Science.gov

Sample records for heavy vehicle propulsion

  1. Heavy Vehicle Propulsion Materials

    SciTech Connect

    Ray Johnson

    2000-01-31

    The objectives are to Provide Key Enabling Materials Technologies to Increase Energy Efficiency and Reduce Exhaust Emissions. The following goals are listed: Goal 1: By 3rd quarter 2002, complete development of materials enabling the maintenance or improvement of fuel efficiency {ge} 45% of class 7-8 truck engines while meeting the EPA/Justice Department ''Consent Decree'' for emissions reduction. Goal 2: By 4th quarter 2004, complete development of enabling materials for light-duty (class 1-2) diesel truck engines with efficiency over 40%, over a wide range of loads and speeds, while meeting EPA Tier 2 emission regulations. Goal 3: By 4th quarter 2006, complete development of materials solutions to enable heavy-duty diesel engine efficiency of 50% while meeting the emission reduction goals identified in the EPA proposed rule for heavy-duty highway engines.''

  2. Heavy Vehicle Propulsion Materials Program: Progress and Highlights

    SciTech Connect

    D. Ray Johnson; Sidney Diamond

    2000-06-19

    The Heavy Vehicle Propulsion Materials Program was begun in 1997 to support the enabling materials needs of the DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program grew out of the technology roadmap for the OHVT and includes efforts in materials for: fuel systems, exhaust aftertreatment, valve train, air handling, structural components, electrochemical propulsion, natural gas storage, and thermal management. A five-year program plan was written in early 2000, following a stakeholders workshop. The technical issues and planned and ongoing projects are discussed. Brief summaries of several technical highlights are given.

  3. Heavy vehicle hybrid propulsion systems R and D program plan, FY 2000-2005

    SciTech Connect

    2000-07-01

    This report contains the program plan and background information for the Heavy Vehicle Hybrid Propulsion R and D Program sponsored by the Department of Energy's Office of Heavy Vehicle Technologies. The program is a collaboration between industry and government established for the development of advanced hybrid-electric propulsion technology for urban cycle trucks and buses. It targets specific applications to enhance potential market success. Potential end-users are also involved.

  4. Heavy vehicle propulsion system materials program semiannual progress report for April 1999 through September 1999

    SciTech Connect

    Johnson, D.R.

    2000-01-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks.

  5. Heavy vehicle propulsion system materials program semiannual progress report for April 1998 thru September 1998

    SciTech Connect

    Johnson, D.R.

    1999-01-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1--3 trucks to realize a 35{percent} fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7--8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55{percent} efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55{percent} efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy-duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies.

  6. Heavy vehicle propulsion system materials program: Semiannual progress report, April 1996--September 1996

    SciTech Connect

    Johnson, D.R.

    1997-04-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. Separate abstracts have been submitted to the database for contributions to this report.

  7. Electric vehicle propulsion alternatives

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.; Schuh, R. M.; Beach, R. F.

    1983-01-01

    Propulsion technology development for electric vehicles is summarized. Analytical studies, technology evaluation, and the development of technology for motors, controllers, transmissions, and complete propulsion systems are included.

  8. Heavy Vehicle Propulsion System Materials Program Semiannual Progress Report for October 1998 Through March 1999

    SciTech Connect

    Johnson, R.D.

    1999-06-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OIT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NOX and 0.05 g/bhp-h particulate. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OIT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1,2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and

  9. Heavy Vehicle Propulsion System Materials Program Semiannual Progress Report for April 2000 Through September 2000

    SciTech Connect

    Johnson, DR

    2000-12-11

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advantages LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NOx and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and

  10. Heavy Vehicle Propulsion System Materials Program semiannual progress report for October 1996 through March 1997

    SciTech Connect

    1997-07-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designers; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles. The principal areas of research are: (1) cost effective high performance materials and processing; (2) advanced manufacturing technology; (3) testing and characterization; and (4) materials and testing standards.

  11. Expendable launch vehicle propulsion

    NASA Technical Reports Server (NTRS)

    Fuller, Paul N.

    1991-01-01

    The current status is reviewed of the U.S. Expendable Launch Vehicle (ELV) fleet, the international competition, and the propulsion technology of both domestic and foreign ELVs. The ELV propulsion technology areas where research, development, and demonstration are most needed are identified. These propulsion technology recommendations are based on the work performed by the Commercial Space Transportation Advisory Committee (COMSTAC), an industry panel established by the Dept. of Transportation.

  12. Heavy vehicle propulsion system materials program semi-annual progress report for October 1997 through March 1998

    SciTech Connect

    Johnson, D.R.

    1998-06-01

    The purpose of the Heavy Vehicle Propulsion System materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1--3 trucks to realize a 35{percent} fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7--8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55{percent} efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55{percent} efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy-duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies.

  13. Distributed Propulsion Vehicles

    NASA Technical Reports Server (NTRS)

    Kim, Hyun Dae

    2010-01-01

    Since the introduction of large jet-powered transport aircraft, the majority of these vehicles have been designed by placing thrust-generating engines either under the wings or on the fuselage to minimize aerodynamic interactions on the vehicle operation. However, advances in computational and experimental tools along with new technologies in materials, structures, and aircraft controls, etc. are enabling a high degree of integration of the airframe and propulsion system in aircraft design. The National Aeronautics and Space Administration (NASA) has been investigating a number of revolutionary distributed propulsion vehicle concepts to increase aircraft performance. The concept of distributed propulsion is to fully integrate a propulsion system within an airframe such that the aircraft takes full synergistic benefits of coupling of airframe aerodynamics and the propulsion thrust stream by distributing thrust using many propulsors on the airframe. Some of the concepts are based on the use of distributed jet flaps, distributed small multiple engines, gas-driven multi-fans, mechanically driven multifans, cross-flow fans, and electric fans driven by turboelectric generators. This paper describes some early concepts of the distributed propulsion vehicles and the current turboelectric distributed propulsion (TeDP) vehicle concepts being studied under the NASA s Subsonic Fixed Wing (SFW) Project to drastically reduce aircraft-related fuel burn, emissions, and noise by the year 2030 to 2035.

  14. Vehicle Integrated Propulsion Research Tests

    NASA Technical Reports Server (NTRS)

    Lekki, John D.; Hunter, Gary W.; Simon, Don; Meredith, Roger; Wrbanek, John; Woike, Mark; Tokars, Roger; Guffanti, Marianne; Lyall, Eric

    2013-01-01

    Overview of the Vehicle Integrated Propulsion Research Tests in the Vehicle Systems Safety Technologies project. This overview covers highlights of the completed VIPR I and VIPR II tests and also covers plans for the VIPR III test.

  15. Manrating orbital transfer vehicle propulsion

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.

    1985-01-01

    The expended capabilities for Orbital Transfer Vehicles (OTV) which will be needed to meet increased payload requirements for transporting materials and men to geosynchronous orbit are discussed. The requirement to provide manrating offers challenges and opportunities to the propulsion system designers. The propulsion approaches utilized in previous manned space vehicles of the United States are reviewed. The principals of reliability analysis are applied to the Orbit Transfer Vehicle. Propulsion system options are characterized in terms of the test requirements to demonstrate reliability goals and are compared to earlier vehicle approaches.

  16. Aerodynamics of Heavy Vehicles

    NASA Astrophysics Data System (ADS)

    Choi, Haecheon; Lee, Jungil; Park, Hyungmin

    2014-01-01

    We present an overview of the aerodynamics of heavy vehicles, such as tractor-trailers, high-speed trains, and buses. We introduce three-dimensional flow structures around simplified model vehicles and heavy vehicles and discuss the flow-control devices used for drag reduction. Finally, we suggest important unsteady flow structures to investigate for the enhancement of aerodynamic performance and future directions for experimental and numerical approaches.

  17. Heavy Lift & Propulsion Technology (HL&PT)

    NASA Video Gallery

    Cris Guidi delivers a presentation from the Heavy Lift & Propulsion Technology (HL&PT) study team on May 25, 2010, at the NASA Exploration Enterprise Workshop held in Galveston, TX. The purpose of ...

  18. Solar electric propulsion for Mars transport vehicles

    NASA Technical Reports Server (NTRS)

    Hickman, J. M.; Curtis, H. B.; Alexander, S. W.; Gilland, J. H.; Hack, K. J.; Lawrence, C.; Swartz, C. K.

    1990-01-01

    Solar electric propulsion (SEP) is an alternative to chemical and nuclear powered propulsion systems for both piloted and unpiloted Mars transport vehicles. Photovoltaic solar cell and array technologies were evaluated as components of SEP power systems. Of the systems considered, the SEP power system composed of multijunction solar cells in an ENTECH domed fresnel concentrator array had the least array mass and area. Trip times to Mars optimized for minimum propellant mass were calculated. Additionally, a preliminary vehicle concept was designed.

  19. Propulsion issues for advanced orbit transfer vehicles

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.

    1984-01-01

    Studies of the United States Space Transportation System show that in the mid to late 1990s expanded capabilities for orbital transfer vehicles (OTV) will be needed to meet increased payload requirements for transporting materials and possibly men to geosynchronous orbit. Discussion and observations relative to the propulsion system issues of space basing, aeroassist compatibility, man ratability and enhanced payload delivery capability are presented. These issues will require resolution prior to the development of a propulsion system for the advanced OTV. The NASA program in support of advanced propulsion for an OTV is briefly described along with conceptual engine design characteristics.

  20. Heavy Vehicle Systems

    SciTech Connect

    Sid Diamond; Richard Wares; Jules Routbort

    2000-04-11

    Heavy Vehicle (HV) systems are a necessary component of achieving OHVT goals. Elements are in place for a far-ranging program: short, intermediate, and long-term. Solicitation will bring industrial input and support. Future funding trend is positive, outlook for HV systems is good.

  1. Booster propulsion/vehicle impact study, 2

    NASA Technical Reports Server (NTRS)

    Johnson, P.; Satterthwaite, S.; Carson, C.; Schnackel, J.

    1988-01-01

    This is the final report in a study examining the impact of launch vehicles for various boost propulsion design options. These options included: differing boost phase engines using different combinations of fuels and coolants to include RP-1, methane, propane (subcooled and normal boiling point), and hydrogen; variable and high mixture ratio hydrogen engines; translating nozzles on boost phase engines; and cross feeding propellants from the booster to second stage. Vehicles examined included a fully reusable two stage cargo vehicle and a single stage to orbit vehicle. The use of subcooled propane as a fuel generated vehicles with the lowest total vehicle dry mass. Engines with hydrogen cooling generated only slight mass reductions from the reference, all-hydrogen vehicle. Cross feeding propellants generated the most significant mass reductions from the reference two stage vehicle. The use of high mixture ratio or variable mixture ratio hydrogen engines in the boost phase of flight resulted in vehicles with total dry mass 20 percent greater than the reference hydrogen vehicle. Translating nozzles for boost phase engines generated a heavier vehicle. Also examined were the design impacts on the vehicle and ground support subsystems when subcooled propane is used as a fuel. The most significant cost difference between facilities to handle normal boiling point versus subcooled propane is 5 million dollars. Vehicle cost differences were negligible. A significant technical challenge exists for properly conditioning the vehicle propellant on the ground and in flight when subcooled propane is used as fuel.

  2. Propulsion Wheel Motor for an Electric Vehicle

    NASA Technical Reports Server (NTRS)

    Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Waligora, Thomas M. (Inventor); Bluethmann, William J. (Inventor); Farrell, Logan Christopher (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Winn, Ross Briant (Inventor); Eggleston, IV, Raymond Edward (Inventor); Guo, Raymond (Inventor); Weber, Steven J. (Inventor); Junkin, Lucien Q. (Inventor); Rogers, James Jonathan (Inventor)

    2016-01-01

    A wheel assembly for an electric vehicle includes a wheel rim that is concentrically disposed about a central axis. A propulsion-braking module is disposed within an interior region of the wheel rim. The propulsion-braking module rotatably supports the wheel rim for rotation about the central axis. The propulsion-braking module includes a liquid cooled electric motor having a rotor rotatable about the central axis, and a stator disposed radially inside the rotor relative to the central axis. A motor-wheel interface hub is fixedly attached to the wheel rim, and is directly attached to the rotor for rotation with the rotor. The motor-wheel interface hub directly transmits torque from the electric motor to the wheel rim at a 1:1 ratio. The propulsion-braking module includes a drum brake system having an electric motor that rotates a cam device, which actuates the brake shoes.

  3. Underwater vehicle propulsion and power generation

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2008-01-01

    An underwater vehicle includes a shaft with a propeller disposed thereon; a generator/motor having a stator and a rotor, the rotor being operable to rotate with the propeller; at least one energy storage device connected to the generator/motor; and a controller for setting the generator/motor in a charge mode, a propulsion mode and an idle mode.

  4. New propulsion components for electric vehicles

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1983-01-01

    Improved component technology is described. This includes electronically commutated permanent magnet motors of both drum and disk configurations, an unconventional brush commutated motor, ac induction motors, various controllers, transmissions and complete systems. One or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors. Previously announced in STAR as N83-25982

  5. Advanced propulsion system for hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  6. New propulsion components for electric vehicles

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1982-01-01

    Improved component technology is described. This includes electronically commutated permanent magnet motors of both drum and disk configurations, an unconventional brush commutated motor, ac induction motors, various controllers, transmissions and complete systems. One or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  7. Advanced orbit transfer vehicle propulsion system study

    NASA Technical Reports Server (NTRS)

    Cathcart, J. A.; Cooper, T. W.; Corringrato, R. M.; Cronau, S. T.; Forgie, S. C.; Harder, M. J.; Mcallister, J. G.; Rudman, T. J.; Stoneback, V. W.

    1985-01-01

    A reuseable orbit transfer vehicle concept was defined and subsequent recommendations for the design criteria of an advanced LO2/LH2 engine were presented. The major characteristics of the vehicle preliminary design include a low lift to drag aerocapture capability, main propulsion system failure criteria of fail operational/fail safe, and either two main engines with an attitude control system for backup or three main engines to meet the failure criteria. A maintenance and servicing approach was also established for the advanced vehicle and engine concepts. Design tradeoff study conclusions were based on the consideration of reliability, performance, life cycle costs, and mission flexibility.

  8. Advanced propulsion system concept for hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Bhate, S.; Chen, H.; Dochat, G.

    1980-01-01

    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.

  9. Propulsion of small launch vehicles using high power millimeter waves

    SciTech Connect

    Benford, J.; Myrabo, L.

    1994-12-31

    The use of microwave and millimeter wave beamed energy for propulsion of vehicles in the atmosphere and in space has been under study for at least 35 years. The need for improved propulsion technology is clear: chemical rockets orbit only a few percent of the liftoff mass at a cost of over $3,000/lb. The key advantage of the beamed power approach is to place the heavy and expensive components on the ground or in space, not in the vehicle. This paper, following upon the high power laser propulsion programs, uses a multi-cycle propulsion engine in which the first phase of ascent is based on the air breathing ramjet principle, a repetitive Pulsed Detonation Engine (PDE) which uses a microwave-supported detonation to heat the air working fluid, i.e., propellant. The second phase is a pure beam-heated rocket. The key factor is that high peak power is essential to this pulsed engine. This paper explores this propulsion concept using millimeter waves, the most advantageous part of the spectrum. The authors find that efficient system concepts can be developed for the beam powered launch system and that, while the capital cost may be as high as the earlier orbital transfer concepts, the operating cost is much lower. The vehicle can have payload-to-mass ratios on the order of one and cost (per pound to orbit) two orders of magnitudes less than for chemical rockets. This allows the weight of microwave powered vehicles to be very small, as low as {approximately}100 kg for test devices.

  10. Advanced earth-to-orbit transportation vehicles and their propulsion systems

    NASA Technical Reports Server (NTRS)

    Shelton, B. W.

    1978-01-01

    This paper identifies some of the advanced transportation systems and their associated propulsion systems being considered by MSFC for near-term missions (1980-1990), future missions (1990-2000), and far-term missions (post 2000). The near-term launch-vehicle considerations center around the growth Shuttle and the Shuttle-derived Heavy-Lift Launch Vehicle (HLLV) systems. The future and far-term considerations support the development of larger more advanced transportation systems. In such cases, the changing nature of the propulsion requirements needed by the launch vehicle are identified. The evolvement of chemical propulsion launch vehicles into the far future is prognosticated, and where applicable from a launch vehicle or propulsion viewpoint, orbit transfer vehicles are discussed.

  11. Heavy Lift Launch Vehicles for 1995 and Beyond

    NASA Technical Reports Server (NTRS)

    Toelle, R. (Compiler)

    1985-01-01

    A Heavy Lift Launch Vehicle (HLLV) designed to deliver 300,000 lb to a 540 n mi circular polar orbit may be required to meet national needs for 1995 and beyond. The vehicle described herein can accommodate payload envelopes up to 50 ft diameter by 200 ft in length. Design requirements include reusability for the more expensive components such as avionics and propulsion systems, rapid launch turnaround time, minimum hardware inventory, stage and component flexibility and commonality, and low operational costs. All ascent propulsion systems utilize liquid propellants, and overall launch vehicle stack height is minimized while maintaining a reasonable vehicle diameter. The ascent propulsion systems are based on the development of a new liquid oxygen/hydrocarbon booster engine and liquid oxygen/liquid hydrogen upper stage engine derived from today's SSME technology. Wherever possible, propulsion and avionics systems are contained in reusable propulsion/avionics modules that are recovered after each launch.

  12. Propulsion and stabilization system for magnetically levitated vehicles

    DOEpatents

    Coffey, Howard T.

    1993-06-29

    A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and stabilized by a system which includes propulsion windings mounted above and parallel to vehicle-borne suspension magnets. A linear synchronous motor is part of the vehicle guideway and is mounted above and parallel to superconducting magnets attached to the magnetically levitated vehicle.

  13. ac propulsion system for an electric vehicle

    NASA Technical Reports Server (NTRS)

    Geppert, S.

    1980-01-01

    It is pointed out that dc drives will be the logical choice for current production electric vehicles (EV). However, by the mid-80's, there is a good chance that the price and reliability of suitable high-power semiconductors will allow for a competitive ac system. The driving force behind the ac approach is the induction motor, which has specific advantages relative to a dc shunt or series traction motor. These advantages would be an important factor in the case of a vehicle for which low maintenance characteristics are of primary importance. A description of an EV ac propulsion system is provided, taking into account the logic controller, the inverter, the motor, and a two-speed transmission-differential-axle assembly. The main barrier to the employment of the considered propulsion system in EV is not any technical problem, but inverter transistor cost.

  14. Propulsion of small launch vehicles using high power millimeter waves

    SciTech Connect

    Benford, J.; Myrabo, L.

    1994-12-31

    High power microwaves have been proposed for propulsion of vehicles and projectiles in the atmosphere and in space. The requirements in terms of high power microwave technology have not been examined in any detail. The need for improved propulsion technology is clear: chemical rockets orbit only a few percent of the liftoff mass at a cost of about 3,000$/lb. The key advantage of any beamed power approach is in placing the heavy and expensive components on the ground or in space. The authors propose a system with uses a two-stage propulsion method in which the first phase of ascent is based on the ramjet principle, a repetitive Pulsed Detonation Engine which uses a microwave-supported detonation to heat the air fuel. The second phase is a pure rocket. This paper explores this propulsion concept using millimeter waves, the most advantageous part of the spectrum. They find that efficient system concepts can be developed: the vehicle can have payload-to-mass ratios on the order of one and cost per pound to orbit one or two orders of magnitude less that chemical rockets.

  15. Advanced propulsion concepts for orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.

    1982-01-01

    Studies of the United States Space Transportation System show that in the mid-to-late 1990s expanded capabilities for Orbital Transfer Vehicles (OTV) will be needed to meet increased payload requirements for transporting materials and possible men to geosynchronous orbit. NASA is conducting a technology program in support of an advanced propulsion system for future OTVs. This program is briefly described with results to date of the first program element, the Conceptual Design and Technology Definition studies.

  16. Mars Earth Return Vehicle (MERV) Propulsion Options

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.; Burke, Laura; Fincannon, James; Warner, Joe; Williams, Glenn; Parkey, Thomas; Colozza, Tony; Fittje, Jim; Martini, Mike; Packard, Tom; Hemminger, Joseph; Gyekenyesi, John

    2010-01-01

    The COMPASS Team was tasked with the design of a Mars Sample Return Vehicle. The current Mars sample return mission is a joint National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) mission, with ESA contributing the launch vehicle for the Mars Sample Return Vehicle. The COMPASS Team ran a series of design trades for this Mars sample return vehicle. Four design options were investigated: Chemical Return /solar electric propulsion (SEP) stage outbound, all-SEP, all chemical and chemical with aerobraking. The all-SEP and Chemical with aerobraking were deemed the best choices for comparison. SEP can eliminate both the Earth flyby and the aerobraking maneuver (both considered high risk by the Mars Sample Return Project) required by the chemical propulsion option but also require long low thrust spiral times. However this is offset somewhat by the chemical/aerobrake missions use of an Earth flyby and aerobraking which also take many months. Cost and risk analyses are used to further differentiate the all-SEP and Chemical/Aerobrake options.

  17. Advanced gel propulsion controls for kill vehicles

    NASA Astrophysics Data System (ADS)

    Yasuhara, W. K.; Olson, A.; Finato, S.

    1993-06-01

    A gel propulsion control concept for tactical applications is reviewed, and the status of the individual component technologies currently under development at the Aerojet Propulsion Division is discussed. It is concluded that a gel propellant Divert and Attitude Control Subsystem (DACS) provides a safe, insensitive munitions compliant alternative to current liquid Theater Missile Defense (TMD) DACS approaches. The gel kill vehicle (KV) control system packages a total impulse typical of a tactical weapon interceptor for the ground- or sea-based TMD systems. High density packaging makes it possible to increase firepower and to eliminate long-term high pressure gas storage associated with bipropellant systems. The integrated control subsystem technologies encompass solid propellant gas generators, insulated composite overwrapped propellant tanks, lightweight endoatmospheric thrusters, and insensitive munition gel propellants, which meet the requirements of a deployable, operationally safe KV.

  18. Hypersonic Vehicle Propulsion System Simplified Model Development

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Raitano, Paul; Le, Dzu K.; Ouzts, Peter

    2007-01-01

    This document addresses the modeling task plan for the hypersonic GN&C GRC team members. The overall propulsion system modeling task plan is a multi-step process and the task plan identified in this document addresses the first steps (short term modeling goals). The procedures and tools produced from this effort will be useful for creating simplified dynamic models applicable to a hypersonic vehicle propulsion system. The document continues with the GRC short term modeling goal. Next, a general description of the desired simplified model is presented along with simulations that are available to varying degrees. The simulations may be available in electronic form (FORTRAN, CFD, MatLab,...) or in paper form in published documents. Finally, roadmaps outlining possible avenues towards realizing simplified model are presented.

  19. Advanced hybrid vehicle propulsion system study

    NASA Technical Reports Server (NTRS)

    Schwarz, R.

    1982-01-01

    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  20. Heavy Lift Launch Vehicle Concept

    NASA Technical Reports Server (NTRS)

    2004-01-01

    During the Space Shuttle development phase, Marshall plarners concluded a Heavy Lift Launch Vehicle (HLLV) would be needed for successful Space Industrialization. Shown here in this 1976's artist's conception is an early version of the HLLV during launch.

  1. Heavy Vehicle and Engine Resource Guide

    SciTech Connect

    Not Available

    2004-03-01

    The Heavy Vehicle and Engine Resource Guide is a catalog of medium- and heavy-duty engines and vehicles with alternative fuel and advanced powertrain options. This edition covers model year 2003 engines and vehicles.

  2. 2nd Generation Reusable Launch Vehicle NASA Led Propulsion Tasks

    NASA Technical Reports Server (NTRS)

    Richards, Steve

    2000-01-01

    Design, development and test of a 2nd generation Reusable Launch Vehicle (RLV) is presented. This current paper discusses the following: 2nd Generation RLV Propulsion Project, Overview of NASA Led Tasks in Propulsion, Gen2 Turbo Machinery Technology Demonstrator, and Combustion Devices Test Bed, GRCop-84 Sheet For Combustion Chambers, Nozzles and Large Actively Cooled Structures

  3. Propulsion system research and development for electric and hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1980-01-01

    An approach to propulsion subsystem technology is presented. Various tests of component reliability are described to aid in the production of better quality vehicles. component characterization work is described to provide engineering data to manufacturers on component performance and on important component propulsion system interactions.

  4. Integrated Propulsion/Vehicle System Structurally Optimized

    NASA Technical Reports Server (NTRS)

    Hunter, James E.; McCurdy, David R.

    2003-01-01

    Ongoing research and testing are essential in the development of air-breathing hypersonic propulsion technology, and this year some positive advancement was made at the NASA Glenn Research Center. Recent work performed for GTX, a rocket-based combined-cycle, single-stage-to-orbit concept, included structural assessments of both the engine and flight vehicle. In the development of air-breathing engine technology, it is impractical to design and optimize components apart from the fully integrated system because tradeoffs must be made between performance and structural capability. Efforts were made to control the flight trajectory, for example, to minimize the aerodynamic heating effects. Structural optimization was applied to evaluate concept feasibility and was instrumental in the determination of the gross liftoff weight of the integrated system. Achieving low Earth orbit with even a small payload requires an aggressive approach to weight minimization through the use of lightweight, oxidation-resistant composite materials. Assessing the integrated system involved investigating the flight trajectory to determine where the critical load events occur in flight and then generating the corresponding environment at each of these events. Structural evaluation requires the mapping of the critical flight loads to finite element models, including the combined effects of aerodynamic, inertial, combustion, and other loads. NASA s APAS code was used to generate aerodynamic pressure and temperature profiles at each critical event. The radiation equilibrium surface temperatures from APAS were used to predict temperatures through the thickness. Heat transfer solutions using NASA's MINIVER code and the SINDA code (Cullimore & Ring Technologies, Littleton, CO) were calculated at selective points external to the integrated vehicle system and then extrapolated over the entire exposed surface. FORTRAN codes were written to expedite the finite element mapping of the aerodynamic heating

  5. History of propulsion for SSTO and multiple stage vehicles

    NASA Astrophysics Data System (ADS)

    Martin, James A.

    1993-06-01

    Studies of advanced earth-to-orbit vehicles and the propulsion systems that might be used on them have continued since the Space Shuttle design was selected. This paper summarizes some of the history of those studies. Topics covered include dual-fuel propulsion, engines with both hydrocarbon and hydrogen fuels, two-stage vehicles with parallel burn, and the space transportation booster and main engine studies.

  6. Propulsion control of superconducting linear synchronous motor vehicle

    SciTech Connect

    Sakamoto, Tetsuzo; Shiromizu, Tsunehiro

    1997-09-01

    The armature current of a superconducting Linear Synchronous Motor (LSM) for a maglev vehicle is controlled to produce a suitable propulsion force so that the vehicle follows the reference speed signal sent from a control station. Besides the power is supplied from some inverters to the LSM armature sections where the vehicle exists. This paper shows an exact mathematical modeling of the propulsion control system to treat the system analytically, which is used for designing controllers and performance computer simulations. The calculated results include the simulations when the vehicle goes through power feeder section borders and tunnels that have a large aerodynamic drag force with taking account of an inverter failure.

  7. Vehicle Dynamics due to Magnetic Launch Propulsion

    NASA Technical Reports Server (NTRS)

    Galaboff, Zachary J.; Jacobs, William; West, Mark E.; Montenegro, Justino (Technical Monitor)

    2000-01-01

    The field of Magnetic Levitation Lind Propulsion (MagLev) has been around for over 30 years, primarily in high-speed rail service. In recent years, however, NASA has been looking closely at MagLev as a possible first stage propulsion system for spacecraft. This approach creates a variety of new problems that don't currently exist with the present MagLev trains around the world. NASA requires that a spacecraft of approximately 120,000 lbs be accelerated at two times the acceleration of gravity (2g's). This produces a greater demand on power over the normal MagLev trains that accelerate at around 0.1g. To be able to store and distribute up to 3,000 Mega Joules of energy in less than 10 seconds is a technical challenge. Another problem never addressed by the train industry and, peculiar only to NASA, is the control of a lifting body through the acceleration of and separation from the MagLev track. Very little is understood about how a lifting body will react with external forces, Such as wind gusts and ground effects, while being propelled along on soft springs such as magnetic levitators. Much study needs to be done to determine spacecraft control requirements as well as what control mechanisms and aero-surfaces should be placed on the carrier. Once the spacecraft has been propelled down the track another significant event takes place, the separation of the spacecraft from the carrier. The dynamics involved for both the carrier and the spacecraft are complex and coupled. Analysis of the reaction of the carrier after losing, a majority of its mass must be performed to insure control of the carrier is maintained and a safe separation of the spacecraft is achieved. The spacecraft angle of attack required for lift and how it will affect the carriage just prior to separation, along with the impacts of around effect and aerodynamic forces at ground level must be modeled and analyzed to define requirements on the launch vehicle design. Mechanisms, which can withstand the

  8. A Combined Solar Electric and Storable Chemical Propulsion Vehicle for Piloted Mars Missions

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Oleson, Steven R.; Drake, Bret G.

    2014-01-01

    The Mars Design Reference Architecture (DRA) 5.0 explored a piloted Mars mission in the 2030 timeframe, focusing on architecture and technology choices. The DRA 5.0 focused on nuclear thermal and cryogenic chemical propulsion system options for the mission. Follow-on work explored both nuclear and solar electric options. One enticing option that was found in a NASA Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) design study used a combination of a 1-MW-class solar electric propulsion (SEP) system combined with storable chemical systems derived from the planned Orion crew vehicle. It was found that by using each propulsion system at the appropriate phase of the mission, the entire SEP stage and habitat could be placed into orbit with just two planned Space Launch System (SLS) heavy lift launch vehicles assuming the crew would meet up at the Earth-Moon (E-M) L2 point on a separate heavy-lift launch. These appropriate phases use high-thrust chemical propulsion only in gravity wells when the vehicle is piloted and solar electric propulsion for every other phase. Thus the SEP system performs the spiral of the unmanned vehicle from low Earth orbit (LEO) to E-M L2 where the vehicle meets up with the multi-purpose crew vehicle. From here SEP is used to place the vehicle on a trajectory to Mars. With SEP providing a large portion of the required capture and departure changes in velocity (delta V) at Mars, the delta V provided by the chemical propulsion is reduced by a factor of five from what would be needed with chemical propulsion alone at Mars. This trajectory also allows the SEP and habitat vehicle to arrive in the highly elliptic 1-sol parking orbit compatible with envisioned Mars landing concepts. This paper explores mission options using between SEP and chemical propulsion, the design of the SEP system including the solar array and electric propulsion systems, and packaging in the SLS shroud. Design trades of stay time, power level

  9. A Combined Solar Electric and Storable Chemical Propulsion Vehicle for Piloted Mars Missions

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Oleson, Steven R.; Drake, Bret

    2013-01-01

    The Mars Design Reference Architecture (DRA) 5.0 explored a piloted Mars mission in the 2030 timeframe, focusing on architecture and technology choices. The DRA 5.0 focused on nuclear thermal and cryogenic chemical propulsion system options for the mission. Follow-on work explored both nuclear and solar electric options. One enticing option that was found in a NASA Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) design study used a combination of a 1-MW-class solar electric propulsion (SEP) system combined with storable chemical systems derived from the planned Orion crew vehicle. It was found that by using each propulsion system at the appropriate phase of the mission, the entire SEP stage and habitat could be placed into orbit with just two planned Space Launch System (SLS) heavy lift launch vehicles assuming the crew would meet up at the Earth-Moon (E-M) L2 point on a separate heavy-lift launch. These appropriate phases use high-thrust chemical propulsion only in gravity wells when the vehicle is piloted and solar electric propulsion for every other phase. Thus the SEP system performs the spiral of the unmanned vehicle from low Earth orbit (LEO) to E-M L2 where the vehicle meets up with the multi-purpose crew vehicle. From here SEP is used to place the vehicle on a trajectory to Mars. With SEP providing a large portion of the required capture and departure changes in velocity (delta V) at Mars, the delta V provided by the chemical propulsion is reduced by a factor of five from what would be needed with chemical propulsion alone at Mars. This trajectory also allows the SEP and habitat vehicle to arrive in the highly elliptic 1-sol parking orbit compatible with envisioned Mars landing concepts. This paper explores mission options using between SEP and chemical propulsion, the design of the SEP system including the solar array and electric propulsion systems, and packaging in the SLS shroud. Design trades of stay time, power level

  10. Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter

    2008-01-01

    Under the NASA Fundamental Aeronautics Program, the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.

  11. Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter

    2010-01-01

    Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.

  12. Hypersonic Vehicle Propulsion System Control Model Development Roadmap and Activities

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Le, Dzu K.; Vrnak, Daniel R.

    2009-01-01

    The NASA Fundamental Aeronautics Program Hypersonic project is directed towards fundamental research for two classes of hypersonic vehicles: highly reliable reusable launch systems (HRRLS) and high-mass Mars entry systems (HMMES). The objective of the hypersonic guidance, navigation, and control (GN&C) discipline team is to develop advanced guidance and control algorithms to enable efficient and effective operation of these challenging vehicles. The ongoing work at the NASA Glenn Research Center supports the hypersonic GN&C effort in developing tools to aid the design of advanced control algorithms that specifically address the propulsion system of the HRRLSclass vehicles. These tools are being developed in conjunction with complementary research and development activities in hypersonic propulsion at Glenn and elsewhere. This report is focused on obtaining control-relevant dynamic models of an HRRLS-type hypersonic vehicle propulsion system.

  13. Seal Technology for Hypersonic Vehicle and Propulsion: An Overview

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.

    2008-01-01

    Hypersonic vehicles and propulsion systems pose an extraordinary challenge for structures and materials. Airframes and engines require lightweight, high-temperature materials and structural configurations that can withstand the extreme environment of hypersonic flight. Some of the challenges posed include very high temperatures, heating of the whole vehicle, steady-state and transient localized heating from shock waves, high aerodynamic loads, high fluctuating pressure loads, potential for severe flutter, vibration, and acoustic loads and erosion. Correspondingly high temperature seals are required to meet these aggressive requirements. This presentation reviews relevant seal technology for both heritage (e.g. Space Shuttle, X-15, and X-38) vehicles and presents several seal case studies aimed at providing lessons learned for future hypersonic vehicle seal development. This presentation also reviews seal technology developed for the National Aerospace Plane propulsion systems and presents several seal case studies aimed at providing lessons learned for future hypersonic propulsion seal development.

  14. Performance testing of the AC propulsion ELX electric vehicle

    SciTech Connect

    Kramer, W.E.; MacDowall, R.D.; Burke, A.F.

    1994-06-01

    Performance testing of the AC Propulsion ELX electric vehicle is described. Test data are presented and analyzed. The ELX vehicle is the first of a series of electric vehicles of interest to the California Air Resources Board. The test series is being conducted under a Cooperative Research and Development Agreement (CRADA) between the US Department of energy and the California Air Resources Board. The tests which were conducted showed that the AC Propulsion ELX electric vehicle has exceptional acceleration and range performance. when the vehicle`s battery was fully charged, the vehicle can accelerate from 0 to 96 km/h in about 10 seconds. Energy consumption and range tests using consecutive FUDS and HWFET Driving cycles (the all-electric cycle) indicate that the energy economy of the AC Propulsion ELX electric vehicle with regenerative braking is 97 W{center_dot}h/km, with a range of 153 km (95 miles). Computer simulations performed using the SIMPLEV Program indicate that the vehicle would have a range of 327 km (203 miles) on the all-electric cycle if the lead acid batteries were replaced with NiMH batteries having an energy density of 67 W{center_dot}h/kg. Comparisons of FUDS test data with and without regenerative braking indicated that regenerative braking reduced the energy consumption of the ELX vehicle by approximately 25%.

  15. Heavy Duty Vehicle Futures Analysis.

    SciTech Connect

    Askin, Amanda Christine; Barter, Garrett.; West, Todd H.; Manley, Dawn Kataoka

    2014-05-01

    This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

  16. Performance testing of the AC propulsion ELX electric vehicle

    NASA Astrophysics Data System (ADS)

    Kramer, W. E.; MacDowall, R. D.; Burke, A. F.

    1994-06-01

    Performance testing of the AC Propulsion ELX electric vehicle is described. Test data are presented and analyzed. The ELX vehicle is the first of a series of electric vehicles of interest to the California Air Resources Board. The test series is being conducted under a Cooperative Research and Development Agreement (CRADA) between the US Department of energy and the California Air Resources Board. The tests which were conducted showed that the AC Propulsion ELX electric vehicle has exceptional acceleration and range performance. When the vehicle's battery was fully charged, the vehicle can accelerate from 0 to 96 km/h in about 10 seconds. Energy consumption and range tests using consecutive FUDS and HWFET Driving cycles (the all-electric cycle) indicate that the energy economy of the AC Propulsion ELX electric vehicle with regenerative braking is 97 W(center dot)h/km, with a range of 153 km (95 miles). Computer simulations performed using the SIMPLEV Program indicate that the vehicle would have a range of 327 km (203 miles) on the all-electric cycle if the lead acid batteries were replaced with NiMH batteries having an energy density of 67 W(center dot)h/kg. Comparisons of FUDS test data with and without regenerative braking indicated that regenerative braking reduced the energy consumption of the ELX vehicle by approximately 25%.

  17. A summary of EHV propulsion technology. [Electric and Hybrid Vehicle

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1983-01-01

    While the battery used by an electric vehicle is the primary determinant of range, and to a lesser extent of performance, the design of the vehicle's propulsion system establishes its performance level and is the greatest contributor to its purchase price. Propulsion system weight, efficiency and cost are related to the specific combination of components used. Attention is given to the development status of the U.S. Department of Energy's Electric and Hybrid Vehicle Program, through which propulsion component and system design improvements have been made which promise weight savings of 35-50 percent, efficiency gains of 25 percent, and lower costs, when compared to the state of the art at the program's inception.

  18. A nuclear electric propulsion vehicle for planetary exploration

    NASA Technical Reports Server (NTRS)

    Pawlik, E. V.; Phillips, W. M.

    1976-01-01

    A study is currently underway at JPL to design a nuclear electric-propulsion vehicle capable of performing detailed exploration of the outer planets. Evaluation of the design indicates that it is also applicable to orbit raising. Primary emphasis is on the power subsystem. Work on the design of the power system, the mission rationale, and preliminary spacecraft design are summarized. A propulsion system at a 400-kWe power level with a specific weight goal of no more than 25-kg/kW was selected for this study. The results indicate that this goal can be realized along with compatibility with the shuttle launch-vehicle constraints.

  19. Booster propulsion/vehicle impact study

    NASA Technical Reports Server (NTRS)

    Weldon, Vincent; Dunn, Michael; Fink, Lawrence; Phillips, Dwight; Wetzel, Eric

    1988-01-01

    The use of hydrogen RP-1, propane, and methane as fuels for booster engines of launch vehicles is discussed. An automated procedure for integrated launch vehicle, engine sizing, and design optimization was used to define two stage and single stage concepts for minimum dry weight. The two stage vehicles were unmanned and used a flyback booster and partially reusable orbiter. The single stage designs were fully reusable, manned flyback vehicles. Comparisons of these vehicle designs, showing the effects of using different fuels, as well as sensitivity and trending data, are presented. In addition, the automated design technique utilized for the study is described.

  20. Vehicle Propulsion Systems: Introduction to Modeling and Optimization

    NASA Astrophysics Data System (ADS)

    Guzzella, Lino; Sciarretta, Antonio

    In this book the longitudinal behavior of road vehicles is analyzed. The main emphasis is on the analysis and minimization of the fuel and energy consumption. Most approaches to this problem enhance the complexity of the vehicle system by adding components such as electrical motors or storage devices. Such a complex system can only be designed by means of mathematical models. This text gives an introduction to the modeling and optimization problems typically encountered when designing new propulsion systems for passenger cars.

  1. Catalog of components for electric and hybrid vehicle propulsion systems

    NASA Technical Reports Server (NTRS)

    Eissler, H. C.

    1981-01-01

    This catalog of commercially available electric and hybrid vehicle propulsion system components is intended for designers and builders of these vehicles and contains 50 categories of components. These categories include those components used between the battery terminals and the output axle hub, as well as some auxiliary equipment. An index of the components and a listing of the suppliers and their addresses and phone numbers are included.

  2. Summary of booster propulsion/vehicle impact study results

    NASA Technical Reports Server (NTRS)

    Weldon, Vincent A.; Fink, Lawrence E.; Phillips, Dwight U.

    1988-01-01

    Hydrogen, RP-1, propane, and methane were identified by propulsion technology studies as the most probable fuel candidates for the boost phase of future launch vehicles. The objective of this study was to determine the effects of booster engines using these fuels and coolant variations on representative future launch vehicles. An automated procedure for integrated launch vehicle, engine sizing, and design optimization was used to optimize two stage and single stage concepts for minimum dry weight. The two stage vehicles were unmanned and used a flyback booster and partially reusable orbiter. The single stage designs were fully reusable, manned flyback vehicles. Comparisons of these vehicle designs, showing the effects of using different fuels, as well as sensitivity and trending data, are presented. In addition, the automated design technique is described.

  3. Design considerations for Mars transfer vehicles using nuclear thermal propulsion

    NASA Astrophysics Data System (ADS)

    Emrich, William J.

    1995-01-01

    The design of a Mars Transfer Vehicle (MTV) utilizing nuclear propulsion will require that careful consideration be given to the nuclear radiation environment in which it will operate. The extremely high neutron and gamma fluxes characteristic of nuclear thermal propulsion systems will cause significant heating of the fluid systems in close proximity to the reactor, especially in the lower propellant tanks. Crew radiation doses are also a concern particularly late in a mission when there is less shielding from the propellant tanks. In this study, various vehicle configuration and shielding strategies were examined and the resulting time dependent radiation fields evaluated. A common cluster of three particle bed reactor (PBR) engines were used in all configurations examined. In general, it appears that long, relatively narrow vehicles perform the best from a radiation standpoint, however, good shield optimization will be critical in maintaining a low radiation environment while minimizing the shield weight penalty.

  4. The ac propulsion system for an electric vehicle, phase 1

    NASA Technical Reports Server (NTRS)

    Geppert, S.

    1981-01-01

    A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.

  5. Aluminum air battery for electric vehicle propulsion

    SciTech Connect

    Cooper, J.F.; Homsy, R.V.; Landrum, J.H.

    1980-01-01

    The status of aluminum-air battery development and the use of aluminum as a recyclable electrochemical fuel are discussed. The battery combines high specific energy (above 300 Wh/kg) and specific power (150 to 200 W/kg) with the capability of rapid refueling by addition of reactants. The objective is a commercially-feasible, general-purpose electric vehicle. Progress is reported in the scale-up of aluminum-air single cells to the automotive scale (0.1 m/sup 2/-anodes) and in the development of a hydrargillite crystallizer, which is required to control electrolyte composition. Major technical problems and development strategy are discussed. The total cost and energy required to produce aluminum, and projected consumption by electric vehicles indicates that the aluminum-air powered electric vehicle is potentially competitive with advanced automobiles using synthetic liquid fuels.

  6. Space vehicle propulsion systems: Environmental space hazards

    NASA Technical Reports Server (NTRS)

    Disimile, P. J.; Bahr, G. K.

    1990-01-01

    The hazards that exist in geolunar space which may degrade, disrupt, or terminate the performance of space-based LOX/LH2 rocket engines are evaluated. Accordingly, a summary of the open literature pertaining to the geolunar space hazards is provided. Approximately 350 citations and about 200 documents and abstracts were reviewed; the documents selected give current and quantitative detail. The methodology was to categorize the various space hazards in relation to their importance in specified regions of geolunar space. Additionally, the effect of the various space hazards in relation to spacecraft and their systems were investigated. It was found that further investigation of the literature would be required to assess the effects of these hazards on propulsion systems per se; in particular, possible degrading effects on exterior nozzle structure, directional gimbals, and internal combustion chamber integrity and geometry.

  7. Orbital refill of propulsion vehicle tankage

    NASA Technical Reports Server (NTRS)

    Merino, F.; Risberg, J. A.; Hill, M.

    1980-01-01

    Techniques for orbital refueling of space based vehicles were developed and experimental programs to verify these techniques were identified. Orbital refueling operations were developed for two cryogenic orbital transfer vehicles (OTV's) and an Earth storable low thrust liquid propellant vehicle. Refueling operations were performed assuming an orbiter tanker for near term missions and an orbital depot. Analyses were conducted using liquid hydrogen and N2O4. The influence of a pressurization system and acquisition device on operations was also considered. Analyses showed that vehicle refill operations will be more difficult with a cryogen than with an earth storable. The major elements of a successful refill with cryogens include tank prechill and fill. Propellant quantities expended for tank prechill appear to to insignificant. Techniques were identified to avoid loss of liquid or excessive tank pressures during refill. It was determined that refill operations will be similar whether or not an orbiter tanker or orbital depot is available. Modeling analyses were performed for prechill and fill tests to be conducted assuming the Spacelab as a test bed, and a 1/10 scale model OTV (with LN2 as a test fluid) as an experimental package.

  8. On-Orbit Propulsion System Performance of ISS Visiting Vehicles

    NASA Technical Reports Server (NTRS)

    Martin, Mary Regina M.; Swanson, Robert A.; Kamath, Ulhas P.; Hernandez, Francisco J.; Spencer, Victor

    2013-01-01

    The International Space Station (ISS) represents the culmination of over two decades of unprecedented global human endeavors to conceive, design, build and operate a research laboratory in space. Uninterrupted human presence in space since the inception of the ISS has been made possible by an international fleet of space vehicles facilitating crew rotation, delivery of science experiments and replenishment of propellants and supplies. On-orbit propulsion systems on both ISS and Visiting Vehicles are essential to the continuous operation of the ISS. This paper compares the ISS visiting vehicle propulsion systems by providing an overview of key design drivers, operational considerations and performance characteristics. Despite their differences in design, functionality, and purpose, all visiting vehicles must adhere to a common set of interface requirements along with safety and operational requirements. This paper addresses a wide variety of methods for satisfying these requirements and mitigating credible hazards anticipated during the on-orbit life of propulsion systems, as well as the seamless integration necessary for the continued operation of the ISS.

  9. Review of Propulsion Technologies for N+3 Subsonic Vehicle Concepts

    NASA Technical Reports Server (NTRS)

    Ashcraft, Scott W.; Padron, Andres S.; Pascioni, Kyle A.; Stout, Gary W., Jr.; Huff, Dennis L.

    2011-01-01

    NASA has set aggressive fuel burn, noise, and emission reduction goals for a new generation (N+3) of aircraft targeting concepts that could be viable in the 2035 timeframe. Several N+3 concepts have been formulated, where the term "N+3" indicate aircraft three generations later than current state-of-the-art aircraft, "N". Dramatic improvements need to be made in the airframe, propulsion systems, mission design, and the air transportation system in order to meet these N+3 goals. The propulsion system is a key element to achieving these goals due to its major role with reducing emissions, fuel burn, and noise. This report provides an in-depth description and assessment of propulsion systems and technologies considered in the N+3 subsonic vehicle concepts. Recommendations for technologies that merit further research and development are presented based upon their impact on the N+3 goals and likelihood of being operational by 2035.

  10. Analyses of magnetohydrodynamic propulsion with seawater for underwater vehicles

    NASA Astrophysics Data System (ADS)

    Lin, T. F.; Gilbert, J. B.; Roy, G. D.

    1991-12-01

    In naval applications where the importance of reducing acoustic signature outweighs other considerations, MHD propulsion furnishes the requisite quietness due to its obviation of mechanical moving parts. Attention is presently given to the results of performance calculations for torpedo-sized and submarine-sized vehicles operating 30 m beneath the sea surface. Reasonable submarine velocity can be achieved with a magnetic field of about 5 T.

  11. Hybrid and electric advanced vehicle systems (heavy) simulation

    NASA Technical Reports Server (NTRS)

    Hammond, R. A.; Mcgehee, R. K.

    1981-01-01

    A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.

  12. Launch Vehicle Propulsion Design with Multiple Selection Criteria

    NASA Technical Reports Server (NTRS)

    Shelton, Joey D.; Frederick, Robert A.; Wilhite, Alan W.

    2005-01-01

    The approach and techniques described herein define an optimization and evaluation approach for a liquid hydrogen/liquid oxygen single-stage-to-orbit system. The method uses Monte Carlo simulations, genetic algorithm solvers, a propulsion thermo-chemical code, power series regression curves for historical data, and statistical models in order to optimize a vehicle system. The system, including parameters for engine chamber pressure, area ratio, and oxidizer/fuel ratio, was modeled and optimized to determine the best design for seven separate design weight and cost cases by varying design and technology parameters. Significant model results show that a 53% increase in Design, Development, Test and Evaluation cost results in a 67% reduction in Gross Liftoff Weight. Other key findings show the sensitivity of propulsion parameters, technology factors, and cost factors and how these parameters differ when cost and weight are optimized separately. Each of the three key propulsion parameters; chamber pressure, area ratio, and oxidizer/fuel ratio, are optimized in the seven design cases and results are plotted to show impacts to engine mass and overall vehicle mass.

  13. Common Lunar Lander vehicle propulsion system conceptual design

    NASA Technical Reports Server (NTRS)

    Hyatt, C. D.; Riccio, Joseph R.; Moore, Landon

    1993-01-01

    The Common Lunar Lander (CLL) is a concept for a small, unpiloted vehicle which would provide a low-cost capability to land any of a variety of payloads in the 200 kg class at any point on the surface of the moon. Initiated as a precursor mission for the First Lunar Outpost, it also has considerable potential for use by the scientific community at large. A series of studies has been conducted at the NASA Johnson Space Center to define initial requirements and to initiate the design process. This paper describes the propulsion subsystem design as it existed at the CLL System Design Review. The propulsion subsystem design is described in detail along with the planned operations concept, including the unique concept of using pulsing of main engines for thrust modulation. Design options and trades considered and the verification process philosophy which was being planned for the program are discussed.

  14. Dynamic interactions between hypersonic vehicle aerodynamics and propulsion system performance

    NASA Technical Reports Server (NTRS)

    Flandro, G. A.; Roach, R. L.; Buschek, H.

    1992-01-01

    Described here is the development of a flexible simulation model for scramjet hypersonic propulsion systems. The primary goal is determination of sensitivity of the thrust vector and other system parameters to angle of attack changes of the vehicle. Such information is crucial in design and analysis of control system performance for hypersonic vehicles. The code is also intended to be a key element in carrying out dynamic interaction studies involving the influence of vehicle vibrations on propulsion system/control system coupling and flight stability. Simple models are employed to represent the various processes comprising the propulsion system. A method of characteristics (MOC) approach is used to solve the forebody and external nozzle flow fields. This results in a very fast computational algorithm capable of carrying out the vast number of simulation computations needed in guidance, stability, and control studies. The three-dimensional fore- and aft body (nozzle) geometry is characterized by the centerline profiles as represented by a series of coordinate points and body cross-section curvature. The engine module geometry is represented by an adjustable vertical grid to accommodate variations of the field parameters throughout the inlet and combustor. The scramjet inlet is modeled as a two-dimensional supersonic flow containing adjustable sidewall wedges and multiple fuel injection struts. The inlet geometry including the sidewall wedge angles, the number of injection struts, their sweepback relative to the vehicle reference line, and strut cross-section are user selectable. Combustion is currently represented by a Rayleigh line calculation including corrections for variable gas properties; improved models are being developed for this important element of the propulsion flow field. The program generates (1) variation of thrust magnitude and direction with angle of attack, (2) pitching moment and line of action of the thrust vector, (3) pressure and temperature

  15. Propulsion Integrated Vehicle Health Management Technology Experiment (PITEX) Conducted

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Chicatelli, Amy K.; Fulton, Christopher E.

    2004-01-01

    The Propulsion Integrated Vehicle Health Management (IVHM) Technology Experiment (PITEX) is a continuing NASA effort being conducted cooperatively by the NASA Glenn Research Center, the NASA Ames Research Center, and the NASA Kennedy Space Center. It was a key element of a Space Launch Initiative risk-reduction task performed by the Northrop Grumman Corporation in El Segundo, California. PITEX's main objectives are the continued maturation of diagnostic technologies that are relevant to second generation reusable launch vehicle (RLV) subsystems and the assessment of the real-time performance of the PITEX diagnostic solution. The PITEX effort has considerable legacy in the NASA IVHM Technology Experiment for X-vehicles (NITEX) that was selected to fly on the X-34 subscale RLV that was being developed by Orbital Sciences Corporation. NITEX, funded through the Future-X Program Office, was to advance the technology-readiness level of selected IVHM technologies within a flight environment and to begin the transition of these technologies from experimental status into RLV baseline designs. The experiment was to perform realtime fault detection and isolation and suggest potential recovery actions for the X-34 main propulsion system (MPS) during all mission phases by using a combination of system-level analysis and detailed diagnostic algorithms.

  16. Benefits of Power and Propulsion Technology for a Piloted Electric Vehicle to an Asteroid

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Oleson, Steven R.; Pencil, Eric J.; Piszczor, Michael F.; Mason, Lee S.; Bury, Kristen M.; Manzella, David H.; Kerslake, Thomas W.; Hojinicki, Jeffrey S.; Brophy, John P.

    2011-01-01

    NASA's goal for human spaceflight is to expand permanent human presence beyond low Earth orbit (LEO). NASA is identifying potential missions and technologies needed to achieve this goal. Mission options include crewed destinations to LEO and the International Space Station; high Earth orbit and geosynchronous orbit; cis-lunar space, lunar orbit, and the surface of the Moon; near-Earth objects; and the moons of Mars, Mars orbit, and the surface of Mars. NASA generated a series of design reference missions to drive out required functions and capabilities for these destinations, focusing first on a piloted mission to a near-Earth asteroid. One conclusion from this exercise was that a solar electric propulsion stage could reduce mission cost by reducing the required number of heavy lift launches and could increase mission reliability by providing a robust architecture for the long-duration crewed mission. Similarly, solar electric vehicles were identified as critical for missions to Mars, including orbiting Mars, landing on its surface, and visiting its moons. This paper describes the parameterized assessment of power and propulsion technologies for a piloted solar electric vehicle to a near-Earth asteroid. The objective of the assessment was to determine technology drivers to advance the state of the art of electric propulsion systems for human exploration. Sensitivity analyses on the performance characteristics of the propulsion and power systems were done to determine potential system-level impacts of improved technology. Starting with a "reasonable vehicle configuration" bounded by an assumed launch date, we introduced technology improvements to determine the system-level benefits (if any) that those technologies might provide. The results of this assessment are discussed and recommendations for future work are described.

  17. Benefits of Power and Propulsion Technology for a Piloted Electric Vehicle to an Asteroid

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Oleson, Steven R.; Pencil, Eric J.; Piszczor, Michael F.; Mason, Lee S.; Bury, Kristen M.; Manzella, David H.; Kerslake, Thomas W.; Hojinicki, Jeffrey S.; Brophy, John P.

    2012-01-01

    NASA s goal for human spaceflight is to expand permanent human presence beyond low Earth orbit (LEO). NASA is identifying potential missions and technologies needed to achieve this goal. Mission options include crewed destinations to LEO and the International Space Station; high Earth orbit and geosynchronous orbit; cis-lunar space, lunar orbit, and the surface of the Moon; near-Earth objects; and the moons of Mars, Mars orbit, and the surface of Mars. NASA generated a series of design reference missions to drive out required functions and capabilities for these destinations, focusing first on a piloted mission to a near-Earth asteroid. One conclusion from this exercise was that a solar electric propulsion stage could reduce mission cost by reducing the required number of heavy lift launches and could increase mission reliability by providing a robust architecture for the long-duration crewed mission. Similarly, solar electric vehicles were identified as critical for missions to Mars, including orbiting Mars, landing on its surface, and visiting its moons. This paper describes the parameterized assessment of power and propulsion technologies for a piloted solar electric vehicle to a near-Earth asteroid. The objective of the assessment was to determine technology drivers to advance the state of the art of electric propulsion systems for human exploration. Sensitivity analyses on the performance characteristics of the propulsion and power systems were done to determine potential system-level impacts of improved technology. Starting with a "reasonable vehicle configuration" bounded by an assumed launch date, we introduced technology improvements to determine the system-level benefits (if any) that those technologies might provide. The results of this assessment are discussed and recommendations for future work are described.

  18. Fuel cells: a real option for Unmanned Aerial Vehicles propulsion.

    PubMed

    González-Espasandín, Óscar; Leo, Teresa J; Navarro-Arévalo, Emilio

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored.

  19. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    PubMed Central

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored. PMID:24600326

  20. Development of a DC propulsion system for an electric vehicle

    NASA Technical Reports Server (NTRS)

    Kelledes, W. L.

    1984-01-01

    The suitability of the Eaton automatically shifted mechanical transaxle concept for use in a near-term dc powered electric vehicle is evaluated. A prototype dc propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the contractor's site. The system consisted of a two-axis, three-speed, automatically-shifted mechanical transaxle, 15.2 Kw rated, separately excited traction motor, and a transistorized motor controller with a single chopper providing limited armature current below motor base speed and full range field control above base speed at up to twice rated motor current. The controller utilized a microprocessor to perform motor and vehicle speed monitoring and shift sequencing by means of solenoids applying hydraulic pressure to the transaxle clutches. Bench dynamometer and track testing was performed. Track testing showed best system efficiency for steady-state cruising speeds of 65-80 Km/Hz (40-50 mph). Test results include acceleration, steady speed and SAE J227A/D cycle energy consumption, braking tests and coast down to characterize the vehicle road load.

  1. Robust control of hypersonic vehicles considering propulsive and aeroelastic effects

    NASA Technical Reports Server (NTRS)

    Buschek, Harald; Calise, Anthony J.

    1993-01-01

    The influence of propulsion system variations and elastic fuselage behavior on the flight control system of an airbreathing hypersonic vehicle is investigated. Thrust vector magnitude and direction changes due to angle of attack variations affect the pitching moment. Low structural vibration frequencies may occur close to the rigid body modes influencing the angle of attack and lead to possible cross coupling. These effects are modeled as uncertainties in the context of a robust control study of a hypersonic vehicle model accelerating through Mach 8 using H-infinity and mu synthesis techniques. Various levels of uncertainty are introduced into the system. Both individual and simultaneous appearance of uncertainty are considered. The results indicate that the chosen design technique is suitable for this kind of problem provided that a fairly good knowledge of the effects mentioned above is available. The order of the designed controller is reduced but robust performance is lost which shows the need for fixed order design techniques.

  2. Drag reduction of a heavy vehicle

    NASA Astrophysics Data System (ADS)

    Ortega, Jason; Salari, Kambiz

    2007-11-01

    During the 1970's and 1980's, a number of first-generation drag reduction devices were designed to reduce the aerodynamic losses of heavy vehicles (Cooper, 2003). The result of this effort led to the development of a number of devices that improved the aerodynamics of a heavy vehicle tractor. Additionally, a number of second-generation devices were developed for heavy vehicle trailers. Unfortunately, these trailer devices did not enter into the market on a wide-scale basis and, as a result, the modern heavy vehicle trailer largely remains a ``box on wheels'' with minimal aerodynamic consideration taken into its design. The primary obstacle to implementing trailer devices was not their effectiveness in reducing drag, but rather operational, maintenance, and ultimately, economic concerns. However, with rising fuel costs and potentially unstable fuel supplies, there is a renewed objective to further reduce heavy vehicle fuel usage. To accomplish this purpose, the present study investigates the drag reduction capability of a trailer device, which neither reduces the trailer cargo capacity, nor limits access to the trailer doors. RANS simulations are performed on a full-scale tractor-trailer that is traveling at highway conditions with and without the trailer device. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

  3. Electric Propulsion Upper-Stage for Launch Vehicle Capability Enhancement

    NASA Technical Reports Server (NTRS)

    Kemp, Gregory E.; Dankanich, John W.; Woodcock, Gordon R.; Wingo, Dennis R.

    2007-01-01

    The NASA In-Space Propulsion Technology Project Office initiated a preliminary study to evaluate the performance benefits of a solar electric propulsion (SEP) upper-stage with existing and near-term small launch vehicles. The analysis included circular and elliptical Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO) transfers, and LEO to Low Lunar Orbit (LLO) applications. SEP subsystem options included state-of-the-art and near-term solar arrays and electric thrusters. In-depth evaluations of the Aerojet BPT-4000 Hall thruster and NEXT gridded ion engine were conducted to compare performance, cost and revenue potential. Preliminary results indicate that Hall thruster technology is favored for low-cost, low power SEP stages, while gridded-ion engines are favored for higher power SEP systems unfettered by transfer time constraints. A low-cost point design is presented that details one possible stage configuration and outlines system limitations, in particular fairing volume constraints. The results demonstrate mission enhancements to large and medium class launch vehicles, and mission enabling performance when SEP system upper stages are mounted to low-cost launchers such as the Minotaur and Falcon 1. Study results indicate the potential use of SEP upper stages to double GEO payload mass capability and to possibly enable launch on demand capability for GEO assets. Transition from government to commercial applications, with associated cost/benefit analysis, has also been assessed. The sensitivity of system performance to specific impulse, array power, thruster size, and component costs are also discussed.

  4. Developing Primary Propulsion for the Ares I Crew Launch Vehicle and Ares V Cargo Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Priskos, Alex S.; Williams, Thomas L.; Ezell, Timothy G.; Burt, Rick

    2007-01-01

    In accordance with the U.S. Vision for Space Exploration, NASA has been tasked to send human beings to the moon, Mars, and beyond. The first stage of NASA's new Ares I crew launch vehicle (Figure 1), which will loft the Orion crew exploration vehicle into low-Earth orbit early next decade, will consist of a Space Shuttle-derived five-segment Reusable Solid Rocket Booster (RSRB); a pair of similar RSRBs also will be used on the Ares V cargo launch vehicle's core stage propulsion system. This paper will discuss the basis for choosing this particular propulsion system; describe the activities the Exploration Launch Projects (ELP) Office is engaged in at present to develop the first stage; and offer a preview of future development activities related to the first Ares l integrated test flight, which is planned for 2009.

  5. Advanced Aero-Propulsive Mid-Lift-to-Drag Ratio Entry Vehicle for Future Exploration Missions

    NASA Astrophysics Data System (ADS)

    Campbell, C. H.; Sostaric, R. R.; Cerimele, C. J.; Wong, K. A.; Valle, G. D.; Garcia, J. A.; Melton, J. E.; Munk, M. M.; Blades, E.; Kuruvila, G.; Picetti, D. J.; Hassan, B.; Kniskern, M. W.

    2012-06-01

    Advanced mid-L/D entry vehicles can provide performance advantages significant to mid-term robotic and human missions. Preliminary simulations with new paradigms show transonic Mach vehicle staging possible for retro-propulsion, descent and landing.

  6. Evaluation of pulse power devices in electric vehicle propulsion systems

    SciTech Connect

    Burke, A.F. ); Dowgiallo, E.J. )

    1990-01-01

    The application of pulse power devices in electric vehicle propulsion systems to load level the main energy storage battery has been studied. Both high energy density capacitors (ultracapacitors) and high power density, bipolar batteries are considered. Computer simulations of vehicle operation with hybrid (two power source) powertrains indicated the energy storage capacities of the pulse power devices required to load level the main battery are 300 to 500 Wh for the capacitors and 5 to 10 Ah for the bipolar batteries can be reduced from 79 W/kg to about 40 W/kg depending on the vehicle gradeability (speed, percent grade, and length of grade) desired. Evaluation of the status of the technology for the pulse power devices indicated that for both devices, improvements in technology are needed before the devices can be used in EV applications. In the case of the ultracapacitor, the energy density of present devices are 1 to 2 Wh/kg. A minimum energy density of about 5 Wh/kg is needed for electric vehicle applications. Progress in increasing the energy density of ultracapacitors has been rapid in recent years and the prospects for meeting the 5 Wh/kg requirement for EVs appear to be good. For bipolar batteries, a minimum power density of 500 W/kg is needed and the internal resistance must be reduced by about a factor of ten from that found in present designs.

  7. AC propulsion system for an electric vehicle, phase 2

    NASA Technical Reports Server (NTRS)

    Slicker, J. M.

    1983-01-01

    A second-generation prototype ac propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the Contractor's site. The system consisted of a Phase 2, 18.7 kw rated ac induction traction motor, a 192-volt, battery powered, pulse-width-modulated, transistorized inverter packaged for under rear seat installation, a 2-axis, 2-speed, automatically-shifted mechanical transaxle and a microprocessor-based powertrain/vehicle controller. A diagnostics computer to assist tuning and fault finding was fabricated. Dc-to-mechanical-system efficiency varied from 78% to 82% as axle speed/torque ranged from 159 rpm/788 nm to 65 rpm/328 nm. Track test efficiency results suggest that the ac system will be equal or superior to dc systems when driving urban cycles. Additional short-term work is being performed under a third contract phase (AC-3) to raise transaxle efficiency to predicted levels, and to improve starting and shifting characteristics. However, the long-term challenge to the system's viability remains inverter cost. A final report on the Phase 2 system, describing Phase 3 modifications, will be issued at the conclusion of AC-3.

  8. Air liquefaction and enrichment system propulsion in reusable launch vehicles

    SciTech Connect

    Bond, W.H.; Yi, A.C.

    1994-07-01

    A concept is shown for a fully reusable, Earth-to-orbit launch vehicle with horizontal takeoff and landing, employing an air-turborocket for low speed and a rocket for high-speed acceleration, both using liquid hydrogen for fuel. The turborocket employs a modified liquid air cycle to supply the oxidizer. The rocket uses 90% pure liquid oxygen as its oxidizer that is collected from the atmosphere, separated, and stored during operation of the turborocket from about Mach 2 to 5 or 6. The takeoff weight and the thrust required at takeoff are markedly reduced by collecting the rocket oxidizer in-flight. This article shows an approach and the corresponding technology needs for using air liquefaction and enrichment system propulsion in a single-stage-to-orbit (SSTO) vehicle. Reducing the trajectory altitude at the end of collection reduces the wing area and increases payload. The use of state-of-the-art materials, such as graphite polyimide, in a direct substitution for aluminum or aluminum-lithium alloy, is critical to meet the structure weight objective for SSTO. Configurations that utilize `waverider` aerodynamics show great promise to reduce the vehicle weight. 5 refs.

  9. CARS Temperature and Species Measurements For Air Vehicle Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Gord, James R.; Grisch, Frederic; Klimenko, Dmitry; Clauss, Walter

    2005-01-01

    The coherent anti-Stokes Raman spectroscopy (CARS) method has recently been used in the United States and Europe to probe several different types of propulsion systems for air vehicles. At NASA Langley Research Center in the United States, CARS has been used to simultaneously measure temperature and the mole fractions of N2, O2 and H2 in a supersonic combustor, representative of a scramjet engine. At Wright- Patterson Air Force Base in the United States, CARS has been used to simultaneously measure temperature and mole fractions of N2, O2 and CO2, in the exhaust stream of a liquid-fueled, gas-turbine combustor. At ONERA in France and the DLR in Germany researchers have used CARS to measure temperature and species concentrations in cryogenic LOX-H2 rocket combustion chambers. The primary aim of these measurements has been to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.

  10. A systematic collaborative process for assessing launch vehicle propulsion technologies

    NASA Astrophysics Data System (ADS)

    Odom, Pat R.

    1999-01-01

    A systematic, collaborative process for prioritizing candidate investments in space transportation systems technologies has been developed for the NASA Space Transportation Programs Office. The purpose of the process is to provide a repeatable and auditable basis for selecting technology investments to enable achievement of NASA's strategic space transportation objectives. The paper describes the current multilevel process and supporting software tool that has been developed. Technologies are prioritized across system applications to produce integrated portfolios for recommended funding. An example application of the process to the assessment of launch vehicle propulsion technologies is described and illustrated. The methodologies discussed in the paper are expected to help NASA and industry ensure maximum returns from technology investments under constrained budgets.

  11. Power Systems Evaluated for Solar Electric Propulsion Vehicles

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Gefert, Leon P.

    2000-01-01

    Solar electric propulsion (SEP) mission architectures are applicable to a wide range NASA missions including the robotic exploration of the outer planets in the next decade and the human exploration of Mars within the next 2 decades. SEP enables architectures that are very mass efficient with reasonable power levels (1-MW class) aerobrake and cryogenic upper-stage transportation technologies are utilized. In this architecture, the efficient SEP stage transfers the payload from low Earth orbit (LEO) High Energy Elliptical Parking Orbit (HEEPO) within a period of 6 to 12 months. highthrust, cryogenic upper stage and payload then separate from the SEP vehicle for injection to the planetary target, allowing for fast heliocentric trip times. This mission architecture offers a potential reduction in mass to LEO in comparison to alternative all-chemical nuclear propulsion schemes. Mass reductions may allow launch vehicle downsizing enable missions that would have been grounded because of cost constraints. The preceding figure illustrates a conceptual SEP stage design for a human Mars mission. Researchers at the NASA Glenn Research Center at Lewis Field designed conceptual SEP vehicle, conceived the mission architecture to use this vehicle, and analyzed the vehicle s performance. This SEP stage has a dry mass of 35 metric tons (MT), 40 MT of xenon propellant, and a photovoltaic array that spans 110 m, providing power to a cluster of eight 100-kW Hall thrusters. The stage can transfer an 80-MT payload and upper stage to the desired HEEPO. Preliminary packaging studies show this space-station-class SEP vehicle meets the proposed "Magnum" launch vehicle and volume requirements with considerable margin. An SEP vehicle for outer planetary missions, such as the Europa Mapper Mission, would be dramatically smaller than human Mars mission SEP stage. In this mission architecture, the SEP power system with the payload to provide spacecraft power throughout the mission. Several

  12. Feasibility study of modern airships, phase 2. Volume 1: Heavy lift airship vehicle. Book 1: Overall study results

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A Heavy Lift Airship combining buoyant lift derived from a conventional helium-filled non-rigid airship hull with propulsive lift derived from conventional helicopter rotors was investigated. The buoyant lift essentially offsets the empty weight of the vehicle; thus the rotor thrust is available for useful load and to maneuver and control the vehicle. Such a vehicle is capable of providing a quantum increase in current vertical lifting capability. Certain critical deficiencies of past airships are significantly minimized or eliminated.

  13. Propulsion System Dynamic Modeling of the NASA Supersonic Concept Vehicle for AeroPropulsoServoElasticity

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Seiel, Jonathan

    2016-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report

  14. Propulsion System Dynamic Modeling of the NASA Supersonic Concept Vehicle for AeroPropulsoServoElasticity

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Seidel, Jonathan

    2014-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the lowboom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural-aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report.

  15. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1980

    SciTech Connect

    Not Available

    1981-03-01

    The progress and status of Eltra's Electric Vehicle Battery Program during FY-80 are presented under five divisional headings: Research on Components and Processes; Development of Cells and Modules for Electric Vehicle Propulsion; Sub-Systems; Pilot Line Production of Electric Vehicle Battery Prototypes; and Program Management.

  16. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOEpatents

    Rote, D.M.; He, J.; Johnson, L.R.

    1994-01-04

    A propulsion and stabilization system are described comprising a series of coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance, and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension. 8 figures.

  17. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOEpatents

    Rote, Donald M.; He, Jianliang; Johnson, Larry R.

    1994-01-01

    A propulsion and stabilization system comprising a series of FIG. 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the FIG. 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

  18. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOEpatents

    Rote, D.M.; He, Jianliang; Johnson, L.R.

    1992-01-01

    This report discusses a propulsion and stabilization system comprising a series of figure 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the figure 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

  19. Lightweight Composite Materials for Heavy Duty Vehicles

    SciTech Connect

    Pruez, Jacky; Shoukry, Samir; Williams, Gergis; Shoukry, Mark

    2013-08-31

    The main objective of this project is to develop, analyze and validate data, methodologies and tools that support widespread applications of automotive lightweighting technologies. Two underlying principles are guiding the research efforts towards this objective: • Seamless integration between the lightweight materials selected for certain vehicle systems, cost-effective methods for their design and manufacturing, and practical means to enhance their durability while reducing their Life-Cycle-Costs (LCC). • Smooth migration of the experience and findings accumulated so far at WVU in the areas of designing with lightweight materials, innovative joining concepts and durability predictions, from applications to the area of weight savings for heavy vehicle systems and hydrogen storage tanks, to lightweighting applications of selected systems or assemblies in light–duty vehicles.

  20. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 1

    NASA Technical Reports Server (NTRS)

    Williams, R. W. (Compiler)

    1996-01-01

    The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  1. Comparative analysis of aluminum-air battery propulsion systems for passenger vehicles

    NASA Astrophysics Data System (ADS)

    Salisbury, J. D.; Behrin, E.; Kong, M. K.; Whisler, D. J.

    1980-02-01

    Three electric propulsion systems using an aluminum air battery were analyzed and compared to the internal combustion engine (ICE) vehicle. The engine and fuel systems of a representative five passenger highway vehicle were replaced conceptually by each of the three electric propulsion systems. The electrical vehicles were constrained by the computer simulation to be equivalent to the ICE vehicle in range and acceleration performance. The vehicle masses and aluminum consumption rates were then calculated for the electric vehicles and these data were used as figures of merit. The Al-air vehicles analyzed were (1) an Al-air battery only electric vehicle; (2) an Al-air battery combined with a nickel zinc secondary battery for power leveling and regenerative braking; and (3) an Al-air battery combined with a flywheel for power leveling and regenerative braking. All three electric systems compared favorably with the ICE vehicle.

  2. Vehicle Integrated Propulsion Research for the Study of Health Management Capabilities

    NASA Technical Reports Server (NTRS)

    Lekki, John D.; Simon, Donald L.; Hunter, Gary W.; Woike, Mary; Tokars, Roger P.

    2012-01-01

    Presentation on vehicle integrated propulsion research results and planning. This research emphasizes the testing of advanced health management sensors and diagnostics in an aircraft engine that is operated through multiple baseline and fault conditions.

  3. Advanced electric propulsion system concept for electric vehicles

    NASA Technical Reports Server (NTRS)

    Raynard, A. E.; Forbes, F. E.

    1979-01-01

    Seventeen propulsion system concepts for electric vehicles were compared to determine the differences in components and battery pack to achieve the basic performance level. Design tradeoffs were made for selected configurations to find the optimum component characteristics required to meet all performance goals. The anticipated performance when using nickel-zinc batteries rather than the standard lead-acid batteries was also evaluated. The two systems selected for the final conceptual design studies included a system with a flywheel energy storage unit and a basic system that did not have a flywheel. The flywheel system meets the range requirement with either lead-acid or nickel-zinc batteries and also the acceleration of zero to 89 km/hr in 15 s. The basic system can also meet the required performance with a fully charged battery, but, when the battery approaches 20 to 30 percent depth of discharge, maximum acceleration capability gradually degrades. The flywheel system has an estimated life-cycle cost of $0.041/km using lead-acid batteries. The basic system has a life-cycle cost of $0.06/km. The basic system, using batteries meeting ISOA goals, would have a life-cycle cost of $0.043/km.

  4. Hybrid propulsion for launch vehicle boosters: A program status update

    NASA Technical Reports Server (NTRS)

    Carpenter, R. L.; Boardman, T. A.; Claflin, S. E.; Harwell, R. J.

    1995-01-01

    Results obtained in studying the origin and suppression of large-amplitude pressure oscillations in a 24 in. diameter hybrid motor using a liquid oxygen/hydroxylterminated polybutadiene/polycyclopentadiene propellant system are discussed. Tests conducted with liquid oxygen flow rates varying from 10 to 40 lbm/sec were designed to gauge the effectiveness of various vaporization chamber flow fields, injector designs, and levels of heat addition in suppressing high-frequency longitudinal mode oscillations. Longitudinal acoustic modes did not arise in any tests. However, initial testing revealed the presence of high-amplitude, sinusoidal, nonacoustic oscillations persisting throughout the burn durations. Analysis showed this to be analogous to chug mode instability in liquid rocket engines brought about by a coupling of motor combustion processes and the liquid oxygen feed system. Analytical models were developed and verified by test data to predict the amplitude and frequency of feed-system-coupled combustion pressure oscillations. Subsequent testing showed that increasing the feed system impedance eliminated the bulk mode instability. This paper documents the work completed to date in performance of the Hybrid Propulsion Technology for Launch Vehicle Boosters Program (NAS8-39942) sponsored by NASA's George C. Marshall Space Flight Center.

  5. Impact of propulsion system R and D on electric vehicle performance and cost

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.; Gordan, A. L.

    1980-01-01

    The efficiency, weight, and manufacturing cost of the propulsion subsystem (motor, motor controller, transmission, and differential, but excluding the battery) are major factors in the purchase price and cost of ownership of a traffic-compatible electric vehicle. The relative impact of each was studied, and the conclusions reached are that propulsion system technology advances can result in a major reduction of the sticker price of an electric vehicle and a smaller, but significant, reduction in overall cost of ownership.

  6. Impact of propulsion system R and D on electric vehicle performance and cost

    NASA Astrophysics Data System (ADS)

    Schwartz, H. J.; Gordan, A. L.

    1980-05-01

    The efficiency, weight, and manufacturing cost of the propulsion subsystem (motor, motor controller, transmission, and differential, but excluding the battery) are major factors in the purchase price and cost of ownership of a traffic-compatible electric vehicle. The relative impact of each was studied, and the conclusions reached are that propulsion system technology advances can result in a major reduction of the sticker price of an electric vehicle and a smaller, but significant, reduction in overall cost of ownership.

  7. Parameter and state estimation for articulated heavy vehicles

    NASA Astrophysics Data System (ADS)

    Cheng, Caizhen; Cebon, David

    2011-02-01

    This article discusses algorithms to estimate parameters and states of articulated heavy vehicles. First, 3- and 5-degrees-of-freedom linear vehicle models of a tractor semitrailer are presented. Vehicle parameter estimation methods based on the dual extended Kalman filter and state estimation based on the Kalman filter are presented. A program of experimental tests on an instrumental heavy goods vehicle is described. Simulation and experimental results showed that the algorithms generate accurate estimates of vehicle parameters and states under most circumstances.

  8. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)

    SciTech Connect

    Not Available

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  9. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles

    SciTech Connect

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems--including engines, microturbines, electric motors, and fuel cells--and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  10. Mission and space vehicle sizing data for a chemical propulsion/aerobraking option

    NASA Technical Reports Server (NTRS)

    Butler, John; Brothers, Bobby

    1986-01-01

    Sizing data is presented for various combinations of Mars missions and chemical-propulsion/aerobraking vehicles. Data is compared for vehicles utilizing opposition (2-year mission) and conjunction (3-year mission) trajectories for 1999 and 2001 opportunities, for various sizes of vehicles. Payload capabilities for manned and unmanned missions vehicles and for propulsive-braking and aerobraking cases are shown. The effect of scaling up a reference vehicle is compared to the case of utilizing two identical vehicles, for growth in payload capability. The rate of cumulative build up of weight on the surface of Mars is examined for various mission/vehicle combinations, and is compared to the landed-weight requirements for sortie missions, moving-base missions, and fixed-base missions. Also, the required buildup of weight in low Earth orbit (LEO) for various mission/vehicle combinations is presented and discussed.

  11. Launch Vehicle Propulsion Parameter Design Multiple Selection Criteria

    NASA Technical Reports Server (NTRS)

    Shelton, Joey Dewayne

    2004-01-01

    The optimization tool described herein addresses and emphasizes the use of computer tools to model a system and focuses on a concept development approach for a liquid hydrogen/liquid oxygen single-stage-to-orbit system, but more particularly the development of the optimized system using new techniques. This methodology uses new and innovative tools to run Monte Carlo simulations, genetic algorithm solvers, and statistical models in order to optimize a design concept. The concept launch vehicle and propulsion system were modeled and optimized to determine the best design for weight and cost by varying design and technology parameters. Uncertainty levels were applied using Monte Carlo Simulations and the model output was compared to the National Aeronautics and Space Administration Space Shuttle Main Engine. Several key conclusions are summarized here for the model results. First, the Gross Liftoff Weight and Dry Weight were 67% higher for the design case for minimization of Design, Development, Test and Evaluation cost when compared to the weights determined by the minimization of Gross Liftoff Weight case. In turn, the Design, Development, Test and Evaluation cost was 53% higher for optimized Gross Liftoff Weight case when compared to the cost determined by case for minimization of Design, Development, Test and Evaluation cost. Therefore, a 53% increase in Design, Development, Test and Evaluation cost results in a 67% reduction in Gross Liftoff Weight. Secondly, the tool outputs define the sensitivity of propulsion parameters, technology and cost factors and how these parameters differ when cost and weight are optimized separately. A key finding was that for a Space Shuttle Main Engine thrust level the oxidizer/fuel ratio of 6.6 resulted in the lowest Gross Liftoff Weight rather than at 5.2 for the maximum specific impulse, demonstrating the relationships between specific impulse, engine weight, tank volume and tank weight. Lastly, the optimum chamber pressure for

  12. Launch vehicle propulsion parameter design multiple selection criteria

    NASA Astrophysics Data System (ADS)

    Shelton, Joey Dewayne

    The optimization tool described herein addresses and emphasizes the use of computer tools to model a system and focuses on a concept development approach for a liquid hydrogen/liquid oxygen single-stage-to-orbit system, but more particularly the development of the optimized system using new techniques. This methodology uses new and innovative tools to run Monte Carlo simulations, genetic algorithm solvers, and statistical models in order to optimize a design concept. The concept launch vehicle and propulsion system were modeled and optimized to determine the best design for weight and cost by varying design and technology parameters. Uncertainty levels were applied using Monte Carlo Simulations and the model output was compared to the National Aeronautics and Space Administration Space Shuttle Main Engine. Several key conclusions are summarized here for the model results. First, the Gross Liftoff Weight and Dry Weight were 67% higher for the design case for minimization of Design, Development, Test and Evaluation cost when compared to the weights determined by the minimization of Gross Liftoff Weight case. In turn, the Design, Development, Test and Evaluation cost was 53% higher for optimized Gross Liftoff Weight case when compared to the cost determined by case for minimization of Design, Development, Test and Evaluation cost. Therefore, a 53% increase in Design, Development, Test and Evaluation cost results in a 67% reduction in Gross Liftoff Weight. Secondly, the tool outputs define the sensitivity of propulsion parameters, technology and cost factors and how these parameters differ when cost and weight are optimized separately. A key finding was that for a Space Shuttle Main Engine thrust level the oxidizer/fuel ratio of 6.6 resulted in the lowest Gross Liftoff Weight rather than at 5.2 for the maximum specific impulse, demonstrating the relationships between specific impulse, engine weight, tank volume and tank weight. Lastly, the optimum chamber pressure for

  13. 49 CFR 523.8 - Heavy-duty vocational vehicle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Heavy-duty vocational vehicle. 523.8 Section 523.8 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE CLASSIFICATION § 523.8 Heavy-duty vocational vehicle....

  14. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 2

    NASA Technical Reports Server (NTRS)

    Williams, R. W. (Compiler)

    1996-01-01

    This conference publication includes various abstracts and presentations given at the 13th Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology held at the George C. Marshall Space Flight Center April 25-27 1995. The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  15. Propulsion

    ERIC Educational Resources Information Center

    Air and Space, 1978

    1978-01-01

    An introductory discussion of aircraft propulsion is included along with diagrams and pictures of piston, turbojet, turboprop, turbofan, and jet engines. Also, a table on chemical propulsion is included. (MDR)

  16. A study of the compatibility of science instruments with the solar electric propulsion space vehicle

    NASA Technical Reports Server (NTRS)

    Parker, R. H.; Ajello, J. M.; Bratenahl, A.; Clay, D. R.; Tsurutani, B.

    1973-01-01

    Electromagnetic interference and field-of-view constraints are identified as the areas of most concern to science on solar electric propulsion space vehicles. Several areas are indicated which more detailed data on the space vehicle environment are needed. In addition, possible means to attain or demonstrate science/space vehicle compatibility are recommended for further iteration between space vehicle design and science payload considerations. The space vehicle design developed by the solar electric propulsion system integration technology effort is used. Two payload sets for comet Encke missions (a slow flyby and a rendezvous), as well as several instruments which are not included in the two payload sets, are analyzed to determine requirements on the space vehicle imposed by the instruments in order to meet their objectives. Environmental requirements for the sets of instruments are developed and compared to both the SEPSIT design criteria and the environment as it is presently understood.

  17. 40 CFR 86.1816-08 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... U.S. heavy-duty vehicle sales of complete heavy-duty Otto-cycle motor vehicles for model year 2008... complete heavy-duty Otto-cycle motor vehicles for model year 2008. (2)(i) Manufacturers certifying vehicles... Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1816-08 Emission...

  18. Main propulsion system design recommendations for an advanced Orbit Transfer Vehicle

    NASA Technical Reports Server (NTRS)

    Redd, L.

    1985-01-01

    Various main propulsion system configurations of an advanced OTV are evaluated with respect to the probability of nonindependent failures, i.e., engine failures that disable the entire main propulsion system. Analysis of the life-cycle cost (LCC) indicates that LCC is sensitive to the main propulsion system reliability, vehicle dry weight, and propellant cost; it is relatively insensitive to the number of missions/overhaul, failures per mission, and EVA and IVA cost. In conclusion, two or three engines are recommended in view of their highest reliability, minimum life-cycle cost, and fail operational/fail safe capability.

  19. Factors Influencing Solar Electric Propulsion Vehicle Payload Delivery for Outer Planet Missions

    NASA Technical Reports Server (NTRS)

    Cupples, Michael; Green, Shaun; Coverstone, Victoria

    2003-01-01

    Systems analyses were performed for missions utilizing solar electric propulsion systems to deliver payloads to outer-planet destinations. A range of mission and systems factors and their affect on the delivery capability of the solar electric propulsion system was examined. The effect of varying the destination, the trip time, the launch vehicle, and gravity-assist boundary conditions was investigated. In addition, the affects of selecting propulsion system and power systems characteristics (including primary array power variation, number of thrusters, thruster throttling mode, and thruster Isp) on delivered payload was examined.

  20. Propulsion System Dynamic Modeling for the NASA Supersonic Concept Vehicle: AeroPropulsoServoElasticity

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph; Seidel, Jonathan

    2014-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural-aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report.propulsion system dynamics, the structural dynamics, and aerodynamics.

  1. Perspective of Launch Vehicle Size and Weight Based on Propulsion System Concept

    NASA Astrophysics Data System (ADS)

    Czysz, P. A.

    2002-01-01

    The interaction of the propulsion system concept, and its intrinsic oxidizer to fuel ratio, with the geometric concept of the flight vehicle are such that their final configurations are interdependent. From an all rocket, to a PDE to a combined cycle propulsion system the there is a family of propulsion system/vehicle geometry that yield the smallest lightest system. The interactions define a valid design space for each propulsion system/vehicle concepts that clearly points the parameter value for minimum size and weight. The process also identifies a development path that builds on the previous propulsion system hardware developments so that the next, new system utilizes the previous propulsion system in its entirety. This greatly reduces development risk and cost as the degraded performance system is the previously proven system. Using historical aircraft maintenance analyses, it can be shown that systems designed to operate as maintained systems, not reusable disposable systems, the operating costs can be reduced and the flight frequency increased. The analysis systematically and incrementally spans all rockets to airbreathing combined cycle systems that achieve Mach 18.

  2. Solar Electric Propulsion System Integration Technology (SEPSIT). Volume 2: Encke rendezvous mission and space vehicle functional description

    NASA Technical Reports Server (NTRS)

    Gardner, J. A.

    1972-01-01

    A solar electric propulsion system integration technology study is discussed. Detailed analyses in support of the solar electric propulsion module were performed. The thrust subsystem functional description is presented. The space vehicle and the space mission to which the propulsion system is applied are analyzed.

  3. Space vehicle design and operation for efficient use of Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Stancati, Mike L.; Hodge, John R.; Borowski, Stanley K.

    1993-01-01

    Nuclear Thermal Propulsion (NTP) is a high-leverage, and possibly enabling, propulsion choice for sending humans to Mars. Important performance gains are expected for NTP Mars transfer vehicle over their counterparts, the conventional chemical systems. These gains come in spite of vehicle unique requirements for NTP engine development and operations: expected higher development costs, prelaunch and in-space handing safeguards, extra propellant for reactor cool-down after engine burns, and safe, managed disposal of spent NTP engines. Prior studies have also shown that these NTP engines and stages, sized for Mars missions, could increase delivered payloads for some piloted lunar mission as well.

  4. NASA's Advanced Propulsion Technology Activities for Third Generation Fully Reusable Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe

    2000-01-01

    NASA's Office of Aeronautics and Space Transportation Technology (OASTT) established the following three major goals, referred to as "The Three Pillars for Success": Global Civil Aviation, Revolutionary Technology Leaps, and Access to Space. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, Ala. focuses on future space transportation technologies under the "Access to Space" pillar. The Propulsion Projects within ASTP under the investment area of Spaceliner100, focus on the earth-to-orbit (ETO) third generation reusable launch vehicle technologies. The goals of Spaceliner 100 is to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The ETO Propulsion Projects in ASTP, are actively developing combination/combined-cycle propulsion technologies that utilized airbreathing propulsion during a major portion of the trajectory. System integration, components, materials and advanced rocket technologies are also being pursued. Over the last several years, one of the main thrusts has been to develop rocket-based combined cycle (RBCC) technologies. The focus has been on conducting ground tests of several engine designs to establish the RBCC flowpaths performance. Flowpath testing of three different RBCC engine designs is progressing. Additionally, vehicle system studies are being conducted to assess potential operational space access vehicles utilizing combined-cycle propulsion systems. The design, manufacturing, and ground testing of a scale flight-type engine are planned. The first flight demonstration of an airbreathing combined cycle propulsion system is envisioned around 2005. The paper will describe the advanced propulsion technologies that are being being developed under the ETO activities in the ASTP program. Progress, findings, and future activities for the propulsion technologies will be discussed.

  5. 49 CFR 523.6 - Heavy-duty vehicle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Heavy-duty vehicle. 523.6 Section 523.6 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... defined in § 523.5). (3) Vehicles excluded from the definition of motor vehicle in 40 CFR...

  6. Effect of aeroelastic-propulsive interactions on flight dynamics of a hypersonic vehicle

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Mcminn, John D.; Pototzky, Anthony S.; Wooley, Christine L.

    1993-01-01

    The desire to achieve orbit-on-demand access to space with rapid turn-around capability and aircraft-like processing operations has given rise to numerous hypersonic aerospace plane design concepts which would take off horizontally from a conventional runway and employ air-breathing scramjet propulsion systems for acceleration to orbital speeds. Most of these air-breathing hypersonic vehicle concepts incorporate an elongated fuselage forebody to act as the aerodynamic compression surface for a scramjet combustor module. This type of airframe-integrated scramjet propulsion system tends to be highly sensitive to inlet conditions and angle-of-attack perturbations. Furthermore, the basic configuration of the fuselage, with its elongated and tapered forebody, produces relatively low frequency elastic modes which will cause perturbations in the combustor inlet conditions due to the oscillation of the forebody compression surface. The flexibility of the forebody compression surface, together with sensitivity of scramjet propulsion systems to inlet conditions, creates the potential for an unprecedented form of aeroelastic-propulsive interaction in which deflections of the vehicle fuselage give rise to propulsion transients, producing force and moment variations that may adversely impact the longitudinal flight dynamics and/or excite the elastic modes. These propulsive force and moment variations may have an appreciable impact on the performance, guidance, and control of a hypersonic aerospace plane. The objectives of this research are to quantify the magnitudes of propulsive force and moment perturbations resulting from elastic deformation of a representative hypersonic vehicle, and to assess the potential impact of these perturbations on the vehicle's longitudinal flight dynamics.

  7. Vehicle and Mission Design Options for the Human Exploration of Mars/Phobos Using "Bimodal" NTR and LANTR Propulsion

    NASA Astrophysics Data System (ADS)

    Borowski, Stanley K.; Dudzinski, Leonard A.; McGuire, Melissa L.

    2002-12-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars because of its high specific impulse (1sp is approximately 850-1000 s) capability and its attractive engine thrust-to-weight ratio (approximately 3-10). To stay within the available mass and payload volume limits of a "Magnum" heavy lift vehicle, a high performance propulsion system is required for trans-Mars injection (TMI). An expendable TMI stage, powered by three 15 thousand pounds force (klbf) NTR engines is currently under consideration by NASA for its Design Reference Mission (DRM). However, because of the miniscule burnup of enriched uranium-235 during the Earth departure phase (approximately 10 grams out of 33 kilograms in each NTR core), disposal of the TMI stage and its engines after a single use is a costly and inefficient use of this high performance stage. By reconfiguring the engines for both propulsive thrust and modest power generation (referred to as "bimodal" operation), a robust, multiple burn, "power-rich" stage with propulsive Mars capture and reuse capability is possible. A family of modular bimodal NTR (BNTR) vehicles are described which utilize a common "core" stage powered by three 15 klbf BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration / reliquification system for long term, zero-boiloff liquid hydrogen (LH2) storage, and high data rate communications. An innovative, spine-like "saddle truss" design connects the core stage and payload element and is open underneath to allow supplemental "in-line" propellant tanks and contingency crew consumables to be easily jettisoned to improve vehicle performance. A "modified" DRM using BNTR transfer vehicles requires fewer transportation system elements, reduces IMLEO and mission risk, and simplifies space operations. By taking the next logical step--use of the BNTR for propulsive capture of all payload elements into Mars orbit--the power

  8. DOE Project on Heavy Vehicle Aerodynamic Drag

    SciTech Connect

    McCallen, R; Salari, K; Ortega, J; Castellucci, P; Pointer, D; Browand, F; Ross, J; Storms, B

    2007-01-04

    Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At highway speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; (2) Develop innovative drag reducing concepts that are operationally and economically sound; and (3) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices. The studies described herein provide a demonstration of the applicability of the experience developed in the analysis of the standard configuration of the Generic Conventional Model. The modeling practices and procedures developed in prior efforts have been applied directly to the assessment of new configurations including a variety of geometric modifications and add-on devices. Application to the low-drag 'GTS' configuration of the GCM has confirmed that the error in predicted drag coefficients increases as the relative contribution of the base drag resulting from the vehicle wake to the total drag increases and it is recommended that more advanced turbulence modeling strategies be applied under those circumstances. Application to a commercially-developed boat tail device has confirmed that this restriction does not apply to geometries where the relative contribution of the base drag to the total drag is reduced by modifying the geometry in that region. Application to a modified GCM geometry with an open grille and radiator has confirmed that the underbody flow, while important for underhood cooling, has little impact on the drag coefficient of

  9. Comparison of road load simulator test results with track tests on electric vehicle propulsion system

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.

    1983-01-01

    A special-purpose dynamometer, the road load simulator (RLS), is being used at NASA's Lewis Research Center to test and evaluate electric vehicle propulsion systems developed under DOE's Electric and Hybrid Vehicle Program. To improve correlation between system tests on the RLS and track tests, similar tests were conducted on the same propulsion system on the RLS and on a test track. These tests are compared in this report. Battery current to maintain a constant vehicle speed with a fixed throttle was used for the comparison. Scatter in the data was greater in the track test results. This is attributable to variations in tire rolling resistance and wind effects in the track data. It also appeared that the RLS road load, determined by coastdown tests on the track, was lower than that of the vehicle on the track. These differences may be due to differences in tire temperature.

  10. Vehicle and Mission Design Options for the Human Exploration of Mars/Phobos Using "Bimodal" NTR and LANTR Propulsion

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Dudzinski, Leonard A.; McGuire, Melissa L.

    1998-01-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars because of its high specific impulse (Isp-850-1000 s) capability and its attractive engine thrust-to-weight ratio (approximately equal 3-10). To stay within the available mass and payload volume limits of a "Magnum" heavy lift vehicle, a high performance propulsion system is required for trans-Mars injection (TMI). An expendable TMI stage, powered by three 15 thousand pounds force (klbf) NTR engines is currently under consideration by NASA for its Design Reference Mission (DRM). However, because of the miniscule burnup of enriched uranium-235 during the Earth departure phase (approximately 10 grams out of 33 kilograms in each NTR core), disposal of the TMI stage and its engines after a single use is a costly and inefficient use of this high performance stage. By reconfiguring the engines for both propulsive thrust and modest power generation (referred to as "bimodal" operation), a robust, multiple burn, "power-rich" stage with propulsive Mars capture and reuse capability is possible, A family of modular "bimodal" NTR (BNTR) vehicles are described which utilize a common "core" stage powered by three 15 klbf BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration / reliquification system for long term, "zero-boiloff" liquid hydrogen (LH2) storage, and high data rate communications. An innovative, spine-like "saddle truss" design connects the core stage and payload element and is open underneath to allow supplemental "in-line" propellant tanks and contingency crew consumables to be easily jettisoned to improve vehicle performance. A "modified" DRM using BNTR transfer vehicles requires fewer transportation system elements, reduces IMLEO and mission risk, and simplifies space operations. By taking the next logical step--use of the BNTR for propulsive capture of all payload elements into Mars orbit--the power available in

  11. Three-Dimensional Numerical Analysis for Posture Stability of Laser Propulsion Vehicle

    NASA Astrophysics Data System (ADS)

    Takahashi, Masayuki; Ohnishi, Naofumi

    2011-11-01

    We have developed a three-dimensional hydrodynamics code coupling equation of motion of a rigid body for analyzing posture stability of laser propulsion vehicle through numerical simulations of flowfield interacting with unsteady motion of the vehicle. Asymmetric energy distribution is initially added around the focal spot (ring) in order to examine posture stability against an asymmetric blast wave resulting from a laser offset for a lightcraft-type vehicle. The vehicle moves to cancel out the offset from initial offset. However, the Euler angle grows and never returns to zero in a time scale of laser pulse. Also, we found that the vehicle moves to cancel tipping angle when the laser is irradiated to the vehicle with initial tipping angle over the wide angle range, through the vehicle cannot get sufficient restoring force in particular angle, and the tipping angle does not decrease from the initial value for that case.

  12. A propulsion system for the Mars rover vehicle

    NASA Technical Reports Server (NTRS)

    Bogdan, D. C.

    1980-01-01

    The vehicle control electronics for the Mars rover vehicle is described. A functional description of the electronics and its place in the entire system is given. The hardware involved is described from a user's point of view. Changes and additions to the software are included.

  13. Comparative analysis of aluminum-air battery propulsion systems for passenger vehicles

    SciTech Connect

    Salisbury, J.D.; Behrin, E.; Kong, M.K.; Whisler, D.J.

    1980-02-29

    Three electric propulsion systems using an aluminum-air battery were analyzed and compared to the internal-combustion-engine (ICE) vehicle. The analysis used projected battery characteristics extrapolated from laboratory measurements which were obtained in late 1979 and early 1980. In the analysis, the engine and fuel systems of a representative five-passenger highway vehicle were replaced conceptually by each of the three electric propulsion systems. The electrical vehicles were constrained by the computer simulation to be equivalent to the ICE vehicle in range and acceleration performance. The vehicle masses and aluminum consumption rates were then calculated for the electric vehicles and these data were used as figures of merit. The Al-air vehicles analyzed were: (1) an Al-air battery-only electric vehicle, (2) an Al-air battery combined with a nickel-zinc secondary battery for power leveling and regenerative braking, and (3) an Al-air battery combined with a flywheel for power leveling and regenerative braking. Projected Al-air battery power density, energy density, mass, and volume characteristics were based on recent experimental results of the Al-air battery development program at Lawrence Livermore Laboratory. All three electric systems compared favorably with the ICE vehicle.

  14. Analysis of aluminum-air battery propulsion systems for passenger vehicles

    SciTech Connect

    Salisbury, J.D.; Behrin, E.

    1980-05-01

    The performance characteristics of three electric-propulsion systems based on the Al-air battery were analyzed and compared to the internal combustion engine (ICE). Battery characteristics projected from late 1979 and early 1980 experimental results were used in the analysis. In this comparison, the engine and fuel systems of a current five-passenger vehicle were conceptually replaced by three Al-air systems: (1) an Al-air battery-only system; (2) an Al-air battery combined with a nickel-zinc secondary battery for power leveling; and (3) an Al-air battery combined with a flywheel power leveler. The resultant vehicles were constrained to have range and acceleration performance equivalent to the ICE-powered vehicle. Performance characteristics such as the average consumption rate of Al metal for the selected drive cycle, vehicle mass, and power system mass were determined for each Al-air propulsion system. Estimates of initial-vehicle and life-cycle costs of Al-air battery-only vehicles indicate that all three systems can achieve performance and operation costs comparable to an ICE vehicle, and that the initial cost of Al-air battery-only vehicles can approach the cost of ICE vehicles but at reduced power levels.

  15. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1979

    SciTech Connect

    Not Available

    1980-06-01

    Activities in a program to develop a Ni/Zn battery for electric vehicle propulsion are reported. Aspects discussed include battery design and development, nickel cathode study, and basic electrochemistry. A number of engineering drawings are supplied. 61 figures, 11 tables. (RWR)

  16. A methodology for fostering commercialization of electric and hybrid vehicle propulsion systems

    NASA Technical Reports Server (NTRS)

    Thollot, P. A.; Musial, N. T.

    1980-01-01

    The rationale behind, and a proposed approach for, application of government assistance to accelerate the process of moving a new electric vehicle propulsion system product from technological readiness to profitable marketplace acceptance and utilization are described. Emphasis is on strategy, applicable incentives, and an implementation process.

  17. Space Technology: Propulsion, Control and Guidance of Space Vehicles. Aerospace Education III. Instructional Unit II.

    ERIC Educational Resources Information Center

    Air Univ., Maxwell AFB, AL. Junior Reserve Office Training Corps.

    This curriculum guide is prepared for the Aerospace Education III series publication entitled "Space Technology: Propulsion, Control and Guidance of Space Vehicles." It provides guidelines for each chapter. The guide includes objectives, behavioral objectives, suggested outline, orientation, suggested key points, suggestions for teaching,…

  18. The propulsion system is the key to airline-like operation of ETO vehicles

    NASA Technical Reports Server (NTRS)

    Obrien, Charles J.

    1991-01-01

    The topics covered include the following: (1) Advanced Launch System (ALS); (2) life cycle cost/lb payload; (3) current operational cost; (4) major cost driver; (5) fully automated operations; (6) technology impacts on vehicle dry mass efficiency; (7) single stage to orbit (SSTO) approach; and (8) efficient SSTO propulsion system operations.

  19. An Airbreathing Launch Vehicle Design with Turbine-Based Low-Speed Propulsion and Dual Mode Scramjet High-Speed Propulsion

    NASA Technical Reports Server (NTRS)

    Moses, P. L.; Bouchard, K. A.; Vause, R. F.; Pinckney, S. Z.; Ferlemann, S. M.; Leonard, C. P.; Taylor, L. W., III; Robinson, J. S.; Martin, J. G.; Petley, D. H.

    1999-01-01

    Airbreathing launch vehicles continue to be a subject of great interest in the space access community. In particular, horizontal takeoff and horizontal landing vehicles are attractive with their airplane-like benefits and flexibility for future space launch requirements. The most promising of these concepts involve airframe integrated propulsion systems, in which the external undersurface of the vehicle forms part of the propulsion flowpath. Combining of airframe and engine functions in this manner involves all of the design disciplines interacting at once. Design and optimization of these configurations is a most difficult activity, requiring a multi-discipline process to analytically resolve the numerous interactions among the design variables. This paper describes the design and optimization of one configuration in this vehicle class, a lifting body with turbine-based low-speed propulsion. The integration of propulsion and airframe, both from an aero-propulsive and mechanical perspective are addressed. This paper primarily focuses on the design details of the preferred configuration and the analyses performed to assess its performance. The integration of both low-speed and high-speed propulsion is covered. Structural and mechanical designs are described along with materials and technologies used. Propellant and systems packaging are shown and the mission-sized vehicle weights are disclosed.

  20. Next Generation Heavy-Lift Launch Vehicle: Large Diameter, Hydrocarbon-Fueled Concepts

    NASA Technical Reports Server (NTRS)

    Holliday, Jon; Monk, Timothy; Adams, Charles; Campbell, Ricky

    2012-01-01

    With the passage of the 2010 NASA Authorization Act, NASA was directed to begin the development of the Space Launch System (SLS) as a follow-on to the Space Shuttle Program. The SLS is envisioned as a heavy lift launch vehicle that will provide the foundation for future large-scale, beyond low Earth orbit (LEO) missions. Supporting the Mission Concept Review (MCR) milestone, several teams were formed to conduct an initial Requirements Analysis Cycle (RAC). These teams identified several vehicle concept candidates capable of meeting the preliminary system requirements. One such team, dubbed RAC Team 2, was tasked with identifying launch vehicles that are based on large stage diameters (up to the Saturn V S-IC and S-II stage diameters of 33 ft) and utilize high-thrust liquid oxygen (LOX)/RP engines as a First Stage propulsion system. While the trade space for this class of LOX/RP vehicles is relatively large, recent NASA activities (namely the Heavy Lift Launch Vehicle Study in late 2009 and the Heavy Lift Propulsion Technology Study of 2010) examined specific families within this trade space. Although the findings from these studies were incorporated in the Team 2 activity, additional branches of the trade space were examined and alternative approaches to vehicle development were considered. Furthermore, Team 2 set out to define a highly functional, flexible, and cost-effective launch vehicle concept. Utilizing this approach, a versatile two-stage launch vehicle concept was chosen as a preferred option. The preferred vehicle option has the capability to fly in several different configurations (e.g. engine arrangements) that gives this concept an inherent operational flexibility which allows the vehicle to meet a wide range of performance requirements without the need for costly block upgrades. Even still, this concept preserves the option for evolvability should the need arise in future mission scenarios. The foundation of this conceptual design is a focus on low

  1. Technology Roadmap for Dual-Mode Scramjet Propulsion to Support Space-Access Vision Vehicle Development

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Auslender, Aaron H.; Guy, R. Wayne; McClinton, Charles R.; Welch, Sharon S.

    2002-01-01

    Third-generation reusable launch vehicle (RLV) systems are envisioned that utilize airbreathing and combined-cycle propulsion to take advantage of potential performance benefits over conventional rocket propulsion and address goals of reducing the cost and enhancing the safety of systems to reach earth orbit. The dual-mode scramjet (DMSJ) forms the core of combined-cycle or combination-cycle propulsion systems for single-stage-to-orbit (SSTO) vehicles and provides most of the orbital ascent energy. These concepts are also relevant to two-stage-to-orbit (TSTO) systems with an airbreathing first or second stage. Foundation technology investments in scramjet propulsion are driven by the goal to develop efficient Mach 3-15 concepts with sufficient performance and operability to meet operational system goals. A brief historical review of NASA scramjet development is presented along with a summary of current technology efforts and a proposed roadmap. The technology addresses hydrogen-fueled combustor development, hypervelocity scramjets, multi-speed flowpath performance and operability, propulsion-airframe integration, and analysis and diagnostic tools.

  2. Dual-Fuel Propulsion in Single-Stage Advanced Manned Launch System Vehicle

    NASA Technical Reports Server (NTRS)

    Lepsch, Roger A., Jr.; Stanley, Douglas O.; Unal, Resit

    1995-01-01

    As part of the United States Advanced Manned Launch System study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate-engine concept combining Russian RD-170 kerosene-fueled engines with space shuttle main engine-derivative engines: the kerosene- and hydrogen-fueled Russian RD-701 engine; and a dual-fuel, dual-expander engine. Analysis to determine vehicle weight and size characteristics was performed using conceptual-level design techniques. A response-surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicles with respect to several important propulsion-system and vehicle design parameters, in order to achieve minimum empty weight. The tools and methods employed in the analysis process are also summarized. In comparison with a reference hydrogen- fueled single-stage vehicle, results showed that the dual-fuel vehicles were from 10 to 30% lower in empty weight for the same payload capability, with the dual-expander engine types showing the greatest potential.

  3. Solar Electric Propulsion Vehicle Design Study for Cargo Transfer to Earth-moon L1

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.; Kerslake, Thomas W.; Rawlin, Vincent K.; Falck, Robert D.; Dudzinski, Leonard J.; Oleson, Steven R.

    2002-01-01

    A design study for a cargo transfer vehicle using solar electric propulsion was performed for NASA's Revolutionary Aerospace Systems Concepts program. Targeted for 2016, the solar electric propulsion (SEP) transfer vehicle is required to deliver a propellant supply module with a mass of approximately 36 metric tons from Low Earth Orbit to the first Earth-Moon libration point (LL1) within 270 days. Following an examination of propulsion and power technology options, a SEP transfer vehicle design was selected that incorporated large-area (approx. 2700 sq m) thin film solar arrays and a clustered engine configuration of eight 50 kW gridded ion thrusters mounted on an articulated boom. Refinement of the SEP vehicle design was performed iteratively to properly estimate the required xenon propellant load for the out-bound orbit transfer. The SEP vehicle performance, including the xenon propellant estimation, was verified via the SNAP trajectory code. Further efforts are underway to extend this system model to other orbit transfer missions.

  4. Preliminary results of steady state characterization of near term electric vehicle breadboard propulsion system

    NASA Technical Reports Server (NTRS)

    Sargent, N. B.

    1980-01-01

    The steady state test results on a breadboard version of the General Electric Near Term Electric Vehicle (ETV-1) are discussed. The breadboard was built using exact duplicate vehicle propulsion system components with few exceptions. Full instrumentation was provided to measure individual component efficiencies. Tests were conducted on a 50 hp dynamometer in a road load simulator facility. Characterization of the propulsion system over the lower half of the speed-torque operating range has shown the system efficiency to be composed of a predominant motor loss plus a speed dependent transaxle loss. At the lower speeds with normal road loads the armature chopper loss is also a significant factor. At the conditions corresponding to a cycle for which the vehicle system was specifically designed, the efficiencies are near optimum.

  5. A high performance pneumatic braking system for heavy vehicles

    NASA Astrophysics Data System (ADS)

    Miller, Jonathan I.; Cebon, David

    2010-12-01

    Current research into reducing actuator delays in pneumatic brake systems is opening the door for advanced anti-lock braking algorithms to be used on heavy goods vehicles. However, these algorithms require the knowledge of variables that are impractical to measure directly. This paper introduces a sliding mode braking force observer to support a sliding mode controller for air-braked heavy vehicles. The performance of the observer is examined through simulations and field testing of an articulated heavy vehicle. The observer operated robustly during single-wheel vehicle simulations, and provided reasonable estimates of surface friction from test data. The effect of brake gain errors on the controller and observer are illustrated, and a recursive least squares estimator is derived for the brake gain. The estimator converged within 0.3 s in simulations and vehicle trials.

  6. Heavy-lift vehicle-launched Space Station method and apparatus

    NASA Technical Reports Server (NTRS)

    Wade, Donald C. (Inventor); Delafuente, Horacio M. (Inventor); Berka, Reginald B. (Inventor); Rickman, Steven L. (Inventor); Castro, Edgar O. (Inventor); Nagy, Kornel (Inventor); Wesselski, Clarence J. (Inventor); Pelischek, Timothy E. (Inventor); Schliesing, John A. (Inventor)

    1995-01-01

    Methods and apparatus are provided for a single heavy-lift launch to place a complete, operational space station on-orbit. A payload including the space station takes the place of a shuttle orbiter using the launch vehicle of the shuttle orbiter. The payload includes a forward shroud, a core module, a propulsion module, and a transition module between the core module and the propulsion module. The essential subsystems are preintegrated and verified on Earth. The core module provides means for attaching international modules with minimum impact to the overall design. The space station includes six control moment gyros for selectably operating in either LVLH (local-vertical local-horizontal) or SI (solar inertial) flight modes.

  7. Scenario analysis of hybrid class 3-7 heavy vehicles.

    SciTech Connect

    An, F.; Stodolsky, F.; Vyas, A.; Cuenca, R.; Eberhardt, J. J.

    1999-12-23

    The effects of hybridization on heavy-duty vehicles are not well understood. Heavy vehicles represent a broader range of applications than light-duty vehicles, resulting in a wide variety of chassis and engine combinations, as well as diverse driving conditions. Thus, the strategies, incremental costs, and energy/emission benefits associated with hybridizing heavy vehicles could differ significantly from those for passenger cars. Using a modal energy and emissions model, they quantify the potential energy savings of hybridizing commercial Class 3-7 heavy vehicles, analyze hybrid configuration scenarios, and estimate the associated investment cost and payback time. From the analysis, they conclude that (1) hybridization can significantly reduce energy consumption of Class 3-7 heavy vehicles under urban driving conditions; (2) the grid-independent, conventional vehicle (CV)-like hybrid is more cost-effective than the grid-dependent, electric vehicle (EV)-like hybrid, and the parallel configuration is more cost-effective than the series configuration; (3) for CV-like hybridization, the on-board engine can be significantly downsized, with a gasoline or diesel engine used for SUVs perhaps being a good candidate for an on-board engine; (4) over the long term, the incremental cost of a CV-like, parallel-configured Class 3-4 hybrid heavy vehicle is about %5,800 in the year 2005 and $3,000 in 2020, while for a Class 6-7 truck, it is about $7,100 in 2005 and $3,300 in 2020; and (5) investment payback time, which depends on the specific type and application of the vehicle, averages about 6 years under urban driving conditions in 2005 and 2--3 years in 2020.

  8. The design and performance estimates for the propulsion module for the booster of a TSTO vehicle

    NASA Astrophysics Data System (ADS)

    Snyder, Christopher A.; Maldonado, Jaime J.

    1991-09-01

    A NASA study of propulsion systems for possible low-risk replacements for the Space Shuttle is presented. Results of preliminary studies to define the USAF two-stage-to-orbit (TSTO) concept to deliver 10,000 pounds to low polar orbit are described. The booster engine module consists of an over/under turbine bypass engines/ramjet engine design for acceleration from takeoff to the staging point of Mach 6.5 and approximately 100,000 feet altitude. Propulsion system performance and weight are presented with preliminary mission study results of vehicle size.

  9. Results of electric-vehicle propulsion system performance on three lead-acid battery systems

    NASA Technical Reports Server (NTRS)

    Ewashinka, J. G.

    1984-01-01

    Three types of state of the art 6 V lead acid batteries were tested. The cycle life of lead acid batteries as a function of the electric vehicle propulsion system design was determined. Cycle life, degradation rate and failure modes with different battery types (baseline versus state of the art tubular and thin plate batteries were compared. The effects of testing strings of three versus six series connected batteries on overall performance were investigated. All three types do not seem to have an economically feasible battery system for the propulsion systems. The tubular plate batteries on the load leveled profile attained 235 cycles with no signs of degradation and minimal capacity loss.

  10. Results of electric-vehicle propulsion system performance on three lead-acid battery systems

    NASA Technical Reports Server (NTRS)

    Ewashinka, J. G.

    1984-01-01

    Three types of state of the art 6 V lead acid batteries were tested. The cycle life of lead acid batteries as a function of the electric vehicle propulsion system design was determined. Cycle life, degradation rate and failure modes with different battery types (baseline versus state of the art tubular and thin plate batteries) were compared. The effects of testing strings of three versus six series connected batteries on overall performance were investigated. All three types do not seem to have an economically feasible battery system for the propulsion systems. The tubular plate batteries on the load leveled profile attained 235 cycles with no signs of degradation and minimal capacity loss.

  11. Launch Vehicle Propulsion Life Cycle Cost Lessons Learned

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar; Rhodes, Russell E.; Robinson, John W.

    2010-01-01

    This paper will review lessons learned for space transportation systems from the viewpoint of the NASA, Industry and academia Space Propulsion Synergy Team (SPST). The paper provides the basic idea and history of "lessons learned". Recommendations that are extremely relevant to NASA's future investments in research, program development and operations are"'provided. Lastly, a novel and useful approach to documenting lessons learned is recommended, so as to most effectively guide future NASA investments. Applying lessons learned can significantly improve access to space for cargo or people by focusing limited funds on the right areas and needs for improvement. Many NASA human space flight initiatives have faltered, been re-directed or been outright canceled since the birth of the Space Shuttle program. The reasons given at the time have been seemingly unique. It will be shown that there are common threads as lessons learned in many a past initiative.

  12. Advanced Transportation System Studies Technical Area 2 (TA-2) Heavy Lift Launch Vehicle Development Contract. Volume 2; Technical Results

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The sections in this report include: Single Stage to Orbit (SSTO) Design Ground-rules; Operations Issues and Lessons Learned; Vertical-Takeoff/Landing Versus Vertical-Takeoff/Horizontal-Landing; SSTO Design Results; SSTO Simulation Results; SSTO Assessment Results; SSTO Sizing Tool User's Guide; SSto Turnaround Assessment Report; Ground Operations Assessment First Year Executive Summary; Health Management System Definition Study; Major TA-2 Presentations; First Lunar Outpost Heavy Lift Launch Vehicle Design and Assessment; and the section, Russian Propulsion Technology Assessment Reports.

  13. Preventive Maintenance and Operating Techniques for Heavy Vehicles.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This correspondence course, originally developed for the Marine Corps, is designed to provide students who are acquainted with motor transport and tactical heavy vehicles with information on how to operate and perform preventive maintenance of those vehicles. The course contains five study units covering 2.5-ton M-Series tactical trucks, 5-ton and…

  14. Propulsion alternatives for an undersea autonomous vehicle. Master's thesis

    SciTech Connect

    Braun, J.L.

    1987-06-01

    A study was conducted to determine suitable energy systems for small undersea autonomous vehicles. The two main goals of this study were: (1) to evaluate energy systems able to provide 16 kW-hr for a vehicle of specified dimensions, and; (2) to evaluate energy systems that may be used in the future for longer-duration, higher-speed missions. It was concluded that silver-zinc secondary batteries are satisfactory for the low-energy requirement. There is some uncertainty about the most-suitable energy source for the higher-energy mission. There are no fully developed systems completely safe, reliable, and readily available for use. Lithium thionyl chloride batteries, and lithium sulfur hexafluoride thermal power plants are the main contenders and have comparable energy densities. There are concerns, however, about the safety and availability of each of these systems.

  15. Executive Summary of Propulsion on the Orion Abort Flight-Test Vehicles

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Brooks, Syri J.; Barnes, Marvin W.; McCauley, Rachel J.; Wall, Terry M.; Reed, Brian D.; Duncan, C. Miguel

    2012-01-01

    The National Aeronautics and Space Administration Orion Flight Test Office was tasked with conducting a series of flight tests in several launch abort scenarios to certify that the Orion Launch Abort System is capable of delivering astronauts aboard the Orion Crew Module to a safe environment, away from a failed booster. The first of this series was the Orion Pad Abort 1 Flight-Test Vehicle, which was successfully flown on May 6, 2010 at the White Sands Missile Range in New Mexico. This report provides a brief overview of the three propulsive subsystems used on the Pad Abort 1 Flight-Test Vehicle. An overview of the propulsive systems originally planned for future flight-test vehicles is also provided, which also includes the cold gas Reaction Control System within the Crew Module, and the Peacekeeper first stage rocket motor encased within the Abort Test Booster aeroshell. Although the Constellation program has been cancelled and the operational role of the Orion spacecraft has significantly evolved, lessons learned from Pad Abort 1 and the other flight-test vehicles could certainly contribute to the vehicle architecture of many future human-rated space launch vehicles

  16. Executive Summary of Propulsion on the Orion Abort Flight-Test Vehicles

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Koelfgen, Syri J.; Barnes, Marvin W.; McCauley, Rachel J.; Wall, Terry M.; Reed, Brian D.; Duncan, C. Miguel

    2012-01-01

    The NASA Orion Flight Test Office was tasked with conducting a series of flight tests in several launch abort scenarios to certify that the Orion Launch Abort System is capable of delivering astronauts aboard the Orion Crew Module to a safe environment, away from a failed booster. The first of this series was the Orion Pad Abort 1 Flight-Test Vehicle, which was successfully flown on May 6, 2010 at the White Sands Missile Range in New Mexico. This paper provides a brief overview of the three propulsive subsystems used on the Pad Abort 1 Flight-Test Vehicle. An overview of the propulsive systems originally planned for future flight-test vehicles is also provided, which also includes the cold gas Reaction Control System within the Crew Module, and the Peacekeeper first stage rocket motor encased within the Abort Test Booster aeroshell. Although the Constellation program has been cancelled and the operational role of the Orion spacecraft has significantly evolved, lessons learned from Pad Abort 1 and the other flight-test vehicles could certainly contribute to the vehicle architecture of many future human-rated space launch vehicles.

  17. Calculation of ground vibration spectra from heavy military vehicles

    NASA Astrophysics Data System (ADS)

    Krylov, V. V.; Pickup, S.; McNuff, J.

    2010-07-01

    The demand for reliable autonomous systems capable to detect and identify heavy military vehicles becomes an important issue for UN peacekeeping forces in the current delicate political climate. A promising method of detection and identification is the one using the information extracted from ground vibration spectra generated by heavy military vehicles, often termed as their seismic signatures. This paper presents the results of the theoretical investigation of ground vibration spectra generated by heavy military vehicles, such as tanks and armed personnel carriers. A simple quarter car model is considered to identify the resulting dynamic forces applied from a vehicle to the ground. Then the obtained analytical expressions for vehicle dynamic forces are used for calculations of generated ground vibrations, predominantly Rayleigh surface waves, using Green's function method. A comparison of the obtained theoretical results with the published experimental data shows that analytical techniques based on the simplified quarter car vehicle model are capable of producing ground vibration spectra of heavy military vehicles that reproduce basic properties of experimental spectra.

  18. Heavy and Overweight Vehicle Defects Interim Report

    SciTech Connect

    Siekmann, Adam; Capps, Gary J

    2012-12-01

    The Federal Highway Administration (FHWA), along with the Federal Motor Carrier Safety Administration (FMCSA), has an interest in overweight commercial motor vehicles, how they affect infrastructure, and their impact on safety on the nation s highways. To assist both FHWA and FMCSA in obtaining more information related to this interest, data was collected and analyzed from two separate sources. A large scale nationwide data collection effort was facilitated by the Commercial Vehicle Safety Alliance as part of a special study on overweight vehicles and an additional, smaller set, of data was collected from the state of Tennessee which included a much more detailed set of data. Over a six-month period, 1,873 Level I inspections were performed in 18 different states that volunteered to be a part of this study. Of the 1,873 inspections, a vehicle out-of-service (OOS) violation was found on 44.79% of the vehicles, a rate significantly higher than the national OOS rate of 27.23%. The main cause of a vehicle being placed OOS was brake-related defects, with approximately 30% of all vehicles having an OOS brake violation. Only about 4% of vehicles had an OOS tire violation, and even fewer had suspension and wheel violations. Vehicle weight violations were most common on an axle group as opposed to a gross vehicle weight violation. About two thirds of the vehicles cited with a weight violation were overweight on an axle group with an average amount of weight over the legal limit of about 2,000 lbs. Data collection is scheduled to continue through January 2014, with more potentially more states volunteering to collect data. More detailed data collections similar to the Tennessee data collection will also be performed in multiple states.

  19. Concept Design of High Power Solar Electric Propulsion Vehicles for Human Exploration

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Kerslake, Thomas W.; Hojnicki, Jeffrey S.; Manzella, David H.; Falck, Robert D.; Cikanek, Harry A., III; Klem, Mark D.; Free, James M.

    2011-01-01

    Human exploration beyond low Earth orbit will require enabling capabilities that are efficient, affordable and reliable. Solar electric propulsion (SEP) has been proposed by NASA s Human Exploration Framework Team as one option to achieve human exploration missions beyond Earth orbit because of its favorable mass efficiency compared to traditional chemical propulsion systems. This paper describes the unique challenges associated with developing a large-scale high-power (300-kWe class) SEP vehicle and design concepts that have potential to meet those challenges. An assessment of factors at the subsystem level that must be considered in developing an SEP vehicle for future exploration missions is presented. Overall concepts, design tradeoffs and pathways to achieve development readiness are discussed.

  20. An electric vehicle propulsion system's impact on battery performance: An overview

    NASA Technical Reports Server (NTRS)

    Bozek, J. M.; Smithrick, J. J.; Cataldo, R. C.; Ewashinka, J. G.

    1980-01-01

    The performance of two types of batteries, lead-acid and nickel-zinc, was measured as a function of the charging and discharging demands anticipated from electric vehicle propulsion systems. The benefits of rapid high current charging were mixed: although it allowed quick charges, the energy efficiency was reduced. For low power (overnight) charging the current wave shapes delivered by the charger to the battery tended to have no effect on the battery cycle life. The use of chopper speed controllers with series traction motors resulted in a significant reduction in the energy available from a battery whenever the motor operates at part load. The demand placed on a battery by an electric vehicle propulsion system containing electrical regenerative braking confirmed significant improvment in short term performance of the battery.

  1. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1980

    SciTech Connect

    Not Available

    1981-03-01

    The objective of the Eagle-Picher nickel-iron battery program is to develop a nickel-iron battery for use in the propulsion of electric and electric-hybrid vehicles. To date, the program has concentrated on the characterization, fabrication and testing of the required electrodes, the fabrication and testing of full-scale cells, and finally, the fabrication and testing of full-scale (270 AH) six (6) volt modules. Electrodes of the final configuration have now exceeded 1880 cycles and are showing minimal capacity decline. Full-scale cells have presently exceeded 600 cycles and are tracking the individual electrode tests almost identically. Six volt module tests have exceeded 500 cycles, with a specific energy of 48 Wh/kg. Results to date indicate the nickel-iron battery is beginning to demonstrate the performance required for electric vehicle propulsion.

  2. Modeling, Simulation, and Control of a Solar Electric Propulsion Vehicle in Near-Earth Vicinity Including Solar Array Degradation

    NASA Technical Reports Server (NTRS)

    Witzberger, Kevin (Inventor); Hojnicki, Jeffery (Inventor); Manzella, David (Inventor)

    2016-01-01

    Modeling and control software that integrates the complexities of solar array models, a space environment, and an electric propulsion system into a rigid body vehicle simulation and control model is provided. A rigid body vehicle simulation of a solar electric propulsion (SEP) vehicle may be created using at least one solar array model, at least one model of a space environment, and at least one model of a SEP propulsion system. Power availability and thrust profiles may be determined based on the rigid body vehicle simulation as the SEP vehicle transitions from a low Earth orbit (LEO) to a higher orbit or trajectory. The power availability and thrust profiles may be displayed such that a user can use the displayed power availability and thrust profiles to determine design parameters for an SEP vehicle mission.

  3. Propulsion System Airframe Integration Issues and Aerodynamic Database Development for the Hyper-X Flight Research Vehicle

    NASA Technical Reports Server (NTRS)

    Engelund, Walter C.; Holland, Scott D.; Cockrell, Charles E., Jr.; Bittner, Robert D.

    1999-01-01

    NASA's Hyper-X Research Vehicle will provide a unique opportunity to obtain data on an operational airframe integrated scramjet propulsion system at true flight conditions. The airframe integrated nature of the scramjet engine with the Hyper-X vehicle results in a strong coupling effect between the propulsion system operation and the airframe s basic aerodynamic characteristics. Comments on general airframe integrated scramjet propulsion system effects on vehicle aerodynamic performance, stability, and control are provided, followed by examples specific to the Hyper-X research vehicle. An overview is provided of the current activities associated with the development of the Hyper-X aerodynamic database, including wind tunnel test activities and parallel CFD analysis efforts. A brief summary of the Hyper-X aerodynamic characteristics is provided, including the direct and indirect effects of the airframe integrated scramjet propulsion system operation on the basic airframe stability and control characteristics.

  4. Dynamics sensor validation for reusable launch vehicle propulsion.

    SciTech Connect

    Herzog, J. P.

    1998-05-27

    Expert Microsystems teamed with Argonne National Laboratory (ANL), a DOE contractor, to develop an innovative dynamics sensor validation system under a Small Business Technology Transfer (STTR) Phase I contract with NASA. The project improves launch vehicle mission safety and system dependability by enabling rapid development and cost effective maintenance of embeddable real-time software to reliably detect process-critical sensor failures. The project focused on verifying the feasibility of two innovative software methods developed by ANL to provide high fidelity sensor data validation for nuclear power generating stations, the Sequential Probability Ratio Test (SPRT) algorithm and the Multivariate State Estimation Technique (MSET) algorithm, as core elements of a commercial Dynamics Sensor Validation System (DSVS). The research verified that ANL algorithms enable highly reliable data validation for high frequency Space Shuttle Main Engine (SSME) dynamics sensors, such as accelerometers and strain gauges. Phase I culminated in production of a prototype run-time module which validates SSME flight accelerometer data with very high reliability. The resulting sensor validation development system is widely applicable to reusable launch vehicle (RLV) and ground support control and monitoring systems.

  5. Integrated Design and Engineering Analysis (IDEA) Environment - Propulsion Related Module Development and Vehicle Integration

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hilmi N.

    2013-01-01

    This report documents the work performed during the period from May 2011 - October 2012 on the Integrated Design and Engineering Analysis (IDEA) environment. IDEA is a collaborative environment based on an object-oriented, multidisciplinary, distributed framework using the Adaptive Modeling Language (AML). This report will focus on describing the work done in the areas of: (1) Integrating propulsion data (turbines, rockets, and scramjets) in the system, and using the data to perform trajectory analysis; (2) Developing a parametric packaging strategy for a hypersonic air breathing vehicles allowing for tank resizing when multiple fuels and/or oxidizer are part of the configuration; and (3) Vehicle scaling and closure strategies.

  6. Ramjet propulsion for single-stage-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Martin, J. A.

    1977-01-01

    The concept of single stage earth-to-orbit transportation is studied with respect to existing and projected ramjet technology. Four types of ramjet are analyzed: fan ejector, fan ramjet, supersonic combustion ramjet, and fan ramjet with turbojet boosters. A fan ramjet with a removable fan, with separate rockets for the non-air-breathing flight phase, is considered superior to an ejector ramjet, for both ease of orbit insertion and payload boost capability. Vehicle design is also discussed in terms of trajectory integration and optimization, aerodynamic trim and stability, and complete mass estimation. Graphs are presented showing Mach number for air-breathing and non-air-breathing flight, specific impulse from various ramjet engines, and orbital-insertion parameters.

  7. Propulsion integration of hypersonic air-breathing vehicles utilizing a top-down design methodology

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Brad Kenneth

    In recent years, a focus of aerospace engineering design has been the development of advanced design methodologies and frameworks to account for increasingly complex and integrated vehicles. Techniques such as parametric modeling, global vehicle analyses, and interdisciplinary data sharing have been employed in an attempt to improve the design process. The purpose of this study is to introduce a new approach to integrated vehicle design known as the top-down design methodology. In the top-down design methodology, the main idea is to relate design changes on the vehicle system and sub-system level to a set of over-arching performance and customer requirements. Rather than focusing on the performance of an individual system, the system is analyzed in terms of the net effect it has on the overall vehicle and other vehicle systems. This detailed level of analysis can only be accomplished through the use of high fidelity computational tools such as Computational Fluid Dynamics (CFD) or Finite Element Analysis (FEA). The utility of the top-down design methodology is investigated through its application to the conceptual and preliminary design of a long-range hypersonic air-breathing vehicle for a hypothetical next generation hypersonic vehicle (NHRV) program. System-level design is demonstrated through the development of the nozzle section of the propulsion system. From this demonstration of the methodology, conclusions are made about the benefits, drawbacks, and cost of using the methodology.

  8. Heavy Vehicle Crash Characteristics in Oman 2009–2011

    PubMed Central

    Al-Bulushi, Islam; Edwards, Jason; Davey, Jeremy; Armstrong, Kerry; Al-Reesi, Hamed; Al-Shamsi, Khalid

    2015-01-01

    In recent years, Oman has seen a shift in the burden of diseases towards road accidents. The main objective of this paper, therefore, is to describe key characteristics of heavy vehicle crashes in Oman and identify the key driving behaviours that influence fatality risks. Crash data from January 2009 to December 2011 were examined and it was found that, of the 22,543 traffic accidents that occurred within this timeframe, 3,114 involved heavy vehicles. While the majority of these crashes were attributed to driver behaviours, a small proportion was attributed to other factors. The results of the study indicate that there is a need for a more thorough crash investigation process in Oman. Future research should explore the reporting processes used by the Royal Oman Police, cultural influences on heavy vehicle operations in Oman and improvements to the current licensing system. PMID:26052451

  9. DEVELOPMENT WORK FOR IMPROVED HEAVY-DUTY VEHICLE MODELING CAPABILITY DATA MINING--FHWA DATASETS

    EPA Science Inventory

    A heavy-duty vehicle can produce 10 to 100 times the emissions (of NOx and PM emissions especially) of a light-duty vehicle, so heavy-duty vehicle activity needs to be well characterized. Key uncertainties with the use of MOBILE6 regarding heavy-duty vehicle emissions include th...

  10. Permanent magnets for vehicle-propulsion motors: Cost/availability

    SciTech Connect

    Oman, H.; Simpson-Clark, R.

    1996-12-31

    Alternating-current induction motors have been used for fuel-pumping and air-conditioning in airplanes. Series and shunt dc motors have propelled vehicles. The power received by motors goes into producing output torque and magnetic fields. Today these fields can be produced with rare-earth permanent magnets which do not consume input power. Dramatic improvements in motor efficiency can result. Furthermore, with efficient variable-speed controllers using MOSFET and IGBT semiconductors, electric motors can replace the hydraulic actuators that move aircraft surfaces and retract landing gear. The 1993 cost for the magnets in a 100 kW motor was $1,500. Improved production processes are expected to drop this cost to around $400. However, today`s rare-earth magnet-materials are by-products of mines that produce other metals and minerals. The authors explore the effect on cost of increased demand for the pertinent rare-earth elements, neodymium, cobalt, and samarium. A higher price will cause more elements to be extracted from existing mines. The opening of new rare-earth-element mines is another possibility. In 1993 the $250-per-kg cost for neodymium-iron-boron magnets included $190 for processing. Processing cost can drop to $30 per kg of magnet when production reaches 60 tons per month. The cost of the raw material for the magnets will be affected by man factors in a complex scenario.

  11. Large Scale Composite Manufacturing for Heavy Lift Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Stavana, Jacob; Cohen, Leslie J.; Houseal, Keth; Pelham, Larry; Lort, Richard; Zimmerman, Thomas; Sutter, James; Western, Mike; Harper, Robert; Stuart, Michael

    2012-01-01

    Risk reduction for the large scale composite manufacturing is an important goal to produce light weight components for heavy lift launch vehicles. NASA and an industry team successfully employed a building block approach using low-cost Automated Tape Layup (ATL) of autoclave and Out-of-Autoclave (OoA) prepregs. Several large, curved sandwich panels were fabricated at HITCO Carbon Composites. The aluminum honeycomb core sandwich panels are segments of a 1/16th arc from a 10 meter cylindrical barrel. Lessons learned highlight the manufacturing challenges required to produce light weight composite structures such as fairings for heavy lift launch vehicles.

  12. Civil markets for buoyant heavy-lift vehicles

    NASA Technical Reports Server (NTRS)

    Mettam, P. J.; Hansen, D.; Ardema, M. D.

    1981-01-01

    Worldwide civil markets for heavy lift airships were investigated. Substantial potential market demand was identified for payloads of from 13 to 800 tons. The largest markets appear to be in applications to relieve port congestion, construction of power generating plants, and, most notably, logging. Because of significant uncertainties both in vehicle and market characteristics, further analysis will be necessary to verify the identified market potential of heavy lift airship concepts.

  13. Study of advanced electric propulsion system concept using a flywheel for electric vehicles

    NASA Technical Reports Server (NTRS)

    Younger, F. C.; Lackner, H.

    1979-01-01

    Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.

  14. Energy 101: Heavy Duty Vehicle Efficiency

    SciTech Connect

    2015-05-14

    Although Class 8 Trucks only make up 4% of the vehicles on the road, they use about 20% of the nation's transportation fuel. In this video, learn how new fuel-efficient technologies are making our country's big rigs quieter, less polluting, more energy-efficient, and less expensive to operate over time.

  15. Initial Noise Assessment of an Embedded-wing-propulsion Concept Vehicle

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Krejsa, Eugene A.

    2008-01-01

    Vehicle acoustic requirements are considered for a Cruise-Efficient Short Take-Off and Landing (CESTOL) vehicle concept using an Embedded-Wing-Propulsion (EWP) system based on a review of the literature. Successful development of such vehicles would enable more efficient use of existing airports in accommodating the anticipated growth in air traffic while at the same time reducing the noise impact on the community around the airport. A noise prediction capability for CESTOL-EWP aircraft is developed, based largely on NASA's FOOTPR code and other published methods, with new relations for high aspect ratio slot nozzles and wing shielding. The predictive model is applied to a preliminary concept developed by Boeing for NASA GRC. Significant noise reduction for such an aircraft relative to the current state-of-the-art is predicted, and technology issues are identified which should be addressed to assure that the potential of this design concept is fully achieved with minimum technical risk.

  16. Trade Studies for a Manned High-Power Nuclear Electric Propulsion Vehicle

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael; Hull, Patrick V.; Irwin, Ryan W.; TInker, Michael L.; Patton, Bruce W.

    2005-01-01

    Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate vehicles must be identified through trade studies for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combines analysis codes for NEP subsystems with genetic algorithm-based optimization. Trade studies for a NEP reference mission to the asteroids were conducted to identify important trends, and to determine the effects of various technologies and subsystems on vehicle performance. It was found that the electric thruster type and thruster performance have a major impact on the achievable system performance, and that significant effort in thruster research and development is merited.

  17. Heavy Lift Vehicle (HLV) Avionics Flight Computing Architecture Study

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.; Chen, Yuan; Morgan, Dwayne R.; Butler, A. Marc; Sdhuh, Joseph M.; Petelle, Jennifer K.; Gwaltney, David A.; Coe, Lisa D.; Koelbl, Terry G.; Nguyen, Hai D.

    2011-01-01

    A NASA multi-Center study team was assembled from LaRC, MSFC, KSC, JSC and WFF to examine potential flight computing architectures for a Heavy Lift Vehicle (HLV) to better understand avionics drivers. The study examined Design Reference Missions (DRMs) and vehicle requirements that could impact the vehicles avionics. The study considered multiple self-checking and voting architectural variants and examined reliability, fault-tolerance, mass, power, and redundancy management impacts. Furthermore, a goal of the study was to develop the skills and tools needed to rapidly assess additional architectures should requirements or assumptions change.

  18. Impact of Heavy Duty Vehicle Emissions Reductions on Global Climate

    SciTech Connect

    Calvin, Katherine V.; Thomson, Allison M.

    2010-08-01

    The impact of a specified set of emissions reductions from heavy duty vehicles on climate change is calculated using the MAGICC 5.3 climate model. The integrated impact of the following emissions changes are considered: CO2, CH4, N2O, VOC, NOx, and SO2. This brief summarizes the assumptions and methods used for this calculation.

  19. Commercial Training Issues: Heavy Duty Alternative Fuel Vehicles.

    ERIC Educational Resources Information Center

    Eckert, Douglas

    The needs and opportunities in the heavy-duty alternative fuel vehicle training arena were examined in an informal ethnographic study of the appropriateness and effectiveness of the instructional materials currently being used in such training. Interviews were conducted with eight instructors from the National Alternative Fuels Training Program…

  20. Steady-state and dynamic evaluation of the electric propulsion system test bed vehicle on a road load simulator

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.

    1983-01-01

    The propulsion system of the Lewis Research Center's electric propulsion system test bed vehicle was tested on the road load simulator under the DOE Electric and Hybrid Vehicle Program. This propulsion system, consisting of a series-wound dc motor controlled by an infinitely variable SCR chopper and an 84-V battery pack, is typical of those used in electric vehicles made in 1976. Steady-state tests were conducted over a wide range of differential output torques and vehicle speeds. Efficiencies of all of the components were determined. Effects of temperature and voltage variations on the motor and the effect of voltage changes on the controller were examined. Energy consumption and energy efficiency for the system were determined over the B and C driving schedules of the SAE J227a test procedure.

  1. Launch Vehicle Performance for Bipropellant Propulsion Using Atomic Propellants With Oxygen

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2000-01-01

    Atomic propellants for bipropellant launch vehicles using atomic boron, carbon, and hydrogen were analyzed. The gross liftoff weights (GLOW) and dry masses of the vehicles were estimated, and the 'best' design points for atomic propellants were identified. Engine performance was estimated for a wide range of oxidizer to fuel (O/F) ratios, atom loadings in the solid hydrogen particles, and amounts of helium carrier fluid. Rocket vehicle GLOW was minimized by operating at an O/F ratio of 1.0 to 3.0 for the atomic boron and carbon cases. For the atomic hydrogen cases, a minimum GLOW occurred when using the fuel as a monopropellant (O/F = 0.0). The atomic vehicle dry masses are also presented, and these data exhibit minimum values at the same or similar O/F ratios as those for the vehicle GLOW. A technology assessment of atomic propellants has shown that atomic boron and carbon rocket analyses are considered to be much more near term options than the atomic hydrogen rockets. The technology for storing atomic boron and carbon has shown significant progress, while atomic hydrogen is not able to be stored at the high densities needed for effective propulsion. The GLOW and dry mass data can be used to estimate the cost of future vehicles and their atomic propellant production facilities. The lower the propellant's mass, the lower the overall investment for the specially manufactured atomic propellants.

  2. Energy Efficiency in Heavy Vehicle Tires, Drivetrains, and Braking Systems

    SciTech Connect

    Peter J. Blau

    2000-04-26

    This document was prepared to support the primary goals of the Department of Energy, Office of Heavy Vehicle Technologies. These were recently stated as follows: ''Develop by 2004 the enabling technologies for a class 7-8 truck with a fuel efficiency of 10 mpg (at 65 mph) which will meet prevailing emission standards. For Class 3-6 trucks operating on an urban driving cycle, develop by 2004 commercially viable vehicles that achieve at least double the fuel economy of comparable current vehicles (1999), and as a research goal, reduce criteria pollutants to 30% below EPA standards. Develop by 2004 the diesel engine enabling technologies to support large-scale industry dieselization of Class 1 and 2 trucks, achieving a 35 % fuel efficiency improvement over comparable gasoline-fueled trucks, while meeting applicable emissions standards.'' The enabling technologies for improving the fuel efficiency of trucks, include not only engine technologies but also technologies involved with lowering the rolling resistance of tires, reducing vehicle aerodynamic drag, improving thermal management, and reducing parasitic frictional losses in drive train components. Opportunities also exist for making better use of the energy that might ordinarily be dissipated during vehicle braking. Braking systems must be included in this evaluation since safety in truck operations is vital, and braking requirements are greater for vehicles having lowered resistance to rolling. The Office of Heavy Vehicle Technologies has initiated a program to improve the aerodynamics of heavy vehicles through wind tunnel testing, computational modeling, and on-road evaluations. That activity is described in a separate multi-year plan; therefore, emphasis in this document will be on tires, drive trains, and braking systems. Recent, dramatic fluctuations in diesel fuel prices have emphasized the importance of effecting savings in truck fuel economy by implementing new component designs and materials.

  3. Finite-thrust optimization of interplanetary transfers of space vehicle with bimodal nuclear thermal propulsion

    NASA Astrophysics Data System (ADS)

    Kharytonov, Oleksii M.; Kiforenko, Boris M.

    2011-08-01

    The nuclear thermal rocket (NTR) propulsion is one of the leading promising technologies for primary space propulsion for manned exploration of the solar system due to its high specific impulse capability and sufficiently high thrust-to-weight ratio. Another benefit of NTR is its possible bimodal design, when nuclear reactor is used for generation of a jet thrust in a high-thrust mode and (with an appropriate power conversion system) as a source of electric power to supply the payload and the electric engines in a low-thrust mode. The model of the NTR thrust control was developed considering high-thrust NTR as a propulsion system of limited power and exhaust velocity. For the proposed model the control of the thrust value is accomplished by the regulation of reactor thermal power and propellant mass flow rate. The problem of joint optimization of the combination of high- and low-thrust arcs and the parameters of bimodal NTR (BNTR) propulsion system is considered for the interplanetary transfers. The interplanetary trajectory of the space vehicle is formed by the high-thrust NTR burns, which define planet-centric maneuvers and by the low-thrust heliocentric arcs where the nuclear electric propulsion (NEP) is used. The high-thrust arcs are analyzed using finite-thrust approach. The motion of the corresponding dynamical system is realized in three phase spaces concerning the departure planet-centric maneuver by means of high-thrust NTR propulsion, the low-thrust NEP heliocentric maneuver and the approach high-thrust NTR planet-centric maneuver. The phase coordinates are related at the time instants of the change of the phase spaces due to the relations between the space vehicle masses. The optimal control analysis is performed using Pontryagin's maximum principle. The numerical results are analyzed for Earth-Mars "sprint" transfer. The optimal values of the parameters that define the masses of NTR and NEP subsystems have been evaluated. It is shown that the low

  4. Effect of reactor coolant radioactivity upon configuration feasibility for a nuclear electric propulsion vehicle

    NASA Technical Reports Server (NTRS)

    Soffer, L.; Wright, G. N.

    1973-01-01

    A preliminary shielding analysis was carried out for a conceptual nuclear electric propulsion vehicle designed to transport payloads from low earth orbit to synchronous orbit. The vehicle employed a thermionic nuclear reactor operating at 1575 kilowatts and generated 120 kilowatts of electricity for a round-trip mission time of 2000 hours. Propulsion was via axially directed ion engines employing 3300 pounds of mercury as a propellant. The vehicle configuration permitted a reactor shadow shield geometry using LiH and the mercury propellant for shielding. However, much of the radioactive NaK reactor coolant was unshielded and in close proximity to the power conditioning electronics. An estimate of the radioactivity of the NaK coolant was made and its unshielded dose rate to the power conditioning equipment calculated. It was found that the activated NaK contributed about three-fourths of the gamma dose constraint. The NaK dose was considered a sufficiently high fraction of the allowable gamma dose to necessitate modifications in configuration.

  5. Recent Advances in LOX / LH2 Propulsion System for Reusable Vehicle Testing

    NASA Astrophysics Data System (ADS)

    Tokudome, Shinichiro; Naruo, Yoshihiro; Yagishita, Tsuyoshi; Nonaka, Satoshi; Shida, Maki; Mori, Hatsuo; Nakamura, Takeshi

    The third-generation vehicle RVT#3 equipped with a pressure-fed engine, which had upgraded in terms of durability enhancement and a LH2 tank of composite material, successfully performed in repeated flight operation tests; and the vehicle reached its maximum flying altitude of 42m in October 2003. The next step for demonstrating entire sequence of full-scale operation is to put a turbopump-fed system into propulsion system. From a result of primary system analysis, we decided to build an expander-cycle engine by diverting a pair of turbopumps, which had built for another research program, to the present study. A combustion chamber with long cylindrical portion adapted to the engine cycle was also newly made. Two captive firing tests have been conducted with two different thrust control methods, following the component tests of combustor and turbopumps separately conducted. A considerable technical issues recognized in the tests were the robustness enhancement of shaft seal design, the adjustment of shaft stiffness, and start-up operation adapted to the specific engine system. Experimental study of GOX/GH2 RCS thrusters have also been started as a part of a conceptual study of the integration of the propulsion system associated with simplification and reliability improvement of the vehicle system.

  6. Advanced Transportation System Studies Technical Area 2 (TA-2) Heavy Lift Launch Vehicle Development Contract. Volume 2; Technical Results

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The purpose of the Advanced Transportation System Studies (ATSS) Technical Area 2 (TA-2) Heavy Lift Launch Vehicle Development contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. This document is Volume 2 of the final report for the contract. It provides documentation of selected technical results from various TA-2 analysis activities, including a detailed narrative description of the SSTO concept assessment results, a user's guide for the associated SSTO sizing tools, an SSTO turnaround assessment report, an executive summary of the ground operations assessments performed during the first year of the contract, a configuration-independent vehicle health management system requirements report, a copy of all major TA-2 contract presentations, a copy of the FLO launch vehicle final report, and references to Pratt & Whitney's TA-2 sponsored final reports regarding the identification of Russian main propulsion technologies.

  7. Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle

    SciTech Connect

    Nelson, S.C.

    2002-11-14

    This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less

  8. Halley comet rendezvous with a SEPS vehicle. [Solar Electric Propulsion System

    NASA Technical Reports Server (NTRS)

    Burrows, R. R.

    1978-01-01

    An analysis of the performance of a Solar Electric Propulsion System (SEPS) vehicle rendezvousing with Halley's comet just prior to its Frebruary 1986 perihelion is described. A calculus of variations mathematical formulation is used to maximize Halley arrival mass while giving effect to the influence of solar array size, launch date, arrival date, and insertion hyperbolic excess velocity. Numerical sensitivity relief, thrust system modeling, trajectory characteristics and ion engine operating conditions are discussed and illustrated. Results indicate a rendezvous is feasible with a minimal advance in solar cell and ion engine technology.

  9. An Overview of Brazilian Developments in Beamed Energy Aerospace Propulsion and Vehicle Performance Control

    NASA Astrophysics Data System (ADS)

    Minucci, M. A. S.

    2008-04-01

    Beamed energy propulsion and beamed energy vehicle performance control concepts are equally promising and challenging. In Brazil, the two concepts are being currently investigated at the Prof Henry T Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, of the Institute for Advanced Studies—IEAv, in collaboration with the Rensselaer Polytechnic Institute—RPI, Troy, NY, and the United States Air force Research Laboratory-AFRL. Until recently, only laser energy addition for hypersonic flow control was being investigated at the Laboratory using a 0.3 m nozzle exit diameter hypersonic shock tunnel, T2, and two 7 joule CO2 TEA lasers. Flow visualization, model pressure and heat flux measurements of the laser energy addition perturbed flow around a model were produced as a result of this joint IEAv-RPI investigation. Presently, with the participation of AFRL and the newly commissioned 0.6 m. nozzle exit diameter hypersonic shock tunnel, T3, a more ambitious project is underway. Two 400 Joule Lumonics 620 CO2 TEA lasers will deliver a 20 cm X 25 cm propulsive laser beam to a complete laser propelled air breather/rocket hypersonic engine, located inside T3 test section. Schlieren photographs of the flow inside de engine as well as surface and heat flux measurements will be performed for free stream Mach numbers ranging from 6 to 25. The present paper discusses past, present and future Brazilian activities on beamed energy propulsion and related technologies.

  10. An Overview of Brazilian Developments in Beamed Energy Aerospace Propulsion and Vehicle Performance Control

    SciTech Connect

    Minucci, M. A. S.

    2008-04-28

    Beamed energy propulsion and beamed energy vehicle performance control concepts are equally promising and challenging. In Brazil, the two concepts are being currently investigated at the Prof Henry T Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, of the Institute for Advanced Studies--IEAv, in collaboration with the Rensselaer Polytechnic Institute--RPI, Troy, NY, and the United States Air force Research Laboratory-AFRL. Until recently, only laser energy addition for hypersonic flow control was being investigated at the Laboratory using a 0.3 m nozzle exit diameter hypersonic shock tunnel, T2, and two 7 joule CO{sub 2} TEA lasers. Flow visualization, model pressure and heat flux measurements of the laser energy addition perturbed flow around a model were produced as a result of this joint IEAv-RPI investigation. Presently, with the participation of AFRL and the newly commissioned 0.6 m. nozzle exit diameter hypersonic shock tunnel, T3, a more ambitious project is underway. Two 400 Joule Lumonics 620 CO{sub 2} TEA lasers will deliver a 20 cm X 25 cm propulsive laser beam to a complete laser propelled air breather/rocket hypersonic engine, located inside T3 test section. Schlieren photographs of the flow inside de engine as well as surface and heat flux measurements will be performed for free stream Mach numbers ranging from 6 to 25. The present paper discusses past, present and future Brazilian activities on beamed energy propulsion and related technologies.

  11. Study and review of permanent magnets for electric vehicle propulsion motors

    NASA Technical Reports Server (NTRS)

    Strnat, K. J.

    1983-01-01

    A study of permanent magnets (PM) was performed in support of the DOE/NASA electric and hybrid vehicle program. PM requirements for electric propulsion motors are analyzed, design principles and relevant properties of magnets are discussed. Available PM types are reviewed. For the needed high-grade magnets, design data, commercial varieties and sources are tabulated, based on a survey of vendors. Economic factors such as raw material availability, production capability and cost are analyzed, especially for cobalt and the rare earths. Extruded Mn-Al-C magnets from Japan were experimentally characterized. Dynamic magnetic data for the range -50 deg to +150 deg C and some mechanical properties are reported. The state of development of the important PM material families is reviewed. Feasible improvements or new developments of magnets for electric vehicle motors are identified.

  12. Mars Sample Return Using Commercial Capabilities: Propulsive Entry, Descent, and Landing of a Capsule Form Vehicle

    NASA Technical Reports Server (NTRS)

    Gonzales, Andrew A.; Lemke, Lawrence G.; Huynh, Loc C.

    2014-01-01

    This paper describes a critical portion of the work that has been done at NASA, Ames Research Center regarding the use of the commercially developed Dragon capsule as a delivery vehicle for the elements of a high priority Mars Sample Return mission. The objective of the investigation was to determine entry and landed mass capabilities that cover anticipated mission conditions. The "Red Dragon", Mars configuration, uses supersonic retro-propulsion, with no required parachute system, to perform Entry, Descent, and Landing (EDL) maneuvers. The propulsive system proposed for use is the same system that will perform an abort, if necessary, for a human rated version of the Dragon capsule. Standard trajectory analysis tools are applied to publically available information about Dragon and other legacy capsule forms in order to perform the investigation. Trajectory simulation parameters include entry velocity, flight path angle, lift to drag Ratio (L/D), landing site elevation, atmosphere density, and total entry mass, in addition engineering assumptions for the performance of the propulsion system are stated. Mass estimates for major elements of the overall proposed architecture are coupled to this EDL analysis to close the overall architecture. Three synodic launch opportunities, beginning with the 2022 opportunity, define the arrival conditions. Results state the relations between the analysis parameters as well as sensitivities to those parameters. The EDL performance envelope includes landing altitudes between 0 and -4 km referenced to the Mars Orbiter Laser Altimeter datum as well as minimum and maximum atmosphere density. Total entry masses between 7 and 10 mt are considered with architecture closure occurring between 9.0 and 10 mt. Propellant mass fractions for each major phase of the EDL - Entry, Terminal Descent, and Hazard Avoidance - have been derived. An assessment of the effect of the entry conditions on the Thermal Protection System (TPS) currently in use for

  13. Solar Electric Propulsion Technologies Being Designed for Orbit Transfer Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.; Hoffman, David J.; Kerslake, Thomas W.; Oleson, Steven R.; Falck, Robert D.

    2002-01-01

    There is increasing interest in employing Solar Electric Propulsion (SEP) for new missions requiring transfer from low Earth orbit to the Earth-Moon Lagrange point, L1. Mission architecture plans place the Gateway Habitat at L1 in the 2011 to 2016 timeframe. The Gateway Habitat is envisioned to be used for Lunar exploration, space telescopes, and planetary mission staging. In these scenarios, an SEP stage, or "tug," is used to transport payloads to L1--such as the habitat module, lunar excursion and return vehicles, and chemical propellant for return crew trips. SEP tugs are attractive because they are able to efficiently transport large (less than 10,000 kg) payloads while minimizing propellant requirements. To meet the needs of these missions, a preliminary conceptual design for a general-purpose SEP tug was developed that incorporates several of the advanced space power and in-space propulsion technologies (such as high-power gridded ion and Hall thrusters, high-performance thin-film photovoltaics, lithium-ion batteries, and advanced high-voltage power processing) being developed at the NASA Glenn Research Center. A spreadsheet-based vehicle system model was developed for component sizing and is currently being used for mission planning. This model incorporates a low-thrust orbit transfer algorithm to make preliminary determinations of transfer times and propellant requirements. Results from this combined tug mass estimation and orbit transfer model will be used in a higher fidelity trajectory model to refine the analysis.

  14. A Survey of Emerging Materials for Revolutionary Aerospace Vehicle Structures and Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Shuart, Mark J.; Gray, Hugh R.

    2002-01-01

    The NASA Strategic Plan identifies the long-term goal of providing safe and affordable space access, orbital transfer, and interplanetary transportation capabilities to enable scientific research, human, and robotic exploration, and the commercial development of space. Numerous scientific and engineering breakthroughs will be required to develop the technology required to achieve this goal. Critical technologies include advanced vehicle primary and secondary structure, radiation protection, propulsion and power systems, fuel storage, electronics and devices, sensors and science instruments, and medical diagnostics and treatment. Advanced materials with revolutionary new capabilities are an essential element of each of these technologies. A survey of emerging materials with applications to aerospace vehicle structures and propulsion systems was conducted to assist in long-term Agency mission planning. The comprehensive survey identified materials already under development that could be available in 5 to 10 years and those that are still in the early research phase and may not be available for another 20 to 30 years. The survey includes typical properties, a description of the material and processing methods, the current development status, and the critical issues that must be overcome to achieve commercial viability.

  15. Medium and Heavy Duty Vehicle Field Evaluations (Presentation)

    SciTech Connect

    Walkowicz, K.

    2014-06-01

    This presentation discusses field evaluations of medium- and heavy-duty vehicles performed by NREL. The project provides medium-duty (MD) and heavy-duty (HD) test results, aggregated data, and detailed analysis, including 3rd party unbiased data (data that would not normally be shared by industry in an aggregated and detailed manner). Over 5.6 million miles of advanced technology MD and HD truck data have been collected, documented, and analyzed on over 240 different vehicles since 2002. Data, analysis, and reports are shared within DOE, national laboratory partners, and industry for R&D planning and strategy. The results help guide R&D for new technology development, help define intelligent usage of newly developed technology, and help fleets/users understand all aspects of advanced technology.

  16. Vehicle and Mission Design Options for the Human Exploration of Mars/Phobos Using "Bimodal" NTR and LANTR Propulsion. Revised Dec. 1998

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Dudzinski, Leonard A.; McGuire, Melissa L.

    2002-01-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars because of its high specific impulse (1sp is approximately 850-1000 s) capability and its attractive engine thrust-to-weight ratio (approximately 3-10). To stay within the available mass and payload volume limits of a "Magnum" heavy lift vehicle, a high performance propulsion system is required for trans-Mars injection (TMI). An expendable TMI stage, powered by three 15 thousand pounds force (klbf) NTR engines is currently under consideration by NASA for its Design Reference Mission (DRM). However, because of the miniscule burnup of enriched uranium-235 during the Earth departure phase (approximately 10 grams out of 33 kilograms in each NTR core), disposal of the TMI stage and its engines after a single use is a costly and inefficient use of this high performance stage. By reconfiguring the engines for both propulsive thrust and modest power generation (referred to as "bimodal" operation), a robust, multiple burn, "power-rich" stage with propulsive Mars capture and reuse capability is possible. A family of modular bimodal NTR (BNTR) vehicles are described which utilize a common "core" stage powered by three 15 klbf BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration / reliquification system for long term, zero-boiloff liquid hydrogen (LH2) storage, and high data rate communications. An innovative, spine-like "saddle truss" design connects the core stage and payload element and is open underneath to allow supplemental "in-line" propellant tanks and contingency crew consumables to be easily jettisoned to improve vehicle performance. A "modified" DRM using BNTR transfer vehicles requires fewer transportation system elements, reduces IMLEO and mission risk, and simplifies space operations. By taking the next logical step--use of the BNTR for propulsive capture of all payload elements into Mars orbit--the power

  17. On-road heavy-duty vehicle emissions monitoring system.

    PubMed

    Bishop, Gary A; Hottor-Raguindin, Rachel; Stedman, Donald H; McClintock, Peter; Theobald, Ed; Johnson, Jeremy D; Lee, Doh-Won; Zietsman, Josias; Misra, Chandan

    2015-02-01

    The introduction of particulate and oxides of nitrogen (NOx) after-treatment controls on heavy-duty vehicles has spurred the need for fleet emissions data to monitor their reliability and effectiveness. The University of Denver has developed a new method for rapidly measuring heavy-duty vehicles for gaseous and particulate fuel specific emissions. The method was recently used to collect 3088 measurements at a Port of Los Angeles location and a weigh station on I-5 in northern California. The weigh station NOx emissions for 2014 models are 73% lower than 2010 models (3.8 vs 13.9 gNOx/kg of fuel) and look to continue to decrease with newer models. The Port site has a heavy-duty fleet that has been entirely equipped with diesel particulate filters since 2010. Total particulate mass and black carbon measurements showed that only 3% of the Port vehicles measured exceed expected emission limits with mean gPM/kg of fuel emissions of 0.031 ± 0.007 and mean gBC/kg of fuel emissions of 0.020 ± 0.003. Mean particulate emissions were higher for the older weigh station fleet but 2011 and newer trucks gPM/kg of fuel emissions were nevertheless more than a factor of 30 lower than the means for pre-DPF (2007 and older) model years. PMID:25606715

  18. On-road heavy-duty vehicle emissions monitoring system.

    PubMed

    Bishop, Gary A; Hottor-Raguindin, Rachel; Stedman, Donald H; McClintock, Peter; Theobald, Ed; Johnson, Jeremy D; Lee, Doh-Won; Zietsman, Josias; Misra, Chandan

    2015-02-01

    The introduction of particulate and oxides of nitrogen (NOx) after-treatment controls on heavy-duty vehicles has spurred the need for fleet emissions data to monitor their reliability and effectiveness. The University of Denver has developed a new method for rapidly measuring heavy-duty vehicles for gaseous and particulate fuel specific emissions. The method was recently used to collect 3088 measurements at a Port of Los Angeles location and a weigh station on I-5 in northern California. The weigh station NOx emissions for 2014 models are 73% lower than 2010 models (3.8 vs 13.9 gNOx/kg of fuel) and look to continue to decrease with newer models. The Port site has a heavy-duty fleet that has been entirely equipped with diesel particulate filters since 2010. Total particulate mass and black carbon measurements showed that only 3% of the Port vehicles measured exceed expected emission limits with mean gPM/kg of fuel emissions of 0.031 ± 0.007 and mean gBC/kg of fuel emissions of 0.020 ± 0.003. Mean particulate emissions were higher for the older weigh station fleet but 2011 and newer trucks gPM/kg of fuel emissions were nevertheless more than a factor of 30 lower than the means for pre-DPF (2007 and older) model years.

  19. Launch Vehicle Sizing Benefits Utilizing Main Propulsion System Crossfeed and Project Status

    NASA Technical Reports Server (NTRS)

    Chandler, Frank; Scheiern, M.; Champion, R.; Mazurkivich, P.; Lyles, Garry (Technical Monitor)

    2002-01-01

    To meet the goals for a next generation Reusable Launch Vehicle (RLV), a unique propulsion feed system concept was identified using crossfeed between the booster and orbiter stages that could reduce the Two-Stage-to-Orbit (TSTO) vehicle weight and Design, Development, Test and Evaluation (DDT&E) costs by approximately 25%, while increasing safety and reliability. The Main Propulsion System (MPS) crossfeed water demonstration test program addresses all activities required to reduce the risks for the MPS crossfeed system from a Technology Readiness Level (TRL) of 2 to 4 by the completion of testing and analysis by June 2003. During the initial period, that ended in March 2002, a subscale water flow test article was defined. Procurement of a subscale crossfeed check valve was initiated and the specifications for the various components were developed. The fluid transient and pressurization analytical models were developed separately and successfully integrated. The test matrix for the water flow test was developed to correlate the integrated model. A computational fluid dynamics (CFD) model of the crossfeed check valve was developed to assess flow disturbances and internal flow dynamics. Based on the results, the passive crossfeed system concept was very feasible and offered a safe system to be used in an RLV architecture. A water flow test article was designed to accommodate a wide range of flows simulating a number of different types of propellant systems. During the follow-on period, the crossfeed system model will be further refined, the test article will be completed, the water flow test will be performed, and finally the crossfeed system model will be correlated with the test data. This validated computer model will be used to predict the full-scale vehicle crossfeed system performance.

  20. HEAVY DUTY DIESEL VEHICLE LOAD ESTIMATION: DEVELOPMENT OF VEHICLE ACTIVITY OPTIMIZATION ALGORITHM

    EPA Science Inventory

    The Heavy-Duty Vehicle Modal Emission Model (HDDV-MEM) developed by the Georgia Institute of Technology(Georgia Tech) has a capability to model link-specific second-by-second emissions using speed/accleration matrices. To estimate emissions, engine power demand calculated usin...

  1. Continued Development and Improvement of Pneumatic Heavy Vehicles

    SciTech Connect

    Robert J. Englar

    2005-07-15

    The objective of this applied research effort led by Georgia Tech Research Institute is the application of pneumatic aerodynamic technology previously developed and patented by us to the design of an appropriate Heavy Vehicle (HV) tractor-trailer configuration, and experimental confirmation of this pneumatic configuration's improved aerodynamic characteristics. In Phases I to IV of our previous DOE program (Reference 1), GTRI has developed, patented, wind-tunnel tested and road-tested blown aerodynamic devices for Pneumatic Heavy Vehicles (PHVs) and Pneumatic Sports Utility Vehicles (PSUVs). To further advance these pneumatic technologies towards HV and SUV applications, additional Phase V tasks were included in the first year of a continuing DOE program (Reference 2). Based on the results of the Phase IV full-scale test programs, these Phase V tasks extended the application of pneumatic aerodynamics to include: further economy and performance improvements; increased aerodynamic stability and control; and safety of operation of Pneumatic HVs. Continued development of a Pneumatic SUV was also conducted during the Phase V program. Phase V was completed in July, 2003; its positive results towards development and confirmation of this pneumatic technology are reported in References 3 and 4. The current Phase VI of this program was incrementally funded by DOE in order to continue this technology development towards a second fuel economy test on the Pneumatic Heavy Vehicle. The objectives of this current Phase VI research and development effort (Ref. 5) fall into two categories: (1) develop improved pneumatic aerodynamic technology and configurations on smaller-scale models of the advanced Pneumatic Heavy Vehicle (PHV); and based on these findings, (2) redesign, modify, and re-test the modified full-scale PHV test vehicle. This second objective includes conduct of an on-road preliminary road test of this configuration to prepare it for a second series of SAE Type-U fuel

  2. Advanced Launch Vehicle Upper Stages Using Liquid Propulsion and Metallized Propellants

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1990-01-01

    Metallized propellants are liquid propellants with a metal additive suspended in a gelled fuel or oxidizer. Typically, aluminum (Al) particles are the metal additive. These propellants provide increase in the density and/or the specific impulse of the propulsion system. Using metallized propellant for volume-and mass-constrained upper stages can deliver modest increases in performance for low earth orbit to geosynchronous earth orbit (LEO-GEO) and other earth orbital transfer missions. Metallized propellants, however, can enable very fast planetary missions with a single-stage upper stage system. Trade studies comparing metallized propellant stage performance with non-metallized upper stages and the Inertial Upper Stage (IUS) are presented. These upper stages are both one- and two-stage vehicles that provide the added energy to send payloads to altitudes and onto trajectories that are unattainable with only the launch vehicle. The stage designs are controlled by the volume and the mass constraints of the Space Transportation System (STS) and Space Transportation System-Cargo (STS-C) launch vehicles. The influences of the density and specific impulse increases enabled by metallized propellants are examined for a variety of different stage and propellant combinations.

  3. Advanced launch vehicle upper stages using liquid propulsion and metallized propellants

    NASA Technical Reports Server (NTRS)

    Palaszewski, B. A.

    1990-01-01

    Metallized propellants are liquid propellants with a metal additive suspended in a gelled fuel or oxidizer. Typically, aluminum particles are the metal additives. These propellants provide increase in the density and/or the specific impulse of the propulsion system. Using metallized propellants for volume- and mass-constrained upper stages can deliver modest increases in performance for Low Earth Orbit to Geosynchronous Earth Orbit and other Earth orbital transfer missions. Metallized propellants, however, can enable very fast planetary missions with a single-stage upper stage system. Trade studies comparing metallized propellant stage performance with non-metallized upper stages and the Inertial Upper Stage are presented. These upper stages are both one- and two-stage vehicles that provide the added energy to send payloads to altitudes and onto trajectories that are unattainable with only the launch vehicle. The stage designs are controlled by the volume and the mass constraints of the Space Transportation System and Space Transportation System-Cargo launch vehicles. The influences of the density and specific impulse increases enabled by metallized propellants are examined for a variety of different stage and propellant combinations.

  4. Prospects for utilization of air liquefaction and enrichment system (ALES) propulsion in fully reusable launch vehicles

    NASA Technical Reports Server (NTRS)

    Bond, W. H.; Yi, A. C.

    1993-01-01

    A concept is shown for a fully reusable, earth to orbit launch vehicle with horizontal takeoff and landing, employing an air-turborocket for low speed and a rocket for high speed acceleration, both using LH2 fuel. The turborocket employs a modified liquid air cycle to supply the oxidizer. The rocket uses 90 percent pure LOX that is collected from the atmosphere, separated, and stored during operation of the turborocket from about Mach 2 to Mach 5 or 6. The takeoff weight and the thrust required at takeoff are markedly reduced by collecting the rocket oxidizer in-flight. The paper shows an approach and the corresponding technology needs for using ALES propulsion in a SSTO vehicle. Reducing the trajectory altitude at the end of collection reduces the wing area and increases payload. The use of state-of-the-art materials, such as graphite polyimide, is critical to meet the structure weight objective for SSTO. Configurations that utilize 'waverider' aerodynamics show great promise to reduce the vehicle weight.

  5. System Design of Propulsion Systems for Moon or Planetary Descent Vehicles

    NASA Astrophysics Data System (ADS)

    Peukert, M.; Riehle, M.

    Future planetary exploration missions will require the landing of larger payloads more softly and precisely than recently performed. The paper considers several future missions, the landing requirements produce different thrust level needed for the landing vehicle but are similar in many other repects. To fulfil the mission needs of these planetary lander studies, preferably with a common chemical propulsion subsystem concept for all these studies to use as much commonalities as possible, a trade- off has been performed comparing the most promising concepts. These are the concept of a throttable turbo pump engine, of main and assist engines and the clustered/plug nozzle concept. There the propulsion concept of a clustered/plug nozzle is proposed. A discussion is given which shows the advantages of this concept. One of its major advantages is the scalability to different mission, spacecraft mass und thrust requirements. Once the clustered/plug nozzle concept is developed it can easily be adapted to different thrust needs. Therefore just the thruster forming the primary nozzle of the plug nozzle has to be exchanged; the conceptual layout of the propulsion subsystem remains unchanged. The wide variety of the Astrium in-house monopropellant and bi-propellant thruster portfolio supports this scalability. Additional benefits of this concept like stepwise thrust variation or the possibility to incorporate thrust vector steering make this concept even more attractive. The develop- ment risk and the costs of the proposed clustered/plug nozzle concept are expected to be significantly lower than that of a dedicated single main engine.

  6. Characterization of heavy-duty diesel vehicle emissions

    NASA Astrophysics Data System (ADS)

    Lowenthal, Douglas H.; Zielinska, Barbara; Chow, Judith C.; Watson, John G.; Gautam, Mridul; Ferguson, Donald H.; Neuroth, Gary R.; Stevens, Kathy D.

    Emissions of heavy duty diesel-powered vehicles were measured at the Phoenix Transit Yard in South Phoenix between 31 March 1992 and 25 April 1992 using the West Virginia University Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Mobile Lab). Thirteen heavy-duty trucks and buses were tested over this period. The vehicles were operated with diesel No. 2 and Jet A fuels, with and without a fuel additive, and with and without particulate control traps. The chassis dynamometer Mobile Lab tested vehicles over the Central Business District (CBD) driving cycle. Particulate matter in the diluted exhaust was sampled proportionally from a total-exhaust dilution tunnel. Emission rates and compositions of PM 2.5 particulate mass, elements, ions, bulk organic and elemental carbon, and gaseous and particulate polycyclic aromatic hydrocarbons were averaged for various classes of fuels and particulate matter control. Emission rates for PM 2.5 mass averaged 0.2 and 1 g mile -1 for trucks and buses with and without particulate traps, respectively. Emission rates for elemental carbon averaged 0.02 and 0.5 g mile -1 for trucks and buses with and without particulate traps, respectively. Diesel particulate exhaust was comprised mainly of organic and elemental carbon (80-90%) and sulfate (up to 14%). The new diesel source composition profiles are similar to one determined earlier in Phoenix. Polycyclic aromatic hydrocarbons comprised no more than a few percent of the particulate organic carbon but their relative abundances may be useful for distinguishing diesel emissions from those of other combustion sources.

  7. Advanced Aero-Propulsive Mid-Lift-to-Drag Ratio Entry Vehicle for Future Exploration Missions

    NASA Technical Reports Server (NTRS)

    Campbell, C. H.; Stosaric, R. R; Cerimele, C. J.; Wong, K. A.; Valle, G. D.; Garcia, J. A.; Melton, J. E.; Munk, M. M.; Blades, E.; Kuruvila, G.; Picetti, D. J.; Hassan, B.; Kniskern, M. W.

    2012-01-01

    vehicle stage return, thus making ideas reality. These paradigm shifts include the technology maturation of advanced flexible thermal protection materials onto mid lift-to-drag ratio entry vehicles, the development of integrated supersonic aero-propulsive maneuvering, and the implementation of advanced asymmetric launch shrouds. These paradigms have significant overlap with launch vehicle stage return already being developed by the Air Force and several commercial space efforts. Completing the realization of these combined paradigms holds the key to a high-performing entry vehicle system capability that fully leverages multiple technology benefits to accomplish NASA's Exploration missions to atmospheric planetary destinations.

  8. Fuel Cell Propulsion Systems for an All-electric Personal Air Vehicle

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.; Schmitz, Paul C.

    2003-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.

  9. Fuel Cell Propulsion Systems for an All-Electric Personal Air Vehicle

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.

    2003-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.

  10. Tests of an alternating current propulsion subsystem for electric vehicles on a road load simulator

    NASA Technical Reports Server (NTRS)

    Stenger, F. J.

    1982-01-01

    The test results of a breadboard version of an ac electric-vehicle propulsion subsystem are presented. The breadboard was installed in the NASA Lewis Research Center Road Load Simulator facility and tested under steady-state and transient conditions. Steady-state tests were run to characterize the system and component efficiencies over the complete speed-torque range within the capability of the propulsion subsystem in the motoring mode of operation. Transient tests were performed to determine the energy consumption of the breadboard over the acceleration and cruise portions of SAE J227 and driving schedules B, C, and D. Tests in the regenerative mode were limited to the low-gear-speed range of the two speed transaxle used in the subsystem. The maximum steady-state subsystem efficiency observed for the breadboard was 81.5 percent in the high-gear-speed range in the motoring mode, and 76 percent in the regenerative braking mode (low gear). The subsystem energy efficiency during the transient tests ranged from 49.2 percent for schedule B to 68.4 percent for Schedule D.

  11. Survey of Aerothermodynamics Facilities Useful for the Design of Hypersonic Vehicles Using Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Deiwert, George S.

    1997-01-01

    This paper surveys the use of aerothermodynamic facilities which have been useful in the study of external flows and propulsion aspects of hypersonic, air-breathing vehicles. While the paper is not a survey of all facilities, it covers the utility of shock tunnels and conventional hypersonic blow-down facilities which have been used for hypersonic air-breather studies. The problems confronting researchers in the field of aerothermodynamics are outlined. Results from the T5 GALCIT tunnel for the shock-on lip problem are outlined. Experiments on combustors and short expansion nozzles using the semi-free jet method have been conducted in large shock tunnels. An example which employed the NASA Ames 16-Inch shock tunnel is outlined, and the philosophy of the test technique is described. Conventional blow-down hypersonic wind tunnels are quite useful in hypersonic air-breathing studies. Results from an expansion ramp experiment, simulating the nozzle on a hypersonic air-breather from the NASA Ames 3.5 Foot Hypersonic wind tunnel are summarized. Similar work on expansion nozzles conducted in the NASA Langley hypersonic wind tunnel complex is cited. Free-jet air-frame propulsion integration and configuration stability experiments conducted at Langley in the hypersonic wind tunnel complex on a small generic model are also summarized.

  12. Factors affecting heavy-duty diesel vehicle emissions.

    PubMed

    Clark, Nigel N; Kern, Justin M; Atkinson, Christopher M; Nine, Ralph D

    2002-01-01

    Societal and governmental pressures to reduce diesel exhaust emissions are reflected in the existing and projected future heavy-duty certification standards of these emissions. Various factors affect the amount of emissions produced by a heterogeneous charge diesel engine in any given situation, but these are poorly quantified in the existing literature. The parameters that most heavily affect the emissions from compression ignition engine-powered vehicles include vehicle class and weight, driving cycle, vehicle vocation, fuel type, engine exhaust aftertreatment, vehicle age, and the terrain traveled. In addition, engine control effects (such as injection timing strategies) on measured emissions can be significant. Knowing the effect of each aspect of engine and vehicle operation on the emissions from diesel engines is useful in determining methods for reducing these emissions and in assessing the need for improvement in inventory models. The effects of each of these aspects have been quantified in this paper to provide an estimate of the impact each one has on the emissions of diesel engines.

  13. Preliminary Design of a Manned Nuclear Electric Propulsion Vehicle Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Irwin, Ryan W.; Tinker, Michael L.

    2005-02-01

    Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate designs must be identified for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combined analysis codes for NEP subsystems with a genetic algorithm. The use of penalty functions with scaling ratios was investigated to increase computational efficiency. Also, the selection of design variables for optimization was considered to reduce computation time without losing beneficial design search space. Finally, trend analysis of a reference mission to the asteroids yielded a group of candidate designs for further analysis.

  14. Preliminary Design of a Manned Nuclear Electric Propulsion Vehicle Using Genetic Algorithms

    SciTech Connect

    Irwin, Ryan W.; Tinker, Michael L.

    2005-02-06

    Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate designs must be identified for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combined analysis codes for NEP subsystems with a genetic algorithm. The use of penalty functions with scaling ratios was investigated to increase computational efficiency. Also, the selection of design variables for optimization was considered to reduce computation time without losing beneficial design search space. Finally, trend analysis of a reference mission to the asteroids yielded a group of candidate designs for further analysis.

  15. Propulsion system for a motor vehicle using a bidirectional energy converter

    DOEpatents

    Tamor, Michael Alan; Gale, Allan Roy

    1999-01-01

    A motor vehicle propulsion system includes an electrical energy source and a traction motor coupled to receive electrical energy from the electrical energy source. The system also has a first bus provided electrical energy by the electrical energy source and a second bus of relatively lower voltage than the first bus. In addition, the system includes an electrically-driven source of reaction gas for the electrical energy source, the source of reaction gas coupled to receive electrical energy from the first bus. Also, the system has an electrical storage device coupled to the second bus for storing electrical energy at the lower voltage. The system also includes a bidirectional energy converter coupled to convert electrical energy from the first bus to the second bus and from the second bus to the first bus.

  16. Preliminary Design of a Manned Nuclear Electric Propulsion Vehicle Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Irwin, Ryan W.; Tinker, Michael L.

    2005-01-01

    Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate designs must be identified for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combined analysis codes for NEP subsystems with a genetic algorithm. The use of penalty functions with scaling ratios was investigated to increase computational efficiency. Also, the selection of design variables for optimization was considered to reduce computation time without losing beneficial design search space. Finally, trend analysis of a reference mission to the asteroids yielded a group of candidate designs for further analysis.

  17. Feasibility of Large High-Powered Solar Electric Propulsion Vehicles: Issues and Solutions

    NASA Technical Reports Server (NTRS)

    Capadona, Lynn A.; Woytach, Jeffrey M.; Kerslake, Thomas W.; Manzella, David H.; Christie, Robert J.; Hickman, Tyler A.; Schneidegger, Robert J.; Hoffman, David J.; Klem, Mark D.

    2012-01-01

    Human exploration beyond low Earth orbit will require the use of enabling technologies that are efficient, affordable, and reliable. Solar electric propulsion (SEP) has been proposed by NASA s Human Exploration Framework Team as an option to achieve human exploration missions to near Earth objects (NEOs) because of its favorable mass efficiency as compared to traditional chemical systems. This paper describes the unique challenges and technology hurdles associated with developing a large high-power SEP vehicle. A subsystem level breakdown of factors contributing to the feasibility of SEP as a platform for future exploration missions to NEOs is presented including overall mission feasibility, trip time variables, propellant management issues, solar array power generation, array structure issues, and other areas that warrant investment in additional technology or engineering development.

  18. Solar-electric-propulsion cargo vehicles for split/sprint Mars mission

    NASA Technical Reports Server (NTRS)

    Callaghan, Christopher E.; Crowe, Michael D.; Swis, Matthew J.; Mickney, Marcus R.; Montgomery, C. Keith; Walters, Robert; Thoden, Scott

    1991-01-01

    In support of the proposed exploration of Mars, an unmanned cargo ferry SEMM1 (Solar Electric Mars Mission) was designed. The vehicle is based on solar electric propulsion, and required to transport a cargo of 61,000 kg. The trajectory is a combination of spirals; first, out from LEO, then around the sun, then spiral down to low Mars orbit. The spacecraft produces 3.03 MWe power using photovoltaic flexible blanket arrays. Ion thrusters using argon as a propellant were selected to drive the ship, providing about 60 Newtons of thrust in low Earth orbit. The configuration is based on two long truss beams to which the 24 individual, self-deployable, solar arrays are attached. The main body module supports the two beams and houses the computers, electrical, and control equipment. The thruster module is attached to the rear of the main body, and the cargo to the front.

  19. Advanced transportation system studies technical area 2(TA-2): Heavy lift launch vehicle development. volume 1; Executive summary

    NASA Technical Reports Server (NTRS)

    McCurry, J.

    1995-01-01

    The purpose of the TA-2 contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. This document is part of the final report for the TA-2 contract. The final report consists of three volumes: Volume 1 is the Executive Summary, Volume 2 is Technical Results, and Volume 3 is Program Cost Estimates. The document-at-hand, Volume 1, provides a summary description of the technical activities that were performed over the entire contract duration, covering three distinct launch vehicle definition activities: heavy-lift (300,000 pounds injected mass to low Earth orbit) launch vehicles for the First Lunar Outpost (FLO), medium-lift (50,000-80,000 pounds injected mass to low Earth orbit) launch vehicles, and single-stage-to-orbit (SSTO) launch vehicles (25,000 pounds injected mass to a Space Station orbit).

  20. 49 CFR 393.130 - What are the rules for securing heavy vehicles, equipment and machinery?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... heavy vehicles, equipment and machinery? (a) Applicability. The rules in this section apply to the transportation of heavy vehicles, equipment and machinery which operate on wheels or tracks, such as front end... more. Vehicles, equipment and machinery which is lighter than 4,536 kg (10,000 lb.) may also be...

  1. Hybrid and Electric Advanced Vehicle Systems Simulation

    NASA Technical Reports Server (NTRS)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  2. DOE/BNL Liquid Natural Gas Heavy Vehicle Program

    SciTech Connect

    James E. Wegrzyn; Wai-Lin Litzke; Michael Gurevich

    1998-08-11

    As a means of lowering greenhouse gas emissions, increasing economic growth, and reducing the dependency on imported oil, the Department of Energy and Brookhaven National Laboratory (DOE/ BNL) is promoting the substitution of liquefied natural gas (LNG) in heavy-vehicles that are currently being fueled by diesel. Heavy vehicles are defined as Class 7 and 8 trucks (> 118,000 pounds GVVV), and transit buses that have a fuel usage greater than 10,000 gallons per year and driving range of more than 300 miles. The key in making LNG market-competitive with all types of diesel fuels is in improving energy efficiency and reducing costs of LNG technologies through systems integration. This paper integrates together the three LNG technologies of: (1) production from landfills and remote well sites; (2) cryogenic fuel delivery systems; and (3) state-of-the-art storage tank and refueling facilities, with market end-use strategies. The program's goal is to develop these technologies and strategies under a ''green'' and ''clean'' strategy. This ''green'' approach reduces the net contribution of global warming gases by reducing levels of methane and carbon dioxide released by heavy vehicles usage to below recoverable amounts of natural gas from landfills and other natural resources. Clean technology refers to efficient use of energy with low environmental emissions. The objective of the program is to promote fuel competition by having LNG priced between $0.40 - $0.50 per gallon with a combined production, fuel delivery and engine systems efficiency approaching 45%. This can make LNG a viable alternative to diesel.

  3. Engine-Out Capabilities Assessment of Heavy Lift Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Holladay, Jon; Baggett, Keithe; Thrasher, Chad; Bellamy, K. Scott; Feldman, Stuart

    2012-01-01

    Engine-out (EO) is a condition that might occur during flight due to the failure of one or more engines. Protection against this occurrence can be called engine-out capability (EOC) whereupon significantly improved loss of mission may occur, in addition to reduction in performance and increased cost. A standardized engine-out capability has not been studied exhaustively as it pertains to space launch systems. This work presents results for a specific vehicle design with specific engines, but also uniquely provides an approach to realizing the necessity of EOC for any launch vehicle system design. A derived top-level approach to engine-out philosophy for a heavy lift launch vehicle is given herein, based on an historical assessment of launch vehicle capabilities. The methodology itself is not intended to present a best path forward, but instead provides three parameters for assessment of a particular vehicle. Of the several parameters affected by this EOC, the three parameters of interest in this research are reliability (Loss of Mission (LOM) and Loss of Crew (LOC)), vehicle performance, and cost. The intent of this effort is to provide insight into the impacts of EO capability on these parameters. The effects of EOC on reliability, performance and cost are detailed, including how these important launch vehicle metrics can be combined to assess what could be considered overall launch vehicle affordability. In support of achieving the first critical milestone (Mission Concept Review) in the development of the Space Launch System (SLS), a team assessed two-stage, large-diameter vehicles that utilized liquid oxygen (LOX)-RP propellants in the First Stage and LOX/LH2 propellant in the Upper Stage. With multiple large thrust-class engines employed on the stages, engine-out capability could be a significant driver to mission success. It was determined that LOM results improve by a factor of five when assuming EOC for both Core Stage (CS) (first stage) and Upper Stage (US

  4. OTV Propulsion Issues

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The statistical technology needs of aero-assist maneuvering, propulsion, and usage of cryogenic fluids were presented. Industry panels discussed the servicing of reusable space based vehicles and propulsion-vehicle interation.

  5. Heavy vehicle automation: transitioning from civilian to military applications

    NASA Astrophysics Data System (ADS)

    Misener, James A.; Shladover, Steven E.; Empey, Dan; Tan, Han-Shue

    2001-09-01

    We describe potential military robotics applications for the heavy vehicle automation and driver assistance research that has been conducted on at the California Partners for Advanced Transit and Highways (PATH). Specifically, we summarize the state of vehicle automation research at PATH by beginning with a short description of automated platoon operations with eight light duty passenger vehicles. Then we focus on automation of a Class 8 Freightliner Model FLD 125 tractor with 45-ft trailer, and lateral driver assist installed in a 10-wheel International snowplow. We also discuss full automation plans for a Kodiak 4000-ton/hour rotary snowblower, two 40-ft New Flyer buses, one 60-ft New Flyer articulated bus, and three Freightliner Century tractor-trailer combinations. We discuss benefits for civilian applications - congestion relief, driver safety, and fuel economy/emissions reductions. We then follow with a discussion of the benefits from potential military spin-ons which include, as dual-use applications, driver safety and fuel economy/emissions. We end by discussing the additional military benefit in the conduct of tactical resupply operations, where vehicles of similar weight class and performance as those experimented by PATH can be used in automated convoys with savings in manpower and survivability in addition to improved mission operations.

  6. High Temperature Propulsion System Structural Seals for Future Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.

    2004-01-01

    High temperature, dynamic structural seals are required in advanced hypersonic engines to seal the perimeters of movable engine ramps for efficient, safe operation in high heat flux environments at temperatures from 2000 to 2500 F. NASA GRC became involved in the development of high temperature structural seals in the late 1980 s and early 1990 s during the National Aerospace Plane (NASP) program. Researchers at GRC carried out an in-house program to develop seals for the NASP hypersonic engine and oversaw industry efforts for airframe and propulsion system seal development for this vehicle. The figure shows one of the seal locations in the NASP engine. Seals were needed along the edges of movable panels in the engine to seal gaps between the panels and adjacent engine sidewalls. Seals developed during the NASP program met many requirements but fell short of leakage, durability, and resiliency goals. Due to program termination the seals could not be adequately matured. To overcome these shortfalls, GRC is currently developing advanced seals and seal preloading devices for the hypersonic engines of future space vehicles as part of NASA s Next Generation Launch Technology (NGLT) program.

  7. Rediscovering the potential of solid rocket propulsion systems for low cost launch vehicle and upper stage applications

    NASA Astrophysics Data System (ADS)

    Chew, James S. B.

    1992-08-01

    Solid propulsion component technologies for future space systems must not only meet current upper stage and launch vehicle performance requirements, but must have significantly lower system life cycle costs. Innovative system concepts and component technologies must be developed to meet these goals. An in-house Phillips Laboratory, Propulsion Directorate program is working toward this goal. This in-house program is investigating and developing innovative technologies for all the major components in a solid rocket motor. In addition, work is being conducted to better understand the design, development and fabrication processes for conventional solid rocket motor components. Life cycle cost reduction technologies for these components are also being investigated.

  8. 40 CFR 86.1816-08 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1816-08 Emission...

  9. 40 CFR 86.1816-08 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1816-08 Emission...

  10. Concept for a shuttle-tended reusable interplanetary transport vehicle using nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Nakagawa, R. Y.; Elliot, J. C.; Spilker, T. R.; Grayson, C. M.

    2003-01-01

    NASA has placed new emphasis on the development of advanced propulsion technologies including Nuclear Electric Propulsion (NEP). This technology would provide multiple benefits including high delta-V capability and high power for long duration spacecraft operations.

  11. Potential benefits of propulsion and flight control integration for supersonic cruise vehicles

    NASA Technical Reports Server (NTRS)

    Berry, D. T.; Schweikhard, W. G.

    1976-01-01

    Typical airframe/propulsion interactions such as Mach/altitude excursions and inlet unstarts are reviewed. The improvements in airplane performance and flight control that can be achieved by improving the interfaces between propulsion and flight control are estimated. A research program to determine the feasibility of integrating propulsion and flight control is described. This program includes analytical studies and YF-12 flight tests.

  12. Evaluating speed differences between passenger vehicles and heavy trucks for transportation-related emissions modeling.

    PubMed

    Hallmark, Shauna L; Isebrands, Hillary

    2005-10-01

    Heavy-duty trucks make up only 3% of the on-road vehicle fleet, yet they account for > 7% of vehicle miles traveled in the United States. They also contribute a significant proportion of regulated ambient emissions. Heavy vehicles emit emissions at different rates than passenger vehicles. They may also behave differently on-road, yet may be treated similarly to passenger vehicles in emissions modeling. Input variables to the MOBILE software, such as average vehicle speed, are typically specified the same for heavy trucks as for passenger vehicles. Although not frequently considered in modeling emissions, speed differences between passenger vehicles and heavy trucks may influence emissions, because emission rates are correlated to average speed. Differences were evaluated by collecting average and spot speeds for heavy trucks and passenger vehicles on arterials and spot speeds on freeways in Des Moines, IA, and Minneapolis/St. Paul, MN. Speeds were compared by study site. Space mean speeds for heavy trucks were lower than passenger vehicle speeds for all of the arterials with differences ranging from 0.8 to 19 mph. Spot speeds for heavy trucks were also lower at all of the arterial and freeway locations with differences ranging from 0.8 to 6.1 mph. The impact that differences in on-road speeds had on emissions was also evaluated using MOBILE version 6.2. Misspecification of average truck speed is the most significant at lower and higher speed ranges.

  13. A synergistic glance at the prospects of distributed propulsion technology and the electric aircraft concept for future unmanned air vehicles and commercial/military aviation

    NASA Astrophysics Data System (ADS)

    Gohardani, Amir S.

    2013-02-01

    Distributed propulsion is one of the revolutionary candidates for future aircraft propulsion. In this journal article, the potential role of distributed propulsion technology in future aviation is investigated. Following a historical journey that revisits distributed propulsion technology in unmanned air vehicles and military aircraft, features of this specific technology are highlighted in synergy with an electric aircraft concept and a first-of-a-kind comparison to commercial aircraft employing distributed propulsion arrangements. In light of propulsion-airframe integration and complementary technologies such as boundary layer ingestion, thrust vectoring and circulation control, transpired opportunities and challenges are addressed in addition to a number of identified research directions proposed for future aircraft. The motivation behind enhanced means of communication between engineers, researchers and scientists has stimulated a novel proposed definition for the distributed propulsion technology in aviation and is presented herein.

  14. Multiyear Program Plan: Reducing Friction and Wear in Heavy Vehicles

    SciTech Connect

    R.R. Fessler; G.R. Fenske

    1999-12-13

    As described in its multiyear program plan for 1998-2000, the Office of Heavy Vehicle Technologies (OHVT) envisions the development of a fuel-flexible, energy-efficient, near-zero-emissions, heavy-duty U.S. diesel engine technology devolving into all truck classes as a real and viable strategy for reducing energy requirements for commercial transport services and the rapidly growing multipurpose vehicle market (pickups, vans, and sport utility vehicles). Implementation of the OHVT program plan will have significant national benefits in energy savings, cleaner air, more jobs, and increased gross domestic product (GDP). Successful implementation will reduce the petroleum consumption of Class 1-8 trucks by 1.4 million barrels of oil per day by 2020 and over 1.8 million by 2030, amounting to a reduction in highway petroleum consumption of 13.2% and 18.6%, respectively. All types of regulated emissions will be reduced, that is, 20% drop in PM10 emissions (41,000 metric tons per year) by 203 0, 17% reduction in CO2 greenhouse gases (205 million metric tons per year), 7% reduction in NOx, 20% reduction in NMHC, and 30% reduction in CO. An increase of 15,000 jobs by 2020 is expected, as is an increase of $24 billion in GDP. The strategy of OHVT is to focus primarily on the diesel engine since it has numerous advantages. It has the highest efficiency of any engine today, 45% versus 30% for production gasoline engines; and it can be made more efficient at least to 55% and possibly up to 63%. It is the engine of choice for heavy vehicles (trucks), because it offers power, efficiency, durability, and reliability and is used extensively in rail, marine, and off-road applications. Its emission can be ultra-low to near zero, and the production infrastructure is already in place. The primary goals of OHVT are as follows: (1) Develop by 2002 the diesel-engine enabling technologies to support large-scale industry dieselization of light trucks, achieving a 35% fuel efficiency

  15. Heating rates in a High-Energy Propulsion System (HEPS) Orbital Transfer Vehicle (OTV). Final report, June-August 1989

    SciTech Connect

    Miller, R.L.

    1989-10-01

    Rocket-propulsion systems that use nuclear-energy sources present unique challenges to the design, safety, and reliability of the concept. Since the vehicle and its components must operate in high radiation fields, nuclear heating and radiation effects must be determined and factored into the system design. This report analyzes the nuclear heating in a High-Energy Propulsion System (HEPS) Orbital Transfer Vehicle (OTV) nozzle. Using the FEMP2D (Finite Element, Multigroup, Pn, 2-Dimensional) code for an aluminum and carbon-carbon nozzle, it was determined that the heating contribution was found to be the significant source of heating for both materials. The overall heating rate in the aluminum nozzle (approx. 12 W/cc) was significantly higher than that found in the carbon-carbon nozzle (approx. 8 W/cc).

  16. An Integrated Approach to Modeling Solar Electric Propulsion Vehicles During Long Duration, Near-Earth Orbit Transfers

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Hojnicki, Jeffrey S.; Sjauw, Waldy K.

    2014-01-01

    Recent NASA interest in utilizing solar electronic propulsion (SEP) technology to transfer payloads, e.g. from low-Earth orbit (LEO) to higher energy geostationary-Earth orbit (GEO) or to Earth escape, has necessitated the development of high fidelity SEP vehicle models and simulations. These models and simulations need to be capable of capturing vehicle dynamics and sub-system interactions experienced during the transfer trajectories which are typically accomplished with continuous-burn (potentially interrupted by solar eclipse), long duration "spiral out" maneuvers taking several months or more to complete. This paper presents details of an integrated simulation approach achieved by combining a high fidelity vehicle simulation code with a detailed solar array model. The combined simulation tool gives researchers the functionality to study the integrated effects of various vehicle sub-systems (e.g. vehicle guidance, navigation and control (GN&C), electric propulsion system (EP)) with time varying power production. Results from a simulation model of a vehicle with a 50 kW class SEP system using the integrated tool are presented and compared to the results from another simulation model employing a 50 kW end-of-life (EOL) fixed power level assumption. These models simulate a vehicle under three degree of freedom dynamics (i.e. translational dynamics only) and include the effects of a targeting guidance algorithm (providing a "near optimal" transfer) during a LEO to near Earth escape (C (sub 3) = -2.0 km (sup 2) / sec (sup -2) spiral trajectory. The presented results include the impact of the fully integrated, time-varying solar array model (e.g. cumulative array degradation from traversing the Van Allen belts, impact of solar eclipses on the vehicle and the related temperature responses in the solar arrays due to operating in the Earth's thermal environment, high fidelity array power module, etc.); these are used to assess the impact on vehicle performance (i

  17. Intelligent neuroprocessors for in-situ launch vehicle propulsion systems health management

    NASA Technical Reports Server (NTRS)

    Gulati, S.; Tawel, R.; Thakoor, A. P.

    1993-01-01

    Efficacy of existing on-board propulsion systems health management systems (HMS) are severely impacted by computational limitations (e.g., low sampling rates); paradigmatic limitations (e.g., low-fidelity logic/parameter redlining only, false alarms due to noisy/corrupted sensor signatures, preprogrammed diagnostics only); and telemetry bandwidth limitations on space/ground interactions. Ultra-compact/light, adaptive neural networks with massively parallel, asynchronous, fast reconfigurable and fault-tolerant information processing properties have already demonstrated significant potential for inflight diagnostic analyses and resource allocation with reduced ground dependence. In particular, they can automatically exploit correlation effects across multiple sensor streams (plume analyzer, flow meters, vibration detectors, etc.) so as to detect anomaly signatures that cannot be determined from the exploitation of single sensor. Furthermore, neural networks have already demonstrated the potential for impacting real-time fault recovery in vehicle subsystems by adaptively regulating combustion mixture/power subsystems and optimizing resource utilization under degraded conditions. A class of high-performance neuroprocessors, developed at JPL, that have demonstrated potential for next-generation HMS for a family of space transportation vehicles envisioned for the next few decades, including HLLV, NLS, and space shuttle is presented. Of fundamental interest are intelligent neuroprocessors for real-time plume analysis, optimizing combustion mixture-ratio, and feedback to hydraulic, pneumatic control systems. This class includes concurrently asynchronous reprogrammable, nonvolatile, analog neural processors with high speed, high bandwidth electronic/optical I/O interfaced, with special emphasis on NASA's unique requirements in terms of performance, reliability, ultra-high density ultra-compactness, ultra-light weight devices, radiation hardened devices, power stringency

  18. Application of CART3D to Complex Propulsion-Airframe Integration with Vehicle Sketch Pad

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew S.

    2012-01-01

    Vehicle Sketch Pad (VSP) is an easy-to-use modeler used to generate aircraft geometries for use in conceptual design and analysis. It has been used in the past to generate metageometries for aerodynamic analyses ranging from handbook methods to Navier-Stokes computational fluid dynamics (CFD). As desirable as it is to bring high order analyses, such as CFD, into the conceptual design process, this has been difficult and time consuming in practice due to the manual nature of both surface and volume grid generation. Over the last couple of years, VSP has had a major upgrade of its surface triangulation and export capability. This has enhanced its ability to work with Cart3D, an inviscid, three dimensional fluid flow toolset. The combination of VSP and Cart3D allows performing inviscid CFD on complex geometries with relatively high productivity. This paper will illustrate the use of VSP with Cart3D through an example case of a complex propulsion-airframe integration (PAI) of an over-wing nacelle (OWN) airliner configuration.

  19. Improved transistor-controlled and commutated brushless DC motors for electric vehicle propulsion

    NASA Technical Reports Server (NTRS)

    Demerdash, N. A.; Miller, R. H.; Nehl, T. W.; Nyamusa, T. A.

    1983-01-01

    The development, design, construction, and testing processes of two electronically (transistor) controlled and commutated permanent magnet brushless dc machine systems, for propulsion of electric vehicles are detailed. One machine system was designed and constructed using samarium cobalt for permanent magnets, which supply the rotor (field) excitation. Meanwhile, the other machine system was designed and constructed with strontium ferrite permanent magnets as the source of rotor (field) excitation. These machine systems were designed for continuous rated power output of 15 hp (11.2 kw), and a peak one minute rated power output of 35 hp (26.1 kw). Both power ratings are for a rated voltage of 115 volts dc, assuming a voltage drop in the source (battery) of about 5 volts. That is, an internal source voltage of 120 volts dc. Machine-power conditioner system computer-aided simulations were used extensively in the design process. These simulations relied heavily on the magnetic field analysis in these machines using the method of finite elements, as well as methods of modeling of the machine power conditioner system dynamic interaction. These simulation processes are detailed. Testing revealed that typical machine system efficiencies at 15 hp (11.2 kw) were about 88% and 84% for the samarium cobalt and strontium ferrite based machine systems, respectively. Both systems met the peak one minute rating of 35 hp.

  20. Advanced electric propulsion system concept for electric vehicles. Addendum 1: Voltage considerations

    NASA Technical Reports Server (NTRS)

    Raynard, A. E.; Forbes, F. E.

    1980-01-01

    The two electric vehicle propulsion systems that best met cost and performance goals were examined to assess the effect of battery pack voltage on system performance and cost. A voltage range of 54 to 540 V was considered for a typical battery pack capacity of 24 k W-hr. The highest battery specific energy (W-hr/kg) and the lowest cost ($/kW-hr) were obtained at the minimum voltage level. The flywheel system traction motor is a dc, mechanically commutated with shunt field control, and due to the flywheel the traction motor and the battery are not subject to extreme peaks of power demand. The basic system uses a permanent-magnet motor with electronic commutation supplied by an ac power control unit. In both systems battery cost were the major factor in system voltage selection, and a battery pack with the minimum voltage of 54 V produced the lowest life-cycle cost. The minimum life-cycle cost for the basic system with lead-acid batteries was $0.057/km and for the flywheel system was $0.037/km.

  1. On parallel hybrid-electric propulsion system for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Hung, J. Y.; Gonzalez, L. F.

    2012-05-01

    This paper presents a review of existing and current developments and the analysis of Hybrid-Electric Propulsion Systems (HEPS) for small fixed-wing Unmanned Aerial Vehicles (UAVs). Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. One technology with potential in this area is with the use of HEPS. In this paper, information on the state-of-art technology in this field of research is provided. A description and simulation of a parallel HEPS for a small fixed-wing UAV by incorporating an Ideal Operating Line (IOL) control strategy is described. Simulation models of the components in a HEPS were designed in the MATLAB Simulink environment. An IOL analysis of an UAV piston engine was used to determine the most efficient points of operation for this engine. The results show that an UAV equipped with this HEPS configuration is capable of achieving a fuel saving of 6.5%, compared to the engine-only configuration.

  2. Battery Systems for X-38 Crew Return Vehicle (CRV) and Deorbit Propulsion Stage (DPS)

    NASA Technical Reports Server (NTRS)

    Darcy, Eric

    1998-01-01

    A 28V 32 Ah cell Li/MnO2 and a 28V NiMH battery systems for the Deorbit Propulsion Stage (DPS) and the X-38 Crew Return Vehicle (CRV) are developed in Friwo-Silforkraft, Germany with the following objectives and approach: Provide safe battery designs for lowest volume and cost, and within schedule; Take advantage of less complex requests for V201 vs OPS CRV to simplify design and reduce cost; Use only existing commercial cell designs as building blocks for larger battery; Derive battery designs from the ASTRO-SPAS design which is the largest lithium battery design with Shuttle flight experience; Place maximum amount of battery energy on DPS; DPS battery is non rechargeable; and CRV batteries are rechargeable. This paper contains the following sections: a brief introduction on CRV requirements, CRV advantages over Soyuz, and X-38 programs; Battery objectives and approach; Battery requirements and groundrules (performance, on-orbit operation, etc); Design trades, solutions, redundancy plan, and margins; Envelope, size, and mass; Interfaces (structural, electrical & thermal); and Deviation from OPS CRV.

  3. 40 CFR Appendix Xii to Part 86 - Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty Trucks XII Appendix XII to...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Pt. 86, App. XII Appendix XII to Part 86—Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty...

  4. Environmental statement for National Aeronautics and Space Administration, Office of Space Science, launch vehicle and propulsion programs

    NASA Technical Reports Server (NTRS)

    1972-01-01

    NASA OSS Launch Vehicle and Propulsion Programs are responsible for the launch of approximately 20 automated science and applications spacecraft per year. These launches are for NASA programs and those of other U. S. government agencies, private organizations, such as the Comsat Corporation, foreign countries, and international organizations. Launches occur from Cape Kennedy, Florida; Vandenberg Air Force Base, California; Wallops Island, Virginia; and the San Marco Platform in the Indian Ocean off Kenya. Spacecraft launched by this program contribute in a variety of ways to the control of and betterment of the environment. Environmental effects caused by the launch vehicles are limited in extent, duration, and intensity and are considered insignificant.

  5. 49 CFR 393.130 - What are the rules for securing heavy vehicles, equipment and machinery?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... transportation of heavy vehicles, equipment and machinery which operate on wheels or tracks, such as front end loaders, bulldozers, tractors, and power shovels and which individually weigh 4,536 kg (10,000 lb.) or... heavy vehicles, equipment or machinery with crawler tracks or wheels. (1) In addition to...

  6. 49 CFR 393.130 - What are the rules for securing heavy vehicles, equipment and machinery?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... transportation of heavy vehicles, equipment and machinery which operate on wheels or tracks, such as front end loaders, bulldozers, tractors, and power shovels and which individually weigh 4,536 kg (10,000 lb.) or... heavy vehicles, equipment or machinery with crawler tracks or wheels. (1) In addition to...

  7. 49 CFR 393.130 - What are the rules for securing heavy vehicles, equipment and machinery?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... transportation of heavy vehicles, equipment and machinery which operate on wheels or tracks, such as front end loaders, bulldozers, tractors, and power shovels and which individually weigh 4,536 kg (10,000 lb.) or... heavy vehicles, equipment or machinery with crawler tracks or wheels. (1) In addition to...

  8. 49 CFR 393.130 - What are the rules for securing heavy vehicles, equipment and machinery?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... transportation of heavy vehicles, equipment and machinery which operate on wheels or tracks, such as front end loaders, bulldozers, tractors, and power shovels and which individually weigh 4,536 kg (10,000 lb.) or... heavy vehicles, equipment or machinery with crawler tracks or wheels. (1) In addition to...

  9. Characterization of the near-term electric vehicle (ETV-1) breadboard propulsion system over the SAE J227a driving schedule D

    NASA Technical Reports Server (NTRS)

    Sargent, N. B.; Dustin, M. O.

    1981-01-01

    The electric test vehicle one (ETV-1) was built from the ground up with present state of the art technology. Two vehicles were built and are presently being evaluated by NASA's Jet Propulsion Laboratory (JPL). A duplicate set of propulsion system components was built, mounted on a breadboard, and delivered to NASA's Lewis Research Center for testing on the road load simulator (RLS). Driving cycle tests completed on the system are described.

  10. The Jet Propulsion Laboratory Electric and Hybrid Vehicle System Research and Development Project, 1977-1984: A Review

    NASA Technical Reports Server (NTRS)

    Kurtz, D.; Roan, V.

    1985-01-01

    The JPL Electric and Hybrid Vehicle System Research and Development Project was established in the spring of 1977. Originally administered by the Energy Research and Development Administration (ERDA) and later by the Electric and Hybrid Vehicle Division of the U.S. Department of Energy (DOE), the overall Program objective was to decrease this nation's dependence on foreign petroleum sources by developing the technologies and incentives necessary to bring electric and hybrid vehicles successfully into the marketplace. The ERDA/DOE Program structure was divided into two major elements: (1) technology research and system development and (2) field demonstration and market development. The Jet Propulsion Laboratory (JPL) has been one of several field centers supporting the former Program element. In that capacity, the specific historical areas of responsibility have been: (1) Vehicle system developments (2) System integration and test (3) Supporting subsystem development (4) System assessments (5) Simulation tool development.

  11. Indirect economic impacts of low-emission vehicle standards for heavy-duty vehicles. Final report

    SciTech Connect

    Kornfield, T.; Skolnik, J.; Fischer, M.; McGuire, C.; Bowers, J.

    1995-10-01

    The object of the study was to identify and analyze the indirect economic impacts that could result if the California Air Resources Board (ARB) adopts reduced-emission vehicle standards for California-based heavy-duty vehicles (HDVs). The study only addressed issues that could arise if the ARB adopts California-only emission standards that are more stringent than national emission standards. The report also investigated potential economic incentive measures that could be used to prevent negative effects resulting from the implementation of more stringent California-only emission standards. The contractor investigated legal issues associated with the implementation of alternative economic incentive measures, conducted a focus group, case studies, and a survey, and prepared the final report.

  12. Neural network control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Harmon, Frederick G.

    2005-11-01

    Parallel hybrid-electric propulsion systems would be beneficial for small unmanned aerial vehicles (UAVs) used for military, homeland security, and disaster-monitoring missions. The benefits, due to the hybrid and electric-only modes, include increased time-on-station and greater range as compared to electric-powered UAVs and stealth modes not available with gasoline-powered UAVs. This dissertation contributes to the research fields of small unmanned aerial vehicles, hybrid-electric propulsion system control, and intelligent control. A conceptual design of a small UAV with a parallel hybrid-electric propulsion system is provided. The UAV is intended for intelligence, surveillance, and reconnaissance (ISR) missions. A conceptual design reveals the trade-offs that must be considered to take advantage of the hybrid-electric propulsion system. The resulting hybrid-electric propulsion system is a two-point design that includes an engine primarily sized for cruise speed and an electric motor and battery pack that are primarily sized for a slower endurance speed. The electric motor provides additional power for take-off, climbing, and acceleration and also serves as a generator during charge-sustaining operation or regeneration. The intelligent control of the hybrid-electric propulsion system is based on an instantaneous optimization algorithm that generates a hyper-plane from the nonlinear efficiency maps for the internal combustion engine, electric motor, and lithium-ion battery pack. The hyper-plane incorporates charge-depletion and charge-sustaining strategies. The optimization algorithm is flexible and allows the operator/user to assign relative importance between the use of gasoline, electricity, and recharging depending on the intended mission. A MATLAB/Simulink model was developed to test the control algorithms. The Cerebellar Model Arithmetic Computer (CMAC) associative memory neural network is applied to the control of the UAVs parallel hybrid

  13. Space Technology: Propulsion, Control and Guidance of Space Vehicles. Aerospace Education III.

    ERIC Educational Resources Information Center

    Savler, D. S.; Mackin, T. E.

    This book, one in the series on Aerospace Education III, includes a discussion of the essentials of propulsion, control, and guidance and the conditions of space travel. Chapter 1 provides a brief account of basic laws of celestial mechanics. Chapters 2, 3, and 4 are devoted to the chemical principles of propulsion. Included are the basics of…

  14. A beam-powered electric orbital transfer vehicle: The advantages of nuclear electric propulsion without the concerns of nuclear power

    SciTech Connect

    Coomes, E.P.; Dagle, J.E.

    1989-06-01

    The advantages of using electric propulsion systems are well-known in the aerospace community with the most common being its high specific impulse, lower propellant requirements, and lower system mass when compared to conventional chemical propulsion systems. But these advantages may not be enough to overcome the disadvantage of the added mass of the nuclear electric power source. In the past, the lack of suitable electric power systems has been a major drawback to electric propulsion. Current programs will have nuclear electric power systems available by the turn of the century. Coupling this with the resurgence of interest in free space electromagnetic transmission of energy (power beaming) and the advances in energy beam technology, a whole new approach to the use of electric propulsion for an orbital transport vehicle (OTV) is possible. Power beaming allows the on-board nuclear electric power source, the most massive component of the OTV, to be removed from the spacecraft and replaced with a lightweight energy receptor. An OTV based on power beaming could have a pay load fraction in excess of 80% and provide delivery times to geosynchronous earth orbit (GEO) as low as 120 days and require only 200 kWe. 21 refs., 10 figs., 2 tabs.

  15. Advanced transportation system studies technical area 2 (TA-2): Heavy lift launch vehicle development. volume 3; Program Cost estimates

    NASA Technical Reports Server (NTRS)

    McCurry, J. B.

    1995-01-01

    The purpose of the TA-2 contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. The basic period of performance of the TA-2 contract was from May 1992 through May 1993. No-cost extensions were exercised on the contract from June 1993 through July 1995. This document is part of the final report for the TA-2 contract. The final report consists of three volumes: Volume 1 is the Executive Summary, Volume 2 is Technical Results, and Volume 3 is Program Cost Estimates. The document-at-hand, Volume 3, provides a work breakdown structure dictionary, user's guide for the parametric life cycle cost estimation tool, and final report developed by ECON, Inc., under subcontract to Lockheed Martin on TA-2 for the analysis of heavy lift launch vehicle concepts.

  16. The flight readiness and the future of the Boeing Delta IV Heavy expendable launch vehicle

    NASA Astrophysics Data System (ADS)

    Berglund, Michael D.; Marin, Dan; Wilkins, Mark

    2005-07-01

    In early December 2003, the first Delta IV Heavy launch vehicle was successfully rolled out of the Horizontal Integration Facility (HIF) and erected on Space Launch Complex (SLC) 37 at Cape Canaveral Air Force Station, Florida. The vehicle remains on the launch pad, undergoing a series of launch readiness tests in preparation for liftoff on a qualification flight in the fall of 2004. The Heavy launch vehicle represents the largest of the five vehicles of the Delta IV family, which consists of the Delta IV Medium, three Delta IV Medium vehicles with solid strap-on rocket motors (Medium-Plus variants), and the Delta IV Heavy. All vehicle configurations utilize a common booster core (CBC). The Heavy employs two additional CBCs, serving as liquid rocket boosters for added payload capability. The vehicle measures 71.7 m in height when fully stacked with a payload. This paper describes in detail the Delta IV Heavy launch vehicle and summarizes the flight readiness process in preparation for a successful flight, including wet dress rehearsals. A summary of the sequence of events of the Heavy qualification flight is also included.

  17. Research needed for more compact intermittent combustion propulsion systems for army combat vehicles. Volume 1. Executive summary and main body. Interim report, February 1993-November 1995

    SciTech Connect

    1995-11-01

    Because of the unique performance requirements of combat vehicles, it is not possible to achieve the required propulsion system power density by adaptation of commercial engines; the Army must ensure that the research and development required to achieve the needed propulsion system power density is accomplished. To assist TACOM in identifying the research and development needed in the next decade for intermittent combustion combat engines, a BRC was established. Assuming the BRC recommended research is successfully accomplished, propulsion system volume could be reduced for the same power output, or for the same system volume, vehicle power could be markedly increased. The BRC identified hp/ton as a significant vehicle performance factor. By inserting advanced propulsion systems AIPS, or BRC, in the existing system volume of five different vehicles, the BRC study shows that hp/ton increases are dramatic. For example, if development of the AIPS were completed, hp/ton for the AGT15OO hp M1 would increase from 22.2 hp/ton to 35 hp/ton using AIPS technology; use of BRC technology would result in 43.3 hp/ton. For new vehicles, again assuming completion of AIPS development, a weight decrease of 7 tons from a nominal 60-ton AGT15OO vehicle could be achieved; an additional 3 tons could be achieved using BRC technology. Combustion, Vehicle performance, Combat vehicle - survivability, Propulsion systems, Specific power, Mobility systems, Intermittent combustion engines, Fuels and lubricants, Electric drive, Engine subsystems, Combat vehicle - performance, Mechanical transmissions, Propulsion system power density.

  18. Thermal management for heavy vehicles (Class 7-8 trucks)

    SciTech Connect

    Wambsganss, M.W.

    2000-04-03

    Thermal management is a crosscutting technology that has an important effect on fuel economy and emissions, as well as on reliability and safety, of heavy-duty trucks. Trends toward higher-horsepower engines, along with new technologies for reducing emissions, are substantially increasing heat-rejection requirements. For example, exhaust gas recirculation (EGR), which is probably the most popular near-term strategy for reducing NO{sub x} emissions, is expected to add 20 to 50% to coolant heat-rejection requirements. There is also a need to package more cooling in a smaller space without increasing costs. These new demands have created a need for new and innovative technologies and concepts that will require research and development, which, due to its long-term and high-risk nature, would benefit from government funding. This document outlines a research program that was recommended by representatives of truck manufacturers, engine manufacturers, equipment suppliers, universities, and national laboratories. Their input was obtained through personal interviews and a plenary workshop that was sponsored by the DOE Office of Heavy Vehicle Technologies and held at Argonne National Laboratory on October 19--20, 1999. Major research areas that received a strong endorsement by industry and that are appropriate for government funding were identified and included in the following six tasks: (1) Program management/coordination and benefits/cost analyses; (2) Advanced-concept development; (3) Advanced heat exchangers and heat-transfer fluids; (4) Simulation-code development; (5) Sensors and control components development; and (6) Concept/demonstration truck sponsorship.

  19. Overview of European and other non-US/USSR/Japan launch vehicle and propulsion technology programs

    NASA Technical Reports Server (NTRS)

    Rice, Eric E.

    1991-01-01

    The following subject areas are covered: majority of propulsion technology development work is directly related to the ESA's Ariane 5 program and heavily involves SEP (Societe Europeenne de Propulsion) in all areas; Hermes; advanced work on magnetic bearings for turbomachinery; electric propulsion using Cs and Xe propellants done by SEP in France, MBB ERNO in West Germany, and by Culham Lab in UK; successfully tested fired H/O composite nozzle exit cone on 3rd stage of Ariane; turbine blades made of composites to allow increase in gas temperature and improvement in efficiency; combined cycle (turboramjet-rocket) engine analysis work done by Hyperspace; and ESA advanced program studies.

  20. Space transportation propulsion USSR launcher technology, 1990

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Space transportation propulsion U.S.S.R. launcher technology is discussed. The following subject areas are covered: Energia background (launch vehicle summary, Soviet launcher family) and Energia propulsion characteristics (booster propulsion, core propulsion, and growth capability).

  1. 40 CFR Appendix Xii to Part 86 - Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty Trucks XII Appendix XII to...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Pt. 86, App. XII Appendix XII to Part 86—Tables for Production Compliance Auditing of Heavy-Duty Engines and...

  2. 40 CFR Appendix Xii to Part 86 - Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty Trucks XII Appendix XII to...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Pt. 86, App. XII Appendix XII to Part 86—Tables for Production Compliance Auditing of Heavy-Duty Engines and...

  3. 40 CFR Appendix Xii to Part 86 - Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty Trucks XII Appendix XII to...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Pt. 86, App. XII Appendix XII to Part 86—Tables for Production Compliance Auditing of Heavy-Duty Engines and...

  4. 40 CFR Appendix Xii to Part 86 - Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty Trucks XII Appendix XII to...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Pt. 86, App. XII Appendix XII to Part 86—Tables for Production Compliance Auditing of Heavy-Duty Engines and...

  5. Efficiency and Loss Models for Key Electronic Components of Hybrid and Plug-in Hybrid Electric Vehicles' Electrical Propulsion Systems

    SciTech Connect

    Cao, J.; Bharathan, D.; Emadi, A.

    2007-01-01

    Isolated gate bipolar transistors (IGBTs) are widely used in power electronic applications including electric, hybrid electric, and plug-in hybrid electric vehicles (EVs, HEVs, and PHEVs). The trend towards more electric vehicles (MEVs) has demanded the need for power electronic devices capable of handling power in the range of 10-100 kW. However, the converter losses in this power range are of critical importance. Therefore, thermal management of the power electronic devices/converters is crucial for the reliability and longevity of the advanced vehicles. To aid the design of heat exchangers for the IGBT modules used in propulsion motor drives, a loss model for the IGBTs is necessary. The loss model of the IGBTs will help in the process of developing new heat exchangers and advanced thermal interface materials by reducing cost and time. This paper deals with the detailed loss modeling of IGBTs for advanced electrical propulsion systems. An experimental based loss model is proposed. The proposed loss calculation method utilizes the experimental data to reconstruct the loss surface of the power electronic devices by means of curve fitting and linear extrapolating. This enables the calculation of thermal losses in different voltage, current, and temperature conditions of operation. To verify the calculation method, an experimental test set-up was designed and built. The experimental set-up is an IGBT based bi-directional DC/DC converter. In addition, simulation results are presented to verify the proposed calculation method.

  6. The Numerical Propulsion System Simulation: A Multidisciplinary Design System for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Lytle, John K.

    1999-01-01

    Advances in computational technology and in physics-based modeling are making large scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze ma or propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of design process and to provide the designer with critical information about the components early in the design process. This paper describes the development of the Numerical Propulsion System Simulation (NPSS), a multidisciplinary system of analysis tools that is focussed on extending the simulation capability from components to the full system. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.

  7. Risk assessment in ramps for heavy vehicles--A French study.

    PubMed

    Cerezo, Veronique; Conche, Florence

    2016-06-01

    This paper presents the results of a study dealing with the risk for heavy vehicles in ramps. Two approaches are used. On one hand, statistics are applied on several accidents databases to detect if ramps are more risky for heavy vehicles and to define a critical value for longitudinal slope. χ(2) test confirmed the risk in ramps and statistical analysis proved that a longitudinal slope superior to 3.2% represents a higher risk for heavy vehicles. On another hand, numerical simulations allow defining the speed profile in ramps for two types of heavy vehicles (tractor semi-trailer and 2-axles rigid body) and different loads. The simulations showed that heavy vehicles must drive more than 1000 m on ramps to reach their minimum speed. Moreover, when the slope is superior to 3.2%, tractor semi-trailer presents a strong decrease of their speed until 50 km/h. This situation represents a high risk of collision with other road users which drive at 80-90 km/h. Thus, both methods led to the determination of a risky configuration for heavy vehicles: ramps with a length superior to 1000 m and a slope superior to 3.2%. An application of this research work concerns design methods and guidelines. Indeed, this study provides threshold values than can be used by engineers to make mandatory specific planning like a lane for slow vehicles.

  8. Risk assessment in ramps for heavy vehicles--A French study.

    PubMed

    Cerezo, Veronique; Conche, Florence

    2016-06-01

    This paper presents the results of a study dealing with the risk for heavy vehicles in ramps. Two approaches are used. On one hand, statistics are applied on several accidents databases to detect if ramps are more risky for heavy vehicles and to define a critical value for longitudinal slope. χ(2) test confirmed the risk in ramps and statistical analysis proved that a longitudinal slope superior to 3.2% represents a higher risk for heavy vehicles. On another hand, numerical simulations allow defining the speed profile in ramps for two types of heavy vehicles (tractor semi-trailer and 2-axles rigid body) and different loads. The simulations showed that heavy vehicles must drive more than 1000 m on ramps to reach their minimum speed. Moreover, when the slope is superior to 3.2%, tractor semi-trailer presents a strong decrease of their speed until 50 km/h. This situation represents a high risk of collision with other road users which drive at 80-90 km/h. Thus, both methods led to the determination of a risky configuration for heavy vehicles: ramps with a length superior to 1000 m and a slope superior to 3.2%. An application of this research work concerns design methods and guidelines. Indeed, this study provides threshold values than can be used by engineers to make mandatory specific planning like a lane for slow vehicles. PMID:26994373

  9. [Impact of heavy-duty diesel vehicles on air quality and control of their emissions].

    PubMed

    Zhou, Lei; Wang, Bo-Guang; Tang, Da-Gang

    2011-08-01

    Through an analysis of the characteristics of diesel vehicle emissions and motor vehicle emissions inventories, this paper examines the impact of heavy-duty diesel vehicles on air quality in China as well as issues related to the control of their emissions. Heavy-duty diesel vehicles emit large amounts of nitrogen oxides and particulate matter. Nitrogen oxides is one of the important precursors for the formation of secondary particles and ozone in the atmosphere, causing regional haze. Diesel particulate matter is a major toxic air pollutant with adverse effect on human health, and in particular, the ultrafine particles in 30-100 nm size range can pose great health risks because of its extremely small sizes. Motor vehicles have become a major source of air pollution in many metropolitan areas and city cluster in China, and among them the heavy-duty diesel vehicles are a dominant contributor of nitrogen oxides and particulate matter emissions. Hence, controlling heavy-duty diesel vehicle emissions should be a key component of an effective air quality management plan, and a number of issues related to heavy-duty diesel vehicle emissions need to be addressed.

  10. 77 FR 39206 - Public Hearing on Proposed Rule for Heavy Vehicle Electronic Stability Control Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    .... To accommodate as many speakers as possible, we prefer that speakers who are using audio- visual aids... No. 136, Electronic Stability Control Systems for Heavy Vehicles (77 FR 30766). The standard...

  11. FY2003 Annual Report: DOE Project on Heavy Vehicle Aerodynamic Drag

    SciTech Connect

    McCallen, R C; Salari, K; Ortega, J; DeChant, L J; Roy, C J; Payne, J J; Hassan, B; Pointer, W D; Browand, F; Hammache, M; Hsu, T; Ross, J; Satran, D; Heineck, J; Walker, S; Yaste, D; Englar, R; Leonard, A; Rubel, M; Chatelain, P

    2003-10-24

    Objective: {sm_bullet} Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles. {sm_bullet} Establish a database of experimental, computational, and conceptual design information, and demonstrate potential of new drag-reduction devices.

  12. Heavy vehicle industry site visits: comments from companies and conclusions from technical committee

    SciTech Connect

    McCallen, R.

    1998-02-01

    This report documents the results of several visits with industry as part of the Department of Energy (DOE), office of Transportation Technology, Office of Heavy Vehicle Technology, supported Heavy Vehicle Aerodynamics Project. The purpose of the DOE Heavy Vehicle Aerodynamics Project is to use government resources to bring the aerodynamic expertise available in government organizations and academia to bear in assisting the heavy vehicle industry to reduce aerodynamic drag on trucks. The obvious payback from this investment is the reduction in fuel usage and derivative reduction in the US's dependence on foreign oil imports. This report covers 2 projects: (1) The stated purpose of Project 1 was to provide near-term impact through emphasis on existing tools and capabilities and to focus on the trailer drag problem. (2) The stated purpose of Project 2 was to provide the tools necessary to accomplish the longer term goal of a fully-integrated, aerodynamic tractor-trailer combination.

  13. Large-eddy simulation of a turbulent flow over a heavy vehicle with drag reduction devices

    NASA Astrophysics Data System (ADS)

    Lee, Sangseung; Kim, Myeongkyun; You, Donghyun

    2015-11-01

    Aerodynamic drag contributes to a considerable amount of energy loss of heavy vehicles. To reduce the energy loss, drag reduction devices such as side skirts and boat tails, are often installed to the side and the rear of a heavy vehicle. In the present study, turbulent flow around a heavy vehicle with realistic geometric details is simulated using large-eddy simulation (LES), which is capable of providing unsteady flow physics responsible for aerodynamic in sufficient detail. Flow over a heavy vehicle with and without a boat tail and side skirts as drag reduction devices is simulated. The simulation results are validated against accompanying in-house experimental measurements. Effects of a boat tail and side skirts on drag reduction are discussed in detail. Supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) Grant NTIS 1615007940.

  14. Space Propulsion Technology Program Overview

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1991-01-01

    The topics presented are covered in viewgraph form. Focused program elements are: (1) transportation systems, which include earth-to-orbit propulsion, commercial vehicle propulsion, auxiliary propulsion, advanced cryogenic engines, cryogenic fluid systems, nuclear thermal propulsion, and nuclear electric propulsion; (2) space platforms, which include spacecraft on-board propulsion, and station keeping propulsion; and (3) technology flight experiments, which include cryogenic orbital N2 experiment (CONE), SEPS flight experiment, and cryogenic orbital H2 experiment (COHE).

  15. A descriptive analysis of light vehicle-heavy vehicle interactions using in situ driving data.

    PubMed

    Hanowski, Richard J; Hickman, Jeffery S; Wierwille, Walter W; Keisler, Aysha

    2007-01-01

    Two recently completed on-road in situ (naturalistic) data collection efforts provided a large data set in which to conduct an examination of crashes, near-crashes, and crash-relevant conflicts (referred to as critical incidents throughout this paper) that occurred between light vehicles (LV) and heavy vehicles (HV). Video and non-video data collected during the two studies were used to characterize critical incidents that were recorded between LV and HV drivers. Across both studies, 210 LV-HV critical incidents were recorded. Of these, 78% were initiated by LV drivers, while the remaining 22% were initiated by HV drivers. Aggressive driving, on the part of the LV driver, was found to be the primary Contributing Factor for LV driver-initiated incidents. For HV driver-initiated incidents, the primary Contributing Factor was poor driving techniques. These results suggest that future efforts at addressing LV-HV interaction incidents should include focusing on aggressive LV drivers. Additionally, it is recommended that HV drivers might benefit from improved driver training that includes instruction on defensive driving skills. The in situ methodology provides an alternative to traditional crash databases, developed from police accident reports, for studying crash causation and driver behavior. PMID:16934736

  16. The effect of technology advancements on the comparative advantages of electric versus chemical propulsion for a large cargo orbit transfer vehicle

    NASA Technical Reports Server (NTRS)

    Rehder, J. J.; Wurster, K. E.

    1978-01-01

    Techniques for sizing electrically or chemically propelled orbit transfer vehicles and analyzing fleet requirements are used in a comparative analysis of the two concepts for various levels of traffic to geosynchronous orbit. The vehicle masses, fuel requirements, and fleet sizes are determined and translated into launch vehicle payload requirements. Technology projections beyond normal growth are made and their effect on the comparative advantages of the concepts is determined. A preliminary cost analysis indicates that although electric propulsion greatly reduces launch vehicle requirements substantial improvements in the cost and reusability of power systems must occur to make an electrically propelled vehicle competitive.

  17. Effect of vibrating steering on grip strength in heavy vehicle drivers.

    PubMed

    Chatterjee, S; Bandyopadhyay, A

    1991-06-01

    The grip strength in both hands of thirty-two heavy vehicle drivers and twenty-two nondrivers ranging from 30 to 60 years of age was investigated. Blood pressure, heart rate and other physical parameters were also investigated. The subjects were drawn at random from the employees of the North Bengal State Transport Corporation and Civil Aviation. Heavy vehicle drivers perform their duties 8 hr per day with an average speed of 60-70 km hour for 4-5 hr of continuous driving at a time. The only significant difference in the physical characteristics of heavy vehicle drivers and nondrivers was their body weight (p less than 0.05). The right and left wrist power of heavy vehicle drivers was respectively 6% and 3% higher than that of nondrivers. The mean blood pressure, heart rate and wrist width were found to be almost same in heavy vehicle drivers and nondrivers. From our studies we concluded that vibrating steering probably has no influence on the grip strength and that performing 8 hr of driving daily does not affect the blood pressure and heart rate in heavy vehicle drivers. However, further studies are needed to determine the influence of vibrating steering on grip strength.

  18. 40 CFR 86.1816-08 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1816-08 Emission standards...) Carbon monoxide. 7.3 grams per mile. (iv) Oxides of nitrogen. (A)0.2 grams per mile. (B) A manufacturer... grams per mile. (iv) Oxides of nitrogen. (A)0.4 grams per mile. (B) A manufacturer may elect to...

  19. 40 CFR 86.1816-05 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1816-05 Emission standards... tank capacity of greater than 35 gallons, or which do not share a common fuel system with a...

  20. 77 FR 34129 - Heavy-Duty Highway Program: Revisions for Emergency Vehicles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... fleet than in emergency vehicles, especially given some emergency vehicles' extreme duty cycles. By this... Standards and Highway Diesel Fuel Sulfur Control Requirements (66 FR 5001). The heavy-duty highway rule...\\ Control of Emissions of Air Pollution from Nonroad Diesel Engines and Fuel (69 FR 38958). III....

  1. Exhaust Emission Rates for Heavy-Duty Onroad Vehicles in the Next Version of MOVES

    EPA Science Inventory

    Derivation of the exhaust and crankcase emission rates for HC, CO, NOx, and PM emissions from medium and heavy-duty diesel, gasoline, and compressed natural gas vehicles. Including updates for emission rates for 2007 and later model year diesel vehicles

  2. 40 CFR 86.1817-08 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., trading, and banking program. 86.1817-08 Section 86.1817-08 Protection of Environment ENVIRONMENTAL... Complete heavy-duty vehicle averaging, trading, and banking program. Section 86.1817-08 includes text that...-cycle vehicles may participate in an NMHC averaging, banking and trading program to show compliance...

  3. 40 CFR 86.1817-05 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in clean-fuel vehicles as specified in 40 CFR part 88 are not eligible for this program..., trading, and banking program. 86.1817-05 Section 86.1817-05 Protection of Environment ENVIRONMENTAL... Complete heavy-duty vehicle averaging, trading, and banking program. (a) General. (1) Complete...

  4. 40 CFR 86.1817-08 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., trading, and banking program. 86.1817-08 Section 86.1817-08 Protection of Environment ENVIRONMENTAL... Complete heavy-duty vehicle averaging, trading, and banking program. Section 86.1817-08 includes text that...-cycle vehicles may participate in an NMHC averaging, banking and trading program to show compliance...

  5. 40 CFR 86.1817-08 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., trading, and banking program. 86.1817-08 Section 86.1817-08 Protection of Environment ENVIRONMENTAL... heavy-duty vehicle averaging, trading, and banking program. Section 86.1817-08 includes text that...-cycle vehicles may participate in an NMHC averaging, banking and trading program to show compliance...

  6. 40 CFR 86.1817-08 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., trading, and banking program. 86.1817-08 Section 86.1817-08 Protection of Environment ENVIRONMENTAL... Complete heavy-duty vehicle averaging, trading, and banking program. Section 86.1817-08 includes text that...-cycle vehicles may participate in an NMHC averaging, banking and trading program to show compliance...

  7. 40 CFR 86.1817-08 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., trading, and banking program. 86.1817-08 Section 86.1817-08 Protection of Environment ENVIRONMENTAL... Complete heavy-duty vehicle averaging, trading, and banking program. Section 86.1817-08 includes text that...-cycle vehicles may participate in an NMHC averaging, banking and trading program to show compliance...

  8. Aeromechanical stability analysis of a multirotor vehicle with application to hybrid heavy lift helicopter dynamics

    NASA Technical Reports Server (NTRS)

    Venkatesan, C.; Friedmann, P. P.

    1984-01-01

    The Hybrid Heavy Lift Helicopter (HHLH) is a potential candidate vehicle aimed at providing heavy lift capability at low cost. This vehicle consists of a buoyant envelope attached to a supporting structure. Four rotor systems are also attached to the supporting structure. Nonlinear equations of motion capable of modeling the dynamics of this multi-rotor/support frame/vehicle system have been developed and used to study the fundamental aeromechanical stability characteristics of this class of vehicles. The mechanism of coupling between the blades, supporting structure and rigid body modes is identified and the effect of buoyancy ratio (buoyant lift/total weight) on the vehicle dynamics is studied. It is shown that dynamics effects have a major role in the design of such vehicles. The analytical model developed is also useful for studying the aeromechanical stability of single rotor and tandem rotor coupled rotor/fuselage systems.

  9. 40 CFR 86.1816-05 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1816-05 Emission standards...-duty vehicles (2003 model year for manufacturers choosing Otto-cycle HDE option 1 in § 86.005-1(c)(1), or 2004 model year for manufacturers choosing Otto-cycle HDE option 2 in § 86.005-1(c)(2)) fueled...

  10. 40 CFR 86.1816-05 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1816-05 Emission standards...-duty vehicles (2003 model year for manufacturers choosing Otto-cycle HDE option 1 in § 86.005-1(c)(1), or 2004 model year for manufacturers choosing Otto-cycle HDE option 2 in § 86.005-1(c)(2)) fueled...

  11. 40 CFR 86.1816-05 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1816-05 Emission standards...-duty vehicles (2003 model year for manufacturers choosing Otto-cycle HDE option 1 in § 86.005-1(c)(1), or 2004 model year for manufacturers choosing Otto-cycle HDE option 2 in § 86.005-1(c)(2)) fueled...

  12. Speed control device for a heavy duty shaft. [solar sails for spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Ford, A. G. (Inventor)

    1980-01-01

    A speed control device is characterized by a reference speed shaft spatially related to a heavy duty shaft, a drive train for driving the reference speed shaft at a constant angular velocity, a drive train for driving the heavy duty shaft at a variable angular velocity and a speed control assembly for continuously comparing the angular velocity of the heavy duty shaft with the angular velocity of the reference speed shaft. A brake assembly is connected to the heavy duty shaft and is adapted to respond to errors in the angular velocity of the heavy duty shaft in order to reduce the angular velocity of the heavy duty shaft to that of the reference speed shaft.

  13. Ground and Range Operations for a Heavy-Lift Vehicle: Preliminary Thoughts

    NASA Technical Reports Server (NTRS)

    Rabelo, Luis; Zhu, Yanshen; Compton, Jeppie; Bardina, Jorge

    2011-01-01

    This paper discusses the ground and range operations for a Shuttle derived Heavy-Lift Vehicle being launched from the Kennedy Space Center on the Eastern range. Comparisons will be made between the Shuttle and a heavy lift configuration (SLS-ETF MPCV April 2011) by contrasting their subsystems. The analysis will also describe a simulation configuration with the potential to be utilized for heavy lift vehicle processing/range simulation modeling and the development of decision-making systems utilized by the range. In addition, a simple simulation model is used to provide the required critical thinking foundations for this preliminary analysis.

  14. Quantitative Effects of Vehicle Parameters on Fuel Consumption for Heavy-Duty Vehicle

    SciTech Connect

    Wang, Lijuan; Kelly, Kenneth; Walkowicz, Kevin; Duran, Adam

    2015-10-16

    The National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluations team recently conducted chassis dynamometer tests of a class 8 conventional regional delivery truck over the Heavy Heavy-Duty Diesel Truck (HHDDT), West Virginia University City (WVU City), and Composite International Truck Local and Commuter Cycle (CILCC) drive cycles. A quantitative study was conducted by analyzing the impacts of various factors on fuel consumption (FC) and fuel economy (FE) by modeling and simulating the truck using NREL's Future Automotive Systems Technology Simulator (FASTSim). Factors used in this study included vehicle weight, and the coefficients of rolling resistance and aerodynamic drag. The simulation results from a single parametric study revealed that FC was approximately a linear function of the weight, coefficient of aerodynamic drag, and rolling resistance over various drive cycles. Among these parameters, the truck weight had the largest effect on FC. The study of the impact of two technologies on FE suggested that, depending on the circumstances, it may be more cost effective to reduce one parameter (such as coefficient of aerodynamic drag) to increase fuel economy, or it may be more beneficial to reduce another (such as the coefficient of rolling resistance). It also provided a convenient way to estimate FE by interpolating within the parameter values and extrapolating outside of them. The simulation results indicated that the FC could be reduced from 38.70 L/100 km, 50.72 L/100 km, and 38.42 L/100 km in the baseline truck to 26.78 L/100 km, 43.14 L/100 km and 29.84 L/100 km over the HHDDT, WVU City and CILCC drive cycles, respectively, when the U.S. Department of Energy's three targeted new technologies were applied simultaneously.

  15. Vehicle concepts and technology requirements for buoyant heavy-lift systems

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.

    1981-01-01

    Several buoyant-vehicle (airship) concepts proposed for short hauls of heavy payloads are described. Numerous studies identified operating cost and payload capacity advantages relative to existing or proposed heavy-lift helicopters for such vehicles. Applications involving payloads of from 15 tons up to 800 tons were identified. The buoyant quad-rotor concept is discussed in detail, including the history of its development, current estimates of performance and economics, currently perceived technology requirements, and recent research and technology development. It is concluded that the buoyant quad-rotor, and possibly other buoyant vehicle concepts, has the potential of satisfying the market for very heavy vertical lift but that additional research and technology development are necessary. Because of uncertainties in analytical prediction methods and small-scale experimental measurements, there is a strong need for large or full-scale experiments in ground test facilities and, ultimately, with a flight research vehicle.

  16. An investigation of the effects of pneumatic actuator design on slip control for heavy vehicles

    NASA Astrophysics Data System (ADS)

    Miller, Jonathan I.; Cebon, David

    2013-01-01

    Progress in reducing actuator delays in pneumatic brake systems is opening the door for advanced anti-lock braking algorithms to be used on heavy goods vehicles. However, little has been published on slip controllers for air-braked heavy vehicles, or the effects of slow pneumatic actuation on their design and performance. This paper introduces a sliding mode slip controller for air-braked heavy vehicles. The effects of pneumatic actuator delays and flow rates on stopping performance and air (energy) consumption are presented through vehicle simulations. Finally, the simulations are validated with experiments using a hardware-in-the-loop rig. It is shown that for each wheel, pneumatic valves with delays smaller than 3 ms and orifice diameters around 8 mm provide the best performance.

  17. FY2010 Annual Progress Report for Propulsion Materials

    SciTech Connect

    Davis, Patrick B.; Schutte, Carol L.; Gibbs, Jerry L.

    2011-01-01

    The Propulsion Materials Technology actively supports the energy security and reduction of greenhouse emissions goals of the Vehicle Technologies Program by developing advanced materials that enable development of higher efficiency powertrains for ground transportation. Propulsion Materials works closely with the other disciplines within the VT Program to identify the materials properties essential for the development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light duty powertrains.

  18. Shuttle Derived In-Line Heavy Lift Vehicle

    NASA Technical Reports Server (NTRS)

    Greenwood, Terry; Twichell, Wallace; Ferrari, Daniel; Kuck, Frederick

    2005-01-01

    This paper introduces an evolvable Space Shuttle derived family of launch vehicles. It details the steps in the evolution of the vehicle family, noting how the evolving lift capability compares with the evolving lift requirements. A system description is given for each vehicle. The cost of each development stage is described. Also discussed are demonstration programs, the merits of the SSME vs. an expendable rocket engine (RS-68), and finally, the next steps needed to refine this concept.

  19. Propulsion materials

    SciTech Connect

    Wall, Edward J.; Sullivan, Rogelio A.; Gibbs, Jerry L.

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  20. Propulsion and Power Generation Capabilities of a Dense Plasma Focus (DPF) Fusion System for Future Military Aerospace Vehicles

    SciTech Connect

    Knecht, Sean D.; Mead, Franklin B.; Miley, George H.; Froning, David

    2006-01-20

    The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF) fusion system in support of a USAF advanced military aerospace vehicle concept study. This vehicle is an aerospace plane that combines clean 'aneutronic' dense plasma focus (DPF) fusion power and propulsion technology, with advanced 'lifting body'-like airframe configurations utilizing air-breathing MHD propulsion and power technology within a reusable single-stage-to-orbit (SSTO) vehicle. The applied approach was to evaluate the fusion system details (geometry, power, T/W, system mass, etc.) of a baseline p-11B DPF propulsion device with Q = 3.0 and thruster efficiency, {eta}prop = 90% for a range of thrust, Isp and capacitor specific energy values. The baseline details were then kept constant and the values of Q and {eta}prop were varied to evaluate excess power generation for communication systems, pulsed-train plasmoid weapons, ultrahigh-power lasers, and gravity devices. Thrust values were varied between 100 kN and 1,000 kN with Isp of 1,500 s and 2,000 s, while capacitor specific energy was varied from 1 - 15 kJ/kg. Q was varied from 3.0 to 6.0, resulting in gigawatts of excess power. Thruster efficiency was varied from 0.9 to 1.0, resulting in hundreds of megawatts of excess power. Resulting system masses were on the order of 10's to 100's of metric tons with thrust-to-weight ratios ranging from 2.1 to 44.1, depending on capacitor specific energy. Such a high thrust/high Isp system with a high power generation capability would allow military versatility in sub-orbital space, as early as 2025, and beyond as early as 2050. This paper presents the results that coincide with a total system mass between 15 and 20 metric tons.

  1. Total fuel-cycle analysis of heavy-duty vehicles using biofuels and natural gas-based alternative fuels.

    PubMed

    Meyer, Patrick E; Green, Erin H; Corbett, James J; Mas, Carl; Winebrake, James J

    2011-03-01

    Heavy-duty vehicles (HDVs) present a growing energy and environmental concern worldwide. These vehicles rely almost entirely on diesel fuel for propulsion and create problems associated with local pollution, climate change, and energy security. Given these problems and the expected global expansion of HDVs in transportation sectors, industry and governments are pursuing biofuels and natural gas as potential alternative fuels for HDVs. Using recent lifecycle datasets, this paper evaluates the energy and emissions impacts of these fuels in the HDV sector by conducting a total fuel-cycle (TFC) analysis for Class 8 HDVs for six fuel pathways: (1) petroleum to ultra low sulfur diesel; (2) petroleum and soyoil to biodiesel (methyl soy ester); (3) petroleum, ethanol, and oxygenate to e-diesel; (4) petroleum and natural gas to Fischer-Tropsch diesel; (5) natural gas to compressed natural gas; and (6) natural gas to liquefied natural gas. TFC emissions are evaluated for three greenhouse gases (GHGs) (carbon dioxide, nitrous oxide, and methane) and five other pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter, and sulfur oxides), along with estimates of total energy and petroleum consumption associated with each of the six fuel pathways. Results show definite advantages with biodiesel and compressed natural gas for most pollutants, negligible benefits for e-diesel, and increased GHG emissions for liquefied natural gas and Fischer-Tropsch diesel (from natural gas). PMID:21416755

  2. Total fuel-cycle analysis of heavy-duty vehicles using biofuels and natural gas-based alternative fuels.

    PubMed

    Meyer, Patrick E; Green, Erin H; Corbett, James J; Mas, Carl; Winebrake, James J

    2011-03-01

    Heavy-duty vehicles (HDVs) present a growing energy and environmental concern worldwide. These vehicles rely almost entirely on diesel fuel for propulsion and create problems associated with local pollution, climate change, and energy security. Given these problems and the expected global expansion of HDVs in transportation sectors, industry and governments are pursuing biofuels and natural gas as potential alternative fuels for HDVs. Using recent lifecycle datasets, this paper evaluates the energy and emissions impacts of these fuels in the HDV sector by conducting a total fuel-cycle (TFC) analysis for Class 8 HDVs for six fuel pathways: (1) petroleum to ultra low sulfur diesel; (2) petroleum and soyoil to biodiesel (methyl soy ester); (3) petroleum, ethanol, and oxygenate to e-diesel; (4) petroleum and natural gas to Fischer-Tropsch diesel; (5) natural gas to compressed natural gas; and (6) natural gas to liquefied natural gas. TFC emissions are evaluated for three greenhouse gases (GHGs) (carbon dioxide, nitrous oxide, and methane) and five other pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter, and sulfur oxides), along with estimates of total energy and petroleum consumption associated with each of the six fuel pathways. Results show definite advantages with biodiesel and compressed natural gas for most pollutants, negligible benefits for e-diesel, and increased GHG emissions for liquefied natural gas and Fischer-Tropsch diesel (from natural gas).

  3. Solar Electric Propulsion Vehicle Demonstration to Support Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Smith, Bryan K.; Nazario, Margaret L.; Cunningham, Cameron C.

    2012-01-01

    Human and robotic exploration beyond Low Earth Orbit (LEO) will require enabling capabilities that are efficient, affordable, and reliable. Solar Electric Propulsion (SEP) is highly advantageous because of its favorable in-space mass transfer efficiency compared to traditional chemical propulsion systems. The NASA studies have demonstrated that this advantage becomes highly significant as missions progress beyond Earth orbit. Recent studies of human exploration missions and architectures evaluated the capabilities needed to perform a variety of human exploration missions including missions to Near Earth Objects (NEOs). The studies demonstrated that SEP stages have potential to be the most cost effective solution to perform beyond LEO transfers of high mass cargoes for human missions. Recognizing that these missions require power levels more than 10X greater than current electric propulsion systems, NASA embarked upon a progressive pathway to identify critical technologies needed and a plan for an incremental demonstration mission. The NASA studies identified a 30kW class demonstration mission that can serve as a meaningful demonstration of the technologies, operational challenges, and provide the appropriate scaling and modularity required. This paper describes the planning options for a representative demonstration 30kW class SEP mission.

  4. Hybrid propulsion systems for motor vehicles with predominantly intermittent modes of operation

    NASA Technical Reports Server (NTRS)

    Bartsch, H.; Helling, J.; Schreck, H.

    1977-01-01

    A small delivery vehicle was equipped with a flywheel-hybrid drive and compared in test stand and driving tests with a conventional drive vehicle. It turned out that with the hybrid drive, energy can be saved and exhaust emissions can be reduced.

  5. Nuclear Thermal Propulsion (NTP)

    NASA Video Gallery

    NASA's history with nuclear thermal propulsion (NTP) technology goes back to the earliest days of the Agency. The Manned Lunar Rover Vehicle and the Nuclear Engine for Rocket Vehicle Applications p...

  6. Advanced Aerodynamic Devices to Improve the Performance, Economics, Handling, and Safety of Heavy Vehicles

    SciTech Connect

    Robert J. Englar

    2001-05-14

    Research is being conducted at the Georgia Tech Research Institute (GTRI) to develop advanced aerodynamic devices to improve the performance, economics, stability, handling and safety of operation of Heavy Vehicles by using previously-developed and flight-tested pneumatic (blown) aircraft technology. Recent wind-tunnel investigations of a generic Heavy Vehicle model with blowing slots on both the leading and trailing edges of the trailer have been conducted under contract to the DOE Office of Heavy Vehicle Technologies. These experimental results show overall aerodynamic drag reductions on the Pneumatic Heavy Vehicle of 50% using only 1 psig blowing pressure in the plenums, and over 80% drag reductions if additional blowing air were available. Additionally, an increase in drag force for braking was confirmed by blowing different slots. Lift coefficient was increased for rolling resistance reduction by blowing only the top slot, while downforce was produced for traction increase by blowing only the bottom. Also, side force and yawing moment were generated on either side of the vehicle, and directional stability was restored by blowing the appropriate side slot. These experimental results and the predicted full-scale payoffs are presented in this paper, as is a discussion of additional applications to conventional commercial autos, buses, motor homes, and Sport Utility Vehicles.

  7. Innovative Structural and Joining Concepts for Lightweight Design of Heavy Vehicle Systems

    SciTech Connect

    Jacky C. Prucz; Samir N. Shoukry; Gergis W. William

    2005-08-31

    Recent advances in the area of Metal Matrix Composites (MMC's) have brought these materials to a maturity stage where the technology is ready for transition to large-volume production and commercialization. The new materials seem to allow the fabrication of higher quality parts at less than 50 percent of the weight as compared to steel, especially when they are selectively reinforced with carbon, silicon carbide, or aluminum oxide fibers. Most of the developments in the MMC materials have been spurred, mainly by applications that require high structural performance at elevated temperatures, the heavy vehicle industry could also benefit from this emerging technology. Increasing requirements of weight savings and extended durability are the main drivers for potential insertion of MMC technology into the heavy vehicle market. Critical elements of a typical tractor-trailer combination, such as highly loaded sections of the structure, engine components, brakes, suspensions, joints and bearings could be improved through judicious use of MMC materials. Such an outcome would promote the DOE's programmatic objectives of increasing the fuel efficiency of heavy vehicles and reducing their life cycle costs and pollution levels. However, significant technical and economical barriers are likely to hinder or even prevent broad applications of MMC materials in heavy vehicles. The tradeoffs between such expected benefits (lower weights and longer durability) and penalties (higher costs, brittle behavior, and difficult to machine) must be thoroughly investigated both from the performance and cost viewpoints, before the transfer of MMC technology to heavy vehicle systems can be properly assessed and implemented. MMC materials are considered to form one element of the comprehensive, multi-faceted strategy pursued by the High Strength/Weight Reduction (HS/WR) Materials program of the U.S. Department of Energy (DOE) for structural weight savings and quality enhancements in heavy

  8. Freedom car and vehicle technologies heavy vehicle program : FY 2007 benefits analysis, methodology and results -- final report.

    SciTech Connect

    SIngh, M.; Energy Systems; TA Engineering

    2008-02-29

    This report describes the approach to estimating the benefits and analysis results for the Heavy Vehicle Technologies activities of the FreedomCar and Vehicle Technologies (FCVT) Program of EERE. The scope of the effort includes: (1) Characterizing baseline and advanced technology vehicles for Class 3-6 and Class 7 and 8 trucks, (2) Identifying technology goals associated with the DOE EERE programs, (3) Estimating the market potential of technologies that improve fuel efficiency and/or use alternative fuels, (4) Determining the petroleum and greenhouse gas emissions reductions associated with the advanced technologies. In FY 05 the Heavy Vehicles program activity expanded its technical involvement to more broadly address various sources of energy loss as compared to focusing more narrowly on engine efficiency and alternative fuels. This broadening of focus has continued in subsequent activities. These changes are the result of a planning effort that occurred during FY 04 and 05. (Ref. 1) This narrative describes characteristics of the heavy truck market as they relate to the analysis, a description of the analysis methodology (including a discussion of the models used to estimate market potential and benefits), and a presentation of the benefits estimated as a result of the adoption of the advanced technologies. The market penetrations are used as part of the EERE-wide integrated analysis to provide final benefit estimates reported in the FY07 Budget Request. The energy savings models are utilized by the FCVT program for internal project management purposes.

  9. FreedomCAR and vehicle technologies heavy vehicle program FY 2006. Benefits analysis : methodology and results - final report.

    SciTech Connect

    Singh, M.; Energy Systems; TA Engineering, Inc.

    2006-01-31

    This report describes the approach to estimating benefits and the analysis results for the Heavy Vehicle Technologies activities of the Freedom Car and Vehicle Technologies (FCVT) Program of EERE. The scope of the effort includes: (1) Characterizing baseline and advanced technology vehicles for Class 3-6 and Class 7 and 8 trucks, (2) Identification of technology goals associated with the DOE EERE programs, (3) Estimating the market potential of technologies that improve fuel efficiency and/or use alternative fuels, (4) Determining the petroleum and greenhouse gas emissions reductions associated with the advanced technologies. In FY 05 the Heavy Vehicles program activity expanded its technical involvement to more broadly address various sources of energy loss as compared to focusing more narrowly on engine efficiency and alternative fuels. This broadening of focus has continued in the activities planned for FY 06. These changes are the result of a planning effort that occurred during FY 04 and 05. (Ref. 1) This narrative describes characteristics of the heavy truck market as they relate to the analysis, a description of the analysis methodology (including a discussion of the models used to estimate market potential and benefits), and a presentation of the benefits estimated as a result of the adoption of the advanced technologies. These benefits estimates, along with market penetrations and other results, are then modeled as part of the EERE-wide integrated analysis to provide final benefit estimates reported in the FY06 Budget Request.

  10. An evaluation of composite propulsion for single-stage-to-orbit vehicles designed for horizontal take-off

    NASA Technical Reports Server (NTRS)

    Martin, J. A.

    1977-01-01

    Composite propulsion was analyzed for single-stage-to-orbit vehicles designed for horizontal take-off. Trajectory, geometric, and mass analyses were performed to establish the orbital payload capability of six engines. The results indicated that none of the engines performed adequately to deliver payloads to orbit as analyzed. The single-stage turbine and oxidizer-rich gas generator resulted in a low engine specific impulse, and the performance increment of the ejector subsystem was less than that of a separate rocket system with a high combustion pressure. There was a benefit from incorporating a fan into the engine, and removal of the fan from the airstream during the ramjet mode increased the orbital payload capability.

  11. Propulsion/airframe integration considerations for high altitude hypersonic cruise vehicles

    NASA Technical Reports Server (NTRS)

    Weidner, J. P.

    1980-01-01

    A study has been conducted to determine the implications of top-mounted inlet nacelles on propulsion performance and cruise range. The top-mounted nacelle would be less visible from ground-based radar below and ahead of the aircraft. For this study, the nacelle is integrated with a high altitude Mach 5 turbojet/ramjet-powered airplane concept requiring a large nacelle. Results of the study suggest nacelle installation advantages and improved inlet mass flow ratio for the top-mounted nacelle, but at the expense of a higher installed drag at transonic and supersonic speeds.

  12. Thermal management in heavy vehicles : a review identifying issues and research requirements.

    SciTech Connect

    Wambsganss, M. W.

    1999-01-15

    Thermal management in heavy vehicles is cross-cutting because it directly or indirectly affects engine performance, fuel economy, safety and reliability, engine/component life, driver comfort, materials selection, emissions, maintenance, and aerodynamics. It follows that thermal management is critical to the design of large (class 6-8) trucks, especially in optimizing for energy efficiency and emissions reduction. Heat rejection requirements are expected to increase, and it is industry's goal to develop new, innovative, high-performance cooling systems that occupy less space and are lightweight and cost-competitive. The state of the art in heavy vehicle thermal management is reviewed, and issues and research areas are identified.

  13. Electric Drive Dynamic Thermal System Model for Advanced Vehicle Propulsion Technologies: Cooperative Research and Development Final Report, CRADA Number CRD-09-360

    SciTech Connect

    Bennion, K.

    2013-10-01

    Electric drive systems, which include electric machines and power electronics, are a key enabling technology for advanced vehicle propulsion systems that reduce the dependence of the U.S. transportation sector on petroleum. However, to penetrate the market, these electric drive technologies must enable vehicle solutions that are economically viable. The push to make critical electric drivesystems smaller, lighter, and more cost-effective brings respective challenges associated with heat removal and system efficiency. In addition, the wide application of electric drive systems to alternative propulsion technologies ranging from integrated starter generators, to hybrid electric vehicles, to full electric vehicles presents challenges in terms of sizing critical components andthermal management systems over a range of in-use operating conditions. This effort focused on developing a modular modeling methodology to enable multi-scale and multi-physics simulation capabilities leading to generic electric drive system models applicable to alternative vehicle propulsion configurations. The primary benefit for the National Renewable Energy Laboratory (NREL) is the abilityto define operating losses with the respective impact on component sizing, temperature, and thermal management at the component, subsystem, and system level. However, the flexible nature of the model also allows other uses related to evaluating the impacts of alternative component designs or control schemes depending on the interests of other parties.

  14. Active roll control for rollover prevention of heavy articulated vehicles with multiple-rollover-index minimisation

    NASA Astrophysics Data System (ADS)

    Huang, Hsun-Hsuan; Yedavalli, Rama K.; Guenther, Dennis A.

    2012-03-01

    This paper presents the application of a nominal control design algorithm for rollover prevention of heavy articulated vehicles with active anti-roll-bar control. This proposed methodology is based on an extension of linear quadratic regulator control for 'state derivative-induced (control coupled) output regulation' problems. For heavy articulated vehicles with multiple axles, a performance index with multiple rollover indices is proposed. The proposed methodology allows us to compare the usefulness of various control configurations (i.e. actuators at different axles of the vehicle) based on the interaction of this control configuration with vehicle dynamics. Application of this methodology to a specific heavy articulated vehicle with a tractor semi-trailer shows that a single active anti-roll-bar system at the trailer unit gives better performance than multiple-axle actuators at tractor and trailer together with the single lane change manoeuvre as the external disturbance. Thus, the proposed methodology of this paper not only highlights the importance of the interactions between control and vehicle dynamics in rollover prevention problems but, in fact, proposes a novel technique to exploit the benefits of these interactions judiciously.

  15. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report for 1980

    SciTech Connect

    Not Available

    1981-03-01

    Work performed during Oct. 1, 1979 to Sept. 30, 1980 for the development of lead-acid batteries for electric vehicle propulsion is described. During this report period many of the results frpm Globe Battery's design, materials and process development programs became evident in the achievement of the ISOA (Improved State of Art) specific energy, specific power, and energy efficiency goals while testing in progress also indicates that the cycle life goal can be met. These programs led to the establishment of a working pilot assembly line which produced the first twelve volt ISOA modules. Five of these modules were delivered to the National Battery Test Laboratory during the year for capacity, power and life testing, and assembly is in progress of three full battery systems for installation in vehicles. In the battery subsystem area, design of the acid circulation system for a ninety-six volt ISOA battery pack was completed and assembly of the first such system was initiated. Charger development has been slowed by problems encountered with reliability of some circuits but a prototype unit is being prepared which will meet the charging requirements of our ninety-six volt pack. This charger will be available during the 1981 fiscal year.

  16. Lithium/iron sulfide batteries for electric-vehicle propulsion and other applications. Progress report, October 1979-March 1980

    SciTech Connect

    Barney, D. L.; Steunenberg, R. K.; Chilenskas, A. A.; Gay, E. C.; Battles, J. E.; Miller, W. E.; Vissers, D. R.; Shimotake, H.

    1980-08-01

    The research and development activities of the program at Argonne National Laboratory (ANL) on lithium/iron sulfide batteries during the period October 1979-March 1980 is described. Although the major emphasis is currently on batteries for electric-vehicle propulsion, stationary energy-storage applications are also under investigation. The individual battery cells, which operate at 400 to 500/sup 0/C, are of a vertically oriented, prismatic design with two or more positive electrodes of FeS or FeS/sub 2/, facing negative electrodes of lithium-aluminum or lithium-silicon alloy, and molten LiCl-KCl electrolyte. The ANL program consists of cell chemistry studies, materials engineering, and component and auxiliary systems development. Important elements of this program are studies of the effects of design modifications on cell performance and post-test examinations of cells. During the reporting period, cell and battery development work has been aimed primarily at the first phase of the Mark II electric-vehicle battery program, which consists of an effort to develop high-reliability cells having boron nitride felt separators. Later in the Mark II program, the cells will be tested in 10-cell modules. Work on stationary energy-storage batteries during this period has consisted mainly of conceptual design studies. 23 figures, 9 tables.

  17. A Spherical Torus Nuclear Fusion Reactor Space Propulsion Vehicle Concept for Fast Interplanetary Piloted and Robotic Missions

    NASA Astrophysics Data System (ADS)

    Williams, C. H.; Borowski, S. K.; Dudzinski, L. A.; Juhasz, A. J.

    1999-11-01

    A conceptual space vehicle concept to support NASA's 21^st century requirements was designed to enable human, multi-month travel throughout the outer solar system. The design was predicated on an ignited, spherical torus fusion reactor (R=2.5 m; a=1.25 m) burning spin polarized D^3He fuel and operating at high beta (30%). Peaked plasma temperature (50 keV) and number density (5×10^20 m-3) profiles were used. Engineering design was performed on all major vehicle systems including fusion reactor, fast wave plasma heating, power conversion, magnetic nozzle (for direct plasma propulsion), tankage and others, with emphasis on 1D fusion power balance, operation physics, first wall, toroidal field coils, and heat transfer. Two related proof-of-concept experiments at OSU, LANL, and PPPL are discussed. Results showed a 108 mt crew habitat payload could be delivered to Saturn rendezvous in 214 days using 6,145 MW of plasma jet power.

  18. Heavy-lift vehicle-launched Space Station method and apparatus

    NASA Technical Reports Server (NTRS)

    Wade, Donald C. (Inventor); Delafuente, Horatio (Inventor); Berka, Reginald B. (Inventor); Rickman, Steven L. (Inventor); Castro, Edgar O. (Inventor); Nagy, Kornel (Inventor); Wesselski, Clarence J. (Inventor); Pelischek, Timothy E. (Inventor); Schleisling, John A. (Inventor)

    1993-01-01

    Methods and apparatus are provided for a single heavylift launch to place a complete, operational space station on-orbit. A payload including the space station takes the place of a Shuttle Orbiter using the launch vehicle of the Shuttle Orbiter. The payload includes a forward shroud, a core module, a propulsion module, and a transition module between the core module and the propulsion module. The essential subsystems are pre-integrated and verified on Earth. The core module provides means for attaching international modules with minimum impact to the overall design. The space station includes six control moment gyros for selectably operating in either LVLH (local-vertical local-horizontal) or SI (solar inertial) flight modes.

  19. NASA Propulsion Investments for Exploration and Science

    NASA Technical Reports Server (NTRS)

    Smith, Bryan K.; Free, James M.; Klem, Mark D.; Priskos, Alex S.; Kynard, Michael H.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) invests in chemical and electric propulsion systems to achieve future mission objectives for both human exploration and robotic science. Propulsion system requirements for human missions are derived from the exploration architecture being implemented in the Constellation Program. The Constellation Program first develops a system consisting of the Ares I launch vehicle and Orion spacecraft to access the Space Station, then builds on this initial system with the heavy-lift Ares V launch vehicle, Earth departure stage, and lunar module to enable missions to the lunar surface. A variety of chemical engines for all mission phases including primary propulsion, reaction control, abort, lunar ascent, and lunar descent are under development or are in early risk reduction to meet the specific requirements of the Ares I and V launch vehicles, Orion crew and service modules, and Altair lunar module. Exploration propulsion systems draw from Apollo, space shuttle, and commercial heritage and are applied across the Constellation architecture vehicles. Selection of these launch systems and engines is driven by numerous factors including development cost, existing infrastructure, operations cost, and reliability. Incorporation of green systems for sustained operations and extensibility into future systems is an additional consideration for system design. Science missions will directly benefit from the development of Constellation launch systems, and are making advancements in electric and chemical propulsion systems for challenging deep space, rendezvous, and sample return missions. Both Hall effect and ion electric propulsion systems are in development or qualification to address the range of NASA s Heliophysics, Planetary Science, and Astrophysics mission requirements. These address the spectrum of potential requirements from cost-capped missions to enabling challenging high delta-v, long-life missions. Additionally, a high

  20. The past, present, and future of super-heavy launch vehicles for research and exploration of the Moon and Mars

    NASA Astrophysics Data System (ADS)

    Daniluk, A. Yu.; Klyushnikov, V. Yu.; Kuznetsov, I. I.; Osadchenko, A. S.

    2015-12-01

    The article gives a retrospective review and comparison of the implemented and non-implemented projects of super-heavy launch vehicles in our country and in the United States. The basic features of the design-layouts are defined, and efficient ways of further development of super-heavy launch vehicles in Russia are offered.

  1. Foundation for Heavy Lift - Early Developments in the Ares V Launch Vehicle

    NASA Technical Reports Server (NTRS)

    McArthur, J. Craig; Pannell, Bill; Lacey, Matt

    2007-01-01

    The Ares V Cargo Launch Vehicle (CaLV) is NASA's primary vessel for safe, reliable delivery of the Lunar Surface Access Module (LSAM) and other resources into Earth orbit, as articulated in the U.S. Vision for Space Exploration. The Ares V launch concept is shown. The foundation for this heavy-lift companion to the Ares I Crew Launch Vehicle (CLV) is taking shape within NASA and with its government and industry partners. This paper will address accomplishments in the Ares V Launch Vehicle during 2006 and 2007 and offer a preview of future activities.

  2. Foundation for Heavy Lift: Early Developments in the Ares V Cargo Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Sumrall, John P.; McArthur, J. Craig

    2007-01-01

    The Ares V Cargo Launch Vehicle (CaLV) is NASA's primary vessel for safe, reliable delivery of the Lunar Surface Access Module (LSAM) and other resources into Earth orbit, as articulated in the U.S. Vision for Space Exploration.' The Ares V launch concept is shown. The foundation for this heavy-lift companion to the Ares I Crew Launch Vehicle (CLV) is taking shape within NASA and with its government and industry partners. This paper will address accomplishments in the Ares V Launch Vehicle during 2006 and 2007 and offer a preview of future activities.

  3. Definition of avionics concepts for a heavy lift cargo vehicle, volume 2

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles is defined. The technology needs and requirements of future Heavy Lift Cargo Vehicles (HLCVs) are analyzed and serve as the basis for sizing of the avionics facility although the lab is not limited in use to support of HLCVs. Volume 2 is the technical volume and provides the results of the vehicle avionics trade studies, the avionics lab objectives, the lab's functional requirements and design, physical facility considerations, and a summary cost estimate.

  4. Definition of avionics concepts for a heavy lift cargo vehicle. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles is examined. The technology needs and requirements of future Heavy Lift Cargo Vehicles (HLCVs) are analyzed and serve as the basis for sizing of the avionics facility, although the lab is not limited in use to support of HLCVs. Volume 1 provides a summary of the vehicle avionics trade studies, the avionics lab objectives, a summary of the lab's functional requirements and design, physical facility considerations, and cost estimates.

  5. Mission and system optimization of nuclear electric propulsion vehicles for lunar and Mars missions

    NASA Technical Reports Server (NTRS)

    Gilland, James H.

    1991-01-01

    The detailed mission and system optimization of low thrust electric propulsion missions is a complex, iterative process involving interaction between orbital mechanics and system performance. Through the use of appropriate approximations, initial system optimization and analysis can be performed for a range of missions. The intent of these calculations is to provide system and mission designers with simple methods to assess system design without requiring access or detailed knowledge of numerical calculus of variations optimizations codes and methods. Approximations for the mission/system optimization of Earth orbital transfer and Mars mission have been derived. Analyses include the variation of thruster efficiency with specific impulse. Optimum specific impulse, payload fraction, and power/payload ratios are calculated. The accuracy of these methods is tested and found to be reasonable for initial scoping studies. Results of optimization for Space Exploration Initiative lunar cargo and Mars missions are presented for a range of power system and thruster options.

  6. Investigation of Tractor Base Bleeding for Heavy Vehicle Aerodynamic Drag Reduction

    SciTech Connect

    Ortega, J; Salari, K; Storms, B

    2007-10-25

    One of the main contributors to the aerodynamic drag of a heavy vehicle is tractor-trailer gap drag, which arises when the vehicle operates within a crosswind. Under this operating condition, freestream flow is entrained into the tractor-trailer gap, imparting a momentum exchange to the vehicle and subsequently increasing the aerodynamic drag. While a number of add-on devices, including side extenders, splitter plates, vortex stabilizers, and gap sealers, have been previously tested to alleviate this source of drag, side extenders remain the primary add-on device of choice for reducing tractor-trailer gap drag. However, side extenders are not without maintenance and operational issues. When a heavy vehicle pivots sharply with respect to the trailer, as can occur during loading or unloading operations, the side extenders can become crushed against the trailer. Consequently, fleet operators are forced to incur additional costs to cover the repair or replacement of the damaged side extenders. This issue can be overcome by either shortening the side extenders or by devising an alternative drag reduction concept that can perform just as effectively as side extenders. To explore such a concept, we investigate tractor base bleeding as a means of reducing gap drag. Wind tunnel measurements are made on a 1:20 scale heavy vehicle model at a vehicle width-based Reynolds number of 420,000. The tractor bleeding flow, which is delivered through a porous material embedded within the tractor base, is introduced into the tractor-trailer gap at bleeding coefficients ranging from 0.0-0.018. To determine the performance of tractor base bleeding under more realistic operating conditions, computational fluid dynamics simulations are performed on a full-scale heavy vehicle within a crosswind for bleeding coefficients ranging from 0.0-0.13.

  7. 75 FR 43405 - Certification of Enforcement of the Heavy Vehicle Use Tax

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... Heavy Vehicle Use Tax (HVUT). This rule will bring FHWA's HVUT regulations up-to-date to be consistent with many changes that have impacted the regulation over the last 2 decades. DATES: Effective Date... Office of the Federal Register's home page at: http://www.gpoaccess.gov/fr/index.html and the...

  8. 40 CFR 86.1816-08 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1816-08 Emission standards for complete... grams per mile. (iv) Oxides of nitrogen. (A)0.2 grams per mile. (B) A manufacturer may elect to include... grams per mile. (iv) Oxides of nitrogen. (A)0.4 grams per mile. (B) A manufacturer may elect to...

  9. 78 FR 56171 - Heavy-Duty Engine and Vehicle and Nonroad Technical Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 1037, 1039, 1042, and 1068 DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Part 535 RIN 2060-AR48; 2127-AL31 Heavy-Duty Engine and Vehicle and...

  10. 77 FR 34149 - Heavy-Duty Highway Program: Revisions for Emergency Vehicles and SCR Maintenance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ..., especially given some emergency vehicles' extreme duty cycles. By this action, EPA intends to help our nation... Highway Diesel Fuel Sulfur Control Requirements (66 FR 5001). The heavy-duty highway rule adopted in 2001... Emissions of Air Pollution from Nonroad Diesel Engines and Fuel (69 FR 38958). III. Direct Final Rule...

  11. DEVELOPMENT OF ON-ROAD EMISSION FACTORS FOR HEAVY- DUTY VEHICLES

    EPA Science Inventory

    The paper discusses an EPA project the objectives of which are to: (1) define on-road emissions from heavy-duty diesel vehicles (HDDVs); (2) assess agreement between engine and chassis dynamometers and on-road emission factors; (3) evaluate current conversion factors for dynamome...

  12. Alloy Design and Thermomechanical Processing of a Beta Titanium Alloy for a Heavy Vehicle Application

    SciTech Connect

    Blue, C.A.; Peter, W.H.

    2010-07-02

    With the strength of steel, but at half the weight, titanium has the potential to offer significant benefits in the weight reduction of heavy vehicle components while possibly improving performance. However, the cost of conventional titanium fabrication is a major barrier in implementation. New reduction technologies are now available that have the potential to create a paradigm shift in the way the United States uses titanium, and the economics associated with fabrication of titanium components. This CRADA project evaluated the potential to develop a heavy vehicle component from titanium powders. The project included alloy design, development of manufacturing practices, and modeling the economics associated with the new component. New Beta alloys were designed for this project to provide the required mechanical specifications while utilizing the benefits of the new fabrication approach. Manufacturing procedures were developed specific to the heavy vehicle component. Ageing and thermal treatment optimization was performed to provide the desired microstructures. The CRADA partner established fabrication practices and targeted capital investment required for fabricating the component out of titanium. Though initial results were promising, the full project was not executed due to termination of the effort by the CRADA partner and economic trends observed in the heavy vehicle market.

  13. 40 CFR 86.1817-05 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and the applicable factors for the specific test group. (iv)(A) Determine and state the source of the... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Complete heavy-duty vehicle averaging, trading, and banking program. 86.1817-05 Section 86.1817-05 Protection of Environment...

  14. 40 CFR 86.1816-05 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1816-05 Emission standards for complete... (2003 model year for manufacturers choosing Otto-cycle HDE option 1 in § 86.005-1(c)(1), or 2004 model year for manufacturers choosing Otto-cycle HDE option 2 in § 86.005-1(c)(2)) fueled by...

  15. 78 FR 36369 - Heavy-Duty Engine and Vehicle, and Nonroad Technical Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... provisions in our respective Medium- and Heavy-Duty Greenhouse Gas Emissions and Fuel Efficiency final rule... provisions of the replacement engine exemption, expanding EPA's discretion to allow greater flexibility under... them, except for medium-duty passenger vehicles already covered by the greenhouse gas...

  16. US Department of Energy workshop on future fuel technology for heavy vehicles

    SciTech Connect

    1996-12-31

    The objective of the workshop described in this report was to develop consensus on a program strategy for use of alternative fuels in heavy vehicles. Participants represented fuel providers, additive suppliers, the trucking industry, engine manufacturers, and government or national laboratory staff. Breakout sessions were co-facilitated by national laboratory staff and industry representatives.

  17. Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentations and Summary of Comments and Conclusions

    SciTech Connect

    Browand, F; Gutierrez, W; Leonard, A; McBride, D; McCallen, R; Ross, J; Roth, K; Rutledge, W; Salari, K

    1998-09-28

    The first Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Sandia National Laboratories (SNL) in Albuquerque, New Mexico on August 28, 1998. The purpose of the meeting was to review the proposed Multi-Year Program Plan (MYPP) and provide an update on the Group"s progress. In addition, the technical details of each organization"s activities were presented and discussed. Presentations were given by representatives from the Department of Energy (DOE) Office of Transportation Technology Office of Heavy Vehicle Technology (OHVT), Lawrence Livermore National Laboratory (LLNL), SNL, University of Southern California (USC), California Institute of Technology (Caltech), and NASA Ames Research Center. These presenters are part of a DOE appointed Technical Team assigned to developing the MYPP. The goal of the MYPP is to develop and demonstrate the ability to simulate and analyze aerodynamic flow around heavy truck vehicles using existing and advanced computational tools (A Multi-Year Program Plan for the Aerodynamic Design of Heavy Vehicles, R. McCallen, D. McBride, W. Rutledge, F. Browand, A. Leonard, .I. Ross, UCRL-PROP- 127753 Dr. Rev 2, May 1998). This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions from the Meeting participants, and outlines the future action items.

  18. Informal Market Survey of Training Issues: Heavy Duty Alternative Fuel Vehicles.

    ERIC Educational Resources Information Center

    Eckert, Doug

    The needs and opportunities in the heavy-duty alternative fuel vehicle training arena were examined in an informal marketing survey. A list of 277 potential respondents was compiled from the 220 individuals in the National Alternative Fuels Training Program database and 57 names identified from journals in the field of alternative fuels. When 2…

  19. A predictive tool for emissions from heavy-duty diesel vehicles.

    PubMed

    Clark, Nigel N; Gajendran, Prakash; Kern, Stin M

    2003-01-01

    Traditional emissions inventories for trucks and buses have relied on diesel engine emissions certification data, in units of g/bhp-hr, processed to yield a value in g/mile without a detailed accounting of the vehicle activity. Research has revealed a variety of other options for inventory prediction, including the use of emissions factors based upon instantaneous engine power and instantaneous vehicle behavior. The objective of this paper is to provide tabular factors for use with vehicle activity information to describe the instantaneous emissions from each heavy-duty vehicle considered. To produce these tables, a large body of data was obtained from the research efforts of the West Virginia University-Transportable Heavy Duty Emissions Testing Laboratories (TransLabs). These data were available as continuous records of vehicle speed (hence also acceleration), vehicle power, and emissions of carbon monoxide (CO), oxides of nitrogen (NOx), and hydrocarbons (HC). Data for particulate matter (PM) were available only as a composite value for a whole vehicle test cycle, but using a best effort approach, the PM was distributed in time in proportion to the CO. Emissions values, in g/sec, were binned according to the speed and acceleration of a vehicle, and it was shown that the emissions could be predicted with reasonable accuracy by applying this table to the original speed and acceleration data. The test cycle used was found to have a significant effect on the emissions value predicted. Tables were created for vehicles grouped by type (large transit buses, small transit buses, and tractor-trailers) and by range of model year. These model year ranges were bounded by U.S. national changes in emissions standards. The result is that a suite of tables is available for application to emissions predictions for trucks and buses with known activity, or as modeled by TRANSIMS, a vehicle activity simulation model from Los Alamos National Laboratories.

  20. Demonstration of Alternative Fuel, Light and Heavy Duty Vehicles in State and Municipal Vehicle Fleets

    SciTech Connect

    Kennedy, John H.; Polubiatko, Peter; Tucchio, Michael A.

    2002-02-06

    This project involved the purchase of two Compressed Natural Gas School Buses and two electric Ford Rangers to demonstrate their viability in a municipal setting. Operational and maintenance data were collected for analysis. In addition, an educational component was undertaken with middle school children. The children observed and calculated how electric vehicles could minimize pollutants through comparison to conventionally powered vehicles.

  1. Conversion of the exhaust emission results obtained from combustion engines of heavy-duty vehicles

    NASA Astrophysics Data System (ADS)

    Merkisz, J.; Pielecha, J.

    2016-09-01

    The use of internal combustion engines as the drive for heavy-duty vehicles forces these engines to be tested on an engine dynamometer. Thus, these engines operate under forced conditions, which are significantly different from their actual application. To assess the ecology of such vehicles (or more accurately the engine alone) the emission of pollution per unit of work done by the engine must be determined. However, obtaining the results of unit emissions (expressed in grams of the compound per a unit of performed work) does not give the grounds for determining the mass of pollutants on a given stretch of the road travelled by the vehicle. Therefore, there is a need to change the emission value expressed in units referenced to the engine work into a value of road emissions. The paper presents a methodology of determining pollutant emissions of heavy-duty road vehicles on the basis of the unit emissions, as well as additional parameters determined on the basis of the algorithm presented in the article. A solution was obtained that can be used not only for heavy-duty vehicles, but was also extended to allow use for buses.

  2. Particle bed reactor propulsion vehicle performance and characteristics as an orbital transfer rocket

    SciTech Connect

    Horn, F.L.; Powell, J.R.; Lazareth, O.W.

    1986-01-01

    The particle bed reactor designed for 100 to 300 MW power output using hydrogen as a coolant is capable of specific impulses up to 1000 seconds as a nuclear rocket. A single space shuttle compatible vehicle can perform extensive missions from LEO to 3 times GEO and return with multi-ton payloads. The use of hydrogen to directly cool particulate reactor fuel results in a compact, lightweight rocket vehicle, whose duration of usefulness is dependent only upon hydrogen resupply availability. The LEO to GEO mission had a payload capability of 15.4 metric tons with 3.4 meters of shuttle bay. To increase the volume limitation of the shuttle bay, the use of ammonia in the initial boost phase from LEO is used to give greater payload volume with a small decrease in payload mass, 8.7 meters and 12.7 m-tons. 5 refs., 15 figs.

  3. A spherical torus nuclear fusion reactor space propulsion vehicle concept for fast interplanetary travel

    NASA Astrophysics Data System (ADS)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.

    1999-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a>5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including payload, central truss, nuclear reactor (including diverter and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, and component design.

  4. A Spherical Torus Nuclear Fusion Reactor Space Propulsion Vehicle Concept for Fast Interplanetary Travel

    NASA Technical Reports Server (NTRS)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.

    1998-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a greater than 5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all ma or systems including payload, central truss, nuclear reactor (including divertor and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, power utilization, and component design.

  5. The control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle using a CMAC neural network.

    PubMed

    Harmon, Frederick G; Frank, Andrew A; Joshi, Sanjay S

    2005-01-01

    A Simulink model, a propulsion energy optimization algorithm, and a CMAC controller were developed for a small parallel hybrid-electric unmanned aerial vehicle (UAV). The hybrid-electric UAV is intended for military, homeland security, and disaster-monitoring missions involving intelligence, surveillance, and reconnaissance (ISR). The Simulink model is a forward-facing simulation program used to test different control strategies. The flexible energy optimization algorithm for the propulsion system allows relative importance to be assigned between the use of gasoline, electricity, and recharging. A cerebellar model arithmetic computer (CMAC) neural network approximates the energy optimization results and is used to control the parallel hybrid-electric propulsion system. The hybrid-electric UAV with the CMAC controller uses 67.3% less energy than a two-stroke gasoline-powered UAV during a 1-h ISR mission and 37.8% less energy during a longer 3-h ISR mission.

  6. Interactions between Flight Dynamics and Propulsion Systems of Air-Breathing Hypersonic Vehicles

    NASA Astrophysics Data System (ADS)

    Dalle, Derek J.

    The development and application of a first-principles-derived reduced-order model called MASIV (Michigan/AFRL Scramjet In Vehicle) for an air-breathing hypersonic vehicle is discussed. Several significant and previously unreported aspects of hypersonic flight are investigated. A fortunate coupling between increasing Mach number and decreasing angle of attack is shown to extend the range of operating conditions for a class of supersonic inlets. Detailed maps of isolator unstart and ram-to-scram transition are shown on the flight corridor map for the first time. In scram mode the airflow remains supersonic throughout the engine, while in ram mode there is a region of subsonic flow. Accurately predicting the transition between these two modes requires models for complex shock interactions, finite-rate chemistry, fuel-air mixing, pre-combustion shock trains, and thermal choking, which are incorporated into a unified framework here. Isolator unstart occurs when the pre-combustion shock train is longer than the isolator, which blocks airflow from entering the engine. Finally, cooptimization of the vehicle design and trajectory is discussed. An optimal control technique is introduced that greatly reduces the number of computations required to optimize the simulated trajectory.

  7. Project Argo: The design and analysis of an all-propulsive and an aeroassisted version of a manned space transportation vehicle

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Project Argo is the design of a manned Space Transportation Vehicle (STV) that would transport payloads between LEO (altitude lying between 278 to 500 km above the Earth) and GEO (altitude is approximately 35,800 km above the Earth) and would be refueled and refurbished at the Space Station Freedom. Argo would be man's first space-based manned vehicle and would provide a crucial link to geosynchronous orbit where the vast majority of satellites are located. The vehicle could be built and launched shortly after the space station and give invaluable space experience while serving as a workhorse to deliver and repair satellites. Eventually, if a manned space station is established in GEO, then Argo could serve as the transport between the Space Station Freedom and a Geostation. If necessary, modifications could be made to allow the vehicle to reach the moon or possibly Mars. Project Argo is unique in that it consists of the design and comparison of two different concepts to accomplish the same mission. The first is an all-propulsive vehicle which uses chemical propulsion for all of its major maneuvers between LEO and GEO. The second is a vehicle that uses aeroassisted braking during its return from GEO to LEO by passing through the upper portions of the atmosphere.

  8. 75 FR 68448 - Revisions to In-Use Testing for Heavy-Duty Diesel Engines and Vehicles; Emissions Measurement and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ... Engines and Vehicles, 70 FR 34594 (June 14, 2005). The program was amended in March 2008 to delay some of... Measurement Accuracy Margins for Portable Emission Measurement Systems and Program Revisions, 73 FR 13441... Pollution From New Motor Vehicles: In-Use Testing for Heavy-Duty Diesel Engines and Vehicles, 70 FR...

  9. Thermal management concepts for higher efficiency heavy vehicles.

    SciTech Connect

    Wambsganss, M. W.

    1999-05-19

    Thermal management is a cross-cutting technology that directly or indirectly affects engine performance, fuel economy, safety and reliability, aerodynamics, driver/passenger comfort, materials selection, emissions, maintenance, and component life. This review paper provides an assessment of thermal management for large trucks, particularly as it impacts these features. Observations arrived at from a review of the state of the art for thermal management for over-the-road trucks are highlighted and commented on. Trends in the large truck industry, pertinent engine truck design and performance objectives, and the implications of these relative to thermal management, are presented. Finally, new thermal management concepts for high efficiency vehicles are described.

  10. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1979. [70 W/lb

    SciTech Connect

    Not Available

    1980-06-01

    This second annual report under Contract No. 31-109-39-4200 covers the period July 1, 1978 through August 31, 1979. The program demonstrates the feasibility of the nickel-zinc battery for electric vehicle propulsion. The program is divided into seven distinct but highly interactive tasks collectively aimed at the development and commercialization of nickel-zinc technology. These basic technical tasks are separator development, electrode development, product design and analysis, cell/module battery testing, process development, pilot manufacturing, and thermal management. A Quality Assurance Program has also been established. Significant progress has been made in the understanding of separator failure mechanisms, and a generic category of materials has been specified for the 300+ deep discharge (100% DOD) applications. Shape change has been reduced significantly. A methodology has been generated with the resulting hierarchy: cycle life cost, volumetric energy density, peak power at 80% DOD, gravimetric energy density, and sustained power. Generation I design full-sized 400-Ah cells have yielded in excess of 70 W/lb at 80% DOD. Extensive testing of cells, modules, and batteries is done in a minicomputer-based testing facility. The best life attained with electric vehicle-size cell components is 315 cycles at 100% DOD (1.0V cutoff voltage), while four-cell (approx. 6V) module performance has been limited to about 145 deep discharge cycles. The scale-up of processes for production of components and cells has progressed to facilitate component production rates of thousands per month. Progress in the area of thermal management has been significant, with the development of a model that accurately represents heat generation and rejection rates during battery operation. For the balance of the program, cycle life of > 500 has to be demonstrated in modules and full-sized batteries. 40 figures, 19 tables. (RWR)

  11. A refuelable zinc/air battery for fleet electric vehicle propulsion

    NASA Astrophysics Data System (ADS)

    Cooper, John F.; Fleming, Dennis; Hargrove, Douglas; Koopman, Ronald; Peterman, Keith

    1995-04-01

    We report the development and on-vehicle testing of an engineering prototype zinc/air battery. The battery is refueled by periodic exchange of spent electrolyte for zinc particles entrained in fresh electrolyte. The technology is intended to provide a capability for nearly continuous vehicle operation, using the fleet's home base for 10 minute refuelings and zinc recycling instead of commercial infrastructure. In the battery, the zinc fuel particles are stored in hoppers, from which they are gravity fed into individual cells and completely consumed during discharge. A six-celled (7V) engineering prototype battery was combined with a 6 V lead/acid battery to form a parallel hybrid unit, which was tested in series with the 216 V battery of an electric shuttle bus over a 75 mile circuit. The battery has an energy density of 140 Wh/kg and a mass density of 1.5 kg/L. Cost, energy efficiency, and alternative hybrid configurations are discussed.

  12. Survey of Aerothermodynamics Facilities Useful for the Design of Hypersonic Vehicles Using Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Deiwert, G. S.

    1997-01-01

    The dream of producing an air-breathing, hydrogen fueled, hypervelocity aircraft has been before the aerospace community for decades. However, such a craft has not yet been realized, even in an experimental form. Despite the simplicity and beauty of the concept, many formidable problems must be overcome to make this dream a reality. This paper summarizes the aero/aerothermodynamic issues that must be addressed to make the dream a reality and discusses how aerothermodynamics facilities and their modem companion, real-gas computational fluid dynamics (CFD), can help solve the problems blocking the way to realizing the dream. The approach of the paper is first to outline the concept of an air-breathing hypersonic vehicle and then discuss the nose-to-tail aerothermodynamics issues and special aerodynamic problems that arise with such a craft. Then the utility of aerothermodynamic facilities and companion CFD analysis is illustrated by reviewing results from recent United States publications wherein these problems have been addressed. Papers selected for the discussion have k e n chosen such that the review will serve to survey important U.S. aero/aerothermodynamic real gas and conventional wind tunnel facilities that are useful in the study of hypersonic, hydrogen propelled hypervelocity vehicles.

  13. A refuelable zinc/air battery for fleet electric vehicle propulsion

    SciTech Connect

    Cooper, J.F.; Fleming, D.; Hargrove, D.; Koopman, R.; Peterman, K.

    1995-04-20

    We report the development and on-vehicle testing of an engineering prototype zinc/air battery. The battery is refueled by periodic exchange of spent electrolyte for zinc particles entrained in fresh electrolyte. The technology is intended to provide a capability for nearly continuous vehicle operation, using the fleet s home base for 10 minute refuelings and zinc recycling instead of commercial infrastructure. In the battery, the zinc fuel particles are stored in hoppers, from which they are gravity fed into individual cells and completely consumed during discharge. A six-celled (7V) engineering prototype battery was combined with a 6 V lead/acid battery to form a parallel hybrid unit, which was tested in series with the 216 V battery of an electric shuttle bus over a 75 mile circuit. The battery has an energy density of 140 Wh/kg and a mass density of 1.5 kg/L. Cost, energy efficiency, and alternative hybrid configurations are discussed.

  14. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 5: Nuclear electric propulsion vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The nuclear electric propulsion (NEP) concept design developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study is presented. The evolution of the NEP concept is described along with the requirements, guidelines, and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities and costs.

  15. Final design report of a personnel launch system and a family of heavy lift launch vehicles

    NASA Technical Reports Server (NTRS)

    Tupa, James; Merritt, Debbie; Riha, David; Burton, Lee; Kubinski, Russell; Drake, Kerry; Mann, Darrin; Turner, Ken

    1991-01-01

    The objective was to design both a Personnel Launch System (PLS) and a family of Heavy Lift Launch Vehicles (FHLLVs) that provide low cost and efficient operation in missions not suited for the Shuttle. The PLS vehicle is designed primarily for space station crew rotation and emergency crew return. The final design of the PLS vehicle and its interior is given. The mission of the FHLLVs is to place large, massive payloads into Earth orbit with payload flexibility being considered foremost in the design. The final design of three launch vehicles was found to yield a payload capacity range from 20 to 200 mt. These designs include the use of multistaged, high thrust liquid engines mounted on the core stages of the rocket.

  16. Enhanced Monopropellant Fuel Decomposition by High Aspect Ratio, Catalytic CNT Structures for Propulsion of Small Scale Underwater Vehicles

    NASA Astrophysics Data System (ADS)

    Marr, Kevin; Claussen, Jonathan; Iverson, Brian

    2014-11-01

    Both maneuverability and efficiency for reagent-based propulsion systems of small-scale exploratory devices, such as autonomous underwater vehicles (AUVs), is largely dependent on their maximum fuel decomposition rate. Reagent-based systems, however, require large catalyst surface area to fuel volume ratios in order to achieve the fuel decomposition rates necessary for locomotion. This work demonstrates the utility of platinum-coated, carbon nanotube (CNT) scaffolds as high surface area catalysts for decomposition of hydrogen peroxide (H2O2) in a flowing environment. Usage of these functionalized microchannels ensures that both the maximum distance between fuel and catalyst is only half the microchannel diameter, and that the fuel concentration gradient increases due to boundary-layer thinning. These conditions facilitate intimate contact between fuel and catalyst and, therefore, faster decomposition rates. Electrochemical testing revealed that electroactive surface area to volume ratios of approximately 61.4 cm-1 can be achieved for samples fabricated using a static Pt deposition scheme. Thrust measurements were taken using a small-scale submersible which indicated a maximum thrust of 0.114 N using 50 weight percent H2O2 exposed to eight inline 2.867 cm2 Pt-CNT scaffolds.

  17. Space Shuttle Propulsion Finishing Strong

    NASA Technical Reports Server (NTRS)

    Owen, James W.; Singer, Jody

    2011-01-01

    Numerous lessons have been documented from the Space Shuttle Propulsion elements. Major events include loss of the SRB's on STS-4 and shutdown of an SSME during ascent on STS- 51F. On STS-112 only half the pyrotechnics fired to release the vehicle from the launch pad, a testament for redundancy. STS-91 exhibited freezing of a main combustion chamber pressure measurement and on STS-93 nozzle tube ruptures necessitated a low liquid level oxygen cut off of the main engines. A number of on pad aborts were experienced during the early program resulting in delays. And the two accidents, STS-51L and STS-107, had unique heritage in history from early Program decisions and vehicle configuration. Following STS-51L significant resources were invested in developing fundamental physical understanding of solid rocket motor environments and material system behavior. Human rating of solid rocket motors was truly achieved. And following STS-107, the risk of ascent debris was better characterized and controlled. Situational awareness during all mission phases improved, and the management team instituted effective risk assessment practices. These major events and lessons for the future are discussed. The last 22 flights of the Space Shuttle, following the Columbia accident, were characterized by remarkable improvement in safety and reliability. Numerous problems were solved in addition to reduction of the ascent debris hazard. The propulsion system elements evolved to high reliability and heavy lift capability. The Shuttle system, though not a operable as envisioned in the 1970's, successfully assembled the International Space Station (ISS) and provided significant logistics and down mass for ISS operations. By the end of the Program, the remarkable Space Shuttle Propulsion system achieved very high performance, was largely reusable, exhibited high reliability, and is a heavy lift earth to orbit propulsion system. The story of this amazing system is discussed in detail in the paper.

  18. Natural Gas as a Future Fuel for Heavy-Duty Vehicles

    SciTech Connect

    Wai-Lin Litzke; James Wegrzyn

    2001-05-14

    In addition to their significant environmental impacts, medium-duty and heavy-duty (HD) vehicles are high volume fuel users. Development of such vehicles, which include transit buses, refuse trucks, and HD Class 6-8 trucks, that are fueled with natural gas is strategic to market introduction of natural gas vehicles (NGV). Over the past five years the Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) has funded technological developments in NGV systems to support the growth of this sector in the highly competitive transportation market. The goals are to minimize emissions associated with NGV use, to improve on the economies of scale, and to continue supporting the testing and safety assessments of all new systems. This paper provides an overview of the status of major projects under a program supported by DOE/OHVT and managed by Brookhaven National Laboratory. The discussion focuses on the program's technical strategy in meeting specific goals proposed by the N GV industry and the government. Relevant projects include the development of low-cost fuel storage, fueling infrastructure, and HD vehicle applications.

  19. Simulation of spray dispersion in a simplified heavy vehicle wake

    SciTech Connect

    Paschkewitz, J S

    2006-01-13

    Simulations of spray dispersion in a simplified tractor-trailer wake have been completed with the goal of obtaining a better understanding of how to mitigate this safety hazard. The Generic Conventional Model (GCM) for the tractor-trailer was used. The impact of aerodynamic drag reduction devices, specifically trailer-mounted base flaps, on the transport of spray in the vehicle wake was considered using the GCM. This analysis demonstrated that base flaps including a bottom plate may actually worsen motorist visibility because of the interaction of fine spray with large vortex flows in the wake. This work suggests that to use computational fluid dynamics (CFD) to design and evaluate spray mitigation strategies the jet or sheet breakup processes can be modeled using an array of injectors of small (< 0.1 mm) water droplets; however the choice of size distribution, injection locations, directions and velocities is largely unknown and requires further study. Possible containment strategies would include using flow structures to 'focus' particles into regions away from passing cars or surface treatments to capture small drops.

  20. Final Report: Use of Graphite Foam as a Thermal Performance Enhancement of Heavy Hybrid Propulsion Systems

    SciTech Connect

    Klett, James William; Conklin, Jim

    2011-06-01

    Oak Ridge National Laboratory's graphite foam has the potential to be used as a heat exchanger for the Army's Future Combat System Manned Ground Vehicle and thus has the potential to improve its thermal performance. The computational fluid dynamics (CFD) program FLOW3D was used to develop a new CFD model for the graphite foam to be used in the development of a proper heat exchanger. The program was calibrated by first measuring the properties of the solid foams and determining the parameters to be used in the CFD model. Then the model was used to predict within 5% error the performance of finned foam heat sinks. In addition, the f factors and j factors commonly used to predict pressure drop and heat transfer were calculated for both the solid and finned structures. There was some evidence that corrugating the foams would yield higher j/f ratios than state of the art heat exchangers, confirming previously measured data. Because the results show that the CFD model was validated, it is recommended that the funding for Phases 2 through 5 be approved for the design of both the finned heat exchanger using tubes and round fin structures and the solid foam design using corrugated foams. It was found that the new CFD model using FLOW3D can predict both solid foam heat transfer and finned foam heat transfer with the validated model parameters. In addition, it was found that the finned foam structures exhibited j/f ratios that indicate that significant heat transfer is occurring within the fin structures due to aerodynamically induced flow, which is not present in solid aluminum fin structures. It is possible that the foam surfaces can act as turbulators that increase heat transfer without affecting pressure drop, like the vortex generators seen in state of the art heat exchangers. These numbers indicate that the foam can be engineered into an excellent heat exchanger. It was also found that corrugating the solid foams would increase the j/f ratio dramatically, allowing the

  1. Australian Air Breathing Propulsion Research for Hypersonic, Beamed Energy-Propelled Vehicles

    NASA Astrophysics Data System (ADS)

    Froning, David

    2010-05-01

    A three year laser-propelled vehicle analysis and design investigation has been begun in June, 2009 by Faculty and graduate students at the University of Adelaide under a Grant/Cooperative Agreement Award to the University of Adelaide by the Asian Office of Aerospace Research and Development (AOARD). The major objectives of thsis investigation are: (a) development of hypersonic, air breathing "lightcraft" with innovative air inlets that enable acceptable airflow capture and combustion, and acceptable cowl-lip heating rates during hot, high-speed, high angle-of-attack hypersonic flight; (b) yest of the most promising lightcraft and inlet design in the high power laser beam that is part of the shock tunnel facility at CTO Instituto in Brazil; and (c) plan a series of laser guided and propelled flights that achieve supersonic or higher speed at the Woomera Test Facility (WTF) in South Australia—using the existing WTF launching and tracking facilities and sponsor-provided laser pointing and tracking and illumination systems.

  2. 77 FR 30765 - Federal Motor Vehicle Safety Standards; Electronic Stability Control Systems for Heavy Vehicles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... DOT's complete Privacy Act Statement in the Federal Register published on April 11, 2000 (65 FR 19477... in response to high lateral acceleration and yaw rate conditions. The manner in which the data would... instability, by applying selective braking. A vehicle without a stability control system would maintain...

  3. Size and composition distributions of particulate matter emissions: part 2--heavy-duty diesel vehicles.

    PubMed

    Robert, Michael A; Kleeman, Michael J; Jakober, Christopher A

    2007-12-01

    Particulate matter (PM) emissions from heavy-duty diesel vehicles (HDDVs) were collected using a chassis dynamometer/dilution sampling system that employed filter-based samplers, cascade impactors, and scanning mobility particle size (SMPS) measurements. Four diesel vehicles with different engine and emission control technologies were tested using the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) 5 mode driving cycle. Vehicles were tested using a simulated inertial weight of either 56,000 or 66,000 lb. Exhaust particles were then analyzed for total carbon, elemental carbon (EC), organic matter (OM), and water-soluble ions. HDDV fine (< or =1.8 microm aerodynamic diameter; PM1.8) and ultrafine (0.056-0.1 microm aerodynamic diameter; PM0.1) PM emission rates ranged from 181-581 mg/km and 25-72 mg/km, respectively, with the highest emission rates in both size fractions associated with the oldest vehicle tested. Older diesel vehicles produced fine and ultrafine exhaust particles with higher EC/OM ratios than newer vehicles. Transient modes produced very high EC/OM ratios whereas idle and creep modes produced very low EC/OM ratios. Calcium was the most abundant water-soluble ion with smaller amounts of magnesium, sodium, ammonium ion, and sulfate also detected. Particle mass distributions emitted during the full 5-mode HDDV tests peaked between 100-180 nm and their shapes were not a function of vehicle age. In contrast, particle mass distributions emitted during the idle and creep driving modes from the newest diesel vehicle had a peak diameter of approximately 70 nm, whereas mass distributions emitted from older vehicles had a peak diameter larger than 100 nm for both the idle and creep modes. Increasing inertial loads reduced the OM emissions, causing the residual EC emissions to shift to smaller sizes. The same HDDV tested at 56,000 and 66,000 lb had higher PM0.1 EC emissions (+22%) and lower PM0.1 OM emissions (-38%) at the higher load

  4. July 2004 Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentation, Summary of Comments, and Conclusions

    SciTech Connect

    McCallen, R; Salari, K; Ortega, J; Castellucci, P; Eastwood, C; DeChant, L; Hassan, B; Browand, F; Arcas, D; Ross, J; Heineck, J; Storms, B; Walker, S; Leonard, A; Roy, C; Whitfield, D; Pointer, D; Sofu, T; Englar, R; Funk, R

    2004-08-17

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held in Portland, Oregon on July 1, 2004. The purpose of the meeting was to provide a summary of achievements, discuss pressing issues, present a general overview of future plans, and to provide a forum for dialogue with the Department of Energy (DOE) and industry representatives. The meeting was held in Portland, because the DOE Aero Team participated in an exclusive session on Heavy Truck Vehicle Aerodynamic Drag at the 34th AIAA Fluid Dynamics Conference and Exhibit in Portland on the morning of July 1st, just preceding our Working Group meeting. Even though the paper session was on the last day of the Conference, the Team presented to a full room of interested attendees.

  5. A test manager's perspective of a test concept for a heavy lift vehicle

    NASA Technical Reports Server (NTRS)

    Pargeon, John I., Jr.

    1990-01-01

    The developmment of a test concept is a significant part of the advanced planning activities accomplished for the Initial Operational Test and Evaluation (IOT&E) of new systems. A test concept is generally viewed as a description, including rationale, of the test structure, evaluation methodology and management approach required to plan and conduct the IOT&E of a program such as a new heavy lift launch vehicle system. The test concept as presented in this paper is made up of an operations area, a test area, an evaluation area, and a management area. The description presented here is written from the perspective of one test manager, and represents his views of a possible framework of a test concept using examples for a potential IOT&E of a heavy lift launch vehicle.

  6. A test manager's perspective of a test concept for a heavy lift vehicle

    NASA Astrophysics Data System (ADS)

    Pargeon, John I., Jr.

    1990-09-01

    The developmment of a test concept is a significant part of the advanced planning activities accomplished for the Initial Operational Test and Evaluation (IOT&E) of new systems. A test concept is generally viewed as a description, including rationale, of the test structure, evaluation methodology and management approach required to plan and conduct the IOT&E of a program such as a new heavy lift launch vehicle system. The test concept as presented in this paper is made up of an operations area, a test area, an evaluation area, and a management area. The description presented here is written from the perspective of one test manager, and represents his views of a possible framework of a test concept using examples for a potential IOT&E of a heavy lift launch vehicle.

  7. FY 2004 Annual Report: DOE Project on Heavy Vehicle Aerodynamic Drag

    SciTech Connect

    McCallen, R C; Salari, K; Ortega, J; Castellucci, P; Eastwood, C; Whittaker, K; DeChant, L J; Roy, C J; Payne, J L; Hassan, B; Pointer, W D; Browand, F; Hammache, M; Hsu, T; Ross, J; Satran, D; Heineck, J T; Walker, S; Yaste, D; Englar, R; Leonard, A; Rubel, M; Chatelain, P

    2004-11-18

    The objective of this report is: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; and (2) Establish a database of experimental, computational, and conceptual design information, and demonstrate potential of new drag-reduction devices. The approaches used were: (1) Develop and demonstrate the ability to simulate and analyze aerodynamic flow around heavy truck vehicles using existing and advanced computational fluid dynamics (CFD) tools; (2) Through an extensive experimental effort, generate an experimental data base for code validation; (3) Using experimental data base, validate computations; (4) Provide industry with design guidance and insight into flow phenomena from experiments and computations; and (5) Investigate aero devices (e.g., base flaps, tractor-trailer gap stabilizer, underbody skirts and wedges, blowing and acoustic devices), provide industry with conceptual designs of drag reducing devices, and demonstrate the full-scale fuel economy potential of these devices.

  8. NASA electric propulsion technology

    NASA Technical Reports Server (NTRS)

    Berkopec, F. D.; Stone, J. R.; Aston, G.

    1985-01-01

    It is pointed out that the requirements for future electric propulsion cover an extremely large range of technical and programmatic characteristics. A NASA program is to provide options for the many potential mission applications, taking into account work on electrostatic, electromagnetic, and electrothermal propulsion systems. The present paper is concerned with developments regarding the three classes of electric propulsion. Studies concerning electrostatic propulsion are concerned with ion propulsion for primary propulsion for planetary and earth-orbit transfer vehicles, stationkeeping for geosynchronous spacecraft, and ion thruster systems. In connection with investigations related to electromagnetic propulsion, attention is given to electromagnetic launchers, the Hall current thruster, and magnetoplasmadynamic thrusters. In a discussion of electrothermal developments, space station resistojets are considered along with high performance resistojets, arcjets, and a laser thruster.

  9. OAST Space Theme Workshop. Volume 3: Working Group Summary. 5: Propulsion (P-1). A. Summary Statement. B. Technology Needs (Form 1). C. Priority Assessments (Form 2)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    All themes require some form of advanced propulsion capabilities to achieve their stated objectives. Requirements cover a broad spectrum ranging from a new generation of heavy lift launch vehicles to low thrust, long lift system for on-orbit operations. The commonality extant between propulsive technologies was established and group technologies were grouped into vehicle classes by functional capability. The five classes of launch vehicles identified by the space transportation theme were augmented with a sixth class, encompassing planetary and on-orbit operations. Propulsion technologies in each class were then ranked, and assigned priority numbers. Prioritized technologies were matched to theme requirements.

  10. Emission factors for heavy metals from diesel and petrol used in European vehicles

    NASA Astrophysics Data System (ADS)

    Pulles, Tinus; Denier van der Gon, Hugo; Appelman, Wilfred; Verheul, Marc

    2012-12-01

    Heavy metals constitute an important group of persistent toxic pollutants occurring in ambient air and other media. One of the suspected sources of these metals in the atmosphere is combustion of transport fuels in road vehicles. However, estimates of the emissions of these metals from road vehicles as reported in national emission inventories show a very high variability in emission factors used. This paper provides high quality data on concentrations of heavy metals in fuels and derives default emission factors from these. The paper discusses these values against the emission estimates presently reported by the Parties to the LRTAP Convention. The measured concentrations of heavy metals in petrol and diesel fuel show a high variability between different samples taken at gas stations throughout Europe. Metal concentrations in road transport fuels vary over two orders of magnitude, but all remain in the ppb region (a few tenths of a ppb to a few hundred ppb for all metals). The frequency distributions of the measurements could be approximated by lognormal distributions. The emission factors, including 95 percent confidence intervals were derived from a statistical analysis of the survey data. We could not detect a significant difference between samples from different countries. The fuel based emission factors as derived in this study are complemented with those related to unintentional lubricant oil combustion. This allowed an estimation of total exhaust heavy metal emissions for UNECE Europe, indicating that As, Hg and Se exhaust emissions were dominated by fuel combustion while Cd, Cr, Cu, Ni, Pb, and Zn exhaust emissions were dominated by lubricant oil combustion. The proposed emission factors were generally lower than previously published emission factors. National emissions of heavy metals from vehicle exhaust, estimated in this study are in many cases considerably lower than those reported by the countries for this source.

  11. Development of Pneumatic Aerodynamic Devices to Improve the Performance, Economics, and Safety of Heavy Vehicles

    SciTech Connect

    Robert J. Englar

    2000-06-19

    Under contract to the DOE Office of Heavy Vehicle Technologies, the Georgia Tech Research Institute (GTRI) is developing and evaluating pneumatic (blown) aerodynamic devices to improve the performance, economics, stability and safety of operation of Heavy Vehicles. The objective of this program is to apply the pneumatic aerodynamic aircraft technology previously developed and flight-tested by GTRI personnel to the design of an efficient blown tractor-trailer configuration. Recent experimental results obtained by GTRI using blowing have shown drag reductions of 35% on a streamlined automobile wind-tunnel model. Also measured were lift or down-load increases of 100-150% and the ability to control aerodynamic moments about all 3 axes without any moving control surfaces. Similar drag reductions yielded by blowing on bluff afterbody trailers in current US trucking fleet operations are anticipated to reduce yearly fuel consumption by more than 1.2 billion gallons, while even further reduction is possible using pneumatic lift to reduce tire rolling resistance. Conversely, increased drag and down force generated instantaneously by blowing can greatly increase braking characteristics and control in wet/icy weather due to effective ''weight'' increases on the tires. Safety is also enhanced by controlling side loads and moments caused on these Heavy Vehicles by winds, gusts and other vehicles passing. This may also help to eliminate the jack-knifing problem if caused by extreme wind side loads on the trailer. Lastly, reduction of the turbulent wake behind the trailer can reduce splash and spray patterns and rough air being experienced by following vehicles. To be presented by GTRI in this paper will be results developed during the early portion of this effort, including a preliminary systems study, CFD prediction of the blown flowfields, and design of the baseline conventional tractor-trailer model and the pneumatic wind-tunnel model.

  12. Passenger car collision fatalities--with special emphasis on collisions with heavy vehicles.

    PubMed

    Björnstig, Ulf; Björnstig, Johanna; Eriksson, Anders

    2008-01-01

    Between 1995 and 2004, 293 passenger car occupants died in collisions with other vehicles in northern Sweden (annual incidence: 3.3 per 100,000 inhabitants, 6.9 per 100,000 cars, or 4.8 per 10(9)km driven); half of these deaths involved heavy vehicles. The annual number of passenger car occupant deaths per 100,000 cars in car-truck/bus collisions has remained unchanged since the 1980s, but in car-car collisions it has decreased to one third of its former level. As crash objects, trucks and buses killed five times as many car occupants per truck/bus kilometer driven as did cars. The collisions were characterized by crashes in the oncoming vehicle's lane, under icy, snowy, or wet conditions; crashes into heavy vehicles generally occurred in daylight, on workdays, in winter, and on 90 and 70 km/h two-lane roads. Head and chest injuries accounted for most of the fatal injuries. Multiple fatal injuries and critical and deadly head injuries characterized the deaths in collisions with heavy vehicles. An indication of suicide was present in 4% of the deaths; for those who crashed into trucks, this percentage was doubled. Among the driver victims, 4% had blood alcohol levels above the legal limit of 0.2g/L. Frontal collision risks might be reduced by a mid-barrier, by building less injurious fronts on trucks and buses, by efficient skid prevention, and by use of flexible speed limits varying with road and light conditions. PMID:18215544

  13. May 2005 Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentation, Summary of Comments and Conclusions

    SciTech Connect

    McCallen, R C

    2005-08-17

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory, Livermore, California on May 12th and 13th of 2005. The purpose of the first day's meeting, May 12th, was to provide a summary of achievements, discuss issues, present a general overview of future plans, and to offer a forum for dialogue with the Department of Energy (DOE) and representatives from industry, universities, and research and development organizations performing work related to heavy vehicle aerodynamics. This first meeting day was open to participants from industry and research organizations from both the US and Canada. The second day, May 13th, was attended only by representatives from the 9 organizations that form the DOE Consortium effort and their government sponsors. The purpose of the second day's meeting was to further discuss fiscal year 2005's activities, any further specific pressing issues, identify individual action items, and provide an overview of plans for fiscal year 2006. Based on discussions at the Meeting, the existing project goals remain unchanged and enhancing interactions with fleet owners and operators was emphasized: (1) Perform heavy vehicle computations and experiments, (2) Validate computations using experimental data, (3) Provide design guidance and insight into flow phenomena from experiments and computations, and (4) Investigate aero devices with emphasis on collaborative efforts with fleet owners and operators.

  14. A Multi-Year Program Plan for the Aerodynamic Design of Heavy Vehicles

    SciTech Connect

    2001-09-01

    The project tasks and deliverables are as follows: Computations and Experiments--(1) Simulation and analysis of a range of generic shapes, simplified to more complex, representative of tractor and integrated tractor-trailer flow characteristics using computational tools, (2) The establishment of an experimental data base for tractor-trailer models for code/computational method development and validation. The first shapes to be considered will be directed towards the investigation of tractor-trailer gaps and mismatch of tractor-trailer heights. (3) The evaluation and documentation of effective computational approaches for application to heavy vehicle aerodynamics based on the benchmark results with existing and advanced computational tools compared to experimental data, and (4) Computational tools and experimental methods for use by industry, National Laboratories, and universities for the aerodynamic modeling of heavy truck vehicles. Evaluation of current and new technologies--(1) The evaluation and documentation of current and new technologies for drag reduction based on published literature and continued communication with the heavy vehicle industry (e.g., identification and prioritization of tractor-trailer drag-sources, blowing and/or suction devices, body shaping, new experimental methods or facilities), and the identification and analysis of tractor and integrated tractor-trailer aerodynamic problem areas and possible solution strategies. (2) Continued industrial site visits. It should be noted that ''CFD tools'' are not only the actual computer codes, but descriptions of appropriate numerical solution methods. Part of the project effort will be to determine the restrictions or avenues for technology transfer.

  15. Pulsed Fission Propulsion Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the 1960's U.S. Government laboratories, under Project Orion, investigated a pulsed nuclear fission propulsion system. Small nuclear pulse units would be sequentially discharged from the aft end of the vehicle. A blast shield and shock absorber system would protect the crew and convert the shock loads into a continuous propulsive force.

  16. Nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1991-01-01

    This document is presented in viewgraph form, and the topics covered include the following: (1) the direct fission-thermal propulsion process; (2) mission applications of direct fission-thermal propulsion; (3) nuclear engines for rocket vehicles; (4) manned mars landers; and (5) particle bed reactor design.

  17. Emission rates of regulated pollutants from on-road heavy-duty diesel vehicles

    NASA Astrophysics Data System (ADS)

    Shah, Sandip D.; Johnson, Kent C.; Wayne Miller, J.; Cocker, David R.

    Emissions from heavy-duty diesel (HDD) vehicles are affected by many factors. Changes in engine technology, operating mode, fuel properties, vehicle speed and ambient conditions can have significant effects on emission rates of regulated species. This paper presents the results of on-road emissions testing of 11 HDD vehicles (model years 1996-2000) over the ARB Four Phase driving schedule and the urban dynamometer driving schedule (UDDS). Emission rates were found to be highly dependent on vehicle operating mode. Per mile NO x emission rates for vehicle operation at low speeds, in simulated congested traffic, were three times higher per mile emissions then while cruising on the freeway. Comparisons of NO x emission factors to EMFAC baseline emission factors were within 5-40% for vehicles of various model years tested over the UDDS. A comparison of NO x emission factors for a weighted average of the ARB four phase driving schedule yielded values within 17-57% of EMFAC values. Generally, particulate matter (PM) emission rates were lower than EMFAC values.

  18. Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.

    PubMed

    Stettler, Marc E J; Midgley, William J B; Swanson, Jacob J; Cebon, David; Boies, Adam M

    2016-02-16

    Dual fuel diesel and natural gas heavy goods vehicles (HGVs) operate on a combination of the two fuels simultaneously. By substituting diesel for natural gas, vehicle operators can benefit from reduced fuel costs and as natural gas has a lower CO2 intensity compared to diesel, dual fuel HGVs have the potential to reduce greenhouse gas (GHG) emissions from the freight sector. In this study, energy consumption, greenhouse gas and noxious emissions for five after-market dual fuel configurations of two vehicle platforms are compared relative to their diesel-only baseline values over transient and steady state testing. Over a transient cycle, CO2 emissions are reduced by up to 9%; however, methane (CH4) emissions due to incomplete combustion lead to CO2e emissions that are 50-127% higher than the equivalent diesel vehicle. Oxidation catalysts evaluated on the vehicles at steady state reduced CH4 emissions by at most 15% at exhaust gas temperatures representative of transient conditions. This study highlights that control of CH4 emissions and improved control of in-cylinder CH4 combustion are required to reduce total GHG emissions of dual fuel HGVs relative to diesel vehicles.

  19. Solar Electric Propulsion (SEP)

    NASA Video Gallery

    Future Human Exploration requires high power solar electric propulsion vehicles to move cargo and humans beyond Low Earth Orbit, which requires large light weight arrays, high power processing, and...

  20. Advanced transportation system studies. Technical area 2: Heavy lift launch vehicle development. Volume 2; Technical Results

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Sections 10 to 13 of the Advanced Transportation System Studies final report are included in this volume. Section 10 contains a copy of an executive summary that was prepared by Lockheed Space Operations Company (LSOC) to document their support to the TA-2 contract during the first-year period of performance of the contract, May 1992 through May 1993. LSOC participated on the TA-2 contract as part of the concurrent engineering launch system definition team, and provided outstanding heavy lift launch vehicle (HLLV) ground operations requirements and concept assessments for Lockheed Missiles and Space Company (LMSC) through an intercompany work transfer as well as providing specific HLLV ground operations assessments at the direction of NASA KSC through KSC funding that was routed to the TA-2 contract. Section 11 contains a copy of a vehicle-independent, launch system health management requirements assessment. The purpose of the assessment was to define both health management requirements and the associated interfaces between a generic advanced transportation system launch vehicle and all related elements of the entire transportation system, including the ground segment. Section 12 presents the major TA-2 presentations provided to summarize the significant results and conclusions that were developed over the course of the contract. Finally, Section 13 presents the design and assessment report on the first lunar outpost heavy lift launch vehicle.

  1. Comparative analysis of the designs and implementation of vehicles based on reactive propulsion proposed during the nineteenth and beginning of the twentieth centuries

    NASA Technical Reports Server (NTRS)

    Sokolskiy, V. N.

    1977-01-01

    Examination of the presently known historical scientific literature related to the problem of reactive flight indicates that considerable attention had already been given to the idea of reactive propulsion in the nineteenth century; about thirty designs for reaction flying vehicles were proposed during this period. However, the authors of a majority of the designs limited themselves only to a presentation of a diagram of the engine or an account of the principle of its operation, giving neither plans for its structural development nor precise calculations of the amount of energy required for accomplishing reaction flight. None of these authors considered the reaction flying vehicle as an object of variable mass, their choice of energy sources was extremely random, and the theory of the flight of reaction flying vehicles remained completely undeveloped. Early rocket designs of Nezhdanovsky, Ganswindt, Goddard, Tsiolkovsky, and others are examined and the evolution of liquid-propellant rocket engines, solid-propellant rocket engines, and jet aircraft engines is reviewed.

  2. Micro electric propulsion feasibility

    NASA Technical Reports Server (NTRS)

    Aston, Graeme; Aston, Martha

    1992-01-01

    Miniature, 50 kg class, strategic satellites intended for extended deployment in space require an on-board propulsion capability to perform needed attitude control adjustments and drag compensation maneuvers. Even on such very small spacecraft, these orbit maintenance functions can be significant and result in a substantial propellant mass requirement. Development of advanced propulsion technology could reduce this propellant mass significantly, and thereby maximize the payload capability of these spacecraft. In addition, spacecraft maneuverability could be enhanced and/or multi-year mission lifetimes realized. These benefits cut spacecraft replacement costs, and reduce services needed to maintain the launch vehicles. For SDIO brilliant pebble spacecraft, a miniaturized hydrazine propulsion system provides both boost and divert thrust control. This type of propulsion system is highly integrated and is capable of delivering large thrust levels for short time periods. However, orbit maintenance functions such as drag make-up require only very small velocity corrections. Using the boost and/or divert thrusters for these small corrections exposes this highly integrated propulsion system to continuous on/off cycling and thereby increases the risk of system failure. Furthermore, since drag compensation velocity corrections would be orders of magnitude less than these thrusters were designed to deliver, their effective specific impulse would be expected to be lower when operated at very short pulse lengths. The net result of these effects would be a significant depletion of the on-board hydrazine propellant supply throughout the mission, and a reduced propulsion system reliability, both of which would degrade the interceptors usefulness. In addition to SDIO brilliant pebble spacecraft, comparably small spacecraft can be anticipated for other future strategic defense applications such as surveillance and communication. For such spacecraft, high capability and reliability

  3. 75 FR 68575 - Revisions To In-Use Testing for Heavy-Duty Diesel Engines and Vehicles; Emissions Measurement and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ...: In-Use Testing for Heavy-Duty Diesel Engines and Vehicles, 70 FR 34594 (June 14, 2005). The program... Measurement Systems and Program Revisions, 73 FR 13441 (March 13, 2008). The in-use testing program began with... Vehicles,'' 70 FR 34624 (June 14, 2005). 2. Particulate Matter Emission Measurement Margin for...

  4. Emissions of acrolein and other aldehydes from biodiesel-fueled heavy-duty vehicles.

    PubMed

    Cahill, Thomas M; Okamoto, Robert A

    2012-08-01

    Aldehyde emissions were measured from two heavy-duty trucks, namely 2000 and 2008 model year vehicles meeting different EPA emission standards. The tests were conducted on a chassis dynamometer and emissions were collected from a constant volume dilution tunnel. For the 2000 model year vehicle, four different fuels were tested, namely California ultralow sulfur diesel (CARB ULSD), soy biodiesel, animal biodiesel, and renewable diesel. All of the fuels were tested with simulated city and high speed cruise drive cycles. For the 2008 vehicle, only soy biodiesel and CARB ULSD fuels were tested. The research objective was to compare aldehyde emission rates between (1) the test fuels, (2) the drive cycles, and (3) the engine technologies. The results showed that soy biodiesel had the highest acrolein emission rates while the renewable diesel showed the lowest. The drive cycle also affected emission rates with the cruise drive cycle having lower emissions than the urban drive cycle. Lastly, the newer vehicle with the diesel particulate filter had greatly reduced carbonyl emissions compared to the other vehicles, thus demonstrating that the engine technology had a greater influence on emission rates than the fuels. PMID:22746209

  5. Sideslip estimation for articulated heavy vehicles at the limits of adhesion

    NASA Astrophysics Data System (ADS)

    Morrison, Graeme; Cebon, David

    2016-11-01

    Various active safety systems proposed for articulated heavy goods vehicles (HGVs) require an accurate estimate of vehicle sideslip angle. However in contrast to passenger cars, there has been minimal published research on sideslip estimation for articulated HGVs. State-of-the-art observers, which rely on linear vehicle models, perform poorly when manoeuvring near the limits of tyre adhesion. This paper investigates three nonlinear Kalman filters (KFs) for estimating the tractor sideslip angle of a tractor-semitrailer. These are compared to the current state-of-the-art, through computer simulations and vehicle test data. An unscented KF using a 5 degrees-of-freedom single-track vehicle model with linear adaptive tyres is found to substantially outperform the state-of-the-art linear KF across a range of test manoeuvres on different surfaces, both at constant speed and during emergency braking. Robustness of the observer to parameter uncertainty is also demonstrated. Data supporting this research can be accessed at http://dx.doi.org/10.17863/CAM.1234

  6. Emissions of acrolein and other aldehydes from biodiesel-fueled heavy-duty vehicles.

    PubMed

    Cahill, Thomas M; Okamoto, Robert A

    2012-08-01

    Aldehyde emissions were measured from two heavy-duty trucks, namely 2000 and 2008 model year vehicles meeting different EPA emission standards. The tests were conducted on a chassis dynamometer and emissions were collected from a constant volume dilution tunnel. For the 2000 model year vehicle, four different fuels were tested, namely California ultralow sulfur diesel (CARB ULSD), soy biodiesel, animal biodiesel, and renewable diesel. All of the fuels were tested with simulated city and high speed cruise drive cycles. For the 2008 vehicle, only soy biodiesel and CARB ULSD fuels were tested. The research objective was to compare aldehyde emission rates between (1) the test fuels, (2) the drive cycles, and (3) the engine technologies. The results showed that soy biodiesel had the highest acrolein emission rates while the renewable diesel showed the lowest. The drive cycle also affected emission rates with the cruise drive cycle having lower emissions than the urban drive cycle. Lastly, the newer vehicle with the diesel particulate filter had greatly reduced carbonyl emissions compared to the other vehicles, thus demonstrating that the engine technology had a greater influence on emission rates than the fuels.

  7. A New Heavy-Lift Capability for Space Exploration: NASA's Ares V Cargo Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Sumrall, John P.; McArthur, J. Craig

    2007-01-01

    The National Aeronautics and Space Administration (NASA) is developing new launch systems and preparing to retire the Space Shuttle by 2010, as directed in the United States (U.S.) Vision for Space Exploration. The Ares I Crew Launch Vehicle (CLV) and the Ares V heavy-lift Cargo Launch Vehicle (CaLV) systems will build upon proven, reliable hardware derived from the Apollo-Saturn and Space Shuttle programs to deliver safe, reliable, affordable space transportation solutions. This approach leverages existing aerospace talent and a unique infrastructure, as well as legacy knowledge gained from nearly 50 years' experience developing space hardware. Early next decade, the Ares I will launch the new Orion Crew Exploration Vehicle (CEV) to the International Space Station (ISS) or to low-Earth orbit for trips to the Moon and, ultimately, Mars. Late next decade, the Ares V's Earth Departure Stage will carry larger payloads such as the lunar lander into orbit, and the Crew Exploration Vehicle will dock with it for missions to the Moon, where astronauts will explore new territories and conduct science and technology experiments. Both Ares I and Ares V are being designed to support longer future trips to Mars. The Exploration Launch Projects Office is designing, developing, testing, and evaluating both launch vehicle systems in partnership with other NASA Centers, Government agencies, and industry contractors. This paper provides top-level information regarding the genesis and evolution of the baseline configuration for the Ares V heavy-lift system. It also discusses riskbased, management strategies, such as building on powerful hardware and promoting common features between the Ares I and Ares V systems to reduce technical, schedule, and cost risks, as well as development and operations costs. Finally, it summarizes several notable accomplishments since October 2005, when the Exploration Launch Projects effort officially kicked off, and looks ahead at work planned for 2007

  8. A Cosserat-based formulation for elastic, axisymmetric shells with implications to the pulsed-jetting propulsion of soft-bodied aquatic vehicles

    NASA Astrophysics Data System (ADS)

    Renda, Federico; Giorgio-Serchi, Francesco; Boyer, Frederic

    We take the cue from recent development in geometric-based modelling in order to describe the dynamics of a novel soft-structured aquatic vehicle. The Cosserat-like formulation for an axisymmetric, elastic shell subject to concentrated dynamic loadings lends itself to the case of this new vehicle, recently designed by the authors, which consists of a shell of rubber-like materials undergoing sequential stages of inflation and deflation in order to propel itself in water via pulsed-jetting. The experiments performed on the existing robotic prototypes are used for the validation of the geometric model. This is eventually employed for deriving an accurate measure of the efficiency of propulsion which explicitly accounts for the elastic energy involved during the propulsion routine. The model yields a-priori estimations of swimming efficiency based on vehicle specifications and mode of actuation. These provide invaluable information for both design optimization and control, as well as a means to study the biomechanics of soft-bodied aquatic organisms. Presenting author.

  9. External aerodynamics of heavy ground vehicles: Computations and wind tunnel testing

    NASA Astrophysics Data System (ADS)

    Bayraktar, Ilhan

    Aerodynamic characteristics of a ground vehicle affect vehicle operation in many ways. Aerodynamic drag, lift and side forces have influence on fuel efficiency, vehicle top speed and acceleration performance. In addition, engine cooling, air conditioning, wind noise, visibility, stability and crosswind sensitivity are some other tasks for vehicle aerodynamics. All of these areas benefit from drag reduction and changing the lift force in favor of the operating conditions. This can be achieved by optimization of external body geometry and flow modification devices. Considering the latter, a thorough understanding of the airflow is a prerequisite. The present study aims to simulate the external flow field around a ground vehicle using a computational method. The model and the method are selected to be three dimensional and time-dependent. The Reynolds-averaged Navier Stokes equations are solved using a finite volume method. The Renormalization Group (RNG) k-epsilon model was elected for closure of the turbulent quantities. Initially, the aerodynamics of a generic bluff body is studied computationally and experimentally to demonstrate a number of relevant issues including the validation of the computational method. Experimental study was conducted at the Langley Full Scale Wind Tunnel using pressure probes and force measurement equipment. Experiments and computations are conducted on several geometric configurations. Results are compared in an attempt to validate the computational model for ground vehicle aerodynamics. Then, the external aerodynamics of a heavy truck is simulated using the validated computational fluid dynamics method, and the external flow is presented using computer visualization. Finally, to help the estimation of the error due to two commonly practiced engineering simplifications, a parametric study on the tires and the moving ground effect are conducted on full-scale tractor-trailer configuration. Force and pressure coefficients and velocity

  10. 40 CFR 86.008-10 - Emission standards for 2008 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.008-10 Section 86.008-10 Protection of... Heavy-Duty Vehicles § 86.008-10 Emission standards for 2008 and later model year Otto-cycle heavy-duty...)(1) Exhaust emissions from new 2008 and later model year Otto-cycle HDEs shall not exceed:...

  11. 40 CFR 86.008-10 - Emission standards for 2008 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.008-10 Section 86.008-10 Protection of... Heavy-Duty Vehicles § 86.008-10 Emission standards for 2008 and later model year Otto-cycle heavy-duty...)(1) Exhaust emissions from new 2008 and later model year Otto-cycle HDEs shall not exceed:...

  12. 40 CFR 86.099-11 - Emission standards for 1999 and later model year diesel heavy-duty engines and vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... model year diesel heavy-duty engines and vehicles. 86.099-11 Section 86.099-11 Protection of Environment... § 86.099-11 Emission standards for 1999 and later model year diesel heavy-duty engines and vehicles. (a) Exhaust emissions from new 1999 and later model year diesel heavy-duty engines shall not exceed...

  13. 40 CFR 86.099-11 - Emission standards for 1999 and later model year diesel heavy-duty engines and vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... model year diesel heavy-duty engines and vehicles. 86.099-11 Section 86.099-11 Protection of Environment... § 86.099-11 Emission standards for 1999 and later model year diesel heavy-duty engines and vehicles. (a) Exhaust emissions from new 1999 and later model year diesel heavy-duty engines shall not exceed...

  14. 40 CFR 86.099-11 - Emission standards for 1999 and later model year diesel heavy-duty engines and vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... model year diesel heavy-duty engines and vehicles. 86.099-11 Section 86.099-11 Protection of Environment... § 86.099-11 Emission standards for 1999 and later model year diesel heavy-duty engines and vehicles. (a) Exhaust emissions from new 1999 and later model year diesel heavy-duty engines shall not exceed...

  15. 40 CFR 86.099-11 - Emission standards for 1999 and later model year diesel heavy-duty engines and vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... model year diesel heavy-duty engines and vehicles. 86.099-11 Section 86.099-11 Protection of Environment... § 86.099-11 Emission standards for 1999 and later model year diesel heavy-duty engines and vehicles. (a) Exhaust emissions from new 1999 and later model year diesel heavy-duty engines shall not exceed...

  16. 40 CFR 86.099-10 - Emission standards for 1999 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.099-10 Section 86.099-10 Protection of... Heavy-Duty Vehicles § 86.099-10 Emission standards for 1999 and later model year Otto-cycle heavy-duty...: 3.0 grams carbon per test. (2) For the supplemental two-diurnal test sequence described in §...

  17. HEAVY-DUTY DIESEL VEHICLE MODAL EMISSION MODEL (HDDV-MEM): VOLUME I: MODAL EMISSION MODELING FRAMEWORK; VOLUME II: MODAL COMPONENTS AND OUTPUTS

    EPA Science Inventory

    This research outlines a proposed Heavy-Duty Diesel Vehicle Modal Emission Modeling Framework (HDDV-MEMF) for heavy-duty diesel-powered trucks and buses. The heavy-duty vehicle modal modules being developed under this research effort, although different, should be compatible wi...

  18. 40 CFR 86.099-10 - Emission standards for 1999 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.099-10 Section 86.099-10 Protection of... Heavy-Duty Vehicles § 86.099-10 Emission standards for 1999 and later model year Otto-cycle heavy-duty...: 3.0 grams carbon per test. (2) For the supplemental two-diurnal test sequence described in §...

  19. 40 CFR 86.099-10 - Emission standards for 1999 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.099-10 Section 86.099-10 Protection of... Heavy-Duty Vehicles § 86.099-10 Emission standards for 1999 and later model year Otto-cycle heavy-duty...: 3.0 grams carbon per test. (2) For the supplemental two-diurnal test sequence described in §...

  20. 40 CFR 86.099-10 - Emission standards for 1999 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.099-10 Section 86.099-10 Protection of... Heavy-Duty Vehicles § 86.099-10 Emission standards for 1999 and later model year Otto-cycle heavy-duty...: 3.0 grams carbon per test. (2) For the supplemental two-diurnal test sequence described in §...

  1. 40 CFR 86.004-11 - Emission standards for 2004 and later model year diesel heavy-duty engines and vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for 1985 and Later Model Year New... model year diesel heavy-duty engines and vehicles. 86.004-11 Section 86.004-11 Protection of...

  2. A Near-Term, High-Confidence Heavy Lift Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Rothschild, William J.; Talay, Theodore A.

    2009-01-01

    The use of well understood, legacy elements of the Space Shuttle system could yield a near-term, high-confidence Heavy Lift Launch Vehicle that offers significant performance, reliability, schedule, risk, cost, and work force transition benefits. A side-mount Shuttle-Derived Vehicle (SDV) concept has been defined that has major improvements over previous Shuttle-C concepts. This SDV is shown to carry crew plus large logistics payloads to the ISS, support an operationally efficient and cost effective program of lunar exploration, and offer the potential to support commercial launch operations. This paper provides the latest data and estimates on the configurations, performance, concept of operations, reliability and safety, development schedule, risks, costs, and work force transition opportunities for this optimized side-mount SDV concept. The results presented in this paper have been based on established models and fully validated analysis tools used by the Space Shuttle Program, and are consistent with similar analysis tools commonly used throughout the aerospace industry. While these results serve as a factual basis for comparisons with other launch system architectures, no such comparisons are presented in this paper. The authors welcome comparisons between this optimized SDV and other Heavy Lift Launch Vehicle concepts.

  3. Chassis dynamometer study of emissions from 21 in-use heavy-duty diesel vehicles

    SciTech Connect

    Yanowitz, J.; Graboski, M.S.; Ryan, L.B.A.; Alleman, T.L.; McCormick, R.L.

    1999-01-15

    Regulated emissions from 21 in-use heavy-duty diesel vehicles were measured on a heavy-duty chassis dynamometer via three driving cycles using a low-sulfur diesel fuel. Emissions of particulate matter (PM), nitrogen oxides (NO{sub x}), carbon monoxide (CO), total hydrocarbon (THC), and PM sulfate fraction were measured. For hot start tests, emissions ranged from 0.30 to 7.43 g/mi (mean 1.96) for PM; 4.15--54.0 g/mi (mean 23.3) for NO{sub x}; 2.09--86.2 g/mi (mean 19.5) for CO; and 0.25--8.25 g/mi (mean 1.70) for THC. When emissions are converted to a g/gal basis, the effect of driving cycle is eliminated for NO{sub x} and largely eliminated for PM. Sulfate comprised less than 1% of the emitted PM for all vehicles and test cycles. A strong correlation is observed between emissions of CO and PM. Cold starting at 77 F produced an 11% increase in PM emissions. Multivariate regression analyses indicate that in-use PM emissions have decreased at a slower rate than anticipated based on the stricter engine certification test standards put into effect since 1985. NO{sub x} emissions do not decrease with model year for the vehicles tested here. Smoke opacity measurements are not well correlated with mass emissions of regulated pollutants.

  4. Manned Mars Explorer project: Guidelines for a manned mission to the vicinity of Mars using Phobos as a staging outpost; schematic vehicle designs considering chemical and nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Nolan, Sean; Neubek, Deb; Baxmann, C. J.

    1988-01-01

    The Manned Mars Explorer (MME) project responds to the fundamental problems of sending human beings to Mars in a mission scenario and schematic vehicle designs. The mission scenario targets an opposition class Venus inbound swingby for its trajectory with concentration on Phobos and/or Deimos as a staging base for initial and future Mars vicinity operations. Optional vehicles are presented as a comparison using nuclear electric power/propulsion technology. A Manned Planetary Vehicle and Crew Command Vehicle are used to accomplish the targeted mission. The Manned Planetary Vehicle utilizes the mature technology of chemical propulsion combined with an advanced aerobrake, tether and pressurized environment system. The Crew Command Vehicle is the workhorse of the mission performing many different functions including a manned Mars landing, and Phobos rendezvous.

  5. Mars sample return mission architectures utilizing low thrust propulsion

    NASA Astrophysics Data System (ADS)

    Derz, Uwe; Seboldt, Wolfgang

    2012-08-01

    The Mars sample return mission is a flagship mission within ESA's Aurora program and envisioned to take place in the timeframe of 2020-2025. Previous studies developed a mission architecture consisting of two elements, an orbiter and a lander, each utilizing chemical propulsion and a heavy launcher like Ariane 5 ECA. The lander transports an ascent vehicle to the surface of Mars. The orbiter performs a separate impulsive transfer to Mars, conducts a rendezvous in Mars orbit with the sample container, delivered by the ascent vehicle, and returns the samples back to Earth in a small Earth entry capsule. Because the launch of the heavy orbiter by Ariane 5 ECA makes an Earth swing by mandatory for the trans-Mars injection, its total mission time amounts to about 1460 days. The present study takes a fresh look at the subject and conducts a more general mission and system analysis of the space transportation elements including electric propulsion for the transfer. Therefore, detailed spacecraft models for orbiters, landers and ascent vehicles are developed. Based on that, trajectory calculations and optimizations of interplanetary transfers, Mars entries, descents and landings as well as Mars ascents are carried out. The results of the system analysis identified electric propulsion for the orbiter as most beneficial in terms of launch mass, leading to a reduction of launch vehicle requirements and enabling a launch by a Soyuz-Fregat into GTO. Such a sample return mission could be conducted within 1150-1250 days. Concerning the lander, a separate launch in combination with electric propulsion leads to a significant reduction of launch vehicle requirements, but also requires a large number of engines and correspondingly a large power system. Therefore, a lander performing a separate chemical transfer could possibly be more advantageous. Alternatively, a second possible mission architecture has been developed, requiring only one heavy launch vehicle (e.g., Proton). In that

  6. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 4: Solar electric propulsion vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document presents the solar electric propulsion (SEP) concept design developed as part of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study. The evolution of the SEP concept is described along with the requirements, guidelines and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities, and costs.

  7. Idle emissions from heavy-duty diesel vehicles: review and recent data.

    PubMed

    Khan, A B M S; Clark, Nigel N; Thompson, Gregory J; Wayne, W Scott; Gautam, Mridul; Lyons, Donald W; Hawelti, Daniel

    2006-10-01

    Heavy-duty diesel vehicle idling consumes fuel and reduces atmospheric quality, but its restriction cannot simply be proscribed, because cab heat or air-conditioning provides essential driver comfort. A comprehensive tailpipe emissions database to describe idling impacts is not yet available. This paper presents a substantial data set that incorporates results from the West Virginia University transient engine test cell, the E-55/59 Study and the Gasoline/Diesel PM Split Study. It covered 75 heavy-duty diesel engines and trucks, which were divided into two groups: vehicles with mechanical fuel injection (MFI) and vehicles with electronic fuel injection (EFI). Idle emissions of CO, hydrocarbon (HC), oxides of nitrogen (NOx), particulate matter (PM), and carbon dioxide (CO2) have been reported. Idle CO2 emissions allowed the projection of fuel consumption during idling. Test-to-test variations were observed for repeat idle tests on the same vehicle because of measurement variation, accessory loads, and ambient conditions. Vehicles fitted with EFI, on average, emitted approximately 20 g/hr of CO, 6 g/hr of HC, 86 g/hr of NOx, 1 g/hr of PM, and 4636 g/hr of CO2 during idle. MFI equipped vehicles emitted approximately 35 g/hr of CO, 23 g/hr of HC, 48 g/hr of NOx, 4 g/hr of PM, and 4484 g/hr of CO2, on average, during idle. Vehicles with EFI emitted less idle CO, HC, and PM, which could be attributed to the efficient combustion and superior fuel atomization in EFI systems. Idle NOx, however, increased with EFI, which corresponds with the advancing of timing to improve idle combustion. Fuel injection management did not have any effect on CO2 and, hence, fuel consumption. Use of air conditioning without increasing engine speed increased idle CO2, NOx, PM, HC, and fuel consumption by 25% on average. When the engine speed was elevated from 600 to 1100 revolutions per minute, CO2 and NOx emissions and fuel consumption increased by >150%, whereas PM and HC emissions increased

  8. Emission Control Research to Enable Fuel Efficiency: Department of Energy Heavy Vehicle Technologies

    SciTech Connect

    Gurpreet Singh; Ronald L. Graves; John M. Storey; William P. Partridge; John F. Thomas; Bernie M. Penetrante; Raymond M. Brusasco; Bernard T. Merritt; George E. Vogtlin; Christopher L. Aardahl; Craig F. Habeger; M.L. Balmer

    2000-06-19

    The Office of Heavy Vehicle Technologies supports research to enable high-efficiency diesel engines to meet future emissions regulations, thus clearing the way for their use in light trucks as well as continuing as the most efficient powerplant for freight-haulers. Compliance with Tier 2 rules and expected heavy duty engine standards will require effective exhaust emission controls (after-treatment) for diesels in these applications. DOE laboratories are working with industry to improve emission control technologies in projects ranging from application of new diagnostics for elucidating key mechanisms, to development and tests of prototype devices. This paper provides an overview of these R and D efforts, with examples of key findings and developments.

  9. The Business Case for Spiral Development in Heavy Lift Launch Vehicle Systems

    NASA Technical Reports Server (NTRS)

    Farr, Rebecca A.; Christensen, David L.; Keith, Edward L.

    2005-01-01

    Performance capabilities of a specific combination of the Space Shuttle external tank and various liquid engines in an in-line configuration, two-stage core vehicle with multiple redesigned solid rocket motor strap-ons are reexamined. This concept proposes using existing assets, hardware, and capabilities that are already crew-rated, flight certified, being manufactured under existing contracts, have a long history of component and system ground testing, and have been flown for over 20 yr. This paper goes beyond describing potential performance capabilities of specific components to discuss the overall system feasibility-from end to end, start to finish-describing the inherent cost advantages of the Spiral Development concept, which builds on existing capabilities and assets, as opposed to starting up a "fresh sheet" heavy-lift launch vehicle program from scratch.

  10. Application for certification, 1986 model year heavy-duty vehicles/engines - Mercedes-Benz truck

    SciTech Connect

    Not Available

    1986-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  11. Recombinant botulinum neurotoxin A heavy chain-based delivery vehicles for neuronal cell targeting

    PubMed Central

    Ho, Mengfei; Chang, Li-Hsin; Pires-Alves, Melissa; Thyagarajan, Baskaran; Bloom, Jordan E.; Gu, Zhengrong; Aberle, Karla K.; Teymorian, Sasha A.; Bannai, Yuka; Johnson, Steven C.; McArdle, Joseph J.; Wilson, Brenda A.

    2011-01-01

    The long half-life of botulinum neurotoxin serotype A (BoNT/A) in cells poses a challenge in developing post-exposure therapeutics complementary to existing antitoxin strategies. Delivery vehicles consisting of the toxin heavy chain (HC), including the receptor-binding domain and translocation domain, connected to an inhibitory cargo offer a possible solution for rescuing intoxicated neurons in victims paralyzed from botulism. Here, we report the expression and purification of soluble recombinant prototype green fluorescent protein (GFP) cargo proteins fused to the entire BoNT/A-HC (residues 544–1295) in Escherichia coli with up to a 40 amino acid linker inserted between the cargo and BoNT/A-HC vehicle. We show that these GFP-HC fusion proteins are functionally active and readily taken up by cultured neuronal cells as well as by neuronal cells in mouse motor nerve endings. PMID:21051321

  12. Aerodynamic Drag of Heavy Vehicles (Class 7-8): Simulation and Benchmarking

    SciTech Connect

    Rose McCallen, Dan Flowers, Tim Dunn; Jerry Owens; Fred Browand; Mustapha Hammache; Anthony Leonard; Mark Brady; Kambiz Salari; Walter Rutledge; James Ross; Bruce Storms; J. T. Heineck, David Driver; James Bell; Steve Walker; Gregory Zilliac

    2000-06-19

    This paper describes research and development for reducing the aerodynamic drag of heavy vehicles by demonstrating new approaches for the numerical simulation and analysis of aerodynamic flow. Experimental validation of new computational fluid dynamics methods are also an important part of this approach. Experiments on a model of an integrated tractor-trailer are underway at NASA Ames Research Center and the University of Southern California (USC). Companion computer simulations are being performed by Sandia National Laboratories (SNL), Lawrence Livermore National Laboratory (LLNL), and California Institute of Technology (Caltech) using state-of-the-art techniques.

  13. Systematic approach to analyzing and reducing aerodynamic drag of heavy vehicles

    SciTech Connect

    McCallen, R.; Browand, F.; Leonard, A.; Rutledge, W.

    1997-09-16

    This paper presents an approach for reducing aerodynamic drag of heavy vehicles by systematically analyzing trailer components using existing computational tools and moving on to the analyses of integrated tractor-trailers using advanced computational tools. Experimental verification and validation are also an important part of this approach. The project is currently in the development phase while we are in the process of constructing a Multi-Year Program Plan. Projects I and 2 as described in this paper are the anticipated project direction. Also included are results from past and current related activities by the project participants which demonstrate the analysis approach.

  14. Low cost heavy lift launch vehicle for lunar exploration based on the Energia launcher

    NASA Astrophysics Data System (ADS)

    Lassmann, J.

    1992-08-01

    Different mission strategies for large-scale lunar explorations using a low-cost heavy-lift launch vehicle based on the Energia launcher are examined. Using a parametrical cost model developed at the Berlin University of Technology, total life costs were determined for landing on the moon a cargo of 15 tons for $25,000/kg, showing it to be about half the cost of a comparable Saturn V/Apollo mission. It is noted that this opportunity for international cooperation is limited: the two complete Energia launchers which are presently stored will have to be launched within the next 3 to 5 years.

  15. Emissions from heavy-duty vehicles under actual on-road driving conditions

    NASA Astrophysics Data System (ADS)

    Durbin, Thomas D.; Johnson, Kent; Miller, J. Wayne; Maldonado, Hector; Chernich, Don

    Emission measurements of five 1996-2005 heavy-duty diesel vehicles (HDDVs), representing three engine certification levels, were made using a Mobile Emissions Laboratory under actual on-road driving conditions on surface streets and highways. The results show that emissions depend on the emission component, the age/certification of vehicle/engine, as well as driving condition. For NO x emissions, there was a trend of decreasing emissions in going from older to newer model years and certification standards. Some vehicles showed a tendency toward higher NO x emissions per mile for the higher speed events (⩾55 mph) as compared to the 40 mph cruise and the other surface street driving, while others did not show large differences between different types of driving. For particulate matter (PM), the three oldest trucks had the highest emissions for surface street driving, while the two newest trucks had the highest PM emissions for highway driving. For total hydrocarbons (THC) emissions, some vehicles showed a tendency for higher emissions for the surface street segments compared to the steady-state segments, while others showed a tendency for higher emissions for the 40 mph cruise segments compared to the highway cruise segments. CO emissions under steady-state driving conditions were relatively low (1-3 g mile -1).

  16. The GREET Model Expansion for Well-to-Wheels Analysis of Heavy-Duty Vehicles

    SciTech Connect

    Cai, Hao; Burnham, Andrew; Wang, Michael; Hang, Wen; Vyas, Anant

    2015-05-01

    Heavy-duty vehicles (HDVs) account for a significant portion of the U.S. transportation sector’s fuel consumption, greenhouse gas (GHG) emissions, and air pollutant emissions. In our most recent efforts, we expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREETTM) model to include life-cycle analysis of HDVs. In particular, the GREET expansion includes the fuel consumption, GHG emissions, and air pollutant emissions of a variety of conventional (i.e., diesel and/or gasoline) HDV types, including Class 8b combination long-haul freight trucks, Class 8b combination short-haul freight trucks, Class 8b dump trucks, Class 8a refuse trucks, Class 8a transit buses, Class 8a intercity buses, Class 6 school buses, Class 6 single-unit delivery trucks, Class 4 single-unit delivery trucks, and Class 2b heavy-duty pickup trucks and vans. These vehicle types were selected to represent the diversity in the U.S. HDV market, and specific weight classes and body types were chosen on the basis of their fuel consumption using the 2002 Vehicle Inventory and Use Survey (VIUS) database. VIUS was also used to estimate the fuel consumption and payload carried for most of the HDV types. In addition, fuel economy projections from the U.S. Energy Information Administration, transit databases, and the literature were examined. The U.S. Environmental Protection Agency’s latest Motor Vehicle Emission Simulator was employed to generate tailpipe air pollutant emissions of diesel and gasoline HDV types.

  17. Heavy weight vehicle traffic and its relationship with antimony content in human blood.

    PubMed

    Quiroz, Waldo; De Gregori, Ida; Basilio, Paola; Bravo, Manuel; Pinto, Marcela; Lobos, Maria Gabriela

    2009-05-01

    Brake pads systems are nowadays considered as one of the most important sources of antimony in airborne particulate matter. One way that antimony can enter the body is through the lungs and specially by the interaction of antimony with -SH groups present in erythrocyte membrane cells. In spite of that, there are no studies about antimony enrichment in blood of workers exposed to high vehicle traffic. Port workers are generally exposed to heavy weight vehicle traffic. In Chile the biggest marine port is found in Valparaíso City. In this study antimony in whole blood and its fractions (erythrocytes-plasma and erythrocytes membranes-cytoplasm) of 45 volunteers were determined. The volunteers were port workers from Valparaíso city, and two control groups, one from Valparaíso and another from Quebrada Alvarado, the latter being a rural area located about 100 Km away from Valparaíso. The results demonstrate that port workers are highly impacted by antimony emissions from heavy weight vehicle traffic showing an average concentration of 27 +/- 9 ng Sb kg(-1), 5-10 times higher than the concentration of antimony in the blood of control groups. These are the highest antimony levels in blood ever reported in the literature. The highest antimony percentages (>60%) were always found in the erythrocyte fractions. However, the exposure degree to vehicle traffic is significant over antimony distribution in plasma, erythrocytes and cytoplasm. This results shows that the antimony mass in the erythrocyte membranes, was approximately constant at 1.0 +/- 0.1 ng Sb g(-1) of whole blood in all blood samples analyzed.

  18. Variability of heavy duty vehicle operating mode frequencies for prediction of mobile emissions. Report for March 1995--March 1996

    SciTech Connect

    Grant, C.D.; Guensler, R.; Meyer, M.D.

    1996-01-01

    The paper discusses a new geographic information system (GIS)-based modal emissions model being developed with EPA and Georgia Tech to account for vehicle load conditions that will significantly improve the spatial resolution of emissions estimates. The GIS-based modal research model employs detailed subfleet engine and emissions characteristics and the speed/acceleration profiles for vehicle activity along links in the transportation system. Composition of the vehicle subfleet affects the amount of emissions produced under various operating conditions, dependent upon the load induced by the vehicle and driver, and the physical constraints of the vehicle. The aggregate modal frequencies are compared across vehicle classes to show differences in how heavy duty vehicles are operated.

  19. Propulsion system tests on a full scale Centaur vehicle to investigate 3-burn mission capability of the D-lT configuration

    NASA Technical Reports Server (NTRS)

    Groesbeck, W. A.; Baud, K. M.; Lacovic, R. F.; Tabata, W. K.; Szabo, S. V., Jr.

    1974-01-01

    Propulsion system tests were conducted on a full scale Centaur vehicle to investigate system capability of the proposed D-lT configuration for a three-burn mission. This particular mission profile requires that the engines be capable of restarting and firing for a final maneuver after a 5-1/2-hour coast to synchronous orbit. The thermal conditioning requirements of the engine and propellant feed system components for engine start under these conditions were investigated. Performance data were also obtained on the D-lT type computer controlled propellant tank pressurization system. The test results demonstrated that the RL-10 engines on the Centaur vehicle could be started and run reliably after being thermally conditioned to predicted engine start conditions for a one, two and three burn mission. Investigation of the thermal margins also indicated that engine starts could be accomplished at the maximum predicted component temperature conditions with prestart durations less than planned for flight.

  20. 40 CFR 86.098-10 - Emission standards for 1998 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.098-10 Section 86.098-10 Protection of... Heavy-Duty Vehicles § 86.098-10 Emission standards for 1998 and later model year Otto-cycle heavy-duty... emissions from new 1998 and later model year Otto-cycle heavy-duty engines shall not exceed: (i) For...

  1. 40 CFR 86.098-10 - Emission standards for 1998 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.098-10 Section 86.098-10 Protection of... Heavy-Duty Vehicles § 86.098-10 Emission standards for 1998 and later model year Otto-cycle heavy-duty... emissions from new 1998 and later model year Otto-cycle heavy-duty engines shall not exceed: (i) For...

  2. 40 CFR 86.098-10 - Emission standards for 1998 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.098-10 Section 86.098-10 Protection of... Heavy-Duty Vehicles § 86.098-10 Emission standards for 1998 and later model year Otto-cycle heavy-duty... emissions from new 1998 and later model year Otto-cycle heavy-duty engines shall not exceed: (i) For...

  3. 40 CFR 86.098-10 - Emission standards for 1998 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.098-10 Section 86.098-10 Protection of... Heavy-Duty Vehicles § 86.098-10 Emission standards for 1998 and later model year Otto-cycle heavy-duty... emissions from new 1998 and later model year Otto-cycle heavy-duty engines shall not exceed: (i) For...

  4. 40 CFR 86.098-10 - Emission standards for 1998 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.098-10 Section 86.098-10 Protection of... Heavy-Duty Vehicles § 86.098-10 Emission standards for 1998 and later model year Otto-cycle heavy-duty... emissions from new 1998 and later model year Otto-cycle heavy-duty engines shall not exceed: (i) For...

  5. Innovative Structural and Joining Concepts for Lightweight Design of Heavy Vehicle Systems

    SciTech Connect

    Prucz, Jacky C; Shoukry, Samir N; William, Gergis W; Evans, Thomas H

    2006-09-30

    The extensive research and development effort was initiated by the U.S. Department of Energy (DOE) in 2002 at West Virginia University (WVU) in order to investigate practical ways of reducing the structural weight and increasing the durability of heavy vehicles through the judicious use of lightweight composite materials. While this project was initially focused on specific Metal Matrix Composite (MMC) material, namely Aluminum/Silicon Carbide (Al/SiC) commercially referenced as ''LANXIDE'', the current research effort was expanded from the component level to the system level and from MMC to other composite material systems. Broadening the scope of this research is warranted not only by the structural and economical deficiencies of the ''LANXIDE'' MMC material, but also by the strong coupling that exists between the material and the geometric characteristics of the structure. Such coupling requires a truly integrated design approach, focused on the heaviest sections of a van trailer. Obviously, the lightweight design methods developed in this study will not be implemented by the commercial industry unless the weight savings are indeed impressive and proven to be economically beneficial in the context of Life Cycle Costs (LCC). ''Bulk Haul'' carriers run their vehicles at maximum certified weight, so that each pound saved in structural weight would translate into additional pound of cargo, and fewer vehicles necessary to transport a given amount of freight. It is reasonable to ascertain that a typical operator would be ready to pay a premium of about $3-4 for every additional pound of cargo, or every pound saved in structural weight. The overall scope of this project is to devise innovative, lightweight design and joining concepts for heavy vehicle structures, including cost effective applications of components made of metal matrix composite (MMC) and other composite materials in selected sections of such systems. The major findings generated by this research effort

  6. Modeling, Analysis, and Control of a Hypersonic Vehicle with Significant Aero-Thermo-Elastic-Propulsion Interactions: Elastic, Thermal and Mass Uncertainty

    NASA Astrophysics Data System (ADS)

    Khatri, Jaidev

    This thesis examines themodeling, analysis, and control system design issues for scramjet powered hypersonic vehicles. A nonlinear three degrees of freedom longitudinal model which includes aero-propulsion-elasticity effects was used for all analyses. This model is based upon classical compressible flow and Euler-Bernouli structural concepts. Higher fidelity computational fluid dynamics and finite element methods are needed for more precise intermediate and final evaluations. The methods presented within this thesis were shown to be useful for guiding initial control relevant design. The model was used to examine the vehicle's static and dynamic characteristics over the vehicle's trimmable region. The vehicle has significant longitudinal coupling between the fuel equivalency ratio (FER) and the flight path angle (FPA). For control system design, a two-input two-output plant (FER - elevator to speed-FPA) with 11 states (including 3 flexible modes) was used. Velocity, FPA, and pitch were assumed to be available for feedback. Aerodynamic heat modeling and design for the assumed TPS was incorporated to original Bolender's model to study the change in static and dynamic properties. De-centralized control stability, feasibility and limitations issues were dealt with the change in TPS elasticity, mass and physical dimension. The impact of elasticity due to TPS mass, TPS physical dimension as well as prolonged heating was also analyzed to understand performance limitations of de-centralized control designed for nominal model.

  7. A New Heavy-Lift Capability for Space Exploration: NASA's Ares V Cargo Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Sumrall, John P.

    2006-01-01

    The National Aeronautics and Space Administration (NASA) is developing new launch systems in preparation for the retirement of the Space Shuttle by 2010, as directed in the United States (U.S.) Vision for Space Exploration. The Ares I Crew Launch Vehicle (CLV) and the Ares V heavy-lift Cargo Launch Vehicle (CaLV) systems will build upon proven, reliable hardware derived from the Apollo Saturn (1961 to 1975) and Space Shuttle (1972 to 2010) programs to deliver safe, reliable, affordable space transportation solutions. This approach leverages existing aerospace talent and a unique infrastructure, as well as the vast amount of legacy knowledge gained from almost a half-century of hard-won experience in the space enterprise. Beginning early next decade, the Ares I will launch the new Crew Exploration Vehicle (CEV) to the International Space Station (ISS) or to low-Earth orbit for trips to the Moon and, ultimately, Mars. Late next decade, the Ares V's Earth Departure Stage will carry larger payloads such as the lunar lander into orbit, and the Crew Exploration Vehicle will dock with it for missions to the Moon, where astronauts will explore new territories and conduct science and technology experiments. Both the Ares I and Ares V systems are being designed to support longer future trips to Mars. The Exploration Launch Projects Office, located at NASA's Marshall Space Flight Center, is designing, developing, testing, and evaluating both launch vehicle systems in partnership with other NASA Centers, Government agencies, and industry contractors. This paper provides top-level information regarding the genesis and evolution of the baseline configuration for the Ares V heavy-lift system. It also touches on risk-based management strategies, such as building on powerful hardware and promoting common features between the Ares I and Ares V systems to reduce technical, schedule, and cost risks, as well as development and operations costs. Finally, it gives a summary of several

  8. Hennepin County`s experience with heavy-duty ethanol vehicles

    SciTech Connect

    1998-01-01

    From November 1993 to October 1996, Hennepin County, which includes Minneapolis, field-tested two heavy-duty snowplow/road maintenance trucks fueled by ethanol. The overall objective of this program was to collect data from original equipment manufacturer alternative fuel heavy-duty trucks, along with comparable data from a similarly configured diesel-powered vehicle, to establish economic, emissions, performance, and durability data for the alternative fuel technology. These ethanol trucks, along with an identical third truck equipped with a diesel engine, were operated year round to maintain the Hennepin county roads. In winter, the trucks were run in 8-hour shifts plowing and hauling snow from urban and suburban roads. For the rest of the year, the three trucks were used to repair and maintain these same roads. As a result of this project, a considerable amount of data was collected on E95 fuel use, as well as maintenance, repair, emissions, and operational characteristics. Maintenance and repair costs of the E95 trucks were considerably higher primarily due to fuel filter and fuel pump issues. From an emissions standpoint, the E95 trucks emitted less particulate matter and fewer oxides of nitrogen but more carbon monoxide and hydrocarbons. Overall, the E95 trucks operated as well as the diesel, as long as the fuel filters were changed frequently. This project was a success in that E95, a domestically produced fuel from a renewable energy source, was used in a heavy-duty truck application and performed the same rigorous tasks as the diesel counterparts. The drawbacks to E95 as a heavy-duty fuel take the form of higher operational costs, higher fuel costs, shorter range, and the lack of over-the-road infrastructure.

  9. Electric Propulsion Applications and Impacts

    NASA Technical Reports Server (NTRS)

    Curran, Frank M.; Wickenheiser, Timothy J.

    1996-01-01

    Most space missions require on-board propulsion systems and these systems are often dominant spacecraft mass drivers. Presently, on-board systems account for more than half the injected mass for commercial communications systems and even greater mass fractions for ambitious planetary missions. Anticipated trends toward the use of both smaller spacecraft and launch vehicles will likely increase pressure on the performance of on-board propulsion systems. The acceptance of arcjet thrusters for operational use on commercial communications satellites ushered in a new era in on-board propulsion and exponential growth of electric propulsion across a broad spectrum of missions is anticipated. NASA recognizes the benefits of advanced propulsion and NASA's Office of Space Access and Technology supports an aggressive On-Board Propulsion program, including a strong electric propulsion element, to assure the availability of high performance propulsion systems to meet the goals of the ambitious missions envisioned in the next two decades. The program scope ranges from fundamental research for future generation systems through specific insertion efforts aimed at near term technology transfer. The On-Board propulsion program is committed to carrying technologies to levels required for customer acceptance and emphasizes direct interactions with the user community and the development of commercial sources. This paper provides a discussion of anticipated missions, propulsion functions, and electric propulsion impacts followed by an overview of the electric propulsion element of the NASA On-Board Propulsion program.

  10. The role of sleepiness, sleep disorders, and the work environment on heavy-vehicle crashes in 2 Australian states.

    PubMed

    Stevenson, Mark R; Elkington, Jane; Sharwood, Lisa; Meuleners, Lynn; Ivers, Rebecca; Boufous, Soufiane; Williamson, Ann; Haworth, Narelle; Quinlan, Michael; Grunstein, Ron; Norton, Robyn; Wong, Keith

    2014-03-01

    Heavy-vehicle driving involves a challenging work environment and a high crash rate. We investigated the associations of sleepiness, sleep disorders, and work environment (including truck characteristics) with the risk of crashing between 2008 and 2011 in the Australian states of New South Wales and Western Australia. We conducted a case-control study of 530 heavy-vehicle drivers who had recently crashed and 517 heavy-vehicle drivers who had not. Drivers' crash histories, truck details, driving schedules, payment rates, sleep patterns, and measures of health were collected. Subjects wore a nasal flow monitor for 1 night to assess for obstructive sleep apnea. Driving schedules that included the period between midnight and 5:59 am were associated with increased likelihood of crashing (odds ratio = 3.42, 95% confidence interval: 2.04, 5.74), as were having an empty load (odds ratio = 2.61, 95% confidence interval: 1.72, 3.97) and being a less experienced driver (odds ratio = 3.25, 95% confidence interval: 2.37, 4.46). Not taking regular breaks and the lack of vehicle safety devices were also associated with increased crash risk. Despite the high prevalence of obstructive sleep apnea, it was not associated with the risk of a heavy-vehicle nonfatal, nonsevere crash. Scheduling of driving to avoid midnight-to-dawn driving and the use of more frequent rest breaks are likely to reduce the risk of heavy-vehicle nonfatal, nonsevere crashes by 2-3 times.

  11. The role of sleepiness, sleep disorders, and the work environment on heavy-vehicle crashes in 2 Australian states.

    PubMed

    Stevenson, Mark R; Elkington, Jane; Sharwood, Lisa; Meuleners, Lynn; Ivers, Rebecca; Boufous, Soufiane; Williamson, Ann; Haworth, Narelle; Quinlan, Michael; Grunstein, Ron; Norton, Robyn; Wong, Keith

    2014-03-01

    Heavy-vehicle driving involves a challenging work environment and a high crash rate. We investigated the associations of sleepiness, sleep disorders, and work environment (including truck characteristics) with the risk of crashing between 2008 and 2011 in the Australian states of New South Wales and Western Australia. We conducted a case-control study of 530 heavy-vehicle drivers who had recently crashed and 517 heavy-vehicle drivers who had not. Drivers' crash histories, truck details, driving schedules, payment rates, sleep patterns, and measures of health were collected. Subjects wore a nasal flow monitor for 1 night to assess for obstructive sleep apnea. Driving schedules that included the period between midnight and 5:59 am were associated with increased likelihood of crashing (odds ratio = 3.42, 95% confidence interval: 2.04, 5.74), as were having an empty load (odds ratio = 2.61, 95% confidence interval: 1.72, 3.97) and being a less experienced driver (odds ratio = 3.25, 95% confidence interval: 2.37, 4.46). Not taking regular breaks and the lack of vehicle safety devices were also associated with increased crash risk. Despite the high prevalence of obstructive sleep apnea, it was not associated with the risk of a heavy-vehicle nonfatal, nonsevere crash. Scheduling of driving to avoid midnight-to-dawn driving and the use of more frequent rest breaks are likely to reduce the risk of heavy-vehicle nonfatal, nonsevere crashes by 2-3 times. PMID:24352592

  12. 40 CFR 86.005-10 - Emission standards for 2005 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... year Otto-cycle HDEs. (i) Oxides of Nitrogen plus Non-methane Hydrocarbons (NO, X + NMHC) for engines... model year Otto-cycle heavy-duty engines and vehicles. 86.005-10 Section 86.005-10 Protection of... Heavy-Duty Vehicles § 86.005-10 Emission standards for 2005 and later model year Otto-cycle...

  13. 40 CFR 86.005-10 - Emission standards for 2005 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... year Otto-cycle HDEs. (i) Oxides of Nitrogen plus Non-methane Hydrocarbons (NO, X + NMHC) for engines... model year Otto-cycle heavy-duty engines and vehicles. 86.005-10 Section 86.005-10 Protection of... Heavy-Duty Vehicles § 86.005-10 Emission standards for 2005 and later model year Otto-cycle...

  14. 40 CFR 86.005-10 - Emission standards for 2005 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... year Otto-cycle HDEs. (i) Oxides of Nitrogen plus Non-methane Hydrocarbons (NO, X + NMHC) for engines... model year Otto-cycle heavy-duty engines and vehicles. 86.005-10 Section 86.005-10 Protection of... Heavy-Duty Vehicles § 86.005-10 Emission standards for 2005 and later model year Otto-cycle...

  15. 40 CFR 86.005-10 - Emission standards for 2005 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... year Otto-cycle HDEs. (i) Oxides of Nitrogen plus Non-methane Hydrocarbons (NO, X + NMHC) for engines... model year Otto-cycle heavy-duty engines and vehicles. 86.005-10 Section 86.005-10 Protection of... Heavy-Duty Vehicles § 86.005-10 Emission standards for 2005 and later model year Otto-cycle...

  16. 40 CFR 86.005-10 - Emission standards for 2005 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... year Otto-cycle HDEs. (i) Oxides of Nitrogen plus Non-methane Hydrocarbons (NO, X + NMHC) for engines... model year Otto-cycle heavy-duty engines and vehicles. 86.005-10 Section 86.005-10 Protection of... Heavy-Duty Vehicles § 86.005-10 Emission standards for 2005 and later model year Otto-cycle...

  17. 40 CFR 86.004-11 - Emission standards for 2004 and later model year diesel heavy-duty engines and vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... model year diesel heavy-duty engines and vehicles. 86.004-11 Section 86.004-11 Protection of Environment... § 86.004-11 Emission standards for 2004 and later model year diesel heavy-duty engines and vehicles... diesel HDEs only). (iii) Particulate. (A) For diesel engines to be used in urban buses, 0.05 gram...

  18. 40 CFR 86.008-10 - Emission standards for 2008 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for 1985 and Later... work, W, over each test interval according to 40 CFR 1065.650. (v) Determine your engine's brake... model year Otto-cycle heavy-duty engines and vehicles. 86.008-10 Section 86.008-10 Protection...

  19. 40 CFR 86.008-10 - Emission standards for 2008 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for 1985 and Later... according to 40 CFR 1065.650. (v) Determine your engine's brake-specific emissions using the following... model year Otto-cycle heavy-duty engines and vehicles. 86.008-10 Section 86.008-10 Protection...

  20. Research, development, and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1980

    SciTech Connect

    Not Available

    1981-03-01

    Progress in the development of nickel-zinc batteries for electric vehicles is reported. Information is presented on nickel electrode preparation and testing; zinc electrode preparation with additives and test results; separator development and the evaluation of polymer-blend separator films; sealed Ni-Zn cells; and the optimization of electric vehicle-type Ni-Zn cells. (LCL)

  1. DOE Project on Heavy Vehicle Aerodynamic Drag FY 2005 Annual Report

    SciTech Connect

    McCallen, R C; Salari, K; Ortega, J; Castellucci, P; Eastwood, C; Paschkewitz, J; Pointer, W D; DeChant, L J; Hassan, B; Browand, F; Radovich, C; Merzel, T; Plocher, D; Ross, J; Storms, B; Heineck, J T; Walker, S; Roy, C J

    2005-11-14

    Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At high way speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; and (2) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices.

  2. Heavy vehicle suspension parameters identification and estimation of vertical forces: experimental results

    NASA Astrophysics Data System (ADS)

    Imine, H.; Madani, T.

    2015-02-01

    The aim of the present work is to estimate the vertical forces of heavy vehicle and identify the unknown dynamic parameters using sliding mode observer approach. This observation needs a good knowledge of dynamic parameters such as damping coefficient, spring stiffness, etc. In this paper, suspension stiffness and unsprung masses have been identified. Experimental results carried out on an instrumented tractor have been presented in order to show the quality of the state observation, parameters identification and force estimation. These estimation results are then compared to the measured one coming from the sensors installed in the tractor. Many scenarios have been tested. In this paper, the results coming from zigzag test have been shown and commented.

  3. Intelligent modified internal model control for speed control of nonlinear uncertain heavy duty vehicles.

    PubMed

    Yadav, Anil Kumar; Gaur, Prerna

    2015-05-01

    The objective of this paper is to control the speed of heavy duty vehicle (HDV) through angular position of throttle valve. Modified internal model control (IMC) schemes with fuzzy supervisor as an adaptive tuning are proposed to control the speed of HDV. Internal model (IM) plays a key role in design of various IMC structures with robust and adaptive features. The motivation to design an IM is to produce nearly stable performance as of the system itself. Clustering algorithm and Hankel approximation based model order reduction techniques are used for the design of suitable IM. The time domain performance specifications such as overshoot, settling time, rise time and integral error performance indices such as the integral of the absolute error and the integral of the square of error are taken into consideration for performance analysis of HDV for various uncertainties.

  4. The Use of Nuclear Propulsion, Power and 'In-Situ' Resources for Routine Lunar Space Transportation and Commercial Base Development

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    2003-01-01

    This viewgraph presentation illustrates possible future strategies for solar system exploration supported by Nuclear Thermal Rocket (NTR) Propulsion. Topics addressed in the presentation include: lunar mining, Liquid Oxygen (LOX) augmented NTR (LANTR), 'Shuttle-Derived' Heavy Lift Vehicle (SDHLV) options for future human Lunar missions, and lunar-produced oxygen (LUNOX).

  5. [Study on the Reliability Assessment Method of Heavy Vehicle Gearbox Based on Spectrometric Analysis].

    PubMed

    Bao, Ke; Zhang, Zhong; Cao, Yuan-fu; Chen, Yi-jie

    2015-04-01

    Spectrometric oil analysis is of great importance for wear condition monitoring of gearbox. In this context, the contents of main elements compositions in the bench test of heavy vehicle gearbox are obtained by atomic emission spectrometric oil analysis first. Then correlation analysis of the test data and wearing mechanism analysis are carried out to get the metal element which could be used to describe the wearing and failure of the gearbox. The spectrometric data after filling/changing oil are corrected, and the laws of the contents of main elements compositions during tests are expressed as linear functions. After that, the reliability assessment is executed with considering the degradation law and discreteness of test data, in which the mean and standard deviation of normal distribution of spectrometric oil data at each time point are adopted. Finally, the influences of the threshold are discussed. It has been proved that the contents of metal element Cu, which is got by spectrometric oil analysis of different samples, could be used to assess the reliability of heavy vehicle gearbox. The reason is that the metal element Cu is closely related to the general wear state of gearbox, and is easy to be measured. When the threshold of Cu content is treated as a constant, bigger threshold means higher reliability at the same time, and the mean value of threshold has significant impact on the reliability assessment results as R > 0.9. When the threshold is treated as a random variable, bigger dispersion of threshold means smaller slope of reliability against time, and also means lower reliability of gearbox as R > 0.9 at the same time. In this study, the spectrometric oil analysis and probability statistics are used together for the reliability assessment of gear box, which extends the application range of spectrometric analysis.

  6. High Aspect Ratio Carbon Nanotube Membranes Decorated with Pt Nanoparticle Urchins for Micro Underwater Vehicle Propulsion via H2O2 Decomposition.

    PubMed

    Marr, Kevin M; Chen, Bolin; Mootz, Eric J; Geder, Jason; Pruessner, Marius; Melde, Brian J; Vanfleet, Richard R; Medintz, Igor L; Iverson, Brian D; Claussen, Jonathan C

    2015-08-25

    The utility of unmanned micro underwater vehicles (MUVs) is paramount for exploring confined spaces, but their spatial agility is often impaired when maneuvers require burst-propulsion. Herein we develop high-aspect ratio (150:1), multiwalled carbon nanotube microarray membranes (CNT-MMs) for propulsive, MUV thrust generation by the decomposition of hydrogen peroxide (H2O2). The CNT-MMs are grown via chemical vapor deposition with diamond shaped pores (nominal diagonal dimensions of 4.5 × 9.0 μm) and subsequently decorated with urchin-like, platinum (Pt) nanoparticles via a facile, electroless, chemical deposition process. The Pt-CNT-MMs display robust, high catalytic ability with an effective activation energy of 26.96 kJ mol(-1) capable of producing a thrust of 0.209 ± 0.049 N from 50% [w/w] H2O2 decomposition within a compact reaction chamber of eight Pt-CNT-MMs in series. PMID:26106943

  7. High Aspect Ratio Carbon Nanotube Membranes Decorated with Pt Nanoparticle Urchins for Micro Underwater Vehicle Propulsion via H2O2 Decomposition.

    PubMed

    Marr, Kevin M; Chen, Bolin; Mootz, Eric J; Geder, Jason; Pruessner, Marius; Melde, Brian J; Vanfleet, Richard R; Medintz, Igor L; Iverson, Brian D; Claussen, Jonathan C

    2015-08-25

    The utility of unmanned micro underwater vehicles (MUVs) is paramount for exploring confined spaces, but their spatial agility is often impaired when maneuvers require burst-propulsion. Herein we develop high-aspect ratio (150:1), multiwalled carbon nanotube microarray membranes (CNT-MMs) for propulsive, MUV thrust generation by the decomposition of hydrogen peroxide (H2O2). The CNT-MMs are grown via chemical vapor deposition with diamond shaped pores (nominal diagonal dimensions of 4.5 × 9.0 μm) and subsequently decorated with urchin-like, platinum (Pt) nanoparticles via a facile, electroless, chemical deposition process. The Pt-CNT-MMs display robust, high catalytic ability with an effective activation energy of 26.96 kJ mol(-1) capable of producing a thrust of 0.209 ± 0.049 N from 50% [w/w] H2O2 decomposition within a compact reaction chamber of eight Pt-CNT-MMs in series.

  8. Joint measurements of black carbon and particle mass for heavy-duty diesel vehicles using a portable emission measurement system

    EPA Science Inventory

    The black carbon (BC) emitted from heavy-duty diesel vehicles(HDDVs) is an important source of urban atmospheric pollution and createsstrong climate-forcing impacts. The emission ratio of BC to totalparticle mass (PM) (i.e., BC/PM ratio) is an essential variable used toestimate t...

  9. ON-ROAD EMISSION SAMPLING OF A HEAVY DUTY DIESEL VEHICLE FOR POLYCHLORINATED DIBENZO-P-DIOXINS AND POLYCHLORINATED DIBENZOFURANS

    EPA Science Inventory

    The first known program to characterize mobile heavy diesel vehicle emissions for polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/Fs) during highway and in-city driving routes was successfully conducted. The post-muffler exhaust of a diesel tractor haul...

  10. 75 FR 70237 - California State Motor Vehicle Pollution Control Standards; California Heavy-Duty On-Highway Otto...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... AGENCY California State Motor Vehicle Pollution Control Standards; California Heavy-Duty On-Highway Otto..., 1988). \\2\\ 53 FR 6197 (March 1, 1988) (Diesel) and 53 FR 7022 (March 4, 1988) (Otto-cycle). \\3\\ 69 FR... 209(b)(1)(C). \\11\\ See, e.g., 74 FR at 32767 (July 8, 2009); see also Motor and Equip. Mfrs. Assoc....

  11. High-Power Solar Electric Propulsion for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Manzella, David; Hack, Kurt

    2014-01-01

    NASA has sought to utilize high-power solar electric propulsion as means of improving the affordability of in-space transportation for almost 50 years. Early efforts focused on 25 to 50 kilowatt systems that could be used with the Space Shuttle, while later efforts focused on systems nearly an order of magnitude higher power that could be used with heavy lift launch vehicles. These efforts never left the concept development phase in part because the technology required was not sufficiently mature. Since 2012 the NASA Space Technology Mission Directorate has had a coordinated plan to mature the requisite solar array and electric propulsion technology needed to implement a 30 to 50 kilowatt solar electric propulsion technology demonstration mission. Multiple solar electric propulsion technology demonstration mission concepts have been developed based on these maturing technologies with recent efforts focusing on an Asteroid Redirect Robotic Mission. If implemented, the Asteroid Redirect Vehicle will form the basis for a capability that can be cost-effectively evolved over time to provide solar electric propulsion transportation for a range of follow-on mission applications at power levels in excess of 100 kilowatts.

  12. Human health impacts of biodiesel use in on-road heavy duty diesel vehicles in Canada.

    PubMed

    Rouleau, Mathieu; Egyed, Marika; Taylor, Brett; Chen, Jack; Samaali, Mehrez; Davignon, Didier; Morneau, Gilles

    2013-11-19

    Regulatory requirements for renewable content in diesel fuel have been adopted in Canada. Fatty acid alkyl esters, that is, biodiesel, will likely be used to meet the regulations. However, the impacts on ambient atmospheric pollutant concentrations and human health outcomes associated with the use of biodiesel fuel blends in heavy duty diesel vehicles across Canada have not been evaluated. The objective of this study was to assess the potential human health implications of the widespread use of biodiesel in Canada compared to those from ultralow sulfur diesel (ULSD). The health impacts/benefits resulting from biodiesel use were determined with the Air Quality Benefits Assessment Tool, based on output from the AURAMS air quality modeling system and the MOBILE6.2C on-road vehicle emissions model. Scenarios included runs for ULSD and biodiesel blends with 5 and 20% of biodiesel by volume, and compared their use in 2006 and 2020. Although modeling and data limitations exist, the results of this study suggested that the use of biodiesel fuel blends compared to ULSD was expected to result in very minimal changes in air quality and health benefits/costs across Canada, and these were likely to diminish over time.

  13. Design and hardware-in-loop implementation of collision avoidance algorithms for heavy commercial road vehicles

    NASA Astrophysics Data System (ADS)

    Rajaram, Vignesh; Subramanian, Shankar C.

    2016-07-01

    An important aspect from the perspective of operational safety of heavy road vehicles is the detection and avoidance of collisions, particularly at high speeds. The development of a collision avoidance system is the overall focus of the research presented in this paper. The collision avoidance algorithm was developed using a sliding mode controller (SMC) and compared to one developed using linear full state feedback in terms of performance and controller effort. Important dynamic characteristics such as load transfer during braking, tyre-road interaction, dynamic brake force distribution and pneumatic brake system response were considered. The effect of aerodynamic drag on the controller performance was also studied. The developed control algorithms have been implemented on a Hardware-in-Loop experimental set-up equipped with the vehicle dynamic simulation software, IPG/TruckMaker®. The evaluation has been performed for realistic traffic scenarios with different loading and road conditions. The Hardware-in-Loop experimental results showed that the SMC and full state feedback controller were able to prevent the collision. However, when the discrepancies in the form of parametric variations were included, the SMC provided better results in terms of reduced stopping distance and lower controller effort compared to the full state feedback controller.

  14. Dynamic Analysis of Heavy Vehicle Medium Duty Drive Shaft Using Conventional and Composite Material

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwani; Jain, Rajat; Patil, Pravin P.

    2016-09-01

    The main highlight of this study is structural and modal analysis of single piece drive shaft for selection of material. Drive shaft is used for torque carrying from vehicle transmission to rear wheel differential system. Heavy vehicle medium duty transmission drive shaft was selected as research object. Conventional materials (Steel SM45 C, Stainless Steel) and composite materials (HS carbon epoxy, E Glass Polyester Resin Composite) were selected for the analysis. Single piece composite material drive shaft has advantage over conventional two-piece steel drive shaft. It has higher specific strength, longer life, less weight, high critical speed and higher torque carrying capacity. The main criteria for drive shaft failure are strength and weight. Maximum modal frequency obtained is 919 Hz. Various harmful vibration modes (lateral vibration and torsional vibration) were identified and maximum deflection region was specified. For single-piece drive shaft the natural bending frequency should be higher because it is subjected to torsion and shear stress. Single piece drive shaft was modelled using Solid Edge and Pro-E. Finite Element Analysis was used for structural and modal analysis with actual running boundary condition like frictional support, torque and moment. FEA simulation results were validated with experimental literature results.

  15. Human health impacts of biodiesel use in on-road heavy duty diesel vehicles in Canada.

    PubMed

    Rouleau, Mathieu; Egyed, Marika; Taylor, Brett; Chen, Jack; Samaali, Mehrez; Davignon, Didier; Morneau, Gilles

    2013-11-19

    Regulatory requirements for renewable content in diesel fuel have been adopted in Canada. Fatty acid alkyl esters, that is, biodiesel, will likely be used to meet the regulations. However, the impacts on ambient atmospheric pollutant concentrations and human health outcomes associated with the use of biodiesel fuel blends in heavy duty diesel vehicles across Canada have not been evaluated. The objective of this study was to assess the potential human health implications of the widespread use of biodiesel in Canada compared to those from ultralow sulfur diesel (ULSD). The health impacts/benefits resulting from biodiesel use were determined with the Air Quality Benefits Assessment Tool, based on output from the AURAMS air quality modeling system and the MOBILE6.2C on-road vehicle emissions model. Scenarios included runs for ULSD and biodiesel blends with 5 and 20% of biodiesel by volume, and compared their use in 2006 and 2020. Although modeling and data limitations exist, the results of this study suggested that the use of biodiesel fuel blends compared to ULSD was expected to result in very minimal changes in air quality and health benefits/costs across Canada, and these were likely to diminish over time. PMID:24143909

  16. Opportunities for Low Cost Titanium in Reduced Fuel Consumption, Improved Emissions, and Enhanced Durability Heavy Duty Vehicles

    SciTech Connect

    Kraft, E.H.

    2002-07-22

    The purpose of this study was to determine which components of heavy-duty highway vehicles are candidates for the substitution of titanium materials for current materials if the cost of those Ti components is very significantly reduced from current levels. The processes which could be used to produce those low cost components were also investigated. Heavy-duty highway vehicles are defined as all trucks and busses included in Classes 2C through 8. These include heavy pickups and vans above 8,500 lbs. GVWR, through highway tractor trailers. Class 8 is characterized as being a very cyclic market, with ''normal'' year volume, such as in 2000, of approximately 240,000 new vehicles. Classes 3-7 are less cyclic, with ''normal'' i.e., year 2000, volume totaling approximately 325,000 new vehicles. Classes 3-8 are powered about 88.5% by diesel engines, and Class 2C at very roughly 83% diesel. The engine portion of the study therefore focused on diesels. Vehicle production volumes were used in estimates of the market size for candidate components.

  17. A study of aeroelastic and structural dynamic effects in multi-rotor systems with application to hybrid heavy lift vehicles

    NASA Technical Reports Server (NTRS)

    Friedmann, P. P.

    1984-01-01

    An aeroelastic model suitable for the study of aeroelastic and structural dynamic effects in multirotor vehicles simulating a hybrid heavy lift vehicle was developed and applied to the study of a number of diverse problems. The analytical model developed proved capable of modeling a number of aeroelastic problems, namely: (1) isolated blade aeroelastic stability in hover and forward flight, (2) coupled rotor/fuselage aeromechanical problem in air or ground resonance, (3) tandem rotor coupled rotor/fuselage problems, and (4) the aeromechanical stability of a multirotor vehicle model representing a hybrid heavy lift airship (HHLA). The model was used to simulate the ground resonance boundaries of a three bladed hingeless rotor model, including the effect of aerodynamic loads, and the theoretical predictions compared well with experimental results. Subsequently the model was used to study the aeromechanical stability of a vehicle representing a hybrid heavy lift airship, and potential instabilities which could occur for this type of vehicle were identified. The coupling between various blade, supporting structure and rigid body modes was identified.

  18. External Pulsed Plasma Propulsion (EPPP) Analysis Maturation

    NASA Technical Reports Server (NTRS)

    Bonometti, Joesph A.; Morton, P. Jeff; Schmidt, George R. (Technical Monitor)

    2000-01-01

    External Pulsed Plasma Propulsion (EPPP) systems are at the stage of engineering infancy with evolving paradigms for application. performance and general characteristics. Recent efforts have focused on an approach that employs existing technologies with near term EPPP development for usage in interplanetary exploration and asteroid/comet deflection. if mandated. The inherent advantages of EPPP are discussed and its application to a variety of propulsion concepts is explored. These include, but are not limited to, utilizing energy sources such as fission. fusion and antimatter, as well as, improved chemical explosives. A mars mission scenario is presented as a demonstration of its capability using existing technologies. A suggested alternate means to improve EPPP efficiencies could also lead to a heavy lift (non-nuclear) launch vehicle capability. Conceivably, true low-cost, access to space is possible using advanced explosive propellants and/or coupling the EPPP vehicle to a "beam propellant" concept. EPPP systems appear to offer an approach that can potentially cover ETO through interstellar transportation capability. A technology roadmap is presented that shows mutual benefits pertaining to a substantial number of existing space propulsion and research areas.

  19. Velocity and normal tyre force estimation for heavy trucks based on vehicle dynamic simulation considering the road slope angle

    NASA Astrophysics Data System (ADS)

    Ma, Zeyu; Zhang, Yunqing; Yang, James

    2016-02-01

    A precise estimation of vehicle velocities can be valuable for improving the performance of the vehicle dynamics control (VDC) system and this estimation relies heavily upon the accuracy of longitudinal and lateral tyre force calculation governed by the prediction of normal tyre forces. This paper presents a computational method based on the unscented Kalman filter (UKF) method to estimate both longitudinal and lateral velocities and develops a novel quasi-stationary method to predict normal tyre forces of heavy trucks on a sloping road. The vehicle dynamic model is constructed with a planar dynamic model combined with the Pacejka tyre model. The novel quasi-stationary method for predicting normal tyre forces is able to characterise the typical chassis configuration of the heavy trucks. The validation is conducted through comparing the predicted results with those simulated by the TruckSim and it has a good agreement between these results without compromising the convergence speed and stability.

  20. The challenge to NOx emission control for heavy-duty diesel vehicles in China

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Zhang, S. J.; Li, M. L.; Ge, Y. S.; Shu, J. W.; Zhou, Y.; Xu, Y. Y.; Hu, J. N.; Liu, H.; Fu, L. X.; He, K. B.; Hao, J. M.

    2012-07-01

    China's new "Twelfth Five-Year Plan" set a target for total NOx emission reduction of 10% for the period of 2011-2015. Heavy-duty diesel vehicles (HDDVs) have been considered a major contributor to NOx emissions in China. Beijing initiated a comprehensive vehicle test program in 2008. This program included a sub-task for measuring on-road emission profiles of hundreds of HDDVs using portable emission measurement systems (PEMS). The major finding is that neither the on-road distance-specific (g km -1) nor brake-specific (g kW h-1) NOx emission factors for diesel buses and heavy-duty diesel trucks improved in most cases as emission standards became more stringent. For example, the average NOx emission factors for Euro II, Euro III and Euro IV buses are 11.3±3.3 g km-1, 12.5± 1.3 g km-1, and 11.8±2.0 g km-1, respectively. No statistically significant difference in NOx emission factors was observed between Euro II and III buses. Even for Euro IV buses equipped with SCR systems, the NOx emission factors are similar to Euro III buses. The data regarding real-time engine performance of Euro IV buses suggest the engine certification cycles did not reflect their real-world operating conditions. These new on-road test results indicate that previous estimates of total NOx emissions for HDDV fleet may be significantly underestimated. The new estimate in total NOx emissions for the Beijing HDDV fleet in 2009 is 37.0 Gg, an increase of 45% compared to the previous study. Further, we estimate that the total NOx emissions for the national HDDV fleet in 2009 are approximately 4.0 Tg, higher by 1.0 Tg (equivalent to 18% of total NOx emissions for vehicle fleet in 2009) than that estimated in the official report. This would also result in 4% increase in estimation of national anthropogenic NOx emissions. More effective control measures (such as promotion of CNG buses and a new in-use compliance testing program) are urged to secure the goal of total NOxmitigation for the HDDV fleet

  1. The challenge to NOx emission control for heavy-duty diesel vehicles in China

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Zhang, S. J.; Li, M. L.; Ge, Y. S.; Shu, J. W.; Zhou, Y.; Xu, Y. Y.; Hu, J. N.; Liu, H.; Fu, L. X.; He, K. B.; Hao, J. M.

    2012-10-01

    China's new "Twelfth Five-Year Plan" set a target for total NOx emission reduction of 10% for the period of 2011-2015. Heavy-duty diesel vehicles (HDDVs) have been considered a major contributor to NOx emissions in China. Beijing initiated a comprehensive vehicle test program in 2008. This program included a sub-task for measuring on-road emission profiles of hundreds of HDDVs using portable emission measurement systems (PEMS). The major finding is that neither the on-road distance-specific (g km-1) nor brake-specific (g kWh-1) NOx emission factors for diesel buses and heavy-duty diesel trucks improved in most cases as emission standards became more stringent. For example, the average NOx emission factors for Euro II, Euro III and Euro IV buses are 11.3 ± 3.3 g km-1, 12.5 ± 1.3 g km-1, and 11.8 ± 2.0 g km-1, respectively. No statistically significant difference in NOx emission factors was observed between Euro II and III buses. Even for Euro IV buses equipped with SCR systems, the NOx emission factors are similar to Euro III buses. The data regarding real-time engine performance of Euro IV buses suggest the engine certification cycles did not reflect their real-world operating conditions. These new on-road test results indicate that previous estimates of total NOx emissions for HDDV fleet may be significantly underestimated. The new estimate in total NOx emissions for the Beijing HDDV fleet in 2009 is 37.0 Gg, an increase of 45% compared to the previous study. Further, we estimate that the total NOx emissions for the national HDDV fleet in 2009 are approximately 4.0 Tg, higher by 1.0 Tg (equivalent to 18% of total NOx emissions for vehicle fleet in 2009) than that estimated in the official report. This would also result in 4% increase in estimation of national anthropogenic NOx emissions. More effective control measures (such as promotion of CNG buses and a new in-use compliance testing program) are urged to secure the goal of total NOx mitigation for the HDDV

  2. Space propulsion

    NASA Technical Reports Server (NTRS)

    Kazaroff, John M.

    1993-01-01

    Lewis Research Center is developing broad-based new technologies for space chemical engines to satisfy long-term needs of ETO launch vehicles and other vehicles operating in and beyond Earth orbit. Specific objectives are focused on high performance LO2/LH2 engines providing moderate thrusts of 7,5-200 klb. This effort encompasses research related to design analysis and manufacturing processes needed to apply advanced materials to subcomponents, components, and subsystems of space-based systems and related ground-support equipment. High-performance space-based chemical engines face a number of technical challenges. Liquid hydrogen turbopump impellers are often so large that they cannot be machined from a single piece, yet high stress at the vane/shroud interface makes bonding extremely difficult. Tolerances on fillets are critical on large impellers. Advanced materials and fabricating techniques are needed to address these and other issues of interest. Turbopump bearings are needed which can provide reliable, long life operation at high speed and high load with low friction losses. Hydrostatic bearings provide good performance, but transients during pump starts and stops may be an issue because no pressurized fluid is available unless a separate bearing pressurization system is included. Durable materials and/or coatings are needed that can demonstrate low wear in the harsh LO2/LH2 environment. Advanced materials are also needed to improve the lifetime, reliability and performance of other propulsion system elements such as seals and chambers.

  3. Space propulsion

    NASA Astrophysics Data System (ADS)

    Kazaroff, John M.

    1993-02-01

    Lewis Research Center is developing broad-based new technologies for space chemical engines to satisfy long-term needs of ETO launch vehicles and other vehicles operating in and beyond Earth orbit. Specific objectives are focused on high performance LO2/LH2 engines providing moderate thrusts of 7,5-200 klb. This effort encompasses research related to design analysis and manufacturing processes needed to apply advanced materials to subcomponents, components, and subsystems of space-based systems and related ground-support equipment. High-performance space-based chemical engines face a number of technical challenges. Liquid hydrogen turbopump impellers are often so large that they cannot be machined from a single piece, yet high stress at the vane/shroud interface makes bonding extremely difficult. Tolerances on fillets are critical on large impellers. Advanced materials and fabricating techniques are needed to address these and other issues of interest. Turbopump bearings are needed which can provide reliable, long life operation at high speed and high load with low friction losses. Hydrostatic bearings provide good performance, but transients during pump starts and stops may be an issue because no pressurized fluid is available unless a separate bearing pressurization system is included. Durable materials and/or coatings are needed that can demonstrate low wear in the harsh LO2/LH2 environment. Advanced materials are also needed to improve the lifetime, reliability and performance of other propulsion system elements such as seals and chambers.

  4. Heavy and Overweight Vehicle Brake Testing: Five-Axle Combination Tractor-Flatbed Final Report

    SciTech Connect

    Lascurain, Mary Beth; Capps, Gary J; Franzese, Oscar

    2013-10-01

    The Federal Motor Carrier Safety Administration, in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a combination tractor/trailer. This testing was conducted on a five-axle combination vehicle with tractor brakes meeting the Reduced Stopping Distance requirement rulemaking. This report provides a summary of the testing activities, the results of various analyses of the data, and recommendations for future research. Following a complete brake rebuild, instrumentation, and brake burnish, stopping tests were performed from 20 and 40 mph with various brake application pressures (15 psi, 25 psi, 35 psi, 45 psi, 55 psi, and full system pressure). These tests were conducted for various brake conditions at the following GVWs: 60,000, 80,000, 91,000, 97,000, 106,000, and 116,000 lb. The 80,000-lb GVWs included both balanced and unbalanced loads. The condition of the braking system was also varied. To introduce these defects, brakes (none, forward drive axle, or rear trailer axle) were made inoperative. In addition to the stopping tests, performance-based brake tests were conducted for the various loading and brake conditions. Analysis of the stopping test data showed the stopping distance to increase with load (as expected) and also showed that more braking force was generated by the drive axle brakes than the trailer axle brakes. The constant-pressure stopping test data

  5. Effects of Heavy, Tracked-Vehicle Disturbance on Forest Soil Properties at Fort Benning, Georgia

    SciTech Connect

    Garten, C.T.,JR.

    2004-05-20

    The purpose of this report is to describe the effects of heavy, tracked-vehicle disturbance on various measures of soil quality in training compartment K-11 at Fort Benning, Georgia. Predisturbance soil sampling in April and October of 2002 indicated statistically significant differences in soil properties between upland and riparian sites. Soil density was less at riparian sites, but riparian soils had significantly greater C and N concentrations and stocks than upland soils. Most of the C stock in riparian soils was associated with mineral-associated organic matter (i.e., the silt + clay fraction physically separated from whole mineral soil). Topographic differences in soil N availability were highly dependent on the time of sampling. Riparian soils had higher concentrations of extractable inorganic N than upland soils and also exhibited significantly greater soil N availability during the spring sampling. The disturbance experiment was performed in May 2003 by driving a D7 bulldozer through the mixed pine/hardwood forest. Post-disturbance sampling was limited to upland sites because training with heavy, tracked vehicles at Fort Benning is generally confined to upland soils. Soil sampling approximately one month after the experiment indicated that effects of the bulldozer were limited primarily to the forest floor (O-horizon) and the surface (0-10 cm) mineral soil. O-horizon dry mass and C stocks were significantly reduced, relative to undisturbed sites, and there was an indication of reduced mineral soil C stocks in the disturbance zone. Differences in the surface (0-10 cm) mineral soil also indicated a significant increase in soil density as a result of disturbance by the bulldozer. Although there was some tendency for greater soil N availability in disturbed soils, the changes were not significantly different from undisturbed controls. It is expected that repeated soil disturbance over time, which will normally occur in a military training area, would simply

  6. Propulsion IVHM Extreme Environment Instrumentation Power IVHM

    NASA Technical Reports Server (NTRS)

    Zakrajsek, June

    2000-01-01

    This paper presents propulsion and instrumentation power for integrated vehicle health management technologies. The topics include: 1) Propulsion IVHM Capabilities Research; 2) Projects: X-33 Post-Test Diagnostic System; 3) X-34 NITEX; 4) Advanced Health Monitoring Systems; 5) Active Vibration Monitoring System; 6) Smart Self Healing Propulsion Systems; 7) Extreme Environment Sensors; and 8) Systems Engineering and Integration.

  7. Pulsed Fission Propulsion Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the 1960's U.S. Government laboratories, under Project Orion, investigated a pulsed nuclear fission propulsion system. Small nuclear pulse units would be sequentially discharged from the aft end of the vehicle. A blast shield and shock absorber system would protect the crew and convert the shock loads into a continuous propusive force.

  8. Advanced cryo propulsion systems

    NASA Technical Reports Server (NTRS)

    Tabata, William K.

    1991-01-01

    The following topics are presented in viewgraph form: (1) advanced space engine (ASE) chronology; (2) an ASE description; (3) a single expander; (4) a dual expander; (5) split expander; (6) launch vehicle start; (7) space start; (8) chemical transfer propulsion; and (9) an advanced expander test bed.

  9. Aerodynamic Design Criteria for Class 8 Heavy Vehicles Trailer Base Devices to Attain Optimum Performance

    SciTech Connect

    Salari, K; Ortega, J

    2010-12-13

    Lawrence Livermore National Laboratory (LLNL) as part of its Department of Energy (DOE), Energy Efficiency and Renewable Energy (EERE), and Vehicle Technologies Program (VTP) effort has investigated class 8 tractor-trailer aerodynamics for many years. This effort has identified many drag producing flow structures around the heavy vehicles and also has designed and tested many new active and passive drag reduction techniques and concepts for significant on the road fuel economy improvements. As part of this effort a database of experimental, computational, and conceptual design for aerodynamic drag reduction devices has been established. The objective of this report is to provide design guidance for trailer base devices to improve their aerodynamic performance. These devices are commonly referred to as boattails, base flaps, tail devices, and etc. The information provided here is based on past research and our most recent full-scale experimental investigations in collaboration with Navistar Inc. Additional supporting data from LLNL/Navistar wind tunnel, track test, and on the road test will be published soon. The trailer base devices can be identified by 4 flat panels that are attached to the rear edges of the trailer base to form a closed cavity. These devices have been engineered in many different forms such as, inflatable and non-inflatable, 3 and 4-sided, closed and open cavity, and etc. The following is an in-depth discussion with some recommendations, based on existing data and current research activities, of changes that could be made to these devices to improve their aerodynamic performance. There are 6 primary factors that could influence the aerodynamic performance of trailer base devices: (1) Deflection angle; (2) Boattail length; (3) Sealing of edges and corners; (4) 3 versus 4-sided, Position of the 4th plate; (5) Boattail vertical extension, Skirt - boattail transition; and (6) Closed versus open cavity.

  10. Research, development, and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1980

    SciTech Connect

    Not Available

    1981-03-01

    Progress in developing nickel-zinc batteries for propelling electric vehicles is reported. Information is included on component design, battery fabrication, and module performance testing. Although full scale hardware performance has fallen short of the contract cycle life goals, significant progress has been made to warrant further development. (LCL)

  11. Advanced propulsion activities in the USA

    NASA Astrophysics Data System (ADS)

    Garrison, P. W.

    Advances in propulsion system performance are necessary to meet the projected requirements of future launch vehicles, orbit transfer vehicles, satellites and planetary spacecraft. Ongoing U.S. space propulsion research programs are aggressively pursuing the development of the technology to meet these requirements. This paper reviews advanced propulsion research in the USA. Work accomplished in 1985 and future plans for ongoing research programs are discussed. Theoretical and experimental research programs and system studies of augmented hydrazine, arcjet, magnetoplasma dynamic thruster, ion thruster, metastable chemical, solar thermal, light sail, microwave and laser propulsion, nuclear fission rockets, and fusion and antimatter propulsion systems are addressed.

  12. 40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... clean-fuel fleet vehicles not regulated under 40 CFR part 86 shall have a permanent legible label...-duty engines and vehicles used as LEVs, ULEVs, and ZEVs that are also regulated under 40 CFR part 86 shall comply with the labeling requirements of 40 CFR 86.095-35 (or later applicable sections),...

  13. 40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... clean-fuel fleet vehicles not regulated under 40 CFR part 86 shall have a permanent legible label...-duty engines and vehicles used as LEVs, ULEVs, and ZEVs that are also regulated under 40 CFR part 86 shall comply with the labeling requirements of 40 CFR 86.095-35 (or later applicable sections),...

  14. 40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... clean-fuel fleet vehicles not regulated under 40 CFR part 86 shall have a permanent legible label...-duty engines and vehicles used as LEVs, ULEVs, and ZEVs that are also regulated under 40 CFR part 86 shall comply with the labeling requirements of 40 CFR 86.095-35 (or later applicable sections),...

  15. 40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... clean-fuel fleet vehicles not regulated under 40 CFR part 86 shall have a permanent legible label...-duty engines and vehicles used as LEVs, ULEVs, and ZEVs that are also regulated under 40 CFR part 86 shall comply with the labeling requirements of 40 CFR 86.095-35 (or later applicable sections),...

  16. 40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... clean-fuel fleet vehicles not regulated under 40 CFR part 86 shall have a permanent legible label...-duty engines and vehicles used as LEVs, ULEVs, and ZEVs that are also regulated under 40 CFR part 86 shall comply with the labeling requirements of 40 CFR 86.095-35 (or later applicable sections),...

  17. Reactors for nuclear electric propulsion

    SciTech Connect

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades.

  18. THE EFFECTS OF BIODIESEL BLENDS AND ARCO EC-DIESEL ON EMISSIONS from LIGHT HEAVY-DUTY DIESEL VEHICLES

    SciTech Connect

    Durbin, Thomas

    2001-08-05

    Chassis dynamometer tests were performed on 7 light heavy-duty diesel trucks comparing the emissions of a California diesel fuel with emissions from 4 other fuels: ARCO EC-diesel (EC-D) and three 20% biodiesel blends (1 yellow grease and 2 soy-based). The EC-D and the yellow grease biodiesel blend both showed significant reductions in THC and CO emissions over the test vehicle fleet. EC-D also showed reductions in PM emission rates. NOx emissions were comparable for the different fuel types over the range of vehicles tested. The soy-based biodiesel blends did not show significant or consistent emissions differences over all test vehicles. Total carbon accounted for more than 70% of the PM mass for 4 of the 5 sampled vehicles. Elemental and organic carbon ratios varied significantly from vehicle-to-vehicle but showed very little fuel dependence. Inorganic species represented a smaller portion of the composite total, ranging from 0.2 to 3.3% of the total PM. Total PAH emissions ranged from approximately 1.8 mg/mi to 67.8 mg/mi over the different vehicle/fuel combinations representing between 1.6 and 3.8% of the total PM mass.

  19. NASA Glenn Research Center's Hypersonic Propulsion Program

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.

    1999-01-01

    NASA Glenn Research Center (GRC), as NASA's lead center for aeropropulsion, is responding to the challenge of reducing the cost of space transportation through the integration of air-breathing propulsion into launch vehicles. Air- breathing launch vehicle (ABLV) propulsion requires a marked departure from traditional propulsion applications. and stretches the technology of both rocket and air-breathing propulsion. In addition, the demands of the space launch mission require an unprecedented level of integration of propulsion and vehicle systems. GRC is responding with a program with rocket-based combined cycle (RBCC) propulsion technology as its main focus. RBCC offers the potential for simplicity, robustness, and performance that may enable low-cost single-stage-to-orbit (SSTO) transportation. Other technologies, notably turbine-based combined cycle (TBCC) propulsion, offer benefits such as increased robustness and greater mission flexibility, and are being advanced, at a slower pace, as part of GRC's program in hypersonics.

  20. Electric propulsion and interstellar flight

    SciTech Connect

    Matloff, G.L.

    1987-01-01

    Two general classes of interstellar space-flights are defined: endothermic and exothermic. Endothermic methods utilize power sources external to the vehicle and associated technology. Faster exothermic methods utilize on-board propulsive power sources or energy-beam technology. Various proposed endothermic electric propulsion methods are described. These include solar electric rockets, mass drivers, and ramjets. A review of previously suggested exothermic electric propulsion methods is presented. Following this review is a detailed discussion of possible near future application of the beamed-laser ramjet, mainly for ultimate relativistic travel. Electric/magnetic techniques offer an excellent possibility for decelerating an interstellar vehicle, regardless of the acceleration technique. 20 references.

  1. Evaluation of fuel consumption potential of medium and heavy duty vehicles through modeling and simulation.

    SciTech Connect

    Delorme, A.; Karbowski, D.; Sharer, P.; Energy Systems

    2010-03-31

    The main objective of this report is to provide quantitative data to support the Committee in its task of establishing a report to support rulemaking on medium- and heavy-duty fuel efficiency improvement. In particular, it is of paramount importance for the Committee to base or illustrate their conclusions on established models and actual state-of-the art data. The simulations studies presented in the report have been defined and requested by the members of the National Academy committee to provide quantitative inputs to support their recommendations. As such, various technologies and usage scenarios were considered for several applications. One of the objective is to provide the results along with their associated assumptions (both vehicle and drive cycles), information generally missing from public discussions on literature search. Finally, the advantages and limitations of using simulation will be summarized. The study addresses several of the committee tasks, including: (1) Discussion of the implication of metric selection; (2) Assessing the impact of existing technologies on fuel consumption through energy balance analysis (both steady-state and standard cycles) as well as real world drive cycles; and (3) Impact of future technologies, both individually and collectively.

  2. Clutch fill control of an automatic transmission for heavy-duty vehicle applications

    NASA Astrophysics Data System (ADS)

    Meng, Fei; Chen, Huiyan; Zhang, Tao; Zhu, Xiaoyuan

    2015-12-01

    In this paper an integrated clutch filling phase control for gearshifts on wet clutch transmissions is developed. In a clutch-to-clutch shift of an automatic transmission, in order to obtain smooth gearshift, it should synchronize the oncoming clutch and the off-going clutch timely as well as precise pressure control for the engagement of the oncoming clutch. However, before the oncoming clutch pressure starts to increase, the initial cavity of the clutch chamber has to be filled first. The filling time and stability of the fill phase are very important for the clutch control. In order to improve the shift quality of the automatic transmission which is equipped on heavy-duty vehicles, the electro-hydraulic clutch actuation system is analysed and modelled. A new fill phase control strategy is proposed based on the system analysis as well as the control parameters are optimized according to the variation of the oil temperature and engine speed. The designed strategy is validated by a simulation work. The results demonstrate that the proposed control strategy and parameters modified method can transit the shift process from the fill phase to the torque phase effectively.

  3. October 1998 working group meeting on heavy vehicle aerodynamic drag: presentations and summary of comments and conclusions

    SciTech Connect

    Browand, F; Heineck, J T; Leonard, A; McBride, D; McCallen, R; Ross, J; Rutledge, W; Salari, K; Storms, B

    1998-10-01

    A Working Group 1Meeting on Heavy Vehicle Aerodynamic Drag was held at NASA Ames Research Center, Moffett Field, California on October 22, 1998. The purpose of the meeting was to present an overview of the computational and experimental approach for modeling the integrated tractor-trailer benchmark geometry called the Sandia IModel and to review NASA' s test plan for their experiments in the 7 ft x 10 ft wind tunnel. The present and projected funding situation was also discussed. Presentations were given by representatives from the Department of Energy (DOE) Office of Transportation Technology Office of Heavy Vehicle Technology (OHVT). Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), and NASA Ames Research Center. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions. and outlines the future action items.

  4. April 2002 Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentations and Summary of Comments and Conclusions

    SciTech Connect

    Salari, K; Dunn, T; Ortega, J; Yen-Nakafuji, D; Browand, F; Arcas, D; Jammache, M; Leoard, A; Chatelain, P; Rubel, M; Rutledge, W; McWherter-Payne, M; Roy, Ca; Ross, J; Satran, D; Heineck, J T; Storms, B; Pointer, D; Sofu, T; Weber, D; Chu, E; Hancock, P; Bundy, B; Englar, B

    2002-08-22

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory on April 3 and 4, 2002. The purpose of the meeting was to present and discuss technical details on the experimental and computational work in progress and future project plans. Representatives from the Department of Energy (DOE) Office of Transportation Technology Office of Heavy Vehicle Technology (OHVT), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), NASA Ames Research Center, University of Southern California (USC), and California Institute of Technology (Caltech), Georgia Tech Research Institute (GTRI), and Argonne National Laboratory (ANL), Volvo Trucks, and Freightliner Trucks presented and participated in discussions. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items.

  5. 77 FR 1973 - Petition for Exemption From the Vehicle Theft Prevention Standard; Fuji Heavy Industries U.S.A...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ...This document grants in full the Fuji Heavy Industries U.S.A., Inc.'s (FUSA's) petition for exemption of the Subaru [confidential] vehicle line in accordance with 49 CFR part 543, Exemption from the Theft Prevention Standard. This petition is granted because the agency has determined that the antitheft device to be placed on the line as standard equipment is likely to be as effective in......

  6. Embedded Wing Propulsion Conceptual Study

    NASA Technical Reports Server (NTRS)

    Kim, Hyun D.; Saunders, John D.

    2003-01-01

    As a part of distributed propulsion work under NASA's Revolutionary Aeropropulsion Concepts or RAC project, a new propulsion-airframe integrated vehicle concept called Embedded Wing Propulsion (EWP) is developed and examined through system and computational fluid dynamics (CFD) studies. The idea behind the concept is to fully integrate a propulsion system within a wing structure so that the aircraft takes full benefits of coupling of wing aerodynamics and the propulsion thrust stream. The objective of this study is to assess the feasibility of the EWP concept applied to large transport aircraft such as the Blended-Wing-Body aircraft. In this paper, some of early analysis and current status of the study are presented. In addition, other current activities of distributed propulsion under the RAC project are briefly discussed.

  7. Propulsion by laser power

    NASA Astrophysics Data System (ADS)

    Schall, Wolfgang O.

    2005-03-01

    Laser power can be transformed into propulsive power to set into motion various kinds of vehicles and other objects on the surface, in the air and in space. The transformation process can occur indirectly, for instance by producing electricity via photovoltaic cells or thermal power. Another possibility is the generation of impulses by the ablation of matter from a solid body, or by the initiation of a high-pressure plasma breakdown wave in a fluid medium. Applications range from driving remotely powered roving vehicles to various kinds of thrusters for space propulsion. The direct thrust of the laser photon flux can be used for the propulsion of laser sailcrafts. Applications in space range from micropropulsion for satellite attitude control in the near-term to futuristic interstellar travel driven by photon propulsion. Other propulsive applications in space concern the change of orbits of objects like man-made orbital debris as well as of large objects (asteroids, comets) for protection of Earth against disastrous impacts.

  8. Hypersonic missile propulsion system

    SciTech Connect

    Kazmar, R.R.

    1998-11-01

    Pratt and Whitney is developing the technology for hypersonic components and engines. A supersonic combustion ramjet (scramjet) database was developed using hydrogen fueled propulsion systems for space access vehicles and serves as a point of departure for the current development of hydrocarbon scramjets. The Air Force Hypersonic Technology (HyTech) Program has put programs in place to develop the technologies necessary to demonstrate the operability, performance and structural durability of an expendable, liquid hydrocarbon fueled scramjet system that operates from Mach 4 to 8. This program will culminate in a flight type engine test at representative flight conditions. The hypersonic technology base that will be developed and demonstrated under HyTech will establish the foundation to enable hypersonic propulsion systems for a broad range of air vehicle applications from missiles to space access vehicles. A hypersonic missile flight demonstration is planned in the DARPA Affordable Rapid Response Missile Demonstrator (ARRMD) program in 2001.

  9. The random field model of the spatial distribution of heavy vehicle loads on long-span bridges

    NASA Astrophysics Data System (ADS)

    Chen, Zhicheng; Bao, Yuequan; Li, Hui

    2016-04-01

    A stochastic model based on Markov random field is proposed to model the spatial distribution of vehicle loads on longspan bridges. The bridge deck is divided into a finite set of discrete grid cells, each cell has two states according to whether the cell is occupied by the heavy vehicle load or not, then a four-neighbor lattice-structured undirected graphical model with each node corresponding to a cell state variable is proposed to model the location distribution of heavy vehicle loads on the bridge deck. The node potential is defined to quantitatively describe the randomness of node state, and the edge potential is defined to quantitatively describe the correlation of the connected node pair. The junction tree algorithm is employed to obtain the systematic solutions of inference problems of the graphical model. A marked random variable is assigned to each node to represent the amplitude of the total weight of vehicle applied on the corresponding cell of the bridge deck. The rationality of the model is validated by a Monte Carlo simulation of a learned model based on monitored data of a cable-stayed bridge.

  10. Exhaust emissions from light- and heavy-duty vehicles: chemical composition, impact of exhaust after treatment, and fuel parameters.

    PubMed Central

    Westerholm, R; Egebäck, K E

    1994-01-01

    This paper presents results from the characterization of vehicle exhaust that were obtained primarily within the Swedish Urban Air Project, "Tätortsprojektet." Exhaust emissions from both gasoline- and diesel-fueled vehicles have been investigated with respect to regulated pollutants (carbon monoxide [CO], hydrocarbon [HC], nitrogen oxides [NOx], and particulate), unregulated pollutants, and in bioassay tests (Ames test, TCDD receptor affinity tests). Unregulated pollutants present in both the particle- and the semi-volatile phases were characterized. Special interest was focused on the impact of fuel composition on heavy-duty diesel vehicle emissions. It was confirmed that there exists a quantifiable relationship between diesel-fuel variables of the fuel blends, the chemical composition of the emissions, and their biological effects. According to the results from the multivariate analysis, the most important fuel parameters are: polycyclic aromatic hydrocarbons (PAH) content, 90% distillation point, final boiling point, specific heat, aromatic content, density, and sulfur content. PMID:7529699

  11. Reliability comparison of various nuclear propulsion configurations for Mars mission

    NASA Astrophysics Data System (ADS)

    Segna, Donald R.; Dagle, Jeffrey E.; Lyon, William F.

    1992-01-01

    Currently, trade-offs are being made among the various propulsion systems being considered for the Space Exploration Initiative (SEI) missions. It is necessary to investigate the reliability aspects as well as the efficiency, mass savings and experience characteristics of the various configurations. Reliability is a very important factor for the SEI missions because of the long duration and because problems will be fixed onboard. The propulsion options that were reviewed consist of nuclear thermal propulsion (NTP), nuclear electric propulsion (NEP) and various configurations of each system. There were four configurations developed for comparison with the NTP as baselined in the Synthesis (1991): 1) NEP, 2) hybrid NEP/NTP, 3) hybrid with power beaming, and 4) NTP upper stage on the heavy lift launch vehicle (HLLV). The comparisons were based more or less on a qualitative review of complexity, stress levels and operations for each of the four configurations. Each configuration included a pressurized NEP and an NTP ascent stage propulsion system for the Mars mission.

  12. Reliability comparison of various nuclear propulsion configurations for Mars mission

    SciTech Connect

    Segna, D.R.; Dagle, J.E.; Lyon, W.F. III

    1992-01-01

    Currently, trade-offs are being made among the various propulsion systems being considered for the Space Exploration Initiative (SEI) missions. It is necessary to investigate the reliability aspects as well as the efficiency, mass savings, and experience characteristics of the various configurations. Reliability is a very important factor for the SEI missions because of the long duration and because problems will be fixed onboard. The propulsion options that were reviewed consist of nuclear thermal propulsion (NTP), nuclear electric propulsion (NEP) and various configurations of each system. There were four configurations developed for comparison with the NTP as baselined in the Synthesis (1991): (1) NEP, (2) hybrid NEP/NTP, (3) hybrid with power beaming, and (4) NTP upper stage on the heavy lift launch vehicle (HLLV). The comparisons were based more or less on a qualitative review of complexity, stress levels and operations for each of the four configurations. Each configuration included a pressurized NEP and an NTP ascent stage propulsion system for the Mars mission.

  13. Static and Fatigue Strength Evaluations for Bolted Composite/Steel Joints for Heavy Vehicle Chassis Components

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Herling, Darrell R.

    2004-09-14

    In May 2003, ORNL and PNNL began collaboration on a four year research effort focused on developing joining techniques to overcome the technical issues associated with joining lightweight materials in heavy vehicles. The initial focus of research is the development and validation of joint designs for a composite structural member attached to a metal member that satisfy the structural requirements both economically and reliably. Huck-bolting is a common joining method currently used in heavy truck chassis structures. The initial round of testing was conducted to establish a performance benchmark by evaluating the static and fatigue behavior of an existing steel/steel chassis joint at the single huck-bolt level. Both tension and shear loading conditions were considered, and the resulting static and fatigue strengths will be used to guide the joint design for a replacement composite/steel joint. A commercially available, pultruded composite material was chosen to study the generic issues related to composite/steel joints. Extren is produced by STRONGWELL, and it is a combination of fiberglass reinforcement and thermosetting polyester or vinyl ester resin systems. Extren sheets of 3.2 mm thick were joined to 1.4 mm SAE1008 steel sheets with a standard grade 5 bolt with 6.35 mm diameter. Both tension and shear loading modes were considered for the single hybrid joint under static and fatigue loading conditions. Since fiberglass reinforced thermoset polymer composites are a non-homogenous material, their strengths and behavior are dependent upon the design of the composite and reinforcement. The Extren sheet stock was cut along the longitudinal direction to achieve maximum net-section strength. The effects of various manufacturing factors and operational conditions on the static and fatigue strength of the hybrid joint were modeled and experimentally verified. It was found that loading mode and washer size have significant influence on the static and fatigue strength of

  14. Vacuum jacketed composite propulsion feedlines for cryogenic launch and space vehicles, volume 1. [development of glass fiber composite for strength and protection from handling damage

    NASA Technical Reports Server (NTRS)

    Spond, D. E.; Laintz, D. J.; Hall, C. A.; Dulaigh, D. E.

    1974-01-01

    Thin metallic liners that provide leak-free service in cryogenic propulsion systems are overwrapped with a glass-fiber composite that provides strength and protection from handling damage. The resultant tube is lightweight, strong, and has a low thermal flux. The inside commodity flow line and the outside vacuum jacket were fabricated using this method. Several types of vacuum jackets were fabricated and tested at operating temperatures from 294 to 21 K (+70 to minus 423 F) and operating pressure up to 69 N/cm2 (100 psi). The primary objective of the program was to develop vacuum jacket concepts, using previously developed concepts for the inner line. All major program objectives were met resulting in a design concept that is adaptable to a wide range of aerospace vehicle requirements. Major items of development included convolution of thin metallic sections up to 46 cm (18 in.) in diameter, design and fabrication of an extremely lightweight tension membrane concept for the vacuum jacket, and analytical tools that predict the failure mode and levels.

  15. Comparative risk analysis of dioxins in fish and fine particles from heavy-duty vehicles.

    PubMed

    Leino, Olli; Tainio, Marko; Tuomisto, Jouni T

    2008-02-01

    Dioxins and airborne fine particles are both environmental health problems that have been the subject of active public debate. Knowledge on fine particles has increased substantially during the last 10 years, and even the current, lowered levels in the Europe and in the United States appear to be a major public health problem. On the other hand, dioxins are ubiquitous persistent contaminants, some being carcinogens at high doses, and therefore of great concern. Our aim was to (a) quantitatively analyze the two pollutant health risks and (b) study the changes in risk in view of the current and forthcoming EU legislations on pollutants. We performed a comparative risk assessment for both pollutants in the Helsinki metropolitan area (Finland) and estimated the health effects with several scenarios. For primary fine particles: a comparison between the present emission situation for heavy-duty vehicles and the new fine particle emission standards set by the EU. For dioxins: an EU directive that regulates commercial fishing of Baltic salmon and herring that exceed the dioxin concentration limit set for fish meat, and a derogation (= exemption) from the directive for these two species. Both of these two decisions are very topical issues and this study estimates the expected changes in health effects due to these regulations. It was found that the estimated fine particle risk clearly outweighed the estimated dioxin risk. A substantial improvement to public health could be achieved by initiating reductions in emission standards; about 30 avoided premature deaths annually in the study area. In addition, the benefits of fish consumption due to omega-3 exposure were notably higher than the potential dioxin cancer risk. Both regulations were instigated as ways of promoting public health.

  16. Aerodynamic Design of Heavy Vehicles Reporting Period January 15, 2004 through April 15, 2004

    SciTech Connect

    Leonard, A; Chatelain, P; Heineck, J; Browand, F; Mehta, R; Ortega, J; Salari, K; Storms, B; Brown, J; DeChant, L; Rubel, M; Ross, J; Hammache, M; Pointer, D; Roy, C; Hassan, B; Arcas, D; Hsu, T; Payne, J; Walker, S; Castellucci, P; McCallen, R

    2004-04-13

    Listed are summaries of the activities and accomplishments during this second-quarter reporting period for each of the consortium participants. The following are some highlights for this reporting period: (1) Experiments and computations guide conceptual designs for reduction of drag due to tractor-trailer gap flow (splitter plate), trailer underbody (wedges), and base drag (base-flap add-ons). (2) Steady and unsteady RANS simulations for the GTS geometry are being finalized for development of clear modeling guidelines with RANS. (3) Full geometry and tunnel simulations on the GCM geometry are underway. (4) CRADA with PACCAR is supporting computational parametric study to determine predictive need to include wind tunnel geometry as limits of computational domain. (5) Road and track test options are being investigated. All is ready for field testing of base-flaps at Crows Landing in California in collaboration with Partners in Advanced Transportation Highways (PATH). In addition, MAKA of Canada is providing the device and Wabash is providing a new trailer. (6) Apparatus to investigate tire splash and spray has been designed and is under construction. Michelin has offered tires with customized threads for this study. (7) Vortex methods have improved techniques for the treatment of vorticity near surfaces and spinning geometries like rotating tires. (8) Wind tunnel experiments on model rail cars demonstrate that empty coal cars exhibit substantial aerodynamic drag compared to full coal cars, indicating that significant fuel savings could be obtained by reducing the drag of empty coal cars. (9) Papers are being prepared for an exclusive conference session on the Heavy Vehicle DOE Aerodynamic Drag Project at the 34th AIAA Fluid Dynamics Conference in Portland, Oregon, June 28-July 1, 2004.

  17. Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications

    SciTech Connect

    Daniel T. Hennessy

    2010-06-15

    Changing economic and environmental needs of the trucking industry is driving the use of auxiliary power unit (APU) technology for over the road haul trucks. The trucking industry in the United States remains the key to the economy of the nation and one of the major changes affecting the trucking industry is the reduction of engine idling. Delphi Automotive Systems, LLC (Delphi) teamed with heavy-duty truck Original Equipment Manufacturers (OEMs) PACCAR Incorporated (PACCAR), and Volvo Trucks North America (VTNA) to define system level requirements and develop an SOFC based APU. The project defines system level requirements, and subsequently designs and implements an optimized system architecture using an SOFC APU to demonstrate and validate that the APU will meet system level goals. The primary focus is on APUs in the range of 3-5 kW for truck idling reduction. Fuels utilized were derived from low-sulfur diesel fuel. Key areas of study and development included sulfur remediation with reformer operation; stack sensitivity testing; testing of catalyst carbon plugging and combustion start plugging; system pre-combustion; and overall system and electrical integration. This development, once fully implemented and commercialized, has the potential to significantly reduce the fuel idling Class 7/8 trucks consume. In addition, the significant amounts of NOx, CO2 and PM that are produced under these engine idling conditions will be virtually eliminated, inclusive of the noise pollution. The environmental impact will be significant with the added benefit of fuel savings and payback for the vehicle operators / owners.

  18. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts.

    PubMed

    Adamiec, Ewa; Jarosz-Krzemińska, Elżbieta; Wieszała, Robert

    2016-06-01

    The main sources of non-exhaust vehicular emissions that contribute to road dust are tire, brake and clutch wear, road surface wear, and other vehicle and road component degradation. This study is an attempt to identify and investigate heavy metals in urban and motorway road dusts as well as in dust from brake linings and tires. Road dust was collected from sections of the A-4 motorway in Poland, which is part of European route E40, and from urban roads in Katowice, Poland. Dust from a relatively unpolluted mountain road was collected and examined as a control sample. Selected metals Cd, Cr, Cu, Ni, Pb, Zn, Fe, Se, Sr, Ba, Ti, and Pd were analyzed using inductively coupled plasma-mass spectrometry, inductively coupled plasma (ICP)-optical emission spectroscopy, and atomic absorption spectroscopy on a range of size-fractionated road dust and brake lining dust (<20, 20-56, 56-90, 90-250, and >250 μm). The compositions of brake lining and tire dust were also investigated using scanning electron microscopy-energy-dispersive spectroscopy. To estimate the degree of potential environmental risk of non-exhaust emissions, comparison with the geochemical background and the calculations of geo-accumulation indices were performed. The finest fractions of urban and motorway dusts were significantly contaminated with all of the investigated metals, especially with Ti, Cu, and Cr, which are well-recognized key tracers of non-exhaust brake wear. Urban dust was, however, more contaminated than motorway dust. It was therefore concluded that brake lining and tire wear strongly contributed to the contamination of road dust. PMID:27226173

  19. Testing of the permanent magnet material Mn-Al-C for potential use in propulsion motors for electric vehicles

    NASA Technical Reports Server (NTRS)

    Abdelnour, Z. A.; Mildrum, H. F.; Strnat, K. J.

    1980-01-01

    The development of Mn-Al-C permanent magnets is reviewed. The general properties of the material are discussed and put into perspective relative to alnicos and ferrites. The commercial material now available is described by the manufacturer's data. The traction motor designer's demands of a permanent magnet for potential use in electric vehicle drives are reviewed. From this, a list of the needed specific information is extracted. A plan for experimental work is made which would generate this information, or verify data supplied by the producer. The results of these measurements are presented in the form of tables and graphs. The tests determined magnetic design data and some mechanical strength properties. Easy axis hysteresis and demagnetization curves, recoil loops and other minor loop fields were measured over a temperature range from -50 C to +150 C. Hysteresis loops were also measured for three orthogonal directions (the easy and 2 hard axes of magnetization).

  20. Testing of the permanent magnet material Mn-Al-C for potential use in propulsion motors for electric vehicles

    NASA Technical Reports Server (NTRS)

    Abdelnour, Z.; Mildrun, H.; Strant, K.

    1981-01-01

    The development of Mn-Al-C permanent magnets is reviewed. The general properties of the material are discussed and put into perspective relative to alnicos and ferrites. The traction motor designer's demands of a permanent magnet for potential use in electric vehicle drives are reviewed. Tests determined magnetic design data and mechanical strength properties. Easy axis hysteresis and demagnetization curves, recoil loops and other minor loop fields were measured over a temperature range from -50 to 150 C. Hysteresis loops were also measured for three orthogonal directions (the one easy and two hard axes of magnetization). Extruded rods of three different diameters were tested. The nonuniformity of properties over the cross section of the 31 mm diameter rod was studied. Mechanical compressive and bending strength at room temperature was determined on individual samples from the 31 mm rod.