Survival and growth of black walnut families after 7 years in West Virginia
G. W. Wendel; Donald E. Dorn; Donald E. Dorn
1985-01-01
Average survival, 7-year stem diameter, and stem diameter growth differed significantly among 34 black walnut families planted in West Virginia. Average total height, height growth, and diameter at breast height were not significantly different among families. Families were from seed collected in West Virginia, Pennsylvania, North Carolina, and Tennessee. The 7-year...
Digital terrestrial photogrammetric methods for tree stem analysis
Neil A. Clark; Randolph H. Wynne; Daniel L. Schmoldt; Matt Winn
2000-01-01
A digital camera was used to measure diameters at various heights along the stem on 20 red oak trees. Diameter at breast height ranged from 16 to over 60 cm, and height to a 10-cm top ranged from 12 to 20 m. The chi-square maximum anticipated error of geometric mean diameter estimates at the 95 percent confidence level was within ±4 cm for all heights when...
Height-diameter equations for young-growth red fir in California and southern Oregon
K. Leroy Dolph
1989-01-01
Total tree height of young-growth red fir can be estimated from the relation of total tree height to diameter outside bark at breast height (DOB). Total tree heights and corresponding diameters were obtained from stem analyses of 562 trees distributed across 56 sampling locations in the true fir forest type of California and Oregon. The resulting equations can predict...
Sumida, Akihiro; Miyaura, Tomiyasu; Torii, Hitoshi
2013-01-01
Stem diameter at breast height (DBH) and tree height (H) are commonly used measures of tree growth. We examined patterns of height growth and diameter growth along a stem using a 20-year record of an even-aged hinoki cypress (Chamaecyparis obtusa (Siebold & Zucc.) Endl.) stand. In the region of the stem below the crown (except for the butt swell), diameter growth rates (ΔD) at different heights tended to increase slightly from breast height upwards. This increasing trend was pronounced in suppressed trees, but not as much as the variation in ΔD among individual trees. Hence, ΔD below the crown can be regarded as generally being represented by the DBH growth rate (ΔDBH) of a tree. Accordingly, the growth rate of the stem cross-sectional area increased along the stem upwards in suppressed trees, but decreased in dominant trees. The stem diameter just below the crown base (DCB), the square of which is an index of the amount of leaves on a tree, was an important factor affecting ΔDBH. DCB also had a strong positive relationship with crown length. Hence, long-term changes in the DCB of a tree were associated with long-term changes in crown length, determined by the balance between the height growth rate (ΔH) and the rising rate of the crown base (ΔHCB). Within the crown, ΔD's were generally greater than the rates below the crown. Even dying trees (ΔD ≈ 0 below the crown) maintained ΔD > 0 within the crown and ΔH > 0 until about 5 years before death. This growth within the crown may be related to the need to produce new leaves to compensate for leaves lost owing to the longevity of the lower crown. These results explain the different time trajectories in DBH–H relationships among individual trees, and also the long-term changes in the DBH–H relationships. The view that a rise in the crown base is strongly related to leaf turnover helps to interpret DBH–H relationships. PMID:23303367
An assessment of the utility of a non-metric digital camera for measuring standing trees
Neil Clark; Randolph H. Wynne; Daniel L. Schmoldt; Matthew F. Winn
2000-01-01
Images acquired with a commercially available digital camera were used to make measurements on 20 red oak (Quercus spp.) stems. The ranges of diameter at breast height (DBH) and height to a 10 cm upper-stem diameter were 16-66 cm and 12-20 m, respectively. Camera stations located 3, 6, 9, 12, and 15 m from the stem were studied to determine the best distance to be...
Zi, Xuejuan; Li, Mao; Zhou, Hanlin; Tang, Jun; Cai, Yimin
2017-12-01
The study explored the dynamics of shearing force and its correlation with chemical compositions and in vitro dry matter digestibility (IVDMD) of stylo. The shearing force, diameter, linear density, chemical composition, and IVDMD of different height stylo stem were investigated. Linear regression analysis was done to determine the relationships between the shearing force and cut height, diameter, chemical composition, or IVDMD. The results showed that shearing force of stylo stem increased with plant height increasing and the crude protein (CP) content and IVDMD decreased but fiber content increased over time, resulting in decreased forage value. In addition, tall stem had greater shearing force than short stem. Moreover, shearing force is positively correlated with stem diameter, linear density and fiber fraction, but negatively correlated with CP content and IVDMD. Overall, shearing force is an indicator more direct, easier and faster to measure than chemical composition and digestibility for evaluation of forage nutritive value related to animal performance. Therefore, it can be used to evaluate the nutritive value of stylo.
Michael S. Williams; Kenneth L. Cormier; Ronald G. Briggs; Donald L. Martinez
1999-01-01
Calibrated Barr & Stroud FP15 and Criterion 400 laser dendrometers were tested for reliability in measuring upper stem diameters and heights under typical field conditions. Data were collected in the Black Hills National Forest, which covers parts of South Dakota and Wyoming in the United States. Mixed effects models were employed to account for differences between...
C.A. Gonzalez-Benecke; Salvador A. Gezan; Lisa J. Samuelson; Wendell P. Cropper; Daniel J. Leduc; Timothy A. Martin
2014-01-01
Accurate and efficient estimation of forest growth and live biomass is a critical element in assessing potential responses to forest management and environmental change. The objective of this study was to develop models to predict longleaf pine tree diameter at breast height (dbh) and merchantable stem volume (V) using data obtained from field measurements. We used...
Retransformation bias in a stem profile model
Raymond L. Czaplewski; David Bruce
1990-01-01
An unbiased profile model, fit to diameter divided by diameter at breast height, overestimated volume of 5.3-m log sections by 0.5 to 3.5%. Another unbiased profile model, fit to squared diameter divided by squared diameter at breast height, underestimated bole diameters by 0.2 to 2.1%. These biases are caused by retransformation of the predicted dependent variable;...
Ou, Jian de; Wu, Zhi Zhuang; Luo, Ning
2016-10-01
In order to clarify the effects of forest gap size on the growth and stem form quality of Taxus wallichina var. mairei and effectiveness of the precious timbers cultivation, 25 sample plots in Cunninghamia lanceolata forest gaps were established in Mingxi County, Fujian Province, China to determine the indices of the growth, stem form and branching indices of T. wallichina var. mairei seedlings. The relationships between the gap size and growth, stem form and branching were investigated. The 25 sample plots were located at five microhabitats which were classified based on gap size as follows: Class1, 2, 3, 4 and 5, which had a gap size of 25-50 m 2 , 50-75 m 2 , 75-100 m 2 , 100-125 m 2 and 125-150 m 2 , respectively. The evaluation index system of precious timbers was built by using hierarchical analysis. The 5 classes of forest gaps were evaluated comprehensively by using the multiobjective decision making method. The results showed that gap size significantly affected 11 indices, i.e., height, DBH, crown width, forking rate, stem straightness, stem fullness, taperingness, diameter height ratio, height under living branch, interval between branches, and max-branch base diameter. Class1and 2 both significantly promoted the growth of height, DBH and crown width, and both significantly inhibited forking rate and taperingness, and improved stem straightness. Class2 significantly improved stem fullness and diameter height ratio. Class1and 2 significantly improved height under living branch and reduced max-branch base diameter. Class 1 significantly increased interval between branches. Class1and2 significantly improved the comprehensive evaluation score of precious timbers. This study suggested that controlled cutting intensity could be used to create forest gaps of 25-75 m 2 , which improved the precious timber cultivating process of T. wallichina var. mairei in C. lanceolata forests.
Aspen height, stem-girth and survivorship in an area of high ungulate use
Keigley, R.B.; Frisina, M.R.
2008-01-01
An increase in ungulate population size potentially exposes aspen suckers, saplings, and trees to increased use. This study examined how stem height and girth influenced the selection of stems by ungulates for browsing, rubbing, and gnawing, and reconstructed the history of ungulate use for the study area. Transects were run through each of three aspen clones growing in southwestern Montana to determine height, circumference, and the surface area from which bark was totally and partially removed by rubbing and gnawing. Stems 20-250 cm tall were browsed. Stems 2-13 cm diameter were preferentially selected for rubbing and gnawing. The area of totally removed bark on dead saplings was twice the area of removed bark on live stems of similar diameter, suggesting that bark removal played a major role in the death of some stems. Based on an analysis of stem height and age, ungulate browsing was inferred to have increased from a light-to-moderate level to an intense level in 1991. The depth of scars was used to date scarring events. An increase in rubbing and gnawing was determined to have occurred about 1985. We concluded that elk were primarily responsible for the observed impacts. The combined effect of rubbing, gnawing, and browsing affects a broader span of ages compared to the effect of browsing alone. If prescribed fire is used to rejuvenate aspen stands, the resulting young stems should be protected from heavy browsing, rubbing and gnawing until they reach about 13 cm diameter and have grown out of the browse zone.
K. Leroy Dolph
1989-01-01
Inside bark diameters of young-growth red fir can be estimated from the relationship of inside bark diameter 10 outside bark diameter at breast height. Inside and outside bark diameter were obtained from stem analyses of 562 trees distributed across 56 sampling locations in the true fir forest type of California and southern Oregon. The resulting equation can predict...
Use of a Non-Metric Digital Camera for Tree Stem Evaluation
Neil Clark; Randolph H. Wynne; Daniel L. Schmoldt; Philip A. Araman; Matthew F. Winn
1998-01-01
We are investigating the use of a commercially-available solid-state matrix camera as a dendrometer for tree stem measurements. Thirty-two images of four hardwood stems were used to measure 54 diameters at various heights on the stems ranging from 1.4 m to 21 m. These measurements were compared to caliper measurements taken at the same heights. The percent inaccuracy...
Stem extension and mechanical stability of Xanthium canadense grown in an open or in a dense stand
Watari, Ryoji; Nagashima, Hisae; Hirose, Tadaki
2014-01-01
Background and Aims Plants in open, uncrowded habitats typically have relatively short stems with many branches, whereas plants in crowded habitats grow taller and more slender at the expense of mechanical stability. There seems to be a trade-off between height growth and mechanical stability, and this study addresses how stand density influences stem extension and consequently plant safety margins against mechanical failure. Methods Xanthium canadense plants were grown either solitarily (S-plants) or in a dense stand (D-plants) until flowering. Internode dimensions and mechanical properties were measured at the metamer level, and the critical buckling height beyond which the plant elastically buckles under its own weight and the maximum lateral wind force the plant can withstand were calculated. Key Results Internodes were longer in D- than S-plants, but basal diameter did not differ significantly. Relative growth rates of internode length and diameter were negatively correlated to the volumetric solid fraction of the internode. Internode dry mass density was higher in S- than D-plants. Young's modulus of elasticity and the breaking stress were higher in lower metamers, and in D- than in S-plants. Within a stand, however, both moduli were positively related to dry mass density. The buckling safety factor, a ratio of critical buckling height to actual height, was higher in S- than in D-plants. D-plants were found to be approaching the limiting value 1. Lateral wind force resistance was higher in S- than in D-plants, and increased with growth in S-plants. Conclusions Critical buckling height increased with height growth due mainly to an increase in stem stiffness and diameter and a reduction in crown/stem mass ratio. Lateral wind force resistance was enhanced due to increased tissue strength and diameter. The increase in tissue stiffness and strength with height growth plays a crucial role in maintaining a safety margin against mechanical failure in herbaceous species that lack the capacity for secondary growth. PMID:24879768
Modeling Caribbean tree stem diameters from tree height and crown width measurements
Thomas Brandeis; KaDonna Randolph; Mike Strub
2009-01-01
Regression models to predict diameter at breast height (DBH) as a function of tree height and maximum crown radius were developed for Caribbean forests based on data collected by the U.S. Forest Service in the Commonwealth of Puerto Rico and Territory of the U.S. Virgin Islands. The model predicting DBH from tree height fit reasonably well (R2 = 0.7110), with...
Taper-based system for estimating stem volumes of upland oaks
Donald E. Hilt
1980-01-01
A taper-based system for estimating stem volumes is developed for Central States upland oaks. Inside bark diameters up the stem are predicted as a function of dbhib, total height, and powers and relative height. A Fortran IV computer program, OAKVOL, is used to predict cubic and board-foot volumes to any desired merchantable top dib. Volumes of...
Stem Profile for Southern Equations for Southern Tree Species
Alexander Clark; Ray A. Souter; Bryce E. Schlaegel
1991-01-01
Form-class segmented-profile equations for 58 southern tree species and species groups are presented.The profile equations are based on taper data for 13,469 trees sampled in natural stands in many locations across the South.The profile equations predict diameter at any given height, height to give diameter, and volume between two heights.Equation coefficients for use...
Conditioning a segmented stem profile model for two diameter measurements
Raymond L. Czaplewski; Joe P. Mcclure
1988-01-01
The stem profile model of Max and Burkhart (1976) is conditioned for dbh and a second upper stem measurement. This model was applied to a loblolly pine data set using diameter outside bark at 5.3m (i.e., height of 17.3 foot Girard form class) as the second upper stem measurement, and then compared to the original, unconditioned model. Variance of residuals was reduced...
Comparison of standing volume estimates using optical dendrometers
Neil A. Clark; Stanley J. Zarnoch; Alexander Clark; Gregory A. Reams
2001-01-01
This study compared height and diameter measurements and volume estimates on 20 hardwood and 20 softwood stems using traditional optical dendrometers, an experimental camera instrument, and mechanical calipers. Multiple comparison tests showed significant differences among the means for lower stem diameters when the camera was used. There were no significant...
Comparison of Standing Volume Estimates Using Optical Dendrometers
Neil A. Clark; Stanley J. Zarnoch; Alexander Clark; Gregory A. Reams
2001-01-01
This study compared height and diameter measurements and volume estimates on 20 hardwood and 20 softwood stems using traditional optical dendrometers, an experimental camera instrument, and mechanical calipers. Multiple comparison tests showed significant differences among the means for lower stem diameters when the camera was used. There were no significant...
Development of top heights and corresponding diameters in high-elevation noble fir plantations
Robert O. Curtis
2015-01-01
Height and diameter growth of noble fir (Abies procera Rehd.) trees included in the largest 40 stems per acre were compared in a study that included five precommercial thinning spacings plus no thinning, in each of eight replications, at elevations from 2,200 to 4,100 feet in the western Cascade Mountains of Washington and Oregon. Height growth rates were not affected...
Stem extension and mechanical stability of Xanthium canadense grown in an open or in a dense stand.
Watari, Ryoji; Nagashima, Hisae; Hirose, Tadaki
2014-07-01
Plants in open, uncrowded habitats typically have relatively short stems with many branches, whereas plants in crowded habitats grow taller and more slender at the expense of mechanical stability. There seems to be a trade-off between height growth and mechanical stability, and this study addresses how stand density influences stem extension and consequently plant safety margins against mechanical failure. Xanthium canadense plants were grown either solitarily (S-plants) or in a dense stand (D-plants) until flowering. Internode dimensions and mechanical properties were measured at the metamer level, and the critical buckling height beyond which the plant elastically buckles under its own weight and the maximum lateral wind force the plant can withstand were calculated. Internodes were longer in D- than S-plants, but basal diameter did not differ significantly. Relative growth rates of internode length and diameter were negatively correlated to the volumetric solid fraction of the internode. Internode dry mass density was higher in S- than D-plants. Young's modulus of elasticity and the breaking stress were higher in lower metamers, and in D- than in S-plants. Within a stand, however, both moduli were positively related to dry mass density. The buckling safety factor, a ratio of critical buckling height to actual height, was higher in S- than in D-plants. D-plants were found to be approaching the limiting value 1. Lateral wind force resistance was higher in S- than in D-plants, and increased with growth in S-plants. Critical buckling height increased with height growth due mainly to an increase in stem stiffness and diameter and a reduction in crown/stem mass ratio. Lateral wind force resistance was enhanced due to increased tissue strength and diameter. The increase in tissue stiffness and strength with height growth plays a crucial role in maintaining a safety margin against mechanical failure in herbaceous species that lack the capacity for secondary growth. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Individual tree diameter, height, and volume functions for longleaf pine
Carlos A. Gonzalez-Benecke; Salvador A. Gezan; Timothy A. Martin; Wendell P. Cropper; Lisa J. Samuelson; Daniel J. Leduc
2014-01-01
Currently, little information is available to estimate individual tree attributes for longleaf pine (Pinus palustris Mill.), an important tree species of the southeastern United States. The majority of available models are local, relying on stem diameter outside bark at breast height (dbh, cm) and not including stand-level parameters. We developed...
Bark Thickness of 17-Year-Old Loblolly Pine Planted at Different Spacings
Donald P. Feduccia; William F. Mann
1975-01-01
Diameter at breast height was the only variable affecting double bark thickness at d.b.h. and midpoint of the merchantable stem for young loblolly pine planted at five initial spacings on plots with site indices of 77 to 111 feet. Bark thickness at the 4-inch top was not correlated with breast-height diameter.
Height-diameter allometry of tropical forest trees
T.R. Feldpausch; L. Banin; O.L. Phillips; T.R. Baker; S.L. Lewis; C.A. Quesada; K. Affum-Baffoe; E.J.M.M. Arets; N.J. Berry; M. Bird; E.S. Brondizio; P de Camargo; J. Chave; G. Djagbletey; T.F. Domingues; M. Drescher; P.M. Fearnside; M.B. Franca; N.M. Fyllas; G. Lopez-Gonzalez; A. Hladik; N. Higuchi; M.O. Hunter; Y. Iida; K.A. Salim; A.R. Kassim; M. Keller; J. Kemp; D.A. King; J.C. Lovett; B.S. Marimon; B.H. Marimon-Junior; E. Lenza; A.R. Marshall; D.J. Metcalfe; E.T.A. Mitchard; E.F. Moran; B.W. Nelson; R. Nilus; E.M. Nogueira; M. Palace; S. Patiño; K.S.-H. Peh; M.T. Raventos; J.M. Reitsma; G. Saiz; F. Schrodt; B. Sonke; H.E. Taedoumg; S. Tan; L. White; H. Woll; J. Lloyd
2011-01-01
Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical...
de Souza, Eduardo Lorensi; Antoniolli, Zaida Inês; Machado, Rafael Goulart; Eckhardt, Daniel Pazzini; Dahmer, Sabrina de Fátima Barbosa
2014-01-01
Eucalypts is one of the main species used for commercial reforestation in the Rio Grande do Sul State, Brazil. This study aimed to evaluate the survival and early growth of eucalyptus trees in an area subject to sandy process after three years of growth. The Eucalyptus grandis seedlings were grown in a greenhouse, inoculated or not with the isolated ectomycorrhizal Pisolithus microcarpus (UFSC-Pt116), produced in peat or Entisol. After 120 days, the seedlings were transplanted to an area subject to the sandy process, in the São Francisco de Assis city, RS. The plants have been evaluated regarding survival, height, stem diameter, nitrogen, phosphorus and potassium levels and total phosphorus, inorganic phosphorus, organic phosphorus and wood production on different days after planting. The seedlings grown on the Entisol which was inoculated with the isolated UFSC-Pt116 presented higher survival rates, height, stem diameter, nitrogen concentration and wood production then non-inoculated seedlings. Inoculation with ectomycorrhizal fungi enhanced the production of E. grandis seedlings in survival rates, height, stem diameter. PMID:25763017
Daniel C. Dey; William C. Parker
1997-01-01
Initial stem diameter of bareroot red oak planting stock was a better morphological indicator of future height and diameter growth in a shelterwood underplanting than were initial shoot length and number of first-order lateral roots. Stem diameter near the root collar provides an integrated measure of the growth potential of red oak planting stock because of its strong...
Vertical variations in wood CO2 efflux for live emergent trees in a Bornean tropical rainforest.
Katayama, Ayumi; Kume, Tomonori; Komatsu, Hikaru; Ohashi, Mizue; Matsumoto, Kazuho; Ichihashi, Ryuji; Kumagai, Tomo'omi; Otsuki, Kyoichi
2014-05-01
Difficult access to 40-m-tall emergent trees in tropical rainforests has resulted in a lack of data related to vertical variations in wood CO2 efflux, even though significant variations in wood CO2 efflux are an important source of errors when estimating whole-tree total wood CO2 efflux. This study aimed to clarify vertical variations in wood CO2 efflux for emergent trees and to document the impact of the variations on the whole-tree estimates of stem and branch CO2 efflux. First, we measured wood CO2 efflux and factors related to tree morphology and environment for seven live emergent trees of two dipterocarp species at four to seven heights of up to ∼ 40 m for each tree using ladders and a crane. No systematic tendencies in vertical variations were observed for all the trees. Wood CO2 efflux was not affected by stem and air temperature, stem diameter, stem height or stem growth. The ratios of wood CO2 efflux at the treetop to that at breast height were larger in emergent trees with relatively smaller diameters at breast height. Second, we compared whole-tree stem CO2 efflux estimates using vertical measurements with those based on solely breast height measurements. We found similar whole-tree stem CO2 efflux estimates regardless of the patterns of vertical variations in CO2 efflux because the surface area in the canopy, where wood CO2 efflux often differed from that at breast height, was very small compared with that at low stem heights, resulting in little effect of the vertical variations on the estimate. Additionally, whole-tree branch CO2 efflux estimates using measured wood CO2 efflux in the canopy were considerably different from those measured using only breast height measurements. Uncertainties in wood CO2 efflux in the canopy did not cause any bias in stem CO2 efflux scaling, but affected branch CO2 efflux. © The Author 2014. Published by Oxford University Press. All rights reserved.
da Silva, Vicente Elício Porfiro Sales Gonçalves; Buarque, Patrícia Marques Carneiro; Ferreira, Wanessa Nepomuceno; Buarque, Hugo Leonardo de Brito; Silva, Maria Amanda Menezes
2018-04-24
This work aimed to evaluate the effect of sewage sludge application as fertilizer on the plasticity of functional characteristics of species commonly found in the Caatinga. The research was developed in the nursery of the Federal Institute of Education, Science and Technology of Ceará (IFCE), Quixadá campus, located in northeastern Brazil. Three treatments were applied: raw sludge, sanitized sludge, and no manipulation. In each treatment, five species were planted, each with five individuals, totaling 75 individuals, which were tagged, and 4 months after germination, they were destroyed to obtain dry matter content (TMSF) from leaf, stem (TMSC), fine root (TMSRF), and thick root (TMSRG); leaf area; height and diameter of the seedling; and length above and below the ground. The sanitized sludge was responsible for giving higher values for leaf area, height of the seedlings, and diameter and length of stem and root. However, the dry matter content of the fine roots was higher in the treatment without manipulation. At the community level, as TMSRG increased, TMSC also increased, the same occurred between TMSRG and TMSRF, TMSC and TMSRF, and stem length and leaf area. In the treatment without manipulation, there was a positive correlation between leaf area, height and plant diameter, and negative correlation between root length and plant diameter. Thus, it can be concluded that the use of sanitized sludge is a good tool to increase the availability of soil resources, conferring to individuals' greater dry matter content, greater leaf area, and higher height and diameter above the ground.
Compatible taper equation for loblolly pine
J. P. McClure; R. L. Czaplewski
1986-01-01
Cao's compatible, segmented polynomial taper equation (Q. V. Cao, H. E. Burkhart, and T. A. Max. For. Sci. 26: 71-80. 1980) is fitted to a large loblolly pine data set from the southeastern United States. Equations are presented that predict diameter at a given height, height to a given top diameter, and volume below a given position on the main stem. All...
Complex compatible taper and volume estimation systems for red and loblolly pine
John C. Byrne; David D. Reed
1986-01-01
Five equation systems are described which can be used to estimate upper stem diameter, total individual tree cubic-foot volume, and merchantable cubic-foot volumes to any merchantability imit (expressed in terms of diameter or height), both inside and outside bark. The equations provide consistent results since they are mathematically related and are fit using stem...
Fitting and Calibrating a Multilevel Mixed-Effects Stem Taper Model for Maritime Pine in NW Spain
Arias-Rodil, Manuel; Castedo-Dorado, Fernando; Cámara-Obregón, Asunción; Diéguez-Aranda, Ulises
2015-01-01
Stem taper data are usually hierarchical (several measurements per tree, and several trees per plot), making application of a multilevel mixed-effects modelling approach essential. However, correlation between trees in the same plot/stand has often been ignored in previous studies. Fitting and calibration of a variable-exponent stem taper function were conducted using data from 420 trees felled in even-aged maritime pine (Pinus pinaster Ait.) stands in NW Spain. In the fitting step, the tree level explained much more variability than the plot level, and therefore calibration at plot level was omitted. Several stem heights were evaluated for measurement of the additional diameter needed for calibration at tree level. Calibration with an additional diameter measured at between 40 and 60% of total tree height showed the greatest improvement in volume and diameter predictions. If additional diameter measurement is not available, the fixed-effects model fitted by the ordinary least squares technique should be used. Finally, we also evaluated how the expansion of parameters with random effects affects the stem taper prediction, as we consider this a key question when applying the mixed-effects modelling approach to taper equations. The results showed that correlation between random effects should be taken into account when assessing the influence of random effects in stem taper prediction. PMID:26630156
Machine vision system for measuring conifer seedling morphology
NASA Astrophysics Data System (ADS)
Rigney, Michael P.; Kranzler, Glenn A.
1995-01-01
A PC-based machine vision system providing rapid measurement of bare-root tree seedling morphological features has been designed. The system uses backlighting and a 2048-pixel line- scan camera to acquire images with transverse resolutions as high as 0.05 mm for precise measurement of stem diameter. Individual seedlings are manually loaded on a conveyor belt and inspected by the vision system in less than 0.25 seconds. Designed for quality control and morphological data acquisition by nursery personnel, the system provides a user-friendly, menu-driven graphical interface. The system automatically locates the seedling root collar and measures stem diameter, shoot height, sturdiness ratio, root mass length, projected shoot and root area, shoot-root area ratio, and percent fine roots. Sample statistics are computed for each measured feature. Measurements for each seedling may be stored for later analysis. Feature measurements may be compared with multi-class quality criteria to determine sample quality or to perform multi-class sorting. Statistical summary and classification reports may be printed to facilitate the communication of quality concerns with grading personnel. Tests were conducted at a commercial forest nursery to evaluate measurement precision. Four quality control personnel measured root collar diameter, stem height, and root mass length on each of 200 conifer seedlings. The same seedlings were inspected four times by the machine vision system. Machine stem diameter measurement precision was four times greater than that of manual measurements. Machine and manual measurements had comparable precision for shoot height and root mass length.
Miyata, Rie; Kubo, Takuya; Nabeshima, Eri; Kohyama, Takashi S.
2011-01-01
Background and Aims Morphology of crown shoots changes with tree height. The height of forest trees is usually correlated with the light environment and this makes it difficult to separate the effects of tree size and of light conditions on the morphological plasticity of crown shoots. This paper addresses the tree-height dependence of shoot traits under full-light conditions where a tree crown is not shaded by other crowns. Methods Focus is given to relationships between tree height and top-shoot traits, which include the shoot's leaf-blades and non-leafy mass, its total leaf-blade area and the length and basal diameter of the shoot's stem. We examine the allometric characteristics of open-grown current-year leader shoots at the tops of forest tree crowns up to 24 m high and quantify their responses to tree height in 13 co-occurring deciduous hardwood species in a cool-temperate forest in northern Japan. Key Results Dry mass allocated to leaf blades in a leader shoot increased with tree height in all 13 species. Specific leaf area decreased with tree height. Stem basal area was almost proportional to total leaf area in a leader shoot, where the proportionality constant did not depend on tree height, irrespective of species. Stem length for a given stem diameter decreased with tree height. Conclusions In the 13 species observed, height-dependent changes in allometry of leader shoots were convergent. This finding suggests that there is a common functional constraint in tree-height development. Under full-light conditions, leader shoots of tall trees naturally experience more severe water stress than those of short trees. We hypothesize that the height dependence of shoot allometry detected reflects an integrated response to height-associated water stress, which contributes to successful crown expansion and height gain. PMID:21914698
Whole-tree harvesting of pines with taproot attached
P. Koch
1974-01-01
The taproot of a 15- to 3O-yearold slash pine, with lateral roots pruned away, weighs about 20% as much as the bark-free merchantable stem to a four-inch top (dry-weight basis). Maximum taproot diameter, a few inches below ground level, is 1.5 to two times stem diameter at breast height. Length in sandy loam soils is commonly three to five feet.
Neutral lipids and phospholipids in Scots pine (Pinus sylvestris) sapwood and heartwood.
Piispanen, R; Saranpää, P
2002-06-01
Variations in the concentration and composition of triacylglycerols, free fatty acids and phospholipids were analyzed in Scots pine (Pinus sylvestris L.) trees at five sites. Disks were taken at breast height or at a height of 4 m from the stems of 81 trees differing in diameter and growth rate. The mean concentration of triacylglycerols in sapwood was 26 mg g(-1) dry mass; however, variation among trees was large (16-51 mg g(dm)(-1)). The concentration of triacylglycerols was slightly larger at 4 m height in the stem than at breast height. Concentrations of triacylglycerols did not differ between the sapwood of young and small-diameter stems (DBH < 12 cm) and the sapwood of old stems (DBH > 36 cm). Concentrations of free fatty acids were negligible in the outer sapwood, but ranged between 5 and 18 mg g(dm)(-1) in the heartwood. The most abundant fatty acids of triacylglycerols were oleic (18:1), linoleic (18:2omega6, 18:2Delta5,9), linolenic (pinolenic, 18:3Delta5,9,12 and 18:3omega3) and eicosatrienoic acid (20:3Delta5,11,14 and 20:3omega6). The concentration of linoleic acid comprised 39-46% of the triacylglycerol fatty acids and the concentration was higher in the slow-growing stem from northern Finland than in the stems from southern Finland. Major phospholipids were detected only in sapwood, and only traces of lipid phosphorus were detected in heartwood.
NASA Astrophysics Data System (ADS)
Williams, C. J.; LePage, B. A.; Vann, D. R.; Johnson, A. H.
2001-05-01
Abundant fossil plant remains are preserved in the Eocene-aged deposits of the Buchanan Lake formation on Axel Heiberg Island, Nunavut, Canada. Intact leaf litter, logs, and stumps preserved in situ as mummified remains present an opportunity to determine forest composition, structure, and productivity of a Taxodiaceae-dominated forest that once grew north of the Arctic Circle (paleolatitude 75-80° N). We excavated 37 tree stems for dimensional analysis from mudstone and channel-sand deposits. Stem length ranged from 1.0 m to 14.8 m (average = 3.2 m). Stem diameter ranged from less than 10 cm to greater than 75 cm (average = 32.2 cm). All stem wood was tentatively identified to genus as Metasequoia sp. The diameters and parabolic shape of the preserved tree trunks indicate that the Metasequoia were about 39 m tall across a wide range of diameters. The allometric relationships we derived for modern Metasequoia (n=70) allowed independent predictions of Metasequoia height given the stand density and stump diameters of the fossil forest. The two height estimates of 40 and 40.5 m match the results obtained from measurements of the Eocene trees. We used stump diameter data (n =107, diameter > 20 cm) and an uniform canopy height of 39 m to calculate parabolic stem volume and stem biomass for a 0.22 ha area of fossil forest. Stem volume equaled 2065 m3 ha-1 and stem biomass equaled 560 Mg ha-1 . In the Eocene forest, as determined from length of stems that were free of protruding branches and from 7 exhumed tree tops, the uppermost 9 m of the trees carried live branches with foliage. In living conifers, branch weights and the amount of foliage carried by branches are well correlated with branch diameters measured where the branch joins the main stem. To determine the biomass in branches and foliage in the Eocene forest, we used relationships derived from large modern Metasequoia. Based on the regression of branch weight v. branch diameter (r2 = 0.97) and foliar biomass v. branch diameter (r2 = 0.91) for living Metasequoia and branch diameters of the Eocene trees, branch biomass of the Eocene trees was estimated to be 28 Mg ha-1 dry weight and foliar biomass (and annual foliar production for this deciduous conifer) of fossil Metasequoia was estimated to be 3.5 Mg ha-1 dry weight. Total standing biomass of the fossil forest was estimated to be 591 Mg ha-1 dry weight. On a stand-average basis, the annual ring width of the trees we sampled equaled 1.3 mm. Based on this ring width our preliminary estimate for the aboveground net primary productivity (NPP) of these forests is 5.9 Mg ha-1yr^{-1}$ (foliage production plus wood production). Thus, these were high biomass forests with moderate productivity typical of modern cool temperate forests similar in stature and total biomass to the modern old-growth forests of the Pacific Northwest (USA).
K. Leroy Dolph
1984-01-01
The linear relationship of inside to outside bark diameter at breast height provides a basis for estimating diameter inside bark from diameter outside bark. Estimates of diameter inside bark and past diameter outside bark are useful in predicting growth and yield. During field seasons 1979-1982, data were obtained from stem analysis of 931 trees in young-growth stands...
Osada, Noriyuki
2006-01-01
Based on an allometric reconstruction, the structure and biomass-allocation patterns of branches and current-year shoots were investigated in branches of various heights in the pioneer tree Rhus trichocarpa, to evaluate how crown development is achieved and limited in association with height. Path analysis was conducted to explore the effects of light availability, basal height and size of individual branches on branch structure and growth. Branch angle was affected by basal height, whereas branch mass was influenced primarily by light availability. This result suggests that branch structure is strongly constrained by basal height, and that trees mediate such constraints under different light environments. Previous-year leaf area and light availability showed positive effects on current-year stem mass. In contrast, branch basal height and mass negatively affected current-year stem mass. Moreover, the length of stems of a given diameter decreased with increasing branch height. Therefore the cost of biomass investment for a unit growth in length is greater for branches of larger size and at upper positions. Vertical growth rate in length decreased with increasing height. Height-dependent changes in stem allometry and angle influenced the reduction in vertical growth rate to a similar degree.
Yang, Bei-fen; Du, Le-shan; Li, Jun-min
2015-11-01
In order to find out how parasitic Cuscuta australis influences the growth and reproduction of Solidago canadensis, the effects of the parasitism of C. australis on the morphological, growth and reproductive traits of S. canadensis were examined and the relationships between the biomass and the contents of the secondary metabolites were analyzed. The results showed that the parasitism significantly reduced the plant height, basal diameter, root length, root diameter, root biomass, stem biomass, leaf biomass, total biomass, number of inflorescences branches, axis length of inflorescence, and number of inflorescence. In particular, plant height, number of inflorescence and the stem biomass of parasitized S. canadensis were only 1/2, 1/5 and 1/8 of non-parasitized plants, respectively. There was no significant difference of plant height, root length, stem biomass and total biomass between plants parasitized with high and low intensities. But the basal diameter, root volume, leaf biomass, root biomass, the number of inflorescences branches, axis length of inflorescence and number of inflorescence of S. canadensis parasitized with high intensity were significantly lower than those of plants parasitized with low intensity. The parasitism of C. australis significantly increased the tannins content in the root and the flavonoids content in the stem of S. canadensis. The biomass of S. canadensis was significantly negatively correlated with the tannin content in the root and the flavonoids content in the stem. These results indicated that the parasitism of C. australis could inhibit the growth of S. canadensis by changing the resources allocation patterns as well as reducing the resources obtained by S. canadensis.
Taper Functions for Predicting Product Volumes in Natural Shortleaf Pines
Robert M. Farrar; Paul A. Murphy
1987-01-01
Taper (stem-profile) functions are presented for natural shortleaf pine (Pinus echinata Mill.) trees growing in the West Gulf area. These functions, when integrated, permit the prediction of volume between any two heights on a stem and, conversely by iteration, the volume between any two diameters on a stem. Examples are given of use of the functions...
Dry Weight of Several Piedmont Hardwoods
Bobby G. Blackmon; Charles W. Ralston
1968-01-01
Forty-four sample hardwood trees felled on 24 plots were separated into three above-ground components- stem, branches, and leaves--and weighed for dry matter content. Tree, stand, and site variables were tested for significant relationships with dry weight of tree parts. Weight increase of stems was a logarithmic function ,of both stem diameter and height, whereas for...
Historical early stem development of northern white-cedar (Thuja occidentalis L.) in Maine
Philip V. Hofmeyer; Laura S. Kenefic; Robert S. Seymour
2010-01-01
We used stem analysis to quantify early height and diameter growth rates of 80 northern white-cedar trees (17.4-55.0 cm dbh) harvested in 2005 and 2006 in central and northern Maine. It took an average of 42 years (range, 9-86 years) for sampled trees to grow from stump height to sapling size, 96 years to grow to pole size (range, 28-171), 140 years to grow to...
Perämäki, M; Nikinmaa, E; Sevanto, S; Ilvesniemi, H; Siivola, E; Hari, P; Vesala, T
2001-08-01
A dynamic model for simulating water flow in a Scots pine (Pinus sylvestris L.) tree was developed. The model is based on the cohesion theory and the assumption that fluctuating water tension driven by transpiration, together with the elasticity of wood tissue, causes variations in the diameter of a tree stem and branches. The change in xylem diameter can be linked to water tension in accordance with Hookeâ s law. The model was tested against field measurements of the diurnal xylem diameter change at different heights in a 37-year-old Scots pine at Hyytiälä, southern Finland (61 degrees 51' N, 24 degrees 17' E, 181 m a.s.l.). Shoot transpiration and soil water potential were input data for the model. The biomechanical and hydraulic properties of wood and fine root hydraulic conductance were estimated from simulated and measured stem diameter changes during the course of 1 day. The estimated parameters attained values similar to literature values. The ratios of estimated parameters to literature values ranged from 0.5 to 0.9. The model predictions (stem diameters at several heights) were in close agreement with the measurements for a period of 6 days. The time lag between changes in transpiration rate and in sap flow rate at the base of the tree was about half an hour. The analysis showed that 40% of the resistance between the soil and the top of the tree was located in the rhizosphere. Modeling the water tension gradient and consequent woody diameter changes offer a convenient means of studying the link between wood hydraulic conductivity and control of transpiration.
Anfodillo, Tommaso; Deslauriers, Annie; Menardi, Roberto; Tedoldi, Laura; Petit, Giai; Rossi, Sergio
2012-01-01
The diameter of vascular conduits increases towards the stem base. It has been suggested that this profile is an efficient anatomical feature for reducing the hydraulic resistance when trees grow taller. However, the mechanism that controls the cell diameter along the plant is not fully understood. The timing of cell differentiation along the stem was investigated. Cambial activity and cell differentiation were investigated in a Picea abies tree (11.5 m in height) collecting microsamples at nine different heights (from 1 to 9 m) along the stem with a 4 d time interval. Wood sections (8–12 μm thick) were stained and observed under a light microscope with polarized light to differentiate the developing xylem cells. Cell wall lignification was detected using cresyl violet acetate. The first enlarging cells appeared almost simultaneously along the tree axis indicating that cambium activation is not height-dependent. A significant increase in the duration of the cell expansion phase was observed towards the tree base: at 9 m from the ground, xylem cells expanded for 7 d, at 6 m for 14 d, and at 3 m for 19 d. The duration of the expansion phase is positively correlated with the lumen area of the tracheids (r2=0.68, P < 0.01) at the same height. By contrast, thickness of the cell wall of the earlywood did not show any trend with height. The lumen area of the conduits down the stem appeared linearly dependent on time during which differentiating cells remained in the expansion phase. However, the inductive signal of such long-distance patterned differentiation remains to be identified. PMID:22016427
Anfodillo, Tommaso; Deslauriers, Annie; Menardi, Roberto; Tedoldi, Laura; Petit, Giai; Rossi, Sergio
2012-01-01
The diameter of vascular conduits increases towards the stem base. It has been suggested that this profile is an efficient anatomical feature for reducing the hydraulic resistance when trees grow taller. However, the mechanism that controls the cell diameter along the plant is not fully understood. The timing of cell differentiation along the stem was investigated. Cambial activity and cell differentiation were investigated in a Picea abies tree (11.5 m in height) collecting microsamples at nine different heights (from 1 to 9 m) along the stem with a 4 d time interval. Wood sections (8-12 μm thick) were stained and observed under a light microscope with polarized light to differentiate the developing xylem cells. Cell wall lignification was detected using cresyl violet acetate. The first enlarging cells appeared almost simultaneously along the tree axis indicating that cambium activation is not height-dependent. A significant increase in the duration of the cell expansion phase was observed towards the tree base: at 9 m from the ground, xylem cells expanded for 7 d, at 6 m for 14 d, and at 3 m for 19 d. The duration of the expansion phase is positively correlated with the lumen area of the tracheids (r(2)=0.68, P < 0.01) at the same height. By contrast, thickness of the cell wall of the earlywood did not show any trend with height. The lumen area of the conduits down the stem appeared linearly dependent on time during which differentiating cells remained in the expansion phase. However, the inductive signal of such long-distance patterned differentiation remains to be identified.
NASA Astrophysics Data System (ADS)
Holmgren, J.; Tulldahl, H. M.; Nordlöf, J.; Nyström, M.; Olofsson, K.; Rydell, J.; Willén, E.
2017-10-01
A system was developed for automatic estimations of tree positions and stem diameters. The sensor trajectory was first estimated using a positioning system that consists of a low precision inertial measurement unit supported by image matching with data from a stereo-camera. The initial estimation of the sensor trajectory was then calibrated by adjustments of the sensor pose using the laser scanner data. Special features suitable for forest environments were used to solve the correspondence and matching problems. Tree stem diameters were estimated for stem sections using laser data from individual scanner rotations and were then used for calibration of the sensor pose. A segmentation algorithm was used to associate stem sections to individual tree stems. The stem diameter estimates of all stem sections associated to the same tree stem were then combined for estimation of stem diameter at breast height (DBH). The system was validated on four 20 m radius circular plots and manual measured trees were automatically linked to trees detected in laser data. The DBH could be estimated with a RMSE of 19 mm (6 %) and a bias of 8 mm (3 %). The calibrated sensor trajectory and the combined use of circle fits from individual scanner rotations made it possible to obtain reliable DBH estimates also with a low precision positioning system.
NASA Astrophysics Data System (ADS)
Sullivan, F.; Palace, M. W.; Ducey, M. J.; David, O.; Cook, B. D.; Lepine, L. C.
2014-12-01
Harvard Forest in Petersham, MA, USA is the location of one of the temperate forest plots established by the Center for Tropical Forest Science (CTFS) as a joint effort with Harvard Forest and the Smithsonian Institute's Forest Global Earth Observatory (ForestGEO) to characterize ecosystem processes and forest dynamics. Census of a 35 ha plot on Prospect Hill was completed during the winter of 2014 by researchers at Harvard Forest. Census data were collected according to CTFS protocol; measured variables included species, stem diameter, and relative X-Y locations. Airborne lidar data were collected over the censused plot using the high spatial resolution Goddard LiDAR, Hyperspectral, and Thermal sensor package (G-LiHT) during June 2012. As part of a separate study, 39 variable radius plots (VRPs) were randomly located and sampled within and throughout the Prospect Hill CTFS/ForestGEO plot during September and October 2013. On VRPs, biometric properties of trees were sampled, including species, stem diameter, total height, crown base height, crown radii, and relative location to plot centers using a 20 Basal Area Factor prism. In addition, a terrestrial-based lidar scanner was used to collect one lidar scan at plot center for 38 of the 39 VRPs. Leveraging allometric equations of crown geometry and tree height developed from 374 trees and 16 different species sampled on 39 VRPs, a 3-dimensional stem map will be created using the Harvard Forest ForestGEO Prospect Hill census. Vertical and horizontal structure of 3d field-based stem maps will be compared to terrestrial and airborne lidar scan data. Furthermore, to assess the quality of allometric equations, a 2d canopy height raster of the field-based stem map will be compared to a G-LiHT derived canopy height model for the 35 ha census plot. Our automated crown delineation methods will be applied to the 2d representation of the census stem map and the G-LiHT canopy height model. For future work related to this study, high quality field-based stem maps with species and crown geometry information will allow for better comparisons and interpretations of individual tree spectra from the G-LiHT hyperspectral sensor as estimated by automated crown delineation of the G-LiHT lidar canopy height model.
Intertree competition in uneven-aged ponderosa pine stands
C.W. Woodall; C.E. Fiedler; K.S. Milner
2003-01-01
Intertree competition indices and effects were examined in 14 uneven-aged ponderosa pine (Pinus ponderosa var. scopulorum Engelm.) stands in eastern Montana. Location, height, diameter at breast height (DBH), basal area increment, crown ratio, and sapwood area were determined for each tree (DBH >3.8 cm) on one stem-mapped plot...
Tree height and tropical forest biomass estimation
M.O. Hunter; M. Keller; D. Vitoria; D.C. Morton
2013-01-01
Tropical forests account for approximately half of above-ground carbon stored in global vegetation. However, uncertainties in tropical forest carbon stocks remain high because it is costly and laborious to quantify standing carbon stocks. Carbon stocks of tropical forests are determined using allometric relations between tree stem diameter and height and biomass....
Alméras, Tancrède; Derycke, Morgane; Jaouen, Gaëlle; Beauchêne, Jacques; Fournier, Mériem
2009-01-01
Gravitropism is necessary for plants to control the orientation of their axes while they grow in height. In woody plants, stem re-orientations are costly because they are achieved through diameter growth. The functional diversity of gravitropism was studied to check if the mechanisms involved and their efficiency may contribute to the differentiation of height growth strategies between forest tree species at the seedling stage. Seedlings of eight tropical species were grown tilted in a greenhouse, and their up-righting movement and diameter growth were measured over three months. Morphological, anatomical, and biomechanical traits were measured at the end of the survey. Curvature analysis was used to analyse the up-righting response along the stems. Variations in stem curvature depend on diameter growth, size effects, the increase in self-weight, and the efficiency of the gravitropic reaction. A biomechanical model was used to separate these contributions. Results showed that (i) gravitropic movements were based on a common mechanism associated to similar dynamic patterns, (ii) clear differences in efficiency (defined as the change in curvature achieved during an elementary diameter increment for a given stem diameter) existed between species, (iii) the equilibrium angle of the stem and the anatomical characters associated with the efficiency of the reaction also differed between species, and (iv) the differences in gravitropic reaction were related to the light requirements: heliophilic species, compared to more shade-tolerant species, had a larger efficiency and an equilibrium angle closer to vertical. This suggests that traits determining the gravitropic reaction are related to the strategy of light interception and may contribute to the differentiation of ecological strategies promoting the maintenance of biodiversity in tropical rainforests.
Incorporating additional tree and environmental variables in a lodgepole pine stem profile model
John C. Byrne
1993-01-01
A new variable-form segmented stem profile model is developed for lodgepole pine (Pinus contorta) trees from the northern Rocky Mountains of the United States. I improved estimates of stem diameter by predicting two of the model coefficients with linear equations using a measure of tree form, defined as a ratio of dbh and total height. Additional improvements were...
A comparison of two stem injection treatments applied to American beech in central West Virginia
Jeffrey D. Kochenderfer; Gary W. Miller; James N. Kochenderfer
2012-01-01
Efficacies for two herbicide stem injection treatments on American beech (Fagus grandifolia Ehrh.) and impacts to nontarget residual trees were evaluated in central West Virginia. The treatments consisted of hack-and-squirt injection of all beech stems ≥1.0 in. to 9.9 in. diameter at breast height (d.b.h.) with either imazapyr as Arsenal...
K.F Connor
2004-01-01
American snowbell, also known as mock orange or storax, is a deciduous shrub or small tree with a widely branched crown. It reaches 3 to 5 m in height, and the stems can reach 7.5 cm in diameter. While the bark on the stems is smooth and dark grey to brown, branches range in color from green to grey to red-brown. Young stems are pubescent, becoming glabrous with age....
Heat Transfer Processes Linking Fire Behavior and Tree Mortality
NASA Astrophysics Data System (ADS)
Michaletz, S. T.; Johnson, E. A.
2004-12-01
Traditional methods for predicting post-fire tree mortality employ statistical models which neglect the processes linking fire behavior to physiological mortality mechanisms. Here we present a physical process approach which predicts tree mortality by linking fireline intensity with lateral (vascular cambium) and apical (vegetative bud) meristem necrosis. We use a linefire plume model with independently validated conduction and lumped capacitance heat transfer analyses to predict lethal meristem temperatures in tree stems, branches, and buds. These models show that meristem necrosis in large diameter (Bi ≥ 0.3) stems/branches is governed by meristem height, bark thickness, and bark water content, while meristem necrosis in small diameter (Bi < 0.3) branches/buds is governed by meristem height, branch/bud size, branch/bud water content, and foliage architecture. To investigate effects of interspecfic variation in these properties, we compare model results for Picea glauca (Moench) Voss and Pinus contorta Loudon var. latifolia Engelm. at fireline intensities from 50 to 3000 kWm-1. Parameters are obtained from allometric models which relate stem/branch diameter to bark thickness and height, as well as bark and bud water content data collected in the southern Canadian Rocky Mountains. Variation in foliage architecture is quantified using forced convection heat transfer coefficients measured in a laminar flow wind tunnel at Re from 100 to 2000, typical for branches/buds in a linefire plume. Results indicate that in unfoliated stems/branches, P. glauca meristems are more protected due to thicker bark, whereas in foliated branches/buds, P. contorta meristems are more protected due to larger bud size and foliage architecture.
Boyemba, Faustin; Lewis, Simon; Nabahungu, Nsharwasi Léon; Calders, Kim; Zapfack, Louis; Riera, Bernard; Balegamire, Clarisse; Cuni-Sanchez, Aida
2017-01-01
Tropical montane forests provide an important natural laboratory to test ecological theory. While it is well-known that some aspects of forest structure change with altitude, little is known on the effects of altitude on above ground biomass (AGB), particularly with regard to changing height-diameter allometry. To address this we investigate (1) the effects of altitude on height-diameter allometry, (2) how different height-diameter allometric models affect above ground biomass estimates; and (3) how other forest structural, taxonomic and environmental attributes affect above ground biomass using 30 permanent sample plots (1-ha; all trees ≥ 10 cm diameter measured) established between 1250 and 2600 m asl in Kahuzi Biega National Park in eastern Democratic Republic of Congo. Forest structure and species composition differed with increasing altitude, with four forest types identified. Different height-diameter allometric models performed better with the different forest types, as trees got smaller with increasing altitude. Above ground biomass ranged from 168 to 290 Mg ha-1, but there were no significant differences in AGB between forests types, as tree size decreased but stem density increased with increasing altitude. Forest structure had greater effects on above ground biomass than forest diversity. Soil attributes (K and acidity, pH) also significantly affected above ground biomass. Results show how forest structural, taxonomic and environmental attributes affect above ground biomass in African tropical montane forests. They particularly highlight that the use of regional height-diameter models introduces significant biases in above ground biomass estimates, and that different height-diameter models might be preferred for different forest types, and these should be considered in future studies. PMID:28617841
Imani, Gérard; Boyemba, Faustin; Lewis, Simon; Nabahungu, Nsharwasi Léon; Calders, Kim; Zapfack, Louis; Riera, Bernard; Balegamire, Clarisse; Cuni-Sanchez, Aida
2017-01-01
Tropical montane forests provide an important natural laboratory to test ecological theory. While it is well-known that some aspects of forest structure change with altitude, little is known on the effects of altitude on above ground biomass (AGB), particularly with regard to changing height-diameter allometry. To address this we investigate (1) the effects of altitude on height-diameter allometry, (2) how different height-diameter allometric models affect above ground biomass estimates; and (3) how other forest structural, taxonomic and environmental attributes affect above ground biomass using 30 permanent sample plots (1-ha; all trees ≥ 10 cm diameter measured) established between 1250 and 2600 m asl in Kahuzi Biega National Park in eastern Democratic Republic of Congo. Forest structure and species composition differed with increasing altitude, with four forest types identified. Different height-diameter allometric models performed better with the different forest types, as trees got smaller with increasing altitude. Above ground biomass ranged from 168 to 290 Mg ha-1, but there were no significant differences in AGB between forests types, as tree size decreased but stem density increased with increasing altitude. Forest structure had greater effects on above ground biomass than forest diversity. Soil attributes (K and acidity, pH) also significantly affected above ground biomass. Results show how forest structural, taxonomic and environmental attributes affect above ground biomass in African tropical montane forests. They particularly highlight that the use of regional height-diameter models introduces significant biases in above ground biomass estimates, and that different height-diameter models might be preferred for different forest types, and these should be considered in future studies.
Use of three-point taper systems in timber cruising
James W. Flewelling; Richard L. Ernst; Lawrence M. Raynes
2000-01-01
Tree volumes and profiles are often estimated as functions of total height and DBH. Alternative estimators include form-class methods, importance sampling, the centroid method, and multi-point profile (taper) estimation systems; all of these require some measurement or estimate of upper stem diameters. The multi-point profile system discussed here allows for upper stem...
Field trial of a tree injector in a weeding in West Virginia
Carter B. Gibbs
1963-01-01
In June 1960 a 5-acre plot of mixed hardwoods under intensive selection management on the Fernow Experimental Forest in West Virginia was weeded to eliminate poor-quality stems that were competing directly with desirable regeneration. Treatment was confined to stems in the 1- to 5-inch diameter (at breast height) classes.
How trees allocate carbon for optimal growth: insight from a game-theoretic model.
Fu, Liyong; Sun, Lidan; Han, Hao; Jiang, Libo; Zhu, Sheng; Ye, Meixia; Tang, Shouzheng; Huang, Minren; Wu, Rongling
2017-02-01
How trees allocate photosynthetic products to primary height growth and secondary radial growth reflects their capacity to best use environmental resources. Despite substantial efforts to explore tree height-diameter relationship empirically and through theoretical modeling, our understanding of the biological mechanisms that govern this phenomenon is still limited. By thinking of stem woody biomass production as an ecological system of apical and lateral growth components, we implement game theory to model and discern how these two components cooperate symbiotically with each other or compete for resources to determine the size of a tree stem. This resulting allometry game theory is further embedded within a genetic mapping and association paradigm, allowing the genetic loci mediating the carbon allocation of stemwood growth to be characterized and mapped throughout the genome. Allometry game theory was validated by analyzing a mapping data of stem height and diameter growth over perennial seasons in a poplar tree. Several key quantitative trait loci were found to interpret the process and pattern of stemwood growth through regulating the ecological interactions of stem apical and lateral growth. The application of allometry game theory enables the prediction of the situations in which the cooperation, competition or altruism is an optimal decision of a tree to fully use the environmental resources it owns. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The woody biomass resource of Tennessee, 1989
James F. Rosson
1993-01-01
Tabulates fresh and dry biomass estimates of major trees in Tennessee by forest type, ownership, species, stand basal area, tree class, diameter, and height. Information is presented for total tree, stem, and crown components.
The woody biomass resource of Louisiana, 1991
James F. Rosson
1993-01-01
Tabulates fresh and dry biomass estimates of major trees in Louisiana by forest type, ownership, species, stand basal area, tree class, diameter, and height. Information is presented for total tree, stem, and crown components.
The feasibility of remotely sensed data to estimate urban tree dimensions and biomass
Jun-Hak Lee; Yekang Ko; E. Gregory McPherson
2016-01-01
Accurately measuring the biophysical dimensions of urban trees, such as crown diameter, stem diameter, height, and biomass, is essential for quantifying their collective benefits as an urban forest. However, the cost of directly measuring thousands or millions of individual trees through field surveys can be prohibitive. Supplementing field surveys with remotely sensed...
NASA Astrophysics Data System (ADS)
Luo, Jia; Zhang, Min; Zhou, Xiaoling; Chen, Jianhua; Tian, Yuxin
2018-01-01
Taken 4 main tree species in the Wuling mountain small watershed as research objects, 57 typical sample plots were set up according to the stand type, site conditions and community structure. 311 goal diameter-class sample trees were selected according to diameter-class groups of different tree-height grades, and the optimal fitting models of tree height and DBH growth of main tree species were obtained by stem analysis using Richard, Logistic, Korf, Mitscherlich, Schumacher, Weibull theoretical growth equations, and the correlation coefficient of all optimal fitting models reached above 0.9. Through the evaluation and test, the optimal fitting models possessed rather good fitting precision and forecast dependability.
Zeigenfuss, Linda C.; Johnson, Therese L.
2015-12-17
Increases in the number of small-diameter, tree-sized (stems greater than 2.5 meter height) aspen stems were observed but only inside fences that excluded ungulates. In unfenced areas, stand structure was stagnant, with many medium- and large-diameter (older) stems and no replacement of small-diameter stems. By 2013, aspen saplings (stems less than or equal to 2.5 meter height) were recruiting on 29 percent of sampled sites, an increase from 13 percent of sites at baseline, but this was mainly due to growth inside fences. Upland herbaceous offtake dropped below baseline levels (61 percent) on both core and noncore winter range in 2010–14. Less than 10 percent of the upland areas had intense herbivory (greater than 85 percent offtake), and less than 30 percent of the landscape had offtake greater than 70 percent after 2009. Offtake levels in 2013 and 2014 indicated an increase in grazing pressure on upland sites compared to 2010–12 levels, but this change may have been in response to loss of large patches of both herbaceous and woody forage in Moraine Park following the 2012 Fern Lake Fire. Winter willow offtake remained steady from 2009 to 2014, and although there were no substantial increases in offtake, there were also no consistent declines. Winter-range willow offtake was below the baseline level of 35 percent only in 2013 and 2014. Willow heights have stayed at or above baseline levels of 0.9 meter. Average heights of willow increased compared to baseline measures within fenced habitat on the core winter range and on noncore (all unfenced) winter range. Willow cover increased at least 75 percent compared to baseline within core winter-range fenced areas and roughly 25 percent in noncore winter range. Overall, during the first 5 years of implementation, the EVMP at Rocky Mountain National Park seems to be making steady progress toward the vegetation objectives set out by the EVMP. Habitat fencing has been the most effective means of improving aspen and willow habitat conditions.
Vanninen, Petteri; Mäkelä, Annikki
2000-04-01
We studied effects of tree age, size and competitive status on foliage and stem production of 43 Scots pine (Pinus sylvestris L.) trees in southern Finland. The tree attributes related to competition included foliage density, crown ratio and height/diameter ratio. Needle mass was considered to be the primary cause of growth through photosynthesis. Both stem growth and foliage growth were strongly correlated with foliage mass. Consequently, differences in growth allocation between needles and stem wood in trees of different age, size, or position were small. However, increasing relative height increased the sum of stem growth and foliage growth per unit foliage mass, indicating an effect of available light. Suppressed trees seemed to allocate more growth to stem wood than dominant trees, and their stem growth per unit foliage mass was larger. Similarly, trees in dense stands allocated more growth to stem wood than trees in sparse stands. The results conformed to the pipe model theory but seemed to contradict the priority principle of allocation.
Thomas M. Schuler
1994-01-01
Survival, total height, diameter at breast height (d.b.h.), and stem quality of sugar maple trees of different provenances were compared 25 years after establishment in north-central West Virginia. Provenances were from Michigan, Minnesota, West Virginia, Massachusetts, New Hampshire, Vermont, Maine, and Quebec, Canada. There were significant differences between...
Survival and First-Year Growth of Hardwoods Planted in Saturated Soils
F. T. Bonner
1966-01-01
Up to 16 weeks of soil saturation from the time of planting did not significantly affect survival, date of bud-break, or initiation of height growth of sycamore, sweetgum, and Nuttall oak seedlings. But when soil temperatures were rapidly increasing in mid-April, saturation for more than 10 to 12 weeks did severely reduce height, root, and stem-diameter growth....
Tradeoffs between hydraulic and mechanical stress responses of mature Norway spruce trunk wood.
Rosner, Sabine; Klein, Andrea; Müller, Ulrich; Karlsson, Bo
2008-08-01
We tested the effects of growth characteristics and basic density on hydraulic and mechanical properties of mature Norway spruce (Picea abies (L.) Karst.) wood from six 24-year-old clones, grown on two sites in southern Sweden differing in water availability. Hydraulic parameters assessed were specific hydraulic conductivity at full saturation (ks100) and vulnerability to cavitation (Psi50), mechanical parameters included bending strength (sigma b), modulus of elasticity (MOE), compression strength (sigma a) and Young's modulus (E). Basic density, diameter at breast height, tree height, and hydraulic and mechanical parameters varied considerably among clones. Clonal means of hydraulic and mechanical properties were strongly related to basic density and to growth parameters across sites, especially to diameter at breast height. Compared with stem wood of slower growing clones, stem wood of rapidly growing clones had significantly lower basic density, lower sigma b, MOE, sigma a and E, was more vulnerable to cavitation, but had higher ks100. Basic density was negatively correlated to Psi50 and ks100. We therefore found a tradeoff between Psi50 and ks100. Clones with high basic density had significantly lower hydraulic vulnerability, but also lower hydraulic conductivity at full saturation and thus less rapid growth than clones with low basic density. This tradeoff involved a negative relationship between Psi50 and sigma b as well as MOE, and between ks100 and sigma b, MOE and sigma a. Basic density and Psi50 showed no site-specific differences, but tree height, diameter at breast height, ks100 and mechanical strength and stiffness were significantly lower at the drier site. Basic density had no influence on the site-dependent differences in hydraulic and mechanical properties, but was strongly negatively related to diameter at breast height. Selecting for growth may thus lead not only to a reduction in mechanical strength and stiffness but also to a reduction in hydraulic safety.
Modeling the dynamics of pressure propagation and diameter variation in tree sapwood.
Perämäki, Martti; Vesala, Timo; Nikinmaa, Eero
2005-09-01
A non-steady-state model of water tension propagation in tree stems was developed. The model is based on the cohesion theory and the assumption that fluctuating water tension driven by transpiration together with the elasticity of wood cause variations in the diameter of a tree stem. The change in xylem diameter can be linked to water tension in accordance with Hooke's law. The model was tested against field measurements of the diurnal change in xylem diameter at different heights in a 180-year-old Scots pine tree at Hyytiälä, southern Finland. Model predictions agreed well with measurements. The effect of tree dimensions on pressure propagation was examined with the model. The model outcomes were also consistent with results of several field measurements presented in the literature.
Zhang, Zhongrui; Zhong, Quanlin; Niklas, Karl J; Cai, Liang; Yang, Yusheng; Cheng, Dongliang
2016-08-24
Metabolic scaling theory (MST) posits that the scaling exponents among plant height H, diameter D, and biomass M will covary across phyletically diverse species. However, the relationships between scaling exponents and normalization constants remain unclear. Therefore, we developed a predictive model for the covariation of H, D, and stem volume V scaling relationships and used data from Chinese fir (Cunninghamia lanceolata) in Jiangxi province, China to test it. As predicted by the model and supported by the data, normalization constants are positively correlated with their associated scaling exponents for D vs. V and H vs. V, whereas normalization constants are negatively correlated with the scaling exponents of H vs. D. The prediction model also yielded reliable estimations of V (mean absolute percentage error = 10.5 ± 0.32 SE across 12 model calibrated sites). These results (1) support a totally new covariation scaling model, (2) indicate that differences in stem volume scaling relationships at the intra-specific level are driven by anatomical or ecophysiological responses to site quality and/or management practices, and (3) provide an accurate non-destructive method for predicting Chinese fir stem volume.
Yin, Xiu-Min; Yu, Shu-Quan; Jiang, Hong; Liu, Mei-Hu
2010-06-01
A pot experiment was conducted to study the Eleocarpus glabripetalus seedlings leaf chlorophyll fluorescence characteristics and growth in different seasons under simulated acid rain stress (heavy, pH = 2. 5; moderate, pH = 4.0; and control, pH = 5.6). In the same treatments, the leaf relative chlorophyll content (SPAD), maximum PS II photochemical efficiency (F(v)/F(m)), actual PSII photochemical quantum yield (phi(PS II)), plant height, and stem diameter in different seasons were all in the order of October > July > April > January. In the same seasons, all the parameters were in the order of heavy acid rain > moderate acid rain > control. The interactions between different acid rain stress and seasons showed significant effects on the SPAD, F(v)/F(m), plant height, and stem diameter, but lesser effects on phi(PS II), qp and qN.
Nunes, Matheus Henrique
2016-01-01
Tree stem form in native tropical forests is very irregular, posing a challenge to establishing taper equations that can accurately predict the diameter at any height along the stem and subsequently merchantable volume. Artificial intelligence approaches can be useful techniques in minimizing estimation errors within complex variations of vegetation. We evaluated the performance of Random Forest® regression tree and Artificial Neural Network procedures in modelling stem taper. Diameters and volume outside bark were compared to a traditional taper-based equation across a tropical Brazilian savanna, a seasonal semi-deciduous forest and a rainforest. Neural network models were found to be more accurate than the traditional taper equation. Random forest showed trends in the residuals from the diameter prediction and provided the least precise and accurate estimations for all forest types. This study provides insights into the superiority of a neural network, which provided advantages regarding the handling of local effects. PMID:27187074
Nunes, Matheus Henrique; Görgens, Eric Bastos
2016-01-01
Tree stem form in native tropical forests is very irregular, posing a challenge to establishing taper equations that can accurately predict the diameter at any height along the stem and subsequently merchantable volume. Artificial intelligence approaches can be useful techniques in minimizing estimation errors within complex variations of vegetation. We evaluated the performance of Random Forest® regression tree and Artificial Neural Network procedures in modelling stem taper. Diameters and volume outside bark were compared to a traditional taper-based equation across a tropical Brazilian savanna, a seasonal semi-deciduous forest and a rainforest. Neural network models were found to be more accurate than the traditional taper equation. Random forest showed trends in the residuals from the diameter prediction and provided the least precise and accurate estimations for all forest types. This study provides insights into the superiority of a neural network, which provided advantages regarding the handling of local effects.
Mark D. Gibson; Charles W. McMillin; Eugene Shoulders
1986-01-01
Slash, loblolly, longleaf, and shortleaf pines in northern Louisiana were examined for differences in moisture content (MC) and basic specific gravity (SG) of wood and bark in the complete tree, root, stem, and branches and differences in diameter at breast height (dbh), total height, and taproot length of trees in even-aged plantations under identical site conditions...
The woody biomass resource of East Oklahoma, 1993
James F. Rosson
1993-01-01
Tables are presented for fresh and dry biomass estimates of major trees in east Oklahoma by forest type, ownership, species, stand basal area, tree class, diameter, and height. Information for total tree, stem, and crown components is included.
Response to crop-tree release by 7-year-old stems of yellow-poplar and black cherry
G.R. Jr. Trimble; G.R. Jr. Trimble
1973-01-01
Five years after crop-tree release of yellow-poplar and black cherry sterns in a 7-year-old stand of Appalachian hardwoods, measurements indicated that released trees were but slightly superior to control trees in height, diameter, and crown position. Sprout regrowth of cut tree stems and grapevines had largely nullified the effects of release. Indications are that for...
Andrew B. Self; Andrew W. Ezell; Dennis Rowe; Emily B. Schultz; John D. Hodges
2015-01-01
Mechanical site preparation is frequently proposed to alleviate problematic soil conditions when afforesting retired agricultural fields. Without management of soil problems, any seedlings planted in these areas may exhibit poor growth and survival. Seeding height and groundline diameter are often used to evaluate effects of site preparation methods, but stem biomass...
Growth and Development of Thinned Versus Unthinned Yellow-Poplar Sprout Clumps
Donald E. Beck
1977-01-01
Yellow-poplar stump sprouts are capable of very rapid growth and often dominate stands on good sites following harvest cutting. Thinning to one stem per stump at 6 years of age did not affect either height or diameter growth over the succeeding 18 years. The untreated clumps thinned themselves to an average of two stems per clump during the same time period. Thinning...
Ambros Berger; Thomas Gschwantner; Ronald E. McRoberts; Klemens Schadauer
2014-01-01
National forest inventories typically estimate individual tree volumes using models that rely on measurements of predictor variables such as tree height and diameter, both of which are subject to measurement error. The aim of this study was to quantify the impacts of these measurement errors on the uncertainty of the model-based tree stem volume estimates. The impacts...
Fiber lengths in stems and branches of small hardwoods on southern pine sites
F. G. Manwiller
1974-01-01
The 22 species selected for analysis comprise over 95 percent of the hardwood volume occurring on pine sites. Ten trees 6 inch. in diameter at breast height (DBH) of each species were taken from throughout that portion of the species' range occurring in the South. Pie-shaped wedges, removed at 48-inch intervals along the stem and each branch, were combined within...
Fiber lengths in stems and brances of small hardwoods on southern pine sites
Floyd G. Manwiller
1974-01-01
The 22 species selected for analysis comprise over 95 percent of the hardwood volume occurring on pine sites. Ten trees 6 inches in diameter at breast height (DBH) of each species were taken from throughout that portion of the spcies' range occurring in the South. Pie-shaped wedges, removed at 48-inch intervals along the stem and each branch, were combined within...
Cristel C. Kern; Brian J. Palik; Terry F. Strong
2006-01-01
We evaluated ground-layer plant diversity and community composition in northern hardwood forests among uncut controls and stands managed with even-age or uneven-age silvicultural systems. Even-age treatments included diameter-limit cuttings (20-cm diameter at 30-cm stem height) in 1952 and shelterwood removals in 1964. Uneven-age treatments included three intensities...
Travis DeLuca; Mary Ann Fajvan; Gary Miller
2009-01-01
Ten-years after diameter-limit harvesting in an Appalachian hardwood stand, the height, dbh, and basal area of sapling regeneration was inversely related to the degree of "overtopping" of residual trees. Black cherry and red maple were the most abundant saplings with 416.5 ± 25.7 and 152.9 ± 16.8 stems per acre, respectively. Models of black...
Interplanting woody nurse crops promotes differential growth of black walnut saplings
J. O. Dawson; J. W. Van Sambeek
1993-01-01
Interplanting black walnut (Juglans nigra) with four different nitrogen fixing, woody nurse crops (Alnus glutinosa, Elaeagnus umbellata, E. angustifolia or Caragana arborescens) increased annual walnut height and stem diameter (dbh) growth overall by as much as 50% and...
Growth phenology of coast Douglas-fir seed sources planted in diverse environments.
Gould, Peter J; Harrington, Constance A; St Clair, J Bradley
2012-12-01
The timing of periodic life cycle events in plants (phenology) is an important factor determining how species and populations will react to climate change. We evaluated annual patterns of basal-area and height growth of coast Douglas-fir (Pseudotusga menziesii var. menziesii (Mirb.) Franco) seedlings from four seed sources that were planted in four diverse environments as part of the Douglas-fir Seed-Source Movement Trial. Stem diameters and heights were measured periodically during the 2010 growing season on 16 open-pollinated families at each study installation. Stem diameters were measured on a subset of trees with electronic dendrometers during the 2010 and 2011 growing seasons. Trees from the four seed sources differed in phenology metrics that described the timing of basal-area and height-growth initiation, growth cessation and growth rates. Differences in the height-growth metrics were generally larger than differences in the basal-area growth metrics and differences among installations were larger than differences among seed sources, highlighting the importance of environmental signals on growth phenology. Variations in the height- and basal-area growth metrics were correlated with different aspects of the seed-source environments: precipitation in the case of height growth and minimum temperature in the case of basal-area growth. The detailed dendrometer measurements revealed differences in growth patterns between seed sources during distinct periods in the growing season. Our results indicate that multiple aspects of growth phenology should be considered along with other traits when evaluating adaptation of populations to future climates.
D.W. Johnson; C.C. Trettin; D.E. Todd
2016-01-01
Vegetation, forest floor, and soils were resampled at a mixed oak site in eastern Tennessee that had been subjected to stem only (SOH), whole-tree harvest (WTH), and no harvest (REF) 33Â years previously. Although differences between harvest treatments were not statistically significant (PÂ <Â 0.05), average diameter, height, basal...
Rodney E. Will; Thomas C. Hennessey; Thomas B. Lynch; Robert Heinemann; Randal Holeman; Dennis Wilson; Keith Anderson; Gregory Campbell
2013-01-01
We determined the effects of planting density (4- by 4-, 6- by 6-, 8- by 8-, and 10- by 10-foot spacing) on stand-level height, diameter at breast height, stem volume, basal area, and periodic annual increment for two loblolly pine (Pinus taeda L.) seed sources. Seed sources for the 25-year-old stands were a North Carolina seed source (NCC 8-01) and...
David Gwenzi; Eileen Helmer; Xiaolin Zhu; Michael Lefsky; Humfredo Marcano-Vega
2017-01-01
Remotely-sensed estimates of forest biomass are usually based on various measurements of canopy height, area, volume or texture, as derived from LiDAR, radar or fine spatial resolution imagery. These measurements are then calibrated to estimates of stand biomass that are primarily based on tree stem diameters. Although humid tropical...
Duchateau, Emmanuel; Auty, David; Mothe, Frédéric; Longuetaud, Fleur; Ung, Chhun Huor
2015-01-01
The branch autonomy principle, which states that the growth of individual branches can be predicted from their morphology and position in the forest canopy irrespective of the characteristics of the tree, has been used to simplify models of branch growth in trees. However, observed changes in allocation priority within trees towards branches growing in light-favoured conditions, referred to as ‘Milton’s Law of resource availability and allocation,’ have raised questions about the applicability of the branch autonomy principle. We present models linking knot ontogeny to the secondary growth of the main stem in black spruce (Picea mariana (Mill.) B.S.P.), which were used to assess the patterns of assimilate allocation over time, both within and between trees. Data describing the annual radial growth of 445 stem rings and the three-dimensional shape of 5,377 knots were extracted from optical scans and X-ray computed tomography images taken along the stems of 10 trees. Total knot to stem area increment ratios (KSR) were calculated for each year of growth, and statistical models were developed to describe the annual development of knot diameter and curvature as a function of stem radial increment, total tree height, stem diameter, and the position of knots along an annual growth unit. KSR varied as a function of tree age and of the height to diameter ratio of the stem, a variable indicative of the competitive status of the tree. Simulations of the development of an individual knot showed that an increase in the stem radial growth rate was associated with an increase in the initial growth of the knot, but also with a shorter lifespan. Our results provide support for ‘Milton’s Law,’ since they indicate that allocation priority is given to locations where the potential return is the highest. The developed models provided realistic simulations of knot morphology within trees, which could be integrated into a functional-structural model of tree growth and above-ground resource partitioning. PMID:25870769
Duchateau, Emmanuel; Auty, David; Mothe, Frédéric; Longuetaud, Fleur; Ung, Chhun Huor; Achim, Alexis
2015-01-01
The branch autonomy principle, which states that the growth of individual branches can be predicted from their morphology and position in the forest canopy irrespective of the characteristics of the tree, has been used to simplify models of branch growth in trees. However, observed changes in allocation priority within trees towards branches growing in light-favoured conditions, referred to as 'Milton's Law of resource availability and allocation,' have raised questions about the applicability of the branch autonomy principle. We present models linking knot ontogeny to the secondary growth of the main stem in black spruce (Picea mariana (Mill.) B.S.P.), which were used to assess the patterns of assimilate allocation over time, both within and between trees. Data describing the annual radial growth of 445 stem rings and the three-dimensional shape of 5,377 knots were extracted from optical scans and X-ray computed tomography images taken along the stems of 10 trees. Total knot to stem area increment ratios (KSR) were calculated for each year of growth, and statistical models were developed to describe the annual development of knot diameter and curvature as a function of stem radial increment, total tree height, stem diameter, and the position of knots along an annual growth unit. KSR varied as a function of tree age and of the height to diameter ratio of the stem, a variable indicative of the competitive status of the tree. Simulations of the development of an individual knot showed that an increase in the stem radial growth rate was associated with an increase in the initial growth of the knot, but also with a shorter lifespan. Our results provide support for 'Milton's Law,' since they indicate that allocation priority is given to locations where the potential return is the highest. The developed models provided realistic simulations of knot morphology within trees, which could be integrated into a functional-structural model of tree growth and above-ground resource partitioning.
Ontogenetic changes in size, allometry, and mechanical design of tropical rain forest trees.
Sterck, F; Bongers, F
1998-02-01
Size, allometry, and mechanical design were measured for trees of three canopy species in a tropical rain forest in French Guiana. Mechanical design was expressed as the safety factor, using the elastic-stability model, and the wind resistance factor, using the constant-stress model. Changes with ontogeny were described as regressions using stem diameter as the independent variable, and they were compared between species. Height, crown size, and the wind resistance factor increased with ontogeny. The safety factor decreased to a minimum and then increased continuously in thicker trees. The crown width/height ratio did not change with ontogeny. Interspecific differences in allometry and mechanical design were related to the adult stature of the species, and not to shade tolerance. The short stature species (Vouacapoua americana) was less slender (height:DBH [stem diameter at 1.3 m] ratio) and had a higher crown width/height ratio than the tall stature species (Goupia glabra and Dicorynia guianensis). Vouacapoua had a higher safety factor, but a similar wind resistance factor. The safety factors of our study species were lower than those of two temperate tree species because of a higher slenderness. Differences in safety factors between tropical and temperate trees may result from unrealistic assumptions of the elastic-stability model, and may also be related to lower light levels and-or wind rates in the tropics.
Vertical gradients and seasonal variation in stem CO2 efflux within a Norway spruce stand.
Tarvainen, Lasse; Räntfors, Mats; Wallin, Göran
2014-05-01
Stem CO2 efflux is known to vary seasonally and vertically along tree stems. However, annual tree- and stand-scale efflux estimates are commonly based on measurements made only a few times a year, during daytime and at breast height. In this study, the effect of these simplifying assumptions on annual efflux estimates and their influence on the estimates of the importance of stems in stand-scale carbon cycling are evaluated. In order to assess the strength of seasonal, diurnal and along-stem variability in CO2 efflux, half-hourly measurements were carried out at three heights on three mature Norway spruce (Picea abies (L.) Karst.) trees over a period of 3 years. Making the common assumption of breast height efflux rates being representative of the entire stem was found to result in underestimations of 10-17% in the annual tree-scale CO2 efflux. Upscaling using only daytime measurements from breast height increased the underestimation to 15-20%. Furthermore, the results show that the strength of the vertical gradient varies seasonally, being strongest in the early summer and non-existent during the cool months. The observed seasonality in the vertical CO2 efflux gradient could not be explained by variation in stem temperature, temperature response of the CO2 efflux (Q10), outer-bark permeability, CO2 transport in the xylem or CO2 release from the phloem. However, the estimated CO2 concentration immediately beneath the bark was considerably higher in the upper stem during the main period of diameter growth, coinciding with the strongest vertical efflux gradient. These results suggest that higher growth rates in the upper stem are the main cause for the observed vertical variation in the stem CO2 effluxes. Furthermore, the results indicate that accounting for the vertical efflux variation is essential for assessments of the importance of stems in stand-scale carbon cycling. © The Author 2014. Published by Oxford University Press. All rights reserved.
Day, Richard H.; Doyle, T.W.; Draugelis-Dale, R. O.
2006-01-01
The large river swamps of Louisiana have complex topography and hydrology, characterized by black willow (Salix nigra) dominance on accreting alluvial sediments and vast areas of baldcypress (Taxodium distichum) deepwater swamps with highly organic substrates. Seedling survival of these two wetland tree species is influenced by their growth rate in relation to the height and duration of annual flooding in riverine environments. This study examines the interactive effects of substrate, hydroperiod, and nutrients on growth rates of black willow and baldcypress seedlings. In a greenhouse experiment with a split-split-plot design, 1-year seedlings of black willow and baldcypress were subjected to two nutrient treatments (unfertilized versus fertilized), two hydroperiods (continuously flooded versus twice daily flooding/draining), and two substrates (sand versus commercial peat mix). Response variables included height, diameter, lateral branch count, biomass, and root:stem ratio. Black willow growth in height and diameter, as well as all biomass components, were significantly greater in peat substrate than in sand. Black willow showed a significant hydroperiod-nutrient interaction wherein fertilizer increased stem and root biomass under drained conditions, but flooded plants did not respond to fertilization. Baldcypress diameter and root biomass were higher in peat than in sand, and the same two variables increased with fertilization in flooded as well as drained treatments. These results can be used in Louisiana wetland forest models as inputs of seedling growth and survival, regeneration potential, and biomass accumulation rates of black willow and baldcypress.
Restoring southern Ontario forests by managing succession in conifer plantations
William C. Parker; Ken A. Elliott; Daniel C. Dey; Eric Boysen
2008-01-01
Thinning and underplanting of conifer plantations to promote natural succession in southern Ontario's forests for restoration purposes was examined in a young red pine (Pinus resinosa Ait.) plantation. Eleven years after application of five thinning treatments, seedling diameter, height, and stem volume of planted white ash (Fraxinus...
Huang, Jian-Guo; Stadt, Kenneth J; Dawson, Andria; Comeau, Philip G
2013-01-01
We examined the effect of competition on stem growth of Picea glauca and Populus tremuloides in boreal mixedwood stands during the stem exclusion stage. We combined traditional approaches of collecting competition data with dendrochronology to provide retrospective measurements of stem diameter growth. Several competition indices including stand basal area (BA), the sum of stem diameter at breast height (SDBH), and density (N) for the broadleaf and coniferous species, as well as similar indices considering only trees with diameters greater than each subject (BAGR, SDBHGR, and NGR), were evaluated. We used a nonlinear mixed model to characterize the basal area increment over the past 5, 10, 15, 20, 25, 30, and 35 years as a function of growth of nearby dominant trees, the size of the subject trees, deciduous and coniferous competition indices, and ecoregions. SDBHGR and BAGR were better predictors for spruce, and SDBHGR and NGR were better for aspen, respectively, than other indices. Results showed strongest correlations with long-term stem growth, as the best models integrated growth for 10-25 years for aspen and ≥ 25 for spruce. Our model demonstrated a remarkable capability (adjusted R(2)>0.67) to represent this complex variation in growth as a function of site, size and competition.
Huang, Jian-Guo; Stadt, Kenneth J.; Dawson, Andria; Comeau, Philip G.
2013-01-01
We examined the effect of competition on stem growth of Picea glauca and Populus tremuloides in boreal mixedwood stands during the stem exclusion stage. We combined traditional approaches of collecting competition data with dendrochronology to provide retrospective measurements of stem diameter growth. Several competition indices including stand basal area (BA), the sum of stem diameter at breast height (SDBH), and density (N) for the broadleaf and coniferous species, as well as similar indices considering only trees with diameters greater than each subject (BAGR, SDBHGR, and NGR), were evaluated. We used a nonlinear mixed model to characterize the basal area increment over the past 5, 10, 15, 20, 25, 30, and 35 years as a function of growth of nearby dominant trees, the size of the subject trees, deciduous and coniferous competition indices, and ecoregions. SDBHGR and BAGR were better predictors for spruce, and SDBHGR and NGR were better for aspen, respectively, than other indices. Results showed strongest correlations with long-term stem growth, as the best models integrated growth for 10–25 years for aspen and ≥25 for spruce. Our model demonstrated a remarkable capability (adjusted R2>0.67) to represent this complex variation in growth as a function of site, size and competition. PMID:24204891
Huang, Ping; Wan, Xianchong; Lieffers, Victor J
2016-05-01
This study tested how wind in daytime and nighttime affects hydraulic properties and thigmomorphogenic response of poplar saplings. It shows that wind in daytime interrupted water balance of poplar plants by aggravating cavitation in the stem xylem under high xylem tension in the daytime, reducing water potential in midday and hence reducing gas exchange, including stomatal conductance and CO2 assimilation. The wind blowing in daytime significantly reduced plant growth, including height, diameter, leaf size, leaf area, root and whole biomass, whereas wind blowing in nighttime only caused a reduction in radial and height growth at the early stage compared with the control but decreased height:diameter ratios. In summary, the interaction between wind loading and xylem tension exerted a negative impact on water balance, gas exchanges and growth of poplar plants, and wind in nighttime caused only a small thigmomorphogenic response. © 2015 Scandinavian Plant Physiology Society.
Kong, Jianlei; Ding, Xiaokang; Liu, Jinhao; Yan, Lei; Wang, Jianli
2015-01-01
In this paper, a new algorithm to improve the accuracy of estimating diameter at breast height (DBH) for tree trunks in forest areas is proposed. First, the information is collected by a two-dimensional terrestrial laser scanner (2DTLS), which emits laser pulses to generate a point cloud. After extraction and filtration, the laser point clusters of the trunks are obtained, which are optimized by an arithmetic means method. Then, an algebraic circle fitting algorithm in polar form is non-linearly optimized by the Levenberg-Marquardt method to form a new hybrid algorithm, which is used to acquire the diameters and positions of the trees. Compared with previous works, this proposed method improves the accuracy of diameter estimation of trees significantly and effectively reduces the calculation time. Moreover, the experimental results indicate that this method is stable and suitable for the most challenging conditions, which has practical significance in improving the operating efficiency of forest harvester and reducing the risk of causing accidents. PMID:26147726
Scasta, John Derek; Engle, David M; Harr, Ryan N; Debinski, Diane M
2014-12-01
Symphoricarpos, a genus of the Caprifoliaceae family, consists of about 15 species of clonal deciduous shrubs in North America and 1 species endemic to China. In North American tallgrass prairie, Symphoricarpos orbiculatus (buckbrush) is the dominant shrub often forming large colonies via sexual and asexual reproductive mechanisms. Symphoricarpos shrubs, in particular S. orbiculatus, use a unique sexual reproductive mechanism known as layering where vertical stems droop and the tips root upon contact with the soil. Because of conflicting societal values of S. orbiculatus for conservation and agriculture and the current attempt to restore historical fire regimes, there is a need for basic research on the biological response of S. orbiculatus to anthropogenic burning regimes. From 2007 through 2013 we applied prescribed fires in the late dormant season on grazed pastures in the Grand River Grasslands of Iowa. From 2011 to 2013, we measured how S. orbiculatus basal resprouting and layering stems were affected by patchy fires on grazed pastures, complete pasture fires on grazed pastures or fire exclusion without grazing for more than three years. We measured ramet height, ramet canopy diameter, stems per ramet, ramets per 100 m 2 , and probability of new layering stems 120 days after fire. Height in burned plots was lower than unburned plots but S. orbiculatus reached ~ 84% of pre-burn height 120 days after fire. Stems per ramet were 2x greater in the most recently burned plots due to basal re-sprouting. Canopy diameter and density of ramets was not affected by time since fire, but burned pastures had marginally lower densities than plots excluded from fire (P = 0.07). Fire triggered new layering stems and no new layering stems were found in plots excluded from fire. The mechanisms of both basal sprouting and aerial layering after fire suggest S. orbiculatus is tolerant to dormant season fires. Furthermore, dormant season fires, regardless if they were patchy fires or complete pasture fires, did not result in mortality of S. orbiculatus. Dormant season fires can reduce S. orbiculatus structural dominance and maintain lower ramet densities but also trigger basal resprouting and layering.
Sakici, Oytun Emre; Kucuk, Omer; Ashraf, Muhammad Irfan
2018-04-15
Small trees and saplings are important for forest management, carbon stock estimation, ecological modeling, and fire management planning. Turkish pine (Pinus brutia Ten.) is a common coniferous species and comprises 25.1% of total forest area of Turkey. Turkish pine is also important due to its flammable fuel characteristics. In this study, compatible above-ground biomass equations were developed to predict needle, branch, stem wood, and above-ground total biomass, and carbon stock assessment was also described for Turkish pine which is smaller than 8 cm diameter at breast height or shorter than breast height. Compatible biomass equations are useful for biomass prediction of small diameter individuals of Turkish pine. These equations will also be helpful in determining fire behavior characteristics and calculating their carbon stock. Overall, present study will be useful for developing ecological models, forest management plans, silvicultural plans, and fire management plans.
Effect of Pellet Size of Defoliation and Estimated Kill of Small Stems Treated with Hexazinone
J.L. Michael
1981-01-01
Hexazinone [3-cyclohexyl-6-(dimethylamino)-1-methyl-1,2,5-triaine-2,4,(1H,2H)-dione] was tested in the 2, 1, and 0.5 cc size uellet (10% ai) against very small stems [average height, 1.97m; average ground line diameter (GLD), 2 cm] of water oak, Quercus nigra L., at 1.12 and 2.24 kg/ha on a sandy loam soil. First year defoliation of water oak by...
Spatial variations in Eulemur fulvus rufus and Lepilemur mustelinus densities in Madagascar.
Lehman, Shawn M
2007-01-01
I present data on variations in Eulemur fulvus rufus and Lepilemur mustelinus densities as well as tree characteristics (height, diameter and stem frequency) between edge and interior forest habitats in southeastern Madagascar. Line transect surveys were conducted from June 2003 to November 2005 in edge and interior forest habitats in the Vohibola III Classified Forest. Although E. f. rufus densities were significantly lower in edge habitats than in interior habitats, density estimates for L. mustelinus did not differ significantly between habitats. Trees in edge habitats were significantly shorter, had smaller diameters and had lower stem frequencies (for those >25 cm in diameter) than trees in interior habitats. Spatial characteristics of food abundance and quality may explain lemur density patterns in Vohibola III. Low E. f. rufus densities may reduce seed dispersal in edge habitats, which has important consequences for the long-term viability of forest ecosystems in Madagascar. Copyright (c) 2007 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Van Haren, J. L. M.; Cadillo-Quiroz, H.
2015-12-01
Methane (CH4) emissions through plants have long been known in wetlands. However, most measurements have focused on stem tops and leaves. Recently, measurements at the lower parts of stems have shown that stem emissions can exceed soil CH4 emissions in Asian peatlands (Pangala et al. 2013). The addition of stem fluxes to soil fluxes for total ecosystem fluxes has the potential to bridge the discrepancy between modeled to measured and bottom-up to top-down flux estimates. Our measurements in peatlands of Peru show that especially Mauritia flexuosa, a palm species, can emit very large quantities of CH4, although most trees emitted at least some CH4. We used flexible stem chambers to adapt to stems of any size above 5cm in diameter. The chambers were sampled in closed loop with a Gasmet DX4015 for flux measurements, which lasted ~5 minutes after flushing with ambient air. We found that M. flexuosa stem fluxes decrease with height along the stem and were positively correlated with soil fluxes. Most likely CH4 is transported up the stem with the xylem water. Measured M. flexuosa stem fluxes below 1.5m averaged 11.2±1.5 mg-C m-2 h-1 (±95% CI) with a maximum of 123±3.5 mg-C m-2 h-1 (±SE), whereas soil fluxes averaged 6.7±1.7 mg-C m-2 h-1 (±95% CI) with a maximum of 31.6±0.4 mg-C m-2 h-1 (±SE). Significant CH4 fluxes were measured up to 5 m height along the stems. Combined with the high density of ~150 M. flexuosa individuals per hectare in these peatlands and the consistent diameter of ~30cm, the high flux rates add ~20% to the soil flux. With anywhere between 1 and 5 billion M. flexuosa stems across Amazon basin wetlands, stem fluxes from this palm species could represent a major addition to the overall Amazon basin CH4 flux.
Rojas-Zamora, Oscar; Insuasty-Torres, Jennyfer; de Cardenas, Camilo los Angeles; Ríos, Orlando Vargas
2013-03-01
Ecological restoration of the Andean paramos faces several ecological barriers mainly at the phase of dispersal and establishment of native species. With the aim to contribute to the enrichment of degraded areas, different strategies have to be developed to overcome those barriers. In this work we studied the response of individuals of Espeletia grandiflora (Asteraceae) to the relocation as a strategy for ecological restoration programs. We also evaluated the effect of size of relocated individuals on their survival and development. The work was carried out in an experimental plot at 3 424m altitude in the sector "Lagunas de Siecha" of Chingaza National Park, Colombia. We relocated 200 plants that belonged to three different size classes: 5, 10 and 15cm of initial height. The following variables were registered: survival, plant height, number of living leaves and stem diameter of each individual. We also evaluated the differences between individuals in survival and development. In terms of survival the most efficient size classes corresponded to 15cm high; the survival was 85% after two years. The relative growth rates for height and stem diameter decreases with the increase in size, but the absolute increase in height did not show significant differences between the three sizes tested. Since the stem diameter was found the strongest survival predictor after two years of relocation activities, we suggest its use as a criterion for selection of relocation individuals. The relocation of individuals of E. grandiflora had a positive side effect, carrying other species that may contribute to the enrichment and restoration of degraded areas. Among these, we found species of the genus Hypericum, as well as Arcytophyllum nitidum and Calamagrostis effusa, which should be evaluated in terms of survival and development for the subsequent implementation of the relocation strategy. In this study we verified the successful relocation of individuals of E. grandiflora as a strategy for enrichment of paramos, and provided values of survival and growth, which should be useful for planning and predicting with greater certainty the success of restoration programs in the paramo.
Ligarreto, Gustavo A; Patiño, Maria del Pilar; Magnitskiy, Stanislav V
2011-06-01
Vaccinium meridionale is a promising crop for the Andean region of South America and is currently available only in the wild. Spontaneous populations of this plant are found across the Colombian mountains, but very few published records on this plant morphology are available. A zonification study of V. meridionale was conducted in four principal areas of a low mountain forest of Colombia (Provinces of Boyacá, Cundinamarca, Santander and Nariño) in 2007. A total of 20 populations and 100 plants of V. meridionale were individually characterized and surveyed, using a list of 26 characters of morphological variables (9 quantitative and 17 qualitative characters). Our results indicated that natural populations of V. meridionale might be found in the tropical forest under a highly heterogeneous climate and microclimate conditions, at different mountain regions between 2 357 and 3 168masl. The shrubs of V. meridionale exhibited a high level of intra-population variation in several quantitative (plant height, stem diameter) and qualitative (growth habit, ramification density, presence of anthocyanins in stems) morphological characters, suggesting an environmentally induced phenotypic plasticity. Plant height, stem diameter and foliar density were the most variable morphological traits, with coefficients of variation higher than 50%. However, several quantitative characters of its reproductive potential, such as berry dimensions, rachis length and number of flowers per inflorescence, resulted with low plasticity with coefficients of variation lower than 30.2%, indicating that these characters were genetically determined. The highest correlation coefficients (p < 0.05) resulted to be between fruit length and fruit width (0.90), leaf length and leaf width (0.78), plant height and stem diameter (0.60), and inflorescence length and flowers number per inflorescence (0.57). The results suggest that an important genetic resource exists for this species in the wild. Low variation in fruit size, which constitutes a target trait for plant breeders, could be useful for selection of cultivars of V. meridionale. The results of this study could also be applied in conservation programs aimed to protect these diverse populations in the mountain forests of Colombia.
Leaf, woody, and root biomass of Populus irrigated with landfill leachate
Jill A. Zalesny; Ronald S., Jr. Zalesny; D.R. Coyle; R.B. Hall
2007-01-01
Poplar (Populus spp.) trees can be utilized for ecological leachate disposal when applied as an irrigation source for managed tree systems. Our objective was to evaluate differences in tree height, diameter, volume, and biomass of leaf, stem, branch, and root tissues of Populus trees after two seasons of irrigation with municipal...
Growth and wood/bark properties of Abies faxoniana seedlings as affected by elevated CO2.
Qiao, Yun-Zhou; Zhang, Yuan-Bin; Wang, Kai-Yun; Wang, Qian; Tian, Qi-Zhuo
2008-03-01
Growth and wood and bark properties of Abies faxoniana seedlings after one year's exposure to elevated CO2 concentration (ambient + 350 (+/- 25) micromol/mol) under two planting densities (28 or 84 plants/m(2)) were investigated in closed-top chambers. Tree height, stem diameter and cross-sectional area, and total biomass were enhanced under elevated CO2 concentration, and reduced under high planting density. Most traits of stem bark were improved under elevated CO2 concentration and reduced under high planting density. Stem wood production was significantly increased in volume under elevated CO2 concentration under both densities, and the stem wood density decreased under elevated CO2 concentration and increased under high planting density. These results suggest that the response of stem wood and bark to elevated CO2 concentration is density dependent. This may be of great importance in a future CO2 enriched world in natural forests where plant density varies considerably. The results also show that the bark/wood ratio in diameter, stem cross-sectional area and dry weight are not proportionally affected by elevated CO2 concentration under the two contrasting planting densities. This indicates that the response magnitude of stem bark and stem wood to elevated CO2 concentration are different but their response directions are the same.
Carrasco, Gilda; Moggia, Claudia; Osses, Ingrid Jennifer; Álvaro, Juan Eugenio; Urrestarazu, Miguel
2011-01-01
The goal of this research was to evaluate the effect of different doses of peroxyacetic acid on the productivity of watercress (Nasturtium officinale R. Br.) cultivated hydroponically using a constant nutritive solution. Green chemistry in protected horticulture seeks compatibility with the environment through the creation of biodegradable byproducts. In hydroponics, appropriate doses of peroxyacetic mixtures deliver these byproducts while also oxygenating the roots. Watercress producers who recirculate the nutritive solution can use these mixtures in order to increase oxygenation in the hydroponic system. The experiment took place between August and December 2009, beginning with the planting of the watercress seeds and concluding with the completion of the sensory panels. A completely random design was used, including three treatments and four repetitions, with applications of 0, 20 and 40 mg L−1 of the peroxyacetic mixture. Measured variables were growth (plant height, leaf length and stem diameter), yield (weight per plant and dry matter) and organoleptic quality (color and sensory panel). The application of 40 mg L−1 of the peroxyacetic mixture had a greater effect on the growth and development of the plants, which reached an average height of 29.3 cm, stem diameter of 3.3 mm and leaf length of 7.6 cm, whereas the control group reached an average height of only 20.2 cm, stem diameter of 1.9 mm and leaf length of 5.7 cm. The application of the peroxyacetic mixtures resulted in an improvement in growth parameters as well as in yield. Individual weights achieved using the 40 mg L−1 dose were 1.3 g plant−1 in the control group and 3.4 g plant−1 in the experimental group (62% yield increase). Sensory analysis revealed no differences in organoleptic quality. PMID:22272143
Efficacy of generic allometric equations for estimating biomass: a test in Japanese natural forests.
Ishihara, Masae I; Utsugi, Hajime; Tanouchi, Hiroyuki; Aiba, Masahiro; Kurokawa, Hiroko; Onoda, Yusuke; Nagano, Masahiro; Umehara, Toru; Ando, Makoto; Miyata, Rie; Hiura, Tsutom
2015-07-01
Accurate estimation of tree and forest biomass is key to evaluating forest ecosystem functions and the global carbon cycle. Allometric equations that estimate tree biomass from a set of predictors, such as stem diameter and tree height, are commonly used. Most allometric equations are site specific, usually developed from a small number of trees harvested in a small area, and are either species specific or ignore interspecific differences in allometry. Due to lack of site-specific allometries, local equations are often applied to sites for which they were not originally developed (foreign sites), sometimes leading to large errors in biomass estimates. In this study, we developed generic allometric equations for aboveground biomass and component (stem, branch, leaf, and root) biomass using large, compiled data sets of 1203 harvested trees belonging to 102 species (60 deciduous angiosperm, 32 evergreen angiosperm, and 10 evergreen gymnosperm species) from 70 boreal, temperate, and subtropical natural forests in Japan. The best generic equations provided better biomass estimates than did local equations that were applied to foreign sites. The best generic equations included explanatory variables that represent interspecific differences in allometry in addition to stem diameter, reducing error by 4-12% compared to the generic equations that did not include the interspecific difference. Different explanatory variables were selected for different components. For aboveground and stem biomass, the best generic equations had species-specific wood specific gravity as an explanatory variable. For branch, leaf, and root biomass, the best equations had functional types (deciduous angiosperm, evergreen angiosperm, and evergreen gymnosperm) instead of functional traits (wood specific gravity or leaf mass per area), suggesting importance of other traits in addition to these traits, such as canopy and root architecture. Inclusion of tree height in addition to stem diameter improved the performance of the generic equation only for stem biomass and had no apparent effect on aboveground, branch, leaf, and root biomass at the site level. The development of a generic allometric equation taking account of interspecific differences is an effective approach for accurately estimating aboveground and component biomass in boreal, temperate, and subtropical natural forests.
Richard R. Schaefer; D. Craig Rudolph; Richard N. Conner; Daniel Saenz
2004-01-01
Sexual divergence in foraging behavior exhibited by red-cockaded woodpeckers (Picoides borealis) should reduce intersexual competition for foraging sites. Males tend to forage at greater heights and on smaller stem diameters than females. It is well known that red-cockaded woodpeckers have an aversion to a well-developed stratum of midstory...
Size of Douglas-fir trees in relation to distance from a mixed red alder - Douglas-fir stand
R.E. Miller; D.L. Reukema; T.A. Max
1993-01-01
Variation in diameter, height, and stem volume of 57-year-old Douglas-fir(Pseudotsuga menziesii var. menziesii (Mirb.) Franco) was related to distance of these trees from a 27 m wide strip in the same Douglas-fir plantation that had been interplanted with red alder (Alnus rubra Bong.). Within the...
The target plant concept-a history and brief overview
Thomas D. Landis
2011-01-01
The target plant concept originated with morphological classification of conifer nursery stock in the 1930s, and the concept was enhanced through physiological research and seedling testing towards the end of the century. Morphological grading standards such as shoot height, stem diameter, and root mass are the most common use of the target plant concept, and some...
Measurements of stem diameter: implications for individual- and stand-level errors.
Paul, Keryn I; Larmour, John S; Roxburgh, Stephen H; England, Jacqueline R; Davies, Micah J; Luck, Hamish D
2017-08-01
Stem diameter is one of the most common measurements made to assess the growth of woody vegetation, and the commercial and environmental benefits that it provides (e.g. wood or biomass products, carbon sequestration, landscape remediation). Yet inconsistency in its measurement is a continuing source of error in estimates of stand-scale measures such as basal area, biomass, and volume. Here we assessed errors in stem diameter measurement through repeated measurements of individual trees and shrubs of varying size and form (i.e. single- and multi-stemmed) across a range of contrasting stands, from complex mixed-species plantings to commercial single-species plantations. We compared a standard diameter tape with a Stepped Diameter Gauge (SDG) for time efficiency and measurement error. Measurement errors in diameter were slightly (but significantly) influenced by size and form of the tree or shrub, and stem height at which the measurement was made. Compared to standard tape measurement, the mean systematic error with SDG measurement was only -0.17 cm, but varied between -0.10 and -0.52 cm. Similarly, random error was relatively large, with standard deviations (and percentage coefficients of variation) averaging only 0.36 cm (and 3.8%), but varying between 0.14 and 0.61 cm (and 1.9 and 7.1%). However, at the stand scale, sampling errors (i.e. how well individual trees or shrubs selected for measurement of diameter represented the true stand population in terms of the average and distribution of diameter) generally had at least a tenfold greater influence on random errors in basal area estimates than errors in diameter measurements. This supports the use of diameter measurement tools that have high efficiency, such as the SDG. Use of the SDG almost halved the time required for measurements compared to the diameter tape. Based on these findings, recommendations include the following: (i) use of a tape to maximise accuracy when developing allometric models, or when monitoring relatively small changes in permanent sample plots (e.g. National Forest Inventories), noting that care is required in irregular-shaped, large-single-stemmed individuals, and (ii) use of a SDG to maximise efficiency when using inventory methods to assess basal area, and hence biomass or wood volume, at the stand scale (i.e. in studies of impacts of management or site quality) where there are budgetary constraints, noting the importance of sufficient sample sizes to ensure that the population sampled represents the true population.
Pfautsch, Sebastian; Aspinwall, Michael J; Drake, John E; Chacon-Doria, Larissa; Langelaan, Rob J A; Tissue, David T; Tjoelker, Mark G; Lens, Frederic
2018-01-25
Sapwood traits like vessel diameter and intervessel pit characteristics play key roles in maintaining hydraulic integrity of trees. Surprisingly little is known about how sapwood traits covary with tree height and how such trait-based variation could affect the efficiency of water transport in tall trees. This study presents a detailed analysis of structural and functional traits along the vertical axes of tall Eucalyptus grandis trees. To assess a wide range of anatomical and physiological traits, light and electron microscopy was used, as well as field measurements of tree architecture, water use, stem water potential and leaf area distribution. Strong apical dominance of water transport resulted in increased volumetric water supply per unit leaf area with tree height. This was realized by continued narrowing (from 250 to 20 µm) and an exponential increase in frequency (from 600 to 13 000 cm-2) of vessels towards the apex. The widest vessels were detected at least 4 m above the stem base, where they were associated with the thickest intervessel pit membranes. In addition, this study established the lower limit of pit membrane thickness in tall E. grandis at ~375 nm. This minimum thickness was maintained over a large distance in the upper stem, where vessel diameters continued to narrow. The analyses of xylem ultrastructure revealed complex, synchronized trait covariation and trade-offs with increasing height in E. grandis. Anatomical traits related to xylem vessels and those related to architecture of pit membranes were found to increase efficiency and apical dominance of water transport. This study underlines the importance of studying tree hydraulic functioning at organismal scale. Results presented here will improve understanding height-dependent structure-function patterns in tall trees. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Zieher, T.; Rutzinger, M.; Bremer, M.; Meissl, G.; Geitner, C.
2014-12-01
The potentially stabilizing effects of forest cover in respect of slope stability have been the subject of many studies in the recent past. Hence, the effects of trees are also considered in many deterministic landslide susceptibility models. TRIGRS 2.0 (Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability; USGS) is a dynamic, physically-based model designed to estimate shallow landslide susceptibility in space and time. In the original version the effects of forest cover are not considered. As for further studies in Vorarlberg (Austria) TRIGRS 2.0 is intended to be applied in selected catchments that are densely forested, the effects of trees on slope stability were implemented in the model. Besides hydrological impacts such as interception or transpiration by tree canopies and stems, root cohesion directly influences the stability of slopes especially in case of shallow landslides while the additional weight superimposed by trees is of minor relevance. Detailed data on tree positions and further attributes such as tree height and diameter at breast height were derived throughout the study area (52 km²) from high-resolution airborne laser scanning data. Different scenarios were computed for spruce (Picea abies) in the study area. Root cohesion was estimated area-wide based on published correlations between root reinforcement and distance to tree stems depending on the stem diameter at breast height. In order to account for decreasing root cohesion with depth an exponential distribution was assumed and implemented in the model. Preliminary modelling results show that forest cover can have positive effects on slope stability yet strongly depending on tree age and stand structure. This work has been conducted within C3S-ISLS, which is funded by the Austrian Climate and Energy Fund, 5th ACRP Program.
Proffitt, C.E.; Travis, S.E.; Edwards, K.R.
2003-01-01
Colonization, growth, and clonal morphology differ with genotype and are influenced by elevation. Local adaptation of Spartina alterniflora to environmental conditions may lead to dominance by different suites of genotypes in different locations within a marsh. In a constructed marsh, we found reduced colonization in terms of density of clones with increasing distance from edge in a 200-ha mudflat created in 1996; however, growth in diameter was not different among three 100-m-long zones that differed in distance from site edge. Distance from edge was confounded by elevation in this comparison of natural colonization. The rate of clonal expansion in diameter was 3.1 m/yr, and clonal growth was linear over the 28 mo of the study. The area dominated by S. alterniflora in the three distance zones increased concomitantly with clonal growth. However, the lower initial clonal densities and colonization by other plant species resulted in reduced overall dominance by S. alterniflora in the two more-interior locations. Seedling recruitment was an important component of S. alterniflora colonization at all elevations and distances from edge two years after site creation. Seedlings were spatially very patchy and tended to occur near clones that probably produced them. A field experiment revealed that S. alterniflora height and total stem length varied with genotype, while stem density and flowering stem density did not. Differences between edge and center of clonal patches also occurred for some response variables, and there were also significant interactions with genotype. Differences between edge and center are interpreted as differences in clone morphology. Elevation differences over distances of a few meters influenced total stem length and flowering stem density but not other response variables. Clones that were larger in diameter also tended to have greater stem heights and total stem lengths. A number of plant morphological measures were found to vary significantly among the five genotypes and had broad-sense heritabilities ranging up to 0.71. These results indicate that S. alterniflora populations developing on new substrata colonize broadly, but growth and reproduction vary with genotype and are influenced by changes in elevation (range: 11.8 cm), and probably other environmental factors, over relatively small distances. Differences in growth and clone morphology of different genets, and the frequent occurrence of seedlings throughout the site, underscore the importance of genetic variability in natural and created populations.
Méndez-Alonzo, Rodrigo; Moctezuma, Coral; Ordoñez, Víctor R; Angeles, Guillermo; Martínez, Armando J; López-Portillo, Jorge
2015-04-01
Rhizophora species of mangroves have a conspicuous system of stilt-like roots (rhizophores) that grow from the main stem and resemble flying buttresses. As such, the development of rhizophores can be predicted to be important for the effective transmission of dynamic loads from the top of the tree to the ground, especially where the substrate is unstable, as is often the case in the habitats where Rhizophora species typically grow. This study tests the hypothesis that rhizophore architecture in R. mangle co-varies with their proximity to the main stem, and with stem size and crown position. The allometry and wood mechanical properties of R. mangle (red mangrove) trees growing in a mangrove basin forest within a coastal lagoon in Mexico were compared with those of coexisting, non-buttressed mangrove trees of Avicennia germinans. The anatomy of rhizophores was related to mechanical stress due to crown orientation (static load) and to prevailing winds (dynamic load) at the study site. Rhizophores buttressed between 10 and 33 % of tree height. There were significant and direct scaling relationships between the number, height and length of rhizophores vs. basal area, tree height and crown area. Wood mechanical resistance was significantly higher in the buttressed R. mangle (modulus of elasticity, MOE = 18·1 ± 2 GPa) than in A. germinans (MOE = 12·1 ± 0·5 GPa). Slenderness ratios (total height/stem diameter) were higher in R. mangle, but there were no interspecies differences in critical buckling height. When in proximity to the main stem, rhizophores had a lower length/height ratio, higher eccentricity and higher xylem/bark and pith proportions. However, there were no directional trends with regard to prevailing winds or tree leaning. In comparison with A. germinans, a tree species with wide girth and flare at the base, R. mangle supports a thinner stem of higher mechanical resistance that is stabilized by rhizophores resembling flying buttresses. This provides a unique strategy to increase tree slenderness and height in the typically unstable substrate on which the trees grow, at a site that is subject to frequent storms. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Local and general above-stump biomass functions for loblolly pine and slash pine trees
Carlos A. Gonzalez-Beneke; Salvador Gezan; Tmothy J. Albaugh; H. Lee Allen; Harold E. Burkhart; Thomas R. Fox; Eric J. Jokela; Christopher Maier; Timothy A. Martin; Rafael A. Rubilar; Lisa J. Samuelson
2014-01-01
There is an increasing interest in estimating biomass for loblolly pine (Pinus taeda L.) and slash pine (Pinus elliottii Engelm. var. elliottii), two of the most ecologically and commercially important tree species in North America. The majority of the available individual-tree allometric models are local, relying on stem diameter outside bark at breast height (dbh)...
The influence of gravity and wind on land plant evolution.
Niklas, K J
1998-07-01
Aspects of the engineering theory treating the elastic stability of vertical stems and cantilevered leaves supporting their own weight and additional wind-induced forces (drag) are reviewed in light of biomechanical studies of living and fossil terrestrial plant species. The maximum height to which arborescent species can grow before their stems elastically buckle under their own weight is estimated by means of the Euler-Greenhill formula which states that the critical buckling height scales as the 1/3 power of plant tissue-stiffness normalized with respect to tissue bulk density and as the 2/3 power of stem diameter. Data drawn from living plants indicate that progressively taller plant species employ stiffer and lighter-weight plant tissues as the principal stiffening agent in their vertical stems. The elastic stability of plants subjected to high lateral wind-loadings is governed by the drag torque (the product of the drag force and the height above ground at which this force is applied), which cannot exceed the gravitational bending moment (the product of the weight of aerial organs and the lever arm measured at the base of the plant). Data from living plants indicate that the largest arborescent plant species rely on massive trunks and broad, horizontally expansive root crowns to resist drag torques. The drag on the canopies of these plants is also reduced by highly flexible stems and leaves composed of tissues that twist and bend more easily than tissues used to stiffen older, more proximal stems. A brief review of the fossil record suggests that modifications in stem, leaf, and root morphology and anatomy capable of simultaneously coping with self-weight and wind-induced drag forces evolved by Devonian times, suggesting that natural selection acting on the elastic stability of sporophytes occurred early in the history of terrestrial plants.
Clark, David B.; Hurtado, Johanna; Saatchi, Sassan S.
2015-01-01
Rapid biological changes are expected to occur on tropical elevational gradients as species migrate upslope or go extinct in the face of global warming. We established a series of 9 1-ha plots in old-growth tropical rainforest in Costa Rica along a 2700 m relief elevational gradient to carry out long-term monitoring of tropical rain forest structure, dynamics and tree growth. Within each plot we mapped, identified, and annually measured diameter for all woody individuals with stem diameters >10 cm for periods of 3-10 years. Wood species diversity peaked at 400-600 m and decreased substantially at higher elevations. Basal area and stem number varied by less than two-fold, with the exception of the 2800 m cloud forest summit, where basal area and stem number were approximately double that of lower sites. Canopy gaps extending to the forest floor accounted for <3% of microsites at all elevations. Height of highest crowns and the coefficient of variation of crown height both decreased with increasing elevation. Rates of turnover of individuals and of stand basal area decreased with elevation, but rates of diameter growth and stand basal area showed no simple relation to elevation. We discuss issues encountered in the design and implementation of this network of plots, including biased sampling, missing key meteorological and biomass data, and strategies for improving species-level research. Taking full advantage of the major research potential of tropical forest elevational transects will require sustaining and extending ground based studies, incorporation of new remotely-sensed data and data-acquisition platforms, and new funding models to support decadal research on these rapidly-changing systems. PMID:25856163
Paquette, Alain; Fontaine, Bastien; Berninger, Frank; Dubois, Karine; Lechowicz, Martin J; Messier, Christian; Posada, Juan M; Valladares, Fernando; Brisson, Jacques
2012-11-01
Norway maple (Acer platanoides L), which is among the most invasive tree species in forests of eastern North America, is associated with reduced regeneration of the related native species, sugar maple (Acer saccharum Marsh) and other native flora. To identify traits conferring an advantage to Norway maple, we grew both species through an entire growing season under simulated light regimes mimicking a closed forest understorey vs. a canopy disturbance (gap). Dynamic shade-houses providing a succession of high-intensity direct-light events between longer periods of low, diffuse light were used to simulate the light regimes. We assessed seedling height growth three times in the season, as well as stem diameter, maximum photosynthetic capacity, biomass allocation above- and below-ground, seasonal phenology and phenotypic plasticity. Given the north European provenance of Norway maple, we also investigated the possibility that its growth in North America might be increased by delayed fall senescence. We found that Norway maple had significantly greater photosynthetic capacity in both light regimes and grew larger in stem diameter than sugar maple. The differences in below- and above-ground biomass, stem diameter, height and maximum photosynthesis were especially important in the simulated gap where Norway maple continued extension growth during the late fall. In the gap regime sugar maple had a significantly higher root : shoot ratio that could confer an advantage in the deepest shade of closed understorey and under water stress or browsing pressure. Norway maple is especially invasive following canopy disturbance where the opposite (low root : shoot ratio) could confer a competitive advantage. Considering the effects of global change in extending the potential growing season, we anticipate that the invasiveness of Norway maple will increase in the future.
Read, Jennifer; Evans, Robert; Sanson, Gordon D; Kerr, Stuart; Jaffré, Tanguy
2011-11-01
New Caledonia commonly experiences cyclones, so trees there are expected to have enhanced wood traits and trunk allometry that confer resistance to wind damage. We ask whether there is evidence of a trade-off between these traits and growth rate among species. Wood traits, including density, microfibril angle (MFA), and modulus of elasticity (MOE), ratio of tree height to stem diameter, and growth rate were investigated in mature trees of 15 co-occurring canopy species in a New Caledonian rainforest. In contrast to some studies, wood density did not correlate negatively with growth increment. Among angiosperms, wood density and MOE correlated positively with diameter-adjusted tree height, and MOE correlated positively with stem-diameter growth increment. Tall slender trees achieved high stiffness with high efficiency with respect to wood density, in part by low MFA, and with a higher diameter growth increment but a lower buckling safety factor. However, some tree species of a similar niche differed in whole-tree resistance to wind damage and achieved wood stiffness in different ways. There was no evidence of a growth-safety trade-off in these trees. In forests that regularly experience cyclones, there may be stronger selection for high wood density and/or stiffness in fast-growing trees of the upper canopy, with the potential growth trade-off amortized by access to the upper canopy and by other plant traits. Furthermore, decreasing wood density does not necessarily decrease resistance to wind damage, resistance being influenced by other characteristics including cell-level traits (e.g., MFA) and whole-plant architecture.
Tappeiner, J. C.; Zasada, J.; Maxwell, B.
1996-01-01
In order to determine the effects of stump height, year of cutting, parent-tree size, logging damage, and deer browsing on bigleaf maple (Acer macrophyllum) sprout clump development, maple trees were cut to two stump heights at three different times. Stump height had the greatest impact on sprout clump size. Two years after clearcutting, the sprout clump volume for short stumps was significantly less than that for tall stumps. The sprout clump volume, area, and number of sprouts were significantly less for trees cut 1 and 2 yr before harvest than for trees cut at harvest. Sprout clump size was positively correlated with parent tree stem diameter and stump volume, and negatively correlated with the percentage of bark removed during logging. Browsing had no significant impact on average clump size. Uncut trees produced sprout clumps at their base and epicormic branches along the length of their stems; thus their crown volume averaged four to five times that of cut trees. Cutting maple in clearcuts to low stumps may reduce maple competition with Douglas-fir regeneration and still maintain maple in the next stand.
David W. MacFarlane; Neil R. Ver Planck
2012-01-01
Data from hardwood trees in Michigan were analyzed to investigate how differences in whole-tree form and wood density between trees of different stem diameter relate to residual error in standard-type biomass equations. The results suggested that whole-tree wood density, measured at breast height, explained a significant proportion of residual error in standard-type...
M. Lake Maner; James Hanula; S. Kristine Braman
2013-01-01
Fine mesh screen was used to create a physical barrier to prevent redbay ambrosia beetles, Xyleborus glabratus Eichhoff (Coleoptera: Curculionidae: Scolytinae), from accessing various parts of the boles of redbay trees, Persea borbonia (L.) Sprengel, and infecting them with the laurel wilt fungus, Raffaelea lauricola...
Kristina Connor
2004-01-01
Devilâs walking stick, also known as angelica tree, American angelica-tree, Herculesâ club, pigeon tree, pick tree, prickly ash, prickly elder, toothache bush, toothache tree, and shotbush, is a large, coarse textured shrub or small tree, ranging from 6 to 10 m in height. The sturdy, ash gray to brown stems have dense, stout prickles, and diameters to 15 cms are not...
Chen, Qi Min; Luo, Qing Hong; Ning, Hu Sen; Zhao, Cheng Yi; Duan, Wen Biao
2017-03-18
The population structure characteristics, natural regeneration, and the influential factors of Haloxylon ammodendron plantations at six different stand ages on the southern edge of the Gurbantunggut Desert were studied. The results showed that H. ammodendron plantation at the stand age of 7 could naturally regenerate. At the stand age of 17, the densities of the seedlings (<30 cm height), saplings (30≤H<50 height), and small trees (≥50 cm height) reached optimal class, and the mean height and base diameter of the small tress reached 1.10 m and 1.91 cm, respectively. The parent trees in H. ammodendron plantation at the stand age of 20 grew best. The height of 35% individuals grew up to 2.50-3.00 m, and the basal stem diameter of 23.1% individuals grew up to 8.00-10.00 cm. The height and diameter growth of the parent trees in H. ammodendron plantation at the stand age of 33 apparently declined, but the regeneration ability by natural seed dispersal was still strong. The regeneration density of natural seed dispersal showed the greatest correlation with the available nitrogen content in 0-100 cm soil layer (0.87), followed by the soil rapidly available phosphorus content (0.84) and the soil water content (0.79). The soils with pH 8.1-8.6 did not limit the nutrient growth of the regeneration layer. In the main stand layer, the individual density of whole regeneration layer showed the greatest correlation with the biomass of the parent trees (0.77), while the density of regeneration layer of the small trees showed the greatest correlation with the planting density (0.71) and the age of the parent trees (0.70).
Characterization of Seasonally Dependent Emergent Vegetation Variables for Coastal Impact Models
NASA Astrophysics Data System (ADS)
Stellern, C.; Grossman, E.; Linneman, S. R.; Fuller, R.
2015-12-01
Emergent wetland vegetation has been shown to mitigate coastal inundation and erosion hazards by reducing wave energy through friction (Shepard et al., 2011), although its use in coastal protection planning is limited because predictive models require improved vegetation data. We isolated biophysical characteristics (biomass, stem density, rigidity, etc.) of plants using horizontal digital photographs (Side-On Photos) in conjunction with remote sensing and physical surveys. We studied the dominant salt-marsh species/assemblages in Port Susan Bay of Washington State, a vulnerable estuary that has experienced up to 1 kilometer of marsh retreat since the mid-1960s. We measured plant height, stem diameter, stem density (area available for flow) from fall to early spring (August 2014 through April 2015) using Side-On Photography and digital image processing techniques. Metrics from Side-On Photography were highly correlated to physical lab measurements. Vegetation rigidity was measured in-situ with a handheld digital scale with respect to measurement height and bending angle. Plant elasticity showed a strong correlation to stem diameter in two dominant bulrush species. We employed remote sensing supervised classifications techniques (Maximum-Likelihood and Decision Tree Classifiers) to hyperspectral imagery to map the spatial extent of vegetation assemblages with an overall accuracy of 86.7%. Combining these methods enabled us to extrapolate and validate vegetation characteristics across the study area and to estimate species-specific friction coefficients for input to cross-shore wave models. On-going studies include sensitivity analyses of wave models to seasonally-dependent vegetation parameters in the nearshore and ultimately wave impacts along the coast. By accounting for site-specific and spatiotemporal variability in vegetation data, we inform scientific understanding of the interactions of vegetation, waves, and sediment processes.
NASA Astrophysics Data System (ADS)
Widyatmoko, Didik; Burgman, Mark A.; Guhardja, Edi; Mogea, Johanis P.; Walujo, Eko B.; Setiadi, Dede
2005-09-01
Population status and demography of a population of the threatened lipstick palm Cyrtostachys renda in a peat swamp ecosystem of Kerumutan Reserve, Sumatra (one of the largest remaining populations) was documented at 16 different sites, covering a wide range of forest and habitat types, vegetation associations, and population sizes. Population sizes were dominated by suckers comprising 89% of the total population. Individuals with stem heights between 0 and 4 m (47.5%), stem diameters between 4 and 10 cm (82.0%), and leaf scar numbers between 0 and 60 (69.2%) dominated. Ages of individuals were estimated and used to fit a curvilinear relationship between age and stem height. Wild plants reach reproductive maturity within 25-30 years, or when they have stem heights in excess of 2.0 m, or when they have 15-25 leaf scars. They can survive more than 80 years. Cultivated plants appear to reproduce earlier and produce more seeds than wild plants. Individual growth was plant size-dependent with the adult stage being the most productive. Higher mortality was experienced by suckers, especially in continuously waterlogged conditions and locations with dense canopies. Sucker growth was faster than seedling growth, an adaptation that may allow the species to cope with periodically waterlogged conditions. Population abundances varied with habitat types; well-drained areas were the most suitable habitat. To conserve the most important remaining populations of the lipstick palm, it is crucial to protect well-drained sites in Kerumutan Reserve.
Comparison of interferometric and stereo-radargrammetric 3D metrics in mapping of forest resources
NASA Astrophysics Data System (ADS)
Karila, K.; Karjalainen, M.; Yu, X.; Vastaranta, M.; Holopainen, M.; Hyyppa, J.
2015-04-01
Accurate forest resources maps are needed in diverse applications ranging from the local forest management to the global climate change research. In particular, it is important to have tools to map changes in forest resources, which helps us to understand the significance of the forest biomass changes in the global carbon cycle. In the task of mapping changes in forest resources for wide areas, Earth Observing satellites could play the key role. In 2013, an EU/FP7-Space funded project "Advanced_SAR" was started with the main objective to develop novel forest resources mapping methods based on the fusion of satellite based 3D measurements and in-situ field measurements of forests. During the summer 2014, an extensive field surveying campaign was carried out in the Evo test site, Southern Finland. Forest inventory attributes of mean tree height, basal area, mean stem diameter, stem volume, and biomass, were determined for 91 test plots having the size of 32 by 32 meters (1024 m2). Simultaneously, a comprehensive set of satellite and airborne data was collected. Satellite data also included a set of TanDEM-X (TDX) and TerraSAR-X (TSX) X-band synthetic aperture radar (SAR) images, suitable for interferometric and stereo-radargrammetric processing to extract 3D elevation data representing the forest canopy. In the present study, we compared the accuracy of TDX InSAR and TSX stereo-radargrammetric derived 3D metrics in forest inventory attribute prediction. First, 3D data were extracted from TDX and TSX images. Then, 3D data were processed as elevations above the ground surface (forest canopy height values) using an accurate Digital Terrain Model (DTM) based on airborne laser scanning survey. Finally, 3D metrics were calculated from the canopy height values for each test plot and the 3D metrics were compared with the field reference data. The Random Forest method was used in the forest inventory attributes prediction. Based on the results InSAR showed slightly better performance in forest attribute (i.e. mean tree height, basal area, mean stem diameter, stem volume, and biomass) prediction than stereo-radargrammetry. The results were 20.1% and 28.6% in relative root mean square error (RMSE) for biomass prediction, for TDX and TSX respectively.
The woody biomass resource of Arkansas, 1988
James F. Rosson
1993-01-01
Data from the 1988 Arkansas forest survey were used to derive fresh and dry biomass estimates for all trees, on timberland, greater than 1.0 inch in diameter at breast height (d.b.h). There are 383.2 million fresh tons in softwood species and 939.7 million fresh tons in hardwood species. Most of this biomass is in the stem portion of the treesâ85 percent for softwoods...
Stem Cubic-Foot Volume Tables for Tree Species in the South
Alexander Clark; Ray A. Souter
1994-01-01
Stemwood cubic-foot volume tables were presented for 44 species and 10 species groups based on equations used to estimate timber sale volumes on national forests in the South. Tables are based on taper data for 13,469 trees sampled from Virginia to Texas. A series of tables are presented for each species based on diameter at breast height (d.b.h.) in combination with...
Peter L. Weaver
2001-01-01
A 50 % basal area reduction in Puerto Rico’s colorado forest had little immediate impact on diameter at breast height growth for most residual stems. A slight positive response was evident for several species after 5 to 30 yrs. Instead, thinning served as a major stimulus for a massive ingrowth of two common colorado forest tree species important to the...
Stump sprout growth and quality of several Appalachian hardwood species after clearcutting
G. W. Wendel
1975-01-01
Results of a 10-year study showed that stumps from 50- to 60-year-old red oak, black cherry, yellow-poplar, white oak, and chestnut oak trees sprouted vigorously. A high percentage of the dominant sprouts had good stem form, and many had excellent height and diameter growth. For all species, we found that the proportion of stumps sprouting, number of sprouts per stump...
The woody biomass resource of Alabama, 1990
James F. Rosson
1993-01-01
Data from the 1990 Alabama forest survey were used to derive fresh and dry biomass estimates for all trees, on timberland, greater than 1.0 inch in diameter at breast height (d.b.h.). there are 579.8 million fresh tons in softwood species and 998.5 million fresh tons in hardwood species. Most of this biomass is in the stem portion of the trees--93 percent for softwoods...
Zhang, Wujun; Wu, Longmei; Wu, Xiaoran; Ding, Yanfeng; Li, Ganghua; Li, Jingyong; Weng, Fei; Liu, Zhenghui; Tang, She; Ding, Chengqiang; Wang, Shaohua
2016-12-01
Lodging in rice production often limits grain yield and quality by breaking or bending stems. Excessive nitrogen (N) fertilizer rates are the cause of poor lodging resistance in rice, but little is known about the effect of top-dressing N application rates on the mechanical strength of japonica rice plants, especially how the anatomical structure in culms is affected by N. In this study, field experiments on two japonica rice varieties with three top-dressing N application rates, 0 kg N ha(-1) (LN), 135 kg N ha(-1) (MN), and 270 kg N ha(-1) (HN) as urea, were conducted. Wuyunjing23, a lodging-resistant japonica rice cultivar and W3668, a lodging-susceptible japonica rice cultivar were used. The lodging index, breaking strength, morphological and anatomical traits in culms were measured in this study. The visual lodging rate in japonica rice differed remarkably between genotypes and top-dressing N treatments. The higher lodging index of rice plants was primarily attributed to the weak breaking strength of the lower internodes. The longer elongated basal internodes were responsible for higher plant height and a higher lodging index. Correlation analysis showed that breaking strength was significantly and positively correlated with the thickness of the mechanical tissue but was significantly and negatively correlated with the inner diameter of the major axis (b2). With increasing top-dressing N rates, the sclerenchyma cells of the mechanical tissues and the vascular bundles of the Wuyunjing23 cultivar varied little. The plant height, inner diameter of the minor axis (a2) and b2 increased significantly, but the area of the large vascular bundle (ALVB) and the area of the small vascular bundle (ASVB) decreased significantly and resulted in lower stem strength and a higher lodging index under higher top-dressing N conditions. The culm diameter of the W3668 cultivar increased slightly with no significant difference, and the sclerenchyma cells in the mechanical tissues and vascular bundles showed deficient lignifications under high top-dressing N conditions. Moreover, the ALVB and the ASVB decreased significantly, while the area of air chambers (AAC) increased rapidly. An improvement in the lodging resistance of japonica rice plants could be achieved by reducing the length of the lower internodes, decreasing the inner culm diameter and developing a thicker mechanical tissue. Top-dressing N application increased the plant height and inner culm diameter and decreased the ALVB and the ASVB of the Wuyunjing23 cultivar and caused deficient lignified sclerenchyma cells, lowered the ALVB and the ASVB, and increased the AAC of the W3668 cultivar resulting in weaker stem strength and a higher lodging index.
Genetic evaluation of Jatropha curcas: an important oilseed for biodiesel production.
Freitas, R G; Missio, R F; Matos, F S; Resende, M D V; Dias, L A S
2011-01-01
Jatropha curcas, internationally and locally known, respectively, as physic nut and pinhão manso, is a highly promising species for biodiesel production in Brazil and other countries in the tropics. It is rustic, grows in warm regions and is easily cultivated. These characteristics and high-quality oil yields from the seeds have made this plant a priority for biodiesel programs in Brazil. Consequently, this species merits genetic investigations aimed at improving yields. Some studies have detected genetic variability in accessions in Africa and Asia. We have made the first genetic evaluation of J. curcas collected from Brazil. Our objective was to quantify genetic diversity and to estimate genetic parameters for growth and production traits and seed oil content. We evaluated 75 J. curcas progenies collected from Brazil and three from Cambodia. The mean oil content in the seeds was 31%, ranging from 16 to 45%. No genetic correlation between growth traits and seed oil content was found. However, high coefficients of genetic variation were found for plant height, number of branches, height of branches, and stem diameter. The highest individual narrow-sense heritabilities were found for leaf length (0.35) and width (0.34), stem diameter (0.24) and height of branches (0.21). We used a clustering algorithm to genetically identify the closest and most distant progenies, to assist in the development of new cultivars. Geographical diversity did not necessarily represent the genetic diversity among the accessions collected. These results are important for the continuity of breeding programs, aimed at obtaining cultivars with high grain yield and high oil content in seeds.
NASA Astrophysics Data System (ADS)
Colgan, M.; Asner, G. P.; Swemmer, A. M.
2011-12-01
The accurate estimation of carbon stored in a tree is essential to accounting for the carbon emissions due to deforestation and degradation. Airborne LiDAR (Light Detection and Ranging) has been successful in estimating aboveground carbon density (ACD) by correlating airborne metrics, such as canopy height, to field-estimated biomass. This latter step is reliant on field allometry which is applied to forest inventory quantities, such as stem diameter and height, to predict the biomass of a given tree stem. Constructing such allometry is expensive, time consuming, and requires destructive sampling. Consequently, the sample sizes used to construct such allometry are often small, and the largest tree sampled is often much smaller than the largest in the forest population. The uncertainty resulting from these sampling errors can lead to severe biases when the allometry is applied to stems larger than those harvested to construct the allometry, which is then subsequently propagated to airborne ACD estimates. The Kruger National Park (KNP) mission of maintaining biodiversity coincides with preserving ecosystem carbon stocks. However, one hurdle to accurately quantifying carbon density in savannas is that small stems are typically harvested to construct woody biomass allometry, yet they are not representative of Kruger's distribution of biomass. Consequently, these equations inadequately capture large tree variation in sapwood/hardwood composition, root/shoot/leaf allocation, branch fall, and stem rot. This study eliminates the "middleman" of field allometry by directly measuring, or harvesting, tree biomass within the extent of airborne LiDAR. This enables comparisons of field and airborne ACD estimates, and also enables creation of new airborne algorithms to estimate biomass at the scale of individual trees. A field campaign was conducted at Pompey Silica Mine 5km outside Kruger National Park, South Africa, in Mar-Aug 2010 to harvest and weigh tree mass. Since harvesting of trees is not possible within KNP, this was a unique opportunity to fell trees already scheduled to be cleared for mining operations. The area was first flown by the Carnegie Airborne Observatory in early May, prior to harvest, to enable correlation of LiDAR-measured tree height and crown diameter to harvested tree mass. Results include over 4,000 harvested stems and 13 species-specific biomass equations, including seven Kruger woody species previously without allometry. We found existing biomass stem allometry over-estimates ACD in the field, whereas airborne estimates based on harvest data avoid this bias while maintaining similar precision to field-based estimates. Lastly, a new airborne algorithm estimating biomass at the tree-level reduced error from tree canopies "leaning" into field plots but whose stems are outside plot boundaries. These advances pave the way to better understanding of savanna and forest carbon density at landscape and regional scales.
Brett R. Goforth; Robert C. Graham; Kenneth R. Hubbert; C. William Zanner; Richard A. Minnich
2005-01-01
After a century of fire suppression, dense forests in California have fueled high-severity fires. We surveyed mixed conifer forest with 995â1178 trees ha-1 (stems > 10 cm diameter at breast height), and nearby pineâoak woodland having 175â230 trees ha-1, 51 days after a severe burn, to contrast the spatial extent and...
Selective logging: does the imprint remain on tree structure and composition after 45 years?
Osazuwa-Peters, Oyomoare L; Chapman, Colin A; Zanne, Amy E
2015-01-01
Selective logging of tropical forests is increasing in extent and intensity. The duration over which impacts of selective logging persist, however, remains an unresolved question, particularly for African forests. Here, we investigate the extent to which a past selective logging event continues to leave its imprint on different components of an East African forest 45 years later. We inventoried 2358 stems ≥10 cm in diameter in 26 plots (200 m × 10 m) within a 5.2 ha area in Kibale National Park, Uganda, in logged and unlogged forest. In these surveys, we characterized the forest light environment, taxonomic composition, functional trait composition using three traits (wood density, maximum height and maximum diameter) and forest structure based on three measures (stem density, total basal area and total above-ground biomass). In comparison to unlogged forests, selectively logged forest plots in Kibale National Park on average had higher light levels, different structure characterized by lower stem density, lower total basal area and lower above-ground biomass, and a distinct taxonomic composition driven primarily by changes in the relative abundance of species. Conversely, selectively logged forest plots were like unlogged plots in functional composition, having similar community-weighted mean values for wood density, maximum height and maximum diameter. This similarity in functional composition irrespective of logging history may be due to functional recovery of logged forest or background changes in functional attributes of unlogged forest. Despite the passage of 45 years, the legacy of selective logging on the tree community in Kibale National Park is still evident, as indicated by distinct taxonomic and structural composition and reduced carbon storage in logged forest compared with unlogged forest. The effects of selective logging are exerted via influences on tree demography rather than functional trait composition.
Selective logging: does the imprint remain on tree structure and composition after 45 years?
Osazuwa-Peters, Oyomoare L.; Chapman, Colin A.; Zanne, Amy E.
2015-01-01
Selective logging of tropical forests is increasing in extent and intensity. The duration over which impacts of selective logging persist, however, remains an unresolved question, particularly for African forests. Here, we investigate the extent to which a past selective logging event continues to leave its imprint on different components of an East African forest 45 years later. We inventoried 2358 stems ≥10 cm in diameter in 26 plots (200 m × 10 m) within a 5.2 ha area in Kibale National Park, Uganda, in logged and unlogged forest. In these surveys, we characterized the forest light environment, taxonomic composition, functional trait composition using three traits (wood density, maximum height and maximum diameter) and forest structure based on three measures (stem density, total basal area and total above-ground biomass). In comparison to unlogged forests, selectively logged forest plots in Kibale National Park on average had higher light levels, different structure characterized by lower stem density, lower total basal area and lower above-ground biomass, and a distinct taxonomic composition driven primarily by changes in the relative abundance of species. Conversely, selectively logged forest plots were like unlogged plots in functional composition, having similar community-weighted mean values for wood density, maximum height and maximum diameter. This similarity in functional composition irrespective of logging history may be due to functional recovery of logged forest or background changes in functional attributes of unlogged forest. Despite the passage of 45 years, the legacy of selective logging on the tree community in Kibale National Park is still evident, as indicated by distinct taxonomic and structural composition and reduced carbon storage in logged forest compared with unlogged forest. The effects of selective logging are exerted via influences on tree demography rather than functional trait composition. PMID:27293697
Height-diameter equations for thirteen midwestern bottomland hardwood species
Kenneth C. Colbert; David R. Larsen; James R. Lootens
2002-01-01
Height-diameter equations are often used to predict the mean total tree height for trees when only diameter at breast height (dbh) is measured. Measuring dbh is much easier and is subject to less measurement error than total tree height. However, predicted heights only reflect the average height for trees of a particular diameter. In this study, we present a set of...
Xu, Liang; Yu, Fei-Hai; van Drunen, Elles; Schieving, Feike; Dong, Ming; Anten, Niels P R
2012-04-01
Grazing is a complex process involving the simultaneous occurrence of both trampling and defoliation. Clonal plants are a common feature of heavily grazed ecosystems where large herbivores inflict the simultaneous pressures of trampling and defoliation on the vegetation. We test the hypothesis that physiological integration (resource sharing between interconnected ramets) may help plants to deal with the interactive effects of trampling and defoliation. In a field study, small and large ramets of the root-suckering clonal tree Populus simonii were subjected to two levels of trampling and defoliation, while connected or disconnected to other ramets. Plant responses were quantified via survival, growth, morphological and stem mechanical traits. Disconnection and trampling increased mortality, especially in small ramets. Trampling increased stem length, basal diameter, fibrous root mass, stem stiffness and resistance to deflection in connected ramets, but decreased them in disconnected ones. Trampling decreased vertical height more in disconnected than in connected ramets, and reduced stem mass in disconnected ramets but not in connected ramets. Defoliation reduced basal diameter, leaf mass, stem mass and leaf area ratio, but did not interact with trampling or disconnection. Although clonal integration did not influence defoliation response, it did alleviate the effects of trampling. We suggest that by facilitating resource transport between ramets, clonal integration compensates for trampling-induced damage to fine roots.
Monleon, V.J.; Newton, M.; Hooper, C.; Tappeiner, J. C.
1999-01-01
The effect of different densities of varnishleaf ceanothus (Ceanothus velutinus var. laevigatus) and herbaceous vegetation control on stem diameter, height, and volume of plantation Douglas-fir (Pseudotsuga menziesii var. menziesii) seedlings was examined during the 10 yr following planting. Initial densities of ceanothus ranged between 0 and 15,000 seedlings/ha and were obtained by interplanting ceanothus germinants or chemical thinning after clearcutting and broadcast-burning. Herbaceous vegetation control was achieved by a single application of glyphosate following planting, with shrub seedlings covered. Ceanothus density in the range of 0 to 6,750 plants/ha did not have an effect on Douglas-fir diameter, height, or volume at age 10; however, Douglas-fir growth was significantly decreased when ceanothus densities reached 15,000 plants/ha. Ten years after planting, Douglas-fir volume in the treatments with 6,750 ceanothus/ha or less was 1.7 times greater than that in the 15,000 ceanothus/ha treatment. On the other hand, removal of herbaceous vegetation after planting significantly increased tree diameter, height, and volume, regardless of ceanothus density. Even 10 yr after the application of the treatment, trees without early herb competition grew faster and had mean dbh, height, and volume that were 1.02 cm, 0.55 m, and 12.98 dm3/tree greater respectively than those with herbs. Thus, a treatment at plantation establishment to control herbaceous vegetation and to reduce ceanothus density to less than 7,000 plants/ha will ensure an increase in growth and stocking for at least 10 yr.
Fast and Robust STEM Reconstruction in Complex Environments Using Terrestrial Laser Scanning
NASA Astrophysics Data System (ADS)
Wang, D.; Hollaus, M.; Puttonen, E.; Pfeifer, N.
2016-06-01
Terrestrial Laser Scanning (TLS) is an effective tool in forest research and management. However, accurate estimation of tree parameters still remains challenging in complex forests. In this paper, we present a novel algorithm for stem modeling in complex environments. This method does not require accurate delineation of stem points from the original point cloud. The stem reconstruction features a self-adaptive cylinder growing scheme. This algorithm is tested for a landslide region in the federal state of Vorarlberg, Austria. The algorithm results are compared with field reference data, which show that our algorithm is able to accurately retrieve the diameter at breast height (DBH) with a root mean square error (RMSE) of ~1.9 cm. This algorithm is further facilitated by applying an advanced sampling technique. Different sampling rates are applied and tested. It is found that a sampling rate of 7.5% is already able to retain the stem fitting quality and simultaneously reduce the computation time significantly by ~88%.
Park, J-H; Juzwik, J; Cavender-Bares, J
2013-06-01
Hundreds of cankers caused by Ceratocystis smalleyi are associated with hickory bark beetle-attacked bitternut hickory exhibiting rapid crown decline in the north-central and northeastern United States. Discolored sapwood colonized by the fungus commonly underlies the cankers. Field studies were conducted to test the hypothesis that C. smalleyi infections cause vascular system dysfunction in infected trees. Fifty C. smalleyi inoculations made at 1.8 to 3.8 m in height on stems of healthy bitternut hickory trees (13 to 28 cm in diameter at 1.4 m in height) resulted in extensive canker formation and sapwood discoloration 12 to 14 months after treatment compared with water-inoculated and noninoculated controls. Sap flow velocity (midday) was significantly lower in the infected trees compared with that in the controls. Sap flow velocity also was inversely correlated with the proportion of bark area with cankered tissues and with tylose abundance in the youngest two growth rings. Tylose formation in current-year vessels associated with C. smalleyi infections is likely responsible for much of the water transport disruption. It is hypothesized that multiple stem infections of C. smalleyi and the resulting xylem dysfunction contribute to crown wilt development in bitternut hickory exhibiting rapid crown decline.
Height prediction equations for even-aged upland oak stands
Donald E. Hilt; Martin E. Dale
1982-01-01
Forest growth models that use predicted tree diameters or diameter distributions require a reliable height-prediction model to obtain volume estimates because future height-diameter relationships will not necessarily be the same as the present height-diameter relationship. A total tree height prediction equation for even-aged upland oak stands is presented. Predicted...
Growth promotion in plants by rice necrosis mosaic virus.
Ghosh, S K
1982-08-01
Ludwigia perennis L. infected with rice necrosis mosaic virus (RNMV) showed an increase in both shoot growth and leaf size, along with characteristic chlorotic lesions on leaves. The promotion of growth over the controls extended over a considerable period of time (70 d). Inoculation with RNMV resulted in increased plant height, leaf size, stem diameter, and number and size of fiber bundles in Corchorus olitorius L., C. capsularis L., Hibiscus sabdariffa L. and H. cannabinus L.
Spatio-temporal evaluation of plant height in corn via unmanned aerial systems
NASA Astrophysics Data System (ADS)
Varela, Sebastian; Assefa, Yared; Vara Prasad, P. V.; Peralta, Nahuel R.; Griffin, Terry W.; Sharda, Ajay; Ferguson, Allison; Ciampitti, Ignacio A.
2017-07-01
Detailed spatial and temporal data on plant growth are critical to guide crop management. Conventional methods to determine field plant traits are intensive, time-consuming, expensive, and limited to small areas. The objective of this study was to examine the integration of data collected via unmanned aerial systems (UAS) at critical corn (Zea mays L.) developmental stages for plant height and its relation to plant biomass. The main steps followed in this research were (1) workflow development for an ultrahigh resolution crop surface model (CSM) with the goal of determining plant height (CSM-estimated plant height) using data gathered from the UAS missions; (2) validation of CSM-estimated plant height with ground-truthing plant height (measured plant height); and (3) final estimation of plant biomass via integration of CSM-estimated plant height with ground-truthing stem diameter data. Results indicated a correlation between CSM-estimated plant height and ground-truthing plant height data at two weeks prior to flowering and at flowering stage, but high predictability at the later growth stage. Log-log analysis on the temporal data confirmed that these relationships are stable, presenting equal slopes for both crop stages evaluated. Concluding, data collected from low-altitude and with a low-cost sensor could be useful in estimating plant height.
Nizami, Syed Moazzam; Yiping, Zhang; Zheng, Zheng; Zhiyun, Lu; Guoping, Yang; Liqing, Sha
2017-03-01
Very old natural forests comprising the species of Fagaceae (Lithocarpus xylocarpus, Castanopsis wattii, Lithocarpus hancei) have been prevailing since years in the Ailaoshan Mountain Nature Reserve (AMNR) SW China. Within these forest trees, density is quite variable. We studied the forest structure, stand dynamics and carbon density at two different sites to know the main factors which drives carbon sequestration process in old forests by considering the following questions: How much is the carbon density in these forest trees of different DBH (diameter at breast height)? How much carbon potential possessed by dominant species of these forests? How vegetation carbon is distributed in these forests? Which species shows high carbon sequestration? What are the physiochemical properties of soil in these forests? Five-year (2005-2010) tree growth data from permanently established plots in the AMNR was analysed for species composition, density, stem diameter (DBH), height and carbon (C) density both in aboveground and belowground vegetation biomass. Our study indicated that among two comparative sites, overall 54 species of 16 different families were present. The stem density, height, C density and soil properties varied significantly with time among the sites showing uneven distribution across the forests. Among the dominant species, L. xylocarpus represents 30% of the total carbon on site 1 while C. wattii represents 50% of the total carbon on site 2. The average C density ranged from 176.35 to 243.97 t C ha -1 . The study emphasized that there is generous degree to expand the carbon stocking in this AMNR through scientific management gearing towards conservation of old trees and planting of potentially high carbon sequestering species on good site quality areas.
NASA Astrophysics Data System (ADS)
Yamauchi, Toyohiko; Fukami, Tadashi; Iwai, Hidenao; Yamashita, Yutaka
2012-03-01
Embryonal carcinoma (EC) cells, which are cell lines derived from teratocarcinomas, have characteristics in common with stem cells and differentiate into many kinds of functional cells. Similar to embryonic stem (ES) cells, undifferentiated EC cells form multi-layered spheroids. In order to visualize the three-dimensional structure of multilayered EC cells without labeling, we employed full-field interference microscopy with the aid of a low-coherence quantitative phase microscope, which is a reflection-type interference microscope employing the digital holographic technique with a low-coherent light source. Owing to the low-coherency of the light-source (halogen lamp), only the light reflected from reflective surface at a specific sectioning height generates an interference image on the CCD camera. P19CL6 EC cells, derived from mouse teratocarcinomas, formed spheroids that are about 50 to 200 micrometers in diameter. Since the height of each cell is around 10 micrometers, it is assumed that each spheroid has 5 to 20 cell layers. The P19CL6 spheroids were imaged in an upright configuration and the horizontally sectioned reflection images of the sample were obtained by sequentially and vertically scanning the zero-path-length height. Our results show the threedimensional structure of the spheroids, in which plasma and nuclear membranes were distinguishably imaged. The results imply that our technique is further capable of imaging induced pluripotent stem (iPS) cells for the assessment of cell properties including their pluripotency.
Remarks on Height-Diameter Modeling
Lei Yuancai; Bernard R. Parresol
2001-01-01
Height-diameter model forms in earlier published papers are examined. The selection criteria used in height-diameter model forms are not reasonable when considering tree biological growth pattern. During model selection, forms for height-diameter relationships should include consideration of both data-related and reasonable biological criteria, not just data-related...
NASA Astrophysics Data System (ADS)
Liu, Jingbin; Liang, Xinlian; Hyyppä, Juha; Yu, Xiaowei; Lehtomäki, Matti; Pyörälä, Jiri; Zhu, Lingli; Wang, Yunsheng; Chen, Ruizhi
2017-04-01
Terrestrial laser scanning has been widely used to analyze the 3D structure of a forest in detail and to generate data at the level of a reference plot for forest inventories without destructive measurements. Multi-scan terrestrial laser scanning is more commonly applied to collect plot-level data so that all of the stems can be detected and analyzed. However, it is necessary to match the point clouds of multiple scans to yield a point cloud with automated processing. Mismatches between datasets will lead to errors during the processing of multi-scan data. Classic registration methods based on flat surfaces cannot be directly applied in forest environments; therefore, artificial reference objects have conventionally been used to assist with scan matching. The use of artificial references requires additional labor and expertise, as well as greatly increasing the cost. In this study, we present an automated processing method for plot-level stem mapping that matches multiple scans without artificial references. In contrast to previous studies, the registration method developed in this study exploits the natural geometric characteristics among a set of tree stems in a plot and combines the point clouds of multiple scans into a unified coordinate system. Integrating multiple scans improves the overall performance of stem mapping in terms of the correctness of tree detection, as well as the bias and the root-mean-square errors of forest attributes such as diameter at breast height and tree height. In addition, the automated processing method makes stem mapping more reliable and consistent among plots, reduces the costs associated with plot-based stem mapping, and enhances the efficiency.
Xu, Liang; Freitas, Sofia M A; Yu, Fei-Hai; Dong, Ming; Anten, Niels P R; Werger, Marinus J A
2013-01-01
In semiarid drylands water shortage and trampling by large herbivores are two factors limiting plant growth and distribution. Trampling can strongly affect plant performance, but little is known about responses of morphological and mechanical traits of woody plants to trampling and their possible interaction with water availability. Seedlings of four shrubs (Caragana intermedia, Cynanchum komarovi, Hedysarum laeve and Hippophae rhamnoides) common in the semiarid Mu Us Sandland were grown at 4% and 10% soil water content and exposed to either simulated trampling or not. Growth, morphological and mechanical traits were measured. Trampling decreased vertical height and increased basal diameter and stem resistance to bending and rupture (as indicated by the increased minimum bend and break force) in all species. Increasing water availability increased biomass, stem length, basal diameter, leaf thickness and rigidity of stems in all species except C. komarovii. However, there were no interactive effects of trampling and water content on any of these traits among species except for minimum bend force and the ratio between stem resistance to rupture and bending. Overall shrub species have a high degree of trampling resistance by morphological and mechanical modifications, and the effects of trampling do not depend on water availability. However, the increasing water availability can also affect trade-off between stem strength and flexibility caused by trampling, which differs among species. Water plays an important role not only in growth but also in trampling adaptation in drylands.
Assessing the Potential of Low-Cost 3D Cameras for the Rapid Measurement of Plant Woody Structure
Nock, Charles A; Taugourdeau, Olivier; Delagrange, Sylvain; Messier, Christian
2013-01-01
Detailed 3D plant architectural data have numerous applications in plant science, but many existing approaches for 3D data collection are time-consuming and/or require costly equipment. Recently, there has been rapid growth in the availability of low-cost, 3D cameras and related open source software applications. 3D cameras may provide measurements of key components of plant architecture such as stem diameters and lengths, however, few tests of 3D cameras for the measurement of plant architecture have been conducted. Here, we measured Salix branch segments ranging from 2–13 mm in diameter with an Asus Xtion camera to quantify the limits and accuracy of branch diameter measurement with a 3D camera. By scanning at a variety of distances we also quantified the effect of scanning distance. In addition, we also test the sensitivity of the program KinFu for continuous 3D object scanning and modeling as well as other similar software to accurately record stem diameters and capture plant form (<3 m in height). Given its ability to accurately capture the diameter of branches >6 mm, Asus Xtion may provide a novel method for the collection of 3D data on the branching architecture of woody plants. Improvements in camera measurement accuracy and available software are likely to further improve the utility of 3D cameras for plant sciences in the future. PMID:24287538
Mokany, Karel; McMurtrie, Ross E; Atwell, Brian J; Keith, Heather
2003-10-01
In native stands of Eucalyptus delegatensis R. T. Baker, sapwood area (As) to foliage area (Af) ratios (As:Af) decreased as tree height increased, contradicting the common interpretation of the Pipe Model Theory as well as the generally observed trend of increasing As:Af ratios with tree height. To clarify this relationship, we estimated sapwood hydraulic conductivity theoretically based on measurements of sapwood vessel diameters and Poiseuille's law for fluid flow through pipes. Despite the observed decrease in As:Af ratios with tree height, leaf specific conductivity increased with total tree height, largely as a result of an increase in the specific conductivity of sapwood. This observation supports the proposition that the stem's ability to supply foliage with water must increase as trees grow taller, to compensate for the increased hydraulic path length. The results presented here highlight the importance of measuring sapwood hydraulic conductivity in analyses of sapwood-foliage interactions, and suggest that measurements of sapwood hydraulic conductivity may help to resolve conflicting observations of how As:Af ratios change as trees grow taller.
Petit, Giai; Pfautsch, Sebastian; Anfodillo, Tommaso; Adams, Mark A
2010-09-01
*Recent research suggests that increasing conduit tapering progressively reduces hydraulic constraints caused by tree height. Here, we tested this hypothesis using the tallest hardwood species, Eucalyptus regnans. *Vertical profiles of conduit dimensions and vessel density were measured for three mature trees of height 47, 51 and 63 m. *Mean hydraulic diameter (Dh) increased rapidly from the tree apex to the point of crown insertion, with the greatest degree of tapering yet reported (b > 0.33). Conduit tapering was such that most of the total resistance was found close to the apex (82-93% within the first 1 m of stem) and the path length effect was reduced by a factor of 2000. Vessel density (VD) declined from the apex to the base of each tree, with scaling parameters being similar for all trees (a = 4.6; b = -0.5). *Eucalyptus regnans has evolved a novel xylem design that ensures a high hydraulic efficiency. This feature enables the species to grow quickly to heights of 50-60 m, beyond the maximum height of most other hardwood trees.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zellmer, S.D.; Rastorfer, J.R.; Van Dyke, G.D.
Implementation of recent federal and state regulations promulgated to protect wetlands makes information on effects of gas pipeline rights-of-way (ROWs) in wetlands essential to the gas pipeline industry. This study is designed to record vegetational changes induced by the construction of a large-diameter gas pipeline through deciduous forested wetlands. Two second-growth forested wetland sites mapped as Lenawee soils, one mature and one subjected to recent selective logging, were selected in Midland County, Michigan. Changes in the adjacent forest and successional development on the ROW are being documented. Cover-class estimates are being made for understory and ROW plant species using 1more » {times}1-m quadrats. Counts are also being made for all woody species with stems < 2 cm in diameter at breast height (dbh) in the same plots used for cover-class estimates. Individual stem diameters and species counts are being recorded for all woody understory and overstory plants with stems {ge}2 cm dbh in 10 {times} 10-m plots. Although analyses of the data have not been completed, preliminary analyses indicate that some destruction of vegetation at the ROW forest edge may have been avoidable during pipeline construction. Rapid regrowth of many native wetland plant species on the ROW occurred because remnants of native vegetation and soil-bearing propagules of existing species survived on the ROW after pipeline construction and seeding operations. 91 refs., 11 figs., 3 tabs.« less
Sugar maple height-diameter and age-diameter relationships in an uneven-aged northern hardwood stand
Laura S. Kenefic; R.D. Nyland
1999-01-01
Sugar maple (Acer saccharum Marsh.) height-diameter and age-diameter relationships are explored in a balanced uneven-aged northern hardwood stand in central New York. Results show that although both height and age vary considerably with diameter, these relationships can be described by statistically valid equations. The age-diameter relationship...
Krůček, Martin; Vrška, Tomáš; Král, Kamil
2017-01-01
Terrestrial laser scanning is a powerful technology for capturing the three-dimensional structure of forests with a high level of detail and accuracy. Over the last decade, many algorithms have been developed to extract various tree parameters from terrestrial laser scanning data. Here we present 3D Forest, an open-source non-platform-specific software application with an easy-to-use graphical user interface with the compilation of algorithms focused on the forest environment and extraction of tree parameters. The current version (0.42) extracts important parameters of forest structure from the terrestrial laser scanning data, such as stem positions (X, Y, Z), tree heights, diameters at breast height (DBH), as well as more advanced parameters such as tree planar projections, stem profiles or detailed crown parameters including convex and concave crown surface and volume. Moreover, 3D Forest provides quantitative measures of between-crown interactions and their real arrangement in 3D space. 3D Forest also includes an original algorithm of automatic tree segmentation and crown segmentation. Comparison with field data measurements showed no significant difference in measuring DBH or tree height using 3D Forest, although for DBH only the Randomized Hough Transform algorithm proved to be sufficiently resistant to noise and provided results comparable to traditional field measurements. PMID:28472167
Chen, Z; Kolb, T E; Clancy, K M
2001-10-01
We compared growth rates among mature interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) trees showing resistance or susceptibility to defoliation caused by western spruce budworm (Choristoneura occidentalis Freeman), and among clones and half-sib seedling progeny of these trees in a greenhouse. We also investigated bud burst phenology and photosynthetic responses of clones to budworm defoliation in greenhouse experiments. Resistant mature trees had a higher radial growth rate than susceptible trees, especially during periods of budworm defoliation. Clones from resistant trees grew larger crowns than clones from susceptible trees, whereas stem base diameter at the ground line and height did not differ. Half-sib seedling progeny from resistant trees had larger stem diameter, height, and total biomass than progeny from susceptible trees. Mean 5-year radial growth increment of mature trees was more strongly correlated with growth of seedlings than with growth of clones. Clones from resistant trees had later bud burst than clones from susceptible trees, and budworm defoliation of clones depended on the degree of synchrony between bud burst phenology and budworm larval feeding. Clones of resistant and susceptible mature trees showed similar responses of net photosynthetic rate to 2 years of budworm defoliation. We conclude that phenotypic differences in crown condition of Douglas-fir trees following western spruce budworm defoliation are influenced by tree genotype and that high growth rate and late bud burst phenology promote tree resistance to budworm defoliation.
Bhattarai, Surya P; Midmore, David J
2009-07-01
Impacts of salinity become severe when the soil is deficient in oxygen. Oxygation (using aerated water for subsurface drip irrigation of crop) could minimize the impact of salinity on plants under oxygen-limiting soil environments. Pot experiments were conducted to evaluate the effects of oxygation (12% air volume/volume of water) on vegetable soybean (moderately salt tolerant) and cotton (salt tolerant) in a salinized vertisol at 2, 8, 14, 20 dS/m EC(e). In vegetable soybean, oxygation increased above ground biomass yield and water use efficiency (WUE) by 13% and 22%, respectively, compared with the control. Higher yield with oxygation was accompanied by greater plant height and stem diameter and reduced specific leaf area and leaf Na+ and Cl- concentrations. In cotton, oxygation increased lint yield and WUE by 18% and 16%, respectively, compared with the control, and was accompanied by greater canopy light interception, plant height and stem diameter. Oxygation also led to a greater rate of photosynthesis, higher relative water content in the leaf, reduced crop water stress index and lower leaf water potential. It did not, however, affect leaf Na+ or Cl- concentration. Oxygation invariably increased, whereas salinity reduced the K+ : Na+ ratio in the leaves of both species. Oxygation improved yield and WUE performance of salt tolerant and moderately tolerant crops under saline soil environments, and this may have a significant impact for irrigated agriculture where saline soils pose constraints to crop production.
Height diameter relations of maple street trees
David J. Nowak
1990-01-01
Height and diameter measurements were taken for silver, sugar and Norway maple street trees in Rochester and Syracuse, New York. Mature silver maples proved to be the tallest of the three species. Average sugar maple height was consistently taller than Norway maple height until diameters reached 28 inches. Average mature tree height for all three species level off in...
NASA Astrophysics Data System (ADS)
Mora, R.; Barahona, A.; Aguilar, H.
2015-04-01
This paper presents a method for using high detail volumetric information, captured with a land based photogrammetric survey, to obtain information from individual trees. Applying LIDAR analysis techniques it is possible to measure diameter at breast height, height at first branch (commercial height), basal area and volume of an individual tree. Given this information it is possible to calculate how much of that tree can be exploited as wood. The main objective is to develop a methodology for successfully surveying one individual tree, capturing every side of the stem a using high resolution digital camera and reference marks with GPS coordinates. The process is executed for several individuals of two species present in the metropolitan area in San Jose, Costa Rica, Delonix regia (Bojer) Raf. and Tabebuia rosea (Bertol.) DC., each one with different height, stem shape and crown area. Using a photogrammetry suite all the pictures are aligned, geo-referenced and a dense point cloud is generated with enough detail to perform the required measurements, as well as a solid tridimensional model for volume measurement. This research will open the way to develop a capture methodology with an airborne camera using close range UAVs. An airborne platform will make possible to capture every individual in a forest plantation, furthermore if the analysis techniques applied in this research are automated it will be possible to calculate with high precision the exploit potential of a forest plantation and improve its management.
[Aboveground architecture and biomass distribution of Quercus variabilis].
Yu, Bi-yun; Zhang, Wen-hui; Hu, Xiao-jing; Shen, Jia-peng; Zhen, Xue-yuan; Yang, Xiao-zhou
2015-08-01
The aboveground architecture, biomass and its allocation, and the relationship between architecture and biomass of Quercus variabilis of different diameter classes in Shangluo, south slope of Qinling Mountains were researched. The results showed that differences existed in the aboveground architecture and biomass allocation of Q. variabilis of different diameter classes. With the increase of diameter class, tree height, DBH, and crown width increased gradually. The average decline rate of each diameter class increased firstly then decreased. Q. variabilis overall bifurcation ratio and stepwise bifurcation ratio increased then declined. The specific leaf areas of Q. variabilis of all different diameter classes at vertical direction were 0.02-0.03, and the larger values of leaf mass ratio, LAI and leaf area ratio at vertical direction in diameter level I , II, III appeared in the middle and upper trunk, while in diameter level IV, V, VI, they appeared in the central trunk, with the increase of diameter class, there appeared two peaks in vertical direction, which located in the lower and upper trunk. The trunk biomass accounted for 71.8%-88.4% of Q. variabilis aboveground biomass, while the branch biomass accounted for 5.8%-19.6%, and the leaf biomass accounted for 4.2%-8.6%. With the increase of diameter class, stem biomass proportion of Q. variabilis decreased firstly then increased, while the branch and leaf biomass proportion showed a trend that increased at first then decreased, and then increased again. The aboveground biomass of Q. variabilis was significantly positively correlated to tree height, DBH, crown width and stepwise bifurcation ratio (R2:1), and positively related to the overall bifurcation ratio and stepwise bifurcation ratio (R3:2), but there was no significant correlation. Trunk biomass and total biomass aboveground were negatively related to the trunk decline rate, while branch biomass and leaf biomass were positively related to trunk decline rate, but their correlations were all not significant.
Becoming less tolerant with age: sugar maple, shade, and ontogeny.
Sendall, Kerrie M; Lusk, Christopher H; Reich, Peter B
2015-12-01
Although shade tolerance is often assumed to be a fixed trait, recent work suggests ontogenetic changes in the light requirements of tree species. We determined the influence of gas exchange, biomass distribution, and self-shading on ontogenetic variation in the instantaneous aboveground carbon balance of Acer saccharum. We quantified the aboveground biomass distributions of 18 juveniles varying in height and growing in low light in a temperate forest understory in Minnesota, USA. Gas exchange rates of leaf and stem tissues were measured, and the crown architecture of each individual was quantified. The YPLANT program was used to estimate the self-shaded fraction of each crown and to model net leaf-level carbon gain. Leaf respiration and photosynthesis per gram of leaf tissue increased with plant size. In contrast, stem respiration rates per gram of stem tissue declined, reflecting a shift in the distribution of stem diameter sizes from smaller (with higher respiration) to larger diameter classes. However, these trends were outweighed by ontogenetic increases in self-shading (which reduces the net photosynthesis realized) and stem mass fraction (which increases the proportion of purely respiratory tissue) in terms of influence on net carbon exchange. As a result, net carbon gain per gram of aboveground plant tissue declined with increasing plant size, and the instantaneous aboveground light compensation point increased. When estimates of root respiration were included to model whole-plant carbon gain and light compensation points, relationships with plant size were even more pronounced. Our findings show how an interplay of gas exchange, self-shading, and biomass distribution shapes ontogenetic changes in shade tolerance.
Takagi, Mutsumi; Kitabayashi, Takayuki; Ito, Syunsuke; Fujiwara, Masashi; Tokuda, Akio
2007-01-01
Noninvasive measurement of 3-D morphology of adhered animal cells employing a phase-shifting laser microscope (PLM) is investigated, in which the phase shift for each pixel in the view field caused by cell height and the difference in refractive indices between the cells and the medium is determined. By employing saline with different refractive indices instead of a culture medium, the refractive index of the cells, which is necessary for the determination of cell height, is determined under PLM. The observed height of Chinese hamster ovary (CHO) cells cultivated under higher osmolarity is lower than that of the cells cultivated under physiological osmolarity, which is in agreement with previous data observed under an atomic force microscope (AFM). Maximum heights of human bone marrow mesenchymal stem cells and human umbilical cord vein endothelial cells measured under PLM and AFM agree well with each other. The maximum height of nonadherent spherical CHO cells observed under PLM is comparable to the cell diameter measured under a phase contrast inverted microscope. Laser irradiation, which is necessary for the observation under PLM, did not affect 3-D cell morphology. In conclusion, 3-D morphology of adhered animal cells can be noninvasively measured under PLM.
P.J. Peper; E.G. McPherson; S.M. Mori
2001-01-01
Although the modeling of energy-use reduction, air pollution uptake, rainfall interception, and microclimate modification associated with urban trees depends on data relating diameter at breast height (dbh) , crown height, crown diameter, and leaf area to tree age or dbh, scant information is available for common municipal tree species . I n this study , tree height ,...
Urretavizcaya, María F; Gonda, Héctor E; Defossé, Guillermo E
2017-03-01
Cordilleran cypress (Austrocedrus chilensis [D.Don] Pic. Serm. et Bizarri) forests occupy 140,000 ha along a sharp environmental gradient of central Andean-Patagonia in Argentina. Every summer, about 3200 ha of these forests are affected by wildfires, taking thereafter long time to recover. To accelerate forest recovery, we determined in xeric and mesic cypress stands burned 5 and 2 year before whether survival and growth of two planted cypress seedling stocktypes are affected by plant cover and contrasting precipitation conditions. Two experiments were conducted on each site, involving 100 replicates of two seedling stocktypes, having each significantly different morphological attributes. The experiments comprised a dry and humid growing season on each site. Both stocktypes performed similarly within stands, but differently between stands. In the xeric stand, plant cover had neutral effects on seedling survival, favored seedling height growth in the dry season, and was negative on collar diameter and stem growth. In the mesic site, high plant cover favored survival and height growth, but was inconsequential for collar diameter and stem growth. In this short-term post-fire period, and independent of precipitation received during both seasons (dry or humid), plant cover appears as playing a facilitative role, having neutral or even positive effects on survival and growth of planted seedlings. During the early post-fire successional stages, and besides seedling stocktype, there was a synergistic balance between light and soil moisture that seems to benefit planted seedling performance in burned cypress forests, and especially in mesic sites.
NASA Astrophysics Data System (ADS)
Urretavizcaya, María F.; Gonda, Héctor E.; Defossé, Guillermo E.
2017-03-01
Cordilleran cypress ( Austrocedrus chilensis [D.Don] Pic. Serm. et Bizarri) forests occupy 140,000 ha along a sharp environmental gradient of central Andean-Patagonia in Argentina. Every summer, about 3200 ha of these forests are affected by wildfires, taking thereafter long time to recover. To accelerate forest recovery, we determined in xeric and mesic cypress stands burned 5 and 2 year before whether survival and growth of two planted cypress seedling stocktypes are affected by plant cover and contrasting precipitation conditions. Two experiments were conducted on each site, involving 100 replicates of two seedling stocktypes, having each significantly different morphological attributes. The experiments comprised a dry and humid growing season on each site. Both stocktypes performed similarly within stands, but differently between stands. In the xeric stand, plant cover had neutral effects on seedling survival, favored seedling height growth in the dry season, and was negative on collar diameter and stem growth. In the mesic site, high plant cover favored survival and height growth, but was inconsequential for collar diameter and stem growth. In this short-term post-fire period, and independent of precipitation received during both seasons (dry or humid), plant cover appears as playing a facilitative role, having neutral or even positive effects on survival and growth of planted seedlings. During the early post-fire successional stages, and besides seedling stocktype, there was a synergistic balance between light and soil moisture that seems to benefit planted seedling performance in burned cypress forests, and especially in mesic sites.
Calvo-Alvarado, J C; McDowell, N G; Waring, R H
2008-11-01
We developed allometric equations to predict whole-tree leaf area (A(l)), leaf biomass (M(l)) and leaf area to sapwood area ratio (A(l):A(s)) in five rain forest tree species of Costa Rica: Pentaclethra macroloba (Willd.) Kuntze (Fabaceae/Mim), Carapa guianensis Aubl. (Meliaceae), Vochysia ferru-gi-nea Mart. (Vochysiaceae), Virola koshnii Warb. (Myristicaceae) and Tetragastris panamensis (Engl.) Kuntze (Burseraceae). By destructive analyses (n = 11-14 trees per species), we observed strong nonlinear allometric relationships (r(2) > or = 0.9) for predicting A(l) or M(l) from stem diameters or A(s) measured at breast height. Linear relationships were less accurate. In general, A(l):A(s) at breast height increased linearly with tree height except for Penta-clethra, which showed a negative trend. All species, however, showed increased total A(l) with height. The observation that four of the five species increased in A(l):A(s) with height is consistent with hypotheses about trade--offs between morphological and anatomical adaptations that favor efficient water flow through variation in the amount of leaf area supported by sapwood and those imposed by the need to respond quickly to light gaps in the canopy.
Crown-Diameter Prediction Models for 87 Species of Stand-Grown Trees in the Eastern United States
William A. Bechtold
2003-01-01
The mean crown diameters of stand-grown trees were modeled as a function of stem diameter, live-crown ratio, stand basal area, latitude, longitude, elevation, and Hopkins bioclimatic index for 87 tree species in the eastern United States. Stem diameter was statistically significant in all models, and a quadratic term for stem diameter was required for some species....
A comparison of pine height models for the Crossett Experimental Forest
D. Bragg
2008-01-01
Many models to predict tree height from diameter have been developed, but not all are equally useful. This study compared a set of height diameter models for loblolly (Pinus taeda) and shortleaf (Pinus echinata) pines from Ashley County, Arkansas. Almost 560 trees ranging in diameter at breast height (DBH) from 0.3 cm (both species) to 91.9 cm (for shortleaf) or 108.2...
NASA Astrophysics Data System (ADS)
I.; | J., Möller; | T., Mantilla-Contreras; | A., Spencer; Hayes
2011-05-01
This paper investigates the hydro-morphological controls on incident wind-generated waves at, and the transformation of such waves within, two Phragmites australis reed beds in the southern Baltic Sea. Meteorological conditions in combination with geomorphological controls result, over short (<2 km) distances, in significant differences in water level and wave climate to which fringing reed beds are exposed. Significant wave height attenuation reached a maximum of 2.6% m -1 and 11.8% m -1 at the transition from open water into the reed vegetation at the sheltered and exposed sites respectively. Wave attenuation through the emergent reed vegetation was significantly lower in greater water depths, suggesting (1) a reduced influence of bed friction by small shoots/roots and/or (2) drag reduction due to flexing of plants when the wave motion is impacting stems at a greater height above the bed. For a given water depth, wave dissipation increased with increasing incident wave height, however, suggesting that, despite their ability to flex, reed stems may be rigid enough to cause increased drag under greater wave forcing. The higher frequency part of the wave spectrum (>0.5 Hz) was preferentially reduced at the reed margin, confirming the theoretical wave frequency dependence of bottom friction. The possibility of physiological adaptation (differences in reed stem diameter) to water depth and wave exposure differences is discussed. The results have implications for the possible impact of environmental changes, both acute (e.g. storm surges) or chronic (e.g. sea level rise) in character, and for the appropriate management of reed bed sites and delivery of ecological goods and services.
Effects of pruning height on the diameter growth of yellow birch
Dale S. Solomon; Barton M. Blum
1977-01-01
The diameter growth rate of pruned trees increased the second year after pruning, whereas the diameter growth of unpruned trees was not as fast during the second year. Diameter growth rate was positively correlated with the height to which all branches were pruned. After the pruning shock of the first year, trees pruned to 50 percent of their height showed the greatest...
Oberhuber, Walter; Hammerle, Albin; Kofler, Werner
2015-01-01
We evaluated the size effect on stem water status and growth in Norway spruce (Picea abies (L.) Karst.) occurring at the edge of its natural range in a dry inner Alpine environment (750 m asl, Tyrol, Austria). Intra-annual dynamics of stem water deficit (ΔW), maximum daily shrinkage (MDS), and radial growth (RG) were compared among saplings (stem diameter/height: 2.2 cm/93 cm; n = 7) and mature adult trees (25 cm/12.7 m; n = 6) during 2014. ΔW, MDS, and RG were extracted from stem diameter variations, which were continuously recorded by automatic dendrometers and the influence of environmental drivers was evaluated by applying moving correlation analysis (MCA). Additionally, we used Morlet wavelet analysis to assess the differences in cyclic radial stem variations between saplings and mature trees. Results indicate that saplings and mature trees were experiencing water limitation throughout the growing season. However, saplings exhibited a more strained stem water status and higher sensitivity to environmental conditions than mature trees. Hence, the significantly lower radial increments in saplings (0.16 ± 0.03 mm) compared to mature trees (0.54 ± 0.14 mm) is related to more constrained water status in the former, affecting the rate and duration of RG. The wavelet analysis consistently revealed more distinct diurnal stem variations in saplings compared to mature trees. Intra-annual RG was most closely related to climate variables that influence transpiration, i.e., vapor pressure deficit, relative air humidity, and air temperature. MCA, however, showed pronounced instability of climate–growth relationships, which masked missing temporal or significant correlations when the entire study period (April–October) was considered. We conclude that an increase in evaporative demand will impair regeneration and long-term stability of drought-prone inner Alpine Norway spruce forests. PMID:26442019
Predicting Diameter at Breast Height from Stump Diameters for Northeastern Tree Species
Eric H. Wharton; Eric H. Wharton
1984-01-01
Presents equations to predict diameter at breast height from stump diameter measurements for 17 northeastern tree species. Simple linear regression was used to develop the equations. Application of the equations is discussed.
Growth of ponderosa pine seedlings as affected by air pollution
NASA Astrophysics Data System (ADS)
Momen, B.; Anderson, P. D.; Houpis, J. L. J.; Helms, J. A.
The effect of air pollution on seedling survival and competitive ability is important to natural and artificial regeneration of forest trees. Although biochemical and physiological processes are sensitive indicators of pollution stress, the cumulative effects of air pollutants on seedling vigor and competitive ability may be assessed directly from whole-plant growth characteristics such as diameter, height, and photosynthetic area. A few studies that have examined intraspecific variation in seedling response to air pollution indicate that genotypic differences are important in assessing potential effects of air pollution on forest regeneration. Here, we studied the effects of acid rain (no-rain, pH 5.1 rain, pH 3.0 rain) and ozone (filtered, ambient, twice-ambient) in the field on height, diameter, volume, the height:diameter ratio, maximum needle length, and time to reach maximum needle length in seedlings of three families of ponderosa pine ( Pinus ponderosa Dougl. ex Laws). Seedling diameter, height, volume, and height:diameter ratio related significantly to their pre-treatment values. Twice-ambient ozone decreased seedling diameter compared with ozone-filtered air. A significant family-by-ozone interaction was detected for seedling height, as the height of only one of the three families was decreased by twice-ambient ozone compared with the ambient level. Seedling diameter was larger and the height:diameter ratio was smaller under pH 3.0 rain compared to either the no-rain or the pH 5.1-rain treatment. This suggests greater seedling vigor, perhaps due to a foliar fertilization effect of the pH 3.0 rain.
A mixed-effects height-diameter model for cottonwood in the Mississippi Delta
Curtis L. VanderSchaaf; H. Christoph Stuhlinger
2012-01-01
Eastern cottonwood (Populus deltoides Bartr. ex Marsh.) has been artificially regenerated throughout the Mississippi Delta region because of its fast growth and is being considered for biofuel production.This paper presents a mixed-effects height-diameter model for cottonwood in the Mississippi Delta region. After obtaining height-diameter...
NASA Astrophysics Data System (ADS)
Casas Planes, Á.; Garcia, M.; Siegel, R.; Koltunov, A.; Ramirez, C.; Ustin, S.
2015-12-01
Occupancy and habitat suitability models for snag-dependent wildlife species are commonly defined as a function of snag basal area. Although critical for predicting or assessing habitat suitability, spatially distributed estimates of snag basal area are not generally available across landscapes at spatial scales relevant for conservation planning. This study evaluates the use of airborne laser scanning (ALS) to 1) identify individual conifer snags and map their basal area across a recently burned forest, and 2) map habitat suitability for a wildlife species known to be dependent on snag basal area, specifically the black-backed woodpecker (Picoides arcticus). This study focuses on the Rim Fire, a megafire that took place in 2013 in the Sierra Nevada Mountains of California, creating large patches of medium- and high-severity burned forest. We use forest inventory plots, single-tree ALS-derived metrics and Gaussian processes classification and regression to identify conifer snags and estimate their stem diameter and basal area. Then, we use the results to map habitat suitability for the black-backed woodpecker using thresholds for conifer basal area from a previously published habitat suitability model. Local maxima detection and watershed segmentation algorithms resulted in 75% detection of trees with stem diameter larger than 30 cm. Snags are identified with an overall accuracy of 91.8 % and conifer snags are identified with an overall accuracy of 84.8 %. Finally, Gaussian process regression reliably estimated stem diameter (R2 = 0.8) using height and crown area. This work provides a fast and efficient methodology to characterize the extent of a burned forest at the tree level and a critical tool for early wildlife assessment in post-fire forest management and biodiversity conservation.
Ibanez, Thomas; Blanchard, E; Hequet, V; Keppel, G; Laidlaw, M; Pouteau, R; Vandrot, H; Birnbaum, P
2018-01-25
The biodiversity hotspot of New Caledonia is globally renowned for the diversity and endemism of its flora. New Caledonia's tropical rainforests have been reported to have higher stem densities, higher concentrations of relictual lineages and higher endemism than other rainforests. This study investigates whether these aspects differ in New Caledonian rainforests compared to other high-diversity rainforests in the Southwest Pacific. Plants (with a diameter at breast height ≥10 cm) were surveyed in nine 1-ha rainforest plots across the main island of New Caledonia and compared with 14 1-ha plots in high-diversity rainforests of the Southwest Pacific (in Australia, Fiji, Papua New Guinea and the Solomon Islands). This facilitated a comparison of stem densities, taxonomic composition and diversity, and species turnover among plots and countries. The study inventoried 11 280 stems belonging to 335 species (93 species ha-1 on average) in New Caledonia. In comparison with other rainforests in the Southwest Pacific, New Caledonian rainforests exhibited higher stem density (1253 stems ha-1 on average) including abundant palms and tree ferns, with the high abundance of the latter being unparalleled outside New Caledonia. In all plots, the density of relictual species was ≥10 % for both stems and species, with no discernible differences among countries. Species endemism, reaching 89 % on average, was significantly higher in New Caledonia. Overall, species turnover increased with geographical distance, but not among New Caledonian plots. High stem density, high endemism and a high abundance of tree ferns with stem diameters ≥10 cm are therefore unique characteristics of New Caledonian rainforests. High endemism and high spatial species turnover imply that the current system consisting of a few protected areas is inadequate, and that the spatial distribution of plant species needs to be considered to adequately protect the exceptional flora of New Caledonian rainforests. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
A 3-point derivation of dominant tree height equations
Don C. Bragg
2011-01-01
This paper describes a new approach for deriving height-diameter (H-D) equations from limited information and a few assumptions about tree height. Only three data points are required to fit this model, which can be based on virtually any nonlinear function. These points are the height of a tree at diameter at breast height (d.b.h.), the predicted height of a 10-inch d....
van Wagtendonk, J.W.; Moore, P.E.
2010-01-01
Fire managers and researchers need information on fuel deposition rates to estimate future changes in fuel bed characteristics, determine when forests transition to another fire behavior fuel model, estimate future changes in fuel bed characteristics, and parameterize and validate ecosystem process models. This information is lacking for many ecosystems including the Sierra Nevada in California, USA. We investigated fuel deposition rates and stand characteristics of seven montane and four subalpine conifers in the Sierra Nevada. We collected foliage, miscellaneous bark and crown fragments, cones, and woody fuel classes from four replicate plots each in four stem diameter size classes for each species, for a total of 176 sampling sites. We used these data to develop predictive equations for each fuel class and diameter size class of each species based on stem and crown characteristics. There were consistent species and diameter class differences in the annual amount of foliage and fragments deposited. Foliage deposition rates ranged from just over 50 g m-2 year-1 in small diameter mountain hemlock stands to ???300 g m-2 year-1 for the three largest diameter classes of giant sequoia. The deposition rate for most woody fuel classes increased from the smallest diameter class stands to the largest diameter class stands. Woody fuel deposition rates varied among species as well. The rates for the smallest woody fuels ranged from 0.8 g m-2 year-1 for small diameter stands of Jeffrey pine to 126.9 g m-2 year-1 for very large diameter stands of mountain hemlock. Crown height and live crown ratio were the best predictors of fuel deposition rates for most fuel classes and species. Both characteristics reflect the amount of crown biomass including foliage and woody fuels. Relationships established in this study allow predictions of fuel loads to be made on a stand basis for each of these species under current and possible future conditions. These predictions can be used to estimate fuel treatment longevity, assist in determining fuel model transitions, and predict future changes in fuel bed characteristics.
Neil I. Lamson; Neil I. Lamson
1987-01-01
Northern red oak site-index (SI) class is estimated using height and diameter of dominant and codominant trees for five Appalachian hardwood species. Methods for predicting total height as a function of diameter are presented. Because total height of 4- and 6-inch trees varies less than 5 feet for the three northern red oak SI classes, use trees that are at least 8...
Largest-Crown- Width Prediction Models for 53 Species in the Western United States
William A. Bechtold
2004-01-01
The mean crown diameters of stand-grown trees 5.0-in. dbh and larger were modeled as a function of stem diameter, live-crown ratio, stand-level basal area, latitude, longitude, elevation, and Hopkins bioclimatic index for 53 tree species in the western United States. Stem diameter was statistically significant in all models, and a quadratic term for stem diameter was...
Analysis of vegetation changes in Rock Creek Park, 1991-2007
Hatfield, Jeff S.; Krafft, Cairn
2009-01-01
Vegetation data collected at Rock Creek Park every 4 years during 1991-2007 were analyzed for differences among 3 regions within the park and among years. The variables measured and analyzed were percentage of twigs browsed, percentage of canopy cover, species richness of herbaceous plants, number of tree seedlings in each of 7 height classes, tree seedling stocking rate for low deer density and high deer density areas, percentage of tree and shrub cover < 2 m in height, mean diameter at breast height (DBH) of trees > 1 cm DBH, number of tree stems > 1 cm DBH, species richness of trees and shrubs, and mean height of the 5 tallest trees in each plot quadrant. Repeated measures analysis of variance (ANOVA) was used to test for differences and, except for some differences in tree species composition among the 3 regions, no differences (P > 0.01) were found among the 3 regions in the variables discussed above. Many of the variables showed very significant differences (P < 0.01) among years, and causative factors should be investigated further. In addition, importance values were calculated for the 10 most important tree species in each region and changes over time were reported. Future sampling recommendations are also discussed.
Pradip Saud; Thomas B. Lynch; Anup K. C.; James M. Guldin
2016-01-01
The inclusion of quadratic mean diameter (QMD) and relative spacing index (RSI) substantially improved the predictive capacity of heightâdiameter at breast height (d.b.h.) and crown ratio models (CR), respectively. Data were obtained from 208 permanent plots established in western Arkansas and eastern Oklahoma during 1985â1987 and remeasured for the sixth time (2012â...
Pan, Ying; Zhang, Yunshu; Peng, Yan; Zhao, Qinghua; Sun, Shucun
2015-01-01
Aquatic microcosm studies often increase either chamber height or base diameter (to increase water volume) to test spatial ecology theories such as "scale" effects on ecological processes, but it is unclear whether the increase of chamber height or base diameter have the same effect on the processes, i.e., whether the effect of the shape of three-dimensional spaces is significant. We orthogonally manipulated chamber height and base diameter and determined swimming activity, average swimming velocity and grazing rates of the cladocerans Daphnia magna and Moina micrura (on two algae Scenedesmus quadricauda and Chlorella vulgaris; leading to four aquatic algae-cladoceran systems in total) under different microcosm conditions. Across all the four aquatic systems, increasing chamber height at a given base diameter significantly decreased the duration and velocity of horizontal swimming, and it tended to increase the duration but decrease the velocity of vertical swimming. These collectively led to decreases in both average swimming velocity and grazing rate of the cladocerans in the tall chambers (at a given base diameter), in accordance with the positive relationship between average swimming velocity and grazing rate. In contrast, an increase of base diameter at a given chamber height showed contrasting effects on the above parameters. Consistently, at a given chamber volume increasing ratio of chamber height to base diameter decreased the average swimming velocity and grazing rate across all the aquatic systems. In general, increasing chamber depth and base diameter may exert contrasting effects on zooplankton behavior and thus phytoplankton-zooplankton interactions. We suggest that spatial shape plays an important role in determining ecological process and thus should be considered in a theoretical framework of spatial ecology and also the physical setting of aquatic microcosm experiments.
Pan, Ying; Zhang, Yunshu; Peng, Yan; Zhao, Qinghua; Sun, Shucun
2015-01-01
Aquatic microcosm studies often increase either chamber height or base diameter (to increase water volume) to test spatial ecology theories such as “scale” effects on ecological processes, but it is unclear whether the increase of chamber height or base diameter have the same effect on the processes, i.e., whether the effect of the shape of three-dimensional spaces is significant. We orthogonally manipulated chamber height and base diameter and determined swimming activity, average swimming velocity and grazing rates of the cladocerans Daphnia magna and Moina micrura (on two algae Scenedesmus quadricauda and Chlorella vulgaris; leading to four aquatic algae-cladoceran systems in total) under different microcosm conditions. Across all the four aquatic systems, increasing chamber height at a given base diameter significantly decreased the duration and velocity of horizontal swimming, and it tended to increase the duration but decrease the velocity of vertical swimming. These collectively led to decreases in both average swimming velocity and grazing rate of the cladocerans in the tall chambers (at a given base diameter), in accordance with the positive relationship between average swimming velocity and grazing rate. In contrast, an increase of base diameter at a given chamber height showed contrasting effects on the above parameters. Consistently, at a given chamber volume increasing ratio of chamber height to base diameter decreased the average swimming velocity and grazing rate across all the aquatic systems. In general, increasing chamber depth and base diameter may exert contrasting effects on zooplankton behavior and thus phytoplankton-zooplankton interactions. We suggest that spatial shape plays an important role in determining ecological process and thus should be considered in a theoretical framework of spatial ecology and also the physical setting of aquatic microcosm experiments. PMID:26273836
NASA Astrophysics Data System (ADS)
Wise, Michael J.; Abrahamson, Warren G.
2010-07-01
While storms can have obvious ecological impacts on plants, plants' potential to respond evolutionarily to selection for increased resistance to storm damage has received little study. We took advantage of a thunderstorm with strong wind and hail to examine genetic variation for resistance to stem breakage in the herbaceous perennial Solidago altissima. The storm broke the apex of nearly 10% of 1883 marked ramets in a common-garden plot containing 26 genets of S. altissima. Plant genets varied 20-fold in resistance to breakage. Stem height was strongly correlated with resistance to breakage, with taller stems being significantly more susceptible. A stem's growth form (erect versus nodding) had no detectable effect on its resistance to breakage. Therefore, we rejected the hypothesis that a function of the nodding, or "candy-cane," morphology is protection of the apex from storm damage. The significant genetic variation in S. altissima for stem breakage suggests that this plant has the capacity to respond to selection imposed by storms - particularly through changes in mean stem height. Tradeoffs between breakage resistance and competition for light and pollinators may act to maintain a large amount of genetic variation in stem height.
Single tree biomass modelling using airborne laser scanning
NASA Astrophysics Data System (ADS)
Kankare, Ville; Räty, Minna; Yu, Xiaowei; Holopainen, Markus; Vastaranta, Mikko; Kantola, Tuula; Hyyppä, Juha; Hyyppä, Hannu; Alho, Petteri; Viitala, Risto
2013-11-01
Accurate forest biomass mapping methods would provide the means for e.g. detecting bioenergy potential, biofuel and forest-bound carbon. The demand for practical biomass mapping methods at all forest levels is growing worldwide, and viable options are being developed. Airborne laser scanning (ALS) is a promising forest biomass mapping technique, due to its capability of measuring the three-dimensional forest vegetation structure. The objective of the study was to develop new methods for tree-level biomass estimation using metrics derived from ALS point clouds and to compare the results with field references collected using destructive sampling and with existing biomass models. The study area was located in Evo, southern Finland. ALS data was collected in 2009 with pulse density equalling approximately 10 pulses/m2. Linear models were developed for the following tree biomass components: total, stem wood, living branch and total canopy biomass. ALS-derived geometric and statistical point metrics were used as explanatory variables when creating the models. The total and stem biomass root mean square error per cents equalled 26.3% and 28.4% for Scots pine (Pinus sylvestris L.), and 36.8% and 27.6% for Norway spruce (Picea abies (L.) H. Karst.), respectively. The results showed that higher estimation accuracy for all biomass components can be achieved with models created in this study compared to existing allometric biomass models when ALS-derived height and diameter were used as input parameters. Best results were achieved when adding field-measured diameter and height as inputs in the existing biomass models. The only exceptions to this were the canopy and living branch biomass estimations for spruce. The achieved results are encouraging for the use of ALS-derived metrics in biomass mapping and for further development of the models.
Ho, Sean Wei Loong; Tan, Teong Jin Lester; Lee, Keng Thiam
2016-03-01
To evaluate whether pre-operative anthropometric data can predict the optimal diameter and length of hamstring tendon autograft for anterior cruciate ligament (ACL) reconstruction. This was a cohort study that involved 169 patients who underwent single-bundle ACL reconstruction (single surgeon) with 4-stranded MM Gracilis and MM Semi-Tendinosus autografts. Height, weight, body mass index (BMI), gender, race, age and -smoking status were recorded pre-operatively. Intra-operatively, the diameter and functional length of the 4-stranded autograft was recorded. Multiple regression analysis was used to determine the relationship between the anthropometric measurements and the length and diameter of the implanted autografts. The strongest correlation between 4-stranded hamstring autograft diameter was height and weight. This correlation was stronger in females than males. BMI had a moderate correlation with the diameter of the graft in females. Females had a significantly smaller graft both in diameter and length when compared with males. Linear regression models did not show any significant correlation between hamstring autograft length with height and weight (p>0.05). Simple regression analysis demonstrated that height and weight can be used to predict hamstring graft diameter. The following regression equation was obtained for females: Graft diameter=0.012+0.034*Height+0.026*Weight (R2=0.358, p=0.004) The following regression equation was obtained for males: Graft diameter=5.130+0.012*Height+0.007*Weight (R2=0.086, p=0.002). Pre-operative anthropometric data has a positive correlation with the diameter of 4 stranded hamstring autografts but no significant correlation with the length. This data can be utilised to predict the autograft diameter and may be useful for pre-operative planning and patient counseling for graft selection.
NASA Astrophysics Data System (ADS)
Suherman, C.; Nuraini, A.; Wulandari, A. P.; Kadapi, M.
2017-05-01
Ramie (Boehmeria nivea L.) is one of the most important sources of natural fibre, a sustainable biomass. The growth and yield of ramie are affected by mineral nutrients. In the present study, we usedfertilizers from waste of ramie biomass in liquid form (liquid organic fertilizer, LOF) and the other treatment is by gibberellic acid (GA3). This study was to obtain the effect of treatments on enhance the growth and yield of ramie. Hence, we measure the character that related to the important parameter for biomass product of ramie. Such plant height, stem diameter, dry plant weight, and ramie fresh stem weight of ramie clone Pujon 13. This research was conducted from January 2016 to March 2016 at Research Field Ciparanje, Faculty of Agriculture, Padjadjaran University, Jatinangor, Sumedang, West Java with an altitude of about ± 750 m above sea level. The type of Soil in this area is Inceptisolsoil order and thetype of rainfall according to Schmidt and Fergusson Classification is C type. The experiment used Randomized Block Design (RBD) which consisted of eight treatments (GA and LOF) and four replications. The concentration of GA from 0, 50, 100 and 150 ppm and for concentration of LOF is 40 mlL-1. We suggested the treatment of GA 150 ppm with 40 mlL-1 LOF was the best treatment on enhancing plant height and stem fresh weight of ramie clone Pujon 13.
Predicting diameter at breast height from total height and crown length
Quang V. Cao; Thomas J. Dean
2013-01-01
Tree diameter at breast height (d.b.h.) is often predicted from total height (model 1a) or both total height and number of trees per acre (model 1b). These approaches are useful when Light Detection and Ranging (LiDAR) data are available. LiDAR height data can be employed to predict tree d.b.h., and consequently individual tree volumes and volume/ ha can be obtained...
Growth and Chemical Responses to CO2 Enrichment Virginia Pine (Pinus Virginiana Mill.) (NDP-009)
Luxmoore, R. J. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Norby, R. J. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); O'Neill, E. G. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Weller, D. G. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Ells, J. M. [Agricultural Research Service, USDA; North Carolina State University, Raleigh, NC (USA); Rogers, H. H. [Agricultural Research Service, USDA; North Carolina State University, Raleigh, NC (USA)
1985-01-01
From June 28 to October 29 in 1982, Virginia pine seedlings were exposed to elevated CO2 levels in open-top growth chambers at one of four concentrations (75, 150, 300, and 600 ppm above ambient). Plant dry weight; height; stem diameter; and chemical contents of leaf, stem, and root tissues were measured before and after exposure. Soil variables were also characterized. These data illustrate the short-term physical and chemical response of Virginia pine seedlings to elevated levels of CO2. The data are in seven files: initial dry weights before exposure (844 kB), dry weights after exposure (4 kB), major nutrient concentrations after final harvest (12 kB), minor nutrient concentrations after final harvest (17 kB), soil nutrient concentrations after final harvest (4 kB), soil leachate elements after final harvest (5 kB), and soil leachate solutes after final harvest (4 kB).
Correlation and path analysis of biomass sorghum production.
Vendruscolo, T P S; Barelli, M A A; Castrillon, M A S; da Silva, R S; de Oliveira, F T; Corrêa, C L; Zago, B W; Tardin, F D
2016-12-23
Sorghum biomass is an interesting raw material for bioenergy production due to its versatility, potential of being a renewable energy source, and low-cost of production. The objective of this study was to evaluate the genetic variability of biomass sorghum genotypes and to estimate genotypic, phenotypic, and environmental correlations, and direct and indirect effects of seven agronomic traits through path analysis. Thirty-four biomass sorghum genotypes and two forage sorghum genotypes were cultivated in a randomized block design with three replicates. The following morpho-agronomic traits were evaluated: flowering date, stem diameter, number of stems, plant height, number of leaves, green mass production, and dry matter production. There were significant differences at the 1% level for all traits. The highest genotypic correlation was found between the traits green mass production and dry matter production. The path analysis demonstrated that green mass production and number of leaves can assist in the selection of dry matter production.
Tree-stem diameter fluctuates with the lunar tides and perhaps with geomagnetic activity.
Barlow, Peter W; Mikulecký, Miroslav; Střeštík, Jaroslav
2010-11-01
Our initial objective has been to examine the suggestion of Zürcher et al. (Nature 392:665–666, 1998) that the naturally occurring variations in stem diameter of two experimental trees of Picea alba were related to near simultaneous variations in the lunisolar tidal acceleration. The relationship was positive: Lunar peaks were roughly synchronous with stem diameter peaks. To extend the investigation of this putative relationship, additional data on stem diameter variations from six other tree species were gathered from published literature. Sixteen sets of data were analysed retrospectively using graphical representations as well as cosinor analysis, statistical cross-correlation and cross-spectral analysis, together with estimated values of the lunisolar tidal acceleration corresponding to the sites, dates and times of collection of the biological data. Positive relationships were revealed between the daily variations of stem diameter and the variations of the lunisolar tidal acceleration. Although this relationship could be mediated by a 24.8-h lunar rhythm, the presence of a solar rhythm of 24.0 h could not be ruled out. Studies of transpiration in two of the observed trees indicated that although this variable was not linked to stem diameter variation, it might also be subject to lunisolar gravitational regulation. In three cases, the geomagnetic Thule index showed a weak but reciprocal relationship with stem diameter variation, as well as a positive relationship with the lunisolar tidal force. In conclusion, it seems that lunar gravity alone could influence stem diameter variation and that, under certain circumstances, additional regulation may come from the geomagnetic flux.
Perrier, Lisa; Rouan, Lauriane; Jaffuel, Sylvie; Clément-Vidal, Anne; Roques, Sandrine; Soutiras, Armelle; Baptiste, Christelle; Bastianelli, Denis; Fabre, Denis; Dubois, Cécile; Pot, David; Luquet, Delphine
2017-01-01
Sorghum is increasingly used as a biomass crop worldwide. Its genetic diversity provides a large range of stem biochemical composition suitable for various end-uses as bioenergy or forage. Its drought tolerance enables it to reasonably sustain biomass production under water limited conditions. However, drought effect on the accumulation of sorghum stem biomass remains poorly understood which limits progress in crop improvement and management. This study aimed at identifying the morphological, biochemical and histological traits underlying biomass accumulation in the sorghum stem and its plasticity in response to water deficit. Two hybrids (G1, G4) different in stem biochemical composition (G4, more lignified, less sweet) were evaluated during 2 years in the field in Southern France, under two water treatments differentiated during stem elongation (irrigated; 1 month dry-down until an average soil water deficit of -8.85 bars). Plant phenology was observed weekly. At the end of the water treatment and at final harvest, plant height, stem and leaf dry-weight and the size, biochemical composition and tissue histology of internodes at 2–4 positions along the stem were measured. Stem biomass accumulation was significantly reduced by drought (in average 42% at the end of the dry-down). This was due to the reduction of the length, but not diameter, of the internodes expanded during water deficit. These internodes had more soluble sugar but lower lignin and cellulose contents. This was associated with a decrease of the areal proportion of lignified cell wall in internode outer zone whereas the areal proportion of this zone was not affected. All internodes for a given genotype and environment followed a common histochemical dynamics. Hemicellulose content and the areal proportion of inner vs. outer internode tissues were set up early during internode growth and were not drought responsive. G4 exhibited a higher drought sensitivity than G1 for plant height only. At final harvest, the stem dry weight was only 18% lower in water deficit (re-watered) compared to well-watered treatment and internodes growing during re-watering were similar to those on the well-watered plants. These results are being valorized to refine the phenotyping of sorghum diversity panels and breeding populations. PMID:28919904
Height-Diameter Equations for 12 Upland Species in the Missouri Ozark Highlands
J.R. Lootens; David R. Larsen; Stephen R. Shifley
2007-01-01
We calibrated a model predicting total tree height as a function of tree diameter for nine tree species common to the Missouri Ozarks. Model coefficients were derived from nearly 10,000 observed trees. The calibrated model did a good job predicting the mean height-diameter trend for each species (pseudo-R2 values ranged from 0.56 to 0.88), but...
Understanding the effect of carbon status on stem diameter variations
De Swaef, Tom; Driever, Steven M.; Van Meulebroek, Lieven; Vanhaecke, Lynn; Marcelis, Leo F. M.; Steppe, Kathy
2013-01-01
Background Carbon assimilation and leaf-to-fruit sugar transport are, along with plant water status, the driving mechanisms for fruit growth. An integrated comprehension of the plant water and carbon relationships is therefore essential to better understand water and dry matter accumulation. Variations in stem diameter result from an integrated response to plant water and carbon status and are as such a valuable source of information. Methods A mechanistic water flow and storage model was used to relate variations in stem diameter to phloem sugar loading and sugar concentration dynamics in tomato. The simulation results were compared with an independent model, simulating phloem sucrose loading at the leaf level based on photosynthesis and sugar metabolism kinetics and enabled a mechanistic interpretation of the ‘one common assimilate pool’ concept for tomato. Key Results Combining stem diameter variation measurements and mechanistic modelling allowed us to distinguish instantaneous dynamics in the plant water relations and gradual variations in plant carbon status. Additionally, the model combined with stem diameter measurements enabled prediction of dynamic variables which are difficult to measure in a continuous and non-destructive way, such as xylem water potential and phloem hydrostatic potential. Finally, dynamics in phloem sugar loading and sugar concentration were distilled from stem diameter variations. Conclusions Stem diameter variations, when used in mechanistic models, have great potential to continuously monitor and interpret plant water and carbon relations under natural growing conditions. PMID:23186836
Posterior brain in fetuses with open spina bifida at 11 to 13 weeks.
Lachmann, Robert; Chaoui, Rabih; Moratalla, Jose; Picciarelli, Gemma; Nicolaides, Kypros H
2011-01-01
To measure the changes in the posterior fossa in first-trimester fetuses with open spina bifida (OSB). The brain stem diameter and brain stem to occipital bone (BSOB) diameter were measured in stored images of the mid-sagittal view of the fetal face at 11(+0) to 13(+6) weeks from 30 fetuses with OSB and 1000 normal controls. In the control group, the brain stem and BSOB diameter increased significantly with crown-rump length (CRL) and the brain stem to BSOB ratio decreased. In the spina bifida group, the brain stem diameter was above the 95th percentile of the control group in 29 (96.7%) cases, the BSOB diameter was below the 5th percentile in 26 (86.7%) and the brain stem to BSOB ratio was above the 95th percentile in all cases. At 11 to 13 weeks the majority of fetuses with OSB have measurable abnormalities in the posterior brain.
Tree diameter at breast height in relation to stump diameter by species group
Arthur G. Horn; Richard C. Keller
1957-01-01
A stump tally is one method of determining the volume of timber previously removed from an area in a logging operation. To estimate volume of standing timber from stumps, foresters must first know the relationship between stump diameters and tree diameters at breast height (d.b.h.).
50 CFR 665.165 - Size restrictions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... its base to its most distal extremity. The stem diameter of a living coral specimen shall be determined by measuring the greatest diameter of the stem at a point no less than 1 inch (2.54 cm) from the... from any precious coral permit area must have attained either a minimum stem diameter of 1 inch (2.54...
50 CFR 665.265 - Size restrictions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... its base to its most distal extremity. The stem diameter of a living coral specimen shall be determined by measuring the greatest diameter of the stem at a point no less than 1 inch (2.54 cm) from the... from any precious coral permit area must have attained either a minimum stem diameter of 1 inch (2.54...
Reinstein, Dan Z; Lovisolo, Carlo F; Archer, Timothy J; Gobbe, Marine
2013-01-01
To compare vault height predictability of Implantable Collamer Lens (ICL; Staar Surgical) sizing using a sulcus diameter-based formula or the manufacturer-recommended white-to-white-based method. In 50 myopic eyes, ICL size was calculated using both a formula including sulcus diameter and the traditional formula based on white-to-white diameter. Sulcus diameter was measured using Artemis 2 very high-frequency (VHF) digital ultrasound (ArcScan Inc). Implantation was based on the sulcus diameter derived size. Actual postoperative vault height achieved was measured by VHF digital ultrasound scanning. Circle segment trigonometry was used to calculate the vault height that would have resulted had lens sizing been based on the white-to-white formula. The same lens size would have been used in 60% of eyes, a smaller lens would have been used in 34% of eyes and a larger lens in 6% of eyes had lens sizing been based on the white-to-white formula. Mean vault for eyes with lenses sized using the sulcus diameter formula was 0.37±0.16 mm (range: 0.08 to 0.92 mm), with 2% <0.09 mm, the recognized low-vault height for risk of cataract. Circle segment trigonometry predicted that the vault height would have been 0.24±0.28 mm (range: -0.31 to 0.92 mm), with 26% <0.09 mm had lens sizing been based on the white-to-white formula. Significantly better predictability of postoperative vault height was achieved by including sulcus diameter into the ICL sizing formula compared with using the traditional white-to-white-based formula. Copyright 2013, SLACK Incorporated.
Berthod, Nicolas; Brereton, Nicholas J. B.; Pitre, Frédéric E.; Labrecque, Michel
2015-01-01
Sustainable and inexpensive production of biomass is necessary to make biofuel production feasible, but represents a challenge. Five short rotation coppice willow cultivars, selected for high biomass yield, were cultivated on sites at four diverse regions of Quebec in contrasting environments. Wood composition and anatomical traits were characterized. Tree height and stem diameter were measured to evaluate growth performance of the cultivars according to the diverse pedoclimatic conditions. Each cultivar showed very specific responses to its environment. While no significant variation in lignin content was observed between sites, there was variation between cultivars. Surprisingly, the pattern of substantial genotype variability in stem density was maintained across all sites. However, wood anatomy did differ between sites in a cultivar (producing high and low density wood), suggesting a probable response to an abiotic stress. Furthermore, twice as many cellulose-rich G-fibers, comprising over 50% of secondary xylem, were also found in the high density wood, a finding with potential to bring higher value to the lignocellulosic bioethanol industry. PMID:26583024
Leicht, Stacey A; Silander, John A
2006-07-01
When plants are subjected to leaf canopy shade in forest understories or from neighboring plants, they not only experience reduced light quantity, but light quality in lowered red : far red light (R : FR). Growth and other developmental responses of plants in reduced R : FR can vary and are not consistent across species. We compared how an invasive liana, Celastrus orbiculatus, and its closely related native congener, C. scandens, responded to changes in the R : FR under controlled, simulated understory conditions. We measured a suite of morphological and growth attributes under control, neutral shading, and low R : FR light treatments. Celastrus orbiculatus showed an increase in height, aboveground biomass, and total leaf mass in reduced R : FR treatments as compared to the neutral shade, while C. scandens had increased stem diameter, single leaf area, and leaf mass to stem mass ratio. These differences provide a mechanistic understanding of the ability of C. orbiculatus to increase height and actively forage for light resources in forest understories, while C. scandens appears unable to forage for light and instead depends upon a light gap forming. The plastic growth response of C. orbiculatus in shaded conditions points to its success in forested habitats where C. scandens is largely absent.
Leicht, S.A.; Silander, J.A.
2006-01-01
When plants are subjected to leaf canopy shade in forest understories or from neighboring plants, they not only experience reduced light quantity, but light quality in lowered red:far red light (R:FR). Growth and other developmental responses of plants in reduced R:FR can vary and are not consistent across species. We compared how an invasive liana, Celastrus orbiculatus, and its closely related native congener, C. scandens, responded to changes in the R:FR under controlled, simulated understory conditions. We measured a suite of morphological and growth attributes under control, neutral shading, and low R:FR light treatments. Celastrus orbiculatus showed an increase in height, aboveground biomass, and total leaf mass in reduced R:FR treatments as compared to the neutral shade, while C. scandens had increased stem diameter, single leaf area, and leaf mass to stem mass ratio. These differences provide a mechanistic understanding of the ability of C. orbiculatus to increase height and actively forage for light resources in forest understories, while C. scandens appears unable to forage for light and instead depends upon a light gap forming. The plastic growth response of C. orbiculatus in shaded conditions points to its success in forested habitats where C. scandens is largely absent.
NASA Astrophysics Data System (ADS)
Dwi Hastuti, Endah; Budi Hastuti, Rini
2018-03-01
Dynamic environment condition of the silvofishery pond should provide an effect on the growth of mangrove seedling. This research aimed to observe the morphometric growth rate of mangrove seedling of Avicennia marina and Rhizophora mucronata planted in the silvofishery pond and to analyze the morphometric growth relationship of height, diameter and leaf number development of mangrove seedling. The research was conducted through field experiment involving mangrove species of A. marina and R. mucronata for 18 months during March 2015 to September 2016, both single structured and mixed structure. The observation was conducted every 13 weeks including seedling height, diameter and number of leaves. Data analysis was conducted by regression to provide the statistical relation between the growth of diameter – height, diameter – number of leaves and height – number of leaves. The result showed that the growth rate of A. marina in single structured pond was ranged from 0.38 – 3.00 cm.wk-1, 0.0015 – 0.0969 cm.wk‑1 and 0.1 – 13.7 leaves.wk‑1 respectively for height, diameter and number of leaves, while in mixed structure was 0.23 – 1.69 cm.wk‑1, 0.0169 – 0.0731 cm.wk‑1 and 0.5 – 14.0 leaves.wk-. The growth of R. mucronata respectively in single and mixed structure were 0.08 – 2.00 cm.wk‑1 and 0.15 – 2.62 cm.wk‑1, 0.0031 – 0.1369 cm.wk‑1 and 0.0008 – 0.0831 cm.wk‑1 and 0.0 – 1.9 leaves.wk‑1 and 0.0 – 1.6 leaves.wk-1respectively for height, diameter and number of leaves. Data analysis showed that the growth of seedling height of Avicennia in the mixed structure was significantly affected by its diameter growth and the number of leaves of Avicennia in single structured was significantly affected by its diameter. While the height, diameter and number of leaves of R. mucronata both in mixed and single structured silvofishery ponds were independent to each other. This research concluded that mangrove seedling growth is varied among species and growth environment.
Benefits of Two Turbine Rotor Diameters and Hub Heights in the Same Wind Farm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykes, Katherine L; Stanley, Andrew P. J.; Ning, Andrew
Significant turbine-wake interactions greatly reduce power output in a wind farm. If different turbine hub heights and rotor diameters are included in the same wind farm, the wake interference in the farm will be reduced, resulting in a lower cost of energy (COE) than a farm with identical turbines. In this paper, we present a method to model wind farm COE in farms with hub heights and rotor diameters that vary across the wind farm. We also demonstrate how to optimize these wind farms to minimize COE. The results show that COE can be greatly reduced in wind farms withmore » non-homogeneous turbines, especially when the turbines are spaced close together. For a unidirectional wind rose, including different turbine design in the wind farm has a similar decrease in COE to spreading the wind turbines farther apart. When the rotor diameter and hub height of the wind turbines in a farm are optimized uniformly, a COE decrease of 4% to 13% (depending on the grid spacing and wind shear exponent) is achieved compared to the baseline. When the rotor diameter and turbine heights are optimized non-uniformly, with two different diameters and heights throughout the farm, there is a COE decrease of 22% to 41% compared to the baseline. For a more spread wind rose with a dominant probability from the west, there is a COE decrease between 3% and 10% for uniformly optimized rotor diameter and height compared to the baseline. With two optimized rotor diameters and heights through the farm, a COE decrease of 3% to 19% is achieved. For a similar wind rose shifted such that the dominant wind direction is from the northwest, a COE decrease between 3% and 10% results from uniformly optimized wind turbines compared to the baseline. A COE decrease of 3% to 17% compared to the baseline occurs with two different turbines are optimized throughout the wind farm.« less
Xian, Jun-Ren; Hu, Ting-Xing; Zhang, Yuan-Bin; Wang, Kai-Yun
2007-04-01
By the method of strip transect sampling, the density, height, basal diameter, and components biomass of Abies faxoniana seedlings (H < or = 100 cm) lived in the forest gap (FG) and under the forest canopy (FC) of subalpine natural coniferous forest in West Sichuan were investigated, and the relationships among different components biomass were analyzed. The results indicated that the density and average height (H) of A. faxoniana seedlings were significantly different in FG and under FC, with the values being 12 903 and 2 017 per hectare, and 26.6 cm and 24.3 cm, respectively, while no significant differences were found in average basal diameter (D) and biomass. The biomass allocation in seedling's components was markedly affected by forest gap. In FG, the biomass ratio of branch to trunk (BRBT) reached the maximum (1.54) at 12th year, and then, declined and fluctuated at 0. 69. Under FC, the BRBT was increased with seedlings growth, and exceeded 1.0 at about 15th year. The total biomass and the biomass of leaf, stem, shoot and root grown in FG and under FC were significantly linearly correlated with D2H. There were significant positive correlations among the biomass of different seedling's components.
Regional height-diameter equations for major tree species of southwest Oregon.
H. Temesgen; D.W. Hann; V.J. Monleon
2006-01-01
Selected tree height and diameter functions were evaluated for their predictive abilities for major tree species of southwest Oregon. The equations included tree diameter alone, or diameter plus alternative measures of stand density and relative position. Two of the base equations were asymptotic functions, and two were exponential functional forms. The inclusion of...
The Effect of Density on the Height-Diameter Relationship
Boris Zeide; Curtis Vanderschaaf
2002-01-01
Using stand density along with mean diameter to predict average height increases the proportion of explained variance. This result, obtained from permanent plots established in a loblolly pine plantation thinned to different levels, makes sense. We know that due to competition, trees with the same diameter are taller in denser stands. Diameter and density are not only...
Ferreira Júnior, Washington Soares; Siqueira, Clarissa Fernanda Queiroz; de Albuquerque, Ulysses Paulino
2012-01-01
We use the model of utilitarian redundancy as a basis for research. This model provides predictions that have not been tested by other research. In this sense, we sought to investigate the stem bark extraction between preferred and less-preferred species by a rural community in Caatinga environment. In addition, we sought to explain local preferences to observe if preferred plants have a higher content of tannins than less-preferred species. For this, we selected seven preferred species and seven less-preferred species from information obtained from semistructured interviews applied to 49 informants. Three areas of vegetation around the community were also selected, in which individuals were tagged, and were measured the diameter at ground level (DGL) diameter at breast height (DBH), and measurements of available and extracted bark areas. Samples of bark of the species were also collected for the evaluation of tannin content, obtained by the method of radial diffusion. From the results, the preferred species showed a greater area of bark removed. However, the tannin content showed no significant differences between preferred and less-preferred plants. These results show there is a relationship between preference and use, but this preference is not related to the total tannins content. PMID:22319546
Tree height estimation in redwood/Douglas-fir stands in Mendocino County
Helge Eng
2012-01-01
In this study, height-diameter equations were developed for managed stands of coastal redwood/Douglas-fir stands in Mendocino County. Equations were developed by species to predict tree height as a function of diameter as well as other factors that are known to potentially explain tree height, including site class and live crown ratio. Two equation forms were compared...
Vandegehuchte, Maurits W; Guyot, Adrien; Hubeau, Michiel; De Swaef, Tom; Lockington, David A; Steppe, Kathy
2014-09-01
Stem diameter variations are mainly determined by the radial water transport between xylem and storage tissues. This radial transport results from the water potential difference between these tissues, which is influenced by both hydraulic and carbon related processes. Measurements have shown that when subjected to the same environmental conditions, the co-occurring mangrove species Avicennia marina and Rhizophora stylosa unexpectedly show a totally different pattern in daily stem diameter variation. Using in situ measurements of stem diameter variation, stem water potential and sap flow, a mechanistic flow and storage model based on the cohesion-tension theory was applied to assess the differences in osmotic storage water potential between Avicennia marina and Rhizophora stylosa. Both species, subjected to the same environmental conditions, showed a resembling daily pattern in simulated osmotic storage water potential. However, the osmotic storage water potential of R. stylosa started to decrease slightly after that of A. marina in the morning and increased again slightly later in the evening. This small shift in osmotic storage water potential likely underlaid the marked differences in daily stem diameter variation pattern between the two species. The results show that in addition to environmental dynamics, endogenous changes in the osmotic storage water potential must be taken into account in order to accurately predict stem diameter variations, and hence growth.
Georgiou, CS; Evangelou, KG; Theodorou, EG; Provatidis, CG; Megas, PD
2012-01-01
Due to their theoretical advantages, hip systems combining modular necks and large diameter femoral heads have gradually gained popularity. However, among others, concerns regarding changes in the load transfer patterns were raised. Recent stress analyses have indeed shown that the use of modular necks and big femoral heads causes significant changes in the strain distribution along the femur. Our original hypothesis was that these changes may affect early distal migration of a modular stem. We examined the effect of head diameter and neck geometry on migration at two years of follow-up in a case series of 116 patients (125 hips), who have undergone primary Metal-on-Metal total hip arthroplasty with the modular grit-blasted Profemur®E stem combined with large-diameter heads (>36 mm). We found that choice of neck geometry and head diameter has no effect on stem migration. A multivariate regression analysis including the potential confounding variables of the body mass index, bone quality, canal fill and stem positioning revealed only a negative correlation between subsidence and canal fill in midstem area. Statistical analysis, despite its limitations, did not confirm our hypothesis that choice of neck geometry and/or head diameter affects early distal migration of a modular stem. However, the importance of correct stem sizing was revealed. PMID:23284597
Georgiou, Cs; Evangelou, Kg; Theodorou, Eg; Provatidis, Cg; Megas, Pd
2012-01-01
Due to their theoretical advantages, hip systems combining modular necks and large diameter femoral heads have gradually gained popularity. However, among others, concerns regarding changes in the load transfer patterns were raised. Recent stress analyses have indeed shown that the use of modular necks and big femoral heads causes significant changes in the strain distribution along the femur. Our original hypothesis was that these changes may affect early distal migration of a modular stem. We examined the effect of head diameter and neck geometry on migration at two years of follow-up in a case series of 116 patients (125 hips), who have undergone primary Metal-on-Metal total hip arthroplasty with the modular grit-blasted Profemur®E stem combined with large-diameter heads (>36 mm). We found that choice of neck geometry and head diameter has no effect on stem migration. A multivariate regression analysis including the potential confounding variables of the body mass index, bone quality, canal fill and stem positioning revealed only a negative correlation between subsidence and canal fill in midstem area. Statistical analysis, despite its limitations, did not confirm our hypothesis that choice of neck geometry and/or head diameter affects early distal migration of a modular stem. However, the importance of correct stem sizing was revealed.
Stem breakage of salt marsh vegetation under wave forcing: A field and model study
NASA Astrophysics Data System (ADS)
Vuik, Vincent; Suh Heo, Hannah Y.; Zhu, Zhenchang; Borsje, Bas W.; Jonkman, Sebastiaan N.
2018-01-01
One of the services provided by coastal ecosystems is wave attenuation by vegetation, and subsequent reduction of wave loads on flood defense structures. Therefore, stability of vegetation under wave forcing is an important factor to consider. This paper presents a model which determines the wave load that plant stems can withstand before they break or fold. This occurs when wave-induced bending stresses exceed the flexural strength of stems. Flexural strength was determined by means of three-point-bending tests, which were carried out for two common salt marsh species: Spartina anglica (common cord-grass) and Scirpus maritimus (sea club-rush), at different stages in the seasonal cycle. Plant stability is expressed in terms of a critical orbital velocity, which combines factors that contribute to stability: high flexural strength, large stem diameter, low vegetation height, high flexibility and a low drag coefficient. In order to include stem breakage in the computation of wave attenuation by vegetation, the stem breakage model was implemented in a wave energy balance. A model parameter was calibrated so that the predicted stem breakage corresponded with the wave-induced loss of biomass that occurred in the field. The stability of Spartina is significantly higher than that of Scirpus, because of its higher strength, shorter stems, and greater flexibility. The model is validated by applying wave flume tests of Elymus athericus (sea couch), which produced reasonable results with regards to the threshold of folding and overall stem breakage percentage, despite the high flexibility of this species. Application of the stem breakage model will lead to a more realistic assessment of the role of vegetation for coastal protection.
Birch Stands Growth Increase in Western Siberia
NASA Technical Reports Server (NTRS)
Kharuk, Viacheslav I.; Kuzmichev, Valeriy V.; Im, Sergey T.; Ranson, Kenneth J.
2014-01-01
Birch (Betula pendula Roth) growth within the Western Siberia forest-steppe was analyzed based on long-term (1897-2006) inventory data (height, diameter at breast height [dbh], and stand volume). Analysis of biometry parameters showed increased growth at the beginning of twenty-first century compared to similar stands (stands age = 40-60 years) at the end of nineteenth century. Mean height, dbh, and stem volume increased from 14 to 20 m, from 16 to 22 cm, and from approx. 63 to approx. 220 cu m/ha, respectively. Significant correlations were found between the stands mean height, dbh, and volume on the one hand, and vegetation period length (r(sub s) = 0.71 to 0.74), atmospheric CO2 concentration (r(sub s) = 0.71 to 0.76), and drought index (Standardized Precipitation-Evapotranspiration Index, r(sub s) = -0.33 to -0.51) on the other hand. The results obtained have revealed apparent climate-induced impacts (e.g. increase of vegetation period length and birch habitat drying due to drought increase) on the stands growth. Along with this, a high correlation of birch biometric parameters and [CO2] in ambient air indicated an effect of CO2 fertilization. Meanwhile, further drought increase may switch birch stand growth into decline and greater mortality as has already been observed within the Trans-Baikal forest-steppe ecotone.
Peh, Kelvin S.-H.; Sonké, Bonaventure; Séné, Olivier; Djuikouo, Marie-Noël K.; Nguembou, Charlemagne K.; Taedoumg, Hermann; Begne, Serge K.; Lewis, Simon L.
2014-01-01
Background Traits of non-dominant mixed-forest tree species and their synergies for successful co-occurrence in monodominant Gilbertiodendron dewevrei forest have not yet been investigated. Here we compared the tree species diversity of the monodominant forest with its adjacent mixed forest and then determined which fitness proxies and life history traits of the mixed-forest tree species were most associated with successful co-existence in the monodominant forest. Methodology/Principal Findings We sampled all trees (diameter in breast height [dbh]≥10 cm) within 6×1 ha topographically homogenous areas of intact central African forest in SE Cameroon, three independent patches of G. dewevrei-dominated forest and three adjacent areas (450–800 m apart). Monodominant G. dewevrei forest had lower sample-controlled species richness, species density and population density than its adjacent mixed forest in terms of stems with dbh≥10 cm. Analysis of a suite of population-level characteristics, such as relative abundance and geographical distribution, and traits such as wood density, height, diameter at breast height, fruit/seed dispersal mechanism and light requirement–revealed after controlling for phylogeny, species that co-occur with G. dewevrei tend to have higher abundance in adjacent mixed forest, higher wood density and a lower light requirement. Conclusions/Significance Our results suggest that certain traits (wood density and light requirement) and population-level characteristics (relative abundance) may increase the invasibility of a tree species into a tropical closed-canopy system. Such knowledge may assist in the pre-emptive identification of invasive tree species. PMID:24844914
Tree allometry and improved estimation of carbon stocks and balance in tropical forests.
Chave, J; Andalo, C; Brown, S; Cairns, M A; Chambers, J Q; Eamus, D; Fölster, H; Fromard, F; Higuchi, N; Kira, T; Lescure, J-P; Nelson, B W; Ogawa, H; Puig, H; Riéra, B; Yamakura, T
2005-08-01
Tropical forests hold large stores of carbon, yet uncertainty remains regarding their quantitative contribution to the global carbon cycle. One approach to quantifying carbon biomass stores consists in inferring changes from long-term forest inventory plots. Regression models are used to convert inventory data into an estimate of aboveground biomass (AGB). We provide a critical reassessment of the quality and the robustness of these models across tropical forest types, using a large dataset of 2,410 trees >or= 5 cm diameter, directly harvested in 27 study sites across the tropics. Proportional relationships between aboveground biomass and the product of wood density, trunk cross-sectional area, and total height are constructed. We also develop a regression model involving wood density and stem diameter only. Our models were tested for secondary and old-growth forests, for dry, moist and wet forests, for lowland and montane forests, and for mangrove forests. The most important predictors of AGB of a tree were, in decreasing order of importance, its trunk diameter, wood specific gravity, total height, and forest type (dry, moist, or wet). Overestimates prevailed, giving a bias of 0.5-6.5% when errors were averaged across all stands. Our regression models can be used reliably to predict aboveground tree biomass across a broad range of tropical forests. Because they are based on an unprecedented dataset, these models should improve the quality of tropical biomass estimates, and bring consensus about the contribution of the tropical forest biome and tropical deforestation to the global carbon cycle.
Effects of EDU and Ozoban on the growth of shortleaf pine seedlings in the field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flagler, R.B.; Lock, J.E.
Two field studies were conducted to determine the response of shortleaf pine seedlings planted in the field to ethylenediurea (EDU) and sodium erythorbate (Ozoban), both of which possess antioxidant properties, and were developed to protect plants from ozone (O[sub 3]). Seedlings originated from two half-sib families of shortleaf pine, S2PE3 and S3PE9, and a third [open quotes]woods-run[close quotes] selection. For the EDU study, the chemical treatment levels were 0 and 300 ppm EDU. For the Ozoban study, the chemical treatment levels were 0, 515, 1030, 1545, and 2060 ppm Ozoban. Seedlings were sprayed monthly with the appropriate concentration of antioxidantmore » chemical for two years. EDU increased leaf area and foliage, stem and root biomass for all three selections; the response of the woods-run selection was the greatest. Height growth was increased by EDU only in the woods-run selection. Diameter growth was not affected by EDU. In the Ozoban study, only family S2PE3 exhibited a biomass response to Ozobon, with increased biomass as Ozoban application rate increased up to the highest rat, at which point there was a small decrease. Height growth was not affected by Ozoban. Diameter growth of the woods-run selection increased as Ozoban applications rate increased, with a slight decrease at the highest application rate. Diameter of the other selections was not affected by Ozoban. Both chemicals appeared to provide some protection to shortleaf pine against ambient O[sub 3].« less
Zhang, Yu; Teng, Poching; Shimizu, Yo; Hosoi, Fumiki; Omasa, Kenji
2016-01-01
For plant breeding and growth monitoring, accurate measurements of plant structure parameters are very crucial. We have, therefore, developed a high efficiency Multi-Camera Photography (MCP) system combining Multi-View Stereovision (MVS) with the Structure from Motion (SfM) algorithm. In this paper, we measured six variables of nursery paprika plants and investigated the accuracy of 3D models reconstructed from photos taken by four lens types at four different positions. The results demonstrated that error between the estimated and measured values was small, and the root-mean-square errors (RMSE) for leaf width/length and stem height/diameter were 1.65 mm (R2 = 0.98) and 0.57 mm (R2 = 0.99), respectively. The accuracies of the 3D model reconstruction of leaf and stem by a 28-mm lens at the first and third camera positions were the highest, and the number of reconstructed fine-scale 3D model shape surfaces of leaf and stem is the most. The results confirmed the practicability of our new method for the reconstruction of fine-scale plant model and accurate estimation of the plant parameters. They also displayed that our system is a good system for capturing high-resolution 3D images of nursery plants with high efficiency. PMID:27314348
Pulse height response of an optical particle counter to monodisperse aerosols
NASA Technical Reports Server (NTRS)
Wilmoth, R. G.; Grice, S. S.; Cuda, V.
1976-01-01
The pulse height response of a right angle scattering optical particle counter has been investigated using monodisperse aerosols of polystyrene latex spheres, di-octyl phthalate and methylene blue. The results confirm previous measurements for the variation of mean pulse height as a function of particle diameter and show good agreement with the relative response predicted by Mie scattering theory. Measured cumulative pulse height distributions were found to fit reasonably well to a log normal distribution with a minimum geometric standard deviation of about 1.4 for particle diameters greater than about 2 micrometers. The geometric standard deviation was found to increase significantly with decreasing particle diameter.
Panda, Shasanka Shekhar; Bajpai, Minu; Mallick, Saumyaranjan; Sharma, Mehar C
2014-01-01
The objective of the following study is to determine and to compare the different morphological parameters with duration of obstruction created experimentally in unilateral upper ureters of rats. Unilateral upper ureteric obstruction was created in 60 adult Wistar rats that were reversed after predetermined intervals. Rats were sacrificed and ipsilateral kidneys were subjected for analysis of morphological parameters such as renal height, cranio-caudal diameter, antero-posterior diameter, lateral diameter, volume of the pelvis and average cortical thickness: Renal height. Renal height and cranio-caudal diameter of renal pelvis after ipsilateral upper ureteric obstruction started rising as early as 7 days of creating obstruction and were affected earlier than antero-posterior and lateral diameter and also were reversed earlier than other parameters after reversal of obstruction. Renal cortical thickness and volume of the pelvis were affected after prolonged obstruction (> 3 weeks) and were the late parameters to be reversed after reversal of obstruction. Cranio-caudal diameter and renal height were the early morphological parameters to be affected and reversed after reversal of obstruction in experimentally created ipsilateral upper ureteric obstruction.
NASA Astrophysics Data System (ADS)
Rahayuningsih, M.; Kartijomo, NE; Retnaningsih, A.; Munir, M.; Dahlan, J.
2017-04-01
The remaining forest of Mount Ungaran, Central Javais the suitable habitat of Wreathed Hornbill (Rhyticeros undulatus), especially for a nesting site. The objective of the study was to analyse the nest record and characteristics of habitat around the nest, especially in Gunung Gentong station. The research was conducted from 2010-2016 using exploration method. The methodhabitat profile of the vertical structure tree canopy was taken by plot size 60 × 20 m. Measurements were taken to the standing of vegetation, canopy closure, the direction of the canopy, height canopy, a former branch of the vegetation height, and stem diameter. The Result of the study showed that Gunung Gentong is one of the research station that we have been recorded for nesting site on 2010-2015. Atotal of the nest record on Gunung Genting station was 10 nests. Estimate the elevation of nest location between 939-1240 AMSL. The tree species that used for nesting was Syzygium glabatrum, Syzygium antisepticum, Ceratoxylon formosum, and Ficus sp
England, Jacqueline R; Attiwill, Peter M
2007-08-01
Increases in plant size and structural complexity with increasing age have important implications for water flow through trees. Water supply to the crown is influenced by both the cross-sectional area and the permeability of sapwood. It has been hypothesized that hydraulic conductivity within sapwood increases with age. We investigated changes in sapwood permeability (k) and anatomy with tree age and height in the broad-leaved evergreen species Eucalyptus regnans F. Muell. Sapwood was sampled at breast height from trees ranging from 8 to 240 years old, and at three height positions on the main stem of 8-year-old trees. Variation in k was not significant among sampling height positions in young trees. However, k at breast height increased with tree age. This was related to increases in both vessel frequency and vessel diameter, resulting in a greater proportion of sapwood being occupied by vessel lumina. Sapwood hydraulic conductivity (the product of k and sapwood area) also increased with increasing tree age. However, at the stand level, there was a decrease in forest sapwood hydraulic conductivity with increasing stand age, because of a decrease in the number of trees per hectare. Across all ages, there were significant relationships between k and anatomy, with individual anatomical characteristics explaining 33-62% of the variation in k. There was also strong agreement between measured k and permeability predicted by the Hagen-Poiseuille equation. The results support the hypothesis of an increase in sapwood permeability at breast height with age. Further measurements are required to confirm this result at other height positions in older trees. The significance of tree-level changes in sapwood permeability for stand-level water relations is discussed.
A miniature ultrasonic actuator-control system for plant stem diameter micro-variation measurements
USDA-ARS?s Scientific Manuscript database
Measurements of micro-variations in plant stem diameter are potentially useful to optimize irrigation decision support systems that are based on plant physiological responses. However, for this technology to be suitable for field applications, problems associated with stem softness and micro variati...
Michael T. Thompson; Maggie. Toone
2012-01-01
Tree diameter growth models are widely used in many forestry applications, often to predict tree size at a future point in time. Also, there are instances where projections of past diameters are needed. An individual tree model has been developed to estimate diameter growth of multi-stem woodland tree species where the diameter is measured at root collar. The model was...
Prediction of height increment for models of forest growth
Albert R. Stage
1975-01-01
Functional forms of equations were derived for predicting 10-year periodic height increment of forest trees from height, diameter, diameter increment, and habitat type. Crown ratio was considered as an additional variable for prediction, but its contribution was negligible. Coefficients of the function were estimated for 10 species of trees growing in 10 habitat types...
Estimating Tree Height-Diameter Models with the Bayesian Method
Duan, Aiguo; Zhang, Jianguo; Xiang, Congwei
2014-01-01
Six candidate height-diameter models were used to analyze the height-diameter relationships. The common methods for estimating the height-diameter models have taken the classical (frequentist) approach based on the frequency interpretation of probability, for example, the nonlinear least squares method (NLS) and the maximum likelihood method (ML). The Bayesian method has an exclusive advantage compared with classical method that the parameters to be estimated are regarded as random variables. In this study, the classical and Bayesian methods were used to estimate six height-diameter models, respectively. Both the classical method and Bayesian method showed that the Weibull model was the “best” model using data1. In addition, based on the Weibull model, data2 was used for comparing Bayesian method with informative priors with uninformative priors and classical method. The results showed that the improvement in prediction accuracy with Bayesian method led to narrower confidence bands of predicted value in comparison to that for the classical method, and the credible bands of parameters with informative priors were also narrower than uninformative priors and classical method. The estimated posterior distributions for parameters can be set as new priors in estimating the parameters using data2. PMID:24711733
Estimating tree height-diameter models with the Bayesian method.
Zhang, Xiongqing; Duan, Aiguo; Zhang, Jianguo; Xiang, Congwei
2014-01-01
Six candidate height-diameter models were used to analyze the height-diameter relationships. The common methods for estimating the height-diameter models have taken the classical (frequentist) approach based on the frequency interpretation of probability, for example, the nonlinear least squares method (NLS) and the maximum likelihood method (ML). The Bayesian method has an exclusive advantage compared with classical method that the parameters to be estimated are regarded as random variables. In this study, the classical and Bayesian methods were used to estimate six height-diameter models, respectively. Both the classical method and Bayesian method showed that the Weibull model was the "best" model using data1. In addition, based on the Weibull model, data2 was used for comparing Bayesian method with informative priors with uninformative priors and classical method. The results showed that the improvement in prediction accuracy with Bayesian method led to narrower confidence bands of predicted value in comparison to that for the classical method, and the credible bands of parameters with informative priors were also narrower than uninformative priors and classical method. The estimated posterior distributions for parameters can be set as new priors in estimating the parameters using data2.
Huang, Kuo-Chen; Leung, Cherng-Yee; Wang, Hsiu-Feng
2010-04-01
The purpose of this study was to assess the ability of blindfolded, visually impaired, and sighted individuals to estimate object height as a function of cane length, cane diameter, and judgment type. 48 undergraduate students (ages 20 to 23 years) were recruited to participate in the study. Participants were divided into low-vision, severely myopic, and normal-vision groups. Five stimulus heights were explored with three cane lengths, varying cane diameters, and judgment types. The participants were asked to estimate the stimulus height with or without reference to a standard block. Results showed that the constant error ratio for estimated height improved with decreasing cane length and comparative judgment. The findings were unclear regarding the effect of cane length on haptic perception of height. Implications were discussed for designing environments, such as stair heights, chairs, the magnitude of apertures, etc., for visually impaired individuals.
Effects of ozone and sulfur dioxide on height and stem specific gravity of Populus hybrids
Roy L. Patton
1981-01-01
Unfumigated hybrid poplars (Populus spp.) were compared with poplars of the same nine clones fumigated with 0.15 pprn ozone or 0.25 ppm sulfur dioxide. After 102 days, plant height and stem specific gravity were measured to determine whether specific gravity is altered by the fumigants and to compare that response to height suppression, an accepted...
Effect of Surface Roughness on Characteristics of Spherical Shock Waves
NASA Technical Reports Server (NTRS)
Huber, Paul W.; McFarland, Donald R.
1959-01-01
Measurements of peak overpressure and Mach stem height were made at four burst heights. Data were obtained with instrumentation capable of directly observing the variation of shock wave movement with time. Good similarity of free air shock peak overpressure with larger scale data was found to exist. The net effect of surface roughness on shock peak overpressures slightly. Surface roughness delayed the Mach stem formation at the greatest charge height and lowered the growth at all burst heights. A similarity parameter was found which approximately correlates the triple point path at different burst heights.
Vertessy, R A; Benyon, R G; O'Sullivan, S K; Gribben, P R
1995-09-01
We examined relationships between stem diameter, sapwood area, leaf area and transpiration in a 15-year-old mountain ash (Eucalyptus regnans F. Muell.) forest containing silver wattle (Acacia dealbata Link.) as a suppressed overstory species and mountain hickory (Acacia frigescens J.H. Willis) as an understory species. Stem diameter explained 93% of the variation in leaf area, 96% of the variation in sapwood area and 88% of the variation in mean daily spring transpiration in 19 mountain ash trees. In seven silver wattle trees, stem diameter explained 87% of the variation in sapwood area but was a poor predictor of the other variables. When transpiration measurements from individual trees were scaled up to a plot basis, using stem diameter values for 164 mountain ash trees and 124 silver wattle trees, mean daily spring transpiration rates of the two species were 2.3 and 0.6 mm day(-1), respectively. The leaf area index of the plot was estimated directly by destructive sampling, and indirectly with an LAI-2000 plant canopy analyzer and by hemispherical canopy photography. All three methods gave similar results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, P.M.; Fiddler, G.O.; Kitzmiller, J.H.
1994-04-01
Three classes of ponderosa pine (Pinus ponderosa) seedlings (nursery-run, wind-pollinated, control-pollinated) were evaluated for stem height and diameter at the USDA Forest Service's Placerville Nursery and the Georgetown Range District in northern California. Pines in all three classes were grown with competing vegetation or maintained in a free-to-grow condition. Control-pollinated seedlings were statistically taller than nursery-run counterparts when outplanted, and after 1 and 2 growing seasons in the field with and without competition. They also had significantly larger diameters when outplanted and after 2 growing seasons in the field when free to grow. Wind-pollinated seedlings grew taller than nursery-run seedlingsmore » when free to grow. A large amount of competing vegetation [bearclover (Chamaebatia foliolosa)--29,490 plants per acre; herbaceous vegetation--11,500; hardwood sprouts--233; and whiteleaf manzanita (Arctostaphylos viscida) seedlings--100] ensure that future pine development will be tested rigorously.« less
[Studies on the shade-endurance capacity of Glycyrrhiza uralensis].
Wei, Sheng-li; Wang, Wen-quan; Chen, Xiu-hua; Qin, Shu-ying; Chen, Xiu-tian
2005-01-01
To study the shade-endurance property of Glycyrrhiza uralensis and provide rationale for the practice of inter-cropping G. uralensis with trees. Black shading nets were used to provide five different environments of light intensities (light penetration rates of 100%, 75%, 65%, 50% and 25%, respectively). To assess the shade-endurance capacity of G. uralensis, several aspects were evaluated, including growth characters, physiological and ecological characters, biomass, and chemical contents. G. uralensis is a light-favored plant. The growth indices such as plant height, stem diameter, leaves number, root diameter, biomass, and daily average photosynthetic rate (Pn) are highest when light permeation rate is 100%. All these indices decrease when light intensity decreases. However, G. uralensis possesses shade-endurance capacity to some degree; it adapts to the shading environment by increasing the leaf area and chlorophyll contents. Shading has no obvious effect on the absolute light energy utilization rate (Eu) or Fv/Fm ratio. The influence of shading on the chemical contents of G. uralensis is obvious.
NASA Technical Reports Server (NTRS)
Haas, J. E.; Kofskey, M. G.
1978-01-01
The rotor tip clearance was obtained by use of a recess in the casing above the rotor blades and also by use of a reduced blade height. For the recessed casing configuration, the optimum rotor blade height was found to be the one where the rotor tip diameter was equal to the stator tip diameter. The tip clearance loss associated with this optimum recessed casing configuration was less than that for the reduced blade height configuration.
1982-03-01
Most of the KEPONE was exported for use in the Caribbean and Central American banana fields, and in other countries for the control of potato beetles...quadrat: species diversity, stem density (by species), height (mean height of 10 randomly selected stems), flowering phenology (number of flowering stems
Fan, Hailan; McGuire, Mary Anne; Teskey, Robert O
2017-11-01
Carbon dioxide (CO2) released from respiring cells in the stems of trees (RS) can diffuse radially to the atmosphere (EA) or dissolve in xylem sap and move internally in the tree (FT). Previous studies have observed that EA decreases as stem or branch diameter increases, but the cause of this relationship has not been determined, nor has the relationship been confirmed between stem diameter and RS, which includes both EA and FT. In this study, for the first time the mass balance technique was used to estimate RS of stems of Liriodendron tulipifera L. trees of different diameters, ranging from 16 to 60 cm, growing on the same site. The magnitude of the component fluxes scaled with tree size. Among the five trees, the contribution of EA to RS decreased linearly with increasing stem diameter and sapwood area while the contribution of FT to RS increased linearly with stem diameter and sapwood area. For the smallest tree EA was 86% of RS but it was only 46% of RS in the largest tree. As tree size increased a greater proportion of respired CO2 dissolved in sap and remained within the tree. Due to increase in FT with tree size, we observed that trees of different sizes had the same RS even though they had different EA. This appears to explain why the EA of stems and branches decreases as their size increases. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dominant height-based height-diameter equations for trees in southern Indiana
John A., Jr. Kershaw; Robert C. Morrissey; Douglass F. Jacobs; John R. Seifert; James B. McCarter
2008-01-01
Height-diameter equations are developed based on dominant tree data collected in 1986 in 8- to 17-year-old clearcuts and the phase 2 Forest Inventory and Analysis plots on the Hoosier National Forest in south central Indiana. Two equation forms are explored: the basic, three-parameter Chapman-Richards function, and a modification of the three-parameter equation...
Cytokinin signaling regulates cambial development in poplar
Nieminen, Kaisa; Immanen, Juha; Laxell, Marjukka; Kauppinen, Leila; Tarkowski, Petr; Dolezal, Karel; Tähtiharju, Sari; Elo, Annakaisa; Decourteix, Mélanie; Ljung, Karin; Bhalerao, Rishikesh; Keinonen, Kaija; Albert, Victor A.; Helariutta, Ykä
2008-01-01
Although a substantial proportion of plant biomass originates from the activity of vascular cambium, the molecular basis of radial plant growth is still largely unknown. To address whether cytokinins are required for cambial activity, we studied cytokinin signaling across the cambial zones of 2 tree species, poplar (Populus trichocarpa) and birch (Betula pendula). We observed an expression peak for genes encoding cytokinin receptors in the dividing cambial cells. We reduced cytokinin levels endogenously by engineering transgenic poplar trees (P. tremula × tremuloides) to express a cytokinin catabolic gene, Arabidopsis CYTOKININ OXIDASE 2, under the promoter of a birch CYTOKININ RECEPTOR 1 gene. Transgenic trees showed reduced concentration of a biologically active cytokinin, correlating with impaired cytokinin responsiveness. In these trees, both apical and radial growth was compromised. However, radial growth was more affected, as illustrated by a thinner stem diameter than in WT at same height. To dissect radial from apical growth inhibition, we performed a reciprocal grafting experiment. WT scion outgrew the diameter of transgenic stock, implicating cytokinin activity as a direct determinant of radial growth. The reduced radial growth correlated with a reduced number of cambial cell layers. Moreover, expression of a cytokinin primary response gene was dramatically reduced in the thin-stemmed transgenic trees. Thus, a reduced level of cytokinin signaling is the primary basis for the impaired cambial growth observed. Together, our results show that cytokinins are major hormonal regulators required for cambial development. PMID:19064928
Lagendijk, D. D. Georgette; Mackey, Robin L.; Page, Bruce R.; Slotow, Rob
2011-01-01
Herbivory by megaherbivores on woody vegetation in general is well documented; however studies focusing on the individual browsing effects of both mega- and mesoherbivore species on recruitment are scarce. We determined these effects for elephant Loxodonta africana and nyala Tragelaphus angasii in the critically endangered Sand Forest, which is restricted to east southern Africa, and is conserved mainly in small reserves with high herbivore densities. Replicated experimental treatments (400 m2) in a single forest patch were used to exclude elephant, or both elephant and nyala. In each treatment, all woody individuals were identified to species and number of stems, diameter and height were recorded. Results of changes after two years are presented. Individual tree and stem densities had increased in absence of nyala and elephant. Seedling recruitment (based on height and diameter) was inhibited by nyala, and by elephant and nyala in combination, thereby preventing recruitment into the sapling stage. Neither nyala or elephant significantly reduced sapling densities. Excluding both elephant and nyala in combination enhanced recruitment of woody species, as seedling densities increased, indicating that forest regeneration is impacted by both mega- and mesoherbivores. The Sand Forest tree community approached an inverse J-shaped curve, with the highest abundance in the smaller size classes. However, the larger characteristic tree species in particular, such as Newtonia hildebrandtii, were missing cohorts in the middle size classes. When setting management goals to conserve habitats of key importance, conservation management plans need to consider the total herbivore assemblage present and the resulting browsing effects on vegetation. Especially in Africa, where the broadest suite of megaherbivores still persists, and which is currently dealing with the ‘elephant problem’, the individual effects of different herbivore species on recruitment and dynamics of forests and woodlands are important issues which need conclusive answers. PMID:21445345
NASA Astrophysics Data System (ADS)
Mangla, Rohit; Kumar, Shashi; Nandy, Subrata
2016-05-01
SAR and LiDAR remote sensing have already shown the potential of active sensors for forest parameter retrieval. SAR sensor in its fully polarimetric mode has an advantage to retrieve scattering property of different component of forest structure and LiDAR has the capability to measure structural information with very high accuracy. This study was focused on retrieval of forest aboveground biomass (AGB) using Terrestrial Laser Scanner (TLS) based point clouds and scattering property of forest vegetation obtained from decomposition modelling of RISAT-1 fully polarimetric SAR data. TLS data was acquired for 14 plots of Timli forest range, Uttarakhand, India. The forest area is dominated by Sal trees and random sampling with plot size of 0.1 ha (31.62m*31.62m) was adopted for TLS and field data collection. RISAT-1 data was processed to retrieve SAR data based variables and TLS point clouds based 3D imaging was done to retrieve LiDAR based variables. Surface scattering, double-bounce scattering, volume scattering, helix and wire scattering were the SAR based variables retrieved from polarimetric decomposition. Tree heights and stem diameters were used as LiDAR based variables retrieved from single tree vertical height and least square circle fit methods respectively. All the variables obtained for forest plots were used as an input in a machine learning based Random Forest Regression Model, which was developed in this study for forest AGB estimation. Modelled output for forest AGB showed reliable accuracy (RMSE = 27.68 t/ha) and a good coefficient of determination (0.63) was obtained through the linear regression between modelled AGB and field-estimated AGB. The sensitivity analysis showed that the model was more sensitive for the major contributed variables (stem diameter and volume scattering) and these variables were measured from two different remote sensing techniques. This study strongly recommends the integration of SAR and LiDAR data for forest AGB estimation.
50 CFR 665.265 - Size restrictions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... measurement taken from its base to its most distal extremity. The stem diameter of a living coral specimen shall be determined by measuring the greatest diameter of the stem at a point no less than 1 inch (2.54... black coral harvested from any precious coral permit area must have attained either a minimum stem...
50 CFR 665.165 - Size restrictions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... measurement taken from its base to its most distal extremity. The stem diameter of a living coral specimen shall be determined by measuring the greatest diameter of the stem at a point no less than 1 inch (2.54... black coral harvested from any precious coral permit area must have attained either a minimum stem...
50 CFR 665.465 - Size restrictions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... measurement taken from its base to its most distal extremity. The stem diameter of a living coral specimen shall be determined by measuring the greatest diameter of the stem at a point no less than 1 inch (2.54... black coral harvested from any precious coral permit area must have attained either a minimum stem...
50 CFR 665.665 - Size restrictions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... line measurement taken from its base to its most distal extremity. The stem diameter of a living coral specimen shall be determined by measuring the greatest diameter of the stem at a point no less than 1 inch.... Live black coral harvested from any precious coral permit area must have attained either a minimum stem...
50 CFR 665.665 - Size restrictions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... measurement taken from its base to its most distal extremity. The stem diameter of a living coral specimen shall be determined by measuring the greatest diameter of the stem at a point no less than 1 inch (2.54... black coral harvested from any precious coral permit area must have attained either a minimum stem...
50 CFR 665.265 - Size restrictions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... measurement taken from its base to its most distal extremity. The stem diameter of a living coral specimen shall be determined by measuring the greatest diameter of the stem at a point no less than 1 inch (2.54... black coral harvested from any precious coral permit area must have attained either a minimum stem...
50 CFR 665.465 - Size restrictions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... measurement taken from its base to its most distal extremity. The stem diameter of a living coral specimen shall be determined by measuring the greatest diameter of the stem at a point no less than 1 inch (2.54... black coral harvested from any precious coral permit area must have attained either a minimum stem...
50 CFR 665.165 - Size restrictions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... measurement taken from its base to its most distal extremity. The stem diameter of a living coral specimen shall be determined by measuring the greatest diameter of the stem at a point no less than 1 inch (2.54... black coral harvested from any precious coral permit area must have attained either a minimum stem...
50 CFR 665.165 - Size restrictions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... measurement taken from its base to its most distal extremity. The stem diameter of a living coral specimen shall be determined by measuring the greatest diameter of the stem at a point no less than 1 inch (2.54... black coral harvested from any precious coral permit area must have attained either a minimum stem...
50 CFR 665.265 - Size restrictions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... measurement taken from its base to its most distal extremity. The stem diameter of a living coral specimen shall be determined by measuring the greatest diameter of the stem at a point no less than 1 inch (2.54... black coral harvested from any precious coral permit area must have attained either a minimum stem...
50 CFR 665.265 - Size restrictions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... measurement taken from its base to its most distal extremity. The stem diameter of a living coral specimen shall be determined by measuring the greatest diameter of the stem at a point no less than 1 inch (2.54... black coral harvested from any precious coral permit area must have attained either a minimum stem...
50 CFR 665.465 - Size restrictions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... measurement taken from its base to its most distal extremity. The stem diameter of a living coral specimen shall be determined by measuring the greatest diameter of the stem at a point no less than 1 inch (2.54... black coral harvested from any precious coral permit area must have attained either a minimum stem...
50 CFR 665.165 - Size restrictions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... measurement taken from its base to its most distal extremity. The stem diameter of a living coral specimen shall be determined by measuring the greatest diameter of the stem at a point no less than 1 inch (2.54... black coral harvested from any precious coral permit area must have attained either a minimum stem...
50 CFR 665.665 - Size restrictions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... line measurement taken from its base to its most distal extremity. The stem diameter of a living coral specimen shall be determined by measuring the greatest diameter of the stem at a point no less than 1 inch.... Live black coral harvested from any precious coral permit area must have attained either a minimum stem...
50 CFR 665.665 - Size restrictions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... line measurement taken from its base to its most distal extremity. The stem diameter of a living coral specimen shall be determined by measuring the greatest diameter of the stem at a point no less than 1 inch.... Live black coral harvested from any precious coral permit area must have attained either a minimum stem...
50 CFR 665.465 - Size restrictions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... measurement taken from its base to its most distal extremity. The stem diameter of a living coral specimen shall be determined by measuring the greatest diameter of the stem at a point no less than 1 inch (2.54... black coral harvested from any precious coral permit area must have attained either a minimum stem...
50 CFR 665.465 - Size restrictions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... measurement taken from its base to its most distal extremity. The stem diameter of a living coral specimen shall be determined by measuring the greatest diameter of the stem at a point no less than 1 inch (2.54... black coral harvested from any precious coral permit area must have attained either a minimum stem...
50 CFR 665.665 - Size restrictions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... line measurement taken from its base to its most distal extremity. The stem diameter of a living coral specimen shall be determined by measuring the greatest diameter of the stem at a point no less than 1 inch.... Live black coral harvested from any precious coral permit area must have attained either a minimum stem...
Key Parameters Evaluation for Hip Prosthesis with Finite Element Analysis
NASA Astrophysics Data System (ADS)
Guo, Hongqiang; Li, Dichen; Lian, Qin; Li, Xiang; Jin, Zhongmin
2007-09-01
Stem length and cross section are two key parameters that influence the stability and longevity of metallic hip prosthesis in the total hip arthroplasty (THA). In order to assess their influence to the stress and fatigue behavior of hip prosthesis, a series model of hip prosthesis with round-shaped or drum-shaped cross section, and with different stem lengths were created. These models were analyzed under both static and dynamic loading conditions with finite element analysis, and dynamic loading represents normal walking was used in the dynamic analysis. The stress on the metallic stem, cement, and adjacent bone were got, micromotion on the cement-metal interface were got too. Safety factors for fatigue life of the hip prothesis were calculated based on data obtained from dynamic analysis. Static analysis shows that drum-shaped cross section can decrease the displacement of the stem, that stress on drum-shaped stem focus on the corner of the femoral neck and the distal part of hip prosthesis, whereas the stress on the round-shaped stem distributes evenly over most part of the stem, and maximum stress on stem prosthesis fluctuates with stem length bottoming out at stem length range from 80 mm to 110 mm, that drum-shaped stems with drum height 8 mm generate more stress at the distal part of stem than drum-shaped stems with drum height 10 mm and round stems do. Dynamic and fatigue analysis shows that drum-shaped stem with drum height 10 mm and stem length 90 mm has the greatest safety factor therefore long fatigue life.
Long-term tree inventory data from mountain forest plots in France.
Fuhr, Marc; Cordonnier, Thomas; Courbaud, Benoît; Kunstler, Georges; Mermin, Eric; Riond, Catherine; Tardif, Pascal
2017-04-01
We present repeated tree measurement data from 63 permanent plots in mountain forests in France. Plot elevations range from 800 (lower limit of the montane belt) to 1942 m above sea level (subalpine belt). Forests mainly consist of pure or mixed stands dominated by European beech (Fagus sylvatica), Silver fir (Abies alba), and Norway spruce (Picea abies), in association with various broadleaved species at low elevation and with Arolla pine (Pinus cembra) at high elevation. The plot network includes 23 plots in stands that have not been managed for the last 40 years (at least) and 40 plots in plots managed according to an uneven-aged system with single-tree or small-group selection cutting. Plot sizes range from 0.2 to 1.9 ha. Plots were installed from 1994 to 2004 and remeasured two to five times during the 1994-2015 period. During the first census (installation), living trees more than 7.5 cm in dbh were identified, their diameter at breast height (dbh) was measured and their social status (strata) noted. Trees were spatially located, either with x, y, and z coordinates (40 plots) or within 0.25-ha square subplots (23 plots). In addition, in a subset of plots (58 plots), tree heights and tree crown dimensions were measured on a subset of trees and dead standing trees and stumps were included in the census. Remeasurements after installation include live tree diameters (including recruited trees), tree status (living, damaged, dead, stump), and for a subset of trees, height. At the time of establishment of the plots, plot densities range from 181 to 1328 stems/ha and plot basal areas range from 13.6 to 81.3 m 2 /ha. © 2017 by the Ecological Society of America.
John R. Brooks
2007-01-01
A technique for estimating stand average dominant height based solely on field inventory data is investigated. Using only 45.0919 percent of the largest trees per acre in the diameter distribution resulted in estimates of average dominant height that were within 4.3 feet of the actual value, when averaged over stands of very different structure and history. Cubic foot...
Factors affecting diurnal stem contraction in young Douglas-fir
Warren D. Devine; Constance Harrington
2011-01-01
Diurnal fluctuation in a tree's stem diameter is a function of daily growth and of the tree's water balance, as water is temporarily stored in the relatively elastic outer cambial and phloem tissues. On a very productive site in southwestern Washington, U.S.A we used recording dendrometers to monitor stem diameter fluctuations of Douglas-fir at plantation...
Michael J. Falkowski; Alistair M.S. Smith; Andrew T. Hudak; Paul E. Gessler; Lee A. Vierling; Nicholas L. Crookston
2006-01-01
We describe and evaluate a new analysis technique, spatial wavelet analysis (SWA), to automatically estimate the location, height, and crown diameter of individual trees within mixed conifer open canopy stands from light detection and ranging (lidar) data. Two-dimensional Mexican hat wavelets, over a range of likely tree crown diameters, were convolved with lidar...
NASA Technical Reports Server (NTRS)
Haas, J. E.; Kofskey, M. G.
1977-01-01
Two tip clearance configurations, one with a recess in the casing and the other with a reduced rotor blade height, were investigated at design equivalent speed over a range of tip clearance from about 2.0 to 5.0 percent of the stator blade height. The optimum configuration with a recess in the casing was the one where the rotor tip diameter was equal to the stator tip diameter (zero blade extension). For this configuration there was an approximate 1.5 percent decrease in total efficiency for an increase in tip clearance of 1 percent of stator blade height. For the reduced blade height configurations there was an approximate 2.0 percent decrease in total efficiency for an increase in tip clearance of 1 percent of stator blade height.
In Situ Height and Width Estimation of Sorghum Plants from 2.5d Infrared Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baharav, Tavor; Bariya, Mohini; Zakhor, Avideh
Plant phenotyping, or the measurement of plant traits such as stem width and plant height, is a critical step in the development and evaluation of higher yield biofuel crops. Phenotyping allows biologists to quantitatively estimate the biomass of plant varieties and therefore their potential for biofuel production. Manual phenotyping is costly, time-consuming, and errorprone, requiring a person to walk through the fields measuring individual plants with a tape measure and notebook. In this work we describe an alternative system consisting of an autonomous robot equipped with two infrared cameras that travels through fields, collecting 2.5D image data of sorghum plants.more » We develop novel image processing based algorithms to estimate plant height and stem width from the image data. Our proposed method has the advantage of working in situ using images of plants from only one side. This allows phenotypic data to be collected nondestructively throughout the growing cycle, providing biologists with valuable information on crop growth patterns. Our approach first estimates plant heights and stem widths from individual frames. It then uses tracking algorithms to refine these estimates across frames and avoid double counting the same plant in multiple frames. The result is a histogram of stem widths and plant heights for each plot of a particular genetically engineered sorghum variety. In-field testing and comparison with human collected ground truth data demonstrates that our system achieves 13% average absolute error for stem width estimation and 15% average absolute error for plant height estimation.« less
In Situ Height and Width Estimation of Sorghum Plants from 2.5d Infrared Images
Baharav, Tavor; Bariya, Mohini; Zakhor, Avideh
2017-01-29
Plant phenotyping, or the measurement of plant traits such as stem width and plant height, is a critical step in the development and evaluation of higher yield biofuel crops. Phenotyping allows biologists to quantitatively estimate the biomass of plant varieties and therefore their potential for biofuel production. Manual phenotyping is costly, time-consuming, and errorprone, requiring a person to walk through the fields measuring individual plants with a tape measure and notebook. In this work we describe an alternative system consisting of an autonomous robot equipped with two infrared cameras that travels through fields, collecting 2.5D image data of sorghum plants.more » We develop novel image processing based algorithms to estimate plant height and stem width from the image data. Our proposed method has the advantage of working in situ using images of plants from only one side. This allows phenotypic data to be collected nondestructively throughout the growing cycle, providing biologists with valuable information on crop growth patterns. Our approach first estimates plant heights and stem widths from individual frames. It then uses tracking algorithms to refine these estimates across frames and avoid double counting the same plant in multiple frames. The result is a histogram of stem widths and plant heights for each plot of a particular genetically engineered sorghum variety. In-field testing and comparison with human collected ground truth data demonstrates that our system achieves 13% average absolute error for stem width estimation and 15% average absolute error for plant height estimation.« less
Radial diffusion, vertical transport, and refixation of labeled bicarbonate in scots pine stems
NASA Astrophysics Data System (ADS)
Marshall, J. D.; Tarvainen, L.; Wallin, G.
2016-12-01
The CO2 produced by a respiring stem provides an index of metabolic activity in the stem and a quantitative estimate of an important component of the forest carbon budget. Production of CO2 by a given stem volume is lost by three competing processes. First, some diffuses radially outward through the bark. Second, some is dissolved and vertically transported upward out of the control volume by the xylem stream. Third, some is refixed by photosynthesis under the bark. The relative balance among these pathways was quantified in 17-m Scots pine trees by 13C-bicarbonate labeling of the xylem stream and monitoring of the 13CO2 in the xylem water, along with continuous monitoring of the radial diffusive flux at four canopy heights and in transpiration from leaves. Most of the label diffused out radially, as 13CO2, immediately above the labeling site, over about a week. The pulse was weakly and briefly detected 4 m above that height. Further up the stem it was not detected at all. We detected significant refixation of CO2 in the stems at all heights above 4 m, where the bark becomes papery and thin, but the label was so weak at this height that refixation had little influence on the pulse chase. We conclude that the vertical flux is negligible in Scots pine, but that the refixation flux must be accounted for in estimates of whole-stem CO2 efflux.
E.M. Raley; D.P. Gwaze; T.D. Byram
2003-01-01
Data from repeated periodic measures of height, diameter and volume from eleven lobiolly pine progeny tests maintained as part of the Western Gulf Forest Tree Improvement Program (WGFTIP) were analyzed to 1) determine the potential of using early heighf diameter. or volume as selection criteria for rotation-age volume, and 2) to develop a method of expressing height...
Central obesity is an independent predictor of erectile dysfunction in older men.
Riedner, Charles Edison; Rhoden, Ernani Luis; Ribeiro, Eduardo Porto; Fuchs, Sandra Costa
2006-10-01
There is a growing body of evidence in the literature correlating erectile dysfunction to obesity. We investigated the correlation of different anthropometric indexes of central obesity to erectile dysfunction. A cross-sectional study was performed including 256 consecutive men 40 years old or older. All men completed the International Index of Erectile Function, and were evaluated routinely with a clinical history, physical examination and blood analysis for fasting serum glucose, lipid profile and serum testosterone. Anthropometric measures included body mass index, waist circumference, sagittal abdominal diameter, maximal abdominal circumference, and waist-hip, waist-thigh, waist-height, sagittal abdominal diameter-thigh and sagittal abdominal diameter-height indexes. In men 40 to 60 years old the different anthropometric indexes of central obesity were not correlated with the presence of erectile dysfunction (p > 0.05). Men older than 60 years (41%, range 61 to 81) demonstrated an association among erectile dysfunction and waist-hip index (p = 0.04), waist-thigh index (p = 0.02), sagittal abdominal diameter (p = 0.03), sagittal abdominal diameter-height index (p = 0.02) and maximal abdominal circumference (p = 0.04). After logistic regression analysis an independent effect on the presence of erectile dysfunction was observed for waist-hip index (OR 8.56, 95% CI 1.44-50.73), sagittal abdominal diameter (OR 7.87, 95% CI 1.24-49.75), sagittal abdominal diameter-height index (OR 14.21, 95% CI 1.11-182.32), maximum abdominal circumference (OR 11.72, 95% CI 1.73-79.18) and waist circumference (OR 19.37, 95% CI 1.15-326.55). This study suggests that central obesity, assessed by several anthropometric indicators, is associated to the presence of erectile dysfunction in men older than 60 years. Sagittal abdominal diameter, sagittal abdominal diameter-height index, maximum abdominal circumference, waist circumference and waist-hip index were useful indicators to predict the presence of erectile dysfunction.
Lawrence R. Gering; Dennis M. May
1995-01-01
A set of simple linear regression models for predicting diameter at breast height (dbh) from crown diamter and a set of similar models for predicting crown diamter from dbh were developed for four species groups in Harding County, TN. Data were obtained from 557 trees measured during hte 1989 USDA Southern Forest Experiment Station survey of the forest of Tennessee,...
Wu, Longmei; Zhang, Wujun; Ding, Yanfeng; Zhang, Jianwei; Cambula, Elidio D; Weng, Fei; Liu, Zhenghui; Ding, Chengqiang; Tang, She; Chen, Lin; Wang, Shaohua; Li, Ganghua
2017-01-01
Low solar radiation caused by industrial development and solar dimming has become a limitation in crop production in China. It is widely accepted that low solar radiation influences many aspects of plant development, including slender, weak stems and susceptibility to lodging. However, the underlying mechanisms are not well understood. To clarify how low solar radiation affects stem mechanical strength formation and lodging resistance, the japonica rice cultivars Wuyunjing23 (lodging-resistant) and W3668 (lodging-susceptible) were grown under field conditions with normal light (Control) and shading (the incident light was reduced by 60%) with a black nylon net. The yield and yield components, plant morphological characteristics, the stem mechanical strength, cell wall components, culm microstructure, gene expression correlated with cellulose and lignin biosynthesis were measured. The results showed that shading significantly reduced grain yield attributed to reduction of spikelets per panicles and grain weight. The stem-breaking strength decreased significantly under shading treatment; consequently, resulting in higher lodging index in rice plant in both varieties, as revealed by decreased by culm diameter, culm wall thickness and increased plant height, gravity center height. Compared with control, cell wall components including non-structural carbohydrate, sucrose, cellulose, and lignin reduced quite higher. With histochemical straining, shading largely reduced lignin deposition in the sclerenchyma cells and vascular bundle cells compared with control, and decreased cellulose deposition in the parenchyma cells of culm tissue in both Wuyunjing23 and W3668. And under shading condition, gene expression involved in secondary cell wall synthesis, OsPAL, OsCOMT, OsCCoAOMT, OsCCR , and OsCAD2 , and primary cell wall synthesis, OsCesA1, OsCesA3 , and OsCesA8 were decreased significantly. These results suggest that gene expression involved in the reduction of lignin and cellulose in both sclerenchyma and parenchyma cells, which attribute to lignin and cellulose in culm tissue and weak mechanical tissue, consequently, result in poor stem strength and higher lodging risks. Highlights : (1) Shading decreases the stem mechanical strength of japonica rice by decreasing non-structural carbohydrate, sucrose, lignin, and cellulose accumulation in culms. (2) The decrease of carbon source under shading condition is the cause for the lower lignin and cellulose accumulation in culm. (3) The expression of genes involved in lignin and primarily cell wall cellulose biosynthesis ( OsCesA1, OsCesA3 , and OsCesA8 ) at the stem formation stage are down-regulated under shading condition, inducing defective cell wall development and poor lodging resistance.
Interaction of Highly Underexpanded Jets with Simulated Lunar Surfaces
NASA Technical Reports Server (NTRS)
Stitt, Leonard E.
1961-01-01
Pressure distributions and erosion patterns on simulated lunar surfaces (hard and soft) and interference effects between the surface and two representative lunar vehicles (cylindrical and spherical) were obtained with cold-air jets at various descent heights and nozzle total-pressure ratios up to 288,000. Surface pressure distributions were dependent on both nozzle area ratio and, nozzle contour. Peak pressures obtained with a sonic nozzle agreed closely with those predicted theoretically for a near-sonic jet expanding into a vacuum. Short bell-shaped nozzles gave annular pressure distributions; the low center pressure resulted from the coalescence of shocks that originated within the nozzle. The high surface pressures were contained within a circle whose diameter was about 16 throat diameters, regardless of nozzle area ratio or contour. The peak pressure increased rapidly as the vehicle approached the surface; for example, at a descent height of 40 throat diameters the peak pressure was 0.4 percent of the chamber pressure, but increased to 6 percent at 13 throat diameters. The exhaust jet eroded a circular concave hole in white sand at descent heights from about 200 to 600 throat diameters. The hole diameter was about 225 throat diameters, while the depth was approximately 60 throat diameters. The sand particles, which formed a conical sheet at a semivertex angle of 50 deg, appeared to follow a ballistic trajectory and at no time struck the vehicle. An increase in pressure was measured on the base of the cylindrical lunar vehicle when it approached to within 14 throat diameters of the hard, flat surface. No interference effects were noted between the spherical model and the surface to descent heights as low as 8 throat diameters.
Toward Reconciliation of STEM and SAXS Data from Ionomers by Investigating Gold Nanoparticles
NASA Astrophysics Data System (ADS)
Benetatos, Nicholas; Smith, Brian; Heiney, Paul; Winey, Karen
2005-03-01
We have recently pioneered the use of scanning transmission electron microscopy (STEM) for direct, model independent imaging of the nano-scale morphology of ionomers. To date, the sizes of ionic aggregates determined in STEM experiments are inconsistent with SAXS data interpreted by the Yarusso-Cooper model. To address this discrepancy we have investigated a pair of model nanoparticles (11 and 55 atom Au clusters) with both STEM and SAXS. Using this model system we have improved our method of measuring nanometer scale objects and evaluated the importance of STEM probe size and specimen thickness. While the size of the STEM probe was inconsequential, specimen thicker than 50 nm showed significant depreciation of image quality, which limits our ability to accurately measure particle size. SAXS was performed on dilute suspensions of nanoparticles and fit using a monodisperse, hard-sphere form factor model. For Au11, STEM finds a diameter of 1.3 nm + .14 and SAXS finds a diameter of 1.4 nm. Similarly, both STEM and SAXS determine a diameter of 1.7 nm for Au55. Analysis of these model systems have allowed us to evaluate several factors of potential importance in reconciling STEM and SAXS data from ionomers.
Development and evaluation of height diameter at breast models for native Chinese Metasequoia.
Liu, Mu; Feng, Zhongke; Zhang, Zhixiang; Ma, Chenghui; Wang, Mingming; Lian, Bo-Ling; Sun, Renjie; Zhang, Li
2017-01-01
Accurate tree height and diameter at breast height (dbh) are important input variables for growth and yield models. A total of 5503 Chinese Metasequoia trees were used in this study. We studied 53 fitted models, of which 7 were linear models and 46 were non-linear models. These models were divided into two groups of single models and multivariate models according to the number of independent variables. The results show that the allometry equation of tree height which has diameter at breast height as independent variable can better reflect the change of tree height; in addition the prediction accuracy of the multivariate composite models is higher than that of the single variable models. Although tree age is not the most important variable in the study of the relationship between tree height and dbh, the consideration of tree age when choosing models and parameters in model selection can make the prediction of tree height more accurate. The amount of data is also an important parameter what can improve the reliability of models. Other variables such as tree height, main dbh and altitude, etc can also affect models. In this study, the method of developing the recommended models for predicting the tree height of native Metasequoias aged 50-485 years is statistically reliable and can be used for reference in predicting the growth and production of mature native Metasequoia.
Development and evaluation of height diameter at breast models for native Chinese Metasequoia
Feng, Zhongke; Zhang, Zhixiang; Ma, Chenghui; Wang, Mingming; Lian, Bo-ling; Sun, Renjie; Zhang, Li
2017-01-01
Accurate tree height and diameter at breast height (dbh) are important input variables for growth and yield models. A total of 5503 Chinese Metasequoia trees were used in this study. We studied 53 fitted models, of which 7 were linear models and 46 were non-linear models. These models were divided into two groups of single models and multivariate models according to the number of independent variables. The results show that the allometry equation of tree height which has diameter at breast height as independent variable can better reflect the change of tree height; in addition the prediction accuracy of the multivariate composite models is higher than that of the single variable models. Although tree age is not the most important variable in the study of the relationship between tree height and dbh, the consideration of tree age when choosing models and parameters in model selection can make the prediction of tree height more accurate. The amount of data is also an important parameter what can improve the reliability of models. Other variables such as tree height, main dbh and altitude, etc can also affect models. In this study, the method of developing the recommended models for predicting the tree height of native Metasequoias aged 50–485 years is statistically reliable and can be used for reference in predicting the growth and production of mature native Metasequoia. PMID:28817600
Benktesh D. Sharma; Jingxin Wang; Gary Miller
2008-01-01
Tree spatial patterns were characterized for a 75-year-old mixed hardwood forest dominated by northern red oak, chestnut oak, red maple and yellow-poplar. All trees ≥5 inches diameter at breast height (d.b.h.) were measured for diameter, total height, crown height, and crown width along with their locations in the field over an area of 8 acres. The spatial...
NASA Astrophysics Data System (ADS)
Loustau, D.; Berbigier, P.; Granier, A.; Moussa, F. El Hadj
1992-10-01
Patterns of spatial variability of throughfall and stemflow were determined in a maritime pine ( Pinus pinaster Ait.) stand for two consecutive years. Data were obtained from 52 fixed rain gauges and 12 stemflow measuring devices located in a 50m × 50m plot at the centre of an 18-year-old stand. The pine trees had been sown in rows 4m apart and had reached an average height of 12.6m. The spatial distribution of stems had a negligible effect on the throughfall partitioning beneath the canopy. Variograms of throughfall computed for a sample of storms did not reveal any spatial autocorrelation of throughfall for the sampling design used. Differences in throughfall, in relation to the distance from the rows, were not consistently significant. In addition, the distance from the tree stem did not influence the amount of throughfall. The confidence interval on the amount of throughfall per storm was between 3 and 8%. The stemflow was highly variable between trees. The effect of individual trees on stemflow was significant but the amount of stemflow per tree was not related to tree size (i.e. height, trunk diameter, etc.). The cumulative sampling errors on stemflow and throughfall for a single storm created a confidence interval of between ±7 and ±51% on interception. This resulted mainly from the low interception rate and sampling error on throughfall.
Benjamin O. Knapp; G. Geoff Wang; David H. Van Lear; Joan L. Walker
2006-01-01
The size, especially the root size, of advance oak (Quercus spp.) reproduction provides the best indication of the growth potential after release or top-kill. This study examined the relationship between the size of the root system and various diameter height measurements for small (
Maximum height in a conifer is associated with conflicting requirements for xylem design.
Domec, Jean-Christophe; Lachenbruch, Barbara; Meinzer, Frederick C; Woodruff, David R; Warren, Jeffrey M; McCulloh, Katherine A
2008-08-19
Despite renewed interest in the nature of limitations on maximum tree height, the mechanisms governing ultimate and species-specific height limits are not yet understood, but they likely involve water transport dynamics. Tall trees experience increased risk of xylem embolism from air-seeding because tension in their water column increases with height because of path-length resistance and gravity. We used morphological measurements to estimate the hydraulic properties of the bordered pits between tracheids in Douglas-fir trees along a height gradient of 85 m. With increasing height, the xylem structural modifications that satisfied hydraulic requirements for avoidance of runaway embolism imposed increasing constraints on water transport efficiency. In the branches and trunks, the pit aperture diameter of tracheids decreases steadily with height, whereas torus diameter remains relatively constant. The resulting increase in the ratio of torus to pit aperture diameter allows the pits to withstand higher tensions before air-seeding but at the cost of reduced pit aperture conductance. Extrapolations of vertical trends for trunks and branches show that water transport across pits will approach zero at a heights of 109 m and 138 m, respectively, which is consistent with historic height records of 100-127 m for this species. Likewise, the twig water potential corresponding to the threshold for runaway embolism would be attained at a height of approximately 107 m. Our results suggest that the maximum height of Douglas-fir trees may be limited in part by the conflicting requirements for water transport and water column safety.
Experimental investigation of a small solar chimney in the south of Algeria
NASA Astrophysics Data System (ADS)
Hadj, Achouri El; Noureddine, Settou; Mabrouk, Drid Momamed; Belkhir, Negrou; Soumia, Rahmouni
2018-05-01
The solar chimney power plant (SCPP) is an economical device for the production of solar electricity. Among the parameters influencing the efficiency of the solar chimney are the dimensions, namely: Height and diameter of the chimney and diameter and height of the collector. In order to give our contribution we have established a prototype of a solar chimney which allows us to take a real vision on the influence of the geometrical parameters on the air flow under the collector and next the production efficiency of the solar chimney in the south of Algeria. In this study, we take different values of the height and diameter of the tower and of the height of the collector entrance. The results obtained show the remarkable influence of the geometrical parameters on the flow velocity afterwards on the energy produced.
Teodoro, P E; Rodrigues, E V; Peixoto, L A; Silva, L A; Laviola, B G; Bhering, L L
2017-03-22
Jatropha is research target worldwide aimed at large-scale oil production for biodiesel and bio-kerosene. Its production potential is among 1200 and 1500 kg/ha of oil after the 4th year. This study aimed to estimate combining ability of Jatropha genotypes by multivariate diallel analysis to select parents and crosses that allow gains in important agronomic traits. We performed crosses in diallel complete genetic design (3 x 3) arranged in blocks with five replications and three plants per plot. The following traits were evaluated: plant height, stem diameter, canopy projection between rows, canopy projection on the line, number of branches, mass of hundred grains, and grain yield. Data were submitted to univariate and multivariate diallel analysis. Genotypes 107 and 190 can be used in crosses for establishing a base population of Jatropha, since it has favorable alleles for increasing the mass of hundred grains and grain yield and reducing the plant height. The cross 190 x 107 is the most promising to perform the selection of superior genotypes for the simultaneous breeding of these traits.
Wu, Jing-Lian; Wang, Miao; Lin, Fei; Hao, Zhan-Qing; Ji, Lan-Zhu; Liu, Ya-Qin
2009-02-01
Aiming at the variation of precipitation pattern caused by global warming, a field simulation experiment was conducted to study the effects of 30% increase (+W) and decrease (-W) of precipitation on the morphology, growth, and biomass partitioning of mono- and mixed cultured seedlings of Quercus mongolica and Pinus koraiensis, the two dominant tree species in temperate broad-leaved Korean pine mixed forest in Changbai Mountains. Comparing with monoculture, mixed culture increased the canopy width and main root length of Q. mongolica seedlings, but decreased the basal diameter, plant height, leaf number, and dry masses of root, stem, leaf and whole plant of P. koraiensis seedlings significantly. Treatment (-W) increased the stem/mass ratio while decreased the main root length of Q. mongolica seedlings, and decreased the main root length, leaf number, dry masses of leaf and whole plant, and leaf/mass ratio, while increased the stem/mass ratio of P. koraiensis seedlings significantly, compared with treatment CK. Treatment (+W) had no significant effect on these indices of the two species. At early growth stage, interspecific competition and precipitation pattern had significant effects on the morphology and growth of the seedlings, and the responses were much stronger for P. koraiensis than for Q. mongolica.
George R., Jr. Trimble; Donald W. Seegrist; Donald W. Seegrist
1970-01-01
This paper presents the joint distribution of diameter growth and length of clear stem for northern red oak (Querczls rzlbra L.). These data could be used in an actual tree-selection program for this species.
Clearwater, Michael J; Luo, Zhiwei; Mazzeo, Mariarosaria; Dichio, Bartolomeo
2009-12-01
The external heat ratio method is described for measurement of low rates of sap flow in both directions through stems and other plant organs, including fruit pedicels, with diameters up to 5 mm and flows less than 2 g h(-1). Calibration was empirical, with heat pulse velocity (v(h)) compared to gravimetric measurements of sap flow. In the four stem types tested (Actinidia sp. fruit pedicels, Schefflera arboricola petioles, Pittosporum crassifolium stems and Fagus sylvatica stems), v(h) was linearly correlated with sap velocity (v(s)) up to a v(s) of approximately 0.007 cm s(-1), equivalent to a flow of 1.8 g h(-1) through a 3-mm-diameter stem. Minimum detectable v(s) was approximately 0.0001 cm s(-1), equivalent to 0.025 g h(-1) through a 3-mm-diameter stem. Sensitivity increased with bark removal. Girdling had no effect on short-term measurements of in vivo sap flow, suggesting that phloem flows were too low to be separated from xylem flows. Fluctuating ambient temperatures increased variability in outdoor sap flow measurements. However, a consistent diurnal time-course of fruit pedicel sap flow was obtained, with flows towards 75-day-old kiwifruit lagging behind evaporative demand and peaking at 0.3 g h(-1) in the late afternoon.
Pilot Study for OCT Guided Design and Fit of a Prosthetic Device for Treatment of Corneal Disease.
Le, Hong-Gam T; Tang, Maolong; Ridges, Ryan; Huang, David; Jacobs, Deborah S
2012-01-01
Purpose. To assess optical coherence tomography (OCT) for guiding design and fit of a prosthetic device for corneal disease. Methods. A prototype time domain OCT scanner was used to image the anterior segment of patients fitted with large diameter (18.5-20 mm) prosthetic devices for corneal disease. OCT images were processed and analyzed to characterize corneal diameter, corneal sagittal height, scleral sagittal height, scleral toricity, and alignment of device. Within-subject variance of OCT-measured parameters was evaluated. OCT-measured parameters were compared with device parameters for each eye fitted. OCT image correspondence with ocular alignment and clinical fit was assessed. Results. Six eyes in 5 patients were studied. OCT measurement of corneal diameter (coefficient of variation, CV = 0.76%), cornea sagittal height (CV = 2.06%), and scleral sagittal height (CV = 3.39%) is highly repeatable within each subject. OCT image-derived measurements reveal strong correlation between corneal sagittal height and device corneal height (r = 0.975) and modest correlation between scleral and on-eye device toricity (r = 0.581). Qualitative assessment of a fitted device on OCT montages reveals correspondence with slit lamp images and clinical assessment of fit. Conclusions. OCT imaging of the anterior segment is suitable for custom design and fit of large diameter (18.5-20 mm) prosthetic devices used in the treatment of corneal disease.
3D Reconstruction and Approximation of Vegetation Geometry for Modeling of Within-canopy Flows
NASA Astrophysics Data System (ADS)
Henderson, S. M.; Lynn, K.; Lienard, J.; Strigul, N.; Mullarney, J. C.; Norris, B. K.; Bryan, K. R.
2016-02-01
Aquatic vegetation can shelter coastlines from waves and currents, sometimes resulting in accretion of fine sediments. We developed a photogrammetric technique for estimating the key geometric vegetation parameters that are required for modeling of within-canopy flows. Accurate estimates of vegetation geometry and density are essential to refine hydrodynamic models, but accurate, convenient, and time-efficient methodologies for measuring complex canopy geometries have been lacking. The novel approach presented here builds on recent progress in photogrammetry and computer vision. We analyzed the geometry of aerial mangrove roots, called pneumatophores, in Vietnam's Mekong River Delta. Although comparatively thin, pneumatophores are more numerous than mangrove trunks, and thus influence near bed flow and sediment transport. Quadrats (1 m2) were placed at low tide among pneumatophores. Roots were counted and measured for height and diameter. Photos were taken from multiple angles around each quadrat. Relative camera locations and orientations were estimated from key features identified in multiple images using open-source software (VisualSfM). Next, a dense 3D point cloud was produced. Finally, algorithms were developed for automated estimation of pneumatophore geometry from the 3D point cloud. We found good agreement between hand-measured and photogrammetric estimates of key geometric parameters, including mean stem diameter, total number of stems, and frontal area density. These methods can reduce time spent measuring in the field, thereby enabling future studies to refine models of water flows and sediment transport within heterogenous vegetation canopies.
Measuring urban tree loss dynamics across residential landscapes.
Ossola, Alessandro; Hopton, Matthew E
2018-01-15
The spatial arrangement of urban vegetation depends on urban morphology and socio-economic settings. Urban vegetation changes over time because of human management. Urban trees are removed due to hazard prevention or aesthetic preferences. Previous research attributed tree loss to decreases in canopy cover. However, this provides little information about location and structural characteristics of trees lost, as well as environmental and social factors affecting tree loss dynamics. This is particularly relevant in residential landscapes where access to residential parcels for field surveys is limited. We tested whether multi-temporal airborne LiDAR and multi-spectral imagery collected at a 5-year interval can be used to investigate urban tree loss dynamics across residential landscapes in Denver, CO and Milwaukee, WI, covering 400,705 residential parcels in 444 census tracts. Position and stem height of trees lost were extracted from canopy height models calculated as the difference between final (year 5) and initial (year 0) vegetation height derived from LiDAR. Multivariate regression models were used to predict number and height of tree stems lost in residential parcels in each census tract based on urban morphological and socio-economic variables. A total of 28,427 stems were lost from residential parcels in Denver and Milwaukee over 5years. Overall, 7% of residential parcels lost one stem, averaging 90.87 stems per km 2 . Average stem height was 10.16m, though trees lost in Denver were taller compared to Milwaukee. The number of stems lost was higher in neighborhoods with higher canopy cover and developed before the 1970s. However, socio-economic characteristics had little effect on tree loss dynamics. The study provides a simple method for measuring urban tree loss dynamics within and across entire cities, and represents a further step toward high resolution assessments of the three-dimensional change of urban vegetation at large spatial scales. Published by Elsevier B.V.
Relationship between biometric characteristics and stem size of uncemented hip prostheses.
De Clerico, Manuela; Bordini, Barbara; Stea, Susanna; Viceconti, Marco; Toni, Aldo
2007-06-01
The authors examined 2329 uncemented hip prosthesis stems (AncaFit stem, Wright Medical Technology, Arlington, TN, USA) implanted between 1996 and 2004 due to primary coxarthrosis. This is the most commonly used stem in the Emilia-Romagna region, in northern Italy, according to data from the Register of Orthopaedic Prosthetic Implants (RIPO). It is produced in eight sizes for each side. We analyzed the relationship between stem size and anthropometric data. Among the patients, 49.5% were men and 50.5% were women; mean age at surgery was 64.1 years (SD 9.1); mean height was 167 cm (SD 8.4), and mean weight was 75.7 kg (SD 12.7). Multifactorial analysis demonstrated that stem size was influenced by sex, age, and height, but not by weight. Besides this, there was an interaction between sex and age: in women, but not in men, the stem size increased with aging.
Zou, Ying-Ning; Wu, Qiang-Sheng; Li, Yan; Huang, Yong-Ming
2014-04-01
The effects of inoculation with Glomus mosseae, G. versiforme, and their mixture on plant growth, root system morphology, and sucrose and glucose contents of trifoliate orange (Poncirus trifoliata L.) were studied by pot culture. The results showed that all the inoculated treatments significantly increased the plant height, stem diameter, leaf number, and shoot and root biomass. In addition, the mycorrhizal treatments significantly increased the number of 1st, 2nd, and 3rd lateral roots. Inoculation with arbuscular mycorrhizal fungi significantly increased the root projected area, surface area, volume, and total root length (mainly 0-1 cm root length), but decreased the root average diameter. Meanwhile, G. versiforme showed the best effects. Mycorrhizal inoculation significantly increased the leaf sucrose and root glucose contents, but decreased the leaf glucose and root sucrose contents. Owing to the 'mycorrhizal carbon pool' in roots, inoculation with arbuscular mycorrhizal fungi resulted in high glucose content and low sucrose content of roots, which would facilitate the root growth and development, thereby the establishment of better root system morphology of host plants.
Polyploid response of Artemisia annua L. to colchicine treatment
NASA Astrophysics Data System (ADS)
Yunus, A.; Parjanto; Samanhudi; Hikam, M. P.; Widyastuti, Y.
2018-03-01
Artemisia (Artemisia annua) is a a medicinal herb originated from Asia, its contains Artemisinin for malaria (caused by Plasmodium falciparum) treatment. Artemisinin content in A. annua are relatively low, ranging from 0.01% -0.5%. In order to increase the Artemisinin content, polyploid induction could be one effort to be done. For that, this experiment aims to examine the effect of colchicine on morphological characteristics and the induction of polyploidization in Artemisia plants. Polyploid induction on Artemisia annua L. seeds was performed by soaking the Artemisia seeds in colchicine (0%, 0,05%, 0,1% and 0,2%; concentration based) for 2 hours. The experimental design was Completely Randomized Design, one factor, 4 colchicine treatments and in each treatment 7 replicate. The results showed that polyploid occur in plants treated with 0.05% colchicine concentration and its morphological characteristic are 89.4 cm height, 30 branches, 15.9 CCI chlorophyll content, 0.78 cm stem diameter, and chromosome number 2n = 27. In the stomata density of polyploid plants (treated by 0.05% colchicine) was 130 number/mm2 with stomata diameter of 22.8 μm.
Ohashi, Nobuko; Imai, Hidekazu; Seino, Yutaka; Baba, Hiroshi
2017-12-06
Determination of the appropriate tracheal tube size using formulas based on age or height often is inaccurate in pediatric patients with congenital heart disease (CHD), particularly in those with high pulmonary arterial pressure (PAP). Here, the authors compared tracheal diameters between pediatric patients with CHD with high PAP and low PAP. Retrospective clinical study. Hospital. Pediatric patients, from birth to 6 months of age, requiring general anesthesia and tracheal intubation who underwent computed tomography were included. Patients with mean pulmonary artery pressure >25 mmHg were allocated to the high PAP group, and the remaining patients were allocated to the low PAP group. The primary outcome was the tracheal diameter at the cricoid cartilage level, and the secondary goal was to observe whether the size of the tracheal tube was appropriate compared with that obtained using predictable formulas based on age or height. The mean tracheal diameter was significantly larger in the high PAP group than in the low PAP group (p < 0.01). Pediatric patients with high PAP required a larger tracheal tube size than predicted by formulas based on age or height (p = 0.04 for age and height). Pediatric patients with high PAP had larger tracheal diameters than those with low PAP and required larger tracheal tubes compared with the size predicted using formulas based on age or height. Copyright © 2017 Elsevier Inc. All rights reserved.
Glenoid version and size: does gender, ethnicity, or body size play a role?
Piponov, Hristo Ivanov; Savin, David; Shah, Neal; Esposito, Domenic; Schwartz, Brian; Moretti, Vincent; Goldberg, Benjamin
2016-11-01
Variations in glenoid morphology among patients of different gender, body habitus, and ethnicity have been of interest for surgeons. Understanding these anatomical variations is a critical step in restoring normal glenohumeral structure during shoulder reconstruction surgery. Retrospective review of 108 patient shoulder CT scans was performed and glenoid version, AP diameter and height were measured. Statistical multiple regression models were used to investigate the ability of gender and ethnicity to predict glenoid AP diameter, height, and version independently of patient weight and height. The mean glenoid AP diameter was 24.7 ± 3.5, the mean glenoid height was 31.7 ± 3.7, and the mean glenoid version was 0.05 ± 9.05. According to our regression models, males would be expected to exhibit 8.4° more glenoid retroversion than females (p = 0.003) and have 2.9 mm larger glenoid height compared to females (p = 0.002). The predicted male glenoid AP diameter was 3.4 mm higher than that in females (p < 0.001). Hispanics demonstrated 6.4° more glenoid anteversion compared to African-Americans (p = 0.04). Asians exhibited 4.1 mm smaller glenoid AP diameters than African-Americans (p = 0.002). An increase of 25 kg in patient weight resulted in 1 mm increase in AP diameter (p = 0.01). Gender is the strongest independent predictor of glenoid size and version. Males exhibited a larger size and more retroverted glenoid. Patient height was found to be predictive of glenoid size only in patients of the same gender. Although variations in glenoid size and version are observed among ethnicities, larger sample size ethnic groups will be necessary to explore the precise relations. Surgeons should consider gender and ethnic variations in the pre-operative planning and surgical restoration of the native glenohumeral relationship. Anatomic Study.
Drought stress and tree size determine stem CO2 efflux in a tropical forest.
Rowland, Lucy; da Costa, Antonio C L; Oliveira, Alex A R; Oliveira, Rafael S; Bittencourt, Paulo L; Costa, Patricia B; Giles, Andre L; Sosa, Azul I; Coughlin, Ingrid; Godlee, John L; Vasconcelos, Steel S; Junior, João A S; Ferreira, Leandro V; Mencuccini, Maurizio; Meir, Patrick
2018-06-01
CO 2 efflux from stems (CO 2_stem ) accounts for a substantial fraction of tropical forest gross primary productivity, but the climate sensitivity of this flux remains poorly understood. We present a study of tropical forest CO 2_stem from 215 trees across wet and dry seasons, at the world's longest running tropical forest drought experiment site. We show a 27% increase in wet season CO 2_stem in the droughted forest relative to a control forest. This was driven by increasing CO 2_stem in trees 10-40 cm diameter. Furthermore, we show that drought increases the proportion of maintenance to growth respiration in trees > 20 cm diameter, including large increases in maintenance respiration in the largest droughted trees, > 40 cm diameter. However, we found no clear taxonomic influence on CO 2_stem and were unable to accurately predict how drought sensitivity altered ecosystem scale CO 2_stem , due to substantial uncertainty introduced by contrasting methods previously employed to scale CO 2_stem fluxes. Our findings indicate that under future scenarios of elevated drought, increases in CO 2_stem may augment carbon losses, weakening or potentially reversing the tropical forest carbon sink. However, due to substantial uncertainties in scaling CO 2_stem fluxes, stand-scale future estimates of changes in stem CO 2 emissions remain highly uncertain. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.
Xu, Yupeng; Li, Tingwen; Musser, Jordan; ...
2017-06-07
The fluidization behavior of Geldart B particles in micro fluidized beds is investigated numerically using Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM) available in the open-source Multiphase Flow with Interphase eXchanges (MFIX) code. The effects of different bed inner diameters (D) of 8 mm, 12 mm, 16 mm and various initial static bed heights (H) were examined. It is found that both decreasing the column diameter and increasing the bed height in a micro fluidized bed increases the minimum fluidization velocity (Umf). The observed overshoot in pressure drop that occurs before the onset of fluidization decreases in magnitudemore » with increasing column diameter, however there is less sensitivity to bed height. Overall, the numerical results agree qualitatively with existing theoretical correlations and experimental studies. The simulations show that both column diameter and particle-wall friction contribute to the variation in minimum fluidization velocity. Finally, these two factors are coupled and hard to separate. The detailed influences of wall friction on minimum fluidization velocity are then investigated for a prescribed column diameter of 8 mm by varying the wall friction from 0 to 0.4.« less
Mingoas, Kilekoung Jean-Pierre; Awah-Ndukum, Julius; Dakyang, Houinga; Zoli, Pagnah André
2017-01-01
Aim: The aim of the study was to assess the effect of udder morphological characteristics on milk yield in zebu cows of Cameroon. Materials and Methods: The diameter and height of the udder, length and diameter of the teat, and the milk yield were measured in 29 Djafun (Red Mbororo) and 19 Aku (White Fulani) cows in Louggueré zootechnical station in the North region of Cameroon. Results: Overall, strong positive correlation (rp=0.60) between the diameter (240.21±28.58 mm) and height (131.12±23.64 mm) of udders (p<0.001) and between length (39.51±6.44 mm) and diameter (19.85±3.08 mm) of teats (rp=0.78) were found in the zebu cows. Udder morphologic characteristics varied significantly (p<0.005) according to breed, lactation stage and parity, and height at whiters. There was significant (p<0.001) correlations between udder diameter (rp=0.541) and height (rp=0.549) with milk yield. Conclusion: This study ascertained udder morphological characteristics values in local zebu cows, and showed that udder size is strong and positively correlated to milk yield. The findings are useful in genetic improvement programs of zebu cows. PMID:28919680
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yupeng; Li, Tingwen; Musser, Jordan
The fluidization behavior of Geldart B particles in micro fluidized beds is investigated numerically using Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM) available in the open-source Multiphase Flow with Interphase eXchanges (MFIX) code. The effects of different bed inner diameters (D) of 8 mm, 12 mm, 16 mm and various initial static bed heights (H) were examined. It is found that both decreasing the column diameter and increasing the bed height in a micro fluidized bed increases the minimum fluidization velocity (Umf). The observed overshoot in pressure drop that occurs before the onset of fluidization decreases in magnitudemore » with increasing column diameter, however there is less sensitivity to bed height. Overall, the numerical results agree qualitatively with existing theoretical correlations and experimental studies. The simulations show that both column diameter and particle-wall friction contribute to the variation in minimum fluidization velocity. Finally, these two factors are coupled and hard to separate. The detailed influences of wall friction on minimum fluidization velocity are then investigated for a prescribed column diameter of 8 mm by varying the wall friction from 0 to 0.4.« less
Wood and bark specific gravity of small-diameter, pine-site hardwood in the south
F.G. Manwiller
1979-01-01
Ten small-diameter trees from each of the 22 species (220 trees) were sampled from throughout the southern United States. Mean SG was determined for stem wood and bark and the whole stem, for branch wood and bark and whole branches (to a minimum diameter of 0.05 in.), and for tree wood and bark and the whole tree. Significant differences were determined a) among the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Standards for Grades of Apricots Definitions § 51.2934 Diameter. Diameter means the greatest diameter, measured through the center of the apricot, at right angles to a line running from the stem to the blossom...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Standards for Grades of Apricots Definitions § 51.2934 Diameter. Diameter means the greatest diameter, measured through the center of the apricot, at right angles to a line running from the stem to the blossom...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Standards for Grades of Apricots Definitions § 51.2934 Diameter. Diameter means the greatest diameter, measured through the center of the apricot, at right angles to a line running from the stem to the blossom...
Diameter class volume tables for California old-growth timber
Duncan Dunning
1945-01-01
Tables giving average tree volumes by breast-height diameter classes frequently may be used in timber cruising to save money, time, and men. Such tables may be appropriate in cruises of large areas having many trees in low-intensity cruises warranting the sacrifice in accuracy that results from omission of individual tree height measurements, during wartime when men...
Emile S. Gardiner; K. Francis Salifu; Douglass F. Jacobs; George Hernandez; Ronald P. Overton
2007-01-01
Nuttall oak (Quercus nuttallii Palm.) seedlings raised at state nurseries in Mississippi, Louisiana, and Arkansas were morphologically different in height, root collar diameter, fresh mass, number of first-order lateral roots, root volume, and height-to-root collar diameter ratio. When outplanted on afforestation sites in the Lower Mississippi...
Diameter and height growth of suppressed grand fir saplings after overstory removal.
K.W. Seidel
1980-01-01
The 2- and 5-year diameter and height growth of suppressed grand fir (Abies grandis (Dougl. ex D. Don) Lindl.) advance reproduction was measured in central Oregon after the overstory was removed. Multiple regression analyses were used to predict growth response as a function of individual tree variables. The resulting equations, although highly...
Emile S. Gardiner; K. Francis Salifu; Douglass F. Jacobs; George Hernandez; Ronald P. Overton
2007-01-01
Nuttall oak (Quercus nuttallii Palm.) seedlings raised at state nurseries in Mississippi, Louisiana, and Arkansas were morphologically different in height, root collar diameter, fresh mass, number of first-order lateral roots, root volume, and height-to-root collar diameter ratio. When outplanted on afforestation sites in the Lower Mississippi...
Crown radius and diameter at breast height relationships for six bottomland hardwood species
Brian Roy Lockhart; Robert C. Weih; Keith M. Smith
2005-01-01
The relationship between a tree's crown radius and diameter at breast height (DBH) has a variety of uses including forest competition studies, tree crown densities, spacing and stocking relationships, wildlife habitat suitability models, and tree volume estimations. Estimating DBH from mean crown radius (MCR) is of interest to natural resource managers because MCR...
Gravitropism in Higher Plant Shoots 1
Sliwinski, Julianne E.; Salisbury, Frank B.
1984-01-01
Cross and longitudinal sections were prepared for light microscopy from vertical control plants (Xanthium strumarium L. Chicago strain), free-bending horizontal stems, plants restrained 48 hours in a horizontal position, and plants restrained 48 hours and then released, bending immediately about 130°. Top cells of free-bending stems shrink or elongate little; bottom cells continue to elongate. In restrained stems, bottom cells elongate some and increase in diameter; top cells elongate about as much but decrease in diameter. Upon release, bottom cells elongate more and decrease in diameter, while top cells shorten and increase in diameter, accounting for the bend. During restraint, bottom cells take up water while tissue pressures increase; top cells fail to take up water although tissue pressures are decreasing. Settling of amyloplasts was observed in cells of the starch sheath. Removal of different amounts of stem (Xanthium; Lycopersicon esculentum Miller, cv Bonny Best; Ricinus communis L. cv Yolo Wonder) showed that perception of gravity occurs in the bending (elongation) zone, although bending of fourth and fifth internodes from the top was less than in uncut controls. Uniform application of 1% indoleacetic acid in lanolin to cut stem surfaces partially restored bending. Reversing the gradient in tension/compression in horizontal stems (top under compression, bottom under tension) did not affect gravitropic bending. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:16663939
Adverse Reactions to Metal on Metal Are Not Exclusive to Large Heads in Total Hip Arthroplasty.
Lombardi, Adolph V; Berend, Keith R; Adams, Joanne B; Satterwhite, Keri L
2016-02-01
There is some suggestion that smaller diameter heads in metal-on-metal total hip arthroplasty (MoM THA) may be less prone to the adverse reactions to metal debris (ARMD) seen with large-diameter heads. We reviewed our population of patients with small head (≤ 32 mm) MoM THA to determine (1) the frequency of ARMD; (2) potential risk factors for ARMD in this population; and (3) the etiology of revision and Kaplan-Meier survivorship with revision for all causes. Small-diameter head MoM devices were used in 9% (347 of 3753) of primary THAs during the study period (January 1996 to March 2005). We generally used these implants in younger, more active, higher-demand patients. Three hundred hips (258 patients) had MoM THA using a titanium modular acetabular component with a cobalt-chromium tapered insert and were available for review with minimum 2-year followup (mean, 10 years; range, 2-19 years). Complete followup was available in 86% of hips (300 of 347). Clinical records and radiographs were reviewed to determine the frequency and etiology of revision. Kaplan-Meier survivorship analysis was performed. ARMD frequency was 5% (14 of 300 hips) and represented 70% (14 of 20) of revisions performed. Using multivariate analysis, no variable tested, including height, weight, body mass index, age, cup diameter, cup angle, use of screws, stem diameter, stem type, head diameter, preoperative clinical score, diagnosis, activity level, or sex, was significant as a risk factor for revision. Twenty hips have been revised: two for infection, four for aseptic loosening, and 14 for ARMD. Kaplan-Meier analysis revealed survival free of component revision for all causes was 95% at 10 years (95% confidence interval [CI], 91%-97%), 92% at 15 years (95% CI, 87%-95%), and 72% at 19 years (95% CI, 43%-90%), and survival free of component revision for aseptic causes was 96% at 10 years (95% CI, 92%-98%), 92% at 15 years (95% CI, 88%-95%), and 73% at 19 years (95% CI, 43%-90%). The late onset and devastating nature of metal-related failures is concerning with this small-diameter MoM device. Although the liner is modular, it cannot be exchanged and full acetabular revision is required. Patients with all MoM THA devices should be encouraged to return for clinical and radiographic followup, and clinicians should maintain a low threshold to perform a systematic evaluation. Symptomatic patients should undergo thorough investigation and vigilant observation for ARMD. Level IV, therapeutic study.
Verhertbruggen, Yves; Marcus, Susan E; Chen, Jianshe; Knox, J Paul
2013-08-01
Little is known of the dynamics of plant cell wall matrix polysaccharides in response to the impact of mechanical stress on plant organs. The capacity of the imposition of a mechanical stress (periodic brushing) to reduce the height of the inflorescence stem of Arabidopsis thaliana seedlings has been used to study the role of pectic arabinans in the mechanical properties and stress responsiveness of a plant organ. The arabinan-deficient-1 (arad1) mutation that affects arabinan structures in epidermal cell walls of inflorescence stems is demonstrated to reduce the impact on inflorescence stem heights caused by mechanical stress. The arabinan-deficient-2 (arad2) mutation, that does not have detectable impact on arabinan structures, is also shown to reduce the impact on stem heights caused by mechanical stress. The LM13 linear arabinan epitope is specifically detected in epidermal cell walls of the younger, flexible regions of inflorescence stems and increases in abundance at the base of inflorescence stems in response to an imposed mechanical stress. The strain (percentage deformation) of stem epidermal cells in the double mutant arad1 × arad2 is lower in unbrushed plants than in wild-type plants, but rises to wild-type levels in response to brushing. The study demonstrates the complexity of arabinan structures within plant cell walls and also that their contribution to cell wall mechanical properties is a factor influencing responsiveness to mechanical stress.
Wayne C. Zipperer
2002-01-01
Regenerated and remnant forest patches were inventoried in Syracuse, New York, USA to determine differences in structure, species composition, human disturbances, and landscape context. Patches had similar mean stem diameter, total stem density, and total basal areas, but differed with respect to diameter distribution, disturbance regime, landscape context, and...
Bink, Marco CAM; van Heerwaarden, Joost; Chancerel, Emilie; Boury, Christophe; Lesur, Isabelle; Isik, Fikret; Bouffier, Laurent; Plomion, Christophe
2016-01-01
Background Increasing our understanding of the genetic architecture of complex traits, through analyses of genotype-phenotype associations and of the genes/polymorphisms accounting for trait variation, is crucial, to improve the integration of molecular markers into forest tree breeding. In this study, two full-sib families and one breeding population of maritime pine were used to identify quantitative trait loci (QTLs) for height growth and stem straightness, through linkage analysis (LA) and linkage disequilibrium (LD) mapping approaches. Results The populations used for LA consisted of two unrelated three-generation full-sib families (n = 197 and n = 477). These populations were assessed for height growth or stem straightness and genotyped for 248 and 217 markers, respectively. The population used for LD mapping consisted of 661 founders of the first and second generations of the breeding program. This population was phenotyped for the same traits and genotyped for 2,498 single-nucleotide polymorphism (SNP) markers corresponding to 1,652 gene loci. The gene-based reference genetic map of maritime pine was used to localize and compare the QTLs detected by the two approaches, for both traits. LA identified three QTLs for stem straightness and two QTLs for height growth. The LD study yielded seven significant associations (P ≤ 0.001): four for stem straightness and three for height growth. No colocalisation was found between QTLs identified by LA and SNPs detected by LD mapping for the same trait. Conclusions This study provides the first comparison of LA and LD mapping approaches in maritime pine, highlighting the complementary nature of these two approaches for deciphering the genetic architecture of two mandatory traits of the breeding program. PMID:27806077
Bartholomé, Jérôme; Bink, Marco Cam; van Heerwaarden, Joost; Chancerel, Emilie; Boury, Christophe; Lesur, Isabelle; Isik, Fikret; Bouffier, Laurent; Plomion, Christophe
2016-01-01
Increasing our understanding of the genetic architecture of complex traits, through analyses of genotype-phenotype associations and of the genes/polymorphisms accounting for trait variation, is crucial, to improve the integration of molecular markers into forest tree breeding. In this study, two full-sib families and one breeding population of maritime pine were used to identify quantitative trait loci (QTLs) for height growth and stem straightness, through linkage analysis (LA) and linkage disequilibrium (LD) mapping approaches. The populations used for LA consisted of two unrelated three-generation full-sib families (n = 197 and n = 477). These populations were assessed for height growth or stem straightness and genotyped for 248 and 217 markers, respectively. The population used for LD mapping consisted of 661 founders of the first and second generations of the breeding program. This population was phenotyped for the same traits and genotyped for 2,498 single-nucleotide polymorphism (SNP) markers corresponding to 1,652 gene loci. The gene-based reference genetic map of maritime pine was used to localize and compare the QTLs detected by the two approaches, for both traits. LA identified three QTLs for stem straightness and two QTLs for height growth. The LD study yielded seven significant associations (P ≤ 0.001): four for stem straightness and three for height growth. No colocalisation was found between QTLs identified by LA and SNPs detected by LD mapping for the same trait. This study provides the first comparison of LA and LD mapping approaches in maritime pine, highlighting the complementary nature of these two approaches for deciphering the genetic architecture of two mandatory traits of the breeding program.
Degradation studies of Martian impact craters
NASA Technical Reports Server (NTRS)
Barlow, N. G.
1991-01-01
The amount of obliteration suffered by Martian impact craters is quantified by comparing measurable attributes of the current crater shape to those values expected for a fresh crater of identical size. Crater diameters are measured from profiles obtained using photoclinometry across the structure. The relationship between the diameter of a fresh crater and a crater depth, floor width, rim height, central peak height, etc. was determined by empirical studies performed on fresh Martian impact craters. We utilized the changes in crater depth and rim height to judge the degree of obliteration suffered by Martian impact craters.
Subsidence of a cementless femoral component influenced by body weight and body mass index.
Stihsen, Christoph; Radl, Roman; Keshmiri, Armin; Rehak, Peter; Windhager, Reinhard
2012-05-01
This trial was designed to evaluate the impact of physical characteristics such as body mass index, body weight and height on distal stem migration of a cementless femoral component, as the influence of obesity on the outcome of THA is still debated in literature and conflicting results have been found. In this retrospective cohort study, migration patterns for 102 implants were analysed using the Einzel-Bild-Roentgen-Analyse (EBRA-FCA, femoral component analysis). In all cases the Vision 2000 stem was implanted and combined with the Duraloc acetabular component (DePuy, Warsaw, Indiana). The mean follow-up was 93 months. EBRA-FCA evaluations revealed a mean subsidence of 1.38 mm after two years, 2.06 mm after five and 2.24 mm after seven years. Five stems loosened aseptically. Correlation between increased migration over the whole period and aseptic loosening was highly significant (p < 0.001). Surgical technique had a significant influence on migration and stem stability (p = 0.002) but physical patient characteristics such as body weight over 75 kg and height over 165 cm also significantly influenced stem subsidence towards progressive migration (p = 0.001, p < 0.001). However, a high BMI did not trigger progressive stem migration (p = 0.87). Being of the male gender raised the odds for increased migration (p = 0.03). Physical characteristics such as body weight and height showed significant influence on migration patterns of this cementless femoral component. The operating surgeon should be aware that body weight above 75 kg and height over 165 cm may trigger increased stem migration and the surgeon should aim to fit these prostheses as tightly as possible. However this study demonstrates that a high BMI does not trigger progressive stem migration. Further investigations are needed to confirm our findings.
5. VIEW OF INCLINED OUTLET GATE WHEEL, STEM AND STEM ...
5. VIEW OF INCLINED OUTLET GATE WHEEL, STEM AND STEM GUIDE, (12' DIAMETER HARDESTY MODEL 112 CIRCULAR GATE), LOOKING NORTHEAST - High Mountain Dams in Bonneville Unit, Island Lake Dam, Wasatch National Forest, Kamas, Summit County, UT
7. VIEW OF UPRIGHT OUTLET GATE, WHEEL STEM AND STEM ...
7. VIEW OF UPRIGHT OUTLET GATE, WHEEL STEM AND STEM GUIDE (14' DIAMETER CIRCULAR CALCO CAST IRON SLIDE GATE), LOOKING SOUTHEAST - High Mountain Dams in Bonneville Unit, Fire Lake Dam, Wasatch National Forest, Kamas, Summit County, UT
Brian Roy Lockhart; Andrew W. Ezell; John D. Hodges; Wayne K. Clatterbuck
2012-01-01
Results from a long-term planted mixture of cherrybark oak (Quercus pagoda Raf.) and sweetgum (Liquidambar styraciflua L.) showed sweetgum taller in height and larger in diameter than cherrybark oak early in plantation development. By age 17, cherrybark oak was similar in height and diameter with sweetgum and by age 21 was taller...
John R. Brooks; Harry V., Jr. Wiant
2007-01-01
Five economically important Appalachian hardwood species were selected from five ecoregions in West Virginia. A nonlinear extra sum of squares procedure was employed to test whether the height-diameter relationships, based on measurements from the 2000 inventory from West Virginia, were significantly different at the ecoregion level. For all species examined, the null...
Field Research Validation Sites | Wind | NREL
, independent pitch control of the Controls Advanced Research Turbine (CART) blades Variable-speed or constant CART2 600-kW Turbine Model: Westinghouse Blades: 2 Hub height: 36.6 m Rotor diameter: 42.6 m Extensively instrumented CART3 600-kW Turbine Model: Westinghouse Blades: 3 Hub height: 36.6 m Rotor diameter: 42.6 m
Mesavage and Girard form class taper functions derived from profile equations
Thomas g. Matney; Emily B. Schultz
2007-01-01
The Mesavage and Girard (1946) average upper-log taper tables remain a favorite way of estimating tree bole volume because they only require the measurement of merchantable (useable) height to an indefinite top diameter limit. For the direct application of profile equations, height must be measured to a definite top diameter limit, and this makes the collection of data...
Curtis L. Vanderschaaf
2008-01-01
Mixed effects models can be used to obtain site-specific parameters through the use of model calibration that often produces better predictions of independent data. This study examined whether parameters of a mixed effect height-diameter model estimated using loblolly pine plantation data but calibrated using sweetgum plantation data would produce reasonable...
Rafal Podlaski; Francis A. Roesch
2013-01-01
Study assessed the usefulness of various methods for choosing the initial values for the numerical procedures for estimating the parameters of mixture distributions and analysed variety of mixture models to approximate empirical diameter at breast height (dbh) distributions. Two-component mixtures of either the Weibull distribution or the gamma distribution were...
Stress-strain relationship of PDMS micropillar for force measurement application
NASA Astrophysics Data System (ADS)
Johari, Shazlina; Shyan, L. Y.
2017-11-01
There is an increasing interest to use polydimethylsiloxane (PDMS) based materials as bio-transducers for force measurements in the order of micro to nano Newton. The accuracy of these devices relies on appropriate material characterization of PDMS and modelling to convert the micropillar deformations into the corresponding forces. Previously, we have reported on fabricated PDMS micropillar that acts as a cylindrical cantilever and was experimentally used to measure the force of the nematode C. elegans. In this research, similar PDMS micropillars are designed and simulated using ANSYS software. The simulation involves investigating two main factors that is expected to affect the force measurement performance; pillar height and diameter. Results show that the deformation increases when pillar height is increased and the deformation is inversely proportional to the pillar diameter. The maximum deformation obtained is 713 um with pillar diameter of 20 um and pillar height of 100 um. Results of stress and strain show similar pattern, where their values decreases as pillar diameter and height is increased. The simulated results are also compared with the calculated displacement. The trend for both calculated and simulated values are similar with 13% average difference.
Estimating past diameters of Douglas-fir trees.
Floyd A. Johnson
1955-01-01
Estimates of breast-height diameter outside bark for trees as of some previous date are required in certain kinds of forest growth studies. These past diameters may be found by subtracting total diameter growth from known present diameters, where total diameter growth is the sum of wood growth and bark growth. Wood growth is readily obtained by...
Klingeman, William E.; Mayfield, Albert; Myers, Scott; Taylor, Adam
2017-01-01
Thousand cankers disease, caused by the invasive bark beetle Pityophthorus juglandis Blackman and an associated fungal pathogen Geosmithia morbida M.Kolařík, E. Freeland, C. Utley, N. Tisserat, currently threatens the health of eastern black walnut (Juglans nigra L.) in North America. Both the beetle and pathogen have expanded beyond their native range via transport of infested walnut wood. Geosmithia morbida can develop in seedlings following inoculation, but the ability of P. juglandis to colonize young, small diameter trees has not been investigated. This study assessed the beetle’s colonization behavior on J. nigra nursery trees. Beetles were caged directly onto the stems of walnut seedlings from five nursery sources representing a range of basal stem diameter classes. Seedlings were also exposed to P. juglandis in a limited choice, field-based experiment comparing pheromone-baited and unbaited stems. When beetles were caged directly onto stems, they probed and attempted to colonize seedlings across the range of diameters and across sources tested, including stems as small as 0.5 cm in diameter. In the field experiment, beetles only attempted to colonize seedlings that were baited with a pheromone lure and appeared to prefer (though not statistically significant) the larger diameter trees. Despite several successful penetrations into the phloem, there was no evidence of successful progeny development within the young trees in either experiment. Further investigation is recommended to better elucidate the risk nursery stock poses as a pathway for thousand cankers disease causal organisms. PMID:28973569
Wirth, Christian; Schumacher, Jens; Schulze, Ernst-Detlef
2004-02-01
To facilitate future carbon and nutrient inventories, we used mixed-effect linear models to develop new generic biomass functions for Norway spruce (Picea abies (L.) Karst.) in Central Europe. We present both the functions and their respective variance-covariance matrices and illustrate their application for biomass prediction and uncertainty estimation for Norway spruce trees ranging widely in size, age, competitive status and site. We collected biomass data for 688 trees sampled in 102 stands by 19 authors. The total number of trees in the "base" model data sets containing the predictor variables diameter at breast height (D), height (H), age (A), site index (SI) and site elevation (HSL) varied according to compartment (roots: n = 114, stem: n = 235, dry branches: n = 207, live branches: n = 429 and needles: n = 551). "Core" data sets with about 40% fewer trees could be extracted containing the additional predictor variables crown length and social class. A set of 43 candidate models representing combinations of lnD, lnH, lnA, SI and HSL, including second-order polynomials and interactions, was established. The categorical variable "author" subsuming mainly methodological differences was included as a random effect in a mixed linear model. The Akaike Information Criterion was used for model selection. The best models for stem, root and branch biomass contained only combinations of D, H and A as predictors. More complex models that included site-related variables resulted for needle biomass. Adding crown length as a predictor for needles, branches and roots reduced both the bias and the confidence interval of predictions substantially. Applying the best models to a test data set of 17 stands ranging in age from 16 to 172 years produced realistic allocation patterns at the tree and stand levels. The 95% confidence intervals (% of mean prediction) were highest for crown compartments (approximately +/- 12%) and lowest for stem biomass (approximately +/- 5%), and within each compartment, they were highest for the youngest and oldest stands, respectively.
Schmitz, Nele; Robert, Elisabeth M. R.; Verheyden, Anouk; Kairo, James Gitundu; Beeckman, Hans; Koedam, Nico
2008-01-01
Background and Aims Secondary growth via successive cambia has been intriguing researchers for decades. Insight into the mechanism of growth layer formation is, however, limited to the cellular level. The present study aims to clarify secondary growth via successive cambia in the mangrove species Avicennia marina on a macroscopic level, addressing the formation of the growth layer network as a whole. In addition, previously suggested effects of salinity on growth layer formation were reconsidered. Methods A 1-year cambial marking experiment was performed on 80 trees from eight sites in two mangrove forests in Kenya. Environmental (soil water salinity and nutrients, soil texture, inundation frequency) and tree characteristics (diameter, height, leaf area index) were recorded for each site. Both groups of variables were analysed in relation to annual number of growth layers, annual radial increment and average growth layer width of stem discs. Key Results Between trees of the same site, the number of growth layers formed during the 1-year study period varied from only part of a growth layer up to four growth layers, and was highly correlated to the corresponding radial increment (0–5 mm year–1), even along the different sides of asymmetric stem discs. The radial increment was unrelated to salinity, but the growth layer width decreased with increasing salinity and decreasing tree height. Conclusions A patchy growth mechanism was proposed, with an optimal growth at distinct moments in time at different positions around the stem circumference. This strategy creates the opportunity to form several growth layers simultaneously, as observed in 14 % of the studied trees, which may optimize tree growth under favourable conditions. Strong evidence was provided for a mainly endogenous trigger controlling cambium differentiation, with an additional influence of current environmental conditions in a trade-off between hydraulic efficiency and mechanical stability. PMID:18006508
Stemflow: A literature review and the challenges ahead
NASA Astrophysics Data System (ADS)
José, Návar
2013-04-01
Stemflow is the rainfall portion that flows down to the ground via trunks or stems. It is a localized point source input of precipitation and solutes at the stem base, creating islands of soil moisture and fertility. It accounts on average for less than 5% of the gross rainfall but maximum figures can reach 3.5%, 11.3%, and 19% in tropical, temperate and semi-arid plant communities, respectively. However, recent research has shown these statistics could be twice as large in overstocked semi-arid, subtropical and temperate forest stands. Tree and shrub species funnel different stemflow depths and canopy features; diameter at breast height, top height, canopy area and volume, branch number and position; bark smoothness, etc. are the most frequent independent variables employed to explain the large intrinsic variation. The funneling ratio evaluates the hydro-pedological importance; calculated by the division of stemflow volume by the stem base area and by the rainfall depth. Statistics quite often show funneling ratios >> 1. Assessments of the stemflow infiltration area quite frequently show the islands of soil moisture are at least twice as large as the soil depth wetted by rainfall in the open and calculations are in agreement with several visual observations. Empirical evaluations quite often also show the potential contribution of stemflow to groundwater recharge and streamflow generation. However, assessments of the infiltration area and depth quite frequently deviate from visual observations conducted by dying pathways, showing roots are the most frequent sources of stemflow transport within soils. Should this be the case for most trees, then the number of roots and their position within the soil profile would help to better forecast the stemflow (rootflow) infiltration depth and the potential triggering of other hydrological processes. Current mathematical approaches challenge future research on stemflow and rootflow to better understand the hydro-eco-pedological importance of point source inputs of plant communities.
Predicting performance for ecological restoration: A case study using Spartina altemiflora
Travis, S.E.; Grace, J.B.
2010-01-01
The success of population-based ecological restoration relies on the growth and reproductive performance of selected donor materials, whether consisting of whole plants or seed. Accurately predicting performance requires an understanding of a variety of underlying processes, particularly gene flow and selection, which can be measured, at least in part, using surrogates such as neutral marker genetic distances and simple latitudinal effects. Here we apply a structural equation modeling approach to understanding and predicting performance in a widespread salt marsh grass, Spartina alterniflora, commonly used for ecological restoration throughout its native range in North America. We collected source materials from throughout this range, consisting of eight clones each from 23 populations, for transplantation to a common garden site in coastal Louisiana and monitored their performance. We modeled performance as a latent process described by multiple indicator variables (e.g., clone diameter, stem number) and estimated direct and indirect influences of geographic and genetic distances on performance. Genetic distances were determined by comparison of neutral molecular markers with those from a local population at the common garden site. Geographic distance metrics included dispersal distance (the minimum distance over water between donor and experimental sites) and latitude. Model results indicate direct effects of genetic distance and latitude on performance variation among the donor sites. Standardized effect strengths indicate that performance was roughly twice as sensitive to variation in genetic distance as to latitudinal variation. Dispersal distance had an indirect influence on performance through effects on genetic distance, indicating a typical pattern of genetic isolation by distance. Latitude also had an indirect effect on genetic distance through its linear relationship with dispersal distance. Three performance indicators had significant loadings on performance alone (mean clone diameter, mean number of stems, mean number of inflorescences), while the performance indicators mean stem height and mean stem width were also influenced by latitude. We suggest that dispersal distance and latitude should provide an adequate means of predicting performance in future S. alterniflora restorations and propose a maximum sampling distance of 300 km (holding latitude constant) to avoid the sampling of inappropriate ecotypes. ?? 2010 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Okano, K.; Bret-Harte, M. S.
2015-12-01
Alpine treelines in Alaska have advanced for the past 50 years in response to the recent climate warming. However, further increases in temperatures may cause treeline species drought stress and increase susceptibility to insect outbreaks and fire. Complex factors such as soil conditions and plant species composition also impact the growth of seedlings, which are essential to sustain boreal forests. Our goals were to assess 1) the current optimal elevation for the treeline species Picea glauca (white spruce) seedlings and how it is altered by climate change, and 2) their growth/survival strategies at each environmental site. We studied the growth response of spruce seedlings along an altitudinal gradient at 6 sites, consisting of tundra, forest, or transitional ecotone in Denali National Park and one forest site in Fairbanks, AK. In May 2012, four-month old seedlings were planted with or without naturally occurring plants to compare the presence or absence of the interspecific interaction. Summer temperatures were increased by one small greenhouse per site. Over 2 growing seasons, growth was measured non-destructively, and then the seedlings were harvested. Relative growth rate (RGR) in height was increased significantly as the altitude was increased. Elevated temperature increased height only in seedlings at a high-altitude forest. Seedlings with neighboring plants had a higher RGR in height than seedlings that had neighbors removed, while significantly wider diameters were measured from the seedlings without neighbors. A weak trend of declining diameter width with increasing altitudes was seen. Seedlings that grew taller did not grow their stems wider, indicating trade-offs in resource allocation. None of the altitudinal sites had a clear advantage for the growth of the seedlings. Habitat microclimate and the interaction with other species could be more important than the altitude or temperatures and hence, key to the survival and growth of spruce seedlings in this region.
Litterfall production of mangroves in the Huizache-Caimanero lagoon system, México
Flores-Cárdenas, Francisco; Hurtado-Oliva, Miguel Ángel; Doyle, Thomas W.; Nieves-Sotol, Mario; Díaz-Castro, Sara; Manzano-Sarabia, Marlenne
2017-01-01
The ecological legacy of the Huizache-Caimanero lagoon system has long been known as a trophically rich and productive ecosystem that supported artisanal fisheries of local and regional importance; however, a decline in fisheries' yields has been observed in recent decades. Mangroves are a fundamental component of this ecosystem, though data records and field studies are lacking in describing their structure and seasonal characteristics. Mangrove litterfall production was monitored during 2012–13 and described for the dominant species, Avicennia germinans (L.) Stearn and Laguncularia racemosa (L.) C.F. Gaertn. Forest surveys and monthly litter collections were obtained along a latitudinal gradient within the larger lagoon system to characterize the forest structure, leaf biomass, and related biological indicators (chlorophyll a concentration and Normalized Difference Vegetation Index [NDVI] estimated on leaf tissues). Results showed that structural characteristics (diameter at breast height, basal area, height, and crown diameter) were greater in Huizache, corresponding to patches with a dominance of A. germinans, while higher stem density was recorded for L. racemosa in Caimanero, comparatively similar to other mangrove habitat in NW Mexico. Litterfall was highest from May to October for both species. Litterfall production was also higher overall in 2012 in comparison to 2013, possibly corresponding with meteorological differences, most notably wind conditions. Annual litterfall production was similar by species across northern and southern Sinaloa. A contrast of the NDVI by site and species showed a wide interval, including low values for A. germinans, suggesting stress conditions for this species.
NASA Astrophysics Data System (ADS)
Axelson, Jodi; Gärtner, Holger; Alfaro, René; Smith, Dan
2013-04-01
The western spruce budworm (Choristoneura occidentalis Freeman) is the most widespread and destructive defoliator of coniferous forests in western North America, and has a long-term coexistence with its primary host tree, Douglas-fir (Pseudotsuga menziesii Franco). Western spruce budworm (WSB) outbreaks usually last for several years, and cause reductions in annual growth, stem defects, and regeneration delays. In British Columbia, the WSB is the second most damaging insect after the mountain pine beetle, and sustained and/or severe defoliation can result in the mortality of host trees. Numerous studies have used tree rings to reconstruct WSB outbreaks across long temporal scales, to evaluate losses in stand productivity, and examine isotope ratios. Although some studies have looked at the impacts of artificial defoliation on balsam fir in eastern North America, there has been no prior research on how WSB outbreaks affect the anatomical structure of the stem as described by intra-annual wood density and potential cell size variations. The objective of this study was to anatomically examine the response of Douglas-fir to sustained WSB outbreaks in two regions of southern British Columbia. We hypothesize that the anatomical intra-annual characteristics of the tree rings, such as cell wall thickness, latewood cell size, and/or lumen area changes during sustained WSB outbreaks. To test this hypothesis we sampled four permanent sample plots in coastal and dry interior sites, which had annually resolved defoliation data collected over a 7-12 year period. At each site diameter-at-breast height (cm), height (m), and crown position were recorded and three increment cores were extracted from 25 trees. Increment cores were prepared to permit anatomical and x-ray density analyses. For each tree, a 15µm thick micro section was cut from the radial plane. Digital images of the micro sections were captured and processed. In each annual ring, features such as cell lumen area (µm2), cell wall thickness (µm), lumen diameter (µm), and total cell width (µm) were measured. Preliminary results indicate that earlywood parameters remain quite stable during WSB outbreak, while latewood parameters such as secondary cell wall thickness and cell length undergo step shifts at the beginning and end of outbreaks. These parameters, tree-level data, and annual defoliation data will further be tested to determine if changes in stem wood anatomy during WSB outbreaks were statistically significant.
Origin of sigmoid diameter distributions
William B. Leak
2002-01-01
Diameter distributions--numbers of trees over diameter at breast height (d.b.h.)--were simulated over 20-years using six diameter-growth schedules, six mortality trends, and three initial conditions. The purpose was to determine factors responsible for the short-term development of the arithmetic rotated sigmoid form of diameter distribution characterized by a plateau...
Potential effect of stand structure on belowground allocation
Thomas J. Dean
2001-01-01
Stand structure affects two key variables that affect biomass allocation to the stem: leaf area and height to the center of the crown. By translating wind forces into bending moment, these variables generate bending stress within a stem. The uniform stress axiom of stem formation can be used to calculate current stem mass for a given bending moment and stem allocation...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Florida Oranges and Tangelos Definitions § 51.1174 Diameter. Diameter means the greatest dimension measured at right angles to a line from stem...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Florida Oranges and Tangelos Definitions § 51.1174 Diameter. Diameter means the greatest dimension measured at right angles to a line from stem...
Xie, Jiangbo; Tang, Lisong; Wang, Zhongyuan; Xu, Guiqing; Li, Yan
2012-01-01
In resource-poor environments, adjustment in plant biomass allocation implies a complex interplay between environmental signals and plant development rather than a delay in plant development alone. To understand how environmental factors influence biomass allocation or the developing phenotype, it is necessary to distinguish the biomass allocations resulting from environmental gradients or ontogenetic drift. Here, we compared the development trajectories of cotton plants (Gossypium herbaceum L.), which were grown in two contrasting soil textures during a 60-d period. Those results distinguished the biomass allocation pattern resulting from ontogenetic drift and the response to soil texture. The soil texture significantly changed the biomass allocation to leaves and roots, but not to stems. Soil texture also significantly changed the development trajectories of leaf and root traits, but did not change the scaling relationship between basal stem diameter and plant height. Results of nested ANOVAs of consecutive plant-size categories in both soil textures showed that soil gradients explained an average of 63.64–70.49% of the variation of biomass allocation to leaves and roots. Ontogenetic drift explained 77.47% of the variation in biomass allocation to stems. The results suggested that the environmental factors governed the biomass allocation to roots and leaves, and ontogenetic drift governed the biomass allocation to stems. The results demonstrated that biomass allocation to metabolically active organs (e.g., roots and leaves) was mainly governed by environmental factors, and that biomass allocation to metabolically non-active organs (e.g., stems) was mainly governed by ontogenetic drift. We concluded that differentiating the causes of development trajectories of plant traits was important to the understanding of plant response to environmental gradients. PMID:22911802
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nobel, P.S.
1981-08-01
Stem orientation and morphology were investigated for 14 species of cacti in Chile, Ecuador, Mexico, and the United States. The interception of photosynthetically active radiation (PAR) was specifically considered for cladodes (flattened stems) of platyopuntias, for tilted cylindrical stems, and in the presence of surrounding vegetation.
Measurement of the photoneutron flux density distribution from cylindrical targets
NASA Astrophysics Data System (ADS)
Golovkov, V. M.; Basina, T. N.; Yakovlev, M. R.
1989-09-01
Measurements are performed of the density of photoneutron fluxes from cylindrical targets of2H2O (diameter 64 and height 86 mm), Be (outer diameter 70, inner diameter 40, height 100mm), and238U (diameter 44.5 mm, height 50 mm) under the action of braking radiation from electrons with energies of 4 to 8 MeV in order to determine the effect of target form and orientation relative to the detector upon the recorded photoneutron level. The fluxes were measured by an “all-wave” neutron detector based on an SNM-11 counter in a paraffin retarder at an angle of 90‡ to the axis of the braking radiation beam for various target orientations relative to the detector. Measurement results are compared to calculations. Photoneutron fluxes from heavy water and beryllium targets of the indicated dimensions were also measured for angles of 90, 135, and 167‡. An isotropic nature was noted in the photoneutron fluxes from both targets.
Optimizing lodgepole pine submerchantable log thermomechanical pulp
Gary C. Myers
2004-01-01
To restore and maintain ecosystem health and function in the western interior of the United States, many small-diameter stems need to be removed from densely stocked stands. These stems are considered nonusable or underutilized (good, economical uses need to be developed). As of now, the most logical use for the small-diameter resource is pulp. In this study,...
Nagashima, Hisae; Hikosaka, Kouki
2011-07-01
Although being tall is advantageous in light competition, plant height growth is often similar among dominant plants in crowded stands (height convergence). Previous theoretical studies have suggested that plants should not overtop neighbours because greater allocation to supporting tissues is necessary in taller plants, which in turn lowers leaf mass fraction and thus carbon gain. However, this model assumes that a competitor has the same potential of height growth as their neighbours, which does not necessarily account for the fact that height convergence occurs even among individuals with various biomass. Stands of individually potted plants of Chenopodium album were established, where target plants were lifted to overtop neighbours or lowered to be overtopped. Lifted plants were expected to keep overtopping because they intercept more light without increased allocation to stems, or to regulate their height to similar levels of neighbours, saving biomass allocation to the supporting organ. Lowered plants were expected to be suppressed due to the low light availability or to increase height growth so as to have similar height to the neighbours. Lifted plants reduced height growth in spite of the fact that they received higher irradiance than others. Lowered plants, on the other hand, increased the rate of stem elongation despite the reduced irradiance. Consequently, lifted and lowered plants converged to the same height. In contrast to the expectation, lifted plants did not increase allocation to leaf mass despite the decreased stem length. Rather, they allocated more biomass to roots, which might contribute to improvement of mechanical stability or water status. It is suggested that decreased leaf mass fraction is not the sole cost of overtopping neighbours. Wind blowing, which may enhance transpiration and drag force, might constrain growth of overtopping plants. The results show that plants in crowded stands regulate their height growth to maintain similar height to neighbours even when they have potential advantages in height growth. This might contribute to avoidance of stresses caused by wind blowing.
Estimating past diameters of mixed conifer species in the central Sierra Nevada
K. Leroy Dolph
1981-01-01
Tree diameter outside bark at an earlier period of growth can be estimated from the linear relationship of present inside bark and outside bark diameters at breast height. This note presents equations for estimating inside bark diameters, outside bark diameters, and past outside bark diameters for each of the mixed-conifer species in the central Sierra Nevada.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Florida Grapefruit Definitions § 51.783 Diameter. Diameter means the greatest dimension measured at right angles to a line from stem to blossom end. ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Standards for Grades of Oranges (Texas and States Other Than Florida, California, and Arizona) Definitions § 51.712 Diameter. Diameter means the greatest dimension measured at right angles to a line from stem...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Standards for Grades of Oranges (Texas and States Other Than Florida, California, and Arizona) Definitions § 51.712 Diameter. Diameter means the greatest dimension measured at right angles to a line from stem...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Florida Grapefruit Definitions § 51.783 Diameter. Diameter means the greatest dimension measured at right angles to a line from stem to blossom end. ...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Florida Tangerines Definitions § 51.1836 Diameter. Diameter means the greatest dimension measured at right angles to a line from stem to blossom end. ...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Florida Tangerines Definitions § 51.1836 Diameter. Diameter means the greatest dimension measured at right angles to a line from stem to blossom end. ...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Standards for Grades of Oranges (Texas and States Other Than Florida, California, and Arizona) Definitions § 51.712 Diameter. Diameter means the greatest dimension measured at right angles to a line from stem...
Susanne Winter; Andreas Böck; Ronald E. McRoberts
2012-01-01
Tree diameter and height are commonly measured forest structural variables, and indicators based on them are candidates for assessing forest diversity. We conducted our study on the uncertainty of estimates for mostly large geographic scales for four indicators of forest structural gamma diversity: mean tree diameter, mean tree height, and standard deviations of tree...
Brian Roy Lockhart; Andrew W. Ezell; John D. Hodges; Wayne K. Clatterbuck
2006-01-01
Results from a long-term planted mixture of cherrybark oak (Quercus pagoda Raf.) and sweetgum (Liquidambar styraciflua L.) showed sweetgum taller in height and larger in diameter than cherrybark oak early in plantation development. By age 17 years, cherrybark oak was similar in height and diameter with sweetgum and by age 21...
Rafal Podlaski; Francis .A. Roesch
2013-01-01
The goals of this study are (1) to analyse the accuracy of the approximation of empirical distributions of diameter at breast height (dbh) using two-component mixtures of either the Weibull distribution or the gamma distribution in two−cohort stands, and (2) to discuss the procedure of choosing goodness−of−fit tests. The study plots were...
A k-nearest neighbor approach for estimation of single-tree biomass
Lutz Fehrmann; Christoph Kleinn
2007-01-01
Allometric biomass models are typically site and species specific. They are mostly based on a low number of independent variables such as diameter at breast height and tree height. Because of relatively small datasets, their validity is limited to the set of conditions of the study, such as site conditions and diameter range. One challenge in the context of the current...
Daniels, Joan S. (Thullen); Cade, Brian S.; Sartoris, James J.
2010-01-01
Assessment of emergent vegetation biomass can be time consuming and labor intensive. To establish a less onerous, yet accurate method, for determining emergent plant biomass than by direct measurements we collected vegetation data over a six-year period and modeled biomass using easily obtained variables: culm (stem) diameter, culm height and culm density. From 1998 through 2005, we collected emergent vegetation samples (Schoenoplectus californicus andSchoenoplectus acutus) at a constructed treatment wetland in San Jacinto, California during spring and fall. Various statistical models were run on the data to determine the strongest relationships. We found that the nonlinear relationship: CB=β0DHβ110ε, where CB was dry culm biomass (g m−2), DH was density of culms × average height of culms in a plot, and β0 and β1 were parameters to estimate, proved to be the best fit for predicting dried-live above-ground biomass of the two Schoenoplectus species. The random error distribution, ε, was either assumed to be normally distributed for mean regression estimates or assumed to be an unspecified continuous distribution for quantile regression estimates.
Genetic diversity and selection gain in the physic nut (Jatropha curcas).
Brasileiro, B P; Silva, S A; Souza, D R; Santos, P A; Oliveira, R S; Lyra, D H
2013-07-08
The use of efficient breeding methods depends on knowledge of genetic control of traits to be improved. We estimated genetic parameters, selection gain, and genetic diversity in physic nut half-sib families, in order to provide information for breeding programs of this important biofuel species. The progeny test included 20 half-sib families in 4 blocks and 10 plants per plot. The mean progeny heritability values were: 50% for number of bunches, 47% for number of fruits, 35% for number of seeds, 6% for stem diameter, 26% for number of primary branches, 14% for number of secondary branches, 66% for plant height, and 25% for survival of the plants, demonstrating good potential for early selection in plant height, number of branches, and number of fruits per plant. In the analysis of genetic diversity, genotypes were divided into 4 groups. Genotypes 18, 19, 20, and 8 clustered together and presented the highest means for the vegetative and production. Lower means were observed in the 17, 12, 13, and 9 genotypes from the same group. We detected genetic variability in this population, with high heritability estimates and accuracy, demonstrating the possibility of obtaining genetic gains for vegetative characters and production at 24 months after planting.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Standards for Grades for Sweet Cherries 1 Definitions § 51.2656 Diameter. Diameter means the greatest dimension measured at right angles to a line from the stem to the blossom end of the cherry. ...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., CERTIFICATION, AND STANDARDS) United States Standards for Persian (Tahiti) Limes Definitions § 51.1016 Diameter. Diameter means the greatest dimension measured at right angles to a line from stem to blossom end of the...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., CERTIFICATION, AND STANDARDS) United States Standards for Grades for Sweet Cherries 1 Definitions § 51.2656 Diameter. Diameter means the greatest dimension measured at right angles to a line from the stem to the...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Standards for Grades for Sweet Cherries 1 Definitions § 51.2656 Diameter. Diameter means the greatest dimension measured at right angles to a line from the stem to the blossom end of the cherry. ...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., CERTIFICATION, AND STANDARDS) United States Standards for Grades for Sweet Cherries 1 Definitions § 51.2656 Diameter. Diameter means the greatest dimension measured at right angles to a line from the stem to the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Standards for Grades for Sweet Cherries 1 Definitions § 51.2656 Diameter. Diameter means the greatest dimension measured at right angles to a line from the stem to the blossom end of the cherry. ...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., CERTIFICATION, AND STANDARDS) United States Standards for Persian (Tahiti) Limes Definitions § 51.1016 Diameter. Diameter means the greatest dimension measured at right angles to a line from stem to blossom end of the...
Hydraulic conductivity and embolism in the mangrove tree Laguncularia racemosa.
Ewers, Frank W; Lopez-Portillo, Jórge; Angeles, Guillermo; Fisher, Jack B
2004-09-01
We measured xylem pressure potentials, soil osmotic potentials, hydraulic conductivity and percent loss of conductivity (PLC) due to embolism, and made microscopic observations of perfused dye in the white mangrove tree, Laguncularia racemosa (L.) Gaertn. f., (1) to determine its vulnerability to air embolism compared with published results for the highly salt-tolerant red mangrove tree, Rhizophora mangle L., and (2) to identify possible relationships between air embolism, permanent blockage of vessels and stem diameter. Laguncularia racemosa was more vulnerable to embolism than reported for R. mangle, with 50 PLC at -3.4 MPa. Narrow stems (5-mm diameter) had higher PLC than larger stems (8.4- or 14-mm diameter) of the same plants. Basic fuchsin dye indicated that up to 89% of the vessels, especially in the narrow stems, had permanent blockage that could not be reversed by high pressure perfusion. Air embolism could lead to permanent vessel blockage and eventual stem mortality. Such vulnerability to embolism may restrict the growth of L. racemosa and limit its distribution to less salty areas of mangrove communities.
Reflections on a Bouncing Ball
ERIC Educational Resources Information Center
Rohr, Jim; Lopez, Veronica; Rohr, Tyler
2014-01-01
While observing the bounce heights of various kinds of sports balls dropped from different heights onto a variety of surfaces, we thought of the following question: Could measurements of drop and bounce heights of balls of different diameters, but of the same material, falling from different heights, but on the same surface, be expressed by a…
16 CFR 1512.6 - Requirements for steering system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... stem insertion mark. The handlebar stem shall contain a permanent ring or mark which clearly indicates the minimum insertion depth of the handlebar stem into the fork assembly. The insertion mark shall not affect the structural integrity of the stem and shall not be less than 21/2 times the stem diameter from...
16 CFR 1512.6 - Requirements for steering system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... stem insertion mark. The handlebar stem shall contain a permanent ring or mark which clearly indicates the minimum insertion depth of the handlebar stem into the fork assembly. The insertion mark shall not affect the structural integrity of the stem and shall not be less than 21/2 times the stem diameter from...
Floyd A. Johnson
1956-01-01
Whenever past diameters of ponderosa pine trees are required for growth studies or for other purposes they can be estimated with these formulas: (1) trees 10 inches and over in diameter at breast height Dp=Dn - Wg (1.121) Where Dp...
Devereux, Richard B; de Simone, Giovanni; Arnett, Donna K; Best, Lyle G; Boerwinkle, Eric; Howard, Barbara V; Kitzman, Dalane; Lee, Elisa T; Mosley, Thomas H; Weder, Alan; Roman, Mary J
2012-10-15
Nomograms to predict normal aortic root diameter for body surface area (BSA) in broad ranges of age have been widely used but are limited by lack of consideration of gender effects, jumps in upper limits of aortic diameter among age strata, and data from older teenagers. Sinus of Valsalva diameter was measured by American Society of Echocardiography convention in normal-weight, nonhypertensive, nondiabetic subjects ≥15 years old without aortic valve disease from clinical or population-based samples. Analyses of covariance and linear regression with assessment of residuals identified determinants and developed predictive models for normal aortic root diameter. In 1,207 apparently normal subjects ≥15 years old (54% women), aortic root diameter was 2.1 to 4.3 cm. Aortic root diameter was strongly related to BSA and height (r = 0.48 for the 2 comparisons), age (r = 0.36), and male gender (+2.7 mm adjusted for BSA and age, p <0.001 for all comparisons). Multivariable equations using age, gender, and BSA or height predicted aortic diameter strongly (R = 0.674 for the 2 comparisons, p <0.001) with minimal relation of residuals to age or body size: for BSA 2.423 + (age [years] × 0.009) + (BSA [square meters] × 0.461) - (gender [1 = man, 2 = woman] × 0.267), SEE 0.261 cm; for height 1.519 + (age [years] × 0.010) + (height [centimeters] × 0.010) - (gender [1 = man, 2 = woman] × 0.247), SEE 0.215 cm. In conclusion, aortic root diameter is larger in men and increases with body size and age. Regression models incorporating body size, age, and gender are applicable to adolescents and adults without limitations of previous nomograms. Copyright © 2012 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., CERTIFICATION, AND STANDARDS) United States Standards for Pears for Canning Definitions § 51.1359 Diameter. Diameter means the greatest dimension of the pear taken at right angles to a line running from the stem to...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., CERTIFICATION, AND STANDARDS) United States Standards for Pears for Canning Definitions § 51.1359 Diameter. Diameter means the greatest dimension of the pear taken at right angles to a line running from the stem to...
Proximal femoral anatomy and collared stems in hip arthroplasty: is a single collar size sufficient?
Bonin, Nicolas; Gedouin, Jean-Emmanuel; Pibarot, Vincent; Bejui-Hughues, Jacques; Bothorel, Hugo; Saffarini, Mo; Batailler, Cécile
2017-10-03
Even if the benefits of collars are unclear, they remain widely used, in several femoral stem designs. This study aimed to determine whether collar size should be proportional to hip dimensions and morphology. The hypothesis was that the collar should be larger for greater stem sizes and for varus femoral necks. Computed Tomography scans of 204 healthy hips were digitally analysed and manually templated to determine principle dimensions, appropriate stem size and model, as well as cortical distance at the femoral calcar (ideal collar size). Univariable analysis revealed that cortical distance was moderately correlated with mediolateral offset (r = 0.572; p < 0.0001) and stem model (r = 0.520; p < 0.0001). Cortical distance was weakly correlated with head diameter (r = 0.399; p < 0.0001), stem size (r = 0.200; p = 0.017), and patient gender (r = 0.361; p < 0.0001). Multivariable analysis confirmed that stem model (p < 0.0001) and head diameter (p = 0.0162) are directly correlated to cortical distance. We found that cortical distance along the femoral calcar is directly correlated with the model of the stem implanted ('standard' or 'varus') and with the head diameter. This cortical distance indicates optimal collar size, which would grant maximum calcar coverage without prosthetic overhang. Collar size should be proportional to the size of the operated hip, and should be larger for 'varus' stem models than for 'standard' stem models.
Effects of soil cadmium on growth of bald cypress seedlings under flooded and non-flooded conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredenberg, S.C.; Neufeld, H.S.
1995-06-01
Cypress swamps are occasionally used for tertiary waste water treatment. The sewage input to these ecosystems often contains high amounts of cadmium. To date, there have been no studies of the potential effects of cadmium on the growth of the dominant trees in these swamps, the bald cypress (Taxodium distichum (L.) Rich. var. distichum). Seedlings were grown for 16 weeks in organic soils amended with 0, 40, 80, and 120 ppm Cd (mg Cd/Kg soil dry weight) under both flooded and non-flooded conditions. Near the end of the growth period, leaf gas exchange was measured using a Li-Cor portable system.more » At the conclusion of the experiment, seedlings were harvested and separated into leaves, stems, branches and roots and dried at 65 C. Cadmium had no significant effects on any measured parameter. Flooding did Increase stem diameter, while decreasing height and biomass, but it had no effect on tolerance to Cd. Flooding reduced total biomass by 35%, mainly due to greatly reduced root growth (66% reduction). Cypress trees were probably protected from the toxic effects of Cd by the binding of this heavy metal to organic compounds in the soil.« less
NASA Astrophysics Data System (ADS)
Kalra, Tarandeep S.; Aretxabaleta, Alfredo; Seshadri, Pranay; Ganju, Neil K.; Beudin, Alexis
2017-12-01
Coastal hydrodynamics can be greatly affected by the presence of submerged aquatic vegetation. The effect of vegetation has been incorporated into the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system. The vegetation implementation includes the plant-induced three-dimensional drag, in-canopy wave-induced streaming, and the production of turbulent kinetic energy by the presence of vegetation. In this study, we evaluate the sensitivity of the flow and wave dynamics to vegetation parameters using Sobol' indices and a least squares polynomial approach referred to as the Effective Quadratures method. This method reduces the number of simulations needed for evaluating Sobol' indices and provides a robust, practical, and efficient approach for the parameter sensitivity analysis. The evaluation of Sobol' indices shows that kinetic energy, turbulent kinetic energy, and water level changes are affected by plant stem density, height, and, to a lesser degree, diameter. Wave dissipation is mostly dependent on the variation in plant stem density. Performing sensitivity analyses for the vegetation module in COAWST provides guidance to optimize efforts and reduce exploration of parameter space for future observational and modeling work.
Bark thickness related to tree diameter in sugar maple (Acer saccharum Marsh.)
H. Clay Smith
1969-01-01
Bark thickness for sugar maple trees in Vermont was found to be related to tree diameter at breast height (d.b.h.). The relationship was positive-as the diameter increased, the bark thickness increased.
Thomas B. Lynch; Jeffrey H. Gove
2013-01-01
Critical height sampling (CHS) estimates cubic volume per unit area by multiplying the sum of critical heights measured on trees tallied in a horizontal point sample (HPS) by the HPS basal area factor. One of the barriers to practical application of CHS is the fact that trees near the field location of the point-sampling sample point have critical heights that occur...
Prediction and error of baldcypress stem volume from stump diameter
Bernard R. Parresol
1998-01-01
The need to estimate the volume of removals occurs for many reasons, such as in trespass cases, severance tax reports, and post-harvest assessments. A logarithmic model is presented for prediction of baldcypress total stem cubic foot volume using stump diameter as the independent variable. Because the error of prediction is as important as the volume estimate, the...
Evaluation of moisture reduction in small diameter trees after crushing
Donald L. Sirois; Cynthia L. Rawlins; Bryce J. Stokes
1991-01-01
Past studies have suggested that processing small diameter whole trees like those foumd on rights-of-way (ROWs) would help reduce transportion costs and increase energy value by lowering stem moisture content. Small stems were crushed by a roller crusher/splitter test bench machine and allowed dry under field conditions in Alabama. Tests were conducted in winter and...
Calibration of the STEMS diameter growth model using FIA data
Veronica C. Lessard
2000-01-01
The diameter growth model used in STEMS, the Stand and Tree Evaluation and Modeling System, was originally calibrated using data from permanent growth plots in Minnesota, Wisconsin, and Michigan. Because the model has been applied in predicting growth using Forest Inventory and Analysis (FIA) data, it was appropriate to refit the model to FIA data. The model was...
Tree height-diameter allometry across the United States.
Hulshof, Catherine M; Swenson, Nathan G; Weiser, Michael D
2015-03-01
The relationship between tree height and diameter is fundamental in determining community and ecosystem structure as well as estimates of biomass and carbon storage. Yet our understanding of how tree allometry relates to climate and whole organismal function is limited. We used the Forest Inventory and Analysis National Program database to determine height-diameter allometries of 2,976,937 individuals of 293 tree species across the United States. The shape of the allometric relationship was determined by comparing linear and nonlinear functional forms. Mixed-effects models were used to test for allometric differences due to climate and floristic (between angiosperms and gymnosperms) and functional groups (leaf habit and shade tolerance). Tree allometry significantly differed across the United States largely because of climate. Temperature, and to some extent precipitation, in part explained tree allometric variation. The magnitude of allometric variation due to climate, however, had a phylogenetic signal. Specifically, angiosperm allometry was more sensitive to differences in temperature compared to gymnosperms. Most notably, angiosperm height was more negatively influenced by increasing temperature variability, whereas gymnosperm height was negatively influenced by decreasing precipitation and increasing altitude. There was little evidence to suggest that shade tolerance influenced tree allometry except for very shade-intolerant trees which were taller for any given diameter. Tree allometry is plastic rather than fixed and scaling parameters vary around predicted central tendencies. This allometric variation provides insight into life-history strategies, phylogenetic history, and environmental limitations at biogeographical scales.
James D. Haywood
1994-01-01
A loblolly pine stand was subjected to two cultural treatments to determine treatment effects in the 9th through 12th growing seasons. Thining resulted in less spring height growth in the 9th and 10th growing seasons than no thinning, but thinning resulted in more diameter growth each year. Fertilization increased height and diameter growth beginning in the 10th...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-16
... height and 10.5 cm in diameter and is made of deer grass, sedge, redbud and bracken fern root. There are... deer grass, saw grass, redbud and bracken fern root. A tag attached to the basket was labeled... height with a maximum diameter of 18 cm and is made of deer grass, sedge, redbud and bracken fern root. A...
Rafal Podlaski; Francis A. Roesch
2014-01-01
Two-component mixtures of either the Weibull distribution or the gamma distribution and the kernel density estimator were used for describing the diameter at breast height (dbh) empirical distributions of two-cohort stands. The data consisted of study plots from the Å wietokrzyski National Park (central Poland) and areas close to and including the North Carolina section...
Twenty-year growth of ponderosa pine saplings thinned to five spacings in central Oregon.
Barrett James W.
1982-01-01
Diameter, height, and volume growth and yield are given for plots thinned to 1000, 500, 250, 125, and 62 trees per acre in a 40- to 70-year-old stand of suppressed ponderosa pine (Pinus ponderosa Dougl. ex Laws.) saplings in central Oregon. Trees averaged about 1-inch in diameter and 8 feet in height at the time of thinning. Considerations for...
Mouney, Meredith C; Townsend, Wendy M; Moore, George E
2012-12-01
To determine whether differences exist in the calculated intraocular lens (IOL) strengths of a population of adult horses and to assess the association between calculated IOL strength and horse height, body weight, and age, and between calculated IOL strength and corneal diameter. 28 clinically normal adult horses (56 eyes). Axial globe lengths and anterior chamber depths were measured ultrasonographically. Corneal curvatures were determined with a modified photokeratometer and brightness-mode ultrasonographic images. Data were used in the Binkhorst equation to calculate the predicted IOL strength for each eye. The calculated IOL strengths were compared with a repeated-measures ANOVA. Corneal curvature values (photokeratometer vs brightness-mode ultrasonographic images) were compared with a paired t test. Coefficients of determination were used to measure associations. Calculated IOL strengths (range, 15.4 to 30.1 diopters) differed significantly among horses. There was a significant difference in the corneal curvatures as determined via the 2 methods. Weak associations were found between calculated IOL strength and horse height and between calculated IOL strength and vertical corneal diameter. Calculated IOL strength differed significantly among horses. Because only weak associations were detected between calculated IOL strength and horse height and vertical corneal diameter, these factors would not serve as reliable indicators for selection of the IOL strength for a specific horse.
Relationship between plant traits and resistance to burial by marly sediment
NASA Astrophysics Data System (ADS)
Burylo, M.; Rey, F.; Dutoit, T.
2009-04-01
In marly lands of the French Southern Alps, harsh soil erosion results in sediment movements during intensive rainfall events. Plants can be submitted to sediment burial in their early stages of development and their protective function may be reduced. In a context of land restoration, it is important to know species resistance to environmental disturbances and to be able to predict it, in particular from plant traits (height, biomass, sugar and starch accumulation). However, few studies about woody species tolerance to burial by sediment have been carried out. Seedlings of five woody species were buried in marly sediment at three different depths in pot experiment during eight weeks: no burial (control), partial burial (50% stem height) and complete burial (100% stem height). Height through time, biomass and survival rates were measured to assess species resistance to burial. Results show that among the five species, only one (Acer campestre) survived complete burial. All plants survived partial burial, but there were significant differences in height and biomass between buried plants and control, and significant differences between species responses. Three different responses to disturbance were identified: negative (Hippophae rhamnoides, Ononis fruticosa), neutral (Robinia pseudo acacia, Pinus nigra) and positive (Acer campestre). Results finally suggest that species resistance to burial by marly sediment is related to sugar accumulation in plant stems.
Floyd. Johnson
1966-01-01
Recent emphasis on the measurement of upper stem tree diameters with optical dendrometers has directed attention to procedures for converting these outside-bark diameters to inside-bark diameters. One procedure that has been used requires an assumption that the ratio of diameter inside bark to diameter outside bark (henceforth called bark factor) remains the same up...
Steven A. Knowe; G. Sam Foster; Randall J. Rousseau; Warren L Nance
1998-01-01
Data from an eastern cottonwood clonal mixing study in Mississippi and Kentucky, USA, were used to test the effects of planting locations and genetics (clonal proportions) on height-age and height-d.b.h. functions. Planting locations, which accounted for 5.6 percent of the variation in observed dominant height growth (p = 0.0001), were more important than clonal...
Don Minore; Donald R. Gedney
1960-01-01
A large proportion of present-day timber cruising is done by measuring or estimating three tree dimensions: diameter at breast height, form class, and merchantable height. Tree volumes are then determined from tables which equate volume to the varying combinations of height, d.b.h., and form class. Assumptions concerning merchantable height were made in constructing...
More practical critical height sampling.
Thomas B. Lynch; Jeffrey H. Gove
2015-01-01
Critical Height Sampling (CHS) (Kitamura 1964) can be used to predict cubic volumes per acre without using volume tables or equations. The critical height is defined as the height at which the tree stem appears to be in borderline condition using the point-sampling angle gauge (e.g. prism). An estimate of cubic volume per acre can be obtained from multiplication of the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Standards for Grades of Table Grapes (European or Vinifera Type) 1 Definitions § 51.907 Diameter. Diameter means the greatest dimension of the berry taken at right angles to a line running from the stem to the...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Standards for Grades of Table Grapes (European or Vinifera Type) 1 Definitions § 51.907 Diameter. Diameter means the greatest dimension of the berry taken at right angles to a line running from the stem to the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Standards for Grades of Table Grapes (European or Vinifera Type) 1 Definitions § 51.907 Diameter. Diameter means the greatest dimension of the berry taken at right angles to a line running from the stem to the...
Menciotti, G; Borgarelli, M; Aherne, M; Wesselowski, S; Häggström, J; Ljungvall, I; Lahmers, S M; Abbott, J A
2017-04-01
To assess differences in morphology of the mitral valve (MV) between healthy dogs and dogs affected by myxomatous mitral valve disease (MMVD) using real-time transthoracic three-dimensional echocardiography (RT3DE). Thirty-four were normal dogs and 79 dogs were affected by MMVD. Real-time transthoracic three-dimensional echocardiography mitral datasets were digitally recorded and analyzed using dedicated software. The following variables were obtained and compared between healthy dogs and dogs with MMVD at different stages: antero-posterior annulus diameter, anterolateral-posteromedial annulus diameter, commissural diameter, annulus height, annulus circumference, annulus area, anterior leaflet length, anterior leaflet area, posterior leaflet length, posterior leaflet area, non-planar angle, annulus sphericity index, tenting height, tenting area, tenting volume, the ratio of annulus height and commissural diameter. Dogs with MMVD had a more circular MV annulus compared to healthy dogs as demonstrated by an increased annulus sphericity index (p=0.0179). Affected dogs had a less saddle-shaped MV manifest as a decreased annulus height to commissural width ratio (p=0.0004). Tenting height (p<0.0001), area (p<0.0001), and volume (p<0.0001) were less in affected dogs. Real-time transthoracic three-dimensional echocardiography analysis demonstrated that dogs affected by MMVD had a more circular and less saddle-shaped MV annulus, as well as reduced tenting height area and volume, compared to healthy dogs. Multiple variables differed between dogs at different stages of MMVD. Diagnostic and prognostic utility of these variables, and the significance of these changes in the pathogenesis and natural history of MMVD, require further attention. Copyright © 2017 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Definitions § 51.907 Diameter. Diameter means the greatest dimension of the berry taken at right angles to a line running from the stem to the blossom end. [36 FR 9126, May 20, 1971. Redesignated at 42 FR 32514...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Definitions § 51.907 Diameter. Diameter means the greatest dimension of the berry taken at right angles to a line running from the stem to the blossom end. [36 FR 9126, May 20, 1971. Redesignated at 42 FR 32514...
Comparing the STEMS and AFIS growth models with respect to the uncertainty of predictions
Ronald E. McRoberts; Margaret R. Holdaway; Veronica C. Lessard
2000-01-01
The uncertainty in 5-, 10-, and 20-year diameter growth predictions is estimated using Monte Carlo simulations for four Lake States tree species. Two sets of diameter growth models are used: recalibrations of the STEMS models using forest inventory and analysis data, and new growth models developed as a component of an annual forest inventory system for the North...
Kurt W. Gottschalk
1985-01-01
Optimum light levels for shelterwood cutting to develop the large advance regeneration that require were investigated using eight shade-cloth treatments. Seedlings of northern red oak, black oak, black cherry and red maple were grow under these light treatments for 2 years. Height and diameter were measured annually, and samples were harvested for dry weight and leaf...
NASA Astrophysics Data System (ADS)
Shcherba, V. E.; Grigoriev, A. V.; Averyanov, G. S.; Surikov, V. I.; Vedruchenko, V. P.; Galdin, N. S.; Trukhanova, D. A.
2017-08-01
The article analyzes the impact of the connecting liquid pipe length and diameter on consumables and power characteristics of the piston hybrid power machine with gas suction capacity. The following operating characteristics of the machine were constructed and analyzed: the average height of the liquid column in the jacket space; instantaneous velocity and height of the liquid column in the jacket space; the relative height of the liquid column in the jacket space; volumetric efficiency; indicator isothermal efficiency; flowrate in the pump section; relative pressure losses during suction; relative flowrate. The dependence of the instantaneous pressure in the work space and the suction space of the compressor section on the rotation angle of the crankshaft is determined for different values of the length and diameter of the connecting pipeline.
Murillo-Amador, Bernardo; Rueda-Puente, Edgar Omar; Troyo-Diéguez, Enrique; Córdoba-Matson, Miguel Víctor; Hernández-Montiel, Luis Guillermo; Nieto-Garibay, Alejandra
2015-05-10
Despite the ecological and socioeconomic importance of wild Capsicum annuum L., few investigations have been carried out to study basic characteristics. The peninsula of Baja California has a unique characteristic that it provides a high degree of isolation for the development of unique highly diverse endemic populations. The objective of this study was to evaluate for the first time the growth type, associated vegetation, morphometric traits in plants, in fruits and mineral content of roots, stems and leaves of three wild populations of Capsicum in Baja California, Mexico, near biosphere reserves. The results showed that the majority of plants of wild Capsicum annuum have a shrub growth type and were associated with communities consisting of 43 species of 20 families the most representative being Fabaceae, Cactaceae and Euphorbiaceae. Significant differences between populations were found in plant height, main stem diameter, beginning of canopy, leaf area, leaf average and maximum width, stems and roots dry weights. Coverage, leaf length and dry weight did not show differences. Potassium, sodium and zinc showed significant differences between populations in their roots, stems and leaves, while magnesium and manganese showed significant differences only in roots and stems, iron in stems and leaves, calcium in roots and leaves and phosphorus did not show differences. Average fruit weight, length, 100 fruits dry weight, 100 fruits pulp dry weight and pulp/seeds ratio showed significant differences between populations, while fruit number, average fruit fresh weight, peduncle length, fruit width, seeds per fruit and seed dry weight, did not show differences. We concluded that this study of traits of wild Capsicum, provides useful information of morphometric variation between wild populations that will be of value for future decision processes involved in the management and preservation of germplasm and genetic resources.
Johnson, Michelle O; Galbraith, David; Gloor, Manuel; De Deurwaerder, Hannes; Guimberteau, Matthieu; Rammig, Anja; Thonicke, Kirsten; Verbeeck, Hans; von Randow, Celso; Monteagudo, Abel; Phillips, Oliver L; Brienen, Roel J W; Feldpausch, Ted R; Lopez Gonzalez, Gabriela; Fauset, Sophie; Quesada, Carlos A; Christoffersen, Bradley; Ciais, Philippe; Sampaio, Gilvan; Kruijt, Bart; Meir, Patrick; Moorcroft, Paul; Zhang, Ke; Alvarez-Davila, Esteban; Alves de Oliveira, Atila; Amaral, Ieda; Andrade, Ana; Aragao, Luiz E O C; Araujo-Murakami, Alejandro; Arets, Eric J M M; Arroyo, Luzmila; Aymard, Gerardo A; Baraloto, Christopher; Barroso, Jocely; Bonal, Damien; Boot, Rene; Camargo, Jose; Chave, Jerome; Cogollo, Alvaro; Cornejo Valverde, Fernando; Lola da Costa, Antonio C; Di Fiore, Anthony; Ferreira, Leandro; Higuchi, Niro; Honorio, Euridice N; Killeen, Tim J; Laurance, Susan G; Laurance, William F; Licona, Juan; Lovejoy, Thomas; Malhi, Yadvinder; Marimon, Bia; Marimon, Ben Hur; Matos, Darley C L; Mendoza, Casimiro; Neill, David A; Pardo, Guido; Peña-Claros, Marielos; Pitman, Nigel C A; Poorter, Lourens; Prieto, Adriana; Ramirez-Angulo, Hirma; Roopsind, Anand; Rudas, Agustin; Salomao, Rafael P; Silveira, Marcos; Stropp, Juliana; Ter Steege, Hans; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van der Heijden, Geertje M F; Vasquez, Rodolfo; Guimarães Vieira, Ima Cèlia; Vilanova, Emilio; Vos, Vincent A; Baker, Timothy R
2016-12-01
Understanding the processes that determine above-ground biomass (AGB) in Amazonian forests is important for predicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global vegetation models (DGVMs). AGB is determined by inputs from woody productivity [woody net primary productivity (NPP)] and the rate at which carbon is lost through tree mortality. Here, we test whether two direct metrics of tree mortality (the absolute rate of woody biomass loss and the rate of stem mortality) and/or woody NPP, control variation in AGB among 167 plots in intact forest across Amazonia. We then compare these relationships and the observed variation in AGB and woody NPP with the predictions of four DGVMs. The observations show that stem mortality rates, rather than absolute rates of woody biomass loss, are the most important predictor of AGB, which is consistent with the importance of stand size structure for determining spatial variation in AGB. The relationship between stem mortality rates and AGB varies among different regions of Amazonia, indicating that variation in wood density and height/diameter relationships also influences AGB. In contrast to previous findings, we find that woody NPP is not correlated with stem mortality rates and is weakly positively correlated with AGB. Across the four models, basin-wide average AGB is similar to the mean of the observations. However, the models consistently overestimate woody NPP and poorly represent the spatial patterns of both AGB and woody NPP estimated using plot data. In marked contrast to the observations, DGVMs typically show strong positive relationships between woody NPP and AGB. Resolving these differences will require incorporating forest size structure, mechanistic models of stem mortality and variation in functional composition in DGVMs. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willitsford, Adam H.; Brown, David M.; Brown, Andrea M.
2014-08-28
Multi-wavelength laser transmittance was measured during a series of open-air propellant burn tests at Alliant Techsystems, Inc., in Elkton, MD, in May 2012. A Mie scattering model was combined with an alumina optical properties model in a simple single-scatter approach to fitting plume transmittance. Wavelength-dependent plume transmission curves were fit to the measured multi-wave- length transmittance data to infer plume particle size distributions at several heights in the plume. Tri-modal lognormal distributions described transmittance data well at all heights. Overall distributions included a mode with nanometer-scale diameter, a second mode at a diameter of ~0.5 µm, and a third, largermore » particle mode. Larger parti- cles measured 2.5 µm in diameter at 34 cm (14 in.) above the burning propellant surface, but grew to 4 µm in diameter at a height of 57 cm (22 in.), indicative of particle agglomeration in progress as the plume rises. This report presents data, analysis, and results from the study.« less
D.b.h./crown diameter relationships in mixed Appalachian hardwood stands
Neil I. Lamson; Neil I. Lamson
1987-01-01
Linear regression formulae for predicting crown diameter as a function of stem diameter are presented for nine species found in 50- to 80-year-old mixed hardwood stands in north-central West Virginia. Generally, crown diameter was closely related to tolerance; more tolerant species had larger crowns.
The dispersion of particles in a separated backward-facing step flow
NASA Astrophysics Data System (ADS)
Ruck, B.; Makiola, B.
1991-05-01
Flows in technical and natural circuits often involve a particulate phase. To measure the dynamics of suspended, naturally resident or artificially seeded particles in the flow, optical measuring techniques, e.g., laser Doppler anemometry (LDA) can be used advantageously. In this paper the dispersion of particles in a single-sided backward-facing step flow is investigated by LDA. The investigation is of relevance for both, two-phase flow problems in separated flows with the associated particle diameter range of 1-70 μm and the accuracy of LDA with tracer particles of different sizes. The latter is of interest for all LDA applications to measure continuous phase properties, where interest for experimental restraints require tracer diameters in the upper micrometer range, e.g., flame resistant particles for measurements inside reactors, cylinders, etc. For the experiments, a closed-loop wind tunnel with a step expansion was used. Part of this tunnel, the test section, was made of glass. The step had a height H=25 mm (channel height before the step 25 mm, after 50 mm, i.e., an expansion ratio of 2). The width of the channel was 500 mm. The length of the glass test section was chosen as 116 step heights. The wind tunnel, driven by a radial fan, allowed flow velocities up to 50 m/sec which is equivalent to ReH=105. Seeding was performed with particles of well-known size: 1, 15, 30, and 70 μm in diameter. As 1 μm tracers oil droplets were used, whereas for the upper micron range starch particles (density 1.500 kg/m3) were chosen. Starch particles have a spherical shape and are not soluble in cold water. Particle velocities were measured locally using a conventional 1-D LDA system. The measurements deliver the resultant ``flow'' field information stemming from different particle size classes. Thus, the particle behavior in the separated flow field can be resolved. The results show that with increasing particle size, the particle velocity field differs increasingly from the flow field of the continuous phase (inferred from the smallest tracers used). The velocity fluctuations successively decrease with increasing particle diameter. In separation zones, bigger particles have a lower mean velocity than smaller ones. The opposite holds for the streamwise portions of the particle velocity field, where bigger particles show a higher velocity. The measurements give detailed insight into the particle dynamics in separated flow regions. LDA-measured dividing streamlines and lines of zero velocity of different particle classes in the recirculation region have been plotted and compared. In LDA the use of tracer particles in the upper micrometer size range leads to erroneous determinations of continuous phase flow characteristics. It turned out that the dimensions of the measured recirculation zones are reduced with increasing particle diameter. The physical reasons for these findings (relaxation time of particles, Stokes numbers, etc.) are explained in detail.
Height growth of red pine on fine-textured soils.
David H. Alban; Donald H. Prettyman
1984-01-01
Height growth was determined by stem analysis for red pine in 12 natural and 10 planted stands on well-drained, fine textured soils. Growth closely followed the Gervorkiantz site index curves. When calculating site index, an age adjustment is desirable if the trees take longer than 8 years to attain breast height.
Gutiérrez-Miceli, F A; Moguel-Zamudio, B; Abud-Archila, M; Gutiérrez-Oliva, V F; Dendooven, L
2008-10-01
An orthogonal experimental design L9 (3(4)) with 10 repetitions was used to investigate the effect of Glomus claroideum (0, 1 or 2g(-1) plant), G. fasciculatum (0, 1 or 2g plant(-1)), native diazotrophic bacteria (0, 10(3) and 10(5) UFC ml(-1)) and sheep manure vermicompost (0%, 5% and 10% v/v) on maize plant growth, N and P in leaves and mycorrhization percent. Vermicompost explained most of the variation found for leaf number, wet weight, stem height, and diameter. Both mycorrhizas increased the plant wet weight but G. fasciculatum the most. Mycorrhization increased the P content, but not the N content. Mycorrhizal colonization increased when diazotrophic bacteria and vermicompost were added. It was found that weight of maize plants cultivated in peat moss amended with vermicompost increased when supplemented with G. fasciculatum and diazotrophic bacteria.
[Aboveground biomass of three conifers in Qianyanzhou plantation].
Li, Xuanran; Liu, Qijing; Chen, Yongrui; Hu, Lile; Yang, Fengting
2006-08-01
In this paper, the regressive models of the aboveground biomass of Pinus elliottii, P. massoniana and Cunninghamia lanceolata in Qianyanzhou of subtropical China were established, and the regression analysis on the dry weight of leaf biomass and total biomass against branch diameter (d), branch length (L), d3 and d2L was conducted with linear, power and exponent functions. Power equation with single parameter (d) was proved to be better than the rests for P. massoniana and C. lanceolata, and linear equation with parameter (d3) was better for P. elliottii. The canopy biomass was derived by the regression equations for all branches. These equations were also used to fit the relationships of total tree biomass, branch biomass and foliage biomass with tree diameter at breast height (D), tree height (H), D3 and D2H, respectively. D2H was found to be the best parameter for estimating total biomass. For foliage-and branch biomass, both parameters and equation forms showed some differences among species. Correlations were highly significant (P <0.001) for foliage-, branch-and total biomass, with the highest for total biomass. By these equations, the aboveground biomass and its allocation were estimated, with the aboveground biomass of P. massoniana, P. elliottii, and C. lanceolata forests being 83.6, 72. 1 and 59 t x hm(-2), respectively, and more stem biomass than foliage-and branch biomass. According to the previous studies, the underground biomass of these three forests was estimated to be 10.44, 9.42 and 11.48 t x hm(-2), and the amount of fixed carbon was 47.94, 45.14 and 37.52 t x hm(-2), respectively.
Stemness of spermatogonial stem cells encapsulated in alginate hydrogel during cryopreservation.
Pirnia, A; Parivar, K; Hemadi, M; Yaghmaei, P; Gholami, M
2017-06-01
This study investigated the effect of spermatogonial stem cell encapsulated in alginate hydrogel during cryopreservation, as cells were protected against damage during cryopreservation within the hydrogel. Spermatogonial stem cells were isolated from the testes of Balb/c mice pups (6 days old), purified in laminin-coated dishes and CD90.1 microbeads, encapsulated in alginate hydrogel and then cryopreserved. After thawing, cell viability and Spermatogonial stem cell (SSC) colony diameter were evaluated. After RNA was isolated and cDNA was synthesised, the expression of stemness genes was considered using RT real-time PCR. Finally, spermatogonial stem cells labelled with BrdU were transplanted to busulfan azoospermic mouse models. Lin28a and Sall4 genes were significantly upregulated after cryopreservation in alginate hydrogel. However, cell viability was significantly decreased. The diameter of colonies consisting of spermatogonial stem cells freeze-thawed in alginate microbeads showed no significant difference with fresh spermatogonial stem cells and the control group. The injection of freeze-thawed spermatogonial stem cells encapsulated in alginate hydrogel resulted in spermatogenesis recovery. Alginate mimics the extracellular matrices (ECM) for spermatogonial stem cells; therefore, it can support stemness potential during the cell cryopreservation process and restart spermatogenesis after transplantation. © 2016 Blackwell Verlag GmbH.
30 CFR 75.1322 - Stemming boreholes
Code of Federal Regulations, 2010 CFR
2010-07-01
... water stemming bags shall be tamped to fill the entire cross sectional area of the borehole. (c... water stemming bag shall be within 1/4 of an inch of the diameter of the drill bit used to drill the borehole. (h) Water stemming bags shall be constructed of tear-resistant and flame-resistant material and...
Code of Federal Regulations, 2013 CFR
2013-01-01
... to the degree of freedom from harmless extraneous vegetable material, stems, and portions thereof... the stem-flower axis. A defect is a unit where the angle of these two axes exceeds 45 degrees. (5... pitted olive equal to or exceeding the area of a circle 5 mm in diameter. (12) Stem means a stem that...
Code of Federal Regulations, 2014 CFR
2014-01-01
... to the degree of freedom from harmless extraneous vegetable material, stems, and portions thereof... the stem-flower axis. A defect is a unit where the angle of these two axes exceeds 45 degrees. (5... pitted olive equal to or exceeding the area of a circle 5 mm in diameter. (12) Stem means a stem that...
Fajardo, A
2018-05-01
The wood economics spectrum provides a general framework for interspecific trait-trait coordination across wide environmental gradients. Whether global patterns are mirrored within species constitutes a poorly explored subject. In this study, I first determined whether wood density co-varies together with elevation, tree growth and height at the within-species level. Second, I determined the variation of wood density in different stem parts (trunk, branch and twigs). In situ trunk sapwood, trunk heartwood, branch and twig densities, in addition to stem growth rates and tree height were determined in adult trees of Nothofagus pumilio at four elevations in five locations spanning 18° of latitude. Mixed effects models were fitted to test relationships among variables. The variation in wood density reported in this study was narrow (ca. 0.4-0.6 g cm -3 ) relative to global density variation (ca. 0.3-1.0 g cm -3 ). There was no significant relationship between stem growth rates and wood density. Furthermore, the elevation gradient did not alter the wood density of any stem part. Trunk sapwood density was negatively related to tree height. Twig density was higher than branch and trunk densities. Trunk heartwood density was always significantly higher than sapwood density. Negative across-species trends found in the growth-wood density relationship may not emerge as the aggregate of parallel intraspecific patterns. Actually, trees with contrasting growth rates show similar wood density values. Tree height, which is tightly related to elevation, showed a negative relationship with sapwood density. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
NASA Astrophysics Data System (ADS)
Cui, Kehang; Kumamoto, Akihito; Xiang, Rong; An, Hua; Wang, Benjamin; Inoue, Taiki; Chiashi, Shohei; Ikuhara, Yuichi; Maruyama, Shigeo
2016-01-01
We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices.We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices. Electronic supplementary information (ESI) available: Comparison between the Co monometallic catalyst system and the Co/Mo bimetallic catalyst system, the effect of CVD temperature on the G/D ratio, the effect of ethanol partial pressure on the morphology, diameter and quality of SWNT films, and Raman spectra of the Si/SiO2 substrate. See DOI: 10.1039/c5nr06007a
Mushegyan, Vagan; Eronen, Jussi T.; Lawing, A. Michelle; Sharir, Amnon; Janis, Christine; Jernvall, Jukka; Klein, Ophir D.
2015-01-01
Summary The fossil record is widely informative about evolution, but fossils are not systematically used to study the evolution of stem cell-driven renewal. Here, we examined evolution of the continuous growth (hypselodonty) of rodent molar teeth, which is fuelled by the presence of dental stem cells. We studied occurrences of 3500 North American rodent fossils, ranging from 50 million years ago (mya) to 2 mya. We examined changes in molar height to determine if evolution of hypselodonty shows distinct patterns in the fossil record, and we found that hypselodont taxa emerged through intermediate forms of increasing crown height. Next, we designed a Markov simulation model, which replicated molar height increases throughout the Cenozoic, and, moreover, evolution of hypselodonty. Thus, by extension, the retention of the adult stem-cell niche appears to be a predictable quantitative rather than a stochastic qualitative process. Our analyses predict that hypselodonty will eventually become the dominant phenotype. PMID:25921530
Cambial activity related to tree size in a mature silver-fir plantation.
Rathgeber, Cyrille B K; Rossi, Sergio; Bontemps, Jean-Daniel
2011-09-01
Our knowledge about the influences of environmental factors on tree growth is principally based on the study of dominant trees. However, tree social status may influence intra-annual dynamics of growth, leading to differential responses to environmental conditions. The aim was to determine whether within-stand differences in stem diameters of trees belonging to different crown classes resulted from variations in the length of the growing period or in the rate of cell production. Cambial activity was monitored weekly in 2006 for three crown classes in a 40-year-old silver-fir (Abies alba) plantation near Nancy (France). Timings, duration and rate of tracheid production were assessed from anatomical observations of the developing xylem. Cambial activity started earlier, stopped later and lasted longer in dominant trees than in intermediate and suppressed ones. The onset of cambial activity was estimated to have taken 3 weeks to spread to 90 % of the trees in the stand, while the cessation needed 6 weeks. Cambial activity was more intense in dominant trees than in intermediate and suppressed ones. It was estimated that about 75 % of tree-ring width variability was attributable to the rate of cell production and only 25 % to its duration. Moreover, growth duration was correlated to tree height, while growth rate was better correlated to crown area. These results show that, in a closed conifer forest, stem diameter variations resulted principally from differences in the rate of xylem cell production rather than in its duration. Tree size interacts with environmental factors to control the timings, duration and rate of cambial activity through functional processes involving source-sink relationships principally, but also hormonal controls.
USDA-ARS?s Scientific Manuscript database
Estimation of vegetation water content (VWC) by shortwave infrared remote sensing improves soil moisture retrievals. The largest unknown for predicting VWC is stem water content; for woodlands, stem water content is expected to be proportional to stem height. Airborne imagery were acquired and photo...
NASA Astrophysics Data System (ADS)
Barba, J.; Poyatos, R.; Vargas, R.
2017-12-01
The emissions of the main greenhouse gases (GHG; CO2, CH4 and N2O) through tree stems are still an uncertain component of the total GHG balance of forests. Despite that stem CO2 emissions have been studied for several decades, it is still unclear the drivers and spatiotemporal patterns of CH4 and N2O stem emissions. Additionally, it is unknown how stem emissions could be related to soil physiological processes or environmental conditions. We measured CO2, CH4 and N2O emissions hourly from April to July 2017 at two different heights (75 [LStem] and 150cm [HStem]) of bitternut hickory (Carya cordiformis) trees and adjacent soil locations in a forested area in the Mid Atlantic of the USA. We designed an automated system to continuously measure the three greenhouse gases (GHG) in stems and soils. Stem and soil CO2 emissions showed similar seasonal patterns with an average of 6.56±0.09 (soil), 3.72±0.05 (LStem) and 2.47±0.04 µmols m-2 s-1 (HStem) (mean±95% CI). Soil temperature controlled CO2 fluxes at both daily and seasonal scales (R2>0.5 for all cases), but there was no clear effect of soil moisture. The stems were a clear CH4 source with emissions decreasing with height (0.35±0.02 and 0.25±0.01 nmols m-2 s-1 for LStem and HStem, respectively) with no apparent seasonal pattern, and no clear relationship with environmental drivers (e.g., temperature, moisture). In contrast, soil was a CH4 sink throughout the experiment (-0.55±0.02 nmols m-2 s-1) and its seasonal pattern responded to moisture changes. Despite soil and stem N2O emissions did not show a seasonal pattern or apparent dependency on temperature or moisture, they showed net N2O emissions with a decrease in emissions with stem height (0.29±0.05 for soil, 0.38±0.06 for LStem and 0.28±0.05 nmols m-2 s-1 for HStem). The three GHG emissions decreased with stem height at similar rates (33%, 28% and 27% for CO2, CH4 and N2O, respectively). These results suggest that the gases were not produced in the stem but originated in the soil and transported within the stem. At the forest stand level, the CH4 sink capacity of soils could be partially counteracted by the stem emissions. These results indicate the need to measure CO2, CH4 and N2O emissions not only in soil but also in stems to account for the total GHG balance in ecosystems.
Polymorphic site index curves for red fir in California and southern Oregon
K. Leroy Dolph
1991-01-01
Polymorphic site index curves were developed from stem analysis data of 194 dominant red fir trees in California and southern Oregon. Site index was based on breast-height age and total tree height, with a base age of 50 years at breast height. Site index curves for breast height ages 10 to 160 years are presented for approximate estimates of site index. For more...
Begum, Shahanara; Nakaba, Satoshi; Yamagishi, Yusuke; Yamane, Kenichi; Islam, Md. Azharul; Oribe, Yuichiro; Ko, Jae-Heung; Jin, Hyun-O; Funada, Ryo
2012-01-01
Background and Aims Latewood formation in conifers occurs during the later part of the growing season, when the cell division activity of the cambium declines. Changes in temperature might be important for wood formation in trees. Therefore, the effects of a rapid decrease in temperature on cellular morphology of tracheids were investigated in localized heating-induced cambial reactivation in Cryptomeria japonica trees and in Abies firma seedlings. Methods Electric heating tape and heating ribbon were wrapped on the stems of C. japonica trees and A. firma seedlings. Heating was discontinued when 11 or 12 and eight or nine radial files of differentiating and differentiated tracheids had been produced in C. japonica and A. firma stems, respectively. Tracheid diameter, cell wall thickness, percentage of cell wall area and percentage of lumen area were determined by image analysis of transverse sections and scanning electron microscopy. Key Results Localized heating induced earlier cambial reactivation and xylem differentiation in stems of C. japonica and A. firma as compared with non-heated stems. One week after cessation of heating, there were no obvious changes in the dimensions of the differentiating tracheids in the samples from adult C. japonica. In contrast, tracheids with a smaller diameter were observed in A. firma seedlings after 1 week of cessation of heating. Two or three weeks after cessation of heating, tracheids with reduced diameters and thickened cell walls were found. The results showed that the rapid decrease in temperature produced slender tracheids with obvious thickening of cell walls that resembled latewood cells. Conclusions The results suggest that a localized decrease in temperature of stems induces changes in the diameter and cell wall thickness of differentiating tracheids, indicating that cambium and its derivatives can respond directly to changes in temperature. PMID:22843340
Stem demography and postfire recruitment of a resprouting serotinous conifer
Keeley, Jon E.; Keeley, Melanie B.; Bond, William J.
1999-01-01
The contribution of resprouts and seedling recruitment to post-fire regeneration of the South African fynbos conifer Widdringtonia nodiflora was compared eight months after wildfires in 1990. Stems on all trees were killed by fire but resprouting success was > 90 % at all but one site. A demographic study of burned skeletons revealed that prior to these fires, nearly all plants were multi-stemmed (4–9 stems/plant) and multi-aged, indicating continuous sprout production between fires. All stems were killed by these 1990 fires and at most sites > 90 % of the stems were burned to ground level. All diameter stems were susceptible to such incineration as, at most sites, there was no difference in average diameter of stems burned to ground level and those left standing. Individual genets usually had all ramets incinerated to ground level or all ramets charred, but intact, suggesting certain micro-sites burned hotter, whereas other sites were somewhat protected. Although not true of the 1990 fires, there was evidence that occasionallyWiddring-tonia stems may survive fire. At one site, four of the 16 plants sampled had a burned stem twice as old as the oldest burned stem on the other 12 plants at the site, suggesting some stems had survived the previous fire (ca. 1970) and this conclusion was supported by fire-scars on these four stems that dated to ca. 1970. Based on the highly significant correlation between stem diameter and cone density left standing after the 1990 fires, we calculated that for most sites > 80 % of the initial cone crop was incinerated by fire. This is important because we observed a strong relationship between size of the canopy cone crop surviving fire and post-fire seedling recruitment. Under these conditions we hypothesize that sprouting confers a selective advantage to genets when fires cause heavy losses of seed. The infrequent occurrence of sprouting in theCupressaceae suggests the hypothesis that resprouting is an apomorphic or derived trait inWiddringtonia. Data from this study suggests resprouting provides a selective advantage under severe fynbos fires, which are not only 'stand-replacing fires,’but also are intense enough to incinerate cone-bearing stems.
Stem demography and post-fire recruitment of a resprouting serotinous conifer
Keeley, J.E.; Keeley, M.B.; Bond, W.J.
1999-01-01
The contribution of resprouts and seedling recruitment to post-fire regeneration of the South African fynbos conifer Widdringtonia nodiflora was compared eight months after wildfires in 1990. Stems on all trees were killed by fire but resprouting success was > 90 % at all but one site. A demographic study of burned skeletons revealed that prior to these fires, nearly all plants were multi-stemmed (4 - 9 stems/plant) and multi-aged, indicating continuous sprout production between fires. All stems were killed by these 1990 fires and at most sites > 90 % of the stems were burned to ground level. All diameter stems were susceptible to such incineration as, at most sites, there was no difference in average diameter of stems burned to ground level and those left standing. Individual genets usually had all ramets incinerated to ground level or all ramets charred, but intact, suggesting certain micro-sites burned hotter, whereas other sites were somewhat protected. Although not true of the 1990 fires, there was evidence that occasionally Widdringtonia stems may survive fire. At one site, four of the 16 plants sampled had a burned stem twice as old as the oldest burned stem on the other 12 plants at the site, suggesting some stems had survived the previous fire (ca. 1970) and this conclusion was supported by fire-scars on these four stems that dated to ca. 1970. Based on the highly significant correlation between stem diameter and cone density left standing after the 1990 fries, we calculated that for most sites > 80 % of the initial cone crop was incinerated by fire. This is important because we observed a strong relationship between size of the canopy cone crop surviving fire and post-fire seedling recruitment. Under these conditions we hypothesize that sprouting confers a selective advantage to genets when fires cause heavy losses of seed. The infrequent occurrence of sprouting in the Cupressaceae suggests the hypothesis that resprouting is an apomorphic or derived trait in Widdringtonia. Data from this study suggests resprouting provides a selective advantage under severe fynbos fires, which are not only 'stand-replacing fires,' but also are intense enough to incinerate cone-bearing stems.
Reducing stem bending increases the height growth of tall pines.
Meng, Shawn X; Lieffers, Victor J; Reid, Douglas E B; Rudnicki, Mark; Silins, Uldis; Jin, Ming
2006-01-01
The hypothesis was tested that upper limits to height growth in trees are the result of the increasing bending moment of trees as they grow in height. The increasing bending moment of tall trees demands increased radial growth at the expense of height growth to maintain mechanical stability. In this study, the bending moment of large lodgepole pine (Pinus contorta Dougl. Ex Loud. var. latifolia Engelm.) was reduced by tethering trees at 10 m height to counter the wind load. Average bending moment of tethered trees was reduced to 38% of control trees. Six years of tethering resulted in a 40% increase in height growth relative to the period before tethering. By contrast, control trees showed decreased height growth in the period after tethering treatment. Average radial growth along the bole, relative to height growth, was reduced in tethered trees. This strongly suggests that mechanical constraints play a crucial role in limiting the height growth of tall trees. Analysis of bending moment and basal area increment at both 10 m and 1.3 m showed that the amount of wood added to the stem was closely related to the bending moment produced at these heights, in both control and tethered trees. The tethering treatment also resulted in an increase in the proportion of latewood at the tethering height, relative to 1.3 m height. For untethered control trees, the ratio of bending stresses at 10 m versus 1.3 m height was close to 1 in both 1998 and 2003, suggesting a uniform stress distribution along the outer surface of the bole.
Feasibility of utilizing small diameter southern pine for biomass in the Virginia Coastal Plain
Nathan C. Hanzelka; M. Chad Bolding; Scott M. Barrett; Jay Sullivan
2016-01-01
New or retrofitted wood-fired energy plants have increased demand for woody biomass in the stateof Virginia. Loblolly pine (Pinus taeda) commonly serves as a feedstock for these energy plants. Pulpwood conventionally requires a minimum diameter of 4 inches diameter at breast height (DBH) for merchantability, whereas a minimum merchantable diameter...
Seed production estimation for mountain big sagebrush (Artemisia tridentata ssp. vaseyana)
Melissa L. Landeen; Loreen Allphin; Stanley G. Kitchen; Steven L. Petersen
2017-01-01
Seed production is an essential component of postdisturbance recovery for mountain big sagebrush (Artemisia tridentata Nutt. ssp vaseyana [Rydb] Beetle; MBS). We tested a method for rapid estimation of MBS seed production using measurements of inflorescence morphology. We measured total stem length, stem length from first branchlet to stem tip, stem diameter, fresh...
Drees, H; Müller, E; Dries, M; Gerthsen, D
2018-02-01
Resolution in scanning transmission electron microscopy (STEM) is ultimately limited by the diameter of the electron beam. The electron beam diameter is not only determined by the properties of the condenser lens system but also by electron scattering in the specimen which leads to electron-beam broadening and degradation of the resolution with increasing specimen thickness. In this work we introduce a new method to measure electron-beam broadening which is based on STEM imaging with a multi-segmented STEM detector. We focus on STEM at low electron energies between 10 and 30 keV and use an amorphous carbon film with known thickness as test object. The experimental results are compared with calculated beam diameters using different analytical models and Monte-Carlo simulations. We find excellent agreement of the experimental data with the recently published model by Gauvin and Rudinsky [1] for small t/λ el (thickness to elastic mean free path) values which are considered in our study. Copyright © 2017 Elsevier B.V. All rights reserved.
Righting response of artificially inclined maritime pine (Pinus pinaster) saplings to wind loading.
Berthier, Stephane; Stokes, Alexia
2006-01-01
To determine if trees respond to dynamic and static loading in the same manner, 2-year-old maritime pine (Pinus pinaster Ait.) trees were subjected to different types of mechanical loading in the field. One block of trees (the control) were kept in pots and planted in the field at an angle of 0 or 45 degrees to the vertical. A similar block of leaning potted trees was planted nearby and subjected to frequent, unilateral wind loading for a period of 1 s every 2 min. Half the leaning trees were oriented toward the direction of wind loading and half were oriented along the axis of wind loading. The stem profile was measured three times during the growing season to quantify the rate of stem straightening. Compression wood formation and stem shape were measured in all plants. No differences in mean height or diameter were observed between blocks and all leaning trees straightened, but not at the same rate. Although no difference in the rate of apical straightening occurred between control and wind-treated trees, the righting response of the basal part of the stem of leaning trees subjected to wind was four times greater than that of leaning trees without wind. No differences in the righting response were observed between leaning trees growing toward and trees growing away from the source of wind. No significant differences in compression wood formation were found between control trees and wind-treated trees, indicating that other factors must determine the reorientation rate of leaning trees. Results are discussed with reference to the quality of compression wood in conifers and the mechanotransductive pathway in plants.
Nja, Riheb Ben; Merceron, Bruno; Faucher, Mireille; Fleurat-Lessard, Pierrette; Béré, Emile
2018-02-01
In M. sativa cv. Gabès plants treated with 150mM NaCl, the height of the stem is decreased and the internode number, length and diameter are reduced. This depressive effect on growth, but also on photosynthetic activity and water balance, is accompanied by structural changes. In the upper internodes, NaCl treatment increases cambium development, so that the vascular ring is initiated earlier than in controls. In the lower internodes, the number of lignified phloem fibers is increased by NaCl, and their wall thickness is augmented, compared to controls; in the phloem complex, the nacreous layer is enlarged, the number of internal wall ingrowths is increased, but companion cells are damaged. In the treated lower internodes, few vessels occur in the secondary xylem, which is by contrast rich in lignified fibers and in wide vessels grouped in the metaxylem area; protoxylem parenchyma and adjacent pith are also lignified. In addition, in treated lower internodes, starch grains are less abundant than in controls, and this variation might be related to the decrease of photosynthesis. When taken together, qualitative and quantitative results indicate that the saline stress has a marked morpho-anatomical impact on the M. sativa Gabès stem. In particular, variations of secondary derivative distribution, increased wall thickening, lignification of phloem and xylem fibers and damage in the phloem complex are NaCl-induced responses, and are more expressed in the lower than in the upper internodes. The reinforcement of the stem lignified vasculature is thus a positive response to stress, but it has a negative impact on the quality of the forage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pruning open-grown black cherry
T. J. Grisez
1967-01-01
Black cherry trees that had large crown ratios and were 4 to 6 inches d. b. h. were pruned to various heights. Epicormic sprouting was severe and diameter growth at breast height was reduced on trees pruned to 75 percent of their height. Most trees pruned to 50 percent show little or no adverse effect after 3 years.
NASA Astrophysics Data System (ADS)
Lee, Seyeong; Kim, Dongyoon; Kim, Seong-Min; Kim, Jeong-Ah; Kim, Taesoo; Kim, Dong-Yu; Yoon, Myung-Han
2015-08-01
Recent advances in nanostructure-based biotechnology have resulted in a growing demand for vertical nanostructure substrates with elaborate control over the nanoscale geometry and a high-throughput preparation. In this work, we report the fabrication of non-periodic vertical silicon nanocolumn substrates via polyelectrolyte multilayer-enabled randomized nanosphere lithography. Owing to layer-by-layer deposited polyelectrolyte adhesives, uniformly-separated polystyrene nanospheres were securely attached on large silicon substrates and utilized as masks for the subsequent metal-assisted silicon etching in solution. Consequently, non-periodic vertical silicon nanocolumn arrays were successfully fabricated on a wafer scale, while each nanocolumn geometric factor, such as the diameter, height, density, and spatial patterning, could be fully controlled in an independent manner. Finally, we demonstrate that our vertical silicon nanocolumn substrates support viable cell culture with minimal cell penetration and unhindered cell motility due to the blunt nanocolumn morphology. These results suggest that vertical silicon nanocolumn substrates may serve as a useful cellular interface platform for performing a statistically meaningful number of cellular experiments in the fields of biomolecular delivery, stem cell research, etc.Recent advances in nanostructure-based biotechnology have resulted in a growing demand for vertical nanostructure substrates with elaborate control over the nanoscale geometry and a high-throughput preparation. In this work, we report the fabrication of non-periodic vertical silicon nanocolumn substrates via polyelectrolyte multilayer-enabled randomized nanosphere lithography. Owing to layer-by-layer deposited polyelectrolyte adhesives, uniformly-separated polystyrene nanospheres were securely attached on large silicon substrates and utilized as masks for the subsequent metal-assisted silicon etching in solution. Consequently, non-periodic vertical silicon nanocolumn arrays were successfully fabricated on a wafer scale, while each nanocolumn geometric factor, such as the diameter, height, density, and spatial patterning, could be fully controlled in an independent manner. Finally, we demonstrate that our vertical silicon nanocolumn substrates support viable cell culture with minimal cell penetration and unhindered cell motility due to the blunt nanocolumn morphology. These results suggest that vertical silicon nanocolumn substrates may serve as a useful cellular interface platform for performing a statistically meaningful number of cellular experiments in the fields of biomolecular delivery, stem cell research, etc. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02384j
Assessing browse trend at the landscape level Part 2: Monitoring
Keigley, R.B.; Frisina, M.R.; Fager, C.W.
2002-01-01
In Part 1, we assessed browse trend across a wide geographic area of Mt. Haggin Wildlife Management Area by conducting surveys of browsing-related architectures. Those data were qualitative. Below we describe the periodic collection of quantitative data from permanently marked locations; we refer to this phase of the trend assessment program as "monitoring." Trend was monitored by three methods: 1 Repeat photography. 2 Comparison of the height of live stems with the height of stems killed by browsing (LD Index). 3 Net annual stem growth rate (NAGRL3). The photography provides an assessment of trend from the comparison of photographs taken at intervals of a few years. The LD Index and NAGRL3 measurements provide an immediate assessment of trend.
Thread gauge for measuring thread pitch diameters
Brewster, A.L.
1985-11-19
A thread gauge which attaches to a vernier caliper to measure the thread pitch diameter of both externally threaded and internally threaded parts is disclosed. A pair of anvils are externally threaded with threads having the same pitch as those of the threaded part. Each anvil is mounted on a stem having a ball on which the anvil can rotate to properly mate with the parts to which the anvils are applied. The stems are detachably secured to the caliper blades by attachment collars having keyhole openings for receiving the stems and caliper blades. A set screw is used to secure each collar on its caliper blade. 2 figs.
Thread gauge for measuring thread pitch diameters
Brewster, Albert L.
1985-01-01
A thread gauge which attaches to a vernier caliper to measure the thread pitch diameter of both externally threaded and internally threaded parts. A pair of anvils are externally threaded with threads having the same pitch as those of the threaded part. Each anvil is mounted on a stem having a ball on which the anvil can rotate to properly mate with the parts to which the anvils are applied. The stems are detachably secured to the caliper blades by attachment collars having keyhole openings for receiving the stems and caliper blades. A set screw is used to secure each collar on its caliper blade.
Prognoses of diameter and height of trees of eucalyptus using artificial intelligence.
Vieira, Giovanni Correia; de Mendonça, Adriano Ribeiro; da Silva, Gilson Fernandes; Zanetti, Sidney Sára; da Silva, Mayra Marques; Dos Santos, Alexandre Rosa
2018-04-01
Models of individual trees are composed of sub-models that generally estimate competition, mortality, and growth in height and diameter of each tree. They are usually adopted when we want more detailed information to estimate forest multiproduct. In these models, estimates of growth in diameter at 1.30m above the ground (DBH) and total height (H) are obtained by regression analysis. Recently, artificial intelligence techniques (AIT) have been used with satisfactory performance in forest measurement. Therefore, the objective of this study was to evaluate the performance of two AIT, artificial neural networks and adaptive neuro-fuzzy inference system, to estimate the growth in DBH and H of eucalyptus trees. We used data of continuous forest inventories of eucalyptus, with annual measurements of DBH, H, and the dominant height of trees of 398 plots, plus two qualitative variables: genetic material and site index. It was observed that the two AIT showed accuracy in growth estimation of DBH and H. Therefore, the two techniques discussed can be used for the prognosis of DBH and H in even-aged eucalyptus stands. The techniques used could also be adapted to other areas and forest species. Copyright © 2017 Elsevier B.V. All rights reserved.
Osazuwa-Peters, Oyomoare L.; Jiménez, Iván; Oberle, Brad; Chapman, Colin A.; Zanne, Amy E.
2015-01-01
Selective logging, the targeted harvesting of timber trees in a single cutting cycle, is globally rising in extent and intensity. Short-term impacts of selective logging on tropical forests have been widely investigated, but long-term effects on temporal dynamics of forest structure and composition are largely unknown. Understanding these long-term dynamics will help determine whether tropical forests are resilient to selective logging and inform choices between competing demands of anthropogenic use versus conservation of tropical forests. Forest dynamics can be studied within the framework of succession theory, which predicts that temporal turnover rates should decline with time since disturbance. Here, we investigated the temporal dynamics of a tropical forest in Kibale National Park, Uganda over 45 years following selective logging. We estimated turnover rates in stems, species composition, and functional traits (wood density and diameter at breast height), using observations from four censuses in 1989, 1999, 2006, and 2013, of stems ≥ 10 cm diameter within 17 unlogged and 9 logged 200 × 10 m vegetation plots. We used null models to account for interdependencies among turnover rates in stems, species composition, and functional traits. We tested predictions that turnover rates should be higher and decrease with increasing time since the selective logging event in logged forest, but should be less temporally variable in unlogged forest. Overall, we found higher turnover rates in logged forest for all three attributes, but turnover rates did not decline through time in logged forest and was not less temporally variable in unlogged forest. These results indicate that successional models that assume recovery to pre-disturbance conditions are inadequate for predicting the effects of selective logging on the dynamics of the tropical forest in Kibale. Selective logging resulted in persistently higher turnover rates, which may compromise the carbon storage capacity of Kibale’s forest. Selective logging effects may also interact with effects from other global trends, potentially causing major long-term shifts in the dynamics of tropical forests. Similar studies in tropical forests elsewhere will help determine the generality of these conclusions. Ultimately, the view that selective logging is a benign approach to the management of tropical forests should be reconsidered in the light of studies of the effects of this practice on long-term forest dynamics. PMID:26339115
Osazuwa-Peters, Oyomoare L; Jiménez, Iván; Oberle, Brad; Chapman, Colin A; Zanne, Amy E
2015-12-01
Selective logging, the targeted harvesting of timber trees in a single cutting cycle, is globally rising in extent and intensity. Short-term impacts of selective logging on tropical forests have been widely investigated, but long-term effects on temporal dynamics of forest structure and composition are largely unknown. Understanding these long-term dynamics will help determine whether tropical forests are resilient to selective logging and inform choices between competing demands of anthropogenic use versus conservation of tropical forests. Forest dynamics can be studied within the framework of succession theory, which predicts that temporal turnover rates should decline with time since disturbance. Here, we investigated the temporal dynamics of a tropical forest in Kibale National Park, Uganda over 45 years following selective logging. We estimated turnover rates in stems, species composition, and functional traits (wood density and diameter at breast height), using observations from four censuses in 1989, 1999, 2006, and 2013, of stems ≥ 10 cm diameter within 17 unlogged and 9 logged 200 × 10 m vegetation plots. We used null models to account for interdependencies among turnover rates in stems, species composition, and functional traits. We tested predictions that turnover rates should be higher and decrease with increasing time since the selective logging event in logged forest, but should be less temporally variable in unlogged forest. Overall, we found higher turnover rates in logged forest for all three attributes, but turnover rates did not decline through time in logged forest and was not less temporally variable in unlogged forest. These results indicate that successional models that assume recovery to pre-disturbance conditions are inadequate for predicting the effects of selective logging on the dynamics of the tropical forest in Kibale. Selective logging resulted in persistently higher turnover rates, which may compromise the carbon storage capacity of Kibale's forest. Selective logging effects may also interact with effects from other global trends, potentially causing major long-term shifts in the dynamics of tropical forests. Similar studies in tropical forests elsewhere will help determine the generality of these conclusions. Ultimately, the view that selective logging is a benign approach to the management of tropical forests should be reconsidered in the light of studies of the effects of this practice on long-term forest dynamics.
Brain J. Palik; Kurt S. Pregitzer
1995-01-01
Retrospective studies of forest stand dynamics may rely on estimates of tree ages. In some of these studies, trees are aged near the stem base, while in other studies trees may be aged at breast height. An age correction may be added to breast-height ages in an attempt to account for average time to reach breast height and thus provide better estimates of total ages....
NASA Astrophysics Data System (ADS)
Cava, Daniela; Katul, Gabriel G.
2008-03-01
Using synchronous multi-level high frequency velocity measurements, the turbulence spectra within the trunk space of an alpine hardwood forest were analysed. The spectral short-circuiting of the energy cascade for each velocity component was well reproduced by a simplified spectral model that retained return-to-isotropy and component-wise work done by turbulence against the drag and wake production. However, the use of an anisotropic drag coefficient was necessary to reproduce these measured component-wise spectra. The degree of anisotropy in the vertical drag was shown to vary with the element Reynolds number. The wake production frequency in the measured spectra was shown to be consistent with the vortex shedding frequency at constant Strouhal number given by f vs = 0.21 ū/d, where d can be related to the stem diameter at breast height ( dbh) and ū is the local mean velocity. The energetic scales, determined from the inflection point instability at the canopy atmosphere interface, appear to persist into the trunk space when {C_{du} a_{cr} h_c /β ≫ 1}, where C du is the longitudinal drag coefficient, a cr is the crown-layer leaf area density, h c is the canopy height, and β is the dimensionless momentum absorption at the canopy top.
Can global navigation satellite system signals reveal the ecological attributes of forests?
NASA Astrophysics Data System (ADS)
Liu, Jingbin; Hyyppä, Juha; Yu, Xiaowei; Jaakkola, Anttoni; Liang, Xinlian; Kaartinen, Harri; Kukko, Antero; Zhu, Lingli; Wang, Yunsheng; Hyyppä, Hannu
2016-08-01
Forests have important impacts on the global carbon cycle and climate, and they are also related to a wide range of industrial sectors. Currently, one of the biggest challenges in forestry research is effectively and accurately measuring and monitoring forest variables, as the exploitation potential of forest inventory products largely depends on the accuracy of estimates and on the cost of data collection. A low-cost crowdsourcing solution is needed for forest inventory to collect forest variables. Here, we propose global navigation satellite system (GNSS) signals as a novel type of observables for predicting forest attributes and show the feasibility of utilizing GNSS signals for estimating important attributes of forest plots, including mean tree height, mean diameter at breast height, basal area, stem volume and tree biomass. The prediction accuracies of the proposed technique were better in boreal forest conditions than those of the conventional techniques of 2D remote sensing. More importantly, this technique provides a novel, cost-effective way of collecting large-scale forest measurements in the crowdsourcing context. This technique can be applied by, for example, harvesters or persons hiking or working in forests because GNSS devices are widely used, and the field operation of this technique is simple and does not require professional forestry skills.
Alijahan, Rahele; Kordi, Masoumeh; Poorjavad, Munira; Ebrahimzadeh, Saeed
2014-01-01
Background: Dystocia is one of the important causes of maternal morbidity and mortality in low-income countries. This study was aimed to determine the diagnostic accuracy of maternal anthropometric measurements as predictors for dystocia in nulliparous women. Materials and Methods: This prospective cohort study was conducted on 447 nulliparous women who referred to Omolbanin hospital. Several maternal anthropometric measurements such as height, transverse and vertical diameters of Michaelis sacral rhomboid area, foot length, head circumference, vertebral and lower limb length, symphysio-fundal height, and abdominal girth were taken in cervical dilatation ≤ 5 cm. Labor progression was controlled by a researcher blind to these measurements. After delivery, the accuracy of individual and combined measurements in prediction of dystocia was analyzed. Dystocia was defined as cesarean section and vacuum or forceps delivery for abnormal progress of labor (cervical dilatation less than 1 cm/h in the active phase for 2 h, and during the second stage, beyond 2 h or fetal head descend less than 1 cm/h). Results: Among the different anthropometric measurements, transverse diameter of the Michaelis sacral rhomboid area ≤9.6 cm, maternal height ≤ 155 cm, height to symphysio-fundal height ratio ≤4.7, lower limb length ≤78 cm, and head circumference to height ratio ≥ 35.05 with accuracy of 81.2%, 68.2%, 65.5%, 63.3%, and 61.5%, respectively, were better predictors. The best predictor was obtained by combination of maternal height ≤155 cm or the transverse diameter of the Michaelis sacral rhomboid area ≤9.6 cm and Johnson's formula estimated fetal weight ≥3255 g, with an accuracy of 90.5%, sensitivity of 70%, and specificity of 93.7%. Conclusions: Combination of other anthropometric measurements and estimated fetal weight with maternal height in comparison to maternal height alone leads to a better predictor for dystocia. PMID:24554954
Alijahan, Rahele; Kordi, Masoumeh; Poorjavad, Munira; Ebrahimzadeh, Saeed
2014-01-01
Dystocia is one of the important causes of maternal morbidity and mortality in low-income countries. This study was aimed to determine the diagnostic accuracy of maternal anthropometric measurements as predictors for dystocia in nulliparous women. This prospective cohort study was conducted on 447 nulliparous women who referred to Omolbanin hospital. Several maternal anthropometric measurements such as height, transverse and vertical diameters of Michaelis sacral rhomboid area, foot length, head circumference, vertebral and lower limb length, symphysio-fundal height, and abdominal girth were taken in cervical dilatation ≤ 5 cm. Labor progression was controlled by a researcher blind to these measurements. After delivery, the accuracy of individual and combined measurements in prediction of dystocia was analyzed. Dystocia was defined as cesarean section and vacuum or forceps delivery for abnormal progress of labor (cervical dilatation less than 1 cm/h in the active phase for 2 h, and during the second stage, beyond 2 h or fetal head descend less than 1 cm/h). Among the different anthropometric measurements, transverse diameter of the Michaelis sacral rhomboid area ≤9.6 cm, maternal height ≤ 155 cm, height to symphysio-fundal height ratio ≤4.7, lower limb length ≤78 cm, and head circumference to height ratio ≥ 35.05 with accuracy of 81.2%, 68.2%, 65.5%, 63.3%, and 61.5%, respectively, were better predictors. The best predictor was obtained by combination of maternal height ≤155 cm or the transverse diameter of the Michaelis sacral rhomboid area ≤9.6 cm and Johnson's formula estimated fetal weight ≥3255 g, with an accuracy of 90.5%, sensitivity of 70%, and specificity of 93.7%. Combination of other anthropometric measurements and estimated fetal weight with maternal height in comparison to maternal height alone leads to a better predictor for dystocia.
Hunnam, J C; Parkinson, T J; Lopez-Villalobos, N; McDougall, S
2009-09-01
To determine bovine fetal characteristics significantly associated with increasing gestational age as measured via transcutaneous ultrasonography over the right flank. The length of gestation at date of pregnancy diagnosis via transcutaneous and transrectal ultrasonography was determined for 224 dairy cattle by estimation from subsequent calving dates. A separate dataset was created for each measurable fetal characteristic (i.e. thoracic diameter, abdominal diameter, umbilical diameter, placentome length and placentome height) and risk factors significantly associated with gestational age at pregnancy diagnosis within each dataset, including the fetal characteristic, were identified. Abdominal diameter was the most frequently observed fetal characteristic and thoracic diameter was the least. Gestational age at pregnancy diagnosis (d) was significantly associated with fetal thoracic diameter (P < 0.01), abdominal diameter (P < 0.01) and umbilical diameter (P = 0.02) when measured via transcutaneous ultrasound. Within each model, sire breed, dam breed, dam age and/or calf sex were also significantly associated with gestational age. Gestational age at pregnancy diagnosis was not significantly associated with either placentome height or length (P > 0.05). Fetal thoracic diameter, abdominal diameter and umbilical diameter were found to be significantly associated with gestational age between approximate days 73 to 190 of gestation. Transcutaneous ultrasonography may prove a useful method of estimating gestational age in the absence of accurate breeding records.
Stem compression reversibly reduces phloem transport in Pinus sylvestris trees.
Henriksson, Nils; Tarvainen, Lasse; Lim, Hyungwoo; Tor-Ngern, Pantana; Palmroth, Sari; Oren, Ram; Marshall, John; Näsholm, Torgny
2015-10-01
Manipulating tree belowground carbon (C) transport enables investigation of the ecological and physiological roles of tree roots and their associated mycorrhizal fungi, as well as a range of other soil organisms and processes. Girdling remains the most reliable method for manipulating this flux and it has been used in numerous studies. However, girdling is destructive and irreversible. Belowground C transport is mediated by phloem tissue, pressurized through the high osmotic potential resulting from its high content of soluble sugars. We speculated that phloem transport may be reversibly blocked through the application of an external pressure on tree stems. Thus, we here introduce a technique based on compression of the phloem, which interrupts belowground flow of assimilates, but allows trees to recover when the external pressure is removed. Metal clamps were wrapped around the stems and tightened to achieve a pressure theoretically sufficient to collapse the phloem tissue, thereby aiming to block transport. The compression's performance was tested in two field experiments: a (13)C canopy labelling study conducted on small Scots pine (Pinus sylvestris L.) trees [2-3 m tall, 3-7 cm diameter at breast height (DBH)] and a larger study involving mature pines (∼15 m tall, 15-25 cm DBH) where stem respiration, phloem and root carbohydrate contents, and soil CO2 efflux were measured. The compression's effectiveness was demonstrated by the successful blockage of (13)C transport. Stem compression doubled stem respiration above treatment, reduced soil CO2 efflux by 34% and reduced phloem sucrose content by 50% compared with control trees. Stem respiration and soil CO2 efflux returned to normal within 3 weeks after pressure release, and (13)C labelling revealed recovery of phloem function the following year. Thus, we show that belowground phloem C transport can be reduced by compression, and we also demonstrate that trees recover after treatment, resuming C transport in the phloem. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dwyer, John M; Fensham, Rod J; Buckley, Yvonne M
2010-10-01
Opportunities for dual restoration and carbon benefits from naturally regenerating woody ecosystems in agricultural landscapes have been highlighted recently. The restoration capacity of woody ecosystems depends on the magnitude and duration of ecosystem modification, i.e., the "agricultural legacy." However, this legacy may not influence carbon sequestration in the same way as restoration because carbon potential depends primarily on biomass accumulation, with little consideration of other attributes and functions of the ecosystem. Our present study simultaneously assesses the restoration and carbon potential of Acacia harpophylla regrowth, an extensive regrowth ecosystem in northeastern Australia. We used a landscape-scale survey of A. harpophylla regrowth to test the following hypotheses: (1) management history, in combination with climatic and edaphic factors, has long-term effects on stem densities, and (2) higher-density stands have lower restoration and carbon potential, which is also influenced by climatic and edaphic factors. We focused on the restoration of forest structure, which was characterized using stem density, aboveground biomass, stem heights, and stem diameters. Data were analyzed using multilevel models within the hierarchical Bayesian model (HBM) framework. We found strong support for both hypotheses. Repeated attempts at clearing Brigalow (A. harpophylla ecosystem) regrowth increases stem densities, and these densities remain high over the long term, particularly in high-rainfall areas and on gilgaied, high-clay soils (hypothesis 1). In models testing hypothesis 2, interactions between stem density and stand age indicate that higher-density stands have slower biomass accumulation and structural development in the long term. After accounting for stem density and stand age, annual rainfall had a positive effect on biomass accumulation and structural development. Other climate and soil variables were retained in the various models but had weaker effects. Spatial extrapolations of the HBMs indicated that the central and eastern parts of the study region are most suitable for biomass accumulation; however, these may not correspond to the areas that historically supported the highest biomass Brigalow forests. We conclude that carbon and restoration goals are largely congruent within areas of similar climate. At the regional scale, however, spatial prioritization of restoration and carbon projects may only be aligned where carbon benefits will be high.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Abhishek; SriHarsha, V.; Prabhu, S.V.
2008-02-15
Internal channel cooling is employed in advanced gas turbines blade to allow high inlet temperatures so as to achieve high thrust/weight ratios and low specific fuel consumption. The objective of the present study is to measure the local heat transfer distributions in a double wall ribbed square channel with 90 continuous, 90 saw tooth profiled and 60 V-broken ribs. Comparison is made between the 90 continuous ribs (P/e = 7 and 10 for a e/D = 0.15) and 90 saw tooth profiled rib configurations (P/e = 7 for an e/D = 0.15) for the same rib height to the hydraulicmore » diameter ratio (e/D). The effect of pitch to rib height ratio (P/e = 7.5,10 and 12) of 60 V-broken ribbed channel with a constant rib height to hydraulic diameter ratio (e/D) of 0.0625 on the local heat transfer distribution is studied. The Reynolds number based on duct hydraulic diameter is ranging from 10,000 to 30,000. A thin stainless steel foil of 0.05 mm thickness is used as heater and infrared thermography technique is used to obtain the local temperature distribution on the surface. The images are captured in the periodically fully developed region of the channel. It is observed that the heat transfer augmentations in the channel with 90 saw tooth profiled ribs are comparable with those of 90 continuous ribs. The enhancements caused by 60 V-broken ribs are higher than those of 90 continuous ribs. The effect of pitch to the rib height ratio (P/e) is not significant for channel with 60 V-broken ribs for a given rib height to hydraulic diameter ratio (e/D = 0.0625). (author)« less
Mandal, Aninda; Datta, Animesh K
2014-01-01
A "thick stem" mutant of Corchorus olitorius L. was induced at M2 (0.50%, 4 h, EMS) and the true breeding mutant is assessed across generations (M5 to M7) considering morphometric traits as well as SEM analysis of pollen grains and raw jute fibres, stem anatomy, cytogenetical attributes, and lignin content in relation to control. Furthermore, single fibre diameter and tensile strength are also analysed. The objective is to assess the stability of mutant for its effective exploration for raising a new plant type in tossa jute for commercial exploitation and efficient breeding. The mutant trait is monogenic recessive to normal. Results indicate that "thick stem" mutant is stable across generations (2n = 14) with distinctive high seed and fibre yield and significantly low lignin content. Stem anatomy of the mutant shows significant enhancement in fibre zone, number of fibre pyramids and fibre bundles per pyramid, and diameter of fibre cell in relation to control. Moreover, tensile strength of mutant fibre is significantly higher than control fibre and the trait is inversely related to fibre diameter. However the mutant is associated with low germination frequency, poor seed viability, and high pollen sterility, which may be eliminated through mutational approach followed by rigorous selection and efficient breeding.
Coronary artery size and disease in UK South Asian and Caucasian men.
Zindrou, Dlear; Taylor, Kenneth M; Bagger, Jens Peder
2006-04-01
South Asian patients in the UK have a higher mortality rate after coronary artery bypass grafting (CABG) than Caucasian patients. As coronary artery size has been shown to correlate to outcome from bypass grafting, it has been suggested that smaller coronary arteries in South Asians as compared to Caucasians could contribute to a poorer outcome in the Asian population. We aimed to measure coronary artery size and disease in matched South Asian and Caucasian men undergoing first time coronary artery bypass grafting. Coronary arteriograms from 53 matched first generation South Asian and Caucasian men were examined. The patients had no history of myocardial infarction, coronary revascularisation, familial dyslipidaemia, diabetes or renal disease. They were individually matched for age, height, weight, body mass index and body surface area. Thereafter, coronary artery diameters and significant (> or =50%) diameter stenoses were measured in a blinded fashion using quantitative coronary angiography (QCA). In South Asian men, diameters of the left main stem (LMS) and the proximal left anterior descending, the circumflex and the right coronary arteries were 4.6+/-0.9 mm, 3.5+/-0.8 mm, 3.4+/-0.8 mm and 3.5+/-0.8 mm, respectively. The corresponding arterial diameters among Caucasian men (4.5+/-0.9 mm, 3.5+/-0.7 mm, 3.5+/-0.8 mm and 3.8+/-0.8 mm) did not differ from those in South Asians. There was no difference in the number of significant coronary artery stenoses between the two groups and no difference in bypass and cross-clamp times or in adverse outcome (one from each group died after coronary artery bypass grafting). Proximal coronary artery size and number of significant coronary stenoses did not differ between matched pairs of South Asian and Caucasian men using strict inclusion/exclusion criteria.
The statistical characteristics of rain-generated stalks on water surface
NASA Astrophysics Data System (ADS)
Liu, Xinan; Liu, Ren; Duncan, James H.
2017-11-01
Laboratory measurements of the stalks generated by the impact of raindrops are performed in a 1.22-m-by-1.22-m water pool with a water depth of 0.3 m. Simulated raindrops are generated by an array of 22-gauge hypodermic needles that are attached to the bottom of an open-surface rain tank. The raindrop diameter is about 2.6 mm and the height of the rain tank above the water surface of the pool is varied from 1 m to 4.5 m to provide different impact velocities. A number of parameters, including the diameter, height and initial upward velocity of the center jets (stalks) are measured with a cinematic laser-induced- fluorescence technique. It is found that the maximum potential energy of the stalk and the joint distribution of stalk height and diameter are strongly correlated to the impact velocities of raindrops. Comparisons between the rain experiments and single drop impacts on a quiescent water surface are also shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, P.J.,; Phillips, J.R.; Wullschelger, S.D.
This data set reports tree growth measurements of mature Picea mariana and Larix laricina located in the S1-Bog permanent plots and the SPRUCE experimental study plots, Annual data collections were initiated in February of 2011and have been continued on an annual basis during mid-winter observation periods at the end of February or early March. Data collections are anticipated to continue through February of 2025 and this data set will be appended annually. Initial observations in 2011 included measurements of circumference at 1.3 m (diameter at breast height assessments; DBH) above the nominal bog hollow surface, tree heights and crown diameters.more » Subsequent annual measurements have focused on the measures of circumference at DBH. Circumference measurements to the nearest 0.1 cm are converted to DBH in cm and basal area at DBH in (cm2). Tree height and crown diameter are measured to the nearest 0.1 m.« less
Cui, Kehang; Kumamoto, Akihito; Xiang, Rong; An, Hua; Wang, Benjamin; Inoue, Taiki; Chiashi, Shohei; Ikuhara, Yuichi; Maruyama, Shigeo
2016-01-21
We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices.
Prediction and measurement of thermally induced cambial tissue necrosis in tree stems
Joshua L. Jones; Brent W. Webb; Bret W. Butler; Matthew B. Dickinson; Daniel Jimenez; James Reardon; Anthony S. Bova
2006-01-01
A model for fire-induced heating in tree stems is linked to a recently reported model for tissue necrosis. The combined model produces cambial tissue necrosis predictions in a tree stem as a function of heating rate, heating time, tree species, and stem diameter. Model accuracy is evaluated by comparison with experimental measurements in two hardwood and two softwood...
Thomas B. Lynch; Rodney E. Will; Rider Reynolds
2013-01-01
Preliminary results are given for development of an eastern redcedar (Juniperus virginiana) cubic-volume equation based on measurements of redcedar sample tree stem volume using dendrometry with Monte Carlo integration. Monte Carlo integration techniques can be used to provide unbiased estimates of stem cubic-foot volume based on upper stem diameter...
NASA Astrophysics Data System (ADS)
Weng, Fei; Zhang, Wujun; Wu, Xiaoran; Xu, Xia; Ding, Yanfeng; Li, Ganghua; Liu, Zhenghui; Wang, Shaohua
2017-04-01
The objectives of this study were to explore the mechanism by which the lodging resistance of the rice population during the late growth period responds to low-temperature, overcast and rainy weather during the reproductive growth stage. Field experiments were conducted using indica rice Yliangyou2 (lodging-resistance variety), IIyou084 (lodging-susceptible variety) and japonica rice Wuyunjing23 (lodging-resistance variety) and W3668 (lodging- susceptible variety) in 2013 (high temperature and strong radiation during the rice reproductive growth stage), 2012 and 2014 (low temperature and weak radiation during rice reproductive growth stage). The results showed that the length of the basal internodes and the height of the gravitational centres were greater in plants grown in 2014. Dry weight of basal culms, culm diameter, lignin content and total content of structural carbohydrates (lignin and cellulose) in basal internodes were reduced in these plants, causing a significant reduction in the bending stress and lodging resistance of the rice stems. Low-temperature, overcast and rainy weather had a greater effect on lodging resistance in indica rice compared with japonica rice. This was reflected in a greater reduction in the lignin content of the indica rice stems, which yielded a significantly lower breaking strength and bending stress.
Growth and physiological responses of beech seedlings to long-term exposure of acid fog.
Shigihara, Ado; Matsumoto, Kiyoshi; Sakurai, Naoki; Igawa, Manabu
2008-02-25
Seven-year-old beech seedlings (Fagus crenata) were exposed to simulated acid fog (SAF) at pH 3 or pH 5 (as control) prepared by adding a 2:1:1 mixture (molar ratio) of nitric acid, ammonium sulfate, and sodium chloride to ultrapure water from September 2004 to July 2006 in a mobile fog chamber. In comparison to control seedlings, seedlings from the pH 3 treatment displayed inferior plant height, stem diameter, number of leaves, and dry matter production, but greater leaf area. Furthermore, exposure to SAF induced early falling of leaves with a nearly two-times-greater normalized leaf number index than control. The starch levels in the stems of seedlings of the pH 3 treatment were much lower than those of control at the harvest. The acid fog-induced reduction of the starch accumulation is considered to occur mainly because of fewer leaves during the growth phase. Results of laboratory experiments demonstrate that the amount of base cations leached from the beech leaves increased with decreasing pH of SAF; the leaching amount of calcium ion from the beech was high relative to that of conifers such as fir and cedar. These results imply that chronic acid fog exposure suppresses growth and physiological activity of beech seedlings.
An individual-based growth and competition model for coastal redwood forest restoration
van Mantgem, Phillip J.; Das, Adrian J.
2014-01-01
Thinning treatments to accelerate coastal redwood forest stand development are in wide application, but managers have yet to identify prescriptions that might best promote Sequoia sempervirens (Lamb. ex D. Don) Endl. (redwood) growth. The creation of successful thinning prescriptions would be aided by identifying the underlying mechanisms governing how individual tree growth responds to competitive environments in coastal redwood forests. We created a spatially explicit individual-based model of tree competition and growth parameterized using surveys of upland redwood forests at Redwood National Park, California. We modeled competition for overstory trees (stems ≥ 20 cm stem diameter at breast height, 1.37 m (dbh)) as growth reductions arising from sizes, distances, and species identity of competitor trees. Our model explained up to half of the variation in individual tree growth, suggesting that neighborhood crowding is an important determinant of growth in this forest type. We used our model to simulate the effects of novel thinning prescriptions (e.g., 40% stand basal area removal) for redwood forest restoration, concluding that these treatments could lead to substantial growth releases, particularly for S. sempervirens. The results of this study, along with continued improvements to our model, will help to determine spacing and species composition that best encourage growth.
NASA Astrophysics Data System (ADS)
Kandare, Kaja; Ørka, Hans Ole; Dalponte, Michele; Næsset, Erik; Gobakken, Terje
2017-08-01
Site productivity is essential information for sustainable forest management and site index (SI) is the most common quantitative measure of it. The SI is usually determined for individual tree species based on tree height and the age of the 100 largest trees per hectare according to stem diameter. The present study aimed to demonstrate and validate a methodology for the determination of SI using remotely sensed data, in particular fused airborne laser scanning (ALS) and airborne hyperspectral data in a forest site in Norway. The applied approach was based on individual tree crown (ITC) delineation: tree species, tree height, diameter at breast height (DBH), and age were modelled and predicted at ITC level using 10-fold cross validation. Four dominant ITCs per 400 m2 plot were selected as input to predict SI at plot level for Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.). We applied an experimental setup with different subsets of dominant ITCs with different combinations of attributes (predicted or field-derived) for SI predictions. The results revealed that the selection of the dominant ITCs based on the largest DBH independent of tree species, predicted the SI with similar accuracy as ITCs matched with field-derived dominant trees (RMSE: 27.6% vs 23.3%). The SI accuracies were at the same level when dominant species were determined from the remotely sensed or field data (RMSE: 27.6% vs 27.8%). However, when the predicted tree age was used the SI accuracy decreased compared to field-derived age (RMSE: 27.6% vs 7.6%). In general, SI was overpredicted for both tree species in the mature forest, while there was an underprediction in the young forest. In conclusion, the proposed approach for SI determination based on ITC delineation and a combination of ALS and hyperspectral data is an efficient and stable procedure, which has the potential to predict SI in forest areas at various spatial scales and additionally to improve existing SI maps in Norway.
Height of Tallest Saplings in 10-year-old Appalachian Hardwood Clearcuts
H. Clay Smith
1977-01-01
Stem characteristics, mainly height, of the tallest hardwood saplings in 10-year-old circular clearcut openings were evaluated for several Appalachian hardwoods in West Virginia. Heights of the tallest saplings were not influenced by cardinal directions on two oak sites. Saplings were taller near the center of 150-, 2OO-, and 250-foot openings than saplings in the...
Growth and Branching of Young Cottonwoods After Pruning
Roger M. Krinard
1976-01-01
Although spring and summer pruning to various heights reduced diameter growth for the treatment year, diameter increment of most pruned trees did not differ significantly from that of controls 2 years after treatment. Total diameter growth during the test period was significantly less for pruned trees than for controls. Epicormic branching increased with spring...
Windt, Carel W; Blümler, Peter
2015-04-01
Nuclear magnetic resonance (NMR) and NMR imaging (magnetic resonance imaging) offer the possibility to quantitatively and non-invasively measure the presence and movement of water. Unfortunately, traditional NMR hardware is expensive, poorly suited for plants, and because of its bulk and complexity, not suitable for use in the field. But does it need to be? We here explore how novel, small-scale portable NMR devices can be used as a flow sensor to directly measure xylem sap flow in a poplar tree (Populus nigra L.), or in a dendrometer-like fashion to measure dynamic changes in the absolute water content of fruit or stems. For the latter purpose we monitored the diurnal pattern of growth, expansion and shrinkage in a model fruit (bean pod, Phaseolus vulgaris L.) and in the stem of an oak tree (Quercus robur L.). We compared changes in absolute stem water content, as measured by the NMR sensor, against stem diameter variations as measured by a set of conventional point dendrometers, to test how well the sensitivities of the two methods compare and to investigate how well diurnal changes in trunk absolute water content correlate with the concomitant diurnal variations in stem diameter. Our results confirm the existence of a strong correlation between the two parameters, but also suggest that dynamic changes in oak stem water content could be larger than is apparent on the basis of the stem diameter variation alone. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Pang, Yong; Lefskky, Michael; Sun, Guoqing; Ranson, Jon
2011-01-01
A spaceborne lidar mission could serve multiple scientific purposes including remote sensing of ecosystem structure, carbon storage, terrestrial topography and ice sheet monitoring. The measurement requirements of these different goals will require compromises in sensor design. Footprint diameters that would be larger than optimal for vegetation studies have been proposed. Some spaceborne lidar mission designs include the possibility that a lidar sensor would share a platform with another sensor, which might require off-nadir pointing at angles of up to 16 . To resolve multiple mission goals and sensor requirements, detailed knowledge of the sensitivity of sensor performance to these aspects of mission design is required. This research used a radiative transfer model to investigate the sensitivity of forest height estimates to footprint diameter, off-nadir pointing and their interaction over a range of forest canopy properties. An individual-based forest model was used to simulate stands of mixed conifer forest in the Tahoe National Forest (Northern California, USA) and stands of deciduous forests in the Bartlett Experimental Forest (New Hampshire, USA). Waveforms were simulated for stands generated by a forest succession model using footprint diameters of 20 m to 70 m. Off-nadir angles of 0 to 16 were considered for a 25 m diameter footprint diameter. Footprint diameters in the range of 25 m to 30 m were optimal for estimates of maximum forest height (R(sup 2) of 0.95 and RMSE of 3 m). As expected, the contribution of vegetation height to the vertical extent of the waveform decreased with larger footprints, while the contribution of terrain slope increased. Precision of estimates decreased with an increasing off-nadir pointing angle, but off-nadir pointing had less impact on height estimates in deciduous forests than in coniferous forests. When pointing off-nadir, the decrease in precision was dependent on local incidence angle (the angle between the off-nadir beam and a line normal to the terrain surface) which is dependent on the off-nadir pointing angle, terrain slope, and the difference between the laser pointing azimuth and terrain aspect; the effect was larger when the sensor was aligned with the terrain azimuth but when aspect and azimuth are opposed, there was virtually no effect on R2 or RMSE. A second effect of off-nadir pointing is that the laser beam will intersect individual crowns and the canopy as a whole from a different angle which had a distinct effect on the precision of lidar estimates of height, decreasing R2 and increasing RMSE, although the effect was most pronounced for coniferous crowns.
Mocco, J; Brown, Robert D; Torner, James C; Capuano, Ana W; Fargen, Kyle M; Raghavan, Madhavan L; Piepgras, David G; Meissner, Irene; Huston, John
2018-04-01
There are conflicting data between natural history studies suggesting a very low risk of rupture for small, unruptured intracranial aneurysms and retrospective studies that have identified a much higher frequency of small, ruptured aneurysms than expected. To use the prospective International Study of Unruptured Intracranial Aneurysms cohort to identify morphological characteristics predictive of unruptured intracranial aneurysm rupture. A case-control design was used to analyze morphological characteristics associated with aneurysm rupture in the International Study of Unruptured Intracranial Aneurysms database. Fifty-seven patients with ruptured aneurysms during follow-up were matched (by size and location) with 198 patients with unruptured intracranial aneurysms without rupture during follow-up. Twelve morphological metrics were measured from cerebral angiograms in a blinded fashion. Perpendicular height (P = .008) and size ratio (ratio of maximum diameter to the parent vessel diameter; P = .01) were predictors of aneurysm rupture on univariate analysis. Aspect ratio, daughter sacs, multiple lobes, aneurysm angle, neck diameter, parent vessel diameter, and calculated aneurysm volume were not statistically significant predictors of rupture. On multivariate analysis, perpendicular height was the only significant predictor of rupture (Chi-square 7.1, P-value .008). This study underscores the importance of other morphological factors, such as perpendicular height and size ratio, that may influence unruptured intracranial aneurysm rupture risk in addition to greatest diameter and anterior vs posterior location.
Large-Area Fabrication of Droplet Pancake Bouncing Surface and Control of Bouncing State.
Song, Jinlong; Gao, Mingqian; Zhao, Changlin; Lu, Yao; Huang, Liu; Liu, Xin; Carmalt, Claire J; Deng, Xu; Parkin, Ivan P
2017-09-26
Superhydrophobic pillar arrays, which can generate the droplet pancake bouncing phenomenon with reduced liquid-solid contact time, have huge application prospects in anti-icing of aircraft wings from freezing rain. However, the previously reported pillar arrays, suitable for obtaining pancake bouncing, have a diameter ≤100 μm and height-diameter ratio >10, which are difficult to fabricate over a large area. Here, we have systematically studied the influence of the dimension of the superhydrophobic pillar arrays on the bouncing dynamics of water droplets. We show that the typical pancake bouncing with 57.8% reduction in contact time with the surface was observed on the superhydrophobic pillar arrays with 1.05 mm diameter, 0.8 mm height, and 0.25 mm space. Such pillar arrays with millimeter diameter and <1 height-diameter ratio can be easily fabricated over large areas. Further, a simple replication-spraying method was developed for the large-area fabrication of the superhydrophobic pillar arrays to induce pancake bouncing. No sacrificial layer was needed to reduce the adhesion in the replication processes. Since the bouncing dynamics were rather sensitive to the space between the pillars, a method to control the contact time, bouncing shape, horizontal bouncing direction, and reversible switch between pancake bouncing and conventional bouncing was realized by adjusting the inclination angle of the shape memory polymer pillars.
Field responses of Prunus serotina and Asclepias syriaca to ozone around southern Lake Michigan
Bennett, J.P.; Jepsen, E.A.; Roth, J.A.
2006-01-01
Higher ozone concentrations east of southern Lake Michigan compared to west of the lake were used to test hypotheses about injury and growth effects on two plant species. We measured approximately 1000 black cherry trees and over 3000 milkweed stems from 1999 to 2001 for this purpose. Black cherry branch elongation and milkweed growth and pod formation were significantly higher west of Lake Michigan while ozone injury was greater east of Lake Michigan. Using classification and regression tree (CART) analyses we determined that departures from normal precipitation, soil nitrogen and ozone exposure/peak hourly concentrations were the most important variables affecting cherry branch elongation, and milkweed stem height and pod formation. The effects of ozone were not consistently comparable with the effects of soil nutrients, weather, insect or disease injury, and depended on species. Ozone SUM06 exposures greater than 13 ppm-h decreased cherry branch elongation 18%; peak 1-h exposures greater than 93 ppb reduced milkweed stem height 13%; and peak 1-h concentrations greater than 98 ppb reduced pod formation 11% in milkweed. Decreased cherry branch elongation, milkweed stem height and pod production, and foliar injury on both species occurred at sites around southern Lake Michigan at ozone exposures of 13 SUM06 ppm-h and 93a??98 ppb peak hourly.
A hierarchical linear model for tree height prediction.
Vicente J. Monleon
2003-01-01
Measuring tree height is a time-consuming process. Often, tree diameter is measured and height is estimated from a published regression model. Trees used to develop these models are clustered into stands, but this structure is ignored and independence is assumed. In this study, hierarchical linear models that account explicitly for the clustered structure of the data...
NASA Astrophysics Data System (ADS)
Wang, Li; Yang, Xiaonan; Wang, Quandai; Yang, Zhiqiang; Duan, Hui; Lu, Bingheng
2017-07-01
The construction of stable hydrophobic surfaces has increasingly gained attention owing to its wide range of potential applications. However, these surfaces may become wet and lose their slip effect owing to insufficient hydrophobic stability. Pillars with a mushroom-shaped tip are believed to enhance hydrophobicity stability. This work presents a facile method of manufacturing mushroom-shaped structures, where, compared with the previously used method, the modulation of the cap thickness, cap diameter, and stem height of the structures is more convenient. The effects of the development time on the cap diameter and overhanging angle are investigated and well-defined mushroom-shaped structures are demonstrated. The effect of the microstructure geometry on the contact state of a droplet is predicted by taking an energy minimization approach and is experimentally validated with nonvolatile ultraviolet-curable polymer with a low surface tension by inspecting the profiles of liquid-vapor interface deformation and tracking the trace of the receding contact line after exposure to ultraviolet light. Theoretical and experimental results show that, compared with regular pillar arrays having a vertical sidewall, the mushroom-like structures can effectively enhance hydrophobic stability. The proposed manufacturing method will be useful for fabricating robust hydrophobic surfaces in a cost-effective and convenient manner.
Begum, Shahanara; Kudo, Kayo; Matsuoka, Yugo; Nakaba, Satoshi; Yamagishi, Yusuke; Nabeshima, Eri; Rahman, Md Hasnat; Nugroho, Widyanto Dwi; Oribe, Yuichiro; Jin, Hyun-O; Funada, Ryo
2016-01-01
Background and Aims In temperate regions, trees undergo annual cycles of cambial growth, with periods of cambial activity and dormancy. Environmental factors might regulate the cambial growth, as well as the development of cambial derivatives. We investigated the effects of low temperature by localized cooling on cambial activity and latewood formation in two conifers, Chamaecyparis obtusa and Cryptomeria japonica. Methods A plastic rubber tube that contained cooled water was wrapped around a 30-cm-wide portion of the main stem of Chamaecyparis obtusa and Cryptomeria japonica trees during seasons of active cambium. Small blocks were collected from both cooled and non-cooled control portions of the stems for sequential observations of cambial activity and for anatomical measurements of cell morphology by light microscopy and image analysis. Key Results The effect of localized cooling was first observed on differentiating tracheids. Tracheids narrow in diameter and with significantly decreased cambial activity were evident 5 weeks after the start of cooling in these stems. Eight weeks after the start of cooling, tracheids with clearly diminished diameters and thickened cell walls were observed in these stems. Thus, localized low temperature induced narrow diameters and obvious thickening of secondary cell walls of tracheids, which were identified as latewood tracheids. Two months after the cessation of cooling, a false annual ring was observed and cambium became active again and produced new tracheids. In Cryptomeria japonica, cambial activity ceased earlier in locally cooled portions of stems than in non-cooled stems, indicating that the cambium had entered dormancy sooner in the cooled stems. Conclusions Artificial cooling of stems induced latewood formation and cessation of cambial activity, indicating that cambium and its derivatives can respond directly to changes in temperature. A decrease in the temperature of the stem is a critical factor in the control of cambial activity and xylem differentiation in trees. PMID:26703452
Begum, Shahanara; Kudo, Kayo; Matsuoka, Yugo; Nakaba, Satoshi; Yamagishi, Yusuke; Nabeshima, Eri; Rahman, Md Hasnat; Nugroho, Widyanto Dwi; Oribe, Yuichiro; Jin, Hyun-O; Funada, Ryo
2016-03-01
In temperate regions, trees undergo annual cycles of cambial growth, with periods of cambial activity and dormancy. Environmental factors might regulate the cambial growth, as well as the development of cambial derivatives. We investigated the effects of low temperature by localized cooling on cambial activity and latewood formation in two conifers, Chamaecyparis obtusa and Cryptomeria japonica. A plastic rubber tube that contained cooled water was wrapped around a 30-cm-wide portion of the main stem of Chamaecyparis obtusa and Cryptomeria japonica trees during seasons of active cambium. Small blocks were collected from both cooled and non-cooled control portions of the stems for sequential observations of cambial activity and for anatomical measurements of cell morphology by light microscopy and image analysis. The effect of localized cooling was first observed on differentiating tracheids. Tracheids narrow in diameter and with significantly decreased cambial activity were evident 5 weeks after the start of cooling in these stems. Eight weeks after the start of cooling, tracheids with clearly diminished diameters and thickened cell walls were observed in these stems. Thus, localized low temperature induced narrow diameters and obvious thickening of secondary cell walls of tracheids, which were identified as latewood tracheids. Two months after the cessation of cooling, a false annual ring was observed and cambium became active again and produced new tracheids. In Cryptomeria japonica, cambial activity ceased earlier in locally cooled portions of stems than in non-cooled stems, indicating that the cambium had entered dormancy sooner in the cooled stems. Artificial cooling of stems induced latewood formation and cessation of cambial activity, indicating that cambium and its derivatives can respond directly to changes in temperature. A decrease in the temperature of the stem is a critical factor in the control of cambial activity and xylem differentiation in trees. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lee, Sung-Il; Ko, Youngkyung; Park, Jun-Beom
2017-05-01
Gingiva-derived stem cells have been applied for tissue-engineering purposes and may be considered a favorable source of mesenchymal stem cells as harvesting stem cells from the mandible or maxilla may be performed with ease under local anesthesia. The present study was performed to fabricate stem-cell spheroids using concave microwells and to evaluate the maintenance of stemness, viability, and differentiation potential. Gingiva-derived stem cells were isolated, and the stem cells of 4×10 5 (group A) or 8×10 5 (group B) cells were seeded into polydimethylsiloxane-based, concave micromolds with 600 µm diameters. The morphology of the microspheres and the change of the diameters of the spheroids were evaluated. The viability of spheroids was qualitatively analyzed via Live/Dead kit assay. A cell viability analysis was performed on days 1, 3, 6, and 12 with Cell Counting Kit-8. The maintenance of stemness was evaluated with immunocytochemical staining using SSEA-4, TRA-1-60(R) (positive markers), and SSEA-1 (negative marker). Osteogenic, adipogenic, and chondrogenic differentiation potential was evaluated by incubating spheroids in osteogenic, adipogenic and chondrogenic induction medium, respectively. The gingiva-derived stem cells formed spheroids in the concave microwells. The diameters of the spheroids were larger in group A than in group B. The majority of cells in the spheroids emitted green fluorescence, indicating the presence of live cells at day 6. At day 12, the majority of cells in the spheroids emitted green fluorescence, and a small portion of red fluorescence was also noted, which indicated the presence of dead cells. The spheroids were positive for the stem-cell markers SSEA-4 and TRA-1-60(R) and were negative for SSEA-1, suggesting that these spheroids primarily contained undifferentiated human stem cells. Osteogenic, adipogenic, and chondrogenic differentiation was more evident with an increase of incubation time: Mineralized extracellular deposits were observed following Alizarin Red S staining at days 14 and 21; oil globules were increased at day 18 when compared with day 6; and Alcian blue staining was more evident at day 18 when compared with day 6. Within the limits of this study, stem-cell spheroids from gingival cells maintained the stemness, viability, and differentiation potential during the experimental periods. This method may be applied for a promising strategy for stem-cell therapy.
Stochasticity and Spatial Interaction Govern Stem Cell Differentiation Dynamics
NASA Astrophysics Data System (ADS)
Smith, Quinton; Stukalin, Evgeny; Kusuma, Sravanti; Gerecht, Sharon; Sun, Sean X.
2015-07-01
Stem cell differentiation underlies many fundamental processes such as development, tissue growth and regeneration, as well as disease progression. Understanding how stem cell differentiation is controlled in mixed cell populations is an important step in developing quantitative models of cell population dynamics. Here we focus on quantifying the role of cell-cell interactions in determining stem cell fate. Toward this, we monitor stem cell differentiation in adherent cultures on micropatterns and collect statistical cell fate data. Results show high cell fate variability and a bimodal probability distribution of stem cell fraction on small (80-140 μm diameter) micropatterns. On larger (225-500 μm diameter) micropatterns, the variability is also high but the distribution of the stem cell fraction becomes unimodal. Using a stochastic model, we analyze the differentiation dynamics and quantitatively determine the differentiation probability as a function of stem cell fraction. Results indicate that stem cells can interact and sense cellular composition in their immediate neighborhood and adjust their differentiation probability accordingly. Blocking epithelial cadherin (E-cadherin) can diminish this cell-cell contact mediated sensing. For larger micropatterns, cell motility adds a spatial dimension to the picture. Taken together, we find stochasticity and cell-cell interactions are important factors in determining cell fate in mixed cell populations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... diameter of not less than 0.6 meter and a height equal to its diameter; (3) A diamond shape shall consist of two cones (as defined in paragraph (a)(2) of this section) having a common base. (b) The vertical...
Code of Federal Regulations, 2010 CFR
2010-07-01
... diameter of not less than 0.6 meter and a height equal to its diameter; (3) A diamond shape shall consist of two cones (as defined in paragraph (a)(2) of this section) having a common base. (b) The vertical...
Code of Federal Regulations, 2011 CFR
2011-07-01
... diameter of not less than 0.6 meter and a height equal to its diameter; (3) A diamond shape shall consist of two cones (as defined in paragraph (a)(2) of this section) having a common base. (b) The vertical...
Code of Federal Regulations, 2014 CFR
2014-07-01
... diameter of not less than 0.6 meter and a height equal to its diameter; (3) A diamond shape shall consist of two cones (as defined in paragraph (a)(2) of this section) having a common base. (b) The vertical...
Code of Federal Regulations, 2012 CFR
2012-07-01
... diameter of not less than 0.6 meter and a height equal to its diameter; (3) A diamond shape shall consist of two cones (as defined in paragraph (a)(2) of this section) having a common base. (b) The vertical...
Brian S. Hughett; Wayne K. Clatterbuck
2014-01-01
Differences in composition, structure, and growth under canopy gaps created by the mortality of a single stem were analyzed using analysis of variance under two scenarios, with stem removed or with stem left as a standing snag. There were no significant differences in composition and structure of large diameter residual stems within upper canopy strata. Some...
NASA Astrophysics Data System (ADS)
Krause, Marita; Irwin, Judith; Wiegert, Theresa; Miskolczi, Arpad; Damas-Segovia, Ancor; Beck, Rainer; Li, Jiang-Tao; Heald, George; Müller, Peter; Stein, Yelena; Rand, Richard J.; Heesen, Volker; Walterbos, Rene A. M.; Dettmar, Ralf-Jürgen; Vargas, Carlos J.; English, Jayanne; Murphy, Eric J.
2018-03-01
Aim. The vertical halo scale height is a crucial parameter to understand the transport of cosmic-ray electrons (CRE) and their energy loss mechanisms in spiral galaxies. Until now, the radio scale height could only be determined for a few edge-on galaxies because of missing sensitivity at high resolution. Methods: We developed a sophisticated method for the scale height determination of edge-on galaxies. With this we determined the scale heights and radial scale lengths for a sample of 13 galaxies from the CHANG-ES radio continuum survey in two frequency bands. Results: The sample average values for the radio scale heights of the halo are 1.1 ± 0.3 kpc in C-band and 1.4 ± 0.7 kpc in L-band. From the frequency dependence analysis of the halo scale heights we found that the wind velocities (estimated using the adiabatic loss time) are above the escape velocity. We found that the halo scale heights increase linearly with the radio diameters. In order to exclude the diameter dependence, we defined a normalized scale height h˜ which is quite similar for all sample galaxies at both frequency bands and does not depend on the star formation rate or the magnetic field strength. However, h˜ shows a tight anticorrelation with the mass surface density. Conclusions: The sample galaxies with smaller scale lengths are more spherical in the radio emission, while those with larger scale lengths are flatter. The radio scale height depends mainly on the radio diameter of the galaxy. The sample galaxies are consistent with an escape-dominated radio halo with convective cosmic ray propagation, indicating that galactic winds are a widespread phenomenon in spiral galaxies. While a higher star formation rate or star formation surface density does not lead to a higher wind velocity, we found for the first time observational evidence of a gravitational deceleration of CRE outflow, e.g. a lowering of the wind velocity from the galactic disk.
Reference values of anthropometric measurements in Dutch children. The Oosterwolde Study.
Gerver, W J; Drayer, N M; Schaafsma, W
1989-03-01
In the period 1979-1980 the following anthropometric measurements were recorded in 2351 healthy Dutch children from 0-17 years of age: height, weight, sitting height, arm span, lengths of upper-arm, lower-arm and hand, tibial length, foot length, biacromial diameter, biiliacal diameter, and head circumference. Corresponding percentile values were constructed on the basis of normality assumptions, the mean and standard deviation at age t being determined by a cubic spline approximation. The results are compared with other studies and given in the form of growth charts.
Effect of severing method and stump height on coppice growth
John B. Crist; James A. Mattson; Sharon A. Winsauer
1983-01-01
In this study we evaluated the effect of stem severing method and stump height on coppice growth in a short-rotation intensively cultured Populus plantation 1, 2, and 3 years after cutting. Initially, stumps 46 cm high had smaller and significantly more sprouts than either 8 or 15 cm high stumps. However, the dominant sprouts were not affected by the stump height....
Predicting height increment of young-growth red fir in California and southern Oregon
K. Leroy Dolph
1992-01-01
An equation is given to estimate 10-year height increment for young-growth red fir trees in California and southern Oregon. The independent variables are the individual tree, stand, and site characteristics significantly related to a tree's height growth. Data used to develop the equation came from stem analysis of 492 trees sampled from 56 stands in the study...
Donald J. DeMars; Francis R. Herman
1987-01-01
Estimation equations for height growth and site index were derived from stem-analysis data of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco var. menziesii) in the highelevation forests of the Cascade Range in Oregon and Washington. Two sets of height-growth and site-index estimation curves and tables produced from...
Locosselli, Giuliano Maselli; Cardim, Ricardo Henrique; Ceccantini, Gregório
2016-05-01
We aimed to understand the effect of rock outcrops on the growth of Podocarpus lambertii within a microrefuge. Our hypothesis holds that the growth and survival of this species depend on the regional climate decoupling provided by rock outcrops. To test this hypothesis, we characterized the microclimate of (1) surrounding vegetation, (2) rock outcrop corridors, and (3) adjacencies. We assessed population structure by collecting data of specimen stem diameter and height. We also assessed differences between vegetation associated or not with outcrops using satellite imaging. For dendrochronological analyses, we sampled 42 individuals. Tree rings of 31 individuals were dated, and climate-growth relationships were tested. Rock outcrops produce a favorable microclimate by reducing average temperature by 4.9 °C and increasing average air humidity by 12 %. They also reduce the variability of atmospheric temperature by 42 % and air humidity by 20 % supporting a vegetation with higher leaf area index. Within this vegetation, specimen height was strongly constrained by the outcrop height. Although temperature and precipitation modulate this species growth, temperature-induced stress is the key limiting growth factor for this population of P. lambertii. We conclude that this species growth and survival depend on the presence of rock outcrops. These topography elements decouple regional climate in a favorable way for this species growth. However, these benefits are restricted to the areas sheltered by rock outcrops. Although this microrefuge supported P. lambertii growth so far, it is unclear whether this protection would be sufficient to withstand the stress of future climate changes.
Tarvainen, Lasse; Wallin, Göran; Lim, Hyungwoo; Linder, Sune; Oren, Ram; Ottosson Löfvenius, Mikaell; Räntfors, Mats; Tor-Ngern, Pantana; Marshall, John
2018-04-01
Trees are able to reduce their carbon (C) losses by refixing some of the CO2 diffusing out of their stems through corticular photosynthesis. Previous studies have shown that under ideal conditions the outflowing CO2 can be completely assimilated in metabolically active, young stem and branch tissues. Fewer studies have, however, been carried out on the older stem sections of large trees and, accordingly, the importance of refixation is still unclear under natural environmental conditions. We investigated the spatial and temporal variation in refixation in ~90-year-old boreal Scots pine (Pinus sylvestris L.) trees by utilizing month-long continuous measurements of stem CO2 efflux (Ec) made at four heights along the bole. Refixation rates were found to vary considerably along the bole, leading to a 28% reduction in long-term Ec in the upper stem compared with a negligible reduction at breast height. This vertical pattern correlated with variation in light availability, bark chlorophyll content and bark type. Analysis of the vertical and diurnal patterns in Ec further suggested that the influence of sap flow on the observed daytime reduction in Ec was small. The areal rates of corticular photosynthesis were much lower than previous estimates of photosynthetic rates per unit leaf area from the same trees, implying that the impact of refixation on tree-scale C uptake was small. However, upscaling of refixation indicated that 23-27% of the potential Ec was refixed by the bole and the branches, thereby significantly reducing the woody tissue C losses. Thus, our results suggest that refixation needs to be considered when evaluating the aboveground C cycling of mature P. sylvestris stands and that breast-height estimates should not be extrapolated to the whole tree.
Estimation procedures for understory biomass and fuel loads in sagebrush steppe invaded by woodlands
Alicia L. Reiner; Robin J. Tausch; Roger F. Walker
2010-01-01
Regression equations were developed to predict biomass for 9 shrubs, 9 grasses, and 10 forbs that generally dominate sagebrush ecosystems in central Nevada. Independent variables included percent cover, average height, and plant volume. We explored 2 ellipsoid volumes: one with maximum plant height and 2 crown diameters and another with live crown height and 2 crown...
John R. Brooks
2004-01-01
A stand dominant height prediction technique, based solely on diameter distribution and total height data from standard inventory procedures, was investigated. The data consist of 15 managed longleaf pine (Pinus palustris Mill.) plantations that are part of a growth and yield study located in Worth, Mitchell, and Baker counties in southwest Georgia....
Age trends in Douglas-fir genetic parameters and implications for optimum selection age.
G.R. Johnson; R.A. Sniezko; N.L. Mandel
1997-01-01
rends in genetic variation were examined over 51 progeny test sites throughout western Oregon. Narrow sense heritabilities for height and diameter showed an increasing trend to age 25, the oldest age examined. Before age 10, height heritabilities were relatively unstable. Type B site-site genetic correlations increased slowly with age for height and remained relatively...
Reduction of discomfort in pushing an industrial trolley using ergonomics
NASA Astrophysics Data System (ADS)
Kumar, M. Wilson; Vijay, S. J.; Vasudev, K. L.; Darius Gnanaraj, S.
2017-11-01
Poor design of industrial trolleys lead to more compressive stress on the low back of industrial workers. The research work reported in this paper recommends a handle height of an industrial trolley for use by the local population, which reduces the compressive stress on the low back. Experiments were conducted in a laboratory on five subjects of varying stature 165, 173, 174, 175 and 182 cm, with five different handle heights 90, 95, 100, 105 and 110 cm. A four wheeled trolley has been used to conduct the experiments. Caster wheels diameters of 100, 125 and 150 mm made of polyurethane were used. It is found that a handle height of 110 cm allows the users to exert minimum force during the initial pushing. A biomechanical model was employed to calculate the compressive force experienced by L5/S1 disc and it is found that the compressive load will be the least when the handle height is 110 cm. Optimization of handle height using Genetic Algorithm approach, Heart rate analysis and EMG analysis confirm that a handle height of 110 cm and a wheel diameter of 150 mm will reduce the discomfort of industry workers pushing trolleys.
Osunkoya, Olusegun O; Omar-Ali, Kharunnisa; Amit, Norratna; Dayan, Juita; Daud, Dayanawati S; Sheng, Tan K
2007-12-01
In rainforests, trunk size, strength, crown position, and geometry of a tree affect light interception and the likelihood of mechanical failure. Allometric relationships of tree diameter, wood density, and crown architecture vs. height are described for a diverse range of rainforest trees in Brunei, northern Borneo. The understory species follow a geometric model in their diameter-height relationship (slope, β = 1.08), while the stress-elasticity models prevail (β = 1.27-1.61) for the midcanopy and canopy/emergent species. These relationships changed with ontogeny, especially for the understory species. Within species, the tree stability safety factor (SSF) and relative crown width decreased exponentially with increasing tree height. These trends failed to emerge in across-species comparisons and were reversed at a common (low) height. Across species, the relative crown depth decreased with maximum potential height and was indistinguishable at a common (low) height. Crown architectural traits influence SSF more than structural property of wood density. These findings emphasize the importance of applying a common reference size in comparative studies and suggest that forest trees (especially the understory group) may adapt to low light by having deeper rather than wider crowns due to an efficient distribution and geometry of their foliage.
Gurskaia, M A
2014-01-01
Frost damage to the bottom of the stem at a height of 0.2 m and at the height of the position of the thermometer in the weather station (2 m) and higher in the Siberian spruce (Picea obovata Ledeb.) and Siberian larch (Larix sibirica Ledeb.) growing at the northern limits of their natural habitat were studied in order to reveal the upper threshold temperature conditions of their formation. Possible causes of differences in the distribution of frost damage in the stem of the spruce and larch are discussed.
Williams, Jackie M.; Krebs, Ingar A.; Riedesel, Elizabeth A.; Zhao, Qianqian
2015-01-01
Tracheal collapse is a progressive airway disease that can ultimately result in complete airway obstruction. Intraluminal tracheal stents are a minimally invasive and viable treatment for tracheal collapse once the disease becomes refractory to medical management. Intraluminal stent size is chosen based on the maximum measured tracheal diameter during maximum inflation. The purpose of this prospective, cross-sectional study was to compare tracheal lumen diameter measurements and subsequent selected stent size using both fluoroscopy and CT and to evaluate inter- and intraobserver variability of the measurements. Seventeen healthy Beagles were anesthetized and imaged with fluoroscopy and CT with positive pressure ventilation to 20 cm H2O. Fluoroscopic and CT maximum tracheal diameters were measured by 3 readers. Three individual measurements were made at 8 pre-determined tracheal sites for dorsoventral (height) and laterolateral (width) dimensions. Tracheal diameters and stent sizes (based on the maximum tracheal diameter + 10%) were analyzed using a linear mixed model. CT tracheal lumen diameters were larger compared to fluoroscopy at all locations. When comparing modalities, fluoroscopic and CT stent sizes were statistically different. Greater overall variation in tracheal diameter measurement (height or width) existed for fluoroscopy compared to CT, both within and among observers. The greater tracheal diameter and lower measurement variability supported the use of CT for appropriate stent selection to minimize complications in veterinary patients. PMID:26784924
Red-shouldered hawk nesting habitat preference in south Texas
Strobel, Bradley N.; Boal, Clint W.
2010-01-01
We examined nesting habitat preference by red-shouldered hawks Buteo lineatus using conditional logistic regression on characteristics measured at 27 occupied nest sites and 68 unused sites in 2005–2009 in south Texas. We measured vegetation characteristics of individual trees (nest trees and unused trees) and corresponding 0.04-ha plots. We evaluated the importance of tree and plot characteristics to nesting habitat selection by comparing a priori tree-specific and plot-specific models using Akaike's information criterion. Models with only plot variables carried 14% more weight than models with only center tree variables. The model-averaged odds ratios indicated red-shouldered hawks selected to nest in taller trees and in areas with higher average diameter at breast height than randomly available within the forest stand. Relative to randomly selected areas, each 1-m increase in nest tree height and 1-cm increase in the plot average diameter at breast height increased the probability of selection by 85% and 10%, respectively. Our results indicate that red-shouldered hawks select nesting habitat based on vegetation characteristics of individual trees as well as the 0.04-ha area surrounding the tree. Our results indicate forest management practices resulting in tall forest stands with large average diameter at breast height would benefit red-shouldered hawks in south Texas.
Miller, Charlotte N; Harper, Andrea L; Trick, Martin; Werner, Peter; Waldron, Keith; Bancroft, Ian
2016-07-16
The current approach to reducing the tendency for wheat grown under high fertilizer conditions to collapse (lodge) under the weight of its grain is based on reducing stem height via the introduction of Rht genes. However, these reduce the yield of straw (itself an important commodity) and introduce other undesirable characteristics. Identification of alternative height-control loci is therefore of key interest. In addition, the improvement of stem mechanical strength provides a further way through which lodging can be reduced. To investigate the prospects for genetic alternatives to Rht, we assessed variation for plant height and stem strength properties in a training genetic diversity panel of 100 wheat accessions fixed for Rht. Using mRNAseq data derived from RNA purified from leaves, functional genotypes were developed for the panel comprising 42,066 Single Nucleotide Polymorphism (SNP) markers and 94,060 Gene Expression Markers (GEMs). In the first application in wheat of the recently-developed method of Associative Transcriptomics, we identified associations between trait variation and both SNPs and GEMs. Analysis of marker-trait associations revealed candidates for the causative genes underlying the trait variation, implicating xylan acetylation and the COP9 signalosome as contributing to stem strength and auxin in the control of the observed variation for plant height. Predictive capabilities of key markers for stem strength were validated using a test genetic diversity panel of 30 further wheat accessions. This work illustrates the power of Associative Transcriptomics for the exploration of complex traits of high agronomic importance in wheat. The careful selection of genotypes included in the analysis, allowed for high resolution mapping of novel trait-controlling loci in this staple crop. The use of Gene Expression markers coupled with the more traditional sequence-based markers, provides the power required to understand the biological context of the marker-trait associations observed. This not only adds to the wealth of knowledge that we strive to accumulate regarding gene function and plant adaptation, but also provides breeders with the information required to make more informed decisions regarding the potential consequences of incorporating the use of particular markers into future breeding programmes.
Forest STEM Volume Calculation Using Airborne LIDAR Data
NASA Astrophysics Data System (ADS)
Büyüksalih, I.; Bayburt, S.; Schardt, M.; Büyüksalih, G.
2017-05-01
Airborne LiDAR data have been collected for the city of Istanbul using Riegl laser scanner Q680i with 400 kHz and an average flight height of 600 m. The flight campaign was performed by a helicopter and covers an area of 5400 km2. According to a flight speed of 80 knot a point density of more than 16 points/m2 and a laser footprint size of 30 cm could be achieved. As a result of bundle adjustment, in total, approximately 17,000 LAS files with the file size of 500 m by 700 m have been generated for the whole city. The main object classes Ground, Building, Vegetation (medium, high) were derived from these LAS files using the macros in Terrasolid software. The forest area under investigation is located northwest of the city of Istanbul, main tree species occurring in the test site are pine (pinus pinaster), oak (quercus) and beech (fagus). In total, 120 LAS tiles covering the investigation area have been analysed using the software IMPACT of Joanneum Research Forschungsgesellschaft, Graz, Austria. First of all, the digital terrain model (DTM) and the digital surface models (DSM) were imported and converted into a raster file from the original laser point clouds with a spatial resolution of 50 cm. Then, a normalized digital surface model (nDSM) was derived as the difference between DSM and the DTM. Tree top detection was performed by multi - resolution filter operations and tree crowns were segmented by a region growing algorithms develop specifically for this purpose. Breast Height Diameter (BHD) was calculated on the base of tree height and crown areas derived from image segmentation applying allometric functions found in literature. The assessment of stem volume was then calculated as a function of tree height and BHD. A comparison of timber volume estimated from the LiDAR data and field plots measured by the Forest Department of Istanbul showed R2 of 0.46. The low correlation might arise either from the low quality of the field plots or from the inadequacy of the allometric functions used for BHD and stem volume modelling. Further investigations therefore will concentrate both on improving the quality of field measurements and the adoption of the allometric functions to the specific site condition of the forests under investigation. Finally stand boundaries of the forest area made available by the forest department of Istanbul were superimposed to the LiDAR data and the single tree measurements aggregated to the stand level. Aside from the LiDAR data, a Pleiades multispectral image characterized by four spectral bands (blue, green, red and near infrared) and a GSD of 2.8 m has been used for the classification of different tree species. For this purpose the near infrared band covering the spectral range of 0.75 μm to 0.90 μm has been utilized and the IMPACT software used.
Liana abundance, diversity, and distribution on Barro Colorado Island, Panama.
Schnitzer, Stefan A; Mangan, Scott A; Dalling, James W; Baldeck, Claire A; Hubbell, Stephen P; Ledo, Alicia; Muller-Landau, Helene; Tobin, Michael F; Aguilar, Salomon; Brassfield, David; Hernandez, Andres; Lao, Suzanne; Perez, Rolando; Valdes, Oldemar; Yorke, Suzanne Rutishauser
2012-01-01
Lianas are a key component of tropical forests; however, most surveys are too small to accurately quantify liana community composition, diversity, abundance, and spatial distribution - critical components for measuring the contribution of lianas to forest processes. In 2007, we tagged, mapped, measured the diameter, and identified all lianas ≥1 cm rooted in a 50-ha plot on Barro Colorado Island, Panama (BCI). We calculated liana density, basal area, and species richness for both independently rooted lianas and all rooted liana stems (genets plus clones). We compared spatial aggregation patterns of liana and tree species, and among liana species that varied in the amount of clonal reproduction. We also tested whether liana and tree densities have increased on BCI compared to surveys conducted 30-years earlier. This study represents the most comprehensive spatially contiguous sampling of lianas ever conducted and, over the 50 ha area, we found 67,447 rooted liana stems comprising 162 species. Rooted lianas composed nearly 25% of the woody stems (trees and lianas), 35% of woody species richness, and 3% of woody basal area. Lianas were spatially aggregated within the 50-ha plot and the liana species with the highest proportion of clonal stems more spatially aggregated than the least clonal species, possibly indicating clonal stem recruitment following canopy disturbance. Over the past 30 years, liana density increased by 75% for stems ≥1 cm diameter and nearly 140% for stems ≥5 cm diameter, while tree density on BCI decreased 11.5%; a finding consistent with other neotropical forests. Our data confirm that lianas contribute substantially to tropical forest stem density and diversity, they have highly clumped distributions that appear to be driven by clonal stem recruitment into treefall gaps, and they are increasing relative to trees, thus indicating that lianas will play a greater role in the future dynamics of BCI and other neotropical forests.
Further Studies of Forest Structure Parameter Retrievals Using the Echidna® Ground-Based Lidar
NASA Astrophysics Data System (ADS)
Strahler, A. H.; Yao, T.; Zhao, F.; Yang, X.; Schaaf, C.; Wang, Z.; Li, Z.; Woodcock, C. E.; Culvenor, D.; Jupp, D.; Newnham, G.; Lovell, J.
2012-12-01
Ongoing work with the Echidna® Validation Instrument (EVI), a full-waveform, ground-based scanning lidar (1064 nm) developed by Australia's CSIRO and deployed by Boston University in California conifers (2008) and New England hardwood and softwood (conifer) stands (2007, 2009, 2010), confirms the importance of slope correction in forest structural parameter retrieval; detects growth and disturbance over periods of 2-3 years; provides a new way to measure the between-crown clumping factor in leaf area index retrieval using lidar range; and retrieves foliage profiles with more lower-canopy detail than a large-footprint aircraft scanner (LVIS), while simulating LVIS foliage profiles accurately from a nadir viewpoint using a 3-D point cloud. Slope correction is important for accurate retrieval of forest canopy structural parameters, such as mean diameter at breast height (DBH), stem count density, basal area, and above-ground biomass. Topographic slope can induce errors in parameter retrievals because the horizontal plane of the instrument scan, which is used to identify, measure, and count tree trunks, will intersect trunks below breast height in the uphill direction and above breast height in the downhill direction. A test of three methods at southern Sierra Nevada conifer sites improved the range of correlations of these EVI-retrieved parameters with field measurements from 0.53-0.68 to 0.85-0.93 for the best method. EVI scans can detect change, including both growth and disturbance, in periods of two to three years. We revisited three New England forest sites scanned in 2007-2009 or 2007-2010. A shelterwood stand at the Howland Experimental Forest, Howland, Maine, showed increased mean DBH, above-ground biomass and leaf area index between 2007 and 2009. Two stands at the Harvard Forest, Petersham, Massachusetts, suffered reduced leaf area index and reduced stem count density as the result of an ice storm that damaged the stands. At one stand, broken tops were visible in the 2010 point cloud canopy reconstruction. A new method for retrieval of the forest canopy between-crown clumping index from angular gaps in hemispherically-projected EVI data traces gaps as they narrow with range from the instrument, thus providing the approximate physical size, rather than angular size, of the gaps. In applying this method to a range of sites in the southern Sierra Nevada, element clumping index values are lower (more between-crown clumping effect) in more open stands, providing improved results as compared to conventional hemispherical photography. In dense stands with fewer gaps, the clumping index values were closer. Foliage profiles retrieved from EVI scans at five Sierra Nevada sites are closely correlated with those of the airborne Lidar Vegetation Imaging Sensor (LVIS) when averaged over a diameter of 100 m. At smaller diameters, the EVI scans have more detail in lower canopy layers and the LVIS and EVI foliage profiles are more distinct. Foliage profiles derived from processing 3-D site point clouds with a nadir view match the LVIS foliage profiles more closely than profiles derived from EVI in scan mode. Removal of terrain effects significantly enhances the match with LVIS profiles. This research was supported by the US National Science Foundation under grant MRI DBI-0923389.
Site index curves for black, white, scarlet, and chestnut oaks in the Central States.
Willard H. Carmean
1971-01-01
Stem analyses showed polymorphic patterns of height growth for each species and for different levels of site quality. New site index curves are presented that show better height growth in later years than predicted by older harmonized site index curves.
Forest thinnings for integrated lumber and paper production
J.Y. Zhu; C.T. Scott; R. Gleisner; D. Mann; D.W. Vahey; D.P. Dykstra; G.H. Quinn; L.L. Edwards
2007-01-01
Integrated lumber and paper productions using forest thinning materials from U.S. national forests can significantly reduce the cost of prescriptive thinning operations. Many of the trees removed during forest thinnings are in small-diameter classes (diameter at breast height