attention should be given to the Hg pollution in soils and to the concentrations of Pb, As, Hg and Cr in vegetables from the study area. PMID:29258250

  4. Effect of water-washing on the co-removal of chlorine and heavy metals in air pollution control residue from MSW incineration.

    PubMed

    Yang, Zhenzhou; Tian, Sicong; Ji, Ru; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2017-10-01

    The present study systemically investigated the effect of a water-washing process on the removal of harmful chlorides, sulfates, and heavy metals in the air pollution control (APC) residue from municipal solid wastes incineration (MSWI), for sake of a better reuse and disposal of this kind of waste. In addition, the kinetic study was conducted to reveal the releasing mechanism of relevant element in the residue. The results show that, over 70wt.% of chlorides and nearly 25wt.% of sulfates in the residue could be removed by water washing. Based on an economical consideration, the optimal operation conditions for water washing of APC residue was at liquid/solid (L/S) ratio of 3mL:1g and extracting time of 5min. As expected, the concentrations of Co, Cr, Fe, Ni, V and Cu in the washing effluent increased with time during the washing process. However, the extracting regime differs among different heavy metals. The concentrations of Ba and Mn increased firstly but declined afterwards, and concentrations of Pb and Zn gradually declined while Cd and As kept constant with the increase of extracting time. It is worth mentioning that the bubbling of CO 2 into the washing effluent is promisingly effective for a further removal of Pb, Cu and Zn. Furthermore, kinetic study of the water washing process reveals that the extracting of heavy metals during water washing follows a second-order model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Astrogliopathology in neurological, neurodevelopmental and psychiatric disorders

    PubMed Central

    Verkhratsky, Alexei; Parpura, Vladimir

    2015-01-01

    Astroglial cells represent a main element in the maintenance of homeostasis and providing defense to the brain. Consequently, their dysfunction underlies many, if not all, neurological, neuropsychiatric and neurodegenerative disorders. General astrogliopathy is evident in diametrically opposing morpho-functional changes in astrocytes, i.e. their hypertrophy along with reactivity or atrophy with asthenia. Neurological disorders with astroglial participation can be genetic, of which Alexander disease is a primary sporadic astrogliopathy, environmentally caused, such as heavy metal encephalopathies, or neurodevelopmental in origin. Astroglia also play a role in major neuropsychiatric disorders, ranging from schizophrenia to depression, as well as in additive disorders. Furthermore, astroglia contribute to neurodegenerative processes seen in amyotrophic lateral sclerosis, Alzheimer’s and Huntington’s diseases. PMID:25843667

  6. Behavior of new complexes of tetrakis(4-methoxylphenyl)porphyrin with heavy rare earth elements in reversed-phase high performance liquid chromatography.

    PubMed

    Zhang, Jun-Feng; Wang, Hong; Hou, An-Xin; Wang, Chang-Fa; Zhang, Hua-Shan

    2004-08-01

    An HPLC method has been developed for the separation of new complexes of tetrakis(4-methoxylphenyl)porphyrin (TMOPP) with four heavy rare earth elements (RE = Y, Er, Tm, and Yb). The function of amine and acid in the mobile phase has been investigated and a reasonable explanation is presented. Successful separation of the RE-TMOPP-Cl complexes is accomplished in 10 min with a mobile phase consisting of methanol-water-acetic acid-triethanolamine. The detection limits (S/N= 3) for the four complexes are 0.01 microg/mL. This method is rapid, sensitive, and simple.

  7. Source abundances of ultra heavy elements derived from UHCRE measurements.

    PubMed

    Domingo, C; Font, J; Baixeras, C; Fernandez, F

    1996-11-01

    A total of 205 tracks have been located, measured, and positively identified as originating from Ultra Heavy (Z > or = 65) cosmic ray ions with energies over 2 GeV/amu in the 10 UHCRE plastic track detector (mainly Lexan polycarbonate) stacks studied by our Group. About 40 values of reduced etch rate S have been obtained along each of these tracks. A method based on determining the gradient of S, together with calibration in accelerators, is used to determine the charge of each ion resulting in one of such tracks to obtain the charge spectrum of the recorded Ultra Heavy ions. The abundance ratio of ions with 87 < or = Z < or = 100 to those with 74 < or = Z < or = 86 as well as that of ions with 81 < or = Z < or = 86 to those with 74 < or = Z < or = 80 are calculated at 0.016 and 0.32, respectively, which agree with the values obtained from measurements in the HEAO-3 and Ariel-6 experiments. The abundance ratio of ions with 70 < or = Z < or = 73 to those with 74 < or = Z < or = 86 is also calculated, but its value (0.074) did not seem to be significant because of our detectors' low registration efficiency in the charge range 70 < or = Z < or = 73. A computer program developed by our Group, based on the Leaky Box cosmic ray propagation model, has been used to determine the source abundances of cosmic ray nuclei with Z > or = 65 inferred from the abundances measured in the UHCRE. It appeared that r-process synthesized elements were overabundant compared to the Solar System abundances, as predicted by other authors.

  8. Nucleosynthesis in relation to cosmology

    NASA Astrophysics Data System (ADS)

    El Eid, Mounib F.

    2018-04-01

    While the primordial (or Big Bang) nucleosynthesis delivers important clues about the conditions in the high red-shift universe (termed far-field cosmology), the nucleosynthesis of the heavy elements beyond iron by the r-process or the s-process deliver information about the early phase and history of the Galaxy (termed near-field cosmology). In particular, the r-process nucleosynthesis is unique, because it is a primary process that helps to associate individual stars with the composition of the protocloud. The present contribution is intended to give a brief overview about these nucleosynthesis processes and describe their link to the early universe, stellar evolution and to the chemical evolution of the Galaxy. The focus of this present contribution is on illumination the role of nucleosynthesis in the Universe. Owing to the complexity of this subject, a general scenario is more appealing to address interested readers.

  9. Bremsstrahlung-Based Imaging and Assays of Radioactive, Mixed and Hazardous Waste

    NASA Astrophysics Data System (ADS)

    Kwofie, J.; Wells, D. P.; Selim, F. A.; Harmon, F.; Duttagupta, S. P.; Jones, J. L.; White, T.; Roney, T.

    2003-08-01

    A new nondestructive accelerator based x-ray fluorescence (AXRF) approach has been developed to identify heavy metals in large-volume samples. Such samples are an important part of the process and waste streams of U.S Department of Energy sites, as well as other industries such as mining and milling. Distributions of heavy metal impurities in these process and waste samples can range from homogeneous to highly inhomogeneous, and non-destructive assays and imaging that can address both are urgently needed. Our approach is based on using high-energy, pulsed bremsstrahlung beams (3-6.5 MeV) from small electron accelerators to produce K-shell atomic fluorescence x-rays. In addition we exploit pair-production, Compton scattering and x-ray transmission measurements from these beams to probe locations of high density and high atomic number. The excellent penetrability of these beams allows assays and images for soil-like samples at least 15 g/cm2 thick, with elemental impurities of atomic number greater than approximately 50. Fluorescence yield of a variety of targets was measured as a function of impurity atomic number, impurity homogeneity, and sample thickness. We report on actual and potential detection limits of heavy metal impurities in a soil matrix for a variety of samples, and on the potential for imaging, using AXRF and these related probes.

  10. Rare earth element abundances in rocks and minerals from the Fiskenaesset Complex, West Greenland. [comparison with lunar anorthosites

    NASA Technical Reports Server (NTRS)

    Henderson, P.; Fishlock, S. J.; Laul, J. C.; Cooper, T. D.; Conard, R. L.; Boynton, W. V.; Schmitt, R. A.

    1976-01-01

    The paper reports activation-analysis determinations of rare-earth-element (REE) and other trace-element concentrations in selected rocks, plagioclase, and mafic separates from the Fiskenaesset Complex. The REE abundances are found to be very low and atypical in comparison with other terrestrial anorthosites. The plagioclases are shown to be characterized by a deficiency in heavy RE elements relative to light ones and a positive Eu anomaly, while the mafic separates are enriched in heavy rare earths and have no Eu anomaly, except in one sample. It is found that the bulk and trace-element abundances of the plagioclases are similar to those observed in some lunar anorthosites, but the degree of Eu anomaly is less in the plagioclases. The data are taken as confirmation of the idea that fractionation processes were involved in the origin of the Complex, and it is concluded that the Complex may have been produced from a magma generated by partial melting of a garnet-bearing source.

  11. Heavy Nucleus Collector (HNC) project for the NASA Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Tarle, Gregory

    1990-01-01

    The primary goal of the heavy nucleus collector (HNC) experiment was to obtain high resolution composition measurements for cosmic ray nuclei in the platinum-lead and actinide region of the periodic table. Secondary objectives include studies of selected groups of elements of lower charge. These goals were to be realized by orbiting a large area array of dielectric nuclear track detectors in space for several years. In this time sufficient actinide nuclei would be collected to determine the nucleosynthetic age of the cosmic radiation and the relative mix of r- and s-process elements in the cosmic ray source. The detector consists of approximately 50 trays assembled in pressurized canisters. Each tray would contain 8 half-stacks (4 stacks total) and an event thermometer which would record the temperature of each event at the time of exposure. Each stack would contain 7 layers of Rodyne-P, CR-39 and Cronar plastic track detectors interleaved with copper stripping foils. Upon return to Earth, detectors would be removed for analysis. Ultraheavy nuclei would have left tracks through the detector sheets that would be made visible after etching in a hot sodium hydroxide solution.

  12. [Environmental geochemical baseline of heavy metals in soils of the Ili river basin and pollution evaluation].

    PubMed

    Zhao, Xin-Ru; Nasier, Telajin; Cheng, Yong-Yi; Zhan, Jiang-Yu; Yang, Jian-Hong

    2014-06-01

    Environmental geochemical baseline models of Cu, Zn, Pb, As, Hg were established by standardized method in the ehernozem, chestnut soil, sierozem and saline soil from the Ili river valley region. The theoretical baseline values were calculated. Baseline factor pollution index evaluation method, environmental background value evaluation method and heavy metal cleanliness evaluation method were used to compare soil pollution degrees. The baseline factor pollution index evaluation showed that As pollution was the most prominent among the four typical types of soils within the river basin, with 7.14%, 9.76%, 7.50% of sampling points in chernozem, chestnut soil and sierozem reached the heavy pollution, respectively. 7.32% of sampling points of chestnut soil reached the permitted heavy metal Pb pollution index in the chestnut soil. The variation extent of As and Pb was the largest, indicating large human disturbance. Environmental background value evaluation showed that As was the main pollution element, followed by Cu, Zn and Pb. Heavy metal cleanliness evaluation showed that Cu, Zn and Pb were better than cleanliness level 2 and Hg was the of cleanliness level 1 in all four types of soils. As showed moderate pollution in sierozem, and it was of cleanliness level 2 or better in chernozem, chestnut soil and saline-alkali soil. Comparing the three evaluation systems, the baseline factor pollution index evaluation more comprehensively reflected the geochemical migration characteristics of elements and the soil formation processes, and the pollution assessment could be specific to the sampling points. The environmental background value evaluation neglected the natural migration of heavy metals and the deposition process in the soil since it was established on the regional background values. The main purpose of the heavy metal cleanliness evaluation was to evaluate the safety degree of soil environment.

  13. Characteristics of anthropogenic magnetic materials in roadside dusts in Seoul, Korea using thermo-magnetic behaviors and electron microscope observations

    NASA Astrophysics Data System (ADS)

    Kim, W.; Doh, S.; Park, Y.

    2006-12-01

    It has been previously reported that magnetic concentration parameter (e.g., magnetic susceptibility) has a close affinity with heavy metal concentration in roadside dust of the Seoul metropolitan area. Magnetic concentration and magnetic particle size show systematic seasonal fluctuations (high and large during winter; low and small in summer) because of seasonal influx variation of anthropogenic magnetic materials. These observations suggest that magnetic parameters could be utilized as a proxy method of assessing heavy metal pollution in urban areas. In order to characterize anthropogenic magnetic materials and to find their potential sources, magnetic extracts from roadside dusts of Seoul metropolitan area were subject to SEM observation, elemental analysis (EDS), and thermo-magnetic experiments. Magnetic materials from vehicle emission and abraded brake lining were also observed for the comparison. The magnetic particles can be classified based on the morphology and elemental composition of the particles. Magnetic spherules are the most frequently observed type of particle throughout the study area. These particles are often associated with the elemental C and Al-Ca-Na-Si materials, and are believed to be the product of fossil fuel combustions in power plants, industries, and domestic heating systems. Aggregates of iron-oxides and Fe-C-S materials are probably originated from vehicle emission, while aggregates of pure Fe and Al-Ca-Fe-K-Mg-Si materials appear to be derived from abrasion of motor vehicle brake system. These aggregates are frequently observed in industrial sections of the city as well as areas of heavy traffic. Angular magnetic particles accompanied by silicates are only observed in park area and probably formed by natural process such as pedogenesis or weathering. Thermo-magnetic experiments indicate that the major magnetic phase in the studied samples is magnetite. Two distinctive behaviors observed are the presence of low Curie temperature magnetic phase and under- recover of susceptibility on cooling. It is considered that Fe-C-S magnetic aggregates possibly behaved like pyrrhotite, and thus recognized as low Curie temperature magnetic phase. A factor causing under-recover of susceptibility is attributed to some of magnetic spherules associated with C and Al-Ca-Na-Si materials which possibly behaved like iron-oxide containing impurities. Overall, this study shows that the magnetic methods in conjunction with SEM observations and elemental analyses for urban roadside dust can be used as a powerful tool for assessment of pollution features in an urban area in terms of source and spatial distribution of anthropogenic magnetic materials and associated heavy metals.

  14. Nuclear weak interactions, supernova nucleosynthesis and neutrino oscillation

    NASA Astrophysics Data System (ADS)

    Kajino, Toshitaka

    2013-07-01

    We study the nuclear weak response in light-to-heavy mass nuclei and calculate neutrino-nucleus cross sections. We apply these cross sections to the explosive nucleosynthesis in core-collapse supernovae and find that several isotopes of rare elements 7Li, 11B, 138La, 180Ta and several others are predominantly produced by the neutrino-process nucleosynthesis. We discuss how to determine the suitable neutrino spectra of three different flavors and their anti-particles in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. Light-mass nuclei like 7Li and 11B, which are produced in outer He-layer, are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect, while heavy-mass nuclei like 138La, 180Ta and r-process elements, which are produced in the inner O-Ne-Mg layer or the atmosphere of proto-neutron star, are likely to be free from the MSW effect. Using such a different nature of the neutrino-process nucleosynthesis, we study the neutrino oscillation effects on their abundances, and propose a new novel method to determine the unknown neutrino oscillation parameters, θ13 and mass hierarchy, simultaneously. There is recent evidence that some SiC X grains from the Murchison meteorite may contain supernova-produced neutrino-process 11B and 7Li encapsulated in the grains. Combining the recent experimental constraints on θ13, we show that although the uncertainties are still large, our method hints at a marginal preference for an inverted neutrino mass hierarchy for the first time.

  15. Non-standard s-process in low metallicity massive rotating stars

    NASA Astrophysics Data System (ADS)

    Frischknecht, U.; Hirschi, R.; Thielemann, F.-K.

    2012-02-01

    Context. Rotation is known to have a strong impact on the nucleosynthesis of light elements in massive stars, mainly by inducing mixing in radiative zones. In particular, rotation boosts the primary nitrogen production, and models of rotating stars are able to reproduce the nitrogen observed in low-metallicity halo stars. Aims: Here we present the first grid of stellar models for rotating massive stars at low metallicity, where a full s-process network is used to study the impact of rotation-induced mixing on the neutron capture nucleosynthesis of heavy elements. Methods: We used the Geneva stellar evolution code that includes an enlarged reaction network with nuclear species up to bismuth to calculate 25 M⊙ models at three different metallicities (Z = 10-3,10-5, and 10-7) and with different initial rotation rates. Results: First, we confirm that rotation-induced mixing (shear) between the convective H-shell and He-core leads to a large production of primary 22Ne (0.1 to 1% in mass fraction), which is the main neutron source for the s-process in massive stars. Therefore rotation boosts the s-process in massive stars at all metallicities. Second, the neutron-to-seed ratio increases with decreasing Z in models including rotation, which leads to the complete consumption of all iron seeds at metallicities below Z = 10-3 by the end of core He-burning. Thus at low Z, the iron seeds are the main limitation for this boosted s-process. Third, as the metallicity decreases, the production of elements up to the Ba peak increases at the expense of the elements of the Sr peak. We studied the impact of the initial rotation rate and of the highly uncertain 17O(α,γ) rate (which strongly affects the strength of 16O as a neutron poison) on our results. This study shows that rotating models can produce significant amounts of elements up to Ba over a wide range of Z, which has important consequences for our understanding of the formation of these elements in low-metallicity environments like the halo of our galaxy and globular clusters. Fourth, compared to the He-core, the primary 22Ne production induced by rotation in the He-shell is even higher (greater than 1% in mass fraction at all metallicities), which could open the door for an explosive neutron capture nucleosynthesis in the He-shell, with a primary neutron source.

  16. Heavy element accumulation in Evernia prunastri lichen transplants around a municipal solid waste landfill in central Italy.

    PubMed

    Nannoni, Francesco; Santolini, Riccardo; Protano, Giuseppe

    2015-09-01

    This paper presents the results of a biomonitoring study to evaluate the environmental impact of airborne emissions from a municipal solid waste landfill in central Italy. Concentrations of 11 heavy elements, as well as photosynthetic efficiency and cell membrane integrity were measured in Evernia prunastri lichens transplanted for 4months in 17 monitoring sites around the waste landfill. Heavy element contents were also determined in surface soils. Analytical data indicated that emissions from the landfill affected Cd, Co, Cr, Cu, Ni, Pb, Sb and Zn concentrations in lichens transplanted within the landfill and along the fallout direction. In these sites moderate to severe accumulation of these heavy elements in lichens was coupled with an increase in cell membrane damage and decrease in photosynthetic efficiency. Nevertheless, results indicated that landfill emissions had no relevant impact on lichens, as heavy element accumulation and weak stress symptoms were detected only in lichen transplants from sites close to solid waste. The appropriate management of this landfill poses a low risk of environmental contamination by heavy elements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Community Heavy Metal Exposure, San Francisco, California

    NASA Astrophysics Data System (ADS)

    Chavez, A.; Devine, M.; Ho, T.; Zapata, I.; Bissell, M.; Neiss, J.

    2008-12-01

    Heavy metals are natural elements that generally occur in minute concentrations in the earth's crust. While some of these elements, in small quantities, are vital to life, most are harmful in larger doses. Various industrial and agricultural processes can result in dangerously high concentrations of heavy metals in our environment. Consequently, humans can be exposed to unsafe levels of these elements via the air we breathe, the water and food we consume, and the many products we use. During a two week study we collected numerous samples of sediments, water, food, and household items from around the San Francisco Bay Area that represent industrial, agricultural, and urban/residential settings. We analyzed these samples for Mercury (Hg), Lead (Pb), and Arsenic (As). Our goal was to examine the extent of our exposure to heavy metals in our daily lives. We discovered that many of the common foods and materials in our lives have become contaminated with unhealthy concentrations of these metals. Of our food samples, many exceeded the EPA's Maximum Contaminant Levels (MCL) set for each metal. Meats (fish, chicken, and beef) had higher amounts of each metal than did non-meat items. Heavy metals were also prevalent in varying concentrations in the environment. While many of our samples exceeded the EPA's Sediment Screening Level (SSL) for As, only two other samples surpassed the SSL set for Pb, and zero of our samples exceeded the SSL for Hg. Because of the serious health effects that can result from over-exposure to heavy metals, the information obtained in this study should be used to influence our future dietary and recreational habits.

  18. Supernova Neutrino-Process and Implication in Neutrino Oscillation

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Fujiya, W.; Mathews, G. J.; Yoshida, T.; Shaku, K.; Nakamura, K.; Hayakawa, T.

    2012-08-01

    We studied the supernova nucleosynthesis induced by neutrino interactions and found that several isotopes of rare elements like 7Li, 11B, 138La, 180Ta and many others are predominantly produced by the neutrino-process in core-collapse supernovae. These isotopes are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect. We here propose a new novel method to determine the unknown neutrino oscillation parameters, θ13 and mass hierarchy simultaneously from the supernova neutrino-process, combined with the r-process for heavy-element synthsis and the Galactic chemical evolution on light nuclei.

  19. Multielemental analysis of Migori (Southwest, Kenya) artisanal gold mine ores and sediments by EDX-ray fluorescence technique: implications of occupational exposure and environmental impact.

    PubMed

    Odumo, O B; Mustapha, A O; Patel, J P; Angeyo, H K

    2011-05-01

    The results of heavy element profiling of the gold ores and sediments associated with the artisanal gold mining activities of the Migori gold belt of Southwestern Nyanza, Kenya, were reported in this paper. The analysis was made to assess the occupational exposure of the miners as well as to investigate the environmental impact of toxic heavy metals. Gold ores and sediments from the artisanal gold processing were sampled in four artisanal gold mining areas: Osiri A, Osiri B, Mikei and Macalder (Makalda) and analyzed for heavy elemental content using (109)Cd radioisotope excited EDXRF spectrometry technique. Analysis consisted of direct irradiating of sample pellets. The concentrations of major elements detected were: titanium (711.41-10,766.67 mg/kg); cobalt (82.65-1,010.00 mg/kg); zinc (29.90-63,210 mg/kg); arsenic (29.30-8,246.59 mg/kg); gold (14.07-73.48 mg/kg); lead (16.31-14,999.40 mg/kg) and mercury (16.10-149.93 mg/kg). The average concentration of the heavy toxic metals i.e. arsenic, lead, titanium and zinc were found to be above 50 mg/Kg as recommended by World Health Organization. © Springer Science+Business Media, LLC 2011

  20. Heavy metal analysis in commercial Spirulina products for human consumption

    PubMed Central

    Al-Dhabi, Naif Abdullah

    2013-01-01

    For consumption of health foods of Spirulina, by the general public, health food stores are increasingly offering more exotic products. Though Spirulina consumption is growing worldwide, relatively few studies have reported on the quantities of heavy metals/minerals they contain and/or their potential effects on the population’s health. This study reveals the concentrations of six typical heavy metals/minerals (Ni, Zn, Hg, Pt, Mg, and Mn) in 25 Spirulina products commercialized worldwide for direct human consumption. Samples were ground, digested and quantified by Coupled Plasma Mass Spectroscopy (ICP–MS). The concentrations (mg/kg d.w.) were range from 0.001 to 0.012 (Pt) followed by 0.002–0.028 (Hg), 0.002–0.042 (Mg), 0.005–2.248 (Mn), 0.211–4.672 (Ni) and 0.533–6.225 (Zn). The inorganic elements of the present study were significantly lower than the recommended daily intake (RDI) level of heavy metal elements (mg/daily) Ni (0.4), Zn (13), Hg (0.01), Pt (0.002), Mg (400) and Mn (4). Based on this study the concentration of inorganic elements was not found to exceed the present regulation levels, and they can be considered as safe food. PMID:24235875

  1. Naturally occurring heavy radioactive elements in the geothermal microcosm of the Los Azufres (Mexico) volcanic complex.

    PubMed

    Abuhani, W A; Dasgupta-Schubert, N; Villaseñor, L M; García Avila, D; Suárez, L; Johnston, C; Borjas, S E; Alexander, S A; Landsberger, S; Suárez, M C

    2015-01-01

    The Los Azufres geothermal complex of central Mexico is characterized by fumaroles and boiling hot-springs. The fumaroles form habitats for extremophilic mosses and ferns. Physico-chemical measurements of two relatively pristine fumarolic microcosms point to their resemblance with the paleo-environment of earth during the Ordovician and Devonian periods. These geothermal habitats were analysed for the distribution of elemental mass fractions in the rhizospheric soil (RS), the native volcanic substrate (VS) and the sediments (S), using the new high-sensitivity technique of polarized x-ray energy dispersive fluorescence spectrometry (PEDXRF) as well as instrumental neutron activation analysis (INAA) for selected elements. This work presents the results for the naturally occurring heavy radioactive elements (NOHRE) Bi, Th and U but principally the latter two. For the RS, the density was found to be the least and the total organic matter content the most. Bi was found to be negligibly present in all substrate types. The average Th and U mass fractions in the RS were higher than in the VS and about equal to their average mass fractions in the S. The VS mass fraction of Th was higher, and of U lower, than the mass fractions in the earth's crust. In fact for the fumaroles of one site, the average RS mass fractions of these elements were higher than the averaged values for S (without considering the statistical dispersion). The immobilization of the NOHRE in the RS is brought about by the bio-geochemical processes specific to these extremophiles. Its effectiveness is such that despite the small masses of these plants, it compares with, or may sometimes exceed, the immobilization of the NOHRE in the S by the abiotic and aggressive chemical action of the hot-springs. These results indicate that the fumarolic plants are able to transform the volcanic substrate to soil and to affect the NOHRE mass fractions even though these elements are not plant nutrients. Mirrored back to the paleo times when such plant types were ubiquitous, it would mean that the first plants contributed significantly to pedogenesis and the biogeochemical recycling of even the heaviest and radioactive elements. Such plants may potentially be useful for the phytostabilisation of soil moderately contaminated by the NOHRE. Furthermore where applicable, geochronology may require taking into account the influence of the early plants on the NOHRE distributions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Differentiation characteristics and source analysis of heavy metals in typical brown soil under different vegetation

    NASA Astrophysics Data System (ADS)

    Dong, Zhicheng; Zhang, Lina; Li, Xueshuang; Lv, Shuangyan; He, Shijie; Liu, Ying; Ma, Xuanxuan

    2017-08-01

    Anomalous enrichment of soil elements (especially heavy metals) has aroused popular attention in China. In order to discuss distribution characteristics and analyze sources of elements in brown soil, field investigation and sample collection were carried out under different vegetation (cherry, apple, bamboos and pine) in Qixia, a typical apple production base in China. Element contents, pH, electrical conductivity (EC) and magnetic susceptibility (MS) were tested. Results showed that element concentrations were about roughly 2.48 times as China’s background values, while significantly lower than the class ii of National soil Environment Quality Standard (Ni excepted). Meanwhile, vertical distribution and accumulation characteristics of elements in typical brown soil were significantly different under different vegetation. In detail, elements (Zn excepted) of Pine soil accumulated in surface, while they (Cd, Arsenic excepted) increased with depth under other vegetation. Moreover, pH and EC changed like elements, while MS was exactly opposite. It was found that those differences above were mainly caused by human activities (such as improper use of fertilizer, pesticide and inadequate use of organic fertilizer, etc.). Additionally, differences in composition and decomposition rate of vegetation litter also resulted in vertical differentiations of soil elements under different vegetation.

  3. H2S adsorption by municipal solid waste incineration (MSWI) fly ash with heavy metals immobilization.

    PubMed

    Wu, Huanan; Zhu, Yu; Bian, Songwei; Ko, Jae Hac; Li, Sam Fong Yau; Xu, Qiyong

    2018-03-01

    As a byproduct of municipal solid waste incineration (MSWI) plant, fly ash is becoming a challenge for waste management in recent years. In this study, MSWI fly ash (FA) was evaluated for the potential capacity of odorous gas H 2 S removal. Results showed that fly ash demonstrated longer breakthrough time and higher H 2 S capacities than coal fly ash and sandy soil, due to its high content of alkali oxides of metals including heavy metals. H 2 S adsorption capacities of FA1 and FA2 were 15.89 and 12.59 mg H 2 S/g, respectively for 750 ppm H 2 S. The adsorption of H 2 S on fly ash led to formation of elemental sulfur and metal sulfide. More importantly, the formation of metal sulfide significantly reduced the leachability of heavy metals, such as Cr, Cu, Cd and Pb as shown by TCLP tests. The adsorption isotherms fit well with Langmuir model with the correlation coefficient over 0.99. The adsorption of H 2 S on fly ash features simultaneous H 2 S removal and stabilization and heavy metals found in most MSWI fly ash, making fly ash the potential low cost recycled sorbent material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Heavy element affinities in Apollo 17 samples

    NASA Technical Reports Server (NTRS)

    Allen, R. O., Jr.; Jovanovic, S.; Reed, G. W., Jr.

    1975-01-01

    Pb-204, Bi, Tl, and Zn in samples from the Apollo 17 site exhibit relationships not found in samples from other sites. Pb-204, Tl, and Zn in residues remaining after dilute acid leaching are correlated with one another. Orange soil 74220, which is enriched in Pb-204, Tl, and Zn, is included in these relationships. In addition, the submicron metallic phase generally associated with agglutinate formation is correlated with all three of these elements; this relationship has already been reported for Pb-204 in other samples. Thus, orange soil and agglutinates appear to be involved in concentrating heavy volatile metals. A process other than mixing is required to account for this. As a consequence of the isolation of the landing site by the surrounding massifs, local supply and recycling of volatile trace elements in soils may account for some of the interelement relations.

  5. The CoRoT target HD 49933: a possible seismic signature of heavy elements ionization in the deep convective zone

    NASA Astrophysics Data System (ADS)

    Brito, Ana; Lopes, Ilídio

    2017-04-01

    We use a seismic diagnostic, based on the derivative of the phase shift of the acoustic waves reflected by the surface, to probe the outer layers of the star HD 49933. This diagnostic is particularly sensitive to partial ionization processes occurring above the base of the convective zone. The regions of partial ionization of light elements, hydrogen and helium, have well-known seismological signatures. In this work, we detect a different seismic signature in the acoustic frequencies, which we showed to correspond to the location where the partial ionization of heavy elements occurs. The location of the corresponding acoustic glitch lies between the region of the second ionization of helium and the base of the convective zone, approximately 5 per cent below the surface of the stars.

  6. Impact of (α, n) reactions on weak r-process in neutrino-driven winds

    NASA Astrophysics Data System (ADS)

    Bliss, J.; Arcones, A.; Montes, F.; Pereira, J.

    2017-05-01

    After a successful core-collapse supernova, a neutrino-driven wind develops where it is possible to synthesize lighter heavy elements (30 < Z < 45). In the early galaxy, the origin of these elements is associated with the r-process and to an additional process. Here we assume that the additional process corresponds to the weak r-process (sometimes referred to as alpha-process) taking place in neutrino-driven winds. Based on a trajectory obtained from hydrodynamical simulations we study the astrophysics and nuclear physics uncertainties of a weak r-process with our main focus on the (α, n) reactions. These reactions are critical to redistribute the matter and allow it to move from light to heavy elements after nuclear statistical equilibrium freezes out. In this first sensitivity study, we vary all (α, n) reactions by given constant factors which are justified based on the uncertainties of the statistical model and its nuclear physics input, mainly alpha optical potentials for weak r-process conditions. Our results show that (α, n) rate uncertainties are indeed crucial to predict abundances. Therefore, further studies will follow to identify individual critical reactions. Since the nucleosynthesis path is close to stability, these reactions can be measured in the near future. Since much of the other nuclear data for the weak r-process are known, the reduction in nuclear physics uncertainties provided by these experiments will allow astronomical observations to directly constrain the astronomical conditions in the wind.

  7. Enhanced separation of rare earth elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyon, K.; Greenhalgh, M.; Herbst, R. S.

    2016-09-01

    Industrial rare earth separation processes utilize PC88A, a phosphonic acid ligand, for solvent extraction separations. The separation factors of the individual rare earths, the equipment requirements, and chemical usage for these flowsheets are well characterized. Alternative ligands such as Cyanex® 572 and the associated flowsheets are being investigated at the pilot scale level to determine if significant improvements to the current separation processes can be realized. These improvements are identified as higher separation factors, reduced stage requirements, or reduced chemical consumption. Any of these improvements can significantly affect the costs associated with these challenging separation proccesses. A mid/heavy rare earthmore » element (REE) separations flowsheet was developed and tested for each ligand in a 30 stage mixer-settler circuit to compare the separation performance of PC88A and Cyanex® 572. The ligand-metal complex strength of Cyanex® 572 provides efficient extraction of REE while significantly reducing the strip acid requirements. Reductions in chemical consumption have a significant impact on process economics for REE separations. Partitioning results summarized Table 1 indicate that Cyanex® 572 offers the same separation performance as PC88A while reducing acid consumption by 30% in the strip section for the mid/heavy REE separation. Flowsheet Effluent Compositions PC88A Cyanex® 572 Raffinate Mid REE Heavy REE 99.40% 0.60% 99.40% 0.60% Rich Mid REE Heavy REE 2.20% 97.80% 0.80% 99.20% Liquor Strip Acid Required 3.4 M 2.3 M Table 1 – Flowsheet results comparing separation performance of PC88A and Cyanex® 572 for a mid/heavy REE separation.« less

  8. R-process enrichment from a single event in an ancient dwarf galaxy.

    PubMed

    Ji, Alexander P; Frebel, Anna; Chiti, Anirudh; Simon, Joshua D

    2016-03-31

    Elements heavier than zinc are synthesized through the rapid (r) and slow (s) neutron-capture processes. The main site of production of the r-process elements (such as europium) has been debated for nearly 60 years. Initial studies of trends in chemical abundances in old Milky Way halo stars suggested that these elements are produced continually, in sites such as core-collapse supernovae. But evidence from the local Universe favours the idea that r-process production occurs mainly during rare events, such as neutron star mergers. The appearance of a plateau of europium abundance in some dwarf spheroidal galaxies has been suggested as evidence for rare r-process enrichment in the early Universe, but only under the assumption that no gas accretes into those dwarf galaxies; gas accretion favours continual r-process enrichment in these systems. Furthermore, the universal r-process pattern has not been cleanly identified in dwarf spheroidals. The smaller, chemically simpler, and more ancient ultrafaint dwarf galaxies assembled shortly after the first stars formed, and are ideal systems with which to study nucleosynthesis events such as the r-process. Reticulum II is one such galaxy. The abundances of non-neutron-capture elements in this galaxy (and others like it) are similar to those in other old stars. Here, we report that seven of the nine brightest stars in Reticulum II, observed with high-resolution spectroscopy, show strong enhancements in heavy neutron-capture elements, with abundances that follow the universal r-process pattern beyond barium. The enhancement seen in this 'r-process galaxy' is two to three orders of magnitude higher than that detected in any other ultrafaint dwarf galaxy. This implies that a single, rare event produced the r-process material in Reticulum II. The r-process yield and event rate are incompatible with the source being ordinary core-collapse supernovae, but consistent with other possible sources, such as neutron star mergers.

  9. High levels of heavy metal accumulation in dental calculus of smokers: a pilot inductively coupled plasma mass spectrometry study.

    PubMed

    Yaprak, E; Yolcubal, I; Sinanoğlu, A; Doğrul-Demiray, A; Guzeldemir-Akcakanat, E; Marakoğlu, I

    2017-02-01

    Various trace elements, including toxic heavy metals, may exist in dental calculus. However, the effect of environmental factors on heavy metal composition of dental calculus is unknown. Smoking is a major environmental source for chronic toxic heavy metal exposition. The aim of this study is to compare toxic heavy metal accumulation levels in supragingival dental calculus of smokers and non-smokers. A total of 29 supragingival dental calculus samples were obtained from non-smoker (n = 14) and smoker (n = 15) individuals. Subjects with a probability of occupational exposure were excluded from the study. Samples were analyzed by inductively coupled plasma mass spectrometry in terms of 26 metals and metalloids, including toxic heavy metals. Toxic heavy metals, arsenic (p < 0.05), cadmium (p < 0.05), lead (p < 0.01), manganese (p < 0.01) and vanadium (p < 0.01) levels were significantly higher in smokers than non-smokers. The levels of other examined elements were similar in both groups (p > 0.05). Within the limitations of this study, it can be concluded that the elementary composition of dental calculus may be affected by environmental factors such as tobacco smoke. Therefore, dental calculus may be utilized as a non-invasive diagnostic biological material for monitoring chronic oral heavy metal exposition. However, further studies are required to evaluate its diagnostic potential. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Effects of urban air pollutants on elemental accumulation and identification of oxidative stress biomarkers in the transplanted lichen Pseudovernia furfuracea.

    PubMed

    Oztetik, Elif; Cicek, Arzu

    2011-07-01

    Determining the origins of heavy metals, their accumulation, and their detoxification mechanisms constitutes a major problem in understanding environmental pollution in urban areas. The objective of this study was to detect the relative air quality in Eskisehir city center (Turkey) through the transplanted epiphytic lichen Pseudovernia furfuracea as a biomonitor of the concentrations of some heavy metals accumulated and to describe their toxic effects on lichen physiology during the study period of one year. The influence of heavy metal accumulations on macroelement levels were also examined. In addition to analysis of B, K, Ca, P, S, Al, Fe, Mg, Mn, Ni, Zn, Pb, and Cu, total soluble proteins and oxidative stress parameters through glutathione (GSH) contents and glutathione S-transferase (GST) activities were also determined. Results indicate that, although the heavy metal concentrations were found to be gradually increased from the unpolluted control zone to the city center, the concentrations of macroelements S and Ca were higher in the polluted area. However, B, K, Mg, and P elements were found to be higher in the unpolluted area than in the polluted zones. It seems that heavy metals induce oxidative stress in lichens; we found enhancement of GSH concentrations and GST activity. Most probably, the expected destruction in this organism was reduced by the intervention of antioxidant capacity. Therefore, this report confirms the fact that the epiphytic lichen P. furfuracea is a good model for biomonitoring atmospheric quality for a long-term transplantation study, and oxidative stress parameters stand out as a tool for an early environment assessment of other physiological parameters. Copyright © 2011 SETAC.

  11. Grain refinement in heavy rare earth element-free sintered Nd–Fe–B magnets by addition of a small amount of molybdenum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jin Woo; Lee, Won Suk; Byun, Jong Min

    2015-05-07

    We employed a modified refractory-metal-addition method to achieve higher coercivity and remanence in heavy rare earth element (HREE)-free Nd–Fe–B sintered magnets. This process involved inducing the formation of a homogeneous secondary phase at the grain boundaries during sintering, making it possible to control the intergrain diffusion by adding small amounts of Mo, a refractory metal. To control the microstructure of the secondary phase effectively, a metal organic compound of the refractory metal was coated on the surfaces of the particles of an HREE-free Nd–Fe–B powder. The average grain size after this process was 5.60 μm, which was approximately 1.8 μm smaller thanmore » that of the HREE-free sintered Nd–Fe–B magnets (7.4 μm). The coercivity of the magnets prepared through this process could be increased from 11.88 kOe to 13.91 kOe without decreasing their remanence.« less

  12. Cosmic-ray abundances of Sn, Te, Xe, and Ba nuclei measured on HEAO 3

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.; Fickle, R. K.; Waddington, C. J.; Garrard, T. L.; Krombel, K. E.; Stone, E. C.

    1983-01-01

    The results of an analysis of HEAO 3 Heavy Nuclei Experimental data covering 440 days of observations of Sn-Ba nuclei in cosmic rays are reported. The particles were detected by a Cernkov counter, and a Z-squared ceiling was calculated to normalize the histograms produced. The observed large abundance of Sn and Ba relative to other elements in the region of interest indicated a predominance of the s-process in the source of the particles. When account was taken of first ionization potential effects, the data indicated that the material could be solar system in origin. A source dominated by the r-process nucleosynthesis was ruled out at the 0.93 confidence level.

  13. A Student’s t Mixture Probability Hypothesis Density Filter for Multi-Target Tracking with Outliers

    PubMed Central

    Liu, Zhuowei; Chen, Shuxin; Wu, Hao; He, Renke; Hao, Lin

    2018-01-01

    In multi-target tracking, the outliers-corrupted process and measurement noises can reduce the performance of the probability hypothesis density (PHD) filter severely. To solve the problem, this paper proposed a novel PHD filter, called Student’s t mixture PHD (STM-PHD) filter. The proposed filter models the heavy-tailed process noise and measurement noise as a Student’s t distribution as well as approximates the multi-target intensity as a mixture of Student’s t components to be propagated in time. Then, a closed PHD recursion is obtained based on Student’s t approximation. Our approach can make full use of the heavy-tailed characteristic of a Student’s t distribution to handle the situations with heavy-tailed process and the measurement noises. The simulation results verify that the proposed filter can overcome the negative effect generated by outliers and maintain a good tracking accuracy in the simultaneous presence of process and measurement outliers. PMID:29617348

  14. Migration of copper and some other metals from copper tableware

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishiwata, H.; Inoue, T.; Yoshihira, K.

    Intake of heavy metals is an important problem in human health. Certain heavy metals are avoided with regard to their use for utensils or tableware coming into contact with food, although copper is widely used in food processing factories or at home. The use of copper products for the processing, cooking or serving of foods and beverages is considered to be a cause of a copper contamination. Although copper is essential element, its excess ingestion is undesirable. In this study, the migration of copper from tin-plated or non-plated copperware under several experimental conditions was investigated using food-simulating solvents.

  15. Major inorganic elements in tap water samples in Peninsular Malaysia.

    PubMed

    Azrina, A; Khoo, H E; Idris, M A; Amin, I; Razman, M R

    2011-08-01

    Quality drinking water should be free from harmful levels of impurities such as heavy metals and other inorganic elements. Samples of tap water collected from 24 locations in Peninsular Malaysia were determined for inorganic element content. Minerals and heavy metals were analysed by spectroscopy methods, while non-metal elements were analysed using test kits. Minerals and heavy metals determined were sodium, magnesium, potassium, calcium, chromium, manganese, iron, nickel, copper, zinc, arsenic, cadmium and lead while the non-metal elements were fluoride, chloride, nitrate and sulphate. Most of the inorganic elements found in the samples were below the maximum permitted levels recommended by inter-national drinking water standard limits, except for iron and manganese. Iron concentration of tap water from one of the locations was higher than the standard limit. In general, tap water from different parts of Peninsular Malaysia had low concentrations of heavy metals and inorganic elements.

  16. Chemical stabilization of air pollution control residues from municipal solid waste incineration.

    PubMed

    Quina, Margarida J; Bordado, João C M; Quinta-Ferreira, Rosa M

    2010-07-15

    The by-products of the municipal solid waste incineration (MSWI) generally contain hazardous pollutants, with particular relevance to air pollution control (APC) residues. This waste may be harmful to health and detrimental to the environmental condition, mainly due to soluble salts, toxic heavy metals and trace organic compounds. Solidification/stabilization (S/S) with binders is a common industrial technology for treating such residues, involving however, a significant increase in the final mass that is landfilled. In our work, the chemical stabilization of APC residues by using NaHS x xH(2)O, H(3)PO(4), Na(2)CO(3), C(5)H(10)NNaS(2) x 3 H(2)O, Na(2)O x SiO(2) was investigated, and it was possible to conclude that all these additives lead to an improvement of the stabilization process of the most problematic heavy metals. Indeed, compliance leaching tests showed that after the stabilization treatment the waste becomes non-hazardous with respect to heavy metals. Chromium revealed to be a problematic metal, mainly when H(3)PO(4), Na(2)CO(3) and Na(2)O x SiO(2) were used for stabilization. Nevertheless, soluble phosphates are the most efficient additives for stabilizing the overall metals. The effect of the additives tested on the elements associated with soluble salts (K, Na, Cl(-)) is almost negligible, and therefore, the soluble fraction is hardly reduced without further treatment, such as pre-washing. 2010 Elsevier B.V. All rights reserved.

  17. Neutron-Capture Elements in Very Metal-Poor Halo Stars

    NASA Astrophysics Data System (ADS)

    French, R. S.; Sneden, C.; Cowan, J. J.; Lawler, J. E.; Primas, F.; Beers, T. C.; Truran, J. W.

    2000-05-01

    Abundances of the most massive stable elements (Os -> Pb or 76 <= Z <= 82) in metal-poor stars can provide crucial information about the so-called ``third neutron-capture peak,'' and are critical to the radioactive-dating technique that uses unstable thorium and uranium as chronometers. As the relevant transitions occur in the UV and are inaccessable to ground-based telescopes, we have obtained high resolution (R ~= 30,000) UV spectra of 10 very metal-poor (--3.0 <= [Fe/H] <= --1.4) halo giants using the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope. Using iterative spectrum synthesis techniques, we derive abundances for some of these heavy elements. We compare our abundances to those predicted for very metal-poor stars based on a scaled solar system rapid-process (production in rapid neutron-capture synthesis events, such as occurs during supernovae explosions). This research is supported by NASA STScI grant GO-08342 and NSF grants AST-9618364 to C.S. and AST-9618332 to J.J.C.

  18. Clean up fly ash from coal burning plants by new isolated fungi Fusarium oxysporum and Penicillium glabrum.

    PubMed

    Ertit Taştan, Burcu

    2017-09-15

    In Turkey approximately 45 million tons of coals are burned in a year and 19.3 million tons of fly ash have emerged. The bioremediation of heavy metals or different elements from fly ash makes them bio-available. However, in previous studies, requiring of long operational time and failing to show tolerance to high pulp densities of fly ash of selected fungal species makes them impractical. In this work, bioremediation of fly ash by new isolated fungi Fusarium oxysporum and Penicillium glabrum were investigated in one step and two step bioremediation process. Ca, Si, Fe and S were found to be considerable amount in studied fly ashes by ED-XRF element analysis. The bioremediation yields of Mo (100%), S (64.36%) Ni (50%) and Cu (33.33%) by F. oxysporum were high. The remediated elements by P. glabrum in fly ash were Mo (100%), S (57.43%), Ni (25%), Si (24.66%), V (12.5%), Ti (5%) and Sr (3.2%). The isolation of high fly ash resistant fungi and reduction of the bioremediation time will allow the practical applications of the bioremediation technology when it is scaled up. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Origin of the main r-process elements

    NASA Astrophysics Data System (ADS)

    Otsuki, K.; Truran, J.; Wiescher, M.; Gorres, J.; Mathews, G.; Frekers, D.; Mengoni, A.; Bartlett, A.; Tostevin, J.

    2006-07-01

    The r-process is supposed to be a primary process which assembles heavy nuclei from a photo-dissociated nucleon gas. Hence, the reaction flow through light elements can be important as a constraint on the conditions for the r-process. We have studied the impact of di-neutron capture and the neutron-capture of light (Z<10) elements on r-process nucleosynthesis in three different environments: neutrino-driven winds in Type II supernovae; the prompt explosion of low mass supernovae; and neutron star mergers. Although the effect of di-neutron capture is not significant for the neutrino-driven wind model or low-mass supernovae, it becomes significant in the neutron-star merger model. The neutron-capture of light elements, which has been studied extensively for neutrino-driven wind models, also impacts the other two models. We show that it may be possible to identify the astrophysical site for the main r-process if the nuclear physics uncertainties in current r-process calculations could be reduced.

  20. Reply to 'Comment on 'Heavy element production in inhomogeneous big bang nucleosynthesis''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuura, Shunji; Fujimoto, Shin-ichirou; Hashimoto, Masa-aki

    2007-03-15

    This is a reply to Rauscher [Phys. Rev. D 75, 068301 (2007)]. We studied heavy element production in the high baryon density region in the early universe [Phys. Rev. D 72, 123505 (2005)]. However, it is claimed by Rauscher [Phys. Rev. D 75, 068301 (2007)] that a small scale but high baryon density region contradicts observations for the light element abundance or, in order not to contradict the observations, the high density region must be so small that it cannot affect the present heavy element abundance. In this paper, we study big bang nucleosynthesis in the high baryon density regionmore » and show that in certain parameter spaces it is possible to produce enough of the heavy element without contradiction to cosmic microwave background and light element observations.« less

  1. Exploring Ultra-Heavy Cosmic Rays with the Trans-Iron Galactic Element Recorder (TIGER)

    NASA Astrophysics Data System (ADS)

    Link, Jason; Supertiger Collaboration

    2017-01-01

    Elements heavier than iron are primarily synthesized by neutron capture. These elements can be accelerated as cosmic-rays and measuring their abundances at Earth can yield information about galactic cosmic-rays' sources, the acceleration processes and the composition of the universe beyond the boundaries of our solar system. The Trans-Iron Galactic Element Recorder (TIGER) and its larger successor SuperTIGER was designed to measure the abundance of these ultra-heavy cosmic rays between Z=10 and Z=60. These detectors utilize scintillators with a wavelength shifter bar and PMT readout system as well as aerogel and acrylic Cherenkov detectors to identify the charge and energy of a particle and utilize a scintillating fiber hodoscope to provide trajectory information. In this talk I will review the results from this highly successful program, give the status for the next SuperTIGER flight planned for a December 2017 launch from Antarctica, and discuss the future direction of the program.

  2. Globular Cluster Abundances from High-resolution, Integrated-light Spectroscopy. IV. The Large Magellanic Cloud: α, Fe-peak, Light, and Heavy Elements

    NASA Astrophysics Data System (ADS)

    Colucci, Janet E.; Bernstein, Rebecca A.; Cameron, Scott A.; McWilliam, Andrew

    2012-02-01

    We present detailed chemical abundances in eight clusters in the Large Magellanic Cloud (LMC). We measure abundances of 22 elements for clusters spanning a range in age of 0.05-12 Gyr, providing a comprehensive picture of the chemical enrichment and star formation history of the LMC. The abundances were obtained from individual absorption lines using a new method for analysis of high-resolution (R ~ 25,000), integrated-light (IL) spectra of star clusters. This method was developed and presented in Papers I, II, and III of this series. In this paper, we develop an additional IL χ2-minimization spectral synthesis technique to facilitate measurement of weak (~15 mÅ) spectral lines and abundances in low signal-to-noise ratio data (S/N ~ 30). Additionally, we supplement the IL abundance measurements with detailed abundances that we measure for individual stars in the youngest clusters (age < 2 Gyr) in our sample. In both the IL and stellar abundances we find evolution of [α/Fe] with [Fe/H] and age. Fe-peak abundance ratios are similar to those in the Milky Way (MW), with the exception of [Cu/Fe] and [Mn/Fe], which are sub-solar at high metallicities. The heavy elements Ba, La, Nd, Sm, and Eu are significantly enhanced in the youngest clusters. Also, the heavy to light s-process ratio is elevated relative to the MW ([Ba/Y] >+0.5) and increases with decreasing age, indicating a strong contribution of low-metallicity asymptotic giant branch star ejecta to the interstellar medium throughout the later history of the LMC. We also find a correlation of IL Na and Al abundances with cluster mass in the sense that more massive, older clusters are enriched in the light elements Na and Al with respect to Fe, which implies that these clusters harbor star-to-star abundance variations as is common in the MW. Lower mass, intermediate-age, and young clusters have Na and Al abundances that are lower and more consistent with LMC field stars. Our results can be used to constrain both future chemical evolution models for the LMC and theories of globular cluster formation. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  3. Neutrinos, supernovae, and the origin of the heavy elements

    NASA Astrophysics Data System (ADS)

    Qian, YongZhong

    2018-04-01

    Stars of 8-100 M ⊙ end their lives as core-collapse supernovae (SNe). In the process they emit a powerful burst of neutrinos, produce a variety of elements, and leave behind either a neutron star or a black hole. The wide mass range for SN progenitors results in diverse neutrino signals, explosion energies, and nucleosynthesis products. A major mechanism to produce nuclei heavier than iron is rapid neutron capture, or the r process. This process may be connected to SNe in several ways. A brief review is presented on current understanding of neutrino emission, explosion, and nucleosynthesis of SNe.

  4. Discovery of element 117: Super-heavy elements and the “island of stability”

    DOE PAGES

    Roberto, James B.; Rykaczewski, Krzysztof Piotr

    2017-04-12

    Element 117 (tennessine) joined the periodic table in November 2016. Two tennessine isotopes were synthesized by bombarding 249Bk from Oak Ridge National Laboratory with 48Ca ions at the Joint Institute of Nuclear Research, Russia, and 11 new heaviest isotopes of odd-Z elements were observed in subsequent decay chains. These isotopes exhibit increasing lifetimes as the closed nuclear shell at neutron number N = 184 is approached, providing evidence for the “island of stability” for super-heavy elements. Here, this article summarizes recent super-heavy element research with a focus on element 117, the role of actinide targets, and opportunities to synthesize elementsmore » 119 and 120.« less

  5. Discovery of element 117: Super-heavy elements and the “island of stability”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberto, James B.; Rykaczewski, Krzysztof Piotr

    Element 117 (tennessine) joined the periodic table in November 2016. Two tennessine isotopes were synthesized by bombarding 249Bk from Oak Ridge National Laboratory with 48Ca ions at the Joint Institute of Nuclear Research, Russia, and 11 new heaviest isotopes of odd-Z elements were observed in subsequent decay chains. These isotopes exhibit increasing lifetimes as the closed nuclear shell at neutron number N = 184 is approached, providing evidence for the “island of stability” for super-heavy elements. Here, this article summarizes recent super-heavy element research with a focus on element 117, the role of actinide targets, and opportunities to synthesize elementsmore » 119 and 120.« less

  6. Compton suppression method and epithermal NAA in the determination of nutrients and heavy metals in Nigerian food and beverages.

    PubMed

    Ahmed, Y A; Landsberger, S; O'Kelly, D J; Braisted, J; Gabdo, H; Ewa, I O B; Umar, I M; Funtua, I I

    2010-10-01

    We used in this study Compton suppression method and epithermal neutron activation analysis to determine the concentration of nutrients and heavy metals in Nigerian food and beverages. The work was performed at the University of Texas TRIGA Reactor by short, medium, and long irradiation protocols, using thermal flux of 1.4x10(12)n cm(-2)s(-1) and epithermal flux of 1.4x10(11)n cm(-2)s(-1). Application of Compton suppression method has reduced interferences from Compton scattered photons thereby allowing easy evaluation of Na, Cl, Ca, Cu, Mn, Mg, Co, Cr, Rb, Fe, and Se. The epithermal NAA method has enabled determination of Cd, As, Ba, Sr, Br, I, and V with little turn-around time. Quality Control and Quality Assurance of the method was tested by analyzing four Standard Reference Materials (non-fat powdered milk, apple leaves, citrus leaves, and peach leaves) obtained from National Institute for Standards and Technology. Our results show that sorghum, millet, and maize have high values of Zn, Mn, Fe, low values of Cd, As, and Se. Powdered milks, rice, beans, and soybeans were found to have moderate amounts of all the elements. Tobacco recorded high content of Cd, Mn, and As, whereas tea, tsobo leaves, Baobab leaves, and okro seed have more As values than others. However, biscuits, macaroni, spaghetti, and noodles show lower concentrations of all the elements. The distribution of these nutrients and heavy metals in these food and beverages shows the need to fortify biscuits and pastas with micro and macro-nutrients and reduce the use of tobacco, tea, tsobo leaves, Baobab leaves, and Okro seed to avoid intake of heavy elements. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Development of a heavy metal sorption system through the P=S functionalization of coconut (Cocos nucifera) fibers.

    PubMed

    de Sousa, Dayane Almeida; de Oliveira, Elisabeth; da Costa Nogueira, Márcio; Espósito, Breno Pannia

    2010-01-01

    Lignocellulosic residues are interesting materials for the production of heavy metal adsorbents for aquatic systems. Whole fibers taken from coconut (Cocos nucifera) husks were functionalized with the thiophosphoryl (P=S) group by means of the direct reaction with Cl(3)PS, (CH(3)O)(2)ClP=S or (CH(3)CH(2)O)(2)ClP=S in order to obtain an adsorptive system for 'soft' metal ions, particularly Cd(2+). These functionalized fibers (FFs) were characterized by means of elemental analysis, infrared spectroscopy, thermal analysis and acid-base titration. Adsorption isotherms for Cd(2+) fitted the Langmuir model, with binding capacities of 0.2-5 m mol g(-1) of FF at 25 degrees C.

  8. Evaluation of aquifer environment under Hazaribagh leather processing zone of Dhaka city

    NASA Astrophysics Data System (ADS)

    Zahid, Anwar; Balke, K.-D.; Hassan, M. Qumrul; Flegr, Matthias

    2006-07-01

    Hazaribagh is a densely populated area of Dhaka city where about 185 leather processing industries have been operating and discharging solid and liquid wastes directly to the low-lying areas, river and natural canals without proper treatment. The area is covered by alluvial deposits of Holocene age and is underlain by Pleistocene Madhupur clay. The Dupi Tila Formation of Mio-Pliocene age underlain by this yellowish gray to brick red clay bed serves as the main water-bearing aquifer of Dhaka city. To assess the environmental degradation as well as the groundwater environment, major anions, cations and heavy metals of water samples, heavy metals and organic carbon content of sediment samples were analyzed in this study. Analyses of tannery effluent detect high concentration of Na+, Mg2+, Cl- and SO{4/2-} followed by Ca2+, NH{4/+} and K+ with remarkable contents of some trace elements, mainly Cr, Fe, Mn, S, Ni and Pb. Higher accumulations of Cr, Al and Fe are observed in topsoil samples with significant amounts of Mn, Zn, Ni and Cu. Concentrations of ions and all the investigated trace elements of sampled groundwater were within the maximum allowable limit for drinking water of the Department of Environment, Bangladesh (DoE), and World Health Organization (WHO). However, excessive concentrations of Cr, Pb, etc., have already been reported in the shallow groundwater (10-20 m) of the area. Due to excessive withdrawal the vulnerability of groundwater contamination in deeper parts cannot be avoided for the future.

  9. The Manhattan Project

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2014-10-01

    The Manhattan Project was the United States Army’s program to develop and deploy nuclear weapons during World War II. In these devices, which are known popularly as ‘atomic bombs’, energy is released not by a chemical explosion but by the much more violent process of fission of nuclei of heavy elements via a neutron-mediated chain-reaction. Three years after taking on this project in mid-1942, the Army’s Manhattan Engineer District produced three nuclear bombs of two different designs. Two of these devices were fueled with the 239 isotope of the synthetic element plutonium, while the third employed the rare 235 isotope of uranium. One of the plutonium devices, code-named Trinity, was detonated in a test in southern New Mexico on 16 July 1945; this was the world’s first nuclear explosion. Three weeks later, on 6 August, the uranium bomb, Little Boy, was dropped on the Japanese city of Hiroshima. On 9 August the second plutonium device, Fat Man, was dropped on Nagasaki. Together, the two bombings killed over 100 000 people and were at least partially responsible for the Japanese government’s 14 August decision to surrender. This article surveys, at an undergraduate level, the science and history of the Manhattan Project.

  10. Elemental characterization of Mt. Sinabung volcanic ash, Indonesia by Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Kusmartini, I.; Syahfitri, W. Y. N.; Kurniawati, S.; Lestiani, D. D.; Santoso, M.

    2017-06-01

    Mount Sinabung is a volcano located in North Sumatera, Indonesia which has been recorded not erupted since 1600. However in 2013 it has been erupted and cause of black thick smog, rain sand and volcanic ash. Volcanic ash containing trace elements material that can be utilized in various applications but still has potential danger of heavy metals. In order to obtain an elemental composition data of volcanic ash, the characterization of volcanic ash were carried out using Neutron Activation Analysis. The volcanic ash was taken from Mt. Sinabung eruption. Samples were irradiated at the rabbit system in the reactor G.A Siwabessy facilities with neutron flux ˜ 1013 n.cm-2.s-1 and then counted using HPGe detector. Method validation was carried out by SRM NIST Coal Fly Ash 1633b and NIST 2711a Montana II Soil with recovery values were in the range of 96-108% and 95-106% respectively. The results showed that major elements; Al, Na, Ca and Fe, concentrations were 8.7, 1.05, 2.98 and 7.44 %, respectively, minor elements K, Mg, Mn, Ti, V and Zn were 0.87%, 0.78%, 0.18%, 0.62%, 197.13 ppm and 109.35 ppm, respectively, heavy metals; As, Cr, Co and Sb, contents were 4.48, 11.75, 17.13 and 0.35 ppm, respectively while rare earth elements such as Ce, Eu, La, Nd, Sm, Yb were 45.33, 1.22, 19.63, 20.34, 3.86, and 2.57 ppm respectively. The results of the elemental contents of volcanic ash that has been obtained can be used as the scientific based data for volcanic material utilization by considering the economic potential of elements contained and also the danger of the heavy metals content.

  11. Phytoremediation of soils contaminated with toxic elements and radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornish, J.E.; Goldberg, W.C.; Levine, R.S.

    1995-12-31

    At many US Department of Energy (US DOE) facilities and other sites, surface soils over relatively large areas are contaminated with heavy metals, radionuclides, and other toxic elements, often at only a relatively small factor above regulatory action levels. Cleanup of such sites presents major challenges, because currently available soil remediation technologies can be very expensive. In response, the US DOE`s Office of Technology Development, through the Western Environmental Technology Office, is sponsoring research in the area of phytoremediation. Phytoremediation is an emerging technology that uses higher plants to transfer toxic elements and radionuclides from surface soils into aboveground biomass.more » Some plants, termed hyperaccumulators, take up toxic elements in substantial amounts, resulting in concentrations in aboveground biomass over 100 times those observed with conventional plants. After growth, the plant biomass is harvested, and the toxic elements are concentrated and reclaimed or disposed of. As growing, harvesting, and processing plant biomass is relatively inexpensive, phytoremediation can be a low-cost technology for remediation of extensive areas having lightly to moderately contaminated soils. This paper reviews the potential of hyper- and moderate accumulator plants in soil remediation, provides some comparative cost estimates, and outlines ongoing work initiated by the US DOE.« less

  12. Neutron-capture rates for explosive nucleosynthesis: the case of 68Ni(n, γ) 69Ni

    DOE PAGES

    Spyrou, Artemis; Larsen, Ann-Cecilie; Liddick, Sean N.; ...

    2017-02-22

    Neutron-capture reactions play an important role in heavy element nucleosynthesis, since they are the driving force for the two processes that create the vast majority of the heavy elements. When a neutron capture occurs on a short-lived nucleus, it is extremely challenging to study the reaction directly and therefore the use of indirect techniques is essential. The present work reports on such an indirect measurement that provides strong constraints on the 68Ni(n,g) 69Ni reaction rate.The commonly used reaction libraries JINA-REACLIB and BRUSLIB are in relatively good agreement with the experimental rate. The impact of the new rate on weak r-processmore » calculations is discussed.« less

  13. Dependence of nuclear quadrupole resonance transitions on the electric field gradient asymmetry parameter for nuclides with half-integer spins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Herman

    2016-09-01

    Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3/2, 5/2, 7/2, and 9/2. These results may be used to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Applications of NQR methods to studies of electronic structure in heavy element systems are proposed. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, Heavy Element Chemistrymore » program.« less

  14. SPICA and the Chemical Evolution of Galaxies: The Rise of Metals and Dust

    NASA Astrophysics Data System (ADS)

    Fernández-Ontiveros, J. A.; Armus, L.; Baes, M.; Bernard-Salas, J.; Bolatto, A. D.; Braine, J.; Ciesla, L.; De Looze, I.; Egami, E.; Fischer, J.; Giard, M.; González-Alfonso, E.; Granato, G. L.; Gruppioni, C.; Imanishi, M.; Ishihara, D.; Kaneda, H.; Madden, S.; Malkan, M.; Matsuhara, H.; Matsuura, M.; Nagao, T.; Najarro, F.; Nakagawa, T.; Onaka, T.; Oyabu, S.; Pereira-Santaella, M.; Pérez Fournon, I.; Roelfsema, P.; Santini, P.; Silva, L.; Smith, J.-D. T.; Spinoglio, L.; van der Tak, F.; Wada, T.; Wu, R.

    2017-11-01

    The physical processes driving the chemical evolution of galaxies in the last 11Gyr cannot be understood without directly probing the dust-obscured phase of star-forming galaxies and active galactic nuclei. This phase, hidden to optical tracers, represents the bulk of the star formation and black hole accretion activity in galaxies at 1 < z < 3. Spectroscopic observations with a cryogenic infrared observatory like SPICA, will be sensitive enough to peer through the dust-obscured regions of galaxies and access the rest-frame mid- to far-infrared range in galaxies at high-z. This wavelength range contains a unique suite of spectral lines and dust features that serve as proxies for the abundances of heavy elements and the dust composition, providing tracers with a feeble response to both extinction and temperature. In this work, we investigate how SPICA observations could be exploited to understand key aspects in the chemical evolution of galaxies: the assembly of nearby galaxies based on the spatial distribution of heavy element abundances, the global content of metals in galaxies reaching the knee of the luminosity function up to z 3, and the dust composition of galaxies at high-z. Possible synergies with facilities available in the late 2020s are also discussed.

  15. Process recognition in multi-element soil and stream-sediment geochemical data

    USGS Publications Warehouse

    Grunsky, E.C.; Drew, L.J.; Sutphin, D.M.

    2009-01-01

    Stream-sediment and soil geochemical data from the Upper and Lower Coastal Plains of South Carolina (USA) were studied to determine relationships between soils and stream sediments. From multi-element associations, characteristic compositions were determined for both media. Primary associations of elements reflect mineralogy, including heavy minerals, carbonates and clays, and the effects of groundwater. The effects of groundwater on element concentrations are more evident in soils than stream sediments. A "winnowing index" was created using ratios of Th to Al that revealed differing erosional and depositional environments. Both soils and stream sediments from the Upper and Lower Coastal Plains show derivation from similar materials and subsequent similar multi-element relationships, but have some distinct differences. In the Lower Coastal Plain, soils have high values of elements concentrated in heavy minerals (Ce, Y, Th) that grade into high values of elements concentrated into finer-grain-size, lower-density materials, primarily comprised of carbonates and feldspar minerals (Mg, Ca, Na, K, Al). These gradational trends in mineralogy and geochemistry are inferred to reflect reworking of materials during marine transgressions and regressions. Upper Coastal Plain stream-sediment geochemistry shows a higher winnowing index relative to soil geochemistry. A comparison of the 4 media (Upper Coastal Plain soils and stream sediments and Lower Coastal Plain soils and stream sediments) shows that Upper Coastal Plain stream sediments have a higher winnowing index and a higher concentration of elements contained within heavy minerals, whereas Lower Coastal Plain stream sediments show a strong correlation between elements typically contained within clays. It is not possible to calculate a functional relationship between stream sediment-soil compositions for all elements due to the complex history of weathering, deposition, reworking and re-deposition. However, depending on the spatial separation of the stream-sediment and soil samples, some elements are more highly correlated than others. Crown Copyright ?? 2009.

  16. Influence of urban activity in modifying water parameters, concentration and uptake of heavy metals in Typha latifolia L. into a river that crosses an industrial city.

    PubMed

    Strungaru, Stefan-Adrian; Nicoara, Mircea; Jitar, Oana; Plavan, Gabriel

    2015-01-01

    Heavy metals like Cu, Cd, Pb, Ni, Co and Cr can naturally be found almost all over this planet in various amounts. Urban activities such as heavy metal industry, traffic and waste can rapidly increase the metal concentrations in a fresh water ecosystem. This study was done in natural conditions to capture as many aspects in heavy metals pollution and bioremediation of Nicolina River, Romania considered a stream model which is under anthropogenic pressure. Water, sediment and leaves samples of Typha latifolia L. were collected during October 2013 and analyzed in order to assess certain heavy metals (Cu, Cd, Pb, Ni, Co and Cr) from each sampling site using GF-HR-CS-AAS with platform. Heavy metals in significant concentrations in cattail samples were correlated with the water parameters to show the possibility to use the cattail leaves as indicators in heavy metals pollution with potential in bioremediation because they can be easily harvested in autumn and this species is spread worldwide. The levels of metals concentrations in leaves were: Cu > Ni > Cr > Pb > Co knowing that copper is an essential element for plants. The sampling time was important to draw the river diagnosis for heavy metal pollution. The samples were collected, from river, after more than 60 days without rain same as a "human patient" prepared for blood test. Cobalt was considered the metal marker because it was an element with the lowest level of usage in the city. Compared with it only lead, cadmium and copper were used intensively in the industrial activities. T. latifolia L. can be use as an indicator for the health of the studied stream and it was noticed that the heavy metals were not accumulated, although the metal uptake was influenced by sediments and water parameters. The alkalinity of the studied river acts as an inhibitor in the bioremediation process of cattail for cadmium and copper. Lead was uptake by leaves and the water parameters influenced it but it wasn't concentrated enough in leaves to propose this species in lead bioremediation process for Nicolina River.

  17. Migration Potential of Contaminants in the Soil of Rocky Mountain Arsenal, I. Open Literature Review.

    DTIC Science & Technology

    1979-01-01

    Organochlorine Insecticides. 14 3. Organophosphorous Insecticides. 17 4. DIMP, DCPD and DBCP. 19 B. Inorganics . 22 1. General. 22 2. Heavy Metals.. 24 3...and DBCP. 2. Inorganics - heavy metals and soluble salts. The specific elements or compounds focused on were those which have been shown to exist in...the initial moisture content of the soil was raised S..21 B. Inorganics . 1. General, The two most common types of inorganic contaminants in soil are

  18. Effect of multiparticle collisions on pion production in relativistic heavy-ion reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goncalves, M.G.; Medeiros, E.L.; Duarte, S.B.

    In the present work we discuss the effect of N-body processes on pion multiplicity in relativistic heavy-ion reactions. This effect is analyzed in the energy range from the pion threshold up to 2 GeV/nucleon, for several projectile-target systems. The analysis is carried out in the context of intranuclear cascade calculations. It is shown that the inclusion of multibaryonic collisions is a crucial element in the study of the pion production mechanisms, being strongly dependent on the adopted correlation range for the particles involved in the N-body processes. {copyright} {ital 1997} {ital The American Physical Society}

  19. Phytoextraction and phytostabilization potential of plants grown in the vicinity of heavy metal-contaminated soils: a case study at an industrial town site.

    PubMed

    Lorestani, B; Yousefi, N; Cheraghi, M; Farmany, A

    2013-12-01

    With the development of urbanization and industrialization, soils have become increasingly polluted by heavy metals. Phytoremediation, an emerging cost-effective, nonintrusive, and aesthetically pleasing technology that uses the remarkable ability of plants to concentrate elements, can be potentially used to remediate metal-contaminated sites. In this research, two processes of phytoremediation (phytoextraction and phytostabilization) were surveyed in some plant species around an industrial town in the Hamedan Province in the central-western part of Iran. To this purpose, shoots and roots of the seven plant species and the associated soil samples were collected and analyzed by measuring Pb, Fe, Mn, Cu, and Zn concentrations using ICP-AES and then calculating the biological absorption coefficient, bioconcentration factor, and translocation factor parameters for each element. The obtained results showed that among the collected plants, Salsola soda is the most effective species for phytoextraction and phytostabilization and Cirsium arvense has the potential for phytostabilization of the measured heavy metals.

  20. Concentration distribution and assessment of several heavy metals in sediments of west-four Pearl River Estuary

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Cao, Zhimin; Lan, Dongzhao; Zheng, Zhichang; Li, Guihai

    2008-09-01

    Grain size parameters, trace metals (Co, Cu, Ni, Pb, Cr, Zn, Ba, Zr and Sr) and total organic matter (TOM) of 38 surficial sediments and a sediment core of west-four Pearl River Estuary region were analyzed. The spacial distribution and the transportation procession of the chemical element in surficial sediments were studied mainly. Multivariate statistics are used to analyses the interrelationship of metal elements, TOM and the grain size parameters. The results demonstrated that terrigenous sediment taken by the rivers are main sources of the trace metal elements and TOM, and the lithology of parent material is a dominating factor controlling the trace metal composition in the surficial sediment. In addition, the hydrodynamic condition and landform are the dominating factors controlling the large-scale distribution, while the anthropogenic input in the coastal area alters the regional distribution of heavy metal elements Co, Cu, Ni, Pb, Cr and Zn. The enrichment factor (EF) analysis was used for the differentiation of the metal source between anthropogenic and naturally occurring, and for the assessment of the anthropogenic influence, the deeper layer content of heavy metals were calculated as the background values and Zr was chosen as the reference element for Co, Cu, Ni, Pb, Cr and Zn. The result indicate prevalent enrichment of Co, Cu, Ni, Pb and Cr, and the contamination of Pb is most obvious, further more, the peculiar high EF value sites of Zn and Pb probably suggest point source input.

  1. Risk assessment and driving factors for artificial topography on element heterogeneity: Case study at Jiangsu, China.

    PubMed

    Hong, Hualong; Dai, Minyue; Lu, Haoliang; Liu, Jingchun; Zhang, Jie; Yan, Chongling

    2018-02-01

    The rapid expansion of construction related to coastal development evokes great concern about environmental risks. Recent attention has been focused mainly on factors related to the effects of waterlogging, but there is urgent need to address the potential hazard caused by artificial topography: derived changes in the elemental composition of the sediments. To reveal possible mechanisms and to assess the environmental risks of artificial topography on transition of elemental composition in the sediment at adjoining zones, a nest-random effects-combined investigation was carried out around a semi-open seawall. The results implied great changes induced by artificial topography. Not only did artificial topography alter the sediment elemental composition at sites under the effect of artificial topography, but also caused a coupling pattern transition of elements S and Cd. The biogeochemical processes associated with S were also important, as suggested by cluster analysis. The geo-accumulation index shows that artificial topography triggered the accumulation of C, N, S, Cu, Fe, Mn, Zn, Ni, Cr, Pb, As and Cd, and increased the pollution risk of C, N, S, Cu, As and Cd. Enrichment factors reveal that artificial topography is a new type of human-activity-derived Cu contamination. The heavy metal Cu was notably promoted on both the geo-accumulation index and the enrichment factor under the influence of artificial topography. Further analysis showed that the Cu content in the sediment could be fitted using equations for Al and organic carbon, which represented clay mineral sedimentation and organic matter accumulation, respectively. Copper could be a reliable indicator of environmental degradation caused by artificial topography. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. HAT-P-26b: A Neptune-mass Exoplanet with Primordial Solar Heavy Element Abundance

    NASA Astrophysics Data System (ADS)

    Wakeford, Hannah R.; Sing, David K.; Kataria, Tiffany; Deming, Drake; Nikolov, Nikolay; Lopez, Eric; Tremblin, Pascal; Skalid Amundsen, David; Lewis, Nikole K.; Mandell, Avi; Fortney, Jonathan J.; Knutson, Heather; Benneke, Björn; Evans, Tom M.

    2017-01-01

    A trend in giant planet mass and atmospheric heavy elemental abundance was first noted last century from observations of planets in our own solar system. These four data points from Jupiter, Saturn, Uranus, and Neptune have served as a corner stone of planet formation theory. Here we add another point in the mass-metallicity trend from a detailed observational study of the extrasolar planet HAT-P-26b, which inhabits the critical mass regime near Neptune and Uranus. Neptune-sized worlds are among the most common planets in our galaxy and frequently exist in orbital periods very different from that of our own solar system ice giants. Atmospheric studies are the principal window into these worlds, and thereby into their formation and evolution, beyond those of our own solar system. Using the Hubble Space Telescope and Spitzer, from the optical to the infrared, we conducted a detailed atmospheric study of the Neptune-mass exoplanet HAT-P-26b over 0.5 to 4.5 μm. We detect prominent H2O absorption at 1.4 μm to 525 ppm in the atmospheric transmission spectrum. We determine that HAT-P-26b’s atmosphere is not rich in heavy elements (≈1.8×solar), which goes distinctly against the solar system mass-metallicity trend. This likely indicates that HAT-P-26b’s atmosphere is primordial and obtained its gaseous envelope late in its disk lifetime with little contamination from metal-rich planetesimals.

  3. Abundance of live 244Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis

    PubMed Central

    Wallner, A.; Faestermann, T.; Feige, J.; Feldstein, C.; Knie, K.; Korschinek, G.; Kutschera, W.; Ofan, A.; Paul, M.; Quinto, F.; Rugel, G.; Steier, P.

    2015-01-01

    Half of the heavy elements including all actinides are produced in r-process nucleosynthesis, whose sites and history remain a mystery. If continuously produced, the Interstellar Medium is expected to build-up a quasi-steady state of abundances of short-lived nuclides (with half-lives ≤100 My), including actinides produced in r-process nucleosynthesis. Their existence in today’s interstellar medium would serve as a radioactive clock and would establish that their production was recent. In particular 244Pu, a radioactive actinide nuclide (half-life=81 My), can place strong constraints on recent r-process frequency and production yield. Here we report the detection of live interstellar 244Pu, archived in Earth’s deep-sea floor during the last 25 My, at abundances lower than expected from continuous production in the Galaxy by about 2 orders of magnitude. This large discrepancy may signal a rarity of actinide r-process nucleosynthesis sites, compatible with neutron-star mergers or with a small subset of actinide-producing supernovae. PMID:25601158

  4. HAIR HEAVY METAL AND ESSENTIAL TRACE ELEMENT CONCENTRATION IN CHILDREN WITH AUTISM SPECTRUM DISORDER.

    PubMed

    Tabatadze, T; Zhorzholiani, L; Kherkheulidze, M; Kandelaki, E; Ivanashvili, T

    2015-11-01

    Our study aims evaluation of level of essential trace elements and heavy metals in the hair samples of children with autistic spectrum disorder (ASD) and identification of changes that are associated with autistic spectrum disorders. Case-control study was conducted at Child Development Center of Iashvili Children's Central Hospital (LD).We studied 60 children aged from 4 to 5 years old. The concentrations of 28 elements among (Ca,Zn, K, Fe, Cu, Se, Mn, Cr, S, Br, Cl, Co, Ag, V, Ni, Rb, Mo, Sr, Ti, Ba, Pb, As, Hg, Cd, Sb, Zr, Sn, Bi) them trace elements and toxic metals) were determined in scalp hair samples of children (n=30) with autistic spectrum disorder (ASD) and from control group of healthy children (n=30) with matched sex and age. Micro-elemental status was detected in the hair, with roentgen-fluorescence spectrometer method (Method MBИ 081/12-4502-000, Apparatus ALVAX- CIP, USA - UKRAIN) .To achieve the similarity of study and control groups, pre and postnatal as well as family and social history were assessed and similar groups were selected. Children with genetic problems, malnourished children, children from families with social problems were excluded from the study. The diagnosis of ASD were performed by pediatrician and psychologist (using M-CHAT and ADOS) according to DSM IV (Diagnostic and Statistical Manual of Mental Disorders from the American Psychiatric association) criteria. The study was statistically analyzed using computer program SPSS 19. Deficiencies of essential trace microelements revealed in both group, but there was significant difference between control and studied groups. The most deficient element was zinc (92% in target and 20% in control), then - manganese (55% and 8%) and selenium (38% and 4%). In case of cooper study revealed excess concentration of this element only in target group in 50% of cases. The contaminations to heavy metals were detected in case of lead (78% and 16), mercury (43% and 10%) and cadmium (38% and 8%). The study statistical results indicated, that deficient concentrations of trace elements such as zinc, manganese, molybdenum and selenium in hair significantly linked with ASD (Kramer's V was 0,740; 0,537; 0,333; 0,417 accordingly). In case of cooper we got excess levels of this element and this data was highly linked with autism spectrum disorder. We got high associations and significant values between of lead, mercury and cadmium concentrations and ASD. Study results indicate that there are significant differences of hair essential trace elements concentrations in children with autism spectrum disorder comparing with healthy children group. The result obtained also showed high contamination to heavy metals such as lead, mercury and cadmium in ASD children compared to healthy ones. So, our study demonstrated alteration in levels of toxic heavy metals and essential trace elements in children with autistic spectrum disorders as compared to healthy children. This suggests a possible pathophysiological role of heavy metals and trace elements in the genesis of symptoms of autism spectrum disorders.

  5. Investigating Reflectance Properties of Mercury's Surface Material: Effect of Swift Heavy Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Carli, C.; Brunetto, R.; Strazzulla, G.; Serventi, G.; Poulet, F.; Capaccioni, F.; Langevin, Y.; Gardes, E.; Martinez, R.; Boduch, P.; Domaracka, A.; Rothard, H.

    2018-05-01

    Mercury’s surface is affected by space weathering processes, interesting mineral properties. Here, we present a spectral study of swift heavy ion irradiation of two minerals, olivine and nepheline, as a simulation of heavy ion irradiation at Mercury.

  6. Impact of the uncertainty in α-captures on {sup 22}Ne on the weak s-process in massive stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, N.; Hirschi, R.; Pignatari, M.

    2014-05-02

    Massive stars at solar metallicity contribute to the production of heavy elements with atomic masses between A = 60 and A = 90 via the so-called weak s-process (which takes place during core He and shell C burning phases). Furthermore, recent studies have shown that rotation boosts the s-process production in massive stars at low metallicities, with a production that may reach the barium neutron-magic peak. These results are very sensitive to neutron source and neutron poison reaction rates. For the weak s-process, the main neutron source is the reaction {sup 22}Ne(α,n){sup 25}Mg, which is in competition with {sup 22}Ne(α,γ){supmore » 26}Mg. The uncertainty of both rates strongly affects the nucleosynthesis predictions from stellar model calculations. In this study, we investigate the impact of the uncertainty in α-captures on {sup 22}Ne on the s-process nucleosynthesis in massive stars both at solar and at very low metallicity. For this purpose, we post-process, with the Nugrid mppnp code, non-rotating and rotating evolutionary models 25M{sub ⊙} stars at two different metallicities: Z = Z{sub ⊙} and Z = 10{sup −5}Z{sub ⊙}, respectively. Our results show that uncertainty of {sup 22}Ne(α,n){sup 25}Mg and {sup 22}Ne(α,γ){sup 26}Mg rates have a significant impact on the final elemental production especially for metal poor rotating models. Beside uncertainties in the neutron source reactions, for fast rotating massive stars at low metallicity we revisit the impact of the neutron poisoning effect by the reaction chain {sup 16}O(n,γ){sup 17}O(α,γ){sup 21}Ne, in competition with the {sup 17}O(α,n){sup 20}Ne, recycling the neutrons captured by {sup 16}O.« less

  7. [Analysis of X-Ray Fluorescence Spectroscopy and Plasma Mass Spectrometry of Pangxidong Composite Granitoid Pluton and Its Implications for Magmatic Differentiation].

    PubMed

    Zeng, Chang-yu; Ding, Ru-xin; Li, Hong-zhong; Zhou, Yong-zhang; Niu, Jia; Zhang, Jie-tang

    2015-11-01

    Pangxidong composite granitoid pluton located in the southwestern margin of Yunkai massif. The metamorphic grade of this pluton increases from outside to inside, that is, banded-augen granitic gneisses, gneissoid granites and granites distribute in order from edge to core. X-Ray Fluorescence Spectroscopy and Plasma Mass Spectrometry are conducted to study the geochemical characteristics of the three types of rocks. The result shows that all the three types of rocks are peraluminous rocks and their contents of main elements and rare earth elements change gradually. From granitic gneisses to granites, the contents of Al₂O₃, CaO, MgO, TiO₂, total rare earth elements and light rare earth elements increase, but the contents of SiO₂ and heavy rare earth elements decrease. It is suggested that the phylogenetic relationship exists between granitic gneisses, gneissoid granites and granites during the multi-stage tectonic evolution process. Furthermore, the remelting of metamorphosed supracrustal rocks in Yunkai massif is probably an important cause of granitoid rocks forming. The evolutionary mechanism is probably that SiO₂ and heavy rare earth elements were melt out from the protolith and gradually enriched upward, but Al₂O₃, CaO, MgO, TiO₂ and light rare earth elements enriched downward.

  8. Heavy Metals in the Environment-Historical Trends

    NASA Astrophysics Data System (ADS)

    Callender, E.

    2003-12-01

    These six metals, commonly classified as heavy metals, are a subset of a larger group of trace elements that occur in low concentration in the Earth's crust. These heavy metals were mined extensively for use in the twentieth century Industrial Society. Nriagu (1988a) estimated that between 0.5 (Cd) and 310 (Cu) million metric tons of these metals were mined and ultimately deposited in the biosphere. In many instances, the inputs of these metals from anthropogenic sources exceed the contributions from natural sources (weathering, volcanic eruptions, forest fires) by several times ( Adriano, 1986). In this chapter, heavy metals (elements having densities greater than 5) and trace elements (elements present in the lithosphere in concentrations less than 0.1%) are considered synonymous.It has been observed in the past that the rate of emission of these trace metals into the atmosphere is low due to their low volatility. However, with the advent of large-scale metal mining and smelting as well as fossil-fuel combustion in the twentieth century, the emission rate of these metals has increased dramatically. As most of these emissions are released into the atmosphere where the mammals live and breathe, we see a great increase in the occurrence of health problems such as lead (Pb) poisoning, cadmium (Cd) Itai-itai disease, chromium (Cr), and nickel (Ni) carcinogenesis.In this chapter, the author has attempted to present a synopsis of the importance of these metals in the hydrocycle, their natural and anthropogenic emissions into the environment, their prevalent geochemical form incorporated into lacustrine sediments, and their time-trend distributions in watersheds that have been impacted by urbanization, mining and smelting, and other anthropogenic activities. These time trends are reconstructed from major-minor-trace-element distributions in age-dated sediment cores, mainly from reservoirs where the mass sedimentation rates (MSRs) are orders of magnitude greater than those in natural lakes, the consequences of which tend to preserve the heavy-metal signatures and minimize the metal diagenesis (Callender, 2000). This chapter focuses mainly on the heavy metals in the terrestrial and freshwater environments whilst the environmental chemistry of trace metals in the marine environment is discussed in Volume 6, Chapter 3 of the Treatise on Geochemistry.The data presented in Table 2, Table 3, Table 4 and Table 5 are updated as much as possible, with many of the references postdate the late 1980s. Notable exceptions are riverine particulate matter chemistry ( Table 2), some references in Table 3, and references concerning the geochemical properties of the six heavy metals discussed in this chapter. There appears to be no recent publication that updates the worldwide average for riverine particulate matter trace metal chemistry ( Martin and Whitfield, 1981; Martin and Windom, 1991). This is supported by the fact that two recent references ( Li, 2000; Chester, 2000) concerning marine chemistry still refer to this 1981 publication. As for references in Table 3, there is a very limited data available concerning the pathways of heavy-metal transport to lakes. Some of the important works have been considered and reviewed in this chapter. In addition, the analytical chemistry of the sedimentary materials has changed little over the past 30 years until the advent and use of inductively coupled plasma/mass spectrometry (ICP/MS) in the late 1990s. Extensive works concerning the geochemical properties of heavy metals have been published during the past 40 years and to the author's knowledge these have survived the test of time.

  9. Molecular identification of isolated fungi, microbial and heavy metal contamination of canned meat products sold in Riyadh, Saudi Arabia

    PubMed Central

    Nasser, Laila A.

    2014-01-01

    Several studies have shown that canned meat products may be contaminated with fungal elements, bacteria and even heavy metals which may occur during the transportation, storage and handling processes. We conducted this study to determine the fungal, microbial and heavy metal contents of canned meats in Saudi Arabia. Of the 13 canned meat samples studied, Aspergillus and Penicillium were found in more than 70% of the total samples. Sequences of Penicillium species isolated from meat samples generated a phylogenetic tree which shows that the studied isolates were clustered in four groups. No bacterial contamination was noted in all of the samples. Nine of the 13 samples had iron concentrations above the permissible limit. All samples had zinc and copper levels below the maximum permissible limit. Four samples had cadmium levels above the maximum permissible level. All samples had levels of lead above the maximum permissible levels. These results indicate that fungal elements and higher levels of heavy metals such as lead and cadmium can be found in canned meat products. This may pose as a real danger to consumers, since canned meat products are readily accessible and convenient in Saudi Arabia. PMID:26288552

  10. Explaining the Ba, Y, Sr, and Eu abundance scatter in metal-poor halo stars: constraints to the r-process

    NASA Astrophysics Data System (ADS)

    Cescutti, G.; Chiappini, C.

    2014-05-01

    Context. Thanks to the heroic observational campaigns carried out in recent years we now have large samples of metal-poor stars for which measurements of detailed abundances exist. In particular, large samples of stars with metallicities -5 < [Fe/H] <-1 and measured abundances of Sr, Ba, Y, and Eu are now available. These data hold important clues on the nature of the contribution of the first stellar generations to the enrichment of our Galaxy. Aims: We aim to explain the scatter in Sr, Ba, Y, and Eu abundance ratio diagrams unveiled by the metal-poor halo stars. Methods: We computed inhomogeneous chemical evolution models for the Galactic halo assuming different scenarios for the r-process site: the electron-capture (EC) supernovae and the magnetorotationally driven (MRD) supernovae scenarios. We also considered models with and without the contribution of fast-rotating massive stars (spinstars) to an early enrichment by the s-process. A detailed comparison with the now large sample of stars with measured abundances of Sr, Ba, Y, Eu, and Fe is provided (both in terms of scatter plots and number distributions for several abundance ratios). Results: The scatter observed in these abundance ratios of the very metal-poor stars (with [Fe/H] <-2.5) can be explained by combining the s-process production in spinstars, and the r-process contribution coming from massive stars. For the r-process we have developed models for both the EC and the MRD scenarios that match the observations. Conclusions: With the present observational and theoretical constraints we cannot distinguish between the EC and the MRD scenarios in the Galactic halo. Independently of the r-process scenarios adopted, the production of elements by an s-process in spinstars is needed to reproduce the spread in abundances of the light neutron capture elements (Sr and Y) over heavy neutron capture elements (Ba and Eu). We provide a way to test our suggestions by means of the distribution of the Ba isotopic ratios in a [Ba/Fe] or [Sr/Ba] vs. [Fe/H] diagram. Appendix A is available in electronic form at http://www.aanda.org

  11. Disposal options for polluted plants grown on heavy metal contaminated brownfield lands - A review.

    PubMed

    Kovacs, Helga; Szemmelveisz, Katalin

    2017-01-01

    Reducing or preventing damage caused by environmental pollution is a significant goal nowadays. Phytoextraction, as remediation technique is widely used, but during the process, the heavy metal content of the biomass grown on these sites special treatment and disposal techniques are required, for example liquid extraction, direct disposal, composting, and combustion. These processes are discussed in this review in economical and environmental aspects. The following main properties are analyzed: form and harmful element content of remains, utilization of the main and byproducts, affect to the environment during the treatment and disposal. The thermal treatment (combustion, gasification) of contaminated biomass provides a promising alternative disposal option, because the energy production affects the rate of return, and the harmful elements are riched in a small amount of solid remains depending on the ash content of the plant (1-2%). The biomass combustion technology is a wildely used energy production process in residential and industrial scale, but the ordinary biomass firing systems are not suited to burn this type of fuel without environmental risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Hubble space telescope near-ultraviolet spectroscopy of the bright cemp-no star BD+44°493

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Placco, Vinicius M.; Beers, Timothy C.; Smith, Verne V.

    2014-07-20

    We present an elemental-abundance analysis, in the near-ultraviolet (NUV) spectral range, for the extremely metal-poor star BD+44°493 a ninth magnitude subgiant with [Fe/H] =–3.8 and enhanced carbon, based on data acquired with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. This star is the brightest example of a class of objects that, unlike the great majority of carbon-enhanced metal-poor (CEMP) stars, does not exhibit over-abundances of heavy neutron-capture elements (CEMP-no). In this paper, we validate the abundance determinations for a number of species that were previously studied in the optical region, and obtain strong upper limits for berylliummore » and boron, as well as for neutron-capture elements from zirconium to platinum, many of which are not accessible from ground-based spectra. The boron upper limit we obtain for BD+44°493, log ε (B) <–0.70, the first such measurement for a CEMP star, is the lowest yet found for very and extremely metal-poor stars. In addition, we obtain even lower upper limits on the abundances of beryllium, log ε (Be) <–2.3, and lead, log ε (Pb) <–0.23 ([Pb/Fe] <+1.90), than those reported by previous analyses in the optical range. Taken together with the previously measured low abundance of lithium, the very low upper limits on Be and B suggest that BD+44°493 was formed at a very early time, and that it could well be a bona-fide second-generation star. Finally, the Pb upper limit strengthens the argument for non-s-process production of the heavy-element abundance patterns in CEMP-no stars.« less

  13. Signatures of Heavy Element Production in Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Barnes, Jennifer

    2018-06-01

    Compact object mergers involving at least one neutron star have long been theorized to be sites of astrophysical nucleosynthesis via rapid neutron capture (the r-process). The observation in light and gravitational waves of the first neutron star merger (GW1701817) this past summer provided a stunning confirmation of this theory. Electromagnetic emission powered by the radioactive decay of freshly synthesized nuclei from mergers encodes information about the composition burned by the r-process, including whether a particular merger event synthesized the heaviest nuclei along the r-process path, or froze out at lower mass number. However, efforts to model the emission in detail must still contend with many uncertainties. For instance, the uncertain nuclear masses far from the valley of stability influence the final composition burned by the r-process, as will weak interactions operating in the merger’s immediate aftermath. This in turn can affect the color electromagnetic emission. Understanding the details of these transients’ spectra will also require a detailed accounting the electronic transitions of r-process elements and ions, in order to identify the strong transitions that underlie spectral formation. This talk will provide an overview of our current understanding of radioactive transients from mergers, with an emphasis on the role of experiment in providing critical inputs for models and reducing uncertainty.

  14. Thermal stability of mullite RMn₂O₅ (R  =  Bi, Y, Pr, Sm or Gd): combined density functional theory and experimental study.

    PubMed

    Li, Chenzhe; Thampy, Sampreetha; Zheng, Yongping; Kweun, Joshua M; Ren, Yixin; Chan, Julia Y; Kim, Hanchul; Cho, Maenghyo; Kim, Yoon Young; Hsu, Julia W P; Cho, Kyeongjae

    2016-03-31

    Understanding and effectively predicting the thermal stability of ternary transition metal oxides with heavy elements using first principle simulations are vital for understanding performance of advanced materials. In this work, we have investigated the thermal stability of mullite RMn2O5 (R  =  Bi, Pr, Sm, or Gd) structures by constructing temperature phase diagrams using an efficient mixed generalized gradient approximation (GGA) and the GGA  +  U method. Simulation predicted stability regions without corrections on heavy elements show a 4-200 K underestimation compared to our experimental results. We have found the number of d/f electrons in the heavy elements shows a linear relationship with the prediction deviation. Further correction on the strongly correlated electrons in heavy elements could significantly reduce the prediction deviations. Our corrected simulation results demonstrate that further correction of R-site elements in RMn2O5 could effectively reduce the underestimation of the density functional theory-predicted decomposition temperature to within 30 K. Therefore, it could produce an accurate thermal stability prediction for complex ternary transition metal oxide compounds with heavy elements.

  15. Somatic diversification in the heavy chain variable region genes expressed by human autoantibodies bearing a lupus-associated nephritogenic anti-DNA idiotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demaison, C.; Chastagner, P.; Theze, J.

    1994-01-18

    Monoclonal anti-DNA antibodies bearing a lupus nephritis-associated idiotype were derived from five patients with systemic lupus erythematosus (SLE). Genes encoding their heavy (H)-chain variable (V[sub H]) regions were cloned and sequenced. When compared with their closest V[sub h] germ-line gene relatives, these sequences exhibit a number of silent (S) and replacement (R) substitutions. The ratios of R/S mutations were much higher in the complementarity-determining regions (CDRs) of the antibodies than in the framework regions. Molecular amplification of genomic V[sub H] genes and Southern hybridization with somatic CDR2-specific oligonucleotide probes showed that the configuration of the V[sub H] genes corresponding tomore » V[sub H] sequences in the nephritogenic antibodies is not present in the patient's own germ-line DNA, implying that the B-cell clones underwent somatic mutation in vivo. These findings, together with the characteristics of the diversity and junctional gene elements utilized to form the antibody, indicate that these autoantibodies have been driven through somatic selection processes reminiscent of those that govern antibody responses triggered by exogenous stimuli.« less

  16. [Determination of trace heavy metal elements in cortex Phellodendron chinense by ICP-MS after microwave-assisted digestion].

    PubMed

    Kou, Xing-Ming; Xu, Min; Gu, Yong-Zuo

    2007-06-01

    An inductively coupled plasma mass spectrometry (ICP-MS) for determination of the contents of 8 trace heavy metal elements in cortex Phellodendron chinense after microwave-assisted digestion of the sample has been developed. The accuracy of the method was evaluated by the analysis of corresponding trace heavy metal elements in standard reference materials (GBW 07604 and GBW 07605). By applying the proposed method, the contents of 8 trace heavy metal elements in cortex Phellodendron chinense cultivated in different areas (in Bazhong, Yibin and Yingjing, respectively) of Sichuan and different growth period (6, 8 and 10 years of samples from Yingjing) were determined. The relative standard deviation (RSD) is in the range of 3.2%-17.8% and the recoveries of standard addition are in the range of 70%-120%. The results of the study indicate that the proposed method has the advantages of simplicity, speediness and sensitivity. It is suitable for the determination of the contents of 8 trace heavy metal elements in cortex Phellodendron chinense. The results also show that the concentrations of 4 harmful trace heavy metal elements As, Cd, Hg and Pb in cortex Phellodendron chinense are all lower than the limits of Chinese Pharmacopoeia and Green Trade Standard for Importing and Exporting Medicinal Plant and Preparation. Therefore, the cortex Phellodendron chinense is fit for use as medicine and export.

  17. Detection of pristine gas two billion years after the Big Bang.

    PubMed

    Fumagalli, Michele; O'Meara, John M; Prochaska, J Xavier

    2011-12-02

    In the current cosmological model, only the three lightest elements were created in the first few minutes after the Big Bang; all other elements were produced later in stars. To date, however, heavy elements have been observed in all astrophysical environments. We report the detection of two gas clouds with no discernible elements heavier than hydrogen. These systems exhibit the lowest heavy-element abundance in the early universe, and thus are potential fuel for the most metal-poor halo stars. The detection of deuterium in one system at the level predicted by primordial nucleosynthesis provides a direct confirmation of the standard cosmological model. The composition of these clouds further implies that the transport of heavy elements from galaxies to their surroundings is highly inhomogeneous.

  18. Heavy Metals and Related Trace Elements.

    ERIC Educational Resources Information Center

    Leland, Harry V.; And Others

    1978-01-01

    Presents a literature review of heavy metals and related trace elements in the environment, covering publications of 1976-77. This review includes: (1) trace treatment in natural water and in sediments; and (2) bioaccumulation and toxicity of trace elements. A list of 466 references is presented. (HM)

  19. High-resolution Optical Spectroscopic Observations of Four Symbiotic Stars: AS 255, MWC 960, RW Hya, and StH α 32

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, C. B.; Drake, N. A.; Roig, F.

    We report on the analysis of high-resolution optical spectra of four symbiotic stars: AS 255, MWC 960, RW Hya, and StH α 32. We employ the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code moog to analyze the spectra. The abundance of barium and carbon was derived using the spectral synthesis technique. The chemical composition of the atmospheres of AS 255 and MWC 960 show that they are metal-poor K giants with metallicities of −1.2 and −1.7 respectively. StH α 32 is a CH star and also a low-metallicity object (−1.4). AS 255 and MWC 960 are yellowmore » symbiotic stars and, like other previously studied yellow symbiotics, are s -process enriched. StH α 32, like other CH stars, is also an s -process and carbon-enriched object. RW Hya has a metallicity of −0.64, a value in accordance with previous determinations, and is not s -process enriched. Based on its position in the 2MASS diagram, we suggest that RW Hya is at an intermediate position between yellow symbiotics and classical S-type symbiotics. We also discuss whether the dilution effect was the mechanism responsible for the absence of the s -process elements overabundance in RW Hya. The luminosity obtained for StH α 32 is below the luminosity of the asymptotic giant branch (AGB) stars that started helium burning (via thermal pulses) and became self-enriched in neutron-capture elements. Therefore, its abundance peculiarities are due to mass transfer from the previous thermally pulsing AGB star (now the white dwarf) that was overabundant in s -process elements. For the stars AS 255 and MWC 960, the determination of their luminosities was not possible due to uncertainties in their distance and interstellar absorption. AS 255 and MWC 960 have a low galactic latitude and could be bulge stars or members of the inner halo population. The heavy-element abundance distribution of AS 255 and MWC 960 is similar to that of the other yellow symbiotics previously analyzed. Their abundance patterns follow that of the thick disk population for RW Hya and of the halo population for AS 255, MWC 960, and StH α 32. We also determined the rotational velocities of these four symbiotic stars and compare our results with those of single field stars.« less

  20. High-resolution Optical Spectroscopic Observations of Four Symbiotic Stars: AS 255, MWC 960, RW Hya, and StHα 32

    NASA Astrophysics Data System (ADS)

    Pereira, C. B.; Baella, N. O.; Drake, N. A.; Miranda, L. F.; Roig, F.

    2017-05-01

    We report on the analysis of high-resolution optical spectra of four symbiotic stars: AS 255, MWC 960, RW Hya, and StHα32. We employ the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code moog to analyze the spectra. The abundance of barium and carbon was derived using the spectral synthesis technique. The chemical composition of the atmospheres of AS 255 and MWC 960 show that they are metal-poor K giants with metallicities of -1.2 and -1.7 respectively. StHα32 is a CH star and also a low-metallicity object (-1.4). AS 255 and MWC 960 are yellow symbiotic stars and, like other previously studied yellow symbiotics, are s-process enriched. StHα32, like other CH stars, is also an s-process and carbon-enriched object. RW Hya has a metallicity of -0.64, a value in accordance with previous determinations, and is not s-process enriched. Based on its position in the 2MASS diagram, we suggest that RW Hya is at an intermediate position between yellow symbiotics and classical S-type symbiotics. We also discuss whether the dilution effect was the mechanism responsible for the absence of the s-process elements overabundance in RW Hya. The luminosity obtained for StHα32 is below the luminosity of the asymptotic giant branch (AGB) stars that started helium burning (via thermal pulses) and became self-enriched in neutron-capture elements. Therefore, its abundance peculiarities are due to mass transfer from the previous thermally pulsing AGB star (now the white dwarf) that was overabundant in s-process elements. For the stars AS 255 and MWC 960, the determination of their luminosities was not possible due to uncertainties in their distance and interstellar absorption. AS 255 and MWC 960 have a low galactic latitude and could be bulge stars or members of the inner halo population. The heavy-element abundance distribution of AS 255 and MWC 960 is similar to that of the other yellow symbiotics previously analyzed. Their abundance patterns follow that of the thick disk population for RW Hya and of the halo population for AS 255, MWC 960, and StHα32. We also determined the rotational velocities of these four symbiotic stars and compare our results with those of single field stars. Based on the observations made with the 2.2 m telescope at the European Southern Observatory (La Silla, Chile) under agreement between ESO and Observatório Nacional/MCTI.

  1. Leaf responsiveness of Populus tremula and Salix viminalis to soil contaminated with heavy metals and acidic rainwater.

    PubMed

    Hermle, Sandra; Vollenweider, Pierre; Günthardt-Goerg, Madeleine S; McQuattie, Carolyn J; Matyssek, Rainer

    2007-11-01

    Fast-growing trees such as Salix viminalis L. and Populus tremula L. are well suited to phytoremediate heavy metal contaminated soils. However, information on tree performance, particularly leaf function, under conditions of heavy metal contamination is scarce. We used yearly coppiced saplings of S. viminalis and P. tremula growing in model ecosytems to test four hypotheses: (1) heavy metal contamination impairs photosynthesis by injuring leaf structure; (2) the effects of heavy metal contamination are enhanced by acidified rainwater and low soil pH; (3) heavy metal contamination increases dark respiration and, thus, repair processes; and (4) heavy metal contamination is tolerated and remediated better by S. viminalis than by P. tremula. We investigated heavy metal accumulation, tissue injury and gas exchange in leaves of plants subjected to controlled soil contamination with heavy metal dust. Additional treatments included acidic and calcareous natural forest subsoils in combination with irrigation with rainwater at pH 5.5 or 3.5. In both provenances of P. tremula that were studied, but not in S. viminalis, heavy metal treatment reduced photosynthesis and transpiration by varying amounts, except in the hot and dry summer of 2003, but had no effect on dark respiration. At light saturation, net CO(2) uptake and water-use efficiency were reduced by heavy metal contamination, whereas the CO(2) concentration in the leaf intercellular air space was increased. Rainwater pH and subsoil pH only slightly modified the effects of the heavy metal treatment on P. tremula. Gas exchange responses of P. tremula to heavy metals were attributed to leaf structural and ultrastructural changes resulting from hypersensitive-response-like processes and accelerated mesophyll cell senescence and necroses in the lower epidermis, especially along the transport pathways of heavy metals in the leaf lamina. Overall, the effects of heavy metals on P. tremula corroborated Hypothesis 1, but refuted Hypotheses 2 and 3, and were inconclusive for Hypothesis 4. Both P. tremula and S. viminalis showed appreciable potential for storing heavy metals in aging foliage.

  2. Findings on the phytoextraction and phytostabilization of soils contaminated with heavy metals.

    PubMed

    Cheraghi, M; Lorestani, B; Khorasani, N; Yousefi, N; Karami, M

    2011-12-01

    As a result of human activities such as mining, metal pollution has become one of the most serious environmental problems today. Phytoremediation, an emerging cost-effective, non-intrusive, and aesthetically pleasing technology that uses the remarkable ability of plants to concentrate elements can be potentially used to remediate metal-contaminated sites. The aim of this work was to assess the extent of metal accumulation by plants found in a mining area in Hamedan province with the ultimate goal of finding suitable plants for phytoextraction and phytostabilization (two processes of phytoremediation). To this purpose, shoots and roots of the 12 plant species and the associated soil samples were collected and analyzed by measurement of total concentrations of some elements (Fe, Mn, Zn, and Cu) using atomic absorption spectrophotometer and then biological absorption coefficient, bioconcentration factor, and translocation factor parameters calculated for each element. Our results showed that none of the plants were suitable for phytoextraction and phytostabilization of Fe, Zn, and Cu, while Chenopodium botrys, Stipa barbata, Cousinia bijarensis, Scariola orientalis, Chondrila juncea, and Verbascum speciosum, with a high biological absorption coefficient for Mn, were suitable for phytoextraction of Mn, and C. bijarensis, C. juncea, V. speciosum, S. orientalis, C. botrys, and S. barbata, with a high bioconcentration factor and low translocation factor for Mn, had the potential for the phytostabilization of this element.

  3. The two-mass contribution to the three-loop gluonic operator matrix element Agg,Q(3)

    NASA Astrophysics Data System (ADS)

    Ablinger, J.; Blümlein, J.; De Freitas, A.; Goedicke, A.; Schneider, C.; Schönwald, K.

    2018-07-01

    We calculate the two-mass QCD contributions to the massive operator matrix element Agg,Q at O (αs3) in analytic form in Mellin N- and z-space, maintaining the complete dependence on the heavy quark mass ratio. These terms are important ingredients for the matching relations of the variable flavor number scheme in the presence of two heavy quark flavors, such as charm and bottom. In Mellin N-space the result is given in the form of nested harmonic, generalized harmonic, cyclotomic and binomial sums, with arguments depending on the mass ratio. The Mellin inversion of these quantities to z-space gives rise to generalized iterated integrals with square root valued letters in the alphabet, depending on the mass ratio as well. Numerical results are presented.

  4. Formation of the giant planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2006-01-01

    The observed properties of giant planets, models of their evolution and observations of protoplanetary disks provide constraints on the formation of gas giant planets. The four largest planets in our Solar System contain considerable quantities of hydrogen and helium, which could not have condensed into solid planetesimals within the protoplanetary disk. All three (transiting) extrasolar giant planets with well determined masses and radii also must contain substantial amounts of these light gases. Jupiter and Saturn are mostly hydrogen and helium, but have larger abundances of heavier elements than does the Sun. Neptune and Uranus are primarily composed of heavier elements. HD 149026 b, which is slightly more massive than is Saturn, appears to have comparable quantities of light gases and heavy elements. HD 209458 b and TrES-1 are primarily hydrogen and helium, but may contain supersolar abundances of heavy elements. Spacecraft flybys and observations of satellite orbits provide estimates of the gravitational moments of the giant planets in our Solar System, which in turn provide information on the internal distribution of matter within Jupiter, Saturn, Uranus and Neptune. Atmospheric thermal structure and heat flow measurements constrain the interior temperatures of planets. Internal processes may cause giant planets to become more compositionally differentiated or alternatively more homogeneous; high-pressure laboratory .experiments provide data useful for modeling these processes. The preponderance of evidence supports the core nucleated gas accretion model. According to this model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the growing giant planet cores become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. The primary questions regarding the core nucleated growth model is under what conditions planets with small cores/total heavy element abundances can accrete gaseous envelopes within the lifetimes of gaseous protoplanetary disks.

  5. Magnetocaloric effect in heavy rare-earth elements doped Fe-based bulk metallic glasses with tunable Curie temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jiawei; Huo, Juntao; Chang, Chuntao, E-mail: ctchang@nimte.ac.cn, E-mail: dujun@nimte.ac.cn

    2014-08-14

    The effects of heavy rare earth (RE) additions on the Curie temperature (T{sub C}) and magnetocaloric effect of the Fe-RE-B-Nb (RE = Gd, Dy and Ho) bulk metallic glasses were studied. The type of dopping RE element and its concentration can easily tune T{sub C} in a large temperature range of 120 K without significantly decreasing the magnetic entropy change (ΔS{sub M}) and refrigerant capacity (RC) of the alloys. The observed values of ΔS{sub M} and RC of these alloys compare favorably with those of recently reported Fe-based metallic glasses with enhanced RC compared to Gd{sub 5}Ge{sub 1.9}Si{sub 2}Fe{sub 0.1}. The tunable T{submore » C} and large glass-forming ability of these RE doped Fe-based bulk metallic glasses can be used in a wide temperature range with the final required shapes.« less

  6. Design for Safety - The Ares Launch Vehicles Paradigm Change

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.; Maggio, Gaspare

    2010-01-01

    The lessons learned from the S&MA early involvement in the Ares I launch vehicle design phases proved that performing an in-line function jointly with engineering is critical for S&MA to have an effective role in supporting the system, element, and component design. These lessons learned were used to effectively support the Ares V conceptual design phase and planning for post conceptual design phases. The Top level Conceptual LOM assessment for Ares V performed by the S&MA community jointly with the engineering Advanced Concept Office (ACO) was influential in the final selection of the Ares V system configuration. Post conceptual phase, extensive reliability effort should be planned to support future Heavy Lift Launch Vehicles (HLLV) design. In-depth reliability analysis involving the design, manufacturing, and system engineering communities is critical to understand design and process uncertainties and system integrated failures.

  7. Comparative assessment of heavy metals content during the composting and vermicomposting of Municipal Solid Waste employing Eudrilus eugeniae.

    PubMed

    Soobhany, Nuhaa; Mohee, Romeela; Garg, Vinod Kumar

    2015-05-01

    This study was undertaken to have comparative assessment of heavy metals content during composting and vermicomposting processing of Municipal Solid Waste (MSW). Six scenarios were set up in which three experiments were for composting (controls) denoted as S1 for food waste, S2 for paper waste and S3 for yard waste and the corresponding replicates for vermicomposting processes were S4, S5 and S6. Vermicomposting caused significant reduction in Cd (43.3-73.5%), Cr (11.3-52.8%), Cu (18.9-62.5%), Co (21.4-47.6%), Zn (34.6%) and Ni (19.9-49.6%) compared to composting which showed a progressive increase. Addition of worms did not show any effect on Fe and Mn, most probably from the genesis of organic-bound complexes. The efficacy of utilizing Eudrilus eugeniae was indicated by the high values of bioconcentration factors (BCFs) which were in the order of Cd>Ni>Cu>Co>Cr>Zn and the increase amount of these metals in the earthworms' tissue after the vermicomposting processes. Different values of BCFs were obtained for different heavy metals and this accounted that earthworms exert different metabolic mechanisms. Regression analysis of the reduction percentages (R) in relation to BCF showed that RCdtot.S6, RCrtot.S5 and RCutot.S6 were significantly correlated with BCFCd.S6, BCFCr.S5 and BCFCu.S6 respectively. Thus, in comparison to simple composting processes, data analysis suggested the feasibility of inoculating E. eugeniae to MSW in order to mitigate the content of toxic heavy metals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Effects of elemental sulphur on heavy metal uptake by plants growing on municipal sewage sludge.

    PubMed

    Dede, Gulgun; Ozdemir, Saim

    2016-01-15

    In this study experiment was carried out to determine the phytoextraction potential of six plant species (Conium maculatum, Brassica oleraceae var. oleraceae, Brassica juncea, Datura stramonium, Pelargonium hortorum and Conyza canadensis) grown in a sewage sludge medium amended with metal uptake promoters. The solubility of Cu, Cd and Pb was significantly increased with the application of elemental S due to decrease of pH. Faecal coliform number was markedly decreased by addition of elemental sulphur. The extraction of Cu, Cr and Pb from sewage sludge by using B. juncea plant was observed as 65%, 65% and 54% respectively that is statistically similar to EDTA as sulphur. The bioaccumulation factors were found higher (>1) in the plants tested for Cu and Pb like B. juncea. Translocation index (TI) calculated values for Cd and Pb were greater than one (>1) in both C. maculatum and B. oleraceae var. oleraceae. The results cleared that the amendment of sludge with elemental sulphur showed potential to solubilize heavy metals in phytoremediation as much as EDTA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Migration and speciation of heavy metal in salinized mine tailings affected by iron mining.

    PubMed

    Zhang, Xu; Yang, Huanhuan; Cui, Zhaojie

    2017-10-01

    The negative effects of heavy metals have aroused much attention due to their high toxicity to human beings. Migration and transformation trend of heavy metals have a close relationship with soil safety. Researching on migration and transformation of heavy metals in tailings can provide a reliable basis for pollution management and ecosystem restoration. Heavy metal speciation plays an important role in risk assessment. We chose Anshan tailings for our study, including field investigations and laboratory research. Four typical heavy metal elements of mine tailings {Fe (373.89 g/kg), Mn (2,303.80 mg/kg), Pb (40.99 mg/kg) and Cr (199.92 mg/kg)} were studied via Tessier test in vertical and horizontal direction. The main speciation of heavy metals in Anshan tailings was the residual. However, heavy metals have a strong ability for migration and transformation in vertical and horizontal directions. Its tendency to change from stable to unstable speciation results in increasing bioavailability and potential bioavailability. Fe, Mn, Pb and Cr showed different ability in the migration and transformation process (Mn > Pb > Fe > Cr) depending on the characteristics of heavy metals and physicochemical properties of the environment.

  10. Alaska's rare earth deposits and resource potential

    USGS Publications Warehouse

    Barker, James C.; Van Gosen, Bradley S.

    2012-01-01

    Alaska’s known mineral endowment includes some of the largest and highest grade deposits of various metals, including gold, copper and zinc. Recently, Alaska has also been active in the worldwide search for sources of rare earth elements (REE) to replace exports now being limitedby China. Driven by limited supply of the rare earths, combined with their increasing use in new ‘green’ energy, lighting, transportation, and many other technological applications, the rare earth metals neodymium, europium and, in particular, the heavy rare earth elements terbium, dysprosium and yttrium are forecast to soon be in critical short supply (U.S. Department of Energy, 2010).

  11. The Search for Heavy Elements

    ScienceCinema

    None

    2017-12-09

    The 1994 documentary "The Search for Heavy Elements" chronicles the expansion of the periodic table through the creation at Berkeley Lab of elements heavier than uranium. The documentary features a mix of rarely-seen archival footage, historical photos, and interviews with scientists who made history, such as Glenn Seaborg and Albert Ghiorso.

  12. The Search for Heavy Elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2008-04-17

    The 1994 documentary "The Search for Heavy Elements" chronicles the expansion of the periodic table through the creation at Berkeley Lab of elements heavier than uranium. The documentary features a mix of rarely-seen archival footage, historical photos, and interviews with scientists who made history, such as Glenn Seaborg and Albert Ghiorso.

  13. Environmental monitoring of the area surrounding oil wells in Val d'Agri (Italy): element accumulation in bovine and ovine organs.

    PubMed

    Miedico, Oto; Iammarino, Marco; Paglia, Giuseppe; Tarallo, Marina; Mangiacotti, Michele; Chiaravalle, A Eugenio

    2016-06-01

    In this work, environmental heavy metal contamination in the Val d'Agri area of Southern Italy was monitored, measuring the accumulation of 18 heavy metals (U, Hg, Pb, Cd, As, Sr, Sn, V, Ni, Cr, Mo, Co, Cu, Zn, Ca, Mn, Fe, and Al) in the organs of animals raised in the surrounding area (kidney, lung, and liver of bovine and ovine species). Val d'Agri features various oil processing centers which are potentially a significant source of environmental pollution, making it essential to perform studies that will outline the state of the art on which any recovery plans and interventions may be developed. The analysis was carried out using official and accredited analytical methods based on inductively coupled plasma mass spectrometry, and the measurements were statistically processed in order to give a contribution to risk assessment. Even though five samples showed Pb and Cd concentrations above the limits defined in the European Commission Regulation (EC) No 1881/2006, the mean concentrations of most elements suggest that contamination in this area is low. Consequently, these results also suggest that there is no particular risk for human exposure to toxic trace elements. Nevertheless, the findings of this work confirm that element accumulation in ovine species is correlated with geographical livestock area. Therefore, ovine-specific organs might be used as bioindicators for monitoring contamination by specific toxic elements in exposed areas.

  14. Sustainable geoengineering projects for the remediation of mine site

    NASA Astrophysics Data System (ADS)

    Martínez-Sanchez, Maria Jose; Perez-Sirvent, Carmen; Garcia-Lorenzo, Maria Luz; Martinez-Lopez, Salvadora; Gonzalez, Eva; Perez-Espinosa, Victor; Molina-Ruiz, Jose; Belen Martinez, Lucia; Hernandez, Carmen; Bech, Jaime; Hernandez-Cordoba, Manuel

    2015-04-01

    A large number of soils are contaminated by heavy metals due to mining activities, generating adverse effects on human health and the environment. In response to these negative effects, a variety of technologies have been developed. In situ immobilization by means of soil amendment is a non-intrusive and cost effective alternative that transforms the highly mobile toxic heavy metals to physico-chemically stable forms. Limestone filler is a good selection for such a purpose, because of its characteristics. In addition, the use of this amendment could revalorize the residues, reducing the costs of the process. The objective of this work was to evaluate the effectiveness of an immobilization technique in sediments contaminated by heavy metals. Two experimental areas, approximately 1 Ha each one, were selected, and technosols were developed as follows: original sediments, sediments mixed with limestone filler in a 1:1 proportion, gravel to avoid capillary and natural soil to allow plant growth. After the remediation technique was applied, monitoring was done in 18 points collecting samples (sediment and water) during a 4 years period at two month intervals. The pH and electrical conductivity as well as the heavy metal (Zn, Pb, Cd, Cu and As) contents were measured. Microtox bioassay was also applied. Sediments before the remediation technique showed acidic pH, high EC values and high trace elements content. The results obtained after the immobilization showed that sediment samples had neutral pH (average value of 8.3) low electrical conductivity (1.32 dS m-1) and low trace elements concentration. It can be concluded that the use of limestone filler is an excellent option in sediments polluted because of the risk for human health or ecosystem disappears or is decreased in a large extent. In addition, the designed experience allows stabilizer proportion to be optimized and may suppose a big cost-saving in the project in areas affected by mining activities.

  15. Review: Nutritional ecology of heavy metals.

    PubMed

    Hejna, M; Gottardo, D; Baldi, A; Dell'Orto, V; Cheli, F; Zaninelli, M; Rossi, L

    2018-01-08

    The aim of this review is to focus the attention on the nutrition ecology of the heavy metals and on the major criticisms related to the heavy metals content in animal feeds, manure, soil and animal-origin products. Heavy metals are metallic elements that have a high density that have progressively accumulated in the food chain with negative effects for human health. Some metals are essential (Fe, I, Co, Zn, Cu, Mn, Mo, Se) to maintain various physiological functions and are usually added as nutritional additives in animal feed. Other metals (As, Cd, F, Pb, Hg) have no established biological functions and are considered as contaminants/undesirable substances. The European Union adopted several measures in order to control their presence in the environment, as a result of human activities such as: farming, industry or food processing and storage contamination. The control of the animal input could be an effective strategy to reduce human health risks related to the consumption of animal-origin products and the environmental pollution by manure. Different management of raw materials and feed, animal species as well as different legal limits can influence the spread of heavy metals. To set up effective strategies against heavy metals the complex interrelationships in rural processes, the widely variability of farming practices, the soil and climatic conditions must be considered. Innovative and sustainable approaches have discussed for the heavy metal nutrition ecology to control the environmental pollution from livestock-related activities.

  16. Detoxification of mercury, cadmium, and lead in Klebsiella aerogenes NCTC 418 growing in continuous culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aiking, H.; Govers, H.; van 'T Riet, J.

    1985-11-01

    Klebsiella aerogenes NCTC 418 growing in the presence of cadmium under glucose-, sulfate-, or phosphate-limited conditions in continuous culture exhibited sulfide formation and P/sub i/ accumulation as the only demonstrable detoxification mechanisms. In the presence of mercury under similar conditions only HgS formation could be confirmed, by an increased sensitivity to mercury under sulfate-limited conditions, among others. The fact that the cells were most sensitive to cadmium under conditions of phosphate limitation and most sensitive to mercury under conditions of sulfate limitation led to the hypothesis that these inorganic detoxification mechanisms generally depended on a kind of facilitated precipitation. Themore » process was coined thus because heavy metals were probably accumulated and precipitated near the cell perimeter due to the relatively high local concentrations of sulfide and phosphate there. Depending on the growth-limiting nutrient, mercury proved to be 25-fold (phosphate limitation), 75-fold (glycerol limitation), or 150-fold (sulfate limitation) more toxic than cadmium to this organism. In the presence of lead, PbS formation was suggested. since no other detoxification mechanisms were detected, for example, rendering heavy metal ions innocuous as metallo-organic compounds, it was concluded that formation of heavy metal precipitates is crucially important to this organism. In addition, it was observed that several components of a defined mineral medium were able to reduce mercuric ions to elemental mercury. This abiotic mercury volatilization was studied in detail, and its general and environmental implications are discussed.« less

  17. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water

    PubMed Central

    Li, Jing; Yu, Haixin; Luan, Yaning

    2015-01-01

    The use of aquatic plants for phytoremediation is an important method for restoring polluted ecosystems. We sought to analyze the capacity of different aquatic plant species to absorb heavy metals and to summarize available relevant scientific data on this topic. We present a meta-analysis of Cu, Zn, and Cd absorption capacities of aquatic plants to provide a scientific basis for the selection of aquatic plants suitable for remediation of heavy-metal pollution. Plants from the Gramineae, Pontederiaceae, Ceratophyllaceae, Typhaceae and Haloragaceae showed relatively strong abilities to absorb these metals. The ability of a particular plant species to absorb a given metal was strongly correlated with its ability to absorb the other metals. However, the absorption abilities varied with the plant organ, with the following trend: roots > stems > leaves. The pH of the water and the life habits of aquatic plants (submerged and emerged) also affect the plant’s ability to absorb elements. Acidic water aids the uptake of heavy metals by plants. The correlation observed between element concentrations in plants with different aquatic life habits suggested that the enrichment mechanism is related to the surface area of the plant exposed to water. We argue that this meta-analysis would aid the selection of aquatic plants suitable for heavy-metal absorption from polluted waters. PMID:26703632

  18. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. II. Zinc binding inside leaf cell organelles.

    PubMed

    Vollenweider, Pierre; Bernasconi, Petra; Gautschi, Hans-Peter; Menard, Terry; Frey, Beat; Günthardt-Goerg, Madeleine S

    2011-01-01

    The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing β-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. LIBS coupled with ICP/OES for the spectral analysis of betel leaves

    NASA Astrophysics Data System (ADS)

    Rehan, I.; Rehan, K.; Sultana, S.; Khan, M. Z.; Muhammad, R.

    2018-05-01

    Laser-induced breakdown spectroscopy (LIBS) system was optimized and was applied for the elemental analysis and exposure of the heavy metals in betel leaves in air. Pulsed Nd:YAG (1064 nm) in conjunction with a suitable detector (LIBS 2000+, Ocean Optics, Inc) having the optical resolution of 0.06 nm was used to record the emission spectra from 200 to 720 nm. Elements like Al, Ba, Ca, Cr, Cu, P, Fe, K, Mg, Mn, Na, P, S, Sr, and Zn were found to be present in the samples. The abundances of observed elements were calculated through normalized calibration curve method, integrated intensity ratio method, and calibration free-LIBS approach. Quantitative analyses were accomplished under the assumption of local thermodynamic equilibrium (LTE) and optically thin plasma. LIBS findings were validated by comparing its results with the results obtained using a typical analytical technique of inductively coupled plasma-optical emission spectroscopy (ICP/OES). Limit of detection (LOD) of the LIBS system was also estimated for heavy metals.

  20. Solar models with helium and heavy-element diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahcall, J.N.; Pinsonneault, M.H.; Wasserburg, G.J.

    1995-10-01

    Helium and heavy-element diffusion are both included in precise calculations of solar models. In addition, improvements in the input data for solar interior models are described for nuclear reaction rates, the solar luminosity, the solar age, heavy-element abundances, radiative opacities, helium and metal diffusion rates, and neutrino interaction cross sections. The effects on the neutrino fluxes of each change in the input physics are evaluated separately by constructing a series of solar models with one additional improvement added at each stage. The effective 1{sigma} uncertainties in the individual input quantities are estimated and used to evaluate the uncertainties in themore » calculated neutrino fluxes and the calculated event rates for solar neutrino experiments. The calculated neutrino event rates, including all of the improvements, are 9.3{sub {minus}1.4}{sup +1.2} SNU for the {sup 37}Cl experiment and 137{sub {minus}7}{sup +8} SNU for the {sup 71}Ga experiments. The calculated flux of {sup 7}Be neutrinos is 5.1(1.00{sub {minus}0.07}{sup +0.06}){times}10{sup 9} cm{sup {minus}2}s{sup {minus}1} and the flux of {sup 8}B neutrinos is 6.6(1.00{sub {minus}0.17}{sup +0.14}){times}10{sup 6} cm{sup {minus}2}s{sup {minus}1}. The primordial helium abundance found for this model is {ital Y}=0.278. The present-day surface abundance of the model is {ital Y}{sub {ital s}}=0.247, in agreement with the helioseismological measurement of {ital Y}{sub {ital s}}=0.242{plus_minus}0.003 determined by Hernandez and Christensen-Dalsgaard (1994). The computed depth of the convective zone is {ital R}=0.712{ital R}{sub {circle_dot}}, in agreement with the observed value determined from {ital p}-mode oscillation data of {ital R}=0.713{plus_minus}0.003{ital R}{sub {circle_dot}} found by Christensen-Dalsgaard {ital et} {ital al}. (1991). (Abstract Truncated)« less

  1. [Effect of sodium carbonate assisted hydrothermal process on heavy metals stabilization in medical waste incinerator fly ash].

    PubMed

    Jin, Jian; Li, Xiao-dong; Chi, Yong; Yan, Jian-hua

    2010-04-01

    A sodium carbonate assisted hydrothermal process was induced to stabilize the fly ash from medical waste incinerator. The results showed that sodium carbonate assisted hydrothermal process reduced the heavy metals leachability of fly ash, and the heavy metal waste water from the process would not be a secondary pollution. The leachability of heavy metals studied in this paper were Cd 1.97 mg/L, Cr 1.56 mg/L, Cu 2.56 mg/L, Mn 17.30 mg/L, Ni 1.65 mg/L, Pb 1.56 mg/L and Zn 189.00 mg/L, and after hydrothermal process with the optimal experimental condition (Na2CO3/fly ash dosage = 5/20, reaction time = 8 h, L/S ratio = 10/1) the leachability reduced to < 0.02 mg/L for Cd, Cr, Cu, Mn, Ni, Pb, and 0.05 mg/L for Zn, according to GB 5085.3-2007. Meanwhile, the concentrations of heavy metals in effluent after hydrothermal process were less than 0.8 mg/L. The heavy metals leachability and concentration in effluent reduced with prolonged reaction time. Prolonged aging can affect the leachability of metals as solids become more crystalline, and heavy metals transferred inside of crystalline. The mechanism of heavy metal stabilization can be concluded to the co precipitation and adsorption effect of aluminosilicates formation, crystallization and aging process.

  2. Heavy Elements and Cool Stars

    NASA Technical Reports Server (NTRS)

    Wahlgren, Glenn M.; Carpenter, Kenneth G.; Norris, Ryan P.

    2008-01-01

    We report on progress in the analysis of high-resolution near-IR spectra of alpha Orionis (M2 Iab) and other cool, luminous stars. Using synthetic spectrum techniques, we search for atomic absorption lines in the stellar spectra and evaluate the available line parameter data for use in our abundance analyses. Our study concentrates on the post iron-group elements copper through zirconium as a means of investigating the slow neutron-capture process of nucleosynthesis in massive stars and the mechanisms that transport recently processed material up into the photospheric region. We discuss problems with the atomic data and model atmospheres that need to be addressed before theoretically derived elemental abundances from pre-supernova nucleosynthesis calculations can be tested by comparison with abundances determined from observations of cool, massive stars.

  3. Heavy element synthesis in the oldest stars and the early Universe.

    PubMed

    Cowan, John J; Sneden, Christopher

    2006-04-27

    The first stars in the Universe were probably quite different from those born today. Composed almost entirely of hydrogen and helium (plus a tiny trace of lithium), they lacked the heavier elements that determine the formation and evolution of younger stars. Although we cannot observe the very first stars--they died long ago in supernovae explosions--they created heavy elements that were incorporated into the next generation. Here we describe how observations of heavy elements in the oldest surviving stars in our Galaxy's halo help us understand the nature of the first stars--those responsible for the chemical enrichment of our Galaxy and Universe.

  4. Mobilization of arsenic and heavy metals from polluted soils by humic acid

    NASA Astrophysics Data System (ADS)

    Reyes, Arturo; Fuentes, Bárbara; Letelier, María Victoria; Cuevas, Jacqueline

    2017-04-01

    The existence of soils contaminated with harmful elements by mining activities is a global environmental concern. The northern part of Chile has several heavy metal contaminated sites due to former copper and gold artisanal mining activities. Therefore, a complete characterization of abandoned sites and the implementation of remediation technologies are of interest for regulators, the industry, and the population. The objective of the study was to test the use of humic acid as a washing treatment to reduce the heavy metal concentration of soil samples impacted by mine waste material. A stratified random sampling was conducted on the target site to determine the physical and chemical composition of mine waste and soil material. The sampling consisted of taking 37 samples at 0-20 cm depths in a 10,000 square-meter area. The samples were dried and sieved at 2 mm. The batch washing experiments were conducted in triplicate at pH 7.0. A 1:10 solid to liquid ratio and three humic acid dose (0, 50, and 100 mg/l) were used. After shaking (24 h, room temperature) and subsequently filtration (0.22 μm), the supernatants were analyzed for heavy metals, redox potential and pH. The heavy metals mobility was assessed using extraction methods before and after treatments. The soils had alkaline pH values, conductivity ranged between 8 and 35 mS/cm, with low organic matter. Total concentrations of Vanadium (V) (10.80 to 175.00 mg/kg), Lead (Pb) (7.31 to 90.10 mg/kg), Antimonium (Sb) (0.83 to 101.00 mg/kg), and Arsenic (As) (9.53 to 2691.00 mg/kg) exceeded several times the EPA`s recommended values for soils. At 100 mg/L HA the removal efficiencies for V, Pb, Sb, and As were 32, 68, 77, and 82% respectively. According to the extraction procedure V, Pb, Sb, and As species are mainly as oxidizable and residual fractions. According to the results, the target mine site is contaminated with harmful elements. It can be concluded that the use of humic acid is a good alternative as a treatment to minimize the harmful element mobility. More test must be conducted in order to increase the efficiency of heavy metal removal by using humic acid.

  5. Phytoremediation of soils and water contaminated with toxic elements and radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornish, J.E.; Huddleston, G.J.; Levine, R.S.

    1995-12-31

    At many U.S. Department of Energy (DOE) facilities and other sites, large volumes of soils, sediments and waters are contaminated with heavy metals and/or radionuclides, often at only a relatively small factor above regulatory action levels. In response, the DOE`s Office of Technology Development is evaluating the emerging biotechnology known as phytoremediation; this approach utilizes the accelerated transfer of contaminant mass from solution to either root or above ground biomass. After growth, the plant biomass - containing 100 to 1,000 times the contaminant levels observed with conventional plants - is processed to achieve further volume reduction and contaminant concentration. Thus,more » phytoremediation offers the potential for low cost remediation of highly to moderately contaminated media. Progress made to date by DOE in developing this technology will be summarized and evaluated.« less

  6. Mining the HST "Advanced Spectral Library (ASTRAL) - Hot Stars": The High Definition UV Spectrum of the Ap Star HR 465

    NASA Astrophysics Data System (ADS)

    Carpenter, Kenneth G.; Ayres, T. R.; Nielsen, K. E.; Kober, G. V.; Wahlgren, G. M.; Adelman, S. J.; Cowley, C. R.

    2014-01-01

    The "Advanced Spectral Library (ASTRAL) Project: Hot Stars" is a Hubble Space Telescope (HST) Cycle 21 Treasury Program (GO-13346: Ayres PI). It is designed to collect a definitive set of representative, high-resolution ( 30,000-100,000), high signal/noise (S/N>100), and full UV coverage 1200 - 3000 A) spectra of 21 early-type stars, utilizing the high-performance Space Telescope Imaging Spectrograph (STIS). The targets span the range of spectral types between early-O and early-A, including both main sequence and evolved stars, fast and slow rotators, as well as chemically peculiar (CP) and magnetic objects. These extremely high-quality STIS UV echelle spectra will be available from the HST archive and, in post-processed and merged form, at http://casa.colorado.edu ayres/ASTRAL/. The UV "atlases" produced by this program will enable investigations of a broad range of problems -- stellar, interstellar, and beyond -- for many years to come. We offer a first look at one of the earliest datasets to come out of this observing program, a "high definition" UV spectrum of the Ap star HR 465, which was chosen as a prototypical example of an A-type magnetic CP star. HR 465 has a global magnetic field of ~2200 Gauss. Earlier analyses of IUE spectra show strong iron-peak element lines, along with heavy elements such as Ga and Pt, while being deficient in the abundance of some ions of low atomic number, such as carbon. We demonstrate the high quality of the ASTRAL data and present the identification of spectral lines for a number of elements. By comparison of the observed spectra with calculated spectra, we also provide estimates of element abundances, emphasizing heavy elements, and place these measurements in the context of earlier results for this and other Ap stars.

  7. [Distribution Characteristics and Source Analysis of Dustfall Trace Elements During Winter in Beijing].

    PubMed

    Xiong, Qiu-lin; Zhao, Wen-ji; Guo, Xiao-yu; Chen, Fan-tao; Shu, Tong-tong; Zheng, Xiao-xia; Zhao, Wen-hui

    2015-08-01

    The dustfall content is one of the evaluation indexes of atmospheric pollution. Trace elements especially heavy metals in dustfall can lead to risks to ecological environment and human health. In order to study the distribution characteristics of trace elements, heavy metals pollution and their sources in winter atmospheric dust, 49 dustfall samples were collected in Beijing City and nearby during November 2013 to March 2014. Then the contents (mass percentages) of 40 trace elements were measured by Elan DRC It type inductively coupled plasma mass (ICP-MS). Test results showed that more than half of the trace elements in the dust were less than 10 mg x kg(-1); about a quarter were between 10-100 mg x kg-1); while 7 elements (Pb, Zr, Cr, Cu, Zn, Sr and Ba) were more than 100 mg x kg(-1). The contents of Pb, Cu, Zn, Bi, Cd and Mo of winter dustfall in Beijing city.were respectively 4.18, 4.66, 5.35, 6.31, 6.62, and 8.62 times as high as those of corresponding elements in the surface soil in the same period, which went beyond the soil background values by more than 300% . The contribution of human activities to dustfall trace heavy metals content in Beijing city was larger than that in the surrounding region. Then sources analysis of dustfall and its 20 main trace elements (Cd, Mo, Nb, Ga, Co, Y, Nd, Li, La, Ni, Rb, V, Ce, Pb, Zr, Cr, Cu, Zn, Sr, Ba) was conducted through a multi-method analysis, including Pearson correlation analysis, Kendall correlation coefficient analysis and principal component analysis. Research results indicated that sources of winter dustfall in Beijing city were mainly composed of the earth's crust sources (including road dust, construction dust and remote transmission of dust) and the burning of fossil fuels (vehicle emissions, coal combustion, biomass combustion and industrial processes).

  8. Distribution of trace elements in selected pulverized coals as a function of particle size and density

    USGS Publications Warehouse

    Senior, C.L.; Zeng, T.; Che, J.; Ames, M.R.; Sarofim, A.F.; Olmez, I.; Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Mroczkowski, S.; Palmer, C.; Finkelman, R.

    2000-01-01

    Trace elements in coal have diverse modes of occurrence that will greatly influence their behavior in many coal utilization processes. Mode of occurrence is important in determining the partitioning during coal cleaning by conventional processes, the susceptibility to oxidation upon exposure to air, as well as the changes in physical properties upon heating. In this study, three complementary methods were used to determine the concentrations and chemical states of trace elements in pulverized samples of four US coals: Pittsburgh, Illinois No. 6, Elkhorn and Hazard, and Wyodak coals. Neutron Activation Analysis (NAA) was used to measure the absolute concentration of elements in the parent coals and in the size- and density-fractionated samples. Chemical leaching and X-ray absorption fine structure (XAFS) spectroscopy were used to provide information on the form of occurrence of an element in the parent coals. The composition differences between size-segregated coal samples of different density mainly reflect the large density difference between minerals, especially pyrite, and the organic portion of the coal. The heavy density fractions are therefore enriched in pyrite and the elements associated with pyrite, as also shown by the leaching and XAFS methods. Nearly all the As is associated with pyrite in the three bituminous coals studied. The sub-bituminous coal has a very low content of pyrite and arsenic; in this coal arsenic appears to be primarily organically associated. Selenium is mainly associated with pyrite in the bituminous coal samples. In two bituminous coal samples, zinc is mostly in the form of ZnS or associated with pyrite, whereas it appears to be associated with other minerals in the other two coals. Zinc is also the only trace element studied that is significantly more concentrated in the smaller (45 to 63 ??m) coal particles.

  9. Photoneutron reactions in astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varlamov, V. V., E-mail: Varlamov@depni.sinp.msu.ru; Ishkhanov, B. S.; Orlin, V. N.

    Among key problems in nuclear astrophysics, that of obtaining deeper insight into the mechanism of synthesis of chemical elements is of paramount importance. The majority of heavy elements existing in nature are produced in stars via radiative neutron capture in so-called s- and r processes, which are, respectively, slow and fast, in relation to competing β{sup −}-decay processes. At the same time, we know 35 neutron-deficient so-called bypassed p-nuclei that lie between {sup 74}Se and {sup 196}Hg and which cannot originate from the aforementioned s- and r-processes. Their production is possible in (γ, n), (γ, p), or (γ, α) photonuclearmore » reactions. In view of this, data on photoneutron reactions play an important role in predicting and describing processes leading to the production of p-nuclei. Interest in determining cross sections for photoneutron reactions in the threshold energy region, which is of particular importance for astrophysics, has grown substantially in recent years. The use of modern sources of quasimonoenergetic photons obtained in processes of inverse Compton laser-radiation scattering on relativistic electronsmakes it possible to reveal rather interesting special features of respective cross sections, manifestations of pygmy E1 and M1 resonances, or the production of nuclei in isomeric states, on one hand, and to revisit the problem of systematic discrepancies between data on reaction cross sections from experiments of different types, on the other hand. Data obtained on the basis of our new experimental-theoretical approach to evaluating cross sections for partial photoneutron reactions are invoked in considering these problems.« less

  10. Ecosystem and human health assessment in relation to aquatic environment pollution by heavy metals: case study of the Murmansk region, northwest of the Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Moiseenko, T. I.; Morgunov, B. A.; Gashkina, N. A.; Megorskiy, V. V.; Pesiakova, A. A.

    2018-06-01

    Throughout the Euro-Arctic region of Russia (Murmansk region), there is a substantial increase of metal concentrations in water, which are related to local discharges from the metallurgical and mining industry, transboundary pollution, as well as indirect leaching of elements by acid precipitation. This study collates data to investigate the relationship between surface water contamination by metals, and fish and human health. Fish are used as a biological indicator to show the impact of water pollution by metals on the ecosystem’s health. The etiology of fish and human diseases are related to the water pollution and accumulation of metals in organisms. High concentrations of Ni and Cd in water drives an accumulation of these elements in organs and tissues of fish, especially in kidneys. The relation between the accumulation of Ni in kidneys and the development of fish nephrocalcinosis and fibroelastosis was established. Statistical analysis demonstrated that human populations in cities close in proximity to smelters show the highest incidence of disease. The results of histological, clinical, and post-mortem examination of patients shows the highest content of toxic metals, especially Cd, in livers and kidneys. Our complex investigation of a set of disorders observed in fish and human populations indicates that there is a high probability that the negative impact on human health is caused by prolonged water contamination by heavy metals. As a novel finding, this paper shows that based on the similarity of pathological processes and bioaccumulation of metals in fish and humans, examining the content of heavy metals in fish can be used to confirm etiology and evaluate the potential risk to human health by pollution of surface waters.

  11. HOW MANY NUCLEOSYNTHESIS PROCESSES EXIST AT LOW METALLICITY?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, C. J.; Montes, F.; Arcones, A., E-mail: cjhansen@lsw.uni-heidelberg.de, E-mail: cjhansen@dark-cosmology.dk, E-mail: montes@nscl.msu.edu, E-mail: almudena.arcones@physik.tu-darmstadt.de

    Abundances of low-metallicity stars offer a unique opportunity to understand the contribution and conditions of the different processes that synthesize heavy elements. Many old, metal-poor stars show a robust abundance pattern for elements heavier than Ba, and a less robust pattern between Sr and Ag. Here we probe if two nucleosynthesis processes are sufficient to explain the stellar abundances at low metallicity, and we carry out a site independent approach to separate the contribution from these two processes or components to the total observationally derived abundances. Our approach provides a method to determine the contribution of each process to themore » production of elements such as Sr, Zr, Ba, and Eu. We explore the observed star-to-star abundance scatter as a function of metallicity that each process leads to. Moreover, we use the deduced abundance pattern of one of the nucleosynthesis components to constrain the astrophysical conditions of neutrino-driven winds from core-collapse supernovae.« less

  12. IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR HYDROGEN SULFIDE (EXTERNAL REVIEW DRAFT)

    EPA Science Inventory

    Hydrogen sulfide (H2S) is a colorless gas with a strong odor of rotten eggs. Its primary uses include the production of elemental sulfur and sulfuric acid, the manufacture of heavy water and other chemicals. Occupational exposure occurs primarily from its presence in petroleum, n...

  13. Effect of mining and related activities on the sediment trace element geochemistry of Lake Coeur D'Alene, Idaho, USA. Part I: Surface sediments

    USGS Publications Warehouse

    Horowitz, Arthur J.; Elrick, Kent A.; Cook, Robert B.

    1993-01-01

    During the summer of 1989 surface sediment samples were collected in Lake Coeur d'Alene, the Coeur d'Alene River and the St Joe River, Idaho, at a density of approximately one sample per square kilometre. Additional samples were collected from the banks of the South Fork of the Coeur d'Alene and the Coeur d'Alene Rivers in 1991. All the samples were collected to determine trace element concentrations, partitioning and distribution patterns, and to relate them to mining, mining related and discharge operations that have occurred in the Coeur d'Alene district since the 1880s, some of which are ongoing.Most of the surface sediments in Lake Coeur d'Alene north of Conkling Point and Carey Bay are substantially enriched in Ag, As, Cu, Cd, Hg, Pb, Sb and Zn relative to unaffected sediments in the southern portion of the lake near the St Joe River. All the trace element enriched sediments are extremely fine grained (mean grain sizes « 63 μm). Most of the enriched trace elements, based on both the chemical analyses of separated heavy and light mineral fractions and a two step sequential extraction procedure, are associated with an operationally defined Fe oxide phase; much smaller percentages are associated either with operationally defined organics/sulphides or refractory phases.The presence, concentration and distribution of the Fe oxides and heavy minerals indicates that a substantial portion of the enriched trace elements are probably coming from the Coeur d'Alene River, which is serving as a point source. Within the lake, this relatively simple point source pattern is complicated by a combination of (1) the formation of trace element rich authigenic Fe oxides that appear to have reprecipitated from material solubilized from anoxic bed sediments and (2) physical remobilization by currents and wind driven waves. The processes that have caused the trace element enrichment in the surface sediments of Lake Coeur d'Alene are likely to continue for the foreseeable future.

  14. Determination of Actual Friction Factors in Metal Forming under Heavy Loaded Regimes Combining Experimental and Numerical Analysis

    PubMed Central

    Camacho, Ana María; Veganzones, Mariano; Claver, Juan; Martín, Francisco; Sevilla, Lorenzo; Sebastián, Miguel Ángel

    2016-01-01

    Tribological conditions can change drastically during heavy loaded regimes as experienced in metal forming; this is especially critical when lubrication can only be applied at the early stage of the process because the homogeneous lubricant layer can break along the die-workpiece interface. In these cases, adopting a constant friction factor for the lubricant-surface pair may not be a valid assumption. This paper presents a procedure based on the use of dual friction factor maps to determine friction factors employed in heavy loaded regimes. A finite element (FE) simulation is used to obtain the friction factor map for the alloy UNS A96082. Experiments were conducted using four lubricants (aluminum anti-size, MoS2 grease, silicone oil, and copper paste) to determine the actual friction curves. The experimental procedure is based on the application of lubricant only at the beginning of the first stage of ring compression, and not at intermediate stages as is usual in typical ring compression tests (RCTs). The results show that for small reductions (rh < 20%), the conventional RCT can be applied because the tribological conditions remain similar. For large reductions (rh > 20%), it is recommended to obtain an average value of the friction factor for every lubricant-surface pair in the range of deformation considered. PMID:28773868

  15. Heavy metal and trace elements in riparian vegetation and macrophytes associated with lacustrine systems in Northern Patagonia Andean Range.

    PubMed

    Juárez, Andrea; Arribére, María A; Arcagni, Marina; Williams, Natalia; Rizzo, Andrea; Ribeiro Guevara, Sergio

    2016-09-01

    Vegetation associated with lacustrine systems in Northern Patagonia was studied for heavy metal and trace element contents, regarding their elemental contribution to these aquatic ecosystems. The research focused on native species and exotic vascular plant Salix spp. potential for absorbing heavy metals and trace elements. The native species studied were riparian Amomyrtus luma, Austrocedrus chilensis, Chusquea culeou, Desfontainia fulgens, Escallonia rubra, Gaultheria mucronata, Lomatia hirsuta, Luma apiculata, Maytenus boaria, Myrceugenia exsucca, Nothofagus antarctica, Nothofagus dombeyi, Schinus patagonicus, and Weinmannia trichosperma, and macrophytes Hydrocotyle chamaemorus, Isöetes chubutiana, Galium sp., Myriophyllum quitense, Nitella sp. (algae), Potamogeton linguatus, Ranunculus sp., and Schoenoplectus californicus. Fresh leaves were analyzed as well as leaves decomposing within the aquatic bodies, collected from lakes Futalaufquen and Rivadavia (Los Alerces National Park), and lakes Moreno and Nahuel Huapi (Nahuel Huapi National Park). The elements studied were heavy metals Ag, As, Cd, Hg, and U, major elements Ca, K, and Fe, and trace elements Ba, Br, Co, Cr, Cs, Hf, Na, Rb, Se, Sr, and Zn. Geochemical tracers La and Sm were also determined to evaluate contamination of the biological tissues by geological particulate (sediment, soil, dust) and to implement concentration corrections.

  16. Cluster preformation law for heavy and superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Wei, K.; Zhang, H. F.

    2017-08-01

    The concept of cluster radioactivity has been extended to allow emitted particles with ZC>28 for superheavy nuclei by nuclear theory [Poenaru et al., Phys. Rev. Lett. 107, 062503 (2011), 10.1103/PhysRevLett.107.062503]. The preformation and emission mechanics of heavy-ion particles must be examined again before the fascinating radioactivity is observed for superheavy nuclei in laboratory. We extract the cluster preformation factor for heavy and superheavy nuclei within a preformed cluster model, in which the decay constant is the product of the preformation factor, assault frequency, and penetration probability. The calculated results show that the cluster penetration probability for superheavy nuclei is larger than that for actinide elements. The preformation factor depends on the nuclear structures of the emitted cluster and mother nucleus, and the well-known cluster preformation law S (AC) =S (α) (AC-1 )/3 [Blendowske and Walliser, Phys. Rev. Lett. 61, 1930 (1988), 10.1103/PhysRevLett.61.1930] will break down when the mass number of the emitted cluster Ac>28 , and new preformation formulas are proposed to estimate the preformation factor for heavy and superheavy nuclei.

  17. The Rb problem in massive AGB stars.

    NASA Astrophysics Data System (ADS)

    Pérez-Mesa, V.; García-Hernández, D. A.; Zamora, O.; Plez, B.; Manchado, A.; Karakas, A. I.; Lugaro, M.

    2017-03-01

    The asymptotic giant branch (AGB) is formed by low- and intermediate-mass stars (0.8 M_{⊙} < M < 8 M_{⊙}) in their last nuclear-burning phase, when they develop thermal pulses (TP) and suffer extreme mass loss. AGB stars are the main contributor to the enrichment of the interstellar medium (ISM) and thus to the chemical evolution of galaxies. In particular, the more massive AGB stars (M > 4 M_{⊙}) are expected to produce light (e.g., Li, N) and heavy neutron-rich s-process elements (such as Rb, Zr, Ba, Y, etc.), which are not formed in lower mass AGB stars and Supernova explosions. Classical chemical analyses using hydrostatic atmospheres revealed strong Rb overabundances and high [Rb/Zr] ratios in massive AGB stars of our Galaxy and the Magellanic Clouds (MC), confirming for the first time that the ^{22}Ne neutron source dominates the production of s-process elements in these stars. The extremely high Rb abundances and [Rb/Zr] ratios observed in the most massive stars (specially in the low-metallicity MC stars) uncovered a Rb problem; such extreme Rb and [Rb/Zr] values are not predicted by the s-process AGB models, suggesting fundamental problems in our present understanding of their atmospheres. We present more realistic dynamical model atmospheres that consider a gaseous circumstellar envelope with a radial wind and we re-derive the Rb (and Zr) abundances in massive Galactic AGB stars. The new Rb abundances and [Rb/Zr] ratios derived with these dynamical models significantly resolve the problem of the mismatch between the observations and the theoretical predictions of the more massive AGB stars.

  18. Lifetimes and Oscillator Strengths for Ultraviolet Transitions Involving ns2nd 2D and nsnp2 2D terms in Pb II, Sn II, and Ge II

    NASA Astrophysics Data System (ADS)

    Federman, Steven Robert; Heidarian, Negar; Irving, Richard; Ellis, David; Ritchey, Adam M.; Cheng, Song; Curtis, Larry; Furman, Walter

    2017-06-01

    Radiative transitions of heavy elements are of great importance in astrophysics. Studying the transition rates and their corresponding oscillator strengths allows us to determine abundances of these heavy elements and therefore leads to better understanding of neutron capture processes. We provide the results of our studies on the transitions involving ns2nd 2D and nsnp2 2D terms to the ground term for Pb II, Sn II, and Ge II. These transitions are also of interest due to their strong mixing. Our studies involve experimental measurements performed at the Toledo Heavy Ion Accelerator and theoretical multi-configuration Dirac Hartree-Fock (MCDHF)1 calculations using the development version of the GRASP2K package2. The results are compared with Pb II lines seen in spectra acquired with the Hubble Space Telescope and with other values available in the literature. 1 P. Jönsson et al., The Computational Atomic Structure Group (2014).2 P. Jönsson et al., Comput. Phys. Commun. 184, 2197 (2013).

  19. Outflows from Compact Objects in Supernovae and Novae

    NASA Astrophysics Data System (ADS)

    Vlasov, Andrey Dmitrievich

    Originally thought of as a constant and unchanging place, the Universe is full of dramas of stars emerging, dying, eating each other, colliding, etc. One of the first transient phenomena noticed were called novae (the name means "new" in Latin). Years later, supernovae were discovered. Despite their names, both novae and supernovae are events in relatively old stars, with supernovae marking the point of stellar death. Known for thousands of years, supernovae and novae remain among the most studied events in our Universe. Supernovae strongly influence the circumstellar medium, enriching it with heavy elements and shocking it, facilitating star formation. Cosmic rays are believed to be accelerated in shocks from supernovae, with small contribution possibly coming from novae. Even though the basic physics of novae is understood, many questions remain unanswered. These include the geometry of the ejecta, why some novae are luminous radio or gamma-ray sources and others are not, what is the ultimate fate of recurrent novae, etc. Supernova explosions are the primary sources of elements heavier than hydrogen and helium. The elements up to nuclear masses A around 100 can form through successive nuclear fusion in the cores of stars starting with hydrogen. Beyond iron, the fusion becomes endothermic instead of exothermic. In addition, for these nuclear masses the temperatures required to overcome the Coulomb barriers are so high that the nuclei are dissociated into alpha particles and free nucleons. Hence all elements heavier than A around 100 should have formed by some other means. These heavier nuclear species are formed by neutron capture on seed nuclei close to or heavier than iron-group nuclei. Depending on the ratio between neutron-capture timescale and beta-decay timescale, neutron-capture processes are called rapid or slow (r- and s-processes, respectively). The s-process, which occurs near the valley of stable isotopes, terminates at Bi (Z=83), because after Bi there is a gap of four elements with no stable isotopes (Po, At, Rn, Ac) until we come to stable Th. The significant abundance of Th and U in our Universe therefore implies the presence of a robust source of r-process. The astrophysical site of r-process is still under debate. Here we present a study of a candidate site for r-process, neutrino-heated winds from newly-formed strongly magnetized, rapidly rotating neutron stars ("proto-magnetars"). Even though we find such winds are incapable of synthesizing the heaviest r-process elements like U and Th, they produce substantial amounts of weak r-process (38 Supernova explosions are the primary sources of elements heavier than hydrogen and helium. The elements up to nuclear masses A around 100 can form through successive nuclear fusion in the cores of stars starting with hydrogen. Beyond iron, the fusion becomes endothermic instead of exothermic. In addition, for these nuclear masses the temperatures required to overcome the Coulomb barriers are so high that the nuclei are dissociated into alpha particles and free nucleons. Hence all elements heavier than A around 100 should have formed by some other means. These heavier nuclear species are formed by neutron capture on seed nuclei close to or heavier than iron-group nuclei. Depending on the ratio between neutron-capture timescale and beta-decay timescale, neutron-capture processes are called rapid or slow (r- and s-processes, respectively). The s-process, which occurs near the valley of stable isotopes, terminates at Bi (Z=83), because after Bi there is a gap of four elements with no stable isotopes (Po, At, Rn, Ac) until we come to stable Th. The significant abundance of Th and U in our Universe therefore implies the presence of a robust source of r-process. The astrophysical site of r-process is still under debate. Here we present a study of a candidate site for r-process, neutrino-heated winds from newly-formed strongly magnetized, rapidly rotating neutron stars ("proto-magnetars"). Even though we find such winds are incapable of synthesizing the heaviest r-process elements like U and Th, they produce substantial amounts of weak r-process (38.

  20. Fission in R-processes Elements (FIRE) - Annual Report: Fiscal Year 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunck, Nicolas

    The goal of the FIRE topical collaboration in nuclear theory is to determine the astrophysical conditions of the rapid neutron capture process (r-process), which is responsible for the formation of heavy elements. This will be achieved by including in r-process simulations the most advanced models of fission (spontaneous, neutron-induced, beta-delayed) that have been developed at LLNL and LANL. The collaboration is composed of LLNL (lead) and LANL for work on nuclear data (ground-state properties, fission, beta-decay), BNL for nuclear data management, and the university of Notre Dame and North Carolina State University for r-process simulations. Under DOE/NNSA agreement, both universitiesmore » receive funds from the DOE Office of Science, while national laboratories receive funds directly from NA221.« less

  1. Processing of fish lg heavy chain transcripts diverse splicing patterns and unusual nonsense mediated decay

    USDA-ARS?s Scientific Manuscript database

    Alternate pathways of RNA processing play an important role in the expression of the secreted (S) and membrane (Mb) forms of immunoglobulin (Ig) heavy (H) chain isotypes in all vertebrates. Interestingly, while the differential splicing mechanism and the splice sites that generate the two forms of I...

  2. Feasibility analysis of EDXRF method to detect heavy metal pollution in ecological environment

    NASA Astrophysics Data System (ADS)

    Hao, Zhixu; Qin, Xulei

    2018-02-01

    The change of heavy metal content in water environment, soil and plant can reflect the change of heavy metal pollution in ecological environment, and it is important to monitor the trend of heavy metal pollution in eco-environment by using water environment, soil and heavy metal content in plant. However, the content of heavy metals in nature is very low, the background elements of water environment, soil and plant samples are complex, and there are many interfering factors in the EDXRF system that will affect the spectral analysis results and reduce the detection accuracy. Through the contrastive analysis of several heavy metal elements detection methods, it is concluded that the EDXRF method is superior to other chemical methods in testing accuracy and method feasibility when the heavy metal pollution in soil is tested in ecological environment.

  3. Geochemistry of the acid Kawah Putih lake, Patuha Volcano, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Sriwana, T.; van Bergen, M. J.; Varekamp, J. C.; Sumarti, S.; Takano, B.; van Os, B. J. H.; Leng, M. J.

    2000-04-01

    Kawah Putih is a summit crater of Patuha volcano, West Java, Indonesia, which contains a shallow, ∼300 m-wide lake with strongly mineralized acid-sulfate-chloride water. The lake water has a temperature of 26-34°C, pH=<0.5-1.3, Stot=2500-4600 ppm and Cl=5300-12 600 ppm, and floating sulfur globules with sulfide inclusions are common. Sulfur oxyanion concentrations are unusually high, with S4O62-+S5O62-+S6O62-=2400 - 4200 ppm. Subaerial fumaroles (<93°C) on the lake shore have low molar SO2/H2S ratios (<2), which is a favorable condition to produce the observed distribution of sulfur oxyanion species. Sulfur isotope data of dissolved sulfate and native sulfur show a significant 34S fractionation (ΔSO4-Se of ⩾20‰), probably the result of SO2 disproportionation in or below the lake. The lake waters show strong enrichments in 18O and D relative to local meteoric waters, a result of the combined effects of mixing between isotopically heavy fluids of deep origin and meteoric water, and evaporation-induced fractionation at the lake surface. The stable-isotope systematics combined with energy-balance considerations support very rapid fluid cycling through the lake system. Lake levels and element concentrations show strong seasonal fluctuations, indicative of a short water residence time in the lake as well. Thermodynamic modeling of the lake fluids indicates that the lake water is saturated with silica phases, barite, pyrite and various Pb, Sb, Cu, As, Bi-bearing sulfides when sulfur saturation is assumed. Precipitating phases predicted by the model calculations are consistent with the bulk chemistry of the sulfur-rich bottom sediments and their identified mineral phases. Much of the lake water chemistry can be explained by congruent rock dissolution in combination with preferential enrichments from entering fumarolic gases or brines and element removal by precipitating mineral phases, as indicated by a comparison of the fluids, volcanic rocks and lake bed sediment. Flank springs on the mountain at different elevations vary in composition, and are consistent with local rock dissolution as a dominant factor and pH-dependent element mobility. Discharges of warm sulfate- and chloride-rich water at the highest elevation and a near-neutral spring at lower level may contain a small contribution of crater-lake water. The acid fluid-induced processes at Patuha have led to the accumulation of elements that are commonly associated with volcano-hosted epithermal ore deposits. The dispersal of heavy metals and other potentially toxic elements from the volcano via the local drainage system is a matter of serious environmental concern.

  4. [Recent advance in solidification/stabilization technology for the remediation of heavy metals-contaminated soil].

    PubMed

    Hao, Han-zhou; Chen, Tong-bin; Jin, Meng-gui; Lei, Mei; Liu, Cheng-wu; Zu, Wen-pu; Huang, Li-mi

    2011-03-01

    Remediation of heavy metals-contaminated soil is still a difficulty and a hotspot of international research projects. At present, the technologies commonly adopted for the remediation of contaminated sites mainly include excavation, solidification/stabilization (S/S), soil washing, soil vapor extraction (SVE), thermal treatment, and bioremediation. Based on the S/S technical guidelines of Unite State Environmental Protection Agency (EPA) and United Kingdom Environment Agency (EA) and the domestic and foreign patents, this paper introduced the concepts of S/S and its development status at home and abroad, and discussed its future development directions. Solidification refers to a process that binds contaminated media with a reagent, changing the media's physical properties via increasing its compressive strength, decreasing its permeability, and encapsulating the contaminants to form a solid material. Stabilization refers to the process that involves a chemical reaction which reduces the leachability of a waste, chemically immobilizes the waste and reduces its solubility, making the waste become less harmful or less mobile. S/S technology includes cement solidification, lime pozzolanic solidification, plastic materials stabilization, vitrification, and regent-based stabilization. Stabilization (or immobilization) treatment processes convert contaminants to less mobile forms through chemical or thermal interactions. In stabilization technology, the aim of adding agents is to change the soil physical and chemical properties through pH control technology, redox potential technology, precipitation techniques, adsorption technology, and ion-exchange technology that change the existing forms of heavy metals in soil, and thus, reduce the heavy metals bioavailability and mobility. This review also discussed the S/S evaluation methods, highlighted the need to enhance S/S technology in the molecular bonding, soil polymers, and formulation of China's S/S technical guidelines.

  5. Airpower Against an Army: Challenge and Response in CENTAF’S Duel with the Republican Guard

    DTIC Science & Technology

    1995-06-01

    Challenge and Response in CENTAF’S Duel with the Republican Guard Contract or Grant Number Program Element Number Authors Andrews, William F...unlimited Number of Pages 140 AIRPOWER AGAINST AN ARMY CHALLENGE AND RESPONSE IN CENTAF’S DUEL WITH THE REPUBLICAN GUARD BY WILLIAM F. ANDREWS A THESIS...of the battle had been shaped by CENTAF’s month long duel with the Iraqi Army. As the first troops crossed the Iraqi border the Republican Guard heavy

  6. Amyloid-carbon hybrid membranes for universal water purification

    NASA Astrophysics Data System (ADS)

    Bolisetty, Sreenath; Mezzenga, Raffaele

    2016-04-01

    Industrial development, energy production and mining have led to dramatically increased levels of environmental pollutants such as heavy metal ions, metal cyanides and nuclear waste. Current technologies for purifying contaminated waters are typically expensive and ion specific, and there is therefore a significant need for new approaches. Here, we report inexpensive hybrid membranes made from protein amyloid fibrils and activated porous carbon that can be used to remove heavy metal ions and radioactive waste from water. During filtration, the concentration of heavy metal ions drops by three to five orders of magnitude per passage and the process can be repeated numerous times. Notably, their efficiency remains unaltered when filtering several ions simultaneously. The performance of the membrane is enabled by the ability of the amyloids to selectively absorb heavy metal pollutants from solutions. We also show that our membranes can be used to recycle valuable heavy metal contaminants by thermally reducing ions trapped in saturated membranes, leading to the creation of elemental metal nanoparticles and films.

  7. Biochars derived from wasted marine macro-algae (Saccharina japonica and Sargassum fusiforme) and their potential for heavy metal removal in aqueous solution.

    PubMed

    Poo, Kyung-Min; Son, Eun-Bi; Chang, Jae-Soo; Ren, Xianghao; Choi, Yun-Jung; Chae, Kyu-Jung

    2018-01-15

    For the purpose of reusing wasted marine macro-algae generated during cultivation, harvesting, processing and selling processes, biochars derived from Saccharina japonica (known as kelp) and Sargassum fusiforme (known as hijikia) were characterized and their removal capacities for Cu, Cd, and Zn in aqueous solution were assessed. Feedstocks, S. japonica, S. fusiforme, and also pinewood sawdust as a control, were pyrolyzed at 250, 400, 500, 600 and 700 °C. In evaluating heavy metal removal capacities, SJB (S. japonica biochar) showed the best performance, with removal efficiencies of more than 98% for the three heavy metals when pyrolyzed at over 400 °C. SFB (S. fusiforme biochar) also showed good potential as an adsorbent, with removal efficiencies for the three heavy metals of more than 86% when pyrolyzed at over 500 °C. On the contrary, the maximum removal efficiencies of PSB (pinewood sawdust biochar) were 81%, 46%, and 47% for Cu, Cd, and Zn, respectively, even at 700 °C, the highest pyrolysis temperature. This demonstrates that marine macro-algae were advantageous in terms of production energy for removing heavy metals even at relatively low pyrolysis temperatures, compared with PSB. The excellent heavy metal adsorption capacities of marine macro-algae biochars were considered due to their higher pH and more oxygen-containing functional groups, although the specific surface areas of SJB and SFB were significantly lower than that of PSB. This research confirmed that the use of marine macro-algae as a heavy metal adsorbent was suitable not only in the removal of heavy metals, but also in terms of resource recycling and energy efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. SEM/EDS analysis and characterization of gunshot residues from Brazilian lead-free ammunition.

    PubMed

    Martiny, Andrea; Campos, Andrea P C; Sader, Marcia S; Pinto, André L

    2008-05-02

    The exposition to heavy metal-rich airborne due to fire practicing has forced to the development of heavy metal-free environmental ammunition primers all over the world. Here we characterize the GSR elements present in the Brazilian lead-free ammunition produced by Companhia Brasileira de Cartuchos (CBC) and commercialized by MagTech in the U.S. and Europe under the name CleanRange centerfire cartridges. Both first and second generations of CleanRange in calibers 9 mm Luger, .40 S&W, .380 AUTO and .38 SPL were analyzed and compared to regular Brazilian CBC ammunition by scanning electron microscopy/energy dispersive spectroscopy. Differences in composition and morphology of GSR particles from the two generations of CleanRange were observed. The first generation ammunition (found in Europe) presented spherical particles, being strontium the only unique element detected. The second generation (found in the U.S.) produced irregular particles composed mostly by potassium, aluminum, silicon and calcium. We can conclude that identification of GSR derived from CBC second generation lead-free ammunition in suspects' hands may be impossible without the addition of a distinct metallic taggant in the primer composition by the manufacturer.

  9. (Pre-) historic changes in natural and anthropogenic heavy metals deposition inferred from two contrasting Swiss Alpine lakes

    NASA Astrophysics Data System (ADS)

    Thevenon, Florian; Guédron, Stéphane; Chiaradia, Massimo; Loizeau, Jean-Luc; Poté, John

    2011-01-01

    Continuous high-resolution sedimentary record of heavy metals (chromium (Cr), copper (Cu), lead (Pb), zinc (Zn), manganese (Mn), and mercury (Hg)), from lakes Lucerne and Meidsee (Switzerland), provides pollutant deposition history from two contrasting Alpine environments over the last millennia. The distribution of conservative elements (thorium (Th), scandium (Sc) and titanium (Ti)) shows that in absence of human disturbances, the trace element input is primarily controlled by weathering processes (i.e., runoff and erosion). Nonetheless, the enrichment factor (EF) of Pb and Hg (that are measured by independent methods), and the Pb isotopic composition of sediments from the remote lake Meidsee (which are proportionally more enriched in anthropogenic heavy metals), likely detect early mining activities during the Bronze Age. Meanwhile, the deposition of trace elements remains close to the range of natural variations until the strong impact of Roman activities on atmospheric metal emissions. Both sites display simultaneous increases in anthropogenic trace metal deposition during the Greek and Roman Empires (ca 300 BC to AD 400), the Late Middle Ages (ca AD 1400), and the Early Modern Europe (after ca AD 1600). However, the greatest increases in anthropogenic metal pollution are evidenced after the industrial revolution of ca AD 1850, at low and high altitudes. During the twentieth century, industrial releases multiplied by ca 10 times heavy metal fluxes to hydrological systems located on both sides of the Alps. During the last decades, the recent growing contribution of low radiogenic Pb further highlights the contribution of industrial sources with respect to wood and coal burning emissions.

  10. [Distribution of chemical elements in whole blood and plasma].

    PubMed

    Barashkov, G K; Zaĭtseva, L I; Kondakhchan, M A; Konstantinova, E A

    2003-01-01

    The distribution factor (Fd) of 35 elements of plasma and whole blood in 26 healthy men and women was detected by ICP-OES. Usilig this parameter the elements were subdivided in 3 pools. 9 of them have Fd higher than 1.5 ("elements of plasma"-Ag, Ca, Cu, In, Li, Na, Se, Si, Sr); 6 have lower than 0.5 ("elements of blood cells"-Fe, K, Mn, Ni, V, Zn), other 20-about 1 ("blood elements"). Fd of all elements depends on ionic radius. Elements of 2nd sub-groups of all groups of Mendeleev's periodic table ("heavy metals") depend on the similar law: "with growing of ionic radius the concentration of elements in plasma enhances". In alkaline metals Fd depends on the opposite law:" with growing of ionic radius of alkaline metal the quantity of elements in blood cells enhance". Dependence of Fd on the value of atomic mass in periods or in exterior electronic cloud (s-, p-, d-, f-) was not established. The table of distribution of all detected elements in whole blood in relation to 8 macroelements (Ca, Mg, K, Na, S, P, Fe, Zn,) is presented, as a basic diagnostic criteria in metal-ligand homeostasis disturbance.

  11. [Accumulation, distribution and pollution assessment of heavy metals in surface sediment of Caohai plateau wetland, Guizhou province].

    PubMed

    Zhang, Qing-Hai; Lin, Chang-Hu; Tan, Hong; Lin, Shao-Xia; Yang, Hong-Bo

    2013-03-01

    The objective of this paper is to investigate the concentrations and distribution characteristics of heavy metals in surface sediments of different areas in the Caohai plateau wetland. 16 samples of surface sediments were collected and 7 heavy metals were analyzed. Heavy metal pollution in surface sediments of different areas in the Caohai plateau wetland was estimated by the Tomlinson Pollution Load Index (PLI) method. The analyzed results indicated that the average contents of Cd, Hg, As, Pb, Cr, Cu, Zn were 0.985, 0.345, 15.8, 38.9, 38.6, 22.8 and 384 mg x kg(-1), respectively. The heavy metal distributions varied with regional environment changes, the order of average contents of Cd and Hg in different regions was E (the eastern region) > S (the southern region) > N (the northern region), the order of the average content of Pb was N > E > S, and that of Zn was S > E > N. The results also suggested a medium heavy metal pollution level in the surface sediment of the Caohai plateau wetland with the PLI(zone) reaching 1.17. The order of pollution level in surface sediments of different regions was E > S > N. The results showed medium pollution levels in E and Hg which reached the extreme intensity pollution level were also the major polluted elements in surface sediments of the Caohai plateau wetland. And also, results showed medium pollution levels of Cd and Pb in surface sediments of Caohai plateau wetland. Cluster analysis results showed similar pollution sources of Cd, Zn, Pb and Hg, which should be attached great importance in terms of the prevention of the Caohai plateau wetland.

  12. Heavy-element yields and abundances of asymptotic giant branch models with a Small Magellanic Cloud metallicity

    NASA Astrophysics Data System (ADS)

    Karakas, Amanda I.; Lugaro, Maria; Carlos, Marília; Cseh, Borbála; Kamath, Devika; García-Hernández, D. A.

    2018-06-01

    We present new theoretical stellar yields and surface abundances for asymptotic giant branch (AGB) models with a metallicity appropriate for stars in the Small Magellanic Cloud (SMC, Z = 0.0028, [Fe/H] ≈ -0.7). New evolutionary sequences and post-processing nucleosynthesis results are presented for initial masses between 1 and 7 M⊙, where the 7 M⊙ is a super-AGB star with an O-Ne core. Models above 1.15 M⊙ become carbon rich during the AGB, and hot bottom burning begins in models M ≥ 3.75 M⊙. We present stellar surface abundances as a function of thermal pulse number for elements between C to Bi and for a selection of isotopic ratios for elements up to Fe and Ni (e.g. 12C/13C), which can be compared to observations. The integrated stellar yields are presented for each model in the grid for hydrogen, helium, and all stable elements from C to Bi. We present evolutionary sequences of intermediate-mass models between 4 and 7 M⊙ and nucleosynthesis results for three masses (M = 3.75, 5, and 7 M⊙) including s-process elements for two widely used AGB mass-loss prescriptions. We discuss our new models in the context of evolved AGB and post-AGB stars in the SMCs, barium stars in our Galaxy, the composition of Galactic globular clusters including Mg isotopes with a similar metallicity to our models, and to pre-solar grains which may have an origin in metal-poor AGB stars.

  13. Geothermal chemical elements in lichens of Yellowstone National Park

    USGS Publications Warehouse

    Bennett, J.P.; Wetmore, C.M.

    1999-01-01

    Geothermal features (e.g. geysers, fumaroles, vents, and springs) emit gaseous mercury, sulfur and heavy metals and therefore, are natural sources of these elements in the atmosphere. Field studies of heavy metals in lichens in Italy have detected elevated concentrations near geothermal power plants, and have determined that the origin of mercury is from soil degassing, not soil particles. We studied this phenomenon in a geothermal area without power plants to determine the natural levels of mercury and other elements. Two common and abundant species of epiphytic Lichens, Bryoria fremontii and Letharia vulpina, were collected at six localities in Yellowstone National Park, USA in 1998 and analyzed for 22 chemical elements. Thirteen elements differed significantly between species. Some elements were significantly higher in the southern part of the park, while others were higher in the north. Levels of most elements were comparable with those in other national parks and wilderness areas in the region, except Hg, which was unusually high. The most likely sources of this element are the geothermal features, which are known emitters of Hg. Multivariate analyses revealed strong positive associations of Hg with S, and negative associations with soil elements, providing strong evidence that the Hg in the lichens is the result of soil degassing of elemental Hg rather than particulate Hg directly from soils. Average Hg levels in the lichens were 140 p.p.b. in Bryoria and 110 p.p.b. in Letharia, but maxima were 291 and 243 p.p.b., respectively. In spite of this, both species were healthy and abundant throughout the park.

  14. [Study on microwave digestion of coal for the determination of multi-element by ICP-OES and ICP-MS].

    PubMed

    Wang, Hui; Song, Qiang; Yao, Qiang; Chen, Chang-He; Yu, Fei-Lu

    2012-06-01

    Effects of temperature and four acids (HNO3, HNO3/H2O2, HNO3/HF and HNO3/HF+H3BO3) on the coal decomposition by microwave digestion and the multi-element analysis were studied. SARM20 was used as a coal standard reference material. The contents of 10 mineral elements (Al, Ca, Fe, Mg, K, Na, S, Si, Sr and Ti) in the coal SARM20 were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). And the contents of 20 heavy metals (Li, Be, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, As, Se, Zr, Sn, Cs, Ba, Ce, Eu and Pb) were determined by inductively coupled plasma-mass spectrometry (ICP-MS). The results showed that the coal was completely decomposed by microwave digestion with HNO3/HF+ H3BO3 at 210 degrees C. Good recoveries for all elements in the coal SARM20 were obtained by this two-step microwave digestion method. The recoveries of the 10 mineral elements were from 87.5% to 98.8%, and the recoveries of the 20 heavy metals were from 85% to 112.5%. All RSDs of tests were below 3%.

  15. Conifer needles as biomonitors of atmospheric heavy metal deposition: comparison with mosses and precipitation, role of the canopy

    NASA Astrophysics Data System (ADS)

    Čeburnis, D.; Steinnes, E.

    Concentrations of seven elements (As, Cd, Cr, Mn, Pb, V, Zn) in mosses ( Hylocomium splendens, Pleurozium schreberi, Eurhynchium angustirete) and needles of Norway spruce ( Picea abies) and juniper ( Juniperus communis) were determined at 48 sites in Lithuania. Conifer needles consistently showed many times lower concentrations than mosses collected at the same site. Correlations between heavy-metal concentrations in needles and mosses indicated that accumulation processes may be similar, but mosses appear to be clearly preferable as biomonitors of atmospheric deposition because of their higher elemental concentrations and more quantitative reflection of deposition rates. Precipitation in the open field and under the canopy was investigated at two stations with respect to the same metals. The canopy was shown to retain a considerable part of lead, whereas elements such as Zn and Mn were enriched in precipitation under the canopy. Study of metal concentrations in moss growing, respectively, below and outside the canopy showed that none of so studied elements was significantly retained by the canopy. Most of the metals (Cu, Fe, Zn, Cr, Ni, V) were leached from the canopy to a smaller or greater extent.

  16. Health risk assessment of urban population exposure to contaminants in the soils of the Southern Kuzbass

    NASA Astrophysics Data System (ADS)

    Osipova, N. A.; Tarasova, N. P.; Osipov, K. Yu.; Maximova, D. I.

    2015-11-01

    This study concerns the human health risk due to exposure of Co, Cu, As, Mn contained in soils of the Southern Kuzbass, where the coal industry is developed. Soil samples of 200 were taken in Mezhdurechensk - city with intensive coal mining and processing industries. The content of heavy metals in samples were determined using the electron spectroscopy. Several samples were also investigated by methods of the instrumental neutron activation analysis (INAA) and the inductively coupled plasma mass spectrometry (ICP-MS). With regard to the effects of heavy metals on the adult population health the total Hazard Index (HI) for ingestion and inhalation routes was 0.87×10-1 and 7.8×10-1 respectively. According to the contribution of Co, Cu, As, Mn to the total HI the elements form the decreasing series Mn (0,42-0,50)> Co (0.18-0.20)> Cu (0,13-0,19 )> As (0,05-0,09). These chemical elements are present in the organic and inorganic forms in coals and coal wastes. Ranking the city territory has shown that administrative districts have different HI values (8.4 10-1 - 8.8 10-1). When analyzing the human health risks of coal mining and coal-processing enterprises the impact of heavy metals as components of coals and combustion products should be taken into account.

  17. The unpolarized macronova associated with the gravitational wave event GW 170817

    NASA Astrophysics Data System (ADS)

    Covino, S.; Wiersema, K.; Fan, Y. Z.; Toma, K.; Higgins, A. B.; Melandri, A.; D'Avanzo, P.; Mundell, C. G.; Palazzi, E.; Tanvir, N. R.; Bernardini, M. G.; Branchesi, M.; Brocato, E.; Campana, S.; di Serego Alighieri, S.; Götz, D.; Fynbo, J. P. U.; Gao, W.; Gomboc, A.; Gompertz, B.; Greiner, J.; Hjorth, J.; Jin, Z. P.; Kaper, L.; Klose, S.; Kobayashi, S.; Kopac, D.; Kouveliotou, C.; Levan, A. J.; Mao, J.; Malesani, D.; Pian, E.; Rossi, A.; Salvaterra, R.; Starling, R. L. C.; Steele, I.; Tagliaferri, G.; Troja, E.; van der Horst, A. J.; Wijers, R. A. M. J.

    2017-11-01

    The merger of two dense stellar remnants including at least one neutron star is predicted to produce gravitational waves (GWs) and short-duration gamma ray bursts1,2. In the process, neutron-rich material is ejected from the system and heavy elements are synthesized by r-process nucleosynthesis1,3. The radioactive decay of these heavy elements produces additional transient radiation termed kilonova or macronova4-10. We report the detection of linear optical polarization, P = (0.50 ± 0.07)%, 1.46 days after detection of the GWs from GW 170817—a double neutron star merger associated with an optical macronova counterpart and a short gamma ray burst11-14. The optical emission from a macronova is expected to be characterized by a blue, rapidly decaying component and a red, more slowly evolving component due to material rich in heavy elements—the lanthanides15. The polarization measurement was made when the macronova was still in its blue phase, during which there was an important contribution from a lanthanide-free outflow. The low degree of polarization is consistent with intrinsically unpolarized emission scattered by galactic dust, suggesting a symmetric geometry of the emitting region and low inclination of the merger system. Stringent upper limits to the polarization degree from 2.45-9.48 days post-burst are consistent with the lanthanides-rich macronova interpretation.

  18. Levels of rare earth elements, heavy metals and uranium in a population living in Baiyun Obo, Inner Mongolia, China: a pilot study.

    PubMed

    Hao, Zhe; Li, Yonghua; Li, Hairong; Wei, Binggan; Liao, Xiaoyong; Liang, Tao; Yu, Jiangping

    2015-06-01

    The Baiyun Obo deposit is the world's largest rare earth elements (REE) deposit. We aimed to investigate levels of REE, heavy metals (HMs) and uranium (U) based on morning urine samples in a population in Baiyun Obo and to assess the possible influence of rare earth mining processes on human exposure. In the mining area, elevated levels were found for the sum of the concentrations of light REE (LREE) and heavy REE (HREE) with mean values at 3.453 and 1.151 μg g(-1) creatinine, which were significantly higher than those in the control area. Concentrations of HMs and U in the population increased concomitantly with increasing REE levels. The results revealed that besides REE, HMs and U were produced with REE exploitation. Gender, age, educational level, alcohol and smoking habit were major factors contributing to inter-individual variation. Males were more exposed to these metals than females. Concentrations in people in the senior age group and those with only primary education were low. Drinking and smoking were associated with the levels of LREE, Cr, Cu, Cd and Pb in morning urine. Hence this study provides basic and useful information when addressing public and environmental health challenges in the areas where REE are mined and processed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Ecological geochemical assessment and source identification of trace elements in atmospheric deposition of an emerging industrial area: Beibu Gulf economic zone.

    PubMed

    Zhong, Cong; Yang, Zhongfang; Jiang, Wei; Hu, Baoqing; Hou, Qingye; Yu, Tao; Li, Jie

    2016-12-15

    Industrialization and urbanization have led to a deterioration in air quality and provoked some serious environmental concerns. Fifty-four samples of atmospheric deposition were collected from an emerging industrial area and analyzed to determine the concentrations of 11 trace elements (As, Cd, Cu, Fe, Hg, Mn, Mo, Pb, Se, S and Zn). Multivariate geostatistical analyses were conducted to determine the spatial distribution, possible sources and enrichment degrees of trace elements in atmospheric deposition. Results indicate that As, Fe and Mo mainly originated from soil, their natural parent materials, while the remaining trace elements were strongly influenced by anthropogenic or natural activities, such as coal combustion in coal-fired power plants (Pb, Se and S), manganese ore (Mn, Cd and Hg) and metal smelting (Cu and Zn). The results of ecological geochemical assessment indicate that Cd, Pb and Zn are the elements of priority concern, followed by Mn and Cu, and other heavy metals, which represent little threat to local environment. It was determine that the resuspension of soil particles impacted the behavior of heavy metals by 55.3%; the impact of the coal-fired power plants was 18.9%; and the contribution of the local manganese industry was 9.6%. The comparison of consequences from various statistical methods (principal component analysis (PCA), cluster analysis (CA), enrichment factor (EF) and absolute principle component score (APCS)-multiple linear regression (MLR)) confirmed the credibility of this research. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Spatiotemporal Characteristics and Health Risk Assessment of Heavy Metals in PM2.5 in Zhejiang Province

    PubMed Central

    Wang, Xiaofeng; He, Shengliang; Chen, Shuchang; Zhang, Yongli; Wang, Aihong; Luo, Jinbin; Ye, Xialiang; Mo, Zhe; Wu, Lizhi; Xu, Peiwei; Cai, Gaofeng; Chen, Zhijian; Lou, Xiaoming

    2018-01-01

    The spatiotemporal characteristics and human health risks of 12 heavy metals (Al, As, Be, Cd, Cr, Hg, Mn, Ni, Pb, Sb, Se, and Tl) in fine particulate matter (PM2.5) in Zhejiang Province were investigated. The annual average PM2.5 concentration was 58.83 µg/m3 in 2015 in Zhejiang. Element contents in PM2.5 varied greatly with the season and locations. Al, Pb, and Mn were the most abundant elements among the studied metal(loid)s in PM2.5. The non-carcinogenic risks of the 12 elements through inhalation and dermal contact exposure were lower than the safe level for children and adults. However, there were potential non-carcinogenic risks of Tl, As, and Sb for children and Tl for adults through ingestion exposure. The carcinogenic risks from As, Be, Cd, Cr, Pb, and Ni through inhalation exposure were less than the acceptable level (1 × 10−4) for children and adults. Pb may carry a potential carcinogenic risk for both children and adults through ingestion. More attention should be paid to alleviate non-carcinogenic and carcinogenic health risks posed by particle-bound toxic elements through ingestion exposure. PMID:29587346

  1. Festive Nebulas Light Up Milky Way Galaxy Satellite

    NASA Image and Video Library

    2017-12-08

    NASA’s Hubble Space Telescope captured two festive-looking nebulas, situated so as to appear as one. They reside in the Small Magellanic Cloud, a dwarf galaxy that is a satellite of our Milky Way galaxy. Intense radiation from the brilliant central stars is heating hydrogen in each of the nebulas, causing them to glow red. The nebulas, together, are called NGC 248. They were discovered in 1834 by the astronomer Sir John Herschel. NGC 248 is about 60 light-years long and 20 light-years wide. It is among a number of glowing hydrogen nebulas in the dwarf satellite galaxy, which is located approximately 200,000 light-years away in the southern constellation Tucana. The image is part of a study called Small Magellanic Cloud Investigation of Dust and Gas Evolution (SMIDGE). Astronomers are using Hubble to probe the Milky Way satellite to understand how dust is different in galaxies that have a far lower supply of heavy elements needed to create dust. The Small Magellanic Cloud has between a fifth and a tenth of the amount of heavy elements that the Milky Way does. Because it is so close, astronomers can study its dust in great detail, and learn about what dust was like earlier in the history of the universe. “It is important for understanding the history of our own galaxy, too,” explained the study’s principal investigator, Dr. Karin Sandstrom of the University of California, San Diego. Most of the star formation happened earlier in the universe, at a time where there was a much lower percentage of heavy elements than there is now. “Dust is a really critical part of how a galaxy works, how it forms stars,” said Sandstrom. Credit: NASA, ESA, STScI, K. Sandstrom (University of California, San Diego), and the SMIDGE team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Constraint of the 13C(α,n) Cross Section Toward Astrophysical Energies for the Main s-Process

    NASA Astrophysics Data System (ADS)

    Toomey, Rebecca; Febbraro, Michael T.; Pain, Steven D.; Peters, William A.; Cizewski, Jolie A.; Havener, Charles C.; Bannister, Mark E.; Chipps, Kelly A.; Walter, David G.; Ummel, Chad C.; Sims, Harrison

    2017-09-01

    The slow neutron capture process (s-process) typically occurs in relatively low neutron flux environments, such as AGB stars, and is a key mechanism in heavy-element synthesis. The dominant source of neutrons for the main s-process is the 13C(α,n) reaction, which proceeds at stellar temperatures ( 0.1 GK, 200 keV), via reactions well below the Coulomb barrier. Direct measurements of the reaction rate in the Gamow window ( 140- 230 keV) is difficult, complicated by the low yields and high beam currents required. Current measurements have constrained the cross section down to approximately 320 keV - still well above stellar conditions- with significant statistical uncertainties. These uncertainties, and the influence of a near-threshold 1 /2+ state at 6.4 MeV, means that extrapolation of the data into the Gamow window is unreliable. These measurements typically use high-efficiency moderated neutron counter detectors, meaning energy information of the incident neutrons is lost. A quasi-spectroscopic approach has been used to measure the 13C(α,n) reaction rate at energies between 300-350 keV with the aim of reducing uncertainties in current measurements. Work supported in part by U.S. D.O.E., the National Science Foundation and the LDRD Program of ORNL, managed by UT-Battelle, LLC.

  3. CHEMICALLY ACTIVE FLUID-BED PROCESS FOR SULPHUR REMOVAL DURING GASIFICATION OF HEAVY FUEL OIL - SECOND PHASE

    EPA Science Inventory

    The report describes the second phase of studies on the CAFB process for desulfurizing gasification of heavy fuel oil in a bed of hot lime. The first continuous pilot plant test with U.S. limestone BCR 1691 experienced local stone sintering and severe production of sticky dust du...

  4. Relativistic corrections to heavy quark fragmentation to S-wave heavy mesons

    NASA Astrophysics Data System (ADS)

    Sang, Wen-Long; Yang, Lan-Fei; Chen, Yu-Qi

    2009-07-01

    The relativistic corrections of order v2 to the fragmentation functions for the heavy quark to S-wave heavy quarkonia are calculated in the framework of the nonrelativistic quantum chromodynamics factorization formula. We derive the fragmentation functions by using the Collins-Soper definition in both the Feynman gauge and the axial gauge. We also extract them through the process Z0→Hq qmacr in the limit MZ/m→∞. We find that all results obtained by these two different methods and in different gauges are the same. We estimate the relative size of the relativistic corrections to the fragmentation functions.

  5. Relativistic corrections to heavy quark fragmentation to S-wave heavy mesons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sang Wenlong; Yang Lanfei; Chen Yuqi

    The relativistic corrections of order v{sup 2} to the fragmentation functions for the heavy quark to S-wave heavy quarkonia are calculated in the framework of the nonrelativistic quantum chromodynamics factorization formula. We derive the fragmentation functions by using the Collins-Soper definition in both the Feynman gauge and the axial gauge. We also extract them through the process Z{sup 0}{yields}Hqq in the limit M{sub Z}/m{yields}{infinity}. We find that all results obtained by these two different methods and in different gauges are the same. We estimate the relative size of the relativistic corrections to the fragmentation functions.

  6. New dimensions of the periodic system: superheavy, superneutronic, superstrange, antimatter nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greiner, Walter

    2010-12-23

    The possibilities for the extension of the periodic system into the islands of superheavy (SH) elements, to and beyond the neutron drip line and to the sectors of strangeness and antimatter are discussed. The multi-nucleon transfer processes in low-energy damped collisions of heavy actinide nuclei may help us to fill the gap between the nuclei produced in the ''hot'' fusion reactions and the continent of known nuclei. In these reactions we may also investigate the ''island of stability''. In many such collisions the lifetime of the composite giant system consisting of two touching nuclei turns out to be rather longmore » ({>=}10{sup -20} s); sufficient for observing line structure in spontaneous positron emission from super-strong electric fields (vacuum decay), a fundamental QED process not observed yet experimentally. At the neutron-rich sector near the drip line islands and extended ridges of quasistable nuclei are predicted by HF calculations. Such nuclei, as well as very long living superheavy nuclei may be provided in double atomic bomb explosions. A tremendously rich scenario of new nuclear structure emerges with new magic numbers in the strangeness domain. Various production mechanisms are discussed for these objects and for antinuclei in high energy heavy-ion collisions.« less

  7. Spatial and temporal variations of trace element distribution in soils and street dust of an industrial town in NW Spain: 15years of study.

    PubMed

    Ordóñez, A; Álvarez, R; De Miguel, E; Charlesworth, S

    2015-08-15

    Extensive spatial and temporal surveys, over 15 years, have been conducted in soil in urban parks and street dusts in one of the most polluted cities in western Europe, Avilés (NW Spain). The first survey was carried out in 1996, and since then monitoring has been undertaken every five years. Whilst the sampling site is a relatively small town, industrial activities (mainly the steel industry and Zn and Al metallurgy) and other less significant urban sources, such as traffic, strongly affect the load of heavy metals in the urban aerosol. Elemental tracers have been used to characterise the influence of these sources on the composition of soil and dust. Although PM10 has decreased over these years as a result of environmental measures undertaken in the city, some of the "industrial" elements still remain in concentrations of concern for example, up to 4.6% and 0.5% of Zn in dust and soil, respectively. Spatial trends in metals such as Zn and Cd clearly reflect sources from the processing industries. The concentrations of these elements across Europe have reduced over time, however the most recent results from Avilés revealed an upward trend in concentration for Zn, Cd, Hg and As. A risk assessment of the soil highlighted As as an element of concern since its cancer risk in adults was more than double the value above which regulatory agencies deem it to be unacceptable. If children were considered to be the receptors, then the risk nearly doubles from this element. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Quantum interference in laser spectroscopy of highly charged lithiumlike ions

    NASA Astrophysics Data System (ADS)

    Amaro, Pedro; Loureiro, Ulisses; Safari, Laleh; Fratini, Filippo; Indelicato, Paul; Stöhlker, Thomas; Santos, José Paulo

    2018-02-01

    We investigate the quantum interference induced shifts between energetically close states in highly charged ions, with the energy structure being observed by laser spectroscopy. In this work, we focus on hyperfine states of lithiumlike heavy-Z isotopes and quantify how much quantum interference changes the observed transition frequencies. The process of photon excitation and subsequent photon decay for the transition 2 s →2 p →2 s is implemented with fully relativistic and full-multipole frameworks, which are relevant for such relativistic atomic systems. We consider the isotopes 79+207Pb and 80+209Bi due to experimental interest, as well as other examples of isotopes with lower Z , namely 56+141Pr and 64+165Ho. We conclude that quantum interference can induce shifts up to 11% of the linewidth in the measurable resonances of the considered isotopes, if interference between resonances is neglected. The inclusion of relativity decreases the cross section by 35%, mainly due to the complete retardation form of the electric dipole multipole. However, the contribution of the next higher multipoles (e.g., magnetic quadrupole) to the cross section is negligible. This makes the contribution of relativity and higher-order multipoles to the quantum interference induced shifts a minor effect, even for heavy-Z elements.

  9. Resonance decay dynamics and their effects on pT spectra of pions in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Lo, Pok Man

    2018-03-01

    The influence of resonance decay dynamics on the momentum spectra of pions in heavy-ion collisions is examined. Taking the decay processes ω →3 π and ρ →2 π as examples, I demonstrate how the resonance width and details of decay dynamics (via the decay matrix element) can modify the physical observables. The latter effect is commonly neglected in statistical models. To remedy the situation, a theoretical framework for incorporating hadron dynamics into the analysis is formulated, which can be straightforwardly extended to describe general N -body decays.

  10. The role of fission in Supernovae r-process nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Otsuki, Kaori; Kajino, Toshitaka; Sumiyoshi, Kosuke; Ohta, Masahisa; Mathews, J. Grant

    2001-10-01

    The r-process elements are presumed to be produced in an explosive environment with short timescale at high entropy, like type-II supernova explosion. Intensive flux of free neutrons are absorbed successively by seed elements to form the nuclear reaction flow on extremely unstable nuclei on the neutron rich side. It would probe our knowledge of the properties of nulei far from the beta stability. It is also important in astronomy since this process forms the long-lived nuclear chronometers Thorium and Uranium that are utilised dating the age of the Milky Way. In our previous work, we showed that the succesful r-process nucleosynthesis can occure above young, hot protoneutron star. Although these long-lived heavy elements are produced comparable amounts to observation in several supernova models which we constructed, fission and alpha-decay were not included there. The fission products could play an important role in setting actinide yields which are used as cosmochronometers. In this talk, we report an infulence of fission on actinide yields and on estimate of Galactic age as well. We also discuss fission yields at lighter elements (Z ~ 50).

  11. Sources, distribution, bioavailability, toxicity, and risk assessment of heavy metal(loid)s in complementary medicines.

    PubMed

    Bolan, Shiv; Kunhikrishnan, Anitha; Seshadri, Balaji; Choppala, Girish; Naidu, Ravi; Bolan, Nanthi S; Ok, Yong Sik; Zhang, Ming; Li, Chun-Guang; Li, Feng; Noller, Barry; Kirkham, Mary Beth

    2017-11-01

    The last few decades have seen the rise of alternative medical approaches including the use of herbal supplements, natural products, and traditional medicines, which are collectively known as 'Complementary medicines'. However, there are increasing concerns on the safety and health benefits of these medicines. One of the main hazards with the use of complementary medicines is the presence of heavy metal(loid)s such as arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg). This review deals with the characteristics of complementary medicines in terms of heavy metal(loid)s sources, distribution, bioavailability, toxicity, and human risk assessment. The heavy metal(loid)s in these medicines are derived from uptake by medicinal plants, cross-contamination during processing, and therapeutic input of metal(loid)s. This paper discusses the distribution of heavy metal(loid)s in these medicines, in terms of their nature, concentration, and speciation. The importance of determining bioavailability towards human health risk assessment was emphasized by the need to estimate daily intake of heavy metal(loid)s in complementary medicines. The review ends with selected case studies of heavy metal(loid) toxicity from complementary medicines with specific reference to As, Cd, Pb, and Hg. The future research opportunities mentioned in the conclusion of review will help researchers to explore new avenues, methodologies, and approaches to the issue of heavy metal(loid)s in complementary medicines, thereby generating new regulations and proposing fresh approach towards safe use of these medicines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Characterisation of mineralogical forms of barium and trace heavy metal impurities in commercial barytes by EPMA, XRD and ICP-MS.

    PubMed

    Ansari, T M; Marr, I L; Coats, A M

    2001-02-01

    This study was carried out to characterise the mineralogical forms of barium and the trace heavy metal impurities in commercial barytes of different origins using electron probe microanalysis (EPMA), X-ray diffraction (XRD) and inductively coupled plasma mass spectrometry (ICP-MS). Qualitative EPMA results show the presence of typically eight different minerals in commercial barytes including barite (BaSO4), barium feldspar, galena (PbS), pyrite (FeS2), sphalerite (ZnS), quartz (SiO2), and silicates, etc. Quantitative EPMA confirms that the barite crystals in the barytes contain some strontium and a little calcium, whereas trace heavy metals occur in the associated minerals. Analysis of aqua regia extracts of barytes samples by ICP-MS has shown the presence of a large number of elements in the associated minerals. Arsenic, copper and zinc concentrations correlate closely in all 10 samples. The findings suggest that barytes is not, as traditionally thought, an inert mineral, but is a potentially toxic substance due to its associated heavy metal impurities, which can be determined by an aqua regia digest without the need for complete dissolution of the barite itself. X-ray powder diffraction was not informative as the complex barite pattern masks the very weak lines from the small amounts of associated minerals.

  13. Neutrinoless ββ decay mediated by the exchange of light and heavy neutrinos: the role of nuclear structure correlations

    NASA Astrophysics Data System (ADS)

    Menéndez, J.

    2018-01-01

    Neutrinoless β β decay nuclear matrix elements calculated with the shell model and energy-density functional theory typically disagree by more than a factor of two in the standard scenario of light-neutrino exchange. In contrast, for a decay mediated by sterile heavy neutrinos the deviations are reduced to about 50%, an uncertainty similar to the one due to short-range effects. We compare matrix elements in the light- and heavy-neutrino-exchange channels, exploring the radial, momentum transfer and angular momentum-parity matrix element distributions, and considering transitions that involve correlated and uncorrelated nuclear states. We argue that the shorter-range heavy-neutrino exchange is less sensitive to collective nuclear correlations, and that discrepancies in matrix elements are mostly due to the treatment of long-range correlations in many-body calculations. Our analysis supports previous studies suggesting that isoscalar pairing correlations, which affect mostly the longer-range part of the neutrinoless β β decay operator, are partially responsible for the differences between nuclear matrix elements in the standard light-neutrino-exchange mechanism.

  14. [Heavy metal tolerance of Miscanthus plants and their phytoremediation potential in abandoned mine land].

    PubMed

    Wu, Dao Ming; Chen, Xiao Yang; Zeng, Shu Cai

    2017-04-18

    Miscanthus has been recognized as promising candidate for phytoremediation in abandoned mine land, because of its high tolerance to heavy metals and bioenergy potential. Miscanthus has been reported tolerant to several heavy metal elements. However, it has not been recognized as hyperaccumulator for these elements. The detailed mechanisms by which Miscanthus tolerates these heavy metal elements are still unclear. According to recent studies, several mechanisms, such as high metabolic capacity in root, an abundance of microbes in the root-rhizosphere, and high capacity of antioxidation and photosynthesis might contribute to enhance the heavy metal tolerance of Miscanthus. Miscanthus has a certain potential in the phytoremediation of abandoned mine land, because of its high suitability for the phytostabilization of heavy metals. Moreover, Miscanthus cropping is a promising practice to enhance the diversity of botanical species and soil organism, and to improve soil physical and chemical properties. Here we reviewed recent literatures on the biological characteristics and the heavy metal tolerance of Miscanthus, and its phytoremediation potential in abandoned mine land. A basic guideline for using Miscanthus in abandoned mine land phytoremediation and an outlook for further study on the mechanisms of heavy metals tolerance in Miscanthus were further proposed. We hoped to provide theoretical references for phytoremediation in abandoned mine land by using Miscanthus.

  15. Contamination of soils with heavy metals and metalloids and its ecological hazard (analytic review)

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.

    2013-07-01

    According to the present-day ecotoxicologic data, hazardous heavy metals/metalloids form the following sequence in the soil: Se > Tl > Sb > Cd > V > Hg > Ni > Cu > Cr > As > Ba. This sequence differs from the well-known series of the hazardous heavy elements, in which the danger of Pb and Zn is exaggerated, whereas that of V, Sb, and Ba, is underestimated. Tl also should be included in the list of hazardous elements in the soil. At present, the stress is made on the investigation of heavy metals/metalloids in agricultural soils rather than in urban soils, as the former produce contaminated products poisoning both animals and humans. The main sources of soil contamination with heavy metals are the following: aerial deposition from stationary and moving sources; hydrogenic contamination from the industrial sewage discharging into water bodies; sewage sediments; organic and mineral fertilizers and chemicals for plant protection, tailing dumps of ash, slag, ores, and sludge. In addition to the impact on plants and groundwater, heavy metals/metalloids exert a negative effect on the soil proper. Soil microorganisms appear to be very sensitive to the influence of heavy elements.

  16. Four-Component Relativistic State-Specific Multireference Perturbation Theory with a Simplified Treatment of Static Correlation.

    PubMed

    Ghosh, Anirban; Sinha Ray, Suvonil; Chaudhuri, Rajat K; Chattopadhyay, Sudip

    2017-02-23

    The relativistic multireference (MR) perturbative approach is one of the most successful tools for the description of computationally demanding molecular systems of heavy elements. We present here the ground state dissociation energy surfaces, equilibrium bond lengths, harmonic frequencies, and dissociation energies of Ag 2 , Cu 2 , Au 2 , and I 2 computed using the four-component (4c) relativistic spinors based state-specific MR perturbation theory (SSMRPT) with improved virtual orbital complete active space configuration interaction (IVO-CASCI) functions. The IVO-CASCI method is a simple, robust, useful and lower cost alternative to the complete active space self-consistent field approach for treating quasidegenerate situations. The redeeming features of the resulting method, termed as 4c-IVO-SSMRPT, lies in (i) manifestly size-extensivity, (ii) exemption from intruder problems, (iii) the freedom of convenient multipartitionings of the Hamiltonian, (iv) flexibility of the relaxed and unrelaxed descriptions of the reference coefficients, and (v) manageable cost/accuracy ratio. The present method delivers accurate descriptions of dissociation processes of heavy element systems. Close agreement with reference values has been found for the calculated molecular constants indicating that our 4c-IVOSSMRPT provides a robust and economic protocol for determining the structural properties for the ground state of heavy element molecules with eloquent MR character as it treats correlation and relativity on equal footing.

  17. Monash Chemical Yields Project (Monχey) Element production in low- and intermediate-mass stars

    NASA Astrophysics Data System (ADS)

    Doherty, Carolyn; Lattanzio, John; Angelou, George; Campbell, Simon W.; Church, Ross; Constantino, Thomas; Cristallo, Sergio; Gil-Pons, Pilar; Karakas, Amanda; Lugaro, Maria; Stancliffe, Richard

    The Monχey project will provide a large and homogeneous set of stellar yields for the low- and intermediate- mass stars and has applications particularly to galactic chemical evolution modelling. We describe our detailed grid of stellar evolutionary models and corresponding nucleosynthetic yields for stars of initial mass 0.8 M⊙ up to the limit for core collapse supernova (CC-SN) ~ 10 M⊙. Our study covers a broad range of metallicities, ranging from the first, primordial stars (Z = 0) to those of super-solar metallicity (Z = 0.04). The models are evolved from the zero-age main-sequence until the end of the asymptotic giant branch (AGB) and the nucleosynthesis calculations include all elements from H to Bi. A major innovation of our work is the first complete grid of heavy element nucleosynthetic predictions for primordial AGB stars as well as the inclusion of extra-mixing processes (in this case thermohaline) during the red giant branch. We provide a broad overview of our results with implications for galactic chemical evolution as well as highlight interesting results such as heavy element production in dredge-out events of super-AGB stars. We briefly introduce our forthcoming web-based database which provides the evolutionary tracks, structural properties, internal/surface nucleosynthetic compositions and stellar yields. Our web interface includes user- driven plotting capabilities with output available in a range of formats. Our nucleosynthetic results will be available for further use in post processing calculations for dust production yields.

  18. Statistical Evaluation and Optimization of Factors Affecting the Leaching Performance of Copper Flotation Waste

    PubMed Central

    Çoruh, Semra; Elevli, Sermin; Geyikçi, Feza

    2012-01-01

    Copper flotation waste is an industrial by-product material produced from the process of manufacturing copper. The main concern with respect to landfilling of copper flotation waste is the release of elements (e.g., salts and heavy metals) when in contact with water, that is, leaching. Copper flotation waste generally contains a significant amount of Cu together with trace elements of other toxic metals, such as Zn, Co, and Pb. The release of heavy metals into the environment has resulted in a number of environmental problems. The aim of this study is to investigate the leaching characteristics of copper flotation waste by use of the Box-Behnken experimental design approach. In order to obtain the optimized condition of leachability, a second-order model was examined. The best leaching conditions achieved were as follows: pH = 9, stirring time = 5 min, and temperature = 41.5°C. PMID:22629194

  19. Statistical evaluation and optimization of factors affecting the leaching performance of copper flotation waste.

    PubMed

    Coruh, Semra; Elevli, Sermin; Geyikçi, Feza

    2012-01-01

    Copper flotation waste is an industrial by-product material produced from the process of manufacturing copper. The main concern with respect to landfilling of copper flotation waste is the release of elements (e.g., salts and heavy metals) when in contact with water, that is, leaching. Copper flotation waste generally contains a significant amount of Cu together with trace elements of other toxic metals, such as Zn, Co, and Pb. The release of heavy metals into the environment has resulted in a number of environmental problems. The aim of this study is to investigate the leaching characteristics of copper flotation waste by use of the Box-Behnken experimental design approach. In order to obtain the optimized condition of leachability, a second-order model was examined. The best leaching conditions achieved were as follows: pH = 9, stirring time = 5 min, and temperature = 41.5 °C.

  20. Spiral stellar density waves and the flattening of abundance gradients in the warm gas component of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Vorobyov, E. I.

    2006-08-01

    Motivated by recent observations of plateaus and minima in the radial abundance distributions of heavy elements in the Milky Way and some other spiral galaxies, we propose a dynamical mechanism for the formation of such features around corotation. Our numerical simulations show that the non-axisymmetric gravitational field of spiral density waves generates cyclone and anticylone gas flows in the vicinity of corotation. The anticyclones flatten the pre-existing negative abundance gradients by exporting many more atoms of heavy elements outside corotation than importing inside it. This process is very efficient and forms plateaus of several kiloparsec in size around corotation after two revolution periods of a galaxy. The strength of anticyclones and, consequently, the sizes of plateaus depend on the pitch angle of spiral arms and are expected to increase along the Hubble sequence.

  1. Trace elements and heavy metals in the Grand Bay National Estuarine Reserve in the northern Gulf of Mexico

    PubMed Central

    McComb, Jacqueline Q.; Han, Fengxiang X.; Rogers, Christian; Thomas, Catherine; Arslan, Zikri; Ardeshir, Adeli; Tchounwou, Paul B.

    2015-01-01

    The objectives of this study are to investigate distribution of trace elements and heavy metals in the salt marsh and wetland soil and biogeochemical processes in the Grand Bay National Estuarine Research Reserve of the northern Gulf of Mexico. The results show that Hg, Cd and to some extent, As and Pb have been significantly accumulated in soils. The strongest correlations were found between concentrations of Ni and total organic matter contents. The correlations decreased in the order: Ni > Cr > Sr > Co > Zn, Cd > Cu > Cs. Strong correlations were also observed between total P and concentrations of Ni, Co, Cr, Sr, Zn, Cu, and Cd. This may be related to the P spilling accident in 2005 in the Bangs Lake site. Lead isotopic ratios in soils matched well those of North American coals, indicating the contribution of Pb through atmospheric fallout from coal power plants. PMID:26238403

  2. Dysprosium-free melt-spun permanent magnets.

    PubMed

    Brown, D N; Wu, Z; He, F; Miller, D J; Herchenroeder, J W

    2014-02-12

    Melt-spun NdFeB powders can be formed into a number of different types of permanent magnet for a variety of applications in electronics, automotive and clean technology industries. The melt-spinning process produces flake powder with a fine uniform array of nanoscale Nd2Fe14B grains. These powders can be net-shape formed into isotropic polymer-bonded magnets or hot formed into fully dense magnets. This paper discusses the influence of heavy rare earth elements and microstructure on the magnetic performance, thermal stability and material cost of NdFeB magnets. Evidence indicates that melt-spun nanocrystalline NdFeB magnets are less dependent on heavy rare earth elements for high-temperature performance than the alternative coarser-grained sintered NdFeB magnets. In particular, hot-pressed melt-spun magnets are an attractive low-cost solution for applications that require thermal stability up to 175-200 °C.

  3. Research on parallel load sharing principle of piezoelectric six-dimensional heavy force/torque sensor

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Li, Ying-jun; Jia, Zhen-yuan; Zhang, Jun; Qian, Min

    2011-01-01

    In working process of huge heavy-load manipulators, such as the free forging machine, hydraulic die-forging press, forging manipulator, heavy grasping manipulator, large displacement manipulator, measurement of six-dimensional heavy force/torque and real-time force feedback of the operation interface are basis to realize coordinate operation control and force compliance control. It is also an effective way to raise the control accuracy and achieve highly efficient manufacturing. Facing to solve dynamic measurement problem on six-dimensional time-varying heavy load in extremely manufacturing process, the novel principle of parallel load sharing on six-dimensional heavy force/torque is put forward. The measuring principle of six-dimensional force sensor is analyzed, and the spatial model is built and decoupled. The load sharing ratios are analyzed and calculated in vertical and horizontal directions. The mapping relationship between six-dimensional heavy force/torque value to be measured and output force value is built. The finite element model of parallel piezoelectric six-dimensional heavy force/torque sensor is set up, and its static characteristics are analyzed by ANSYS software. The main parameters, which affect load sharing ratio, are analyzed. The experiments for load sharing with different diameters of parallel axis are designed. The results show that the six-dimensional heavy force/torque sensor has good linearity. Non-linearity errors are less than 1%. The parallel axis makes good effect of load sharing. The larger the diameter is, the better the load sharing effect is. The results of experiments are in accordance with the FEM analysis. The sensor has advantages of large measuring range, good linearity, high inherent frequency, and high rigidity. It can be widely used in extreme environments for real-time accurate measurement of six-dimensional time-varying huge loads on manipulators.

  4. Models of H II regions - Heavy element opacity, variation of temperature

    NASA Technical Reports Server (NTRS)

    Rubin, R. H.

    1985-01-01

    A detailed set of H II region models that use the same physics and self-consistent input have been computed and are used to examine where in parameter space the effects of heavy element opacity is important. The models are briefly described, and tabular data for the input parameters and resulting properties of the models are presented. It is found that the opacities of C, Ne, O, and to a lesser extent N play a vital role over a large region of parameter space, while S and Ar opacities are negligible. The variation of the average electron temperature T(e) of the models with metal abundance, density, and T(eff) is investigated. It is concluded that by far the most important determinator of T(e) is metal abundance; an almost 7000 K difference is expected over the factor of 10 change from up to down abundances.

  5. Honeybees and honey as monitors for heavy metal contamination near thermal power plants in Mugla, Turkey.

    PubMed

    Silici, Sibel; Uluozlu, Ozgur Dogan; Tuzen, Mustafa; Soylak, Mustafa

    2016-03-01

    In the present work, 6 honeydew samples of known geographical and botanical origins and 11 honeybee samples were analyzed to detect possible contamination by the thermoelectric power plants in Mugla, Turkey. The contents of trace elements were determined by atomic absorption spectrometry after application of microwave digestion. The samples from the thermal power plants, which were 10-22 km away from the hives, that did not cause pollution in honeydew honeys were also analyzed. The levels of copper, cadmium (Cd), lead (Pb), zinc, manganese, iron, chromium, nickel, and aluminum were similar to the values found in other recent studies in literature. However, it was found that the contamination levels of the toxic elements such as Pb and Cd in honeybee samples measured relatively higher than that of honey samples. The study concludes that honeybees may be better bioindicators of heavy metal pollution than honey. © The Author(s) 2013.

  6. Probing the Structure near the Top of the Earth's Outer Core Using SmKS Traveltimes

    NASA Astrophysics Data System (ADS)

    Tang, V. C.; Zhao, L.; Hung, S.

    2013-12-01

    The Earth's solid inner core is composed of heavy Fe and Ni with a fraction of light elements such as O, S, Si. These light elements were expelled from the inner core during its formation and rise up through the outer core as the result of buoyancy, but their existence is still a mystery. Some authors have presented seismological evidence for lowered wave speed beneath the core-mantle boundary (CMB) relative to PREM, suggesting light elements there, but counter argument also exists. In this study, we use traveltime measurements from recorded and modeled SmKS waves to investigate the effect of the velocity under the CMB on the differential traveltimes between SKKS and S3KS waves (TS3KS-TSKKS). Due to the long propagation distance and interference with neighboring phases, the arrival times of SKKS and S3KS waves are difficult to define accurately in the records. Therefore in our analysis we measure both the observed and model-predicted differential traveltime TS3KS-TSKKS by cross-correlating the waveform of Hilbert-transformed S3KS with that of SKKS. We use synthetic seismograms calculated by the Direct-Solution Method (DSM) in a suite of 1D models with different structural profiles under the CMB to examine the existence of a zone of lowered velocity at the top of the outer core. We are conducting a systematic investigation using waveforms available at IRIS from globally distributed large deep earthquakes. Results from events we have processed so far indicate that the velocity under the CMB is slightly slower than that in PREM.

  7. Efficient and selective heavy metal sequestration from water by using layered sulfide K 2x Sn 4-x S 8-x (x = 0.65–1; KTS-3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarma, Debajit; Islam, Saiful M.; Subrahmanyam, K. S.

    Heavy metal ions (Cd 2+, Hg 2+, As 3+ and Pb 2+) are an important contributor to the contamination of groundwater and other water bodies in and around industrial areas. Herein, we demonstrate the rapid and efficient capacity of a layered metal sulfide material, K2xSn4-xS8-x (x = 0.65-1, KTS-3) for heavy metal ion removal from water. The effect of concentration, pH, kinetics, and competitive ions such as Na +/Ca 2+ on the heavy metal ion removal capacity of KTS-3 was systematically investigated. X-ray photoelectron spectroscopy (XPS), elemental analyses, and powder X-ray diffraction studies revealed that the heavy metal ion-exchange ofmore » KTS-3 is complete (quantitative replacement of all potassium ions) and topotactic. The heavy metal ion-exchange by using KTS-3 follows the Langmuir-Freundlich model with high exchange capacities, q(m) 205(17) mg g -1 for Cd 2+, 372(21) mg g -1 for Hg 2+ and 391(89) mg g -1 for Pb 2+. KTS-3 retains excellent heavy metal ion-exchange capacity even in very high concentration (1 M) of competing ions (Na +/Ca 2+) and also over a broad pH range (2-12). KTS-3 also exhibits very good ion-exchange capacity for precious Ag + and toxic As 3+ ions. The kinetics of heavy metal ion adsorption by KTS-3 are rapid (absorbs all ions within a few minutes). These properties and the environmentally friendly character of KTS-3 make it a promising candidate for sequestration of heavy metal ions from water.« less

  8. A correlation between the heavy element content of transiting extrasolar planets and the metallicity of their parent stars

    NASA Astrophysics Data System (ADS)

    Guillot, T.; Santos, N. C.; Pont, F.; Iro, N.; Melo, C.; Ribas, I.

    2006-07-01

    Context.Nine extrasolar planets with masses between 110 and 430 M_⊕ are known to transit their star. The knowledge of their masses and radii allows an estimate of their composition, but uncertainties on equations of state, opacities and possible missing energy sources imply that only inaccurate constraints can be derived when considering each planet separately.Aims.We seek to better understand the composition of transiting extrasolar planets by considering them as an ensemble, and by comparing the obtained planetary properties to that of the parent stars.Methods.We use evolution models and constraints on the stellar ages to derive the mass of heavy elements present in the planets. Possible additional energy sources like tidal dissipation due to an inclined orbit or to downward kinetic energy transport are considered.Results.We show that the nine transiting planets discovered so far belong to a quite homogeneous ensemble that is characterized by a mass of heavy elements that is a relatively steep function of the stellar metallicity, from less than 20 earth masses of heavy elements around solar composition stars, to up to ~100 M_⊕ for three times the solar metallicity (the precise values being model-dependant). The correlation is still to be ascertained however. Statistical tests imply a worst-case 1/3 probability of a false positive.Conclusions.Together with the observed lack of giant planets in close orbits around metal-poor stars, these results appear to imply that heavy elements play a key role in the formation of close-in giant planets. The large masses of heavy elements inferred for planets orbiting metal rich stars was not anticipated by planet formation models and shows the need for alternative theories including migration and subsequent collection of planetesimals.

  9. EVIDENCE FOR A COMMON ACCELERATION MECHANISM FOR ENRICHMENTS OF {sup 3}He AND HEAVY IONS IN IMPULSIVE SEP EVENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, Glenn M.; Nitta, Nariaki V.; Wiedenbeck, Mark E.

    2016-06-01

    We have surveyed the period 1997–2015 for a rare type of {sup 3}He-rich solar energetic particle (SEP) event, with enormously enhanced values of the S/O ratio, that differs from the majority of {sup 3}He-rich events, which show enhancements of heavy ions increasing smoothly with mass. Sixteen events were found, most of them small but with solar source characteristics similar to other {sup 3}He-rich SEP events. A single event on 2014 May 16 had higher intensities than the others, and curved Si and S spectra that crossed the O spectrum above ∼200 keV nucleon{sup −1}. Such crossings of heavy-ion spectra havemore » never previously been reported. The dual enhancement of Si and S suggests that element Q / M ratio is critical to the enhancement since this pair of elements uniquely has very similar Q / M ratios over a wide range of temperatures. Besides {sup 3}He, Si, and S, in this same event the C, N, and Fe spectra also showed curved shape and enhanced abundances compared to O. The spectral similarities suggest that all have been produced from the same mechanism that enhances {sup 3}He. The enhancements are large only in the high-energy portion of the spectrum, and so affect only a small fraction of the ions. The observations suggest that the accelerated plasma was initially cool (∼0.4 MK) and was then heated to a few million kelvin to generate the preferred Q / M ratio in the range C–Fe. The temperature profile may be the distinct feature of these events that produces the unusual abundance signature.« less

  10. COCOM (Coordinating Committee for Multilateral Exports), Technology Transfer and Its Impact on National Security

    DTIC Science & Technology

    1989-06-01

    ORGANZA - 0% If applicable) 8( ADDRESS (C t Stare a-d ZIP CooI 10 SOUPCE O FKNDNG NMBERS PROGRAM PROAECT TASK . ORK )NIT ELEMENT NO NO NO .<ESSiON NO...investigations which ended up in a total restructuring of their export process. Both Norway and Japan started a heavy lobbying process as well, in an effort...respective controls. Norway permanently suspended all sales to the Soviet Union and initiated a total restructuring of their export process. Japan

  11. [Research on the Content Characteristics and Pollution Evaluation of Heavy Metals in Filtered Water and Suspended Particles from Gansu, Ningxia and Inner Mongolia Sections of the Yellow River in Wet Season Using HR-ICP-MS].

    PubMed

    Ma, Xiao-ling; Liu, Jing-jun; Deng, Feng-yu; Zuo, Hang; Huang, Fang; Zhang, Li-yang; Liu, Ying

    2015-10-01

    The content characteristics, pollution evaluation and source identification of 6 heavy Metals (Cd, Pb, Cr, As, Cu and Zn) in filtered water and 9 heavy Metals (Cd, Pb, Cr, Ni, Cu, V, Co, Zn and Mn) in suspended particles from 10 sampling sites such as Zhaojunfuqiao (S1) and Baotoufuqiao (S2), etc. from Gansu, Ningxia and Inner Mongolia sections of the Yellow River in 2012 Wet Season were studied to understand the condition of the heavy metal pollution in Gansu, Ningxia and Inner Mongolia Sections of the Yellow River by using high resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS). Multivariate geochemical approaches and statistical analysis were also exploited for assessing the level of heavy metals in filtered water and suspended particles from studied area. The results showed that in filtering water, only the concentrations of Cr exceeded the standard value of Environmental Quality Standard for Surface Water (GB3838-2002) and were the highest (74.8-94.7 μg x L(-1)) among all elements in 10 sampling sites; Single factor pollution index (I(i)) results suggested that the water quality in all sampling sites were contaminated by both Cr and total nitrogen (TN), with the exception of TN in Baotoufuqiao (S2); Integrated Nemerow pollution index (I) indicated that the I values in all sampling sites were between 1-2 (light pollution), which implied that the water quality in Gansu, Ningxia and Inner Mongolia sections, especially downstream sections (S1-S6) of the Yellow River wasn't an ideal source for drinking and using in aquaculture any more. In suspended particles, concentrations of heavy metals were relatively higher than their soil background values in 10 sampling sites, except Ni in S10 (34.7 μg x L(-1)). Index of geo-accumulation (I(geo)) indicated that the I(geo) values of Pb, Cr, Ni, Cu, V, Co, Zn and Mn in all sampling sites were less than 1 (unpolluted or unpolluted-moderately polluted), respectively, while I(geo)Cd were the highest in 10 sampling sites among all heavy metals and with the moderately to strong contamination in Zhaojunfuqiao (S1), Baotoufuqiao (S2), Wuhai (S5) and Dongdagouruhuanghekou (S8). The results of this paper would help to supply reliable experimental data for researching of distribution, migration and effective protection of heavy metals in study area.

  12. The class of L ∩ D and its application to renewal reward process

    NASA Astrophysics Data System (ADS)

    Kamışlık, Aslı Bektaş; Kesemen, Tülay; Khaniyev, Tahir

    2018-01-01

    The class of L ∩ D is generated by intersection of two important subclasses of heavy tailed distributions: The long tailed distributions and dominated varying distributions. This class itself is also an important member of heavy tailed distributions and has some principal application areas especially in renewal, renewal reward and random walk processes. The aim of this study is to observe some well and less known results on renewal functions generated by the class of L ∩ D and apply them into a special renewal reward process which is known in the literature a semi Markovian inventory model of type (s, S). Especially we focused on Pareto distribution which belongs to the L ∩ D subclass of heavy tailed distributions. As a first step we obtained asymptotic results for renewal function generated by Pareto distribution from the class of L ∩ D using some well-known results by Embrechts and Omey [1]. Then we applied the results we obtained for Pareto distribution to renewal reward processes. As an application we investigate inventory model of type (s, S) when demands have Pareto distribution from the class of L ∩ D. We obtained asymptotic expansion for ergodic distribution function and finally we reached asymptotic expansion for nth order moments of distribution of this process.

  13. 34S/32S fractionation in sulfur cycles catalyzed by anaerobic bacteria

    NASA Technical Reports Server (NTRS)

    Fry, B.; Gest, H.; Hayes, J. M.

    1988-01-01

    Stable isotopic distributions in the sulfur cycle were studied with pure and mixed cultures of the anaerobic bacteria, Chlorobium vibrioforme and Desulfovibrio vulgaris. D. vulgaris and C. vibrioforme can catalyze three reactions constituting a complete anaerobic sulfur cycle: reduction of sulfate to sulfide (D. vulgaris), oxidation of sulfide to elemental sulfur (C. vibrioforme), and oxidation of sulfur to sulfate (C. vibrioforme). In all experiments, the first and last reactions favored concentration of the light 32S isotope in products (isotopic fractionation factor epsilon = -7.2 and -1.7%, respectively), whereas oxidation of sulfide favored concentration of the heavy 34S isotope in products (epsilon = +1.7%). Experimental results and model calculations suggest that elemental sulfur enriched in 34S versus sulfide may be a biogeochemical marker for the presence of sulfide-oxidizing bacteria in modern and ancient environments.

  14. Selective liquid chromatographic separation of yttrium from heavier rare earth elements using acetic acid as a novel eluent.

    PubMed

    Kifle, Dejene; Wibetoe, Grethe

    2013-09-13

    One of the major difficulties in the rare earth elements separation is purification of yttrium from heavy rare earth elements. Thus, an HPLC method using acetic acid as novel eluent was explored for selective separation of yttrium form the heavy rare earth elements. When acetic acid is used as a mobile phase yttrium eluted with the lighter lanthanides. This is contrary to its relative position amongst heavier lanthanides when eluents commonly used for separation of rare earth elements were employed. The shift in elution position of yttrium with acetic acid as eluent may reflect a relatively lower stability constant of the yttrium-AcOH complex (in the same order as for the lighter lanthanides) compared to the corresponding AcOH complexes with heavy lanthanides, enabling selective separation of yttrium from the latter. The method was successfully used for selective separation of yttrium in mixed rare earth sample containing about 80% of yttrium and about 20% of heavy rare earth oxides. Thus, the use of AcOH as eluent is an effective approach for separating and determining the trace amounts of heavy rare earth elements in large amounts of yttrium matrix. Separation was performed on C18 column by running appropriate elution programs. The effluent from the column was monitored with diode array detector at absorbance wavelength of 658nm after post column derivatization with Arsenazo III. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. SOLAR OPACITY CALCULATIONS USING THE SUPER-TRANSITION-ARRAY METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krief, M.; Feigel, A.; Gazit, D., E-mail: menahem.krief@mail.huji.ac.il

    A new opacity model has been developed based on the Super-Transition-Array (STA) method for the calculation of monochromatic opacities of plasmas in local thermodynamic equilibrium. The atomic code, named STAR (STA-Revised), is described and used to calculate spectral opacities for a solar model implementing the recent AGSS09 composition. Calculations are carried out throughout the solar radiative zone. The relative contributions of different chemical elements and atomic processes to the total Rosseland mean opacity are analyzed in detail. Monochromatic opacities and charge-state distributions are compared with the widely used Opacity Project (OP) code, for several elements near the radiation–convection interface. STARmore » Rosseland opacities for the solar mixture show a very good agreement with OP and the OPAL opacity code throughout the radiation zone. Finally, an explicit STA calculation was performed of the full AGSS09 photospheric mixture, including all heavy metals. It was shown that, due to their extremely low abundance, and despite being very good photon absorbers, the heavy elements do not affect the Rosseland opacity.« less

  16. Heavy metals in human teeth dentine: A bio-indicator of metals exposure and environmental pollution.

    PubMed

    Asaduzzaman, Khandoker; Khandaker, Mayeen Uddin; Binti Baharudin, Nurul Atiqah; Amin, Yusoff Bin Mohd; Farook, Mohideen Salihu; Bradley, D A; Mahmoud, Okba

    2017-06-01

    With rapid urbanization and large-scale industrial activities, modern human populations are being increasingly subjected to chronic environmental heavy metal exposures. Elemental uptake in tooth dentine is a bioindicator, the uptake occurring during the formation and mineralization processes, stored to large extent over periods of many years. The uptake includes essential elements, most typically geogenic dietary sources, as well as non-essential elements arising through environmental insults. In this study, with the help of the Dental Faculty of the University of Malaya, a total of 50 separate human teeth were collected from dental patients of various ethnicity, age, gender, occupation, dietary habit, residency, etc. Analysis was conducted using inductively coupled plasma-mass spectrometry (ICP-MS), most samples indicating the presence of the following trace elements, placed in order of concentration, from least to greatest: As, Mn, Ba, Cu, Cr, Pb, Zn, Hg, Sb, Al, Sr, Sn. The concentrations have been observed to increase with age. Among the ethnic groups, the teeth of ethnic Chinese showed marginally greater metal concentrations than those of the Indians and Malays, the teeth dentine of females generally showing greater concentrations than that of males. Greater concentrations of Hg, Cu and Sn were found in molars while Pb, Sr, Sb and Zn were present in greater concentrations in incisors. With the elevated concentration levels of heavy metals in tooth dentine reflecting pollution from industrial emissions and urbanization, it is evident that human tooth dentine can provide chronological information on exposure, representing a reliable bio-indicator of environmental pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Atmospheric inorganic trace contaminants in Finland, especially in the Gulf of Finland area

    NASA Astrophysics Data System (ADS)

    Jalkanen, Liisa Maria

    Atmospheric aerosol samples were collected at Utö and Virolahti in the Gulf of Finland area and Ähtäri in Central Finland using a filter pack. The samples were analysed by instrumental neutron activation analysis (INAA) and inductively coupled plasma mass-spectrometry (ICP-MS) for 34 elements including halogens and heavy metals. A very simple and quantitative acid digestion method was developed for the dissolution of the aerosol samples for ICP-MS analysis. Analysis of the elemental data is given using trajectories, principal component analysis and long-range transport modelling. The average total (fine + coarse) atmospheric concentrations range at Utö from 0.083 ng m -3 for Cd to 730 ng m-3 for Na. The sea areas (Utö, Virolahti, Hailuoto) have most of the heavy metal air pollution in Finland, as witnessed by the aerosol concentration and wet deposition data. There is a clear decreasing gradient in the deposition of As, Cd, Cr, Pb, and V from South to North in Finland. In general, the trace element concentrations and deposition are lower in Finland than in Central Europe. The effect of large particulate emission sources in Estonia can be seen in the elemental concentrations of atmospheric particles and in the deposition around the eastern Gulf of Finland region. There has been a remarkable decrease in heavy metal emissions in Finland during the 1990s. However, due to long-range transport, the decrease in deposition as witnessed by analysis of these concentrations in precipitation and moss is much less than would be expected.

  18. Rare earth mineral potential in the southeastern U.S. Coastal Plain from integrated geophysical, geochemical, and geological approaches

    USGS Publications Warehouse

    Shah, Anjana K.; Bern, Carleton R.; Van Gosen, Bradley S.; Daniels, David L.; Benzel, William M.; Budahn, James R.; Ellefsen, Karl J.; Karst, Adam; Davis, Richard

    2017-01-01

    We combined geophysical, geochemical, mineralogical, and geological data to evaluate the regional presence of rare earth element (REE)−bearing minerals in heavy mineral sand deposits of the southeastern U.S. Coastal Plain. We also analyzed regional differences in these data to determine probable sedimentary provenance. Analyses of heavy mineral separates covering the region show strong correlations between thorium, monazite, and xenotime, suggesting that radiometric equivalent thorium (eTh) can be used as a geophysical proxy for those REE-bearing minerals. Airborne radiometric data collected during the National Uranium Resource Evaluation (NURE) program cover the southeastern United States with line spacing varying from ∼2 to 10 km. These data show eTh highs over Cretaceous and Tertiary Coastal Plain sediments from the Cape Fear arch in North Carolina to eastern Alabama; these highs decrease with distance from the Piedmont. Quaternary sediments along the modern coasts show weaker eTh anomalies, except near coast-parallel ridges from South Carolina to northern Florida. Prominent eTh anomalies are also observed over large riverbeds and their floodplains, even north of the Cape Fear arch where surrounding areas are relatively low. These variations were verified using ground geophysical measurements and sample analyses, indicating that radiometric methods are a useful exploration tool at varying scales. Further analyses of heavy mineral separates showed regional differences, not only in concentrations of monazite, but also of rutile and staurolite, and in magnetic susceptibility. The combined properties suggest the presence of subregions where heavy mineral sediments are primarily sourced from high-grade metamorphic, low-grade metamorphic, or igneous terrains, or where they represent a mixing of these sources. Comparisons between interpreted sources of heavy mineral sands near the Fall Line and igneous and metamorphic Piedmont and Blue Ridge units showed a strong correspondence with rocks closest to the Fall Line and poor correspondence with rocks farther inland. This strongly suggests that the primary source of those heavy minerals, especially monazite, is the rocks that formed the rocky coast that was present during opening of the Atlantic Ocean, which in turn indicates the importance of coastal processes in forming heavy mineral sand concentrations. Furthermore, narrow radiometric eTh and K anomalies are associated with major rivers, indicating limited spatial influence of fluvial processes. Later coastal plain sediment deposition appears to have involved reworking of sediments, providing an “inheritance” of the rocky coast composition that persists for some distance from the Fall Line. However, this inheritance is reduced with distance, and sediments within ∼100 km of the coast in Georgia and Florida exhibit properties indicative of mixing from multiple sources.

  19. Study on the prediction of soil heavy metal elements content based on visible near-infrared spectroscopy.

    PubMed

    Liu, Jinbao; Zhang, Yang; Wang, Huanyuan; Du, Yichun

    2018-06-15

    The estimation of soils heavy metal content can reflect the impending surroundings of surface, which lays theoretical foundation for using covered vegetation to monitor environment and investigate resource. In this study, the contents of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb in 44 soil samples were collected from Fufeng County, Yangling County and Wugong County, Shaanxi Province and were used as data sources. ASD FieldSpec HR (350-2500nm), and then the NOR, MSC and SNV of the reflectance were pretreated, the first deviation, second deviation and reflectance reciprocal logarithmic transformation were carried out. The optimal spectroscopy estimation model of nine heavy metal elements of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb was established by regression method. Comparing the diffuse reflectance characteristics of different heavy metal contents and the effect of different pretreatment methods on the establishment of soil heavy metal spectral inversion model. The results of chemical analysis show that there was a serious Hg pollution in the study area, and the Cd content was close to the critical value. The results show that: (1) NOR, MSC and SNV were adopted for the acquisition of visible near-infrared. Combining differential transformation can improve the information of heavy metal elements in the soil, and use the correlation band energy Significantly improve the stability and predictability of the model. (2) The modeling accuracy of the optimal model of nine heavy metal spectra of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb by PLSR method were 0.70, 0.79, 0.69, 0.81, 0.86, 0.58, 0.55, 0.99, 0.62. (3) The optimal estimation model of different elements using different treatment methods has better stability and higher precision, and can realize the rapid prediction of nine kinds of heavy metal elements in this region. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Study on the prediction of soil heavy metal elements content based on visible near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jinbao; Zhang, Yang; Wang, Huanyuan; Du, Yichun

    2018-06-01

    The estimation of soils heavy metal content can reflect the impending surroundings of surface, which lays theoretical foundation for using covered vegetation to monitor environment and investigate resource. In this study, the contents of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb in 44 soil samples were collected from Fufeng County, Yangling County and Wugong County, Shaanxi Province and were used as data sources. ASD FieldSpec HR (350-2500 nm), and then the NOR, MSC and SNV of the reflectance were pretreated, the first deviation, second deviation and reflectance reciprocal logarithmic transformation were carried out. The optimal spectroscopy estimation model of nine heavy metal elements of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb was established by regression method. Comparing the diffuse reflectance characteristics of different heavy metal contents and the effect of different pretreatment methods on the establishment of soil heavy metal spectral inversion model. The results of chemical analysis show that there was a serious Hg pollution in the study area, and the Cd content was close to the critical value. The results show that: (1) NOR, MSC and SNV were adopted for the acquisition of visible near-infrared. Combining differential transformation can improve the information of heavy metal elements in the soil, and use the correlation band energy Significantly improve the stability and predictability of the model. (2) The modeling accuracy of the optimal model of nine heavy metal spectra of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb by PLSR method were 0.70, 0.79, 0.69, 0.81, 0.86, 0.58, 0.55, 0.99, 0.62. (3) The optimal estimation model of different elements using different treatment methods has better stability and higher precision, and can realize the rapid prediction of nine kinds of heavy metal elements in this region.

  1. Energy Dispersive X-Ray Fluorescent Analysis of Soil in the Vicinity of Industrial Areas and Heavy Metal Pollution Assessment

    NASA Astrophysics Data System (ADS)

    Singh, V.; Joshi, G. C.; Bisht, D.

    2017-05-01

    The soil of two agricultural sites near an industrial area was investigated for heavy metal pollution using energy dispersive X-ray fluorescence (EDXRF). The concentration values for 17 elements were determined in the soil samples including eight heavy metal elements, i.e., Fe, Ni, As, Pb, Mn, Cr, Cu, and Zn. The soil near a pulp and paper mill was found to be highly polluted by the heavy metals. The concentration data obtained by EDXRF were further examined by calculating the pollution index and Nemerow integrated pollution index.

  2. Systems and methods for detecting x-rays

    DOEpatents

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-05-02

    Systems and methods for detecting x-rays are disclosed herein. One or more x-ray-sensitive scintillators can be configured from a plurality of heavy element nano-sized particles and a plastic material, such as polystyrene. As will be explained in greater detail herein, the heavy element nano-sized particles (e.g., PbWO4) can be compounded into the plastic material with at least one dopant that permits the plastic material to scintillate. X-rays interact with the heavy element nano-sized particles to produce electrons that can deposit energy in the x-ray sensitive scintillator, which in turn can produce light.

  3. Constitutive Modeling of the Flow Stress of GCr15 Continuous Casting Bloom in the Heavy Reduction Process

    NASA Astrophysics Data System (ADS)

    Ji, Cheng; Wang, Zilin; Wu, Chenhui; Zhu, Miaoyong

    2018-04-01

    According to the calculation results of a 3D thermomechanical-coupled finite-element (FE) model of GCr15 bearing steel bloom during a heavy reduction (HR) process, the variation ranges in the strain rate and strain under HR were described. In addition, the hot deformation behavior of the GCr15 bearing steel was studied over the temperature range from 1023 K to 1573 K (750 °C to 1300 °C) with strain rates of 0.001, 0.01, and 0.1 s-1 in single-pass thermosimulation compression experiments. To ensure the accuracy of the constitutive model, the temperature range was divided into two temperature intervals according to the fully austenitic temperature of GCr15 steel [1173 K (900 °C)]. Two sets of material parameters for the constitutive model were derived based on the true stress-strain curves of the two temperature intervals. A flow stress constitutive model was established using a revised Arrhenius-type constitutive equation, which considers the relationships among the material parameters and true strain. This equation describes dynamic softening during hot compression processes. Considering the effect of glide and climb on the deformation mechanism, the Arrhenius-type constitutive equation was modified by a physically based approach. This model is the most accurate over the temperatures ranging from 1173 K to 1573 K (900 °C to 1300 °C) under HR deformation conditions (ignoring the range from 1273 K to 1573 K (1000 °C to 1300 °C) with a strain rate of 0.1 s-1). To ensure the convergence of the FE calculation, an approximated method was used to estimate the flow stress at temperatures greater than 1573 K (1300 °C).

  4. Volatile Element Geochemistry in the Lower Atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Schaefer, L.; Fegley, B., Jr.

    2004-01-01

    We computed equilibrium abundances of volatile element compounds as a function of altitude in Venus lower atmosphere. The elements included are generally found in volcanic gases and sublimates on Earth and may be emitted in volcanic gases on Venus or volatilized from its hot surface. We predict: 1) PbS, Bi2S3, or possibly a Pb-Bi sulfosalt are the radar bright heavy metal frost in the Venusian highlands; 2) It should be possible to determine Venus' age by Pb-Pb dating of PbS condensed in the Venusian highlands, which should be a representative sample of Venusian lead; 3) The gases HBr, PbCl2, PbBr2, As4O6, As4S4, Sb4O6, BiSe, InBr, InCl, Hg, TlCl, TlBr, SeS, Se2-7, HI, I, I2, ZnCl2, and S2O have abundances greater than 0.1 ppbv in our nominal model and may be spectroscopically observable; 4) Cu, Ag, Au, Zn, Cd, Ge, and Sn are approx. 100 % condensed at the 740 K (0 km) level on Venus.

  5. Identifying a new particle with jet substructures

    DOE PAGES

    Han, Chengcheng; Kim, Doojin; Kim, Minho; ...

    2017-01-09

    Here, we investigate a potential of determining properties of a new heavy resonance of mass O(1)TeV which decays to collimated jets via heavy Standard Model intermediary states, exploiting jet substructure techniques. Employing the Z gauge boson as a concrete example for the intermediary state, we utilize a "merged jet" defined by a large jet size to capture the two quarks from its decay. The use of the merged jet bene ts the identification of a Z-induced jet as a single, reconstructed object without any combinatorial ambiguity. We also find that jet substructure procedures may enhance features in some kinematic observablesmore » formed with subjet four-momenta extracted from a merged jet. This observation motivates us to feed subjet momenta into the matrix elements associated with plausible hypotheses on the nature of the heavy resonance, which are further processed to construct a matrix element method (MEM)-based observable. For both moderately and highly boosted Z bosons, we demonstrate that the MEM in combination with jet substructure techniques can be a very powerful tool for identifying its physical properties. Finally, we discuss effects from choosing different jet sizes for merged jets and jet-grooming parameters upon the MEM analyses.« less

  6. Matrix elements of Δ B =0 operators in heavy hadron chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Wan

    2015-05-01

    We study the light-quark mass and spatial volume dependence of the matrix elements of Δ B =0 four-quark operators relevant for the determination of Vu b and the lifetime ratios of single-b hadrons. To this end, one-loop diagrams are computed in the framework of heavy hadron chiral perturbation theory with partially quenched formalism for three light-quark flavors in the isospin limit; flavor-connected and -disconnected diagrams are carefully analyzed. These calculations include the leading light-quark flavor and heavy-quark spin symmetry breaking effects in the heavy hadron spectrum. Our results can be used in the chiral extrapolation of lattice calculations of the matrix elements to the physical light-quark masses and to infinite volume. To provide insight on such chiral extrapolation, we evaluate the one-loop contributions to the matrix elements containing external Bd, Bs mesons and Λb baryon in the QCD limit, where sea and valence quark masses become equal. In particular, we find that the matrix elements of the λ3 flavor-octet operators with an external Bd meson receive the contributions solely from connected diagrams in which current lattice techniques are capable of precise determination of the matrix elements. Finite volume effects are at most a few percent for typical lattice sizes and pion masses.

  7. STATISTICAL CHARACTERISTICS OF ELEMENTAL ABUNDANCE RATIOS: OBSERVATIONS FROM THE ACE SPACECRAFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, L.-L.; Zhang, H.

    We statistically analyze the elemental galactic cosmic ray (GCR) composition measurements of elements 5 ≤ Z ≤ 28 within the energy range 30–500 MeV/nucleon from the CRIS instrument on board the ACE spacecraft in orbit about the L1 Lagrange point during the period from 1997 to 2014. Similarly to the last unusual solar minimum, the elevated elemental intensities of all heavy nuclei during the current weak solar maximum in 2014 are ∼40% higher than that of the previous solar maximum in 2002, which has been attributed to the weak modulation associated with low solar activity levels during the ongoing weakestmore » solar maximum since the dawn of space age. In addition, the abundance ratios of heavy nuclei with respect to elemental oxygen are generally independent of kinetic energy per nucleon in the energy region 60–200 MeV/nuc, in good agreement with previous experiments. Furthermore, the abundance ratios of most relatively abundant species, except carbon, exhibit considerable solar-cycle variation, which are obviously positively correlated with the sunspot numbers with about one-year time lag. We also find that the percentage variation of abundance ratios for most elements are approximately identical. These preliminary results provide valuable insights into the characteristics of elemental heavy nuclei composition and place new and significant constraints on future GCR heavy nuclei propagation and modulation models.« less

  8. Heavy metals in agricultural soils of the European Union with implications for food safety.

    PubMed

    Tóth, G; Hermann, T; Da Silva, M R; Montanarella, L

    2016-03-01

    Soil plays a central role in food safety as it determines the possible composition of food and feed at the root of the food chain. However, the quality of soil resources as defined by their potential impact on human health by propagation of harmful elements through the food chain has been poorly studied in Europe due to the lack of data of adequate detail and reliability. The European Union's first harmonized topsoil sampling and coherent analytical procedure produced trace element measurements from approximately 22,000 locations. This unique collection of information enables a reliable overview of the concentration of heavy metals, also referred to as metal(loid)s including As, Cd, Cr, Cu, Hg, Pb, Zn, Sb. Co, and Ni. In this article we propose that in some cases (e.g. Hg and Cd) the high concentrations of soil heavy metal attributed to human activity can be detected at a regional level. While the immense majority of European agricultural land can be considered adequately safe for food production, an estimated 6.24% or 137,000km(2) needs local assessment and eventual remediation action. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Hawking from Catalan

    DOE PAGES

    Fitzpatrick, A. Liam; Kaplan, Jared; Walters, Matthew T.; ...

    2016-05-12

    The Virasoro algebra determines all ‘graviton’ matrix elements in AdS 3/CFT 2. We study the explicit exchange of any number of Virasoro gravitons between heavy and light CFT 2 operators at large central charge. These graviton exchanges can be written in terms of new on-shell tree diagrams, organized in a perturbative expansion in h H/c, the heavy operator dimension divided by the central charge. The Virasoro vacuum conformal block, which is the sum of all the tree diagrams, obeys a differential recursion relation generalizing that of the Catalan numbers. Here, we use this recursion relation to sum the on-shell diagramsmore » to all orders, computing the Virasoro vacuum block. Extrapolating to large h H/c determines the Hawking temperature of a BTZ black hole in dual AdS 3 theories.« less

  10. Hawking from Catalan

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, A. Liam; Kaplan, Jared; Walters, Matthew T.; Wang, Junpu

    2016-05-01

    The Virasoro algebra determines all `graviton' matrix elements in AdS3/CFT2. We study the explicit exchange of any number of Virasoro gravitons between heavy and light CFT2 operators at large central charge. These graviton exchanges can be written in terms of new on-shell tree diagrams, organized in a perturbative expansion in h H /c, the heavy operator dimension divided by the central charge. The Virasoro vacuum conformal block, which is the sum of all the tree diagrams, obeys a differential recursion relation generalizing that of the Catalan numbers. We use this recursion relation to sum the on-shell diagrams to all orders, computing the Virasoro vacuum block. Extrapolating to large h H /c determines the Hawking temperature of a BTZ black hole in dual AdS3 theories.

  11. A Heavy Protection.

    PubMed

    Derkenne, Clément; Lamblin, Antoine; Demaison, Xavier; Darléguy, Adrien

    2015-12-01

    The wearing of individual protective elements has revolutionized the typology of war wounds. The benefit/risk ratio is particularly satisfying, but several side effects with minor consequences are described, calling for further ergonomic development from manufacturers of these protective elements. This case report describes a meralgia paresthetica by compression of the lateral cutaneous thigh nerve because of the wearing of bulletproof vest. A symptomatic treatment was introduced, and 2 months after the apparition of the symptoms, the patient's condition has improved, with only a slight hypoesthesia remaining. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  12. Trace elements in agroecosystems and impacts on the environment.

    PubMed

    He, Zhenli L; Yang, Xiaoe E; Stoffella, Peter J

    2005-01-01

    Trace elements mean elements present at low concentrations (mg kg-1 or less) in agroecosystems. Some trace elements, including copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), molybdenum (Mo), and boron (B) are essential to plant growth and are called micronutrients. Except for B, these elements are also heavy metals, and are toxic to plants at high concentrations. Some trace elements, such as cobalt (Co) and selenium (Se), are not essential to plant growth but are required by animals and human beings. Other trace elements such as cadmium (Cd), lead (Pb), chromium (Cr), nickel (Ni), mercury (Hg), and arsenic (As) have toxic effects on living organisms and are often considered as contaminants. Trace elements in an agroecosystem are either inherited from soil parent materials or inputs through human activities. Soil contamination with heavy metals and toxic elements due to parent materials or point sources often occurs in a limited area and is easy to identify. Repeated use of metal-enriched chemicals, fertilizers, and organic amendments such as sewage sludge as well as wastewater may cause contamination at a large scale. A good example is the increased concentration of Cu and Zn in soils under long-term production of citrus and other fruit crops. Many chemical processes are involved in the transformation of trace elements in soils, but precipitation-dissolution, adsorption-desorption, and complexation are the most important processes controlling bioavailability and mobility of trace elements in soils. Both deficiency and toxicity of trace elements occur in agroecosystems. Application of trace elements in fertilizers is effective in correcting micronutrient deficiencies for crop production, whereas remediation of soils contaminated with metals is still costly and difficult although phytoremediation appears promising as a cost-effective approach. Soil microorganisms are the first living organisms subjected to the impacts of metal contamination. Being responsive and sensitive, changes in microbial biomass, activity, and community structure as a result of increased metal concentration in soil may be used as indicators of soil contamination or soil environmental quality. Future research needs to focus on the balance of trace elements in an agroecosystem, elaboration of soil chemical and biochemical parameters that can be used to diagnose soil contamination with or deficiency in trace elements, and quantification of trace metal transport from an agroecosystem to the environment.

  13. Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant.

    PubMed

    Stolpe, Clemens; Giehren, Franziska; Krämer, Ute; Müller, Caroline

    2017-07-01

    Plants that are able to hyperaccumulate heavy metals show increased concentrations of these metals in their leaf tissue. However, little is known about the concentrations of heavy metals and of organic defence metabolites in the phloem sap of these plants in response to either heavy metal-amendment of the soil or biotic challenges such as aphid-infestation. In this study, we investigated the effects of heavy metal-exposure and of aphid-infestation on phloem exudate composition of the metal hyperaccumulator species Arabidopsis halleri L. O'Kane & Al-Shehbaz (Brassicaceae). The concentrations of elements and of organic defence compounds, namely glucosinolates, were measured in phloem exudates of young and old (mature) leaves of plants challenged either by amendment of the soil with cadmium and zinc and/or by an infestation with the generalist aphid Myzus persicae. Metal-amendment of the soil led to increased concentrations of Cd and Zn, but also of two other elements and one indole glucosinolate, in phloem exudates. This enhanced defence in the phloem sap of heavy metal-hyperaccumulating plants can thus potentially act as effective protection against aphids, as predicted by the elemental defence hypothesis. Aphid-infestation also caused enhanced Cd and Zn concentrations in phloem exudates. This result provides first evidence that metal-hyperaccumulating plants can increase heavy metal concentrations tissue-specifically in response to an attack by phloem-sucking herbivores. Overall, the concentrations of most elements, including the heavy metals, and glucosinolates were higher in phloem exudates of young leaves than in those of old leaves. This defence distribution highlights that the optimal defence theory, which predicts more valuable tissue to be better defended, is applicable for both inorganic and organic defences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Significance of Heavy-Ion Beam Irradiation-Induced Avermectin B1a Production by Engineered Streptomyces avermitilis

    PubMed Central

    Bo, Yong-Heng; Chen, Ji-Hong; Li, Wen-Jian; Liang, Jian-Ping; Xiao, Guo-Qing; Wang, Yu-Chen; Liu, Jing; Hu, Wei; Jiang, Bo-Ling

    2017-01-01

    Heavy-ion irradiation technology has advantages over traditional methods of mutagenesis. Heavy-ion irradiation improves the mutation rate, broadens the mutation spectrum, and shortens the breeding cycle. However, few data are currently available regarding its effect on Streptomyces avermitilis morphology and productivity. In this study, the influence of heavy-ion irradiation on S. avermitilis when cultivated in approximately 10 L stirred-tank bioreactors was investigated. The specific productivity of the avermectin (AVM) B1a-producing mutant S. avermitilis 147-G58 increased notably, from 3885 to 5446 μg/mL, approximately 1.6-fold, compared to the original strain. The mycelial morphology of the mutant fermentation processes was microscopically examined. Additionally, protein and metabolite identification was performed by using SDS-PAGE, 2- and 3-dimensional electrophoresis (2DE and 3DE). The results showed that negative regulation gene deletion of mutants led to metabolic process upregulating expression of protein and improving the productivity of an avermectin B1a. The results showed that the heavy-ion beam irradiation dose that corresponded to optimal production was well over the standard dose, at approximately 80 Gy at 220 AMeV (depending on the strain). This study provides reliable data and a feasible method for increasing AVM productivity in industrial processes. PMID:28243599

  15. Toxicity of heavy metals and metal-containing nanoparticles on plants.

    PubMed

    Mustafa, Ghazala; Komatsu, Setsuko

    2016-08-01

    Plants are under the continual threat of changing climatic conditions that are associated with various types of abiotic stresses. In particular, heavy metal contamination is a major environmental concern that restricts plant growth. Plants absorb heavy metals along with essential elements from the soil and have evolved different strategies to cope with the accumulation of heavy metals. The use of proteomic techniques is an effective approach to investigate and identify the biological mechanisms and pathways affected by heavy metals and metal-containing nanoparticles. The present review focuses on recent advances and summarizes the results from proteomic studies aimed at understanding the response mechanisms of plants under heavy metal and metal-containing nanoparticle stress. Transport of heavy metal ions is regulated through the cell wall and plasma membrane and then sequestered in the vacuole. In addition, the role of different metal chelators involved in the detoxification and sequestration of heavy metals is critically reviewed, and changes in protein profiles of plants exposed to metal-containing nanoparticles are discussed in detail. Finally, strategies for gaining new insights into plant tolerance mechanisms to heavy metal and metal-containing nanoparticle stress are presented. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Hydrometallurgical recovery of heavy metals from low grade automobile shredder residue (ASR): An application of advanced Fenton process (AFP).

    PubMed

    Singh, Jiwan; Lee, Byeong-Kyu

    2015-09-15

    To investigate the leaching and recovery of heavy metals from low-grade automobile shredder residue (ASR), the effects of nitric acid (HNO3) and hydrogen peroxide (H2O2) concentrations, liquid/solid (L/S) ratio, leaching temperature and ASR particle size fractions on the heavy metal leaching rate were determined. The heavy metals were recovered by fractional precipitation and advanced Fenton process (AFP) at different pHs. The toxicity characteristic leaching procedure (TCLP) test was also performed in the residue remaining after heavy metal leaching to evaluate the potential toxicity of ASR. The heavy metal leaching efficiency was increased with increasing HNO3 and H2O2 concentrations, L/S ratio and temperature. The heavy metal leaching efficiencies were maximized in the lowest ASR size fraction at 303 K and L/S ratio of 100 mL/g. The kinetic study showed that the metal leaching was best represented by a second-order reaction model, with a value of R(2) > 0.99 for all selected heavy metals. The determined activation energy (kJ/mol) was 21.61, 17.10, 12.15, 34.50, 13.07 and 11.45 for Zn, Fe, Ni, Pb, Cd and Cr, respectively. In the final residue, the concentrations of Cd, Cr and Pb were under their threshold limits in all ASR size fractions. Hydrometallurgical metal recovery was greatly increased by AFP up to 99.96% for Zn, 99.97% for Fe, 95.62% for Ni, 99.62% for Pb, 94.11% for Cd and 96.79% for Cr. AFP is highly recommended for the recovery of leached metals from solution even at low concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Spatial and seasonal variations of elemental composition in Mt. Everest (Qomolangma) snow/firn

    NASA Astrophysics Data System (ADS)

    Kang, Shichang; Zhang, Qianggong; Kaspari, Susan; Qin, Dahe; Cong, Zhiyuan; Ren, Jiawen; Mayewski, Paul A.

    In May 2005, a total of 14 surface snow (0-10 cm) samples were collected along the climbing route from the advanced base camp to the summit (6500-8844 m a.s.l.) on the northern slope of Mt. Everest (Qomolangma). A 108 m firn/ice core was retrieved from the col of the East Rongbuk Glacier (28.03°N, 86.96°E, 6518 m a.s.l.) on the north eastern saddle of Mt. Everest in September 2002. Surface snow and the upper 3.5 m firn samples from the core were analyzed for major and trace elements by inductively coupled plasma mass spectroscopy (ICP-MS). Measurements show that crustal elements dominated both surface snow and the firn core, suggesting that Everest snow chemistry is mainly influenced by crustal aerosols from local rock or prevalent spring dust storms over southern/central Asia. There are no clear trends for element variations with elevation due to local crustal aerosol inputs or redistribution of surface snow by strong winds during the spring. Seasonal variability in snow/firn elements show that high elemental concentrations occur during the non-monsoon season and low values during the monsoon season. Ca, Cr, Cs, and Sr display the most distinct seasonal variations. Elemental concentrations (especially for heavy metals) at Mt. Everest are comparable with polar sites, generally lower than in suburban areas, and far lower than in large cities. This indicates that anthropogenic activities and heavy metal pollution have little effect on the Mt. Everest atmospheric environment. Everest firn core REE concentrations are the first reported in the region and seem to be comparable with those measured in modern and Last Glacial Maximum snow/ice samples from Greenland and Antarctica, and with precipitation samples from Japan and the East China Sea. This suggests that REE concentrations measured at Everest are representative of the background atmospheric environment.

  18. Online X-ray Fluorescence (XRF) Analysis of Heavy Metals in Pulverized Coal on a Conveyor Belt.

    PubMed

    Yan, Zhang; XinLei, Zhang; WenBao, Jia; Qing, Shan; YongSheng, Ling; DaQian, Hei; Da, Chen

    2016-02-01

    Heavy metals in haze episode will continue to threaten the quality of public health around the world. In order to decrease the emission of heavy metals produced from coal burning, an online X-ray fluorescence (XRF) analyzer system, consisting of an XRF analyzer with data acquisition software and a laser rangefinder, was developed to carry out the measurement of heavy metals in pulverized coal. The XRF analyzer was mounted on a sled, which can effectively smooth the surface of pulverized coal and reduce the impact of surface roughness during online measurement. The laser rangefinder was mounted over the sled for measuring the distance between a pulverized coal sample and the analyzer. Several heavy metals and other elements in pulverized coal were online measured by the XRF analyzer directly above a conveyor belt. The limits of detection for Hg, Pb, Cr, Ti, Fe, and Ca by the analyzer were 44 ± 2, 34 ± 2, 17 ± 3, 41 ± 4, 19 ± 3, and 65 ± 2 mg·kg(-1), respectively. The relative standard deviation (%RSD) for the elements mentioned was less than 7.74%. By comparison with the results by inductively-coupled plasma mass spectrometry (ICP-MS), relative deviation (%D) of the online XRF analyzer was less than 10% for Cr, Ti, and Ca, in the range of 0.8-24.26% for Fe, and greater than 20% for Hg and Pb. © The Author(s) 2016.

  19. Comparison of leaching characteristics of heavy metals in APC residue from an MSW incinerator using various extraction methods.

    PubMed

    Chiang, Kung-Yuh; Tsai, Chen-Chiu; Wang, Kuen-Sheng

    2009-01-01

    This study investigates four extraction methods (water extraction, toxicity characteristics leaching procedure (TCLP), modified TCLP with pH control, and sequential chemical extraction (SCE)), each representing different liquid-to-solid (L/S) ratios, pH controls, and types of leachant, and their effects on the leaching concentration of heavy metals in municipal solid waste (MSW) incinerator air pollution control (APC) residue. The results indicated that for extraction with distilled water, the heavy metal leaching concentration (mg/l) decreased with L/S ratio, but the amount of heavy metal released (AHMR), defined as the leached amount of heavy metals to the weight of the tested sample (mg/kg), increased with an increase in L/S ratio, in the range of 2-100. The results also showed that both the leaching concentration and the amount of released metals were strongly pH-dependent in the TCLP and modified TCLP tests. In the case of pHs lower than 6.5, the leaching concentrations of Cd, Pb, Cu, Zn, and Cr decreased with an increase in pH. As pH increased higher than 6.5, Cr and Zn were almost insoluble. Meanwhile, Cd and Cu also showed a similar trend but at pHs of 8.5 and 7.5, respectively. Due to the nature of amphoteric elements, in the case of pHs higher than 7, the Pb leaching concentration increased with increasing pH. In modified TCLP tests with the pH value controlled at the same level as in the SCE test, the heavy metal speciation approached the extractable carbonate bound fraction by the SCE. Both amounts of targeted metals leached from the SCE and modified TCLP tests were much higher than those for the regular TCLP and water extraction tests.

  20. UV-spektra från Hubble-teleskopet avslöjar en stjärna i Vargen som lagrar tunga isotoper av mycket tunga grundämnen.

    NASA Astrophysics Data System (ADS)

    Johansson, S. E.; Leckrone, D. S.; Wahlgren, G. M.

    1994-09-01

    UV spectra from the Hubble Space Telescope reveal a star that stores heavy isotopes of very heavy elements. Atomic and plasma physics arguments for UV spectroscopy from space borne observatories are given. As an example, the authors discuss the analysis of high resolution spectra of the chemically peculiar star χ Lupi, obtained with the Hubble Space Telescope, in terms of identification of spectral lines of very heavy elements.

  1. Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars

    NASA Technical Reports Server (NTRS)

    Eichler, David; Livio, Mario; Piran, Tsvi; Schramm, David N.

    1989-01-01

    It is pointed out here that neutron-star collisions should synthesize neutron-rich heavy elements, thought to be formed by rapid neutron capture (the r-process). Furthermore, these collisions should produce neutrino bursts and resultant bursts of gamma rays; the latter should comprise a subclass of observable gamma-ray bursts. It is argued that observed r-process abundances and gamma-ray burst rates predict rates for these collisions that are both significant and consistent with other estimates.

  2. The role of neutron star mergers in the chemical evolution of the Galactic halo

    NASA Astrophysics Data System (ADS)

    Cescutti, G.; Romano, D.; Matteucci, F.; Chiappini, C.; Hirschi, R.

    2015-05-01

    Context. The dominant astrophysical production site of the r-process elements has not yet been unambiguously identified. The suggested main r-process sites are core-collapse supernovae and merging neutron stars. Aims: We explore the problem of the production site of Eu. We also use the information present in the observed spread in the Eu abundances in the early Galaxy, and not only its average trend. Moreover, we extend our investigations to other heavy elements (Ba, Sr, Rb, Zr) to provide additional constraints on our results. Methods: We adopt a stochastic chemical evolution model that takes inhomogeneous mixing into account. The adopted yields of Eu from merging neutron stars and from core-collapse supernovae are those that are able to explain the average [Eu/Fe]-[Fe/H] trend observed for solar neighbourhood stars, the solar abundance of Eu, and the present-day abundance gradient of Eu along the Galactic disc in the framework of a well-tested homogeneous model for the chemical evolution of the Milky Way. Rb, Sr, Zr, and Ba are produced by both the s- and r-processes. The r-process yields were obtained by scaling the Eu yields described above according to the abundance ratios observed in r-process rich stars. The s-process contribution by spinstars is the same as in our previous papers. Results: Neutron star binaries that merge in less than 10 Myr or neutron star mergers combined with a source of r-process generated by massive stars can explain the spread of [Eu/Fe] in the Galactic halo. The combination of r-process production by neutron star mergers and s-process production by spinstars is able to reproduce the available observational data for Sr, Zr, and Ba. We also show the first predictions for Rb in the Galactic halo. Conclusions: We confirm previous results that either neutron star mergers on a very short timescale or both neutron star mergers and at least a fraction of Type II supernovae have contributed to the synthesis of Eu in the Galaxy. The r-process production of Sr, Zr, and Ba by neutron star mergers - complemented by an s-process production by spinstars - provide results that are compatible with our previous findings based on other r-process sites. We critically discuss the weak and strong points of both neutron star merging and supernova scenarios for producing Eu and eventually suggest that the best solution is probably a mixed one in which both sources produce Eu. In fact, this scenario reproduces the scatter observed in all the studied elements better. Warning, no authors found for 2015A&A...577A.131.

  3. In-beam fission study for Heavy Element Synthesis

    NASA Astrophysics Data System (ADS)

    Nishio, Katsuhisa

    2013-12-01

    Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and qasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si + 238U and 34S + 238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections for seaborgium and hassium isotopes.

  4. Concentration and distribution of heavy metals in two Andisols of the Azuay Andes (Ecuador)

    NASA Astrophysics Data System (ADS)

    Bech, Jaume; Roca, Núria; Ugalde, Sandra; Tonon, Luis; Larriva, Giovani

    2013-04-01

    At present many governmental and environmental bureaus are interested in establishing reliable soil quality criteria for heavy metals to enable the detection of polluted sites. To evaluate the variation of heavy metal natural concentration and to assess heavy metal contamination in soils, it is necessary to survey heavy metal baseline levels in order to understand their migration and distribution during pedogenesis. Many nationwide projects report elemental baseline values in soils. Baseline levels of heavy metals in soils have also been determined at local scales. Data is scarce on qualitative and quantitative trace elements content of Ecuatorian soils. The soils in the Azuay Andes (S of Ecuador) are thought to be generally non-contaminated. The objective of this study is to determine and evaluate the natural concentrations and distribution of seven heavy metals (Cd, Co, Cr, Cu, Ni, Pb and Zn) in Andisol of Azuay Andes. Soil samples were grounded in an agate mill prior to pseudototal heavy metal analysis. Cadmium, Co, Cr, Cu, Ni, Pb and Zn were determined by a masses spectrometer (MS-ICP) after aqua regia extraction according to ISO standard procedures. Soil particle size distribution, organic carbon, electrical conductivity and pH have been previously determined. Andisols are dominated by amorphous aluminium silicates and Al-organic complexes. The soils of volcanic area usually have an Ah-Bh-Bhs/Bw-C horizon sequence. The Ah horizon is dark-coloured and normally very high in organic matter, ranging from 6.4 to 15.2 %. A strong rise in pH upon addition of a fluoride solution is used to signal the presence of allophane. The pH usually rises to 10.5 bellow 20 cm. The range of total soil values in mgkg-1 is as follows: Cd (0.03-0.3), Co (0.8-5), Cr (7-15), Cu (9-25), Ni (2-4), Pb (11-41) and Zn (12-37). All heavy metal contents, except for Cd, are strongly correlated with pH. For the pseudototal fraction, there was significant difference between the soil horizons in regards to complex profile development.

  5. Altering Genomic Integrity: Heavy Metal Exposure Promotes Transposable Element-Mediated Damage.

    PubMed

    Morales, Maria E; Servant, Geraldine; Ade, Catherine; Roy-Engel, Astrid M

    2015-07-01

    Maintenance of genomic integrity is critical for cellular homeostasis and survival. The active transposable elements (TEs) composed primarily of three mobile element lineages LINE-1, Alu, and SVA comprise approximately 30% of the mass of the human genome. For the past 2 decades, studies have shown that TEs significantly contribute to genetic instability and that TE-caused damages are associated with genetic diseases and cancer. Different environmental exposures, including several heavy metals, influence how TEs interact with its host genome increasing their negative impact. This mini-review provides some basic knowledge on TEs, their contribution to disease, and an overview of the current knowledge on how heavy metals influence TE-mediated damage.

  6. FLUID MODERATED REACTOR

    DOEpatents

    Wigner, E.P.; Ohlinger, L.A.; Young, G.J.; Weinberg, A.M.

    1957-10-22

    A reactor which utilizes fissionable fuel elements in rod form immersed in a moderator or heavy water and a means of circulating the heavy water so that it may also function as a coolant to remove the heat generated by the fission of the fuel are described. In this design, the clad fuel elements are held in vertical tubes immersed in heavy water in a tank. The water is circulated in a closed system by entering near the tops of the tubes, passing downward through the tubes over the fuel elements and out into the tank, where it is drawn off at the bottom, passed through heat exchangers to give up its heat and then returned to the tops of the tubes for recirculation.

  7. The effects of mass and metallicity upon planetary nebula formation

    NASA Astrophysics Data System (ADS)

    Papp, K. A.; Purton, C. R.; Kwok, S.

    1983-05-01

    A parameterized function is constructed which describes the possible dependence of planetary nebula formation upon metal abundance and stellar mass. Data on galaxies in the Local Group compared with predictions made from the parameterized function indicate that heavy element abundance is the principal agent influencing the formation of planetary nebulae; stars which are rich in heavy elements are the progenitors of planetary nebulae. This analysis, when compared with the observations, argues for a modest degree of pre-enrichment in a few of the sample galaxies. The heavy element dependence of planetary nebula formation also accounts for the deficit of planetary nebulae in the nuclei of NGC 221 and NGC 224, and in the bulge of our Galaxy.

  8. The Role of Anionogenic Elements (As, Sb, Mo, Se, S, P, N, Cl, F, C) In The Formation of Technogenic Geochemical Anomalies

    NASA Astrophysics Data System (ADS)

    Abrosimova, Natalya; Bortnikova, Svetlana

    2017-12-01

    The study was conducted on the example of sulphide-containing mine tailings with a varying amount of sulphide and arsenide minerals, from three distinct tailings dumps situated in Russia: Karabash Mine Site, South Ural; Komsomolsk tailings impoundment, Kemerovo region; Khovu-Aksy mine site, Tuva Republic. The aim of the study was to compare the mobility of anionogenic elements (As, Sb, Mo, Se, S, P, N, Cl, F, C) and their role in migration, precipitation, and concentration of metals during the water-tailings interaction depending on the physicochemical parameters (pH, Eh) of the medium and the mineral composition of the waste material. Using slightly acidic leaching experiments the quantitative estimation of mobile forms of elements is given. Based on the compositions of the obtained water leaching solutions, aqueous speciation of chemical elements and saturation index of key minerals in the experimental solutions were calculated. The results of calculating forms of chemical elements made it possible to construct series of mobility of metals and metalloids in solutions with different physicochemical parameters. In the alkaline conditions, Sb>As>Cd>Cu>Zn>Fe>Pb, when the medium is acidified, the series changes, As>Cd>Cu>Zn>Pb>Sb>Fe in weakly alkaline conditions, Sb>Mn>As>Zn>Fe however, when the medium is acidified, the series changes to Cd>Mn>Pb>Cu>Zn>Sb>Ni>Fe>As under acidic conditions Cd>Cu>Zn>Pb>Mn>Fe>Se>Mo>Sb>As>Ni. The mineral composition of the tailings was investigated, which will allow to determine the sources of toxic elements and to understand the processes of secondary mineral formation in technogenic objects. Arsenopyrite and pyrite predominate in the heavy fraction of the Komsomolsk tailings impoundment, arsenopyrite grains are often corroded, Sb contained in Sb oxide and Sb sulfide. The pyrite and barite are determined in the solid matter of the Karabash Mine Site and chalcopyrite, sphalerite, tennantite Cu3AsS3, and tetrahedrite (Cu,Fe)12Sb4S13 are determined in the form of inclusions in grains of pyrite.

  9. Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application.

    PubMed

    Li, Shaolin; Wang, Wei; Liang, Feipeng; Zhang, Wei-Xian

    2017-01-15

    Treatment of wastewater containing heavy metals requires considerations on simultaneous removal of different ions, system reliability and quick separation of reaction products. In this work, we demonstrate that nanoscale zero-valent iron (nZVI) is an ideal reagent for removing heavy metals from wastewater. Batch experiments show that nZVI is able to perform simultaneous removal of different heavy metals and arsenic; reactive nZVI in uniform dispersion brings rapid changes in solution E h , enabling a facile way for reaction regulation. Microscope characterizations and settling experiments suggest that nZVI serves as solid seeds that facilitate products separation. A treatment process consisting of E h -controlled nZVI reaction, gravitational separation and nZVI recirculation is then demonstrated. Long-term (>12 months) operation shows that the process achieves >99.5% removal of As, Cu and a number of other toxic elements. The E h -controlled reaction system sustains a highly-reducing condition in reactor and reduces nZVI dosage. The process produces effluent of stable quality that meets local discharge guidelines. The gravitational separator shows high efficacy of nZVI recovery and the recirculation improves nZVI material efficiency, resulting in extraordinarily high removal capacities ((245mg As+226 mg-Cu)/g-nZVI). The work provides proof that nanomaterials can offer truly green and cost-effective solutions for wastewater treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Evaluation of the Biotoxicity of Tree Wood Ashes in Zebrafish Embryos.

    PubMed

    Consigli, Veronica; Guarienti, Michela; Bilo, Fabjola; Benassi, Laura; Depero, Laura E; Bontempi, Elza; Presta, Marco

    2016-10-01

    Ashes derived from biomass combustion and used as soil fertilizers can generate negative environmental and human health risks, related to leaching of heavy metals and other putative toxic elements. Tree wood ash composition may vary depending on geographical location and surrounding industrial processes. In this study, we evaluated the biotoxicity of lixiviated tree wood ash samples from trees of the Ash (Fraxinus), Cherry (Pronus), Hazel (Corylus), and Black locust (Robinia) genus collected in an industrialized region in Northern Italy. Elemental chemical analysis of the samples was performed by total reflection X-ray fluorescence technique and their biotoxicity was assessed in zebrafish (Danio rerio) embryos. Ashes from Ash, Cherry, and Hazel trees, but not Black locust trees, had a high concentration of heavy metals and other putative toxic elements. Accordingly, a dose-dependent increase in mortality rate and morphological and teratogenic defects was observed in zebrafish embryos treated with lixiviated Ash, Cherry, and Hazel tree wood samples, whereas the toxicity of Black locust tree wood ashes was negligible. In conclusion, lixiviated wood ashes from different plants show a different content of toxic elements that correlate with their biotoxic effects on zebrafish embryos. Tree wood ashes derived from biomass combustion may represent a potential risk for the environment and human health.

  11. Coastal deposits of heavy mineral sands; Global significance and US resources

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Bleiwas, Donald I.; Bedinger, George M.; Ellefsen, Karl J.; Shah, Anjana K.

    2016-01-01

    Ancient and modern coastal deposits of heavy mineral sands (HMS) are the principal source of several heavy industrial minerals, with mining and processing operations on every continent except Antarctica. For example, HMS deposits are the main source of titanium feedstock for the titanium dioxide (TiO2) pigments industry, obtained from the minerals ilmenite (Fe2+TiO3), rutile (TiO2) and leucoxene (an alteration product of ilmenite). HMS deposits are also the principal source of zircon (ZrSiO4), from which zirconium dioxide (ZrO2) is obtained for uses mostly in refractory products. Sometimes monazite [(Ce,La,Nd,Th)PO4] is recovered as a byproduct mineral, sought for its rare earth elements and thorium (Ault and others, 2016; Sengupta and Van Gosen, 2016; Van Gosen and Tulsidas, 2016). 

  12. Halophytes--an emerging trend in phytoremediation.

    PubMed

    Manousaki, Eleni; Kalogerakis, Nicolas

    2011-01-01

    Halophytic plants are of special interest because these plants are naturally present in environments characterized by an excess of toxic ions, mainly sodium and chloride. Several studies have revealed that these plants may also tolerate other stresses including heavy metals based on the findings that tolerance to salt and to heavy metals may, at least partly, rely on common physiological mechanisms. In addition, it has been shown that salt-tolerant plants may also be able to accumulate metals. Therefore, halophytes have been suggested to be naturally better adapted to cope with environmental stresses, including heavy metals compared to salt-sensitive crop plants commonly chosen for phytoextraction purposes. Thus, potentially halophytes are ideal candidates for phytoextraction orphytostabilization of heavy metal polluted soils and moreover of heavy metal polluted soils affected by salinity. Some halophytes use excretion processes in order to remove the excess of salt ions from their sensitive tissues and in some cases these glandular structures are not always specific to Na+ and Cl- and other toxic elements such as cadmium, zinc, lead, or copper are accumulated and excreted by salt glands or trichomes on the surface of the leaves--a novel phytoremediation process called "phytoexcretion". Finally, the use of halophytes has also been proposed for soil desalination through salt accumulation in the plant tissue or dissolution of soil calcite in the rhizosphere to provide Ca2+ that can be exchanged with Na+ at cation exchange sites.

  13. Groundwater chemistry and human health risk assessment in the mining region of East Singhbhum, Jharkhand, India.

    PubMed

    Singh, Umesh Kumar; Ramanathan, A L; Subramanian, V

    2018-08-01

    Groundwater chemistry of mining region of East Singhbhum district having complex contaminant sources were investigated based on heavy metals loads and other hydrochemical constituents. This study aimed to identify the degree of heavy metals exposure and their potential health risk to local population. The results of hydrochemical analysis showed that Na + , K + , and Ca 2+ ions are the dominant cations in the groundwater, while HCO 3 - , F - and Cl - ions dominate the anionic part of the groundwater. The weathering process was considered the dominant factor to determine the major ionic composition in the study area. Compositional analysis for heavy metal has identified that groundwater of the study area is contaminated by Cd, Pb and Cr elements. Source of these metals have been identified as an anthropogenic inputs from mining activities and mineral processing units. Health risk analysis of individual heavy metal for chronic daily intake (CDI) and hazard quotient (HQ) was found in the order of Cr > As > Cd > Pb which is indicating high health risk for the population. In addition, Hazard Index (HI) analysis for heavy metals was found significantly high (>1) which is considered as a threat for human population because they have the tendency to accumulate in the body and cause variety of diseases like kidney problem, dysfunction of liver and renal cortex as well as cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. [Novel process utilizing alkalis assisted hydrothermal process to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water].

    PubMed

    Wang, Lei; Jin, Jian; Li, Xiao-dong; Chi, Yong; Yan, Jian-hua

    2010-08-01

    An alkalis assisted hydrothermal process was induced to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water. The results showed that alkalis assisted hydrothermal process removed the heavy metals effectively from the waste water, and reduced leachability of fly ash after process. The heavy metal leachabilities of fly ash studied in this paper were Mn 17,300 microg/L,Ni 1650 microg/L, Cu 2560 microg/L, Zn 189,000 microg/L, Cd 1970 microg/L, Pb 1560 microg/L for medical waste incinerator fly ash; Mn 17.2 microg/L, Ni 8.32 microg/L, Cu 235.2 microg/L, Zn 668.3 microg/L, Cd 2.81 microg/L, Pb 7200 microg/L for municipal solid waste incinerator fly ash. After hydrothermal process with experimental condition [Na2CO3 dosage (5 g Na2CO3/50 g fly ash), reaction time = 10 h, L/S ratio = 10/1], the heavy metal removal efficiencies of medical waste incinerator fly ash were 86.2%-97.3%, and 94.7%-99.6% for municipal solid waste incinerator fly ash. The leachabilities of both two kinds of fly ash were lower than that of the Chinese national limit. The mechanism of heavy metal stabilization can be concluded to the chemisorption and physically encapsulation effects of aluminosilicates during its formation, crystallization and aging process, the high pH value has some contribution to the heavy metal removal and stabilization.

  15. An experimental investigation of fractionation by sputter deposition. [application to solar wind irradiation of lunar soil

    NASA Technical Reports Server (NTRS)

    Paruso, D. M.; Cassidy, W. A.; Hapke, B. W.

    1978-01-01

    Artificial glass targets composed of elements varying widely in atomic weight were irradiated at an angle of incidence of 45 deg by 2-keV hydrogen ions at a current density of .33 mA/sq cm, and sputtered atoms were caught on a molybdenum film. Analyses of the sputter-deposited films and unsputtered target glasses were carried out by electron microprobe. The backward-sputtered component was found to be enriched in elements of low atomic weight, while the forward-sputtered component was enriched in heavy atoms. These results indicate that at the lunar surface lighter elements and isotopes would tend to be ejected in backward directions, escaping directly through the openings which admit bombarding ions without first striking an adjacent grain surface; heavy elements and isotopes would be forward-sputtered deeper into the soil and be preferentially retained, contributing to the reported enrichments of heavy elements and isotopes. Additional results show that the binding energy of an element in its oxide form influences the sticking coefficient of a sputtered atom; elements of low binding energy are likely to desorb, while elements of high binding energy tend to stick to the first bounce surface.

  16. Elemental Analysis and Radionuclides Monitoring of Beach Black Sand at North of Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Ali, Abdallah; Fayez-Hassan, M.; Mansour, N. A.; Mubarak, Fawzia; Ahmed, Talaat Salah; Hassanin, W. F.

    2017-12-01

    A study was carried out on the concentrations of elements presented in beach black sand samples collected from North of Nile Delta along Mediterranean Coast using instrumental neutron activation analysis (INAA) as an effective analysis technique, especially for monitoring elements. The Egyptian Research Reactor-2 (ETRR-2) as a facility was used for the samples irradiation in the thermal mode of a neutron flux 3 × 1011 n/cm2 s. Natural radioactive elements, rare element and heavy elements as U, Th, La, Lu, Sm, Ce, Nd, Eu, Gd, Sc, Tb, Yb, As, Br, Na, Sb, Ba, Co, Cr, Fe, Hg, Hf, Sr, Ta, Zn and Zr were determined with concentrations average values 16.3, 78.8, 195.4, 3.3, 31.3, 445.1, 223, 7.2, 8.5, 97.1, 3.6, 31.1, 6.1, 24.5, 27,236.8, 1.42, 1327.7, 81.1, 1814.3, 263,735, 0.1, 237.3, 878.7, 20.8, 671.1 and 6225.9 (mg/kg), respectively. The experimental data results were analyzed to evidence any correlations of these elements as well as to know the geological formation in the study area. The elements concentrations in the black sand samples were found higher than the world average crustal soil values except for As and Sb. Results were compared with similar beach black sand in previous studies. The enrichment factor (EF) and geoaccumulation index (I geo) for heavy elements were presented to evaluate the contamination rate. We can summarize that exposure for natural radionuclides (U and Th) in this area were still within the acceptable limits due to little time of exposure. Therefore, the black sands from North of Nile Delta are not recommended for use in building constructions due to high radioactive doses.

  17. METHOD OF OPERATING NUCLEAR REACTORS

    DOEpatents

    Untermyer, S.

    1958-10-14

    A method is presented for obtaining enhanced utilization of natural uranium in heavy water moderated nuclear reactors by charging the reactor with an equal number of fuel elements formed of natural uranium and of fuel elements formed of uranium depleted in U/sup 235/ to the extent that the combination will just support a chain reaction. The reactor is operated until the rate of burnup of plutonium equals its rate of production, the fuel elements are processed to recover plutonium, the depleted uranium is discarded, and the remaining uranium is formed into fuel elements. These fuel elements are charged into a reactor along with an equal number of fuel elements formed of uranium depleted in U/sup 235/ to the extent that the combination will just support a chain reaction, and reuse of the uranium is continued as aforesaid until it wlll no longer support a chain reaction when combined with an equal quantity of natural uranium.

  18. Trace elements and heavy metals in the Grand Bay National Estuarine Reserve in the northern Gulf of Mexico

    USDA-ARS?s Scientific Manuscript database

    The Grand Bay National Estuarine Research Reserve has the highest biotic diversity of habitats and offer a reserve of food resources and commercially significant species. Rapid human civilization has led to accumulation of heavy metals and trace elements in estuaries. The Grand Bay National Estuarin...

  19. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge

    PubMed Central

    Placek, Agnieszka; Grobelak, Anna; Kacprzak, Malgorzata

    2016-01-01

    ABSTRACT Sewage sludge, in particular from the food industry, is characterized by fertilizing properties, due to the high content of organic matter and nutrients. The application of sewage sludge causes an improvement of soil parameters as well as increase in cation exchange capacity, and thus stronger binding of cations in the soil environment, which involves the immobilization of nutrients and greater resistance to contamination. In a field experiment sewage sludge has been used as an additive to the soil supporting the phytoremediation process of land contaminated with heavy metals (Cd, Zn, and Pb) using trees species: Scots pine (Pinus silvestris L.), Norway spruce (Picea abies L.), and oak (Quercus robur L.). The aim of the research was to determine how the application of sewage sludge into the soil surface improves the phytoremediation process. The conducted field experiment demonstrated that selected trees like Scots pine and Norway spruce, because of its excellent adaptability, can be used in the remediation of soil. Oak should not be used in the phytoremediation process of soils contaminated with high concentrations of trace elements in the soil, because a significant amount of heavy metals was accumulated in the leaves of oak causing a risk of recontamination. PMID:26368503

  20. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge.

    PubMed

    Placek, Agnieszka; Grobelak, Anna; Kacprzak, Malgorzata

    2016-01-01

    Sewage sludge, in particular from the food industry, is characterized by fertilizing properties, due to the high content of organic matter and nutrients. The application of sewage sludge causes an improvement of soil parameters as well as increase in cation exchange capacity, and thus stronger binding of cations in the soil environment, which involves the immobilization of nutrients and greater resistance to contamination. In a field experiment sewage sludge has been used as an additive to the soil supporting the phytoremediation process of land contaminated with heavy metals (Cd, Zn, and Pb) using trees species: Scots pine (Pinus silvestris L.), Norway spruce (Picea abies L.), and oak (Quercus robur L.). The aim of the research was to determine how the application of sewage sludge into the soil surface improves the phytoremediation process. The conducted field experiment demonstrated that selected trees like Scots pine and Norway spruce, because of its excellent adaptability, can be used in the remediation of soil. Oak should not be used in the phytoremediation process of soils contaminated with high concentrations of trace elements in the soil, because a significant amount of heavy metals was accumulated in the leaves of oak causing a risk of recontamination.

  1. Monash Chemical Yields Project (Monχey) - Element production in low- and intermediate-mass stars of metallicities Z = 0 to 0.04

    NASA Astrophysics Data System (ADS)

    Doherty, Carolyn Louise; Lattanzio, John; Angelou, George; Wattana Campbell, Simon; Church, Ross; Constantino, Thomas; Cristallo, Sergio; Gil-Pons, Pilar; Karakas, Amanda; Lugaro, Maria; Stancliffe, Richard James

    2015-08-01

    The Monχey project provides a large and homogeneous set of stellar yields for the low- and intermediate- mass stars and has applications particularly to galactic chemical evolution modelling.We present a detailed grid of stellar evolutionary models and corresponding nucleosynthetic yields for stars of initial mass 0.8 M⊙ up to the limit for core collapse supernova ≈ 10 M⊙. Our study covers a broad range of metallicities, ranging from the first, primordial stars (Z=0) to those of super-solar metallicity (Z=0.04). The models are evolved from the zero-age main-sequence until the end of the asymptotic giant branch (AGB) and the nucleosynthesis calculations include all elements from H to Bi.A major innovation of our work is the first complete grid of heavy element nucleosynthetic predictions for primordial AGB stars as well as the inclusion of extra-mixing processes (in this case thermohaline) during the red giant branch. We provide a broad overview of our results with implications for galactic chemical evolution as well as highlight interesting results such as heavy element production in dredge-out events of super-AGB stars.We briefly introduce our easy to use web-based database which provides the evolutionary tracks, structural properties, internal/surface nucleosynthetic compositions and stellar yields. Our web interface includes user- driven plotting capabilities with output available in a range of formats. Our nucleosynthetic results are available for further use in post processing calculations for dust production yields.

  2. Analyses of Essential Elements and Heavy Metals by Using ICP-MS in Maternal Breast Milk from Şanlıurfa, Turkey.

    PubMed

    Kılıç Altun, Serap; Dinç, Hikmet; Temamoğulları, Füsun Karaçal; Paksoy, Nilgün

    2018-01-01

    Maternal breast milk is a unique biological matrix that contains essential micronutrients. Potentially heavy metals may also affect infants' health and growth through maternal breast milk. The purpose of this study was to determine and compare the essential elements and heavy metals of maternal breast milk of nursery mothers residing in Şanlıurfa province, Turkey. Maternal breast milk concentrations of sodium, magnesium, phosphorus, potassium, calcium, iron, copper, zinc, arsenic, and lead were analyzed in a random sample of the first time in urban and suburban nursery Turkish mothers ( n : 42). Eight essential elements and two heavy metals were analyzed using ICP-MS after microwave digestion. For bivariate analyses of variables, we use nonparametric Spearman's correlation coefficient test. The mean concentrations of essential elements and heavy metals were as follows: sodium 330 ± 417 mg/L, magnesium 32.6 ± 15.5 mg/L, phosphorus 156 ± 46.2 mg/L, potassium 488 ± 146 mg/L, calcium 193 ± 53.2 mg/L, iron 1.65 ± 1.43 mg/L, copper 0.54 ± 0.46 mg/L, zinc 2.89 ± 3.23 mg/L, arsenic < 1  μ g/L, and lead < 1  μ g/L. Concentrations of heavy metals in maternal breast milk may have the important implication that it is not affected by environmental pollution in this province. This study provides reliable information about maternal breast milk concentrations of nursery mothers residing in Şanlıurfa, Turkey, and also compares the relations between essential elements and socioeconomic conditions, residing areas, and using copper equipment for food preparation of which some have not previously been reported.

  3. Analyses of Essential Elements and Heavy Metals by Using ICP-MS in Maternal Breast Milk from Şanlıurfa, Turkey

    PubMed Central

    2018-01-01

    Maternal breast milk is a unique biological matrix that contains essential micronutrients. Potentially heavy metals may also affect infants' health and growth through maternal breast milk. The purpose of this study was to determine and compare the essential elements and heavy metals of maternal breast milk of nursery mothers residing in Şanlıurfa province, Turkey. Maternal breast milk concentrations of sodium, magnesium, phosphorus, potassium, calcium, iron, copper, zinc, arsenic, and lead were analyzed in a random sample of the first time in urban and suburban nursery Turkish mothers (n: 42). Eight essential elements and two heavy metals were analyzed using ICP-MS after microwave digestion. For bivariate analyses of variables, we use nonparametric Spearman's correlation coefficient test. The mean concentrations of essential elements and heavy metals were as follows: sodium 330 ± 417 mg/L, magnesium 32.6 ± 15.5 mg/L, phosphorus 156 ± 46.2 mg/L, potassium 488 ± 146 mg/L, calcium 193 ± 53.2 mg/L, iron 1.65 ± 1.43 mg/L, copper 0.54 ± 0.46 mg/L, zinc 2.89 ± 3.23 mg/L, arsenic < 1 μg/L, and lead < 1 μg/L. Concentrations of heavy metals in maternal breast milk may have the important implication that it is not affected by environmental pollution in this province. This study provides reliable information about maternal breast milk concentrations of nursery mothers residing in Şanlıurfa, Turkey, and also compares the relations between essential elements and socioeconomic conditions, residing areas, and using copper equipment for food preparation of which some have not previously been reported. PMID:29849639

  4. Uptake of heavy metals by Typha capensis from wetland sites polluted by effluent from mineral processing plants: implications of metal-metal interactions.

    PubMed

    Zaranyika, M F; Nyati, W

    2017-10-01

    The aim of the present work was to demonstrate the existence of metal-metal interactions in plants and their implications for the absorption of toxic elements like Cr. Typha capensis , a good accumulator of heavy metals, was chosen for the study. Levels of Fe, Cr, Ni, Cd, Pb, Cu and Zn were determined in the soil and roots, rhizomes, stems and leaves of T. capensis from three Sites A, B and C polluted by effluent from a chrome ore processing plant, a gold ore processing plant, and a nickel ore processing plant, respectively. The levels of Cr were extremely high at Site A at 5415 and 786-16,047 μg g -1 dry weight in the soil and the plant, respectively, while the levels of Ni were high at Site C at 176 and 24-891 μg g -1 in the soil and the plant, respectively. The levels of Fe were high at all three sites at 2502-7500 and 906-13,833 μg g -1 in the soil and plant, respectively. For the rest of the metals, levels were modest at 8.5-148 and 2-264 μg g -1 in the soil and plant, respectively. Pearson's correlation analysis confirmed mutual synergistic metal-metal interactions in the uptake of Zn, Cu, Co, Ni, Fe, and Cr, which are attributed to the similarity in the radii and coordination geometry of the cations of these elements. The implications of such metal-metal interactions (or effects of one metal on the behaviour of another) on the uptake of Cr, a toxic element, and possible Cr detoxification mechanism within the plant, are discussed.

  5. Biogeochemical zonation of sulfur during the discharge of groundwater to lake in desert plateau (Dakebo Lake, NW China).

    PubMed

    Su, Xiaosi; Cui, Geng; Wang, Huang; Dai, Zhenxue; Woo, Nam-Chil; Yuan, Wenzhen

    2018-06-01

    As one of the important elements of controlling the redox system within the hyporheic and hypolentic zone, sulfur is involved in a series of complex biogeochemical processes such as carbon cycle, water acidification, formation of iron and manganese minerals, redox processes of trace metal elements and a series of important ecological processes. Previous studies on biogeochemistry of the hyporheic and hypolentic zones mostly concentrated on nutrients of nitrogen and phosphorus, heavy metals and other pollutants. Systematic study of biogeochemical behavior of sulfur and its main controlling factors within the lake hypolentic zone is very urgent and important. In this paper, a typical desert plateau lake, Dakebo Lake in northwestern China, was taken for example within which redox zonation and biogeochemical characteristics of sulfur affected by hydrodynamic conditions were studied based on not only traditional hydrochemical analysis, but also environmental isotope evidence. In the lake hypolentic zone of the study area, due to the different hydrodynamic conditions, vertical profile of sulfur species and environmental parameters differ at the two sites of the lake (western side and center). Reduction of sulfate, deposition and oxidation of sulfide, dissolution and precipitation of sulfur-bearing minerals occurred are responded well to Eh, dissolved oxygen, pH, organic carbon and microorganism according to which the lake hypolentic zone can be divided into reduced zone containing H 2 S, reduced zone containing no H 2 S, transition zone and oxidized zone. The results of this study provide valuable insights for understanding sulfur conversion processes and sulfur biogeochemical zonation within a lake hypolentic zone in an extreme plateau arid environment and for protecting the lake-wetland ecosystem in arid and semiarid regions.

  6. A comprehensive analysis of the content of heavy rare-earth elements and platinum in snow samples to assess the ecological hazard of air pollution in urban areas

    NASA Astrophysics Data System (ADS)

    Vinokurov, S. F.; Tarasova, N. P.; Trunova, A. N.; Sychkova, V. A.

    2017-07-01

    Snow samples from the territory of the Setun River Valley Wildlife Sanctuary are analyzed for the content of rare-earth elements, heavy metals, and other hazardous elements by the inductively coupled plasma mass-spectrometry method. The changes in the concentrations of rare-earth elements, Pt, Pd, and indicator ratios of elements in the solid fractions of snow are revealed. A trend toward a decrease in the content of several elements northeastward of the Moscow Ring Road (MRR) is established. The level of seasonal atmospheric contamination of the area under study is assessed, and a possible source is identified.

  7. VizieR Online Data Catalog: Behavior of heavy elements in H-He-Z mixtures (Soubiran+, 2016)

    NASA Astrophysics Data System (ADS)

    Soubiran, F.; Militzer, B.

    2016-11-01

    The core-accretion model for giant planet formation suggests a two-layer picture for the initial structure of Jovian planets, with heavy elements in a dense core and a thick H-He envelope. Late planetesimal accretion and core erosion could potentially enrich the H-He envelope in heavy elements, which is supported by the threefold solar metallicity that was measured in Jupiter's atmosphere by the Galileo entry probe. In order to reproduce the observed gravitational moments of Jupiter and Saturn, models for their interiors include heavy elements, Z, in various proportions. However, their effect on the equation of state of the hydrogen-helium mixtures has not been investigated beyond the ideal mixing approximation. In this article, we report results from ab initio simulations of fully interacting H-He-Z mixtures in order to characterize their equation of state and to analyze possible consequences for the interior structure and evolution of giant planets. Considering C, N, O, Si, Fe, MgO, and SiO2, we show that the behavior of heavy elements in H-He mixtures may still be represented by an ideal mixture if the effective volumes and internal energies are chosen appropriately. In the case of oxygen, we also compute the effect on the entropy. We find the resulting changes in the temperature-pressure profile to be small. A homogeneous distribution of 2% oxygen by mass changes the temperature in Jupiter's interior by only 80K. (3 data files).

  8. ACT Payload Shroud Structural Concept Analysis and Optimization

    NASA Technical Reports Server (NTRS)

    Zalewski, Bart B.; Bednarcyk, Brett A.

    2010-01-01

    Aerospace structural applications demand a weight efficient design to perform in a cost effective manner. This is particularly true for launch vehicle structures, where weight is the dominant design driver. The design process typically requires many iterations to ensure that a satisfactory minimum weight has been obtained. Although metallic structures can be weight efficient, composite structures can provide additional weight savings due to their lower density and additional design flexibility. This work presents structural analysis and weight optimization of a composite payload shroud for NASA s Ares V heavy lift vehicle. Two concepts, which were previously determined to be efficient for such a structure are evaluated: a hat stiffened/corrugated panel and a fiber reinforced foam sandwich panel. A composite structural optimization code, HyperSizer, is used to optimize the panel geometry, composite material ply orientations, and sandwich core material. HyperSizer enables an efficient evaluation of thousands of potential designs versus multiple strength and stability-based failure criteria across multiple load cases. HyperSizer sizing process uses a global finite element model to obtain element forces, which are statistically processed to arrive at panel-level design-to loads. These loads are then used to analyze each candidate panel design. A near optimum design is selected as the one with the lowest weight that also provides all positive margins of safety. The stiffness of each newly sized panel or beam component is taken into account in the subsequent finite element analysis. Iteration of analysis/optimization is performed to ensure a converged design. Sizing results for the hat stiffened panel concept and the fiber reinforced foam sandwich concept are presented.

  9. Accumulation and fractionation of rare earth elements (REEs) in the naturally grown Phytolacca americana L. in southern China.

    PubMed

    Yuan, Ming; Liu, Chang; Liu, Wen-Shen; Guo, Mei-Na; Morel, Jean Louis; Huot, Hermine; Yu, Hong-Jie; Tang, Ye-Tao; Qiu, Rong-Liang

    2018-04-16

    The widespread use of rare earth elements (REEs) has resulted in problems for soil and human health. Phytolacca americana L. is a herbaceous plant widely distributed in Dingnan county of Jiangxi province, China, which is a REE mining region (ion absorption rare earth mine) and the soil has high levels of REEs. An investigation of REE content of P. americana growing naturally in Dingnan county was conducted. REE concentrations in the roots, stems, and leaves of P. americana and in their rhizospheric soils were determined. Results showed that plant REEs concentrations varied among the sampling sites and can reach 1040 mg/kg in the leaves. Plant REEs concentrations decreased in the order of leaf > root > stem and all tissues were characterized by a light REE enrichment and a heavy REE depletion. However, P. americana exhibited preferential accumulation of light REEs during the absorption process (from soil to root) and preferential accumulation of heavy REEs during the translocation process (from stem to leaf). The ability of P. americana to accumulate high REEs in the shoot makes it a potential candidate for understanding the absorption mechanisms of REEs and for the phytoremediation of REEs contaminated soil.

  10. Exploring the Chemical Composition and Double Horizontal Branch of the Bulge Globular Cluster NGC 6569

    NASA Astrophysics Data System (ADS)

    Johnson, Christian I.; Rich, R. Michael; Caldwell, Nelson; Mateo, Mario; Bailey, John I., III; Olszewski, Edward W.; Walker, Matthew G.

    2018-02-01

    Photometric and spectroscopic analyses have shown that the Galactic bulge cluster Terzan 5 hosts several populations with different metallicities and ages that manifest as a double red horizontal branch (HB). A recent investigation of the massive bulge cluster NGC 6569 revealed a similar, though less extended, HB luminosity split, but little is known about the cluster’s detailed chemical composition. Therefore, we have used high-resolution spectra from the Magellan–M2FS and VLT–FLAMES spectrographs to investigate the chemical compositions and radial velocity distributions of red giant branch and HB stars in NGC 6569. We found the cluster to have a mean heliocentric radial velocity of ‑48.8 km s‑1 (σ = 5.3 km s‑1 148 stars) and < [{Fe}/{{H}}]> =-0.87 dex (19 stars), but the cluster’s 0.05 dex [Fe/H] dispersion precludes a significant metallicity spread. NGC 6569 exhibits light- and heavy-element distributions that are common among old bulge/inner Galaxy globular clusters, including clear (anti)correlations between [O/Fe], [Na/Fe], and [Al/Fe]. The light-element data suggest that NGC 6569 may be composed of at least two distinct populations, and the cluster’s low < [{La}/{Eu}]> =-0.11 dex indicates significant pollution with r-process material. We confirm that both HBs contain cluster members, but metallicity and light-element variations are largely ruled out as sources for the luminosity difference. However, He mass fraction differences as small as ΔY ∼ 0.02 cannot be ruled out and may be sufficient to reproduce the double HB.

  11. $$B^0_{(s)}$$-mixing matrix elements from lattice QCD for the Standard Model and beyond

    DOE PAGES

    Bazavov, A.; Bernard, C.; Bouchard, C. M.; ...

    2016-06-28

    We calculate—for the first time in three-flavor lattice QCD—the hadronic matrix elements of all five local operators that contribute to neutral B 0- and B s-meson mixing in and beyond the Standard Model. We present a complete error budget for each matrix element and also provide the full set of correlations among the matrix elements. We also present the corresponding bag parameters and their correlations, as well as specific combinations of the mixing matrix elements that enter the expression for the neutral B-meson width difference. We obtain the most precise determination to date of the SU(3)-breaking ratio ξ=1.206(18)(6), where themore » second error stems from the omission of charm-sea quarks, while the first encompasses all other uncertainties. The threefold reduction in total uncertainty, relative to the 2013 Flavor Lattice Averaging Group results, tightens the constraint from B mixing on the Cabibbo-Kobayashi-Maskawa (CKM) unitarity triangle. Our calculation employs gauge-field ensembles generated by the MILC Collaboration with four lattice spacings and pion masses close to the physical value. We use the asqtad-improved staggered action for the light-valence quarks and the Fermilab method for the bottom quark. We use heavy-light meson chiral perturbation theory modified to include lattice-spacing effects to extrapolate the five matrix elements to the physical point. We combine our results with experimental measurements of the neutral B-meson oscillation frequencies to determine the CKM matrix elements |V td| = 8.00(34)(8)×10 -3, |V ts| = 39.0(1.2)(0.4)×10 -3, and |V td/V ts| = 0.2052(31)(10), which differ from CKM-unitarity expectations by about 2σ. In addition, these results and others from flavor-changing-neutral currents point towards an emerging tension between weak processes that are mediated at the loop and tree levels.« less

  12. Lauryl Amine as heavy metal collector of boiler ash from pulp and paper mill waste

    NASA Astrophysics Data System (ADS)

    Sembiring, M. P.; Kaban, J.; Bangun, N.; Saputra, E.

    2018-04-01

    Theincreasing of demand of pulp and paper products, will following with the growing the pulp and paper industryand generate significant mill waste. The total waste reached 1/3 of the amount raw materials used and ash boiler is the waste with the largest percentage of 52%. For that it takes effort to manage the existing waste. The boiler ash contained the chemical elements, it can be utilized such as fertilizer, because it also contains transition metals in form of heavy metal such as Cadmium (Cd), Cobalt (Co), Chrome (Cr), Cupprum (Cu), Ferrum (Fe), Nickel (Ni), and Zinc (Zn), the use of boiler ash must follow the threshold specified by the Government. Several studies have been undertaken to reduce and extract heavy metals from ash and sand of the boiler by using carbon dioxide as its ligand. Eelectrochemical method was used to remove and recovery of heavy metals from the incenerator. This study focused on removal of heavy metals using Lauryl Amine as collector and three solvents namely Dichloromethane, Ethanol and n-Hexane. The treatmentswas able to extract the heavy metal and generally reduce the heavy metal content of ash boiler pulp and paper mill waste. The combination treatment used toreduce the heavy metal content of 5 gram Lauryl Amine collector in Dichloromethane solvent for 4 hours process time.

  13. High-time resolution measurements of solar wind heavy ions with SOHO/CELIAS/CTOF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janitzek, N. P., E-mail: janitzek@physik.uni-kiel.de; Taut, A.; Berger, L.

    2016-03-25

    The Charge Time-Of-Flight (CTOF) mass spectrometer as part of the Charge, ELement and Isotope Analysis System (CELIAS) onboard the SOlar and Heliospheric Observatory (SOHO) is designed to measure the kinetic properties and elemental/ionic composition of solar wind ions heavier than protons, which we refer to as heavy ions. This is achieved by the combined measurements of the energy-per-charge, the time-of-flight and the energy of incident ions. The CTOF instrument combines a remarkable time-of-flight resolution with a large effective area and a high measurement cadence. This allows to determine the Velocity Distribution Functions (VDFs) of a wide range of heavy ionsmore » with 5-minute time resolution which ensures that the complete VDF is measured under nearly identical solar wind and magnetic field conditions. For the measurement period between Day Of Year (DOY) 150 and 220 in 1996, which covers a large part of the instrument’s short life time, we analyzed VDFs of solar wind iron Fe{sup 8+}, Fe{sup 9+} and Fe{sup 10+} for differential streaming relative to the solar wind proton speed measured simultaneously with the CELIAS Proton Monitor (PM). We find an increasing differential streaming with increasing solar wind proton speed for all investigated ions up to ion-proton velocity differences of 30 - 50 km s{sup −1} at proton velocities of 500 km s{sup −1}, which is contradictory to an earlier CTOF study by [7]. We believe this difference is because in this study we used raw Pulse Height Analysis (PHA) data with a significantly increased mass and mass-per-charge resolution compared to the earlier used onboard preprocessed data.« less

  14. Abundances of sulfur in the Milky Way Disk from Peimbert Type II planetary nebulae

    NASA Astrophysics Data System (ADS)

    Milingo, Jacquelynne Brenda

    2000-08-01

    Sulfur abundance gradients and heavy element ratios for the Milky Way Disk are constructed based upon newly acquired spectrophotometry of Type II planetary nebulae (PN). These spectra extend from 3600-9600 angstroms allowing us to use the [SIII] 9069 and 9532 angstrom lines to improve upon earlier sulfur abundance estimates. Considering a significant portion of sulfur in PN exists in the S(+2) ionization stage (and higher) this method should allow us to extrapolate more reliable total element abundance from ionic abundances. Given the progenitor mass and location of Type II PN (close to the Galactic disk), this sample of objects is free of nucleosynthetic self-contamination and thus their S abundances in particular are expected to reflect levels of these elements in the interstellar medium at the time of PN progenitor formation. These sulfur abundances provide constraints for studying various aspects of GCE such as massive star yields and the distribution of S across the Milky Way disk.

  15. Fine particulate matter (PM2.5) in a compost facility: heavy metal contaminations and health risk assessment, Tehran, Iran.

    PubMed

    Kermani, Majid; Farzadkia, Mahdi; Kalantari, Roshanak Rezaei; Bahmani, Zohreh

    2018-06-01

    The aim of this study was to evaluate the concentration of PM 2.5 particles, potential sources, and determination of health risk assessment of heavy metals in various parts of composting facilities of Tehran's Kahrizak. A total of 60 PM 2.5 particle samples were collected every 3 days from January to March 2016. To analyze the heavy metals, inductively coupled plasma atomic emission spectroscopy (ICP-AES) was applied. SEM-EDX analysis indicated that metals of Al, Si, Mg, Na, Au, S, Ca, K, and Co were dominant in the structure of particles. The concentration of PM 2.5 was found to be the highest in the final processing site (c), followed by primary processing site (a) and the aerated site (b). The mean concentrations of Al and Fe in all sampling sites of a, b, and c were 7.46 ± 2.73, 1.48 ± 0.59, 24.30 ± 8.23 μg/m 3 and 4.97 ± 2.83, 1.33 ± 0.48, 16.48 ± 7.36, respectively. The enrichment factor order of the trace elements was as follows: Cd > As > Pb > Zn > Cu > V > Cr > Ni > Mn > Fe > Al, with the highest EF value exceeding 10,000 for Cd at the a site. For all sampling sites in composting facilities, the cancer risk was more than > 1 × 10 -4 as posed by the total of five carcinogenic metals (Pb, Cr, As, Ni, and Cd), indicating that risk factors were not negligible.

  16. Human Peripheral Blood Antibodies with Long HCDR3s Are Established Primarily at Original Recombination Using a Limited Subset of Germline Genes

    PubMed Central

    Briney, Bryan S.; Willis, Jordan R.; Crowe, James E.

    2012-01-01

    A number of antibodies that efficiently neutralize microbial targets contain long heavy chain complementarity determining region 3 (HCDR3) loops. For HIV, several of the most broad and potently neutralizing antibodies have exceptionally long HCDR3s. Two broad potently neutralizing HIV-specific antibodies, PG9 and PG16, exhibit secondary structure. Two other long HCDR3 antibodies, 2F5 and 4E10, protect against mucosal challenge with SHIV. Induction of such long HCDR3 antibodies may be critical to the design of an effective vaccine strategy for HIV and other pathogens, however it is unclear at present how to induce such antibodies. Here, we present genetic evidence that human peripheral blood antibodies containing long HCDR3s are not primarily generated by insertions introduced during the somatic hypermutation process. Instead, they are typically formed by processes occurring as part of the original recombination event. Thus, the response of B cells encoding antibodies with long HCDR3s results from selection of unusual clones from the naïve repertoire rather than through accumulation of insertions. These antibodies typically use a small subset of D and J gene segments that are particularly suited to encoding long HCDR3s, resulting in the incorporation of highly conserved genetic elements in the majority of antibody sequences encoding long HCDR3s. PMID:22590602

  17. TESTING THE ROLE OF SNe Ia FOR GALACTIC CHEMICAL EVOLUTION OF p-NUCLEI WITH TWO-DIMENSIONAL MODELS AND WITH s-PROCESS SEEDS AT DIFFERENT METALLICITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travaglio, C.; Gallino, R.; Rauscher, T.

    2015-01-20

    The bulk of p isotopes is created in the ''gamma processes'' mainly by sequences of photodisintegrations and beta decays in explosive conditions in Type Ia supernovae (SNIa) or in core collapse supernovae (ccSN). The contribution of different stellar sources to the observed distribution of p-nuclei in the solar system is still under debate. We explore single degenerate Type Ia supernovae in the framework of two-dimensional SNIa delayed-detonation explosion models. Travaglio et al. discussed the sensitivity of p-nuclei production to different SNIa models, i.e., delayed detonations of different strength, deflagrations, and the dependence on selected s-process seed distributions. Here we present amore » detailed study of p-process nucleosynthesis occurring in SNIa with s-process seeds at different metallicities. Based on the delayed-detonation model DDT-a of TRV11, we analyze the dependence of p-nucleosynthesis on the s-seed distribution obtained from different strengths of the {sup 13}C pocket. We also demonstrate that {sup 208}Pb seed alone changes the p-nuclei production considerably. The heavy-s seeds (140 ≤A < 208) contribute with about 30%-40% to the total light-p nuclei production up to {sup 132}Ba (with the exception of {sup 94}Mo and {sup 130}Ba, to which the heavy-s seeds contribute with about 15% only). Using a Galactic chemical evolution code from Travaglio et al., we study the contribution of SNIa to the solar stable p-nuclei. We find that explosions of Chandrasekhar-mass single degenerate systems produce a large amount of p-nuclei in our Galaxy, both in the range of light (A ≤ 120) and heavy p-nuclei, at almost flat average production factors (within a factor of about three). We discussed in details p-isotopes such as {sup 94}Mo with a behavior diverging from the average, which we attribute to uncertainties in the nuclear data or in SNIa modeling. Li et al. find that about 70% of all SNeIa are normal events. If these are explained in the framework of explosions of Chandrasekhar-mass white dwarfs resulting from the single-degenerate progenitor channel, we find that they are responsible for at least 50% of the p-nuclei abundances in the solar system.« less

  18. Creation of half-metallic f -orbital Dirac fermion with superlight elements in orbital-designed molecular lattice

    NASA Astrophysics Data System (ADS)

    Cui, Bin; Huang, Bing; Li, Chong; Zhang, Xiaoming; Jin, Kyung-Hwan; Zhang, Lizhi; Jiang, Wei; Liu, Desheng; Liu, Feng

    2017-08-01

    Magnetism in solids generally originates from the localized d or f orbitals that are hosted by heavy transition-metal elements. Here, we demonstrate a mechanism for designing a half-metallic f -orbital Dirac fermion from superlight s p elements. Combining first-principles and model calculations, we show that bare and flat-band-sandwiched (FBS) Dirac bands can be created when C20 molecules are deposited into a two-dimensional hexagonal lattice, which are composed of f -molecular orbitals (MOs) derived from s p -atomic orbitals (AOs). Furthermore, charge doping of the FBS Dirac bands induces spontaneous spin polarization, converting the system into a half-metallic Dirac state. Based on this discovery, a model of a spin field effect transistor is proposed to generate and transport 100% spin-polarized carriers. Our finding illustrates a concept to realize exotic quantum states by manipulating MOs, instead of AOs, in orbital-designed molecular crystal lattices.

  19. Arbuscular Mycorrhizal Fungi Can Benefit Heavy Metal Tolerance and Phytoremediation

    ERIC Educational Resources Information Center

    Forgy, David

    2012-01-01

    Sites contaminated by heavy metals, such as industrial waste sites, create unwelcoming environments for plant growth. Heavy metals can have a wide range of toxic effects such as replacing essential elements or disrupting enzyme function. While some heavy metals are essential to plant nutrition at low concentrations, high concentrations of any…

  20. Prospects of heavy and superheavy element production via inelastic nucleus-nucleus collisions - from 238U+238U to18O+254Es

    NASA Astrophysics Data System (ADS)

    Schädel, Matthias

    2016-12-01

    Multi-nucleon transfer reactions, frequently termed deep-inelastic, between heavy-ion projectiles and actinide targets provide prospects to synthesize unknown isotopes of heavy actinides and superheavy elements with neutron numbers beyond present limits. The 238U on 238U reaction, which revealed essential aspects of those nuclear reactions leading to surviving heavy nuclides, mainly produced in 3n and 4n evaporation channels, is discussed in detail. Positions and widths of isotope distributions are compared. It is shown, as a general rule, that cross sections peak at irradiation energies about 10% above the Coulomb barrier. Heavy target nuclei are essential for maximizing cross sections. Experimental results from the 238U on 248Cm reaction, including empirical extrapolations, are compared with theoretical model calculations predicting relatively high cross sections for neutron-rich nuclei. Experiments to test the validity of such predictions are proposed. Comparisons between rather symmetric heavy-ion reactions like 238U on 248Cm (or heavier targets up to 254Es) with very asymmetric ones like 18O on 254Es reveal that the ones with 238U as a projectile have the highest potential in the superheavy element region while the latter ones can be advantageous for the synthesis of heavy actinide isotopes. Concepts for highly efficient recoil separators designed for transfer products are presented.

  1. Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants?

    PubMed

    Schröder, Peter; Lyubenova, Lyudmila; Huber, Christian

    2009-11-01

    Mixed pollution with trace elements and organic industrial compounds is characteristic for many spill areas and dumping sites. The danger for the environment and human health from such sites is large, and sustainable remediation strategies are urgently needed. Phytoremediation seems to be a cheap and environmentally sound option for the removal of unwanted compounds, and the hyperaccumulation of trace elements and toxic metals is seemingly independent from the metabolism of organic xenobiotics. However, stress reactions, ROS formation and depletion of antioxidants will also cause alterations in xenobiotic detoxification. Here, we investigate the capability of plants to detoxify chlorophenols via glutathione conjugation in a mixed pollution situation. Typha latifolia and Phragmites australis plants for the present study were grown under greenhouse conditions in experimental ponds. A Picea abies L. suspension culture was grown in a growth chamber. Cadmium sulphate, sodium arsenate and lead chloride in concentrations from 10 to 500 microM were administered to plants. Enzymes of interest for the present study were: glutathione transferase (GST), glutathione reductase, ascorbate peroxidase and peroxidase. Measurements were performed according to published methods. GST spectrophotometric assays included the model substrates CDNB, DCNB, NBC, NBoC and the herbicide Fluorodifen. Heavy metals lead to visible stress symptoms in higher plants. Besides one long-term experiment of 72 days duration, the present study shows time and concentration-dependent plant alterations already after 24 and 72 h Cd incubation. P. abies spruce cell cultures react to CdSO(4) and Na(2)HAsO(4) with an oxidative burst, similar to that observed after pathogen attack or elicitor treatment. Cd application resulted in a reduction in GSH and GSSG contents. When a heavy metal mixture containing Na(2)HAsO(4), CdSO(4) and PbCl(2) was applied to cultures, both GSH and GSSG levels declined. Incubation with 80 microM arsenic alone doubled GSSG values. Based on these results, further experiments were performed in whole plants of cattail and reed, using cadmium in Phragmites and cadmium and arsenic in Typha as inducers of stress. In Phragmites australis, GST activities for CDNB and DCNB were significantly reduced after short-term Cd exposure (24 h). In the same samples, all antioxidant enzymes increased with rising heavy metal concentrations. Typha latifolia rhizome incubation with Cd and As leads to an increase in glutathione reductase and total peroxidase activity and to a decrease in ascorbate peroxidase activity. Measurements of the same enzymes in leaves of the same plants show increased GR activities, but no change in peroxidases. GST conjugation for CDNB was depressed in both cattail rhizomes and leaves treated with Cd. After As application increased, DCNB enzyme activities were detected. T. latifolia and P. australis are powerful species for phytoremediation because they penetrate a large volume of soil with their extensive root and rhizome systems. However, an effective remediation process will depend on active detoxifying enzymes, and also on the availability of conjugation partners, e.g. glutathione and its analogues. Species-specific differences seem to exist between the regulations of primary defence enzymes like SOD, catalase, peroxidases, whereas others prefer to induce the glutathione-dependent enzymes. As long as the pollutant mix encountered is simple and dominated by heavy metals, plant defence might be sufficient. When pollution plumes contain heavy metals and organic xenobiotics at the same time, this means that part of the detoxification capacity, at least of glutathione-conjugating reactions, is withdrawn from the heavy metal front to serve other purposes. In fact, glutathione S-transferases show strong reactions in stressed plants or in the presence of heavy metals. The spruce cell culture was a perfect model system to study short-term responses on heavy metal impact. Overall, and on the canopy level, this inhibitory effect might result in a lower detoxification capacity for organic pollutants and thus interfere with phytoremediation. We present evidence that pollution with heavy metals will interfere with both the oxidative stress defence in plants, and with their ability to conjugate organic xenobiotics. Despite plant-species-dependent differences, the general reactions seem to include oxidative stress and an induction of antioxidative enzymes. Several processes seem to depend on direct binding of heavy metals to enzyme proteins, but effects on transcription are also observed. Induction of xenobiotic metabolism will be obtained at high heavy metal concentrations, when plant stress is elevated. Plants for phytoremediation of complex pollution mixtures have to be selected according to three major issues: uptake/accumulation capacity, antioxidative stress management, and detoxification/binding properties for both the trace elements and the organic xenobiotics. By way of this, it might be possible to speed up the desired remediation process and/or to obtain the desired end products. And, amongst the end products, emphasis should be laid on industrial building materials, biomass for insulation or biogas production, but not for feed and fodder. Each of these attempts would increase the chances for publicly accepted use of phytoremediation and help to cure the environment.

  2. Fluorine Variations in the Globular Cluster NGC 6656 (M22): Implications for Internal Enrichment Timescales

    NASA Astrophysics Data System (ADS)

    D'Orazi, Valentina; Lucatello, Sara; Lugaro, Maria; Gratton, Raffaele G.; Angelou, George; Bragaglia, Angela; Carretta, Eugenio; Alves-Brito, Alan; Ivans, Inese I.; Masseron, Thomas; Mucciarelli, Alessio

    2013-01-01

    Observed chemical (anti)correlations in proton-capture elements among globular cluster stars are presently recognized as the signature of self-enrichment from now extinct, previous generations of stars. This defines the multiple population scenario. Since fluorine is also affected by proton captures, determining its abundance in globular clusters provides new and complementary clues regarding the nature of these previous generations and supplies strong observational constraints to the chemical enrichment timescales. In this paper, we present our results on near-infrared CRIRES spectroscopic observations of six cool giant stars in NGC 6656 (M22): the main objective is to derive the F content and its internal variation in this peculiar cluster, which exhibits significant changes in both light- and heavy-element abundances. Across our sample, we detected F variations beyond the measurement uncertainties and found that the F abundances are positively correlated with O and anticorrelated with Na, as expected according to the multiple population framework. Furthermore, our observations reveal an increase in the F content between the two different sub-groups, s-process rich and s-process poor, hosted within M22. The comparison with theoretical models suggests that asymptotic giant stars with masses between 4 and 5 M ⊙ are responsible for the observed chemical pattern, confirming evidence from previous works: the difference in age between the two sub-components in M22 must be not larger than a few hundred Myr. Based on observations taken with ESO telescopes under program 087.0319(A).

  3. Radionuclides: Accumulation and Transport in Plants.

    PubMed

    Gupta, D K; Chatterjee, S; Datta, S; Voronina, A V; Walther, C

    Application of radioactive elements or radionuclides for anthropogenic use is a widespread phenomenon nowadays. Radionuclides undergo radioactive decays releasing ionizing radiation like gamma ray(s) and/or alpha or beta particles that can displace electrons in the living matter (like in DNA) and disturb its function. Radionuclides are highly hazardous pollutants of considerable impact on the environment, food chain and human health. Cleaning up of the contaminated environment through plants is a promising technology where the rhizosphere may play an important role. Plants belonging to the families of Brassicaceae, Papilionaceae, Caryophyllaceae, Poaceae, and Asteraceae are most important in this respect and offer the largest potential for heavy metal phytoremediation. Plants like Lactuca sativa L., Silybum marianum Gaertn., Centaurea cyanus L., Carthamus tinctorius L., Helianthus annuus and H. tuberosus are also important plants for heavy metal phytoremediation. However, transfer factors (TF) of radionuclide from soil/water to plant ([Radionuclide]plant/[Radionuclide]soil) vary widely in different plants. Rhizosphere, rhizobacteria and varied metal transporters like NRAMP, ZIP families CDF, ATPases (HMAs) family like P1B-ATPases, are involved in the radio-phytoremediation processes. This review will discuss recent advancements and potential application of plants for radionuclide removal from the environment.

  4. Geochemical maps showing the distribution and abundance of selected elements in nonmagnetic heavy-mineral-concentrate samples from stream sediment, Solomon and Bendelehen 1 degree by 3 degree Quadrangles , Seward Peninsula, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, H.D.; Smith, S.C.; Sutley, S.J.

    Geochemical maps showing the distribution and abundance of selected elements in nonmagnetic heavy-mineral-concentrate samples from stream sediment, Solomon and Bendelehen 1{degree} by 3{degree} Quadrangles , Seward Peninsula, Alaska is presented.

  5. [Standard sample preparation method for quick determination of trace elements in plastic].

    PubMed

    Yao, Wen-Qing; Zong, Rui-Long; Zhu, Yong-Fa

    2011-08-01

    Reference sample was prepared by masterbatch method, containing heavy metals with known concentration of electronic information products (plastic), the repeatability and precision were determined, and reference sample preparation procedures were established. X-Ray fluorescence spectroscopy (XRF) analysis method was used to determine the repeatability and uncertainty in the analysis of the sample of heavy metals and bromine element. The working curve and the metrical methods for the reference sample were carried out. The results showed that the use of the method in the 200-2000 mg x kg(-1) concentration range for Hg, Pb, Cr and Br elements, and in the 20-200 mg x kg(-1) range for Cd elements, exhibited a very good linear relationship, and the repeatability of analysis methods for six times is good. In testing the circuit board ICB288G and ICB288 from the Mitsubishi Heavy Industry Company, results agreed with the recommended values.

  6. [Determination of heavy metals in four traditional Chinese medicines by ICP-MS].

    PubMed

    Wen, Hui-Min; Chen, Xiao-Hui; Dong, Ting-Xia; Zhan, Hua-Qiang; Bi, Kai-Shun

    2006-08-01

    To establish a ICP-MS method for the determination of heavy metals, including As, Hg, Pb, Cd, in four traditional Chinese medicines. The samples were digested by closed-versel microwave. The four heavy metals were directly analyzed by ICP-MS. Select internal standard element in for the method by which the analyse signal drife is corrected by the signal of another element (internal standard elements) added to both the standard solution and sample. For all of the analyzed heary methals, the correlative coefficient of the calibration curves was over 0.999 2. The recovery rates of the procedure were 97.5%-108.0%, and its RSD was lower than 11.6%. This method was convenient, quick-acquired, accurate and highly sensitive. The method can be used for the quality control of trace elements in traditional Chinese medicines and for the contents determination of traditional Chinese medicines from different habitats and species.

  7. Numerical Simulation of Ballistic Impact of Layered Aluminum Nitride Ceramic

    DTIC Science & Technology

    2015-09-01

    tile(s) Aluminum nitride (AlN) 163 a Polymer layers Polyurethane foam 18 b Backing metal Aluminum 6061-T6 (Al) 23 c Projectile Tungsten heavy alloy...larger (a factor of 3.8) than the most dense polyurethane foam of the available constitutive models. Default options for element failure were imposed in...AlN), a polycrystalline ceramic. The total thickness of the tile(s) is 38.1 mm in all cases. A thin polyurethane laminate separates neighboring tiles

  8. Galactic Abundance Patterns via Peimbert Types I & II Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Milingo, J. B.; Barnes, K. L.; Kwitter, K. B.; Souza, S. P.; Henry, R. B. C.; Skinner, J. N.

    2005-12-01

    Planetary Nebulae (PNe) are well known fonts of information about both stellar evolution and galactic chemical evolution. Abundance patterns in PNe are used to note signatures and constraints of nuclear processing, and as tracers of the distribution of metals throughout galaxies. In this poster abundance gradients and heavy element ratios are presented based upon newly acquired spectrophotometry of a sample of Galactic Peimbert Type I PNe. This new data set is extracted from spectra that extend from λ 3600 - 9600Å allowing the use of [S III] features at λ 9069 and 9532Å. Since a significant portion of S in PNe resides in S+2 and higher ionization stages, including these features improves the extrapolation from observed ion abundances to total element abundance. An alternate metallicity tracer, Sulfur is precluded from enhancement and depletion across the range of PNe progenitor masses. Its stability in intermediate mass stars makes it a useful tool to probe the natal conditions as well as the evolution of PNe progenitors. This is a continuation of our Type II PNe work, the impetus being to compile a relatively large set of line strengths and abundances with internally consistent observation, reduction, calibration, and abundance determination, minimizing systematic affects that come from compiling various data sets. This research is supported by the AAS Small Research Grants program, the Franklin & Marshall Committee on Grants, and NSF grant AST-0307118.

  9. A Search for Thorne-Zytkow Objects

    NASA Astrophysics Data System (ADS)

    Levesque, Emily M.; Massey, P.; Morrell, N.; Zytkow, A.

    2014-01-01

    Thorne-Zytkow objects (TZOs) are a theoretical class of star in which a compact neutron star is surrounded by a large, diffuse envelope. Supergiant TZOs are predicted to be almost identical in appearance to red supergiants (RSGs), with their very red colors and cool temperatures placing them at the Hayashi limit on the H-R diagram. The best features that can be used at present to distinguish TZOs from the general RSG population are the unusually strong heavy-element lines present in their spectra. These elements are the unique products of the star's fully convective envelope linking the photosphere with the extraordinarily hot burning region in the vicinity of the neutron star core. The positive detection of a TZO would provide the first direct evidence for a completely new model of stellar interiors, a theoretically predicted fate for massive binary systems, and never-before-seen nucleosynthesis processes that would offer a new channel for heavy-element production in our universe. We recently conducted a high-resolution spectroscopic search for TZOs within our previously-studied samples of RSGs in the Milky Way and Magellanic Clouds. Did we find any? We'll know soon! Come to this talk and find out!

  10. Marital Histories and Heavy Alcohol Use Among Older Adults

    PubMed Central

    Reczek, Corinne; Pudrovska, Tetyana; Carr, Deborah; Umberson, Debra; Thomeer, Mieke Beth

    2015-01-01

    We develop a gendered marital biography approach—which emphasizes the accumulating gendered experiences of singlehood, marriage, marital dissolution, and remarriage—to examine the relationship between marital statuses and transitions and heavy alcohol use. We test this approach using individual-level (N=10,457) and couple-level (N=2,170) longitudinal data from the Health and Retirement Study (HRS), and individual-level (N=46) and couple-level (N=42) in-depth interview data. Quantitative results show that marriage, including remarriage, reduces men’s but increases women’s drinking relative to being never-married and previously married, whereas divorce increases men’s but decrease women’s drinking, with some variation by age. Our qualitative findings reveal that social control and convergence processes underlie quantitative results. We call attention to how men’s and women’s heavy drinking trajectories stop, start, and change direction as individuals move through their distinctive marital biography. PMID:26957135

  11. Coercivity enhancement of sintered Nd-Fe-B magnets by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Qiushuang; Guo, Shuai; Yang, Xiao; Zeng, Jiling; Cao, Xuejing; Chen, Renjie; Yan, Aru

    2018-05-01

    The chemical bath deposition (CBD) method is used to diffuse the heavy rare earth element in order to obtain the high coercivity magnets with low heavy rare earth element. The jet mill powders are soaked in the alcohol suspension of Dy(CH3CHOHCH3)3 (Dy-ipa) so that Nd2Fe14B powder particles are surrounded by Dy-ipa homogeneously. By adding 1.0 wt. % Dy, the coercivity of magnet is increased from 14.47 kOe to 17.55 kOe with slight reduction of remanence after grain boundary diffusion (GBD) in the sintering and annealing processes. The temperature coefficient of coercivity optimizes from -0.629 %/°C to -0.605 %/°C as well as that of remanence improves from -0.108 %/°C to -0.100 %/°C. The CBD method is helpful for thermal stability and alignment either. The relation between the microstructure and the coercivity has been studied systematically.

  12. Lead, platinum and other heavy elements in the primary cosmic radiation: HEAO-3 results

    NASA Technical Reports Server (NTRS)

    Waddington, C. J.; Binns, W. R.; Brewster, N. R.; Fixsen, D. J.; Garrard, T. L.; Israel, M. H.; Klarmann, J.; Newport, B. J.; Stone, E. C.

    1986-01-01

    An observation of the abundances of cosmic-ray lead and platinum-group nuclei using data from the HEAO-3 Heavy Nuclei Experiment (HNE) which consisted of ion chambers mounted on both sides of a plastic Cherenkov counter (Binns et al., 1981) is reported. Further analysis with more stringent selections, inclusion of additional data, and a calibration at the LBL Bevalac, have allowed the determination of the abundance ratio of lead and the platinum group of elements for particles that had a cutoff rigidity R(c) 5 GV. The observed ratio for Pb/Pt is distinctly lower than that predicted by any of the standard models for cosmic ray sources. It is possible that the difference is not an indication that the cosmic ray source composition is greatly different from that of the solar system, but rather that there is less Pb in the solar system and in the r-process than is assumed in the standard models.

  13. Adsorption of oils, heavy metals and dyes by recovered carbon powder from spent pot liner of aluminum smelter plant.

    PubMed

    Mazumder, B; Devi, Sasmita Rani

    2008-07-01

    Aluminum smelter plants employ Hall-Heroult electrolysis cells for electrolysis of molten cryolite to recover aluminum metal by electrolysis. These cells use carbon cathode blocks as a lining material inside. At the end of service life of the cells, pot lines are discarded and new carbon blocks are laid for fresh charging. These used carbon cathode blocks, known as spent pot liners, are heavily infested with toxic elements such as fluoride, cyanide, alkali, etc. Therefore, their disposal in open field poses great environmental risk. A simple process has been developed for decontamination of these spent pot liners and to recover its carbon value. The experiments indicated that this carbon, in the form of fine powder (around 20 micron in size) can absorb toxic elements like heavy metals, dyes, oils, etc. to a great extent and thus can be used for mitigating environmental pollution occuring due to various toxic wastes.

  14. Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soils.

    PubMed

    Wang, Zhongwen; Shan, Xiao-Quan; Zhang, Shuzhen

    2002-03-01

    Rhizosphere is a microbiosphere and has quite different chemical, physical and biological properties from bulk soils. A greenhouse experiment was performed to compare the difference of fractionation and bioavailability of trace elements Cr, Ni, Zn, Cu, Pb and Cd between rhizosphere soil and bulk soil. In the meantime, the influence of air-drying on the fractionation and bioavailability was also investigated by using wet soil sample as a control. Soils in a homemade rhizobox were divided into four zones: rhizosphere, near rhizosphere, near bulk soil and bulk soil zones, which was designated as S1, S2, S3 and S4. Elemental speciations were fractionated to water soluble, exchangeable and carbonate bound (B1), Fe-Mn oxide bound (B2), and organic and sulfide bound (B3) by a sequential extraction procedure. Speciation differences were observed for elements Cr, Ni, Zn, Cu, Pb and Cd between the rhizosphere and bulk soils, and between the air-dried and wet soils as well. The concentrations of all six heavy metals in fraction B1 followed the order of S2 > S3 > S1 > S4 and for B2, the order was S2 > S3 S4 > S1. For B3, the order was S1 > S3 S4 > S2, while for Cd the order was S2 > S3 approximately/= S4 > S1. The air-drying increased elemental concentration in fractions B1 and B2 by 20-50% and decreased in fraction B3 by about 20-100%. Correlation analysis also indicated that the bioavailability correlation coefficient of fraction B1 in rhizosphere wet soil to plants was better than that between either air-dried or nonrhizosphere soils. Therefore, application of rhizosphere wet soils should be recommended in the future study on the speciation analysis of trace elements in soils and bioavailability.

  15. Heavy Rare Earth Elements Affect Sphaerechinus granularis Sea Urchin Early Life Stages by Multiple Toxicity Endpoints.

    PubMed

    Gravina, Maria; Pagano, Giovanni; Oral, Rahime; Guida, Marco; Toscanesi, Maria; Siciliano, Antonietta; Di Nunzio, Aldo; Burić, Petra; Lyons, Daniel M; Thomas, Philippe J; Trifuoggi, Marco

    2018-05-01

    Heavy rare earth elements (HREEs) were tested for adverse effects to early life stages of the sea urchin Sphaerechinus granularis. Embryos were exposed to analytically measured HREE concentrations ranging from 10 -7 to 10 -5  M. No significant developmental defect (DD) increases were observed in embryos exposed to 10 -7  M HREEs, whereas 10 -5  M HREEs resulted in significant DD increase up to 96% for HoCl 3 versus 14% in controls. Embryos exposed to 10 -6  M HREEs showed the highest DD frequency in embryos exposed to 10 -6  M DyCl 3 and HoCl 3 . Cytogenetic analysis of HREE-exposed embryos revealed a significant decrease in mitotic activity, with increased mitotic aberrations. When S. granularis sperm were exposed to HREEs, the offspring of sperm exposed to 10 -5  M GdCl 3 and LuCl 3 showed significant DD increases. The results warrant investigations on HREEs in other test systems, and on REE-containing complex mixtures.

  16. Prospects of A and Z identification experiments at LBNL

    NASA Astrophysics Data System (ADS)

    Gates, Jacklyn M.

    2016-12-01

    The identification of six new elements within the last 15 years and with proton numbers, Z = 113-118 has transformed the heavy element field. However, one key piece of information on these nuclei remains unmeasured: their proton and mass numbers, A. At Lawrence Berkeley National Laboratory, the heavy element group has undertaken a program to study these new elements to perform experiments aimed at measuring the Z and A.Here, an overview of recent experiments aimed towards identifying the Z of SHE, and the prospects for Z and A identification experiments at LBNL are presented.

  17. Temperature and Gravity Dependence of Trace Element Abundances in Hot DA White Dwarfs (94-EUVE-094)

    NASA Technical Reports Server (NTRS)

    Finley, David S.

    1998-01-01

    EUV spectroscopy has shown that DA white dwarfs hotter than about 45,000 K may contain trace heavy elements, while those hotter than about 50,000 K almost always have significant abundances of trace heavy elements. One of our continuing challenges is to identify and determine the abundances of these trace constituents, and then to relate the observed abundance patterns to the present conditions and previous evolutionary histories of the hot DA white dwarfs.

  18. Biologically mediated isotope fractionations - Biochemistry, geochemical significance and preservation in the earth's oldest sediments

    NASA Technical Reports Server (NTRS)

    Schidlowski, M.

    1983-01-01

    Preferential metabolization of isotopically light carbon and sulfur has resulted in a fractionation of the stable isotopes of these elements on a global scale, with the light species (C-12, S-32) markedly concentrated in biogenic materials. Since the biological effects are basically retained when carbon and sulfur are incorporated in sediments, the respective fractionations are propagated into the rock section of the geochemical cycle, this having consequently caused a characteristic bipartition of both elements between 'light' and 'heavy' crustal reservoirs. Preservation of the biological isotope effects in sedimentary rocks makes it possible to trace the underlying biochemical processes back over most of the geological record. According to the available evidence, biological (autotrophic) carbon fixation arose prior to 3.5(if not 3.8) billion years ago, while the emergence of dissimilatory sulfate reduction antedates the appearance of the oldest presumably bacteriogenic sulfur isotope patterns in rocks between 2.7 and 2.8 billion years old. Hence, biological control of the terrestrial carbon and sulfur cycles has been established very early in the earth's history.

  19. High-resolution spectroscopy of the extremely iron-poor post-AGB star CC Lyr

    NASA Astrophysics Data System (ADS)

    Aoki, Wako; Matsuno, Tadafumi; Honda, Satoshi; Parthasarathy, Mudumba; Li, Haining; Suda, Takuma

    2017-04-01

    High-resolution optical spectroscopy was conducted for the metal-poor post-AGB star CC Lyr to determine its chemical abundances and spectral line profiles. Our standard abundance analysis confirms its extremely low metallicity ([Fe/H] < -3.5) and a clear correlation between abundance ratios and the condensation temperature for 11 elements, indicating that dust depletion is the cause of the abundance anomaly of this object. The very low abundances of Sr and Ba, which are detected for the first time for this object, suggest that heavy neutron-capture elements are not significantly enhanced in this object by the s-process during its evolution through the AGB phase. The radial velocity of this object and profiles of some atomic absorption lines show variations depending on pulsation phases, which could be formed by dynamics of the atmosphere rather than by binarity or contributions of circumstellar absorption. On the other hand, the Hα emission with double peaks shows no evident velocity shift, suggesting that the emission is originating from the circumstellar matter, presumably the rotating disk around the object.

  20. A history of violence: Insights into post-accretionary heating in carbonaceous chondrites from volatile element abundances, Zn isotopes and water contents

    NASA Astrophysics Data System (ADS)

    Mahan, Brandon; Moynier, Frédéric; Beck, Pierre; Pringle, Emily A.; Siebert, Julien

    2018-01-01

    Carbonaceous chondrites (CCs) may have been the carriers of water, volatile and moderately volatile elements to Earth. Investigating the abundances of these elements, their relative volatility, and isotopes of state-change tracer elements such as Zn, and linking these observations to water contents, provide vital information on the processes that govern the abundances and isotopic signatures of these species in CCs and other planetary bodies. Here we report Zn isotopic data for 28 CCs (20 CM, 6 CR, 1 C2-ung, and 1 CV3), as well as trace element data for Zn, In, Sn, Tl, Pb, and Bi in 16 samples (8 CM, 6 CR, 1 C2-ung, and 1 CV3), that display a range of elemental abundances from case-normative to intensely depleted. We use these data, water content data from literature and Zn isotopes to investigate volatile depletions and to discern between closed and open system heating. Trace element data have been used to construct relative volatility scales among the elements for the CM and CR chondrites. From least volatile to most, the scale in CM chondrites is Pb-Sn-Bi-In-Zn-Tl, and for CR chondrites it is Tl-Zn-Sn-Pb-Bi-In. These observations suggest that heated CM and CR chondrites underwent volatile loss under different conditions to one another and to that of the solar nebula, e.g. differing oxygen fugacities. Furthermore, the most water and volatile depleted samples are highly enriched in the heavy isotopes of Zn. Taken together, these lines of evidence strongly indicate that heated CM and CR chondrites incurred open system heating, stripping them of water and volatiles concomitantly, during post-accretionary shock impact(s).

  1. Open Heavy Flavor and Quarkonia Results at RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nouicer, Rachid

    RHIC experiments carry out a comprehensive physics program which studies open heavy flavor and quarkonium production in relativistic heavy-ion collisions. The discovery at RHIC of large high-pT suppression and flow of electrons from heavy quarks flavors have altered our view of the hot and dense matter formed in central Au + Au collisions at √S NN = 200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. In recent years, the RHIC experiments upgraded the detectors; (1) PHENIX Collaboration installed silicon vertex tracker (VTX) at mid-rapidity region and forward silicon vertexmore » tracker (FVTX) at the forward rapidity region, and (2) STAR Collaboration installed the heavy flavor tracker (HFT) and the muon telescope detector (MTD) both at the mid-rapidity region. With these new upgrades, both experiments have collected large data samples. These new detectors enhance the capability of heavy flavor measurements via precision tracking. The PHENIX experiments established measurements of ψ(1S) and ψ(2S) production as a function of system size, p + p, p + Al, p + Au, and 3He + Au collisions at √S NN = 200 GeV. In p/ 3He + A collisions at forward rapidity, we observe no difference in the ψ(2S)/ψ(1S) ratio relative to p + p collisions. At backward rapidity, where the comoving particle density is higher, we find that the ψ(2S) is preferentially suppressed by a factor of two. STAR Collaboration presents the first J/ψ and Υ measurements in the di-muon decay channel in Au + Au collisions at GeV at mid-rapidity at RHIC. Here, we observe clear J/ψ RAA suppression and qualitatively well described by transport models simultaneously accounting for dissociation and regeneration processes.« less

  2. Open Heavy Flavor and Quarkonia Results at RHIC

    DOE PAGES

    Nouicer, Rachid

    2017-12-05

    RHIC experiments carry out a comprehensive physics program which studies open heavy flavor and quarkonium production in relativistic heavy-ion collisions. The discovery at RHIC of large high-pT suppression and flow of electrons from heavy quarks flavors have altered our view of the hot and dense matter formed in central Au + Au collisions at √S NN = 200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. In recent years, the RHIC experiments upgraded the detectors; (1) PHENIX Collaboration installed silicon vertex tracker (VTX) at mid-rapidity region and forward silicon vertexmore » tracker (FVTX) at the forward rapidity region, and (2) STAR Collaboration installed the heavy flavor tracker (HFT) and the muon telescope detector (MTD) both at the mid-rapidity region. With these new upgrades, both experiments have collected large data samples. These new detectors enhance the capability of heavy flavor measurements via precision tracking. The PHENIX experiments established measurements of ψ(1S) and ψ(2S) production as a function of system size, p + p, p + Al, p + Au, and 3He + Au collisions at √S NN = 200 GeV. In p/ 3He + A collisions at forward rapidity, we observe no difference in the ψ(2S)/ψ(1S) ratio relative to p + p collisions. At backward rapidity, where the comoving particle density is higher, we find that the ψ(2S) is preferentially suppressed by a factor of two. STAR Collaboration presents the first J/ψ and Υ measurements in the di-muon decay channel in Au + Au collisions at GeV at mid-rapidity at RHIC. Here, we observe clear J/ψ RAA suppression and qualitatively well described by transport models simultaneously accounting for dissociation and regeneration processes.« less

  3. Supernova neutrinos and explosive nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Mathews, G. J.; Nakamura, K.; Shibagaki, S.; Suzuki, T.

    2014-05-01

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes 7Li, 11B, 92Nb, 138La and 180Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ13, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements 11B and 7Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ13, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  4. Chemical Cartography. I. A Carbonicity Map of the Galactic Halo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Young Sun; Kim, Young Kwang; Beers, Timothy C.

    We present the first map of carbonicity, [C/Fe], for the halo system of the Milky Way, based on a sample of over 100,000 main-sequence turnoff stars with available spectroscopy from the Sloan Digital Sky Survey. This map, which explores distances up to 15 kpc from the Sun, reveals clear evidence for the dual nature of the Galactic halo, based on the spatial distribution of stellar carbonicity. The metallicity distribution functions of stars in the inner- and outer-halo regions of the carbonicity map reproduce those previously argued to arise from contributions of the inner- and outer-halo populations, with peaks at [Fe/H]more » = −1.5 and −2.2, respectively. From consideration of the absolute carbon abundances for our sample, A (C), we also confirm that the carbon-enhanced metal-poor (CEMP) stars in the outer-halo region exhibit a higher frequency of CEMP-no stars (those with no overabundances of heavy neutron-capture elements) than of CEMP- s stars (those with strong overabundances of elements associated with the s -process), whereas the stars in the inner-halo region exhibit a higher frequency of CEMP- s stars. We argue that the contrast in the behavior of the CEMP-no and CEMP- s fractions in these regions arises from differences in the mass distributions of the mini-halos from which the stars of the inner- and outer-halo populations formed, which gives rise in turn to the observed dichotomy of the Galactic halo.« less

  5. Uptake of heavy metals and arsenic in black soldier fly (Hermetia illucens) larvae grown on seaweed-enriched media.

    PubMed

    Biancarosa, Irene; Liland, Nina S; Biemans, Daan; Araujo, Pedro; Bruckner, Christian G; Waagbø, Rune; Torstensen, Bente E; Lock, Erik-Jan; Amlund, Heidi

    2018-04-01

    The black soldier fly (Hermetia illucens) is one of the most promising insect species for use in animal feed. However, studies investigating feed and food safety aspects of using black soldier fly as feed are scarce. In this study, we fed black soldier fly larvae feeding media enriched with seaweed, which contains naturally high concentrations of heavy metals and arsenic. The aim of this study was to investigate the potential transfer of such undesirable substances from the feeding media to the larvae. The larvae accumulated cadmium, lead, mercury and arsenic. Concentrations of these elements in the larvae increased when more seaweed was added to the feeding media. The highest retention was seen for cadmium (up to 93%) and the lowest for total arsenic (up to 22%). When seaweed inclusion exceeded 20% in the media, this resulted in larval concentrations of cadmium and total arsenic above the current European Union maximum levels for these elements in complete feed. Our results confirm that insect larvae can accumulate heavy metals and arsenic when present in the feeding media. A broader understanding of the occurrence of these undesirable substances in processed larvae products is needed to assess feed and food safety. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Changes in the contents of strontium, barium, and lead in scales of bream Abramis brama from the Mozhaisk Reservoir over a quarter century.

    PubMed

    Saltykova, E A; Pelgunova, L A; Sokolova, E L; Skomorokhov, M O; Demidova, T B; Golubtsov, A S

    2016-03-01

    The heavy metal contents in the scales of bream (Abramis brama) from the Mozhaisk Reservoir collected in the second half of the 1980s were compared to the current values. The concentrations of three out of the seven elements studied in the bream scales have changed severalfold during the past quarter century: that of strontium has decreased, and those of barium and lead have increased. Short-term variations of heavy metal contents have proved to be smaller than the observed long-term differences. There is grounds to believe that these long-term differences adequately reflect the changes that have occurred in the water body.

  7. Ion-Scale Excitations in a Strongly Coupled Astrophysical Plasma with Nuclei of Heavy Elements

    NASA Astrophysics Data System (ADS)

    Hossen, M. R.; Ema, S. A.; Mamun, A. A.

    2017-12-01

    The linear and nonlinear propagation of ultrarelativistic and nonrelativistic analysis on modified ion-acoustic (MIA) waves in a strongly coupled unmagnetized collisionless relativistic space plasma system is carried out. Plasma system is assumed to contain strongly coupled nonrelativistic ion fluids, both nonrelativistic and ultrarelativistic degenerate electron and positron fluids, and positively charged static heavy elements. The restoring force is provided by the degenerate pressure of the electron and positron fluids, whereas the inertia is provided by the mass of ions. The positively charged static heavy elements participate only in maintaining the quasineutrality condition at equilibrium. The well-known reductive perturbation method is used to derive the Burgers and Korteweg-de Vries equations. Their shock and solitary wave solutions are numerically analyzed to understand the localized electrostatic disturbances. The basic characteristics of MIA shock and solitary waves are found to be significantly modified by the effects of degenerate pressures of electron, positron, and ion fluids, their number densities, and various charge state of heavy elements. The implications of our results to dense plasmas in compact astrophysical objects (e.g., nonrotating white dwarfs, neutron stars, etc.) are briefly discussed.

  8. Leaching characteristics of encapsulated controlled low-strength materials containing arsenic-bearing waste precipitates from refractory gold bioleaching.

    PubMed

    Bouzalakos, S; Dudeney, A W L; Chan, B K C

    2016-07-01

    We report on the leaching of heavy elements from cemented waste flowable fill, known as controlled low-strength materials (CLSM), for potential mine backfill application. Semi-dynamic tank leaching tests were carried out on laboratory-scale monoliths cured for 28 days and tested over 64 days of leaching with pure de-ionised water as leachant. Mineral processing waste include flotation tailings from a Spanish nickel-copper sulphide concentrate, and two bioleach neutralisation precipitates (from processing at 35°C and 70°C) from a South African arsenopyrite concentrate. Encapsulated CLSM formulations were evaluated to assess the reduction in leaching by encapsulating a 'hazardous' CLSM core within a layer of relatively 'inert' CLSM. The effect of each bioleach waste in CLSM core and tailings in CLSM encapsulating medium, are assessed in combination and in addition to CLSM with ordinary silica sand. Results show that replacing silica sand with tailings, both as core and encapsulating matrix, significantly reduced leachability of heavy elements, particularly As (from 0.008-0.190 mg/l to 0.008-0.060 mg/l), Ba (from 0.435-1.540 mg/l to 0.050-0.565 mg/l), and Cr (from 0.006-0.458 mg/l to 0.004-0.229 mg/l), to below the 'Dutch List' of groundwater contamination intervention values. Arsenic leaching was inherently high from both bioleach precipitates but was significantly reduced to below guideline values with encapsulation and replacing silica sand with tailings. Tailings proved to be a valuable encapsulating matrix largely owing to small particle size and lower hydraulic conductivity reducing diffusion transport of heavy elements. Field-scale trials would be necessary to prove this concept of encapsulation in terms of scale and construction practicalities, and further geochemical investigation to optimise leaching performance. Nevertheless, this work substantiates the need for alternative backfill techniques for sustainable management of hazardous finely-sized bulk mineral residues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Ion Chemistry in Atmospheric and Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Dalgarno, A.; Fox, J. L.

    1994-01-01

    There are many differences and also remarkable similarities between the ion chemistry and physics of planetary ionospheres and the ion chemistry and physics of astronomical environments beyond the solar system. In the early Universe, an expanded cooling gas of hydrogen and helium was embedded in the cosmic background radiation field and ionized by it. As the Universe cooled by adiabatic expansion, recombination occurred and molecular formation was driven by catalytic reactions involving the relict electrons and protons. Similar chemical processes are effective in the ionized zones of gaseous and planetary nebulae and in stellar winds where the ionization is due to radiation from the central stars, in the envelopes of supernovae where the ionization is initiated by the deposition of gamma-rays, in dissociative shocks where the ionization arises from electron impacts in a hot gas and in quasar broad-line region clouds where the quasar is responsible for the ionization. At high altitudes in the atmospheres of the Jovian planets, the main constituents are hydrogen and helium and the ion chemistry and physics is determined by the same processes, the source of the ionization being solar ultraviolet radiation and cosmic rays. After the collapse of the first distinct astronomical entities to emerge from the uniform flow, heavy elements were created by nuclear burning in the cores of the collapsed objects and distributed throughout the Universe by winds and explosions. The chemistry and physics became more complicated. Over 90 distinct molecular species have been identified in interstellar clouds where they are ionized globally by cosmic ray impacts and locally by radiation and shocks associated with star formation and evolution. Complex molecules have also been found in circumstellar shells of evolved stars. At intermediate and low altitudes in the Jovian atmospheres, the ion chemistry is complicated by the increasing abundance of heavy elements such as carbon, and an extensive array of complex molecules has been predicted. Reactions involving heavy elements dominate the structure of the ionspheres of the terrestrial planets and the satellites Titan and Triton.

  10. Solar Twins and the Barium Puzzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Arumalla B. S.; Lambert, David L., E-mail: bala@astro.as.utexas.edu

    Several abundance analyses of Galactic open clusters (OCs) have shown a tendency for Ba but not for other heavy elements (La−Sm) to increase sharply with decreasing age such that Ba was claimed to reach [Ba/Fe] ≃ +0.6 in the youngest clusters (ages < 100 Myr) rising from [Ba/Fe] = 0.00 dex in solar-age clusters. Within the formulation of the s -process, the difficulty to replicate higher Ba abundance and normal La−Sm abundances in young clusters is known as the barium puzzle. Here, we investigate the barium puzzle using extremely high-resolution and high signal-to-noise spectra of 24 solar twins and measuredmore » the heavy elements Ba, La, Ce, Nd, and Sm with a precision of 0.03 dex. We demonstrate that the enhanced Ba ii relative to La−Sm seen among solar twins, stellar associations, and OCs at young ages (<100 Myr) is unrelated to aspects of stellar nucleosynthesis but has resulted from overestimation of Ba by standard methods of LTE abundance analysis in which the microturbulence derived from the Fe lines formed deep in the photosphere is insufficient to represent the true line broadening imposed on Ba ii lines by the upper photospheric layers from where the Ba ii lines emerge. Because the young stars have relatively active photospheres, Ba overabundances most likely result from the adoption of a too low value of microturbulence in the spectrum synthesis of the strong Ba ii lines but the change of microturbulence in the upper photosphere has only a minor affect on La−Sm abundances measured from the weak lines.« less

  11. Solar Twins and the Barium Puzzle

    NASA Astrophysics Data System (ADS)

    Reddy, Arumalla B. S.; Lambert, David L.

    2017-08-01

    Several abundance analyses of Galactic open clusters (OCs) have shown a tendency for Ba but not for other heavy elements (La-Sm) to increase sharply with decreasing age such that Ba was claimed to reach [Ba/Fe] ≃ +0.6 in the youngest clusters (ages < 100 Myr) rising from [Ba/Fe] = 0.00 dex in solar-age clusters. Within the formulation of the s-process, the difficulty to replicate higher Ba abundance and normal La-Sm abundances in young clusters is known as the barium puzzle. Here, we investigate the barium puzzle using extremely high-resolution and high signal-to-noise spectra of 24 solar twins and measured the heavy elements Ba, La, Ce, Nd, and Sm with a precision of 0.03 dex. We demonstrate that the enhanced Ba II relative to La-Sm seen among solar twins, stellar associations, and OCs at young ages (<100 Myr) is unrelated to aspects of stellar nucleosynthesis but has resulted from overestimation of Ba by standard methods of LTE abundance analysis in which the microturbulence derived from the Fe lines formed deep in the photosphere is insufficient to represent the true line broadening imposed on Ba II lines by the upper photospheric layers from where the Ba II lines emerge. Because the young stars have relatively active photospheres, Ba overabundances most likely result from the adoption of a too low value of microturbulence in the spectrum synthesis of the strong Ba II lines but the change of microturbulence in the upper photosphere has only a minor affect on La-Sm abundances measured from the weak lines.

  12. Spectroscopic abundance analyses of the 3He stars HD 185330 and 3 Cen A

    NASA Astrophysics Data System (ADS)

    Sadakane, Kozo; Nishimura, Masayoshi

    2018-06-01

    Abundances of 21 elements in two 3He stars, HD 185330 and 3 Cen A, have been analysed relative to the well-studied sharp-lined B3 V star ι Her. Six elements (P, Ti, Mn, Fe, Ni, and Br) are over-abundant in these two peculiar stars, while six elements (C, O, Mg, Al, S, and Cl) are under-abundant. Absorption lines of the two rarely observed heavy elements Br II and Kr II are detected in both stars and these elements are both over-abundant. The centroid wavelengths of the Ca II infrared triplet lines in these stars are redshifted relative to those lines in ι Her and the presence of heavy isotopes of Ca (mass number 44-46) in these two stars is confirmed. In spite of these similarities, there are several remarkable differences in abundance pattern between these two stars. N is under-abundant in HD 185330, as in many Hg-Mn stars, while it is significantly over-abundant in 3 Cen A. P and Ga are both over-abundant in 3 Cen A, while only P is over-abundant and no trace of absorption line of Ga II can be found in HD 185330. Large over-abundances of Kr and Xe are found in both stars, while the abundance ratio Kr/Xe is significantly different between them (-1.4 dex in HD 185330 and +1.2 dex in 3 Cen A). Some physical explanations are needed to account for these qualitative differences.

  13. FIP effect for minor heavy solar wind ions as seen with SOHO/CELIAS/MTOF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidrich-Meisner, Verena, E-mail: heidrich@physik.uni-kiel.de; Berger, Lars; Wimmer-Schweingruber, Robert F.

    A recent paper [Shearer et al., 2014] reported that during solar maximum Ne showed a surprisingly low abundance. This leads to the question whether other elements show the same behavior. The good mass resolution of Mass-Time-Of-Flight (MTOF) as part of the Charge ELement and Isotope Analysis System (CELIAS) on the Solar Helioshperic Observatory (SOHO) allows to investigate the composition of heavy minor elements in different types of solar wind. We restrict this study to slow solar wind, where the characterisation of slow solar wind is taken from Xu and Borovsky, 2014. This classification scheme requires magnet field information. Since SOHOmore » does not carry a magnetometer, we use the Magnetometer (MAG) of the Advanced Composition Explorer (ACE) instead. The Solar Wind Ion Composition Spectrometer (ACE/SWICS) also provides composition data for cross-calibration and charge-state distributions as input for the transmission function of MTOF whenever the two spacecraft can be expected to observe the same type of wind. We illustrate the MTOF’s capability to determine the solar wind abundance compared to the photospheric abundance (called the FIP ratio in the following) for rare elements like Ti or Cr on long-time scales as a proof of concept for our analysis. And in this brief study, measurements with both ACE/SWICS indicate that the observed elements exhibit a (weak) dependence on the solar cycle, whereas the MTOF measurements are inconclusive.« less

  14. Spectroscopic abundance analyses of the 3He stars HD 185330 and 3 Cen A

    NASA Astrophysics Data System (ADS)

    Sadakane, Kozo; Nishimura, Masayoshi

    2018-04-01

    Abundances of 21 elements in two 3He stars, HD 185330 and 3 Cen A, have been analysed relative to the well-studied sharp-lined B3 V star ι Her. Six elements (P, Ti, Mn, Fe, Ni, and Br) are over-abundant in these two peculiar stars, while six elements (C, O, Mg, Al, S, and Cl) are under-abundant. Absorption lines of the two rarely observed heavy elements Br II and Kr II are detected in both stars and these elements are both over-abundant. The centroid wavelengths of the Ca II infrared triplet lines in these stars are redshifted relative to those lines in ι Her and the presence of heavy isotopes of Ca (mass number 44-46) in these two stars is confirmed. In spite of these similarities, there are several remarkable differences in abundance pattern between these two stars. N is under-abundant in HD 185330, as in many Hg-Mn stars, while it is significantly over-abundant in 3 Cen A. P and Ga are both over-abundant in 3 Cen A, while only P is over-abundant and no trace of absorption line of Ga II can be found in HD 185330. Large over-abundances of Kr and Xe are found in both stars, while the abundance ratio Kr/Xe is significantly different between them (-1.4 dex in HD 185330 and +1.2 dex in 3 Cen A). Some physical explanations are needed to account for these qualitative differences.

  15. Do stellar and nebular abundances in the Cocoon nebula agree?

    NASA Astrophysics Data System (ADS)

    García-Rojas, J.; Simón-Díaz, S.; Esteban, C.

    2015-05-01

    The Cocoon nebula is an apparently spherical Galactic HII region ionized by a single star (BD+46 3474). This nebula seems to be appropriate to investigate the chemical behavior of oxygen and other heavy elements from two different points of view: a detailed analysis of the chemical content of the ionized gas through nebular spectrophotometry and a detailed spectroscopic analysis of the spectrum of the ionizing star using the state-of-the-art stellar atmosphere modelling. In this poster we present the results from a set of high-quality observations, from 2m-4m class telescopes, including the optical spectrum of the ionizing star BD+46 3474, along with long-slit spatially resolved spectroscopy of the nebula. We have used state-of-the-art stellar atmosphere codes to determine stellar parameters and the chemical content of several heavy elements. Traditional nebular techniques along with updated atomic data have been used to compute gaseous abundances of O, N and S in the Cocoon nebula. Thanks to the low ionization degree of the nebula, we could determine total abundances directly from observable ions (no ionization correction factors were needed) for three of the analyzed elements (O, S, and N). The derived stellar and nebular abundances are compared and the influence of the possible presence of the so-called temperature fluctuations on the nebula is discussed. The results of this study are presented in more detail in García-Rojas, Simón-Díaz & Esteban 2014, A&A, 571, A93.

  16. Spatial Distribution, Sources Apportionment and Health Risk of Metals in Topsoil in Beijing, China.

    PubMed

    Sun, Chunyuan; Zhao, Wenji; Zhang, Qianzhong; Yu, Xue; Zheng, Xiaoxia; Zhao, Jiayin; Lv, Ming

    2016-07-20

    In order to acquire the pollution feature and regularities of distribution of metals in the topsoil within the sixth ring road in Beijing, a total of 46 soil samples were collected, and the concentrations of twelve elements (Nickel, Ni, Lithium, Li, Vanadium, V, Cobalt, Co, Barium, Ba, Strontium, Sr, Chrome, Cr, Molybdenum, Mo, Copper, Cu, Cadmium, Cd, Zinc, Zn, Lead, Pb) were analyzed. Geostatistics and multivariate statistics were conducted to identify spatial distribution characteristics and sources. In addition, the health risk of the analyzed heavy metals to humans (adult) was evaluated by an U.S. Environmental Protection Agency health risk assessment model. The results indicate that these metals have notable variation in spatial scale. The concentration of Cr was high in the west and low in the east, while that of Mo was high in the north and low in the south. High concentrations of Cu, Cd, Zn, and Pb were found in the central part of the city. The average enrichment degree of Cd is 5.94, reaching the standard of significant enrichment. The accumulation of Cr, Mo, Cu, Cd, Zn, and Pb is influenced by anthropogenic activity, including vehicle exhaustion, coal burning, and industrial processes. Health risk assessment shows that both non-carcinogenic and carcinogenic risks of selected heavy metals are within the safety standard and the rank of the carcinogenic risk of the four heavy metals is Cr > Co > Ni > Cd.

  17. Spatial Distribution, Sources Apportionment and Health Risk of Metals in Topsoil in Beijing, China

    PubMed Central

    Sun, Chunyuan; Zhao, Wenji; Zhang, Qianzhong; Yu, Xue; Zheng, Xiaoxia; Zhao, Jiayin; Lv, Ming

    2016-01-01

    In order to acquire the pollution feature and regularities of distribution of metals in the topsoil within the sixth ring road in Beijing, a total of 46 soil samples were collected, and the concentrations of twelve elements (Nickel, Ni, Lithium, Li, Vanadium, V, Cobalt, Co, Barium, Ba, Strontium, Sr, Chrome, Cr, Molybdenum, Mo, Copper, Cu, Cadmium, Cd, Zinc, Zn, Lead, Pb) were analyzed. Geostatistics and multivariate statistics were conducted to identify spatial distribution characteristics and sources. In addition, the health risk of the analyzed heavy metals to humans (adult) was evaluated by an U.S. Environmental Protection Agency health risk assessment model. The results indicate that these metals have notable variation in spatial scale. The concentration of Cr was high in the west and low in the east, while that of Mo was high in the north and low in the south. High concentrations of Cu, Cd, Zn, and Pb were found in the central part of the city. The average enrichment degree of Cd is 5.94, reaching the standard of significant enrichment. The accumulation of Cr, Mo, Cu, Cd, Zn, and Pb is influenced by anthropogenic activity, including vehicle exhaustion, coal burning, and industrial processes. Health risk assessment shows that both non-carcinogenic and carcinogenic risks of selected heavy metals are within the safety standard and the rank of the carcinogenic risk of the four heavy metals is Cr > Co > Ni > Cd. PMID:27447657

  18. Hazard potential of widespread but hidden historic offshore heavy metal (Pb, Zn) contamination (Gulf of Cadiz, Spain).

    PubMed

    Hanebuth, Till J J; King, Mary Lee; Mendes, Isabel; Lebreiro, Susana; Lobo, Francisco J; Oberle, Ferdinand K; Antón, Laura; Ferreira, Paulo Alves; Reguera, Maria Isabel

    2018-05-10

    Natural and human-induced seabed sediment disturbances affect wide areas of the global coastal ocean. These recurrent to chronic disturbances mobilize significant amounts of material, including substances that have the potential to significantly harm the environment once re-released. This very challenging issue is difficult to deal with if sub-surface contaminant concentrations are unknown. Based on the analysis of 11 new, up to 5-m long sediment cores taken offshore in the Gulf of Cadiz, the contamination history (using the trace elements lead and zinc) is well documented over major parts of the gulf. Ore mining and metal processing industries on the southwestern Iberian Peninsula started five thousand years ago and experienced a first peak during the Roman Period, which can be detected over the entire gulf. The Industrial Era added a massive, shelf-wide heavy metal excursion of unprecedented dimension. This metal contamination to the coastal ocean decreased in the 1990s and appears to be today limited to larger areas off the Tinto/Odiel and Guadiana River mouths. The unforeseen, significant finding of this study is that the gulf-wide, peak heavy metal concentration, stemming from the Industrial Era, is widely overlain by a modern sediment veneer just thick enough to cover the contaminant horizon, but thin enough to have this layer within the reach of natural or human-induced sediment mobilization events. Published by Elsevier B.V.

  19. Effect of heavy metals on nitrification activity as measured by RNA- and DNA-based function-specific assays

    EPA Science Inventory

    Heavy metals can inhibit nitrification, a key process for nitrogen removal in wastewater treatment. The transcriptional responses of functional genes (amoA, hao, nirK and norB) were measured in conjunction with specific oxygen uptake rate (sOUR) for nitrifying enrichment cultures...

  20. [History of heavy metal pollution from tidal flat in Haizhou Bay].

    PubMed

    Zhang, Rui; Zhang, Fan; Liu, Fu-Cheng; Yin, Fu-Jun; Ding, Ying-Jun; Gao, Jin-Rong; Chen, Jing; Shao, Wei

    2013-03-01

    Coastal zone could be considered as an important sink of regional source to sink and preserve historical records of environmental evolution. Four sediment cores, collected from tidal flat at Haizhou Bay near Lianyungang City, were examined for concentrations of heavy metals including Cd, Cr, Cu, Mn, Pb and Zn in core sediments to investigate the historical input of trace metals. In addition, sediment rates of cores LH3 and LH4 were determined based on radionuclide 210Pb. The results showed that grain size control effect was not the main factor that influenced the distribution of heavy metals. Heavy metals concentrations in the surface sediments were higher than these regional background values. Furthermore, Al element as a proxy of grain size was selected for normalization and calculation of metal enrichment factor (EF) and anthropogenic heavy metal fluxes. The results revealed that heavy metals in tidal flats were continuously enriched in the past decades, meanwhile, tidal flats have been significantly subjected to contaminations due to anthropogenic activities. Moreover, the depth profiles of heavy metals fluxes correspond to scenario of social-economy development of Lianyungang, which is an important urban area near Haizhou Bay. From 1950s to 2005, anthropogenic fluxes of metals increased with fluctuations, whereas, since 2005 anthropogenic fluxes declined, which may be correlated to the adjustment of industrial structure as well as the strengthened environmental regulation.

  1. [Quantitative Analysis of Heavy Metals in Water with LIBS Based on Signal-to-Background Ratio].

    PubMed

    Hu, Li; Zhao, Nan-jing; Liu, Wen-qing; Fang, Li; Zhang, Da-hai; Wang, Yin; Meng, De Shuo; Yu, Yang; Ma, Ming-jun

    2015-07-01

    There are many influence factors in the precision and accuracy of the quantitative analysis with LIBS technology. According to approximately the same characteristics trend of background spectrum and characteristic spectrum along with the change of temperature through in-depth analysis, signal-to-background ratio (S/B) measurement and regression analysis could compensate the spectral line intensity changes caused by system parameters such as laser power, spectral efficiency of receiving. Because the measurement dates were limited and nonlinear, we used support vector machine (SVM) for regression algorithm. The experimental results showed that the method could improve the stability and the accuracy of quantitative analysis of LIBS, and the relative standard deviation and average relative error of test set respectively were 4.7% and 9.5%. Data fitting method based on signal-to-background ratio(S/B) is Less susceptible to matrix elements and background spectrum etc, and provides data processing reference for real-time online LIBS quantitative analysis technology.

  2. A possible macronova in the late afterglow of the long-short burst GRB 060614.

    PubMed

    Yang, Bin; Jin, Zhi-Ping; Li, Xiang; Covino, Stefano; Zheng, Xian-Zhong; Hotokezaka, Kenta; Fan, Yi-Zhong; Piran, Tsvi; Wei, Da-Ming

    2015-06-11

    Long-duration (>2 s) γ-ray bursts that are believed to originate from the death of massive stars are expected to be accompanied by supernovae. GRB 060614, that lasted 102 s, lacks a supernova-like emission down to very stringent limits and its physical origin is still debated. Here we report the discovery of near-infrared bump that is significantly above the regular decaying afterglow. This red bump is inconsistent with even the weakest known supernova. However, it can arise from a Li-Paczyński macronova--the radioactive decay of debris following a compact binary merger. If this interpretation is correct, GRB 060614 arose from a compact binary merger rather than from the death of a massive star and it was a site of a significant production of heavy r-process elements. The significant ejected mass favours a black hole-neutron star merger but a double neutron star merger cannot be ruled out.

  3. Bacterial Cell Surface Adsorption of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Jiao, Y.; Park, D.; Reed, D.; Fujita, Y.; Yung, M.; Anderko, A.; Eslamimanesh, A.

    2015-12-01

    Rare earth elements (REE) play a critical role in many emerging clean energy technologies, including high-power magnets, wind turbines, solar panels, hybrid/electric vehicle batteries and lamp phosphors. In order to sustain demand for such technologies given current domestic REE shortages, there is a need to develop new approaches for ore processing/refining and recycling of REE-containing materials. To this end, we have developed a microbially-mediated bioadsorption strategy with application towards enrichment of REE from complex mixtures. Specifically, the bacterium Caulobacter crescentus was genetically engineered to display lanthanide binding tags (LBTs), short peptides that possess high affinity and specificity for rare earth elements, on its cell surface S-layer protein. Under optimal conditions, LBT-displayed cells adsorbed greater than 5-fold more REE than control cells lacking LBTs. Competition binding experiments with a selection of REEs demonstrated that our engineered cells could facilitate separation of light- from heavy- REE. Importantly, binding of REE onto our engineered strains was much more favorable compared to non-REE metals. Finally, REE bound to the cell surface could be stripped off using citrate, providing an effective and non-toxic REE recovery method. Together, this data highlights the potential of our approach for selective REE enrichment from REE containing mixtures.

  4. Possibilities for the Production of Heavy Water in Argentina. Report No. 90; POSIBILIDADES ARGENTINAS PARA LA PRODUCCION DE AGUA PESADA. Informe No. 90

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silberman, E.; Cretella, R.F.

    1963-01-01

    As an introduction to the problems in the industrial production of heavy water, the industrial plants in operation are briefly described, and the causes determining their evolution are discussed. The industrial methods studied in England, France, Germandy, Sweden, Switzerland, India, Egypt, Japan, and O.E.C.E. for the production of D/sub 2/O are summarized. The market for heavy water is discussed. The factors considered in the selection of the production process to be developed for Argentina are given, and the cost of a H/sub 2/S-- H/sub 2/O exchange installation is determined. The cost of such a plant modified for Argentine needs ismore » then analyzed. It is concluded that the combination of the H/ sub 2/SH/sub 2/O process in a single unit with integral energy supply, coupled with the elimination of auxiliary installations, results in a considerable reduction in operation costs and plant investment, as compared with the cost of the process in the U.S. The plandt construction plan is summarized. (J.S.R.)« less

  5. [MONITORING OF THE CONTENT OF HEAVY METALS AND ELEMENTS IN THE SNOW COVER IN AGRICULTURAL SOILS AT THE TERRITORY OF THE MOSCOW REGION].

    PubMed

    Ermakov, A A; Karpova, E A; Malysheva, A G; Mikhaylova, R I; Ryzhova, I N

    2015-01-01

    The monitoring of snow cover pollution by heavy metals and elements (zinc, copper, lead, cadmium, arsenic, nickel, chromium, strontium, manganese, fluorine, lithium) was performed in 20 districts of the Moscow region in 2009, 2012 and 2013. The assessment of the levels of contamination by heavy metals and elements was given by means of comparison of them with the average values in the snow cover near Moscow in the end of the last century and in some areas of the world, that no exposed to technological environmental impact. 7 districts of Moscow region were characterized by a high content of lead and cadmium in the snow water. It requires the control of water, soil and agricultural products pollution.

  6. Health risk assessment on human exposed to heavy metals in the ambient air PM10 in Ahvaz, southwest Iran

    NASA Astrophysics Data System (ADS)

    Goudarzi, Gholamreza; Alavi, Nadali; Geravandi, Sahar; Idani, Esmaeil; Behrooz, Hamid Reza Adeli; Babaei, Ali Akbar; Alamdari, Farzaneh Aslanpour; Dobaradaran, Sina; Farhadi, Majid; Mohammadi, Mohammad Javad

    2018-06-01

    Heavy metals (HM) are one of the main components of urban air pollution. Today, megacities and industrial regions in southwest of Iran are frequently suffering from severe haze episodes, which essentially caused by PM10-bound heavy metals. The purpose of this study was to evaluate the health risk assessment on human exposed to heavy metals (Cr, Ni, Pb, and Zn) in the ambient air PM10 in Ahvaz, southwest Iran. In this study, we estimated healthy people from the following scenarios: (S3) residential site; (S2) high-traffic site; (S1) industrial site in Ahvaz metropolitan during autumn and winter. In the current study, high-volume air samplers equipped with quartz fiber filters were used to sampling and measurements of heavy metal concentration. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was utilized for detection of heavy metal concentration (ng m-3). Also, an estimate of the amount of health risk assessment (hazard index) of Cr, Ni, Pb, and Zn of heavy metal exposure to participants was used. Result of this study showed that the residential and industrial areas had the lowest and the highest level of heavy metal. Based on the result of this study, average levels of heavy metal in industrial, high-traffic, and residential areas in autumn and winter were 31.48, 30.89, and 23.21 μg m-3 and 42.60, 37.70, and 40.07 μg m-3, respectively. Based on the result of this study, the highest and the lowest concentration of heavy metal had in the industrial and residential areas. Zn and Pb were the most abundant elements among the studied PM10-bound heavy metals, followed by Cr and Ni. The carcinogenic risks of Cr, Pb, and the integral HQ of metals in PM10 for children and adults via inhalation and dermal exposures exceeded 1 × 10-4 in three areas. Also, based on the result of this study, the values of hazard index (HI) of HM exposure in different areas were significantly higher than standard. The health risks attributed to HM should be further investigated from the perspective of the public health in metropolitans. The result of this study showed increasing exposure concentrations to heavy metal in the studied scenarios have a significant potential for generating different health endpoints, while environmental health management in ambient air can cause disorders in citizenship and causing more spiritual and material costs.

  7. Health risk assessment on human exposed to heavy metals in the ambient air PM10 in Ahvaz, southwest Iran.

    PubMed

    Goudarzi, Gholamreza; Alavi, Nadali; Geravandi, Sahar; Idani, Esmaeil; Behrooz, Hamid Reza Adeli; Babaei, Ali Akbar; Alamdari, Farzaneh Aslanpour; Dobaradaran, Sina; Farhadi, Majid; Mohammadi, Mohammad Javad

    2018-06-01

    Heavy metals (HM) are one of the main components of urban air pollution. Today, megacities and industrial regions in southwest of Iran are frequently suffering from severe haze episodes, which essentially caused by PM 10 -bound heavy metals. The purpose of this study was to evaluate the health risk assessment on human exposed to heavy metals (Cr, Ni, Pb, and Zn) in the ambient air PM 10 in Ahvaz, southwest Iran. In this study, we estimated healthy people from the following scenarios: (S3) residential site; (S2) high-traffic site; (S1) industrial site in Ahvaz metropolitan during autumn and winter. In the current study, high-volume air samplers equipped with quartz fiber filters were used to sampling and measurements of heavy metal concentration. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was utilized for detection of heavy metal concentration (ng m -3 ). Also, an estimate of the amount of health risk assessment (hazard index) of Cr, Ni, Pb, and Zn of heavy metal exposure to participants was used. Result of this study showed that the residential and industrial areas had the lowest and the highest level of heavy metal. Based on the result of this study, average levels of heavy metal in industrial, high-traffic, and residential areas in autumn and winter were 31.48, 30.89, and 23.21 μg m -3 and 42.60, 37.70, and 40.07 μg m -3 , respectively. Based on the result of this study, the highest and the lowest concentration of heavy metal had in the industrial and residential areas. Zn and Pb were the most abundant elements among the studied PM 10 -bound heavy metals, followed by Cr and Ni. The carcinogenic risks of Cr, Pb, and the integral HQ of metals in PM 10 for children and adults via inhalation and dermal exposures exceeded 1 × 10 -4 in three areas. Also, based on the result of this study, the values of hazard index (HI) of HM exposure in different areas were significantly higher than standard. The health risks attributed to HM should be further investigated from the perspective of the public health in metropolitans. The result of this study showed increasing exposure concentrations to heavy metal in the studied scenarios have a significant potential for generating different health endpoints, while environmental health management in ambient air can cause disorders in citizenship and causing more spiritual and material costs.

  8. Health risk assessment on human exposed to heavy metals in the ambient air PM10 in Ahvaz, southwest Iran

    NASA Astrophysics Data System (ADS)

    Goudarzi, Gholamreza; Alavi, Nadali; Geravandi, Sahar; Idani, Esmaeil; Behrooz, Hamid Reza Adeli; Babaei, Ali Akbar; Alamdari, Farzaneh Aslanpour; Dobaradaran, Sina; Farhadi, Majid; Mohammadi, Mohammad Javad

    2018-02-01

    Heavy metals (HM) are one of the main components of urban air pollution. Today, megacities and industrial regions in southwest of Iran are frequently suffering from severe haze episodes, which essentially caused by PM10-bound heavy metals. The purpose of this study was to evaluate the health risk assessment on human exposed to heavy metals (Cr, Ni, Pb, and Zn) in the ambient air PM10 in Ahvaz, southwest Iran. In this study, we estimated healthy people from the following scenarios: (S3) residential site; (S2) high-traffic site; (S1) industrial site in Ahvaz metropolitan during autumn and winter. In the current study, high-volume air samplers equipped with quartz fiber filters were used to sampling and measurements of heavy metal concentration. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was utilized for detection of heavy metal concentration (ng m-3). Also, an estimate of the amount of health risk assessment (hazard index) of Cr, Ni, Pb, and Zn of heavy metal exposure to participants was used. Result of this study showed that the residential and industrial areas had the lowest and the highest level of heavy metal. Based on the result of this study, average levels of heavy metal in industrial, high-traffic, and residential areas in autumn and winter were 31.48, 30.89, and 23.21 μg m-3 and 42.60, 37.70, and 40.07 μg m-3, respectively. Based on the result of this study, the highest and the lowest concentration of heavy metal had in the industrial and residential areas. Zn and Pb were the most abundant elements among the studied PM10-bound heavy metals, followed by Cr and Ni. The carcinogenic risks of Cr, Pb, and the integral HQ of metals in PM10 for children and adults via inhalation and dermal exposures exceeded 1 × 10-4 in three areas. Also, based on the result of this study, the values of hazard index (HI) of HM exposure in different areas were significantly higher than standard. The health risks attributed to HM should be further investigated from the perspective of the public health in metropolitans. The result of this study showed increasing exposure concentrations to heavy metal in the studied scenarios have a significant potential for generating different health endpoints, while environmental health management in ambient air can cause disorders in citizenship and causing more spiritual and material costs.

  9. Profiling extractable and leachable inorganic impurities in ophthalmic drug containers by ICP-MS.

    PubMed

    Solomon, Paige; Nelson, Jenny

    2018-03-01

    In this study, we investigated the elemental impurities present in the plastic material of ophthalmic eye drop bottles using inductively coupled plasma-mass spectrometry (ICP-MS). Metallic contaminations, especially localized within the small cavity of the eye, can significantly perturb the ocular metallome. The concern is two-fold: first certain elements, for example heavy metals, can be toxic to humans at even trace levels, and second, these contaminations can have adverse reactions with other medicines or enzymatic processes in the eye. The implication of redox-active metals in cataract formation is one such biological consequence. The analysis demonstrated the effect of aggressive storage and transportation conditions on elemental extractable and leachable contamination, and posits that release of these elemental impurities can disrupt metallome equilibrium in the ocular compartment, leading to toxicity and disease.

  10. Water contamination with heavy metals and trace elements from Kilembe copper mine and tailing sites in Western Uganda; implications for domestic water quality.

    PubMed

    Abraham, Mwesigye R; Susan, Tumwebaze B

    2017-02-01

    The mining and processing of copper in Kilembe, Western Uganda, from 1956 to 1982 left over 15 Mt of cupriferous and cobaltiferous pyrite dumped within a mountain river valley, in addition to mine water which is pumped to the land surface. This study was conducted to assess the sources and concentrations of heavy metals and trace elements in Kilembe mine catchment water. Multi-element analysis of trace elements from point sources and sinks was conducted which included mine tailings, mine water, mine leachate, Nyamwamba River water, public water sources and domestic water samples using ICP-MS. The study found that mean concentrations (mg kg -1 ) of Co (112), Cu (3320), Ni (131), As (8.6) in mine tailings were significantly higher than world average crust and were being eroded and discharged into water bodies within the catchment. Underground mine water and leachate contained higher mean concentrations (μg L -1 ) of Cu (9470), Co (3430) and Ni (590) compared with background concentrations (μg L -1 ) in un contaminated water of 1.9, 0.21 and 0.67 for Cu, Co and Ni respectively. Over 25% of household water samples exceeded UK drinking water thresholds for Al of 200 μg L -1 , Co exceeded Winsconsin (USA drinking) water thresholds of 40 μg L -1 in 40% of samples while Fe in 42% of samples exceeded UK thresholds of 200 μg L -1 . The study however found that besides mining activities, natural processes of geological weathering also contributed to Al, Fe, and Mn water contamination in a number of public water sources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Discovery of a Thorne-Żytkow object candidate in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Levesque, Emily M.; Massey, Philip; Żytkow, Anna N.; Morrell, Nidia

    2015-01-01

    Thorne-Żytkow objects (TŻOs) are a theoretical class of star in which a compact neutron star is surrounded by a large, diffuse envelope. Supergiant TŻOs are predicted to be almost identical in appearance to red supergiants (RSGs), with their very red colors and cool temperatures placing them at the Hayashi limit on the H-R diagram. The only features that can be used at present to distinguish TŻOs from the general RSG population are the unusually strong heavy-element and lithium lines present in their spectra. These elements are the unique products of the stars fully convective envelope linking the photosphere with the extraordinarily hot burning region in the vicinity of the neutron star core. We have recently discovered a TŻO candidate in the Small Magellanic Cloud. It is the first star to display the distinctive chemical profile of anomalous element enhancements thought to be characteristic of TŻOs however, up-to-date models and additional observable predictions (including potential asteroseismological signatures) are required to solidify this discovery. The definitive detection of a TŻO would provide the first direct evidence for a completely new model of stellar interiors, a theoretically predicted fate for massive binary systems, and never-before-seen nucleosynthesis processes that would offer a new channel for heavy-element and lithium production in our universe.

  12. Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile.

    PubMed

    Fawzy, Manal Ahmed; Badr, Nadia El-sayed; El-Khatib, Ahmed; Abo-El-Kassem, Amany

    2012-03-01

    The concentrations of Cd, Cu, Pb, and Zn in sediments, water, and different plant organs of six aquatic vascular plant species, Ceratophyllum demersum L. Echinochloa pyramidalis (Lam.) Hitchc. & Chase; Eichhornia crassipes (Mart.) Solms-Laub; Myriophyllum spicatum L.; Phragmites australis (Cav.) Trin. ex Steud; and Typha domingensis (Pers.) Poir. ex Steud, growing naturally in the Nile system (Sohag Governorate), were investigated. The aim was to define which species and which plant organs exhibit the greatest accumulation and evaluate whether these species could be usefully employed in biomonitoring and phytoremediation programs. The recorded metals in water samples were above the standard levels of both US Environmental Protection Agency and Egyptian Environmental Affairs Agency except for Pb. The concentrations of heavy metals in water, sediments, and plants possess the same trend: Zn > Cu > Pb > Cd which reflects the biomonitoring potentialities of the investigated plant species. Generally, the variation of heavy element concentrations in water and sediments in relation to site and season, as assessed by two-way repeated measured ANOVA, was significant (p < 0.05). However, insignificant variations were observed in the concentrations of Pb and Cd in sediments in relation to season and of Cu and Zn in relation to site. Results also showed that the selectivity of the heavy elements for the investigated plants varied significantly (p < 0.05) with species variation. The accumulation capability of the investigated species could be arranged according to this pattern: C. demersum > E. crassipes > M. spicatum > E. pyramidalis > T. domingensis > P. australis. On the basis of the element concentrations, roots of all the studied species contain higher concentrations of Cu and Zn than shoots while leaves usually acquire the highest concentrations of Pb. Cd concentrations among different plant organs are comparable except in M. spicatum where the highest Cd concentrations were recorded in the leaves. Our results also demonstrated that all the studied species can accumulate more than 1,450-fold the concentration of the investigated heavy elements in water rendering them of interest for use in phytoremediation studies of polluted waters. Given the absence of systematic water quality monitoring, heavy elements in plants, rather than sediments, provide a cost-effective means for assessing heavy element accumulation in aquatic systems during plant organ lifespan.

  13. Nuclear transition matrix elements for neutrinoless double-β decay of 76Ge and 82Se isotopes

    NASA Astrophysics Data System (ADS)

    Rath, P. K.

    2017-10-01

    Within mechanisms involving light and heavy Majorana neutrinos, the nuclear transition matrix elements (NTMEs) for the neutrinoless double-β decay of 76Ge and 82Se isotopes are calculated. Uncertainties in the average NTMEs M¯ (0 v ) and M¯ (0 N ) due to the exchange of light and heavy Majorana neutrinos, respectively, turn out to be about 10% and 37%, respectively. Limits on the effective mass of light Majorana neutrino , heavy Majorana neutrino and Majoron-neutrino coupling constant of classical Majoron model are extracted.

  14. Measurement of the first ionization potential of lawrencium, element 103.

    PubMed

    Sato, T K; Asai, M; Borschevsky, A; Stora, T; Sato, N; Kaneya, Y; Tsukada, K; Düllmann, Ch E; Eberhardt, K; Eliav, E; Ichikawa, S; Kaldor, U; Kratz, J V; Miyashita, S; Nagame, Y; Ooe, K; Osa, A; Renisch, D; Runke, J; Schädel, M; Thörle-Pospiech, P; Toyoshima, A; Trautmann, N

    2015-04-09

    The chemical properties of an element are primarily governed by the configuration of electrons in the valence shell. Relativistic effects influence the electronic structure of heavy elements in the sixth row of the periodic table, and these effects increase dramatically in the seventh row--including the actinides--even affecting ground-state configurations. Atomic s and p1/2 orbitals are stabilized by relativistic effects, whereas p3/2, d and f orbitals are destabilized, so that ground-state configurations of heavy elements may differ from those of lighter elements in the same group. The first ionization potential (IP1) is a measure of the energy required to remove one valence electron from a neutral atom, and is an atomic property that reflects the outermost electronic configuration. Precise and accurate experimental determination of IP1 gives information on the binding energy of valence electrons, and also, therefore, on the degree of relativistic stabilization. However, such measurements are hampered by the difficulty in obtaining the heaviest elements on scales of more than one atom at a time. Here we report that the experimentally obtained IP1 of the heaviest actinide, lawrencium (Lr, atomic number 103), is 4.96(+0.08)(-0.07) electronvolts. The IP1 of Lr was measured with (256)Lr (half-life 27 seconds) using an efficient surface ion-source and a radioisotope detection system coupled to a mass separator. The measured IP1 is in excellent agreement with the value of 4.963(15) electronvolts predicted here by state-of-the-art relativistic calculations. The present work provides a reliable benchmark for theoretical calculations and also opens the way for IP1 measurements of superheavy elements (that is, transactinides) on an atom-at-a-time scale.

  15. ψ (2 S ) and ϒ (3 S ) hadroproduction in the parton Reggeization approach: Yield, polarization, and the role of fragmentation

    NASA Astrophysics Data System (ADS)

    Kniehl, B. A.; Nefedov, M. A.; Saleev, V. A.

    2016-09-01

    The hadroproduction of the radially excited heavy-quarkonium states ψ (2 S ) and ϒ (3 S ) at high energies is studied in the parton Reggeization approach and the factorization formalism of nonrelativistic QCD at lowest order in the strong-coupling constant αs and the relative heavy-quark velocity v . A satisfactory description of the ψ (2 S ) transverse-momentum (pT) distributions measured by ATLAS, CMS, and LHCb at center-of-mass energy √{S }=7 TeV is obtained using the color-octet long-distance matrix elements (LDMEs) extracted from CDF data at √{S }=1.96 TeV . The importance of the fragmentation mechanism and the scale evolution of the fragmentation functions in the upper pT range, beyond 30 GeV, is demonstrated. The ϒ (3 S ) pT distributions measured by CDF at √{S }=1.8 TeV and by LHCb at √{S }=7 TeV and forward rapidities are well described using LDMEs fitted to ATLAS data at √{S }=7 TeV . Comparisons of polarization measurements by CDF and CMS at large pT values with our predictions consolidate the familiar problem in the ψ (2 S ) case, but yield reasonable agreement in the ϒ (3 S ) case.

  16. Comparison of inversion accuracy of soil copper content from vegetation indices under different spectral resolution

    NASA Astrophysics Data System (ADS)

    Sun, Zhongqing; Shang, Kun; Jia, Lingjun

    2018-03-01

    Remote sensing inversion of heavy metal in vegetation leaves is generally based on the physiological characteristics of vegetation spectrum under heavy metal stress, and empirical models with vegetation indices are established to inverse the heavy metal content of vegetation leaves. However, the research of inversion of heavy metal content in vegetation-covered soil is still rare. In this study, Pulang is chosen as study area. The regression model of a typical heavy metal element, copper (Cu), is established with vegetation indices. We mainly investigate the inversion accuracies of Cu element in vegetation-covered soil by different vegetation indices according to specific spectral resolutions of ASD (Analytical Spectral Device) and Hyperion data. The inversion results of soil copper content in the vegetation-covered area shows a good accuracy, and the vegetation indices under ASD spectral resolution correspond to better results.

  17. Micro-PIXE studies of elemental distribution in Cd-accumulating Brassica juncea L.

    NASA Astrophysics Data System (ADS)

    Schneider, Thorsten; Haag-Kerwer, Angela; Maetz, Mischa; Niecke, Manfred; Povh, Bogdan; Rausch, Thomas; Schüßler, Arthur

    1999-10-01

    Brassica juncea L. is a high biomass producing crop plant, being able to accumulate Cd and other heavy metals in their roots and shoots. It is a good candidate for efficient phytoextraction of heavy metals - such as Cd - from polluted soils. PIXE and STIM analyses were applied to investigate Cd-uptake in roots and the resulting effects on the elemental distribution of Cd stressed plants. The axial distribution of trace elements as a function of distance from the root tip as well as the radial distribution within cross-sections were analysed. The results are compared with the elemental distribution in control plants.

  18. Modified clay sorbents for wastewater treatment and immobilization of heavy metals in soils

    NASA Astrophysics Data System (ADS)

    Burlakovs, Juris; Klavins, Maris; Vincevica-Gaile, Zane; Stapkevica, Mara

    2014-05-01

    Soil and groundwater pollution with heavy metals is the result of both, anthropogenic and natural processes in the environment. Anthropogenic influence in great extent appears from industry, mining, treatment of metal ores and waste incineration. Contamination of soil and water can be induced by diffuse sources such as applications of agrochemicals and fertilizers in agriculture, air pollution from industry and transport, and by point sources, e.g., wastewater streams, runoff from dump sites and factories. Treatment processes used for metal removal from polluted soil and water include methodologies based on chemical precipitation, ion exchange, carbon adsorption, membrane filtration, adsorption and co-precipitation. Optimal removal of heavy metal ions from aqueous medium can be achieved by adsorption process which is considered as one of the most effective methods due to its cost-effectiveness and high efficiency. Immobilization of metals in contaminated soil also can be done with different adsorbents as the in situ technology. Use of natural and modified clay can be developed as one of the solutions in immobilization of lead, zinc, copper and other elements in polluted sites. Within the present study clay samples of different geological genesis were modified with sodium and calcium chlorides, iron oxyhydroxides and ammonium dihydrogen phosphate in variable proportions of Ca/P equimolar ratio to test and compare immobilization efficiency of metals by sorption and batch leaching tests. Sorption capacity for raw clay samples was considered as relatively lower referring to the modified species of the same clay type. In addition, clay samples were tested for powder X-ray difractometry, cation exchange, surface area properties, elemental composition, as well as scanning electron microscopy pictures of clay sample surface structures were obtained. Modified clay sorbents were tested for sorption of lead as monocontaminant and for complex contamination of heavy metals. The highest sorption capacity was observed for clay modified with hydroxyapatite and calcium salts. Sorption capacity increased with a rise of temperature; the best pH value for sorption was 5. Immobilization of metals in soil, as well as industrial wastewater treatment can be accomplished by using sorbents on modified clay basis.

  19. Element 74, the Wolfram Versus Tungsten Controversy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden,N.E.

    Two and a quarter centuries ago, a heavy mineral ore was found which was thought to contain a new chemical element called heavy stone (or tungsten in Swedish). A few years later, the metal was separated from its oxide and the new element (Z=74) was called wolfram. Over the years since that time, both the names wolfram and tungsten were attached to this element in various countries. Sixty years ago, IUPAC chose wolfram as the official name for the element. A few years later, under pressure from the press in the USA, the alternative name tungsten was also allowed bymore » IUPAC. Now the original, official name 'wolfram' has been deleted by IUPAC as one of the two alternate names for the element. The history of this controversy is described here.« less

  20. Heavy-to-light scalar form factors from Muskhelishvili-Omnès dispersion relations

    NASA Astrophysics Data System (ADS)

    Yao, D.-L.; Fernandez-Soler, P.; Albaladejo, M.; Guo, F.-K.; Nieves, J.

    2018-04-01

    By solving the Muskhelishvili-Omnès integral equations, the scalar form factors of the semileptonic heavy meson decays D→ π \\bar{ℓ }ν _ℓ , D→ {\\bar{K}} \\bar{ℓ }ν _ℓ , {\\bar{B}}→ π ℓ \\bar{ν }_ℓ and {\\bar{B}}_s→ K ℓ \\bar{ν }_ℓ are simultaneously studied. As input, we employ unitarized heavy meson-Goldstone boson chiral coupled-channel amplitudes for the energy regions not far from thresholds, while, at high energies, adequate asymptotic conditions are imposed. The scalar form factors are expressed in terms of Omnès matrices multiplied by vector polynomials, which contain some undetermined dispersive subtraction constants. We make use of heavy quark and chiral symmetries to constrain these constants, which are fitted to lattice QCD results both in the charm and the bottom sectors, and in this latter sector to the light-cone sum rule predictions close to q^2=0 as well. We find a good simultaneous description of the scalar form factors for the four semileptonic decay reactions. From this combined fit, and taking advantage that scalar and vector form factors are equal at q^2=0, we obtain |V_{cd}|=0.244± 0.022, |V_{cs}|=0.945± 0.041 and |V_{ub}|=(4.3± 0.7)× 10^{-3} for the involved Cabibbo-Kobayashi-Maskawa (CKM) matrix elements. In addition, we predict the following vector form factors at q^2=0: |f_+^{D→ η }(0)|=0.01± 0.05, |f_+^{D_s→ K}(0)|=0.50 ± 0.08, |f_+^{D_s→ η }(0)|=0.73± 0.03 and |f_+^{{\\bar{B}}→ η }(0)|=0.82 ± 0.08, which might serve as alternatives to determine the CKM elements when experimental measurements of the corresponding differential decay rates become available. Finally, we predict the different form factors above the q^2-regions accessible in the semileptonic decays, up to moderate energies amenable to be described using the unitarized coupled-channel chiral approach.

  1. High Thermoelectric Performance in Copper Telluride

    DOE PAGES

    He, Ying; Zhang, Tiansong; Shi, Xun; ...

    2015-06-21

    Recently, Cu 2-δ S and Cu 2-δ Se were reported to have an ultralow thermal conductivity and high thermoelectric figure of merit zT. Thus, as a member of the copper chalcogenide group, Cu 2-δ Te is expected to possess superior zTs because Te is less ionic and heavy. However, the zT value is low in the Cu 2Te sintered using spark plasma sintering, which is typically used to fabricate high-density bulk samples. In addition, the extra sintering processes may change the samples’ compositions as well as their physical properties, especially for Cu 2Te, which has many stable andmore » meta-stable phases as well as weaker ionic bonding between Cu and Te as compared with Cu 2S and Cu 2Se. In this study, high-density Cu 2Te samples were obtained using direct annealing without a sintering process. In the absence of sintering processes, the samples’ compositions could be well controlled, leading to substantially reduced carrier concentrations that are close to the optimal value. The electrical transports were optimized, and the thermal conductivity was considerably reduced. The zT values were significantly improved—to 1.1 at 1000 K—which is nearly 100% improvement. Furthermore, this method saves substantial time and cost during the sample’s growth. The study demonstrates that Cu 2-δ X (X=S, Se and Te) is the only existing system to show high zTs in the series of compounds composed of three sequential primary group elements.« less

  2. The GAPS programme with HARPS-N at TNG. X. Differential abundances in the XO-2 planet-hosting binary

    NASA Astrophysics Data System (ADS)

    Biazzo, K.; Gratton, R.; Desidera, S.; Lucatello, S.; Sozzetti, A.; Bonomo, A. S.; Damasso, M.; Gandolfi, D.; Affer, L.; Boccato, C.; Borsa, F.; Claudi, R.; Cosentino, R.; Covino, E.; Knapic, C.; Lanza, A. F.; Maldonado, J.; Marzari, F.; Micela, G.; Molaro, P.; Pagano, I.; Pedani, M.; Pillitteri, I.; Piotto, G.; Poretti, E.; Rainer, M.; Santos, N. C.; Scandariato, G.; Zanmar Sanchez, R.

    2015-11-01

    Binary stars hosting exoplanets are a unique laboratory where chemical tagging can be performed to measure the elemental abundances of both stellar components with high accuracy, with the aim to investigate the formation of planets and their subsequent evolution. Here, we present a high-precision differential abundance analysis of the XO-2 wide stellar binary based on high-resolution HARPS-N at TNG spectra. Both components are very similar K-dwarfs and host planets. Since they formed presumably within the same molecular cloud, we expect that they possess the same initial elemental abundances. We investigated whether planets can cause some chemical imprints in the stellar atmospheric abundances. We measure abundances of 25 elements for both stars with a range of condensation temperature TC = 40-1741 K, achieving typical precisions of ~0.07 dex. The northern component shows abundances in all elements higher by +0.067 ± 0.032 dex on average, with a mean difference of +0.078 dex for elements with TC > 800 K. The significance of the XO-2N abundance difference relative to XO-2S is at the 2σ level for almost all elements. We discuss that this result might be interpreted as the signature of the ingestion of material by XO-2N or depletion in XO-2S that is due to locking of heavy elements by the planetary companions. We estimate a mass of several tens of M⊕ in heavy elements. The difference in abundances between XO-2N and XO-2S shows a positive correlation with the condensation temperatures of the elements, with a slope of (4.7 ± 0.9) × 10-5 dex K-1, which could mean that both components have not formed terrestrial planets, but first experienced the accretion of rocky core interior to the subsequent giant planets. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG), operated on the island of La Palma by the INAF - Fundación Galileo Galilei at the Roche de los Muchachos Observatory of the Instituto de Astrofísica de Canarias (IAC) in the framework of the large programme Global Architecture of Planetary Systems (GAPS; P.I. A. Sozzetti).Final reduced spectra (FITS) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/583/A135

  3. Study on the behavior of heavy metals during thermal treatment of municipal solid waste (MSW) components.

    PubMed

    Yu, Jie; Sun, Lushi; Wang, Ben; Qiao, Yu; Xiang, Jun; Hu, Song; Yao, Hong

    2016-01-01

    Laboratory experiments were conducted to investigate the volatilization behavior of heavy metals during pyrolysis and combustion of municipal solid waste (MSW) components at different heating rates and temperatures. The waste fractions comprised waste paper (Paper), disposable chopstick (DC), garbage bag (GB), PVC plastic (PVC), and waste tire (Tire). Generally, the release trend of heavy metals from all MSW fractions in rapid-heating combustion was superior to that in low-heating combustion. Due to the different characteristics of MSW fractions, the behavior of heavy metals varied. Cd exhibited higher volatility than the rest of heavy metals. For Paper, DC, and PVC, the vaporization of Cd can reach as high as 75% at 500 °C in the rapid-heating combustion due to violent combustion, whereas a gradual increase was observed for Tire and GB. Zn and Pb showed a moderate volatilization in rapid-heating combustion, but their volatilities were depressed in slow-heating combustion. During thermal treatment, the additives such as kaolin and calcium can react or adsorb Pb and Zn forming stable metal compounds, thus decreasing their volatilities. The formation of stable compounds can be strengthened in slow-heating combustion. The volatility of Cu was comparatively low in both high and slow-heating combustion partially due to the existence of Al, Si, or Fe in residuals. Generally, in the reducing atmosphere, the volatility of Cd, Pb, and Zn was accelerated for Paper, DC, GB, and Tire due to the formation of elemental metal vapor. TG analysis also showed the reduction of metal oxides by chars forming elemental metal vapor. Cu2S was the dominant Cu species in reducing atmosphere below 900 °C, which was responsible for the low volatility of Cu. The addition of PVC in wastes may enhance the release of heavy metals, while GB and Tire may play an opposite effect. In controlling heavy metal emission, aluminosilicate- and calcium-based sorbents can be co-treated with fuels. Moreover, pyrolysis can be a better choice for treatment of solid waster in terms of controlling heavy metals. PVC and Tire should be separated and treated individually due to high possibility of heavy metal emission. This information may then serve as a guideline for the design of the subsequent gas cleaning plant, necessary to reduce the final emissions to the atmosphere to an acceptable level.

  4. A Geochemical View on the Interplay Between Earth's Mantle and Crust

    NASA Astrophysics Data System (ADS)

    Chauvel, C.

    2017-12-01

    Over most of Earth history, oceanic and continental crust was created and destroyed. The formation of both types of crust involves the crystallization and differentiation of magmas producing by mantle melting. Their destruction proceeds by mechanical erosion and weathering above sea level, chemical alteration on the seafloor, and bulk recycling in subduction zones. All these processes enrich of some chemical element and deplete others but each process has its own effect on chemical elements. While the flux of material from mantle to crust is well understood, the return flux is much more complex. In contrast to mantle processes, erosion, weathering, chemical alteration and sedimentary processes strongly decouple elements such as the rare earths and high-field strength elements due to their different solubilities in surface fluids and mineralogical sorting during transport. Soluble elements such as strontium or uranium are quantitatively transported to the ocean by rivers and decoupled from less soluble elements. Over geological time, such decoupling significantly influences the extent to which chemical elements remain at the Earth's surface or find their way back to the mantle through subduction zones. For example, elements like Hf or Nd are retained in heavy minerals on continents whereas U and Sr are transported to the oceans and then in subduction zones to the mantle. The consequence is that different radiogenic isotopic systems give disparate age estimates for the continental crust; e.g, Hf ages could be too old. In subduction zones, chemical elements are also decoupled, due to contrasting behavior during dehydration or melting in subducting slabs. The material sent back into the mantle is generally enriched in non-soluble elements while most fluid-mobile elements return to the crust. This, in turn, affects the relationship between the Rb-Sr, Sm-Nd, Lu-Hf and U-Th-Pb isotopic systems and creates correlations unlike those based on magmatic processes. By quantifying the difference between isotopic arrays created by magmatic processes vs. surface and subduction processes, we can determine how crust recycling creates isotopic heterogeneities in the mantle.

  5. Heavy Gas Conversion of the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Corliss, James M.; Cole, Stanley, R.

    1998-01-01

    The heavy gas test medium has recently been changed in the Transonic Dynamics Tunnel (TDT) at the NASA Langley Research Center. A NASA Construction of Facilities project has converted the TDT heavy gas from dichlorodifluoromethane (R12) to 1,1,1,2 tetrafluoroethane (R134a). The facility s heavy gas processing system was extensively modified to implement the conversion to R134a. Additional system modifications have improved operator interfaces, hardware reliability, and quality of the research data. The facility modifications included improvements to the heavy gas compressor and piping, the cryogenic heavy gas reclamation system, and the heavy gas control room. A series of wind tunnel characterization and calibration tests are underway. Results of the flow characterization tests show the TDT operating envelope in R134a to be very similar to the previous operating envelope in R12.

  6. Chemistry Division. Quarterly progress report for period ending June 30, 1949

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1949-09-14

    Progress reports are presented for the following tasks: (1) nuclear and chemical properties of heavy elements (solution chemistry, phase rule studies); (2) nuclear and chemical properties of elements in the fission product region; (3) general nuclear chemistry; (4) radio-organic chemistry; (5) chemistry of separations processes; (6) physical chemistry and chemical physics; (7) radiation chemistry; (8) physical measurements and instrumentation; and (9) analytical chemistry. The program of the chemistry division is divided into two efforts of approximately equal weight with respect to number of personnel, chemical research, and analytical service for the Laboratory. The various research problems fall into the followingmore » classifications: (1) chemical separation processes for isolation and recovery of fissionable material, production of radioisotopes, and military applications; (2) reactor development; and (3) fundamental research.« less

  7. Elemental abundance analyses with DAO spectrograms: XXXII. HR 6455 (A3 III), δ Aqr (A3 V), η Lep (F2 V), and 1 Boo (A1 V)

    NASA Astrophysics Data System (ADS)

    Yüce, K.; Adelman, S. J.; Gulliver, A. F.; Hill, G.

    2011-08-01

    We examine the sharp-lined stars HR 6455 (A3 III, v sin i = 8.7 km s-1) and η Lep (F2 V, v sin i = 13.5 km s-1) as well as δ Aqr (A3 V, v sin i = 81 km s-1) and 1 Boo (A1 V, v sin i = 59 km s-1) to increase the number consistently analyzed A and F stars using high dispersion and high S/N (≥200) spectrograms obtained with CCD detectors at the long Coudé camera of the 1.22-m telescope of the Dominion Astrophysical Observatory. Such studies contribute to understanding systematic abundance differences between normal and non-magnetic main-sequence band chemically peculiar A and early F stars. LTE fine analyses of HR 6455, δ Aqr, and 1 Boo using Kurucz's ATLAS suite programs show the same general elemental abundance trends with differences in the metal richness. Light and iron-peak element abundances are generally solar or overabundant while heavy element and rare earth element abundances are overabundant. HR 6455 is an evolved Am star while δ Aqr and 1 Boo show the phenomenon to different extents. Most derived abundances of η Lep are solar. Table 3 is available at the CDS via http://cdsarc.u-strasbg.fr/cgi-bin/qcat?J/AN/332/681

  8. Geology and market-dependent significance of rare earth element resources

    NASA Astrophysics Data System (ADS)

    Simandl, G. J.

    2014-12-01

    China started to produce rare earth elements (REEs) in the 1980s, and since the mid-1990s, it has become the dominant producer. Rare earth element export quotas first introduced by the Chinese government in the early 2000s were severely reduced in 2010 and 2011. This led to strong government-created disparity between prices within China and the rest of the world. Industrialized countries identified several REEs as strategic metals. Because of rapid price increases of REE outside of China, we have witnessed a world-scale REE exploration rush. The REE resources are concentrated in carbonatite-related deposits, peralkaline igneous rocks, pegmatites, monazite ± apatite veins, ion adsorption clays, placers, and some deep ocean sediments. REE could also be derived as a by-product of phosphate fertilizer production, U processing, mining of Ti-Zr-bearing placers, and exploitation of Olympic Dam subtype iron oxide copper gold (IOCG) deposits. Currently, REEs are produced mostly from carbonatite-related deposits, but ion adsorption clay deposits are an important source of heavy REE (HREE). Small quantities of REE are derived from placer deposits and one peralkaline intrusion-related deposit. The ideal REE development targets would be located in a politically stable jurisdiction with a pro-mining disposition such as Canada and Australia. REE grade, HREE/light REE (LREE) ratio of the mineralization, tonnage, mineralogy, and permissive metallurgy are some of the key technical factors that could be used to screen potential development projects. As REEs are considered strategic metals from economic, national security, and environmental points of view, technical and economic parameters alone are unlikely to be used in REE project development decision-making. Recycling of REE is in its infancy and unless legislated, in the short term, it is not expected to contribute significantly to the supply of REE.

  9. Assessment of biotic response to heavy metal contamination in Avicennia marina mangrove ecosystems in Sydney Estuary, Australia.

    PubMed

    Nath, Bibhash; Chaudhuri, Punarbasu; Birch, Gavin

    2014-09-01

    Mangrove forests act as a natural filter of land-derived wastewaters along industrialized tropical and sub-tropical coastlines and assist in maintaining a healthy living condition for marine ecosystems. Currently, these intertidal communities are under serious threat from heavy metal contamination induced by human activity associated with rapid urbanization and industrialization. Studies on the biotic responses of these plants to heavy metal contamination are of great significance in estuary management and maintaining coastal ecosystem health. The main objective of the present investigation was to assess the biotic response in Avicennia marina ecosystems to heavy metal contamination through the determination of metal concentrations in leaves, fine nutritive roots and underlying sediments collected in fifteen locations across Sydney Estuary (Australia). Metal concentrations (especially Cu, Pb and Zn) in the underlying sediments of A. marina were enriched to a level (based on Interim Sediment Quality Guidelines) at which adverse biological effects to flora could occasionally occur. Metals accumulated in fine nutritive roots greater than underlying sediments, however, only minor translocation of these metals to A. marina leaves was observed (mean translocation factors, TFs, for all elements <0.13, except for Mn). Translocation factors of essential elements (i.e., common plant micro-nutrients, Cu, Ni, Mn and Zn) were greater than non-essential elements (As, Cd, Co, Cr and Pb), suggesting that A. marina mangroves of this estuary selectively excluded non-essential elements, while regulating essential elements and limiting toxicity to plants. This study supports the notion that A. marina mangroves act as a phytostabilizer in this highly modified estuary thereby protecting the aquatic ecosystem from point or non-point sources of heavy metal contamination. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Morphological re-description of Electrotaenia malapteruri (Cestoda: Proteocephalidae) and Dujardinnascaris malapteruri (Nematoda: Heterocheilidae) infecting the Electric catfish Malapterurus electricus and heavy metal accumulation in host and parasites in relation to water and sediment analysis in Lake Manzala, North Delta, Egypt.

    PubMed

    Abdel-Gaber, Rewaida; Abdel-Ghaffar, Fathy; Abdallah Shazly, Mohamed; Morsy, Kareem; Al Quraishy, Saleh; Mohamed, Sanna; Mehlhorn, Heinz

    2017-06-01

    Parasites are one of the most serious limiting factors in aquaculture. The Electric catfish Malapterurus electricus was subjected to study the prevalence and mean intensity of parasitic infections throughout the whole year of 2015. Heavy metals accumulation in host fish and parasites were determined in relation to water quality and sediments of two different sites of Lake Manzala (Manzala and Bahr El-Baqar), Egypt. A total of 100 specimens of Electric catfish were collected and examined for the presence of helminth parasites. Two parasite species were recovered and morphologically identified. These were cestoda Electrotaenia malapteruri and nematode Dujardinnascaris malapteruri. Heavy metal analysis in water and sediments showed that measured heavy metals in Bahr El-Baqar were found in risky levels higher than permissible limits and Manzala site. Sediments were found to contain a higher level of metals than water samples. Heavy metals accumulation in recovered parasites and their host were also determined and showed significantly higher concentrations in parasites compared to their host tissues. According to bioconcentration factors, E. malapteruri showed that highest accumulation rate for all recorded elements up to 302. Essential elements like Cu and Fe were found in significantly higher concentrations in D. malapteruri, whereas E. malapteruri accumulated elements Cd, Pb, Ni, Mn, Zn and Ca to a significantly higher degree. Accordingly, the ratios (C[D.malapteruri]/C[E. malapteruri]) for most essential elements were higher than 0.5. Therefore, fish cestodes can be regarded as useful bio-indicators more than nematodes when evaluating the environmental pollution of aquatic ecosystems by heavy metals.

  11. Heavy quarkonium production at collider energies: Partonic cross section and polarization

    DOE PAGES

    Qiu, Jian -Wei; Kang, Zhong -Bo; Ma, Yan -Qing; ...

    2015-01-27

    We calculate the O(α³ s) short-distance, QCD collinear-factorized coefficient functions for all partonic channels that include the production of a heavy quark pair at short distances. Thus, this provides the first power correction to the collinear-factorized inclusive hadronic production of heavy quarkonia at large transverse momentum, pT, including the full leading-order perturbative contributions to the production of heavy quark pairs in all color and spin states employed in NRQCD treatments of this process. We discuss the role of the first power correction in the production rates and the polarizations of heavy quarkonia in high-energy hadronic collisions. The consistency of QCDmore » collinear factorization and nonrelativistic QCD factorization applied to heavy quarkonium production is also discussed.« less

  12. DARPA Technical Accomplishments. An Historical Review of Selected DARPA Projects. Volume 1

    DTIC Science & Technology

    1990-02-01

    CARBON - CARBON METAL MATRIX C4OMPOSITES CERAMIC TURBINE BLADES RAPID SCUJDIFICATION VLSI PROCESSING GaAs IN•TEGRATED CIRCUITS INFORMATION PROCESSING...500 S. The lee of Gough Island was also used to avoid Iage ships’ motions in the heavy seas. The two other locations were selected to separate the...lower curve) trajectories of Pioneer IlL. The labels on the contours are counts per second of a heavy shielded miniature Geiger-Mueller tube. The linear

  13. Survival-mediated capture and fusion cross sections for heavy-element synthesis

    NASA Astrophysics Data System (ADS)

    Yao, L.; Loveland, W.

    2018-01-01

    The cross section for producing a heavy evaporation residue σEVR in a fusion reaction can be written as a product of three nonseparable factors, i.e., the capture cross section, the fusion probability PCN, and the survival probability Wsur. Each of these factors is dependent on the spin. However, one must remember that the Wsur term is zero or very small for higher spin values, thus effectively limiting the capture and fusion terms. For a series of ˜287 reactions leading to heavy evaporation residues with ZCN≤110 , we point out the implications of this fact for capture cross sections for heavy element formation reactions. From a comparison of calculated and measured evaporation residue cross sections we deduce values of the fusion probability PCN for some of these reactions.

  14. Enrichment of intergalactic matter.

    NASA Technical Reports Server (NTRS)

    Silk, J.; Siluk, R. S.

    1972-01-01

    The primordial gas out of which the Galaxy condensed may have been significantly enriched in heavy elements. A specific mechanism of enrichment is described, in which quasi-stellar sources eject enriched matter into the intergalactic medium. This matter is recycled through successive generations of these sources, and is progressively enriched. The enriched intergalactic matter is accreted by the protogalaxy and we find, for rates of mass ejection by quasi-stellar sources equal to about one solar mass per year in heavy elements, that this mechanism can account for the heavy-element abundances in the oldest Population II stars. Expressions are given for the degree of enrichment of the intergalactic gas as a function of redshift, and we show that our hypothesis implies that the present density of intergalactic gas must be at least a factor 3 larger than the mean density in galaxies at the present epoch.

  15. Features of structure-phase transformations and segregation processes under irradiation of austenitic and ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Neklyudov, I. M.; Voyevodin, V. N.

    1994-09-01

    The difference between crystal lattices of austenitic and ferritic steels leads to distinctive features in mechanisms of physical-mechanical change. This paper presents the results of investigations of dislocation structure and phase evolution, and segregation phenomena in austenitic and ferritic-martensitic steels and alloys during irradiation with heavy ions in the ESUVI and UTI accelerators and by neutrons in fast reactors BOR-60 and BN-600. The influence of different factors (including different alloying elements) on processes of structure-phase transformation was studied.

  16. Pb’s high sedimentation inside the bay mouth of Jiaozhou Bay

    NASA Astrophysics Data System (ADS)

    Yang, Dongfang; Miao, Zhenqing; Huang, Xinmin; Wei, Linzhen; Feng, Ming

    2017-12-01

    Sedimentation is one of the key environmental behaviors of pollutants in the ocean. This paper analyzed the seasonal and temporal variations of Pb’s sedimentation process in Jiaozhou Bay in 1987. Results showed that Pb contents in bottom waters in Jiaozhou Bay in May, July and November 1987 were 1.87-2.60 μg L-1, 15.11-19.68 μg L-1 and 11.08-15.18 μg L-1, and the pollution levels of Pb in May, July and November 1987 were slight, heavy and heavy, respectively. In May 1987, there was low sedimentation process in waters in the outside of the bay mouth, yet were high sedimentation process in waters in the middle and inside of the bay mouth. In July and November 1987, there was low sedimentation process in waters in the outside of the bay mouth, yet were high sedimentation process in waters in the inside of the bay mouth. The seasonal-temporal variation of sedimentation processes of Pb were determined by the variations of sources input and the vertical water’s effect.

  17. Physical particularities of nuclear reactors using heavy moderators of neutrons

    NASA Astrophysics Data System (ADS)

    Kulikov, G. G.; Shmelev, A. N.

    2016-12-01

    In nuclear reactors, thermal neutron spectra are formed using moderators with small atomic weights. For fast reactors, inserting such moderators in the core may create problems since they efficiently decelerate the neutrons. In order to form an intermediate neutron spectrum, it is preferable to employ neutron moderators with sufficiently large atomic weights, using 233U as a fissile nuclide and 232Th and 231Pa as fertile ones. The aim of the work is to investigate the properties of heavy neutron moderators and to assess their advantages. The analysis employs the JENDL-4.0 nuclear data library and the SCALE program package for simulating the variation of fuel composition caused by irradiation in the reactor. The following main results are obtained. By using heavy moderators with small neutron moderation steps, one is able to (1) increase the rate of resonance capture, so that the amount of fertile material in the fuel may be reduced while maintaining the breeding factor of the core; (2) use the vacant space for improving the fuel-element properties by adding inert, strong, and thermally conductive materials and by implementing dispersive fuel elements in which the fissile material is self-replenished and neutron multiplication remains stable during the process of fuel burnup; and (3) employ mixtures of different fertile materials with resonance capture cross sections in order to increase the resonance-lattice density and the probability of resonance neutron capture leading to formation of fissile material. The general conclusion is that, by forming an intermediate neutron spectrum with heavy neutron moderators, one can use the fuel more efficiently and improve nuclear safety.

  18. Instrumentation and signal processing for the detection of heavy water using off axis-integrated cavity output spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Singh, P. J.; Gaikwad, D. Y.; Udupa, D. V.; Topkar, A.; Sahoo, N. K.

    2018-02-01

    An experimental setup is developed for the trace level detection of heavy water (HDO) using the off axis-integrated cavity output spectroscopy technique. The absorption spectrum of water samples is recorded in the spectral range of 7190.7 cm-1-7191.5 cm-1 with the diode laser as the light source. From the recorded water vapor absorption spectrum, the heavy water concentration is determined from the HDO and water line. The effect of cavity gain nonlinearity with per pass absorption is studied. The signal processing and data fitting procedure is devised to obtain linear calibration curves by including nonlinear cavity gain effects into the calculation. Initial calibration of mirror reflectivity is performed by measurements on the natural water sample. The signal processing and data fitting method has been validated by the measurement of the HDO concentration in water samples over a wide range from 20 ppm to 2280 ppm showing a linear calibration curve. The average measurement time is about 30 s. The experimental technique presented in this paper could be applied for the development of a portable instrument for the fast measurement of water isotopic composition in heavy water plants and for the detection of heavy water leak in pressurized heavy water reactors.

  19. Nuclear Astrophysics at DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reifarth, R.; Bredeweg, T.A.; Esch, E.-I.

    2005-05-24

    One of the most interesting nuclear physics challenges is obtaining a detailed understanding of the nucleosynthesis processes of the elements. Knowledge about the stellar sites, and how they are governed by stellar evolution and cosmology are crucial in understanding the overall picture. Information on reaction rates for neutron- and charged-particle-induced reactions have a direct impact on existing stellar models. Except for the stable isotopes, very few neutron-induced reactions in the energy range of interest have been measured to date. DANCE measurements on stable and unstable isotopes will provide many of the missing key reactions that are needed to understand themore » nucleosynthesis of the heavy elements.« less

  20. Current Radiation Issues for Programmable Elements and Devices

    NASA Technical Reports Server (NTRS)

    Katz, R.; Wang, J. J.; Koga, R.; LaBel, A.; McCollum, J.; Brown, R.; Reed, R. A.; Cronquist, B.; Crain, S.; Scott, T.; hide

    1998-01-01

    State of the an programmable devices are utilizing advanced processing technologies, non-standard circuit structures, and unique electrical elements in commercial-off-the-shelf (COTS)-based, high-performance devices. This paper will discuss that the above factors, coupled with the systems application environment, have a strong interplay that affect the radiation hardness of programmable devices and have resultant system impacts in (1) reliability of the unprogrammed, biased antifuse for heavy ions (rupture), (2) logic upset manifesting itself as clock upset, and (3) configuration upset. General radiation characteristics of advanced technologies are examined and manufacturers' modifications to their COTS-based and their impact on future programmable devices will be analyzed.

  1. A large-scale field trial experiment to derive effective release of heavy metals from incineration bottom ashes during construction in land reclamation.

    PubMed

    Chan, Wei-Ping; Ren, Fei; Dou, Xiaomin; Yin, Ke; Chang, Victor Wei-Chung

    2018-05-08

    Recycling of incineration bottom ashes (IBA) is attracting great interest as it is considered as a vital aspect for closing the waste loop to achieve sustainable development at the growing cities around the world. Various laboratory-testing methods are developed to assess the release potential of heavy metals - one of the most important concerns of using IBA, by reflecting the release conditions of heavy metals from IBA based on the targeted land reclamation application scenarios and corresponding environmental conditions. However, realistic release of the concerned elements in actual application with the presence of complex environment could possibly deviate from the outcomes produced by leaching tests carried out in the laboratory. Hence, a set of large-scale column trial experiments was performed to experimentally determine the effective release of heavy metals, when IBA is used as a filling material in land reclamation. 20 tons of IBA and 320 m 3 of seawater were used in six column trial experiments. The release of 13 heavy metal elements was analyzed through multiple aspects which included kinetics of release, distribution of elements in seawater and the impacts of two different dumping methods, with and without application of a chute. After dumping of IBA into the seawater, almost instantaneous release of heavy metals with uniform horizontal dispersion was observed. Higher concentration of these elements was observed near the bottom of the column, especially when a chute was applied. Comparative analysis was then carried out to establish relationships between the results obtained from the column trial with batch leaching test carried out in the laboratory. Distinctive relationships were observed for different heavy metals which suggests the need of pursuance of further understanding on leaching of IBA in real application scenario and complex environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Screening of trace elements in hair of the female population with different types of cancers in Wielkopolska region of Poland.

    PubMed

    Czerny, Bogusław; Krupka, Krzysztof; Ożarowski, Marcin; Seremak-Mrozikiewicz, Agnieszka

    2014-01-01

    Cancer constitutes a major health problem worldwide. Thus, search for reliable and practical markers of the disease process remains the key issue of the diagnostic process. The study aims at linking the trace element status of an organism, assessed by hair analysis, with the occurrence of cancer diseases. Hair samples were collected from 299 patients with cancer diseases confirmed by a histopathological test and from 100 controls. Cancer patients were divided into three groups, depending on cancer type: hormone-dependent cancer, cancer of the alimentary tract, and cancer with high glycolytic activity. Mineral element analysis of hair was performed using an atomic emission spectrophotometer with inductively coupled plasma (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). Statistically significantly lower concentrations of selenium, zinc, copper, germanium and boron, iron, and magnesium were observed in the three groups of cancer patients. Disturbance in the axis glucose-insulin and changes in concentrations of heavy metals and toxic elements were also noted. It seems safe to conclude that our results confirmed usefulness of hair element analysis in screening tests for the assessment of the biomarker of various cancer diseases in a female population.

  3. Artificial topography changes the growth strategy of Spartina alterniflora, case study with wave exposure as a comparison.

    PubMed

    Hong, Hualong; Dai, Minyue; Lu, Haoliang; Liu, Jingchun; Zhang, Jie; Chen, Chaoqi; Xia, Kang; Yan, Chongling

    2017-11-17

    This paper reports findings about the growth of Spartina alterniflora (Loisel.) near an engineered coastal protection defences to discover the potential influences on vegetation growth from the artificial topography. Impacts of the artificial topography on the sediment element composition were detected by comparing the fixed effects caused by artificial topography and wave exposure using linear mixed models. Surficial sediments under the impacts of artificial topography contain elevated levels of biogenic elements and heavy metals, including C (and organic carbon), N, S, Al, Fe, Mn, Cu, Zn, As, Cd, Cr, Ni, and Pb. The results showed that element enrichment caused by artificial topography reduced the vegetation sexual reproduction. Contrary to the potential inhibition caused by direct wave exposure, which was due to the biomass accumulation limit, the inhibition caused by artificial topography was related to the transition of growth strategy. The contents of Cu, Mn, N, Ni, S and As in the sediments were critical in considering the relationship between the change in the sediment element composition and the alteration in the plant growth. Our study emphasizes the importance of rethinking the impacts of coastal development projects, especially regarding the heterogeneity of sediment element composition and its ecological consequences.

  4. Type Ia Supernovae as Sites of the p-process: Two-dimensional Models Coupled to Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Travaglio, C.; Röpke, F. K.; Gallino, R.; Hillebrandt, W.

    2011-10-01

    Beyond Fe, there is a class of 35 proton-rich nuclides, between 74Se and 196Hg, called p-nuclei. They are bypassed by the s and r neutron capture processes and are typically 10-1000 times less abundant than the s- and/or r-isotopes in the solar system. The bulk of p-isotopes is created in the "gamma processes" by sequences of photodisintegrations and beta decays in explosive conditions in both core collapse supernovae (SNe II) and in Type Ia supernovae (SNe Ia). SNe II contribute to the production of p-nuclei through explosive neon and oxygen burning. However, the major problem in SN II ejecta is a general underproduction of the light p-nuclei for A < 120. We explore SNe Ia as p-process sites in the framework of a two-dimensional SN Ia delayed detonation model as well as pure deflagration models. The white dwarf precursor is assumed to have reached the Chandrasekhar mass in a binary system by mass accretion from a giant/main-sequence companion. We use enhanced s-seed distributions, with seeds directly obtained from a sequence of thermal pulse instabilities both in the asymptotic giant branch phase and in the accreted material. We apply the tracer-particle method to reconstruct the nucleosynthesis by the thermal histories of Lagrangian particles, passively advected in the hydrodynamic calculations. For each particle, we follow the explosive nucleosynthesis with a detailed nuclear reaction network for all isotopes up to 209Bi. We select tracers within the typical temperature range for p-process production, (1.5-3.7) × 109 K, and analyze in detail their behavior, exploring the influence of different s-process distributions on the p-process nucleosynthesis. In addition, we discuss the sensitivity of p-process production to parameters of the explosion mechanism, taking into account the consequences on Fe and alpha elements. We find that SNe Ia can produce a large amount of p-nuclei, both the light p-nuclei below A = 120 and the heavy-p nuclei, at quite flat average production factors, tightly related to the s-process seed distribution. For the first time, we find a stellar source able to produce both light and heavy p-nuclei almost at the same level as 56Fe, including the debated neutron magic 92, 94Mo and 96, 98Ru. We also find that there is an important contribution from the p-process nucleosynthesis to the s-only nuclei 80Kr, 86Sr, to the neutron magic 90Zr, and to the neutron-rich 96Zr. Finally, we investigate the metallicity effect on p-process production in our models. Starting with different s-process seed distributions for two metallicities Z = 0.02 and Z = 0.001, running two-dimensional SN Ia models with different initial composition, we estimate that SNe Ia can contribute to at least 50% of the solar p-process composition. A more detailed analysis of the role of SNe Ia in Galactic chemical evolution of p-nuclei is in preparation.

  5. Heavy metal distribution and partitioning in the vicinity of the discharge areas of Lisbon drainage basins (Tagus Estuary, Portugal)

    NASA Astrophysics Data System (ADS)

    Duarte, Bernardo; Silva, Gilda; Costa, José Lino; Medeiros, João Paulo; Azeda, Carla; Sá, Erica; Metelo, Inês; Costa, Maria José; Caçador, Isabel

    2014-10-01

    Worldwide estuarine ecosystems are by their privileged geographic location, anthropogenically impacted systems. Heavy metal contamination in estuarine waters and sediments are well known to be one of the most important outcomes driven from human activities. The partitioning of these elements has been widely focused, due to its importance not only on the estuarine biogeochemistry but also on its bioavailability to the trophic webs. As observed in other estuaries, in the Tagus basin, no increase in the partition coefficients with the increasing suspended particulate matter concentrations was observed, mostly due to a permanent dilution process of the suspended matter, rich in heavy metals and less contaminated and resuspended bottom sediments. Another important outcome of this study was the common origin of all the analysed heavy metals, probably due to the large industrialization process that the margins of the Tagus estuary suffered in the past, although no relationship was found with the presence of the different discharge areas. In fact, metal partitioning seems to be mostly influenced by the chemical species in which the pollutant is delivered to the system and on water chemistry, with a higher emphasis on the metal cycling essentially between the particulate and dissolved phase. This partitioning system acquires a relevant importance while evaluating the impacts of marine construction and the associated dredging operations, and consequent changes in the estuarine water chemistry.

  6. Spatial variability in depth and landscape of heavy metal contents of volcanic soils of the National Cajas Park in the Azuay Andes (Ecuador)

    NASA Astrophysics Data System (ADS)

    Bech, Jaume; Roca, Núria; Boluda, Rafael; Gil, Carlos; Ramos-Miras, Joaquín; Rodríguez, Jose A.

    2015-04-01

    Although the soils in the Azuay Andes are thought to be generally non-contaminated, it is necessary to preserve them from anthropogenic pollution. This area supplies drinking water to Cuenca, the third city of Ecuador. At present, very little information is available on baseline metal concentrations in Latin American soils. Therefore, it is important to establish the baseline of elements in soils as reference values for evaluating potential changes in their concentrations and to be able to define their origins. The objectives of this study are: (1) to show morphological, physical and chemical characteristics of Andisols in the Azuay Andes (Ecuador); (2) to determine the concentrations of six heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) and (3) to evaluate the relationship between metal concentration and soil properties. The study area is located in National Cajas Park in the Paramo area of the Andes at Azuay Province (Ecuador). The geological origin of the National Cajas Park dates back to the Quaternary age. This area is a U-shaped glaciated valley formed over a pre-existing volcanic basement which consists of rhyolite and andesite volcanic tuff. The moraines are covered by discontinuous patches of volcanic ash. The climate is characterized by rather high rainfall, between 1200 to 2000 mm per year, regularly distributed and generally of a low intensity with a yearly average constant temperature (7°C) with high diurnal amplitudes. The paramo is a high altitude neotropical grassland ecosystem, located between the continuous forest border (~3500 m) and the eternal snow line (~5000 m). Seven representative volcanic soil pedons of a toposequence were studied and sampled. All horizons were analysed for physical and chemical properties by standard and specific methods for volcanic soils. Total metal concentrations in soil horizons were determined by ICP-MS spectrometer. The background values were calculated using the 4σ-outlier test. This requires the elimination of potential outliers from the data set and the calculation of the mean and the standard deviation for the remaining sub-collective. Andisols are dominated by amorphous aluminium silicates and Al-organic complexes. The soils of a volcanic area usually have an Ah-Bh-Bhs/ Bw-C horizon sequence. The Ah horizon is dark-coloured and very high in organic carbon. The pH NaF usually rises to 10.5 below 20 cm. Correlation metal concentration with pH NaF may reflect the impact of volcanic pedogenetic pathways of soils on the original trace elements distribution (Cr and Pb). Close relationships between organic matter have a marked affinity to trace elements (Cd and Cu) forming organomineral complexes. Ni and Zn present a close relationship with soil grain distribution. This may reflect the impact of wind or water on the original parent material distribution. The great dispersion of heavy metals between horizons could be horizon discontinuities. The elements Zr, Ti and Y, have been widely used as indices of immobile minerals. These studies must be performed to definitively confirm the complex profiles. Cadmium, Cu, Ni and Zn showed highly significant differences between Andisols. The complex association of the soils in the landscape was attributed to the difference in their parent material compositions. Occasional or continuous addition of volcanic deposits to soil becomes the soil forming process, and is decisive in the distribution of heavy metals. Although, the Azuay soils have shown a spatial variability of heavy metal concentrations in depth and landscape, the data sets were predominantly influenced by natural element distribution. In general, the upper limits of heavy metal background are (in mg•kg-1): Cd (1), Cr (44), Cu (54), Ni (10), Pb (69) and Zn (149). Only one point with slight enrichment Cd anomalies were observed: A4 (35-69 cm): 1.72 mg•kg-1. The concentrations of heavy metals found in the Cajas National Park are normal and do not show any sign of contamination. Acknowledgements The authors are grateful to L. Tonon, G. Larriva of the University of Cuenca (Ecuador) and S. Ugalde for their technical support in this study.

  7. Monitorization of technosols in old mining sites treated with calcareous fillers

    NASA Astrophysics Data System (ADS)

    Martínez-Sanchez, MJose; Perez-Sirvent, Carmen; Garcia-Lorenzo, MariLuz; Gonzalez, Eva; Perez-Espinosa, Victor; Martínez-Lopez, Salvadora; Hernandez, Carmen; Molina, Jose; Martínez, Lucia B.

    2014-05-01

    A large number of soils around the world are contaminated by heavy metals due to mining activities, generating adverse effects on human health and the environment. In response to these negative effects, a variety of technologies to remediate soils affected by heavy metals have been developed. Among them, in situ immobilization by means of soil amendment is a non-intrusive and cost effective alternative, that transforms the highly mobile toxic heavy metals to physico-chemically stable forms, reducing their mobility and environmental risks. Limestone filler is a good selection for such a purpose, because of its low permeability and low solubility, due to its high degree of physical-chemical stability and because is a non-toxic material with a high finely divided calcium carbonate content. In addition, the use of this amendment could revalorize the residues, reducing the costs of the process. The objective of this work was to evaluate the effectiveness of a immobilization technique in sediments contaminated by heavy metals as a results of mining activities. The study area was Portman bay, located close to the mining region of La Unión and subjected to mining from the time of the Roman Empire to 1991. Wastes from mining activities mainly consisted in ore materials (galena, pyrite and sphalerite), phyllosilicates, in addition to siderite, iron oxides and sometimes alteration products such as jarosite, alunite, kaolinite and greenalite. These materials have suffered a concentration process by floatation with sea water and, as a result of the discharge, the whole of the bay has filled up with wastes which also extend into the Mediterranean Sea. Two experimental areas, approximately 1 Ha each one, were selected and technosols were developed as follows: original sediments from the bay, sediments mixed with limestone filler in a 1:1 proportion, gravel to avoid capillary and natural soil to allow plant growth. After the remediation technique was applied, monitorization of experimental areas was done in 18 sampling points in which sediment and water samples were collected and analyzed. Monitorization was carried out during a 4 years period, samples being obtained at two month intervals. The pH and the electrical conductivity were determined, in naddition to the heavy metal concentration. The Zn content was determined by flame atomic absorption spectrometry. The Pb, Cd and Cu content was determined by electrothermal atomization atomic absorption spectrometry. The As content was measured by atomic fluorescence spectrometry using an automated continuous flow hydride generation spectrometer. In addition, Microtox bioassay was applied in order to study ecotoxicity of collected water samples. Sediments before the remediation technique showed acidic pH, high EC values and high trace elements content. The results obtained after the immobilization showed that sediment samples had neutral pH (average value of 8.3) low electrical conductivity (1.32 dS m-1) and low trace elements concentration, in some cases below the detection limit. When water samples obtained in the piezometers were evaluated, the results indicated that these samples correspond to rainfall waters and were characterized by neutral pH and trace elements concentration below the detection limit. In addition, none of them showed toxicity when submitted to the selected bioassay Then, we can conclude that the use of limestone filler constitutes an excellent option in sediments polluted by trace elements, because of risk for human health or ecosystem does not exist or is decreased in a large extent after the intervention. In addition, the designed experience allows stabilizer proportion to be optimized and may suppose a big cost-saving in the project in areas affected by mining activities.

  8. Metal transformation as a strategy for bacterial detoxification of heavy metals.

    PubMed

    Essa, Ashraf M M; Al Abboud, Mohamed A; Khatib, Sayeed I

    2018-01-01

    Microorganisms can modify the chemical and physical characters of metals leading to an alteration in their speciation, mobility, and toxicity. Aqueous heavy metals solutions (Hg, Cd, Pb, Ag, Cu, and Zn) were treated with the volatile metabolic products (VMPs) of Escherichia coli Z3 for 24 h using aerobic bioreactor. The effect of the metals treated with VMPs in comparison to the untreated metals on the growth of E. coli S1 and Staphylococcus aureus S2 (local isolates) was examined. Moreover, the toxic properties of the treated and untreated metals were monitored using minimum inhibitory concentration assay. A marked reduction of the treated metals toxicity was recorded in comparison to the untreated metals. Scanning electron microscopy and energy dispersive X-ray analysis revealed the formation of metal particles in the treated metal solutions. In addition to heavy metals at variable ratios, these particles consisted of carbon, oxygen, sulfur, nitrogen elements. The inhibition of metal toxicity was attributed to the existence of ammonia, hydrogen sulfide, and carbon dioxide in the VMPs of E. coli Z3 culture that might responsible for the transformation of soluble metal ions into metal complexes. This study clarified the capability of E. coli Z3 for indirect detoxification of heavy metals via the immobilization of metal ions into biologically unavailable species. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Open Heavy Flavor and Quarkonia Results at RHIC

    NASA Astrophysics Data System (ADS)

    Nouicer, Rachid

    2017-12-01

    RHIC experiments carry out a comprehensive physics program which studies open heavy flavor and quarkonium production in relativistic heavy-ion collisions. The discovery at RHIC of large high-pT suppression and flow of electrons from heavy quarks flavors have altered our view of the hot and dense matter formed in central Au + Au collisions at GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. In recent years, the RHIC experiments upgraded the detectors; (1) PHENIX Collaboration installed silicon vertex tracker (VTX) at mid-rapidity region and forward silicon vertex tracker (FVTX) at the forward rapidity region, and (2) STAR Collaboration installed the heavy flavor tracker (HFT) and the muon telescope detector (MTD) both at the mid-rapidity region. With these new upgrades, both experiments have collected large data samples. These new detectors enhance the capability of heavy flavor measurements via precision tracking. The PHENIX experiments established measurements of ψ(1S) and ψ(2S) production as a function of system size, p + p, p + Al, p + Au, and 3He + Au collisions at GeV. In p/3He + A collisions at forward rapidity, we observe no difference in the ψ(2S)/ψ(1S) ratio relative to p + p collisions. At backward rapidity, where the comoving particle density is higher, we find that the ψ(2S) is preferentially suppressed by a factor of two. STAR Collaboration presents the first J/ψ and ϒ measurements in the di-muon decay channel in Au + Au collisions at GeV at mid-rapidity at RHIC. We observe clear J/ψ RAA suppression and qualitatively well described by transport models simultaneously accounting for dissociation and regeneration processes.

  10. Size-resolved trace metal characterization of aerosols emitted by four important source types in Switzerland

    NASA Astrophysics Data System (ADS)

    Buerki, Peter R.; Gaelli, Brigitte C.; Nyffeler, Urs P.

    In central Switzerland five types of emission sources are mainly responsible for airborne trace metals: traffic, industrial plants burning heavy oil, resuspension of soil particles, residential heatings and refuse incineration plants. The particulate emissions of each of these source types except refuse incineration were sampled using Berner impactors and the mass and elemental size distributions of Cd, Cu, Mn, Pb, Zn, As and Na determined. Cd, Na and Zn are not characteristic for any of these source types. As and Cu, occurring in the fine particle fractions are characteristic for heavy oil combustion, Mn for soil dust and sometimes for heavy and fuel oil combustion and Pb for traffic aerosols. The mass size distributions of aerosols originating from erosion and abrasion processes show a maximum mass fraction in the coarse particle range larger than about 1 μm aerodynamic equivalent diameters (A.E.D.). Aerosols originating from combustion processes show a second maximum mass fraction in the fine particle range below about 0.5μm A.E.D. Scanning electron microscopy combined with an EDS analyzer was used for the morphological characterization of emission and ambient aerosols.

  11. Platform C South Arrival

    NASA Image and Video Library

    2016-08-05

    A heavy load transport truck from Tillett Heavy Hauling in Titusville, Florida, arrives at the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida, carrying the second section of the first half of the C-level work platforms, C South, for the agency’s Space Launch System (SLS) rocket. The platform will be offloaded in the VAB staging area in the west parking lot. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft and provide access for testing and processing.

  12. Platform C South Arrival

    NASA Image and Video Library

    2016-08-04

    A heavy load transport truck from Tillett Heavy Hauling in Titusville, Florida, arrives at the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida, carrying a section of the first half of the C-level work platforms, C south, for the agency’s Space Launch System (SLS) rocket. The platform will be delivered to the VAB staging area in the west parking lot. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft and provide access for testing and processing.

  13. Biogeochemical characteristics of Rosa canina grown in hydrothermally contaminated soils of the Gümüşhane Province, Northeast Turkey.

    PubMed

    Vural, Alaaddin

    2015-08-01

    Kırkpavli alteration area (Gümüşhane, Northeast Turkey) is contaminated by heavy metals such as Cd, Pb, As, Cu and Zn. The quantity of accumulation of heavy metal trace elements and macroelements in 32 leaves of Rosa canina of the Kırkpavli alteration area has been studied within the scope of geochemical studies. Element contents of samples were assessed using various parameters including descriptive statistics, factor analysis, correlation coefficients and bioaccumulation factor. Concentrations were detected in the acceptable range for Mo, Cu, Pb, Ni, As, Cd, Sb, P, Ti, Na, Se and Sn. Concentrations of Co, Mn, Ba and Hg were detected close to the acceptable values, whereas Zn, Fe, Sr, V, Ca, Cr, Mg, B, Al, K, W, Sc, Cs and Rb concentrations were detected above the acceptable values. Principal component analysis was used to identify the elements that have a close relationship with each other and/or similar origins. It has been concluded that Zn, Cu, As and Mo content of the plant were related to hydrothermal alteration process and they behaved together, whereas Mn and Fe were especially products of weathering conditions, also behaved together. In terms of macroelements, Ca, Mg and Na had similar behaviour, while P and K had the same correlation.

  14. The new model of chemical evolution of r-process elements based on the hierarchical galaxy formation. I. Ba and Eu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komiya, Yutaka; Suda, Takuma; Yamada, Shimako

    2014-03-10

    We investigate the chemical enrichment of r-process elements in the early evolutionary stages of the Milky Way halo within the framework of hierarchical galaxy formation using a semi-analytic merger tree. In this paper, we focus on heavy r-process elements, Ba and Eu, of extremely metal-poor (EMP) stars and give constraints on their astronomical sites. Our models take into account changes of the surface abundances of EMP stars by the accretion of interstellar medium (ISM). We also consider metal-enrichment of intergalactic medium by galactic winds and the resultant pre-enrichment of proto-galaxies. The trend and scatter of the observed r-process abundances aremore » well reproduced by our hierarchical model with ∼10% of core-collapse supernovae in low-mass end (∼10 M {sub ☉}) as a dominant r-process source and the star formation efficiency of ∼10{sup –10} yr{sup –1}. For neutron star mergers as an r-process source, their coalescence timescale has to be ∼10{sup 7} yr, and the event rates ∼100 times larger than currently observed in the Galaxy. We find that the accretion of ISM is a dominant source of r-process elements for stars with [Ba/H] < –3.5. In this model, a majority of stars at [Fe/H] < –3 are formed without r-process elements, but their surfaces are polluted by the ISM accretion. The pre-enrichment affects ∼4% of proto-galaxies, and yet, is surpassed by the ISM accretion in the surface of EMP stars.« less

  15. Trace element behavior in hydrothermal experiments: Implications for fluid processes at shallow depths in subduction zones

    NASA Astrophysics Data System (ADS)

    You, C.-F.; Castillo, P. R.; Gieskes, J. M.; Chan, L. H.; Spivack, A. J.

    1996-05-01

    Chemical evaluation of fluids affected during progressive water-sediment interactions provides critical information regarding the role of slab dehydration and/or crustal recycling in subduction zones. To place some constraints on geochemical processes during sediment subduction, reactions between décollement sediments and synthetic NaCl-CaCl 2 solutions at 25-350°C and 800 bar were monitored in laboratory hydrothermal experiments using an autoclave apparatus. This is the first attempt in a single set of experiments to investigate the relative mobilities of many subduction zone volatiles and trace elements but, because of difficulties in conducting hydrothermal experiments on sediments at high P-T conditions, the experiments could only be designed for a shallow (˜ 10 km) depth. The experimental results demonstrate mobilization of volatiles (B and NH 4) and incompatible elements (As, Be, Cs, Li, Pb, Rb) in hydrothermal fluids at relatively low temperatures (˜ 300°C). In addition, a limited fractionation of light from heavy rare earth elements (REEs) occurs under hydrothermal conditions. On the other hand, the high field strength elements (HFSEs) Cr, Hf, Nb, Ta, Ti, and Zr are not mobile in the reacted fluids. The observed behavior of volatiles and trace elements in hydrothermal fluids is similar to the observed enrichment in As, B, Cs, Li, Pb, Rb, and light REEs and depletion in HFSEs in arc magmas relative to magmas derived directly from the upper mantle. Thus, our work suggests a link between relative mobilities of trace elements in hydrothermal fluids and deep arc magma generation in subduction zones. The experimental results are highly consistent with the proposal that the addition of subduction zone hydrous fluids to the subarc mantle, which has been depleted by previous melting events, can produce the unique characteristics of arc magmas. Moreover, the results suggest that deeply subducted sediments may no longer have the composition necessary to generate the other distinct characteristics, such as the B-δ 11 B and B- 10Be systematics, of arc lavas. Finally, the mobilization of B, Cs, Pb, and light REEs relative to heavy REEs in the hydrothermal fluids fractionate the ratios of B/Be, B/Nb, Cs/Rb, Pb/Ce, La/Ba and LREE/HREE, which behave conservatively during normal magmatic processes. These results demonstrate that the composition of slab-derived fluids has great implications for the recycling of elements; not only in arc magmas but also in mantle plumes.

  16. Superheavy elements and r-process

    NASA Astrophysics Data System (ADS)

    Panov, I. V.; Korneev, I. Yu.; Thielemann, F.-K.

    2009-06-01

    The probability for the production of superheavy elements in the astrophysical r-process is discussed. The dependence of the estimated superheavy-element yields on input data is estimated. Preliminary calculations revealed that the superheavy-element yields at the instant of completion of the r-process may be commensurate with the uranium yield, but the former depend strongly on the models used to forecast the properties of beta-delayed, neutron-induced, and spontaneous fission. This study is dedicated to the 80th anniversary of V.S. Imshennik’s birth.

  17. The Heavy Nuclei eXplorer (HNX) Mission

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Adams, J. H.; Barbier, L. M.; Craig, N.; Cummings, A. C.; Cummings, J. R.; Doke, T.; Hasebe, N.; Hayashi, T.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The primary scientific objectives of HNX, which was recently selected by NASA for a Small Explorer (SMEX) Mission Concept Study, are to measure the age of the galactic cosmic rays (GCR) since nucleosynthesis, determine the injection mechanism for the GCR accelerator (Volatility or FIP), and study the mix of nucleosynthetic processes that contribute to the source of GCRs. The experimental goal of HNX is to measure the elemental abundances of all individual stable nuclei from neon through the actinides and possibly beyond. HNX is composed of two instruments: ECCO, which measures elemental abundances of nuclei with Z greater than or equal to 72, and ENTICE. which measures elemental abundances of nuclei with Z between 10 and 82. We describe the mission and the science that can be addressed by HNX.

  18. Sustainable sources of biomass for bioremediation of heavy metals in waste water derived from coal-fired power generation.

    PubMed

    Saunders, Richard J; Paul, Nicholas A; Hu, Yi; de Nys, Rocky

    2012-01-01

    Biosorption of heavy metals using dried algal biomass has been extensively described but rarely implemented. We contend this is because available algal biomass is a valuable product with a ready market. Therefore, we considered an alternative and practical approach to algal bioremediation in which algae were cultured directly in the waste water stream. We cultured three species of algae with and without nutrient addition in water that was contaminated with heavy metals from an Ash Dam associated with coal-fired power generation and tested metal uptake and bioremediation potential. All species achieved high concentrations of heavy metals (to 8% dry mass). Two key elements, V and As, reached concentrations in the biomass of 1543 mg.kg(-1) DW and 137 mg.kg(-1) DW. Growth rates were reduced by more than half in neat Ash Dam water than when nutrients were supplied in excess. Growth rate and bioconcentration were positively correlated for most elements, but some elements (e.g. Cd, Zn) were concentrated more when growth rates were lower, indicating the potential to tailor bioremediation depending on the pollutant. The cosmopolitan nature of the macroalgae studied, and their ability to grow and concentrate a suite of heavy metals from industrial wastes, highlights a clear benefit in the practical application of waste water bioremediation.

  19. Sorption interactions of heavy metals with biochar in soil remediation studies

    NASA Astrophysics Data System (ADS)

    Fristak, Vladimir; Friesl-Hanl, Wolfgang; Wawra, Anna; Soja, Gerhard

    2015-04-01

    The search for new materials in soil remediation applications has led to new conversion technologies such as carbonization and pyrolysis. Biochar represents the pyrolytic product of different biomass input materials processed at 350-1000°C and anoxic conditions. The pyrolysis temperature and feedstock have a considerable influence on the quality of the charred product and also its main physico-chemical properties. Biochar as porous material with large specific surface and C-stability is utilized in various environmental and agricultural technologies. Carbon sequestration, increase of soil water-holding capacity and pH as well as sorption of different xenobiotics present only a fraction of the multitude of biochar application possibilities. Heavy metals as potential sources of ecotoxicological risks are characterized by their non-degradability and the potential transfer into the food chain. Carbonaceous materials have been used for a long time as sorbents for heavy metals and organic contaminants in soil and water technologies. The similarity of biochar with activated carbon predetermines this material as remediation tool which plays an important role in heavy metal immobilization and retention with a parallel reduction in the risk of ground water and food crop contamination. In all this processes the element-specific sorption behaviour of biochar creates new conditions for pollutant binding. Sorption interaction and separation of contaminants from soil solution or waste effluent can be affected by wide-ranging parameters. In detail, our study was based on batch-sorption comparisons of two biochars produced from wood chips and green waste residues. We observed that sorption efficiency of biochar for model bivalent heavy metals (Cd, Zn, Cu) can be influenced by equilibrium parameters such as pH, contact time, initial concentration of metal in reaction solutions, presence of surfactants and chemical modification by acid hydrolysis, esterification and methylation. The study of sorption mechanisms showed differences in the sorption of the targeted heavy metals in relation to the contribution of ion-exchange and precipitation processes. We confirmed the effectivity of physico-chemical artificial aging on sorption capacity of biochar in terms of changes in surface structure. Based on these results, the application potential of biochar as sorption material for stabilizing heavy metals in soils is discussed.

  20. Electromagnetic mixed waste processing system for asbestos decontamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasevich, R.S.; Vaux, W.; Ulerich, N.

    The overall objective of this three-phase program is to develop an integrated process for treating asbestos-containing material that is contaminated with radioactive and hazardous constituents. The integrated process will attempt to minimize processing and disposal costs. The objectives of Phase 1 were to establish the technical feasibility of asbestos decomposition, inorganic radionuclide nd heavy metal removal, and organic volatilization. Phase 1 resulted in the successful bench-scale demonstration of the elements required to develop a mixed waste treatment process for asbestos-containing material (ACM) contaminated with radioactive metals, heavy metals, and organics. Using the Phase 1 data, a conceptual process was developed.more » The Phase 2 program, currently in progress, is developing an integrated system design for ACM waste processing. The Phase 3 program will target demonstration of the mixed waste processing system at a DOE facility. The electromagnetic mixed waste processing system employs patented technologies to convert DOE asbestos to a non-hazardous, radionuclide-free, stable waste. The dry, contaminated asbestos is initially heated with radiofrequency energy to remove organic volatiles. Second,the radionuclides are removed by solvent extraction coupled with ion exchange solution treatment. Third, the ABCOV method converts the asbestos to an amorphous silica suspension at low temperature (100{degrees}C). Finally the amorphous silica is solidified for disposal.« less

  1. Effects and limitations of elemental sulphur applications for enhanced phytoextraction.

    PubMed

    Fässler, Erika; Stauffer, Werner; Gupta, Satish K; Schulin, Rainer

    2012-08-01

    The application of elemental sulphur (S) to heavy metal contaminated soils is a strategy to increase metal extraction by plants. Here, we examined to which degree the efficiency of phytoextraction could be enhanced by increasing the S application rate on afield where S had already been applied for 6 years. For this purpose, the field experiment was continued for another two years doubling the S application rate on half of the S treatment plots, while continuing application at the previous rate on the other half. Doubling the application rate significantly accelerated the dissolution of calcite and the decrease in soil pH and also increased cadmium (Cd) and zinc (Zn) uptake by sunflower and tobacco. But even in a best-case-scenario remediation of the site would still take more than a century. The results indicate that we reached the maximum potential of S application to enhance metal phytoextraction on the study site. Further decrease in pH by additional S applications would bear an excessive risk of decreasing yields and increasing metal leaching out of the root zone.

  2. Demonstration of Removal, Separation, and Recovery of Heavy Metals from Industrial Wastestreams Using Molecular Recognition Technology (MRT)

    DTIC Science & Technology

    2002-11-01

    Treatment Plant”, TM-2123-ENV, April 1995. 3. Ford, K.H., 1996, “ Heavy Metal Adsorption/ Biosorption Studies for Zero Discharge Industrial Wastewater...SEPARATION, AND RECOVERY OF HEAVY METALS FROM INDUSTRIAL WASTESTREAMS USING MOLECULAR RECOGNITION TECHNOLOGY (MRT) Final Report by Dr. Katherine...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER DEMONSTRATION OF REMOVAL, SEPARATION, AND RECOVERY OF HEAVY METALS FROM INDUSTRIAL WASTEWATERS USING

  3. Semiclassical Virasoro blocks from AdS 3 gravity

    DOE PAGES

    Hijano, Eliot; Kraus, Per; Perlmutter, Eric; ...

    2015-12-14

    We present a unified framework for the holographic computation of Virasoro conformal blocks at large central charge. In particular, we provide bulk constructions that correctly reproduce all semiclassical Virasoro blocks that are known explicitly from conformal field theory computations. The results revolve around the use of geodesic Witten diagrams, recently introduced in [1], evaluated in locally AdS 3 geometries generated by backreaction of heavy operators. We also provide an alternative computation of the heavy-light semiclassical block — in which two external operators become parametrically heavy — as a certain scattering process involving higher spin gauge fields in AdS 3; thismore » approach highlights the chiral nature of Virasoro blocks. Finally, these techniques may be systematically extended to compute corrections to these blocks and to interpolate amongst the different semiclassical regimes.« less

  4. Phytoremediation of heavy metals--concepts and applications.

    PubMed

    Ali, Hazrat; Khan, Ezzat; Sajad, Muhammad Anwar

    2013-05-01

    The mobilization of heavy metals by man through extraction from ores and processing for different applications has led to the release of these elements into the environment. Since heavy metals are nonbiodegradable, they accumulate in the environment and subsequently contaminate the food chain. This contamination poses a risk to environmental and human health. Some heavy metals are carcinogenic, mutagenic, teratogenic and endocrine disruptors while others cause neurological and behavioral changes especially in children. Thus remediation of heavy metal pollution deserves due attention. Different physical and chemical methods used for this purpose suffer from serious limitations like high cost, intensive labor, alteration of soil properties and disturbance of soil native microflora. In contrast, phytoremediation is a better solution to the problem. Phytoremediation is the use of plants and associated soil microbes to reduce the concentrations or toxic effects of contaminants in the environments. It is a relatively recent technology and is perceived as cost-effective, efficient, novel, eco-friendly, and solar-driven technology with good public acceptance. Phytoremediation is an area of active current research. New efficient metal hyperaccumulators are being explored for applications in phytoremediation and phytomining. Molecular tools are being used to better understand the mechanisms of metal uptake, translocation, sequestration and tolerance in plants. This review article comprehensively discusses the background, concepts and future trends in phytoremediation of heavy metals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Novel approach for quantitatively estimating element retention and material balances in soil profiles of recharge basins used for wastewater reclamation.

    PubMed

    Eshel, Gil; Lin, Chunye; Banin, Amos

    2015-01-01

    We investigated changes in element content and distribution in soil profiles in a study designed to monitor the geochemical changes accruing in soil due to long-term secondary effluent recharge, and its impact on the sustainability of the Soil Aquifer Treatment (SAT) system. Since the initial elemental contents of the soils at the studied site were not available, we reconstructed them using scandium (Sc) as a conservative tracer. By using this approach, we were able to produce a mass-balance for 18 elements and evaluate the geochemical changes resulting from 19 years of effluent recharge. This approach also provides a better understanding of the role of soils as an adsorption filter for the heavy metals contained in the effluent. The soil mass balance suggests 19 years of effluent recharge cause for a significant enrichment in Cu, Cr, Ni, Zn, Mg, K, Na, S and P contents in the upper 4m of the soil profile. Combining the elements lode record during the 19 years suggest that Cr, Ni, and P inputs may not reach the groundwater (20 m deep), whereas the other elements may. Conversely, we found that 58, 60, and 30% of the initial content of Mn, Ca and Co respectively leached from the upper 2-m of the soil profile. These high percentages of Mn and Ca depletion from the basin soils may reduce the soil's ability to buffer decreases in redox potential pe and pH, respectively, which could initiate a reduction in the soil's holding capacity for heavy metals. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. PM10 composition during an intense Saharan dust transport event over Athens (Greece).

    PubMed

    Remoundaki, E; Bourliva, A; Kokkalis, P; Mamouri, R E; Papayannis, A; Grigoratos, T; Samara, C; Tsezos, M

    2011-09-15

    The influence of Saharan dust on the air quality of Southern European big cities became a priority during the last decade. The present study reports results on PM(10) monitored at an urban site at 14 m above ground level during an intense Saharan dust transport event. The elemental composition was determined by Energy Dispersive X-ray Fluorescence Spectrometry (EDXRF) for 12 elements: Si, Al, Fe, K, Ca, Mg, Ti, S, Ni, Cu, Zn and Mn. PM(10) concentrations exceeded the EU limit (50 μg/m(3)) several times during the sampling period. Simultaneous maxima have been observed for the elements of crustal origin. The concentrations of all the elements presented a common maximum, corresponding to the date where the atmosphere was heavily charged with particulate matter permanently for an interval of about 10h. Sulfur and heavy metal concentrations were also associated to local emissions. Mineral dust represented the largest fraction of PM(10) reaching 79%. Seven days back trajectories have shown that the air masses arriving over Athens, originated from Western Sahara. Scanning Electron Microscopy coupled with Energy Dispersive X-ray analysis (SEM-EDX) revealed that particle agglomerates were abundant, most of them having sizes <2 μm. Aluminosilicates were predominant in dust particles also rich in calcium which was distributed between calcite, dolomite, gypsum and Ca-Si particles. These results were consistent with the origin of the dust particles and the elemental composition results. Sulfur and heavy metals were associated to very fine particles <1 μm. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Correlation consistent valence basis sets for use with the Stuttgart-Dresden-Bonn relativistic effective core potentials: The atoms Ga-Kr and In-Xe

    NASA Astrophysics Data System (ADS)

    Martin, Jan M. L.; Sundermann, Andreas

    2001-02-01

    We propose large-core correlation-consistent (cc) pseudopotential basis sets for the heavy p-block elements Ga-Kr and In-Xe. The basis sets are of cc-pVTZ and cc-pVQZ quality, and have been optimized for use with the large-core (valence-electrons only) Stuttgart-Dresden-Bonn (SDB) relativistic pseudopotentials. Validation calculations on a variety of third-row and fourth-row diatomics suggest them to be comparable in quality to the all-electron cc-pVTZ and cc-pVQZ basis sets for lighter elements. Especially the SDB-cc-pVQZ basis set in conjunction with a core polarization potential (CPP) yields excellent agreement with experiment for compounds of the later heavy p-block elements. For accurate calculations on Ga (and, to a lesser extent, Ge) compounds, explicit treatment of 13 valence electrons appears to be desirable, while it seems inevitable for In compounds. For Ga and Ge, we propose correlation consistent basis sets extended for (3d) correlation. For accurate calculations on organometallic complexes of interest to homogenous catalysis, we recommend a combination of the standard cc-pVTZ basis set for first- and second-row elements, the presently derived SDB-cc-pVTZ basis set for heavier p-block elements, and for transition metals, the small-core [6s5p3d] Stuttgart-Dresden basis set-relativistic effective core potential combination supplemented by (2f1g) functions with exponents given in the Appendix to the present paper.

  8. The assessment of bore-hole water quality of Kakamega County, Kenya

    NASA Astrophysics Data System (ADS)

    Christine, Adika A.; Kibet, Joshua K.; Kiprop, Ambsrose K.; Were, Munyendo L.

    2018-03-01

    Numerous deleterious impacts of anthropogenic activities on water quality are typically observed in areas bursting with mineral exploitation, agricultural activities, and industrial processes. Therefore, this contribution details the water quality and water origin in selected hand-dug wells of one the most prominent mining areas in Kenya (Kakamega County). The toxicological impacts of drinking water from a mining site may include cancer and genetic aberrations largely because of the toxic effects of waterborne metals including Hg and As. Accordingly, this study focuses primarily on the investigation of heavy metals, essential elements such as Na and K. Heavy metals and essential elements were determined using spectroscopic and titrimetric techniques. The study revealed that mercury (Hg) concentration ranged between 0.00256 and 0.0611 ± 0.00005 mg/L while arsenic (As) concentration ranged from 0.0103 to 0.0119 ± 0.00005 mg/L. The concentration of potassium ranged from 2.53 to 4.08 ± 0.15 mg/L while that of sodium varied from 6.74 to 9.260 ± 0.2 mg/L. Although the concentration of cadmium was lower than that recommended by W.H.O, the concentrations of Hg, Pb, and As in Kakamega waters were higher than the internationally accepted levels. The generally high level of heavy metals in Kakamega bore-hole waters is, therefore, a public health concern that needs immediate intervention.

  9. The effect of low-temperature transformation of mixtures of sewage sludge and plant materials on content, leachability and toxicity of heavy metals.

    PubMed

    Gondek, Krzysztof; Baran, Agnieszka; Kopeć, Michał

    2014-12-01

    The aim of the study was to determine the influence of the process of low-temperature transformation and the addition of plant material to sewage sludge diversifying the content of mobile forms of heavy metals and their ecotoxicity. The experimental design included: sewage sludge+rape straw, sewage sludge+wheat straw, sewage sludge+sawdust, sewage sludge+bark and sewage sludge with no addition. The mixtures were subjected to thermal transformation in a chamber furnace, under conditions without air. The procedure consisted of two stages: the first stage (130°C for 40 min) focused on drying the material, whereas in the second stage (200°C for 30 min) proper thermal transformation of materials took place. Thermal transformation of the materials, caused an increase in total contents of heavy metals in comparison to the material before transformation. From among elements, the cadmium content changed the most in materials after thermal transformation. As a result of thermal transformation, the content of water soluble form of the heavy metals decreased significantly in all the prepared mixtures. Low toxicity of the extracts from materials for Vibrio fischeri and Lepidium sativum was found in the research, regardless of transformation process. L. sativum showed higher sensitivity to heavy metals occurring in the studied extracts from materials than V. fischeri, evidence of which are the positive significant correlations between the content of metals and the inhibition of root growth of L. sativum. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Complex Decision-Making Applications for the NASA Space Launch System

    NASA Technical Reports Server (NTRS)

    Lyles, Garry; Flores, Tim; Hundley, Jason; Monk, Timothy; Feldman, Stuart

    2012-01-01

    The Space Shuttle program is ending and elements of the Constellation Program are either being cancelled or transitioned to new NASA exploration endeavors. NASA is working diligently to select an optimum configuration for the Space Launch System (SLS), a heavy lift vehicle that will provide the foundation for future beyond LEO large ]scale missions for the next several decades. Thus, multiple questions must be addressed: Which heavy lift vehicle will best allow the agency to achieve mission objectives in the most affordable and reliable manner? Which heavy lift vehicle will allow for a sufficiently flexible exploration campaign of the solar system? Which heavy lift vehicle configuration will allow for minimizing risk in design, test, build and operations? Which heavy lift vehicle configuration will be sustainable in changing political environments? Seeking to address these questions drove the development of an SLS decisionmaking framework. From Fall 2010 until Spring 2011, this framework was formulated, tested, fully documented, and applied to multiple SLS vehicle concepts at NASA from previous exploration architecture studies. This was a multistep process that involved performing FOM-based assessments, creating Pass/Fail gates based on draft threshold requirements, performing a margin-based assessment with supporting statistical analyses, and performing sensitivity analysis on each. This paper discusses the various methods of this process that allowed for competing concepts to be compared across a variety of launch vehicle metrics. The end result was the identification of SLS launch vehicle candidates that could successfully meet the threshold requirements in support of the SLS Mission Concept Review (MCR) milestone.

  11. Complex Decision-Making Applications for the NASA Space Launch System

    NASA Technical Reports Server (NTRS)

    Lyles, Garry; Flores, Tim; Hundley, Jason; Feldman, Stuart; Monk, Timothy

    2012-01-01

    The Space Shuttle program is ending and elements of the Constellation Program are either being cancelled or transitioned to new NASA exploration endeavors. The National Aeronautics and Space Administration (NASA) has worked diligently to select an optimum configuration for the Space Launch System (SLS), a heavy lift vehicle that will provide the foundation for future beyond low earth orbit (LEO) large-scale missions for the next several decades. Thus, multiple questions must be addressed: Which heavy lift vehicle will best allow the agency to achieve mission objectives in the most affordable and reliable manner? Which heavy lift vehicle will allow for a sufficiently flexible exploration campaign of the solar system? Which heavy lift vehicle configuration will allow for minimizing risk in design, test, build and operations? Which heavy lift vehicle configuration will be sustainable in changing political environments? Seeking to address these questions drove the development of an SLS decision-making framework. From Fall 2010 until Spring 2011, this framework was formulated, tested, fully documented, and applied to multiple SLS vehicle concepts at NASA from previous exploration architecture studies. This was a multistep process that involved performing figure of merit (FOM)-based assessments, creating Pass/Fail gates based on draft threshold requirements, performing a margin-based assessment with supporting statistical analyses, and performing sensitivity analysis on each. This paper discusses the various methods of this process that allowed for competing concepts to be compared across a variety of launch vehicle metrics. The end result was the identification of SLS launch vehicle candidates that could successfully meet the threshold requirements in support of the SLS Mission Concept Review (MCR) milestone.

  12. Heavy Metal Pollution and Ecological Assessment around the Jinsha Coal-Fired Power Plant (China).

    PubMed

    Huang, Xianfei; Hu, Jiwei; Qin, Fanxin; Quan, Wenxuan; Cao, Rensheng; Fan, Mingyi; Wu, Xianliang

    2017-12-18

    Heavy metal pollution is a serious problem worldwide. In this study, 41 soil samples and 32 cabbage samples were collected from the area surrounding the Jinsha coal-fired power plant (JCFP Plant) in Guizhou Province, southwest China. Pb, Cd, Hg, As, Cu and Cr concentrations in soil samples and cabbage samples were analysed to study the pollution sources and risks of heavy metals around the power plant. The results indicate that the JCFP Plant contributes to the Pb, Cd, As, Hg, Cu, and Cr pollution in nearby soils, particularly Hg pollution. Cu and Cr in soils from both croplands and forestlands in the study area derive mainly from crustal materials or natural processes. Pb, Cd and As in soils from croplands arise partly through anthropogenic activities, but these elements in soils from forestlands originate mainly from crustal materials or natural processes. Hg pollution in soils from both croplands and forestlands is caused mainly by fly ash from the JCFP Plant. The cabbages grown in the study area were severely contaminated with heavy metals, and more than 90% of the cabbages had Pb concentrations exceeding the permissible level established by the Ministry of Health and the Standardization Administration of the People's Republic of China. Additionally, 30% of the cabbages had As concentrations exceeding the permissible level. Because forests can protect soils from heavy metal pollution caused by atmospheric deposition, close attention should be given to the Hg pollution in soils and to the concentrations of Pb, As, Hg and Cr in vegetables from the study area.

  13. Variation of heavy metals in recent sediments from Piratininga Lagoon (Brazil): interpretation of geochemical data with the aid of multivariate analysis

    NASA Astrophysics Data System (ADS)

    Huang, W.; Campredon, R.; Abrao, J. J.; Bernat, M.; Latouche, C.

    1994-06-01

    In the last decade, the Atlantic coast of south-eastern Brazil has been affected by increasing deforestation and anthropogenic effluents. Sediments in the coastal lagoons have recorded the process of such environmental change. Thirty-seven sediment samples from three cores in Piratininga Lagoon, Rio de Janeiro, were analyzed for their major components and minor element concentrations in order to examine geochemical characteristics and the depositional environment and to investigate the variation of heavy metals of environmental concern. Two multivariate analysis methods, principal component analysis and cluster analysis, were performed on the analytical data set to help visualize the sample clusters and the element associations. On the whole, the sediment samples from each core are similar and the sample clusters corresponding to the three cores are clearly separated, as a result of the different conditions of sedimentation. Some changes in the depositional environment are recognized using the results of multivariate analysis. The enrichment of Pb, Cu, and Zn in the upper parts of cores is in agreement with increasing anthropogenic influx (pollution).

  14. Enrichment and heating of the intracluster medium by ejection from galaxies

    NASA Technical Reports Server (NTRS)

    Metzler, Chris; Evrard, August

    1993-01-01

    Results of N-body + hydrodynamic simulations designed to model the formation and evolution of clusters of galaxies and intracluster gas are presented. Clusters of galaxies are the largest bound, relaxed objects in the universe. They are strong x-ray emitters; this radiation originates through thermal bremsstrahlung from a diffuse plasma filling the space between cluster galaxies, the intracluster medium or ICM. From observations, one can infer that the mass of the ICM is comparable to or greater than the mass of all the galaxies in the cluster, and that the ratio of mass in hot gas to mass in galaxies, M(sub ICM)/M(sub STARS), increases with the richness of the cluster. Spectroscopic studies of cluster x-ray emission show heavy element emission lines. While M(sub ICM)/M(sub STARS) is greater than or equal to 1 implies that most of the ICM is primordial in nature, the discovery of heavy elements indicates that some of the gas must have been processed through galaxies. Galaxy evolution thus directly impacts cluster evolution.

  15. The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments

    NASA Astrophysics Data System (ADS)

    Yang, Shou Ye; Jung, Hoi Soo; Choi, Man Sik; Li, Cong Xian

    2002-07-01

    Thirty-four samples from the Changjiang and Huanghe were analyzed to characterize their rare earth element (REE) compositions. Although REE concentrations in the Changjiang sediments are higher than those of the Huanghe sediments, the former are less variable. Bulk samples and acid-leachable fractions have convex REE patterns and middle REE enrichments relative to upper continental crust, whereas flat patterns are present in the residual fractions. Source rock composition is the primary control on REE composition, and weathering processes play a minor role. Grain size exerts some influence on REE composition, as demonstrated by the higher REE contents of clay minerals in sediments from both rivers. Heavy minerals contribute about 10-20% of the total REE in the sediments. Apatite is rare in the river sediments, and contributes less than 2% of the REE content, but other heavy minerals such as sphene, allanite and zircon are important reservoirs of residual REE fractions. The Fe-Mn oxides phase accounts for about 14% of bulk REE content in the Changjiang sediments, which could be one of the more important factors controlling REE fractionation in the leachable fraction.

  16. Heavy Metals Toxicity and the Environment

    PubMed Central

    Tchounwou, Paul B; Yedjou, Clement G; Patlolla, Anita K; Sutton, Dwayne J

    2013-01-01

    Heavy metals are naturally occurring elements that have a high atomic weight and a density at least 5 times greater than that of water. Their multiple industrial, domestic, agricultural, medical and technological applications have led to their wide distribution in the environment; raising concerns over their potential effects on human health and the environment. Their toxicity depends on several factors including the dose, route of exposure, and chemical species, as well as the age, gender, genetics, and nutritional status of exposed individuals. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. These metallic elements are considered systemic toxicants that are known to induce multiple organ damage, even at lower levels of exposure. They are also classified as human carcinogens (known or probable) according to the U.S. Environmental Protection Agency, and the International Agency for Research on Cancer. This review provides an analysis of their environmental occurrence, production and use, potential for human exposure, and molecular mechanisms of toxicity, genotoxicity, and carcinogenicity. PMID:22945569

  17. Solar wind ion composition and charge states

    NASA Technical Reports Server (NTRS)

    vonSteiger, R.

    1995-01-01

    The solar wind, a highly tenuous plasma streaming from the Sun into interplanetary space at supersonic speed, is roughly composed of 95% hydrogen and 5% helium by number. All other, heavy elements contribute less than 0.1% by number and thus are truly test particles Nevertheless, these particles provide valuable information not present in the main components. We first discuss the importance of the heavy ions as tracers for processes in the solar atmosphere. Specifically, their relative abundances are found to be different in the solar wind as compared to the photosphere. This fractionation, which is best organized as a function of the first ionization time (FIT) of the elements under solar surface conditions, provides information on the structure of the chromosphere. where it is imparted on the partially ionized material by an atom-ion separation mechanism. Moreover, the charge states of the heavy ions can be used to infer the coronal temperature, since they are frozen-in near the altitude where the expansion time scale overcomes the ionization/recombination time scales. Next, we review the published values of ion abundances in the solar wind, concentrating on the recent results of the SWICS instrument on Ulysses. About 8 elements and more than 20 charge states can be routinely analyzed by this sensor. There is clear evidence that both the composition and the charge state distribution is significantly different in the fast solar wind from the south polar coronal hole, traversed by Ulysses in 1993/94, as compared to the solar wind normally encountered near the ecliptic plane. The fractionation between low- and high-FIT elements is reduced, and the charge states indicate a lower, more uniform coronal temperature in the hole. Finally, we discuss these results in the framework of existing theoretical models of the chromosphere and corona, attempting to identify differences between the low- and high-latitude regions of the solar atmosphere.

  18. Pattern of multiresistant to antimicrobials and heavy metal tolerance in bacteria isolated from sewage sludge samples from a composting process at a recycling plant in southern Brazil.

    PubMed

    Heck, Karina; De Marco, Évilin Giordana; Duarte, Mariana Wanderlei; Salamoni, Sabrina Pinto; Van Der Sand, Sueli

    2015-06-01

    The composting process is a viable alternative for the recycling of household organic waste and sewage sludge generated during wastewater treatment. However, this technique can select microorganisms resistant to antimicrobials and heavy metals as a result of excess chemicals present in compost windrow. This study evaluates the antimicrobial multiresistant and tolerance to heavy metals in bacteria isolated from the composting process with sewage sludge. Fourteen antimicrobials were used in 344 strains for the resistance profile and four heavy metals (chromium, copper, zinc, and lead) for the minimum biocide concentration assay. The strains used were from the sewage sludge sample (beginning of the process) and the compost sample (end of the process). Strains with higher antimicrobial and heavy metal profile were identified by 16S rRNA gene sequencing. The results showed a multiresistant profile in 48 % of the strains, with the highest percentage of strains resistant to nitrofurantoin (65 %) and β-lactams (58 %). The strains isolated from the sewage sludge and the end of the composting process were more tolerant to copper, with a lethal dose of approximately 900 mg L(-1) for about 50 % of the strains. The genera that showed the highest multiresistant profile and increased tolerance to the metals tested were Pseudomonas and Ochrobactrum. The results of this study may contribute to future research and the revision and regulation of legislation on sewage sludge reuse in soils.

  19. Contaminations, Sources, and Health Risks of Trace Metal(loid)s in Street Dust of a Small City Impacted by Artisanal Zn Smelting Activities

    PubMed Central

    Wu, Tingting; Bi, Xiangyang; Sun, Guangyi; Feng, Xinbin; Shang, Lihai; Zhang, Hua; He, Tianrong; Chen, Ji

    2017-01-01

    To investigate the impact of artisanal zinc smelting activities (AZSA) on the distribution and enrichment of trace metal(loid)s in street dust of a small city in Guizhou province, SW China, street dust samples were collected and analyzed for 10 trace metal(loid)s (Cr, Co, Ni, Cu, Zn, As, Cd, Sb, Pb, and Hg). Meanwhile, the health risks of local resident exposed to street dust were assessed. The result showed that the average concentrations of 10 elements were Zn (1039 mg kg−1), Pb (423 mg kg−1), Cr (119 mg kg−1), Cu (99 mg kg−1), As (55 mg kg−1), Ni (39 mg kg−1), Co (18 mg kg−1), Sb (7.6 mg kg−1), Cd (2.6 mg kg−1), and Hg (0.22 mg kg−1). Except Ni, Co, and Cr, other elements in street dust were obviously elevated compared to the provincial soil background. Pb, Zn, Cd, Sb, and Cu were at heavy to moderate contamination status, especially Pb and Zn, with maximums of 1723 and 708 mg kg−1, respectively; As and Hg were slightly contaminated; while Cr, Ni, and Co were at un-contaminated levels. Multivariate statistical analysis revealed AZSA contributed to the increase of Pb, Zn, Cd, Sb, As, and Hg, while, natural sources introduced Ni, Co, Cr, and Cu. The health risk assessment disclosed that children had higher non-carcinogenic risk than those found in adults, and As has hazardous index (HI) higher than 1 both for children and adults, while Pb and Cr only had HIs higher than 1 for children, other elements were relatively safe. For carcinogenic risks, the major concern was As, then a lesser concern for Cr. The study showed that although the scale of AZSA was small, the contamination of heavy metal(loid)s in street dust and associated health risks were severe. PMID:28841170

  20. Volatile Element Fluxes at Copahue Volcano, Argentina

    NASA Astrophysics Data System (ADS)

    Varekamp, J. C.

    2002-05-01

    Copahue volcano has a crater lake and acid hot springs that discharge into the Rio Agrio river system. These fluids are very concentrated (up to 6 % sulfate), rich in rock-forming elements (up to 2000 ppm Mg) and small spheres of native sulfur float in the crater lake. The stable isotope composition of the waters (delta 18O =-2.1 to + 3.6 per mille; delta D = -49 to -26 per mille) indicates that the hot spring waters are at their most concentrated about 70% volcanic brine and 30 % glacial meltwater. The crater lake waters have similar mixing proportions but added isotope effects from intense evaporation. Further dilution of the waters in the Rio Agrio gives values closer to local meteoric waters (delta 18O = -11 per mille; delta D = -77 per mille), whereas evaporation in closed ponds led to very heavy water (up to delta 18O = +12 per mille). The delta 34S value of dissolved sulfate is +14.2 per mille, whereas the native sulfur has values of -8.2 to -10.5 per mille. The heavy sulfate probably formed when SO2 disproportionated into bisulfate and native sulfur at about 300 C. We measured the sulfate fluxes in the Rio Agrio, which ranged from 20-40 kilotons S/year. The whole system was releasing sulfur at an equivalent rate of about 250-650 tons SO2/day. From the river flux sulfur values and the stochiometry of the disproportionation reaction we calculated the rate of liquid sulfur storage inside the volcano (6000 m3/year). During the eruptions of 1995/2000, large amounts of that stored liquid sulfur were ejected as pyroclastic sulfur. The calculated rate of rock dissolution (from rock- forming element fluxes in the Rio Agrio) suggests that the void space generated by rock dissolution is largely filled by native sulfur and silica. The S/Cl ratio in the hydrothermal fluids is about 2, whereas glass inclusions have S/Cl = 0.2, indicating the strong preferential degassing of sulfur.

  1. Insights into the chemical composition of the metal-poor Milky Way halo globular cluster NGC 6426

    NASA Astrophysics Data System (ADS)

    Hanke, M.; Koch, A.; Hansen, C. J.; McWilliam, A.

    2017-03-01

    We present our detailed spectroscopic analysis of the chemical composition of four red giant stars in the halo globular cluster NGC 6426. We obtained high-resolution spectra using the Magellan2/MIKE spectrograph, from which we derived equivalent widths and subsequently computed abundances of 24 species of 22 chemical elements. For the purpose of measuring equivalent widths, we developed a new semi-automated tool, called EWCODE. We report a mean Fe content of [Fe/H] =-2.34 ± 0.05 dex (stat.) in accordance with previous studies. At a mean α-abundance of [(Mg, Si, Ca)/3 Fe] = 0.39 ± 0.03 dex, NGC 6426 falls on the trend drawn by the Milky Way halo and other globular clusters at comparably low metallicities. The distribution of the lighter α-elements as well as the enhanced ratio [Zn/Fe] = 0.39 dex could originate from hypernova enrichment of the pre-cluster medium. We find tentative evidence for a spread in the elements Mg, Si, and Zn, indicating an enrichment scenario, where ejecta of evolved massive stars of a slightly older population have polluted a newly born younger one. The heavy element abundances in this cluster fit well into the picture of metal-poor globular clusters, which in that respect appear to be remarkably homogeneous. The pattern of the neutron-capture elements heavier than Zn points toward an enrichment history governed by the r-process with little, if any, sign of s-process contributions. This finding is supported by the striking similarity of our program stars to the metal-poor field star HD 108317. This paper includes data gathered with the 6.5-m Magellan Telescopes located at Las Campanas Observatory, Chile.Equivalent widths and full Table 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A97

  2. Heavy Metals Concentrations in top Soils of Urban Areas (Naples - Southern Italy) as an Indicator of Anthropogenic Origin.

    NASA Astrophysics Data System (ADS)

    Cicchella, D.; De Vivo, B.; Lima, A.; Somma, R.

    2001-12-01

    Heavy metals pollution, which mainly originates from automobile exhausts and industry, is a serious danger for human health. The source and extension of heavy metals pollution in the top soils has been studied extensively in the past 30 years. The role of the soil processes in accumulating or mobilising metals is very important in environmental science due to the central position of the soil in the hydrological cycle and ecosystem. Concentrations of heavy metals in top soils, collected in green areas and public parks in metropolitan Naples area have been determined to provide information on specific emission sources. In addition to toxic metals, such as Pb, As, Cd, Cr and others, we have investigated the top soils as well for Pt group elements (PGEs), because since 1993 it is mandatory within EC for all new petrol driven motor vehicles to be equipped with Pt/Pd/Rh catalytic converter. In Italy this law has come into effect in 1998, but still is allowed to old vehicles use lead gasoline, though now the big majority of cars is equipped with Pt/Pd/Rh catalytic converters. Emission of abraded fragments of catalytic converters in vehicle exhausts will certainly determine environmental contamination with Pt group elements (PGEs), since many Pt complexes are highly cytotoxic and, in small dose, are strong allergens and potent sensitiser. The metropolitan area of Naples due to intense human activities and vehicles traffic is an interesting area to be monitored in order to check the pollution state of the soils. The geology of the area is prevalently represented by volcanics, erupted from the Upper Pleistocene to Recent by Mt. Somma-Vesuvius on the east and the Campi Flegrei fields on the west. To compile multi-element geochemical maps baseline we have sampled in situ and transported top soil for a total of 200 samples. The survey have been carried at about 200 sites covering an area of about 120 Km2, with a grid of 0.5 x 0.5 km in the highly urbanised area and 1 km x 1 km in the sub urban areas. In each sampled site has been determined the pH (5.93- 8.21); and measured partial and total radioactivity (U, Th, K) using a portable scintillometer. All soil samples were analysed for 40 elements by ICP-MS and AES. The data for some of the harmful metals (as mg Kg-1) range as follows: Cd from 0.03 to 6.9, Cr from 0.8 to 189, Ni from 0.8 to 67, Pb from 17 to 2052, Co from 3 to 37, Hg from 0.01 to 2.6, Pt from 0.001 to 0.1, Pd from 0.002 to 0.052. The geochemical data, have been processed by means of GIS to compile geochemical single element distribution, R-mode factor analysis element associations and risk maps. The latter in particular, are useful to enhance areas potentially at risk for residential/recreational and commercial/industrial land use, following intervention criteria fixed by Italian

  3. Collisional-Radiative Modeling of Free-Burning Arc Plasma in Argon

    DTIC Science & Technology

    2013-06-01

    temeratures of electrons and heavy particles was demonstrated. The plasma chemistry is important but yet just one element of the complex arc...description. Therefore, the present work is aimed at the analysis of the plasma chemistry in a way that the model enables a deeper look into the polulations... PLASMA CHEMISTRY The present study aims at analyzing the collisional and radiative processes in argon with a view toward application to non

  4. Maps and interpretation of geochemical anomalies, Chuckwalla Mountains Wilderness Study Area, Riverside County, California

    USGS Publications Warehouse

    Watts, K.C.

    1986-01-01

    This report discusses and interprets geochemical results as they are seen at the reconnaissance stage. Analytical results for all samples collected are released in a U.S. Geological Survey Open-File Report (Adrian and others, 1985). A statistical summary of the data from heavy-mineral concentrates and sieved stream sediments is shown in table 1. The analytical results for selected elements in rock samples are shown in table 2.

  5. Implications of Competition for Rare Earth Elements (REE) in Africa

    DTIC Science & Technology

    2011-03-15

    German’s began their North African campaign. They 3 wanted to reach the Saudi Arabian oilfields to keep their military juggernaut from grinding to a...industry is a fairly recent phenomenon as compared to other precious metals such as gold or copper, which has been known and valued for millenniums. The...and include: lanthanum, cerium, praseodymium, and neodymium, which are often found in heavy concentrations ranging from eighty to ninety percent of

  6. Thermal Diffusion Fractionation of Cr and V Isotope in Silicate Melt

    NASA Astrophysics Data System (ADS)

    Lin, X.; Lundstrom, C.

    2017-12-01

    Earth's mantle is isotopically heavy relative to chondrites for V, Cr and some other siderophile elements. A possible solution is that isotopic fractionation by thermal diffusion occurs in a thermal boundary layer between solid mantle and an underlying basal magma ocean (BMO:Labrosse et al.,2007). If so, isotopically light composition might partition into the core, resulting in a complimentary isotopically heavy solid mantle. To verify how much fractionation could happen in this process, piston cylinder experiment were conducted to investigate the fractionation of Cr and V isotope ratios in partially molten silicate under an imposed temperature gradient from 1650 °C to 1350 °C at 1 GPa for 10 to 50 hours to reach a steady state isotopic profile. The temperature profile for experiments was determined by the spinel-growth method at the same pressure and temperature. Experimental runs result in 100% glass at the hot end progressing to nearly 100 % olivine at the cold end. Major and minor element concentrations of run products show systematic changes with temperature. Glass MgO contents increase and Al2O3 and CaO contents decrease by several weight percent as temperature increases across the charge. These are well modeled using IRIDIUM (Boudreau 2003) to simulate the experiments. Isotopic composition measurements of Cr and V at different temperatures are in progress, providing the first determinations of thermal diffusion isotopic sensitivity, Ω (permil isotopic fractionation per temperature offset per mass unit) for these elements. These results will be compared with previously determined Ω for network formers and modifiers and used in a BMO-based thermal diffusion model for formation of Earth's isotopically heavy mantle.

  7. Modeling of Thermochemical Behavior in an Industrial-Scale Rotary Hearth Furnace for Metallurgical Dust Recycling

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Liang; Jiang, Ze-Yi; Zhang, Xin-Xin; Xue, Qing-Guo; Yu, Ai-Bing; Shen, Yan-Song

    2017-10-01

    Metallurgical dusts can be recycled through direct reduction in rotary hearth furnaces (RHFs) via addition into carbon-based composite pellets. While iron in the dust is recycled, several heavy and alkali metal elements harmful for blast furnace operation, including Zn, Pb, K, and Na, can also be separated and then recycled. However, there is a lack of understanding on thermochemical behavior related to direct reduction in an industrial-scale RHF, especially removal behavior of Zn, Pb, K, and Na, leading to technical issues in industrial practice. In this work, an integrated model of the direct reduction process in an industrial-scale RHF is described. The integrated model includes three mathematical submodels and one physical model, specifically, a three-dimensional (3-D) CFD model of gas flow and heat transfer in an RHF chamber, a one-dimensional (1-D) CFD model of direct reduction inside a pellet, an energy/mass equilibrium model, and a reduction physical experiment using a Si-Mo furnace. The model is validated by comparing the simulation results with measurements in terms of furnace temperature, furnace pressure, and pellet indexes. The model is then used for describing in-furnace phenomena and pellet behavior in terms of heat transfer, direct reduction, and removal of a range of heavy and alkali metal elements under industrial-scale RHF conditions. The results show that the furnace temperature in the preheating section should be kept at a higher level in an industrial-scale RHF compared with that in a pilot-scale RHF. The removal rates of heavy and alkali metal elements inside the composite pellet are all faster than iron metallization, specifically in the order of Pb, Zn, K, and Na.

  8. Heavy Metal Pollution in a Soil-Rice System in the Yangtze River Region of China.

    PubMed

    Liu, Zhouping; Zhang, Qiaofen; Han, Tiqian; Ding, Yanfei; Sun, Junwei; Wang, Feijuan; Zhu, Cheng

    2015-12-22

    Heavy metals are regarded as toxic trace elements in the environment. Heavy metal pollution in soil or rice grains is of increasing concern. In this study, 101 pairs of soil and rice samples were collected from the major rice-producing areas along the Yangtze River in China. The soil properties and heavy metal (i.e., Cd, Hg, Pb and Cr) concentrations in the soil and rice grains were analyzed to evaluate the heavy metal accumulation characteristics of the soil-rice systems. The results showed that the Cd, Hg, Pb and Cr concentrations in the soil ranged from 0.10 to 4.64, 0.01 to 1.46, 7.64 to 127.56, and 13.52 to 231.02 mg·kg(-)¹, respectively. Approximately 37%, 16%, 60% and 70% of the rice grain samples were polluted by Cd, Hg, Pb, and Cr, respectively. The degree of heavy metal contamination in the soil-rice systems exhibited a regional variation. The interactions among the heavy metal elements may also influence the migration and accumulation of heavy metals in soil or paddy rice. The accumulation of heavy metals in soil and rice grains is related to a certain extent to the pH and soil organic matter (SOM). This study provides useful information regarding heavy metal accumulation in soil to support the safe production of rice in China. The findings from this study also provide a robust scientific basis for risk assessments regarding ecological protection and food safety.

  9. Heavy Metal Pollution in a Soil-Rice System in the Yangtze River Region of China

    PubMed Central

    Liu, Zhouping; Zhang, Qiaofen; Han, Tiqian; Ding, Yanfei; Sun, Junwei; Wang, Feijuan; Zhu, Cheng

    2015-01-01

    Heavy metals are regarded as toxic trace elements in the environment. Heavy metal pollution in soil or rice grains is of increasing concern. In this study, 101 pairs of soil and rice samples were collected from the major rice-producing areas along the Yangtze River in China. The soil properties and heavy metal (i.e., Cd, Hg, Pb and Cr) concentrations in the soil and rice grains were analyzed to evaluate the heavy metal accumulation characteristics of the soil-rice systems. The results showed that the Cd, Hg, Pb and Cr concentrations in the soil ranged from 0.10 to 4.64, 0.01 to 1.46, 7.64 to 127.56, and 13.52 to 231.02 mg·kg−1, respectively. Approximately 37%, 16%, 60% and 70% of the rice grain samples were polluted by Cd, Hg, Pb, and Cr, respectively. The degree of heavy metal contamination in the soil-rice systems exhibited a regional variation. The interactions among the heavy metal elements may also influence the migration and accumulation of heavy metals in soil or paddy rice. The accumulation of heavy metals in soil and rice grains is related to a certain extent to the pH and soil organic matter (SOM). This study provides useful information regarding heavy metal accumulation in soil to support the safe production of rice in China. The findings from this study also provide a robust scientific basis for risk assessments regarding ecological protection and food safety. PMID:26703698

  10. Tin isotope fractionation during magmatic processes and the isotope composition of the bulk silicate Earth

    NASA Astrophysics Data System (ADS)

    Wang, Xueying; Amet, Quentin; Fitoussi, Caroline; Bourdon, Bernard

    2018-05-01

    Tin is a moderately volatile element whose isotope composition can be used to investigate Earth and planet differentiation and the early history of the Solar System. Although the Sn stable isotope composition of several geological and archaeological samples has been reported, there is currently scarce information about the effect of igneous processes on Sn isotopes. In this study, high-precision Sn isotope measurements of peridotites and basalts were obtained by MC-ICP-MS with a double-spike technique. The basalt samples display small variations in δ124/116Sn ranging from -0.01 ± 0.11 to 0.27 ± 0.11‰ (2 s.d.) relative to NIST SRM 3161a standard solution, while peridotites have more dispersed and more negative δ124Sn values ranging from -1.04 ± 0.11 to -0.07 ± 0.11‰ (2 s.d.). Overall, basalts are enriched in heavy Sn isotopes relative to peridotites. In addition, δ124Sn in peridotites become more negative with increasing degrees of melt depletion. These results can be explained by different partitioning behavior of Sn4+ and Sn2+ during partial melting. Sn4+ is overall more incompatible than Sn2+ during partial melting, resulting in Sn4+-rich silicate melt and Sn2+-rich residue. As Sn4+ has been shown experimentally to be enriched in heavy isotopes relative to Sn2+, the effect of melting is to enrich residual peridotites in relatively more compatible Sn2+, which results in isotopically lighter peridotites and isotopically heavier mantle-derived melts. This picture can be disturbed partly by the effect of refertilization. Similarly, the presence of enriched components such as recycled oceanic crust or sediments could explain part of the variations in Sn isotopes in oceanic basalts. The most primitive peridotite analyzed in this study was used for estimating the Sn isotope composition of the BSE, with δ124Sn = -0.08 ± 0.11‰ (2 s.d.) relative to the Sn NIST SRM 3161a standard solution. Altogether, this suggests that Sn isotopes may be a powerful probe of redox processes in the mantle.

  11. Multiphase gas in quasar absorption-line systems

    NASA Technical Reports Server (NTRS)

    Giroux, Mark L.; Sutherland, Ralph S.; Shull, J. Michael

    1994-01-01

    In the standard model for H I Lyman-limit (LL) quasar absorption-line systems, the absorbing matter is galactic disk and halo gas, heated and photoionized by the metagalactic radiation field produced by active galaxies. In recent Hubble Space Telescope (HST) observations (Reimers et al. 1992; Vogel & Reimers 1993; Reimers & Vogel 1993) of LL systems along the line of sight to the quasar HS 1700+6416, surprisingly high He I/H I ratios and a wide distribution of column densities of C, N, and O ions are deduced from extreme ultraviolet absorption lines. We show that these observations are incompatible with photoionization equilibrium by a single metagalactic ionizing background. We argue that these quasar absorption systems possess a multiphase interstellar medium similar to that of our Galaxy, in which extended hot, collisionally ionized gas is responsible for some or all of the high ionization stages of heavy elements. From the He/H ratios we obtain -4.0 less than or = log U less than or = -3.0, while the CNO ions are consistent with hot gas in collisional ionization equilibrium at log T = 5.3 and (O/H) = -1.6. The supernova rate necessary to produce these heavy elements and maintain the hot-gas energy budget of approximately 10(exp 41.5) ergs/s is approximately 10(exp -2)/yr, similar to that which maintains the 'three-phase' interstellar medium in our own Galaxy. As a consequence of the change in interpretation from photoionized gas to a multiphase medium, the derived heavy-element abundances (e.g., O/C) of these systems are open to question owing to substantial ionization corrections for unseen C V in the hot phase. The metal-line ratios may also lead to erroneous diagnostics of the shape of the metagalactic ionizaing spectrum and the ionizing parameter of the absorbers.

  12. Metal releases from a municipal solid waste incineration air pollution control residue mixed with compost.

    PubMed

    Van Praagh, M; Persson, K M

    2008-08-01

    The influence of 10 wt.% mature compost was tested on the heavy metal leachate emissions from a calcium-rich municipal solid waste incineration air pollution control residue (MSWI APC). Apart from elongated columns (500 and 1250 mm), an otherwise norm compliant European percolation test setup was used. More than 99% of the metals Al, As, Cd, Cr, Cu, Fe and Ni were left in the APC residue after leaching to a liquid-to-solid ratio (L/S) of 10. Apparent short-term effects of elevated leachate DOC concentrations on heavy metal releases were not detected. Zn and Pb leachate concentrations were one order of magnitude lower for L/S 5 and 10 from the pure APC residue column, which suggests a possible long-term effect of compost on the release of these elements. Prolonging the contact time between the pore water and the material resulted in elevated leachate concentrations at L/S 0.1 to L/S 1 by a factor of 2. Only Cr and Pb concentrations were at their maxima in the first leachates at L/S 0.1. Equilibrium speciation modelling with the PHREEQC code suggested portlandite (Ca(OH)2) to control Ca solubility and pH.

  13. Steric hindrance and the enhanced stability of light rare-earth elements in hydrothermal fluids

    USGS Publications Warehouse

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2009-01-01

    A series of X-ray absorption spectroscopy (XAS) experiments were made to determine the structure and stability of aqueous REE (La, Nd, Gd, and Yb) chloride complexes to 500 ??C and 520 MPa. The REE3+ ions exhibit inner-sphere chloroaqua complexation with a steady increase of chloride coordination with increasing temperature in the 150 to 500 ??C range. Furthermore, the degree of chloride coordination of REE3+ inner-sphere chloroaqua complexes decreases significantly from light to heavy REE. These results indicate that steric hindrance drives the reduction of chloride coordination of REE3+ inner-sphere chloroaqua complexes from light to heavy REE. This results in greater stability and preferential transport of light REE3+ over heavy REE3+ ions in saline hydrothermal fluids. Accordingly, the preferential mobility of light REE directly influences the relative abundance of REE in rocks and minerals and thus needs to be considered in geochemical modeling of petrogenetic and ore-forming processes affected by chloride-bearing hydrothermal fluids.

  14. The fate of moderately volatile elements during planetary formation in the inner Solar System

    NASA Astrophysics Data System (ADS)

    Pringle, E. A.; Moynier, F.

    2017-12-01

    Moderately volatile element abundances are variable among inner Solar System bodies, with differing degrees of depletion compared to chondrites. These variations are a consequence of the processes of planetary formation. The conditions and the specific mechanisms of planetary accretion and differentiation can be investigated by analyzing the stable isotope compositions of terrestrial and extraterrestrial samples. The moderately volatile lithophile elements are particularly useful to distinguish between the effects of accretion and those of core formation. Recent work has shown isotope variations in inner Solar System bodies for the moderately volatile elements Zn and K. The purely lithophile nature of Rb (in contrast to Zn) and the higher volatility of Rb compared to K make Rb an ideal element with which to further study moderately volatile element depletion. We have developed a new method for the high-precision measurement of Rb isotope ratios by MC-ICP-MS. Terrestrial rocks define a narrow range in Rb isotope composition, indicating that Rb isotope fractionation during igneous differentiation is limited (<30 ppm/amu). Larger Rb isotope variations are observed in extraterrestrial materials. Carbonaceous chondrites display a trend toward lighter Rb isotope composition coupled with decreasing Rb/Sr, opposite to the effect expected if their volatile element variations were caused by evaporative loss of Rb. This relationship indicates that the volatile element abundance variations in carbonaceous chondrites are not due to evaporation or condensation, but rather are due to the mixing of chemically and isotopically distinct primordial reservoirs. In contrast, there is a clear signature of Rb loss during evaporation in volatile-depleted achondrites and lunar rocks. Significant heavy isotope enrichments (up to several per mil for 87Rb/85Rb) are found for volatile-depleted planetesimals, including eucrites. In addition, lunar rocks also display heavy Rb isotope enrichments compared to the BSE. The most likely cause of these variations is Rb isotope fractionation due to evaporation during accretion.

  15. RARE EARTH ELEMENTS IN FLY ASHES AS POTENTIAL INDICATORS OF ANTHROPOGENIC SOIL CONTAMINATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattigod, Shas V.

    2003-08-01

    Studies of rare earth element (REE) content of disposed fly ashes and their potential mobility were neglected for decades because these elements were believed to be environmentally benign. A number of recent studies have now shown that REE may pose a long-term risk to the biosphere. Therefore, there is a critical need to study the REE concentrations in fly ash and their potential mobilization and dispersal upon disposal in the environment. We analyzed the REE content of bulk, size fractionated, and density separated fractions of three fly ash samples derived from combustion of sub bituminous coals from the western Unitedmore » States and found that the concentrations of these elements in bulk ashes were within the range typical of fly ashes derived from coals from the North American continent. The concentrations of light rare earth elements (LREE) such as La, Ce, and Nd, however, tended towards the higher end of the concentration range whereas, the concentrations of middle rare earth elements (MREE) (Sm and Eu) and heavy rare earth elements (HREE) (Lu) were closer to the lower end of the observed range for North American fly ashes. The concentrations of REE did not show any significant enrichment with decreasing particle size, this is typical of nonvolatile lithophilic element behavior during the combustion process. The lithophilic nature of REE was also confirmed by their concentrations in heavy density fractions of these fly ashes being on average about two times more enriched than the concentrations in the light density fractions. Shale normalized average of REE concentrations of fly ashes and coals revealed significant positive anomalies for Eu and Dy. Because of these distinctive positive anomalies of Eu and Dy, we believe that fly ash contamination of soils can be fingerprinted and distinguished from other sources of anthropogenic REE inputs in to the environment.« less

  16. Near-threshold photoionization of hydrogenlike uranium studied in ion-atom collisions via the time-reversed process.

    PubMed

    Stöhlker, T; Ma, X; Ludziejewski, T; Beyer, H F; Bosch, F; Brinzanescu, O; Dunford, R W; Eichler, J; Hagmann, S; Ichihara, A; Kozhuharov, C; Krämer, A; Liesen, D; Mokler, P H; Stachura, Z; Swiat, P; Warczak, A

    2001-02-05

    Radiative electron capture, the time-reversed photoionization process occurring in ion-atom collisions, provides presently the only access to photoionization studies for very highly charged ions. By applying the deceleration mode of the ESR storage ring, we studied this process in low-energy collisions of bare uranium ions with low- Z target atoms. This technique allows us to extend the current information about photoionization to much lower energies than those accessible for neutral heavy elements in the direct reaction channel. The results prove that for high- Z systems, higher-order multipole contributions and magnetic corrections persist even at energies close to the threshold.

  17. Air quality in urban parking garages (PM10, major and trace elements, PAHs): Instrumental measurements vs. active moss biomonitoring

    NASA Astrophysics Data System (ADS)

    Vuković, Gordana; Aničić Urošević, Mira; Razumenić, Ivana; Kuzmanoski, Maja; Pergal, Miodrag; Škrivanj, Sandra; Popović, Aleksandar

    2014-03-01

    This study was performed in four parking garages in downtown of Belgrade with the aim to provide multi-pollutant assessment. Concentrations of 16 US EPA priority PAHs and Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr and Zn were determined in PM10 samples. The carcinogenic health risk of employees' occupational exposure to heavy metals (Cd, Cr, Ni and Pb) and PAHs (B[a]A, Cry, B[b]F, B[k]F, B[a]P and DB[ah]A) was estimated. A possibility of using Sphagnum girgensohnii moss bags for monitoring of trace element air pollution in semi-enclosed spaces was evaluated as well. The results showed that concentrations of PM10, Cd, Ni and B[a]P exceeded the EU Directive target values. Concentration of Zn, Ba and Cu were two orders of magnitude higher than those measured at different urban sites in European cities. Cumulative cancer risk obtained for heavy metals and PAHs was 4.51 × 10-5 and 3.75 × 10-5 in M and PP, respectively; upper limit of the acceptable US EPA range is 10-4. In the moss, higher post-exposure than pre-exposure (background) element concentrations was observed. In comparison with instrumental monitoring data, similar order of abundances of the most elements in PM10 and moss samples was found. However, using of the S. girgensohnii moss bag technique in indoor environments needs further justification.

  18. Ab initio effective core potentials including relativistic effects and their application to the electronic structure calculations of heavy atoms and molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.S.

    1977-11-01

    The effects of the 4f shell of electrons and the relativity of valence electrons are compared. The effect of 4f shell (lanthanide contraction) is estimated from the numerical Hartree-Fock (HF) calculations of pseudo-atoms corresponding to Hf, Re, Au, Hg, Tl, Pb and Bi without 4f electrons and with atomic numbers reduced by 14. The relativistic effect estimated from the numerical Dirac-Hartree-Fock (DHF) calculations of those atoms is comparable in the magnitude with that of the 4f shell of electrons. Both are larger for 6s than for 5d or 6p electrons. The various relativistic effects on valence electrons are discussed inmore » detail to determine the proper level of the approximation for the valence electron calculations of systems with heavy elements. An effective core potential system has been developed for heavy atoms in which relativistic effects are included in the effective potentials.« less

  19. Total elemental composition of soils contaminated with wastewater irrigation by combining IBA techniques

    NASA Astrophysics Data System (ADS)

    Huerta, L.; Contreras-Valadez, R.; Palacios-Mayorga, S.; Miranda, J.; Calva-Vasquez, G.

    2002-04-01

    The purpose of this work was to obtain the total elemental composition of agricultural soils irrigated with well water and wastewater. The studied area is located in the Valle del Mezquital in Hidalgo State, Mexico. The studied soils were collected, every two months during one year. Particle induced X-ray emission (PIXE), Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA) were applied for elemental analysis. PIXE analyses gave elemental contents of major and trace elements (Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Rb, Sr, Y, Zr, and Pb). Total concentrations of Na, Mg, C, N and O were obtained by RBS and NRA. PIXE analyses were carried out with 2 MeV proton beams, RBS with 2 MeV helium ions, while NRA was applied with a 1.2 MeV deuterium beam. Results indicated that heavy metal total concentrations exceed the critical soil total concentrations according to environmental regulations.

  20. Pollution control and metal resource recovery for low grade automobile shredder residue: a mechanism, bioavailability and risk assessment.

    PubMed

    Singh, Jiwan; Lee, Byeong-Kyu

    2015-04-01

    Automobile shredder residue (ASR) is considered as hazardous waste in Japan and European countries due to presence of heavy metals. This study was carried on the extraction characteristics of heavy metals (Mn, Fe, Ni, and Cr) from automobile shredder residue (ASR). The effects of pH, temperature, particle size, and liquid/solid ratio (L/S) on the extraction of heavy metals were investigated. The recovery rate of Mn, Fe, Ni, and Cr increased with increasing extraction temperature and L/S ratio. The lowest pH 2, the highest L/S ratio, and the smallest particle size showed the highest recovery of heavy metals from ASR. The highest recovery rates were in the following order: Mn > Ni > Cr > Fe. Reduction of mobility factor for the heavy metals was observed in all the size fractions after the recovery. The results of the kinetic analysis for various experimental conditions supported that the reaction rate of the recovery process followed a second order reaction model (R(2) ⩾ 0.95). The high availability of water-soluble fractions of Mn, Fe, Ni, and Cr from the low grade ASR could be potential hazards to the environment. Bioavailability and toxicity risk of heavy metals reduced significantly with pH 2 of distilled water. However, water is a cost-effective extracting agent for the recovery of heavy metals and it could be useful for reducing the toxicity of ASR. Copyright © 2015 Elsevier Ltd. All rights reserved.

Top