Science.gov

Sample records for helicoverpa armigera nucleopolyhedrovirus

  1. Genomic Sequences of Five Helicoverpa armigera Nucleopolyhedrovirus Genotypes from Spain That Differ in Their Insecticidal Properties

    PubMed Central

    Arrizubieta, Maite; Williams, Trevor; Caballero, Primitivo

    2015-01-01

    Helicoverpa armigera nucleopolyhedrovirus (HearNPV) has proved effective as the basis for various biological insecticides. Complete genome sequences of five Spanish HearNPV genotypes differed principally in the homologous regions (hrs) and the baculovirus repeat open reading frame (bro) genes, suggesting that they may be involved in the phenotypic differences observed among genotypes. PMID:26067949

  2. Characterization of a new Helicoverpa armigera nucleopolyhedrovirus variant causing epizootic on a previously unreported host, Helicoverpa gelotopoeon (Lepidoptera: Noctuidae).

    PubMed

    Ferrelli, M L; Taibo, C; Fichetti, P; Sciocco-Cap, A; Arneodo, J D

    2016-07-01

    This paper reports the first biological and molecular characterization of a nucleopolyhedrovirus isolated from the soybean and cotton pest Helicoverpa gelotopoeon. Studies were performed following a virus outbreak in a rearing facility and in wild H. gelotopoeon populations in Córdoba, Argentina. Host identity was corroborated by partial sequencing of the COI gene. Scanning electron microscope observations of purified OBs revealed their polyhedral morphology and an average diameter of 0.89±0.14μm. Ultrathin sections of infected larvae examined by transmission electron microscopy showed the intranuclear occurrence of polyhedra and virus particles in fat body cells. Nucleocapsids were singly enveloped. Phylogenetic analysis of lef-8, lef-9, polh, orf5/5b and hr3-orf62 viral sequences identified this new NPV isolate (hereafter HegeSNPV) as a variant of Helicoverpa armigera nucleopolyhedrovirus (HearNPV). Furthermore, HegeSNPV was closely related to the so-called "HzSNPV Group" within HearNPV, although having particular characteristics.

  3. Identification of protein-protein interactions of the occlusion-derived virus-associated proteins of Helicoverpa armigera nucleopolyhedrovirus.

    PubMed

    Peng, Ke; Wu, Minzhi; Deng, Fei; Song, Jingjiao; Dong, Chunsheng; Wang, Hualin; Hu, Zhihong

    2010-03-01

    The purpose of this study was to identify protein-protein interactions among the components of the occlusion-derived virus (ODV) of Helicoverpa armigera nucleopolyhedrovirus (HearNPV), a group II alphabaculovirus in the family Baculoviridae. To achieve this, 39 selected genes of potential ODV structural proteins were cloned and expressed in the Gal4 yeast two-hybrid (Y2H) system. The direct-cross Y2H assays identified 22 interactions comprising 13 binary interactions [HA9-ODV-EC43, ODV-E56-38K, ODV-E56-PIF3, LEF3-helicase, LEF3-alkaline nuclease (AN), GP41-38K, GP41-HA90, 38K-PIF3, 38K-PIF2, VP80-HA100, ODV-E66-PIF3, ODV-E66-PIF2 and PIF3-PIF2] and nine self-associations (IE1, HA44, LEF3, HA66, GP41, CG30, 38K, PIF3 and P24). Five of these interactions - LEF3-helicase and LEF3-AN, and the self-associations of IE1, LEF3 and 38K - have been reported previously in Autographa californica multiple nucleopolyhedrovirus. As HA44 and HA100 were two newly identified ODV proteins of group II viruses, their interactions were further confirmed. The self-association of HA44 was verified with a His pull-down assay and the interaction of VP80-HA100 was confirmed by a co-immunoprecipitation assay. A summary of the protein-protein interactions of baculoviruses reported so far, comprising 68 interactions with 45 viral proteins and five host proteins, is presented, which will facilitate our understanding of the molecular mechanisms of baculovirus infection.

  4. Putative phosphorylation sites on WCA domain of HA2 is essential for Helicoverpa armigera single nucleopolyhedrovirus replication.

    PubMed

    Lv, Yi-pin; Wang, Qian; Wu, Chun-chen; Pei, Rong-juan; Zhou, Yuan; Wang, Yun; Chen, Xin-wen

    2011-08-01

    Protein phosphorylation is one of the most common post-translational modification processes that play an essential role in regulating protein functionality. The Helicoverpa armigera single nucleopolyhedrovirus (HearNPV) orf2-encoded nucleocapsid protein HA2 participates in orchestration of virus-induced actin polymerization through its WCA domain, in which phosphorylation status are supposed to be critical in respect to actin polymerization. In the present study, two putative phosphorylation sites ((232)Thr and (250)Ser) and a highly conserved Serine ((245)Ser) on the WCA domain of HA2 were mutated, and their phenotypes were characterized by reintroducing the mutated HA2 into the HearNPV genome. Viral infectivity assays demonstrated that only the recombinant HearNPV bearing HA2 mutation at (245)Ser can produce infectious virions, both (232)Thr and (250)Ser mutations were lethal to the virus. However, actin polymerization assay demonstrated that all the three viruses bearing HA2 mutations were still capable of initiating actin polymerization in the host nucleus, which indicated the putative phosphorylation sites on HA2 may contribute to HearNPV replication through another unidentified pathway.

  5. Inactivation of baculovirus by isoflavonoids on chickpea (Cicer arietinum) leaf surfaces reduces the efficacy of nucleopolyhedrovirus against Helicoverpa armigera.

    PubMed

    Stevenson, Philip C; D'Cunha, Reju F; Grzywacz, David

    2010-02-01

    Biological pesticides based on nucleopolyhedroviruses (NPVs) can provide an effective and environmentally benign alternative to synthetic chemicals. On some crops, however, the efficacy and persistence of NPVs is known to be reduced by plant specific factors. The present study investigated the efficacy of Helicoverpa armigera NPV (HearNPV) for control of H. armigera larvae, and showed that chickpea reduced the infectivity of virus occlusion bodies (OBs) exposed to the leaf surface of chickpea for at least 1 h. The degree of inactivation was greater on chickpea than that previously reported on cotton, and the mode of action is different from that of cotton. The effect was observed for larvae that consumed OBs on chickpea leaves, but it also occurred when OBs were removed after exposure to plants and inoculated onto artificial diet, indicating that inhibition was leaf surface-related and permanent. Despite their profuse exudation from trichomes on chickpea leaves and their low pH, organic acids-primarily oxalic and malic acid-caused no inhibition. When HearNPV was incubated with biochanin A and sissotrin, however, two minor constituents of chickpea leaf extracts, OB activity was reduced significantly. These two isoflavonoids increased in concentration by up to 3 times within 1 h of spraying the virus suspension onto the plants and also when spraying only the carrier, indicating induction was in response to spraying and not a specific response to the HearNPV. Although inactivation by the isoflavonoids did not account completely for the level of effect recorded on whole plants, this work constitutes evidence for a novel mechanism of NPV inactivation in legumes. Expanding the use of biological pesticides on legume crops will be dependent upon the development of suitable formulations for OBs to overcome plant secondary chemical effects.

  6. Dynamics of the interaction between cotton bollworm Helicoverpa armigera and nucleopolyhedrovirus as revealed by integrated transcriptomic and proteomic analyses.

    PubMed

    Xing, Longsheng; Yuan, Chuanfei; Wang, Manli; Lin, Zhe; Shen, Benchang; Hu, Zhihong; Zou, Zhen

    2017-04-12

    Over the past decades, Helicoverpa armigera nucleopolyhedrovirus (HearNPV) has been widely used for biocontrol of cotton bollworm, which is one of the most destructive pest insects in agriculture worldwide. However, the molecular mechanism underlying the interaction between HearNPV and host insects remains poorly understood. In this study, high throughput RNA-sequencing was integrated with label-free quantitative proteomics analysis to examine the dynamics of gene expression in the fat body of H. armigera larvae in response to challenge with HearNPV. RNA-sequencing-based transcriptomic analysis indicated that host gene expression was substantially altered, yielding 3,850 differentially expressed genes (DEGs), while no global transcriptional shut-off effects were observed in the fat body. Among the DEGs, 60 immunity-related genes were down-regulated after baculovirus infection, a finding that was consistent with the results of quantitative real-time RT-PCR (qRT-PCR). Gene ontology and functional classification demonstrated that the majority of down-regulated genes were enriched in gene cohorts involved in energy, carbohydrate, and amino acid metabolic pathways. Proteomics analysis identified differentially expressed proteins in the fat body, among which 76 were up-regulated, whereas 373 were significantly down-regulated upon infection. The down-regulated proteins are involved in metabolic pathways such as energy metabolism, carbohydrate metabolism (CM), and amino acid metabolism, in agreement with the RNA-seq data. Furthermore, correlation analysis suggested a strong association between the mRNA level and protein abundance in the H. armigera fat body. More importantly, the predicted gene interaction network indicated that a large subset of metabolic networks was significantly negatively regulated by viral infection, including CM-related enzymes such as aldolase, enolase, malate dehydrogenase, and triose-phosphate isomerase. Taken together, transcriptomic combined

  7. Mutational and functional analysis of N-linked glycosylation of envelope fusion protein F of Helicoverpa armigera nucleopolyhedrovirus.

    PubMed

    Shen, Shu; Wang, Manli; Li, Xin; Li, Shufen; van Oers, Monique M; Vlak, Just M; Braakman, Ineke; Hu, Zhihong; Deng, Fei; Wang, Hualin

    2016-04-01

    The envelope fusion (F) protein of baculoviruses is a heavily N-glycosylated protein that plays a significant role in the virus infection cycle. N-Linked glycosylation of virus envelope glycoprotein is important for virus envelope glycoprotein folding and its function in general. There are six predicted N-glycosylation sites in the F (HaF) protein of Helicoverpa armigera nucleopolyhedrovirus (HearNPV). The N-glycosylation site located in the F(2) subunit (N104) of HaF has been identified and functionally characterized previously (Long et al., 2007). In this study, the other five potential N-glycosylation sites located in the HaF1 subunit, namely, N293, N361, N526, N571 and N595, were analysed extensively to examine their N-glycosylation and relative importance to the function of HaF. The results showed that four of these five potential glycosylation sites in the F(1) subunit, N293, N361, N526 and N571, were N-glycosylated in F proteins of mature HearNPV budded viruses (BVs) but that N595 was not. In general, the conserved site N526 was critical to the functioning of HaF, as absence of N-glycosylation of N526 reduced the efficiency of HaF folding and trafficking, consequently decreased fusogenicity and modified the subcellular localization of HaF proteins, and thus impaired virus production and infectivity. The absence of N-glycosylation at other individual sites was found to have different effects on the fusogenicity and subcelluar distribution of HaF proteins in HzAM1 cells. In summary, N-glycosylation plays comprehensive roles in HaF function and virus infectivity, which is further discussed.

  8. A Novel Binary Mixture of Helicoverpa armigera Single Nucleopolyhedrovirus Genotypic Variants Has Improved Insecticidal Characteristics for Control of Cotton Bollworms

    PubMed Central

    Arrizubieta, Maite; Simón, Oihane; Williams, Trevor

    2015-01-01

    The genotypic diversity of two Spanish isolates of Helicoverpa armigera single nucleopolyhedrovirus (HearSNPV) was evaluated with the aim of identifying mixtures of genotypes with improved insecticidal characteristics for control of the cotton bollworm. Two genotypic variants, HearSP1A and HearSP1B, were cloned in vitro from the most pathogenic wild-type isolate of the Iberian Peninsula, HearSNPV-SP1 (HearSP1-wt). Similarly, six genotypic variants (HearLB1 to -6) were obtained by endpoint dilution from larvae collected from cotton crops in southern Spain that died from virus disease during laboratory rearing. Variants differed significantly in their insecticidal properties, pathogenicity, speed of kill, and occlusion body (OB) production (OBs/larva). HearSP1B was ∼3-fold more pathogenic than HearSP1-wt and the other variants. HearLB1, HearLB2, HeaLB5, and HearLB6 were the fastest-killing variants. Moreover, although highly virulent, HearLB1, HearLB4, and HearLB5 produced more OBs/larva than did the other variants. The co-occluded HearSP1B:LB6 mixture at a 1:1 proportion was 1.7- to 2.8-fold more pathogenic than any single variant and other mixtures tested and also killed larvae as fast as the most virulent genotypes. Serial passage resulted in modified proportions of the component variants of the HearSP1B:LB6 co-occluded mixture, suggesting that transmissibility could be further improved by this process. We conclude that the improved insecticidal phenotype of the HearSP1B:LB6 co-occluded mixture underlines the utility of the genotypic variant dissection and reassociation approach for the development of effective virus-based insecticides. PMID:25841011

  9. A Novel Binary Mixture of Helicoverpa armigera Single Nucleopolyhedrovirus Genotypic Variants Has Improved Insecticidal Characteristics for Control of Cotton Bollworms.

    PubMed

    Arrizubieta, Maite; Simón, Oihane; Williams, Trevor; Caballero, Primitivo

    2015-06-15

    The genotypic diversity of two Spanish isolates of Helicoverpa armigera single nucleopolyhedrovirus (HearSNPV) was evaluated with the aim of identifying mixtures of genotypes with improved insecticidal characteristics for control of the cotton bollworm. Two genotypic variants, HearSP1A and HearSP1B, were cloned in vitro from the most pathogenic wild-type isolate of the Iberian Peninsula, HearSNPV-SP1 (HearSP1-wt). Similarly, six genotypic variants (HearLB1 to -6) were obtained by endpoint dilution from larvae collected from cotton crops in southern Spain that died from virus disease during laboratory rearing. Variants differed significantly in their insecticidal properties, pathogenicity, speed of kill, and occlusion body (OB) production (OBs/larva). HearSP1B was ∼3-fold more pathogenic than HearSP1-wt and the other variants. HearLB1, HearLB2, HeaLB5, and HearLB6 were the fastest-killing variants. Moreover, although highly virulent, HearLB1, HearLB4, and HearLB5 produced more OBs/larva than did the other variants. The co-occluded HearSP1B:LB6 mixture at a 1:1 proportion was 1.7- to 2.8-fold more pathogenic than any single variant and other mixtures tested and also killed larvae as fast as the most virulent genotypes. Serial passage resulted in modified proportions of the component variants of the HearSP1B:LB6 co-occluded mixture, suggesting that transmissibility could be further improved by this process. We conclude that the improved insecticidal phenotype of the HearSP1B:LB6 co-occluded mixture underlines the utility of the genotypic variant dissection and reassociation approach for the development of effective virus-based insecticides.

  10. Mutagenesis and nuclear magnetic resonance analyses of the fusion peptide of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus F protein.

    PubMed

    Tan, Ying; Jiang, Ling; Wang, Manli; Yin, Feifei; Deng, Fei; Liu, Maili; Hu, Zhihong; Wang, Hualin

    2008-08-01

    The entry of enveloped viruses into cells is normally mediated by fusion between viral and cellular membranes, in which the fusion peptide plays a crucial role. The fusion peptides of group II nucleopolyhedrovirus (NPV) F proteins are quite conserved, with a hydrophobic region located at the N terminal of the F(1) fragment. For this report, we used mutagenesis and nuclear magnetic resonance (NMR) to study the structure and function of the fusion peptide of the Helicoverpa armigera single-nucleocapsid NPV (HearNPV) F protein (HaF). Five mutations in the fusion peptide of HaF, N(1)G, N(1)L, I(2)N, G(3)L, and D(11)L, were generated separately, and the mutated f genes were transformed into the f-null HearNPV bacmid. The mutations N(1)L, I(2)N, and D(11)L were found to completely abolish the ability of the recombinant bacmids to produce infectious budded virus, while the mutations N(1)G and G(3)L did not. The low-pH-induced envelope fusion assay demonstrated that the N(1)G substitution increased the fusogenicity of HaF, while the G(3)L substitution reduced its fusogenicity. NMR spectroscopy was used to determine the structure of a synthetic fusion peptide of HaF in the presence of sodium dodecyl sulfate micelles at pH 5.0. The fusion peptide appeared to be an amphiphilic structure composed of a flexible coil in the N terminus from N(1) to N(5), a 3(10)-helix from F(6) to G(8), a turn at S(9), and a regular alpha-helix from V(10) to D(19). The data provide the first NMR structure of a baculovirus fusion peptide and allow us to further understand the relationship of structure and function of the fusion peptide.

  11. A Novel Neurotoxin Gene ar1b Recombination Enhances the Efficiency of Helicoverpa armigera Nucleopolyhedrovirus as a Pesticide by Inhibiting the Host Larvae Ability to Feed and Grow.

    PubMed

    Yu, Huan; Meng, Jiao; Xu, Jian; Liu, Tong-Xian; Wang, Dun

    2015-01-01

    A recombinant Helicoverpa armigera nucleopolyhedrovirus (HearNPV), Ar1b-HearNPV, was constructed and identified as an improved bio-control agent of Helicoverpa armigera larvae. The HearNPV polyhedrin promoter was used to express the insect-specific neurotoxin gene, ar1b, which was originally isolated from the Australian funnel-web spider (Atrax robustus). RT-PCR and Western blotting analysis showed that both the ar1b transcript and protein were produced successfully in Ar1b-HearNPV-infected HzAM1 cells. In order to investigate the influence of foreign gene insertion in HearNPV, including the ar1b gene, chloramphenicol resistance gene, lacZ, kanamycin resistance gene, and the gentamicin resistance gene, two virus strains (HZ8-HearNPV and wt-HearNPV) were used as controls in the cell transfection analysis. As expected, foreign gene insertion had no impact on budded virus production and viral DNA replication. Both optical microscopy and electron microscopy observations indicated that the formation of the occlusion bodies of recombinant virus was similar to wild type virus. The Ar1b-HearNPV-infected H. armigera larvae exhibited paralysis and weight loss before dying. This recombinant virus also showed a 32.87% decrease in LT50 assays compared with the wild type virus. Besides, Ar1b-HearNPV also inhibited host larval growth and diet consumption. This inhibition was still significant in the older instar larvae treated with the recombinant virus. All of these positive properties of this novel recombinant HearNPV provide a further opportunity to develop this virus strain into a commercial product to control the cotton bollworm.

  12. A Novel Neurotoxin Gene ar1b Recombination Enhances the Efficiency of Helicoverpa armigera Nucleopolyhedrovirus as a Pesticide by Inhibiting the Host Larvae Ability to Feed and Grow

    PubMed Central

    Yu, Huan; Meng, Jiao; Xu, Jian; Liu, Tong-xian; Wang, Dun

    2015-01-01

    A recombinant Helicoverpa armigera nucleopolyhedrovirus (HearNPV), Ar1b-HearNPV, was constructed and identified as an improved bio-control agent of Helicoverpa armigera larvae. The HearNPV polyhedrin promoter was used to express the insect-specific neurotoxin gene, ar1b, which was originally isolated from the Australian funnel-web spider (Atrax robustus). RT-PCR and Western blotting analysis showed that both the ar1b transcript and protein were produced successfully in Ar1b-HearNPV-infected HzAM1 cells. In order to investigate the influence of foreign gene insertion in HearNPV, including the ar1b gene, chloramphenicol resistance gene, lacZ, kanamycin resistance gene, and the gentamicin resistance gene, two virus strains (HZ8-HearNPV and wt-HearNPV) were used as controls in the cell transfection analysis. As expected, foreign gene insertion had no impact on budded virus production and viral DNA replication. Both optical microscopy and electron microscopy observations indicated that the formation of the occlusion bodies of recombinant virus was similar to wild type virus. The Ar1b-HearNPV-infected H. armigera larvae exhibited paralysis and weight loss before dying. This recombinant virus also showed a 32.87% decrease in LT50 assays compared with the wild type virus. Besides, Ar1b-HearNPV also inhibited host larval growth and diet consumption. This inhibition was still significant in the older instar larvae treated with the recombinant virus. All of these positive properties of this novel recombinant HearNPV provide a further opportunity to develop this virus strain into a commercial product to control the cotton bollworm. PMID:26296090

  13. Open reading frame 94 of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus encodes a novel conserved occlusion-derived virion protein, ODV-EC43.

    PubMed

    Fang, Minggang; Wang, Hanzhong; Wang, Hualin; Yuan, Li; Chen, Xinwen; Vlak, Just M; Hu, Zhihong

    2003-11-01

    Open reading frame 94 (Ha94) of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HaSNPV) is 1086 bp long and a homologue of Autographa californica multiple NPV ORF109. The gene is conserved among all baculoviruses whose genomes have been completely sequenced so far and is thus considered a baculovirus core gene. Ha94 transcripts were detected from 24 to 96 h post-infection (p.i.) of HzAM1 cells with HaSNPV. Polyclonal antiserum raised to a GST-HA94 fusion protein recognized a 43 kDa protein, HA94, in infected cell lysates from 36 to 96 h p.i., suggesting that Ha94 is a late gene. Western blot analysis of proteins present in budded virus and occlusion-derived virus (ODV) showed that Ha94 encodes a structural component of ODV. When ODVs were fractionated further into nucleocapsid and envelope components, Western blot analysis indicated that the encoded protein was associated with both the nucleocapsid and the envelope. In summary, data available indicated that Ha94 encodes a novel ODV-specific protein of HaSNPV, designated ODV-EC43.

  14. Proteomics analysis of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus identified two new occlusion-derived virus-associated proteins, HA44 and HA100.

    PubMed

    Deng, Fei; Wang, Ranran; Fang, Minggang; Jiang, Yue; Xu, Xushi; Wang, Hanzhong; Chen, Xinwen; Arif, Basil M; Guo, Lin; Wang, Hualin; Hu, Zhihong

    2007-09-01

    Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry were used to analyze the structural proteins of the occlusion-derived virus (ODV) of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HearNPV), a group II NPV. Twenty-three structural proteins of HearNPV ODV were identified, 21 of which have been reported previously as structural proteins or ODV-associated proteins in other baculoviruses. These include polyhedrin, P78/83, P49, ODV-E18, ODV-EC27, ODV-E56, P74, LEF-3, HA66 (AC66), DNA polymerase, GP41, VP39, P33, ODV-E25, helicase, P6.9, ODV/BV-C42, VP80, ODV-EC43, ODV-E66, and PIF-1. Two proteins encoded by HearNPV ORF44 (ha44) and ORF100 (ha100) were discovered as ODV-associated proteins for the first time. ha44 encodes a protein of 378 aa with a predicted mass of 42.8 kDa. ha100 encodes a protein of 510 aa with a predicted mass of 58.1 kDa and is a homologue of the gene for poly(ADP-ribose) glycohydrolase (parg). Western blot analysis and immunoelectron microscopy confirmed that HA44 is associated with the nucleocapsid and HA100 is associated with both the nucleocapsid and the envelope of HearNPV ODV. HA44 is conserved in group II NPVs and granuloviruses but does not exist in group I NPVs, while HA100 is conserved only in group II NPVs.

  15. Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus ORF51 is a ChaB homologous gene involved in budded virus production and DNA replication.

    PubMed

    Zheng, Fangliang; Huang, Yi; Long, Gang; Sun, Xiulian; Wang, Hanzhong

    2011-01-01

    The baculovirus ChaB proteins are conserved in all completely sequenced Lepidopteran NPVs and are annotated as putative DNA binding proteins. Here we investigated Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HearNPV) ORF51 (ha51), one of the ChaB homologues in HearNPV. 5'-RACE revealed that Ha51 is transcribed from a conventional early promoter transcriptional initiator motif (CATT) located at 159nt upstream of ATG. RT-PCR confirmed that ha51 is an early transcribed gene. To study the function of Ha51 in the life cycle of HearNPV, Ha51 knockout and repair bacmids were generated by homologous recombination in Escherichia coli. Growth curve and DNA replication analyses showed that the levels of budded virus (BV) production and viral DNA accumulation were significantly higher in cells infected with Ha51 null virus than those infected with wild-type bacmid derived virus. Electron microscopy revealed that polyhedra formation was not affected by the deletion of Ha51. Bioassay demonstrated that the Ha51-deleted virus had similar oral infectivity as the wild-type and rescued virus. Western blot analyses suggested that HA51 is a component of the nucleocapsid of BV and occlusion-derived virus as well as the envelope of BV. Immunofluorescence microscopy showed that HA51 protein is mainly localized in the cytoplasm of infected cells. Taken together, our results indicate that, unlike previously characterized baculovirual ChaB genes, Ha51 is involved in viral DNA replication and BV production and is transcribed in the early stage of infection.

  16. Sequence analysis, expression profiles and function of thioredoxin 2 and thioredoxin reductase 1 in resistance to nucleopolyhedrovirus in Helicoverpa armigera

    PubMed Central

    Zhang, Songdou; Li, Zhen; Nian, Xiaoge; Wu, Fengming; Shen, Zhongjian; Zhang, Boyu; Zhang, Qingwen; Liu, Xiaoxia

    2015-01-01

    The thioredoxin system, including NADPH, thioredoxin (Trx), and thioredoxin reductase (TrxR), plays significant roles in maintaining intracellular redox homeostasis and protecting organisms against oxidative damage. In this study, the characteristics and functions of H. armigera HaTrx2 and HaTrxR1 were identified. Sequence analysis showed that HaTrx2 and HaTrxR1 were both highly conserved and shared high sequence identity with other insect counterparts. The mRNA of HaTrx2 was expressed the highest in 5th instar 96 h and was mainly detected in heads and epidermis. The expression of HaTrxR1 was highly concentrated in 5th instar 72 h and 96 h, and higher in malpighian tube, midgut and hemocyte than other examined tissues. HaTrx2 and HaTrxR1 were markedly induced by various types of stress. HaTrx2- or HaTrxR1-knockdown increased ROS production in hemocytes and also increased the lipid damage in NPV infected H. armigera larvae. Furthermore, interference with expression of HaTrx2 or HaTrxR1 transcripts in H. armigera larvae resulted in increased sensitivity to NPV infection and shortened LT50 values. Our findings indicated that HaTrx2 and HaTrxR1 contribute to the susceptibility of H. armigera to NPV and also provided the theoretical basis for the in-depth study of insect thioredoxin system. PMID:26502992

  17. Ha83, a Chitin Binding Domain Encoding Gene, Is Important to Helicoverpa armigera Nucleopolyhedrovirus Budded Virus Production and Occlusion Body Assembling

    PubMed Central

    Yu, Huan; Xu, Jian; Liu, Qiang; Liu, Tong-Xian; Wang, Dun

    2015-01-01

    Helicoerpa armigera nucleopolyhedrovirus (HearNPV) ha83 is a late expressed gene that encodes a chitin binding protein. Chitin domain truncation studies revealed that the cysteine at the 128 amino acid position probably played an important role in both chitin binding ability and protein transmission of Ha83. In order to study the function of ha83 in the HearNPV infection cycle, an ha83 knockout HearNPV (Ha83KO) was constructed via homologous recombination. Viral growth and viral DNA replication curves showed that fewer budded virions were produced in Ha83KO transfected cells, while viral DNA replication was increased. Electron microscopy revealed that fewer nucleocapsids were transmitted from virogenic stroma in the Ha83KO transfected cell nucleus, and the morphology of occlusion bodies was prominently larger and cube-shaped. Furthermore, DNA quantity in occlusion bodies of Ha83KO was significantly lower than the occlusion bodies of HaWT. The transcription analysis indicated that these changes may be due to the decreased expression level of viral structural associated genes, such as polyhedrin, p10, pif-2, or cg30 in Ha83KO infected cells. Above results demonstrated that the cysteine at the 128 amino acid position in Ha83 might be the key amino acid, and Ha83 plays an important role in BVs production and OBs assembling. PMID:26057202

  18. Battle in the New World: Helicoverpa armigera versus Helicoverpa zea (Lepidoptera: Noctuidae)

    PubMed Central

    2016-01-01

    The corn earworm Helicoverpa zea (Boddie) and the old world bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) are allopatric species and occur in important agricultural crops. In maize, both species tend to infest the ear. The introduction of H. armigera in Brazil has created a new scenario, where these Helicoverpa species might cohabit and interact with one another, affecting the prevalence of each species in the agroecosystem, integrated pest management, and insect resistance management. In this study, larval occurrence and proportion of these species in maize was assessed in three regions of Brazil during three crop seasons. Interaction between the species was evaluated in interspecific and intraspecific scenarios under laboratory and field conditions. Helicoverpa zea was predominant in Rio Grande do Sul and the Planaltina, DF (central Brazil). In western Bahia, H. zea was predominant in the first collection, but approximately equal in number to H armigera in the second crop season. Both species exhibit high cannibalism/predation rates, and larval size was the primary factor for larval survival in the interaction studies. Larva of H. zea had higher survival when interacting with H. armigera, indicating that H. zea has an advantage in intraguild interactions with H. armigera in maize. Overall, the results from this study indicate that maize might play a role as a source of infestation or a sink of insecticide or Bt protein unselected H. armigera populations, depending on the H. zea:H. armigera intraguild competition and adult movement in the landscape. PMID:27907051

  19. Host Plant Induced Variation in Gut Bacteria of Helicoverpa armigera

    PubMed Central

    Gayatri Priya, Natarajan; Ojha, Abhishek; Kajla, Mayur K.; Raj, Anand; Rajagopal, Raman

    2012-01-01

    Helicoverpa are important polyphagous agricultural insect pests and they have a worldwide distribution. In this study, we report the bacterial community structure in the midgut of fifth instar larvae of Helicoverpa armigera, a species prevalent in the India, China, South Asia, South East Asia, Southern & Eastern Africa and Australia. Using culturable techniques, we isolated and identified members of Bacillus firmus, Bacillus niabense, Paenibacillus jamilae, Cellulomonas variformis, Acinetobacter schindleri, Micrococcus yunnanesis, Enterobacter sp., and Enterococcus cassiliflavus in insect samples collected from host plants grown in different parts of India. Besides these the presence of Sphingomonas, Ralstonia, Delftia, Paracoccus and Bacteriodetes was determined by culture independent molecular analysis. We found that Enterobacter and Enterococcus were universally present in all our Helicoverpa samples collected from different crops and in different parts of India. The bacterial diversity varied greatly among insects that were from different host plants than those from the same host plant of different locations. This result suggested that the type of host plant greatly influences the midgut bacterial diversity of H. armigera, more than the location of the host plant. On further analyzing the leaf from which the larva was collected, it was found that the H. armigera midgut bacterial community was similar to that of the leaf phyllosphere. This finding indicates that the bacterial flora of the larval midgut is influenced by the leaf surface bacterial community of the crop on which it feeds. Additionally, we found that laboratory made media or the artificial diet is a poor bacterial source for these insects compared to a natural diet of crop plant. PMID:22292034

  20. Candidate olfaction genes identified within the Helicoverpa armigera Antennal Transcriptome.

    PubMed

    Liu, Yang; Gu, Shaohua; Zhang, Yongjun; Guo, Yuyuan; Wang, Guirong

    2012-01-01

    Antennal olfaction is extremely important for insect survival, mediating key behaviors such as host preference, mate choice, and oviposition site selection. Multiple antennal proteins are involved in olfactory signal transduction pathways. Of these, odorant receptors (ORs) and ionotropic receptors (IRs) confer specificity on olfactory sensory neuron responses. In this study, we identified the olfactory gene repertoire of the economically important agricultural pest moth, Helicoverpa armigera, by assembling the adult male and female antennal transcriptomes. Within the male and female antennal transcriptomes we identified a total of 47 OR candidate genes containing 6 pheromone receptor candidates. Additionally, 12 IR genes as well as 26 odorant-binding proteins and 12 chemosensory proteins were annotated. Our results allow a systematic functional analysis across much of conventional ORs repertoire and newly reported IRs mediating the key olfaction-mediated behaviors of H. armigera.

  1. Activity of Selected Formulated Biorational and Synthetic Insecticides Against Larvae of Helicoverpa armigera (Lepidoptera: Noctuidae).

    PubMed

    Vivan, L M; Torres, J B; Fernandes, P L S

    2016-12-23

    This work studied 17 insecticides belonging to nucleopolyhedrovirus (NPV), Bacillus thuringiensis (Bt kurstaki and Bt aizawai), benzoylureas (insect growth regulators [IGRs]), carbamates, organophosphates, spinosyns, and diamides against larvae of Helicoverpa armigera (Hübner), invasive species in the South American continent. Larvae of different instars were fed for 7 d with untreated or insecticide-treated diets. Mortality was recorded daily for 7 d, and surviving larvae were individually weighed on the seventh day. The NPV and Bt insecticides caused 100% mortality of first-instar larvae and first-instar and second-instar larvae, respectively. However, both NPV and Bt-based products caused low mortality of third-instar larvae and did not kill older larvae. The IGR lufenuron was highly effective against all three ages of larvae tested, whereas teflubenzuron and triflumuron produced maximum 60% mortality of second-instar larvae and lower than 50% to older larvae. Thiodicarb, chlorantraniliprole, indoxacarb, chlorpyrifos, and chlorfenapyr, irrespective of tested age, caused 100% mortality of larvae, with the last two insecticides reaching 100% mortality within 2 d of feeding on the treated diet. Flubendiamide caused lower mortality but significantly affected the weight of surviving larvae, whereas neither spinosad nor methomyl produced significant mortality or affected the weight of larvae. Based on the results, the age of H. armigera larvae plays an important role in the recommendation of NPV and Bt insecticides. Furthermore, there are potential options between biological and synthetic insecticides tested against H. armigera, and recording larval size during monitoring, in addition to the infestation level, should be considered when recommending biological-based insecticides to control this pest.

  2. Efficacy of Venom from Tentacle of Jellyfish Stomolophus meleagris (Nemopilema nomurai) against the Cotton Bollworm Helicoverpa armigera

    PubMed Central

    Yu, Huahua; Li, Rongfeng; Dong, Xiangli; Xing, Ronge; Liu, Song; Li, Pengcheng

    2014-01-01

    Efficacy of venom from tentacle of jellyfish Stomolophus meleagris against the cotton bollworm Helicoverpa armigera was determined. Venom from tentacle of jellyfish Stomolophus meleagris could inhibit the growth of Helicoverpa armigera and the weight inhibiting rate of sample NFr-2 was 60.53%. Of the six samples, only NFr-2 had high insecticidal activity against Helicoverpa armigera and the corrected mortality recorded at 7 d was 74.23%. PMID:25162008

  3. Olfactory perception and behavioral effects of sex pheromone gland components in Helicoverpa armigera and Helicoverpa assulta

    PubMed Central

    Xu, Meng; Guo, Hao; Hou, Chao; Wu, Han; Huang, Ling-Qiao; Wang, Chen-Zhu

    2016-01-01

    Two sympatric species Helicoverpa armigera and Helicoverpa assulta use (Z)-11-hexadecenal and (Z)-9-hexadecenal as sex pheromone components in reverse ratio. They also share several other pheromone gland components (PGCs). We present a comparative study on the olfactory coding mechanism and behavioral effects of these additional PGCs in pheromone communication of the two species using single sensillum recording, in situ hybridization, calcium imaging, and wind tunnel. We classify antennal sensilla types A, B and C into A, B1, B2, C1, C2 and C3 based on the response profiles, and identify the glomeruli responsible for antagonist detection in both species. The abundance of these sensilla types when compared with the number of OSNs expressing each of six pheromone receptors suggests that HarmOR13 and HassOR13 are expressed in OSNs housed within A type sensilla, HarmOR14b within B and C type sensilla, while HassOR6 and HassOR16 within some of C type sensilla. We find that for H. armigera, (Z)-11-hexadecenol and (Z)-11-hexadecenyl acetate act as behavioral antagonists. For H. assulta, instead, (Z)-11-hexadecenyl acetate acts as an agonist, while (Z)-9-hexadecenol, (Z)-11-hexadecenol and (Z)-9-hexadecenyl acetate are antagonists. The results provide an overall picture of intra- and interspecific olfactory and behavioral responses to all PGCs in two sister species. PMID:26975244

  4. Rapid identification of Helicoverpa armigera and Helicoverpa zea (Lepidoptera: Noctuidae) using ribosomal RNA internal transcribed spacer 1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid identification of invasive species is crucial for deploying management strategies to prevent establishment. Recent Helicoverpa armigera (Hübner) invasions and subsequent establishment in some countries of South America has increased the risk of this species invading North America. Differentiat...

  5. Carbon dioxide receptor genes in cotton bollworm Helicoverpa armigera

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Anderson, Alisha

    2015-04-01

    Carbon dioxide (CO2) is important in insect ecology, eliciting a range of behaviours across different species. Interestingly, the numbers of CO2 gustatory receptors (GRs) vary among insect species. In the model organism Drosophila melanogaster, two GRs (DmelGR21a and DmelGR63a) have been shown to detect CO2. In the butterfly, moth, beetle and mosquito species studied so far, three CO2 GR genes have been identified, while in tsetse flies, four CO2 GR genes have been identified. In other species including honeybees, pea aphids, ants, locusts and wasps, no CO2 GR genes have been identified from the genome. These genomic differences may suggest different mechanisms for CO2 detection exist in different insects but, with the exception of Drosophila and mosquitoes, limited attention has been paid to the CO2 GRs in insects. Here, we cloned three putative CO2 GR genes from the cotton bollworm Helicoverpa armigera and performed phylogenetic and expression analysis. All three H. armigera CO2 GRs (HarmGR1, HarmGR2 and HarmGR3) are specifically expressed in labial palps, the CO2-sensing tissue of this moth. HarmGR3 is significantly activated by NaHCO3 when expressed in insect Sf9 cells but HarmGR1 and HarmGR2 are not. This is the first report characterizing the function of lepidopteran CO2 receptors, which contributes to our general understanding of the molecular mechanisms of insect CO2 gustatory receptors.

  6. Carbon dioxide receptor genes in cotton bollworm Helicoverpa armigera.

    PubMed

    Xu, Wei; Anderson, Alisha

    2015-04-01

    Carbon dioxide (CO2) is important in insect ecology, eliciting a range of behaviours across different species. Interestingly, the numbers of CO2 gustatory receptors (GRs) vary among insect species. In the model organism Drosophila melanogaster, two GRs (DmelGR21a and DmelGR63a) have been shown to detect CO2. In the butterfly, moth, beetle and mosquito species studied so far, three CO2 GR genes have been identified, while in tsetse flies, four CO2 GR genes have been identified. In other species including honeybees, pea aphids, ants, locusts and wasps, no CO2 GR genes have been identified from the genome. These genomic differences may suggest different mechanisms for CO2 detection exist in different insects but, with the exception of Drosophila and mosquitoes, limited attention has been paid to the CO2 GRs in insects. Here, we cloned three putative CO2 GR genes from the cotton bollworm Helicoverpa armigera and performed phylogenetic and expression analysis. All three H. armigera CO2 GRs (HarmGR1, HarmGR2 and HarmGR3) are specifically expressed in labial palps, the CO2-sensing tissue of this moth. HarmGR3 is significantly activated by NaHCO3 when expressed in insect Sf9 cells but HarmGR1 and HarmGR2 are not. This is the first report characterizing the function of lepidopteran CO2 receptors, which contributes to our general understanding of the molecular mechanisms of insect CO2 gustatory receptors.

  7. Demographics and Genetic Variability of the New World Bollworm (Helicoverpa zea) and the Old World Bollworm (Helicoverpa armigera) in Brazil

    PubMed Central

    Leite, Natália A.; Alves-Pereira, Alessandro; Corrêa, Alberto S.; Zucchi, Maria I.; Omoto, Celso

    2014-01-01

    Helicoverpa armigera is one of the primary agricultural pests in the Old World, whereas H. zea is predominant in the New World. However, H. armigera was first documented in Brazil in 2013. Therefore, the geographical distribution, range of hosts, invasion source, and dispersal routes for H. armigera are poorly understood or unknown in Brazil. In this study, we used a phylogeographic analysis of natural H. armigera and H. zea populations to (1) assess the occurrence of both species on different hosts; (2) infer the demographic parameters and genetic structure; (3) determine the potential invasion and dispersal routes for H. armigera within the Brazilian territory; and (4) infer the geographical origin of H. armigera. We analyzed partial sequence data from the cytochrome c oxidase subunit I (COI) gene. We determined that H. armigera individuals were most prevalent on dicotyledonous hosts and that H. zea were most prevalent on maize crops, based on the samples collected between May 2012 and April 2013. The populations of both species showed signs of demographic expansion, and no genetic structure. The high genetic diversity and wide distribution of H. armigera in mid-2012 are consistent with an invasion period prior to the first reports of this species in the literature and/or multiple invasion events within the Brazilian territory. It was not possible to infer the invasion and dispersal routes of H. armigera with this dataset. However, joint analyses using sequences from the Old World indicated the presence of Chinese, Indian, and European lineages within the Brazilian populations of H. armigera. These results suggest that sustainable management plans for the control of H. armigera will be challenging considering the high genetic diversity, polyphagous feeding habits, and great potential mobility of this pest on numerous hosts, which favor the adaptation of this insect to diverse environments and control strategies. PMID:25409452

  8. Demographics and genetic variability of the new world bollworm (Helicoverpa zea) and the old world bollworm (Helicoverpa armigera) in Brazil.

    PubMed

    Leite, Natália A; Alves-Pereira, Alessandro; Corrêa, Alberto S; Zucchi, Maria I; Omoto, Celso

    2014-01-01

    Helicoverpa armigera is one of the primary agricultural pests in the Old World, whereas H. zea is predominant in the New World. However, H. armigera was first documented in Brazil in 2013. Therefore, the geographical distribution, range of hosts, invasion source, and dispersal routes for H. armigera are poorly understood or unknown in Brazil. In this study, we used a phylogeographic analysis of natural H. armigera and H. zea populations to (1) assess the occurrence of both species on different hosts; (2) infer the demographic parameters and genetic structure; (3) determine the potential invasion and dispersal routes for H. armigera within the Brazilian territory; and (4) infer the geographical origin of H. armigera. We analyzed partial sequence data from the cytochrome c oxidase subunit I (COI) gene. We determined that H. armigera individuals were most prevalent on dicotyledonous hosts and that H. zea were most prevalent on maize crops, based on the samples collected between May 2012 and April 2013. The populations of both species showed signs of demographic expansion, and no genetic structure. The high genetic diversity and wide distribution of H. armigera in mid-2012 are consistent with an invasion period prior to the first reports of this species in the literature and/or multiple invasion events within the Brazilian territory. It was not possible to infer the invasion and dispersal routes of H. armigera with this dataset. However, joint analyses using sequences from the Old World indicated the presence of Chinese, Indian, and European lineages within the Brazilian populations of H. armigera. These results suggest that sustainable management plans for the control of H. armigera will be challenging considering the high genetic diversity, polyphagous feeding habits, and great potential mobility of this pest on numerous hosts, which favor the adaptation of this insect to diverse environments and control strategies.

  9. Diet-delivered RNAi in Helicoverpa armigera--Progresses and challenges.

    PubMed

    Lim, Zhi Xian; Robinson, Karl E; Jain, Ritesh G; Chandra, G Sharath; Asokan, R; Asgari, Sassan; Mitter, Neena

    2016-02-01

    Helicoverpa armigera (the cotton bollworm) is a significant agricultural pest endemic to Afro-Eurasia and Oceania. Gene suppression via RNA interference (RNAi) presents a potential avenue for management of the pest, which is highly resistant to traditional insecticide sprays. This article reviews current understanding on the fate of ingested double-stranded RNA in H. armigera. Existing in vivo studies on diet-delivered RNAi and their effects are summarized and followed by a discussion on the factors and hurdles affecting the efficacy of diet-delivered RNAi in H. armigera.

  10. Effects of a new microbial α-amylase inhibitor protein on Helicoverpa armigera larvae.

    PubMed

    Zeng, Fanrong; Wang, Xiaojing; Cui, Jinjie; Ma, Yan; Li, Qiannan

    2013-03-06

    A new microbial α-amylase inhibitor gene was cloned and characterized. The encoded, recombinant, α-amylase inhibitor protein was induced and expressed by isopropyl β-d-1-thiogalactopyranoside (IPTG) in Escherichia coli M15 cells. The effects of the α-amylase inhibitor protein on Helicoverpa armigera larvae were studied. Compared to the control, the weight of H. armigera larvae fed the diet with recombinant α-amylase inhibitor protein added at a concentration of 20 μg/g was reduced by 49.8%. The total soluble protein of H. armigera larvae fed the diet with the α-amylase inhibitor protein added was also reduced by 36.8% compared to the control. The recombinant α-amylase inhibitor protein showed inhibition activity against α-amylase of H. armigera. These results suggested that this α-amylase inhibitor protein may be a promising bioinsecticide candidate for controlling H. armigera.

  11. Prediction of cotton resistance to Helicoverpa armigera based on the percent (+)-gossypol in mature seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various Uzbek commercial varieties were grown in the field and these were exposed to cotton bollworm (Helicoverpa armigera) larvae. A significant negative correlation coefficient (r = -0.89) and linear regression (Y = 109.69-5.26X) was observed between the concentration of (+)-gossypol in cotton se...

  12. Rapid identification of Helicoverpa armigera and Helicoverpa zea (Lepidoptera: Noctuidae) using ribosomal RNA internal transcribed spacer 1.

    PubMed

    Perera, Omaththage P; Allen, Kerry C; Jain, Devendra; Purcell, Matthew; Little, Nathan S; Luttrell, Randall G

    2015-01-01

    Rapid identification of invasive species is crucial for deploying management strategies to prevent establishment. Recent Helicoverpa armigera (Hübner) invasions and subsequent establishment in South America has increased the risk of this species invading North America. Morphological similarities make differentiation of H. armigera from the native Helicoverpa zea (Boddie) difficult. Characteristics of adult male genitalia and nucleotide sequence differences in mitochondrial DNA are two of the currently available methods to differentiate these two species. However, current methods are likely too slow to be employed as rapid detection methods. In this study, conserved differences in the internal transcribed spacer 1 (ITS1) of the ribosomal RNA genes were used to develop species-specific oligonucleotide primers that amplified ITS1 fragments of 147 and 334 bp from H. armigera and H. zea, respectively. An amplicon (83 bp) from a conserved region of 18S ribosomal RNA subunit served as a positive control. Melting temperature differences in ITS1 amplicons yielded species-specific dissociation curves that could be used in high resolution melt analysis to differentiate the two Helicoverpa species. In addition, a rapid and inexpensive procedure for obtaining amplifiable genomic DNA from a small amount of tissue was identified. Under optimal conditions, the process was able to detect DNA from one H. armigera leg in a pool of 25 legs. The high resolution melt analysis combined with rapid DNA extraction could be used as an inexpensive method to genetically differentiate large numbers of H. armigera and H. zea using readily available reagents.

  13. Population structure and gene flow in the global pest, Helicoverpa armigera.

    PubMed

    Anderson, C J; Tay, W T; McGaughran, A; Gordon, K; Walsh, T K

    2016-11-01

    Helicoverpa armigera is a major agricultural pest that is distributed across Europe, Asia, Africa and Australasia. This species is hypothesized to have spread to the Americas 1.5 million years ago, founding a population that is at present, a distinct species, Helicoverpa zea. In 2013, H. armigera was confirmed to have re-entered South America via Brazil and subsequently spread. The source of the recent incursion is unknown and population structure in H. armigera is poorly resolved, but a basic understanding would highlight potential biosecurity failures and determine the recent evolutionary history of region-specific lineages. Here, we integrate several end points derived from high-throughput sequencing to assess gene flow in H. armigera and H. zea from populations across six continents. We first assemble mitochondrial genomes to demonstrate the phylogenetic relationship of H. armigera with other Heliothine species and the lack of distinction between populations. We subsequently use de novo genotyping-by-sequencing and whole-genome sequences aligned to bacterial artificial chromosomes, to assess levels of admixture. Primarily, we find that Brazilian H. armigera are derived from diverse source populations, with strong signals of gene flow from European populations, as well as prevalent signals of Asian and African ancestry. We also demonstrate a potential field-caught hybrid between H. armigera and H. zea, and are able to provide genomic support for the presence of the H. armigera conferta subspecies in Australasia. While structure among the bulk of populations remains unresolved, we present distinctions that are pertinent to future investigations as well as to the biosecurity threat posed by H. armigera.

  14. Responses of midgut amylases of Helicoverpa armigera to feeding on various host plants.

    PubMed

    Kotkar, Hemlata M; Sarate, Priya J; Tamhane, Vaijayanti A; Gupta, Vidya S; Giri, Ashok P

    2009-08-01

    Midgut digestive amylases and proteinases of Helicoverpa armigera, a polyphagous and devastating insect pest of economic importance have been studied. We also identified the potential of a sorghum amylase inhibitor against H. armigera midgut amylase. Amylase activities were detected in all the larval instars, pupae, moths and eggs; early instars had lower amylase levels which steadily increased up to the sixth larval instar. Qualitative and quantitative differences in midgut amylases of H. armigera upon feeding on natural and artificial diets were evident. Natural diets were categorized as one or more members of legumes, vegetables, flowers and cereals belonging to different plant families. Amylase activity and isoform patterns varied depending on host plant and/or artificial diet. Artificial diet-fed H. armigera larvae had comparatively high amylase activity and several unique amylase isoforms. Correlation of amylase and proteinase activities of H. armigera with the protein and carbohydrate content of various diets suggested that H. armigera regulates the levels of these digestive enzymes in response to macromolecular composition of the diet. These adjustments in the digestive enzymes of H. armigera may be to obtain better nourishment from the diet and avoid toxicity due to nutritional imbalance. H. armigera, a generalist feeder experiences a great degree of nutritional heterogeneity in its diet. An investigation of the differences in enzyme levels in response to macronutrient balance and imbalance highlight their importance in insect nutrition.

  15. Mitochondrial DNA COI characterization of Helicoverpa armigera (Lepidoptera: Noctuidae) from Paraguay and Uruguay.

    PubMed

    Arnemann, J A; James, W J; Walsh, T K; Guedes, J V C; Smagghe, G; Castiglioni, E; Tay, W T

    2016-04-07

    Since its detection in Brazil in 2013, the Old World cotton bollworm Helicoverpa armigera has been reported in Argentina, Paraguay, and Bolivia. Here we present evidence extending the South American range of H. armigera to Uruguay, using polymerase chain reaction and sequencing of the partial mitochondrial DNA (mtDNA) cytochrome oxidase I region. Molecular characterization of this gene region from individuals from Paraguay also supports previous morphological identification of H. armigera in Paraguay. Shared mtDNA haplotypes in H. armigera from Brazil, Uruguay, and Paraguay were identified. Additional surveying of populations in this region will be imperative to better monitor and understand factors that are underpinning its presence and successful adaptation in these South American regions. We discuss our findings with respect to the development of resistance pest management strategies of this invasive insect pest in a predominantly monoculture soybean crop landscape in the Southern Cone region.

  16. Seasonal migration of Helicoverpa armigera (Lepidoptera: Noctuidae) over the Bohai Sea.

    PubMed

    Feng, Hongqiang; Wu, Xianfu; Wu, Bo; Wu, Kongming

    2009-02-01

    The seasonal migration of the Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) over the Bohai Sea was observed with a searchlight trap and an entomological radar located on a small island in the center of the sea, and through a network of light-traps around the Bohai region. The H. armigera moths were observed to migrate over the sea at least as early as May and light trapping through a network suggested migration might start as early as April, as soon as the moths had emerged from overwintering pupae. H. armigera moths migrated toward the north in southerly winds during spring and summer, and returned south on nights with northerly winds, or at altitudes where the wind was northerly, during fall. The passage of a weather front (cold or warm) or trough at approximately 1700 hours provokes migration of H. armigera over the sea. The H. armigera generally flew at altitudes of below 1,500 m above sea level (asl) with layer concentrations at 200-500 m asl, where the wind direction, wind speed, and temperature were optimum. During fall migration, H. armigera tended to orient toward the southwest and was able to compensate for the wind drift by turning clockwise when the downwind direction was < 225 degrees but counterclockwise when it was > 225 degrees. The displacement speed measured with the radar was 24-41 km/h, the duration of flight was 8-11 h and the maximum migration rate was 1,894 moths per km per h.

  17. A Brave New World for an Old World Pest: Helicoverpa armigera (Lepidoptera: Noctuidae) in Brazil

    PubMed Central

    Walsh, Thomas; Thomazoni, Danielle; Silvie, Pierre; Behere, Gajanan T.; Anderson, Craig; Downes, Sharon

    2013-01-01

    The highly polyphagous Old World cotton bollworm Helicoverpa armigera is a quarantine agricultural pest for the American continents. Historically H. armigera is thought to have colonised the American continents around 1.5 to 2 million years ago, leading to the current H. zea populations on the American continents. The relatively recent species divergence history is evident in mating compatibility between H. zea and H. armigera under laboratory conditions. Despite periodic interceptions of H. armigera into North America, this pest species is not believed to have successfully established significant populations on either continent. In this study, we provide molecular evidence via mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) and cytochrome b (Cyt b) partial gene sequences for the successful recent incursion of H. armigera into the New World, with individuals being detected at two sites (Primavera do Leste, Pedra Preta) within the State of Mato Grosso in Brazil. The mtDNA COI and Cyt b haplotypes detected in the Brazilian H. armigera individuals are common throughout the Old World, thus precluding identification of the founder populations. Combining the two partial mtDNA gene sequences showed that at least two matrilines are present in Brazil, while the inclusion of three nuclear DNA Exon-Primed Intron-Crossing (EPIC) markers identified a further two possible matrilines in our samples. The economic, biosecurity, resistance management, ecological and evolutionary implications of this incursion are discussed in relation to the current agricultural practices in the Americas. PMID:24260345

  18. Comparative host selection responses of specialist (Helicoverpa assulta) and generalist (Helicoverpa armigera) moths in complex plant environments

    PubMed Central

    Li, Wei-zheng; Teng, Xiao-hui; Zhang, Hong-fei; Liu, Ting; Wang, Qiong; Guo, Xian-ru

    2017-01-01

    We tested the behavioral responses of ovipositing females and natal larvae of two sibling species, a generalist Helicoverpa armigera (Hübner) and a specialist Helicoverpa assulta (Guenée), to odor sources emitted from different combinations of six plant species (tobacco, Nicotiana tabacum; hot pepper, Capsicum annuum; tomato, Solanum esculentum; cotton, Gossypium hirsutum; peanut, Arachis hypogaea; maize, Zea mays). Under the conditions of plant materials versus corresponding controls, both stages of both species could find their corresponding host plants. However, H. assulta females and larvae exhibited a supersensitive and an insensitive response, respectively. Under the conditions of tobacco paired with each plant species, H. assulta females exhibited more specialized ovipositional response to tobacco than its sibling. When each plant species were combined with tobacco and tested against tobacco reference, peanut played an opposite role in the two species in their ovipositional responses to tobacco, and cotton can enhance the approaching response of H. armigera larvae when combined with tobacco. It seems that two attractive host plants also can act antagonistically with respect to host selection of the generalist via volatile exchange. Tomato should better be excluded from host list of H. assulta. PMID:28182679

  19. Bitter gourd proteinase inhibitors: potential growth inhibitors of Helicoverpa armigera and Spodoptera litura.

    PubMed

    Telang, Manasi; Srinivasan, Ajay; Patankar, Aparna; Harsulkar, Abhay; Joshi, Vijay; Damle, Archana; Deshpande, Vasanti; Sainani, Mohini; Ranjekar, Prabhakar; Gupta, Gorakh; Birah, Ajanta; Rani, Seema; Kachole, Manavendra; Giri, Ashok; Gupta, Vidya

    2003-07-01

    Proteinase inhibitors (PIs) from the seeds of bitter gourd (Momordica charantia L.) were identified as strong inhibitors of Helicoverpa armigera gut proteinases (HGP). Biochemical investigations showed that bitter gourd PIs (BGPIs) inhibited more than 80% HGP activity. Electrophoretic analysis revealed the presence of two major proteins (BGPI-1 and-2) and two minor proteins (BGPI-3 and-4) having inhibitory activity against both trypsin and HGP. The major isoforms BGPI-1 and BGPI-2 have molecular mass of 3.5 and 3.0 kDa, respectively. BGPIs inhibited HGP activity of larvae fed on different host plants, on artificial diet with or without added PIs and proteinases excreted in fecal matter. Degradation of BGPI-1 by HGP showed direct correlation with accumulation of BGPI-2-like peptide, which remained stable and active against high concentrations of HGP up to 3 h. Chemical inhibitors of serine proteinases offered partial protection to BGPI-1 from degradation by HGP, suggesting that trypsin and chymotrypsin like proteinases are involved in degradation of BGPI-1. In larval feeding studies, BGPIs were found to retard growth and development of two lepidopteran pests namely Helicoverpa armigera and Spodoptera litura. This is the first report showing that BGPIs mediated inhibition of insect gut proteinases directly affects fertility and fecundity of both H. armigera and S. litura. The results advocate use of BGPIs to introduce insect resistance in otherwise susceptible plants.

  20. Data of in vitro synthesized dsRNAs on growth and development of Helicoverpa armigera

    PubMed Central

    Chikate, Yojana R.; Dawkar, Vishal V.; Barbole, Ranjit S.; Tilak, Priyadarshini V.; Gupta, Vidya S.; Giri, Ashok P.

    2016-01-01

    The data presented in this article is related to the research article “RNAi of selected candidate genes interrupts growth and development of Helicoverpa armigera” (Chikate et al., 2016) [1]. RNA interference (RNAi) is emerging as a potent insect pest control strategy over current methods and their resistance by pest. In this study we tested 15 different in vitro synthesized dsRNAs for gene silencing in Helicoverpa armigera. These dsRNAs were specific against H. armigera enzymes/proteins such as proteases like trypsins (HaTry2, 3, 4 and 6), chymotrypsin (HaChy4) and cysteine proteases such as cathepsin (HaCATHL); glutathione S-transferases (HaGST1a, 6 and 8); esterases (HaAce4, HaJHE); catalase (HaCAT); super-oxide-dismutase (HaCu/ZnSOD); fatty acid binding protein (HaFabp) and chitin deacetylase (HaCda5b). These dsRNAs were fed to second instar larvae at an optimized dose (60 µg/day) for 3 days separately. Effects of dsRNA feeding were observed in terms of larval mass gain, percentage mortality and phenotypic abnormalities in later developmental stages of H. armigera. These findings might provide potential new candidates for designing sequence-specific dsRNA as pesticide in crop protection. PMID:27222861

  1. Combining Tpi and CO1 genetic markers to discriminate invasive Helicoverpa armigera from local Helicoverpa zea (Lepidoptera:Noctuidae) populations in the southeastern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent establishment of the Old World pest Helicoverpa armigera into South America has had significant economic consequences and places the rest of the hemisphere at risk, emphasizing the need for improved methods of monitoring. A major complication is that a sibling species endemic to the New W...

  2. Mitochondrial genome of the cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) and comparison with other Lepidopterans.

    PubMed

    Yin, Jiao; Hong, Gui-Yun; Wang, Ai-Min; Cao, Ya-Zhong; Wei, Zhao-Jun

    2010-10-01

    We present the complete sequence of the mitochondrial genome (mitogenome) of the cotton bollworm Helicoverpa armigera. The 15,347-bp mitogenome of H. armigera was arranged in the same order described for all other sequenced lepidopterans, which differs from the most common type found in insects, due to the movement of trnM to a position 5'-upstream of trnI. The gene overlap in the H. armigera mitogenome is totally 23 bp in six locations. The H. armigera mitogenome has a total of 175 bp of intergenic spacer sequences spread over 14 regions ranging in size from 1 to 45 bp. The nucleotide composition of the whole mitogenome of H. armigera is highly A+T biased, accounting for 80.97%, with a slightly positive AT skewness and negative GC skewness, indicating the occurrence of more A than T, C more than G. The protein-encoding genes have typical mitochondrial start codons, except for cox1, which contains the unusual CGA. The cox1, cox2, and nad4 genes have incomplete stop codons (T). The lrRNA and srRNA genes are 1395 and 794-bp long, respectively. All tRNAs have a typical cloverleaf structure of mitochondrial tRNAs, except for trnS1(AGN), the dihydrouridine arm of which could not form a stable stem-loop structure. The H. armigera A+T-rich region contains a conserved structure combining the motif ATAGA and a 19-bp poly-T stretch, but absence of the 9-bp poly-A element upstream of trnM.

  3. Impact of differential feeding on the growth and development of Helicoverpa armigera (Hubner).

    PubMed

    Rao, K Prabhakara; Radhakrishnaiah, K; Sudhakar, K

    2008-11-01

    The growth and development of Helicoverpa armigera was observed in the laboratory by feeding them on different foods viz; leaf, flower and fruit of lady finger, cotton, pigeon pea and chick pea. Based on the food ingested, food digested and food excreted as well as on weight and size of the larvae and the duration of larval period, the fruit of chick pea was found to be the most suitable food for H. armigera development, as the food ingesta and food digesta of the larvae on pigeon pea were more than on the other plants. On the pigeon pea pod the larval growth and development was fast and larval duration was short. Next to the fruit, the larvae preferred the leaf of lady finger and cotton and flower of pigeon pea. The results suggested that the larval growth and development was dependent on the feed i.e. both on the part and the type of the plant.

  4. Regulation of the seasonal population patterns of Helicoverpa armigera moths by Bt cotton planting.

    PubMed

    Gao, Yu-Lin; Feng, Hong-Qiang; Wu, Kong-Ming

    2010-08-01

    Transgenic cotton expressing the Bacillus thuringiensis (Bt) Cry1Ac toxin has been commercially cultivated in China since 1997, and by 2000 Bt cotton had almost completely replaced non-transgenic cotton cultivars. To evaluate the impact of Bt cotton planting on the seasonal population patterns of cotton bollworm, Helicoverpa armigera, the dynamics of H. armigera moths were monitored with light traps from four locations (Xiajin, Linqing and Dingtao of Shandong Province; Guantao of Hebei Province) in high Bt density region and five locations (Anci and Xinji of Hebei Province; Dancheng and Fengqiu of Henan Province; Gaomi of Shandong Province) in low Bt density region from 1996 to 2008. A negative correlation was found between moth densities of H. armigera and the planting years of Bt cotton in both high and low Bt density areas. These data indicate that the moth population density of H. armigera was reduced with the introduction of Bt cotton in northern China. Three generations of moths occurred between early June and late September in the cotton regions. Interestingly, second-generation moths decreased and seemed to vanish in recent years in high Bt density region, but this tendency was not found in low Bt density region. The data suggest that the planting of Bt cotton in high Bt density region was effective in controlling the population density of second-generation moths. Furthermore, the seasonal change of moth patterns associated with Bt cotton planting may regulate the regional occurrence and population development of this migratory insect.

  5. New Resistance Mechanism in Helicoverpa armigera Threatens Transgenic Crops Expressing Bacillus thuringiensis Cry1Ac Toxin

    PubMed Central

    Gunning, Robin V.; Dang, Ho T.; Kemp, Fred C.; Nicholson, Ian C.; Moores, Graham D.

    2005-01-01

    In Australia, the cotton bollworm, Helicoverpa armigera, has a long history of resistance to conventional insecticides. Transgenic cotton (expressing the Bacillus thuringiensis toxin Cry1Ac) has been grown for H. armigera control since 1996. It is demonstrated here that a population of Australian H. armigera has developed resistance to Cry1Ac toxin (275-fold). Some 70% of resistant H. armigera larvae were able to survive on Cry1Ac transgenic cotton (Ingard) The resistance phenotype is inherited as an autosomal semidominant trait. Resistance was associated with elevated esterase levels, which cosegregated with resistance. In vitro studies employing surface plasmon resonance technology and other biochemical techniques demonstrated that resistant strain esterase could bind to Cry1Ac protoxin and activated toxin. In vivo studies showed that Cry1Ac-resistant larvae fed Cy1Ac transgenic cotton or Cry1Ac-treated artificial diet had lower esterase activity than non-Cry1Ac-fed larvae. A resistance mechanism in which esterase sequesters Cry1Ac is proposed. PMID:15870346

  6. New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry1Ac toxin.

    PubMed

    Gunning, Robin V; Dang, Ho T; Kemp, Fred C; Nicholson, Ian C; Moores, Graham D

    2005-05-01

    In Australia, the cotton bollworm, Helicoverpa armigera, has a long history of resistance to conventional insecticides. Transgenic cotton (expressing the Bacillus thuringiensis toxin Cry1Ac) has been grown for H. armigera control since 1996. It is demonstrated here that a population of Australian H. armigera has developed resistance to Cry1Ac toxin (275-fold). Some 70% of resistant H. armigera larvae were able to survive on Cry1Ac transgenic cotton (Ingard) The resistance phenotype is inherited as an autosomal semidominant trait. Resistance was associated with elevated esterase levels, which cosegregated with resistance. In vitro studies employing surface plasmon resonance technology and other biochemical techniques demonstrated that resistant strain esterase could bind to Cry1Ac protoxin and activated toxin. In vivo studies showed that Cry1Ac-resistant larvae fed Cy1Ac transgenic cotton or Cry1Ac-treated artificial diet had lower esterase activity than non-Cry1Ac-fed larvae. A resistance mechanism in which esterase sequesters Cry1Ac is proposed.

  7. Rab3 is involved in cellular immune responses of the cotton bollworm, Helicoverpa armigera.

    PubMed

    Li, Jie; Song, Cai-Xia; Li, Yu-Ping; Li, Li; Wei, Xiu-Hong; Wang, Jia-Lin; Liu, Xu-Sheng

    2015-06-01

    Rab3, a member of the Rab GTPase family, has been found to be involved in innate immunity. However, the precise function of this GTPase in innate immunity remains unknown. In this study, we identified a Rab3 gene (Ha-Rab3) from the cotton bollworm, Helicoverpa armigera and studied its roles in innate immune responses. Expression of Ha-Rab3 was upregulated in the hemocytes of H. armigera larvae after the injection of Escherichia coli or chromatography beads. The dsRNA-mediated knockdown of Ha-Rab3 gene in H. armigera larval hemocytes led to significant reduction in the phagocytosis and nodulation activities of hemocytes against E. coli, significant increase in the bacterial load in larval hemolymph, and significant reduction in the encapsulation activities of hemocytes toward invading chromatography beads. Furthermore, Ha-Rab3 knockdown significantly suppressed spreading of plasmatocytes. These results suggest that Ha-Rab3 plays important roles in H. armigera cellular immune responses, possibly by mediating spreading of hemocytes.

  8. The Potential Distribution of Invading Helicoverpa armigera in North America: Is It Just a Matter of Time?

    PubMed Central

    Kriticos, Darren J.; Ota, Noboru; Hutchison, William D.; Beddow, Jason; Walsh, Tom; Tay, Wee Tek; Borchert, Daniel M.; Paula-Moreas, Silvana V.; Czepak, Cecília; Zalucki, Myron P.

    2015-01-01

    Helicoverpa armigera has recently invaded South and Central America, and appears to be spreading rapidly. We update a previously developed potential distribution model to highlight the global invasion threat, with emphasis on the risks to the United States. The continued range expansion of H. armigera in Central America is likely to change the invasion threat it poses to North America qualitatively, making natural dispersal from either the Caribbean islands or Mexico feasible. To characterise the threat posed by H. armigera, we collated the value of the major host crops in the United States growing within its modelled potential range, including that area where it could expand its range during favourable seasons. We found that the annual value of crops that would be exposed to H. armigera totalled approximately US$78 billion p.a., with US$843 million p.a. worth growing in climates that are optimal for the pest. Elsewhere, H. armigera has developed broad-spectrum pesticide resistance; meaning that if it invades the United States, protecting these crops from significant production impacts could be challenging. It may be cost-effective to undertake pre-emptive biosecurity activities such as slowing the spread of H. armigera throughout the Americas, improving the system for detecting H. armigera, and methods for rapid identification, especially distinguishing between H. armigera, H. zea and potential H. armigera x H. zea hybrids. Developing biological control programs, especially using inundative techniques with entomopathogens and parasitoids could slow the spread of H. armigera, and reduce selective pressure for pesticide resistance. The rapid spread of H. armigera through South America into Central America suggests that its spread into North America is a matter of time. The likely natural dispersal routes preclude aggressive incursion responses, emphasizing the value of preparatory communication with agricultural producers in areas suitable for invasion by H

  9. A perspective on management of Helicoverpa armigera: transgenic Bt cotton, IPM, and landscapes.

    PubMed

    Downes, Sharon; Kriticos, Darren; Parry, Hazel; Paull, Cate; Schellhorn, Nancy; Zalucki, Myron P

    2017-03-01

    Helicoverpa armigera is a major pest of agriculture, horticulture and floriculture throughout the Old World and recently invaded parts of the New World. We overview of the evolution in thinking about the application of area-wide approaches to assist with its control by the Australian Cotton Industry to highlight important lessons and future challenges to achieving the same in the New World. An over-reliance of broad-spectrum insecticides led to Helicoverpa spp. in Australian cotton rapidly became resistant to DDT, synthetic pyrethroids, organophosphates, carbamates and endosulfan. Voluntary strategies were developed to slow the development of insecticide resistance, which included rotating chemistries and basing spray decisions on thresholds. Despite adoption of these practices, insecticide resistance continued to develop until the introduction of genetically modified cotton provided a platform for augmenting Integrated Pest Management in the Australian cotton industry. Compliance with mandatory resistance management plans for Bt cotton necessitated a shift from pest control at the level of individual fields or farms towards a coordinated area-wide landscape approach. Our take-home message for control of H. armigera is that resistance management is essential in genetically modified crops and must be season long and area-wide to be effective. © 2016 Society of Chemical Industry.

  10. Successes and challenges of managing resistance in Helicoverpa armigera to Bt cotton in Australia.

    PubMed

    Downes, Sharon; Mahon, Rod

    2012-01-01

    Bt cotton has been gradually released and adopted by Australian growers since 1996. It was initially deployed in Australia primarily to control the polyphagous pest Helicoverpa armigera (Hübner), which in the 1990s became increasingly difficult to control due to widespread resistance to synthetic chemical insecticides. Bt-cotton has become a key tool in a program of integrated pest management for the production system that reduces pesticide dependence and the problems associated with its use. Herein we overview the deployment of Bt cotton in Australia including its performance and the approaches used to prolong the evolution of resistance to it by H. armigera. An integral component of this approach is monitoring resistance in this pest. We outline resistance screening methods, as well as the characteristics of resistant strains of H. armigera that have been isolated from field populations, or selected in the laboratory. We then highlight the successes and challenges for Bt cotton in Australia by way of discussing adaptive resistance management in light of potential changes in resistance.

  11. Nutritional performance of the tomato fruit borer, Helicoverpa armigera, on different tomato cultivars.

    PubMed

    Kouhi, Davoud; Naseri, Bahram; Golizadeh, Ali

    2014-01-01

    The development and cultivation of tomato cultivars that are resistant to the tomato fruit borer, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), are very limited in Iran and other parts of the world because of the lack of information about resistant tomato cultivars to minimize the use of insecticides. Therefore, the present study was carried out to identify alternative methods to chemical control. Nutritional performance of the larval stages (fourth, fifth, and sixth instars) of H. armigera on fruit of eight tomato cultivars, including SUN 6108 f1, Rio grande UG, Korral, Super strain B, CH falat, Hed rio grande, Cal.JN3, and Super crystal, was studied under laboratory conditions. Fourth instars reared on CH falat and SUN 6108 f1 respectively showed the highest and lowest values of approximate digestibility. The highest values of efficiency of conversion of ingested food and efficiency of conversion of digested food of fifth instars were on Super strain B. The relative consumption rate and relative growth rate values of the sixth instars were the highest on Korral. The highest and lowest values of consumption index of sixth instars were on Super strain B and Hed rio grande, respectively. The efficiency of conversion of ingested food and efficiency of conversion of digested food values of whole larval instars were the highest on Hed rio grande and lowest on Rio grande UG. The results of nutritional indices indicated that Rio grande UG is an unsuitable host for H. armigera.

  12. X-ray radiation and development inhibition of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae)

    NASA Astrophysics Data System (ADS)

    Kim, Junheon; Jung, Soon-Oh; Jang, Sin Ae; Kim, Jeongmin; Park, Chung Gyoo

    2015-10-01

    Effect of X-ray radiation on the development inhibition was evaluated for all stages of the life cycle of Helicoverpa armigera to determine a radiation dose for potential quarantine treatment against the insect. ED99 values for inhibition of hatching, pupation, and adult emergence from irradiated eggs were 413, 210, and 154 Gy, respectively. ED99 values for inhibition of pupation and adult emergence from irradiated larvae were 221 and 167 Gy, respectively. Pupa was the most tolerant to X-ray radiation. ED99 value for inhibition of adult emergence from irradiated pupae was as high as 2310 Gy, whereas that for inhibition of F1 egg hatching was only 66 Gy. ED99 value for inhibition of hatching of F1 eggs which were laid by irradiated adults was estimated to 194 Gy. X-ray irradiation against H. armigera is recommended as an alternative method to methyl bromide fumigation for phytosanitary treatments during quarantine. X-ray radiation dose of 200 Gy is proposed as a potential quarantine treatment dose for H. armigera eggs and larvae.

  13. Bacterial Expression and Kinetic Analysis of Carboxylesterase 001D from Helicoverpa armigera

    PubMed Central

    Li, Yongqiang; Liu, Jianwei; Lu, Mei; Ma, Zhiqing; Cai, Chongling; Wang, Yonghong; Zhang, Xing

    2016-01-01

    Carboxylesterasesare an important class of detoxification enzymes involved in insecticide resistance in insects. A subgroup of Helicoverpa armigera esterases, known as Clade 001, was implicated in organophosphate and pyrethroid insecticide resistance due to their overabundance in resistant strains. In this work, a novel carboxylesterasegene 001D of H. armigera from China was cloned, which has an open reading frame of 1665 nucleotides encoding 554 amino acid residues. We used a series of fusion proteins to successfully express carboxylesterase 001D in Escherichia coli. Three different fusion proteins were generated and tested. The enzyme kinetic assay towards 1-naphthyl acetate showed all three purified fusion proteins are active with a Kcat between 0.35 and 2.29 s−1, and a Km between 7.61 and 19.72 μM. The HPLC assay showed all three purified fusion proteins had low but measurable hydrolase activity towards β-cypermethrin and fenvalerate insecticides (specific activities ranging from 0.13 to 0.67 μM·min−1·(μM−1·protein)). The enzyme was stable up to 40 °C and at pH 6.0–11.0. The results imply that carboxylesterase 001D is involved in detoxification, and this moderate insecticide hydrolysis may suggest that overexpression of the gene to enhance insecticide sequestration is necessary to allow carboxylesterases to confer resistance to these insecticides in H. armigera. PMID:27049381

  14. Differential antibiosis against Helicoverpa armigera exerted by distinct inhibitory repeat domains of Capsicum annuum proteinase inhibitors.

    PubMed

    Joshi, Rakesh S; Gupta, Vidya S; Giri, Ashok P

    2014-05-01

    Plant defensive serine proteinase inhibitors (PIs) are known to have negative impact on digestive physiology of herbivore insects and thus have a crucial role in plant protection. Here, we have assessed the efficacy and specificity of three previously characterized inhibitory repeat domain (IRD) variants from Capsicum annuum PIs viz., IRD-7, -9 and -12 against gut proteinases from Helicoverpa armigera. Comparative study of in silico binding energy revealed that IRD-9 possesses higher affinity towards H. armigera serine proteinases as compared to IRD-7 and -12. H. armigera fed on artificial diet containing 5 TIU/g of recombinant IRD proteins exhibited differential effects on larval growth, survival rate and other nutritional parameters. Major digestive gut trypsin and chymotrypsin genes were down regulated in the IRD fed larvae, while few of them were up-regulated, this indicate alterations in insect digestive physiology. The results corroborated with proteinase activity assays and zymography. These findings suggest that the sequence variations among PIs reflect in their efficacy against proteinases in vitro and in vivo, which also could be used for developing tailor-made multi-domain inhibitor gene(s).

  15. Acute, Sublethal, and Combination Effects of Azadirachtin and Bacillus thuringiensis on the Cotton Bollworm, Helicoverpa armigera

    PubMed Central

    Abedi, Zahra; Saber, Moosa; Vojoudi, Samad; Mahdavi, Vahid; Parsaeyan, Ehsan

    2014-01-01

    The cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a polyphagous and cosmopolitan insect pest that causes damage to various plants. In this study, the lethal and sublethal effects of azadirachtin and Bacillus thuringiensis Berliner sub sp. kurstaki (Bacillales: Bacillaceae) were evaluated on third instar H. armigera under laboratory conditions. The LC50 values of azadirachtin and Bt were 12.95 and 96.8 µg a.i./mL, respectively. A total mortality of 56.7% was caused on third instar larvae when LC20 values of the insecticides were applied in combination with each other. The LT50 values of azadirachtin and Bt were 4.8 and 3.6 days, respectively. The results of the sublethal study showed that the application of LC30 value of azadirachtin and Bt reduced the larval and pupal weight and increased larval and pupal duration of H. armigera. The longevity and fecundity of female adults were affected significantly by the insecticides. Female fecundity was reduced by the treatments, respectively. The lowest adult emergence ratio and pupation ratio were observed in the azadirachtin treatment. The results indicated that both insecticides have high potential for controlling of the pest. PMID:25373177

  16. Insecticidal Potential of Defense Metabolites from Ocimum kilimandscharicum against Helicoverpa armigera

    PubMed Central

    Thulasiram, Hirekodathakallu V.; Kulkarni, Mahesh J.; Giri, Ashok P.

    2014-01-01

    Genus Ocimum contains a reservoir of diverse secondary metabolites, which are known for their defense and medicinal value. However, the defense-related metabolites from this genus have not been studied in depth. To gain deeper insight into inducible defense metabolites, we examined the overall biochemical and metabolic changes in Ocimum kilimandscharicum that occurred in response to the feeding of Helicoverpa armigera larvae. Metabolic analysis revealed that the primary and secondary metabolism of local and systemic tissues in O. kilimandscharicum was severely affected following larval infestation. Moreover, levels of specific secondary metabolites like camphor, limonene and β-caryophyllene (known to be involved in defense) significantly increased in leaves upon insect attack. Choice assays conducted by exposing H. armigera larvae on O. kilimandscharicum and tomato leaves, demonstrated that O. kilimandscharicum significantly deters larval feeding. Further, when larvae were fed on O. kilimandscharicum leaves, average body weight decreased and mortality of the larvae increased. Larvae fed on artificial diet supplemented with O. kilimandscharicum leaf extract, camphor, limonene and β-caryophyllene showed growth retardation, increased mortality rates and pupal deformities. Digestive enzymes of H. armigera - namely, amylase, protease and lipase- showed variable patterns after feeding on O. kilimandscharicum, which implies striving of the larvae to attain required nutrition for growth, development and metamorphosis. Evidently, selected metabolites from O. kilimandscharicum possess significant insecticidal activity. PMID:25098951

  17. Characterization of Three Novel SINE Families with Unusual Features in Helicoverpa armigera

    PubMed Central

    Wang, Jianjun; Wang, Aina; Han, Zhaojun; Zhang, Zan; Li, Fei; Li, Xianchun

    2012-01-01

    Although more than 120 families of short interspersed nuclear elements (SINEs) have been isolated from the eukaryotic genomes, little is known about SINEs in insects. Here, we characterize three novel SINEs from the cotton bollworm, Helicoverpa armigera. Two of them, HaSE1 and HaSE2, share similar 5′ -structure including a tRNA-related region immediately followed by conserved central domain. The 3′ -tail of HaSE1 is significantly similar to that of one LINE retrotransposon element, HaRTE1.1, in H. armigera genome. The 3′ -region of HaSE2 showed high identity with one mariner-like element in H. armigera. The third family, termed HaSE3, is a 5S rRNA-derived SINE and shares both body part and 3′-tail with HaSE1, thus may represent the first example of a chimera generated by recombination between 5S rRNA and tRNA-derived SINE in insect species. Further database searches revealed the presence of these SINEs in several other related insect species, but not in the silkworm, Bombyx mori, indicating a relatively narrow distribution of these SINEs in Lepidopterans. Apart from above, we found a copy of HaSE2 in the GenBank EST entry for the cotton aphid, Aphis gossypii, suggesting the occurrence of horizontal transfer. PMID:22319625

  18. Exploitation of wild Cicer reticulatum germplasm for resistance to Helicoverpa armigera.

    PubMed

    Sharma, H C; Pampapathy, G; Lanka, S K; Ridsdill-Smith, T J

    2005-12-01

    In the absence of high levels of resistance to Helicoverpa armigera (Hübner) in the cultivated germplasm of chickpea, we evaluated accessions of Cicer spp. mostly Cicer reticulatum Ladzinsky, for resistance to this important pest. Under multichoice conditions in the field, 10 accessions showed lower leaf damage and lower numbers of eggs, larvae, or both of H. armigera. Of these, IG 69960, IG 72934, and IG 72936 showed significantly lower leaf feeding than the cultivated genotypes or other accessions at the vegetative and reproductive stages. Larval weight was lower or comparable with that on C. bijugum (IG 70019) and C. judaicum (IG 70032) in C. reticulatum accessions IG 72933, IG 72934, IG 72936, and IG 72953 at the seedling stage and on IG 69960 and IG 72934 at the flowering stage. The accessions showing resistance to H. armigera in the field and laboratory conditions were placed in different groups, indicating the presence of diversity in C. reticulatum accessions for resistance to this pest. Less than seven larvae survived on IG 70020, IG 72940, IG 72948, and IG 72949, and IG 72964 compared with 12 on ICC 506. Larval and total developmental periods were prolonged by 6-15 and 3-8 d, respectively, on C. reticultatum accessions compared with those on ICCC 37. Less than five larvae pupated on the C. reticulatum accessions (except IG 72958 and ICC 17163) compared with 11 in ICCC 37. Accessions showing lower leaf feeding and adverse effects on the survival and development can be used in increasing the levels and diversifying the basis of resistance to H. armigera in chickpea.

  19. Life table and consumption capacity of corn earworm, Helicoverpa armigera, fed asparagus, Asparagus officinalis.

    PubMed

    Jha, Ratna Kumar; Tuan, Shu-Jen; Chi, Hsin; Tang, Li-Cheng

    2014-03-01

    The life table and consumption rate of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) reared on asparagus, Asparagus officinalis L. (Asparagales: Asparagaceae) were studied under laboratory conditions to assess their interaction. Development, survival, fecundity, and consumption data were analyzed by the age-stage, twosex life table. This study indicated that asparagus is a natural host of H. armigera. However, the poor nutritional content in asparagus foliage and the poor fitness of H. armigera that fed on asparagus indicated that asparagus is a suboptimal host in comparison to hybrid sweet corn. The uncertainty associated with life table parameters was estimated by using jackknife and bootstrap techniques, and the results were compared for statistical inference. The intrinsic rate of increase (r), finite rate of increase (λ), net reproductive rate (R0), and mean generation time (T) were estimated by the jackknife technique to be 0.0780 day(-1), 1.0811 day(-1), 67.4 offspring, and 54.8 days, respectively, while those estimated by the bootstrap technique were 0.0752 day(-1), 1.0781 day(-1), 68.0 offspring, and 55.3 days, respectively. The net consumption rate of H. armigera, as estimated by the jackknife and bootstrap technique, was 1183.02 and 1132.9 mg per individual, respectively. The frequency distribution of sample means obtained by the jackknife technique failed the normality test, while the bootstrap results fit the normal distribution well. By contrast, the relationship between the mean fecundity and the net reproductive rate, as estimated by the bootstrap technique, was slightly inconsistent with the relationship found by mathematical proof. The application of the jackknife and bootstrap techniques in estimating population parameters requires further examination.

  20. Nitrate reductase and nitrite as additional components of defense system in pigeonpea (Cajanus cajan L.) against Helicoverpa armigera herbivory.

    PubMed

    Kaur, Rimaljeet; Gupta, Anil Kumar; Taggar, Gaurav Kumar

    2014-10-01

    Amylase inhibitors serve as attractive candidates of defense mechanisms against insect attack. Therefore, the impediment of Helicoverpa armigera digestion can be the effective way of controlling this pest population. Nitrite was found to be a potent mixed non-competitive competitive inhibitor of partially purified α-amylase of H. armigera gut. This observation impelled us to determine the response of nitrite and nitrate reductase (NR) towards H. armigera infestation in nine pigeonpea genotypes (four moderately resistant, three intermediate and two moderately susceptible). The significant upregulation of NR in moderately resistant genotypes after pod borer infestation suggested NR as one of the factors that determine their resistance status against insect attack. The pod borer attack caused greater reduction of nitrate and significant accumulation of nitrite in moderately resistant genotypes. The activity of nitrite reductase (NiR) was also enhanced more in moderately resistant genotypes than moderately susceptible genotypes on account of H. armigera herbivory. Expression of resistance to H. armigera was further revealed when significant negative association between NR, NiR, nitrite and percent pod damage was observed. This is the first report that suggests nitrite to be a potent inhibitor of H. armigera α-amylase and also the involvement of nitrite and NR in providing resistance against H. armigera herbivory.

  1. Way toward "dietary pesticides": molecular investigation of insecticidal action of caffeic acid against Helicoverpa armigera.

    PubMed

    Joshi, R S; Wagh, T P; Sharma, N; Mulani, F A; Sonavane, U; Thulasiram, H V; Joshi, R; Gupta, V S; Giri, A P

    2014-11-12

    Bioprospecting of natural molecules is essential to overcome serious environmental issues and pesticide resistance in insects. Here we are reporting insights into insecticidal activity of a plant natural phenol. In silico and in vitro screening of multiple molecules supported by in vivo validations suggested that caffeic acid (CA) is a potent inhibitor of Helicoverpa armigera gut proteases. Protease activity and gene expression were altered in CA-fed larvae. The structure-activity relationship of CA highlighted that all the functional groups are crucial for inhibition of protease activity. Biophysical studies and molecular dynamic simulations revealed that sequential binding of multiple CA molecules induces conformational changes in the protease(s) and thus lead to a significant decline in their activity. CA treatment significantly inhibits the insect's detoxification enzymes, thus intensifying the insecticidal effect. Our findings suggest that CA can be implicated as a potent insecticidal molecule and explored for the development of effective dietary pesticides.

  2. Cannibalism Affects Core Metabolic Processes in Helicoverpa armigera Larvae—A 2D NMR Metabolomics Study

    PubMed Central

    Vergara, Fredd; Shino, Amiu; Kikuchi, Jun

    2016-01-01

    Cannibalism is known in many insect species, yet its impact on insect metabolism has not been investigated in detail. This study assessed the effects of cannibalism on the metabolism of fourth-instar larvae of the non-predatory insect Helicoverpa armigera (Lepidotera: Noctuidea). Two groups of larvae were analyzed: one group fed with fourth-instar larvae of H. armigera (cannibal), the other group fed with an artificial plant diet. Water-soluble small organic compounds present in the larvae were analyzed using two-dimensional nuclear magnetic resonance (NMR) and principal component analysis (PCA). Cannibalism negatively affected larval growth. PCA of NMR spectra showed that the metabolic profiles of cannibal and herbivore larvae were statistically different with monomeric sugars, fatty acid- and amino acid-related metabolites as the most variable compounds. Quantitation of 1H-13C HSQC (Heteronuclear Single Quantum Coherence) signals revealed that the concentrations of glucose, glucono-1,5-lactone, glycerol phosphate, glutamine, glycine, leucine, isoleucine, lysine, ornithine, proline, threonine and valine were higher in the herbivore larvae. PMID:27598144

  3. Resistance allele frequency to bt cotton in field populations of helicoverpa armigera (Lepidoptera: Noctuidae) in China.

    PubMed

    Liu, Fengyi; Xu, Zhiping; Chang, Juhua; Chen, Jin; Meng, Fengxia; Zhu, Yu Cheng; Shen, Jinliang

    2008-06-01

    Resistance evolution in target insects to Bacillus thurningiensis (Bt) cotton, Gossypium hirsutum L., is a main threat to Bt cotton technology. An increasing trend of population density of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) has been observed since 2001 in Qiuxian County (Hebei, China), where Bt cotton has been planted dominantly since 1998. This region was selected in 2006 and 2007 for estimating frequency of gene alleles conferring resistance to Bt cotton by screening the F1 progeny from single-pair cross between field-collected male and laboratory female of the Bt-resistant strain of H. armigera (F1 screen). F1 offspring from each single-pair line were screened for resistance alleles based on larval growth, development, and survival on Bt cotton leaves for 5 d. Two-year results indicated that approximately equal to 20% of field-collected males carried resistance alleles. The conservative estimate of the resistance allele frequency was 0.094 (95% CI, 0.044-0.145) for 2006 and 0.107 (95% CI, 0.055-0.159) for 2007. This is the first report of resistance allele frequency increase to such a high level in the field in China. Long-term adoption of Bt sprays, dominant planting of single-toxin-producing Bt cotton, and lack of conventional cotton refuge system might accelerate the resistance evolution in the region.

  4. Organophosphate and Pyrethroid Hydrolase Activities of Mutant Esterases from the Cotton Bollworm Helicoverpa armigera

    PubMed Central

    Li, Yongqiang; Farnsworth, Claire A.; Coppin, Chris W.; Teese, Mark G.; Liu, Jian-Wei; Scott, Colin; Zhang, Xing; Russell, Robyn J.; Oakeshott, John G.

    2013-01-01

    Two mutations have been found in five closely related insect esterases (from four higher Diptera and a hymenopteran) which each confer organophosphate (OP) hydrolase activity on the enzyme and OP resistance on the insect. One mutation converts a Glycine to an Aspartate, and the other converts a Tryptophan to a Leucine in the enzymes’ active site. One of the dipteran enzymes with the Leucine mutation also shows enhanced activity against pyrethroids. Introduction of the two mutations in vitro into eight esterases from six other widely separated insect groups has also been reported to increase substantially the OP hydrolase activity of most of them. These data suggest that the two mutations could contribute to OP, and possibly pyrethroid, resistance in a variety of insects. We therefore introduced them in vitro into eight Helicoverpa armigera esterases from a clade that has already been implicated in OP and pyrethroid resistance. We found that they do not generally enhance either OP or pyrethroid hydrolysis in these esterases but the Aspartate mutation did increase OP hydrolysis in one enzyme by about 14 fold and the Leucine mutation caused a 4–6 fold increase in activity (more in one case) of another three against some of the most insecticidal isomers of fenvalerate and cypermethrin. The Aspartate enzyme and one of the Leucine enzymes occur in regions of the H. armigera esterase isozyme profile that have been previously implicated in OP and pyrethroid resistance, respectively. PMID:24204917

  5. Alterations in the Helicoverpa armigera midgut digestive physiology after ingestion of pigeon pea inducible leucine aminopeptidase.

    PubMed

    Lomate, Purushottam R; Jadhav, Bhakti R; Giri, Ashok P; Hivrale, Vandana K

    2013-01-01

    Jasmonate inducible plant leucine aminopeptidase (LAP) is proposed to serve as direct defense in the insect midgut. However, exact functions of inducible plant LAPs in the insect midgut remain to be estimated. In the present investigation, we report the direct defensive role of pigeon pea inducible LAP in the midgut of Helicoverpa armigera (Lepidoptera: Noctuidae) and responses of midgut soluble aminopeptidases and serine proteinases upon LAP ingestion. Larval growth and survival was significantly reduced on the diets supplemented with pigeon pea LAP. Aminopeptidase activities in larvae remain unaltered in presence or absence of inducible LAP in the diet. On the contrary, serine proteinase activities were significantly decreased in the larvae reared on pigeon pea LAP containing diet as compared to larvae fed on diet without LAP. Our data suggest that pigeon pea inducible LAP is responsible for the degradation of midgut serine proteinases upon ingestion. Reduction in the aminopeptidase activity with LpNA in the H. armigera larvae was compensated with an induction of aminopeptidase activity with ApNA. Our findings could be helpful to further dissect the roles of plant inducible LAPs in the direct plant defense against herbivory.

  6. In-Plant Protection against Helicoverpa armigera by Production of Long hpRNA in Chloroplasts

    PubMed Central

    Bally, Julia; McIntyre, Glen J.; Doran, Rachel L.; Lee, Karen; Perez, Alicia; Jung, Hyungtaek; Naim, Fatima; Larrinua, Ignacio M.; Narva, Kenneth E.; Waterhouse, Peter M.

    2016-01-01

    Expressing double-stranded RNA (dsRNA) in transgenic plants to silence essential genes within herbivorous pests is referred to as trans-kingdom RNA interference (TK-RNAi) and has emerged as a promising strategy for crop protection. However, the dicing of dsRNA into siRNAs by the plant’s intrinsic RNAi machinery may reduce this pesticidal activity. Therefore, genetic constructs, encoding ∼200 nt duplex-stemmed-hairpin (hp) RNAs, targeting the acetylcholinesterase gene of the cotton bollworm, Helicoverpa armigera, were integrated into either the nuclear or the chloroplast genome of Nicotiana benthamiana. Undiced, full-length hpRNAs accumulated in transplastomic lines of N. benthamiana and conferred strong protection against H. armigera herbivory while the hpRNAs of nuclear-transformed plants were processed into siRNAs and gave more modest anti-feeding activity. This suggests that there is little or no RNAi machinery or activity in the chloroplast, that hpRNAs produced within this organelle do not enter the cytoplasm, and that oral delivery of chloroplast-packaged intact hpRNA is a more effective means of delivering TK-RNAi than using nuclear encoded hpRNAs. This contrasts with a recently reported correlation between siRNA expression and effectiveness of TK-RNAi targeting the chitinase gene of H. armigera, but is consistent with reports of efficient TK-RNAi by dsRNA generated in chloroplasts by converging promoters flanking a pest gene sequence and from very small (21 nt-stem) hpRNAs resembling artificial miRNAs. Here we demonstrate that hpRNAs, constructed along the conventional design principles of plant RNAi constructs but integrated into the chloroplast genome, are stable and effective over multiple generations, and hold the promise of providing durable pest resistance in crops. PMID:27746796

  7. RNAi of selected candidate genes interrupts growth and development of Helicoverpa armigera.

    PubMed

    Chikate, Yojana R; Dawkar, Vishal V; Barbole, Ranjit S; Tilak, Priyadarshini V; Gupta, Vidya S; Giri, Ashok P

    2016-10-01

    Helicoverpa armigera is one of the major crop pests and is less amenable to current pest control approaches. RNA interference (RNAi) is emerging as a potent arsenal for the insect pest control over current methods. Here, we examined the effect on growth and development in H. armigera by targeting various enzymes/proteins such as proteases like trypsins (HaTry2, 3, 4 and 6), chymotrypsin (HaChy4) and cysteine protease like cathepsin (HaCATHL); glutathione S-transferases (HaGST1a, 6 and 8); esterases (HaAce4, HaJHE); catalase (HaCAT); super-oxide-dismutase (HaCu/ZnSOD); fatty acid binding protein (HaFabp) and chitin deacetylase (HaCda5b) through dsRNA approach. Significant downregulation of cognate mRNA expression and reduced activity of trypsin and GST-like enzyme were evident upon feeding candidate dsRNAs to the larvae. Among these, the highest mortality was observed in HaAce4 dsRNA fed larvae followed by HaJHE; HaCAT; HaCuZnSOD; HaFabp and HaTry3 whereas remaining ones showed relatively lower mortality. Furthermore, the dsRNA fed larvae showed significant reduction in the larval mass and abnormalities at the different stages of H. armigera development compared to their control diets. For example, malformed larvae, pupae and moth at a dose of 60μg/day were evident in high number of individual insects fed on dsRNA containing diets. Moreover, the growth and development of insects and moths were retarded in dsRNA fed larvae. These findings might provide potential new candidates for designing effective dsRNA as pesticide in crop protection.

  8. In-Plant Protection against Helicoverpa armigera by Production of Long hpRNA in Chloroplasts.

    PubMed

    Bally, Julia; McIntyre, Glen J; Doran, Rachel L; Lee, Karen; Perez, Alicia; Jung, Hyungtaek; Naim, Fatima; Larrinua, Ignacio M; Narva, Kenneth E; Waterhouse, Peter M

    2016-01-01

    Expressing double-stranded RNA (dsRNA) in transgenic plants to silence essential genes within herbivorous pests is referred to as trans-kingdom RNA interference (TK-RNAi) and has emerged as a promising strategy for crop protection. However, the dicing of dsRNA into siRNAs by the plant's intrinsic RNAi machinery may reduce this pesticidal activity. Therefore, genetic constructs, encoding ∼200 nt duplex-stemmed-hairpin (hp) RNAs, targeting the acetylcholinesterase gene of the cotton bollworm, Helicoverpa armigera, were integrated into either the nuclear or the chloroplast genome of Nicotiana benthamiana. Undiced, full-length hpRNAs accumulated in transplastomic lines of N. benthamiana and conferred strong protection against H. armigera herbivory while the hpRNAs of nuclear-transformed plants were processed into siRNAs and gave more modest anti-feeding activity. This suggests that there is little or no RNAi machinery or activity in the chloroplast, that hpRNAs produced within this organelle do not enter the cytoplasm, and that oral delivery of chloroplast-packaged intact hpRNA is a more effective means of delivering TK-RNAi than using nuclear encoded hpRNAs. This contrasts with a recently reported correlation between siRNA expression and effectiveness of TK-RNAi targeting the chitinase gene of H. armigera, but is consistent with reports of efficient TK-RNAi by dsRNA generated in chloroplasts by converging promoters flanking a pest gene sequence and from very small (21 nt-stem) hpRNAs resembling artificial miRNAs. Here we demonstrate that hpRNAs, constructed along the conventional design principles of plant RNAi constructs but integrated into the chloroplast genome, are stable and effective over multiple generations, and hold the promise of providing durable pest resistance in crops.

  9. Draft Genome Sequence of Bacillus thuringiensis Serovar Tolworthi Strain Na205-3, an Isolate Toxic for Helicoverpa armigera

    PubMed Central

    Palma, Leopoldo; Muñoz, Delia; Murillo, Jesús

    2014-01-01

    We report here the complete annotated 6,510,053-bp draft genome sequence of Bacillus thuringiensis serovar tolworthi strain Na205-3, which is toxic for Helicoverpa armigera. This strain potentially contains nine insecticidal toxin genes homologous to cry1Aa12, cry1Ab1, cry1Ab8, cry1Ba1, cry1Af1, cry1Ia10, vip1Bb1, vip2Ba2, and vip3Aa6. PMID:24625875

  10. Feeding deterrent and growth inhibitory activities of PONNEEM, a newly developed phytopesticidal formulation against Helicoverpa armigera (Hubner)

    PubMed Central

    Packiam, Soosaimanickam Maria; Baskar, Kathirvelu; Ignacimuthu, Savarimuthu

    2014-01-01

    Objective To assess the feeding deterrent, growth inhibitory and egg hatchability effects of PONNEEM on Helicoverpa armigera (H. armigera). Methods Five oil formulations were prepared at different ratios to assess the feeding deterrent, growth inhibitory and egg hatchability effects on H. armigera. Results Invariably all the newly formulated phytopesticidal oil formulations showed the feeding deterrent and growth inhibitory activities against H. armigera. The maximum feeding deterrent activity of 88.44% was observed at 15 µL/L concentration of PONNEEM followed by formulation A (74.54%). PONNEEM was found to be effective in growth inhibitory activities and egg hatchability at 10 µL/L concentration. It exhibited statistically significant feeding deterrent activity and growth inhibitory activity compared with all the other treatments. Conclusions PONNEEM was found to be effective phytopesticidal formulation to control the larval stage of H. armigera. This is the first report for the feeding deterrent activity of PONNEEM against H. armigera. This newly formulated phytopesticide was patented in India. PMID:25183105

  11. Specific binding of activated Vip3Aa10 to Helicoverpa armigera brush border membrane vesicles results in pore formation.

    PubMed

    Liu, Jing-Guo; Yang, Ai-Zhen; Shen, Xiao-Hong; Hua, Bao-Guang; Shi, Guang-Lu

    2011-10-01

    Helicoverpa armigera is one of the most harmful pests in China. Although it had been successfully controlled by Cry1A toxins, some H. armigera populations are building up resistance to Cry1A toxins in the laboratory. Vip3A, secreted by Bacillus thuringiensis, is another potential toxin against H. armigera. Previous reports showed that activated Vip3A performs its function by inserting into the midgut brush border membrane vesicles (BBMV) of susceptible insects. To further investigate the binding of Vip3A to BBMV of H. armigera, the full-length Vip3Aa10 toxin expressed in Escherichia coli was digested by trypsin or midgut juice extract, respectively. Among the fragments of digested Vip3Aa10, only a 62kDa fragment (Vip3Aa10-T) exhibited binding to BBMV of H. armigera and has insecticidal activity. Moreover, this interaction was specific and was not affected by the presence of Cry1Ab toxin. Binding of Vip3Aa10-T to BBMV resulted in the formation of an ion channel. Unlike Cry1A toxins, Vip3Aa10-T was just slightly associated with lipid rafts of BBMV. These data suggest that although activated Vip3Aa10 specifically interacts with BBMV of H. armigera and forms an ion channel, the mode of action of it may be different from that of Cry1A toxins.

  12. Variation in susceptibility of Helicoverpa armigera (Hübner) and Helicoverpa punctigera (Wallengren) (Lepidoptera: Noctuidae) in Australia to two Bacillus thuringiensis toxins.

    PubMed

    Bird, Lisa J; Akhurst, Raymond J

    2007-02-01

    Intra-specific variation in susceptibility of Helicoverpa armigera (Hübner) and Helicoverpa punctigera (Wallengren) in Australia to the Cry1Ac and Cry2Ab delta-endotoxins from Bacillus thuringiensis (Berliner) (Bt) was determined to establish a baseline for monitoring changes that might occur with the use of Bt cotton. Strains of H. armigera and H. punctigera were established from populations collected primarily from commercial farms throughout the Australian cotton belts. Strains were evaluated for susceptibility using two bioassay methods (surface treatment and diet incorporation) by measuring the dose response for mortality (LC50) and growth inhibition (IC50). The variation in LC50 among H. armigera (n=17 strains) and H. punctigera (n=12 strains) in response to Cry1Ac was 4.6- and 3.2-fold, respectively. The variation in LC50 among H. armigera (n=19 strains) and H. punctigera (n=12 strains) to Cry2Ab was 6.6- and 3.5-fold, respectively. The range of Cry1Ac induced growth inhibition from the 3rd to 4th instar in H. armigera (n=15 strains) was 3.6-fold and in H. punctigera (n=13 strains) was 2.6-fold, while the range of Cry2Ab induced growth inhibition from neonate to 3rd instar in H. armigera (n=13 strains) was 4.3-fold and in H. punctigera (n=12 strains) was 6.1-fold. Variation in susceptibility was also evaluated for two age classes (neonates and 3rd instars) in laboratory strains of H. armigera and H. punctigera. Neonates of H. punctigera had the same or higher sensitivity to Bt than 3rd instars. Neonates of H. armigera were more sensitive to Cry2Ab than 3rd instars, while being less sensitive to Cry1Ac than 3rd instars. Differences in the two methods of bioassay used affected relative sensitivity of species to Bt toxins, highlighting the need to standardize bioassay protocols.

  13. Cross-species amplification and polymorphism of microsatellite loci in Helicoverpa armigera and Helicoverpa zea (Lepidoptera: Noctuidae) in Brazilian cropping systems.

    PubMed

    Leite, N A; Corrêa, A S; Alves-Pereira, A; Campos, J B; Zucchi, M I; Omoto, C

    2016-04-04

    The Old World bollworm Helicoverpa armigera (Hübner) was recently discovered in Brazil. This species is closely related to the New World bollworm H. zea (Boddie), and mating between these species has already been reported under laboratory conditions. Here, we tested the cross-species amplification of 20 microsatellite (SSR) loci in field populations of H. armigera and H. zea collected from Brazilian cropping systems. Seven SSR loci were successfully amplified and polymorphic in both species except for the locus HaC14, which was monomorphic for H. zea. All SSR loci were in linkage equilibrium, and deviations from Hardy- Weinberg equilibrium were only observed for the locus HarSSR1 in the HaRS-2 population, where null alleles were present. A moderate level of polymorphism was detected in H. armigera and H. zea populations with a mean allele number of 4.14, and 2.24, respectively. Interestingly, most of the populations of the recent invader H. armigera showed higher genetic diversity and inbreeding coefficients than H. zea populations. The genetic identity of each species was recovered using a STRUCTURE analysis, where the populations formed two clusters (K = 2) according to their species. STRUCTURE also suggested the occurrence of potential hybrid offspring between H. armigera and H. zea individuals in natural conditions. These SSR loci will be valuable in characterizing population differentiation, invasion routes, adaptation, reproductive behavior, and intra- and interspecific gene flow in H. armigera and H. zea populations in Brazil, the USA, and other areas where these two pests occur.

  14. The expression of proteins involved in digestion and detoxification are regulated in Helicoverpa armigera to cope up with chlorpyrifos insecticide.

    PubMed

    Dawkar, Vishal V; Chikate, Yojana R; More, Tushar H; Gupta, Vidya S; Giri, Ashok P

    2016-02-01

    Helicoverpa armigera is a key pest in many vital crops, which is mainly controlled by chemical strategies. To manage this pest is becoming challenging due to its ability and evolution of resistance against insecticides. Further, its subsequent spread on nonhost plant is remarkable in recent times. Hence, decoding resistance mechanism against phytochemicals and synthetic insecticides is a major challenge. The present work describes that the digestion, defense and immunity related enzymes are associated with chlorpyrifos resistance in H. armigera. Proteomic analysis of H. armigera gut tissue upon feeding on chlorpyrifos containing diet (CH) and artificial diet (AD) using nano-liquid chromatography-mass spectrometry identified upregulated 23-proteins in CH fed larvae. Database searches combined with gene ontology analysis revealed that the identified gut proteins engrossed in digestion, proteins crucial for immunity, adaptive responses to stress, and detoxification. Biochemical and quantitative real-time polymerase chain reaction analysis of candidate proteins indicated that insects were struggling to get nutrients and energy in presence of CH, while at the same time endeavoring to metabolize chlorpyrifos. Moreover, we proposed a potential processing pathway of chlorpyrifos in H. armigera gut by examining the metabolites using gas chromatography-mass spectrometry. H. armigera exhibit a range of intriguing behavioral, morphological adaptations and resistance to insecticides by regulating expression of proteins involved in digestion and detoxification mechanisms to cope up with chlorpyrifos. In these contexts, as gut is a rich repository of biological information; profound analysis of gut tissues can give clues of detoxification and resistance mechanism in insects.

  15. Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato.

    PubMed

    Mamta; Reddy, K R K; Rajam, M V

    2016-02-01

    Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a devastating agricultural insect pest with broad spectrum of host range, causing million dollars crop loss annually. Limitations in the present conventional and transgenic approaches have made it crucial to develop sustainable and environmental friendly methods for crop improvement. In the present study, host-induced RNA interference (HI-RNAi) approach was used to develop H. armigera resistant tobacco and tomato plants. Chitinase (HaCHI) gene, critically required for insect molting and metamorphosis was selected as a potential target. Hair-pin RNAi construct was prepared from the conserved off-target free partial HaCHI gene sequence and was used to generate several HaCHI-RNAi tobacco and tomato plants. Northern hybridization confirmed the production of HaCHI gene-specific siRNAs in HaCHI-RNAi tobacco and tomato lines. Continuous feeding on leaves of RNAi lines drastically reduced the target gene transcripts and consequently, affected the overall growth and survival of H. armigera. Various developmental deformities were also manifested in H. armigera larvae after feeding on the leaves of RNAi lines. These results demonstrated the role of chitinase in insect development and potential of HI-RNAi for effective management of H. armigera.

  16. Molecular Cloning, Expression, and Identification of Bre Genes Involved in Glycosphingolipids Synthesis in Helicoverpa armigera (Lepidoptera: Noctuidae).

    PubMed

    Zhang, Dandan; Xiao, Yutao; Hussain Dhiloo, Khalid; Soberon, Mario; Bravo, Alejandra; Wu, Kongming

    2016-05-17

    Glycosphingolipids (GSLs) play important roles in the cellular biology of vertebrate and invertebrate organisms, such as cell differentiation, tumor metastasis, and cell coordination. GSLs also serve as receptors for different bacterial toxins. For example, in the nematode Caenorhabditis elegans, GSLs function as receptors of the insecticidal Cry toxins produced by Bacillus thuringiensis (Bt), and mutations in bre genes involved in GSLs synthesis resulted in resistance to Cry5 toxin in this organism. However, the information of GSLs function in insects is still limited. In this study, three genes for glycosyltransferases, bre2, bre3, and bre4, from Helicoverpa armigera were identified and cloned. The previously reported bre5 gene from H. armigera was also analyzed. Protein sequence alignments revealed that proteins codified by H. armigera Bre shared high identity with homologous proteins from other organisms. Expression profile analysis revealed that the expressions of bre genes varied in the different tissues and also in the different developmental stages of H. armigera. Finally, the heterologous expression of bre genes in Trichoplusia ni Hi5 cell line showed that the corresponding translated proteins were localized in the cytoplasm of Hi5 cells. These results provide the bases for further functional studies of bre genes and analyzing potential roles of GSLs in mode of action of Cry1A toxin in H. armigera.

  17. Effect of different host plants on nutritional indices of the pod borer, Helicoverpa armigera.

    PubMed

    Hemati, S A; Naseri, B; Ganbalani, G Nouri; Dastjerdi, H Rafiee; Golizadeh, A

    2012-01-01

    Nutritional indices of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on different host plants including chickpea (cultivars Arman, Hashem, Azad, and Binivich), common bean (cultivar Khomein), white kidney bean (cultivar Dehghan), red kidney bean (cultivar Goli), cowpea (cultivar Mashhad), tomato (cultivar Meshkin) and potato (cultivars Agria and Satina) were studied under laboratory conditions (25 ± 1 °C, 65 ± 5% RH, 16:8 L:D). Third instar larvae reared on potato Agria showed the highest efficiency of conversion of digested food (ECD) and efficiency of conversion of ingested food (ECI) (50.800 ± 0.104% and 13.630 ± 0.016%, respectively). Approximate digestibility (AD) values of the fourth instar larvae were highest (92.651 ± 0.004%) and lowest (57.140 - 0.049%) on chickpea Azad and potato Agria, respectively. The fifth instar larvae fed on tomato Meshkin and white kidney bean Dehghan had the highest consumption index (CI) (3.717 ± 0.091) and relative consumption rate (RCR) (1.620 ± 0.074), respectively. Whole larval instars showed the highest ECI and ECD values on potatoes Satina (14.640 ± 0.014%) and Agria (21.380 ± 0.015%), respectively, and the lowest of both values on tomato Meshkin (ECI: 5.748 ± 0.002% and ECD: 7.341 ± 0.002%). The results of nutritional indices and the cluster analysis indicated that tomato Meshkin was an unsuitable host for feeding of H. armigera.

  18. Effect of electron beam irradiation on developmental stages of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae)

    NASA Astrophysics Data System (ADS)

    Kim, Junheon; Chung, Soon-Oh; Jang, Sin Ae; Jang, Miyeon; Park, Chung Gyoo

    2015-07-01

    Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), is an economically important and polyphagous pest, which harms various kinds of food crops and important agricultural plants, such as cotton and paprika. Effects of electron beam irradiation at six dose levels between 50 and 350 Gy on the egg (24-48 h old), the larval (4-5th instar), and the pupal (7-d old for female, 5-d old for male) development, and on the adult (1-d old) reproduction were tested to identify a potential quarantine treatment dose. Increased doses of irradiation on eggs decreased egg hatchability, pupation and adult emergence and increased larval period. ED99 values for inhibition of hatching, pupation and emergence were 460.6, 236.9 and 197.8 Gy, respectively. When larvae were irradiated with more than 280 Gy, no larvae could develop into pupae. ED99 values for inhibition of pupation and adult emergence were 265.6 and 189.6 Gy, respectively. Even though the irradiation on pupa did not completely inhibit adult emergence, most of the pupae emerged to deformed adults. When adults were irradiated, fecundity was not affected. However, F1 egg hatching was completely inhibited at the dose of 350 Gy. ED99 value for inhibition of adult emergence was estimated at 366.5 Gy. Our results suggest that electron beam irradiation could be recommendable as an alternative to MB and as a phytosanitary treatment for quarantine. A treatment dose of less than or equal to 220 Gy is suggested as a potential quarantine treatment to H. armigera egg for prevention of pupation and to larva for prevention of adult emerge.

  19. Cantharidin Impedes Activity of Glutathione S-Transferase in the Midgut of Helicoverpa armigera Hübner

    PubMed Central

    Khan, Rashid Ahmed; Liu, Ji Yuan; Rashid, Maryam; Wang, Dun; Zhang, Ya Lin

    2013-01-01

    Previous investigations have implicated glutathione S-transferases (GSTs) as one of the major reasons for insecticide resistance. Therefore, effectiveness of new candidate compounds depends on their ability to inhibit GSTs to prevent metabolic detoxification by insects. Cantharidin, a terpenoid compound of insect origin, has been developed as a bio-pesticide in China, and proves highly toxic to a wide range of insects, especially lepidopteran. In the present study, we test cantharidin as a model compound for its toxicity, effects on the mRNA transcription of a model Helicoverpa armigera glutathione S-transferase gene (HaGST) and also for its putative inhibitory effect on the catalytic activity of GSTs, both in vivo and in vitro in Helicoverpa armigera, employing molecular and biochemical methods. Bioassay results showed that cantharidin was highly toxic to H. armigera. Real-time qPCR showed down-regulation of the HaGST at the mRNA transcript ranging from 2.5 to 12.5 folds while biochemical assays showed in vivo inhibition of GSTs in midgut and in vitro inhibition of rHaGST. Binding of cantharidin to HaGST was rationalized by homology and molecular docking simulations using a model GST (1PN9) as a template structure. Molecular docking simulations also confirmed accurate docking of the cantharidin molecule to the active site of HaGST impeding its catalytic activity. PMID:23528854

  20. Multicopper oxidase-1 is required for iron homeostasis in Malpighian tubules of Helicoverpa armigera.

    PubMed

    Liu, Xiaoming; Sun, Chengxian; Liu, Xiaoguang; Yin, Xinming; Wang, Baohai; Du, Mengfang; An, Shiheng

    2015-10-06

    Multicopper oxidases (MCOs) are enzymes that contain 10 conserved histidine residues and 1 cysteine residue. MCO1 has been extensively investigated in the midgut because this MCO is implicated in ascorbate oxidation, iron homeostasis and immune responses. However, information regarding the action of MCO1 in Malpighian tubules is limited. In this study, Helicoverpa armigera was used as a model to investigate the function of MCO1 in Malpighian tubules. Sequence analysis results revealed that HaMCO1 exhibits typical MCO characteristics, with 10 histidine and 1 cysteine residues for copper ion binding. HaMCO1 was also found to be highly abundant in Malpighian tubules. Temporal expression patterns indicated that HaMCO1 is mainly expressed during larval molting stages. Hormone treatments [the molting hormone 20-hydroxyecdysone (20E) and juvenile hormone (JH)] revealed that 20E inhibits HaMCO1 transcript expression via its heterodimer receptor, which consists of ecdysone receptor (EcR) and ultraspiracle (USP), and that JH counteracts the action of 20E to activate HaMCO1 transcript expression via its intracellular receptor methoprene-tolerant (Met). HaMCO1 knockdown caused a significant decrease in iron accumulation and also significantly reduced transferrin and ferritin transcript expression. Therefore, HaMCO1 is coordinately regulated by 20E and JH and is required for iron homeostasis in Malpighian tubules.

  1. Effects of transgenic Bt cotton on overwintering characteristics and survival of Helicoverpa armigera.

    PubMed

    Ouyang, Fang; Liu, Zhudong; Yin, Jin; Su, Jianwei; Wang, Chenzhu; Ge, Feng

    2011-01-01

    The effects of transgenic Bt cotton on the overwintering generation of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), are unknown. We hypothesized that a Bt cotton diet may adversely affect fitness of this generation and examined fresh weight, lipids, glycogens, low-molecular-weight sugars and SCPs (supercooling points) of pupae, as well as survival of larvae, diapausing pupae and adult emergence in comparison with controls. Field and laboratory experiments showed that larvae fed on Bt cotton had a decreased pupation rate, and fewer entered diapause and emerged as adults compared with larvae fed non-Bt cotton. Furthermore, larvae fed Bt cotton had reduced pupal weight, glycogen content and trehalose levels both in diapausing and in non-diapausing pupae, and only diapausing pupae had an increased SCP compared to controls. The SCPs of diapausing pupae reared on Bt cotton were significantly higher than those reared on non-Bt cotton. The trehalose levels of diapausing pupae reared on Bt cotton were significantly lower than those of larvae reared on non-Bt cotton. Thus, these results suggest that a Bt cotton diet weakens the preparedness of cotton bollworm for overwintering and reduces survival of the overwintering generation, which will in turn reduce the density of the first generation in the following year. Effects of transgenic Bt cotton on the overwintering generation of cotton bollworm appear to have significantly contributed to the suppression of cotton bollworm observed throughout northern China in the past decade.

  2. Multicopper oxidase-1 is required for iron homeostasis in Malpighian tubules of Helicoverpa armigera

    PubMed Central

    Liu, Xiaoming; Sun, Chengxian; Liu, Xiaoguang; Yin, Xinming; Wang, Baohai; Du, Mengfang; An, Shiheng

    2015-01-01

    Multicopper oxidases (MCOs) are enzymes that contain 10 conserved histidine residues and 1 cysteine residue. MCO1 has been extensively investigated in the midgut because this MCO is implicated in ascorbate oxidation, iron homeostasis and immune responses. However, information regarding the action of MCO1 in Malpighian tubules is limited. In this study, Helicoverpa armigera was used as a model to investigate the function of MCO1 in Malpighian tubules. Sequence analysis results revealed that HaMCO1 exhibits typical MCO characteristics, with 10 histidine and 1 cysteine residues for copper ion binding. HaMCO1 was also found to be highly abundant in Malpighian tubules. Temporal expression patterns indicated that HaMCO1 is mainly expressed during larval molting stages. Hormone treatments [the molting hormone 20-hydroxyecdysone (20E) and juvenile hormone (JH)] revealed that 20E inhibits HaMCO1 transcript expression via its heterodimer receptor, which consists of ecdysone receptor (EcR) and ultraspiracle (USP), and that JH counteracts the action of 20E to activate HaMCO1 transcript expression via its intracellular receptor methoprene-tolerant (Met). HaMCO1 knockdown caused a significant decrease in iron accumulation and also significantly reduced transferrin and ferritin transcript expression. Therefore, HaMCO1 is coordinately regulated by 20E and JH and is required for iron homeostasis in Malpighian tubules. PMID:26437857

  3. Mitochondrial DNA and trade data support multiple origins of Helicoverpa armigera (Lepidoptera, Noctuidae) in Brazil

    PubMed Central

    Tay, Wee Tek; Walsh, Thomas K.; Downes, Sharon; Anderson, Craig; Jermiin, Lars S.; Wong, Thomas K. F.; Piper, Melissa C.; Chang, Ester Silva; Macedo, Isabella Barony; Czepak, Cecilia; Behere, Gajanan T.; Silvie, Pierre; Soria, Miguel F.; Frayssinet, Marie; Gordon, Karl H. J.

    2017-01-01

    The Old World bollworm Helicoverpa armigera is now established in Brazil but efforts to identify incursion origin(s) and pathway(s) have met with limited success due to the patchiness of available data. Using international agricultural/horticultural commodity trade data and mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) and cytochrome b (Cyt b) gene markers, we inferred the origins and incursion pathways into Brazil. We detected 20 mtDNA haplotypes from six Brazilian states, eight of which were new to our 97 global COI-Cyt b haplotype database. Direct sequence matches indicated five Brazilian haplotypes had Asian, African, and European origins. We identified 45 parsimoniously informative sites and multiple substitutions per site within the concatenated (945 bp) nucleotide dataset, implying that probabilistic phylogenetic analysis methods are needed. High diversity and signatures of uniquely shared haplotypes with diverse localities combined with the trade data suggested multiple incursions and introduction origins in Brazil. Increasing agricultural/horticultural trade activities between the Old and New Worlds represents a significant biosecurity risk factor. Identifying pest origins will enable resistance profiling that reflects countries of origin to be included when developing a resistance management strategy, while identifying incursion pathways will improve biosecurity protocols and risk analysis at biosecurity hotspots including national ports. PMID:28350004

  4. A TRPA1 channel that senses thermal stimulus and irritating chemicals in Helicoverpa armigera.

    PubMed

    Wei, J J; Fu, T; Yang, T; Liu, Y; Wang, G R

    2015-08-01

    Sensing and responding to changes in the external environment is important for insect survival. Transient receptor potential (TRP) channels are crucial for various sensory modalities including olfaction, vision, hearing, thermosensation and mechanosensation. Here, we identified and characterized a transient receptor potential gene named as HarmTRPA1 in Helicoverpa armigera antennae. HarmTRPA1 was abundantly expressed in the antennae and labial palps. Transcripts of HarmTRPA1 could also be detected in the head and proboscis. Furthermore, functional analyses of HarmTRPA1 were conducted in the Xenopus Oocyte system. The results showed that the HarmTRPA1 channel could be activated by increasing the temperature from 20 to 45 °C. No significant adaptation was observed when the stimulus was repeated. In addition to thermal stimuli, pungent natural compounds including allyl isothiocyanate, cinnamaldehyde and citronellal also activated HarmTRPA1. Taken together, we infer that HarmTRPA1 may function as both a thermal sensor involved in peripheral temperature detection and as a chemical sensor detecting irritating chemicals in vivo. Our data provide valuable insight into the TRPA1 channel in this moth and lay the foundation for developing novel strategies for pest control.

  5. Characterization of protein phosphatase 5 from three lepidopteran insects: Helicoverpa armigera, Mythimna separata and Plutella xylostella.

    PubMed

    Chen, Xi'en; Lü, Shumin; Zhang, Yalin

    2014-01-01

    Protein phosphatase 5 (PP5), a unique member of serine/threonine phosphatases, regulates a variety of biological processes. We obtained full-length PP5 cDNAs from three lepidopteran insects, Helicoverpa armigera, Mythimna separata and Plutella xylostella, encoding predicted proteins of 490 (55.98 kDa), 490 (55.82 kDa) and 491 (56.07 kDa) amino acids, respectively. These sequences shared a high identity with other insect PP5s and contained the TPR (tetratricopeptide repeat) domains at N-terminal regions and highly conserved C-terminal catalytic domains. Tissue- and stage-specific expression pattern analyses revealed these three PP5 genes were constitutively expressed in all stages and in tested tissues with predominant transcription occurring at the egg and adult stages. Activities of Escherichia coli-produced recombinant PP5 proteins could be enhanced by almost 2-fold by a known PP5 activator: arachidonic acid. Kinetic parameters of three recombinant proteins against substrate pNPP were similar both in the absence or presence of arachidonic acid. Protein phosphatases inhibitors, okadaic acid, cantharidin, and endothall strongly impeded the activities of the three recombinant PP5 proteins, as well as exerted an inhibitory effect on crude protein phosphatases extractions from these three insects. In summary, lepidopteran PP5s share similar characteristics and are all sensitive to the protein phosphatases inhibitors. Our results also imply protein phosphatase inhibitors might be used in the management of lepidopteran pests.

  6. Influence of CO2 and Temperature on Metabolism and Development of Helicoverpa armigera (Noctuidae: Lepidoptera).

    PubMed

    Akbar, S Md; Pavani, T; Nagaraja, T; Sharma, H C

    2016-02-01

    Climate change will have a major bearing on survival and development of insects as a result of increase in CO2 and temperature. Therefore, we studied the direct effects of CO2 and temperature on larval development and metabolism in cotton bollworm, Helicoverpa armigera (Hübner). The larvae were reared under a range of CO2 (350, 550, and 750 ppm) and temperature (15, 25, 35, and 45°C) regimes on artificial diet. Elevated CO2 negatively affected the larval survival, larval weight, larval period, pupation, and adult emergence, but showed a positive effect on pupal weight, pupal period, and fecundity. Increase in temperature exhibited a negative effect on larval survival, larval period, pupal weights, and pupal period, but a positive effect on larval growth. Pupation and adult emergence were optimum at 25°C. Elevated CO2 and temperature increased food consumption and metabolism of larvae by enhancing the activity of midgut proteases, carbohydrases (amylase and cellulase), and mitochondrial enzymes and therefore may cause more damage to crop production. Elevated CO2 and global warming will affect insect growth and development, which will change the interactions between the insect pests and their crop hosts. Therefore, there is need to gain an understanding of these interactions to develop strategies for mitigating the effects of climate change.

  7. Current status of insecticide resistance in Helicoverpa armigera after 15 years of Bt cotton planting in China.

    PubMed

    Yang, Yihua; Li, Yapeng; Wu, Yidong

    2013-02-01

    Insecticide resistance was an important factor responsible for outbreaks of Helicoverpa armigera (Hübner) in China in the early 1990s. Bt cotton has been adopted in China since 1997, and has resulted in a reduction of insecticide use for H. armigera control. After 15 yr of Bt cotton planting, in 2011 we surveyed resistance to fenvalerate, phoxim, and emamectin benzoate in 16 field populations of H. armigera collected from major cotton production areas of China. Fourteen populations from northern China showed very strong resistance to fenvalerate (from 43- to 830-fold) and low levels of resistance to phoxim (3.0- to 8.9-fold) when compared with the susceptible SCD strain of H. armigera, whereas two populations from northwestern China showed low levels of resistance to fenvalerate (3.0- and 10-fold) and no resistance to phoxim (0.7- and 0.9-fold). Synergist bioassays demonstrated that oxidase-based detoxification was involved in fenvalerate resistance and esterase-based detoxification in phoxim resistance in the resistant field populations. In comparison with the resistance in field populations before Bt cotton adoption, we observed a maintenance of high levels of fenvalerate resistance, but a reversion of phoxim resistance from high levels to low levels in the field populations of H. armigera from northern China. All 16 field populations from both northern China and northwestern China were susceptible to emamectin benzoate (with about two-fold variations in LD50s among populations), but the SCD strain has an inherent tolerance of 11-fold compared with the most susceptible field population (Xiajin-1). Emamectin benzoate is not cross resistant to fenvalerate and may provide an alternative option for H. armigera control in China, if the efficacy of Bt cotton is compromised by Bt resistance in the field.

  8. Comparison of Leg Regeneration Potency Between Holometabolous Helicoverpa armigera (Lepidoptera: Noctuidae) and Hemimetabolous Locusta migratoria manilensis (Orthoptera: Acrididae).

    PubMed

    Yang, Qingpo; Li, Zhen; Li, Hui; Li, Yanrong; Yang, Yuhui; Zhang, Qingwen; Liu, Xiaoxia

    2016-09-11

    After injury many insects could regenerate lost limb. In this study, Helicoverpa armigera Hubner and Locusta migratoria manilensis (Meyen, 1835) were chosen to compare the regeneration potency of holometabolous and hemimetabolous insects. We employed the classical approach of surgical excision to verify the regeneration ability and to investigate the factors that affect the extent of regeneration. The results found that H. armigera could regenerate intact legs when the larval legs were excised at the first and second instar and that legs of adult H. armigera had a close relationship with their larval counterparts. However, the adult legs became malformed or disappeared when excised at other older instars. For the L. migratoria, we found the legs have weak partial regeneration ability when amputation was conducted at the joint of two segments. The regeneration potency might be stronger the more proximal the operation. Regeneration process had a negative impact on the larval development. This is the first report of complete leg regeneration capacity having a strong correlation with the instar but not with the position where amputation occurred for H. armigera, while for the L. migratoria, partial regenerative ability had a close relationship with the position where amputation occurred but not with instars.

  9. Comparison of Leg Regeneration Potency Between Holometabolous Helicoverpa armigera (Lepidoptera: Noctuidae) and Hemimetabolous Locusta migratoria manilensis (Orthoptera: Acrididae).

    PubMed

    Yang, Qingpo; Li, Zhen; Li, Hui; Li, Yanrong; Yang, Yuhui; Zhang, Qingwen; Liu, Xiaoxia

    2016-12-01

    After injury many insects could regenerate lost limb. In this study, Helicoverpa armigera Hubner and Locusta migratoria manilensis (Meyen, 1835) were chosen to compare the regeneration potency of holometabolous and hemimetabolous insects. We employed the classical approach of surgical excision to verify the regeneration ability and to investigate the factors that affect the extent of regeneration. The results found that H. armigera could regenerate intact legs when the larval legs were excised at the first and second instar and that legs of adult H. armigera had a close relationship with their larval counterparts. However, the adult legs became malformed or disappeared when excised at other older instars. For the L. migratoria, we found the legs have weak partial regeneration ability when amputation was conducted at the joint of two segments. The regeneration potency might be stronger the more proximal the operation. Regeneration process had a negative impact on the larval development. This is the first report of complete leg regeneration capacity having a strong correlation with the instar but not with the position where amputation occurred for H. armigera, while for the L. migratoria, partial regenerative ability had a close relationship with the position where amputation occurred but not with instars.

  10. Mitochondrial P-glycoprotein ATPase contributes to insecticide resistance in the cotton bollworm, Helicoverpa armigera (Noctuidae: Lepidoptera).

    PubMed

    Akbar, S Md; Aurade, Ravindra M; Sharma, H C; Sreeramulu, K

    2014-09-01

    Cotton bollworm, Helicoverpa armigera, is one of the most damaging polyphagous pests worldwide, which has developed high levels of resistance to commonly applied insecticides. Mitochondrial P-glycoprotein (Pgp) was detected in the insecticide-resistant strain of H. armigera using C219 antibodies, and its possible role was demonstrated in the efflux of xenobiotic compounds using spectrofluorometer. The TMR accumulated in mitochondria in the absence of ATP, and effluxed out in presence of ATP; the process of efflux was inhibited in the presence of ortho-vandate, an inhibitor of Pgp, in insecticide-resistant larvae of H. armigera. The mitochondria isolated from insecticide-resistant larvae were resistant to insecticide-induced inhibition of oxygen consumption and cytochrome c release. Membrane potential decreased in a dose-dependent manner in the presence of higher concentration of insecticides (>50 µM) in mitochondria of insecticide-resistant larvae. In conclusion, mitochondrial Pgp ATPase detected in the insecticide-resistant larvae influenced the efflux of xenobiotic compounds. Pgp might be involved in protecting the mitochondrial DNA and the components of the electron transport chain from damage due to insecticides, and contributing to the resistance to the deleterious effects of insecticides on the growth of insecticide-resistant H. armigera larvae.

  11. Determinant Factors in the Production of a Co-Occluded Binary Mixture of Helicoverpa armigera Alphabaculovirus (HearNPV) Genotypes with Desirable Insecticidal Characteristics.

    PubMed

    Arrizubieta, Maite; Simón, Oihane; Williams, Trevor; Caballero, Primitivo

    2016-01-01

    A co-occluded binary mixture of Helicoverpa armigera nucleopolyhedrovirus genotypes HearSP1B and HearLB6 at a 1:1 ratio (HearSP1B+HearLB6) was selected for the development of a virus-based biological insecticide, which requires an efficient large-scale production system. In vivo production systems require optimization studies in each host-virus pathosystem. In the present study, the effects of larval instar, rearing density, timing of inoculation, inoculum concentration and temperature on the production of HearSP1B+HearLB6 in its homologous host were evaluated. The high prevalence of cannibalism in infected larvae (40-87%) indicated that insects require individual rearing to avoid major losses in OB production. The OB production of recently molted fifth instars (7.0 x 109 OBs/larva), combined with a high prevalence of mortality (85.7%), resulted in the highest overall OB yield (6.0 x 1011 OBs/100 inoculated larvae), compared to those of third or fourth instars. However, as inoculum concentration did not influence final OB yield, the lowest concentration, LC80 (5.5 x 106 OBs/ml), was selected. Incubation temperature did not significantly influence OB yield, although larvae maintained at 30°C died 13 and 34 hours earlier than those incubated at 26°C and 23°C, respectively. We conclude that the efficient production of HearSP1B+HearLB6 OBs involves inoculation of recently molted fifth instars with a LC80 concentration of OBs followed by individual rearing at 30°C.

  12. Determinant Factors in the Production of a Co-Occluded Binary Mixture of Helicoverpa armigera Alphabaculovirus (HearNPV) Genotypes with Desirable Insecticidal Characteristics

    PubMed Central

    Arrizubieta, Maite; Simón, Oihane; Williams, Trevor; Caballero, Primitivo

    2016-01-01

    A co-occluded binary mixture of Helicoverpa armigera nucleopolyhedrovirus genotypes HearSP1B and HearLB6 at a 1:1 ratio (HearSP1B+HearLB6) was selected for the development of a virus-based biological insecticide, which requires an efficient large-scale production system. In vivo production systems require optimization studies in each host-virus pathosystem. In the present study, the effects of larval instar, rearing density, timing of inoculation, inoculum concentration and temperature on the production of HearSP1B+HearLB6 in its homologous host were evaluated. The high prevalence of cannibalism in infected larvae (40–87%) indicated that insects require individual rearing to avoid major losses in OB production. The OB production of recently molted fifth instars (7.0 x 109 OBs/larva), combined with a high prevalence of mortality (85.7%), resulted in the highest overall OB yield (6.0 x 1011 OBs/100 inoculated larvae), compared to those of third or fourth instars. However, as inoculum concentration did not influence final OB yield, the lowest concentration, LC80 (5.5 x 106 OBs/ml), was selected. Incubation temperature did not significantly influence OB yield, although larvae maintained at 30°C died 13 and 34 hours earlier than those incubated at 26°C and 23°C, respectively. We conclude that the efficient production of HearSP1B+HearLB6 OBs involves inoculation of recently molted fifth instars with a LC80 concentration of OBs followed by individual rearing at 30°C. PMID:27732657

  13. Biological activities of Solanum pseudocapsicum (Solanaceae) against cotton bollworm, Helicoverpa armigera Hübner and armyworm, Spodoptera litura Fabricius (Lepidotera: Noctuidae)

    PubMed Central

    Jeyasankar, Alagarmalai; Premalatha, Selvaraj; Elumalai, Kuppusamy

    2012-01-01

    Objective To evaluate the antifeedant, insecticidal and growth inhibition activities of Solanum pseudocapsicum (S. pseudocapsicum) seed extracts against Spodoptera litura (S. litura) and Helicoverpa armigera (H. armigera). Methods Hexane, diethyl ether, dichloromethane and ethyl acetate seed extracts were prepared and tested for antifeedant, insecticidal and growth inhibitory activities against fourth instar larvae of S. litura and H. armigera. Results Ethyl acetate extract showed promising antifeedant and insecticidal activities against S. litura and H. armigera. Percentage of deformed larvae, pupae and adults were maximum in treatment of ethyl acetate extract. Percentage of successful adult emergence was deteriorated by seeds on extract treated larvae. Conclusions Ethyl acetate extracts of S. pseudocapsicum, showed higher efficiency of antifeedant, insecticidal and growth inhibition activities. Hence, it can be used to controll agricultural insect pests, S. litura and H. armigera. PMID:23593579

  14. Differential responses of Helicoverpa armigera C-type immunlectin genes to the endoparasitoid Campoletis chlorideae.

    PubMed

    Wang, Xiong-Ya; Bai, Su-Fen; Li, Xin; An, Shi-Heng; Yin, Xin-Ming; Li, Xian-Chun

    2017-03-01

    The C-type lectins mediate nonself recognition in insects. The previous studies focused on host immunlectin response to bacterial infection; however, the molecular basis of immunlectin reactions to endoparasitoids has not been elucidated. The present study investigated the effect of parasitization by Campoletis chlorideae on hemagglutination activity (HA; defined as the ability of lectin to agglutinate erythrocytes or other cells), and transcriptional expression of C-type immunlectin genes in the larval host, Helicoverpa armigera. Parasitization induced four- to eightfold higher HA in the parasitized larvae, compared to nonparasitized larvae at days 2 and 6 postparasitization (PP), however inhibited HA at other days PP. Eight C-type lectins were differentially expressed in different host developmental stages, from feeding to wandering stage. The mRNA levels of HaCTL1, HaCTL3, HaCTL4, and HaCTL5 were upregulated and HaCTL2 and HaCTL7 were downregulated. Tissue analysis showed that HaCTLs were mainly expressed in fat body or hemocytes, while HaCTL5 was highly expressed in testes. The effects of parasitization on the lectin expression patterns differed. Lectins except HaCTL6 or HaCTL5 were significantly down- or upregulated in parasitized larvae at day 4 or 6 PP compared with that of nonparasitized larvae. We infer from our results that C-type immunlectins are involved in host-parasitoid interactions, and parasitization alter host immunlectin levels both in inhibiting and promoting host immune defenses to endoparasitoids. These immunlectin genes indicated an altered physiological status of the host insect, depending on developmental stage, tissue, and parasitization.

  15. Elimination of Gut Microbes with Antibiotics Confers Resistance to Bacillus thuringiensis Toxin Proteins in Helicoverpa armigera (Hubner).

    PubMed

    Visweshwar, R; Sharma, H C; Akbar, S M D; Sreeramulu, K

    2015-12-01

    Helicoverpa armigera is one of the most important pests worldwide. Transgenic crops with toxin genes from Bacillus thuringiensis (Bt) have been deployed on a large scale to control this pest. The insecticidal activity of Bt is probably influenced by the insect midgut microbes, which vary across crop hosts and locations. Therefore, we examined the role of gut microbes in pathogenicity of Bt toxins in the H. armigera. Antibiotic cocktail was used for the complete elimination of the H. armigera gut microbes. Activated Cry1Ac, Bt formulation, and transgenic cotton resulted in larval weight loss and increase in mortality, but pretreatment of larvae with antibiotic cocktail significantly decreased larval mortality and increased the larval weight gain. Activated Cry1Ac and Bt formulation inhibited the activity of proteases in midgut of H. armigera larvae but showed no such effect in the larvae pretreated with antibiotic cocktail. Five protease bands in activated Cry1Ac and two in Bt formulation-treated larvae were inhibited but no such effect in the larvae pretreated with antibiotic cocktail. Cry1Ac protein was detected in Bt/Cry1Ac protoxin-fed larval gut extract in the absence of antibiotic cocktail, but fewer in larvae pretreated with antibiotic cocktail. The activity of antioxidant enzymes and aminopeptidases increased in larvae fed on Bt toxin, but there was no significant increase in antioxidant enzymes in larvae reared on toxin protein in combination with antibiotic cocktail. The results suggest that gut microbes exercise a significant influence on the toxicity of Cry1Ac and Bt formulation in H. armigera larvae. The implications of these results have been discussed in relation to development of insect resistance to Bt transgenic crops deployed for pest management.

  16. Vip3Aa tolerance response of Helicoverpa armigera populations from a Cry1Ac cotton planting region.

    PubMed

    An, Jingjie; Gao, Yulin; Wu, Kongming; Gould, Fred; Gao, Jianhua; Shen, Zhicheng; Lei, Chaoliang

    2010-12-01

    Transgenic cotton, Gossypium hirsutum L., that expresses the Bacillus thuringiensis (Bt) Cry1Ac toxin, holds great promise in controlling target insect pests. Evolution of resistance by target pests is the primary threat to the continued efficacy of Bt cotton. To thwart pest resistance evolution, a transgenic cotton culitvar that produces two different Bt toxins, cry1Ac and vip3A genes, was proposed as a successor of cry1Ac cotton. This article reports on levels of Vip3Aa tolerance in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) populations from the Cry1Ac cotton planting region in China based on bioassays of the F1 generation of isofemale lines. In total, 80 isofemale families of H. armigera from Xiajin county of Shandong Province (an intensive Bt cotton planting area) and 93 families from Anci county of Hebei Province (a multiple-crop system including corn [Zea mays L.] , soybean [Glycine max (L.) Merr.], peanut (Arachis hypogaea L.), and Bt cotton) were screened with a discriminating concentration of both Cry1Ac- and Vip3A-containing diets in 2009. From data on the relative average development rates and percentage of larval weight inhibition of F1 full-sib families tested simultaneously on Cry1Ac and Vip3Aa, results indicate that responses to Cry1Ac and Vip3Aa were not genetically correlated in field population ofH. armigera. This indicates that the threat of cross-resistance between Cry1Ac and Vip3A is low in field populations of H. armigera. Thus, the introduction of Vip3Aa/Cry1Ac-producing lines could delay resistance evolution in H. armigera in Bt cotton planting area of China.

  17. Digestive proteolytic and amylolytic activities and feeding responses of Helicoverpa armigera (Lepidoptera: Noctuidae) on different host plants.

    PubMed

    Hemati, S A; Naseri, B; Ganbalani, G Nouri; Dastjerdi, H Rafiee; Golizadeh, A

    2012-08-01

    Digestive proteolytic and amylolytic activities and feeding responses of fifth instar larvae of Helicoverpa armigera (Hübner) on different host plants including chickpea (cultivars Arman, Hashem, Azad, and Binivich), common bean (cultivar Khomein), white kidney bean (cultivar Dehghan), red kidney bean (cultivar Goli), cowpea (cultivar Mashhad), tomato (cultivar Meshkin), and potato (cultivars Agria and Satina) were studied under laboratory conditions (25 +/- 1 degrees C, 65 +/- 5% RH and a photoperiod of 16:8 [L:D] h). Our results showed that the highest protease activity in optimal pH was on cultivar Dehghan (8.717 U/mg) and lowest one was on Meshkin (3.338 U/mg). In addition, the highest amylase activity in optimal pH was on cultivar Dehghan (0.340 mU/mg) and lowest was on Meshkin (0.088 mU/mg). The larval weight of fifth instar H. armigera showed significant difference, being heaviest on Binivich (125.290 +/- 5.050 mg) and lightest on Meshkin (22.773 +/- 0.575 mg). Furthermore, the highest and lowest values of food consumed were on Goli (362.800 +/- 27.500 mg) and Satina (51.280 +/- 4.500 mg), respectively. In addition, the lowest values of prepupal and pupal weight were on Meshkin (32.413 +/- 0.980 and 41.820 +/- 1.270 mg, respectively). The results indicated that tomato (Meshkin) was unsuitable host for feeding fifth instar larvae of H. armigera.

  18. Modified artificial diet for rearing of tobacco budworm, Helicoverpa armigera, using the Taguchi method and Derringer's desirability function.

    PubMed

    Assemi, H; Rezapanah, M; Vafaei-Shoushtari, R; Mehrvar, A

    2012-01-01

    With the aim to improve the mass rearing feasibility of tobacco budworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), design of experimental methodology using Taguchi orthogonal array was applied. To do so, the effect of 16 ingredients of an artificial diet including bean, wheat germ powder, Nipagin, ascorbic acid, formaldehyde, oil, agar, distilled water, ascorbate, yeast, chloramphenicol, benomyl, penicillin, temperature, humidity, and container size on some biological characteristics of H. armigera was evaluated. The selected 16 factors were considered at two levels (32 experiments) in the experimental design. Among the selected factors, penicillin, container size, formaldehyde, chloramphenicol, wheat germ powder, and agar showed significant effect on the mass rearing performance. Derringer's desirability function was used for simultaneous optimization of mass rearing of tobacco budworm, H. armigera, on a modified artificial diet. Derived optimum operating conditions obtained by Derringer's desirability function and Taguchi methodology decreased larval period from 19 to 15.5 days (18.42 % improvement), decreased the pupal period from 12.29 to 11 days (10.49 % improvement), increased the longevity of adults from 14.51 to 21 days (44.72 % improvement), increased the number of eggs/female from 211.21 to 260, and increased egg hatchability from 54.2% to 72% (32.84 % improvement). The proposed method facilitated a systematic mathematical approach with a few well-defined experimental sets.

  19. RNAi silencing of the HaHMG-CoA reductase gene inhibits oviposition in the Helicoverpa armigera cotton bollworm.

    PubMed

    Wang, Zhijian; Dong, Yongcheng; Desneux, Nicolas; Niu, Changying

    2013-01-01

    RNA interference (RNAi) has considerable promise for developing novel pest control techniques, especially because of the threat of the development of resistance against current strategies. For this purpose, the key is to select pest control genes with the greatest potential for developing effective pest control treatments. The present study demonstrated that the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase; HMGR) gene is a potential target for insect control using RNAi. HMGR is a key enzyme in the mevalonate pathway in insects. A complete cDNA encoding full length HMGR (encoding an 837-aa protein) was cloned from Helicoverpa armigera (Lepidoptera: Noctuidae). The HaHMGR (H. armigera HMGR) knockdown using systemic RNAi in vivo inhibited the fecundity of the females, effectively inhibited ovipostion, and significantly reduced vitellogenin (Vg) mRNA levels. Moreover, the oviposition rate of the female moths was reduced by 98% by silencing HaHMGR compared to the control groups. One-pair experiments showed that both the proportions of valid mating and fecundity were zero. Furthermore, the HaHMGR-silenced females failed to lay eggs (approximate 99% decrease in oviposition) in the semi-field cage performance. The present study demonstrated the potential implications for developing novel pest management strategies using HaHMGR RNAi in the control of H. armigera and other insect pests.

  20. Silencing the HaAK gene by transgenic plant-mediated RNAi impairs larval growth of Helicoverpa armigera.

    PubMed

    Liu, Feng; Wang, Xiao-Dong; Zhao, Yi-Ying; Li, Yan-Jun; Liu, Yong-Chang; Sun, Jie

    2015-01-01

    Insect pests have caused noticeable economic losses in agriculture, and the heavy use of insecticide to control pests not only brings the threats of insecticide resistance but also causes the great pollution to foods and the environment. Transgenic plants producing double-stranded RNA (dsRNA) directed against insect genes have been is currently developed for protection against insect pests. In this study, we used this technology to silence the arginine kinase (AK) gene of Helicoverpa armigera (HaAK), encoding a phosphotransferase that plays a critical role in cellular energy metabolism in invertebrate. Transgenic Arabidopsis plants producing HaAK dsRNA were generated by Agrobacterium-mediated transformation. The maximal mortality rate of 55% was reached when H. armigera first-instar larvae were fed with transgenic plant leaves for 3 days, which was dramatically higher than the 18% mortality recorded in the control group. Moreover, the ingestion of transgenic plants significantly retarded larval growth, and the transcript levels of HaAK were also knocked down by up to 52%. The feeding bioassays further indicated that the inhibition efficiency was correlated with the integrity and concentration of the produced HaAK dsRNA in transgenic plants. These results strongly show that the resistance to H. armigera was improved in transgenic Arabidopsis plants, suggesting that the RNAi targeting of AK has the potential for the control of insect pests.

  1. Modified Artificial Diet for Rearing of Tobacco Budworm, Helicoverpa armigera, using the Taguchi Method and Derringer's Desirability Function

    PubMed Central

    Assemi, H.; Rezapanah, M.; Vafaei-Shoushtari, R.

    2012-01-01

    With the aim to improve the mass rearing feasibility of tobacco budworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), design of experimental methodology using Taguchi orthogonal array was applied. To do so, the effect of 16 ingredients of an artificial diet including bean, wheat germ powder, Nipagin, ascorbic acid, formaldehyde, oil, agar, distilled water, ascorbate, yeast, chloramphenicol, benomyl, penicillin, temperature, humidity, and container size on some biological characteristics of H. armigera was evaluated. The selected 16 factors were considered at two levels (32 experiments) in the experimental design. Among the selected factors, penicillin, container size, formaldehyde, chloramphenicol, wheat germ powder, and agar showed significant effect on the mass rearing performance. Derringer's desirability function was used for simultaneous optimization of mass rearing of tobacco budworm, H. armigera, on a modified artificial diet. Derived optimum operating conditions obtained by Derringer's desirability function and Taguchi methodology decreased larval period from 19 to 15.5 days (18.42 % improvement), decreased the pupal period from 12.29 to 11 days (10.49 % improvement), increased the longevity of adults from 14.51 to 21 days (44.72 % improvement), increased the number of eggs/female from 211.21 to 260, and increased egg hatchability from 54.2% to 72% (32.84 % improvement). The proposed method facilitated a systematic mathematical approach with a few well-defined experimental sets. PMID:23425103

  2. Diversity in gut microflora of Helicoverpa armigera populations from different regions in relation to biological activity of Bacillus thuringiensis δ-endotoxin Cry1Ac.

    PubMed

    Paramasiva, Inakarla; Shouche, Yogesh; Kulkarni, Girish Jayant; Krishnayya, Pulipaka Venkata; Akbar, Shaik Mohammed; Sharma, Hari Chand

    2014-12-01

    Transgenic crops expressing toxin proteins from Bacillus thuringiensis (Bt) have been deployed on a large scale for management of Helicoverpa armigera. Resistance to Bt toxins has been documented in several papers, and therefore, we examined the role of midgut microflora of H. armigera in its susceptibility to Bt toxins. The susceptibility of H. armigera to Bt toxin Cry1Ac was assessed using Log-dose-Probit analysis, and the microbial communities were identified by 16S rRNA sequencing. The H. armigera populations from nine locations harbored diverse microbial communities, and had some unique bacteria, suggesting a wide geographical variation in microbial community in the midgut of the pod borer larvae. Phylotypes belonging to 32 genera were identified in the H. armigera midgut in field populations from nine locations. Bacteria belonging to Enterobacteriaceae (Order Bacillales) were present in all the populations, and these may be the common members of the H. armigera larval midgut microflora. Presence and/or absence of certain species were linked to H. armigera susceptibility to Bt toxins, but there were no clear trends across locations. Variation in susceptibility of F1 neonates of H. armigera from different locations to the Bt toxin Cry1Ac was found to be 3.4-fold. These findings support the idea that insect migut microflora may influence the biological activity of Bt toxins.

  3. Dual Cry2Ab and Vip3A resistant strains of Helicoverpa armigera and Helicoverpa punctigera (Lepidoptera: Noctuidae); testing linkage between loci and monitoring of allele frequencies.

    PubMed

    Walsh, T K; Downes, S J; Gascoyne, J; James, W; Parker, T; Armstrong, J; Mahon, R J

    2014-08-01

    Considerable attention has been given to delaying the evolution of insect resistance to toxins produced by transgenic crops. The major pests of cotton in Australia are the Lepidoptera Helicoverpa armigera (Hubner, 1805) and Helicoverpa punctigera (Wallengren), and the toxins deployed in current and imminent transgenic cotton varieties are Cry1Ac, Cry2Ab and Vip3A from Bacillus thuringiensis. In this study, lines that carry alleles conferring resistance to Cry2Ab and Vip3A were isolated using F2 tests. Extensive work on the Cry2Ab resistant lines, and preliminary work on the Vip3A resistant lines, suggested a single common resistance to each toxin in both species thereby justifying the use of more efficient F1 tests as the primary means for monitoring changes over time. A potential further efficiency could be gained by developing a single resistant line that carries both types of Bt resistance. Herein we report on work with both H. armigera and H. punctigera that tests whether dual Cry2Ab-Vip3A resistant lines can be developed and, if so, whether they can be used to effectively monitor resistance frequencies. Furthermore, the creation of dual resistant lines allowed linkage between the Cry2Ab and Vip3A resistances to be investigated for H. punctigera. We show that dual resistant lines can be used to increase the efficiency of the F1 screen for recessive alleles, and that in H. punctigera there is no linkage between Cry2Ab and Vip3A resistance.

  4. Molecular Identification of Helicoverpa armigera (Lepidoptera: Noctuidae: Heliothinae) in Argentina and Development of a Novel PCR-RFLP Method for its Rapid Differentiation From H. zea and H. gelotopoeon.

    PubMed

    Arneodo, Joel D; Balbi, Emilia I; Flores, Fernando M; Sciocco-Cap, Alicia

    2015-12-01

    Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae: Heliothinae) is among the most voracious global pests of agriculture. Adults of this species were identified recently in northern Argentina by dissection of male genitalia. In this work, a rapid and simple molecular tool was designed to distinguish H. armigera from the morphologically similar indigenous bollworms Helicoverpa zea (Boddie) and Helicoverpa gelotopoeon (Dyar), regardless of the life stage. Amplification of partial COI gene with a new primer pair, and subsequent digestion with endonuclease HinfI, yielded different RFLP profiles for the three main Helicoverpa pests currently present in South America. The method was validated in Helicoverpa specimens collected across Argentina, whose identity was further corroborated by COI sequencing and phylogenetic analysis. The data reported here constitute the first molecular confirmation of this pest in the country. The survey revealed the occurrence of H. armigera in northern and central Argentina, including the main soybean- and maize-producing area.

  5. Identification of MicroRNAs in Helicoverpa armigera and Spodoptera litura Based on Deep Sequencing and Homology Analysis

    PubMed Central

    Ge, Xie; Zhang, Yong; Jiang, Jianhao; Zhong, Yi; Yang, Xiaonan; Li, Zhiqian; Huang, Yongping; Tan, Anjiang

    2013-01-01

    The current identification of microRNAs (miRNAs) in insects is largely dependent on genome sequences. However, the lack of available genome sequences inhibits the identification of miRNAs in various insect species. In this study, we used a miRNA database of the silkworm Bombyx mori as a reference to identify miRNAs in Helicoverpa armigera and Spodoptera litura using deep sequencing and homology analysis. Because all three species belong to the Lepidoptera, the experiment produced reliable results. Our study identified 97 and 91 conserved miRNAs in H. armigera and S. litura, respectively. Using the genome of B. mori and BAC sequences of H. armigera as references, 1 novel miRNA and 8 novel miRNA candidates were identified in H. armigera, and 4 novel miRNA candidates were identified in S. litura. An evolutionary analysis revealed that most of the identified miRNAs were insect-specific, and more than 20 miRNAs were Lepidoptera-specific. The investigation of the expression patterns of miR-2a, miR-34, miR-2796-3p and miR-11 revealed their potential roles in insect development. miRNA target prediction revealed that conserved miRNA target sites exist in various genes in the 3 species. Conserved miRNA target sites for the Hsp90 gene among the 3 species were validated in the mammalian 293T cell line using a dual-luciferase reporter assay. Our study provides a new approach with which to identify miRNAs in insects lacking genome information and contributes to the functional analysis of insect miRNAs. PMID:23289012

  6. Isolation and Characterization of Gut Bacterial Proteases Involved in Inducing Pathogenicity of Bacillus thuringiensis Toxin in Cotton Bollworm, Helicoverpa armigera

    PubMed Central

    Regode, Visweshwar; Kuruba, Sreeramulu; Mohammad, Akbar S.; Sharma, Hari C.

    2016-01-01

    Bacillus thuringiensis toxin proteins are deployed in transgenic plants for pest management. The present studies were aimed at characterization of gut bacterial proteases involved in activation of inactive Cry1Ac protoxin (pro-Cry1Ac) to active toxin in Helicoverpa armigera. Bacterial strains were isolated from H. armigera midgut and screened for their proteolytic activation toward pro-Cry1Ac. Among 12 gut bacterial isolates seven isolates showed proteolytic activity, and proteases from three isolates (IVS1, IVS2, and IVS3) were found to be involved in the proteolytic conversion of pro-Cry1Ac into active toxin. The proteases from IVS1, IVS2, and IVS3 isolates were purified to 11.90-, 15.50-, and 17.20-fold, respectively. The optimum pH and temperature for gut bacterial protease activity was 8.0 and 40°C. Maximum inhibition of total proteolytic activity was exerted by phenylmethane sulfonyl fluoride followed by EDTA. Fluorescence zymography revealed that proteases from IVS1, IVS2, and IVS3 were chymotrypsin-like and showing protease band at ~15, 65, and 15 kDa, respectively. Active Cry1Ac formed from processing pro-Cry1Ac by gut bacterial proteases exhibited toxicity toward H. armigera. The gut bacterial isolates IVS1, IVS2, and IVS3 showed homology with B. thuringiensis (CP003763.1), Vibrio fischeri (CP000020.2), and Escherichia coli (CP011342.1), respectively. Proteases produced by midgut bacteria are involved in proteolytic processing of B. thuringiensis protoxin and play a major role in inducing pathogenicity of B. thuringiensis toxins in H. armigera. PMID:27766093

  7. Relative Fitness of Helicoverpa armigera (Lepidoptera: Noctuidae) on Seven Host Plants: A Perspective for IPM in Brazil

    PubMed Central

    Reigada, C.; Guimarães, K. F.; Parra, J. R. P.

    2016-01-01

    The cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is a widespread pest of many cultivated and wild plants in Europe, Africa, Asia, and Australia. In 2013, this species was reported in Brazil, attacking various host crops in the midwestern and northeastern regions of the country and is now found countrywide. Aiming to understand the effects of different host plants on the life cycle of H. armigera, we selected seven species of host plants that mature in different seasons and are commonly grown in these regions: cotton (Gossypium hirsutum, “FM993”), corn (Zea mays, “2B587”), soybean (Glycine max, “99R01”), rattlepods (Crotalaria spectabilis), millet (Pennisetum glaucum, “ADR300”), sorghum (Sorghum bicolor, “AGROMEN70G35”), and cowpea (Vigna unguiculata, “SEMPRE VERDE”). The development time of immatures, body weight, survivorship, and fecundity of H. armigera were evaluated on each host plant under laboratory conditions. The bollworms did not survive on corn, millet, or sorghum and showed very low survival rates on rattlepods. Survival rates were highest on soybean, followed by cotton and cowpea. The values for relative fitness found on soybean, cotton, cowpea, and rattlepods were 1, 0.5, 0.43, and 0.03, respectively. Survivorship, faster development time, and fecundity on soybean, cotton, and cowpea were positively correlated. Larger pupae and greater fecundity were found on soybean and cotton. The results indicated that soybean, cotton, and cowpea are the most suitable plants to support the reproduction of H. armigera in the field. PMID:26798139

  8. The Inheritance of the Pheromone Sensory System in Two Helicoverpa Species: Dominance of H. armigera and Possible Introgression from H. assulta

    PubMed Central

    Xu, Meng; Dong, Jun-Feng; Wu, Han; Zhao, Xin-Cheng; Huang, Ling-Qiao; Wang, Chen-Zhu

    2017-01-01

    Hybridization of sympatric closely related species may sometimes lead to introgression and speciation. The sister species Helicoverpa armigera and Helicoverpa assulta both use (Z)-11-hexadecenal and (Z)-9-hexadecenal as sex pheromone components but in reversed ratios. Female H. armigera and male H. assulta could hybridize and produce fertile male hybrids, which can then backcross with females of the two parent species to get backcross lines in the laboratory. In this study, we compared the olfactory responses to pheromone compounds in the periphery and in the antennal lobes (ALs) of males of the two species, as well as of their hybrids and backcrosses. Single-sensillum recordings were carried out to explore characteristics of male-specific sensilla on the antennae, and in vivo calcium imaging combined with digital 3D-reconstruction was used to describe what happens in the macroglomerular complex (MGC) of the AL. The results show that the population ratio of the two male-specific types of olfactory sensory neurons responding to two sex pheromone components are controlled by a major gene, and that the allele of H. armigera is dominant. Consistently, the study of the representative areas activated by sex pheromone components in the ALs further support the dominance of H. armigera. However, the topological structure of the MGC in the hybrid was similar but not identical to that in H. armigera. All subtypes of male-specific sensilla identified in the two species were found in the male hybrids and backcrosses. Moreover, two new subtypes with broader response spectra (the expanded A subtype and the expanded C subtype) emerged in the hybrids. Based on the inheritance pattern of the pheromone sensory system, we predict that when hybridization of female H. armigera and male H. assulta occurs in the field, male hybrids would readily backcross with female H. armigera, and introgression might occur from H. assulta into H. armigera through repeated backcrossing. PMID:28119570

  9. Bacillus thuringiensis insecticidal crystal proteins affect lifespan and reproductive performance of Helicoverpa armigera and Spodoptera exigua adults.

    PubMed

    Zhang, Ying; Ma, Yan; Wan, Pin-Jun; Mu, Li-Li; Li, Guo-Qing

    2013-04-01

    Being delivered as sprays or expressed in plant, Bacillus thuringiensis (Bt) crystalline proteins (Cry toxins) display insecticidal activities against numerous Lepidopteran, Dipteran, and Coleopteran larvae. Comparative study of toxicities of Bt Cry toxins between larvae and adults may afford important new insights into the interactions of the toxins with receptor proteins in host insect, and represent intriguing targets for the control of insect pests. However, the effectiveness of Bt Cry toxins in insect adults has paid less attention. In the present article, the effectiveness of Cry1Ac and Cry1Ca on lifespans and reproductive performance of Helicoverpa armigera (Hübner) and Spodoptera exigua (Hübner) adults were evaluated by in vivo experiments. Considering transgenic plants express modified, truncated versions of cry genes yielding active toxin fragment, we used activated Bt toxins at the concentration of 500, 100, and 20 microg/ml in a 10% sucrose aquous solution. At the highest concentration, Cry1Ac and Cry1Ca shortened 48.1 and 48.9% of H. armigera female lifespan, and 43.5 and 38.5% of S. exigua female lifespan, and they reduced 37.8 and 40.3%, and 50.5 and 47.4% of H. armigera and S. exigua male lifespans respectively. Bt toxins negatively affected copulation. Exposure to 500 microg/ml of Cry1Ac and Cry1Ca greatly reduced 50.0 and 46.8%, and 58.7 and 57.3% spermatophore acceptance by H. armigera and S. exigua females, respectively. Similarly, Cry1Ac and Cry1Ca exposure decreased 40.0 and 50.3%, and 61.3 and 60.0% of spermatophore transfer by H. armigera and S. exigua males, respectively. Moreover, exposure females rather than males to 500 microg/ml of Cry1Ac and Cry1Ca significantly dropped 57.5 and 57.5% of the number of eggs laid by H. armigera, and 35.4 and 45.8% of the number of egg masses deposited by S. exigua. In contrast, both Cry1Ac and Cry1Ca did not negatively influence the egg hatchability. At the middle and the lowest concentrations, however

  10. Species From the Heliothinae Complex (Lepidoptera: Noctuidae) in Tucumán, Argentina, an Update of Geographical Distribution of Helicoverpa armigera

    PubMed Central

    Murúa, M. Gabriela; Cazado, Lucas E.; Casmuz, Augusto; Herrero, M. Inés; Villagrán, M. Elvira; Vera, Alejandro; Sosa-Gómez, Daniel R.; Gastaminza, Gerardo

    2016-01-01

    The Heliothinae complex in Argentina encompasses Helicoverpa gelotopoeon (Dyar), Helicoverpa zea (Boddie), Helicoverpa armigera (Hübner), and Chloridea virescens (Fabricius). In Tucumán, the native species H. gelotopoeon is one of the most voracious soybean pests and also affects cotton and chickpea, even more in soybean-chickpea succession cropping systems. Differentiation of the Heliothinae complex in the egg, larva, and pupa stages is difficult. Therefore, the observation of the adult wing pattern design and male genitalia is useful to differentiate species. The objective of this study was to identify the species of the Heliothinae complex, determine population fluctuations of the Heliothinae complex in soybean and chickpea crops using male moths collected in pheromone traps in Tucuman province, and update the geographical distribution of H. armigera in Argentina. The species found were H. gelotopoeon, H. armigera, H. zea, and C. virescens. Regardless of province, county, crop, and year, the predominant species was H. gelotopoeon. Considering the population dynamics of H. gelotopoeon and H. armigera in chickpea and soybean crops, H. gelotopoeon was the most abundant species in both crops, in all years sampled, and the differences registered were significant. On the other hand, according to the Sistema Nacional Argentino de Vigilancia y Monitoreo de Plagas (SINAVIMO) database and our collections, H. armigera was recorded in eight provinces and 20 counties of Argentina, and its larvae were found on soybean, chickpea, sunflower crops and spiny plumeless thistle (Carduus acanthoides). This is the first report of H. armigera in sunflower and spiny plumeless thistle in Argentina. PMID:27324588

  11. Species From the Heliothinae Complex (Lepidoptera: Noctuidae) in Tucumán, Argentina, an Update of Geographical Distribution of Helicoverpa armigera.

    PubMed

    Murúa, M Gabriela; Cazado, Lucas E; Casmuz, Augusto; Herrero, M Inés; Villagrán, M Elvira; Vera, Alejandro; Sosa-Gómez, Daniel R; Gastaminza, Gerardo

    2016-01-01

    The Heliothinae complex in Argentina encompasses Helicoverpa gelotopoeon (Dyar), Helicoverpa zea (Boddie), Helicoverpa armigera (Hübner), and Chloridea virescens (Fabricius). In Tucumán, the native species H. gelotopoeon is one of the most voracious soybean pests and also affects cotton and chickpea, even more in soybean-chickpea succession cropping systems. Differentiation of the Heliothinae complex in the egg, larva, and pupa stages is difficult. Therefore, the observation of the adult wing pattern design and male genitalia is useful to differentiate species. The objective of this study was to identify the species of the Heliothinae complex, determine population fluctuations of the Heliothinae complex in soybean and chickpea crops using male moths collected in pheromone traps in Tucuman province, and update the geographical distribution of H. armigera in Argentina. The species found were H. gelotopoeon, H. armigera, H. zea, and C. virescens. Regardless of province, county, crop, and year, the predominant species was H. gelotopoeon Considering the population dynamics of H. gelotopoeon and H. armigera in chickpea and soybean crops, H. gelotopoeon was the most abundant species in both crops, in all years sampled, and the differences registered were significant. On the other hand, according to the Sistema Nacional Argentino de Vigilancia y Monitoreo de Plagas (SINAVIMO) database and our collections, H. armigera was recorded in eight provinces and 20 counties of Argentina, and its larvae were found on soybean, chickpea, sunflower crops and spiny plumeless thistle (Carduus acanthoides). This is the first report of H. armigera in sunflower and spiny plumeless thistle in Argentina.

  12. Overexpression of poplar wounding-inducible genes in Arabidopsis caused improved resistance against Helicoverpa armigera (Hübner) larvae

    PubMed Central

    Hu, Rongfeng; Wang, Jiehua; Ji, Yan; Song, Yingjin; Yang, Shaohui

    2012-01-01

    Four highly inducible genes of poplar trees, PtdKTI5, PtdWIN4, PtdPOP3 from hybrid poplar (Populus trichocarpa × P. deltoides) and PtKTI2 from trembling aspen (Populus tremuloides Michx.) have been individually transformed into Arabidopsis thaliana for overexpression. High transcriptional level of each transgene in transgenic Arabidopsis lines was confirmed by RT-PCR analysis. The development, body weight and survivorship of cotton bollworm (Helicoverpa armigera) fed on four types of transgenic Arabidopis plants were evaluated in the laboratory. Our data indicated that these four Populus defense-related genes exhibited various degree of insectital activity on larval and postlarval development of cotton bollworm and may be utilized for herbivore resistance improvement in plant genetic engineering. PMID:23226090

  13. Effects of climate change on overwintering pupae of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae)

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Li, Jing

    2015-07-01

    Climate change significantly affects insects' behaviors. Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is one of the most serious insect pests in the world. Much is known about the survival of the overwintering population and spring emergence of H. armigera. However, little is known about the effects of climate change on overwintering and spring emergence of H. armigera. This study investigated the effects of changes of air and soil temperatures and precipitation on overwintering pupae of H. armigera by analyzing historical data from Magaiti County in northwest China using statistical methods. The results showed that during the period of 1989-2006, the climate warming advanced the first-appearance date of overwintering pupae eclosion (FD) and end date of overwintering pupae eclosion (ED) by 1.276 and 0.193 days per year, respectively; the duration between the FD and ED (DFEPE) was prolonged by 1.09 days per year, which resulted in more eclosion of overwintering pupae. For a 1 °C increase in the maximum air temperature ( T max) in winter, the FD became earlier by 3.234 days. Precipitation in winter delayed the FD and ED and produced little relative influence on DFEPE. A 1-mm increase of precipitation in winter delayed the FD and ED by 0.850 and 0.494 days, respectively. Mean air temperature ( T mean) in March, with a 41.3 % relative influence, precipitation in winter, with a 49.0 % relative influence, and T mean in March, with a 37.5 % relative influence, were the major affecting factors on FD, ED, and DFEPE, respectively. T max in February with a 53.0 % relative influence was the major affecting factor on the mortality of overwintering pupae (MOP). Increased soil temperatures in October and November and autumn and air temperatures in winter could decrease the MOP, though the relative influences were lower than T max in February. Increased precipitation in winter increased the MOP, but the relative influence was only 4.2 % because of little precipitation

  14. Integrated proteomic and metabolomic analysis of larval brain associated with diapause induction and preparation in the cotton bollworm, Helicoverpa armigera.

    PubMed

    Zhang, Qi; Lu, Yu-Xuan; Xu, Wei-Hua

    2012-02-03

    Diapause is a developmental arrest that allows an organism to survive unfavorable environmental conditions and is induced by environmental signals at a certain sensitive developmental stage. In Helicoverpa armigera, the larval brain receives the environmental signals for diapause induction and then regulates diapause entry at the pupal stage. Here, combined proteomic and metabolomic differential display analysis was performed on the H. armigera larval brain. Using two-dimensional electrophoresis, it was found that 22 proteins were increased and 27 proteins were decreased in the diapause-destined larval brain, 37 of which were successfully identified by MALDI-TOF/TOF mass spectrometry. RT-PCR and Western blot analyses showed that the expression levels of the differentially expressed proteins were consistent with the 2-DE results. Furthermore, a total of 49 metabolites were identified in the larval brain by GC-MS analysis, including 4 metabolites at high concentrations and 14 metabolites at low concentrations. The results gave us a clue to understand the governing molecular events of the prediapause phase. Those differences that exist in the induction phase of diapause-destined individuals are probably relevant to a special memory mechanism for photoperiodic information storage, and those differences that exist in the preparation phase are likely to regulate accumulation of specific energy reserves in diapause-destined individuals.

  15. Effect of Larvae Treated with Mixed Biopesticide Bacillus thuringiensis - Abamectin on Sex Pheromone Communication System in Cotton Bollworm, Helicoverpa armigera

    PubMed Central

    Shen, Li-Ze; Chen, Peng-Zhou; Xu, Zhi-Hong; Deng, Jian-Yu; Harris, Marvin-K; Wanna, Ruchuon; Wang, Fu-Min; Zhou, Guo-Xin; Yao, Zhang-Liang

    2013-01-01

    Third instar larvae of the cotton bollworm (Helicoverpa armigera) were reared with artificial diet containing a Bacillus thuringiensis - abamectin (BtA) biopesticide mixture that resulted in 20% mortality (LD20). The adult male survivors from larvae treated with BtA exhibited a higher percentage of “orientation” than control males but lower percentages of “approaching” and “landing” in wind tunnel bioassays. Adult female survivors from larvae treated with BtA produced higher sex pheromone titers and displayed a lower calling percentage than control females. The ratio of Z-11-hexadecenal (Z11–16:Ald) and Z-9-hexadecenal (Z9–16:Ald) in BtA-treated females changed and coefficients of variation (CV) of Z11–16:Ald and Z9–16:Ald were expanded compared to control females. The peak circadian calling time of BtA-treated females occurred later than that of control females. In mating choice experiment, both control males and BtA-treated males preferred to mate with control females and a portion of the Bt-A treated males did not mate whereas all control males did. Our Data support that treatment of larvae with BtA had an effect on the sex pheromone communication system in surviving H.armigera moths that may contribute to assortative mating. PMID:23874751

  16. Molecular and insecticidal characterization of Vip3A protein producing Bacillus thuringiensis strains toxic against Helicoverpa armigera (Lepidoptera: Noctuidae).

    PubMed

    Lone, Showkat Ahmad; Yadav, Radha; Malik, Abdul; Padaria, Jasdeep Chatrath

    2016-02-01

    Vegetative insecticidal proteins (Vip) represent the second generation of insecticidal proteins produced by Bacillus thuringiensis (Bt) during the vegetative growth stage of growth. Bt-based biopesticides are recognized as viable alternatives to chemical insecticides; the latter cause environmental pollution and lead to the emergence of pest resistance. To perform a systematic study of vip genes encoding toxic proteins, a total of 30 soil samples were collected from diverse locations of Kashmir valley, India, and characterized by molecular and analytical methods. Eighty-six colonies showing Bacillus-like morphology were selected. Scanning electron microscopy observations confirmed the presence of different crystal shapes, and PCR analysis of insecticidal genes revealed a predominance of the lepidopteran-specific vip3 (43.18%) gene followed by coleopteran-specific vip1 (22.72%) and vip2 (15.90%) genes in the isolates tested. Multi-alignment of the deduced amino acid sequences revealed that vip3 sequences were highly conserved, whereas vip1 and vip2 showed adequate differences in amino acid sequences compared with already reported sequences. Screening for toxicity against Helicoverpa armigera larvae was performed using partially purified soluble fractions containing Vip3A protein. The mortality levels observed ranged between 70% and 96.6% in the isolates. The LC50 values of 2 of the native isolates, JK37 and JK88, against H. armigera were found to be on par with that of Bt subsp. kurstaki HD1, suggesting that these isolates could be developed as effective biopesticides against H. armigera.

  17. High Susceptibility to Cry1Ac and Low Resistance Allele Frequency Reduce the Risk of Resistance of Helicoverpa armigera to Bt Soybean in Brazil

    PubMed Central

    Bacalhau, Fabiana B.; Amado, Douglas; Carvalho, Renato A.; Martinelli, Samuel; Head, Graham P.; Omoto, Celso

    2016-01-01

    The Old World bollworm, Helicoverpa armigera (Hübner), was recently introduced into Brazil, where it has caused extensive damage to cotton and soybean crops. MON 87701 × MON 89788 soybean, which expresses the Bt protein Cry1Ac, was recently deployed in Brazil, providing high levels of control against H. armigera. To assess the risk of resistance to the Cry1Ac protein expressed by MON 87701 × MON 89788 soybean in Brazil, we conducted studies to evaluate the baseline susceptibility of H. armigera to Cry1Ac, in planta efficacy including the assessment of the high-dose criterion, and the initial resistance allele frequency based on an F2 screen. The mean Cry1Ac lethal concentration (LC50) ranged from 0.11 to 1.82 μg·mL−1 of diet among all H. armigera field populations collected from crop seasons 2013/14 to 2014/15, which indicated about 16.5-fold variation. MON 87701 × MON 89788 soybean exhibited a high level of efficacy against H. armigera and most likely met the high dose criterion against this target species in leaf tissue dilution bioassays up to 50 times. A total of 212 F2 family lines of H. armigera were established from field collections sampled from seven locations across Brazil and were screened for the presence of MON 87701 × MON 89788 soybean resistance alleles. None of the 212 families survived on MON 87701 × MON 89788 soybean leaf tissue (estimated allele frequency = 0.0011). The responses of H. armigera to Cry1Ac protein, high susceptibility to MON 87701 × MON 89788 soybean, and low frequency of resistance alleles across the main soybean-producing regions support the assumptions of a high-dose/refuge strategy. However, maintenance of reasonable compliance with the refuge recommendation will be essential to delay the evolution of resistance in H. armigera to MON 87701 × MON 89788 soybean in Brazil. PMID:27532632

  18. Broad-scale suppression of cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae), associated with Bt cotton crops in Northern New South Wales, Australia.

    PubMed

    Baker, G H; Tann, C R

    2017-04-01

    The cotton bollworm, Helicoverpa armigera, is a major pest of many agricultural crops in several countries, including Australia. Transgenic cotton, expressing a single Bt toxin, was first used in the 1990s to control H. armigera and other lepidopteran pests. Landscape scale or greater pest suppression has been reported in some countries using this technology. However, a long-term, broad-scale pheromone trapping program for H. armigera in a mixed cropping region in eastern Australia caught more moths during the deployment of single Bt toxin cotton (Ingard®) (1996-2004) than in previous years. This response can be attributed, at least in part, to (1) a precautionary cap (30% of total cotton grown, by area) being applied to Ingard® to restrict the development of Bt resistance in the pest, and (2) during the Ingard® era, cotton production greatly increased (as did that of another host plant, sorghum) and H. armigera (in particular the 3rd and older generations) responded in concert with this increase in host plant availability. However, with the replacement of Ingard® with Bollgard II® cotton (containing two different Bt toxins) in 2005, and recovery of the cotton industry from prevailing drought, H. armigera failed to track increased host-plant supply and moth numbers decreased. Greater toxicity of the two gene product, introduction of no cap on Bt cotton proportion, and an increase in natural enemy abundance are suggested as the most likely mechanisms responsible for the suppression observed.

  19. Isotopes and Trace Elements as Natal Origin Markers of Helicoverpa armigera – An Experimental Model for Biosecurity Pests

    PubMed Central

    Holder, Peter W.; Armstrong, Karen; Van Hale, Robert; Millet, Marc-Alban; Frew, Russell; Clough, Timothy J.; Baker, Joel A.

    2014-01-01

    Protecting a nation's primary production sector and natural estate is heavily dependent on the ability to determine the risk presented by incursions of exotic insect species. Identifying the geographic origin of such biosecurity breaches can be crucial in determining this risk and directing the appropriate operational responses and eradication campaigns, as well as ascertaining incursion pathways. Reading natural abundance biogeochemical markers using mass spectrometry is a powerful tool for tracing ecological pathways as well as provenance determination of commercial products and items of forensic interest. However, application of these methods to trace insects has been underutilised to date and our understanding in this field is still in a phase of basic development. In addition, biogeochemical markers have never been considered in the atypical situation of a biosecurity incursion, where sample sizes are often small, and of unknown geographic origin and plant host. These constraints effectively confound the interpretation of the one or two isotope geo-location markers systems that are currently used, which are therefore unlikely to achieve the level of provenance resolution required in biosecurity interceptions. Here, a novel approach is taken to evaluate the potential for provenance resolution of insect samples through multiple biogeochemical markers. The international pest, Helicoverpa armigera, has been used as a model species to assess the validity of using naturally occurring δ2H, 87Sr/86Sr, 207Pb/206Pb and 208Pb/206Pb isotope ratios and trace element concentration signatures from single moth specimens for regional assignment to natal origin. None of the biogeochemical markers selected were individually able to separate moths from the different experimental regions (150–3000 km apart). Conversely, using multivariate analysis, the region of origin was correctly identified for approximately 75% of individual H. armigera samples. The geographic resolution

  20. Resistance to Bacillus thuringiensis toxin Cry2Ab in a strain of Helicoverpa armigera (Lepidoptera: Noctuidae) in Australia.

    PubMed

    Mahon, R J; Olsen, K M; Garsia, K A; Young, S R

    2007-06-01

    Transgenic cotton, Gossypium hirsutum L., expressing the crylAc and cry2Ab genes from Bacillus thuringiensis (Bt) Berliner variety kurstaki in a pyramid (Bollgard II) was widely planted for the first time in Australia during the 2004-2005 growing season. Before the first commercial Bollgard II crops, limited amounts of cotton expressing only the crylAc gene (Ingard) was grown for seven seasons. No field failures due to resistance to CrylAc toxin were observed during that period and a monitoring program indicated that the frequency of genes conferring high level resistance to the CrylAc toxin were rare in the major pest of cotton, Helicoverpa armigera (Htibner) (Lepidoptera: Noctuidae). Before the deployment of Bollgard II, an allele conferring resistance to Cry2Ab toxin was detected in field-collected H. armigera. We established a colony (designated SP15) consisting of homozygous resistant individuals and examined their characteristics through comparison with individuals from a Bt-susceptible laboratory colony (GR). Through specific crosses and bioassays, we established that the resistance present in SP15 was due to a single autosomal gene. The resistance was recessive. Homozygotes were highly resistant to Cry2Ab toxin, so much so, that we were unable to induce significant mortality at the maximum concentration of toxin available. Homozygotes also were unaffected when fed leaves of a cotton variety expressing the cry2Ab gene. Although cross-resistant to Cry2Aa toxin, SP15 was susceptible to CrylAc and to the Bt product DiPel.

  1. Infection of Helicoverpa armigera by endophytic Beauveria bassiana colonizing tomato plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel endophytic strain of Beauveria bassiana was isolated from leaf tissue of a wild tomato plant. This strain and two B. bassiana strains previously isolated from soil were evaluated for their ability to endophytically colonize tomatoes and subsequent in planta efficacy against Helicoverpa armig...

  2. Molecular cloning and expression patterns of the molt-regulating transcription factor HHR3 from Helicoverpa armigera.

    PubMed

    Zhao, X-F; Wang, J-X; Xu, X-L; Li, Z-M; Kang, C-J

    2004-08-01

    Molt-regulating transcription factors, hormone receptor 3 (HR3), play important roles in regulating expression of tissue-specific genes involved in insect molting and metamorphosis. A 1668 bp cDNA encoding a molt-regulating transcription factor (HHR3) was cloned from Helicoverpa armigera, which encodes a protein made up of 556 amino acids. This 62 kDa protein was found to have an isoelectric point (pI) of 6.52. There was no signal peptide or N-glycosylation site found in this cDNA. A DNA-binding region signature of nuclear hormone receptor was found from amino acids 107-133. A possible outside to inside transmembrane helice was found from amino acids 72-90. Northern blots of the larvae revealed five bands of HHR3 named as band 0, 1, 2, 3 and 4 with molecular masses determined as 2.1, 2.6, 3.6, 4.5 and 5.5 kb, respectively. The expression patterns of HHR3 in vivo were variable with developmental stages and tissues. Results showed that band 1-4 of HHR3 was only briefly expressed during molting, which suggested these bands are involved in the regulation of molting cascade, whereas band 0 was expressed in both molting and feeding larvae. Band 1 and 2 of HHR3 could be induced from epidermis of newly molted 6th instar larvae by non-steroidal ecdysone agonist, RH-2485.

  3. A global-wide search for sexual dimorphism of glomeruli in the antennal lobe of female and male Helicoverpa armigera

    PubMed Central

    Zhao, Xin-Cheng; Ma, Bai-Wei; Berg, Bente G.; Xie, Gui-Ying; Tang, Qing-Bo; Guo, Xian-Ru

    2016-01-01

    By using immunostaining and three-dimensional reconstruction, the anatomical organization of the antennal lobe glomeruli of the female cotton bollworm Helicoverpa armigera was investigated. Eighty-one glomeruli were identified, 15 of which were not previously discovered. The general anatomical organization of the AL of female is similar to that of male and all glomeruli were classified into four sub-groups, including the female-specific glomerular complex, posterior complex, labial-palp pit organ glomerulus, and ordinary glomeruli. A global-wide comparison on the complete glomerular map of female and male was performed and for the first time the quantitative difference in volume for each individual homologous glomerulus was analyzed. We found that the sexual dimorphism includes not only the sex-specific glomeruli but also some of the other glomeruli. The findings in the present study may provide a reference to examine the antennal-lobe organization more in detail and to identify new glomeruli in other moth species. In addition, the complete identification and global-wide comparison of the sexes provide an important basis for mapping the function of distinct glomeruli and for understanding neural mechanisms underlying sexually dimorphic olfactory behaviors. PMID:27725758

  4. Dynamic transcriptome analysis and volatile profiling of Gossypium hirsutum in response to the cotton bollworm Helicoverpa armigera.

    PubMed

    Huang, Xin-Zheng; Chen, Jie-Yin; Xiao, Hai-Jun; Xiao, Yu-Tao; Wu, Juan; Wu, Jun-Xiang; Zhou, Jing-Jiang; Zhang, Yong-Jun; Guo, Yu-Yuan

    2015-07-07

    In response to insect herbivory, plants emit elevated levels of volatile organic compounds for direct and indirect resistance. However, little is known about the molecular and genomic basis of defense response that insect herbivory trigger in cotton plants and how defense mechanisms are orchestrated in the context of other biological processes. Here we monitored the transcriptome changes and volatile characteristics of cotton plants in response to cotton bollworm (CBW; Helicoverpa armigera) larvae infestation. Analysis of samples revealed that 1,969 transcripts were differentially expressed (log2|Ratio| ≥ 2; q ≤ 0.05) after CBW infestation. Cluster analysis identified several distinct temporal patterns of transcriptome changes. Among CBW-induced genes, those associated with indirect defense and jasmonic acid pathway were clearly over-represented, indicating that these genes play important roles in CBW-induced defenses. The gas chromatography-mass spectrometry (GC-MS) analyses revealed that CBW infestation could induce cotton plants to release volatile compounds comprised lipoxygenase-derived green leaf volatiles and a number of terpenoid volatiles. Responding to CBW larvae infestation, cotton plants undergo drastic reprogramming of the transcriptome and the volatile profile. The present results increase our knowledge about insect herbivory-induced metabolic and biochemical processes in plants, which may help improve future studies on genes governing processes.

  5. Molecular and biochemical characterization of the effects of insecticidal toxin from Meloidae beetles on Helicoverpa armigera (Hub.) (Lepidoptera: Noctuidae).

    PubMed

    Khan, R A; Rashid, M; Wang, D; Zhang, Y L

    2013-10-10

    The molecular and biochemical effects of an insecticidal toxin extracted from Meloidae beetles were investigated on Helicoverpa armigera. The toxin was identified as cantharidin, a well-known natural compound produced by beetles of family Meloidae and Oedemeridae. Furthermore, the effect of the toxin on the metabolic enzymes alkaline phosphatase (ALP) and glutathione S-transferase (GST), responsible for the metabolism of insecticides, was also investigated. Results of a diet incorporation bioassay performed under laboratory conditions showed that the LC50 value of cantharidin was 0.068 mg/g. The body weight of the insect was also significantly reduced by cantharidin treatment. The LC10 concentration of cantharidin, 0.01 mg/g, was also tested to determine its effect on ALP and GST. Our results showed that cantharidin significantly inhibited ALP activity after 48 h, whereas GST activity was significantly inhibited after 24 h. The decline of ALP and GST transcript levels was also validated by semiquantitative RT-PCR analysis. It may be concluded from the results that ALPs and GSTs may be targets of the cantharidin intoxication mechanism. Moreover, the inability of ALP and GST to metabolize cantharidin shows that the mechanism of detoxification for cantharidin is different from that for conventional insecticides. On the basis of our investigations, the chemical structure of insecticides may be modified using a model structure of cantharidin, to avoid metabolism by metabolic enzymes.

  6. Development associated profiling of chitinase and microRNA of Helicoverpa armigera identified chitinase repressive microRNA.

    PubMed

    Agrawal, Neema; Sachdev, Bindiya; Rodrigues, Janneth; Sree, K Sowjanya; Bhatnagar, Raj K

    2013-01-01

    Expression of chitinase is developmentally regulated in insects in consonance with their molting process. During the larval-larval metamorphosis in Helicoverpa armigera, chitinase gene expression varies from high to negligible. In the five-day metamorphic course of fifth-instar larvae, chitinase transcript is least abundant on third day and maximal on fifth day. MicroRNA library prepared from these highest and lowest chitinase-expressing larval stages resulted in isolation of several miRNAs. In silico analysis of sequenced miRNAs revealed three miRNAs having sequence similarity to 3'UTR of chitinase. Gene-targeted specific action of these miRNAs, was investigated by luciferase reporter having 3'UTR of chitinase. Only one of three miRNAs, miR-24, inhibited luciferase expression. Further, a day-wise in vivo quantification of miR-24 in fifth-instar larvae revealed a negative correlation with corresponding chitinase transcript abundance. The force-feeding of synthetic miR-24 induced significant morphological aberrations accompanied with arrest of molting. These miR-24 force-fed larvae revealed significantly reduced chitinase transcript abundance.

  7. Effects of dietary quercetin on performance and cytochrome P450 expression of the cotton bollworm, Helicoverpa armigera.

    PubMed

    Liu, D; Yuan, Y; Li, M; Qiu, X

    2015-12-01

    Quercetin is ubiquitous in terrestrial plants. The cotton bollworm Helicoverpa armigera as a highly polyphagous insect has caused severe crop losses. Until now, interactions between this pest and quercetin are poorly understood at the biochemical and molecular levels. In this study, we investigated the in vivo effects of quercetin on performance of cotton bollworm and on cytochrome P450 (P450) expression. Deleterious effects of quercetin on the performance of the cotton bollworm, including growth, survival, pupation and adult emergence were observed after oral administration of 3 and 10 mg g(-1) quercetin to larvae since the third instar, whereas no significant toxic effect was found at 0.1 mg g(-1) quercetin treatment. Piperonyl butoxide treatment enhanced the toxicity of quercetin. In vitro metabolism studies showed that quercetin was rapidly transformed by gut enzymes of fifth instar larvae of the cotton bollworm. qRT-PCR results revealed that the effect of quercetin on P450 expression was tissue- and dose-specific. Quercetin regulated P450 expression in a mild manner, and it could serve as P450 inducer (CYP337B1, CYP6B6) or repressor (CYP337B1, CYP6B7, CYP6B27, CYP9A14, CYP6AE11, and CYP4M7). These findings are important for advancing our understanding of the biochemical and molecular response of insects to plant toxins and have implications for a smart pest control.

  8. Functional analysis of the ABCs of eye color in Helicoverpa armigera with CRISPR/Cas9-induced mutations

    PubMed Central

    Khan, Sher Afzal; Reichelt, Michael; Heckel, David G.

    2017-01-01

    Many insect pigments are localized in subcellular pigment granules, and transport of pigment precursors from the cytoplasm is accomplished by ABC proteins. Drosophila melanogaster has three half-transporter genes (white, scarlet, and brown, all affecting eye pigments) and Bombyx mori has a fourth (ok). The White, Brown, Scarlet and Ok proteins each have one transmembrane and one cytoplasmic domain and they heterodimerize to form functional transporters with different substrate specificities. We used CRISPR/Cas9 to create somatic and germ-line knockout mutations of these four genes in the noctuid moth Helicoverpa armigera. Somatic knockouts of white block pigmentation of the egg, first instar larva and adult eye, but germ-line knockouts of white are recessive lethal in the embryo. Knockouts of scarlet are viable and produce pigmentless first instar larvae and yellow adult eyes lacking xanthommatin. Knockouts of brown show no phenotypic effects on viability or pigmentation. Knockouts of ok are viable and produce translucent larval cuticle and black eyes. CRISPR/Cas9-induced mutations are a useful tool for analyzing how essential and non-essential genes interact to produce the diversity of insect pigmentation patterns found in nature. PMID:28053351

  9. Nutritional performance and activity of some digestive enzymes of the cotton bollworm, Helicoverpa armigera, in response to seven tested bean cultivars.

    PubMed

    Namin, Foroogh Rahimi; Naseri, Bahram; Razmjou, Jabraeil

    2014-01-01

    Nutritional performance and activity of some digestive enzymes (protease and α-amylase) of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) in response to feeding on bean (Phaseolus vulgaris L. (Fabales: Fabaceae)) cultivars (Shokufa, Akhtar, Sayyad, Naz, Pak, Daneshkadeh, and Talash) were evaluated under laboratory conditions (25 ± 1°C, 65 ± 5% RH, and a 16:8 L:D photoperiod). The highest and lowest respective values of approximate digestibility were observed when fourth, fifth, and sixth larval instar H. armigera were fed red kidney bean Akhtar and white kidney bean Daneshkadeh. The efficiency of conversion of ingested and digested food was highest when H. armigera was fed red kidney beans Akhtar and Naz and lowest when they were fed white kidney bean Pak. The highest protease activity of fifth instars was observed when they were fed red kidney bean Naz, and the highest amylase activity of fifth instars was observed when they were fed red kidney bean Sayyad. Sixth instar larvae that fed on red kidney bean Sayyad showed the highest protease activity. Larvae reared on common bean Talash and white kidney bean Pak showed the highest amylase activity. Among bean cultivars tested, red kidney bean Sayyad was the most unsuitable host for feeding H. armigera.

  10. A Multiplex Real-Time PCR Assay to Diagnose and Separate Helicoverpa armigera and H. zea (Lepidoptera: Noctuidae) in the New World

    PubMed Central

    Gilligan, Todd M.; Tembrock, Luke R.; Farris, Roxanne E.; Barr, Norman B.; van der Straten, Marja J.; van de Vossenberg, Bart T. L. H.; Metz-Verschure, Eveline

    2015-01-01

    The Old World bollworm, Helicoverpa armigera (Hübner), and the corn earworm, H. zea (Boddie), are two of the most important agricultural pests in the world. Diagnosing these two species is difficult—adults can only be separated with a complex dissection, and larvae cannot be identified to species using morphology, necessitating the use of geographic origin for identification in most instances. With the discovery of H. armigera in the New World, identification of immature Helicoverpa based on origin is no longer possible because H. zea also occurs in all of the geographic regions where H. armigera has been discovered. DNA barcoding and restriction fragment length polymorphism (RFLP) analyses have been reported in publications to distinguish these species, but these methods both require post-PCR processing (i.e., DNA sequencing or restriction digestion) to complete. We report the first real-time PCR assay to distinguish these pests based on two hydrolysis probes that bind to a segment of the internal transcribed spacer region 2 (ITS2) amplified using a single primer pair. One probe targets H. armigera, the second probe targets H. zea, and a third probe that targets a conserved segment of 18S rDNA is used as a control of DNA quality. The assay can be completed in 50 minutes when using isolated DNA and is successfully tested on larvae intercepted at ports of entry and adults captured during domestic surveys. We demonstrate that the assay can be run in triplex with no negative effects on sensitivity, can be run using alternative real-time PCR reagents and instruments, and does not cross react with other New World Heliothinae. PMID:26558366

  11. A Multiplex Real-Time PCR Assay to Diagnose and Separate Helicoverpa armigera and H. zea (Lepidoptera: Noctuidae) in the New World.

    PubMed

    Gilligan, Todd M; Tembrock, Luke R; Farris, Roxanne E; Barr, Norman B; van der Straten, Marja J; van de Vossenberg, Bart T L H; Metz-Verschure, Eveline

    2015-01-01

    The Old World bollworm, Helicoverpa armigera (Hübner), and the corn earworm, H. zea (Boddie), are two of the most important agricultural pests in the world. Diagnosing these two species is difficult-adults can only be separated with a complex dissection, and larvae cannot be identified to species using morphology, necessitating the use of geographic origin for identification in most instances. With the discovery of H. armigera in the New World, identification of immature Helicoverpa based on origin is no longer possible because H. zea also occurs in all of the geographic regions where H. armigera has been discovered. DNA barcoding and restriction fragment length polymorphism (RFLP) analyses have been reported in publications to distinguish these species, but these methods both require post-PCR processing (i.e., DNA sequencing or restriction digestion) to complete. We report the first real-time PCR assay to distinguish these pests based on two hydrolysis probes that bind to a segment of the internal transcribed spacer region 2 (ITS2) amplified using a single primer pair. One probe targets H. armigera, the second probe targets H. zea, and a third probe that targets a conserved segment of 18S rDNA is used as a control of DNA quality. The assay can be completed in 50 minutes when using isolated DNA and is successfully tested on larvae intercepted at ports of entry and adults captured during domestic surveys. We demonstrate that the assay can be run in triplex with no negative effects on sensitivity, can be run using alternative real-time PCR reagents and instruments, and does not cross react with other New World Heliothinae.

  12. Molecular Characterization and Function Analysis of the Vitellogenin Receptor from the Cotton Bollworm, Helicoverpa armigera (Hübner) (Lepidoptera, Noctuidae)

    PubMed Central

    Xiao, Haijun; Xie, Bingtang; Smagghe, Guy; Guo, Yuyuan; Liang, Gemei

    2016-01-01

    Developing oocytes accumulate plentiful yolk protein during oogenesis through receptor-mediated endocytosis. The vitellogenin receptor (VgR), belonging to the low-density lipoprotein receptor (LDLR) family, regulates the absorption of yolk protein. In this work, the full-length vitellogenin receptor (HaVgR) in the cotton bollworm Helicoverpa armigera was identified, encoding a 1817 residue protein. Sequence alignment revealed that the sequence of HaVgR contained all of the conservative structural motifs of LDLR family members, and phylogenetic analysis indicated that HaVgR had a high identity among Lepidoptera and was distinct from that of other insects. Consistent with other insects, HaVgR was specifically expressed in ovarian tissue. The developmental expression pattern showed that HaVgR was first transcribed in the newly metamorphosed female adults, reached a peak in 2-day-old adults and then declined. Western blot analysis also revealed an ovarian-specific and developing expression pattern, which was consistent with the HaVgR mRNA transcription. Moreover, RNAi-mediated HaVgR knockdown strongly reduced the VgR expression in both the mRNA and protein levels, which inhibited the yolk protein deposition in the ovaries, led to the dramatic accumulation of vitellogenin and the up-regulation of HaVg expression in hemolymph, and eventually resulted in a declined fecundity. Together, all of these findings demonstrate that HaVgR is a specific receptor in uptake and transportation of yolk protein for the maturation of oocytes and that it plays a critical role in female reproduction. PMID:27192057

  13. Procarboxypeptidase A from the insect pest Helicoverpa armigera and its derived enzyme. Two forms with new functional properties.

    PubMed

    Bayés, Alex; Sonnenschein, Anka; Daura, Xavier; Vendrell, Josep; Aviles, Francesc X

    2003-07-01

    Although there is a significant knowledge about mammalian metallocarboxypeptidases, the data available on this family of enzymes is very poor for invertebrate forms. Here we present the biochemical characterization of a metallocarboxypeptidase from the insect Helicoverpa armigera (Lepidoptera: Noctuidae), a devastating pest spread in subtropical regions of Europe, Asia, Africa and Oceania. The zymogen of this carboxypeptidase (PCPAHa) has been expressed at high levels in a Pichia pastoris system and shown to display the characteristics of the enzyme purified from the insect midgut. The in vitro activation process of the proenzyme differs significantly from the mammalian ones. The lysine-specific endoprotease LysC activates PCPAHa four times more efficiently than trypsin, the general activating enzyme for all previously studied metalloprocarboxypeptidases. LysC and trypsin independently use two different activation targets and the presence of sugars in the vicinity of the LysC activation point affects the activation process, indicating a possible modulation of the activation mechanism. During the activation with LysC the prodomain is degraded, while the carboxypeptidase moiety remains intact except for a C-terminal octapeptide that is rapidly released. Interestingly, the sequence at the cleavage point for the release of the octapeptide is also found at the boundary between the activation peptide and the enzyme moieties. The active enzyme (CPAHa) is shown to have a very broad substrate specificity, as it appears to be the only known metallocarboxypeptidase capable of efficiently hydrolysing basic and aliphatic residues and, to a much lower extent, acidic residues. Two carboxypeptidase inhibitors, from potato and leech, were tested against CPAHa. The former, of vegetal origin, is the most efficient metallocarboxypeptidase inhibitor described so far, with a Ki in the pm range.

  14. The seesaw effect of winter temperature change on the recruitment of cotton bollworms Helicoverpa armigera through mismatched phenology.

    PubMed

    Reddy, Gadi V P; Shi, Peijian; Hui, Cang; Cheng, Xiaofei; Ouyang, Fang; Ge, Feng

    2015-12-01

    Knowing how climate change affects the population dynamics of insect pests is critical for the future of integrated pest management. Rising winter temperatures from global warming can drive increases in outbreaks of some agricultural pests. In contrast, here we propose an alternative hypothesis that both extremely cold and warm winters can mismatch the timing between the eclosion of overwintering pests and the flowering of key host plants. As host plants normally need higher effective cumulative temperatures for flowering than insects need for eclosion, changes in flowering time will be less dramatic than changes in eclosion time, leading to a mismatch of phenology on either side of the optimal winter temperature. We term this the "seesaw effect." Using a long-term dataset of the Old World cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in northern China, we tested this seesaw hypothesis by running a generalized additive model for the effects of the third generation moth in the preceding year, the winter air temperature, the number of winter days below a critical temperature and cumulative precipitation during winter on the demography of the overwintering moth. Results confirmed the existence of the seesaw effect of winter temperature change on overwintering populations. Pest management should therefore consider the indirect effect of changing crop phenology (whether due to greenhouse cultivation or to climate change) on pest outbreaks. As arthropods from mid- and high latitudes are actually living in a cooler thermal environment than their physiological optimum in contrast to species from lower latitudes, the effects of rising winter temperatures on the population dynamics of arthropods in the different latitudinal zones should be considered separately. The seesaw effect makes it more difficult to predict the average long-term population dynamics of insect pests at high latitudes due to the potential sharp changes in annual growth rates

  15. Influence of oxalic and malic acids in chickpea leaf exudates on the biological activity of CryIAc towards Helicoverpa armigera.

    PubMed

    Devi, V Surekha; Sharma, Hari C; Rao, P Arjuna

    2013-04-01

    Efforts are being made to express toxin genes from the bacterium, Bacillus thuringiensis (Bt) in chickpea for minimizing the losses due to the pod borer, Helicoverpa armigera. However, there is an apprehension that acidic exudates in chickpea leaves may influence the protoxin-toxin conversion in the insect midgut, and thus, reduce the efficacy of Bt toxins. Therefore, we studied the influence of organic acids (oxalic acid and malic acid) present in the trichome exudates of chickpea on the biological activity and binding of Bt δ-endotoxin Cry1Ac to brush border membrane vesicles (BBMV) of the pod borer, H. armigera. Oxalic and malic acids in combination at concentrations present in chickpea leaves did not influence the biological activity of Bt toxin Cry1Ac towards H. armigera larvae. Amounts of Cry1Ac protein in the midgut of insects reared on diets with organic acids were similar to those reared on artificial diet without the organic acids. However, very high concentrations of the organic acids reduced the amounts of Cry1Ac in the midgut of H. armigera larvae. Organic acids in the artificial diet also increased the excretion of Cry1Ac in the fecal matter. Organic acids reduced the amount of protein in the BBMV of insects reared on diets with Cry1Ac, possibly because of reduced size of the larvae. Oxalic and malic acids at concentrations present in chickpea leaves did not affect the biological activity of Cry1Ac, but it will be desirable to have high levels of expression of Cry1Ac toxin proteins in chickpea for effective control of the pod borer, H. armigera.

  16. Effectiveness of Bacillus thuringiensis-Transgenic Chickpeas and the Entomopathogenic Fungus Metarhizium anisopliae in Controlling Helicoverpa armigera (Lepidoptera: Noctuidae)▿

    PubMed Central

    Lawo, N. C.; Mahon, R. J.; Milner, R. J.; Sarmah, B. K.; Higgins, T. J. V.; Romeis, J.

    2008-01-01

    The use of genetically modified (Bt) crops expressing lepidopteran-specific Cry proteins derived from the soil bacterium Bacillus thuringiensis is an effective method to control the polyphagous pest Helicoverpa armigera. As H. armigera potentially develops resistance to Cry proteins, Bt crops should be regarded as one tool in integrated pest management. Therefore, they should be compatible with biological control. Bioassays were conducted to understand the interactions between a Cry2Aa-expressing chickpea line, either a susceptible or a Cry2A-resistant H. armigera strain, and the entomopathogenic fungus Metarhizium anisopliae. In a first concentration-response assay, Cry2A-resistant larvae were more tolerant of M. anisopliae than susceptible larvae, while in a second bioassay, the fungus caused similar mortalities in the two strains fed control chickpea leaves. Thus, resistance to Cry2A did not cause any fitness costs that became visible as increased susceptibility to the fungus. On Bt chickpea leaves, susceptible H. armigera larvae were more sensitive to M. anisopliae than on control leaves. It appeared that sublethal damage induced by the B. thuringiensis toxin enhanced the effectiveness of M. anisopliae. For Cry2A-resistant larvae, the mortalities caused by the fungus were similar when they were fed either food source. To examine which strain would be more likely to be exposed to the fungus, their movements on control and Bt chickpea plants were compared. Movement did not appear to differ among larvae on Bt or conventional chickpeas, as indicated by the number of leaflets damaged per leaf. The findings suggest that Bt chickpeas and M. anisopliae are compatible to control H. armigera. PMID:18487396

  17. Recombinantly expressed isoenzymic aminopeptidases from Helicoverpa armigera (American cotton bollworm) midgut display differential interaction with closely related Bacillus thuringiensis insecticidal proteins.

    PubMed Central

    Rajagopal, R; Agrawal, Neema; Selvapandiyan, Angamuthu; Sivakumar, S; Ahmad, Suhail; Bhatnagar, Raj K

    2003-01-01

    Several investigators have independently identified membrane-associated aminopeptidases in the midgut of insect larvae as the initial interacting ligand to the insecticidal crystal proteins of Bacillus thuringiensis. Though several isoenzymes of aminopeptidases have been identified from the midgut of an insect and their corresponding cDNA cloned, only one of the isoform has been expressed heterologously and studied for its binding to Cry toxins. Here we report the cloning and expression of two aminopeptidases N from Helicoverpa armigera (American cotton bollworm) (HaAPNs). The full-length cDNA of H. armigera APN1 (haapn1) is 3205 bp in size and encodes a 1000-amino-acid protein, while H. armigera APN2 (haapn2) is 3116 bp in size and corresponds to a 1012-amino-acid protein. Structurally these proteins show sequence similarity to other insect aminopeptidases and possess characteristic aminopeptidase motifs. Both the genes have been expressed in Trichoplusia ni (cabbage looper) cells using a baculovirus expression vector. The expressed aminopeptidases are membrane-associated, catalytically active and glycosylated. Ligand-blot analysis of both these aminopeptidases with bioactive Cry1Aa, Cry1Ab and Cry1Ac proteins displayed differential interaction. All the three toxins bound to HaAPN1, whereas only Cry1Ac interacted with HaAPN2. This is the first report demonstrating differential Cry-toxin-binding abilities of two different aminopeptidases from a susceptible insect. PMID:12441000

  18. A bifunctional α-amylase/trypsin inhibitor from pigeonpea seeds: Purification, biochemical characterization and its bio-efficacy against Helicoverpa armigera.

    PubMed

    Gadge, Prafull P; Wagh, Sandip K; Shaikh, Faiyaz K; Tak, Rajesh D; Padul, Manohar V; Kachole, Manvendra S

    2015-11-01

    This paper evaluates α-amylase inhibitor (α-AI) mediated defense of pigeonpea against Helicoverpa armigera. A bifunctional α-amylase/trypsin inhibitor was purified from the seeds of pigeonpea by native liquid phase isoelectric focusing (N-LP-IEF), affinity chromatography and preparative electrophoresis. Its in-vivo and in-vitro interaction with midgut amylases of H. armigera was studied along with growth inhibitory activity. One and two dimensional (2D) zymographic analyses revealed that the purified inhibitor is dimeric glycoprotein (60.2kDa and 56kDa) exist in a multi-isomeric form with five pI variants (pI 5.5 to 6.3). It was found to be heat labile with complete inactivation up to 80°C and stable over a wide range of pH (4-11). The slow binding and competitive type of α-amylase inhibition was observed with 0.08μM of dissociation constant (Ki) for the enzyme-inhibitor complex (EI). The internal protein sequence of two subunits obtained by mass spectrometry matched with cereal-type α-AI, a conserved domain from AAI_LTSS superfamily and sialyltransferase-like protein respectively. In-vivo studies indicated up-regulation of total midgut α-amylase activity with negative effect on growth rate of H. armigera suggesting its suitability for pest control.

  19. Population genetic structure of the cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in India as inferred from EPIC-PCR DNA markers.

    PubMed

    Behere, Gajanan Tryambak; Tay, Wee Tek; Russell, Derek Alan; Kranthi, Keshav Raj; Batterham, Philip

    2013-01-01

    Helicoverpa armigera is an important pest of cotton and other agricultural crops in the Old World. Its wide host range, high mobility and fecundity, and the ability to adapt and develop resistance against all common groups of insecticides used for its management have exacerbated its pest status. An understanding of the population genetic structure in H. armigera under Indian agricultural conditions will help ascertain gene flow patterns across different agricultural zones. This study inferred the population genetic structure of Indian H. armigera using five Exon-Primed Intron-Crossing (EPIC)-PCR markers. Nested alternative EPIC markers detected moderate null allele frequencies (4.3% to 9.4%) in loci used to infer population genetic structure but the apparently genome-wide heterozygote deficit suggests in-breeding or a Wahlund effect rather than a null allele effect. Population genetic analysis of the 26 populations suggested significant genetic differentiation within India but especially in cotton-feeding populations in the 2006-07 cropping season. In contrast, overall pair-wise F(ST) estimates from populations feeding on food crops indicated no significant population substructure irrespective of cropping seasons. A Baysian cluster analysis was used to assign the genetic make-up of individuals to likely membership of population clusters. Some evidence was found for four major clusters with individuals in two populations from cotton in one year (from two populations in northern India) showing especially high homogeneity. Taken as a whole, this study found evidence of population substructure at host crop, temporal and spatial levels in Indian H. armigera, without, however, a clear biological rationale for these structures being evident.

  20. Oviposition site selection and survival of susceptible and resistant larvae of Helicoverpa armigera (Lepidoptera: Noctuidae) on Bt and non-Bt cotton.

    PubMed

    Luong, T T A; Downes, S J; Cribb, B; Perkins, L E; Zalucki, M P

    2016-12-01

    In Australia Bt cotton has been planted since 1996, and has greatly improved the control of its key target Helicoverpa armigera (Hübner). There is no strong evidence that genetically modified cotton has been selected for significant physiological resistance to Bt toxin in field populations. There are many possible explanations for the lack of apparent selection that range from high compliance with the resistance management strategy for this technology to a lack of behavioral preference in key traits such as oviposition that could favor survival. To date most experiments that test oviposition of H. armigera on Bt cotton vs. conventional cotton have been done with susceptible moths. We determine the oviposition preference of a field isolated Bt resistant line of H. armigera and a susceptible counterpart when given a choice of non-Bt cotton and Bt-cotton with the same genetic background, and test whether there is any relationship between oviposition site selection (different plant structures) and the survival of the first instar larvae. Within cotton plants, our experiments consistently showed that both resistant and susceptible moths did not choose plants or plant parts that were less toxic in terms of Bt toxin on which to lay eggs. There was one exception in that susceptible moths were more likely to lay eggs on squares of Bt cotton plants than squares of non-Bt cotton. As expected, the mortality of susceptible H. armigera neonates was significantly higher on structures of Bt cotton plants than on those structures of conventional cotton, and survival was greater on flowers than on other structures of Bt cotton. This confirms opportunities for selection for resistance, and demonstrates no advantage in this respect to carrying resistance genes that might overcome the Bt toxins.

  1. Effects of soil temperature and snow cover on the mortality of overwintering pupae of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae)

    NASA Astrophysics Data System (ADS)

    Huang, Jian

    2016-07-01

    Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is one of the most damaging insect pests in the world. However, little is known about the effects of snow cover and soil temperature on the overwintering pupae of H. armigera. A field experiment was conducted from November 2, 2012 to April 24, 2013 at the agrometeorological experimental station in Wulanwusu, China. Overwintering pupae were embedded into the soil at depths of 5, 10, and 15 cm in the following four treatments: without snow cover, snow cover, and increased temperatures from 600 and 1200 W infrared lights. The results showed that snow cover and rising temperatures could all markedly increase soil temperatures, which was helpful in improving the survival of the overwintering pupae of H. armigera. The mortality of overwintering pupae (MOP) at a depth of 15 cm was the highest, and the MOP at a depth of 5 cm followed. The lower accumulated temperature (≤0 °C) (AT ≤ °C) led to the higher MOP, and the lower diurnal soil temperature range (DSTR) likely led to the lower MOP. After snowmelt, the MOPs at the depths of 5 and 10 cm increased as the soil temperature increased, especially in April. The AT of the soil (≤0 °C) was the factor with the strongest effect on MOP. The soil moisture content was not a major factor affecting the MOP in this semiarid region because precipitation was 45 mm over the entire experimental period. With climate warming, the MOP will likely decrease, and the overwintering boundary air temperatures of H. armigera should be expanded due to higher soil temperatures and increased snow cover.

  2. Purification and Partial Characterization of Trypsin-Specific Proteinase Inhibitors from Pigeonpea Wild Relative Cajanus platycarpus L. (Fabaceae) Active against Gut Proteases of Lepidopteran Pest Helicoverpa armigera

    PubMed Central

    Swathi, Marri; Mishra, Prashant K.; Lokya, Vadthya; Swaroop, Vanka; Mallikarjuna, Nalini; Dutta-Gupta, Aparna; Padmasree, Kollipara

    2016-01-01

    Proteinase inhibitors (PIs) are natural defense proteins of plants found to be active against gut proteases of various insects. A pigeonpea wild relative Cajanus platycarpus was identified as a source of resistance against Helicoverpa armigera, a most devastating pest of several crops including pigeonpea. In the light of earlier studies, trypsin-specific PIs (CpPI 63) were purified from mature dry seeds of C. platycarpus (ICPW-63) and characterized their biochemical properties in contributing to H. armigera resistance. CpPI 63 possessed significant H. armigera gut trypsin-like proteinase inhibitor (HGPI) activity than trypsin inhibitor (TI) activity. Analysis of CpPI 63 using two-dimensional (2-D) electrophoresis and matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry revealed that it contained several isoinhibitors and small oligomers with masses ranging between 6 and 58 kDa. The gelatin activity staining studies suggest that these isoinhibitors and oligomers possessed strong inhibitory activity against H. armigera gut trypsin-like proteases (HGPs). The N-terminal sequence of the isoinhibitors (pI 6.6 and pI 5.6) of CpPI 63 exhibited 80% homology with several Kunitz trypsin inhibitors (KTIs) as well as miraculin-like proteins (MLPs). Further, modification of lysine residue(s) lead to 80% loss in both TI and HGPI activities of CpPI 63. In contrast, the TI and HGPI activities of CpPI 63 were stable over a wide range of temperature and pH conditions. The reported results provide a biochemical basis for pod borer resistance in C. platycarpus. PMID:27656149

  3. Artificial miRNA-mediated silencing of ecdysone receptor (EcR) affects larval development and oogenesis in Helicoverpa armigera.

    PubMed

    Yogindran, Sneha; Rajam, Manchikatla Venkat

    2016-10-01

    The insect pests are real threat to farmers as they affect the crop yield to a great extent. The use of chemical pesticides for insect pest control has always been a matter of concern as they pollute the environment and are also harmful for human health. Bt (Bacillus thuringensis) technology helped the farmers to get rid of the insect pests, but experienced a major drawback due to the evolution of insects gaining resistance towards these toxins. Hence, alternative strategies are high on demand to control insect pests. RNA-based gene silencing is emerging as a potential tool to tackle with this problem. In this study, we have shown the use of artificial microRNA (amiRNA) to specifically target the ecdysone receptor (EcR) gene of Helicoverpa armigera (cotton bollworm), which attacks several important crops like cotton, tomato chickpea, pigeon pea, etc and causes huge yield losses. Insect let-7a precursor miRNA (pre-miRNA) backbone was used to replace the native miRNA with that of amiRNA. The precursor backbone carrying the 21 nucleotide amiRNA sequence targeting HaEcR was cloned in bacterial L4440 vector for in vitro insect feeding experiments. Larvae fed with Escherichia coli expressing amiRNA-HaEcR showed a reduction in the expression of target gene as well as genes involved in the ecdysone signaling pathway downstream to EcR and exhibited mortality and developmental defects. Stem-loop RT-PCR revealed the presence of amiRNA in the insect larvae after feeding bacteria expressing amiRNA-HaEcR, which was otherwise absent in controls. We also found a significant drop in the reproduction potential (oogenesis) of moths which emerged from treated larvae as compared to control. These results demonstrate the successful use of an insect pre-miRNA backbone to express amiRNA for gene silencing studies in insects. The method is cost effective and can be exploited as an efficient and alternative tool for insect pest management.

  4. Vip3A is responsible for the potency of Bacillus thuringiensis 9816C culture supernatant against Helicoverpa armigera and Spodoptera exigua.

    PubMed

    Cai, Jun; Xiao, Liang; Yan, Bing; Bin, Guan; Chen, Yuehua; Ren, Gaixin

    2006-04-01

    Culture supernatant of Bacillus thuringiensis 9816C had high toxicity against Helicoverpa armigera and Spodoptera exigua. However, it lost insecticidal activities after being bathed in boiling water for 5 min. Acrystalliferous mutants of Bt9816C (Bt9816C-NP1 and Bt9816C-NP2) cured of its endogenous plasmids no longer possessed vip3A gene and toxicity. The 89 kD protein which existed in Bt9816C supernatant disappeared in the two mutants' supernatant; nevertheless, the two mutants still exhibited hemolytic and phospholipase C activity as Bt9816C did. The vip3A gene of Bt9816C, vip3Aa18, was cloned and expressed in Escherichia coli BL21. Bioassay demonstrated that the recombinant E. coli had high toxicity against S. exigua. Taken together, it suggested that Vip3A protein was responsible for the toxicity of Bt9816C culture supernatants.

  5. Effects of Soil Salinity on the Expression of Bt Toxin (Cry1Ac) and the Control Efficiency of Helicoverpa armigera in Field-Grown Transgenic Bt Cotton

    PubMed Central

    Luo, Jun-Yu; Zhang, Shuai; Peng, Jun; Zhu, Xiang-Zhen; Lv, Li-Min; Wang, Chun-Yi; Li, Chun-Hua; Zhou, Zhi-Guo; Cui, Jin-Jie

    2017-01-01

    An increasing area of transgenic Bacillus thuringiensis (Bt) cotton is being planted in saline-alkaline soil in China. The Bt protein level in transgenic cotton plants and its control efficiency can be affected by abiotic stress, including high temperature, water deficiency and other factors. However, how soil salinity affects the expression of Bt protein, thus influencing the control efficiency of Bt cotton against the cotton bollworm (CBW) Helicoverpa armigera (Hübner) in the field, is poorly understood. Our objective in the present study was to investigate the effects of soil salinity on the expression of Bt toxin (Cry1Ac) and the control efficiency of Helicoverpa armigera in field-grown transgenic Bt cotton using three natural saline levels (1.15 dS m-1 [low soil-salinity], 6.00 dS m-1 [medium soil-salinity] and 11.46 dS m-1 [high soil-salinity]). We found that the Bt protein content in the transgenic Bt cotton leaves and the insecticidal activity of Bt cotton against CBW decreased with the increasing soil salinity in laboratory experiments during the growing season. The Bt protein content of Bt cotton leaves in the laboratory were negatively correlated with the salinity level. The CBW populations were highest on the Bt cotton grown in medium-salinity soil instead of the high-salinity soil in field conditions. A possible mechanism may be that the relatively high-salinity soil changed the plant nutritional quality or other plant defensive traits. The results from this study may help to identify more appropriate practices to control CBW in Bt cotton fields with different soil salinity levels. PMID:28099508

  6. Negative Effects of a Nonhost Proteinase Inhibitor of ~19.8 kDa from Madhuca indica Seeds on Developmental Physiology of Helicoverpa armigera (Hübner)

    PubMed Central

    Jamal, Farrukh; Singh, Dushyant; Pandey, Prabhash K.

    2014-01-01

    An affinity purified trypsin inhibitor from the seed flour extracts of Madhuca indica (MiTI) on denaturing polyacrylamide gel electrophoresis showed that MiTI consisted of a single polypeptide chain with molecular mass of ~19.8 kDa. MiTI inhibited the total proteolytic and trypsin-like activities of the midgut proteinases of Helicoverpa armigera larvae by 87.51% and 76.12%, respectively, at concentration of 5 µg/mL with an IC50 of 1.75 µg/mL against trypsin like midgut proteinases. The enzyme kinetic studies demonstrated that MiTI is a competitive inhibitor with a Ki value of 4.1 × 10−10 M for Helicoverpa trypsin like midgut proteinases. In vivo experiments with different concentrations of MiTI in artificial diet (0.5, 1.0, and 1.5% w/w) showed an effective downfall in the larval body weight and an increase in larval mortality. The concentration of MiTI in the artificial diet to cause 50% mortality (LD50) of larvae was 1.5% w/w and that to cause reduction in mass of larvae by 50% (ED50) was 1.0% w/w. Nutritional indices observations suggest the toxic and adverse effects of MiTI on the growth and development of H. armigera larvae. The results suggest a strong bioinsecticidal potential of affinity purified MiTI which can be exploited in insect pest management of crop plants. PMID:25298962

  7. Effects of Soil Salinity on the Expression of Bt Toxin (Cry1Ac) and the Control Efficiency of Helicoverpa armigera in Field-Grown Transgenic Bt Cotton.

    PubMed

    Luo, Jun-Yu; Zhang, Shuai; Peng, Jun; Zhu, Xiang-Zhen; Lv, Li-Min; Wang, Chun-Yi; Li, Chun-Hua; Zhou, Zhi-Guo; Cui, Jin-Jie

    2017-01-01

    An increasing area of transgenic Bacillus thuringiensis (Bt) cotton is being planted in saline-alkaline soil in China. The Bt protein level in transgenic cotton plants and its control efficiency can be affected by abiotic stress, including high temperature, water deficiency and other factors. However, how soil salinity affects the expression of Bt protein, thus influencing the control efficiency of Bt cotton against the cotton bollworm (CBW) Helicoverpa armigera (Hübner) in the field, is poorly understood. Our objective in the present study was to investigate the effects of soil salinity on the expression of Bt toxin (Cry1Ac) and the control efficiency of Helicoverpa armigera in field-grown transgenic Bt cotton using three natural saline levels (1.15 dS m-1 [low soil-salinity], 6.00 dS m-1 [medium soil-salinity] and 11.46 dS m-1 [high soil-salinity]). We found that the Bt protein content in the transgenic Bt cotton leaves and the insecticidal activity of Bt cotton against CBW decreased with the increasing soil salinity in laboratory experiments during the growing season. The Bt protein content of Bt cotton leaves in the laboratory were negatively correlated with the salinity level. The CBW populations were highest on the Bt cotton grown in medium-salinity soil instead of the high-salinity soil in field conditions. A possible mechanism may be that the relatively high-salinity soil changed the plant nutritional quality or other plant defensive traits. The results from this study may help to identify more appropriate practices to control CBW in Bt cotton fields with different soil salinity levels.

  8. Transgenic plants over-expressing insect-specific microRNA acquire insecticidal activity against Helicoverpa armigera: an alternative to Bt-toxin technology.

    PubMed

    Agrawal, Aditi; Rajamani, Vijayalakshmi; Reddy, Vanga Siva; Mukherjee, Sunil Kumar; Bhatnagar, Raj K

    2015-10-01

    The success of Bt transgenics in controlling predation of crops has been tempered by sporadic emergence of resistance in targeted insect larvae. Such emerging threats have prompted the search for novel insecticidal molecules that are specific and could be expressed through plants. We have resorted to small RNA-based technology for an investigative search and focused our attention to an insect-specific miRNA that interferes with the insect molting process resulting in the death of the larvae. In this study, we report the designing of a vector that produces artificial microRNA (amiR), namely amiR-24, which targets the chitinase gene of Helicoverpa armigera. This vector was used as transgene in tobacco. Northern blot and real-time analysis revealed the high level expression of amiR-24 in transgenic tobacco plants. Larvae feeding on the transgenic plants ceased to molt further and eventually died. Our results demonstrate that transgenic tobacco plants can express amiR-24 insectice specific to H. armigera.

  9. Frequency of alleles conferring resistance to the Bt toxins Cry1Ac and Cry2Ab in Australian populations of Helicoverpa armigera (Lepidoptera: Noctuidae).

    PubMed

    Mahon, R J; Olsen, K M; Downes, S; Addison, S

    2007-12-01

    Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is an important lepidopteran pest of cotton (Gossypium spp.) in Australia and the Old World. From 2002, F2 screens were used to examine the frequency of resistance alleles in Australian populations of H. armigera to Bacillus thuringiensis (Bt) CrylAc and Cry2Ab, the two insecticidal proteins present in the transgenic cotton Bollgard II. At that time, Ingard (expressing Cry1Ac) cotton had been grown in Australia for seven seasons, and Bollgard II was about to be commercially released. The principal objective of our study was to determine whether sustained exposure caused an elevated frequency of alleles conferring resistance to Cry1Ac in a species with a track record of evolving resistance to conventional insecticides. No major alleles conferring resistance to Cry1Ac were found. The frequency of resistance alleles for Cry1Ac was <0.0003, with a 95% credibility interval between 0 and 0.0009. In contrast, alleles conferring resistance to Cry2Ab were found at a frequency of 0.0033 (0.0017, 0.0055). The first isolation of this allele was found before the widespread deployment of Bollgard II. For both toxins the experiment-wise detection probability was 94.4%. Our results suggest that alleles conferring resistance to Cry1Ac are rare and that a relatively high baseline frequency of alleles conferring resistance to Cry2Ab existed before the introduction of Bt cotton containing this toxin.

  10. Transgenic Tobacco Expressing the TAT-Helicokinin I-CpTI Fusion Protein Show Increased Resistance and Toxicity to Helicoverpa armigera (Lepidoptera: Noctuidae)

    PubMed Central

    Zhou, Zhou; Li, Yongli; Yuan, Chunyan; Zhang, Yongan; Qu, Liangjian

    2017-01-01

    Insect kinins were shown to have diuretic activity, inhibit weight gain, and have antifeedant activity in insects. In order to study the potential of the TAT-fusion approach to deliver diuretic peptides per os to pest insects, the HezK I peptide from Helicoverpa zea, as a representative of the kinin family, was selected. The fusion gene TAT-HezK I was designed and was used to transform tobacco plants. As a means to further improve the stability of TAT-HezK I, a fusion protein incorporating HezK I, transactivator of transcription (TAT), and the cowpea trypsin inhibitor (CpTI) was also designed. Finally, the toxicity of the different tobacco transgenic strains toward Helicoverpa armigera was compared. The results demonstrated that TAT-HezK I had high toxicity against insects via transgenic expression of the peptide in planta and intake through larval feeding. The toxicity of the fusion TAT-HezK I and CpTI was higher than the CpTI single gene in transgenic tobacco, and the fusion TAT-HezK I and CpTI further enhanced the stability and bioavailability of agents in oral administration. Our research helps in targeting new genes for improving herbivore tolerance in transgenic plant breeding. PMID:28085119

  11. Presence of snow coverage and its thickness affected the mortality of overwintering pupae of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae)

    NASA Astrophysics Data System (ADS)

    Huang, Jian

    2016-10-01

    Helicoverpa armigera causes serious damage to most crops around the world. However, the impacts of snow thickness on the H. armigera overwintering pupae are little known. A field experiment was employed in 2012-2015 at Urumqi, China. At soil depths of 5, 10, and 15 cm, overwintering pupae were embedded with four treatments: no snow cover (NSC), snow cover (SC), increasing snow thickness to 1.5 times the thickness of SC (ISSC-1), and to two times the thickness of SC (ISSC-2). Results suggested that snow cover and increasing snow thickness both significantly increased soil temperatures, which helped to decrease the mortality of overwintering pupae (MOP) of H. armigera. However, the MOP did not always decrease with increases in snow thickness. The MOPs in NSC and ISSC-1 were the highest and the lowest, respectively, though ISSC-2 had much thicker snow thickness than ISSC-1. A maximum snow thickness of 60 cm might lead to the lowest MOP. The longer the snow cover duration (SCD) at a soil depth of 10 cm in March and April was, the higher the MOP was. A thicker snow cover layer led to a higher soil moisture content (SMC) and a lower diurnal soil temperature range (DSTR). The highest and the lowest MOP were at a depth of 15 and 10 cm, respectively. The SMC at the depths of 10 and 15 cm had significant effects on MOP. A lower accumulated temperature (≤0 °C) led to a higher MOP. The DSTR in March of approximately 4.5 °C might cause the lowest MOP. The largest influence factor for the MOPs at depths of 5 and 10 cm and the combined data were the SCDs during the whole experimental period, and for the MOPs at a depth of 15 cm was the soil temperature in November.

  12. Tradeoff between reproduction and resistance evolution to Bt-toxin in Helicoverpa armigera: regulated by vitellogenin gene expression.

    PubMed

    Zhang, W N; Xiao, H J; Liang, G M; Guo, Y Y; Wu, K M

    2014-08-01

    Evolution of resistance to insecticides usually has fitness tradeoffs associated with adaptation to the stress. The basic regulation mechanism of tradeoff between reproduction and resistance evolution to Bacillus thuringiensis (Bt) toxin in the cotton bollworm, Helicoverpa armigera (Ha), based on the vitellogenin (Vg) gene expression was analyzed here. The full-length cDNA of the Vg gene HaVg (JX504706) was cloned and identified. HaVg has 5704 base pairs (bp) with an open reading frame (ORF) of 5265 bp, which encoded 1756 amino acid protein with a predicted molecular mass of 197.28 kDa and a proposed isoelectric point of 8.74. Sequence alignment analysis indicated that the amino acid sequence of HaVg contained all of the conserved domains detected in the Vgs of the other insects and had a high similarity with the Vgs of the Lepidoptera insects, especially Noctuidae. The resistance level to Cry1Ac Bt toxin and relative HaVg mRNA expression levels among the following four groups: Cry1Ac-susceptible strain (96S), Cry1Ac-resistant strain fed on artificial diet with Bt toxin for 135 generations (BtR stands for the Cry1Ac Bt resistance), progeny of the Cry1Ac-resistant strain with a non-Bt-toxin artificial diet for 38 generations (CK1) and the direct descendants of the 135th-generation resistant larvae which were fed on an artificial diet without the Cry1Ac protein (CK2) were analyzed. Compared with the 96S strain, the resistance ratios of the BtR strain, the CK1 strain and the CK2 strain were 2917.15-, 2.15- and 2037.67-fold, respectively. The maximum relative HaVg mRNA expression levels of the BtR strain were approximately 50% less than that of the 96S strain, and the coming of maximum expression was delayed for approximately 4 days. The overall trend of the HaVg mRNA expression levels in the CK1 strain was similar to that in the 96S strain, and the overall trend of the HaVg mRNA expression levels in the CK2 strain was similar to that in the BtR strain. Our results

  13. Effect of pyramiding Bt and CpTI genes on resistance of cotton to Helicoverpa armigera (Lepidoptera: Noctuidae) under laboratory and field conditions.

    PubMed

    Cui, Jinjie; Luo, Junyu; Van Der Werf, Wopke; Ma, Yan; Xia, Jingyuan

    2011-04-01

    Transgenic cotton (Cossypium hirsutum L.) varieties, adapted to China, have been bred that express two genes for resistance to insects, the CrylAc gene from Bacillus thuringiensis (Berliner) (Bt), and a trypsin inhibitor gene from cowpea (CpTI). Effectiveness of the double gene modification in conferring resistance to cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), was studied in laboratory and field experiments. In each experiment, performance of Bt+CpTI cotton was compared with Bt cotton and to a conventional nontransgenic variety. Larval survival was lower on both types of transgenic variety, compared with the conventional cotton. Survival of first-, second-, and third-stage larvae was lower on Bt+CpTI cotton than on Bt cotton. Plant structures differed in level of resistance, and these differences were similar on Bt and Bt + CpTI cotton. Likewise, seasonal trends in level of resistance in different plant structures were similar in Bt and Bt+CpTI cotton. Both types of transgenic cotton interfered with development of sixth-stage larvae to adults, and no offspring was produced by H. armigera that fed on Bt or Bt+CpTI cotton from the sixth stage onward. First-, second-, and third-stage larvae spent significantly less time feeding on transgenic cotton than on conventional cotton, and the reduction in feeding time was significantly greater on Bt+CpTI cotton than on Bt cotton. Food conversion efficiency was lower on transgenic varieties than on conventional cotton, but there was no significant difference between Bt and Bt+CpTI cotton. In 3-yr field experimentation, bollworm densities were greatly suppressed on transgenic as compared with conventional cotton, but no significant differences between Bt and Bt+CpTI cotton were found. Overall, the results from laboratory work indicate that introduction of the CpTI gene in Bt cotton raises some components of resistance in cotton against H. armigera, but enhanced control of H. armigera under field

  14. Cloning and Tissue-Specific Expression of a Chitin Deacetylase Gene from Helicoverpa armigera (Lepidoptera: Noctuidae) and Its Response to Bacillus thuringiensis

    PubMed Central

    Han, Guoying; Li, Xiumin; Zhang, Ting; Zhu, Xiaoting

    2015-01-01

    Chitin deacetylases (CDAs) convert chitin into chitosan, the N-deacetylated form of chitin, which influences the mechanical and permeability properties of structures such as the cuticle and peritrophic matrices. In this article, a new CDA encoding gene, Hacda2, was cloned by reverse transcription-polymerase chain reaction method in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), with an open reading frame of 1,611 bp. The deduced protein composed of 536 amino acid residues with a signal peptide, a chitin-binding domain, a low-density lipoprotein receptor class A domain, and a polysaccharide deacetylase-like catalytic domain. The highest expression level of Hacda2 was detected in fat body among tissues tested in the fifth-instar larvae using real-time quantitative polymerase chain reaction method. Feeding of Bacillus thuringiensis (Bt) (Bacillales: Bacillaceae) diet changed the expression level of Hacda1, Hacda2, Hacda5a, and Hacda5b significantly and differentially in the third-instar larvae. Hacda5a and Hacda5b expression were initially down-regulated and then up-regulated, whereas, the expression level of Hacda1 and Hacda2 was suppressed constantly postfeeding on Bt diet. These results suggested that HaCDAs may be involved in the response of H. armigera larvae to Bt and may be helpful to elucidate the roles of HaCDAs in the action of Bt cry toxin. The potential of HaCDAs to be used as synergists of Bt insecticidal protein needs to be further tested. PMID:26163665

  15. Cloning and Tissue-Specific Expression of a Chitin Deacetylase Gene from Helicoverpa armigera (Lepidoptera: Noctuidae) and Its Response to Bacillus thuringiensis.

    PubMed

    Han, Guoying; Li, Xiumin; Zhang, Ting; Zhu, Xiaoting; Li, Jigang

    2015-01-01

    Chitin deacetylases (CDAs) convert chitin into chitosan, the N-deacetylated form of chitin, which influences the mechanical and permeability properties of structures such as the cuticle and peritrophic matrices. In this article, a new CDA encoding gene, Hacda2, was cloned by reverse transcription-polymerase chain reaction method in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), with an open reading frame of 1,611 bp. The deduced protein composed of 536 amino acid residues with a signal peptide, a chitin-binding domain, a low-density lipoprotein receptor class A domain, and a polysaccharide deacetylase-like catalytic domain. The highest expression level of Hacda2 was detected in fat body among tissues tested in the fifth-instar larvae using real-time quantitative polymerase chain reaction method. Feeding of Bacillus thuringiensis (Bt) (Bacillales: Bacillaceae) diet changed the expression level of Hacda1, Hacda2, Hacda5a, and Hacda5b significantly and differentially in the third-instar larvae. Hacda5a and Hacda5b expression were initially down-regulated and then up-regulated, whereas, the expression level of Hacda1 and Hacda2 was suppressed constantly postfeeding on Bt diet. These results suggested that HaCDAs may be involved in the response of H. armigera larvae to Bt and may be helpful to elucidate the roles of HaCDAs in the action of Bt cry toxin. The potential of HaCDAs to be used as synergists of Bt insecticidal protein needs to be further tested.

  16. No evidence for change in oviposition behaviour of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) after widespread adoption of transgenic insecticidal cotton.

    PubMed

    Zalucki, M P; Cunningham, J P; Downes, S; Ward, P; Lange, C; Meissle, M; Schellhorn, N A; Zalucki, J M

    2012-08-01

    Cotton growing landscapes in Australia have been dominated by dual-toxin transgenic Bt varieties since 2004. The cotton crop has thus effectively become a sink for the main target pest, Helicoverpa armigera. Theory predicts that there should be strong selection on female moths to avoid laying on such plants. We assessed oviposition, collected from two cotton-growing regions, by female moths when given a choice of tobacco, cotton and cabbage. Earlier work in the 1980s and 1990s on populations from the same geographic locations indicated these hosts were on average ranked as high, mid and low preference plants, respectively, and that host rankings had a heritable component. In the present study, we found no change in the relative ranking of hosts by females, with most eggs being laid on tobacco, then cotton and least on cabbage. As in earlier work, some females laid most eggs on cotton and aspects of oviposition behaviour had a heritable component. Certainly, cotton is not avoided as a host, and the implications of these finding for managing resistance to Bt cotton are discussed.

  17. Silencing of ecdysone receptor, insect intestinal mucin and sericotropin genes by bacterially produced double-stranded RNA affects larval growth and development in Plutella xylostella and Helicoverpa armigera.

    PubMed

    Israni, B; Rajam, M V

    2017-04-01

    RNA interference mediated gene silencing, which is triggered by double-stranded RNA (dsRNA), has become a important tool for functional genomics studies in various systems, including insects. Bacterially produced dsRNA employs the use of a bacterial strain lacking in RNaseIII activity and harbouring a vector with dual T7 promoter sites, which allow the production of intact dsRNA molecules. Here, we report an assessment of the functional relevance of the ecdysone receptor, insect intestinal mucin and sericotropin genes through silencing by dsRNA in two lepidopteran insect pests, Helicoverpa armigera and Plutella xylostella, both of which cause serious crop losses. Oral feeding of dsRNA led to significant reduction in transcripts of the target insect genes, which caused significant larval mortality with various moulting anomalies and an overall developmental delay. We also found a significant decrease in reproductive potential in female moths, with a drop in egg laying and compromised egg hatching from treated larvae as compared to controls. dsRNA was stable in the insect gut and was efficiently processed into small interfering RNAs (siRNAs), thus accounting for the phenotypes observed in the present work. The study revealed the importance of these genes in core insect processes, which are essential for insect development and survival.

  18. A novel bio-engineering approach to generate an eminent surface-functionalized template for selective detection of female sex pheromone of Helicoverpa armigera

    PubMed Central

    Moitra, Parikshit; Bhagat, Deepa; Pratap, Rudra; Bhattacharya, Santanu

    2016-01-01

    Plant pests exert serious effects on food production due to which the global crop yields are reduced by ~20–40 percent per year. Hence to meet the world’s food needs, loses of food due to crop pests must be reduced. Herein the silicon dioxide based MEMS devices are covalently functionalized for robust and efficient optical sensing of the female sex pheromones of the pests like Helicoverpa armigera for the first time in literature. The functionalized devices are also capable of selectively measuring the concentration of this pheromone at femtogram level which is much below the concentration of pheromone at the time of pest infestation in an agricultural field. Experiments are also performed in a confined region in the presence of male and female pests and tomato plants which directly mimics the real environmental conditions. Again the reversible use and absolutely trouble free transportation of these pheromone nanosensors heightens their potentials for commercial use. Overall, a novel and unique approach for the selective and reversible sensing of female sex pheromones of certain hazardous pests is reported herein which may be efficiently and economically carried forward from the research laboratory to the agricultural field. PMID:27892521

  19. A novel bio-engineering approach to generate an eminent surface-functionalized template for selective detection of female sex pheromone of Helicoverpa armigera

    NASA Astrophysics Data System (ADS)

    Moitra, Parikshit; Bhagat, Deepa; Pratap, Rudra; Bhattacharya, Santanu

    2016-11-01

    Plant pests exert serious effects on food production due to which the global crop yields are reduced by ~20–40 percent per year. Hence to meet the world’s food needs, loses of food due to crop pests must be reduced. Herein the silicon dioxide based MEMS devices are covalently functionalized for robust and efficient optical sensing of the female sex pheromones of the pests like Helicoverpa armigera for the first time in literature. The functionalized devices are also capable of selectively measuring the concentration of this pheromone at femtogram level which is much below the concentration of pheromone at the time of pest infestation in an agricultural field. Experiments are also performed in a confined region in the presence of male and female pests and tomato plants which directly mimics the real environmental conditions. Again the reversible use and absolutely trouble free transportation of these pheromone nanosensors heightens their potentials for commercial use. Overall, a novel and unique approach for the selective and reversible sensing of female sex pheromones of certain hazardous pests is reported herein which may be efficiently and economically carried forward from the research laboratory to the agricultural field.

  20. Trans-generational desensitization and within-generational resensitization of a sucrose-best neuron in the polyphagous herbivore Helicoverpa armigera (Lepidoptera: Noctuidae)

    PubMed Central

    Ma, Ying; Li, Jingjing; Tang, Qingbo; Zhang, Xuening; Zhao, Xincheng; Yan, Fengming; van Loon, Joop J. A.

    2016-01-01

    Dietary exposure of insects to a feeding deterrent substance for hours to days can induce habituation and concomitant desensitization of the response of peripheral gustatory neurons to such a substance. In the present study, larvae of the herbivore Helicoverpa armigera were fed on diets containing either a high, medium or low concentration of sucrose, a major feeding stimulant. The responsiveness of the sucrose-best neuron in the lateral sensilla styloconica on the galea was quantified. Results showed the response of the sucrose-best neuron exposed to high-sucrose diets decreased gradually over successive generations, resulting in complete desensitization in the 5th and subsequent generations. However, the sensitivity was completely restored in the ninth generation after neonate larvae were exposed to low-sucrose diet. These findings demonstrate phenotypic plasticity and exclude inadvertent artificial selection for low sensitivity to sucrose. No significant changes were found in the sensitivity of caterpillars which experienced low- or medium-sucrose diets over the same generations. Such desensitization versus re-sensitization did not generalise to the phagosimulant myo-inositol-sensitive neuron or the feeding deterrent-sensitive neuron. Our results demonstrate that under conditions of high sucrose availability trans-generational desensitization of a neuron sensitive to this feeding stimulant becomes more pronounced whereas re-sensitization occurs within one generation. PMID:27966640

  1. Effectiveness of two insect growth regulators against Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) and Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) and their impact on population densities of arthropod predators in cotton in Pakistan.

    PubMed

    Gogi, Muhammad D; Sarfraz, Rana M; Dosdall, Lloyd M; Arif, Muhammad J; Keddie, Andrew B; Ashfaq, Muhammad

    2006-10-01

    Field efficacies of two insect growth regulators (IGRs) at two recommended application rates, buprofezin at 370 and 555 g AI ha(-1) and lufenuron at 37 and 49 g AI ha(-1), were determined against the sweet potato whitefly, Bemisia tabaci (Gennadius), and the cotton bollworm, Helicoverpa armigera (Hübner), in experimental plots of cotton at the Directorate of Cotton Research, Faisalabad, Pakistan. Adverse effects of the IGRs on populations of associated arthropod predators, namely geocorids, chrysopids, coccinellids, formicids and arachnids, were also assessed. Both IGRs significantly reduced populations of B. tabaci at each application rate 24, 48 and 72 h after treatment, and higher doses were more effective than lower doses. Buprofezin was not effective against H. armigera at any tested dose for any time of treatment in any spray. Lufenuron applied at 37 and 49 g AI ha(-1) effectively suppressed H. armigera populations, resulting in significant reductions in crop damage. At lower doses, both IGRs appeared safe to predator populations, which did not differ significantly in IGR-treated versus untreated control plots. Population densities of formicids and coccinellids were significantly lower at high concentrations of both IGRs in treatment plots, possibly as a result of reduced prey availability. The potential role of buprofezin and lufenuron for control of B. tabaci and H. armigera in a spray programme and the likelihood of direct toxic effects of IGRs on predatory fauna of cotton are discussed.

  2. Higher accumulation of proteinase inhibitors in flowers than leaves and fruits as a possible basis for differential feeding preference of Helicoverpa armigera on tomato (Lycopersicon esculentum Mill, Cv. Dhanashree).

    PubMed

    Damle, Mrunal S; Giri, Ashok P; Sainani, Mohini N; Gupta, Vidya S

    2005-11-01

    Tomato (Lycopersicon esculentum, Mill; cultivar- Dhanashree) proteinase inhibitors (PIs) were tested for their trypsin inhibitory (TI) and Helicoverpa armigera gut proteinases inhibitory (HGPI) activity in different organs of the tomato plants. Analysis of TI and HGPI distribution in various parts of the plant showed that flowers accumulated about 300 and 1000 times higher levels of TI while 700 and 400 times higher levels of HGPI as compared to those in leaves and fruits, respectively. Field observation that H. armigera larvae infest leaves and fruits but not the flowers could be at least partially attributed to the protective role-played by the higher levels of PIs in the flower tissue. Tomato PIs inhibited about 50-80% HGP activity of H. armigera larvae feeding on various host plants including tomato, of larvae exposed to non-host plant PIs and of various larval instars. Tomato PIs were found to be highly stable to insect proteinases wherein incubation of inhibitor with HGP even for 3h at optimum conditions did not affect inhibitory activity. Bioassay using H. armigera larvae fed on artificial diet containing tomato PIs revealed adverse effect on larval growth, pupae development, adult formation and fecundity.

  3. A Comparison of the Life-History Traits between Diapause and Direct Development iNdividuals in the Cotton Bollworm, Helicoverpa armigera

    PubMed Central

    Chen, Chao; Xia, Qin-Wen; Xiao, Hai-Jun; Xiao, Liang; Xue, Fang-Sen

    2014-01-01

    In order to understand the differences of life-history traits between diapause and direct development individuals in the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), the development time, body size, growth rate, and adult longevity were investigated between the two populations, which were induced under 12:12 L:D and 16:8 L:D photoperiods, respectively, at 20, 22, and 25°C. The results indicated that the larval development time, pupal weight, adult weight, and growth rate were significantly different between diapause and direct developing individuals. The diapause developing individuals had a significantly higher pupal and adult weight and a longer larval time compared with direct developing individuals. However, the growth rate in diapause developing individuals was lower than that in the direct developing individuals. Analysis by GLM showed that larval time, pupal and adult weight, and growth rate were significantly influenced by both temperature and developmental pathway. The pupal and adult weights were greater in males than females in both developmental pathways, exhibiting sexual size dimorphism. The dimorphism in adult weight was more pronounced than in pupal weight because female pupae lost more weight at metamorphosis compared to male pupae. Protogyny was observed in both developmental pathways. However, the protogyny phenomenon was more pronounced at lower temperatures in direct developing individuals, whereas it was more pronounced in diapause developing individuals when they experienced higher temperatures in their larval stage and partial pupal period. The adult longevity of diapause developing individuals was significantly longer than that of direct developing individuals. The results reveal that the lifehistory strategy was different between diapause and direct developing individuals. PMID:25373166

  4. The Use of F2 Screening for Detection of Resistance to Emamectin Benzoate, Chlorantraniliprole, and Indoxacarb in Australian Populations of Helicoverpa armigera (Lepidoptera: Noctuidae).

    PubMed

    Bird, L J; Drynan, L J; Walker, P W

    2017-03-03

    The ability to effectively detect changes in susceptibility to insecticides is an integral component of resistance management strategies and is highly dependent upon precision of methods deployed. Between 2013 and 2016, F2 screens were performed for detection of resistance alleles in Helicoverpa armigera (Hübner) to emamectin benzoate, chlorantraniliprole, and indoxacarb in major cropping regions of eastern Australia. Resistance to emamectin benzoate was not detected. There were low but detectable levels of survival at discriminating concentrations of chlorantraniliprole and indoxacarb. Alleles conferring an advantage to chlorantraniliprole were present at a frequency of 0.0027 (95% CI 0.0012-0.0064; n = 1,817). Alleles conferring an advantage to indoxacarb were present at a frequency of 0.027 (95% CI 0.020-0.035; n = 1,863). Complementation tests for allelism in six of seven positive indoxacarb tests indicated that resistance was due to alleles present at the same locus. The majority (88%) of lines that tested positive for indoxacarb resistance deviated from a model of recessive inheritance. Pheromone-caught male moths contributed significantly greater numbers of F2 lines compared with moths derived from field-collected eggs or larvae. There was no difference in the detectability of indoxacarb resistance in F2 lines from pheromone-caught moths compared with moths derived from immature stages collected from the field and reared to adult under laboratory conditions. Therefore, we recommend the use of pheromone traps for sourcing insects for F2 screening as a more cost- and time-efficient alternative to traditional methods of sampling.

  5. The movement and distribution of Helicoverpa armigera (Hübner) larvae on pea plants is affected by egg placement and flowering.

    PubMed

    Perkins, L E; Cribb, B W; Hanan, J; Zalucki, M P

    2010-10-01

    The distribution and movement of 1st instar Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) larvae on whole garden pea (Pisum sativum L.) plants were determined in glasshouse trials. This economically-important herbivore attacks a wide variety of agricultural, horticultural and indigenous plants. To investigate the mechanisms underlying larval intra-plant movement, we used early-flowering and wild-type plant genotypes and placed eggs at different vertical heights within the plants, one egg per plant. Leaf water and nitrogen content and cuticle hardness were measured at the different plant heights. Of 92 individual larvae, 41% did not move from the node of eclosion, 49% moved upwards and 10% moved downwards with the distance moved being between zero and ten plant nodes. Larvae from eggs placed on the lower third of the plant left the natal leaf more often and moved further than larvae from eggs placed in the middle or upper thirds. The low nutritive value of leaves was the most likely explanation for more movement away from lower plant regions. Although larvae on flowering plants did not move further up or down than larvae on non-flowering plants, they more often departed the leaflet (within a leaf) where they eclosed. The final distribution of larvae was affected by plant genotype, with larvae on flowering plants found less often on leaflets and more often on stipules, tendrils and reproductive structures. Understanding intra-plant movement by herbivorous insects under natural conditions is important because such movement determines the value of economic loss to host crops. Knowing the behaviour underlying the spatial distribution of herbivores on plants will assist us to interpret field data and should lead to better informed pest management decisions.

  6. Impact of the Stem Extract of Thevetia neriifolia on the Feeding Potential and Histological Architecture of the Midgut Epithelial Tissue of Early Fourth Instars of Helicoverpa armigera Hübner

    PubMed Central

    Mishra, Monika; Gupta, Kamal Kumar; Kumar, Sarita

    2015-01-01

    Helicoverpa armigera Hübner is one of the most important agricultural crop pests in the world causing heavy crop yield losses. The continued and indiscriminate use of synthetic insecticides in agriculture for their control has received wide public apprehension because of multifarious problems, including insecticide resistance, resurgence of pest species, environmental pollution, and toxic hazards to humans and nontarget organisms. These problems have necessitated the need to explore and develop alternative strategies using eco-friendly and biodegradable plant products. In view of this, the efficacy of Thevetia neriifolia methanol stem extract was evaluated against the early fourth instars of H. armigera as an antifeedant and stomach poison agent. Feeding of larvae with the diet containing 0.005%–5.0% extract resulted in 2.06%–37.35% antifeedant index; the diet with 5.0% extract caused 54.3% reduced consumption. The negative impact of extract on larval feeding resulted in 37.5%–77.7% starvation, causing adverse effects on the larval weight. Choice between control and experimental diet resulted in feeding preference of larvae for the control diet, leading to 7.3%–42.9% reduced consumption of extract-containing diet. The only exception was the diet with 0.005% extract, which could not cause any deterrence. The midgut histological architecture of H. armigera larvae fed with 0.005%–0.05% extract-containing diet with negligible antifeedant potential showed significant damage, shrinkage, and distortion and vacuolization of gut tissues and peritrophic membrane, causing the disintegration of epithelial, goblet, and regenerative cells; the damage increased with the increase in concentration. These changes in the gut caused negative impact on the digestion and absorption of food and thus nutritional deficiency in the larvae, which could probably affect their growth and development. This study reveal the appreciable stomach poison potential of T. neriifolia stem

  7. Diversity of aminopeptidases, derived from four lepidopteran gene duplications, and polycalins expressed in the midgut of Helicoverpa armigera: Identification of proteins binding the δ-endotoxin, Cry1Ac of Bacillus thuringiensis

    PubMed Central

    Angelucci, Constanza; Barrett-Wilt, Gregory A.; Hunt, Donald F.; Akhurst, Raymond J.; East, Peter D.; Gordon, Karl H.J.; Campbell, Peter M.

    2010-01-01

    Helicoverpa armigera midgut proteins that bind the Bacillus thuringiensis (Bt) δ-endotoxin Cry1Ac were purified by affinity chromatography. SDS-PAGE showed that several proteins were eluted with N-acetylgalactosamine and no further proteins were detected after elution with urea. Tandem mass spectral data for tryptic peptides initially indicated that the proteins resembled aminopeptidases (APNs) from other lepidopterans and cDNA sequences for seven APNs were isolated from H. armigera through a combination of cloning with primers derived from predicted peptide sequences and established EST libraries. Phylogenetic analysis showed lepidopteran APN genes in nine clades of which five were part of a lepidopteran-specific radiation. The Cry1Ac-binding proteins were then identified with four of the seven HaAPN genes. Three of those four APNs are likely orthologs of APNs characterised as Cry1Ac-binding proteins in other lepidopterans. The fourth Cry1Ac-binding APN has orthologs not previously identified as Cry1Ac-binding partners. The HaAPN genes were expressed predominantly in the midgut through larval development. Each showed consistent expression along the length of the midgut but five of the genes were expressed at levels about two orders of magnitude greater than the remaining two. The remaining mass spectral data identified sequences encoding polycalin proteins with multiple lipocalin-like domains. A polycalin has only been previously reported in another lepidopteran, Bombyx mori, but polycalins in both species are now linked with binding of Bt Cry toxins. This is the first report of hybrid, lipocalin-like domains in shorter polycalin sequences that are not present in the longest sequence. We propose that these hybrid domains are generated by alternative splicing of the mRNA. PMID:18549954

  8. Prevalence of cry2-type genes in Bacillus thuringiensis isolates recovered from diverse habitats in India and isolation of a novel cry2Af2 gene toxic to Helicoverpa armigera (cotton boll worm).

    PubMed

    Katara, Jawahar Lal; Kaur, Sarvjeet; Kumari, Gouthami Krishna; Singh, Nagendra Kumar

    2016-12-01

    Insecticidal cry and vip genes from Bacillus thuringiensis (Bt) have been used for control of lepidopteran insects in transgenic crops. However, novel genes are required for gene pyramiding to delay evolution of resistance to the currently deployed genes. Two PCR-based techniques were employed for screening of cry2-type genes in 129 Bt isolates from diverse habitats in India and 27 known Bt strains. cry2Ab-type genes were more prevalent than cry2Aa- and cry2Ac-type genes. Correlation between source of isolates and abundance of cry2-type genes was not observed. Full-length cry2A-type genes were amplified by PCR from 9 Bt isolates and 4 Bt strains. The genes from Bt isolates SK-758 from Sorghum grain dust and SK-793 from Chilli seeds warehouse, Andhra Pradesh, were cloned and sequenced. The gene from SK-758 (NCBI GenBank accession No. GQ866915) was novel, while that from SK-793 (NCBI GenBank accession No. GQ866914) was identical to the cry2Ab1 gene. The Bacillus thuringiensis Nomenclature Committee ( http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/toxins2.html ) named these genes cry2Af2 and cry2Ab16, respectively. The cry2Af2 gene was expressed in Escherichia coli and found to be toxic towards Helicoverpa armigera. The cry2Af2 gene will be useful for pyramiding in transgenic crops.

  9. Characterization of the resistance to Vip3Aa in Helicoverpa armigera from Australia and the role of midgut processing and receptor binding

    PubMed Central

    Chakroun, Maissa; Banyuls, Núria; Walsh, Tom; Downes, Sharon; James, Bill; Ferré, Juan

    2016-01-01

    Crops expressing genes from Bacillus thuringiensis (Bt crops) are among the most successful technologies developed for the control of pests but the evolution of resistance to them remains a challenge. Insect resistant cotton and maize expressing the Bt Vip3Aa protein were recently commercialized, though not yet in Australia. We found that, although relatively high, the frequency of alleles for resistance to Vip3Aa in field populations of H. armigera in Australia did not increase over the past four seasons until 2014/15. Three new isofemale lines were determined to be allelic with previously isolated lines, suggesting that they belong to one common gene and this mechanism is relatively frequent. Vip3Aa-resistance does not confer cross-resistance to Cry1Ac or Cry2Ab. Vip3Aa was labeled with 125I and used to show specific binding to H. armigera brush-border membrane vesicles (BBMV). Binding was of high affinity (Kd = 25 and 19 nM for susceptible and resistant insects, respectively) and the concentration of binding sites was high (Rt = 140 pmol/mg for both). Despite the narrow-spectrum resistance, binding of 125I-labeled Vip3Aa to BBMV of resistant and susceptible insects was not significantly different. Proteolytic conversion of Vip3Aa protoxin into the activated toxin rendered the same products, though it was significantly slower in resistant insects. PMID:27095284

  10. Characterization of the resistance to Vip3Aa in Helicoverpa armigera from Australia and the role of midgut processing and receptor binding.

    PubMed

    Chakroun, Maissa; Banyuls, Núria; Walsh, Tom; Downes, Sharon; James, Bill; Ferré, Juan

    2016-04-20

    Crops expressing genes from Bacillus thuringiensis (Bt crops) are among the most successful technologies developed for the control of pests but the evolution of resistance to them remains a challenge. Insect resistant cotton and maize expressing the Bt Vip3Aa protein were recently commercialized, though not yet in Australia. We found that, although relatively high, the frequency of alleles for resistance to Vip3Aa in field populations of H. armigera in Australia did not increase over the past four seasons until 2014/15. Three new isofemale lines were determined to be allelic with previously isolated lines, suggesting that they belong to one common gene and this mechanism is relatively frequent. Vip3Aa-resistance does not confer cross-resistance to Cry1Ac or Cry2Ab. Vip3Aa was labeled with (125)I and used to show specific binding to H. armigera brush-border membrane vesicles (BBMV). Binding was of high affinity (Kd = 25 and 19 nM for susceptible and resistant insects, respectively) and the concentration of binding sites was high (Rt = 140 pmol/mg for both). Despite the narrow-spectrum resistance, binding of (125)I-labeled Vip3Aa to BBMV of resistant and susceptible insects was not significantly different. Proteolytic conversion of Vip3Aa protoxin into the activated toxin rendered the same products, though it was significantly slower in resistant insects.

  11. Coexpression of the silent cry2Ab27 together with cry1 genes in Bacillus thuringiensis subsp. aizawai SP41 leads to formation of amorphous crystal toxin and enhanced toxicity against Helicoverpa armigera.

    PubMed

    Somwatcharajit, Rasapirose; Tiantad, Itsares; Panbangred, Watanalai

    2014-02-01

    The unexpressed cry2Ab27 gene of Bacillus thuringiensis subsp. aizawai SP41 (SP41) consists of a single open reading frame (ORF) of 1902bp encoding for 634 amino acid residues. The cry2Ab27 gene appears to be silent due to the lack of promoter and terminator sequences. In this study we fused the cry2Ab27 ORF with the cry1Ab promoter (500bp) and the terminator (300bp) in vector pHT304-18Z in order to drive the expression of cry2Ab27 in both SP41 and an acrystaliferous, B. thuringiensis subsp. thuringiensis 407 (407). A protein with a molecular mass of 65kDa, consistent with the Cry2Ab protein, was detected in both transformants using SDS-PAGE and Western blot analysis. Bipyramidal crystals were observed in SP41 and its transformant containing the pHT304-18Z vector (SPHT) in contrast, cells expressing cry2Ab27 (SPC2) exhibited crystal proteins with irregular shapes. No inclusion protein was detected in the 407 transformant expressing the cry2Ab27 gene. Cry2Ab27 was found in the purified crystal toxin from strain SPC2. The solubilized crystal toxin proteins from SPC2 were 6.9-fold more toxic toward the larvae of Helicoverpa armigera compared to toxin proteins from SPHT. However SPC2 crystal toxin displayed only slightly higher toxicity against the larvae of Spodoptera litura and S. exigua compared to SPHT produced toxin. Our data support the use of Cry2Ab in combination with the Cry1 toxin for enhanced control of heliothine insect pests.

  12. Proteomic Analysis of Mamestra Brassicae Nucleopolyhedrovirus Progeny Virions from Two Different Hosts

    PubMed Central

    Hou, Dianhai; Chen, Xi

    2016-01-01

    Mamestra brassicae nucleopolyhedrovirus (MabrNPV) has a wide host range replication in more than one insect species. In this study, a sequenced MabrNPV strain, MabrNPV-CTa, was used to perform proteomic analysis of both BVs and ODVs derived from two infected hosts: Helicoverpa armigera and Spodoptera exigua. A total of 82 and 39 viral proteins were identified in ODVs and BVs, respectively. And totally, 23 and 76 host proteins were identified as virion-associated with ODVs and BVs, respectively. The host proteins incorporated into the virus particles were mainly involved in cytoskeleton, signaling, vesicle trafficking, chaperone and metabolic systems. Some host proteins, such as actin, cyclophilin A and heat shock protein 70 would be important for viral replication. Several host proteins involved in immune response were also identified in BV, and a C-type lectin protein was firstly found to be associated with BV and its family members have been demonstrated to be involved in entry process of other viruses. This study facilitated the annotation of baculovirus genome, and would help us to understand baculovirus virion structure. Furthermore, the identification of host proteins associated with virions produced in vivo would facilitate investigations on the involvement of intriguing host proteins in virus replication. PMID:27058368

  13. Both Lymantria dispar Nucleopolyhedrovirus Enhancin Genes Contribute to Viral Potency

    PubMed Central

    Popham, Holly J. R.; Bischoff, David S.; Slavicek, James M.

    2001-01-01

    Enhancins are a group of proteins first identified in granuloviruses (GV) that have the ability to enhance nuclear polyhedrosis virus potency. We had previously identified an enhancin gene (E1) in the Lymantria dispar multinucleocapsid nucleopolyhedrovirus (LdMNPV) (D. S. Bischoff and J. M. Slavicek, J. Virol. 71:8133–8140, 1997). Inactivation of the E1 gene product within the viral genome lowered viral potency by an average of 2.9-fold. A second enhancin gene (E2) was identified when the entire genome of LdMNPV was sequenced (Kuzio et al., Virology 253:17–34, 1999). The E2 protein exhibits approximately 30% amino acid identity to the LdMNPV E1 protein as well as the enhancins from Trichoplusia ni GV, Pseudaletia unipuncta GV, Helicoverpa armigera GV, and Xestia c-nigrum GV. Northern analysis of viral RNA indicated that the E2 gene transcripts are expressed at late times postinfection from a consensus baculovirus late promoter. The effect of the enhancin proteins on viral potency was investigated through bioassay using two recombinant viruses, one with a deletion in the E2 gene (E2del) and a second with deletion mutations in both enhancin genes (E1delE2del). The enhancin gene viral constructs were verified by Southern analysis and shown not to produce enhancin gene transcripts by Northern analysis. The E2del virus exhibited an average decrease in viral potency of 1.8-fold compared to wild-type virus. In the same bioassays, the recombinant virus E1cat, which does not produce an E1 gene transcript, exhibited an average decrease in viral potency of 2.3-fold compared to control virus. The E1delE2del virus exhibited an average decrease in viral potency of 12-fold compared to wild-type virus. Collectively, these results suggest that both LdMNPV enhancin genes contribute to viral potency, that each enhancin protein can partially compensate for the lack of the other protein, and that both enhancin genes are necessary for wild-type viral potency. PMID:11507209

  14. Complete genomic sequences and comparative analysis of Mamestra brassicae nucleopolyhedrovirus isolated in Korea.

    PubMed

    Choi, Jae Bang; Heo, Won Il; Shin, Tae Young; Bae, Sung Min; Kim, Woo Jin; Kim, Ju Il; Kwon, Min; Choi, Jae Young; Je, Yeon Ho; Jin, Byung Rae; Woo, Soo Dong

    2013-08-01

    Mamestra brassicae nucleopolyhedrovirus-K1 (MabrNPV-K1) was isolated from naturally infected M. brassicae (Lepidoptera: Noctuidae) larvae in Korea. The full genome sequences of MabrNPV-K1 were determined, analysed and compared to those of other baculoviruses. The MabrNPV-K1 genome consisted of 152,710 bp and had an overall G + C content of 39.9%. Computer-assisted analysis predicted 158 open reading frames (ORFs) of 150 nucleotides or greater that showed minimal overlap. Two inhibitor of apoptosis (iap) and six baculovirus repeated ORFs were interspersed in the MabrNPV-K1 genome. The unique MabrNPV-K1 ORF133 was identified in the MabrNPV-K1 genome that was not previously reported in baculoviruses. The gene content and arrangement in MabrNPV-K1 had the highest similarity with those of Helicoverpa armigera MNPV (HearMNPV) and Mamestra configurata NPV-B (MacoNPV-B), and their shared homologous genes were 99% collinear. The MabrNPV-K1 genome contained four homologous repeat regions (hr1, hr2, hr3 and hr4) that accounted for 3.3% of the genome. The genomic positions of the four MabrNPV-K1 hr regions were conserved among those of HearMNPV and MacoNPV-B. The gene parity plot, percent identity of the gene homologues and a phylogenetic analysis suggested that these three viruses are closely related not only to each other but also to the same virus strains rather than different virus species.

  15. Two Year Field Study to Evaluate the Efficacy of Mamestra brassicae Nucleopolyhedrovirus Combined with Proteins Derived from Xestia c-nigrum Granulovirus

    PubMed Central

    Goto, Chie; Mukawa, Shigeyuki; Mitsunaga, Takayuki

    2015-01-01

    Japan has only three registered baculovirus biopesticides despite its long history of studies on insect viruses. High production cost is one of the main hindrances for practical use of baculoviruses. Enhancement of insecticidal effect is one possible way to overcome this problem, so there have been many attempts to develop additives for baculoviruses. We found that alkaline soluble proteins of capsules (GVPs) of Xestia c-nigrum granulovirus can increase infectivity of some viruses including Mamestra brassicae nucleopolyhedrovirus (MabrNPV), and previously reported that MabrNPV mixed with GVPs was highly infectious to three important noctuid pests of vegetables in the following order, Helicoverpa armigera, M. brassicae, and Autographa nigrisigna. In this study, small-plot experiments were performed to assess concentrations of MabrNPV and GVPs at three cabbage fields and a broccoli field for the control of M. brassicae. In the first experiment, addition of GVPs (10 µg/mL) to MabrNPV at 106 OBs/mL resulted in a significant increase in NPV infection (from 53% to 66%). In the second experiment, the enhancing effect of GVP on NPV infection was confirmed at 10-times lower concentrations of MabrNPV. In the third and fourth experiments, a 50% reduction in GVPs (from 10 µg/mL to 5 µg/mL) did not result in a lowering of infectivity of the formulations containing MabrNPV at 105 OBs/mL. These results indicate that GVPs are promising additives for virus insecticides. PMID:25760139

  16. Efficacies of four pheromone-baited traps in capturing male Helicoverpa (Lepidoptera: Noctuidae) moths in northern Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Helicoverpa armigera (Hübner) is a serious pest of grain, row, and vegetable crops throughout much of the world, although it is currently not established in the United States. USDA-APHIS and the Cooperative Agricultural Pest Survey program are charged with the responsibility to monitor for this ins...

  17. Metabolic detoxification of capsaicin by UDP-glycosyltransferase in three Helicoverpa species.

    PubMed

    Ahn, Seung-Joon; Badenes-Pérez, Francisco R; Reichelt, Michael; Svatoš, Aleš; Schneider, Bernd; Gershenzon, Jonathan; Heckel, David G

    2011-10-01

    Capsaicin β-glucoside was isolated from the feces of Helicoverpa armigera, Helicoverpa assulta, and Helicoverpa zea that fed on capsaicin-supplemented artificial diet. The chemical structure was identified by NMR spectroscopic analysis as well as by enzymatic hydrolysis. The excretion rates of the glucoside were different among the three species; those in the two generalists, H. armigera and H. zea, were higher than in a specialist, H. assulta. UDP-glycosyltransferases (UGT) enzyme activities measured from the whole larval homogenate of the three species with capsaicin and UDP-glucose as substrates were also higher in the two generalists. Compared among five different larval tissues (labial glands, testes from male larvae, midgut, the Malpighian tubules (MT), and fat body) from the three species, the formation of the capsaicin glucoside by one or more UGT is high in the fat body of all the three species as expected, as well as in H. assulta MT. Optimization of the enzyme assay method is also described in detail. Although the lower excretion rate of the unaltered capsaicin in H. assulta indicates higher metabolic capacity toward capsacin than in the other two generalists, the glucosylation per se seems to be insufficient to explain the decrease in capsaicin in the specialist, suggesting that H. assulta might have another important mechanism to deal with capsaicin more specifically.

  18. Evolution, ecology and management of resistance in Helicoverpa spp. to Bt cotton in Australia.

    PubMed

    Downes, Sharon; Mahon, Rod

    2012-07-01

    Prior to the widespread adoption of two-gene Bt cotton (Bollgard II®) in Australia, the frequency of resistance alleles to one of the deployed proteins (Cry2Ab) was at least 0.001 in the pests targeted namely, Helicoverpa armigera and Helicoverpa punctigera. In the 7 years hence, there has been a statistically significant increase in the frequency of alleles conferring Cry2Ab resistance in field populations of H. punctigera. This paper reviews the history of deploying Bt cotton in Australia, the characteristics of the isolated Cry2Ab resistance that likely impact on resistance evolution, aspects of the efficacy of Bollgard IIχ, and the behavioural ecology of Helicoverpa spp. larvae as it pertains to resistance management. It also presents up-to-date frequencies of resistant alleles for H. punctigera and reviews the same information for H. armigera. This is followed by a discussion of current resistance management strategies. The consequences of the imminent release of a third generation product that utilizes the novel vegetative insecticidal protein Vip3A are then considered. The area planted to Bt-crops is anticipated to continue to rise worldwide and many biotechnical companies intend to add Vip3A to existing products; therefore the information reviewed herein for Australia is likely to be pertinent to other situations.

  19. Sensillar expression and responses of olfactory receptors reveal different peripheral coding in two Helicoverpa species using the same pheromone components

    PubMed Central

    Chang, Hetan; Guo, Mengbo; Wang, Bing; Liu, Yang; Dong, Shuanglin; Wang, Guirong

    2016-01-01

    Male moths efficiently recognize conspecific sex pheromones thanks to their highly accurate and specific olfactory system. The Heliothis/Helicoverpa species are regarded as good models for studying the perception of sex pheromones. In this study, we performed a series of experiments to investigate the peripheral mechanisms of pheromone coding in two-closely related species, Helicoverpa armigera and H. assulta. The morphology and distribution patterns of sensilla trichoidea are similar between the two species when observed at the scanning electron microscope, but their performances are different. In H. armigera, three functional types of sensilla trichoidea (A, B and C) were found to respond to different pheromone components, while in H. assulta only two types of such sensilla (A and C) could be detected. The response profiles of all types of sensilla trichoidea in the two species well matched the specificities of the pheromone receptors (PRs) expressed in the same sensilla, as measured in voltage-clamp experiments. The expressions of PRs in neighboring olfactory sensory neurons (OSNs) within the same trichoid sensillum were further confirmed by in situ hybridization. Our results show how the same pheromone components can code for different messages at the periphery of two Helicoverpa species. PMID:26744070

  20. High Susceptibility to Cry1Ac and Low Resistance Allele Frequency Reduce the Risk of Resistance of Helicoverpa armigers to Bt Soybean in Brazil.

    PubMed

    Dourado, Patrick M; Bacalhau, Fabiana B; Amado, Douglas; Carvalho, Renato A; Martinelli, Samuel; Head, Graham P; Omoto, Celso

    2016-01-01

    The Old World bollworm, Helicoverpa armigera (Hübner), was recently introduced into Brazil, where it has caused extensive damage to cotton and soybean crops. MON 87701 × MON 89788 soybean, which expresses the Bt protein Cry1Ac, was recently deployed in Brazil, providing high levels of control against H. armigera. To assess the risk of resistance to the Cry1Ac protein expressed by MON 87701 × MON 89788 soybean in Brazil, we conducted studies to evaluate the baseline susceptibility of H. armigera to Cry1Ac, in planta efficacy including the assessment of the high-dose criterion, and the initial resistance allele frequency based on an F2 screen. The mean Cry1Ac lethal concentration (LC50) ranged from 0.11 to 1.82 μg·mL-1 of diet among all H. armigera field populations collected from crop seasons 2013/14 to 2014/15, which indicated about 16.5-fold variation. MON 87701 × MON 89788 soybean exhibited a high level of efficacy against H. armigera and most likely met the high dose criterion against this target species in leaf tissue dilution bioassays up to 50 times. A total of 212 F2 family lines of H. armigera were established from field collections sampled from seven locations across Brazil and were screened for the presence of MON 87701 × MON 89788 soybean resistance alleles. None of the 212 families survived on MON 87701 × MON 89788 soybean leaf tissue (estimated allele frequency = 0.0011). The responses of H. armigera to Cry1Ac protein, high susceptibility to MON 87701 × MON 89788 soybean, and low frequency of resistance alleles across the main soybean-producing regions support the assumptions of a high-dose/refuge strategy. However, maintenance of reasonable compliance with the refuge recommendation will be essential to delay the evolution of resistance in H. armigera to MON 87701 × MON 89788 soybean in Brazil.

  1. A host-plant specialist, Helicoverpa assulta, is more tolerant to capsaicin from Capsicum annuum than other noctuid species.

    PubMed

    Ahn, Seung-Joon; Badenes-Pérez, Francisco R; Heckel, David G

    2011-09-01

    Plant secondary compounds not only play an important role in plant defense, but have been a driving force for host adaptation by herbivores. Capsaicin (8-methyl-N-vanillyl-6-nonenamide), an alkaloid found in the fruit of Capsicum spp. (Solanaceae), is responsible for the pungency of hot pepper fruits and is unique to the genus. The oriental tobacco budworm, Helicoverpa assulta (Lepidoptera: Noctuidae), is a specialist herbivore feeding on solanaceous plants including Capsicum annuum, and is one of a very few insect herbivores worldwide capable of feeding on hot pepper fruits. To determine whether this is due in part to an increased physiological tolerance of capsaicin, we compared H. assulta with another specialist on Solanaceae, Heliothis subflexa, and four generalist species, Spodoptera frugiperda, Heliothis virescens, Helicoverpa armigera, and Helicoverpa zea, all belonging to the family Noctuidae. When larvae were fed capsaicin-spiked artificial diet for the entire larval period, larval mortality increased in H. subflexa and H. zea but decreased in H. assulta. Larval growth decreased on the capsaicin-spiked diet in four of the species, was unaffected in H. armigera and increased in H. assulta. Food consumption and utilization experiments showed that capsaicin decreased relative consumption rate (RCR), relative growth rate (RGR) and approximate digestibility (AD) in H. zea, and increased AD and the efficiency of conversion of ingested food (ECI) in H. armigera; whereas it did not significantly change any of these nutritional indices in H. assulta. The acute toxicity of capsaicin measured by injection into early fifth instar larvae was less in H. assulta than in H. armigera and H. zea. Injection of high concentrations produced abdominal paralysis and self-cannibalism. Injection of sub-lethal doses of capsaicin resulted in reduced pupal weights in H. armigera and H. zea, but not in H. assulta. The results indicate that H. assulta is more tolerant to capsaicin than

  2. History and Current Status of Development and Use of Viral Insecticides in China

    PubMed Central

    Sun, Xiulian

    2015-01-01

    The use of insect viruses as biological control agents started in the early 1960s in China. To date, more than 32 viruses have been used to control insect pests in agriculture, forestry, pastures, and domestic gardens in China. In 2014, 57 products from 11 viruses were authorized as commercial viral insecticides by the Ministry of Agriculture of China. Approximately 1600 tons of viral insecticidal formulations have been produced annually in recent years, accounting for about 0.2% of the total insecticide output of China. The development and use of Helicoverpa armigera nucleopolyhedrovirus, Mamestra brassicae nucleopolyhedrovirus, Spodoptera litura nucleopolyhedrovirus, and Periplaneta fuliginosa densovirus are discussed as case studies. Additionally, some baculoviruses have been genetically modified to improve their killing rate, infectivity, and ultraviolet resistance. In this context, the biosafety assessment of a genetically modified Helicoverpa armigera nucleopolyhedrovirus is discussed. PMID:25609304

  3. History and current status of development and use of viral insecticides in China.

    PubMed

    Sun, Xiulian

    2015-01-20

    The use of insect viruses as biological control agents started in the early 1960s in China. To date, more than 32 viruses have been used to control insect pests in agriculture, forestry, pastures, and domestic gardens in China. In 2014, 57 products from 11 viruses were authorized as commercial viral insecticides by the Ministry of Agriculture of China. Approximately 1600 tons of viral insecticidal formulations have been produced annually in recent years, accounting for about 0.2% of the total insecticide output of China. The development and use of Helicoverpa armigera nucleopolyhedrovirus, Mamestra brassicae nucleopolyhedrovirus, Spodoptera litura nucleopolyhedrovirus, and Periplaneta fuliginosa densovirus are discussed as case studies. Additionally, some baculoviruses have been genetically modified to improve their killing rate, infectivity, and ultraviolet resistance. In this context, the biosafety assessment of a genetically modified Helicoverpa armigera nucleopolyhedrovirus is discussed.

  4. Specific binding of Bacillus thuringiensis Cry2A insecticidal proteins to a common site in the midgut of Helicoverpa species.

    PubMed

    Hernández-Rodríguez, Carmen Sara; Van Vliet, Adri; Bautsoens, Nadine; Van Rie, Jeroen; Ferré, Juan

    2008-12-01

    For a long time, it has been assumed that the mode of action of Cry2A toxins was unique and different from that of other three-domain Cry toxins due to their apparent nonspecific and unsaturable binding to an unlimited number of receptors. However, based on the homology of the tertiary structure among three-domain Cry toxins, similar modes of action for all of them are expected. To confirm this hypothesis, binding assays were carried out with (125)I-labeled Cry2Ab. Saturation assays showed that Cry2Ab binds in a specific and saturable manner to brush border membrane vesicles (BBMVs) of Helicoverpa armigera. Homologous-competition assays with (125)I-Cry2Ab demonstrated that this toxin binds with high affinity to binding sites in H. armigera and Helicoverpa zea midgut. Heterologous-competition assays showed a common binding site for three toxins belonging to the Cry2A family (Cry2Aa, Cry2Ab, and Cry2Ae), which is not shared by Cry1Ac. Estimation of K(d) (dissociation constant) values revealed that Cry2Ab had around 35-fold less affinity than Cry1Ac for BBMV binding sites in both insect species. Only minor differences were found regarding R(t) (concentration of binding sites) values. This study questions previous interpretations from other authors performing binding assays with Cry2A toxins and establishes the basis for the mode of action of Cry2A toxins.

  5. Specific Binding of Bacillus thuringiensis Cry2A Insecticidal Proteins to a Common Site in the Midgut of Helicoverpa Species▿

    PubMed Central

    Hernández-Rodríguez, Carmen Sara; Van Vliet, Adri; Bautsoens, Nadine; Van Rie, Jeroen; Ferré, Juan

    2008-01-01

    For a long time, it has been assumed that the mode of action of Cry2A toxins was unique and different from that of other three-domain Cry toxins due to their apparent nonspecific and unsaturable binding to an unlimited number of receptors. However, based on the homology of the tertiary structure among three-domain Cry toxins, similar modes of action for all of them are expected. To confirm this hypothesis, binding assays were carried out with 125I-labeled Cry2Ab. Saturation assays showed that Cry2Ab binds in a specific and saturable manner to brush border membrane vesicles (BBMVs) of Helicoverpa armigera. Homologous-competition assays with 125I-Cry2Ab demonstrated that this toxin binds with high affinity to binding sites in H. armigera and Helicoverpa zea midgut. Heterologous-competition assays showed a common binding site for three toxins belonging to the Cry2A family (Cry2Aa, Cry2Ab, and Cry2Ae), which is not shared by Cry1Ac. Estimation of Kd (dissociation constant) values revealed that Cry2Ab had around 35-fold less affinity than Cry1Ac for BBMV binding sites in both insect species. Only minor differences were found regarding Rt (concentration of binding sites) values. This study questions previous interpretations from other authors performing binding assays with Cry2A toxins and establishes the basis for the mode of action of Cry2A toxins. PMID:18931285

  6. Biology, Ecology, and Evolving Management of Helicoverpa zea (Lepidoptera: Noctuidae) in Sweet Corn in the United States.

    PubMed

    Olmstead, Daniel L; Nault, Brian A; Shelton, Anthony M

    2016-08-01

    The corn earworm, Helicoverpa zea (Boddie), is a polyphagous pest found throughout the United States, where it attacks many field and vegetable crops. Although H. zea has long been a traditional pest of sweet corn, its importance to this crop has increased dramatically over the past two decades. In this review, we summarize information critical for current and future management of H. zea in sweet corn production in the United States. First, we discuss the pest status of H. zea and its life history, including migration, infestation and larval development, diapause, overwintering, and abiotic factors that affect its biology. Next we describe monitoring methods, crop protection decision-making processes, chemical control options, and the use of genetic technologies for control of H. zea Alternative H. zea management options including biological control, cultural controls, host plant resistance, and pheromone disruption are also reviewed. The role of climate change and its effects on H. zea and its ecology are discussed, as well as the recent invasion of its relative, Helicoverpa armigera (Hübner), which is a major pest of corn in other parts of the world. To conclude, we suggest future research opportunities for H. zea and H. armigera management in sweet corn.

  7. Inheritance of transgenes in transgenic Bt lines resistance to Helicoerpa armigera in upland cotton.

    PubMed

    Zhang, Baolong; Guo, Wangzhen; Zhang, Tianzhen

    2013-01-01

    Six transgenic Bt cotton cultivars (lines) including GKsu12, GK19, MR1, GK5, 109B, and SGK1 are highly resistant to bollworm from the seedling to boll-setting stages in bioassays with detached cotton leaves, though there are differences in resistant level and Bt toxin content in these transgenic cottons. Genetics analysis reveals that the resistance to Helicoverpa armigera in these six transgenic Bt cotton cultivars (lines) are controlled by one pair of dominant genes. Allelic tests further demonstrate some populations are in Mendel segregation for two nonallelic genes, i.e., the inserted Bt gene in GKsu12 is nonallelic to that of SGK1, GK5, 109B, and GK19 and Bt genes in GK19 and SGK1 are likely inserted in the same or in close proximity (genetically closely linked), while some F(2) produce abnormal segregation patterns, with a segregation of resistance to Helicoerpa armigera vary between 15:1 and 3:1, though their Bt segregation fit into 15:1 by PCR analysis, suggesting Bt gene silence in these populations. Two genes silence may occur in these populations due to the homologous sequence by crossing since the silenced individuals accounted for 1/16 of the F(2) populations for allelic test. To those silenced populations, one of their parents all showed high resistance to bollworm.

  8. Specific olfactory neurons and glomeruli are associated to differences in behavioral responses to pheromone components between two Helicoverpa species

    PubMed Central

    Wu, Han; Xu, Meng; Hou, Chao; Huang, Ling-Qiao; Dong, Jun-Feng; Wang, Chen-Zhu

    2015-01-01

    Sex pheromone communication of moths helps to understand the mechanisms underlying reproductive isolation and speciation. Helicoverpa armigera and Helicoverpa assulta use (Z)-11-hexadecenal (Z11-16:Ald) and (Z)-9-hexadecenal (Z9-16:Ald) as pheromone components in reversed ratios, 97:3 and 5:95, respectively. H. armigera also produces trace amount of (Z)-9-tetradecenal (Z9-14:Ald) in the sex pheromone gland, but H. assulta does not. Wind tunnel studies revealed that the addition of small amounts (0.3%) of Z9-14:Ald to the main pheromone blend of H. armigera increased the males' attraction, but at higher doses (1%, 10%) the same compound acted as an inhibitor. In H. assulta, Z9-14:Ald reduced male attraction when presented as 1% to the pheromone blend, but was ineffective at lower concentrations (0.3%). Three types (A–C) of sensilla trichodea in antennae were identified by single sensillum recording, responding to Z11-16:Ald, Z9-14:Ald, and both Z9-16:Ald and Z9-14:Ald, respectively. Calcium imaging in the antennal lobes (ALs) revealed that the input information of the three chemicals was transmitted to three units of the macroglomerular complex (MGC) in ALs in both species: a large glomerulus for the major pheromone components, a small one for the minor pheromone components, and a third one for the behavioral antagonists. The type A and C neurons tuned to Z11-16:Ald and Z9-16:Ald had a reversed target in the MGC between the two species. In H. armigera, low doses (1, 10 μg) of Z9-14:Ald dominantly activated the glomerulus which processes the minor pheromone component, while a higher dose (100 μg) also evoked an equal activity in the antagonistic glomerulus. In H. assulta, instead, Z9-14:Ald always strongly activated the antagonistic glomerulus. These results suggest that Z9-14:Ald plays different roles in the sexual communication of two Helicoverpa species through activation of functionally different olfactory pathways. PMID:26300751

  9. Trade-offs of host use between generalist and specialist Helicoverpa sibling species: adult oviposition and larval performance.

    PubMed

    Liu, Zhudong; Scheirs, Jan; Heckel, David G

    2012-02-01

    Much attention has been paid to the question of the relative importance of female behaviour versus larval feeding capacities in determining the host range of herbivorous insects. Host-use trade-offs displayed by generalist and specialist sister species of the genus Helicoverpa were evaluated to examine the relationship between maternal choice and offspring performance. The prediction of optimal oviposition theory, that females will choose to lay eggs on plants on which their offspring perform best as larvae, was tested by measuring oviposition preference and larval performance of Helicoverpa armigera and H. assulta on tobacco, sunflower, and hot pepper. These two measures were more highly correlated in the specialist H. assulta. Both species exhibited the same oviposition preference ranking: tobacco > sunflower > hot pepper. H. armigera larvae preferred sunflower, followed by tobacco and hot pepper; while H. assulta larvae preferred tobacco to sunflower and hot pepper, consistent with their mothers' oviposition preference. Duration of the total period from egg to adult emergence for each species was significantly shorter on the host plant preferred by the larvae. H. assulta had shorter larval duration and higher relative growth rate than H. armigera on tobacco and hot pepper, and vice versa for sunflower, indicating species differences in host utilization. Thus, while only the specialist H. assulta displayed the predicted optimal oviposition pattern, females of both species show the least preference for the plant on which their offspring perform worst. Selection for optimal oviposition may be stronger on the specialist, which has fewer choices and lower lifetime fecundity than the generalist.

  10. Genetic variation and virulence of Autographa californica multiple nucleopolyhedrovirus and Trichoplusia ni single nucleopolyhedrovirus isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine the genetic diversity within the baculovirus species Autographa calfornica multiple nucleopolyhedrovirus (AcMNPV; Baculoviridae: Alphabaculovirus), a PCR-based method was used to identify and classify baculoviruses found in virus samples from the lepidopteran host species A. californi...

  11. A tale of two trapping methods: Helicoverpa spp. (Lepidoptera, Noctuidae) in pheromone and light traps in Australian cotton production systems.

    PubMed

    Baker, G H; Tann, C R; Fitt, G P

    2011-02-01

    Pheromone and light traps have often been used in ecological studies of two major noctuid pests of agriculture in Australia, Helicoverpa armigera and H. punctigera. However, results from these two methods have rarely been compared directly. We set pheromone and light traps adjacent to or amongst cotton and various other crops for 10-11 years in the Namoi Valley, in northern New South Wales, Australia. Catches in pheromone traps suggested a major peak in (male) numbers of H. punctigera in early spring, with relatively few moths caught later in the summer cropping season. In contrast, (male) H. armigera were most abundant in late summer. Similar trends were apparent for catches of both male and female H. armigera in light traps, but both sexes of H. punctigera were mostly caught in mid-summer. For both species, males were more commonly caught than females. These catch patterns differed from some previous reports. At least three generations of both species were apparent in the catches. There was some evidence that the abundance of later generations could be predicted from the size of earlier generations; but, unlike previous authors, we found no positive relationships between local winter rainfall and subsequent catches of moths, nor did we find persuasive evidence of correlations between autumn and winter rainfall in central Australia and the abundance of subsequent 1st generation H. punctigera moths. Female H. punctigera were consistently more mature (gravid) and more frequently mated than those of H. armigera. Overall, our results highlight the variability in trap catches of these two species and question the use of trap catches and weather as predictors of future abundance in cropping regions.

  12. Monitoring of resistance development to Bt cotton in field populations of Helicoverpa armigera (Lepidoptera: noctuidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evolution of resistance threatens the continuing success of transgenic crops expressing insecticidal proteins. One of the key factors for a successful resistance management is the timely implementation of monitoring program to detect early changes of resistance frequency in field populations and imp...

  13. Analysis of the Choristoneura fumiferana nucleopolyhedrovirus genome.

    PubMed

    de Jong, Jondavid G; Lauzon, Hilary A M; Dominy, Cliff; Poloumienko, Arkadi; Carstens, Eric B; Arif, Basil M; Krell, Peter J

    2005-04-01

    The double-stranded DNA genome of Choristoneura fumiferana nucleopolyhedrovirus (CfMNPV) was sequenced and analysed in the context of other group I nucleopolyhedroviruses (NPVs). The genome consists of 129,593 bp with a G + C content of 50.1 mol%. A total of 146 open reading frames (ORFs) of greater than 150 bp, and with no or minimal overlap were identified. In addition, five homologous regions were identified containing 7-10 repeats of a 36 bp imperfect palindromic core. Comparison with other completely sequenced baculovirus genomes revealed that 139 of the CfMNPV ORFs have homologues in at least one other baculovirus and seven ORFs are unique to CfMNPV. Of the 117 CfMNPV ORFs common to all group I NPVs, 12 are exclusive to group I NPVs. Overall, CfMNPV is most similar to Orgyia pseudotsugata MNPV based on gene content, arrangement and overall amino acid identity. Unlike other group I baculoviruses, however, CfMNPV encodes a viral enhancing factor (vef) and has two copies of p26.

  14. Binding Site Alteration Is Responsible for Field-Isolated Resistance to Bacillus thuringiensis Cry2A Insecticidal Proteins in Two Helicoverpa Species

    PubMed Central

    Caccia, Silvia; Hernández-Rodríguez, Carmen Sara; Mahon, Rod J.; Downes, Sharon; James, William; Bautsoens, Nadine; Van Rie, Jeroen; Ferré, Juan

    2010-01-01

    Background Evolution of resistance by target pests is the main threat to the long-term efficacy of crops expressing Bacillus thuringiensis (Bt) insecticidal proteins. Cry2 proteins play a pivotal role in current Bt spray formulations and transgenic crops and they complement Cry1A proteins because of their different mode of action. Their presence is critical in the control of those lepidopteran species, such as Helicoverpa spp., which are not highly susceptible to Cry1A proteins. In Australia, a transgenic variety of cotton expressing Cry1Ac and Cry2Ab (Bollgard II) comprises at least 80% of the total cotton area. Prior to the widespread adoption of Bollgard II, the frequency of alleles conferring resistance to Cry2Ab in field populations of Helicoverpa armigera and Helicoverpa punctigera was significantly higher than anticipated. Colonies established from survivors of F2 screens against Cry2Ab are highly resistant to this toxin, but susceptible to Cry1Ac. Methodology/Principal Findings Bioassays performed with surface-treated artificial diet on neonates of H. armigera and H. punctigera showed that Cry2Ab resistant insects were cross-resistant to Cry2Ae while susceptible to Cry1Ab. Binding analyses with 125I-labeled Cry2Ab were performed with brush border membrane vesicles from midguts of Cry2Ab susceptible and resistant insects. The results of the binding analyses correlated with bioassay data and demonstrated that resistant insects exhibited greatly reduced binding of Cry2Ab toxin to midgut receptors, whereas no change in 125I-labeled-Cry1Ac binding was detected. As previously demonstrated for H. armigera, Cry2Ab binding sites in H. punctigera were shown to be shared by Cry2Ae, which explains why an alteration of the shared binding site would lead to cross-resistance between the two Cry2A toxins. Conclusion/Significance This is the first time that a mechanism of resistance to the Cry2 class of insecticidal proteins has been reported. Because we found the same

  15. Complete Mitochondrial Genome of Helicoverpa zea (Lepidoptera: Noctuidae) and Expression Profiles of Mitochondrial-Encoded Genes in Early and Late Embryos

    PubMed Central

    Perera, Omaththage P.; Walsh, Thomas K.; Luttrell, Randall G.

    2016-01-01

    The mitochondrial genome (mitogenome) of the bollworm, Helicoverpa zea (Boddie), was assembled using paired-end nucleotide sequence reads generated with a next-generation sequencing platform. Assembly resulted in a mitogenome of 15,348 bp with greater than 17,000-fold average coverage. Organization of the H. zea mitogenome (gene order and orientation) was identical to other known lepidopteran mitogenome sequences. Compared with Helicoverpa armigera (Hübner) mitogenome, there were a few differences in the lengths of gaps between genes, but the lengths of nucleotide overlaps were essentially conserved between the two species. Nucleotide composition of the H. zea mitochondrial genome was very similar to those of the related species H. armigera and Helicoverpa punctigera Wallengren. Mapping of RNA-Seq reads obtained from 2-h eggs and 48-h embryos to protein coding genes (PCG) revealed that all H. zea PCGs were processed as single mature gene transcripts except for the bicistronic atp8 + atp6 transcript. A tRNA-like sequence predicted to form a hammer-head-like secondary structure that may play a role in transcription start and mitogenome replication was identified within the control region of the H. zea mitogenome. Similar structures were also found within the control regions of several other lepidopteran species. Expression analysis revealed significant differences in levels of expression of PCGs within each developmental stage, but the pattern of variation was similar in both developmental stages analyzed in this study. Mapping of RNA-Seq reads to PCG transcripts also identified transcription termination and polyadenylation sites that differed from the sites described in other lepidopteran species. PMID:27126963

  16. Long-term changes in the numbers of Helicoverpa punctigera (Lepidoptera: Noctuidae) in a cotton production landscape in northern New South Wales, Australia.

    PubMed

    Baker, G H; Tann, C R

    2017-04-01

    Two noctuid moths, Helicoverpa punctigera and Helicoverpa armigera, are pests of several agricultural crops in Australia, most notably cotton. Cotton is a summer crop, grown predominantly in eastern Australia. The use of transgenic (Bt) cotton has reduced the damage caused by Helicoverpa spp., but the development of Bt resistance in these insects remains a threat. In the past, large populations of H. punctigera have built up in inland Australia, following autumn-winter rains. Moths have then migrated to the cropping regions in spring, when their inland host plants dried off. To determine if there have been any long-term changes in this pattern, pheromone traps were set for H. punctigera throughout a cropping landscape in northern New South Wales from 1992 to 2015. At least three generations of moths were caught from spring to autumn. The 1st generation (mostly spring migrants) was the most numerous. Trap captures varied between sites and decreased in time, especially for moths in the 1st generation. Nearby habitat type influenced the size of catch and there was some evidence that local weather also influenced the numbers of moths caught. There was no correlation between trap catches in the cropping region and rainfall in the inland. In addition, there was little evidence that Bt cotton has reduced the abundance of H. punctigera at landscape scale. The apparent decline in the number of presumably Bt susceptible moths arriving each spring in the cropping regions from inland habitats is of concern in relation to the management of Bt resistance.

  17. Genetic diversity among isolates of Autographa californica multiple nucleopolyhedrovirus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our knowledge of genetic variation at the nucleotide sequence level of Autographa californica multiple nucleopolyhedrovirus (AcMNPV; Baculoviridae: Alphabaculovirus) derives from complete genome sequences of the C6 clonal isolate of AcMNPV and the R1 and CL3 clonal isolates of AcMNPV variants Rachip...

  18. Frequency of alleles conferring resistance to the Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in Australian populations of Helicoverpa punctigera (Lepidoptera: Noctuidae) from 2002 to 2006.

    PubMed

    Downes, S; Parker, T L; Mahon, R J

    2009-04-01

    Helicoverpa punctigera and Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) are important pests of field and horticultural crops in Australia. The former is endemic to the continent, whereas the latter is also distributed in Africa and Asia. Although H. armigera rapidly developed resistance to virtually every group of insecticide used against it, there is only one report of resistance to an insecticide in H. punctigera. In 1996 the Australian cotton industry adopted Ingard, which expresses the Bacillus thuringiensis (Bt) toxin gene cry1Ac. In 2004/2005, Bollgard II (which expresses Cry1Ac and Cry2Ab) replaced Ingard and has subsequently been grown on 80% of the area planted to cotton, Gossypium hirsutum L. From 2002/2003 to 2006/2007, F2 screens were used to detect resistance to Cry1Ac or Cry2Ab. We detected no alleles conferring resistance to Cry1Ac; the frequency was < 0.0005 (n = 2,180 alleles), with a 95% credibility interval between 0 and 0.0014. However, during the same period, we detected alleles that confer resistance to Cry2Ab at a frequency of 0.0018 (n = 2,192 alleles), with a 95% credibility interval between 0.0005 and 0.0040. For both toxins, the experiment-wise detection probability was 94%, i.e., if there actually was a resistance allele in any tested lines, we would have detected it 94% of the time. The first isolation of Cry2Ab resistance in H. punctigera was before the widespread deployment of Bollgard II. This finding supports our published notion for H. armigera that alleles conferring resistance to Cry2Ab may be present at detectable frequencies in populations before selection by transgenic crops.

  19. Characteristics of resistance to Bacillus thuringiensis toxin Cry2Ab in a strain of Helicoverpa punctigera (Lepidoptera: Noctuidae) isolated from a field population.

    PubMed

    Downes, S; Parker, T L; Mahon, R J

    2010-12-01

    In 1996, the Australian cotton industry adopted Ingard that expresses the Bacillus thuringiensis (Bt) toxin gene cry1Ac and was planted at a cap of 30%. In 2004-2005, Bollgard II, which expresses cry1Ac and cry2Ab, replaced Ingard in Australia, and subsequently has made up >80% of the area planted to cotton, Gossypium hirsutum L. The Australian target species Helicoverpa armigera (Hübner) and Helicoverpa punctigera (Wallengren) are innately moderately tolerant to Bt toxins, but the absence of a history of insecticide resistance indicates that the latter species is less likely to develop resistance to Bt cotton. From 2002-2003 to 2006-2007, F2 screens were deployed to detect resistance to CrylAc or Cry2Ab in natural populations of H. punctigera. Alleles that conferred an advantage against CrylAc were not detected, but those that conferred resistance to Cry2Ab were present at a frequency of 0.0018 (n = 2,192 alleles). Importantly, the first isolation of Cry2Ab resistance in H. punctigera occurred before significant opportunities to develop resistance in response to Bollgard II. We established a colony (designated Hp4-13) consisting of homozygous resistant individuals and examined their characteristics through comparison with individuals from a Bt-susceptible laboratory colony. Through specific crosses and bioassays, we established that the resistance present in Hp4-13 is due to a single autosomal gene. The resistance is fully recessive. Homozygotes are able to survive a dose of Cry2Ab toxin that is 15 times the reported concentration in field grown Bollgard II in Australia (500 microg/ml) and are fully susceptible to Cry1Ac and to the Bt product DiPel. These characteristics are the same as those described for the first Cry2Ab resistant strain of H. armigera isolated from a field population in Australia.

  20. Expression in Antennae and Reproductive Organs Suggests a Dual Role of an Odorant-Binding Protein in Two Sibling Helicoverpa Species

    PubMed Central

    Sun, Ya-Lan; Huang, Ling-Qiao; Pelosi, Paolo; Wang, Chen-Zhu

    2012-01-01

    Odorant-binding proteins (OBPs) mediate both perception and release of semiochemicals in insects. These proteins are the ideal targets for understanding the olfactory code of insects as well as for interfering with their communication system in order to control pest species. The two sibling Lepidopteran species Helicoverpa armigera and H. assulta are two major agricultural pests. As part of our aim to characterize the OBP repertoire of these two species, here we focus our attention on a member of this family, OBP10, particularly interesting for its expression pattern. The protein is specifically expressed in the antennae of both sexes, being absent from other sensory organs. However, it is highly abundant in seminal fluid, is transferred to females during mating and is eventually found on the surface of fertilised eggs. Among the several different volatile compounds present in reproductive organs, OBP10 binds 1-dodecene, a compound reported as an insect repellent. These results have been verified in both H. armigera and H. assulta with no apparent differences between the two species. The recombinant OBP10 binds, besides 1-dodecene, some linear alcohols and several aromatic compounds. The structural similarity of OBP10 with OBP1 of the mosquito Culex quinquefasciatus, a protein reported to bind an oviposition pheromone, and its affinity with 1-dodecene suggest that OBP10 could be a carrier for oviposition deterrents, favouring spreading of the eggs in these species where cannibalism is active among larvae. PMID:22291900

  1. Sequence and Organization of the Neodiprion lecontei Nucleopolyhedrovirus Genome

    PubMed Central

    Lauzon, Hilary A. M.; Lucarotti, Christopher J.; Krell, Peter J.; Feng, Qili; Retnakaran, Arthur; Arif, Basil M.

    2004-01-01

    All fully sequenced baculovirus genomes, with the exception of the dipteran Culex nigripalpus nucleopolyhedrovirus (CuniNPV), have previously been from Lepidoptera. This study reports the sequencing and characterization of a hymenopteran baculovirus, Neodiprion lecontei nucleopolyhedrovirus (NeleNPV), from the redheaded pine sawfly. NeleNPV has the smallest genome so far published (81,755 bp) and has a GC content of only 33.3%. It contains 89 potential open reading frames, 43 with baculovirus homologues, 6 identified by conserved domains, and 1 with homology to a densovirus structural protein. Average amino acid identity of homologues ranged from 19.7% with CuniNPV to 24.9% with Spodoptera exigua nucleopolyhedrovirus. The conserved set of baculovirus genes has dropped to 29, since NeleNPV lacks an F protein homologue (ac23/ld130). NeleNPV contains 12 conserved lepidopteran baculovirus genes, including that for DNA binding protein, late expression factor 11 (lef-11), polyhedrin, occlusion derived virus envelope protein-18 (odv-e18), p40, and p45, but lacks 21 others, including lef-3, me53, immediate early gene-1, lef-6, pp31, odv-e66, few polyhedra 25k, odv-e25, protein kinase-1, fibroblast growth factor, and ubiquitin. The lack of identified baculovirus homologues may be due to difficulties in identification, differences in host-virus interactions, or other genes performing similar functions. Gene parity plots showed limited colinearity of NeleNPV with other baculoviruses, and phylogenetic analysis indicates that NeleNPV may have existed before the lepidopteran nucleopolyhedrovirus and granulovirus divergence. The creation of two new Baculoviridae genera to fit hymenopteran and dipteran baculoviruses may be necessary. PMID:15194779

  2. Genomic sequence analysis of the Illinois strain of the Agrotis ipsilon multiple nucleopolyhedrovirus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agrotis ipsilon multiple nucleopolyhedrovirus (AgipMNPV) is a group II nucleopolyhedrovirus (NPV) from the black cutworm, A. ipsilon, with potential as a biopesticide to control infestations of cutworm larvae. The genome of the Illinois strain of AgipMNPV was completely sequenced. The AgipMNPV...

  3. Autographa californica multiple nucleopolyhedrovirus and Choristoneura fumiferana multiple nucleopolyhedrovirus v-cath genes are expressed as pre-proenzymes.

    PubMed

    Hodgson, Jeffrey J; Arif, Basil M; Krell, Peter J

    2009-04-01

    Intracellular processing and trafficking of the baculovirus v-cath expressed cathepsin (V-CATH), which lacks canonical targeting signals, are poorly understood. The cathepsins of Autographa californica multiple nucleopolyhedrovirus (AcMNPV), Choristoneura fumiferana multiple nucleopolyhedrovirus (CfMNPV) and most other alphabaculovirus group I nucleopolyhedroviruses have well-conserved N-termini containing overlapping chymotrypsin-cleavage (Y(11)) and myristoylation (G(12)) motifs, which are suggestive of proteolytic signal-peptide cleavage to generate proV-CATH and subsequent acylation. To determine proteolytic N-terminal processing of V-CATH, haemagglutinin epitope-coding tags were fused to the 5' and/or 3' ends of AcMNPV and CfMNPV v-cath. Immunoblot analysis suggested that a small N-terminal peptide is cleaved for both viruses, indicating that v-cath is expressed as a pre-proenzyme. The two viral homologues undergo similar proteolytic processing, but have different glycosylation or other post-translational modifications. An AcMNPV V-CATH-DsRED fusion protein co-localized to the endoplasmic reticulum with an HDEL motif-containing green fluorescent protein. Based on these findings, pre-proV-CATH processing and trafficking mechanisms are postulated.

  4. Geographic isolates of Lymantria dispar multiple nucleopolyhedrovirus: Genome sequence analysis and pathogenicity against European and Asian gypsy moth strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Geographic isolates of Lymantria dispar multiple nucleopolyhedrovirus: Genome sequence analysis and pathogenicity against European and Asian gypsy moth strains. To evaluate the genetic diversity of Lymantria dispar nucleopolyhedrovirus (LdMNPV) at the genomic level, the genomes of three isolates of...

  5. Helicoverpa zea and Bt Cotton in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Helicoverpa zea (Boddie), the bollworm or corn earworm, is the most important lepidopteran pest of Bt cotton in the United States. Corn is the preferred host, but the insect feeds on most flowering crops and wild host plants. As a cotton pest, bollworm has been closely linked to the insecticide-res...

  6. Gender-mediated differences in vertical transmission of a nucleopolyhedrovirus.

    PubMed

    Virto, Cristina; Zárate, Carlos A; López-Ferber, Miguel; Murillo, Rosa; Caballero, Primitivo; Williams, Trevor

    2013-01-01

    With the development of sensitive molecular techniques for detection of low levels of asymptomatic pathogens, it becoming clear that vertical transmission is a common feature of some insect pathogenic viruses, and likely to be essential to virus survival when opportunities for horizontal transmission are unfavorable. Vertical transmission of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) is common in natural populations of S. exigua. To assess whether gender affected transgenerational virus transmission, four mating group treatments were performed using healthy and sublethally infected insects: i) healthy males (H♂) × healthy females (H♀); ii) infected males (I♂) × healthy females (H♀); iii) healthy males (H♂) × infected females (I♀) and iv) infected males (I♂) × infected females (I♀). Experimental adults and their offspring were analyzed by qPCR to determine the prevalence of infection. Both males and females were able to transmit the infection to the next generation, although female-mediated transmission resulted in a higher prevalence of infected offspring. Male-mediated venereal transmission was half as efficient as maternally-mediated transmission. Egg surface decontamination studies indicated that the main route of transmission is likely transovarial rather than transovum. Both male and female offspring were infected by their parents in similar proportions. Incorporating vertically-transmitted genotypes into virus-based insecticides could provide moderate levels of transgenerational pest control, thereby extending the periods between bioinsecticide applications.

  7. Choristoneura fumiferana nucleopolyhedrovirus encodes a functional 3'-5' exonuclease.

    PubMed

    Yang, Dan-Hui; de Jong, Jondavid G; Makhmoudova, Amina; Arif, Basil M; Krell, Peter J

    2004-12-01

    The Choristoneura fumiferana nucleopolyhedrovirus (CfMNPV) encodes an ORF homologous to type III 3'-5' exonucleases. The CfMNPV v-trex ORF was cloned into the Bac-to-Bac baculovirus expression-vector system, expressed in insect Sf21 cells with an N-terminal His tag and purified to homogeneity by using Ni-NTA affinity chromatography. Biochemical characterization of the purified V-TREX confirmed that this viral protein is a functional 3'-5' exonuclease that cleaves oligonucleotides from the 3' end in a stepwise, distributive manner, suggesting a role in proofreading during viral DNA replication and DNA repair. Enhanced degradation of a 5'-digoxigenin- or 5'-(32)P-labelled oligo(dT)(30) substrate was observed at increasing incubation times or increased amounts of V-TREX. The 3'-excision activity of V-TREX was maximal at alkaline pH (9.5) in the presence of 5 mM MgCl(2), 2 mM dithiothreitol and 0.1 mg BSA ml(-1).

  8. Mamestra configurata nucleopolyhedrovirus-A transcriptome from infected host midgut.

    PubMed

    Donly, B Cameron; Theilmann, David A; Hegedus, Dwayne D; Baldwin, Douglas; Erlandson, Martin A

    2014-02-01

    Infection of an insect by a baculovirus occurs in two distinct phases, an initial infection of host midgut by occlusion-derived virions (ODVs) and subsequent systemic infection of other tissues by budded virions (BV). A vast majority of investigations of the infection process have been restricted to cell culture studies using BV that emulate the systemic phase of infection. This is one of the first studies to investigate baculovirus gene expression in ODV infected midgut cells. We have focused on the critical first phase of in vivo infection by Mamestra configurata nucleopolyhedrovirus-A in M. configurata larvae, using qPCR and RNAseq mass sequencing to measure virus gene expression in midgut cells. The earliest genes detected by each method had significant overlap, including known early genes as well as genes unique to MacoNPV-A and genes of unknown function. The RNAseq data also revealed a large range of expression levels across all ORFs, which could not be measured using qPCR. This dataset provides a first whole genome transcriptomic analysis of viral genes required for virus infection in vivo and will provide the basis for functionally analyzing specific genes that may be critical elements in baculovirus midgut infectivity and host range.

  9. Adaptive management of pest resistance by Helicoverpa species (Noctuidae) in Australia to the Cry2Ab Bt toxin in Bollgard II® cotton

    PubMed Central

    Downes, Sharon; Mahon, Rodney J; Rossiter, Louise; Kauter, Greg; Leven, Tracey; Fitt, Gary; Baker, Geoff

    2010-01-01

    In Australia, monitoring Helicoverpa species for resistance to the Cry2Ab toxin in second generation Bacillus thuringiensis (Bt) cotton has precisely fulfilled its intended function: to warn of increases in resistance frequencies that may lead to field failures of the technology. Prior to the widespread adoption of two-gene Bt cotton, the frequency of Cry2Ab resistance alleles was at least 0.001 in H. armigera and H. punctigera. In the 5 years hence, there has been a significant and apparently exponential increase in the frequency of alleles conferring Cry2Ab resistance in field populations of H. punctigera. Herein we review the history of deploying and managing resistance to Bt cotton in Australia, outline the characteristics of the isolated resistance that likely impact on resistance evolution, and use a simple model to predict likely imminent resistance frequencies. We then discuss potential strategies to mitigate further increases in resistance frequencies, until the release of a third generation product. These include mandating larger structured refuges, applying insecticide to crops late in the season, and restricting the area of Bollgard II® cotton. The area planted to Bt-crops is anticipated to continue to rise worldwide; therefore the strategies being considered in Australia are likely to relate to other situations. PMID:25567948

  10. Genetic and biological variation among nucleopolyhedrovirus isolates from spodoptera frugiperda (lepidotpera: noctuidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A PCR-based method was used to identify and distinguish among 40 uncharacterized nucleopolyhedrovirus (NPV) isolates from the moth Spodoptera frugiperda that were part of an insect virus collection. Phylogenetic analysis was carried out with sequences amplified from two strongly conserved loci (pol...

  11. Fruit and vegetable extracts as radiation protectants for the beet armyworm nucleopolyhedrovirus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extracts from 37 fruits and vegetables were tested as ultraviolet (UV) protectants for the nucleopolyhedrovirus (SeMNPV) of the beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Only one extract (black currant) provided almost complete protection following ultraviolet B/ultraviole...

  12. Comparative infectivity of homologous and heterologous nucleopolyhedroviruses against beet armyworm larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Homologous and heterologous nucleopolyhedroviruses (NPVs) were assayed to determine the most effective NPV against beet armyworm larvae, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae)(SeMNPV). Included were three isolates from S. exigua, one isolate each from S. littoralis Boisduval, S. litura...

  13. Determination and analysis of the genome sequence of Spodoptera littoralis multiple nucleopolyhedrovirus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Spodoptera littoralis multiple nucleopolyhedrovirus (SpliMNPV), a pathogen of the Egyptian cotton leaf worm Spodoptera littoralis, was subjected to sequencing of its entire DNA genome and bioassay analysis comparing its virulence to that of other baculoviruses. The annotated SpliMNPV genome of...

  14. Effects of spinosad and neem on the efficacy of a nucleopolyhedrovirus on pickleworm larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A neem formulation (Neemix® 4.5) and spinosad (SpinTor® 2SC) were tested for their effects when mixed with the multicapsid nucleopolyhedrovirus virus (AgMNPV) from the velvetbean caterpillar, Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae), for control of pickleworm larvae, Diaphania nitidalis...

  15. Complete Genome Sequences of Six Chrysodeixis includens Nucleopolyhedrovirus Isolates from Brazil and Guatemala

    PubMed Central

    Craveiro, Saluana R.; Santos, Luis Arthur V. M.; Togawa, Roberto C.; Inglis, Peter W.; Grynberg, Priscila; Ribeiro, Zilda Maria A.; Ribeiro, Bergmann M.

    2016-01-01

    The baculovirus, Chrysodeixis (formerly Pseudoplusia) includens nucleopolyhedrovirus (ChinNPV), is a new Alphabaculovirus pathogenic to Chrysodeixis includens. Here, we report the complete genome sequences of six ChinNPV isolates. The availability of these genome sequences will provide information on ChinNPV molecular genetics, promoting understanding of its pathogenicity, diversity, and evolution. PMID:27932639

  16. Proteomics of the Autographa californica nucleopolyhedrovirus budded virions.

    PubMed

    Wang, Ranran; Deng, Fei; Hou, Dianhai; Zhao, Yong; Guo, Lin; Wang, Hualin; Hu, Zhihong

    2010-07-01

    Baculoviruses produce two progeny phenotypes during their replication cycles. The occlusion-derived virus (ODV) is responsible for initiating primary infection in the larval midgut, and the budded virus (BV) phenotype is responsible for the secondary infection. The proteomics of several baculovirus ODVs have been revealed, but so far, no extensive analysis of BV-associated proteins has been conducted. In this study, the protein composition of the BV of Autographa californica nucleopolyhedrovirus (AcMNPV), the type species of baculoviruses, was analyzed by various mass spectrometry (MS) techniques, including liquid chromatography-triple quadrupole linear ion trap (LC-Qtrap), liquid chromatography-quadrupole time of flight (LC-Q-TOF), and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF). SDS-PAGE and MALDI-TOF analyses showed that the three most abundant proteins of the AcMNPV BV were GP64, VP39, and P6.9. A total of 34 viral proteins associated with the AcMNPV BV were identified by the indicated methods. Thirteen of these proteins, PP31, AC58/59, AC66, IAP-2, AC73, AC74, AC114, AC124, chitinase, polyhedron envelope protein (PEP), AC132, ODV-E18, and ODV-E56, were identified for the first time to be BV-associated proteins. Western blot analyses showed that ODV-E18 and ODV-E25, which were previously thought to be ODV-specific proteins, were also present in the envelop fraction of BV. In addition, 11 cellular proteins were found to be associated with the AcMNPV BV by both LC-Qtrap and LC-Q-TOF analyses. Interestingly, seven of these proteins were also identified in other enveloped viruses, suggesting that many enveloped viruses may commonly utilize certain conserved cellular pathways.

  17. BV/ODV-E26: a palmitoylated, multifunctional structural protein of Autographa californica nucleopolyhedrovirus.

    PubMed

    Burks, Jared K; Summers, Max D; Braunagel, Sharon C

    2007-04-25

    Autographa californica nucleopolyhedrovirus Ac16 is 1 of 17 genes conserved within Type 1 nucleopolyhedroviruses. This report demonstrates that multiple isoforms of the protein encoded by Ac16, BV/ODV-E26 (E26), are present in the infected cell. One form of E26 associates with viral DNA or DNA-binding proteins, while a second form associates with intracellular membranes and this is likely due to palmitoylation. The different forms of E26 present unique epitopes that can be discriminated by antiserum produced to bacterially or virally produced antigen. A summation of the data now available on E26 suggests that it is a multifunctional protein and the functional states assume unique conformations that can be discriminated by differing antisera.

  18. Complete Genome Sequence of Lymantria dispar multiple nucleopolyhedrovirus Isolated in Southwestern Poland

    PubMed Central

    Krejmer-Rabalska, Martyna; Skrzecz, Iwona; Szewczyk, Boguslaw

    2016-01-01

    We report here the complete genomic sequence of Polish alphabaculovirus isolated from dead gypsy moth caterpillars. Its genome structure and G+C content indicate that it is a Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) strain which possesses the shortest sequence among eight other (similar to reference sequence AF081810) LdMNPV sequences available in GenBank; it is 159,729 bp long. PMID:28007858

  19. Biosafety of Recombinant and Wild Type Nucleopolyhedroviruses as Bioinsecticides

    PubMed Central

    Ashour, Mohamed-Bassem; Ragheb, Didair A.; El-Sheikh, El-Sayed A.; Gomaa, El-Adarosy A.; Kamita, Shizuo G.; Hammock, Bruce D.

    2007-01-01

    The entomopathogenic Autographa californica (Speyer) nucleopolyhedrovirus (AcMNPV) has been genetically modified to increase its speed of kill. The potential adverse effects of a recombinant AcMNPV (AcAaIT) as well as wild type AcMNPV and wild type Spodoptera littoralis NPV (SlNPV) were studied. Cotton plants were treated with these viruses at concentrations that were adjusted to resemble the recommended field application rate (4 × 1012 PIBs/feddan, feddan = 4,200 m2) and 3rd instar larvae of S. littoralis were allowed to feed on the contaminated plants. SDS-PAGE, ELISA, and DNA analyses were used to confirm that larvae that fed on these plants were virus-infected. Polyhedra that were purified from the infected larvae were subjected to structural protein analysis. A 32 KDa protein was found in polyhedra that were isolated from all of the viruses. Subtle differences were found in the size and abundance of ODV proteins. Antisera against polyhedral proteins isolated from AcAaIT polyhedra were raised in rabbits. The terminal bleeds from rabbits were screened against four coating antigens (i.e., polyhedral proteins from AcAaIT, AcAaIT from field-infected larvae (AcAaIT-field), AcMNPV, and SlNPV) using a two-dimensional titration method with the coated antigen format. Competitive inhibition experiments were conducted in parallel to optimize antibody and coating antigen concentrations for ELISA. The IC50 values for each combination ranged from 1.42 to 163 μg/ml. AcAaIT-derived polyhedrin gave the lowest IC50 value, followed by those of SlNPV, AcAaIT-field, and AcMNPV. The optimized ELISA system showed low cross reactivity for AcMNPV (0.87%), AcAaIT-field (1.2%), and SlNPV (4.0%). Genomic DNAs isolated from AcAaIT that were passaged in larvae of S. littoralis that were reared in the laboratory or field did not show any detectable differences. Albino rats (male and female) that were treated with AcAaIT, AcMNPV or SlNPV (either orally or by intraperitoneal injection at

  20. Comparative activity of Choristoneura fumiferana nucleopolyhedrovirus propagated in different hosts.

    PubMed

    Ebling, Peter M

    2004-07-01

    The biological activity of the Ireland strain of Choristoneura fumiferana (Clem) nucleopolyhedrovirus (CfMNPV) propagated in different hosts was determined to provide the basis upon which genetically modified CfMNPV, or other naturally occurring isolates, should be compared. Occlusion bodies (OB) derived from CF-203 cells were significantly larger and more pathogenic than those propagated in vivo when tested against the fifth larval instar of C fumiferana (Clem) and C occidentalis Freeman. The dose-responses (LD50 and LD95, expressed as occlusion bodies per larva) of C fumiferana larvae to in vitro-propagated OBs were 274 and 5785, respectively. The values of LD50 and LD95 to C occidentalis larvae were 19 and 118, respectively. There were no significant differences in pathogenicity or size when OBs propagated in C fumiferana larvae were tested against either insect species, nor were there significant differences for OBs propagated in C occidentalis larvae. The LD50 and LD95 of in vivo-produced OBs to C fumiferana were 925 and 61988, respectively. The LD50 and LD95 to C occidentalis were 50 and 453, respectively. OBs propagated in vitro had a mean volume of 13.13 microm3, whereas those propagated in vivo ranged from 0.84 to 1.41 microm3. The median survival time-responses (ST50) of fifth-instar C fumiferana or C occidentalis larvae to OBs propagated in vivo were not significantly different from those propagated in vitro at the dosage levels tested. Values of ST50 of C fumiferana larvae to in vitro- and in vivo-produced OBs at dosages causing less than 50% mortality rangedfrom 9.6 to 9.8 days post-inoculation (dpi), whereas a LD95 dose resulted in ST50 values ranging from 7.3 to 7.7 days. ST50 values of C occidentalis larvae at dosages causing less than 50% mortality ranged from 9.8 to 10.2 dpi, whereas a LD95 dose resulted in ST50 values ranging from 9.5 to 9.8 dpi. The median feeding cessation time-response (FT50) of fifth-instar C fumiferana larvae to OBs

  1. The Expression of Three Opsin Genes from the Compound Eye of Helicoverpa armigera (Lepidoptera: Noctuidae) Is Regulated by a Circadian Clock, Light Conditions and Nutritional Status

    PubMed Central

    Yan, Shuo; Zhu, Jialin; Zhu, Weilong; Zhang, Xinfang; Li, Zhen; Liu, Xiaoxia; Zhang, Qingwen

    2014-01-01

    Visual genes may become inactive in species that inhabit poor light environments, and the function and regulation of opsin components in nocturnal moths are interesting topics. In this study, we cloned the ultraviolet (UV), blue (BL) and long-wavelength-sensitive (LW) opsin genes from the compound eye of the cotton bollworm and then measured their mRNA levels using quantitative real-time PCR. The mRNA levels fluctuated over a daily cycle, which might be an adaptation of a nocturnal lifestyle, and were dependent on a circadian clock. Cycling of opsin mRNA levels was disturbed by constant light or constant darkness, and the UV opsin gene was up-regulated after light exposure. Furthermore, the opsin genes tended to be down-regulated upon starvation. Thus, this study illustrates that opsin gene expression is determined by multiple endogenous and exogenous factors and is adapted to the need for nocturnal vision, suggesting that color vision may play an important role in the sensory ecology of nocturnal moths. PMID:25353953

  2. A microRNA encoded by Autographa californica nucleopolyhedrovirus regulates expression of viral gene ODV-E25.

    PubMed

    Zhu, Mengxiao; Wang, Jinwen; Deng, Riqiang; Xiong, Peiwen; Liang, Hai; Wang, Xunzhang

    2013-12-01

    Baculovirus-encoded microRNAs (miRNAs) have been described in Bombyx mori nucleopolyhedrovirus; however, most of their functions remain unclear. Here we report the identification and characterization of an miRNA encoded by Autographa californica nucleopolyhedrovirus. The identified miRNA, AcMNPV-miR-1, perfectly matched a segment in the coding sequence of the viral gene ODV-E25 and downregulated ODV-E25 mRNA expression, which likely resulted in a reduction of infectious budded virions and accelerated the formation of occlusion-derived virions.

  3. Gene organization and sequencing of the Choristoneura fumiferana defective nucleopolyhedrovirus genome.

    PubMed

    Lauzon, Hilary A M; Jamieson, Peter B; Krell, Peter J; Arif, Basil M

    2005-04-01

    Two distinct nucleopolyhedrovirus species of the eastern spruce budworm, Choristoneura fumiferana, exist in a symbiont-like relationship. C. fumiferana defective nucleopolyhedrovirus (CfDEFNPV) only infects C. fumiferana larvae per os in the presence of C. fumiferana nucleopolyhedrovirus Ireland strain (CfMNPV), but is infective when injected into the haemolymph. CfDEFNPV synergizes CfMNPV in per os infections and CfMNPV is always the predominant progeny. This study was undertaken to report the genomic makeup and organization of CfDEFNPV in an attempt to identify its defect and understand its synergistic role. The genome was mapped, sequenced, characterized and compared to other baculoviruses. The CfDEFNPV genome was 131,160 nt long with 149 putative open reading frames (ORFs) and a G + C content of 45.8 mol%. Homologues of all 62 conserved lepidopteran baculovirus genes were found including those implicated in per os infectivity, p74, per os infectivity factor (pif) and pif-2. Although no obvious deletions were observed to explain the defect, two ORFs, Cfdef79 and Cfdef99 (inhibitor of apoptosis-4), contained potential deletions. Cfdef50 (late expression factor-10)/Cfdef51 (vp1054) and Cfdef76/Cfdef77 (telokin-like protein) had large overlaps and a potential homologue to ac105/he65 was split. Four baculovirus repeat ORFs were present, as were two unique genes, but no enhancins were identified. CfDEFNPV contained 13 homologous regions, each with one to five palindromes. Comparison with fully sequenced baculovirus genomes identified CfDEFNPV as a group I NPV with the closest average amino acid identity to Epiphyas postvittana NPV, followed by Orgyia pseudotsugata MNPV and CfMNPV, with its closest matches being to individual Anticarsia gemmatalis MNPV gene sequences.

  4. Entry of Bombyx mori nucleopolyhedrovirus into BmN cells by cholesterol-dependent macropinocytic endocytosis.

    PubMed

    Huang, Jinshan; Hao, Bifang; Cheng, Chen; Liang, Fei; Shen, Xingjia; Cheng, Xiaowen

    2014-10-10

    Bombyx mori nucleopolyhedrovirus (BmNPV) is a serious viral pathogen of silkworm, and no drug or specific protection against BmNPV infection is available at present time. Although functions of most BmNPV genes were depicted in recent years, knowledge on the mechanism of BmNPV entry into insect cells is still limited. Here BmNPV cell entry mechanism is investigated by different endocytic inhibitor application and subcellular analysis. Results indicated that BmNPV enters BmN cells by clathrin-independent macropinocytic endocytosis, which is mediated by cholesterol in a dose-dependent manner, and cholesterol replenishment rescued the BmNPV infection partially.

  5. The autographa californica multiple nucleopolyhedrovirus ODV-E56 envelope protein is required for oral infectivity and can be functionally substituted by rachiplusia ou multiple nucleopolyhedrovirus ODV-E56

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) odv-e56 gene encodes an occlusion-derived virus (ODV)-specific envelope protein, ODV-E56. In a previous analysis, the odv-e56 gene was found to be under positive selection pressure, suggesting that it may be a determinant of viral ho...

  6. Genetic variation and biological activity of isolates of lymantria dispar multiple nucleopolyhedrovirus from north america, europe, and asia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about genetic variation of Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV; Baculoviridae: Alphabaculovirus) at the nucleotide sequence level. To obtain a more comprehensive view of genetic diversity among isolates of LdMNPV, partial sequences of the lef-8 gene were generated...

  7. A soluble form of P74 can act as a per os infectivity factor to the autographa californica multiple nucleopolyhedrovirus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The baculovirus occlusion-derived virion (ODV) is required to spread virus infection among insect hosts via the per os route. The Autographa californica Multicapsid Nucleopolyhedrovirus (AcMNPV) P74 protein is an ODV envelope protein that is essential for ODVs to be infectious. P74 is anchored in ...

  8. Field Evaluation of a Kudzu/Cottonseed Oil Formulation on the Persistence of the Beet Armyworm Nucleopolyhedrovirus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A plant extract (kudzu) was tested as a UV protectant for SeMNPV, with and without the addition of an oil/emulsifier (cottonseed oil/lecithin) formulation. Aqueous and oil emulsion formulations of the beet armyworm, Spodoptera exigua (Hübner), nucleopolyhedrovirus SeMNPV were applied to collards an...

  9. Involvement of Bombyx mori nucleopolyhedrovirus ORF41 (Bm41) in BV production and ODV envelopment.

    PubMed

    Tian, Cai-Hong; Zhao, Jin-Fang; Xu, Yi-Peng; Xue, Jian; Zhang, Bao-Qin; Cui, Ying-Jun; Zhang, Min-Juan; Bao, Yan-Yuan; Zhang, Chuan-Xi

    2009-04-25

    Bombyx mori nucleopolyhedrovirus (BmNPV) ORF41 (Bm41), homologous to Ac52, is a gene present in most lepidopteran nucleopolyhedroviruses. Bm41 transcripts and encoded protein in BmNPV-infected cells can be detected from 3 and 6 h post-infection, respectively. Immunoassays have shown that Bm41 is not a viral structural protein and is detected in both the nuclei and cytoplasm of infected cells. A Bm41-disrupted virus (vBm(De)) and a repaired virus (vBm(Re)) were generated to investigate the function of Bm41. The results showed that Bm41 was essential for viral replication, and the disruption of Bm41 resulted in a much lower viral titer. Transmission electron microscopy revealed that disruption of Bm41 affected normal nucleocapsid envelopment and polyhedra formation in the nucleus. The disruption of Bm41 might severely affect odv-ec27 and polyhedrin expression. The disrupted virus reduced BmNPV infectivity in an LD(50) bioassay and took 18-23 h longer to kill larvae than wild-type virus in an LT(50) bioassay.

  10. Involvement of Bombyx mori nucleopolyhedrovirus ORF41 (Bm41) in BV production and ODV envelopment

    SciTech Connect

    Tian Caihong; Zhao Jinfang; Xu Yipeng; Xue Jian; Zhang Baoqin; Cui Yingjun; Zhang Minjuan; Bao Yanyuan; Zhang Chuanxi

    2009-04-25

    Bombyx mori nucleopolyhedrovirus (BmNPV) ORF41 (Bm41), homologous to Ac52, is a gene present in most lepidopteran nucleopolyhedroviruses. Bm41 transcripts and encoded protein in BmNPV-infected cells can be detected from 3 and 6 h post-infection, respectively. Immunoassays have shown that Bm41 is not a viral structural protein and is detected in both the nuclei and cytoplasm of infected cells. A Bm41-disrupted virus (vBm{sup De}) and a repaired virus (vBm{sup Re}) were generated to investigate the function of Bm41. The results showed that Bm41 was essential for viral replication, and the disruption of Bm41 resulted in a much lower viral titer. Transmission electron microscopy revealed that disruption of Bm41 affected normal nucleocapsid envelopment and polyhedra formation in the nucleus. The disruption of Bm41 might severely affect odv-ec27 and polyhedrin expression. The disrupted virus reduced BmNPV infectivity in an LD{sub 50} bioassay and took 18-23 h longer to kill larvae than wild-type virus in an LT{sub 50} bioassay.

  11. Helicoverpa zea and Bt cotton in the United States.

    PubMed

    Luttrell, Randall G; Jackson, Ryan E

    2012-01-01

    Helicoverpa zea (Boddie), the bollworm or corn earworm, is the most important lepidopteran pest of Bt cotton in the United States. Corn is the preferred host, but the insect feeds on most flowering crops and wild host plants. As a cotton pest, bollworm has been closely linked to the insecticide-resistance prone Heliothis virescens (F.), tobacco budworm. Immature stages of the two species are difficult to separate in field environments. Tobacco budworm is very susceptible to most Bt toxins, and Bt cotton is considered to be "high dose." Bollworm is less susceptible to Bt toxins, and Bt cotton is not "high dose" for this pest. Bt cotton is routinely sprayed with traditional insecticides for bollworm control. Assays of bollworm field populations for susceptibility to Bt toxins expressed in Bt cotton have produced variable results since pre-deployment of Bt cottons in 1988 and 1992. Analyses of assay response trends have been used by others to suggest that field resistance has evolved to Bt toxins in bollworm, but disagreement exists on definitions of field resistance and confidence of variable assay results to project changes in susceptibility of field populations. Given historical variability in bollworm response to Bt toxins, erratic field control requiring supplemental insecticides since early field testing of Bt cottons, and dramatic increases in corn acreage in cotton growing areas of the Southern US, continued vigilance and concern for resistance evolution are warranted.

  12. Molecular cloning and functional characterization of the diapause hormone receptor in the corn earworm Helicoverpa zea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diapause hormone (DH) in the heliothine moth has shown its activity in termination of pupal diapause, while the orthology in the silkworm is known to induce embryonic diapause. In the current study, we cloned the diapause hormone receptor from the corn earworm Helicoverpa zea (HzDHr) and tested ...

  13. Molecular identification and expression analysis of a diapause hormone receptor in the corn earworm, Helicoverpa zea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diapause hormone (DH) is an insect neuropeptide that is highly effective in terminating the overwintering pupal diapause in members of the Helicoverpa/Heliothis complex of agricultural pests, thus DH and related compounds have promise as tools for pest management. To augment our development of effe...

  14. Effect of Hexaflumuron on feeding response and reproduction of bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hexaflumuron (Consult® 100 EC, Dow AgroSciences) is an insect growth regulator that inhibits chitin synthesis. The efficacy of hexaflumuron mixed with 2.5 M sucrose (ppm) was evaluated in the laboratory against bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) for toxicity, proboscis exten...

  15. Genome Sequence and Analysis of Buzura suppressaria Nucleopolyhedrovirus: A Group II Alphabaculovirus

    PubMed Central

    Zhu, Zheng; Yin, Feifei; Liu, Xiaoping; Hou, Dianhai; Wang, Jun; Zhang, Lei; Arif, Basil; Wang, Hualin; Deng, Fei; Hu, Zhihong

    2014-01-01

    The genome of Buzura suppressaria nucleopolyhedrovirus (BusuNPV) was sequenced by 454 pyrosequencing technology. The size of the genome is 120,420 bp with 36.8% G+C content. It contains 127 hypothetical open reading frames (ORFs) covering 90.7% of the genome and includes the 37 conserved baculovirus core genes, 84 genes found in other baculoviruses, and 6 unique ORFs. No typical baculoviral homologous repeats (hrs) were present but the genome contained a region of repeated sequences. Gene Parity Plots revealed a 28.8 kb region conserved among the alpha- and beta-baculoviruses. Overall comparisons of BusuNPV to other baculoviruses point to a distinct species in group II Alphabaculovirus. PMID:24475121

  16. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    SciTech Connect

    Salem, Tamer Z.; Zhang, Fengrui; Thiem, Suzanne M.

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  17. Chondroitinase from baculovirus Bombyx mori nucleopolyhedrovirus and chondroitin sulfate from silkworm Bombyx mori.

    PubMed

    Sugiura, Nobuo; Ikeda, Motoko; Shioiri, Tatsumasa; Yoshimura, Mayumi; Kobayashi, Michihiro; Watanabe, Hideto

    2013-12-01

    Chondroitin sulfate (CS) is a linear polysaccharide composed of repeating disaccharide units of glucuronic acid (GlcUA) and N-acetyl-d-galactosamine (GalNAc) with sulfate groups at various positions. Baculovirus is an insect-pathogenic virus that infects Lepidoptera larvae. Recently, we found that the occlusion-derived virus envelope protein 66 (ODV-E66) from Autographa californica nucleopolyhedrovirus (AcMNPV) exhibits chondroitin (CH)-digesting activity with distinct substrate specificity. Here, we demonstrate that the ODV-E66 protein from Bombyx mori nucleopolyhedrovirus (BmNPV) exhibits 92% homology to the amino acid sequence and 83% of the CH lyase activity of ODV-E66 from AcMNPV. ODV-E66 cleaves glycosyl bonds at nonreducing sides of disaccharide units consisting of nonsulfated and 6-O-sulfated GalNAc residues. We then investigated CS in the silkworm, Bombyx mori, which is the host of BmNPV. CS was present in insect tissues such as the midgut, peritrophic membrane, silk gland and skin. The polysaccharide consisted of a nonsulfated disaccharide unit, mono-sulfated disaccharide at Position 4 of the GalNAc residue and mono-sulfated disaccharide at Position 6 of the GalNAc residue. With regard to immunohistochemical analysis, the staining patterns of the silkworm tissues were different among anti-CS antibodies. Chondroitn sulfate that is digestible by ODV-E66 exists sufficiently in the peritrophic membrane protecting the midgut epithelium from ingested pathogens. Our results suggest that ODV-E66 facilitates the primary infection of the virus by digestion of CS in the peritrophic membrane.

  18. Multiple nucleocapsid packaging of Autographa californica nucleopolyhedrovirus accelerates the onset of systemic infection in Trichoplusia ni.

    PubMed

    Washburn, J O; Lyons, E H; Haas-Stapleton, E J; Volkman, L E

    1999-01-01

    Among the nucleopolyhedroviruses (Baculoviridae), the occlusion-derived virus (ODV), which initiates infection in host insects, may contain only a single nucleocapsid per virion (the SNPVs) or one to many nucleocapsids per virion (the MNPVs), but the significance of this difference is unclear. To gain insight into the biological relevance of these different packaging strategies, we compared pathogenesis induced by ODV fractions enriched for multiple nucleocapsids (ODV-M) or single nucleocapsids (ODV-S) of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) containing a beta-galactosidase reporter gene. In time course experiments wherein newly molted fourth-instar Trichoplusia ni were challenged with doses of ODV-S or ODV-M that yielded the same final mortality ( approximately 70%), we characterized viral foci as either being restricted to the midgut or involving tracheal cells (the secondary target tissue, indicative of systemic infection). We found that while the timing of primary infection by ODV-S and ODV-M was similar, ODV-S established significantly more primary midgut cell foci than ODV-M, but ODV-M infected tracheal cells at twice the rate of ODV-S. The more efficient establishment of tracheal infections by ODV-M decreased the probability that infections were lost by midgut cell sloughing, explaining why higher numbers of primary infections established by ODV-S within larvae were needed to achieve the same final mortality. These results showed that the multiple nucleocapsid packaging strategy of AcMNPV accelerates the onset of irreversible systemic infections and may indicate why MNPVs have wider individual host ranges than SNPVs.

  19. Microbial control of black cutworm (Lepidoptera: Noctuidae) in turfgrass using Agrotis ipsilon multiple nucleopolyhedrovirus.

    PubMed

    Prater, Callie A; Redmond, Carl T; Barney, Walter; Bonning, Bryony C; Potter, Daniel A

    2006-08-01

    Agrotis ipsilon multiple nucleopolyhedrovirus (family Baculoviridae, genus Nucleopolyhedrovirus, AgipMNPV), a naturally occurring baculovirus, was found infecting black cutworm, Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae), on central Kentucky golf courses. Laboratory, greenhouse, and field studies investigated the potential of AgipMNPV for managing black cutworms in turfgrass. The virus was highly active against first instars (LC50 = 73 occlusion bodies [OBs] per microl with 2-microl dose; 95% confidence intervals, 55-98). First instars that ingested a high lethal dose stopped feeding and died in 3-6 d as early second instars, whereas lethally infected fourth instars continued to feed and grow for 4-9 d until death. Sublethal doses consumed by third or fifth instars had little or no effect on subsequent developmental rate or pupal weight. Horizontal transmission of AgipMNPV in turfgrass plots was shown. Sprayed suspensions of AgipMNPV (5 x 10(8) - 6 x 10(9) OBs/m2) resulted in 75 to > 93% lethal infection of third or fourth instars in field plots of fairway-height creeping bentgrass, Agrostis stolonifera (Huds.), and on a golf course putting green collar. Virus spray residues (7 x 10(9) OBs/m2) allowed to weather on mowed and irrigated creeping bentgrass field plots significantly increased lethal infection of implanted larvae for at least 4 wk. This study, the first to evaluate a virus against a pest in turfgrass, suggests that AgipMNPV has potential as a preventive bioinsecticide targeting early instar black cutworms. Establishing a virus reservoir in the thatch and soil could suppress successive generations of that key pest on golf courses and sport fields.

  20. Hierarchical spatial structure of genetically variable nucleopolyhedroviruses infecting cyclic populations of western tent caterpillars.

    PubMed

    Cooper, Dawn; Cory, Jenny S; Myers, Judith H

    2003-04-01

    The cyclic population dynamics of western tent caterpillars, Malacosoma californicum pluviale, are associated with epizootics of a nucleopolyhedrovirus, McplNPV. Given the dynamic fluctuations in host abundance and levels of viral infection, host resistance and virus virulence might be expected to change during different phases of the cycle. As a first step in determining if McplNPV virulence and population structure change with host density, we used restriction fragment length polymorphism (RFLP) analysis to examine the genetic diversity of McplNPV infecting western tent caterpillar populations at different spatial scales. Thirteen dominant genetic variants were identified in 39 virus isolates (individual larvae) collected from field populations during one year of low host density, and another distinct variant was discovered among nine additional isolates in two subsequent years of declining host density. The distribution of these genetic variants was not random and indicated that the McplNPV population was structured at several spatial levels. A high proportion of the variation could be explained by family grouping, which suggested that isolates collected within a family were more likely to be the same than isolates compared among populations. Additionally, virus variants from within populations (sites) were more likely to be the same than isolates collected from tent caterpillar populations on different islands. This may indicate that there is limited mixing of virus among tent caterpillar families and populations when host population density is low. Thus there is potential for the virus to become locally adapted to western tent caterpillar populations in different sites. However, no dominant genotype was observed at any site. Whether and how selection acts on the genetically diverse nucleopolyhedrovirus populations as host density changes will be investigated over the next cycle of tent caterpillar populations.

  1. Proteomics analysis of digestive juice from silkworm during Bombyx mori nucleopolyhedrovirus infection.

    PubMed

    Hu, Xiaolong; Zhu, Min; Wang, Simei; Zhu, Liyuan; Xue, Renyu; Cao, Guangli; Gong, Chengliang

    2015-08-01

    Previous studies have analyzed the midgut transcriptome and proteome after challenge with Bombyx mori nucleopolyhedrovirus (BmNPV), however little information is available on the digestive juice proteome after BmNPV challenge. This study investigated BmNPV infection-induced protein changes in the digestive juice of silkworms using shotgun proteomics and MS sequencing. From the digestive juice of normal third-day, fifth-instar silkworm larvae, 75 proteins were identified, 44 of which were unknown; from larvae 6 h after inoculation with BmNPV, 106 proteins were identified, of which 39 were unknown. After BmNPV challenge, more secreted proteins appeared that had antiviral and digestive features. GO annotation analysis clustered most proteins in the lumen into catalytic, binding, and metabolic processes. Numerous proteins were reported to have BmNPV interactions. Hsp70 protein cognate, lipase-1, and chlorophyllide A-binding protein precursor were upregulated significantly after BmNPV challenge. Levels of trypsin-like serine protease, beta-1,3-glucanase, catalase, and serine protease transcripts decreased or were not significantly change after BmNPV challenge. Taken together, these findings provided insights into the interaction between host and BmNPV and revealed potential functions of digestive juice after per os BmNPV infection.

  2. Genome Sequencing and Analysis of Catopsilia pomona nucleopolyhedrovirus: A Distinct Species in Group I Alphabaculovirus

    PubMed Central

    Wang, Jun; Zhu, Zheng; Zhang, Lei; Hou, Dianhai; Wang, Manli; Arif, Basil; Kou, Zheng; Wang, Hualin; Deng, Fei; Hu, Zhihong

    2016-01-01

    The genome sequence of Catopsilia pomona nucleopolyhedrovirus (CapoNPV) was determined by the Roche 454 sequencing system. The genome consisted of 128,058 bp and had an overall G+C content of 40%. There were 130 hypothetical open reading frames (ORFs) potentially encoding proteins of more than 50 amino acids and covering 92% of the genome. Among all the hypothetical ORFs, 37 baculovirus core genes, 23 lepidopteran baculovirus conserved genes and 10 genes conserved in Group I alphabaculoviruses were identified. In addition, the genome included regions of 8 typical baculoviral homologous repeat sequences (hrs). Phylogenic analysis showed that CapoNPV was in a distinct branch of clade “a” in Group I alphabaculoviruses. Gene parity plot analysis and overall similarity of ORFs indicated that CapoNPV is more closely related to the Group I alphabaculoviruses than to other baculoviruses. Interesting, CapoNPV lacks the genes encoding the fibroblast growth factor (fgf) and ac30, which are conserved in most lepidopteran and Group I baculoviruses, respectively. Sequence analysis of the F-like protein of CapoNPV showed that some amino acids were inserted into the fusion peptide region and the pre-transmembrane region of the protein. All these unique features imply that CapoNPV represents a member of a new baculovirus species. PMID:27166956

  3. Proteomic analyses of baculovirus Anticarsia gemmatalis multiple nucleopolyhedrovirus budded and occluded virus.

    PubMed

    Braconi, Carla Torres; Ardisson-Araújo, Daniel Mendes Pereira; Paes Leme, Adriana Franco; Oliveira, Juliana Velasco de Castro; Pauletti, Bianca Alves; Garcia-Maruniak, Alejandra; Ribeiro, Bergmann Morais; Maruniak, James E; Zanotto, Paolo Marinho de Andrade

    2014-04-01

    Baculoviruses infect insects, producing two distinct phenotypes during the viral life cycle: the budded virus (BV) and the occlusion-derived virus (ODV) for intra- and inter-host spread, respectively. Since the 1980s, several countries have been using Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) as a biological control agent against the velvet bean caterpillar, A. gemmatalis. The genome of AgMNPV isolate 2D (AgMNPV-2D) carries at least 152 potential genes, with 24 that possibly code for structural proteins. Proteomic studies have been carried out on a few baculoviruses, with six ODV and two BV proteomes completed so far. Moreover, there are limited data on virion proteins carried by AgMNPV-2D. Therefore, structural proteins of AgMNPV-2D were analysed by MALDI- quadrupole-TOF and liquid chromatography MS/MS. A total of 44 proteins were associated with the ODV and 33 with the BV of AgMNPV-2D. Although 38 structural proteins were already known, we found six new proteins in the ODV and seven new proteins carried by the AgMNPV-2D BV. Eleven cellular proteins that were found on several other enveloped viruses were also identified, which are possibly carried with the virion. These findings may provide novel insights into baculovirus biology and their host interaction. Moreover, our data may be helpful in subsequent applied studies aiming to improve AgMNPV use as a biopesticide and a biotechnology tool for gene expression or delivery.

  4. Identification and characterization of odv-e25 of Spodoptera litura multicapsid nucleopolyhedrovirus.

    PubMed

    Li, Zhaofei; Pan, Lijin; Yu, Hang; Li, Sainan; Zhang, Guoping; Pang, Yi

    2006-02-01

    Spodoptera litura multicapsid nucleopolyhedrovirus (SpltMNPV) odv-e25 is 684 bp long, potentially encoding 227 amino acids with a predicted molecular weight of 24.9 kDa. Homology analysis indicated that SpltMNPV ODV-E25 has 35-65% amino acid identity with that of other known baculoviruses. RT-PCR results revealed that the odv-e25 is transcribed actively at the late stage of infection and the mRNA start site was mapped within a consensus baculovirus late promoter sequence (TTAAG). Western blot analysis of odv-e25 expression with an antiserum made against 6 x His tagged ODV-E25 expressed in Escherichia coli indicated that it was present as a doublet of approximately 27 kDa from 24 h through 96 h in SpltMNPV-infected Spli-221 cells. Similar results were seen on Western blots of Spodoptera exigua (Se)MNPV-infected Se301 cells. Immunofluorescence analysis showed that ODV-E25 was predominantly present in the cytoplasm of SpltMNPV-infected cells and localized to the envelopes of occlusion-derived virus.

  5. Autographa californica multiple nucleopolyhedrovirus odv-e66 is an essential gene required for oral infectivity.

    PubMed

    Xiang, Xingwei; Chen, Lin; Hu, Xiaolong; Yu, Shaofang; Yang, Rui; Wu, Xiaofeng

    2011-06-01

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) odv-e66 is a core gene and encodes an occlusion-derived virus (ODV)-specific envelope protein, ODV-E66. The N-terminal 23 amino acid of the envelope protein ODV-E66 are sufficient to direct native and fusion proteins to induced membrane microvesicles and the viral envelope during infection with AcMNPV. In this study, an odv-e66-knockout bacmid can not express N-terminal hydrophobic domains was constructed via homologous recombination in Escherichia coli. The odv-e66 deletion had no effect on budded virus (BV) production and viral DNA replication in infected Sf9 cells. Larval bioassays demonstrated that injection of odv-e66 deletion BV into the hemocoel could kill P. xylostella larvae as efficiently as repaired and control viruses; however, odv-e66 deletion mutant resulted in a 50% lethal dose that was 10(3) higher than that of the repaired and control viruses when inoculated per os. These results indicated that ODV-E66 envelope protein most likely played an important role in the oral infectivity of AcMNPV, but is not essential for virus replication.

  6. Molecular Characterization of a Nucleopolyhedrovirus Newly Isolated from Ophiusa disjungens in China.

    PubMed

    Lin, Tong; Liu, Li; Chang, Runlei; Lang, Guojun; Xu, Wen

    2012-12-01

    Ophiusa disjungens nucleopolyhedrovirus (OpdiNPV) was newly found in Guangdong Province, China. Using BamHI, EcoRI, HindIII, PstI, XhoI, XbaI digestion, the size of the OpdiNPV genome was estimated to be 92,000 base pair. The pstI-G genomic fragment of OpdiNPV was cloned and sequenced. Searches of databases identified at least four open reading frames (ORFs) within this fragment. These ORFs encode odv-e66 (EU 623602), p87/vp80 (EU 732665), odv-ec43 (EU617337) and ac108 gene (EU 732666) respectively. The phylogenetic tree of NPVs based on the combined sequences of odv-ec43 and ac108 indicated that OpdiNPV was most closely related to Mamestra configurata NPV-A and Mamestra configurata NPV-B. The characterization of OpdiNPV in this paper would provide better understanding molecular properties of this virus and be helpful in the development of the newly isolated virus as a biopesticide or an engineered pesticide to control more species of insect pests.

  7. Protein composition of the occlusion derived virus of Chrysodeixis chalcites nucleopolyhedrovirus.

    PubMed

    Xu, Fang; Ince, Ikbal Agah; Boeren, Sjef; Vlak, Just M; van Oers, Monique M

    2011-06-01

    Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV) is a group II NPV and its genome has 151 predicted open reading frames. In this study, the protein composition of ChchNPV occlusion derived virus (ODV) was determined by LC-MS/MS. Fifty-three proteins were identified in ChchNPV ODV particles. One ODV-protein is encoded by a gene so far unique to ChchNPV (Chch105). The two DNA photolyases PHR1 and PHR2, which are characteristic for ChchNPV and thought to be involved in repairing UV damage in viral DNA, were not detected in the ODVs. Comparison of the ODV proteins identified in ChchNPV and in three other baculoviruses enabled the identification of ten conserved ODV proteins (ODV-E18, ODV-E56, ODV-EC27, ODV-EC43, P6.9, P33, P49, P74, GP41, and VP39). In addition, the baculovirus per os infectivity factors PIF1, PIF2 and PIF3 were all detected in ChchNPV and these should be considered as conserved ODV proteins as well as they are absolutely required for oral infection. With the LC-MS/MS method used 22 viral proteins were detected, which were not identified as ODV proteins in previous studies.

  8. The structural protein ODV-EC27 of Autographa californica nucleopolyhedrovirus is a multifunctional viral cyclin.

    PubMed

    Belyavskyi, M; Braunagel, S C; Summers, M D

    1998-09-15

    Two major characteristics of baculovirus infection are arrest of the host cell at G2/M phase of the cell cycle with continuing viral DNA replication. We show that Autographa californica nucleopolyhedrovirus (AcMNPV) encodes for a multifunctional cyclin that may partially explain the molecular basis of these important characteristics of AcMNPV (baculovirus) infection. Amino acids 80-110 of the viral structural protein ODV-EC27 (-EC27) demonstrate 25-30% similarity with cellular cyclins within the cyclin box. Immunoprecipitation results using antibodies to -EC27 show that -EC27 can associate with either cdc2 or cdk6 resulting in active kinase complexes that can phosphorylate histone H1 and retinoblastoma protein in vitro. The cdk6-EC27 complex also associates with proliferating cell nuclear antigen (PCNA) and we demonstrate that PCNA is a structural protein of both the budded virus and the occlusion-derived virus. These results suggest that -EC27 can function as a multifunctional cyclin: when associated with cdc2, it exhibits cyclin B-like activity; when associated with cdk6, the complex possesses cyclin D-like activity and binds PCNA. The possible roles of such a multifunctional cyclin during the life cycle of baculovirus are discussed, along with potential implications relative to the expression of functionally authentic recombinant proteins by using baculovirus-infected cells.

  9. Chitinase from Autographa californica multiple nucleopolyhedrovirus: rapid purification from Sf-9 medium and mode of action.

    PubMed

    Fukamizo, Tamo; Sato, Hirokazu; Mizuhara, Mamiko; Ohnuma, Takayuki; Gotoh, Takeshi; Hiwatashi, Kazuyuki; Takahashi, Saori

    2011-01-01

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) chitinase is involved in the final liquefaction of infected host larvae. We purified the chitinase rapidly to homogeneity from Sf-9 cells infected with AcMNPV by a simple procedure using a pepstatin-aminohexyl-Sepharose column. In past studies, a recombinant AcMNPV chitinase was found to exhibit both exo- and endo-chitinase activities by analysis using artificial substrates with a fluorescent probe. In this study, however, we obtained more accurate information on the mode of action of the chitinase by HPLC analysis of the enzymatic products using natural oligosaccharide and polysaccharide substrates. The AcMNPV chitinase hydrolyzed the second β-1,4 glycosidic linkage from the non-reducing end of the chitin oligosaccharide substrates [(GlcNAc)(n), n=4, 5, and 6], producing the β-anomer of (GlcNAc)₂. The mode of action was similar to that of Serratia marcescens chitinase A (SmChiA), the amino acid sequence of which is 60.5% homologous to that of the AcMNPV enzyme. The enzyme also hydrolyzed solid β-chitin, producing only (GlcNAc)₂. The AcMNPV chitinase processively hydrolyzes solid β-chitin in a manner similar to SmChiA. The processive mechanism of the enzyme appears to be advantageous in liquefaction of infected host larvae.

  10. High-level expression of canine parvovirus VP2 using Bombyx mori nucleopolyhedrovirus vector.

    PubMed

    Choi, J Y; Woo, S D; Lee, H K; Hong, H K; Je, Y H; Park, J H; Song, J Y; An, S H; Kang, S K

    2000-01-01

    For the potential use as recombinant vaccine, canine parvovirus (CPV) major capsid protein VP2 was expressed using Bombyx mori nucleopolyhedrovirus (BmNPV) vector. CPV VP2 gene was introduced into polyhedrin-based BmNPV transfer vector pBmKSK3, and recombinant virus BmK1-Parvo was prepared. When anti-CPV.VP2 monoclonal antibody was employed in immunofluorescence staining, an intense signal was observed within BmK1-Parvo-infected Bm5 cells but not within uninfected cells or cells infected with a wild-type BmNPV-K1. In hemagglutination assay, the expression level of VP2 were 3.2 x 10(3) HA units/ml from infected Bm5 cells, 2.1x 10(5) HA units/larvae from infected larval fat body, and 1.6x 10(6) HA units/ml from infected larval hemolymph. These results suggested that BmNPV vector system using B. mori larva as host could be applied to efficient mass-production of recombinant vaccines.

  11. Functional characterization of Autographa californica multiple nucleopolyhedrovirus gp16 (ac130)

    SciTech Connect

    Yang, Ming; Huang, Cui; Qian, Duo-Duo; Li, Lu-Lin

    2014-09-15

    To investigate the function of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) gp16, multiple gp16-knockout and repair mutants were constructed and characterized. No obvious difference in productivity of budded virus, DNA synthesis, late gene expression and morphogenesis was observed between gp16-knockout and repair viruses, but gp16 deletion resulted in six hours of lengthening in ST{sub 50} to the third instar Spodoptera exigua larvae in bioassays. GP16 was fractionated mainly in the light membrane fraction, by subcellular fractionation. A GP16-EGFP fusion protein was predominantly localized close around the nuclear membrane in infected cells, being coincident with formation of the vesicles associated with the nuclear membrane, which hosted nucleocapsids released from the nucleus. These data suggest that gp16 is not required for viral replication, but may be involved in membrane trafficking associated with the envelopment/de-envelopment of budded viruses when they cross over the nuclear membrane and pass through cytoplasm. - Highlights: • gp16 knockout and repair mutants of AcMNPV were constructed and characterized. • AcMNPV gp16 is not essential to virus replication. • Deletion of gp16 resulted in time lengthening to kill S. exigua larvae. • GP16 was localized close around the nuclear membrane of infected cells. • GP16 was fractionated in the light membrane fraction in subcellular fractionation.

  12. Immobilization of foreign protein into polyhedra of Bombyx mori nucleopolyhedrovirus (BmNPV)*

    PubMed Central

    Xiang, Xing-wei; Yang, Rui; Chen, Lin; Hu, Xiao-long; Yu, Shao-fang; Cao, Cui-ping; Wu, Xiao-feng

    2012-01-01

    In the late phase of Bombyx mori nucleopolyhedrovirus (BmNPV) infection, a large amount of polyhedra appear in the infected cell nucleolus, these polyhedra being dense protein crystals protecting the incorporated virions from the harsh environment. To investigate whether the foreign protein could be immobilized into the polyhedra of BmNPV, two recombinant baculoviruses were generated by a novel BmNPV polyhedrin-plus (polh+) Bac-to-Bac system, designated as vBmBac(polh+)-enhanced green fluorescent protein (EGFP) and vBmBac(polh+)-LacZ, which can express the polyhedrin and foreign protein simultaneously. Light microscopy analysis showed that all viruses produced polyhedra of normal appearance. Green fluorescence can be apparently detected on the surface of the vBmBac(polh+)-EGFP polyhedra, but not the BmNPV polyhedra. Fluorescence analysis and anti-desiccation testing confirmed that EGFP was embedded in the polyhedra. As expected, the vBmBac(polh+)-LacZ polyhedra contained an amount of LacZ and had a higher β-galactosidase activity. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting were also performed to verify if the foreign proteins were immobilized into polyhedra. This study provides a new inspiration for efficient preservation of useful proteins and development of new pesticides with toxic proteins. PMID:22302424

  13. Autographa californica multiple nucleopolyhedrovirus ac53 plays a role in nucleocapsid assembly

    SciTech Connect

    Liu Chao; Li Zhaofei Wu Wenbi; Li Lingling; Yuan Meijin; Pan Lijing; Yang Kai Pang Yi

    2008-12-05

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf53 (ac53) is a highly conserved gene existing in all sequenced Lepidoptera and Hymenoptera baculoviruses, but its function remains unknown. To investigate its role in the baculovirus life cycle, an ac53 deletion virus (vAc{sup ac53KO-PH-GFP}) was generated through homologous recombination in Escherichia coli. Fluorescence and light microscopy and titration analysis revealed that vAc{sup ac53KO-PH-GFP} could not produce infectious budded virus in infected Sf9 cells. Real-time PCR demonstrated that the ac53 deletion did not affect the levels of viral DNA replication. Electron microscopy showed that many lucent tubular shells devoid of the nucleoprotein core are present in the virogenic stroma and ring zone, indicating that the ac53 knockout affected nucleocapsid assembly. With a recombinant virus expressing an Ac53-GFP fusion protein, we observed that Ac53 was distributed within the cytoplasm and nucleus at 24 h post-infection, but afterwards accumulated predominantly near the nucleus-cytoplasm boundary. These data demonstrate that ac53 is involved in nucleocapsid assembly and is an essential gene for virus production.

  14. Functional analysis of Spodoptera frugiperda nucleopolyhedrovirus late expression factors in Sf9 cells.

    PubMed

    Berretta, Marcelo F; López, M Gabriela; Taboga, Oscar; Sciocco-Cap, Alicia; Romanowski, Víctor

    2013-02-01

    We used transient expression assays to assess the function of the baculovirus Spodoptera frugiperda M nucleopolyhedrovirus (SfMNPV) homologs of Autographa californica MNPV (AcMNPV) factors involved in late gene expression (lefs), in the Sf9 insect cell-line, which is permissive for both viruses. It is well-established that nineteen AcMNPV lefs support optimal levels of activity from a late promoter-reporter gene cassette in this assay. A subgroup of SfMNPV lefs predicted to function in transcription-specific events substituted the corresponding AcMNPV lefs very efficiently. When all SfMNPV lefs were assayed, including replication lefs, activity was low, but addition of two AcMNPV lefs not encoded in SfMNPV genome, resulted in augmented reporter activity. SfMNPV IE-1 was able to activate an early promoter cis-linked to an hr-derived element from SfMNPV but not from AcMNPV. However, the level of early promoter activation with SfMNPV IE-1 was lower compared to AcMNPV IE-1.

  15. Pathogenicity of Choristoneura fumiferana nucleopolyhedrovirus propagated in vitro at different incubation temperatures.

    PubMed

    Ebling, Peter M; Caputo, Guido F; Cook, Barbara J

    2003-01-01

    To optimize the in vitro production of Choristoneura fumiferana nucleopolyhedrovirus (CfMNPV) as a potential microbial pest control agent, the pathogenicity of occlusion bodies (OBs) produced in two cell lines at three incubation temperatures was determined by bioassay. A plaque-purified isolate of CfMNPV was amplified in permissive C. fumiferana cell lines, FPMI-CF-203 and FPMI-CF-2C1, and incubated at 22, 24, and 28 degrees C. Occlusion bodies propagated in FPMI-CF-203 cells at 28 degrees C were significantly larger (17.5 microm(3)) and more pathogenic (LD(50) = 27; LD(95) = 185, where LD(50) and LD(95) are doses required to kill 50 and 95% of the test larvae, respectively) than those produced in either of the cell lines at any of the incubation temperatures tested. Increased temperatures yielded larger OBs from both cell lines. The pathogenicity of OBs propagated in the FPMI-CF-203 cell line increased with incubation temperature, whereas that of OBs produced in FPMI-CF-2C1 cells decreased. Comparison of the pathogenicity of OBs, whether naturally occurring or genetically modified, should be standardized by cell line and incubation temperature used for propagation. Production efficiency decreased with increasing incubation temperature for each cell line. Lower incubation temperatures used for propagation, and standardization of the titer of viral inoculum, should be further investigated to determine the economic feasibility of the in vitro production of CfMNPV as a microbial pest control agent.

  16. Downregulation of a chitin deacetylase-like protein in response to baculovirus infection and its application for improving baculovirus infectivity.

    PubMed

    Jakubowska, Agata K; Caccia, Silvia; Gordon, Karl H; Ferré, Juan; Herrero, Salvador

    2010-03-01

    Several expressed sequence tags (ESTs) with homology to chitin deacetylase-like protein (CDA) were selected from a group of Helicoverpa armigera genes whose expression changed after infection with H. armigera single nucleopolyhedrovirus (HearNPV). Some of these ESTs coded for a midgut protein containing a chitin deacetylase domain (CDAD). The expressed protein, HaCDA5a, did not show chitin deacetylase activity, but it showed a strong affinity for binding to chitin. Sequence analysis showed the lack of any chitin binding domain, described for all currently known peritrophic membrane (PM) proteins. HaCDA5a has previously been detected in the H. armigera PM. Such localization, together with its downregulation after pathogen infection, led us to hypothesize that this protein might be responsible for the homeostasis of the PM structure and that, by reduction of its expression, the insect may reduce PM permeability, decreasing the entrance of baculovirus. To test this hypothesis, we constructed a recombinant nucleopolyhedrovirus to express HaCDA5a in insect cells and tested its influence on PM permeability as well as the influence of HaCDA5a expression on the performance of the baculovirus. The experiments showed that HaCDA5a increased PM permeability, in a concentration-dependent manner. Bioassays on Spodoptera frugiperda and Spodoptera exigua larvae revealed that NPV expressing HaCDA5a was more infective than its parental virus. However, no difference in virulence was observed when the viruses were injected intrahemocoelically. These findings support the downregulation of a midgut-specific CDA-like protein as a possible mechanism used by H. armigera to reduce susceptibility to baculovirus by decreasing PM permeability.

  17. 75 FR 62484 - Importation of Shepherd's Purse With Roots From the Republic of Korea Into the United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... horticola) Turnip moth (Agrotis segetum) American bollworm moth (Helicoverpa armigera) Cabbage webworm moth (Hellula undalis, Fabricius) The cabbage moth (Mamestra brassicae) Oriental leafworm moth...

  18. The Trichoplusia ni single nucleopolyhedrovirus tn79 gene encodes a functional sulfhydryl oxidase enzyme that is able to support the replication of Autographa californica multiple nucleopolyhedrovirus lacking the sulfhydryl oxidase ac92 gene

    PubMed Central

    Clem, Stian A.; Wu, Wenbi; Lorena Passarelli, A.

    2014-01-01

    The Autographa californica multiple nucleopolyhedrovirus ac92 is a conserved baculovirus gene with homology to flavin adenine dinucleotide-linked sulfhydryl oxidases. Its product, Ac92, is a functional sulfhydryl oxidase. Deletion of ac92 results in almost negligible levels of budded virus (BV) production, defects in occlusion-derived virus (ODV) co-envelopment and their inefficient incorporation into occlusion bodies. To determine the role of sulfhydryl oxidation in the production of BV, envelopment of nucleocapsids, and nucleocapsid incorporation into occlusion bodies, the Trichoplusia ni single nucleopolyhedrovirus ortholog, Tn79, was substituted for ac92. Tn79 was found to be an active sulfhydryl oxidase that substituted for Ac92, resulting in the production of infectious BV, albeit about 10-fold less than an ac92-containing virus. Tn79 rescued defects in ODV morphogenesis caused by a lack of ac92. Active Tn79 sulfhydryl oxidase activity is required for efficient BV production, ODV envelopment, and their subsequent incorporation into occlusion bodies in the absence of ac92. PMID:25010286

  19. Characterization of the interaction between P143 and LEF-3 from two different baculovirus species: Choristoneura fumiferana nucleopolyhedrovirus LEF-3 can complement Autographa californica nucleopolyhedrovirus LEF-3 in supporting DNA replication.

    PubMed

    Chen, Tricia; Sahri, Daniela; Carstens, Eric B

    2004-01-01

    The baculovirus protein P143 is essential for viral DNA replication in vivo, likely as a DNA helicase. We have demonstrated that another viral protein, LEF-3, first described as a single-stranded DNA binding protein, is required for transporting P143 into the nuclei of insect cells. Both of these proteins, along with several other early viral proteins, are also essential for DNA replication in transient assays. We now describe the identification, nucleotide sequences, and transcription patterns of the Choristoneura fumiferana nucleopolyhedrovirus (CfMNPV) homologues of p143 and lef-3 and demonstrate that CfMNPV LEF-3 is also responsible for P143 localization to the nucleus. We predicted that the interaction between P143 and LEF-3 might be critical for cross-species complementation of DNA replication. Support for this hypothesis was generated by substitution of heterologous P143 and LEF-3 between two different baculovirus species, Autographa californica nucleopolyhedrovirus and CfMNPV, in transient DNA replication assays. The results suggest that the P143-LEF-3 complex is an important baculovirus replication factor.

  20. Slow cell infection, inefficient primary infection and inability to replicate in fat body determine host-range of Thysanoplusia orichalcea M Nucleopolyhedrovirus (ThorMNPV)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An enhanced green fluorescence protein (EGFP) gene expression cassette was inserted at the gp37 locus of Thysanoplusia orichacea M nucleopolyhedrovirus (ThorMNPV) to produce vThGFP to study host-range mechanisms. Using EGFP to monitor infection in vitro, many cell lines showed EGFP expression sugges...

  1. Mechanism of enhanced Bombyx mori nucleopolyhedrovirus-resistance by titanium dioxide nanoparticles in silkworm.

    PubMed

    Xu, Kaizun; Li, Fanchi; Ma, Lie; Wang, Binbin; Zhang, Hua; Ni, Min; Hong, Fashui; Shen, Weide; Li, Bing

    2015-01-01

    The infection of Bombyx mori nucleopolyhedrovirus (BmNPV) in silkworms is often lethal. It is difficult to prevent, and its lethality is correlated with both viral particle characteristics and silkworm strains. Low doses of titanium dioxide nanoparticles (TiO2 NPs) can promote silkworm growth and improve its resistance to organophosphate pesticides. In this study, TiO2 NPs' effect on BmNPV resistance was investigated by analyzing the characteristics of BmNPV proliferation and transcriptional differences in silkworm midgut and the transcriptional changes of immunity related genes after feeding with TiO2 NPs. We found that low doses of TiO2 NPs improved the resistance of silkworm against BmNPV by 14.88-fold, with the mortalities of the experimental group and control group being 0.56% and 8.33% at 144 h, respectively. The proliferation of BmNPV in the midgut was significantly increased 72 h after infection in both experimental and control groups; the control group reached the peak at 120 h, while the experimental group took 24 more hours to reach the maximal value that was 12.63 times lower than the control, indicating that TiO2 NPs can inhibit BmNPV proliferation in the midgut. Consistently, the expression of the BmNPV-resistant gene Bmlipase-1 had the same increase pattern as the proliferation changes. Immune signaling pathway analysis revealed that TiO2 NPs inhibited the proliferation of silkworm BmNPV to reduce the activation levels of janus kinase/signal transducer and activator of transcription (JAK/STAT) and phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway, while promoting the expression of Bmakt to improve the immunity. Overall, our results demonstrate that TiO2 NPs increase silkworm resistance against BmNPV by inhibiting virus proliferation and improving immunity in silkworms.

  2. Proteomic analysis of BmN cell lipid rafts reveals roles in Bombyx mori nucleopolyhedrovirus infection.

    PubMed

    Hu, Xiaolong; Zhu, Min; Liang, Zi; Kumar, Dhiraj; Chen, Fei; Zhu, Liyuan; Kuang, Sulan; Xue, Renyu; Cao, Guangli; Gong, Chengliang

    2017-04-01

    The mechanism of how Bombyx mori nucleopolyhedrovirus (BmNPV) enters cells is unknown. The primary components of membrane lipid rafts are proteins and cholesterol, and membrane lipid rafts are thought to be an active region for host-viral interactions. However, whether they contribute to the entry of BmNPV into silkworm cells remains unclear. In this study, we explored the membrane protein components of lipid rafts from BmN cells with mass spectrometry (MS). Proteins and cholesterol were investigated after establishing infection with BmNPV in BmN cells. In total, 222 proteins were identified in the lipid rafts, and Gene Ontology (GO) annotation analysis showed that more than 10% of these proteins had binding and catalytic functions. We then identified proteins that potentially interact between lipid rafts and BmNPV virions using the Virus Overlay Protein Blot Assay (VOPBA). A total of 65 proteins were analyzed with MS, and 7 were predicted to be binding proteins involved in BmNPV cellular invasion, including actin, kinesin light chain-like isoform X2, annexin B13, heat-shock protein 90, barrier-to-autointegration factor B-like and serine/arginine-rich splicing factor 1 A-like. When the cholesterol of the lipid rafts from the membrane was depleted by methyl-β-cyclodextrin (MβCD), BmNPV entry into BmN cells was blocked. However, supplying cholesterol into the medium rescued the BmNPV infection ability. These results show that membrane lipid rafts may be the active regions for the entry of BmNPV into cells, and the components of membrane lipid rafts may be candidate targets for improving the resistance of the silkworm to BmNPV.

  3. Isolation and characterization of the DNA-binding protein (DBP) of the Autographa californica multiple nucleopolyhedrovirus

    SciTech Connect

    Mikhailov, Victor S. Vanarsdall, Adam L.; Rohrmann, George F.

    2008-01-20

    DNA-binding protein (DBP) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) was expressed as an N-terminal His{sub 6}-tag fusion using a recombinant baculovirus and purified to near homogeneity. Purified DBP formed oligomers that were crosslinked by redox reagents resulting in predominantly protein dimers and tetramers. In gel retardation assays, DBP showed a high affinity for single-stranded oligonucleotides and was able to compete with another baculovirus SSB protein, LEF-3, for binding sites. DBP binding protected ssDNA against hydrolysis by a baculovirus alkaline nuclease AN/LEF-3 complex. Partial proteolysis by trypsin revealed a domain structure of DBP that is required for interaction with DNA and that can be disrupted by thermal treatment. Binding to ssDNA, but not to dsDNA, changed the pattern of proteolytic fragments of DBP indicating adjustments in protein structure upon interaction with ssDNA. DBP was capable of unwinding short DNA duplexes and also promoted the renaturation of long complementary strands of ssDNA into duplexes. The unwinding and renaturation activities of DBP, as well as the DNA binding activity, were sensitive to sulfhydryl reagents and were inhibited by oxidation of thiol groups with diamide or by alkylation with N-ethylmaleimide. A high affinity of DBP for ssDNA and its unwinding and renaturation activities confirmed identification of DBP as a member of the SSB/recombinase family. These activities and a tight association with subnuclear structures suggests that DBP is a component of the virogenic stroma that is involved in the processing of replicative intermediates.

  4. Mechanism of Enhanced Bombyx mori Nucleopolyhedrovirus-Resistance by Titanium Dioxide Nanoparticles in Silkworm

    PubMed Central

    Zhang, Hua; Ni, Min; Hong, Fashui; Shen, Weide; Li, Bing

    2015-01-01

    The infection of Bombyx mori nucleopolyhedrovirus (BmNPV) in silkworms is often lethal. It is difficult to prevent, and its lethality is correlated with both viral particle characteristics and silkworm strains. Low doses of titanium dioxide nanoparticles (TiO2 NPs) can promote silkworm growth and improve its resistance to organophosphate pesticides. In this study, TiO2 NPs’ effect on BmNPV resistance was investigated by analyzing the characteristics of BmNPV proliferation and transcriptional differences in silkworm midgut and the transcriptional changes of immunity related genes after feeding with TiO2 NPs. We found that low doses of TiO2 NPs improved the resistance of silkworm against BmNPV by 14.88-fold, with the mortalities of the experimental group and control group being 0.56% and 8.33% at 144 h, respectively. The proliferation of BmNPV in the midgut was significantly increased 72 h after infection in both experimental and control groups; the control group reached the peak at 120 h, while the experimental group took 24 more hours to reach the maximal value that was 12.63 times lower than the control, indicating that TiO2 NPs can inhibit BmNPV proliferation in the midgut. Consistently, the expression of the BmNPV-resistant gene Bmlipase-1 had the same increase pattern as the proliferation changes. Immune signaling pathway analysis revealed that TiO2 NPs inhibited the proliferation of silkworm BmNPV to reduce the activation levels of janus kinase/signal transducer and activator of transcription (JAK/STAT) and phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway, while promoting the expression of Bmakt to improve the immunity. Overall, our results demonstrate that TiO2 NPs increase silkworm resistance against BmNPV by inhibiting virus proliferation and improving immunity in silkworms. PMID:25692869

  5. The Pangenome of the Anticarsia gemmatalis Multiple Nucleopolyhedrovirus (AgMNPV).

    PubMed

    Brito, Anderson Fernandes de; Braconi, Carla Torres; Weidmann, Manfred; Dilcher, Meik; Alves, João Marcelo Pereira; Gruber, Arthur; Zanotto, Paolo Marinho de Andrade

    2015-11-27

    The alphabaculovirus Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) is the world's most successful viral bioinsecticide. Through the 1980s and 1990s, this virus was extensively used for biological control of populations of Anticarsia gemmatalis (Velvetbean caterpillar) in soybean crops. During this period, genetic studies identified several variable loci in the AgMNPV; however, most of them were not characterized at the sequence level. In this study we report a full genome comparison among 17 wild-type isolates of AgMNPV. We found the pangenome of this virus to contain at least 167 hypothetical genes, 151 of which are shared by all genomes. The gene bro-a that might be involved in host specificity and carrying transporter is absent in some genomes, and new hypothetical genes were observed. Among these genes there is a unique rnf12-like gene, probably implicated in ubiquitination. Events of gene fission and fusion are common, as four genes have been observed as single or split open reading frames. Gains and losses of genomic fragments (from 20 to 900 bp) are observed within tandem repeats, such as in eight direct repeats and four homologous regions. Most AgMNPV genes present low nucleotide diversity, and variable genes are mainly located in a locus known to evolve through homologous recombination. The evolution of AgMNPV is mainly driven by small indels, substitutions, gain and loss of nucleotide stretches or entire coding sequences. These variations may cause relevant phenotypic alterations, which probably affect the infectivity of AgMNPV. This work provides novel information on genomic evolution of the AgMNPV in particular and of baculoviruses in general.

  6. Isolation and characterization of plaque-purified strains of Malacosoma disstria Nucleopolyhedrovirus.

    PubMed

    Erlandson, Martin A; Baldwin, Doug; Haveroen, Melissa; Keddie, B Andrew

    2006-03-01

    Seven plaque-purified genotypic variants or strains, derived from a previously described field isolate of the Malacosoma disstria Nucleopolyhedrovirus (MadiNPV) from Alberta populations of forest tent caterpillar, were characterized based on distinctive restriction endonuclease fragment patterns. Two strains, MadiNPV-pp3 and MadiNPV-pp11, were selected for further characterization, as they represented strains producing high and low budded virus (BV) titres, respectively, in the M. disstria cell line UA-Md203. Analysis of restriction endonuclease fragment profiles indicated the genomes differed significantly in size, 133.8 +/- 2.4 kb for MadiNPV-pp3 and 118.1 +/- 3.5 kb for MadiNPV-pp11. These strains were characterized based on their BV production in three different cell lines derived from M. disstria haemocytes. Compared with MadiNPV-pp11, MadiNPV-pp3 produced two- to three-fold more BVs in UA-Md203 and 210 other cell lines; however, BV production was only marginally higher for MadiNPV-pp3 in the UA-Md221 cell line. Similarly, the yield of polyhedral inclusion bodies was significantly higher for MadiNPV-pp3 in UA-Md203 and 210 cell lines than for MadiNPV-pp11 but not in the UA-Md221 cell line. This data, although derived from a limited number of cell lines, suggested MadiNPV-pp3 may have a broader tissue tropism than MadiNPV-pp11.

  7. Genetic Structure of a Spodoptera frugiperda Nucleopolyhedrovirus Population: High Prevalence of Deletion Genotypes

    PubMed Central

    Simón, Oihane; Williams, Trevor; López-Ferber, Miguel; Caballero, Primitivo

    2004-01-01

    A Nicaraguan field isolate (SfNIC) of Spodoptera frugiperda nucleopolyhedrovirus was purified by plaque assay on Sf9 cells. Nine distinct genotypes, A to I, were identified by their restriction endonuclease profiles. Variant SfNIC-B was selected as the standard because its restriction profile corresponded to that of the wild-type isolate. Physical maps were generated for each of the variants. The differences between variants and the SfNIC-B standard were confined to the region between map units 9 and 32.5. This region included PstI-G, PstI-F, PstI-L, PstI-K and EcoRI-L fragments. Eight genotypes presented a deletion in their genome compared with SfNIC-B. Occlusion body-derived virions of SfNIC-C, -D and -G accounted for 41% of plaque-purified clones. These variants were not infectious per os but retained infectivity by injection into S. frugiperda larvae. Median 50% lethal concentration values for the other cloned genotypes were significantly higher than that of the wild type. The variants also differed in their speed of kill. Noninfectious variants SfNIC-C and -D lacked the pif and pif-2 genes. Infectivity was restored to these variants by plasmid rescue with a plasmid comprising both pif and pif-2. Transcription of an SfNIC-G gene was detected by reverse transcription-PCR in insects, but no fatal disease developed. Transcription was not detected in SfNIC-C or -D-inoculated larvae. We conclude that the SfNIC population presents high levels of genetic diversity, localized to a 17-kb region containing pif and pif-2, and that interactions among complete and deleted genotypic variants will likely influence the capacity of this virus to control insect pests. PMID:15345446

  8. In vivo recombination between two strains of the genus Nucleopolyhedrovirus in its natural host, Spodoptera exigua.

    PubMed Central

    Muñoz, D; Vlak, J M; Caballero, P

    1997-01-01

    The DNA restriction map for the enzymes BamHI, BglII, PstI, and XbaI of SeMNPV-US (Se-US), the best-studied Nucleopolyhedrovirus strain isolated from Spodoptera exigua in California, was used as a reference to construct that of SeMNPV-SP2 (Se-SP2), a closely related Spanish strain of the same virus. After coinfection of S. exigua with both the Se-US and Se-SP2 strains per os, a recombinant virus (SeMNPV-SUR1 [Se-SUR1]) was detected after one passage which quickly replaced the parental viruses. A physical map of Se-SUR1 DNA was constructed for BamHI, BglII, PstI, and XbaI and compared to that of the parental viruses, Se-US and Se-SP2. Se-SUR1 is the result of at least four crossover events between Se-US and Se-SP2 and not of selection of a minor variant in one of the parental viruses. Bioassays of the recombinant and parental strains against L2 beet armyworm larvae demonstrated that their 50% lethal dose values were not significantly different. The differences in median lethal time values are too small to explain the replacement of the parental viruses by the recombinant virus upon successive passage in vivo, although it cannot be ruled out as an explanation for the selective advantage of the recombinant strain, Se-SUR1. The consequences of the release of nonindigenous or recombinant baculovirus strains in agro-ecosystems are discussed. PMID:9251191

  9. The Pangenome of the Anticarsia gemmatalis Multiple Nucleopolyhedrovirus (AgMNPV)

    PubMed Central

    de Brito, Anderson Fernandes; Braconi, Carla Torres; Weidmann, Manfred; Dilcher, Meik; Alves, João Marcelo Pereira; Gruber, Arthur; Zanotto, Paolo Marinho de Andrade

    2016-01-01

    The alphabaculovirus Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) is the world’s most successful viral bioinsecticide. Through the 1980s and 1990s, this virus was extensively used for biological control of populations of Anticarsia gemmatalis (Velvetbean caterpillar) in soybean crops. During this period, genetic studies identified several variable loci in the AgMNPV; however, most of them were not characterized at the sequence level. In this study we report a full genome comparison among 17 wild-type isolates of AgMNPV. We found the pangenome of this virus to contain at least 167 hypothetical genes, 151 of which are shared by all genomes. The gene bro-a that might be involved in host specificity and carrying transporter is absent in some genomes, and new hypothetical genes were observed. Among these genes there is a unique rnf12-like gene, probably implicated in ubiquitination. Events of gene fission and fusion are common, as four genes have been observed as single or split open reading frames. Gains and losses of genomic fragments (from 20 to 900 bp) are observed within tandem repeats, such as in eight direct repeats and four homologous regions. Most AgMNPV genes present low nucleotide diversity, and variable genes are mainly located in a locus known to evolve through homologous recombination. The evolution of AgMNPV is mainly driven by small indels, substitutions, gain and loss of nucleotide stretches or entire coding sequences. These variations may cause relevant phenotypic alterations, which probably affect the infectivity of AgMNPV. This work provides novel information on genomic evolution of the AgMNPV in particular and of baculoviruses in general. PMID:26615220

  10. A Hypothetical Model of Crossing Bombyx mori Nucleopolyhedrovirus through Its Host Midgut Physical Barrier

    PubMed Central

    Cheng, Yang; Wang, Xue-Yang; Hu, Hao; Killiny, Nabil; Xu, Jia-Ping

    2014-01-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) is a primary pathogen of silkworm (B. mori) that causes severe economic losses each year. However, the molecular mechanisms of silkworm-BmNPV interactions, especially the silkworm proteins that can interact with the virus, are still largely unknown. In this study, the total and membrane proteins of silkworm midguts were displayed using one- and two-dimensional electrophoresis. A virus overlay assay was used to detect B. mori proteins that specifically bind to BmNPV particles. Twelve proteins were located and identified using mass spectrometry, and the different expression of the corresponding genes in BmNPV susceptible and resistant silkworm strains also indicated their involvement in BmNPV infection. The 12 proteins are grouped based on their potential roles in viral infection, for example, endocytosis, intracellular transportation, and host responses. Based on these results, we hypothesize the following: I) vacuolar ATP synthase catalytic subunit A and subunit B may be implicated in the process of the membrane fusion of virus and the release of the nucleocapsid into cytoplasm; II) actin, enolase and phosphoglycerate kinase are cytoskeleton associated proteins and may play an important role in BmNPV intracellular transportation; III) mitochondrial prohibitin complex protein 2, ganglioside-induced differentiation-associated protein, calreticulin, regucalcin-like isoform X1 and 60 kDa heat shock protein are involved in cell apoptosis regulation during BmNPV infection in larvae midguts; IV) ribosomal P0 may be associated with BmNPV infection by regulating gene expression of BmNPV; V) arginine kinase has a role in the antiviral activities against BmNPV. Our work should prove informative by providing multiple protein targets and a novel direction to investigate the molecular mechanisms of the interactions between silkworms and BmNPV. PMID:25502928

  11. Expression and mutational analysis of Autographa californica nucleopolyhedrovirus HCF-1: functional requirements for cysteine residues.

    PubMed

    Wilson, Joyce A; Forney, Scott D; Ricci, Alessondra M; Allen, Emily G; Hefferon, Kathleen L; Miller, Lois K

    2005-11-01

    The host cell-specific factor 1 gene (hcf-1) of the baculovirus Autographa californica multiple nucleopolyhedrovirus is required for efficient virus growth in TN368 cells but is dispensable for virus replication in SF21 cells. However, the mechanism of action of hcf-1 is unknown. To begin to understand its function in virus replication we have investigated the expression and localization pattern of HCF-1 in infected cells. Analysis of virus-infected TN368 cells showed that hcf-1 is expressed at an early time in the virus life cycle, between 2 and 12 h postinfection, and localized the protein to punctate nuclear foci. Through coprecipitation experiments we have confirmed that HCF-1 self-associates into dimers or higher-order structures. We also found that overexpression of HCF-1 repressed expression from the hcf-1 promoter in transient reporter assays. Mutagenesis of cysteine residues within a putative RING finger domain in the amino acid sequence of HCF-1 abolished self-association activity and suggests that the RING domain may be involved in this protein-protein interaction. A different but overlapping set of cysteine residues were required for efficient gene repression activity. Functional analysis of HCF-1 mutants showed that the cysteine amino acids required for both self-association and gene repression activities of HCF-1 were also required for efficient late-gene expression and occlusion body formation in TN368 cells. Mutational analysis also identified essential charged and hydrophobic amino acids located between two of the essential cysteine residues. We propose that HCF-1 is a RING finger-containing protein whose activity requires HCF-1 self-association and gene repression activity.

  12. Nucleopolyhedrovirus detection and distribution in terrestrial, freshwater, and marine habitats of Appledore Island, Gulf of Maine.

    PubMed

    Hewson, Ian; Brown, Julia M; Gitlin, Shari A; Doud, Devin F

    2011-07-01

    Viruses in aquatic ecosystems comprise those produced by both autochthonous and allochthonous host taxa. However, there is little information on the diversity and abundance of viruses of allochthonous origin, particularly from non-anthropogenic sources, in freshwater and marine ecosystems. We investigated the presence of nucleopolyhedroviruses (NPV) (Baculovirus), which commonly infect terrestrial lepidopteran taxa, across the landscape of Appledore Island, Gulf of Maine. PCR and qPCR primers were developed around a 294-bp fragment of the polyhedrin (polH) gene, which is the major constituent protein of NPV multivirion polyhedral occlusion bodies. polH was successfully amplified from several aquatic habitats, and recovered polH sequences were most similar to known lepidopteran NPV. Using quantitative PCR designed around a cluster of detected sequences, we detected polH in Appledore Island soils, supratidal freshwater ponds, nearshore sediments, near- and offshore plankton, and in floatsam. This diverse set of locations suggests that NPVs are widely dispersed along the terrestrial--marine continuum and that free polyhedra may be washed into ponds and eventually to sea. The putative hosts of detected NPVs were webworms (Hyphantria sp.) which form dense nests in late summer on the dominant Appledore Island vegetation (Prunus virginiana). Our data indicate that viruses of terrestrial origin (i.e., allochthonous viruses) may be dispersed widely in coastal marine habitats. The dispersal of NPV polH and detection within offshore net plankton (>64 μm) demonstrates that terrestrial viruses may interact with larger particles and plankton of coastal marine ecosystem, which further suggests that viral genomic information may be transported between biomes.

  13. Genome sequence of Perigonia lusca single nucleopolyhedrovirus: insights into the evolution of a nucleotide metabolism enzyme in the family Baculoviridae

    PubMed Central

    Ardisson-Araújo, Daniel M. P.; Lima, Rayane Nunes; Melo, Fernando L.; Clem, Rollie J.; Huang, Ning; Báo, Sônia Nair; Sosa-Gómez, Daniel R.; Ribeiro, Bergmann M.

    2016-01-01

    The genome of a novel group II alphabaculovirus, Perigonia lusca single nucleopolyhedrovirus (PeluSNPV), was sequenced and shown to contain 132,831 bp with 145 putative ORFs (open reading frames) of at least 50 amino acids. An interesting feature of this novel genome was the presence of a putative nucleotide metabolism enzyme-encoding gene (pelu112). The pelu112 gene was predicted to encode a fusion of thymidylate kinase (tmk) and dUTP diphosphatase (dut). Phylogenetic analysis indicated that baculoviruses have independently acquired tmk and dut several times during their evolution. Two homologs of the tmk-dut fusion gene were separately introduced into the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) genome, which lacks tmk and dut. The recombinant baculoviruses produced viral DNA, virus progeny, and some viral proteins earlier during in vitro infection and the yields of viral occlusion bodies were increased 2.5-fold when compared to the parental virus. Interestingly, both enzymes appear to retain their active sites, based on separate modeling using previously solved crystal structures. We suggest that the retention of these tmk-dut fusion genes by certain baculoviruses could be related to accelerating virus replication and to protecting the virus genome from deleterious mutation. PMID:27273152

  14. Complete mitochondrial genome of Helicoverpa zea (Boddie) and expression profiles of mitochondrial-encoded genes in early and late embryos

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mitochondrial genome of the bollworm, Helicoverpa zea, was assembled using paired-end nucleotide sequence reads generated with a next-generation sequencing platform. Assembly resulted in a mitogenome of 15,348 bp with greater than 17,000-fold average coverage. Organization of the H. zea mitogen...

  15. Risk assessment for Helicoverpa zea (Lepidoptera: Noctuidae) resistance on dual-gene versus single-gene corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent changes in EPA regulations have prompted concern in some experts that transgenic corn expressing two lepidopteran-active genes from the soil bacterium Bacillus thuringiensis (Bt) (dual-gene) may result in more rapid selection for resistance in Helicoverpa zea (Boddie) than corn expressing a s...

  16. Engineering a Recombinant Baculovirus with a Peptide Hormone Gene and its Effect on the Corn Earworm, Helicoverpa zea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The helicokinins are peptides identified from Helicoverpa zea that when injected into the larvae were found to cause excessive diuresis and loss of feeding activity. Of the three peptides, helicokinin II (HezK-II) was found to be most potent. A synthetic gene encoding HezK-II was constructed based o...

  17. Effect of emamectin benzoate on mortality, proboscis extension, gustation and reproduction of the corn earworm, Helicoverpa zea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Newly emerged bollworm adults, Helicoverpa zea (Boddie) require carbohydrate source from plant exudates and nectars for reproduction. Adults actively seek such feeding sites upon eclosion in their natural habitat. We wanted to evaluate this nocturnal behavior of the bollworm for potential use as a p...

  18. A novel third chromosomal locus controls susceptibility to Autographa californica multiple nucleopolyhedrovirus in the silkworm, Bombyx mori.

    PubMed

    Xu, Jian; Kusakabe, Takahiro; Yamamoto, Kimiko; Suetsugu, Yoshitaka; Mon, Hiroaki; Li, Zhiqing; Zhu, Li; Iiyama, Kazuhiro; Banno, Yutaka; Yoshimura, Kaito; Lee, Jae Man

    2014-04-01

    Baculovirus demonstrates specific infection spectrums and thus one certain host exhibits particular response to single baculovirus isolate. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is considered to be not an innate pathogen to Bombyx mori, but some silkworm strains have been identified to be permissive to AcMNPV, indicating the positive or negative involvement of certain host factors in baculovirus replications in vivo. To provide a fundamental knowledge of this process, we performed large-scale screening to investigate the responses of 448 silkworm strains against recombinant AcMNPV inoculation. By genetic analysis between permissive and resistant strains identified, we further confirmed that a potential corresponding locus on chromosome 3 regulates host responses to AcMNPV in silkworm. Additionally, we found that it is available for AcMNPV-silkworm baculovirus expression vector system to produce proteins of interest.

  19. The BRO proteins of Bombyx mori nucleopolyhedrovirus are nucleocytoplasmic shuttling proteins that utilize the CRM1-mediated nuclear export pathway

    SciTech Connect

    Kang, Won Kyung . E-mail: wkkang@riken.jp; Kurihara, Masaaki . E-mail: mkuri@riken.jp; Matsumoto, Shogo . E-mail: smatsu@riken.jp

    2006-06-20

    The BRO proteins of Bombyx mori nucleopolyhedrovirus (BmNPV) display a biphasic pattern of intracellular localization during infection. At early times, they reside in the nucleus but then show both cytoplasmic and nuclear localization as the infection proceeds. Therefore, we examined the possibility of nuclear export. Using inhibitors, we reveal that BmNPV BRO proteins shuttle between the nucleus and cytoplasm. Mutations on the leucine-rich region of BRO proteins resulted in nuclear accumulation of transiently expressed proteins, suggesting that this region functions as a CRM1-dependent nuclear export signal (NES). On the contrary, mutant BRO-D with an altered NES did not show nuclear accumulation in infected cells, although protein production seemed to be reduced. RT-PCR analysis showed that the lower level of protein production was due to a reduction in RNA synthesis. Taken together, our results suggest that BRO proteins are nucleocytoplasmic shuttling proteins that utilize the CRM1-mediated nuclear export pathway.

  20. Field efficacy and transmission of fast- and slow-killing nucleopolyhedroviruses that are infectious to Adoxophyes honmai (Lepidoptera: Tortricidae).

    PubMed

    Takahashi, Maho; Nakai, Madoka; Saito, Yasumasa; Sato, Yasushi; Ishijima, Chikara; Kunimi, Yasuhisa

    2015-03-18

    The smaller tea tortrix, Adoxophyes honmai (Lepidoptera: Tortricidae), is an economically important pest of tea in Japan. Previous work showed that a fast-killing nucleopolyhedrovirus (NPV) isolated from A. orana (AdorNPV) and a slow-killing NPV isolated from A. honmai (AdhoNPV) are both infectious to A. honmai larvae. Field application of these different NPVs was conducted against an A. honmai larval population in tea plants, and the control efficacy and transmission rate of the two NPVs were compared. The slow-killing AdhoNPV showed lower field efficacy, in terms of preventing damage caused by A. honmai larvae against the tea plants, than the fast-killing AdorNPV. However, AdhoNPV had a significantly higher horizontal transmission rate than AdorNPV. These results show that AdorNPV is suitable as an inundative agent, while AdhoNPV is an appropriate inoculative agent.

  1. The putative LEF-1 proteins from two distinct Choristoneura fumiferana multiple nucleopolyhedroviruses share domain homology to eukaryotic primases.

    PubMed

    Barrett, J W; Lauzon, H A; Mercuri, P S; Krell, P J; Sohi, S S; Arif, B M

    1996-01-01

    We have identified the lef-1 genes from two multiple nucleopolyhedroviruses that infect natural populations of Choristoneura fumiferana. The lef-1 genes in both viruses are directly upstream and in the opposite orientation of their respective ecdysteroid UDP-glucosyltransferase (egt) genes. This gene organization pattern is similar to that found in the genomes of AcMNPV and of OpMNPV. As well, the coding regions and putative protein sequences share a high degree of similarity. Alignment of the predicted amino acid sequences of all known baculovirus lef-1 genes suggests that the LEF-1 proteins have a relatively high degree of conservation, particularly at four identified and distinct domains. Moreover, LEF-1 proteins bear clear similarity to some eukaryotic primases, predominately at three of the four domains where certain amino acids are absolutely conserved.

  2. The Host Specificities of Baculovirus per os Infectivity Factors

    PubMed Central

    Song, Jingjiao; Wang, Xi; Hou, Dianhai; Huang, Huachao; Liu, Xijia; Deng, Fei; Wang, Hualin; Arif, Basil M.; Hu, Zhihong; Wang, Manli

    2016-01-01

    Baculoviruses are insect-specific pathogens with a generally narrow host ranges. Successful primary infection is initiated by the proper interaction of at least 8 conserved per os infectivity factors (PIFs) with the host’s midgut cells, a process that remains largely a mystery. In this study, we investigated the host specificities of the four core components of the PIF complex, P74, PIF1, PIF2 and PIF3 by using Helicoverpa armigera nucleopolyhedrovirus (HearNPV) backbone. The four pifs of HearNPV were replaced by their counterparts from a group I Autographa californica multiple nucleopolyhedrovirus (AcMNPV) or a group II Spodoptera litura nucleopolyhedrovirus (SpltNPV). Transfection and infection assays showed that all the recombinant viruses were able to produce infectious budded viruses (BVs) and were lethal to H. armigera larvae via intrahaemocoelic injection. However, feeding experiments using very high concentration of occlusion bodies demonstrated that all the recombinant viruses completely lost oral infectivity except SpltNPV pif3 substituted pif3-null HearNPV (vHaBacΔpif3-Sppif3-ph). Furthermore, bioassay result showed that the median lethal concentration (LC50) value of vHaBacΔpif3-Sppif3-ph was 23-fold higher than that of the control virus vHaBacΔpif3-Hapif3-ph, indicating that SpltNPV pif3 can only partially substitute the function of HearNPV pif3. These results suggested that most of PIFs tested have strict host specificities, which may account, at least in part, for the limited host ranges of baculoviruses. PMID:27454435

  3. Impact of mirid (Creontiades spp.) (Hemiptera: Miridae) pest management on Helicoverpa spp. (Lepidoptera: Noctuidae) outbreaks: the case for conserving natural enemies.

    PubMed

    Knight, Kristen M M; Brier, Hugh B; Lucy, Michael J; Kopittke, Rosemary A

    2007-05-01

    Creontiades spp. (Hemiptera: Miridae) are sucking pests that attack buds, flowers and young pods in mungbeans, Vigna radiata (L.), causing these structures subsequently to abort. If left uncontrolled, mirids can cause 25-50% yield loss. Traditional industry practice has involved prophylactic applications of dimethoate to control mirids at budding and again a week later. The present trial was initiated to highlight the dangers of such a practice, in particular the risk of a subsequent Helicoverpa spp. lepidopteran pest outbreak. A single application of dimethoate halved the population of important natural enemies of Helicoverpa spp., and caused an above-threshold outbreak of Helicoverpa spp. within 11 days. This shows that even a moderate (e.g. 50%) reduction in natural enemies may be sufficient to increase Helicoverpa spp. populations in mungbeans. As a result, prophylactic sprays should not be used for the control of mirids in mungbeans, and dimethoate should be applied only when mirids are above the economic threshold. Indoxacarb was also tested to establish its effect on Helicoverpa spp., mirids and natural enemies. Indoxacarb showed potential for Helicoverpa spp. control and suppression of mirids and had little impact on natural enemies.

  4. Storage stability of Anagrapha falcifera nucleopolyhedrovirus in spray-dried formulations.

    PubMed

    Tamez-Guerra, Patricia; McGuire, Michael R; Behle, Robert W; Shasha, Baruch S; Pingel, Randall L

    2002-01-01

    A multiply embedded nucleopolyhedrovirus isolated from Anagrapha falcifera (Kirby) (AfMNPV) can lose insecticidal activity during months of dry storage in ambient room conditions. We tested the spray-dried AfMNPV formulations after storage for up to 1 year at room temperatures for insecticidal activity against neonate Trichoplusia ni (Hübner). Experimental formulations were made using combinations of corn flours, lignin, and sucrose, and were selected based on previous work which demonstrated that these formulations resisted solar degradation in field experiments. Twelve experimental formulations (organized in three groups of four formulations) compared the effect of (1) the ratio of formulation ingredients (lignin and corn flour) to virus concentration, (2) different sources of lignin, or (3) different corn flours and sugar. Based on a single-dose plant assay with these 12 formulations, none of the formulations lost significant activity due to the drying process, when compared with the unformulated wet AfMNPV. Samples of the 12 dried formulations were stored at room (22+/-3 degrees C) and refrigerated (4 degrees C) temperatures. Insecticidal activity (LC(50)) was determined with a dosage-response assay for neonates fed on treated cotton-leaf disks. After 6 (or 9) and 12 months storage, refrigerated samples maintained insecticidal activity better than corresponding samples stored at room temperatures with LC(50)s that averaged 2.0 x 10(6) polyhedral inclusion bodies per milliliter (pibs/ml) for refrigerated samples and 5.4 x 10(6) pibs/ml for samples stored at room temperatures. Compared with unformulated stock virus stored frozen, six formulations stored at room temperature and 10 formulations stored in the refrigerator did not lose significant insecticidal activity after 1 year based on overlapping 90% confidence intervals. Changing the ratio of virus to formulation ingredients did not provide a clear trend over the range of concentrations tested, and may be

  5. Efficient isolation, purification, and characterization of the Helicoverpa zea VHDL receptor.

    PubMed

    Persaud, Deryck R; Yousefi, Vandad; Haunerland, Norbert

    2003-12-01

    The study of fat body receptors (e.g., VHDL receptor) in Lepidoptera has been irksome due to the fact that isolation and purification of these proteins are difficult and resulted in extremely low yields. A rapid and efficient method is presented for the purification of Helicoverpa zea VHDL receptor by the use of VHDL-biotin ligand complexed to streptavidin coated magnetic beads. The technique can be easily applied to other ligands and allows for the purification of membrane proteins with higher yields compared to previously used methods involving immunopurification. Although the purified protein can be characterized by Western and non-radioactive ligand blots using enhanced chemiluminescence (ECL), a non-radioactive ligand blot method using VHDL-FITC is presented, which allows for the quick analysis of the receptor directly from the blot under standard UV light. Sufficient receptor protein has been derived for amino acid analysis, receptor-ligand and xenobiotic binding studies.

  6. Autographa californica multiple nucleopolyhedrovirus ODV-E56 envelope protein is required for oral infectivity and can be substituted functionally by Rachiplusia ou multiple nucleopolyhedrovirus ODV-E56.

    PubMed

    Harrison, Robert L; Sparks, Wendy O; Bonning, Bryony C

    2010-05-01

    The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) odv-e56 gene encodes an occlusion-derived virus (ODV)-specific envelope protein, ODV-E56. In a previous analysis, the odv-e56 gene was found to be under positive selection pressure, suggesting that it may be a determinant of virus host range. To assess the role of ODV-E56 in oral infectivity and host range, we constructed recombinant AcMNPV clones (Ac69GFP-e56lacZ and AcIEGFP-e56lacZ) in which ODV-E56 protein synthesis was eliminated by inserting a beta-galactosidase (lacZ) expression cassette into the odv-e56 open reading frame. We also constructed a recombinant virus, Ac69GFP-Roe56, in which the native AcMNPV odv-e56 coding sequence was replaced with that of Rachiplusia ou multiple nucleopolyhedrovirus (RoMNPV), a closely related virus that is significantly more virulent towards some host species than AcMNPV. The odv-e56 recombinant viruses exhibited no alterations in polyhedron production and morphogenesis or in the production of infectious budded virus in cell culture. In bioassays using three lepidopteran host species, the oral infectivities of the odv-e56 mutant viruses Ac69GFP-e56lacZ and AcIEGFP-e56lacZ were profoundly impaired compared with those of wild-type and control recombinant viruses. Oral infectivity was restored fully by marker rescue of the odv-e56 mutant viruses with either the AcMNPV or the RoMNPV odv-e56 gene. In bioassays using two host species that are more susceptible to RoMNPV than to AcMNPV, Ac69GFP-Roe56 killed larvae with LC50 values similar to those of recombinant viruses expressing AcMNPV ODV-E56. This result indicated that replacement of the AcMNPV odv-e56 gene with the RoMNPV orthologue did not increase virulence against these two species.

  7. Trichoplusia ni Kinesin-1 Associates with Autographa californica Multiple Nucleopolyhedrovirus Nucleocapsid Proteins and Is Required for Production of Budded Virus

    PubMed Central

    Biswas, Siddhartha; Blissard, Gary W.

    2016-01-01

    ABSTRACT The mechanism by which nucleocapsids of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) egress from the nucleus to the plasma membrane, leading to the formation of budded virus (BV), is not known. AC141 is a nucleocapsid-associated protein required for BV egress and has previously been shown to be associated with β-tubulin. In addition, AC141 and VP39 were previously shown by fluorescence resonance energy transfer by fluorescence lifetime imaging to interact directly with the Drosophila melanogaster kinesin-1 light chain (KLC) tetratricopeptide repeat (TPR) domain. These results suggested that microtubule transport systems may be involved in baculovirus nucleocapsid egress and BV formation. In this study, we investigated the role of lepidopteran microtubule transport using coimmunoprecipitation, colocalization, yeast two-hybrid, and small interfering RNA (siRNA) analyses. We show that nucleocapsid AC141 associates with the lepidopteran Trichoplusia ni KLC and kinesin-1 heavy chain (KHC) by coimmunoprecipitation and colocalization. Kinesin-1, AC141, and microtubules colocalized predominantly at the plasma membrane. In addition, the nucleocapsid proteins VP39, FP25, and BV/ODV-C42 were also coimmunoprecipitated with T. ni KLC. Direct analysis of the role of T. ni kinesin-1 by downregulation of KLC by siRNA resulted in a significant decrease in BV production. Nucleocapsids labeled with VP39 fused with three copies of the mCherry fluorescent protein also colocalized with microtubules. Yeast two-hybrid analysis showed no evidence of a direct interaction between kinesin-1 and AC141 or VP39, suggesting that either other nucleocapsid proteins or adaptor proteins may be required. These results further support the conclusion that microtubule transport is required for AcMNPV BV formation. IMPORTANCE In two key processes of the replication cycle of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), nucleocapsids are

  8. Abortive replication of Bombyx mori nucleopolyhedrovirus in Sf9 and High Five cells: Defective nuclear transport of the virions

    SciTech Connect

    Katou, Yasuhiro; Ikeda, Motoko; Kobayashi, Michihiro . E-mail: michihir@agr.nagoya-u.ac.jp

    2006-04-10

    Despite close genetic relationship, Bombyx mori nucleopolyhedrovirus (BmNPV) and Autographa californica multicapsid NPV (AcMNPV) display a distinct host range property. Here, BmNPV replication was examined in Sf9 and High Five cells that were nonproductive for BmNPV infection but supported high titers of AcMNPV replication. Recombinant BmNPV, vBm/gfp/lac, containing bm-ie1 promoter-driven egfp showed that few Sf9 and High Five cells infected with vBm/gfp/lac expressed EGFP, while large proportion of EGFP-expressing cells was observed when transfected with vBm/gfp/lac DNA. Immunocytochemical analysis showed that BmNPV was not imported into the nucleus of these two cell lines, while recombinant BmNPV, vBm{delta}64/ac-gp64 possessing AcMNPV gp64 was imported into the nucleus, yielding progeny virions in High Five cells, but not Sf9 cells. These results indicate that the defective nuclear import of infected virions due to insufficient BmNPV GP64 function is involved in the restricted BmNPV replication in Sf9 and High Five cells.

  9. Genetically variable nucleopolyhedroviruses isolated from spatially separate populations of the winter moth Operophtera brumata (Lepidoptera: Geometridae) in Orkney.

    PubMed

    Graham, Robert I; Tyne, William I; Possee, Robert D; Sait, Steven M; Hails, Rosemary S

    2004-09-01

    Here we report a lepidopteran system in which a pathogen is both abundant and genotypically variable. Geographically separate populations of winter moth (Operophtera brumata L.) were sampled in heather habitats on the Orkney Isles to investigate the prevalence of a pathogen, O. brumata Nucleopolyhedrovirus (OpbuNPV), within the natural system. Virus was recorded in 11 of the 13 winter moth populations sampled, with two populations suffering mortality due to virus at levels of 50%. The virus genome from 200 single insect isolations was investigated for variation using restriction endonuclease digests. Twenty-six variants of OpbuNPV were detected using SalI. The polyhedrin gene of the virus was partially sequenced, allowing the relationship between the 26 variants to be portrayed as a cladogram. The phylogenetic relationship between OpbuNPV and other known baculovirus polyhedrin gene sequences was also established. The discovery of virus at such high prevalence is discussed with reference to occurrence and genetic variation of pathogens in other lepidopteran host populations. This study shows encouraging results for further studies into the role of pathogens in the regulation of host insect populations.

  10. Bombyx mori nucleopolyhedrovirus ORF94, a novel late protein is identified to be a component of ODV structural protein.

    PubMed

    Liang, Guiting; Li, Guohui; Chen, Keping; Yao, Qin; Chen, Huiqing; Zhou, Yang

    2010-09-01

    Orf94 (Bm94) of Bombyx mori nucleopolyhedrovirus (BmNPV) potentially encodes 424-amino acids with a predicted molecular weight of 49.4 kDa, but its function remains unknown. Blast search results revealed that Bm94 homologues exist in 10 completely sequenced Lepidopteron NPVs with identities ranging from 95 to 37%. Results of our recent study showed that Bm94 was transcribed from 12 to 72 h and the corresponding protein was detected from 24 to 72 h post-infection. Furthermore, Western blot analysis revealed that Bm94 was present in occlusion-derived virus (ODV) and in total protein from BmNPV-infected BmN cells, but not in budded virus. Immunofluorescence analysis revealed that the protein located primarily in the cytoplasm and was also present in the nucleus in the later infection. In conclusion, these results together indicated that Bm94 was a late gene, which distributed both in the cytoplasm and in the nucleus, and was identified to be a component of BmNPV ODV.

  11. Bombyx mori nucleopolyhedrovirus ORF79 encodes a 28-kDa structural protein of the ODV envelope.

    PubMed

    Xu, H-J; Yang, Z-N; Wang, F; Zhang, C-X

    2006-04-01

    Open reading frame 79 of Bombyx mori nucleopolyhedrovirus (Bm79) is a conserved gene whose homologues have been identified in all 26 of the completely sequenced baculovirus genomes, including lepidopteran NPVs and GVs, hymenopteran NPVs, and a dipteran baculovirus. Northern blot analysis showed that the Bm79 transcript was about 850 nucleotides long and was initiated 12 h p.i. Temporal expression analysis revealed a 28-kDa protein, which was detected beginning 24 h p.i. using a polyclonal antibody against GST-Bm79 fusion protein. The 28-kDa protein was detected in the occlusion-derived virus envelope (ODV-E), but not in budded viruses. This observation was confirmed by observing ultrathin sections of polyhedra using immunoelectron microscopy. This demonstrated that the protein was present within the nuclei of cells. These results suggest that Bm79 is a functional gene that encodes a structural protein associated with the envelope of occlusion-derived virus (ODV).

  12. A soluble form of P74 can act as a per os infectivity factor to the Autographa californica multiple nucleopolyhedrovirus.

    PubMed

    Slack, Jeffrey M; Lawrence, Susan D; Krell, Peter J; Arif, Basil M

    2010-04-01

    The baculovirus occlusion-derived virion (ODV) is required to spread virus infection among insect hosts via the per os route. The Autographa californica multicapsid nucleopolyhedrovirus P74 protein is an ODV envelope protein that is essential for ODVs to be infectious. P74 is anchored in the ODV envelope by a C-terminal transmembrane anchor domain and is N-terminally exposed on the ODV surface. In the present study, a series of N-terminal and C-terminal truncation mutants of P74 were evaluated for their ability to rescue per os infectivity of the P74-null virus, AcLP4. It was discovered that a P74 truncation mutant lacking the C-terminal transmembrane anchor domain of P74 was able to rescue per os infection. This result shows that a soluble form of P74 retains per os infectivity factor function and suggests that P74 may be complexed with other proteins in the ODV envelope.

  13. Autographa californica multiple nucleopolyhedrovirus ac142, a core gene that is essential for BV production and ODV envelopment.

    PubMed

    McCarthy, Christina B; Dai, Xiaojiang; Donly, Cam; Theilmann, David A

    2008-03-15

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac142 is a baculovirus core gene and encodes a protein previously shown to associate with occlusion-derived virus (ODV). To determine its role in the baculovirus life cycle, we used the AcMNPV bacmid system to generate an ac142 deletion virus (AcBAC(ac142KO-PH-GFP)). Fluorescence and light microscopy revealed that AcBAC(ac142KO-PH-GFP) exhibits a single-cell infection phenotype. Titration assays and Western blot confirmed that AcBAC(ac142KO-PH-GFP) is unable to produce budded virus (BV). However, viral DNA replication is unaffected and the development of occlusion bodies in AcBAC(ac142KO-PH-GFP)-transfected cells evidenced progression to very late phases of the viral infection. Western blot analysis showed that AC142 is expressed in the cytoplasm and nucleus throughout infection and that it is a structural component of BV and ODV which localizes to nucleocapsids. Electron microscopy indicates that ac142 is required for nucleocapsid envelopment to form ODV and their subsequent occlusion, a fundamental process to all baculoviruses.

  14. Autographa californica multiple nucleopolyhedrovirus ac142, a core gene that is essential for BV production and ODV envelopment

    SciTech Connect

    McCarthy, Christina B.; Da, Xiaojiang; Donly, Cam; Theilmann, David A.

    2008-03-15

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac142 is a baculovirus core gene and encodes a protein previously shown to associate with occlusion-derived virus (ODV). To determine its role in the baculovirus life cycle, we used the AcMNPV bacmid system to generate an ac142 deletion virus (AcBAC{sup ac142KO-PH-GFP}). Fluorescence and light microscopy revealed that AcBAC{sup ac142KO-PH-GFP} exhibits a single-cell infection phenotype. Titration assays and Western blot confirmed that AcBAC{sup ac142KO-PH-GFP} is unable to produce budded virus (BV). However, viral DNA replication is unaffected and the development of occlusion bodies in AcBAC{sup ac142KO-PH-GFP}-transfected cells evidenced progression to very late phases of the viral infection. Western blot analysis showed that AC142 is expressed in the cytoplasm and nucleus throughout infection and that it is a structural component of BV and ODV which localizes to nucleocapsids. Electron microscopy indicates that ac142 is required for nucleocapsid envelopment to form ODV and their subsequent occlusion, a fundamental process to all baculoviruses.

  15. The Bombyx mori nucleopolyhedrovirus (BmNPV) ODV-E56 envelope protein is also a per os infectivity factor.

    PubMed

    Xiang, Xingwei; Chen, Lin; Guo, Aiqin; Yu, Shaofang; Yang, Rui; Wu, Xiaofeng

    2011-01-01

    The Bombyx mori nucleopolyhedrovirus (BmNPV) odv-e56 gene is a late gene and encodes an occlusion-derived virus (ODV)-specific envelope protein, ODV-E56. To determine its role in the BmNPV life cycle, an odv-e56 null virus, BmE56D, was constructed through homologous recombination. A repaired virus was also constructed, named BmE56DR. The production of budded virion (BV) and polyhedra, the replication of viral DNA, and the morphological of infected BmN cells were analyzed, revealing no significant difference among the BmE56D, the wild-type (WT), and the BmE56DR virus. Larval bioassays demonstrated that injection of BmE56D BV into the hemocoel could kill B. mori larvae as efficiently as repaired and WT viruses, however BmE56D was unable to infect the B. mori larvae when inoculated per os. Thus, these results indicated that ODV-E56 envelope protein of BmNPV is also a per os infectivity factor (PIF), but is not essential for virus replication.

  16. A study of the Autographa californica multiple nucleopolyhedrovirus ODV envelope protein p74 using a GFP tag.

    PubMed

    Slack, J M; Dougherty, E M; Lawrence, S D

    2001-09-01

    The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) protein p74 is associated with the occlusion-derived virus (ODV) envelope. p74 is essential for oral infectivity of ODV and has been proposed to play a role in midgut attachment and/or fusion. In this study, p74 protein was expressed in-frame with green fluorescent protein (GFP) to create a p74-GFP chimera. The C-terminal GFP portion of the chimera facilitated visualization of the trafficking of p74 in baculovirus-infected Spodoptera frugiperda (Sf-9) cells. p74-GFP chimeric proteins localized in the intranuclear ring zone of the nucleus and were found to co-precipitate with the microvesicle fraction of cell lysates. A series of truncations of p74 was expressed as p74-GFP chimeras in recombinant baculoviruses. When C-terminal region S580-F645 was deleted from p74, p74-GFP chimera localization became non-specific and chimeras became soluble. p74 region S580-F645 directed GFP to the intranuclear ring zone in a similar pattern to full-length p74. The hydrophobic C terminus of p74 plays a role in protein localization and possibly in transmembrane anchoring and insertion.

  17. Bm91 is an envelope component of ODV but is dispensable for the propagation of Bombyx mori nucleopolyhedrovirus.

    PubMed

    Tang, Qi; Li, Guohui; Yao, Qin; Chen, Liang; Lv, Peng; Lian, Chaoqun; Chen, Keping

    2013-05-01

    Orf91 (Bm91) of Bombyx mori nucleopolyhedrovirus (BmNPV) is a highly conserved gene that encodes a predicted 105-amino-acid protein, but its function remains unknown. In the current study, 5'-RACE revealed that the transcription initiation site of Bm91 was - 12 nucleotides upstream of the start codon ATG, transcription of Bm91 was detected from 12 to 96 h postinfection (p.i.) and Bm91 protein was detected from 24 to 96 h p.i. in BmNPV-infected BmN cells. Furthermore, Western blot analysis revealed that Bm91 was in occlusion-derived virus (ODV) but not in budded virus (BV). To investigate the role of Bm91 in baculovirus life cycle, a Bm91-knockout virus was constructed by bacmid recombination in E. coli. Fluorescence and light microscopy showed that the production of BV and occlusion bodies (OBs) in Bm91-deficient-virus-infected BmN cells were similar to those in wild-type-virus-infected ones. Bioassay results showed that genetic deletion of Bm91 did not significantly affect BmNPV infectivity, but extended the median lethal time (LT50). Taken together, these results indicate that Bm91 is not essential for viral propagation in vitro, but absence of the gene may affect the virulence of ODVs in silkworm larvae.

  18. Accumulation of few-polyhedra mutants upon serial passage of Anticarsia gemmatalis multiple nucleopolyhedrovirus in cell culture.

    PubMed

    de Rezende, Syomara Hakiko Matusita Soares; Castro, Maria Elita B; Souza, Marlinda L

    2009-03-01

    Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV) has been widely used to control the velvetbean caterpillar, Anticarsia gemmatalis, in Brazil. To date, AgMNPV has been produced by larval infection and, due to in vivo production limitations and the continuing high demand for the biopesticide, attempts should be made to develop in vitro production of this virus. In order to investigate the effects caused by serial passage of AgMNPV in cell culture, we carried out a total of ten passages and analyzed the morphological and the genomic changes of the virus. After six passages, the many-polyhedra (MP) phenotype started to switch to the few-polyhedra (FP) phenotype which rapidly accumulated in the virus population. Ultrastructural analysis showed typical signs of FP mutant formation such as decrease in the number of polyhedra per cell, polyhedra aberrant morphology and low numbers of virions occluded in the protein matrix. Also enhanced BV production was observed from the fifth passage indicating that FP mutants were becoming predominant in comparison to the wild type virus. Restriction endonuclease analysis of the viral DNA revealed that lower and higher passages had similar profiles indicating that there were no large insertions or deletions or rearrangements in their genomes and indicating the generation of FP mutants instead of defective interfering viruses.

  19. Autographa californica multiple nucleopolyhedrovirus GP64 protein: Analysis of domain I and V amino acid interactions and membrane fusion activity

    SciTech Connect

    Yu, Qianlong; Blissard, Gary W.; Liu, Tong-Xian; Li, Zhaofei

    2016-01-15

    The Autographa californica multiple nucleopolyhedrovirus GP64 is a class III viral fusion protein. Although the post-fusion structure of GP64 has been solved, its pre-fusion structure and the detailed mechanism of conformational change are unknown. In GP64, domain V is predicted to interact with two domain I segments that flank fusion loop 2. To evaluate the significance of the amino acids involved in these interactions, we examined 24 amino acid positions that represent interacting and conserved residues within domains I and V. In several cases, substitution of a single amino acid involved in a predicted interaction disrupted membrane fusion activity, but no single amino acid pair appears to be absolutely required. We identified 4 critical residues in domain V (G438, W439, T452, and T456) that are important for membrane fusion, and two residues (G438 and W439) that appear to be important for formation or stability of the pre-fusion conformation of GP64. - Highlights: • The baculovirus envelope glycoprotein GP64 is a class III viral fusion protein. • The detailed mechanism of conformational change of GP64 is unknown. • We analyzed 24 positions that might stabilize the post-fusion structure of GP64. • We identified 4 residues in domain V that were critical for membrane fusion. • Two residues are critical for formation of the pre-fusion conformation of GP64.

  20. Cloning and Characterization of Sf9 Cell Lamin and the Lamin Conformational Changes during Autographa californica multiple nucleopolyhedrovirus Infection.

    PubMed

    Wei, Wenqiang; Wang, Hongju; Li, Xiaoya; Fang, Na; Yang, Shili; Liu, Hongyan; Kang, Xiaonan; Sun, Xiulian; Ji, Shaoping

    2016-05-07

    At present, the details of lamina alterations after baculovirus infection remain elusive. In this study, a lamin gene in the Sf9 cell line of Spodoptera frugiperda was cloned. The open reading frame (orf) of the Sf9 lamin was 1860 bp and encoded a protein with a molecular weight of 70 kDa. A transfection assay with a red fluorescence protein (rfp)-lamin fusion protein indicated that Sf9 lamin was localized in the nuclear rim. Transmission electron microscopy observations indicated that Autographa californica multiple nucleopolyhedrovirus (AcMNPV) nucleocapsids may pass through the nuclear envelope. Immunofluorescence assay indicated that the lamina showed a ruffled staining pattern with the formation of invaginations in the Sf9 cells infected with AcMNPV, while it was evenly distributed at the nuclear periphery of mock-infected cells. Western blotting results indicated that the total amount of lamin in the baculovirus-infected Sf9 cells was significantly decreased compared with the mock-infected cells. These results imply that AcMNPV infection induces structural and biochemical rearrangements of lamina of Sf9 cells.

  1. Abortive replication of Bombyx mori nucleopolyhedrovirus in Sf9 and High Five cells: defective nuclear transport of the virions.

    PubMed

    Katou, Yasuhiro; Ikeda, Motoko; Kobayashi, Michihiro

    2006-04-10

    Despite close genetic relationship, Bombyx mori nucleopolyhedrovirus (BmNPV) and Autographa californica multicapsid NPV (AcMNPV) display a distinct host range property. Here, BmNPV replication was examined in Sf9 and High Five cells that were nonproductive for BmNPV infection but supported high titers of AcMNPV replication. Recombinant BmNPV, vBm/gfp/lac, containing bm-ie1 promoter-driven egfp showed that few Sf9 and High Five cells infected with vBm/gfp/lac expressed EGFP, while large proportion of EGFP-expressing cells was observed when transfected with vBm/gfp/lac DNA. Immunocytochemical analysis showed that BmNPV was not imported into the nucleus of these two cell lines, while recombinant BmNPV, vBmDelta64/ac-gp64 possessing AcMNPV gp64 was imported into the nucleus, yielding progeny virions in High Five cells, but not Sf9 cells. These results indicate that the defective nuclear import of infected virions due to insufficient BmNPV GP64 function is involved in the restricted BmNPV replication in Sf9 and High Five cells.

  2. Genome-wide In Silico Analysis, Characterization and Identification of Microsatellites in Spodoptera littoralis Multiple nucleopolyhedrovirus (SpliMNPV)

    PubMed Central

    Atia, Mohamed A. M.; Osman, Gamal H.; Elmenofy, Wael H.

    2016-01-01

    In this study, we undertook a survey to analyze the distribution and frequency of microsatellites or Simple Sequence Repeats (SSRs) in Spodoptera littoralis multiple nucleopolyhedrovirus (SpliMNPV) genome (isolate AN–1956). Out of the 55 microsatellite motifs, identified in the SpliMNPV-AN1956 genome using in silico analysis (inclusive of mono-, di-, tri- and hexa-nucleotide repeats), 39 were found to be distributed within coding regions (cSSRs), whereas 16 were observed to lie within intergenic or noncoding regions. Among the 39 motifs located in coding regions, 21 were located in annotated functional genes whilst 18 were identified in unknown functional genes (hypothetical proteins). Among the identified motifs, trinucleotide (80%) repeats were found to be the most abundant followed by dinucleotide (13%), mononucleotide (5%) and hexanucleotide (2%) repeats. The 39 motifs located within coding regions were further validated in vitro by using PCR analysis, while the 21 motifs located within known functional genes (15 genes) were characterized using nucleotide sequencing. A comparison of the sequence analysis data of the 21 sequenced cSSRs with the published sequences is presented. Finally, the developed SSR markers of the 39 motifs were further mapped/localized onto the SpliMNPV-AN1956 genome. In conclusion, the SSR markers specific to SpliMNPV, developed in this study, could be a useful tool for the identification of isolates and analysis of genetic diversity and viral evolutionary status. PMID:27650818

  3. Sequence analysis of the complete genome of Trichoplusia ni single nucleopolyhedrovirus and the identification of a baculoviral photolyase gene

    SciTech Connect

    Willis, Leslie G.; Siepp, Robyn; Stewart, Taryn M.; Erlandson, Martin A.; Theilmann, David A. . E-mail: TheilmannD@agr.gc.ca

    2005-08-01

    The genome of the Trichoplusia ni single nucleopolyhedrovirus (TnSNPV), a group II NPV which infects the cabbage looper (T. ni), has been completely sequenced and analyzed. The TnSNPV DNA genome consists of 134,394 bp and has an overall G + C content of 39%. Gene analysis predicted 144 open reading frames (ORFs) of 150 nucleotides or greater that showed minimal overlap. Comparisons with previously sequenced baculoviruses indicate that 119 TnSNPV ORFs were homologues of previously reported viral gene sequences. Ninety-four TnSNPV ORFs returned an Autographa californica multiple NPV (AcMNPV) homologue while 25 ORFs returned poor or no sequence matches with the current databases. A putative photolyase gene was also identified that had highest amino acid identity to the photolyase genes of Chrysodeixis chalcites NPV (ChchNPV) (47%) and Danio rerio (zebrafish) (40%). In addition unlike all other baculoviruses no obvious homologous repeat (hr) sequences were identified. Comparison of the TnSNPV and AcMNPV genomes provides a unique opportunity to examine two baculoviruses that are highly virulent for a common insect host (T. ni) yet belong to diverse baculovirus taxonomic groups and possess distinct biological features. In vitro fusion assays demonstrated that the TnSNPV F protein induces membrane fusion and syncytia formation and were compared to syncytia formed by AcMNPV GP64.

  4. Juvenile hormone analog technology: effects on larval cannibalism and the production of Spodoptera exigua (Lepidoptera: Noctuidae) nucleopolyhedrovirus.

    PubMed

    Elvira, Sonia; Williams, Trevor; Caballero, Primitivo

    2010-06-01

    The production of a multiple nucleopolyhedrovirus (SeMNPV) of the beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), has been markedly increased by using juvenile hormone analog (JHA) technology to generate a supernumerary sixth instar in the species. In the current study we compared the incidence of cannibalism in S. exigua fifth and sixth instars reared at low (two larvae per dish) and a high density (10 larvae per dish). The incidence of cannibalism was significantly higher in fifth instars compared with sixth instars and increased with rearing density on both instars. Infected larvae were more prone to become victims of cannibalism than healthy individuals in mixed groups comprising 50% healthy + 50% infected larvae in both instars reared at high density. Instar had a marked effect on occlusion body (OB) production because JHA-treated insects produced between 4.8- and 5.6-fold increase in OB production per dish compared with fifth instars at high and low densities, respectively. The insecticidal characteristics of OBs produced in JHA-treated insects, as indicated by LD50 values, were similar to those produced in untreated fourth or fifth instars. Because JHA technology did not increase the prevalence of cannibalism and had no adverse effect on the insecticidal properties of SeMNPV OBs, we conclude that the use of JHAs to generate a supernumerary instar is likely to be compatible with mass production systems that involve gregarious rearing of infected insects.

  5. Development of an oligonucleotide-based DNA microarray for transcriptional analysis of Choristoneura fumiferana nucleopolyhedrovirus (CfMNPV) genes.

    PubMed

    Yang, Dan-Hui; Barari, Mehrnoosh; Arif, Basil M; Krell, Peter J

    2007-08-01

    A modified oligonucleotide-based two-channel DNA microarray was developed for characterization of temporal expression profiles of select Choristoneura fumiferana nucleopolyhedrovirus (CfMNPV) ORFs including its 7 unique ORFs. The microarray chip contained oligonucleotide probes for 23 CfMNPV ORFs and their complements as well as five host genes. Total RNA was isolated at different times post infection from Cf203 insect cells infected with CfMNPV. The cDNA was synthesized, fluorescent labelled with Cy3, and co-hybridized to the microarray chips along with Cy5-labelled viral genomic DNA, which served as equimolar reference standards for each probe. Transcription of the 7 CfMNPV unique ORFs was detected using DNA microarray analysis and their temporal expression profiles suggest that they are functional genes. The expression levels of three host genes varied throughout virus infection and therefore were unsuitable for normalization between microarrays. The DNA microarray results were compared to quantitative RT-PCR (qRT-PCR). Transcription of the non-coding (antisense) strands of some of the CfMNPV select genes including the polyhedrin gene, was also detected by array analysis and confirmed by qRT-PCR. The polyhedrin antisense transcript, based on long-range RT-PCR analysis, appeared to be a read-through product of an adjacent ORF in the same orientation as the antisense transcript.

  6. Development of a Microbial-Based Integrated Pest Management Program for Helicoverpa spp. (Lepidoptera: Noctuidae) and Beneficial Insects on Conventional Cotton Crops in Australia.

    PubMed

    Mensah, Robert K; Young, Alison; Rood-England, Leah

    2015-04-09

    Entomopathogenic fungi, when used as a microbial control agent against cotton pests, such as Helicoverpa spp., may have the potential to establish and spread in the environment and to have an impact on both pests and beneficial insects. Information on the effect of entomopathogenic fungi on pests and beneficial insects is crucial for a product to be registered as a biopesticide. The effect of the entomopathogenic fungus BC 639 (Aspergillus sp.) against Helicoverpa spp. and beneficial insects (mostly predatory insects) was studied in the laboratory and in cotton field trials. The results show that when Helicoverpa spp. second instar larvae were exposed to increasing concentrations (from 10² to 10⁸) of the entomopathogenic fungus BC 639, the optimum dose required to kill over 50% of the insects was 1.0 ´ 10⁷ spores/mL. In the field trials, the number of Helicoverpa spp. per metre on plots treated with 1.0 or 0.50 L/ha of BC 639 was the same as on plots treated with the recommended rate of the commercial insecticide, Indoxacarb. However, when plots were treated with 0.25 L/ha of BC 639, this was not as effective at controlling Helicoverpa spp. as 1.0 or 0.5 L/ha BC 639 or Indoxacarb. BC 639 had less effect on predatory insects when applied at lower rates (0.50 and 0.25 L/ha) than at higher rates (1.0 L/ha). Thus, BC 639 was more selective against predators when applied at lower rates than at the higher rate, but was also more selective than Indoxacarb. Thus, the ability of BC 639 to control Helicoverpa spp. effectively with a minimal effect on predatory insects indicates its potential for enhancing integrated pest management programs and to sustain cotton production.

  7. Development of a Microbial-Based Integrated Pest Management Program for Helicoverpa spp. (Lepidoptera: Noctuidae) and Beneficial Insects on Conventional Cotton Crops in Australia

    PubMed Central

    Mensah, Robert K.; Young, Alison; Rood-England, Leah

    2015-01-01

    Entomopathogenic fungi, when used as a microbial control agent against cotton pests, such as Helicoverpa spp., may have the potential to establish and spread in the environment and to have an impact on both pests and beneficial insects. Information on the effect of entomopathogenic fungi on pests and beneficial insects is crucial for a product to be registered as a biopesticide. The effect of the entomopathogenic fungus BC 639 (Aspergillus sp.) against Helicoverpa spp. and beneficial insects (mostly predatory insects) was studied in the laboratory and in cotton field trials. The results show that when Helicoverpa spp. second instar larvae were exposed to increasing concentrations (from 102 to 109) of the entomopathogenic fungus BC 639, the optimum dose required to kill over 50% of the insects was 1.0 × 107 spores/mL. In the field trials, the number of Helicoverpa spp. per metre on plots treated with 1.0 or 0.50 L/ha of BC 639 was the same as on plots treated with the recommended rate of the commercial insecticide, Indoxacarb. However, when plots were treated with 0.25 L/ha of BC 639, this was not as effective at controlling Helicoverpa spp. as 1.0 or 0.5 L/ha BC 639 or Indoxacarb. BC 639 had less effect on predatory insects when applied at lower rates (0.50 and 0.25 L/ha) than at higher rates (1.0 L/ha). Thus, BC 639 was more selective against predators when applied at lower rates than at the higher rate, but was also more selective than Indoxacarb. Thus, the ability of BC 639 to control Helicoverpa spp. effectively with a minimal effect on predatory insects indicates its potential for enhancing integrated pest management programs and to sustain cotton production. PMID:26463189

  8. Differential Adsorption of Occluded and Nonoccluded Insect-Pathogenic Viruses to Soil-Forming Minerals

    PubMed Central

    Christian, Peter D.; Richards, Andrew R.; Williams, Trevor

    2006-01-01

    Soil represents the principal environmental reservoir of many insect-pathogenic viruses. We compared the adsorption and infectivity of one occluded and two nonoccluded viruses, Helicoverpa armigera single nucleopolyhedrovirus (HaSNPV) (Baculoviridae), Cricket paralysis virus (CrPV) (Dicistroviridae), and Invertebrate iridescent virus 6 (IIV-6) (Iridoviridae), respectively, in mixtures with a selection of soil-forming minerals. The relative infective titers of HaSNPV and CrPV were unchanged or slightly reduced in the presence of different minerals compared to their titers in the absence of the mineral. In contrast, the infective titer of IIV-6 varied according to the mineral being tested. In adsorption studies, over 98% of HaSNPV occlusion bodies were adsorbed by all the minerals, and a particularly high affinity was observed with ferric oxide, attapulgite, and kaolinite. In contrast, the adsorption of CrPV and IIV-6 differed markedly with mineral type, with low affinity to bentonites and high affinity to ferric oxide and kaolinite. We conclude that interactions between soil-forming minerals and insect viruses appear to be most important in nucleopolyhedroviruses, followed by invertebrate iridescent viruses, and least important in CrPV, which may reflect the ecology of these pathogens. Moreover, soils with a high content of iron oxides or kaolinite would likely represent highly effective reservoirs for insect-pathogenic viruses. PMID:16820456

  9. Larval Helicoverpa zea Transcriptional, Growth and Behavioral Responses to Nicotine and Nicotiana tabacum

    PubMed Central

    Gog, Linus; Vogel, Heiko; Hum-Musser, Sue M.; Tuter, Jason; Musser, Richard O.

    2014-01-01

    The polyphagous feeding habits of the corn earworm, Helicoverpa zea (Boddie), underscore its status as a major agricultural pest with a wide geographic distribution and host plant repertoire. To study the transcriptomic response to toxins in diet, we conducted a microarray analysis of H. zea caterpillars feeding on artificial diet, diet laced with nicotine and Nicotiana tabacum (L.) plants. We supplemented our analysis with growth and aversion bioassays. The transcriptome reflects an abundant expression of proteases, chitin, cytochrome P450 and immune-related genes, many of which are shared between the two experimental treatments. However, the tobacco treatment tended to elicit stronger transcriptional responses than nicotine-laced diet. The salivary factor glucose oxidase, known to suppress nicotine induction in the plant, was upregulated by H. zea in response to tobacco but not to nicotine-laced diet. Reduced caterpillar growth rates accompanied the broad regulation of genes associated with growth, such as juvenile hormone epoxide hydrolase. The differential expression of chemosensory proteins, such as odorant binding-protein-2 precursor, as well as the neurotransmitter nicotinic-acetylcholine-receptor subunit 9, highlights candidate genes regulating aversive behavior towards nicotine. We suggest that an observed coincidental rise in cannibalistic behavior and regulation of proteases and protease inhibitors in H. zea larvae signify a compensatory response to induced plant defenses. PMID:26462833

  10. Enzymatic decomposition of elicitors of plant volatiles in Heliothis virescens and Helicoverpa zea.

    PubMed

    Mori, N; Alborn, H T.; Teal, P E.A.; Tumlinson, J H.

    2001-07-01

    Feeding by larvae of Heliothis virescens induces cotton, corn and tobacco plants to release blends of volatile organic compounds that differ in constituent proportions from blends released when Helicoverpa zea larvae feed on the same plant species. The same elicitors (and analogs) of plant biosynthesis and release of volatiles, originally identified in oral secretions of Spodoptera exigua larvae, were also found in oral secretions of H. virescens and H. zea. However, relative amounts of these compounds, particularly N-(17-hydroxylinolenoyl)-L-glutamine (volicitin), 17-hydroxylinolenic acid, and N-linolenoyl-L-glutamine, varied among batches of oral secretions, more so in H. virescens than in H. zea. This variation was due to cleavage of the amide bond of the fatty acid-amino acid conjugates by an enzyme, or enzymes, originating in the midgut. The enzymatic activity in guts of H. virescens was significantly greater than that found in guts of H. zea. Furthermore, H. zea frass contains N-linolenoyl-L-glutamine in more than 0.1% wet weight, while this conjugate comprises only 0.003% wet weight in H. virescens frass. These results indicated that physiological differences between these two species affect the proportions of volicitin and its analogs in the caterpillars. Whether this causes different proportions of volatiles to be released by plants damaged by each caterpillar species is yet to be determined.

  11. A seed mixture increases dominance of resistance to Bt cotton in Helicoverpa zea.

    PubMed

    Brévault, Thierry; Tabashnik, Bruce E; Carrière, Yves

    2015-05-07

    Widely grown transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) can benefit agriculture, but adaptation by pests threatens their continued success. Refuges of host plants that do not make Bt toxins can promote survival of susceptible insects and delay evolution of resistance, particularly if resistance is inherited as a recessive trait. However, data have been lacking to compare the dominance of resistance when Bt and non-Bt seeds are planted in random mixtures versus separate blocks. Here we report results from greenhouse experiments with transgenic cotton producing Bt toxin Cry1Ac and the bollworm, Helicoverpa zea, showing that the dominance of resistance was significantly higher in a seed mixture relative to a block of Bt cotton. The proportion of larvae on non-Bt cotton plants in the seed mixture was also significantly higher than expected under the null hypothesis of random distribution. In simulations based on observed survival, resistance evolved 2- to 4.5-fold faster in the seed mixture relative to separate blocks of Bt and non-Bt cotton. These findings support previous modelling results indicating that block refuges may be more effective than seed mixtures for delaying resistance in pests with mobile larvae and inherently low susceptibility to the toxins in Bt crops.

  12. A genomic approach to understanding Heliothis and Helicoverpa resistance to chemical and biological insecticides

    PubMed Central

    Heckel, D. G.

    1998-01-01

    Genomics is the comparative study of the structure and function of entire genomes. Although the complete sequencing of the genome of any insect pest is far in the future, a genomic approach can be useful in the study of mechanisms of insecticide resistance. We describe this strategy for Heliothis and Helicoverpa, two of the most destructive genera of pest moths (Lepidoptera) worldwide. Genome-wide linkage mapping provides the location of major and minor resistance genes. Positional cloning identifies novel resistance genes, even when the mechanisms are poorly understood, as with resistance to Bacillus thuringiensis toxins. Anchor loci provide the reference points for comparing the genomes and the genetic architecture of resistance mechanisms among related species. Collectively, these tools enable the description of the evolutionary response of related, but independent, genomes to the common selective pressure of insecticides in the environment. They also provide information that is useful for targeted management of specific resistance genes, and may even speed the search for families of novel insecticidal targets in Lepidoptera.

  13. Incipient Resistance of Helicoverpa punctigera to the Cry2Ab Bt Toxin in Bollgard II® Cotton

    PubMed Central

    Downes, Sharon; Parker, Tracey; Mahon, Rod

    2010-01-01

    Combinations of dissimilar insecticidal proteins (“pyramids”) within transgenic plants are predicted to delay the evolution of pest resistance for significantly longer than crops expressing a single transgene. Field-evolved resistance to Bacillus thuringiensis (Bt) transgenic crops has been reported for first generation, single-toxin varieties and the Cry1 class of proteins. Our five year data set shows a significant exponential increase in the frequency of alleles conferring Cry2Ab resistance in Australian field populations of Helicoverpa punctigera since the adoption of a second generation, two-toxin Bt cotton expressing this insecticidal protein. Furthermore, the frequency of cry2Ab resistance alleles in populations from cropping areas is 8-fold higher than that found for populations from non-cropping regions. This report of field evolved resistance to a protein in a dual-toxin Bt-crop has precisely fulfilled the intended function of monitoring for resistance; namely, to provide an early warning of increases in frequencies that may lead to potential failures of the transgenic technology. Furthermore, it demonstrates that pyramids are not ‘bullet proof’ and that rapid evolution to Bt toxins in the Cry2 class is possible. PMID:20830203

  14. Evolution of Resistance by Helicoverpa zea (Lepidoptera: Noctuidae) Infesting Insecticidal Crops in the Southern United States

    PubMed Central

    Onstad, David; Crain, Philip; Crespo, Andre; Hutchison, William; Buntin, David; Porter, Pat; Catchot, Angus; Cook, Don; Pilcher, Clint; Flexner, Lindsey; Higgins, Laura

    2016-01-01

    We created a deterministic, frequency-based model of the evolution of resistance by corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), to insecticidal traits expressed in crops planted in the heterogeneous landscapes of the southern United States. The model accounts for four generations of selection by insecticidal traits each year. We used the model results to investigate the influence of three factors on insect resistance management (IRM): 1) how does adding a third insecticidal trait to both corn and cotton affect durability of the products, 2) how does unstructured corn refuge influence IRM, and 3) how do block refuges (50% compliance) and blended refuges compare with regard to IRM? When Bt cotton expresses the same number of insecticidal traits, Bt corn with three insecticidal traits provides longer durability than Bt corn with two pyramided traits. Blended refuge provides similar durability for corn products compared with the same level of required block refuge when the rate of refuge compliance by farmers is 50%. Results for Mississippi and Texas are similar, but durabilities for corn traits are surprisingly lower in Georgia, where unstructured corn refuge is the highest of the three states, but refuge for Bt cotton is the lowest of the three states. Thus, unstructured corn refuge can be valuable for IRM but its influence is determined by selection for resistance by Bt cotton. PMID:26637533

  15. Susceptibilities of Helicoverpa zea and Heliothis virescens (Lepidoptera: Noctuidae) populations to Cry1Ac insecticidal protein.

    PubMed

    Ali, M I; Luttrell, R G; Young, S Y

    2006-02-01

    Susceptibilities of bollworm, Helicoverpa zea (Boddie) and tobacco budworm, Heliothis virescens (F.) to Cry1Ac were measured via a diet-incorporated assay with MPV II at the University of Arkansas during 2002-2004. Lethal concentration-mortality (LC50) estimates of five laboratory, seven laboratory-cross, and 10 field populations of H. virescens varied 12-fold. Pooled susceptibilities of H. virescens across all laboratory and field populations varied five-fold. The LC50 estimates for H. virescens were higher than those reported by previous research before the introduction of transgenic crops. However, the ratio of susceptibility of laboratory and field populations was similar, suggesting no change in overall species susceptibility. Individual LC50 estimates of five laboratory, nine laboratory-cross, and 57 field populations of H. zea varied over 130-fold. Pooled susceptibilities across laboratory and field populations varied widely. Among the field populations, colonies from non-Bacillus thuringiensis (Bt) crops were generally more susceptible than those from Bt crops. Across the Bt crops expressing Cry protein, colonies from Bollgard (Monsanto Company) cotton had lower susceptibility to CrylAc than those from Bt corn and those from non-Bt crops.

  16. A seed mixture increases dominance of resistance to Bt cotton in Helicoverpa zea

    PubMed Central

    Brévault, Thierry; Tabashnik, Bruce E.; Carrière, Yves

    2015-01-01

    Widely grown transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) can benefit agriculture, but adaptation by pests threatens their continued success. Refuges of host plants that do not make Bt toxins can promote survival of susceptible insects and delay evolution of resistance, particularly if resistance is inherited as a recessive trait. However, data have been lacking to compare the dominance of resistance when Bt and non-Bt seeds are planted in random mixtures versus separate blocks. Here we report results from greenhouse experiments with transgenic cotton producing Bt toxin Cry1Ac and the bollworm, Helicoverpa zea, showing that the dominance of resistance was significantly higher in a seed mixture relative to a block of Bt cotton. The proportion of larvae on non-Bt cotton plants in the seed mixture was also significantly higher than expected under the null hypothesis of random distribution. In simulations based on observed survival, resistance evolved 2- to 4.5-fold faster in the seed mixture relative to separate blocks of Bt and non-Bt cotton. These findings support previous modelling results indicating that block refuges may be more effective than seed mixtures for delaying resistance in pests with mobile larvae and inherently low susceptibility to the toxins in Bt crops. PMID:25950459

  17. Autographa californica multiple nucleopolyhedrovirus ODV-E56 is a per os infectivity factor, but is not essential for binding and fusion of occlusion-derived virus to the host midgut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) occlusion-derived virus (ODV) envelope protein ODV-E56 is essential for oral infection of neonate Heliothis virescens larvae. Here, we present a more detailed study of ODV-E56 function. Bioassays with recombinant clones of AcMNPV lack...

  18. Transgenic cotton expressing synthesized scorpion insect toxin AaHIT gene confers enhanced resistance to cotton bollworm (Heliothis armigera) larvae.

    PubMed

    Wu, Jiahe; Luo, Xiaoli; Wang, Zhian; Tian, Yingchuan; Liang, Aihua; Sun, Yi

    2008-03-01

    A synthetic scorpion Hector Insect Toxin (AaHIT) gene, under the control of a CaMV35S promoter, was cloned into cotton via Agrobacterium tumefaciens-mediated transformation. Southern blot analyses indicated that integration of the transgene varied from one to more than three estimated copies per genome; seven homozygous transgenic lines with one copy of the T-DNA insert were then selected by PCR and Southern blot analysis. AaHIT expression was from 0.02 to 0.43% of total soluble protein determined by western blot. These homozygous transgenic lines killed larvae of cotton bollworm (Heliothis armigera) by 44-98%. The AaHIT gene could used therefore an alternative to Bt toxin and proteinase inhibitor genes for producing transgenic cotton crops with effective control of bollworm.

  19. The pnk/pnl gene (ORF 86) of Autographa californica nucleopolyhedrovirus is a non-essential, immediate early gene.

    PubMed

    Durantel, D; Croizier, L; Ayres, M D; Croizier, G; Possee, R D; López-Ferber, M

    1998-03-01

    Autographa californica nucleopolyhedrovirus (AcMNPV) ORF 86, located within the HindIII C fragment, potentially encodes a protein which shares sequence similarity with two T4 bacteriophage gene products, RNA ligase and polynucleotide kinase. This AcMNPV gene has been designated pnk/pnl but has yet to be assigned a function in virus replication. It has been classified as an immediate early virus gene, since the promoter was active in uninfected insect cells and mRNA transcripts were detectable from 4 to 48 h post-infection and in the presence of cycloheximide or aphidicolin in virus-infected cells. The extremities of the transcript have been mapped by primer extension and 3' RACE-PCR to positions -18 from the translational start codon and +15 downstream of the stop codon. The function of pnk/pnl was investigated by producing a recombinant virus (Acdel86lacZ) with the coding region replaced with that of lacZ. This virus replicated normally in Spodoptera frugiperda (Sf 21) cells, indicating that pnk/pnl is not essential for propagation in these cells. Virus protein production in Acdel86lacZ-infected Sf 21 cells also appeared to be unaffected, with normal synthesis of the IE-1, GP64, VP39 and polyhedrin proteins. Shut-down of host protein synthesis was not abolished in recombinant infection. When other baculovirus genomes were examined for the presence of pnk/pnl by restriction enzyme digestion and PCR, a deletion was found in AcMNPV 1.2, Galleria mellonella NPV (GmMNPV) and Bombyx mori NPV (BmNPV), suggesting that in many isolates this gene has either never been acquired or has been lost during genome evolution. This is one of the first baculovirus immediate early genes that appears to be nonessential for virus survival.

  20. Effects of Early or Overexpression of the Autographa californica Multiple Nucleopolyhedrovirus orf94 (ODV-e25) on Virus Replication.

    PubMed

    Luo, Xiao-Chun; Wang, Shan-Shan; Zhang, Jie; Qian, Duo-Duo; Wang, Si-Min; Li, Lu-Lin

    2013-01-01

    odv-e25(e25) is one of the core genes of baculoviruses. To investigate how it functions in the replication cycle of a baculovirus, a number of Autographa californica multiple nucleopolyhedrovirus recombinants with e25 under control of the promoter of immediate early gene ie1, or the promoter of the very late hyperexpressed gene p10, were constructed using a bacmid system, and the effects of early expression or overexpression of e25 on replication of the virus were evaluated. Microscopy and titration assays demonstrated that bacmids with e25 under control of ie1 promoter were unable to produce budded viruses; and that the recombinant viruses with e25 under control of p10 promoter generated budded virus normally, but formation of occlusion bodies were dramatically reduced and delayed in the infected cells. Electron microscopy showed that there were no mature virions or intact nucleocapsids present in the cells transfected with a recombinant bacmid with e25 under control of ie1 promoter. Quantitative real-time PCR analysis demonstrated that alteration of the e25 promoter did not affect viral DNA synthesis. The reporter gene expression from the promoter of the major capsid protein gene vp39 was reduced 63% by early expression of e25. Confocal microscopy revealed that E25 was predominantly localized in nuclei by 24 hours post infection with wild-type virus, but it remained in the cytoplasm in the cells transfected with a recombinant bacmid with e25 under control of the ie1 promoter, suggesting that the transport of E25 into nuclei was regulated in a specific and strict time dependent manner.

  1. Transcriptome Analysis of the Midgut of the Chinese Oak Silkworm Antheraea pernyi Infected with Antheraea pernyi Nucleopolyhedrovirus

    PubMed Central

    Sun, Ying; Liu, Wei; He, Ying-Zi; Wang, Feng-Cheng; Jiang, Yi-Ren; Qin, Li

    2016-01-01

    The Antheraea pernyi nucleopolyhedrovirus (ApNPV) is an exclusive pathogen of A. pernyi. The intense interactions between ApNPV and A. pernyi cause a series of physiological and pathological changes to A. pernyi. However, no detailed report exists regarding the molecular mechanisms underlying the interactions between ApNPV and A. pernyi. In this study, four cDNA libraries of the A. pernyi midgut, including two ApNPV-infected groups and two control groups, were constructed for transcriptomic analysis to provide new clues regarding the molecular mechanisms that underlie these interactions. The transcriptome of the A. pernyi midgut was de novo assembled using the Trinity platform because of the lack of a genome resource for A. pernyi. Compared with the controls, a total of 5,172 differentially expressed genes (DEGs) were identified, including 2,183 up-regulated and 2,989 down-regulated candidates, of which 2,965 and 911 DEGs were classified into different GO categories and KEGG pathways, respectively. The DEGs involved in A. pernyi innate immunity were classified into several categories, including heat-shock proteins, apoptosis-related proteins, serpins, serine proteases and cytochrome P450s. Our results suggested that these genes were related to the immune response of the A. pernyi midgut to ApNPV infection via their essential roles in regulating a variety of physiological processes. Our results may serve as a basis for future research not only on the molecular mechanisms of ApNPV invasion but also on the anti-ApNPV mechanism of A. pernyi. PMID:27820844

  2. Proteomics of the 26S proteasome in Spodoptera frugiperda cells infected with the nucleopolyhedrovirus, AcMNPV.

    PubMed

    Lyupina, Yulia V; Zatsepina, Olga G; Serebryakova, Marina V; Erokhov, Pavel A; Abaturova, Svetlana B; Kravchuk, Oksana I; Orlova, Olga V; Beljelarskaya, Svetlana N; Lavrov, Andrey I; Sokolova, Olga S; Mikhailov, Victor S

    2016-06-01

    Baculoviruses are large DNA viruses that infect insect species such as Lepidoptera and are used in biotechnology for protein production and in agriculture as insecticides against crop pests. Baculoviruses require activity of host proteasomes for efficient reproduction, but how they control the cellular proteome and interact with the ubiquitin proteasome system (UPS) of infected cells remains unknown. In this report, we analyzed possible changes in the subunit composition of 26S proteasomes of the fall armyworm, Spodoptera frugiperda (Sf9), cells in the course of infection with the Autographa californica multiple nucleopolyhedrovirus (AcMNPV). 26S proteasomes were purified from Sf9 cells by an immune affinity method and subjected to 2D gel electrophoresis followed by MALDI-TOF mass spectrometry and Mascot search in bioinformatics databases. A total of 34 homologues of 26S proteasome subunits of eukaryotic species were identified including 14 subunits of the 20S core particle (7 α and 7 β subunits) and 20 subunits of the 19S regulatory particle (RP). The RP contained homologues of 11 of RPN-type and 6 of RPT-type subunits, 2 deubiquitinating enzymes (UCH-14/UBP6 and UCH-L5/UCH37), and thioredoxin. Similar 2D-gel maps of 26S proteasomes purified from uninfected and AcMNPV-infected cells at 48hpi confirmed the structural integrity of the 26S proteasome in insect cells during baculovirus infection. However, subtle changes in minor forms of some proteasome subunits were detected. A portion of the α5(zeta) cellular pool that presumably was not associated with the proteasome underwent partial proteolysis at a late stage in infection.

  3. Quantification of Soil-to-Plant Transport of Recombinant Nucleopolyhedrovirus: Effects of Soil Type and Moisture, Air Currents, and Precipitation†

    PubMed Central

    Fuxa, James R.; Richter, Arthur R.

    2001-01-01

    Significantly more occlusion bodies (OB) of DuPont viral construct HzSNPV-LqhIT2, expressing a scorpion toxin, were transported by artificial rainfall to cotton plants from sandy soil (70:15:15 sand-silt-clay) than from silt (15:70:15) and significantly more from silt than from clay (15:15:70). The amounts transported by 5 versus 50 mm of precipitation were the same, and transport was zero when there was no precipitation. In treatments that included precipitation, the mean number of viable OB transported to entire, 25- to 35-cm-tall cotton plants ranged from 56 (clay soil, 5 mm of rain) to 226 (sandy soil, 50 mm of rain) OB/plant. In a second experiment, viral transport increased with increasing wind velocity (0, 16, and 31 km/h) and was greater in dry (−1.0 bar of matric potential) than in moist (−0.5 bar) soil. Wind transport was greater for virus in a clay soil than in silt or sand. Only 3.3 × 10−7 (clay soil, 5 mm rain) to 1.3 × 10−6 (sandy soil, 50 mm rain) of the OB in surrounding soil in experiment 1 or 1.1 × 10−7 (−0.5 bar sandy soil, 16-km/h wind) to 1.3 × 10−6 (−1.0 bar clay soil, 31-km/h wind) in experiment 2 were transported by rainfall or wind to cotton plants. This reduces the risk of environmental release of a recombinant nucleopolyhedrovirus (NPV), because only a very small proportion of recombinant virus in the soil reservoir is transported to vegetation, where it can be ingested by and replicate in new host insects. PMID:11679341

  4. Cellular VPS4 Is Required for Efficient Entry and Egress of Budded Virions of Autographa californica Multiple Nucleopolyhedrovirus

    PubMed Central

    Li, Zhaofei

    2012-01-01

    Membrane budding is essential for the egress of many enveloped viruses, and this process shares similarities with the biogenesis of multivesicular bodies (MVBs). In eukaryotic cells, the budding of intraluminal vesicles (IVLs) is mediated by the endosomal sorting complex required for transport (ESCRT) machinery and some viruses require ESCRT machinery components or functions to bud from host cells. Baculoviruses, such as Autographa californica multiple nucleopolyhedrovirus (AcMNPV), enter host cells by clathrin-mediated endocytosis. Viral DNA replication and nucleocapsid assembly occur within the nucleus. Some progeny nucleocapsids are subsequently trafficked to, and bud from, the plasma membrane, forming budded virions (BV). To determine whether the host ESCRT machinery is important or necessary for AcMNPV replication, we cloned a cDNA of Spodoptera frugiperda VPS4, a key regulator for disassembly and recycling of ESCRT III. We then examined viral infection and budding in the presence of wild-type (WT) or dominant negative (DN) forms of VPS4. First, we used a viral complementation system, in combination with fluorescent tags, to examine the effects of transiently expressed WT or DN VPS4 on viral entry. We found that dominant negative VPS4 substantially inhibited virus entry. Entering virus was observed within aberrant compartments containing the DN VPS4 protein. We next used recombinant bacmids expressing WT or DN VPS4 proteins to examine virus egress. We found that production of infectious AcMNPV BV was substantially reduced by expression of DN VPS4 but not by WT VPS4. Together, these results indicate that a functional VPS4 is necessary for efficient AcMNPV BV entry into, and egress from, insect cells. PMID:22072775

  5. A Chrysodeixis chalcites single-nucleocapsid nucleopolyhedrovirus population from the Canary Islands is genotypically structured to maximize survival.

    PubMed

    Bernal, Alexandra; Simón, Oihane; Williams, Trevor; Muñoz, Delia; Caballero, Primitivo

    2013-12-01

    A Chrysodeixis chalcites single-nucleocapsid nucleopolyhedrovirus wild-type isolate from the Canary Islands, Spain, named ChchSNPV-TF1 (ChchTF1-wt), appears to have great potential as the basis for a biological insecticide for control of the pest. An improved understanding of the genotypic structure of this wild-type strain population should facilitate the selection of genotypes for inclusion in a bioinsecticidal product. Eight genetically distinct genotypes were cloned in vitro: ChchTF1-A to ChchTF1-H. Quantitative real-time PCR (qPCR) analysis confirmed that ChchTF1-A accounted for 36% of the genotypes in the wild-type population. In bioassays, ChchTF1-wt occlusion bodies (OBs) were significantly more pathogenic than any of the component single-genotype OBs, indicating that genotype interactions were likely responsible for the pathogenicity phenotype of wild-type OBs. However, the wild-type population was slower killing and produced higher OB yields than any of the single genotypes alone. These results strongly suggested that the ChchTF1-wt population is structured to maximize its transmission efficiency. Experimental OB mixtures and cooccluded genotype mixtures containing the most abundant and the rarest genotypes, at frequencies similar to those at which they were isolated, revealed a mutualistic interaction that restored the pathogenicity of OBs. In OB and cooccluded mixtures containing only the most abundant genotypes, ChchTF1-ABC, OB pathogenicity was even greater than that of wild-type OBs. The ChchTF1-ABC cooccluded mixture killed larvae 33 h faster than the wild-type population and remained genotypically and biologically stable throughout five successive passages in vivo. In conclusion, the ChchTF1-ABC mixture shows great potential as the active ingredient of a bioinsecticide to control C. chalcites in the Canary Islands.

  6. Identification of a novel regulatory sequence of actin nucleation promoting factor encoded by Autographa californica multiple nucleopolyhedrovirus.

    PubMed

    Wang, Yun; Zhang, Yongli; Han, Shili; Hu, Xue; Zhou, Yuan; Mu, Jingfang; Pei, Rongjuan; Wu, Chunchen; Chen, Xinwen

    2015-04-10

    Actin polymerization induced by nucleation promoting factors (NPFs) is one of the most fundamental biological processes in eukaryotic cells. NPFs contain a conserved output domain (VCA domain) near the C terminus, which interacts with and activates the cellular actin-related protein 2/3 complex (Arp2/3) to induce actin polymerization and a diverse regulatory domain near the N terminus. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) nucleocapsid protein P78/83 is a virus-encoded NPF that contains a C-terminal VCA domain and induces actin polymerization in virus-infected cells. However, there is no similarity between the N terminus of P78/83 and that of other identified NPFs, suggesting that P78/83 may possess a unique regulatory mechanism. In this study, we identified a multifunctional regulatory sequence (MRS) located near the N terminus of P78/83 and determined that one of its functions is to serve as a degron to mediate P78/83 degradation in a proteasome-dependent manner. In AcMNPV-infected cells, the MRS also binds to another nucleocapsid protein, BV/ODV-C42, which stabilizes P78/83 and modulates the P78/83-Arp2/3 interaction to orchestrate actin polymerization. In addition, the MRS is also essential for the incorporation of P78/83 into the nucleocapsid, ensuring virion mobility powered by P78/83-induced actin polymerization. The triple functions of the MRS enable P78/83 to serve as an essential viral protein in the AcMNPV replication cycle, and the possible roles of the MRS in orchestrating the virus-induced actin polymerization and viral genome decapsidation are discussed.

  7. Development of a Recombination System for the Generation of Occlusion Positive Genetically Modified Anticarsia Gemmatalis Multiple Nucleopolyhedrovirus

    PubMed Central

    Haase, Santiago; McCarthy, Christina B.; Ferrelli, M. Leticia; Pidre, Matias L.; Sciocco-Cap, Alicia; Romanowski, Victor

    2015-01-01

    Anticarsia gemmatalis is an important pest in legume crops in South America and it has been successfully controlled using Anticarsia gemmatalis Multiple Nucleopolyhedrovirus (AgMNPV) in subtropical climate zones. Nevertheless, in temperate climates its speed of kill is too slow. Taking this into account, genetic modification of AgMNPV could lead to improvements of its biopesticidal properties. Here we report the generation of a two-component system that allows the production of recombinant AgMNPV. This system is based on a parental AgMNPV in which the polyhedrin gene (polh) was replaced by a bacterial β-galactosidase (lacZ) gene flanked by two target sites for the homing endonuclease I-PpoI. Co-transfection of insect cells with linearized (I-PpoI-digested) parental genome and a transfer vector allowed the restitution of polh and the expression of a heterologous gene upon homologous recombination, with a low background of non-recombinant AgMNPV. The system was validated by constructing a recombinant occlusion-positive (polh+) AgMNPV expressing the green fluorescent protein gene (gfp). This recombinant virus infected larvae normally per os and led to the expression of GFP in cell culture as well as in A. gemmatalis larvae. These results demonstrate that the system is an efficient method for the generation of recombinant AgMNPV expressing heterologous genes, which can be used for manifold purposes, including biotechnological and pharmaceutical applications and the production of orally infectious recombinants with improved biopesticidal properties. PMID:25835531

  8. Molecular analysis of the p48 gene of Choristoneura fumiferana multicapsid nucleopolyhedroviruses CfMNPV and CfDEFNPV.

    PubMed

    Li, X; Lauzon, H A; Sohi, S S; Palli, S R; Retnakaran, A; Arif, B M

    1999-07-01

    Attempts were made to linearize the DNA of Choristoneura fumiferana (Cf) multicapsid nucleopolyhedrovirus (MNPV), in order to improve the efficiency of generation of recombinant viruses after transfection. A unique site for the restriction enzyme Sse83871 was found in ORF p48. The requirement for this ORF during virus replication was investigated by molecular analyses including sequencing, transcriptional analysis and inactivation by insertion of marker genes. Sequence analysis showed that ORF p48 consists of 1233 nucleotides encoding a potential protein of 47.88 kDa. The proteins encoded by ORF p48 from CfMNPV and Orgyia pseudotsugata MNPV contain 411 amino acids while that from CfDEFNPV (a virus that is defective for infection by the per os route) is slightly smaller, at 408 amino acids. Transcriptional and primer extension analyses showed that the mRNA is initiated from a typical baculovirus late gene ATAAG motif. The mRNA was detected at 24 h post-infection (p.i.), reached maximum levels at 48 h p.i. and declined by 96 h p.i., which confirmed the late property of the gene. Inactivation of the gene was attempted by inserting a cassette containing either the gene encoding beta-galactosidase or that encoding green fluorescent protein. Blue or fluorescent green plaques of infected cells were observed after transfection. Attempts to generate a plaque-purified virus were not successful. Restriction enzyme analysis showed that the marker genes were inserted randomly at positions other than the p48 locus. This indicated that the gene may be needed for virus replication. The gene is relatively well conserved among baculoviruses but its function remains unclear.

  9. Impact of a nucleopolyhedrovirus bioinsecticide and selected synthetic insecticides on the abundance of insect natural enemies on maize in southern Mexico.

    PubMed

    Armenta, R; Martínez, A M; Chapman, J W; Magallanes, R; Goulson, D; Caballero, P; Cave, R D; Cisneros, J; Valle, J; Castillejos, V; Penagos, D I; García, L F; Williams, T

    2003-06-01

    The impact of commonly used organophosphate (chlorpyrifos, methamidophos), carbamate (carbaryl), and pyrethroid (cypermethrin) insecticides on insect natural enemies was compared with that of a nucleopolyhedrovirus (Baculoviridae) of Spodoptera frugiperda (J. E. Smith) (Lepidoptera Noctuidae) in maize grown in southern Mexico. Analyses of the SELECTV and Koppert Side Effects (IOBC) databases on the impact of synthetic insecticides on arthropod natural enemies were used to predict approximately 75-90% natural enemy mortality after application, whereas the bioinsecticide was predicted to have no effect. Three field trails were performed in mid- and late-whorl stage maize planted during the growing season in Chiapas State, Mexico. Synthetic insecticides were applied at product label recommended rates using a manual knapsack sprayer fitted with a cone nozzle. The biological pesticide was applied at a rate of 3 x 10(12) occlusion bodies (OBs)/ha using identical equipment. Pesticide impacts on arthropods on maize plants were quantified at intervals between 1 and 22 d postapplication. The biological insecticide based on S. frugiperda nucleopolyhedrovirus had no adverse effect on insect natural enemies or other nontarget insect populations. Applications of the carbamate, pyrethroid, and organophosphate insecticides all resulted in reduced abundance of insect natural enemies, but for a relatively short period (8-15 d). Pesticide applications made to late-whorl stage maize resulted in lesser reductions in natural enemy populations than applications made at the mid-whorl stage, probably because of a greater abundance of physical refuges and reduced spray penetration of late-whorl maize.

  10. A single amino acid substitution modulates low-pH-triggered membrane fusion of GP64 protein in Autographa californica and Bombyx mori nucleopolyhedroviruses

    SciTech Connect

    Katou, Yasuhiro; Yamada, Hayato; Ikeda, Motoko; Kobayashi, Michihiro

    2010-09-01

    We have previously shown that budded viruses of Bombyx mori nucleopolyhedrovirus (BmNPV) enter the cell cytoplasm but do not migrate into the nuclei of non-permissive Sf9 cells that support a high titer of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) multiplication. Here we show, using the syncytium formation assay, that low-pH-triggered membrane fusion of BmNPV GP64 protein (Bm-GP64) is significantly lower than that of AcMNPV GP64 protein (Ac-GP64). Mutational analyses of GP64 proteins revealed that a single amino acid substitution between Ac-GP64 H155 and Bm-GP64 Y153 can have significant positive or negative effects on membrane fusion activity. Studies using bacmid-based GP64 recombinant AcMNPV harboring point-mutated ac-gp64 and bm-gp64 genes showed that Ac-GP64 H155Y and Bm-GP64 Y153H substitutions decreased and increased, respectively, the multiplication and cell-to-cell spread of progeny viruses. These results indicate that Ac-GP64 H155 facilitates the low-pH-triggered membrane fusion reaction between virus envelopes and endosomal membranes.

  11. Choristoneura fumiferana multiple nucleopolyhedrovirus LEF-3-P143 complex can complement DNA replication and budded virus in an AcMNPV LEF-3-P143 double knockout bacmid.

    PubMed

    Yu, Mei; Carstens, Eric B

    2012-02-01

    Transient replication assays using Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and Choristoneura fumiferana multiple nucleopolyhedrovirus (CfMNPV) genes suggested that the interactions between P143, the viral helicase and LEF-3, a ssDNA-binding protein, may represent virus species specificity determinants. P143 and LEF-3 are essential for DNA replication in these assays and together with IE-1, the major immediate-early transcription factor, may be part of the viral replisome. In the current report, a lef-3/p143 double-knockout AcMNPV bacmid was constructed that was defective for viral DNA replication and late gene expression. When the homologous lef-3/p143 CfMNPV genes were introduced into this double-knockout bacmid, DNA replication was restored but the level of replication was lower, budded virus production was delayed, and the yields were reduced from those in an AcMNPV-rescue bacmid. These results suggest that to maximize virus replication, baculovirus replisome assembly and function requires protein-protein interactions between P143 and LEF-3, and other viral proteins.

  12. Estimation of long terminal repeat element content in the Helicoverpa zea genome from high-throughput sequencing of bacterial artificial chromosome pools

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The lepidopteran pest insect, Helicoverpa zea, feeds on cultivated corn and cotton crops in North America where control remains challenging due to evolution of resistance to chemical and transgenic insecticidal toxins, yet few genomic resources are available for this species. A bacterial artificial...

  13. Diapause hormone in the Helicoverpa/Heliothis complex: a review of gene expression, peptide structure and activity, analog and antagonist development, and the receptor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review summarizes recent studies focusing on diapause hormone (DH) in the Helicoverpa/Heliothis complex of agricultural pests. Moths in this complex overwinter in pupal diapause, a form of developmental arrest used to circumvent unfavorable seasons. DH was originally reported in the silkmoth ...

  14. Diapause hormone in the corn earworm, Helicoverpa zea: Optimum temperature for activity, structure-activity relationships, and efficacy in accelerating flesh fly pupariation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diapause hormone (DH) effectively terminated pupal diapause in Helicoverpa zea. This effect was temperature-dependent, with an optimum of 21 degrees C. The dose-response curve indicated an ED50 of DH for diapause termination of approximately 100 pmol. The core sequence and essential amino acids w...

  15. Susceptibility of Helicoverpa zea and Heliothis virescens (Lepidoptera: noctuidae) to Vip3A insecticidal protein in VipCotTM cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Susceptibility of laboratory and field colonies of Helicoverpa zea (Boddie) and Heliothis virescens F. to Vip3A insecticidal protein was studied in diet incorporation and diet overlay assays from 2004 to 2008. Responses of field populations were compared to paired responses of University of Arkansas...

  16. Production and characterization of Bacillus thuringiensis Cry1Ac-resistant cotton bollworm Helicoverpa zea (Boddie).

    PubMed

    Anilkumar, Konasale J; Rodrigo-Simón, Ana; Ferré, Juan; Pusztai-Carey, Marianne; Sivasupramaniam, Sakuntala; Moar, William J

    2008-01-01

    Laboratory-selected Bacillus thuringiensis-resistant colonies are important tools for elucidating B. thuringiensis resistance mechanisms. However, cotton bollworm, Helicoverpa zea, a target pest of transgenic corn and cotton expressing B. thuringiensis Cry1Ac (Bt corn and cotton), has proven difficult to select for stable resistance. Two populations of H. zea (AR and MR), resistant to the B. thuringiensis protein found in all commercial Bt cotton varieties (Cry1Ac), were established by selection with Cry1Ac activated toxin (AR) or MVP II (MR). Cry1Ac toxin reflects the form ingested by H. zea when feeding on Bt cotton, whereas MVP II is a Cry1Ac formulation used for resistance selection and monitoring. The resistance ratio (RR) for AR exceeded 100-fold after 11 generations and has been maintained at this level for nine generations. This is the first report of stable Cry1Ac resistance in H. zea. MR crashed after 11 generations, reaching only an RR of 12. AR was only partially cross-resistant to MVP II, suggesting that MVP II does not have the same Cry1Ac selection pressure as Cry1Ac toxin against H. zea and that proteases may be involved with resistance. AR was highly cross-resistant to Cry1Ab toxin but only slightly cross-resistant to Cry1Ab expressing corn leaf powder. AR was not cross-resistant to Cry2Aa2, Cry2Ab2-expressing corn leaf powder, Vip3A, and cypermethrin. Toxin-binding assays showed no significant differences, indicating that resistance was not linked to a reduction in binding. These results aid in understanding why this pest has not evolved B. thuringiensis resistance, and highlight the need to choose carefully the form of B. thuringiensis protein used in experiments.

  17. Autographa californica multiple nucleopolyhedrovirus nucleocapsid protein BV/ODV-C42 mediates the nuclear entry of P78/83.

    PubMed

    Wang, Yun; Wang, Qian; Liang, Changyong; Song, Jianhua; Li, Ni; Shi, Hui; Chen, Xinwen

    2008-05-01

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) BV/ODV-c42 (orf101; c42), which encodes a 41.5-kDa viral nucleocapsid protein with a putative nuclear localization signal (NLS) motif at the C terminus, is a highly conserved gene among members of the Baculoviridae family. C42 is demonstrated to be essential for AcMNPV propagation and can bind to nucleocapsid protein P78/83, a viral activator for the actin-related protein 2/3 (ARP2/3) complex to initiate nuclear actin polymerization, which is essential for viral nucleocapsid morphogenesis during AcMNPV infection. Here, we report the identification of a novel pathway through which c42 functions in nucleocapsid assembly. Cotransfection of Sf9 cells with c42 and p78/83 plasmids demonstrated that C42 was capable of recruiting P78/83 to the nuclei of uninfected cells and that the NLS motif of C42 was essential for this process. To validate this nuclear relocation mode in bacmid-transfected cells, a c42-disrupted bacmid (vAc(c42ko-gfp)) and rescued bacmids with wild-type c42 (vAc(c42res-gfp)) or with NLS coding sequence-mutated c42 (vAc(c42nls-gfp)) were prepared. By immuno-staining, P78/83 was found to be localized in the cytoplasm of either vAc(c42ko-gfp)- or vAc(c42nls-gfp)-transfected cells, whereas P78/83 was relocated to the nuclei of vAc(c42res-gfp)-transfected cells. Furthermore, F-actin-specific staining confirmed that there was no actin polymerization activity in the nuclei of either vAc(c42ko-gfp)- or vAc(c42nls-gfp)-transfected cells, which might be attributed to the absence of nuclear P78/83, an activator of the ARP2/3 complex to initiate nuclear actin polymerization. We therefore hypothesize a mode of action where C42 binds to P78/83 in the cytoplasm to form a protein complex and cotransports to the nucleus under the direction of the NLS motif in C42 during AcMNPV infection.

  18. Nuclear Translocation Sequence and Region in Autographa californica Multiple Nucleopolyhedrovirus ME53 That Are Important for Optimal Baculovirus Production

    PubMed Central

    Liu, Yang; de Jong, Jondavid; Nagy, Éva; Theilmann, David A.

    2016-01-01

    ABSTRACT Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is in the family Baculoviridae, genus Alphabaculovirus. AcMNPV me53 is a highly conserved immediate early gene in all lepidopteran baculoviruses that have been sequenced and is transcribed up to late times postinfection. Although me53 is not essential for viral DNA synthesis, infectious budded virus (BV) production is greatly attenuated when it is deleted. ME53 associates with the nucleocapsid on both budded virus and occlusion-derived virus, but not with the virus envelope. ME53 colocalizes in plasma membrane foci with the envelope glycoprotein GP64 in a GP64-dependent manner. ME53 localizes in the cytoplasm early postinfection, and despite the lack of a reported nuclear localization signal (NLS), ME53 translocates to the nucleus at late times postinfection. To map determinants of ME53 that facilitate its nuclear translocation, recombinant AcMNPV bacmids containing a series of ME53 truncations, internal deletions, and peptides fused with hemagglutinin (HA) or green fluorescent protein (GFP) tags were constructed. Intracellular-localization studies identified residues within amino acids 109 to 137 at the N terminus of ME53 that acted as the nuclear translocation sequence (NTS), facilitating its nuclear transport at late times postinfection. The first 100 N-terminal amino acids and the last 50 C-terminal amino acids of ME53 are dispensable for high levels of budded virus production. The region within amino acids 101 to 398, which also contains the NTS, is critical for optimal levels of budded virus production. IMPORTANCE Baculovirus me53 is a conserved immediate early gene found in all sequenced lepidopteran alpha- and betabaculoviruses. We first identified residues within amino acids 109 to 137 at the N terminus that act as the ME53 nuclear translocation sequence (NTS) to facilitate its nuclear translocation and defined an internal region within amino acids 101 to 398, which includes the NTS, as

  19. Autographa californica Multiple Nucleopolyhedrovirus orf132 Encodes a Nucleocapsid-Associated Protein Required for Budded-Virus and Multiply Enveloped Occlusion-Derived Virus Production

    PubMed Central

    Yang, Ming; Wang, Shuo; Yue, Xiu-Li

    2014-01-01

    ABSTRACT Autographa californica multiple nucleopolyhedrovirus orf132 (named ac132) has homologs in all genome-sequenced group I nucleopolyhedroviruses. Its role in the viral replication cycle is unknown. In this study, ac132 was shown to express a protein of around 28 kDa, which was determined to be associated with the nucleocapsids of both occlusion-derived virus and budded virus. Confocal microscopy showed that AC132 protein appeared in central region of the nucleus as early as 12 h postinfection with the virus. It formed a ring zone at the periphery of the nucleus by 24 h postinfection. To investigate its role in virus replication, ac132 was deleted from the viral genome by using a bacmid system. In the Sf9 cell culture transfected by the ac132 knockout bacmid, infection was restricted to single cells, and the titer of infectious budded virus was reduced to an undetectable level. However, viral DNA replication and the expression of late genes vp39 and odv-e25 and a reporter gene under the control of the very late gene p10 promoter were unaffected. Electron microscopy showed that nucleocapsids, virions, and occlusion bodies were synthesized in the cells transfected by an ac132 knockout bacmid, but the formation of the virogenic stroma and occlusion bodies was delayed, the numbers of enveloped nucleocapsids were reduced, and the occlusion bodies contained mainly singly enveloped nucleocapsids. AC132 was found to interact with envelope protein ODV-E18 and the viral DNA-binding protein P6.9. The data from this study suggest that ac132 possibly plays an important role in the assembly and envelopment of nucleocapsids. IMPORTANCE To our knowledge, this is the first report on a functional analysis of ac132. The data presented here demonstrate that ac132 is required for production of the budded virus and multiply enveloped occlusion-derived virus of Autographa californica multiple nucleopolyhedrovirus. This article reveals unique phenotypic changes induced by ac132

  20. Three-dimensional visualization of the Autographa californica multiple nucleopolyhedrovirus occlusion-derived virion envelopment process gives new clues as to its mechanism.

    PubMed

    Shi, Yang; Li, Kunpeng; Tang, Peiping; Li, Yinyin; Zhou, Qiang; Yang, Kai; Zhang, Qinfen

    2015-02-01

    Baculoviruses produce two virion phenotypes, occlusion-derived virion (ODV) and budded virion (BV). ODV envelopment occurs in the nucleus. Morphogenesis of the ODV has been studied extensively; however, the mechanisms underlying microvesicle formation and ODV envelopment in nuclei remain unclear. In this study, we used electron tomography (ET) together with the conventional electron microscopy to study the envelopment of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ODV. Our results demonstrate that not only the inner but also the outer nuclear membrane can invaginate and vesiculate into microvesicles and that intranuclear microvesicles are the direct source of the ODV membrane. Five main events in the ODV envelopment process are summarized, from which we propose a model to explain this process.

  1. Spodoptera frugiperda resistance to oral infection by Autographa californica multiple nucleopolyhedrovirus linked to aberrant occlusion-derived virus binding in the midgut.

    PubMed

    Haas-Stapleton, Eric J; Washburn, Jan O; Volkman, Loy E

    2005-05-01

    Spodoptera frugiperda larvae are highly resistant to oral infection by Autographa californica multiple nucleopolyhedrovirus (AcMNPV) (LD(50), approximately 9200 occlusions), but extremely susceptible to budded virus within the haemocoel (LD(50), <1 p.f.u.). The inability of AcMNPV occlusion-derived virus (ODV) to establish primary infections readily within midgut cells accounts for a major proportion of oral resistance. To determine whether inappropriate binding of AcMNPV ODV to S. frugiperda midgut cells contributes to lack of oral infectivity, the binding and fusion properties of AcMNPV ODV were compared with those of the ODV of a new isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) obtained from a field-collected larva (oral LD(50), 12 occlusions). By using a fluorescence-dequenching assay conducted in vivo, it was found that AcMNPV ODV bound to the midgut epithelia of S. frugiperda larvae at approximately 15 % of the level of SfMNPV ODV, but that, once bound, the efficiencies of fusion for the two ODVs were similar: 60 % for AcMNPV and 53 % for SfMNPV. Whilst the difference in binding efficiencies was significant, it could not account entirely for the observed differences in infectivity. Competition experiments, however, revealed that, in S. frugiperda larvae, SfMNPV ODV bound to a midgut cell receptor that was not bound by AcMNPV ODV, indicating that ODV interaction with a specific receptor(s) was necessary for productive infection of midgut columnar epithelial cells. Fusion in the absence of this ligand-receptor interaction did not result in productive infections.

  2. Identification of Bombyx mori nucleopolyhedrovirus bm58a as an auxiliary gene and its requirement for cell lysis and larval liquefaction.

    PubMed

    Yang, Rui; Zhang, Jianjia; Feng, Min; Wu, Xiaofeng

    2016-11-01

    Bombyx mori nucleopolyhedrovirus orf58a (bm58a) and its homologues are highly conserved in genomes of all sequenced group I alphabaculoviruses and its function is still unknown. Transcriptional analysis revealed that bm58a is a very late gene initiated from a late transcriptional start motif TAAG. To examine its role in the virus, a bm58a knockout virus (vBmbm-58a-KO-PH-GFP) was generated through homologous recombination in Escherichia coli. Analysis of fluorescence microscopy, titration assays and electron microscopy examination showed that the deletion of bm58a did not affect viral replication and occlusion bodies formation in vitro, indicating that bm58a is not required for viral propagation. However, vBmbm-58a-KO-PH-GFP did not result in cell lysis when wild-type virus infected cells began to lyse, and the vBmbm-58a-KO-PH-GFP infected cells remained intact until 2 weeks post-infection. Quantification of polyhedra release from cells confirmed this observation. Accordingly, though deletion of bm58a did not reduce Bombyx mori nucleopolyhedrovirus infectivity in vivo in bioassays, it did significantly disrupt the larval liquefaction, reducing the level of polyhedra release from infected host. Immunofluorescence analysis demonstrated that Bm58a was predominantly localized on the cellular membrane at the late stage of infection, which may contribute to its function of facilitating cell lysis and larval liquefaction. Our results suggest that although bm58a is not essential for viral propagation as an auxiliary gene, it is a key factor of virus-induced cell lysis and larval liquefaction in vitro and in vivo.

  3. The putative pocket protein binding site of Autographa californica nucleopolyhedrovirus BV/ODV-C42 is required for virus-induced nuclear actin polymerization.

    PubMed

    Li, Kun; Wang, Yun; Bai, Huimin; Wang, Qian; Song, Jianhua; Zhou, Yuan; Wu, Chunchen; Chen, Xinwen

    2010-08-01

    Nuclear filamentous actin (F-actin) is essential for nucleocapsid morphogenesis of lepidopteran nucleopolyhedroviruses. Previously, we had demonstrated that Autographa californica multiple nucleopolyhedrovirus (AcMNPV) BV/ODV-C42 (C42) is involved in nuclear actin polymerization by recruiting P78/83, an AcMNPV orf9-encoded N-WASP homology protein that is capable of activating an actin-related-protein 2/3 (Arp2/3) complex to initiate actin polymerization, to the nucleus. To further investigate the role of C42 in virus-induced actin polymerization, the recombinant bacmid vAc(p78/83nls-gfp), with a c42 knockout, p78/83 tagged with a nuclear localization signal coding sequence, and egfp as a reporter gene under the control of the Pp10 promoter, was constructed and transfected to Sf9 cells. In the nuclei of vAc(p78/83nls-gfp)-transfected cells, polymerized F-actin filaments were absent, whereas other actin polymerization elements (i.e., P78/83, G-actin, and Arp2/3 complex) were present. This in vivo evidence indicated that C42 actively participates in the nuclear actin polymerization process as a key element, besides its role in recruiting P78/83 to the nucleus. In order to collect in vitro evidence for the participation of C42 in actin polymerization, an anti-C42 antibody was used to neutralize the viral nucleocapsid, which is capable of initiating actin polymerization in vitro. Both the kinetics of pyrene-actin polymerization and F-actin-specific staining by phalloidin indicated that anti-C42 can significantly attenuate the efficiency of F-actin formation compared to that with control antibodies. Furthermore, we have identified the putative pocket protein binding sequence (PPBS) on C42 that is essential for C42 to exert its function in nuclear actin polymerization.

  4. Identification and molecular characterization of the Choristoneura fumiferana multicapsid nucleopolyhedrovirus genomic region encoding the regulatory genes pkip, p47, lef-12, and gta.

    PubMed

    Lapointe, R; Back, D W; Ding, Q; Carstens, E B

    2000-05-25

    Choristoneura fumiferana multicapsid nucleopolyhedrovirus (CfMNPV) is a baculovirus pathogenic to spruce budworm, the most damaging insect pest in Canadian forestry. CfMNPV is less virulent to its host insect and its replication cycle is slower than the baculovirus type species Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) but the basis of these characteristics is not known. We have now identified, localized, and determined the sequence of the region of CfMNPV carrying potentially important regulatory genes including p47, lef-12, gta, and pkip. DNA database searches revealed that this region of CfMNPV is most closely related to the homologous OpMNPV genes. Transcription analysis demonstrated that CfMNPV P47 is encoded by a 1.6-kb transcript, LEF-12 is encoded by a 2.6-kb transcript, and GTA is encoded by a 2.1-kb transcript. Transcripts for these genes were detectable at 6 h postinfection but all of them showed a burst in expression levels between 12 and 24 h postinfection corresponding to the time of initiation of CfMNPV DNA replication. A polyclonal antibody, raised against CfMNPV P47, detected a nuclear 43-kDa polypeptide from 12 to 72 h postinfection, demonstrating that the CfMNPV p47 gene product is first expressed at a time corresponding to the burst of transcriptional activity between the early and the late phases. Both AcMNPV and CfMNPV P47 translocate to the nucleus of infected cells.

  5. Reduced expression of the immediate-early protein IE0 enables efficient replication of Autographa californica multiple nucleopolyhedrovirus in poorly permissive Spodoptera littoralis cells.

    PubMed

    Lu, Liqun; Du, Quansheng; Chejanovsky, Nor

    2003-01-01

    Infection of Spodoptera littoralis SL2 cells with the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) results in apoptosis and low yields of viral progeny, in contrast to infection with S. littoralis nucleopolyhedrovirus (SlNPV). By cotransfecting SL2 cells with AcMNPV genomic DNA and a cosmid library representing the complete SlNPV genome, we were able to rescue AcMNPV replication and to isolate recombinant virus vAcSL2, which replicated efficiently in SL2 cells. Moreover, vAcSL2 showed enhanced infectivity for S. littoralis larvae compared to AcMNPV. The genome of vAcSL2 carried a 519-bp insert fragment that increased the distance between the TATA element and the transcriptional initiation site (CAGT) of immediate-early gene ie0. This finding correlated with low steady-state levels of IE0 and higher steady-state levels of IE1 (the product of the ie1 gene, a major AcMNPV transactivator, and a multifunctional protein) than of IE0. Mutagenesis of the ie0 promoter locus by insertion of the chloramphenical acetyltransferase (cat) gene yielded a new recombinant AcMNPV with replication properties identical to those of vAcSL2. Thus, the analysis indicated that increasing the steady-state levels of IE1 relative to IE0 should enable AcMNPV replication in SL2 cells. This suggestion was confirmed by constructing a recombinant AcMNPV bearing an extra copy of the ie1 gene under the control of the Drosophila hsp70 promoter. These results suggest that IE0 plays a role in the regulation of AcMNPV infection and show, for the first time, that significant improvement in the ability of AcMNPV to replicate in a poorly permissive cell line and organism can be achieved by increasing the expression of the main multiple functional protein, IE1.

  6. Functional Regulation of an Autographa californica Nucleopolyhedrovirus-Encoded MicroRNA, AcMNPV-miR-1, in Baculovirus Replication

    PubMed Central

    Zhu, Mengxiao; Deng, Riqiang

    2016-01-01

    ABSTRACT An Autographa californica nucleopolyhedrovirus-encoded microRNA (miRNA), AcMNPV-miR-1, downregulates the ac94 gene, reducing the production of infectious budded virions and accelerating the formation of occlusion-derived virions. In the current study, four viruses that constitutively overexpress AcMNPV-miR-1 were constructed to further explore the function of the miRNA. In addition to the ac94 gene, two new viral gene targets (ac18 and ac95) of AcMNPV-miR-1 were identified, and the possible interacting proteins were verified and tested. In the context of AcMNPV-miR-1 overexpression, ac18 was slightly upregulated, and ac95 was downregulated. Several interacting proteins were identified, and a functional pathway for AcMNPV-miR-1 was deduced. AcMNPV-miR-1 overexpression decreased budded virus infectivity, reduced viral DNA replication, accelerated polyhedron formation, and promoted viral infection efficiency in Trichoplusia ni larvae, suggesting that AcMNPV-miR-1 restrains virus infection of cells but facilitates virus infection of larvae. IMPORTANCE Recently, microRNAs (miRNAs) have been widely reported as moderators or regulators of mammalian cellular processes, especially disease-related pathways in humans. However, the roles played by miRNAs encoded by baculoviruses, which infect numerous beneficial insects and agricultural pests, have rarely been described. To explore the actions of virus-encoded miRNAs, we investigated an miRNA encoded by Autographa californica nucleopolyhedrovirus (AcMNPV-miR-1). We previously identified this miRNA through the exogenous addition of AcMNPV-miR-1 mimics. In the current study, we constitutively overexpressed AcMNPV-miR-1 and analyzed the resultant effects to more comprehensively assess what is indeed the function of this miRNA during viral infection. In addition, we widely explored the target genes for the miRNA in the viral and host genomes and proposed a possible functional network for AcMNPV-miR-1, which provides a

  7. Mortality of Cutworm Larvae Is Not Enhanced by Agrotis segetum Granulovirus and Agrotis segetum Nucleopolyhedrovirus B Coinfection Relative to Single Infection by Either Virus

    PubMed Central

    Wennmann, Jörg T.; Köhler, Tim; Gueli Alletti, Gianpiero

    2015-01-01

    Mixed infections of insect larvae with different baculoviruses are occasionally found. They are of interest from an evolutionary as well as from a practical point of view when baculoviruses are applied as biocontrol agents. Here, we report mixed-infection studies of neonate larvae of the common cutworm, Agrotis segetum, with two baculoviruses, Agrotis segetum nucleopolyhedrovirus B (AgseNPV-B) and Agrotis segetum granulovirus (AgseGV). By applying quantitative PCR (qPCR) analysis, coinfections of individual larvae were demonstrated, and occlusion body (OB) production within singly infected and coinfected larvae was determined in individual larvae. Mixtures of viruses did not lead to changes in mortality rates compared with rates of single-virus treatments, indicating an independent action within host larvae under our experimental conditions. AgseNPV-B-infected larvae showed an increase in OB production during 2 weeks of infection, whereas the number of AgseGV OBs did not change from the first week to the second week. Fewer OBs of both viruses were produced in coinfections than in singly infected larvae, suggesting a competition of the two viruses for larval resources. Hence, no functional or economic advantage could be inferred from larval mortality and OB production from mixed infections of A. segetum larvae with AgseNPV-B and AgseGV. PMID:25681187

  8. Transgenic Clustered Regularly Interspaced Short Palindromic Repeat/Cas9-Mediated Viral Gene Targeting for Antiviral Therapy of Bombyx mori Nucleopolyhedrovirus

    PubMed Central

    Chen, Shuqing; Hou, Chengxiang; Bi, Honglun; Wang, Yueqiang; Xu, Jun; Li, Muwang; James, Anthony A.

    2017-01-01

    ABSTRACT We developed a novel antiviral strategy by combining transposon-based transgenesis and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system for the direct cleavage of Bombyx mori nucleopolyhedrovirus (BmNPV) genome DNA to promote virus clearance in silkworms. We demonstrate that transgenic silkworms constitutively expressing Cas9 and guide RNAs targeting the BmNPV immediate early-1 (ie-1) and me53 genes effectively induce target-specific cleavage and subsequent mutagenesis, especially large (∼7-kbp) segment deletions in BmNPV genomes, and thus exhibit robust suppression of BmNPV proliferation. Transgenic animals exhibited higher and inheritable resistance to BmNPV infection than wild-type animals. Our approach will not only contribute to modern sericulture but also shed light on future antiviral therapy. IMPORTANCE Pathogen genome targeting has shown its potential in antiviral research. However, transgenic CRISPR/Cas9 system-mediated viral genome targeting has not been reported as an antiviral strategy in a natural animal host of a virus. Our data provide an effective approach against BmNPV infection in a real-world biological system and demonstrate the potential of transgenic CRISPR/Cas9 systems in antiviral research in other species. PMID:28122981

  9. Three-dimensional visualization of the Autographa californica multiple nucleopolyhedrovirus occlusion-derived virion envelopment process gives new clues as to its mechanism

    SciTech Connect

    Shi, Yang; Li, Kunpeng; Tang, Peiping; Li, Yinyin; Zhou, Qiang; Yang, Kai; Zhang, Qinfen

    2015-02-15

    Baculoviruses produce two virion phenotypes, occlusion-derived virion (ODV) and budded virion (BV). ODV envelopment occurs in the nucleus. Morphogenesis of the ODV has been studied extensively; however, the mechanisms underlying microvesicle formation and ODV envelopment in nuclei remain unclear. In this study, we used electron tomography (ET) together with the conventional electron microscopy to study the envelopment of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ODV. Our results demonstrate that not only the inner but also the outer nuclear membrane can invaginate and vesiculate into microvesicles and that intranuclear microvesicles are the direct source of the ODV membrane. Five main events in the ODV envelopment process are summarized, from which we propose a model to explain this process. - Highlights: • Both the inner and outer nuclear membranes could invaginate. • Both the inner and outer nuclear membranes could vesiculate into microvesicles. • Five main events in the ODV envelopment process are summarized. • A model is proposed to explain this ODV envelopment.

  10. A peptide with similarity to baculovirus ODV-E66 binds the gut epithelium of Heliothis virescens and impedes infection with Autographa californica multiple nucleopolyhedrovirus.

    PubMed

    Sparks, Wendy O; Rohlfing, Amy; Bonning, Bryony C

    2011-05-01

    Baculoviruses infect their lepidopteran hosts via the midgut epithelium through binding of occlusion-derived virus (ODV) and fusion between the virus envelope and microvillar membranes. To identify genes and sequences that are involved in this process, a random phage display library was screened for peptides that bound to brush border membrane vesicles (BBMV) derived from the midgut epithelium of Heliothis virescens. Seventeen peptides that bound to BBMV were recovered. Two of these, HV1 and HV2, had sequence similarity to the ODV envelope protein ODV-E66 that is found in five species of alphabaculoviruses. Chemically synthesized versions of HV1 and HV2, and two peptides (AcE66A and AcE66B) derived from similar sequences of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ODV-E66, bound to unfixed cryosections of whole midgut tissues. AcE66A, but not HV1, bound to H. virescens gut BBMV proteins on a far-Western blot. Competition assays with HV1 and purified AcMNPV ODV resulted in decreased mortality of H. virescens larvae at a dose of 1 LD(50), and a significant increase in survival time at higher virus concentrations. These results suggest a role for ODV-E66 in baculovirus infection of lepidopteran larval midgut epithelium.

  11. Identification of Autographa californica nucleopolyhedrovirus ac93 as a core gene and its requirement for intranuclear microvesicle formation and nuclear egress of nucleocapsids.

    PubMed

    Yuan, Meijin; Huang, Zhenqiu; Wei, Denghui; Hu, Zhaoyang; Yang, Kai; Pang, Yi

    2011-11-01

    Autographa californica nucleopolyhedrovirus (AcMNPV) orf93 (ac93) is a highly conserved uncharacterized gene that is found in all of the sequenced baculovirus genomes except for Culex nigripalpus NPV. In this report, using bioinformatics analyses, ac93 and odv-e25 (ac94) were identified as baculovirus core genes and thus p33-ac93-odv-e25 represent a cluster of core genes. To investigate the role of ac93 in the baculovirus life cycle, an ac93 knockout AcMNPV bacmid was constructed via homologous recombination in Escherichia coli. Fluorescence and light microscopy showed that the AcMNPV ac93 knockout did not spread by infection, and titration assays confirmed a defect in budded virus (BV) production. However, deletion of ac93 did not affect viral DNA replication. Electron microscopy indicated that ac93 was required for the egress of nucleocapsids from the nucleus and the formation of intranuclear microvesicles, which are precursor structures of occlusion-derived virus (ODV) envelopes. Immunofluorescence analyses showed that Ac93 was concentrated toward the cytoplasmic membrane in the cytoplasm and in the nuclear ring zone in the nucleus. Western blot analyses showed that Ac93 was associated with both nucleocapsid and envelope fractions of BV, but only the nucleocapsid fraction of ODV. Our results suggest that ac93, although not previously recognized as a core gene, is one that plays an essential role in the formation of the ODV envelope and the egress of nucleocapsids from the nucleus.

  12. Autographa californica multiple nucleopolyhedrovirus odv-e25 (Ac94) is required for budded virus infectivity and occlusion-derived virus formation.

    PubMed

    Chen, Lin; Hu, Xiaolong; Xiang, Xingwei; Yu, Shaofang; Yang, Rui; Wu, Xiaofeng

    2012-04-01

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) odv-e25 is a core gene found in all lepidopteran baculoviruses, but its function is unknown. In this study, we generated an odv-e25-knockout AcMNPV and investigated the roles of ODV-E25 in the baculovirus life cycle. The odv-e25 knockout was subsequently rescued by reinserting the odv-e25 gene into the same virus genome. Fluorescence microscopy showed that transfection with the odv-e25-null bacmid vAcBac(KO) was insufficient for propagation in cell culture, whereas the 'repair' virus vAcBac(RE) was able to function in a manner similar to that of the control vAcBac. We found that odv-e25 was not essential for the release of budded viruses (BVs) into culture medium, although the absence of odv-e25 resulted in a 100-fold lower viral titer at 24 h post-transfection (p.t.). Analysis of viral DNA replication in the absence of odv-e25 showed that viral DNA replication was unaffected in the first 24 h p.t. Furthermore, electron microscopy revealed that polyhedra were found in the nucleus, while mature occlusion-derived viruses (ODVs) were not found in the nucleus or polyhedra in odv-e25 null transfected cells, which indicated that ODV-E25 was required for the formation of ODV.

  13. P74 mediates specific binding of Autographa californica M nucleopolyhedrovirus occlusion-derived virus to primary cellular targets in the midgut epithelia of Heliothis virescens Larvae.

    PubMed

    Haas-Stapleton, Eric J; Washburn, Jan O; Volkman, Loy E

    2004-07-01

    P74, an envelope protein of the occlusion-derived virus (ODV) of Autographa californica M nucleopolyhedrovirus (AcMNPV), is critical for oral infection of Trichoplusia ni larvae. The role of P74 during primary infection, however, is unknown. Here we provide evidence that P74 facilitates binding of AcMNPV ODV to a specific receptor within the larval midgut epithelia of another host species, Heliothis virescens. We adapted a fluorescence dequenching assay to compare binding, fusion, and competition of wild-type AcMNPV ODV in vivo with itself and with the ODV of a p74-deficient AcMNPV mutant. We found that relative to wild-type ODV, binding and fusion of ODV deficient in P74 were both qualitatively and quantitatively different. Unlike wild-type ODV, an excess of P74-deficient ODV failed to compete effectively with wild-type ODV binding, and the overall binding level of the mutant ODV was one-third that of the wild type. These results implicated P74 as an ODV attachment protein that binds to a specific receptor on primary target cells within the midgut.

  14. Field testing Chinese and Japanese gypsy moth nucleopolyhedrovirus and disparvirus against a Chinese population of Lymantria dispar asiatica in Huhhot, Inner Mongolia, People's Republic of China.

    PubMed

    Duan, L Q; Otvos, I S; Xu, L B; Conder, N; Wang, Y

    2012-04-01

    The activity of three geographic isolates of the gypsy moth nucleopolyhedrovirus (LdMNPV) was evaluated in field trials against larvae of the Chinese population of Lymantria dispar asiatica Vnukovskij in Inner Mongolia, People's Republic of China, in 2004, 2005, and 2006. Although the Chinese isolate of the virus, LdMNPV-H, was the most pathogenic of the isolates tested, having the lowest mean lethal concentration causing 50% and 95% larval mortality, the increase in efficacy that would be obtained by incorporating this isolate into a commercial product does not justify the time or expense required to register it for use in the United States or Canada. The commercially available North American isolate, LdMNPV-D, was moderately pathogenic, whereas the Japanese isolate, LdMNPV-J, was the least pathogenic. The slopes of the dose-response regression lines for the three virus isolates indicated that the Chinese gypsy moth larvae were more homogenously susceptible to LdMNPV-H and LdMNPV-D than to LdMNPV-J. Time-response data showed that LdMNPV-J was significantly more virulent, but at a much higher dose, than the other two isolates, causing 50% mortality in the shortest time, followed by LdMNPV-H and LdMNPV-D. Rainfall immediately after the application of LdMNPV-D in 2005 resulted in significantly reduced gypsy moth larval mortality.

  15. The role of the PI3K-Akt signal transduction pathway in Autographa californica multiple nucleopolyhedrovirus infection of Spodoptera frugiperda cells

    SciTech Connect

    Xiao Wei; Yang Yi; Weng Qingbei; Lin Tiehao; Yuan Meijin; Yang Kai; Pang Yi

    2009-08-15

    Many viruses activate the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway, thereby modulating diverse downstream signaling pathways associated with antiapoptosis, proliferation, cell cycling, protein synthesis and glucose metabolism, in order to augment their replication. To date, the role of the PI3K-Akt pathway in Baculovirus replication has not been defined. In the present study, we demonstrate that infection of Sf9 cells with Autographa californica multiple nucleopolyhedrovirus (AcMNPV) elevated cellular Akt phosphorylation at 1 h post-infection. The maximum Akt phosphorylation occurred at 6 h post-infection and remained unchanged until 18 h post-infection. The PI3K-specific inhibitor, LY294002, suppressed Akt phosphorylation in a dose-dependent manner, suggesting that AcMNPV-induced Akt phosphorylation is PI3K-dependent. The inhibition of PI3K-Akt activation by LY294002 significantly reduced the viral yield, including a reduction in budded viruses and occlusion bodies. The virus production was reduced only when the inhibitor was added within 24 h of infection, implying that activation of PI3K occurred early in infection. Correspondingly, both viral DNA replication and late (VP39) and very late (POLH) viral protein expression were impaired by LY294002 treatment; LY294002 had no effect on immediate-early (IE1) and early-late (GP64) protein expression. These results demonstrate that the PI3K-Akt pathway is required for efficient Baculovirus replication.

  16. Autographa californica Multiple Nucleopolyhedrovirus Ac34 Protein Retains Cellular Actin-Related Protein 2/3 Complex in the Nucleus by Subversion of CRM1-Dependent Nuclear Export

    PubMed Central

    Mu, Jingfang; Zhang, Yongli; Hu, Yangyang; Hu, Xue; Zhou, Yuan; Pei, Rongjuan; Wu, Chunchen; Chen, Jizheng; van Oers, Monique M.; Chen, Xinwen; Wang, Yun

    2016-01-01

    Actin, nucleation-promoting factors (NPFs), and the actin-related protein 2/3 complex (Arp2/3) are key elements of the cellular actin polymerization machinery. With nuclear actin polymerization implicated in ever-expanding biological processes and the discovery of the nuclear import mechanisms of actin and NPFs, determining Arp2/3 nucleo-cytoplasmic shuttling mechanism is important for understanding the function of nuclear actin. A unique feature of alphabaculovirus infection of insect cells is the robust nuclear accumulation of Arp2/3, which induces actin polymerization in the nucleus to assist in virus replication. We found that Ac34, a viral late gene product encoded by the alphabaculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), is involved in Arp2/3 nuclear accumulation during virus infection. Further assays revealed that the subcellular distribution of Arp2/3 under steady-state conditions is controlled by chromosomal maintenance 1 (CRM1)-dependent nuclear export. Upon AcMNPV infection, Ac34 inhibits CRM1 pathway and leads to Arp2/3 retention in the nucleus. PMID:27802336

  17. Transgenic Clustered Regularly Interspaced Short Palindromic Repeat/Cas9-Mediated Viral Gene Targeting for Antiviral Therapy of Bombyx mori Nucleopolyhedrovirus.

    PubMed

    Chen, Shuqing; Hou, Chengxiang; Bi, Honglun; Wang, Yueqiang; Xu, Jun; Li, Muwang; James, Anthony A; Huang, Yongping; Tan, Anjiang

    2017-04-15

    We developed a novel antiviral strategy by combining transposon-based transgenesis and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system for the direct cleavage of Bombyx mori nucleopolyhedrovirus (BmNPV) genome DNA to promote virus clearance in silkworms. We demonstrate that transgenic silkworms constitutively expressing Cas9 and guide RNAs targeting the BmNPV immediate early-1 (ie-1) and me53 genes effectively induce target-specific cleavage and subsequent mutagenesis, especially large (∼7-kbp) segment deletions in BmNPV genomes, and thus exhibit robust suppression of BmNPV proliferation. Transgenic animals exhibited higher and inheritable resistance to BmNPV infection than wild-type animals. Our approach will not only contribute to modern sericulture but also shed light on future antiviral therapy.IMPORTANCE Pathogen genome targeting has shown its potential in antiviral research. However, transgenic CRISPR/Cas9 system-mediated viral genome targeting has not been reported as an antiviral strategy in a natural animal host of a virus. Our data provide an effective approach against BmNPV infection in a real-world biological system and demonstrate the potential of transgenic CRISPR/Cas9 systems in antiviral research in other species.

  18. Rapid detection of Bombyx mori nucleopolyhedrovirus (BmNPV) by loop-mediated isothermal amplification assay combined with a lateral flow dipstick method.

    PubMed

    Zhou, Yang; Wu, Jiege; Lin, Feng; Chen, Naifu; Yuan, Shaofei; Ding, Lina; Gao, Li; Hang, Bangxing

    2015-12-01

    The Bombyx mori nucleopolyhedrovirus (BmNPV) is a principal pathogen of the domestic silkworm. The disease often breaks out in sericultural countries and due to its high infectivity; it is difficult to control, resulting in heavy economic loss. In order to develop a rapid, sensitive visual detection and simple-to-use novel technology for detection of BmNPV, a loop-mediated isothermal amplification (LAMP) assay combined with a lateral flow dipstick (LFD) method was described. In this study, a set of four primers and a labeled probe were designed specifically to recognize six distinct regions of the BmNPV gp41 gene, and the LAMP for the detection of BmNPV was developed by isothermal amplification at 61 °C for 45 min, followed by hybridization with an FITC-labeled DNA probe for 5 min and detected by LFD within 5 min. The detection limit of LAMP-LFD was 0.2 pg DNA extracted from silkworm infected with BmNPV and was 100 times more sensitive than conventional PCR. No product was generated from silkworm infected with other viruses. Furthermore, we applied the technique to detect BmNPV in the hemolymph and feces at different intervals post infection (pi). In conclusion, the novel LAMP-LFD setup presented here is simple, rapid, reliable, and has the potential for future use in the detection of BmNPV.

  19. The gene encoding the capsid protein P82 of the Choristoneura fumiferana multicapsid nucleopolyhedrovirus: sequencing, transcription and characterization by immunoblot analysis.

    PubMed

    Li, X; Pang, A; Lauzon, H A; Sohi, S S; Arif, B M

    1997-10-01

    A gene encoding a capsid-associated viral structural protein has been identified and sequenced in the genome of the Choristoneura fumiferana multicapsid nucleopolyhedrovirus (CfMNPV). The gene has a 1872 nucleotide open reading frame (ORF) encoding 624 amino acids with a predicted molecular mass of 71.4 kDa. Transcription, which appeared to be initiated from a conserved GTAAG motif of baculovirus late genes, was detected at 12 h, reached a maximum at 48 h and declined at 72 h post-infection (p.i.). Part of the ORF was cloned in frame into a prokaryotic expression vector, pMAL-c2, and the fusion protein was used to generate antibodies in rabbits. It was shown, with the aid of the polyclonal antiserum, that this viral protein was detectable at 24 h p.i. in infected cells. The protein appeared as an 82 kDa band in occlusion-derived virus and as an 82 kDa band and a 72 kDa band in budded virus. Amino acid sequence comparisons revealed that this ORF had high homology with the ORF p87 (77% similarity) of Orgyia pseudotsugata (Op) MNPV and the ORF p80 (60% similarity) of Autographa californica (Ac) MNPV. Immunoblots confirmed that the CfMNPV protein had antigenic similarities to the P87 protein of OpMNPV, but not to the P80 of AcMNPV.

  20. Managing the Sugarcane Borer, Diatraea saccharalis, and Corn Earworm, Helicoverpa zea, using Bt Corn and Insecticide Treatments

    PubMed Central

    Farias, Juliano R.; Costa, Ervandil C.; Guedes, Jerson V. C.; Arbage, Alessandro P.; Neto, Armando B.; Bigolin, Mauricio; Pinto, Felipe F.

    2013-01-01

    The sugarcane borer, Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae) and the corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), are important pests of corn in Brazil and have not been successfully managed, because of the difficulty of managing them with pesticides. The objective of this study was to evaluate the effect of Bt corn MON810, transformed with a gene from Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) insecticide seed treatment, and foliar insecticide spray using treatments developed for control of the fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), which is the major pest of corn. The experiments were done under field conditions in early- and late-planted corn in the state of Rio Grande do Sul, Brazil, and in the laboratory. The MON810 corn reduced infestations and damage by D. saccharalis and H. zea. The insecticides used in seed treatments or foliar sprays did not affect D. saccharalis and H. zea infestations or damage levels. The exception was the insecticide seed treatment in non-transformed corn, which reduced early infestations of D. saccharalis. The MON810 corn, therefore, can be used for managing these two pest species, especially D. saccharalis. PMID:24735131

  1. Managing the sugarcane borer, Diatraea saccharalis, and corn earworm, Helicoverpa zea, using Bt corn and insecticide treatments.

    PubMed

    Farias, Juliano R; Costa, Ervandil C; Guedes, Jerson V C; Arbage, Alessandro P; Neto, Armando B; Bigolin, Mauricio; Pinto, Felipe F

    2013-01-01

    The sugarcane borer, Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae) and the corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), are important pests of corn in Brazil and have not been successfully managed, because of the difficulty of managing them with pesticides. The objective of this study was to evaluate the effect of Bt corn MON810, transformed with a gene from Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) insecticide seed treatment, and foliar insecticide spray using treatments developed for control of the fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), which is the major pest of corn. The experiments were done under field conditions in early- and late-planted corn in the state of Rio Grande do Sul, Brazil, and in the laboratory. The MON810 corn reduced infestations and damage by D. saccharalis and H. zea. The insecticides used in seed treatments or foliar sprays did not affect D. saccharalis and H. zea infestations or damage levels. The exception was the insecticide seed treatment in non-transformed corn, which reduced early infestations of D. saccharalis. The MON810 corn, therefore, can be used for managing these two pest species, especially D. saccharalis.

  2. Cloning and expression of the VHDL receptor from fat body of the corn ear worm, Helicoverpa zea.

    PubMed

    Persaud, Deryck R; Haunerland, Norbert H

    2004-01-01

    In Noctuids, storage proteins are taken up into fat body by receptor-mediated endocytosis. These include arylphorin and a second, structurally unrelated very high-density lipoprotein (VHDL). Previously, we have isolated a single storage protein receptor from the corn earworm, Helicoverpa zea, which binds both VHDL and arylphorin. The receptor protein is a basic, N-terminally blocked, approximately 80 kDa protein that is associated with fat body membranes. Microsequencing of proteolytic fragments of the isolated receptor protein revealed internal sequences that were used to clone the complete cDNA of the VHDL receptor by 3' and 5' RACE techniques. The receptor protein, when expressed in vitro via a suitable insect expression vector, reacted with antibodies against the native VHDL receptor and bound strongly to its ligand VHDL, thus confirming that the cloned cDNA represents indeed the previously purified VHDL receptor. The receptor protein and a second, similar protein also found associated with the fat body membrane show considerable homology to putative basic juvenile hormone suppressible proteins cloned previously from other Noctuid species. Sequence analysis revealed that the receptor is likely a peripheral membrane protein that may mediate the selective uptake of VHDL.

  3. VHDL, a larval storage protein from the corn earworm, Helicoverpa zea, is a member of the vitellogenin gene family.

    PubMed

    Sum, Herbert; Haunerland, Norbert H

    2007-10-01

    The hemolymph of last instar larvae of the corn earworm, Helicoverpa zea contains a blue very high-density lipoprotein (VHDL) that is selectively taken up into fat body prior to pupation. Its amino-terminal sequence was determined by Edman degradation, and used to design a degenerate primer for PCR amplification. With 5' and 3' RACE techniques, the entire cDNA coding for VHDL was amplified and sequenced. Conceptual translation reveals a 173 kDa protein that contains a 15 amino acid signal sequence immediately before the experimentally determined N-terminus of the mature protein. The protein contains a typical lipoprotein N-terminal domain, and shows high sequence similarity to vitellogenins from Lepidoptera and other insect species. VHDL mRNA was not detectable in adult H. zea, and antibodies raised against VHDL did not react with adult hemolymph or yolk proteins. Therefore VHDL, although a member of the vitellogenin gene family, seems to be distinct from the vitellogenin expressed in adult females.

  4. Detection and evolution of resistance to the pyrethroid cypermethrin in Helicoverpa zea (Lepidoptera: Noctuidae) populations in Texas.

    PubMed

    Pietrantonio, P V; Junek, T A; Parker, R; Mott, D; Siders, K; Troxclair, N; Vargas-Camplis, J; Westbrook, J K; Vassiliou, V A

    2007-10-01

    The bollworm, Helicoverpa zea (Boddie), is a key pest of cotton in Texas. Bollworm populations are widely controlled with pyrethroid insecticides in cotton and exposed to pyrethroids in other major crops such as grain sorghum, corn, and soybeans. A statewide program that evaluated cypermethrin resistance in male bollworm populations using an adult vial test was conducted from 2003 to 2006 in the major cotton production regions of Texas. Estimated parameters from the most susceptible field population currently available (Burleson County, September 2005) were used to calculate resistance ratios and their statistical significance. Populations from several counties had statistically significant (P < or = 0.05) resistance ratios for the LC(50), indicating that bollworm-resistant populations are widespread in Texas. The highest resistance ratios for the LC(50) were observed for populations in Burleson County in 2000 and 2003, Nueces County in 2004, and Williamson and Uvalde Counties in 2005. These findings explain the observed pyrethroid control failures in various counties in Texas. Based on the assumption that resistance is caused by a single gene, the Hardy-Weinberg equilibrium formula was used for estimation of frequencies for the putative resistant allele (q) using 3 and 10 microg/vial as discriminatory dosages for susceptible and heterozygote resistant insects, respectively. The influence of migration on local levels of resistance was estimated by analysis of wind trajectories, which partially clarifies the rapid evolution of resistance to cypermethrin in bollworm populations. This approach could be used in evaluating resistance evolution in other migratory pests.

  5. APN1 is a functional receptor of Cry1Ac but not Cry2Ab in Helicoverpa zea

    PubMed Central

    Wei, Jizhen; Zhang, Min; Liang, Gemei; Wu, Kongming; Guo, Yuyuan; Ni, Xinzhi; Li, Xianchun

    2016-01-01

    Lepidopteran midgut aminopeptidases N (APNs) are phylogenetically divided into eight clusters, designated as APN1–8. Although APN1 has been implicated as one of the receptors for Cry1Ac in several species, its potential role in the mode of action of Cry2Ab has not been functionally determined so far. To test whether APN1 also acts as one of the receptors for Cry1Ac in Helicoverpa zea and even for Cry2Ab in this species, we conducted a gain of function analysis by heterologously expressing H. zea APN1 (HzAPN1) in the midgut and fat body cell lines of H. zea and the ovarian cell line of Spodoptera frugiperda (Sf9) and a loss of function analysis by RNAi (RNA interference) silencing of the endogenous APN1 in the three cell lines using the HzAPN1 double strand RNA (dsRNA). Heterologous expression of HzAPN1 significantly increased the susceptibility of the three cell lines to Cry1Ac, but had no effects on their susceptibility to Cry2Ab. Knocking down of the endogenous APN1 made the three cell lines resistant to Cry1Ac, but didn’t change cell lines susceptibility to Cry2Ab. The findings from this study demonstrate that HzAPN1 is a functional receptor of Cry1Ac, but not Cry2Ab. PMID:26755166

  6. Development of bollworms, Helicoverpa zea, on two commercial Bollgard® cultivars that differ in overall Cry1Ac levels

    PubMed Central

    Adamczyk, John J.; Gore, Jeffrey

    2004-01-01

    Research was conducted to quantify the development of the corn earworm (= bollworm), Helicoverpa zea (Boddie), on two different transgenic cotton cultivars (DP 50B and NuCOTN 33B) that contained different levels of the Cry1Ac endotoxin from the soil bacterium, Bacillus thuringiensis Berliner. Using a field cage, an inverse relationship between the amount of Cry1Ac among cultivars versus the weight of bollworm larvae was observed. Larvae that were recovered from the DP 50B cultivar expressing lower Cry1Ac weighed significantly more than larvae collected from the higher expressing NuCOTN 33B cultivar. Cotton plants from NuCOTN 33B were measured as expressing 300% more Cry1Ac than DP 50B plants. The distribution of larval weights indicates that more late-instars (> 200 mg) were collected from the lower expressing DP50B cultivar than the higher expressing NuCOTN 33B cultivar. Within a single population, bollworm larvae were highly variable in their development when feeding on Bollgard® cotton. Possible reasons and consequences for this variation are discussed. PMID:15861247

  7. DNA Barcoding the Heliothinae (Lepidoptera: Noctuidae) of Australia and Utility of DNA Barcodes for Pest Identification in Helicoverpa and Relatives

    PubMed Central

    Gopurenko, David

    2016-01-01

    Helicoverpa and Heliothis species include some of the world’s most significant crop pests, causing billions of dollars of losses globally. As such, a number are regulated quarantine species. For quarantine agencies, the most crucial issue is distinguishing native species from exotics, yet even this task is often not feasible because of poorly known local faunas and the difficulties of identifying closely related species, especially the immature stages. DNA barcoding is a scalable molecular diagnostic method that could provide the solution to this problem, however there has been no large-scale test of the efficacy of DNA barcodes for identifying the Heliothinae of any region of the world to date. This study fills that gap by DNA barcoding the entire heliothine moth fauna of Australia, bar one rare species, and comparing results with existing public domain resources. We find that DNA barcodes provide robust discrimination of all of the major pest species sampled, but poor discrimination of Australian Heliocheilus species, and we discuss ways to improve the use of DNA barcodes for identification of pests. PMID:27509042

  8. Cannibalism of Helicoverpa zea (Lepidoptera: Noctuidae) from Bacillus thuringiensis (Bt) transgenic corn versus non-Bt corn.

    PubMed

    Chilcutt, Charles F

    2006-06-01

    Because of the importance of cannibalism in population regulation of Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in corn, Zea mays L., it is useful to understand the interactions between Bacillus thuringiensis (Bt) transgenic corn and cannibalism. To determine the effects of Bt corn on cannibalism in H. zea, pairs of the same or different instars were taken from Bt or non-Bt corn and placed on artificial diet in proximity. Cannibalism occurred in 91% of pairs and was approximately 7% greater for pairs of larvae reared from Bt transgenic corn (95%) than from non-Bt corn (88%). Also, first instar by first instar pairs had a lower rate of cannibalism than other pairs. Time until cannibalism was not different for larvae from Bt corn versus non-Bt corn. Pupation rate of cannibals and surviving victims was not different for pairs from Bt corn versus non-Bt corn. Finally, cannibalism increased pupation rate of cannibals from both Bt and non-Bt corn by approximately 23 and 12%, respectively, although the increases were not significant. Thus, negative effects of Bt on larvae were compensated by increased cannibalism in comparison with larvae reared on non-Bt corn, which increased larval survival to levels comparable with larvae reared on non-Bt plants.

  9. Brush border membrane binding properties of Bacillus thuringiensis Vip3A toxin to Heliothis virescens and Helicoverpa zea midguts.

    PubMed

    Lee, Mi Kyong; Miles, Paul; Chen, Jeng-Shong

    2006-01-27

    The binding properties of Vip3A, a new family of Bacillus thuringiensis insecticidal toxins, have been examined in the major cotton pests, Heliothis virescens and Helicoverpa zea. Vip3A bound specifically to brush border membrane vesicles (BBMV) prepared from both insect larval midguts. In order to examine the cross-resistance potential of Vip3A to the commercially available Cry1Ac and Cry2Ab2 toxins, the membrane binding site relationship among these toxins was investigated. Competition binding assays demonstrated that Vip3A does not inhibit the binding of either Cry1Ac or Cry2Ab2 and vice versa. BBMV protein blotting experiments showed that Vip3A does not bind to the known Cry1Ac receptors. These distinct binding properties and the unique protein sequence of Vip3A support its use as a novel insecticidal agent. This study indicates a very low cross-resistance potential between Vip3A and currently deployed Cry toxins and hence supports its use in an effective resistance management strategy in cotton.

  10. Unique synteny and alternate splicing of the chitin synthases in closely related heliothine moths

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two chitin synthase genes were characterized in the genomes of two heliothine moths: the corn earworm/cotton bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) and the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). In both moths, the coding sequences for the two ge...

  11. The effect of cell line, phylogenetics and medium on baculovirus budded virus yield and quality.

    PubMed

    Matindoost, Leila; Hu, Hao; Chan, Leslie C L; Nielsen, Lars K; Reid, Steven

    2014-01-01

    The performance of bioprocesses involving baculoviruses largely depends on an efficient infection of cells by concentrated budded virus (BV) inoculums. Baculovirus expression vector systems have been established using Autographa californica nucleopolyhedrovirus (AcMNPV), a group I NPV that displays rapid virus kinetics, whereas bioprocesses using group II baculovirus-based biopesticides such as Helicoverpa armigera nucleopolyhedrovirus (HearNPV) have the limitation of low levels of BV, as these viruses often display poor BV production kinetics. In this study, the effect of key parameters involved in the quality of progeny virions, including cell line, virus phylogenetics and medium, on viral DNA replication, virus trafficking to the extracellular environment, and the yield of recombinant protein or polyhedra were investigated in synchronous infections of HearNPV and AcMNPV. HearNPV showed higher vDNA replication in its optimum medium, SF900III, when compared to AcMNPV, but both viruses had similar specific extracellular virion content. However, the ratio of AcMNPV extracellular virions to the total number of progeny virions produced was higher, and their quality was tenfold higher than that of HearNPV extracellular virions. The results of infection of two different cell lines, High Five and Sf9, with AcMNPV, along with HearNPV infection of HzAM1 cells in three different media, suggest that the host cells and the nutritional state of the medium as well as the phylogenetics of the virus affect the BV yields produced by different baculovirus/cell line/medium combinations.

  12. Susceptibility of Helicoverpa zea (Lepidoptera: Noctuidae) Neonates to Diamide Insecticides in the Midsouthern and Southeastern United States

    PubMed Central

    Adams, A.; Gore, J.; Catchot, A.; Musser, F.; Cook, D.; Krishnan, N.; Irby, T.

    2016-01-01

    Corn earworm, Helicoverpa zea (Boddie), is a significant pest of agroecosystems in the midsouthern and southeastern regions of the United States. These insects have developed resistance to, or inconsistent control has occurred with, most insecticide classes. With their unique mode of action, insecticides in the diamide class have become a key component in management of agriculturally important lepidopteran pests. In this study, field populations of H. zea were collected in the southern United States and compared to susceptible laboratory colonies to generate baseline concentration–mortality data. LC50 and LC90 values were generated for flubendiamide and chlorantraniliprole using neonates. To achieve equivalent levels of mortality, a higher concentration of flubendiamide was required compared to chlorantraniliprole. Flubendiamide LC50 values for H. zea ranged from 16.45 to 30.74 ng/ml, with a mean of 23.53 ng/ml. Chlorantraniliprole LC50 values for H. zea ranged from 2.94 to 4.22 ng/ml, with a mean of 3.66 ng/ml. Significant differences were observed for some field populations relative to the laboratory colony. For flubendiamide, five populations had greater LC50 values and two populations had lower LC50 values compared to the laboratory colony. For chlorantraniliprole, three populations had greater LC50 values and three populations had lower LC50 values compared to the laboratory colony. The response of these populations most likely represents natural variability among populations and does not indicate a significant shift in susceptibility of this species. PMID:27524821

  13. Risk assessment for Helicoverpa zea (Lepidoptera: Noctuidae) resistance on dual-gene versus single-gene corn.

    PubMed

    Edwards, Kristine T; Caprio, Michael A; Allen, K Clint; Musser, Fred R

    2013-02-01

    Recent Environmental Protection Agency (EPA) decisions regarding resistance management in Bt-cropping systems have prompted concern in some experts that dual-gene Bt-corn (CrylA.105 and Cry2Ab2 toxins) may result in more rapid selection for resistance in Helicoverpa zea (Boddie) than single-gene Bacillus thuringiensis (Bt)-corn (CrylAb toxin). The concern is that Bt-toxin longevity could be significantly reduced with recent adoption of a natural refuge for dual-gene Bt-cotton (CrylAc and Cry2Ab2 toxins) and concurrent reduction in dual-gene corn refuge from 50 to 20%. A population genetics framework that simulates complex landscapes was applied to risk assessment. Expert opinions on effectiveness of several transgenic corn and cotton varieties were captured and used to assign probabilities to different scenarios in the assessment. At least 350 replicate simulations with randomly drawn parameters were completed for each of four risk assessments. Resistance evolved within 30 yr in 22.5% of simulations with single-gene corn and cotton with no volunteer corn. When volunteer corn was added to this assessment, risk of resistance evolving within 30 yr declined to 13.8%. When dual-gene Bt-cotton planted with a natural refuge and single-gene corn planted with a 50% structured refuge was simulated, simultaneous resistance to both toxins never occurred within 30 yr, but in 38.5% of simulations, resistance evolved to toxin present in single-gene Bt-corn (CrylAb). When both corn and cotton were simulated as dual-gene products, cotton with a natural refuge and corn with a 20% refuge, 3% of simulations evolved resistance to both toxins simultaneously within 30 yr, while 10.4% of simulations evolved resistance to CrylAb/c toxin.

  14. Helicoverpa zea (Lepidoptera: Noctuidae) and Spodoptera frugiperda (Lepidoptera: Noctuidae) Responses to Sorghum bicolor (Poales: Poaceae) Tissues From Lowered Lignin Lines

    PubMed Central

    Dowd, Patrick F.; Sattler, Scott E.

    2015-01-01

    The presence of lignin within biomass impedes the production of liquid fuels. Plants with altered lignin content and composition are more amenable to lignocellulosic conversion to ethanol and other biofuels but may be more susceptible to insect damage where lignin is an important resistance factor. However, reduced lignin lines of switchgrasses still retained insect resistance in prior studies. Therefore, we hypothesized that sorghum lines with lowered lignin content will also retain insect resistance. Sorghum excised leaves and stalk pith Sorghum bicolor (L.) Moench (Poales: Poaceae) from near isogenic brown midrib (bmr) 6 and 12 mutants lines, which have lowered lignin content and increased lignocellulosic ethanol conversion efficiency, were examined for insect resistance relative to wild-type (normal BTx623). Greenhouse and growth chamber grown plant tissues were fed to first-instar larvae of corn earworms, Helicoverpa zea (Boddie) and fall armyworms Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), two sorghum major pests. Younger bmr leaves had significantly greater feeding damage in some assays than wild-type leaves, but older bmr6 leaves generally had significantly less damage than wild-type leaves. Caterpillars feeding on the bmr6 leaves often weighed significantly less than those feeding on wild-type leaves, especially in the S. frugiperda assays. Larvae fed the pith from bmr stalks had significantly higher mortality compared with those larvae fed on wild-type pith, which suggested that bmr pith was more toxic. Thus, reducing lignin content or changing subunit composition of bioenergy grasses does not necessarily increase their susceptibility to insects and may result in increased resistance, which would contribute to sustainable production. PMID:25601946

  15. Influence of Dual-Bt Protein Corn on Bollworm, Helicoverpa zea (Boddie), Survivorship on Bollgard II Cotton.

    PubMed

    Von Kanel, M B; Gore, J; Catchot, A; Cook, D; Musser, F; Caprio, M

    2016-04-01

    Similar Cry proteins are expressed in both Bt corn, Zea mays L., and cotton, Gossypium hirsutum (L.), commercial production systems. At least one generation of corn earworm, Helicoverpa zea (Boddie), completes development on field corn in the Mid-South before dispersing across the landscape into other crop hosts like cotton. A concern is that Bt corn hybrids may result in selection for H. zea populations with a higher probability of causing damage to Bt cotton. The objective of this study was to determine the susceptibility of H. zea offspring from moths that developed on non-Bt and VT Triple Pro (VT3 PRO) field corn to lyophilized Bollgard II cotton tissue expressing Cry1Ac and Cry2Ab. Offspring of individuals reared on VT3 PRO expressing Cry1A.105 and Cry2Ab had a significantly higher LC50 two out of the three years this study was conducted. Excess larvae were placed on artificial diet and allowed to pupate to determine if there were any inheritable fitness costs associated with parental development on VT3 PRO corn. Offspring resulting from males collected from VT3 PRO had significantly lower pupal weight and longer pupal duration compared with offspring of individuals collected from non-Bt corn. However, offspring from females collected from VT3 PRO were not different from non-Bt offspring. Paternal influence on offspring in insects is not commonly observed, but illustrates the side effects of development on a transgenic plant expressing less than a high dose, 25 times the concentration needed to kill susceptible larvae.

  16. Influence of Dual-Bt Protein Corn on Bollworm, Helicoverpa zea (Boddie), Survivorship on Bollgard II Cotton

    PubMed Central

    Gore, J.; Catchot, A.; Cook, D.; Musser, F.; Caprio, M.

    2016-01-01

    Similar Cry proteins are expressed in both Bt corn, Zea mays L., and cotton, Gossypium hirsutum (L.), commercial production systems. At least one generation of corn earworm, Helicoverpa zea (Boddie), completes development on field corn in the Mid-South before dispersing across the landscape into other crop hosts like cotton. A concern is that Bt corn hybrids may result in selection for H. zea populations with a higher probability of causing damage to Bt cotton. The objective of this study was to determine the susceptibility of H. zea offspring from moths that developed on non-Bt and VT Triple Pro (VT3 PRO) field corn to lyophilized Bollgard II cotton tissue expressing Cry1Ac and Cry2Ab. Offspring of individuals reared on VT3 PRO expressing Cry1A.105 and Cry2Ab had a significantly higher LC50 two out of the three years this study was conducted. Excess larvae were placed on artificial diet and allowed to pupate to determine if there were any inheritable fitness costs associated with parental development on VT3 PRO corn. Offspring resulting from males collected from VT3 PRO had significantly lower pupal weight and longer pupal duration compared with offspring of individuals collected from non-Bt corn. However, offspring from females collected from VT3 PRO were not different from non-Bt offspring. Paternal influence on offspring in insects is not commonly observed, but illustrates the side effects of development on a transgenic plant expressing less than a high dose, 25 times the concentration needed to kill susceptible larvae. PMID:26809264

  17. Survivorship of Helicoverpa zea and Heliothis virescens on cotton plant structures expressing a Bacillus thuringiensis vegetative insecticidal protein.

    PubMed

    Bommireddy, P L; Leonard, B R

    2008-08-01

    A series of tests quantified bollworm, Helicoverpa zea (Boddie), and tobacco budworm, Heliothis virescens (F.), larval survival on plant structures of a nontransgenic cotton (Gossypium hirsutum L.), 'Coker 312', and two transgenic cottons expressing Vip3A protein or both Vip3A + CrylAb proteins (VipCot). Vegetative and reproductive structures including terminal leaves, flower bud (square) bracts, whole debracted squares, flower petals, flower anthers, and intact capsules (bolls) were harvested from plants in field plots. Each structure was infested with 2-d-old larvae from one of the two heliothine species. Larvae were allowed to feed for 96 h on fresh tissue. Survivorship at 96 h after infestation was significantly lower on all structures of Vip3A and VipCot cotton lines compared with similar structures of Coker 312. VipCot plant structures generally resulted in lower larval survivorship compared with similar structures of the Vip3A cotton line. H. zea survivorship ranged from 4 to 28% and from 1 to 18% on Vip3A and VipCot plant structures, respectively. H. virescens survivorship ranged from 10 to 43% and from 2 to 12% on Vip3A and VipCot plant structures, respectively. H. virescens survivorship was higher on VIP3A plant structures compared with that for H. zea on similar structures. These differences between species were not observed on plants from the cotton line expressing VipCot proteins. The results for these plant structures demonstrate that the combination of proteins expressed in VipCot cotton lines are more effective than Vip3A cotton lines against this heliothine complex.

  18. Bt Maize Seed Mixtures for Helicoverpa zea (Lepidoptera: Noctuidae): Larval Movement, Development, and Survival on Non-transgenic Maize.

    PubMed

    Burkness, Eric C; Cira, T M; Moser, S E; Hutchison, W D

    2015-12-01

    In 2012 and 2013, field trials were conducted near Rosemount, MN, to assess the movement and development of Helicoverpa zea (Boddie) larvae on non-Bt refuge corn plants within a seed mixture of non-Bt and Bt corn. The Bt corn hybrid expressed three Bt toxins-Cry1Ab, Cry1F, and Vip3A. As the use of seed mixtures for insect resistance management (IRM) continues to be implemented, it is necessary to further characterize how this IRM approach impacts resistance development in ear-feeding Lepidopteran pests. The potential for Bt pollen movement and cross pollination of the non-Bt ears in a seed mixture may lead to Bt toxin exposure to larvae developing on those refuge ears. Larval movement and development by H. zea, feeding on non-Bt refuge plants adjacent to either transgenic Bt or non-Bt plants, were measured to investigate the potential for unintended Bt exposure. Non-Bt plants were infested with H. zea eggs and subplots were destructively sampled twice per week within each treatment to assess larval development, location, and kernel injury. Results indicate that H. zea larval movement between plants is relatively low, ranging from 2-16% of larvae, and occurs mainly after reaching the second instar. Refuge plants in seed mixtures did not produce equivalent numbers of H. zea larvae, kernel injury, and larval development differed as compared with a pure stand of non-Bt plants. This suggests that there may be costs to larvae developing on refuge plants within seed mixtures and additional studies are warranted to define potential impacts.

  19. Functional characterization of Bombyx mori nucleopolyhedrovirus late gene transcription and genome replication factors in the non-permissive insect cell line SF-21

    SciTech Connect

    Berretta, Marcelo F.; Deshpande, Mandar; Crouch, Erin A.; Passarelli, A. Lorena . E-mail: lpassar@ksu.edu

    2006-04-25

    We compared the abilities of late gene transcription and DNA replication machineries of the baculoviruses Autographa californica nucleopolyhedrovirus (AcMNPV) and Bombyx mori NPV (BmNPV) in SF-21 cells, an insect-derived cell line permissive for AcMNPV infection. It has been well established that 19 AcMNPV late expression factors (lefs) stimulate substantial levels of late gene promoter activity in SF-21 cells. Thus, we constructed a set of clones containing the BmNPV homologs of the AcMNPV lefs under control of the constitutive Drosophila heat shock 70 protein promoter and tested their ability to activate an AcMNPV late promoter-reporter gene cassette in SF-21 cells. We tested the potential of individual or predicted functional groups of BmNPV lefs to successfully replace the corresponding AcMNPV gene(s) in transient late gene expression assays. We found that most, but not all, BmNPV lefs were able to either fully or partially substitute for the corresponding AcMNPV homolog in the context of the remaining AcMNPV lefs with the exception of BmNPV p143, ie-2, and p35. BmNPV p143 was unable to support late gene expression or be imported into the nucleus of cells in the presence of the AcMNPV or the BmNPV LEF-3, a P143 nuclear shuttling factor. Our results suggest that host-specific factors may affect the function of homologous proteins.

  20. Autographa californica multicapsid nucleopolyhedrovirus efficiently infects Sf9 cells and transduces mammalian cells via direct fusion with the plasma membrane at low pH.

    PubMed

    Dong, Sicong; Wang, Manli; Qiu, Zhijuan; Deng, Fei; Vlak, Just M; Hu, Zhihong; Wang, Hualin

    2010-05-01

    The budded virus (BV) of the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) infects insect cells and transduces mammalian cells mainly through the endocytosis pathway. However, this study revealed that the treatment of the virus bound to Sf9 cells at low pH could efficiently rescue the infectivity of AcMNPV in the presence of endocytosis pathway inhibitors. A colocalization assay of the major capsid protein VP39 with the early endosome marker EEA1 showed that at low pH, AcMNPV entered Sf9 cells via an endosome-independent pathway. Using a fluorescent probe (R18), we showed that at low pH, the viral nucleocapsid entered Sf9 cells via direct fusion at the cell surface. By using the myosin-specific inhibitor 2,3-butanedione monoxime (BDM) and the microtubule inhibitor nocodazole, the low pH-triggered direct fusion was demonstrated to be dependent on myosin-like proteins and independent of microtubules. The reverse transcription-PCR of the IE1 gene as a marker for viral entry showed that the kinetics of AcMNPV in cells triggered by low pH was similar to that of the normal entry via endocytosis. The low pH-mediated infection assay and VP39 and EEA1 colocalization assay also demonstrated that AcMNPV could efficiently transduce mammalian cells via direct membrane fusion at the cell surface. More importantly, we found that a low-pH trigger could significantly improve the transduction efficiency of AcMNPV in mammalian cells, leading to the potential application of this method when using baculovirus as a vector for heterologous gene expression and for gene therapy.

  1. Cloning and characterization of a Dim1-like mitosis gene of Spodoptera frugiperda cells (Sf9) induced by Autographa californica multiple nucleopolyhedrovirus.

    PubMed

    Mehrabadi, Mohammad; Hussain, Mazhar; Asgari, Sassan

    2013-06-01

    Dim1 proteins are evolutionarily highly conserved throughout the eukaryotes and are present in numerous species. These proteins are essential for mitosis and pre-mRNA splicing. In this study, the full-length cDNA of Dim1-like gene from Spodoptera frugiperda cells (Sf9) was obtained. S. frugiperda Dim1 (SfDim1) cDNA is comprised of 975 bp including a 429 bp open reading frame (ORF), 225 bp 5' untranslated region (5' UTR), and 321 bp 3' untranslated region (3' UTR) with a poly A tail. The predicted polypeptide encoded by this gene is 142 aa with a molecular weight of 16.76 kDa and a PI of 5.53. Sequence alignment and phylogenetic analysis showed high similarities with Dim1 of other species. The evolutionary conserved site of Dim1 proteins ((35)Asp-Pro-Thr-Cys(38)) is also present in SfDim1. Silencing of SfDim1 gene decreased cell proliferation at 72 h post-treatment in comparison to mock and control transfected cells. Using RT-PCR, we found relatively higher SfDim1 transcript levels following Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) infection compared to mock-infected cells from 4h post-infection (hpi) up until 24 hpi. The expression level diminished dramatically at 36 hpi up to 120 hpi with no expression detected at 144 hpi. Silencing of SfDim1 resulted in lower levels of virus DNA production in comparison to mock-infected cells, which suggested that SfDim1 might benefit the virus and facilitate viral replication. Overall, the results showed that SfDim1 protein is involved in cell proliferation as well as cell-virus interaction.

  2. Comparative proteomics reveal fundamental structural and functional differences between the two progeny phenotypes of a baculovirus.

    PubMed

    Hou, Dianhai; Zhang, Leike; Deng, Fei; Fang, Wei; Wang, Ranran; Liu, Xijia; Guo, Lin; Rayner, Simon; Chen, Xinwen; Wang, Hualin; Hu, Zhihong

    2013-01-01

    The replication of lepidopteran baculoviruses is characterized by the production of two progeny phenotypes: the occlusion-derived virus (ODV), which establishes infection in midgut cells, and the budded virus (BV), which disseminates infection to different tissues within a susceptible host. To understand the structural, and hence functional, differences between BV and ODV, we employed multiple proteomic methods to reveal the protein compositions and posttranslational modifications of the two phenotypes of Helicoverpa armigera nucleopolyhedrovirus. In addition, Western blotting and quantitative mass spectrometry were used to identify the localization of proteins in the envelope or nucleocapsid fractions. Comparative protein portfolios of BV and ODV showing the distribution of 54 proteins, encompassing the 21 proteins shared by BV and ODV, the 12 BV-specific proteins, and the 21 ODV-specific proteins, were obtained. Among the 11 ODV-specific envelope proteins, 8 either are essential for or contribute to oral infection. Twenty-three phosphorylated and 6 N-glycosylated viral proteins were also identified. While the proteins that are shared by the two phenotypes appear to be important for nucleocapsid assembly and trafficking, the structural and functional differences between the two phenotypes are evidently characterized by the envelope proteins and posttranslational modifications. This comparative proteomics study provides new insight into how BV and ODV are formed and why they function differently.

  3. MetaGaAP: A Novel Pipeline to Estimate Community Composition and Abundance from Non-Model Sequence Data

    PubMed Central

    Noune, Christopher; Hauxwell, Caroline

    2017-01-01

    Next generation sequencing and bioinformatic approaches are increasingly used to quantify microorganisms within populations by analysis of ‘meta-barcode’ data. This approach relies on comparison of amplicon sequences of ‘barcode’ regions from a population with public-domain databases of reference sequences. However, for many organisms relevant ‘barcode’ regions may not have been identified and large databases of reference sequences may not be available. A workflow and software pipeline, ‘MetaGaAP,’ was developed to identify and quantify genotypes through four steps: shotgun sequencing and identification of polymorphisms in a metapopulation to identify custom ‘barcode’ regions of less than 30 polymorphisms within the span of a single ‘read’, amplification and sequencing of the ‘barcode’, generation of a custom database of polymorphisms, and quantitation of the relative abundance of genotypes. The pipeline and workflow were validated in a ‘wild type’ Alphabaculovirus isolate, Helicoverpa armigera single nucleopolyhedrovirus (HaSNPV-AC53) and a tissue-culture derived strain (HaSNPV-AC53-T2). The approach was validated by comparison of polymorphisms in amplicons and shotgun data, and by comparison of predicted dominant and co-dominant genotypes with Sanger sequences. The computational power required to generate and search the database effectively limits the number of polymorphisms that can be included in a barcode to 30 or less. The approach can be used in quantitative analysis of the ecology and pathology of non-model organisms. PMID:28218638

  4. Cross-resistance to toxins used in pyramided Bt crops and resistance to Bt sprays in Helicoverpa zea.

    PubMed

    Welch, Kara L; Unnithan, Gopalan C; Degain, Ben A; Wei, Jizhen; Zhang, Jie; Li, Xianchun; Tabashnik, Bruce E; Carrière, Yves

    2015-11-01

    To delay evolution of resistance by insect pests, farmers are rapidly increasing their use of transgenic crops producing two or more Bacillus thuringiensis (Bt) toxins that kill the same pest. A key condition favoring durability of these "pyramided" crops is the absence of cross-resistance between toxins. Here we evaluated cross-resistance in the major lepidopteran pest Helicoverpa zea (Boddie) to Bt toxins used in pyramids. In the laboratory, we selected a strain of this pest with Bt toxin Cry1Ac followed by selection with MVP II, a formulation containing a hybrid protoxin that is identical to Cry1Ac in the active portion of the toxin and 98.5% identical overall. We calculated the resistance ratio as the EC50 (concentration causing mortality or failure to develop beyond the first instar of 50% of larvae) for the laboratory-selected strain divided by the EC50 for its field-derived parent strain that was not selected in the laboratory. The resistance ratio was 20.0-33.9 (mean=27.0) for MVP II, 57.0 for Cry1Ac, 51.3 for Cry1A.105, 22.4 for Cry1Ab, 3.3 for Cry2Ab, 1.8 for Cry1Fa, and 1.6 for Vip3Aa. Resistance ratios were 2.9 for DiPel ES and 2.0 for Agree VG, which are commercial Bt spray formulations containing Cry1Ac, other Bt toxins, and Bt spores. By the conservative criterion of non-overlap of 95% fiducial limits, the EC50 was significantly higher for the selected strain than its parent strain for MVP II, Cry1Ac, Cry1A.105, Cry1Ab, Cry2Ab and DiPel ES. For Cry1Fa, Vip3Aa, and Agree VG, significantly lower susceptibility to a high concentration indicated low cross-resistance. The resistance ratio for toxins other than Cry1Ac was associated with their amino acid sequence similarity to Cry1Ac in domain II. Resistance to Cry1Ac and the observed cross-resistance to other Bt toxins could accelerate evolution of H. zea resistance to currently registered Bt sprays and pyramided Bt crops.

  5. Efficient expression of single chain variable fragment antibody against paclitaxel using the Bombyx mori nucleopolyhedrovirus bacmid DNA system and its characterizations.

    PubMed

    Yusakul, Gorawit; Sakamoto, Seiichi; Tanaka, Hiroyuki; Morimoto, Satoshi

    2016-07-01

    A single chain variable fragment (scFv), the smallest unit of functional recombinant antibody, is an attractive format of recombinant antibodies for various applications due to its small fragment and possibility of genetic engineering. Hybridoma clone 3A3 secreting anti-paclitaxel monoclonal antibody was used to construct genes encoding its variable domains of heavy (VH) and light (VL) chains. The VH and VL domains were linked to be the PT-scFv3A3 using flexible peptide linker in a format of VH-(GGGGS)5-VL. The PT-scFv3A3 was primarily expressed using the pET28a(+) vector in the Escherichia coli system, and was then further expressed by using the Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid DNA system. Interestingly, the reactivity of PT-scFv3A3 expressed in the hemolymph of B. mori using the BmNPV bacmid DNA system was much higher than that expressed in the E. coli system. Using indirect competitive enzyme-linked immunosorbent assay (icELISA), the PT-scFv3A3 (B. mori) reacted not only with immobilized paclitaxel, but also with free paclitaxel in a concentration-dependent manner, with the linear range of free paclitaxel between 0.156 and 5.00 µg/ml. The PT-scFv3A3 (B. mori) exhibited less cross-reactivity (%) than its parental MAb clone 3A3 against paclitaxel-related compounds, including docetaxel (31.1 %), 7-xylosyltaxol (22.1 %), baccatin III (<0.68 %), 10-deacetylbaccatin III (<0.68 %), 1-hydroxybaccatin I (<0.68 %), and 1-acetoxy-5-deacetylbaccatin I (<0.68 %). With the exception of cephalomannine, the cross-reactivity was slightly increased to 8.50 %. The BmNPV bacmid DNA system was a highly efficient expression system of active PT-scFv3A3, which is applicable for PT-scFv3A3-based immunoassay of paclitaxel. In addition, the PT-scFv3A3 can be applied to evaluate its neutralizing property of paclitaxel or docetaxel toxicity.

  6. The Autographa californica Multiple Nucleopolyhedrovirus ac54 Gene Is Crucial for Localization of the Major Capsid Protein VP39 at the Site of Nucleocapsid Assembly

    PubMed Central

    Guan, Zhanwen; Zhong, Ling; Li, Chunyan; Wu, Wenbi; Yuan, Meijin

    2016-01-01

    ABSTRACT Baculovirus DNAs are synthesized and inserted into preformed capsids to form nucleocapsids at a site in the infected cell nucleus, termed the virogenic stroma. Nucleocapsid assembly of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) requires the major capsid protein VP39 and nine minor capsid proteins, including VP1054. However, how VP1054 participates in nucleocapsid assembly remains elusive. In this study, the VP1054-encoding gene (ac54) was deleted to generate the ac54-knockout AcMNPV (vAc54KO). In vAc54KO-transfected cells, nucleocapsid assembly was disrupted, leading to the formation of abnormally elongated capsid structures. Interestingly, unlike cells transfected with AcMNPV mutants lacking other minor capsid proteins, in which capsid structures were distributed within the virogenic stroma, ac54 ablation resulted in a distinctive location of capsid structures and VP39 at the periphery of the nucleus. The altered distribution pattern of capsid structures was also observed in cells transfected with AcMNPV lacking BV/ODV-C42 or in cytochalasin d-treated AcMNPV-infected cells. BV/ODV-C42, along with PP78/83, has been shown to promote nuclear filamentous actin (F-actin) formation, which is another requisite for nucleocapsid assembly. Immunofluorescence using phalloidin indicated that the formation and distribution of nuclear F-actin were not affected by ac54 deletion. However, immunoelectron microscopy revealed that BV/ODV-C42, PP78/83, and 38K failed to integrate into capsid structures in the absence of VP1054, and immunoprecipitation further demonstrated that in transient expression assays, VP1054 interacted with BV/ODV-C42 and VP80 but not VP39. Our findings suggest that VP1054 plays an important role in the transport of capsid proteins to the nucleocapsid assembly site prior to the process of nucleocapsid assembly. IMPORTANCE Baculoviruses are large DNA viruses whose replication occurs within the host nucleus. The localization of

  7. Response of the digestive system of Helicoverpa zea to ingestion of potato carboxypeptidase inhibitor and characterization of an uninhibited carboxypeptidase B.

    PubMed

    Bayés, Alex; de la Vega, Mónica Rodríguez; Vendrell, Josep; Aviles, Francesc X; Jongsma, Maarten A; Beekwilder, Jules

    2006-08-01

    Carboxypeptidase activity participates in the protein digestion process in the gut of lepidopteran insects, supplying free amino-acids to developing larvae. To study the role of different carboxypeptidases in lepidopteran protein digestion, the effect of potato carboxypeptidase inhibitor (PCI) on the digestive system of larvae of the pest insect Helicoverpa zea was investigated, and compared to that of Soybean Kunitz Trypsin Inhibitor. Analysis of carboxypeptidase activity in the guts showed that ingested PCI remained active in the gut, and completely inhibited the activity of carboxypeptidases A and O. Interestingly, carboxypeptidase B activity was not affected by PCI. All previously described enzymes from the same family, both from insect or mammalian origin, have been found to be very sensitive to PCI. Analysis of several lepidopteran species showed the presence of carboxypeptidase B activity resistant to PCI in most of them. The H. zea carboxypeptidase B enzyme (CPBHz) was purified from gut content by affinity chromatography. N-terminal sequence information was used to isolate its corresponding full-length cDNA, and recombinant expression of the zymogen of CPBHz in Pichia pastoris was achieved. The substrate specificity of recombinant CPBHz was tested using peptides. Unlike other CPB enzymes, the enzyme appeared to be highly selective for C-terminal lysine residues. Inhibition by PCI appeared to be pH-dependent.

  8. Estimation of long terminal repeat element content in the Helicoverpa zea genome from high-throughput sequencing of bacterial artificial chromosome pools.

    PubMed

    Coates, Brad S; Abel, Craig A; Perera, Omaththage P

    2017-04-01

    The lepidopteran pest insect Helicoverpa zea feeds on cultivated corn and cotton across the Americas where control remains challenging owing to the evolution of resistance to chemical and transgenic insecticidal toxins, yet genomic resources remain scarce for this species. A bacterial artificial chromosome (BAC) library having a mean genomic insert size of 145 ± 20 kbp was created from a laboratory strain of H. zea, which provides ∼12.9-fold coverage of a 362.8 ± 8.8 Mbp (0.37 ± 0.09 pg) flow cytometry estimated haploid genome size. Assembly of Illumina HiSeq 2000 reads generated from 14 pools that encompassed all BAC clones resulted in 165 485 genomic contigs (N50 = 3262 bp; 324.6 Mbp total). Long terminal repeat (LTR) protein coding regions annotated from 181 contigs included 30 Ty1/copia, 78 Ty3/gypsy, and 73 BEL/Pao elements, of which 60 (33.1%) encoded all five functional polyprotein (pol) domains. Approximately 14% of LTR elements are distributed non-randomly across pools of BAC clones.

  9. Susceptibility of Helicoverpa zea and Heliothis virescens (Lepidoptera: Noctuidae) to Vip3A insecticidal protein expressed in VipCot™ cotton.

    PubMed

    Ali, M I; Luttrell, R G

    2011-10-01

    Susceptibility of laboratory and field colonies of Helicoverpa zea (Boddie) and Heliothis virescens F. to Vip3A insecticidal protein was studied in diet incorporation and diet overlay assays from 2004 to 2008. Responses of field populations were compared to paired responses of University of Arkansas laboratory susceptible H. zea (LabZA) and H. virescens (LabVR) colonies. After 7d of exposure, observations were made on number of dead larvae (M) and the number of larvae alive but remaining as first instars (L1). Regression estimates using M (LC(50)) and M plus L1 (MIC(50)) data were developed for laboratory and field populations. Susceptibility of laboratory and field populations exposed to Vip3A varied among different batches of protein used over the study period. Within the same batch of Vip3A protein, susceptibilities of laboratory colonies of both species (LabZA and LabVR) were similar. Field colonies were significantly more susceptible to Vip3A than the respective reference colonies of both species. Within field populations, susceptibility to Vip3A varied up to 75-fold in H. zea and 132-fold in H. virescens in LC(50) estimates. Variabilities in MIC(50)s were up to 59- and 11-fold for H. zea and H. virescens, respectively.

  10. The sf32 Unique Gene of Spodoptera frugiperda Multiple Nucleopolyhedrovirus (SfMNPV) Is a Non-Essential Gene That Could Be Involved in Nucleocapsid Organization in Occlusion-Derived Virions

    PubMed Central

    Beperet, Inés; Barrera, Gloria; Simón, Oihane; Williams, Trevor; López-Ferber, Miguel; Gasmi, Laila; Herrero, Salvador; Caballero, Primitivo

    2013-01-01

    A recombinant virus lacking the sf32 gene (Sf32null), unique to the Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV), was generated by homologous recombination from a bacmid comprising the complete viral genome (Sfbac). Transcriptional analysis revealed that sf32 is an early gene. Occlusion bodies (OBs) of Sf32null contained 62% more genomic DNA than viruses containing the sf32 gene, Sfbac and Sf32null-repair, although Sf32null DNA was three-fold less infective when injected in vivo. Sf32null OBs were 18% larger in diameter and contained 17% more nucleocapsids within ODVs than those of Sfbac. No significant differences were detected in OB pathogenicity (50% lethal concentration), speed-of-kill or budded virus production in vivo. In contrast, the production of OBs/larva was reduced by 39% in insects infected by Sf32null compared to those infected by Sfbac. The SF32 predicted protein sequence showed homology (25% identity, 44% similarity) to two adhesion proteins from Streptococcus pyogenes and a single N-mirystoylation site was predicted. We conclude that SF32 is a non-essential protein that could be involved in nucleocapsid organization during ODV assembly and occlusion, resulting in increased numbers of nucleocapsids within ODVs. PMID:24204916

  11. Autographa californica multiple nucleopolyhedrovirus ODV-E56 is a per os infectivity factor, but is not essential for binding and fusion of occlusion-derived virus to the host midgut.

    PubMed

    Sparks, Wendy O; Harrison, Robert L; Bonning, Bryony C

    2011-01-05

    The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) occlusion-derived virus (ODV) envelope protein ODV-E56 is essential for oral infection of larvae of Heliothis virescens. Bioassays with recombinant clones of AcMNPV lacking a functional odv-e56 gene showed that ODV-E56 was required for infectivity of both polyhedra and to a lesser extent, purified ODV. However, binding and fusion assays showed that ODV lacking ODV-E56 bound and fused to midgut cells at levels similar to ODV of wild-type virus. Fluorescence microscopy of midguts from larvae inoculated with ODV-E56-positive and -negative viruses that express GFP indicated that ODV-E56 was required for infection of the midgut epithelium. Purified ODV-E56 bound to several proteins in midgut-derived brush border membrane vesicles, but failed to rescue infectivity of ODV-E56-negative viruses in trans. These results indicate that ODV-E56 is a per os infectivity factor (pif-5) required for primary midgut infection at a point before or after virion binding and fusion.

  12. Specific binding of Autographa californica M nucleopolyhedrovirus occlusion-derived virus to midgut cells of Heliothis virescens larvae is mediated by products of pif genes Ac119 and Ac022 but not by Ac115.

    PubMed

    Ohkawa, Taro; Washburn, Jan O; Sitapara, Ronika; Sid, Eric; Volkman, Loy E

    2005-12-01

    Per os infectivity factors PIF1 (Ac119) and PIF2 (Ac022), like P74, are essential for oral infection of lepidopteran larval hosts of Autographa californica M nucleopolyhedrovirus (AcMNPV). Here we show that Ac115 also is a PIF (PIF3) and that, unlike PIF1 and PIF2, it does not mediate specific binding of AcMNPV occlusion-derived virus (ODV) to midgut target cells. We used an improved in vivo fluorescence dequenching assay to compare binding, fusion, and competition among control AcMNPV ODV and the ODVs of AcMNPV PIF1, PIF2, and PIF3 deletion mutants. Our results showed that binding and fusion of PIF1 and PIF2 mutants, but not the PIF3 mutant, were both qualitatively and quantitatively different from those of control ODV. Unlike control and PIF3-deficient ODV, an excess of PIF1- or PIF2-deficient ODV failed to compete effectively with control ODV's binding to specific receptors on midgut epithelial cells. Moreover, the levels of PIF1- and PIF2-deficient ODV binding were depressed threefold compared to control levels. Binding, fusion, and competition by PIF3-deficient ODV, however, were all indistinguishable from those of control ODV. These results implicated PIF1 and PIF2 as ODV envelope attachment proteins that mediate specific binding to primary target cells within the midgut. In contrast, PIF3 mediates another unidentified, but critical, early event during primary infection.

  13. Production of occlusion bodies of Anticarsia gemmatalis multiple nucleopolyhedrovirus in serum-free suspension cultures of the saUFL-AG-286 cell line: influence of infection conditions and statistical optimization.

    PubMed

    Micheloud, Gabriela A; Gioria, Verónica V; Pérez, Gustavo; Claus, Juan D

    2009-12-01

    The influence of the conditions of infection on the yield of occlusion bodies (OBs) of the Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV), produced in serum-free suspension cultures of saUFL-AG-286 cells, was investigated by two 2(2) full factorial experiments with centre point. Each experiment tested the effects of the initial cell density and the multiplicity of infection at two levels, in the four possible combinations of levels and conditions, plus a further combination with each condition set at the middle of its extreme levels. The yield of occlusion bodies proved to be sensitive to the modification of infection conditions. Maximum yield as high as 3 x 10(8) OBs mL(-1) was attained provided that the maximum density of viable cells was in the range between 4 and 8 x 10(5) cells mL(-1). The optimum value of the maximum density of viable cells could be reached by the combination of several values of initial cell density and multiplicity of infection. A regression model was established and validated in order to optimize the infection conditions. These results demonstrate the importance of an adequate selection of infection conditions, and they could be useful in the development of a feasible in vitro process to produce the AgMNPV insecticide in a new serum-free medium.

  14. Autographa californica multiple nucleopolyhedrovirus ODV-E56 is a per os infectivity factor, but is not essential for binding and fusion of occlusion-derived virus to the host midgut

    SciTech Connect

    Sparks, Wendy O.; Harrison, Robert L.; Bonning, Bryony C.

    2011-01-05

    The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) occlusion-derived virus (ODV) envelope protein ODV-E56 is essential for oral infection of larvae of Heliothis virescens. Bioassays with recombinant clones of AcMNPV lacking a functional odv-e56 gene showed that ODV-E56 was required for infectivity of both polyhedra and to a lesser extent, purified ODV. However, binding and fusion assays showed that ODV lacking ODV-E56 bound and fused to midgut cells at levels similar to ODV of wild-type virus. Fluorescence microscopy of midguts from larvae inoculated with ODV-E56-positive and -negative viruses that express GFP indicated that ODV-E56 was required for infection of the midgut epithelium. Purified ODV-E56 bound to several proteins in midgut-derived brush border membrane vesicles, but failed to rescue infectivity of ODV-E56-negative viruses in trans. These results indicate that ODV-E56 is a per os infectivity factor (pif-5) required for primary midgut infection at a point before or after virion binding and fusion.

  15. Identification of BV/ODV-C42, an Autographa californica nucleopolyhedrovirus orf101-encoded structural protein detected in infected-cell complexes with ODV-EC27 and p78/83.

    PubMed

    Braunagel, S C; Guidry, P A; Rosas-Acosta, G; Engelking, L; Summers, M D

    2001-12-01

    orf101 is a late gene of Autographa californica nucleopolyhedrovirus (AcMNPV). It encodes a protein of 42 kDa which is a component of the nucleocapsid of budded virus (BV) and occlusion-derived virus (ODV). To reflect this viral localization, the product of orf101 was named BV/ODV-C42 (C42). C42 is predominantly detected within the infected-cell nucleus: at 24 h postinfection (p.i.), it is coincident with the virogenic stroma, but by 72 h p.i., the stroma is minimally labeled while C42 is more uniformly located throughout the nucleus. Yeast two-hybrid screens indicate that C42 is capable of directly interacting with the viral proteins p78/83 (1629K) and ODV-EC27 (orf144). These interactions were confirmed using blue native gels and Western blot analyses. At 28 h p.i., C42 and p78/83 are detected in two complexes: one at approximately 180 kDa and a high-molecular-mass complex (500 to 600 kDa) which also contains EC27.

  16. Baculovirus induced transcripts in hemocytes from Heliothis virescens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using RNA-sequencing digital difference expression profiling methods we have assessed the gene expression profiles of hemocytes harvested from Heliothis virescens that were challenged with Helicoverpa zea single nucleopolyhedrovirus (HzSNPV). A reference transcriptome of hemocyte-expressed transcri...

  17. Inhibition of Helicoverpa zea (Lepidoptera: Noctuidae) Growth by Transgenic Corn Expressing Bt Toxins and Development of Resistance to Cry1Ab.

    PubMed

    Reisig, Dominic D; Reay-Jones, Francis P F

    2015-08-01

    Transgenic corn, Zea mays L., that expresses the Bacillus thuringiensis (Bt) toxin Cry1Ab is only moderately toxic to Helicoverpa zea (Boddie) and has been planted commercially since 1996. Growth and development of H. zea was monitored to determine potential changes in susceptibility to this toxin over time. Small plots of corn hybrids expressing Cry1F, Cry1F × Cry1Ab, Cry1Ab × Cry3Bb1, Cry1A.105 × Cry2Ab2 × Cry3Bb1, Cry1A.105 × Cry2Ab2, and Vip3Aa20 × Cry1Ab × mCry3A were planted in both 2012 and 2013 inNorth and South Carolina with paired non-Bt hybrids from the same genetic background. H. zea larvae were sampled on three time periods from ears and the following factors were measured: kernel area injured (cm(2)) by H. zea larvae, larval number per ear, larval weight, larval length, and larval head width. Pupae were sampled on a single time period and the following factors recorded: number per ear, weight, time to eclosion, and the number that eclosed. There was no reduction in larval weight, number of insect entering the pupal stadium, pupal weight, time to eclosion, and number of pupae able to successfully eclose to adulthood in the hybrid expressing Cry1Ab compared with a non-Bt paired hybrid. As Cry1Ab affected these in 1996, H. zea may be developing resistance to Cry1Ab in corn, although these results are not comprehensive, given the limited sampling period, size, and geography. We also found that the negative impacts on larval growth and development were greater in corn hybrids with pyramided traits compared with single traits.

  18. Novel Vip3A Bacillus thuringiensis (Bt) maize approaches high-dose efficacy against Helicoverpa zea (Lepidoptera: Noctuidae) under field conditions: Implications for resistance management.

    PubMed

    Burkness, Eric C; Dively, Galen; Patton, Terry; Morey, Amy C; Hutchison, William D

    2010-01-01

    Sweet corn, Zea mays L., transformed to express a novel vegetative insecticidal protein, Vip3A (event MIR162, Syngenta Seeds, Inc..), produced by the bacterium, Bacillus thuringiensis (Bt), was evaluated over four field seasons in Maryland and two field seasons in Minnesota for efficacy against the corn earworm, Helicoverpa zea (Boddie). Hybrids expressing the Vip3A protein and pyramided in hybrids also expressing the Cry1Ab Bt protein (event Bt11, ATTRIBUTE(®), Syngenta Seeds, Inc.) were compared to hybrids expressing only Cry1Ab or to genetically similar non-Bt hybrids each year. In addition to H. zea efficacy, results for Ostrinia nubilalis (Hübner) and Spodoptera frugiperda (J.E. Smith) are presented. Over all years and locations, the non-Bt hybrids, without insecticide protection, averaged between 43 and 100% ears infested with a range of 0.24 to 1.74 H. zea larvae per ear. By comparison, in the pyramided Vip3A x Cry1Ab hybrids, no larvae were found and only minimal kernel damage (likely due to other insect pests) was recorded. Hybrids expressing only Cry1Ab incurred a moderate level of H. zea feeding damage, with surviving larvae mostly limited to the first or second instar as a result of previously documented growth inhibition from Cry1Ab. These results suggest that the Vip3A protein, pyramided with Cry1Ab, appears to provide the first "high-dose" under field conditions and will be valuable for ongoing resistance management.

  19. Improving the robustness of a low-cost insect cell medium for baculovirus biopesticides production, via hydrolysate streamlining using a tube bioreactor-based statistical optimization routine.

    PubMed

    Huynh, Hoai T; Chan, Leslie C L; Tran, Trinh T B; Nielsen, Lars K; Reid, Steven

    2012-01-01

    A critical component of an in vitro production process for baculovirus biopesticides is a growth medium that is efficacious, robust, and inexpensive. An in-house low-cost serum-free medium, VPM3, has been shown to be very promising in supporting Helicoverpa armigera nucleopolyhedrovirus (HaSNPV) production in H. zea insect cell suspension cultures, for use as a biopesticide against the Heliothine pest complex. However, VPM3 is composed of a significant number of undefined components, including five different protein hydrolysates, which introduce a challenging lot-to-lot variability to the production process. In this study, an intensive statistical optimization routine was employed to reduce the number of protein hydrolysates in VPM3 medium. Nearly 300 runs (including replicates) were conducted with great efficiency by using 50 mL TubeSpin® bioreactors to propagate insect cell suspension cultures. Fractional factorial experiments were first used to determine the most important of the five default protein hydrolysates, and to screen for seven potential substitutes for the default meat peptone, Primatone RL. Validation studies informed by the screening tests showed that promising alternative media could be formulated based on just two protein hydrolysates, in particular the YST-AMP (Yeast Extract and Amyl Meat Peptone) and YST-POT (Yeast Extract and Lucratone Potato Peptone) combinations. The YST-AMP (meat-based) and YST-POT (meat-free) variants of VPM3 were optimized using response surface methodology, and were shown to be just as good as the default VPM3 and the commercial Sf-900 II media in supporting baculovirus yields, hence providing a means toward a more reproducible and scalable production process for HaSNPV biopesticides.

  20. Transcriptome analysis of the brain of the silkworm Bombyx mori infected with Bombyx mori nucleopolyhedrovirus: A new insight into the molecular mechanism of enhanced locomotor activity induced by viral infection.

    PubMed

    Wang, Guobao; Zhang, Jianjia; Shen, Yunwang; Zheng, Qin; Feng, Min; Xiang, Xingwei; Wu, Xiaofeng

    2015-06-01

    Baculoviruses have been known to induce hyperactive behavior in their lepidopteran hosts for over a century. As a typical lepidopteran insect, the silkworm Bombyx mori displays enhanced locomotor activity (ELA) following infection with B. mori nucleopolyhedrovirus (BmNPV). Some investigations have focused on the molecular mechanisms underlying this abnormal hyperactive wandering behavior due to the virus; however, there are currently no reports about B. mori. Based on previous studies that have revealed that behavior is controlled by the central nervous system, the transcriptome profiles of the brains of BmNPV-infected and non-infected silkworm larvae were analyzed with the RNA-Seq technique to reveal the changes in the BmNPV-infected brain on the transcriptional level and to provide new clues regarding the molecular mechanisms that underlies BmNPV-induced ELA. Compared with the controls, a total of 742 differentially expressed genes (DEGs), including 218 up-regulated and 524 down-regulated candidates, were identified, of which 499, 117 and 144 DEGs could be classified into GO categories, KEGG pathways and COG annotations by GO, KEGG and COG analyses, respectively. We focused our attention on the DEGs that are involved in circadian rhythms, synaptic transmission and the serotonin receptor signaling pathway of B. mori. Our analyses suggested that these genes were related to the locomotor activity of B. mori via their essential roles in the regulations of a variety of behaviors and the down-regulation of their expressions following BmNPV infection. These results provide new insight into the molecular mechanisms of BmNPV-induced ELA.

  1. Bombyx mori nucleopolyhedrovirus nucleic acid binding proteins BRO-B and BRO-E associate with host T-cell intracellular antigen 1 homologue BmTRN-1 to influence protein synthesis during infection.

    PubMed

    Kotani, Eiji; Muto, Sayaka; Ijiri, Hiroshi; Mori, Hajime

    2015-07-01

    Previous reports have indicated that the Bombyx mori nucleopolyhedrovirus (BmNPV) nucleic acid binding proteins BRO-B and BRO-E are expressed during the early stage of infection and that the BRO family likely supports the regulation of mRNA; however, no study has directly examined the function of BRO family proteins in virus-permissive cells. Here, we show that BRO-B and BRO-E associate with cellular T-cell intracellular antigen 1 homologue (BmTRN-1), a translational regulator, and other cellular translation-related proteins in silkworm cells during viral infection. We created BM-N cells that expressed BRO-B/E to study molecular interactions between BmTRN-1 and BRO-B/E and how they influenced protein synthesis. Fluorescent microscopy revealed that BmTRN-1 was localized in cytoplasmic foci during BmNPV infection. Immunofluorescence studies confirmed that BmTRN-1 and BRO-B/E were colocalized in the amorphous conspicuous cytoplasmic foci. Reporter gene studies revealed that co-expression of BRO-B/E synergistically led to a significant decrease in protein synthesis from a designed transcript carrying the 5'untranslated region of a cellular mRNA with no significant change of transcript abundance. Additionally, RNA interference-mediated knockdown of BmTRN-1 resulted in a marked inhibition of the ability of BRO-B/E to regulate the transcript. These results suggested that the association of BmTRN-1 with BRO-B/E is responsible for the inhibitory regulation of certain mRNAs at the post-transcriptional level and add an additional mechanism for how baculoviruses control protein synthesis during infection.

  2. Reduction of polyhedrin mRNA and protein expression levels in Sf9 and Hi5 cell lines, but not in Sf21 cells, infected with Autographa californica multiple nucleopolyhedrovirus fp25k mutants.

    PubMed

    Cheng, Xin-Hua; Hillman, Christopher C; Zhang, Chuan-Xi; Cheng, Xiao-Wen

    2013-01-01

    During cell infection, the fp25k gene of baculoviruses frequently mutates, producing the few polyhedra (FP) per cell phenotype with reduced polyhedrin (polh) expression levels compared with wild-type baculoviruses. Here we report that the fp25k gene of the model baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV), contains two hypermutable seven-adenine (A7) mononucleotide repeats (MNRs) that were mutated to A8 MNRs and a TTAA site that had host DNA insertions, producing fp25k mutants during Sf21 cell infection. The FP phenotype in Sf9 and Hi5 cells was more pronounced than in Sf21 cells. AcMNPV fp25k mutants produced similar levels of polyhedra or enhanced GFP, which were both under the control of the AcMNPV polh promoter for expression, in Sf21 cells but lower levels in Sf9 and Hi5 cells compared with AcMNPV with an intact fp25k gene. This correlated with the polh mRNA levels detected in each cell line. The majority of Sf21 cells infected with fp25 mutants showed high polh promoter-mediated GFP expression levels. Two cell lines subcloned from Sf21 cells that were infected with fp25k mutants showed different GFP expression levels. Furthermore, a small proportion of Hi5 cells infected with fp25k mutants showed higher production of polyhedra and GFP expression than the rest, and the latter was not correlated with increased m.o.i. Therefore, these data suggest that AcMNPV polh promoter-mediated gene expression activities differ in the three cell lines and are influenced by different cells within the cell line.

  3. Synergistic interactions between Cry1Ac and natural cotton defenses limit survival of Cry1Ac-resistant Helicoverpa zea (Lepidoptera: Noctuidae) on Bt cotton.

    PubMed

    Anilkumar, Konasale J; Sivasupramaniam, Sakuntala; Head, Graham; Orth, Robert; Van Santen, Edzard; Moar, William J

    2009-07-01

    Larvae of the bollworm Helicoverpa zea (Boddie) show some tolerance to Bacillus thuringiensis (Bt) Cry1Ac, and can survive on Cry1Ac-expressing Bt cotton, which should increase resistance development concerns. However, field-evolved resistance has not yet been observed. In a previous study, a population of H. zea was selected for stable resistance to Cry1Ac toxin. In the present study, we determined in laboratory bioassays if larvae of the Cry1Ac toxin-resistant H. zea population show higher survival rates on field-cultivated Bt cotton squares (= flower buds) collected prebloom-bloom than susceptible H. zea. Our results show that Cry1Ac toxin-resistant H. zea cannot complete larval development on Cry1Ac-expressing Bt cotton, despite being more than 150-fold resistant to Cry1Ac toxin and able to survive until pupation on Cry1Ac toxin concentrations greater than present in Bt cotton squares. Since mortality observed for Cry1Ac-resistant H. zea on Bt cotton was higher than expected, we investigated whether Cry1Ac interacts with gossypol and or other compounds offered with cotton powder in artificial diet. Diet incorporation bioassays were conducted with Cry1Ac toxin alone, and with gossypol and 4% cotton powder in the presence and absence of Cry1Ac. Cry1Ac toxin was significantly more lethal to susceptible H. zea than to resistant H. zea, but no difference in susceptibility to gossypol was observed between strains. However, combinations of Cry1Ac with gossypol or cotton powder were synergistic against resistant, but not against susceptible H. zea. Gossypol concentrations in individual larvae showed no significant differences between insect strains, or between larvae fed gossypol alone vs. those fed gossypol plus Cry1Ac. These results may help explain the inability of Cry1Ac-resistant H. zea to complete development on Bt cotton, and the absence of field-evolved resistance to Bt cotton by this pest.

  4. Field evaluation of a Helicoverpa zea (Lepidoptera: Noctuidae) damage simulation model: effects of irrigation, H. zea density, and time of damage on cotton yield.

    PubMed

    Chilcutt, Charles F; Wilson, L T; Lascano, Robert J

    2003-08-01

    Helicoverpa zea (Boddie) is an important pest of cotton, Gossypium hirsutum L., for which many economic injury and population models have been developed to predict the impact of injury by this species on cotton yield. A number of these models were developed using results from simulated damage experiments, despite the fact that no studies have demonstrated that simulated damage is comparable to real H. zea damage. Our main objective in this study was to compare the effect on yield of H. zea larvae feeding on cotton fruiting structures at different irrigation levels, larval densities, and cotton physiological ages with damage produced artificially by removing fruiting structures by hand using simulated estimates of H. zea injury. To accomplish this, we used two irrigation levels, each divided into real and simulated damage plots. In real damage plots, H. zea larvae were placed on plants and allowed to feed; whereas in simulated damage plots, fruiting structures were removed by hand using a simulation model of H. zea damage to determine numbers and amounts of fruiting structures to remove. Each of these plots was further divided into one undamaged control plot and nine treatment plots. Each treatment plot was randomly assigned one of three damage times (early, middle, or late season) and one of three H. zea densities. In 1998, we found that only artificial H. zea damage (performed by hand removal of fruiting structures) at the highest density and during the late season decreased yield; whereas real damage caused by H. zea larvae placed on plants, and artificial damage occurring at earlier time periods and lower H. zea densities did not affect yield. In 1999, both real and artificial damage decreased yield at the higher H. zea densities compared with the lowest density, but, as in 1998, this was only true when damage occurred late in the season. The most important finding of this study was that high H. zea densities had no effect on cotton yield unless they occurred

  5. Biocontrol potential of Steinernema thermophilum and its symbiont Xenorhabdus indica against lepidopteran pests: virulence to egg and larval stages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Under laboratory conditions, the biocontrol potential of Steinernema thermophilum was tested against eggs and larval stages of two important lepidopteran insect pests, Helicoverpa armigera and Spodoptera litura (polyphagous pests), as well as Galleria mellonella (used as a model host) . In terms of ...

  6. Effects of temperature and nonionizing ultraviolet radiation treatments of eggs of five host insects on production of Trichogramma chilonis Ishii (Hymenoptera: Trichogrammatidae) for biological control applications.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichogramma are used worldwide as biological control against insect pests, attacking eggs of over 200 species. Eggs of Spodoptera litura, Corcyra cephalonica, Plutella xylostella and Helicoverpa armigera were tested to consider the effect of temperature and radiation on parasitization, emergence of...

  7. 7 CFR 319.56-48 - Conditions governing the entry of baby squash and baby courgettes from Zambia.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... vertebratus, Diaphania indica, Helicoverpa armigera, and Spodoptera littoralis. (a) Approved greenhouses. The baby squash and baby courgettes must be grown in Zambia in insect-proof, pest-free greenhouses approved jointly by the Zambian national plant protection organization (NPPO) and APHIS. (1) The greenhouses...

  8. 7 CFR 319.56-48 - Conditions governing the entry of baby squash and baby courgettes from Zambia.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... vertebratus, Diaphania indica, Helicoverpa armigera, and Spodoptera littoralis. (a) Approved greenhouses. The baby squash and baby courgettes must be grown in Zambia in insect-proof, pest-free greenhouses approved jointly by the Zambian national plant protection organization (NPPO) and APHIS. (1) The greenhouses...

  9. 7 CFR 319.56-48 - Conditions governing the entry of baby squash and baby courgettes from Zambia.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... vertebratus, Diaphania indica, Helicoverpa armigera, and Spodoptera littoralis. (a) Approved greenhouses. The baby squash and baby courgettes must be grown in Zambia in insect-proof, pest-free greenhouses approved jointly by the Zambian national plant protection organization (NPPO) and APHIS. (1) The greenhouses...

  10. Molecular research and genetic engineering of resistance to Verticillium wilt in cotton: A review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Verticillium dahliae, a soil-borne pathogen, causes Verticillium wilt, one of the most serious diseases in cotton, deleteriously influencing the crop’s production and quality. Verticillium wilt has become a major obstacle in cotton production since Helicoverpa armigera, the cotton bollworm, became e...

  11. A Conserved Odorant Receptor Tuned to Floral Volatiles in Three Heliothinae Species

    PubMed Central

    Cao, Song; Liu, Yang; Guo, Mengbo; Wang, Guirong

    2016-01-01

    Odorant receptors (ORs) play an important role in insects to monitor and adapt to the external environment, such as host plant location, oviposition-site selection, mate recognition and natural enemy avoidance. In our study, we identified and characterized OR12 from three closely-related species, Helicoverpa armigera, Helicoverpa assulta, Heliothis virescens, sharing between 90 and 98% of their amino acids. The tissue expression pattern analysis in H. armigera showed that HarmOR12 was strongly expressed both in male and female antennae, but not in other tissues. Functional analysis performed in the heterologous Xenopus expression system showed that all three OR12 were tuned to six structurally related plant volatiles. Electroantennogram recordings from male and female antennae of H. armigera closely matched the data of in vitro functional studies. Our results revealed that OR12 has a conserved role in Heliothinae moths and might represent a suitable target for the control of these crop pests. PMID:27163122

  12. Autographa californica Multiple Nucleopolyhedrovirus AC83 is a Per Os Infectivity Factor (PIF) Protein Required for Occlusion-Derived Virus (ODV) and Budded Virus Nucleocapsid Assembly as well as Assembly of the PIF Complex in ODV Envelopes.

    PubMed

    Javed, Muhammad Afzal; Biswas, Siddhartha; Willis, Leslie G; Harris, Stephanie; Pritchard, Caitlin; van Oers, Monique M; Donly, B Cameron; Erlandson, Martin A; Hegedus, Dwayne D; Theilmann, David A

    2017-03-01

    Baculovirus occlusion-derived virus (ODV) initiates infection of lepidopteran larval hosts by binding to the midgut epithelia, which is mediated by per os infectivity factors (PIFs). Autographa californica multiple nucleopolyhedrovirus (AcMNPV) encodes seven PIF proteins, of which PIF1 to PIF4 form a core complex in ODV envelopes to which PIF0 and PIF6 loosely associate. Deletion of any pif gene results in ODV being unable to bind or enter midgut cells. AC83 also associates with the PIF complex, and this study further analyzed its role in oral infectivity to determine if it is a PIF protein. It had been proposed that AC83 possesses a chitin binding domain that enables transit through the peritrophic matrix; however, no chitin binding activity has ever been demonstrated. AC83 has been reported to be found only in the ODV envelopes, but in contrast, the Orgyia pseudotsugata MNPV AC83 homolog is associated with both ODV nucleocapsids and envelopes. In addition, unlike known pif genes, deletion of ac83 eliminates nucleocapsid formation. We propose a new model for AC83 function and show AC83 is associated with both ODV nucleocapsids and envelopes. We also further define the domain required for nucleocapsid assembly. The cysteine-rich region of AC83 is also shown not to be a chitin binding domain but a zinc finger domain required for the recruitment or assembly of the PIF complex to ODV envelopes. As such, AC83 has all the properties of a PIF protein and should be considered PIF8. In addition, pif7 (ac110) is reported as the 38th baculovirus core gene.IMPORTANCE ODV is essential for the per os infectivity of the baculovirus AcMNPV. To initiate infection, ODV binds to microvilli of lepidopteran midgut cells, a process which requires a group of seven virion envelope proteins called PIFs. In this study, we reexamined the function of AC83, a protein that copurifies with the ODV PIFs, to determine its role in the oral infection process. A zinc finger domain was identified and

  13. Eicosanoids influence insect susceptibility to nucleopolyhedroviruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nine pharmaceutical inhibitors of eicosanoid biosynthesis (e.g., bromophenacyl bromide, clotrimazole, diclofenamic acid, esculetin, flufenamic acid, domethacin, nimesulide, sulindac, tolfenamic acid) that increased the susceptibility of the gypsy moth, Lymantria dispar (L.), to the nucleopolyhedrovi...

  14. Electrophysiological and behavioral responses of Microplitis mediator (Hymenoptera: Braconidae) to caterpillar-induced volatiles from cotton.

    PubMed

    Yu, Huilin; Zhang, Yongjun; Wyckhuys, Kris A G; Wu, Kongming; Gao, Xiwu; Guo, Yuyuan

    2010-04-01

    Microplitis mediator Haliday (Hymenoptera: Braconidae) is an important larval endoparasitoid of various lepidopteran pests, including Helicoverpa armigera (Hübner). In China, H. armigera is a key pest of cotton and is currently the focus of several biological control efforts that use M. mediator as principal natural enemy of this pest. To improve the success of biological control efforts, behavioral studies are needed that shed light on the interaction between M. mediator and H. armigera. In this study, we determined M. mediator response to volatile compounds from undamaged, mechanically injured, or H. armigera--damaged plants and identified attractive volatiles. In Y-tube olfactometer assays, we found that mechanically damaged plants and/or plants treated with H. armigera oral secretions did not attract wasps. However, volatiles from H. armigera-damaged plants elicited a strong attraction of both M. mediator sexes. Headspace extracts from H. armigera-damaged cotton were analyzed by coupled gas chromatography-electroantennographic detection (GC-EAD), and a total of seven different compounds were found to elicit electroantennogram (EAG) responses, including an unknown compound. Six different EAD-active volatiles were identified from caterpillar-damaged cotton plants, of which 3, 7-dimethyl-1, 3, 6-octatriene and (Z)-3-hexenyl acetate were the principal compounds. Olfactometer assays indicated that individual synthetic compounds of 3, 7-dimethyl-1, 3, 6-octatriene, (Z)-3-hexenyl acetate, and nonanal were attractive to M. mediator. Field cage studies showed that parasitism of H. armigera larvae by M. mediator was higher on cotton plants to which 3,7-dimethyl-1,3, 6-octatriene was applied. Our results show that the combination of terpenoids and green leaf volatiles may not only facilitate host, mate, or food location but may also increase H. armigera parasitism by M. mediator.

  15. Processing of Pheromone Information in Related Species of Heliothine Moths

    PubMed Central

    Berg, Bente G.; Zhao, Xin-Cheng; Wang, Guirong

    2014-01-01

    In heliothine moths, the male-specific olfactory system is activated by a few odor molecules, each of which is associated with an easily identifiable glomerulus in the primary olfactory center of the brain. This arrangement is linked to two well-defined behavioral responses, one ensuring attraction and mating behavior by carrying information about pheromones released by conspecific females and the other inhibition of attraction via signal information emitted from heterospecifics. The chance of comparing the characteristic properties of pheromone receptor proteins, male-specific sensory neurons and macroglomerular complex (MGC)-units in closely-related species is especially intriguing. Here, we review studies on the male-specific olfactory system of heliothine moths with particular emphasis on five closely related species, i.e., Heliothis virescens, Heliothis subflexa, Helicoverpa zea, Helicoverpa assulta and Helicoverpa armigera. PMID:26462937

  16. A comparison of growth and development of three major agricultural insect pests infected with Heliothis virescens ascovirus 3h (HvAV-3h).

    PubMed

    Li, Shun-Ji; Wang, Xing; Zhou, Zhong-Shi; Zhu, Jie; Hu, Jue; Zhao, Yi-Pei; Zhou, Gui-Wei; Huang, Guo-Hua

    2013-01-01

    Ascoviruses are double-stranded DNA viruses that are pathogenic to lepidopteran hosts, particularly noctuid larvae. Infection of a larva is characterized by retarded growth, reduced feeding and yellowish body color. In this paper, we reported the growth and development of three major agricultural noctuid insect pests, Helicoverpa armigera (Hübner), Spodoptera exigua (Hübner) and Spodoptera litura (Fabricius), infected with Heliothis virescens ascovirus 3h (HvAV-3h). Using 10-fold serial dilutions (0 to 7) of HvAV-3h-containing hemolymph to infect S. litura larvae, we found no significant difference in larval mortalities from 0 to 10(3)-fold dilutions; however, significant differences were observed at 10(4)-fold dilution and above. Using a 10-fold dilution of HvAV-3h-containing hemolymph to infect H. armigera, S. exigua and S. litura larvae, we found that the growth and development were significantly affected. All infected larvae could not pupate; the survival times of treated H. armigera, S. litura and S. exigua larvae were significantly longer than untreated control larvae. Body weight showed significant difference between treated and untreated control group from day 1 after inoculation in H. armigera and S. exigua, but day 2 in S. litura. Additionally, food intake also showed significant difference between treated and untreated control group from day 2 after inoculation in H. armigera and S. litura, but day 3 in S. exigua.

  17. Design, synthesis, and insecticidal activity of some novel diacylhydrazine and acylhydrazone derivatives.

    PubMed

    Sun, Jialong; Zhou, Yuanming

    2015-03-30

    In this study a series of diacylhydrazine and acylhydrazone derivatives were designed and synthesized according to the method of active group combination and the principles of aromatic group bioisosterism. The structures of the novel derivatives were determined on the basis on 1H-NMR, IR and ESI-MS spectral data. All of the compounds were evaluated for their in vivo insecticidal activity against the third instar larvae of Spodoptera exigua Hiibner, Helicoverpa armigera Hubner, Plutella xyllostella Linnaeus and Pieris rapae Linne, respectively, at a concentration of 10 mg/L. The results showed that all of the derivatives displayed high insecticidal activity. Most of the compounds presented higher insecticidal activity against S. exigua than the reference compounds tebufenozide, metaflumizone and tolfenpyrad, and approximately identical insecticidal activity against H. armigera, P. xyllostella and P. rapae as the references metaflumizone and tolfenpyrad.

  18. Novel hydrazone derivatives containing pyridine amide moiety: Design, synthesis, and insecticidal activity.

    PubMed

    Yang, Zai-Bo; Hu, De-Yu; Zeng, Song; Song, Bao-An

    2016-02-15

    A series of novel hydrazone derivatives containing pyridine amide moiety were designed, synthesized, and evaluated for their insecticidal activity. Bioassays indicated that some of the target compounds exhibited good insecticidal activities against Nilaparvata lugens (N. lugens), Plutella xylostella (P. xylostella), Mythimna separata (M. separata), Helicoverpa armigera (H. armigera), Pyrausta nubilalis (P. nubilalis), and Culex pipiens pallens (C. pipiens pallens). In particular, compound 5j revealed excellent insecticidal activity against C. pipiens pallens, with the 50% lethal concentration (LC50) and the 95% lethal concentration (LC95) values of 2.44 and 5.76 mg/L, respectively, which were similar to those of chlorpyrifos (3.26 and 6.98 mg/L, respectively), tebufenozide (1.22 and 2.49 mg/L, respectively), and RH-5849 (2.61 and 6.37 mg/L, respectively). These results indicated that hydrazone derivatives containing pyridine amide moiety could be developed as novel and promising insecticides.

  19. Reduced plant nutrition under elevated CO2 depresses the immunocompetence of cotton bollworm against its endoparasite

    PubMed Central

    Yin, Jin; Sun, Yucheng; Ge, Feng

    2014-01-01

    Estimating the immunocompetence of herbivore insects under elevated CO2 is an important step in understanding the effects of elevated CO2 on crop-herbivore-natural enemy interactions. Current study determined the effect of elevated CO2 on the immune response of Helicoverpa armigera against its parasitoid Microplitis mediator. H. armigera were reared in growth chambers with ambient or elevated CO2, and fed wheat grown in the concentration of CO2 corresponding to their treatment levels. Our results showed that elevated CO2 decreases the nutritional quality of wheat, and reduces the total hemocyte counts and impairs the capacity of hemocyte spreading of hemolymph of cotton bollworm larvae, fed wheat grown in the elevated CO2, against its parasitoid; however, this effect was insufficient to change the development and parasitism traits of M. mediator. Our results suggested that lower plant nutritional quality under elevated CO2 could decrease the immune response of herbivorous insects against their parasitoid natural enemies. PMID:24687002

  20. Reduced plant nutrition under elevated CO2 depresses the immunocompetence of cotton bollworm against its endoparasite

    NASA Astrophysics Data System (ADS)

    Yin, Jin; Sun, Yucheng; Ge, Feng

    2014-04-01

    Estimating the immunocompetence of herbivore insects under elevated CO2 is an important step in understanding the effects of elevated CO2 on crop-herbivore-natural enemy interactions. Current study determined the effect of elevated CO2 on the immune response of Helicoverpa armigera against its parasitoid Microplitis mediator. H. armigera were reared in growth chambers with ambient or elevated CO2, and fed wheat grown in the concentration of CO2 corresponding to their treatment levels. Our results showed that elevated CO2 decreases the nutritional quality of wheat, and reduces the total hemocyte counts and impairs the capacity of hemocyte spreading of hemolymph of cotton bollworm larvae, fed wheat grown in the elevated CO2, against its parasitoid; however, this effect was insufficient to change the development and parasitism traits of M. mediator. Our results suggested that lower plant nutritional quality under elevated CO2 could decrease the immune response of herbivorous insects against their parasitoid natural enemies.

  1. Assessment of Bt trait purity in different generations of transgenic cottons.

    PubMed

    Singh, B P; Sandhu, S S; Kalia, V K; Gujart, G T; Dhillon, M K

    2016-04-01

    Adequate expression of Bt (Bacillus thuringiensis) toxins and purity of seeds of Bt-transgenic cottons are important for controlling bollworms, and thereby increasing the cotton productivity. Therefore, we examined the variability in expression of Bt toxin proteins in the seeds and in leaves of different cotton (Gossypium hirsutum (L.) hybrids (JKCH 226, JKCH 1947, JKCH Durga, JKCH Ishwar, JKCH Varun KDCHH 441 and KDCHH 621) expressing Bt toxins in F₁ and F₂ generations, using bioassays against the cotton bollworm, Helicoverpa armigera (Hübner), and the lateral flow strip (LFS) test. Toxicity of Bt toxin proteins in the seeds of Bt-transgenic cottons to H. armigera correlated with their toxicity in the leaves in one- toxin Bt cotton hybrids. The Bt-F₁ and Bt-F₂ seeds of JKCH 1947 were more toxic to H. armigera than those of JKCH Varun seeds. The seeds and leaves of F₁s showed greater toxicity than the F2 seeds or leaves of one-toxin (cry1Ac) Bt cotton hybrids. However, no significant differences were observed for the two-toxin (cry1Ac and cry2Ab) hybrid, KDCHH 621. Toxicity of leaves to H. armigera increased with crop age, until 112 days after seedling emergence. The Bt trait purity in F₁ seeds of four two-toxin Bt cotton hybrids ranged from 86.7 to 100%. The present study emphasizes the necessity of 95% Bt trait purity in seeds of transgenic cotton for sustainable crop production.

  2. Influence of Landscape Diversity and Composition on the Parasitism of Cotton Bollworm Eggs in Maize

    PubMed Central

    Liu, Bing; Yang, Long; Yang, Yizhong; Lu, Yanhui

    2016-01-01

    We deployed >50,000 Helicoverpa armigera eggs in maize fields to assess the rate of parasitism by Trichogramma chilonis across 33 sites during a three-year span (2012–2014) in northern China. Subsequently, we used a partial least squares (PLS) regression approach to assess the relationship of landscape diversity with composition and parasitism potential. The parasitism rate of H. armigera eggs by T. chilonis ranged from 0–25.8%, with a mean value of 5.6%. Landscape diversity greatly enhanced parasitism at all four different spatial scales (0.5, 1.0, 1.5 and 2.0 km radius). Both the proportion of arable area and the total planting area of two major crops (cotton and maize) had a negative correlation to the parasitism rate at each scale, whereas parasitism was positively correlated to the proportion of host crops of H. armigera other than cotton and maize at the 0.5 to 2.0 km radius scales as well as to that of non-crop habitat at the 0.5 and 1.0 km radius scales. The study indicated that maintaining landscape diversity provided an important biocontrol service by limiting H. armigera through the egg parasitoid T. chilonis, whereas rapid agricultural intensification would greatly reduce the presence and parasitism of T. chilonis in China. PMID:26881784

  3. Development of a novel-type transgenic cotton plant for control of cotton bollworm.

    PubMed

    Yue, Zhen; Liu, Xiaoguang; Zhou, Zijing; Hou, Guangming; Hua, Jinping; Zhao, Zhangwu

    2016-08-01

    The transgenic Bt cotton plant has been widely planted throughout the world for the control of cotton budworm Helicoverpa armigera (Hubner). However, a shift towards insect tolerance of Bt cotton is now apparent. In this study, the gene encoding neuropeptide F (NPF) was cloned from cotton budworm H. armigera, an important agricultural pest. The npf gene produces two splicing mRNA variants-npf1 and npf2 (with a 120-bp segment inserted into the npf1 sequence). These are predicted to form the mature NPF1 and NPF2 peptides, and they were found to regulate feeding behaviour. Knock down of larval npf with dsNPF in vitro resulted in decreases of food consumption and body weight, and dsNPF also caused a decrease of glycogen and an increase of trehalose. Moreover, we produced transgenic tobacco plants transiently expressing dsNPF and transgenic cotton plants with stably expressed dsNPF. Results showed that H. armigera larvae fed on these transgenic plants or leaves had lower food consumption, body size and body weight compared to controls. These results indicate that NPF is important in the control of feeding of H. armigera and valuable for production of potential transgenic cotton.

  4. Cloning, characterization and expression of a novel haplotype cry2A-type gene from Bacillus thuringiensis strain SWK1, native to Himalayan valley Kashmir.

    PubMed

    Reyaz, A L; Arulselvi, P Indra

    2016-05-01

    Bacillus thuringiensis (Bt) is a gram positive bacterium which is effectively being used in pest management strategies as an eco-friendly bioinsecticide. In the present study a new cry2A gene was cloned from a promising indigenous B. thuringiensis SWK1 strain previously characterized for its toxicity against Spodoptera litura and Helicoverpa armigera larvae. The nucleotide sequence of the cloned cry2A gene pointed out that the open reading frame has 1902 bases encoding a polypeptide of 634 amino acid residues with a probable molecular weight of 70kDa. Homology comparisons showed that the deduced amino acid sequence of Cry2A had a similarity of 94% compared to that of the known Cry2Aa protein in the NCBI database and this gene has been named as cry2Al1 by the B. thuringiensis δ-endotoxin Nomenclature Committee. cry2Al1 was ligated into pET 22b vector and expressed in Escherichia coli BL21 (DE3) pLysS under the control of T7 promoter induced by isopropyl-beta-d-thiogalactopyranoside (IPTG). SDS-PAGE analysis confirmed the expression of cry2Al1 as ∼65kDa protein. Insect pest bioassays with neonate larvae of S. litura and H. armigera showed that the purified Cry2Al1 are toxic to S. litura and H. armigera with LC50 2.448μg/ml and H. armigera with 3.374μg/ml respectively.

  5. Ultraweak photon emission from herbivory-injured maize plants

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Naoko; Kato, Kimihiko; Kageyama, Chizuko; Fujisaki, Kenji; Nishida, Ritsuo; Mori, Naoki

    2006-01-01

    Following perception of herbivory or infection, plants exhibit a wide range of inducible responses. In this study, we found ultraweak photon emissions from maize leaves damaged by Helicoverpa armigera (Noctuidae). Interestingly, mechanically damaged maize leaves treated with caterpillar regurgitants emitted the same intensity and pattern of photon emissions as those from maize leaves damaged by caterpillars. Furthermore, two-dimensional imaging of the leaf section treated with the oral secretions clearly shows that photon emissions were observed specifically at the lip of the wound exposed to the secretions. These results suggest that the direct interaction between maize leaf cells and chemicals contained in caterpillar regurgitants triggers these photon emissions.

  6. In-Silico Determination of Insecticidal Potential of Vip3Aa-Cry1Ac Fusion Protein Against Lepidopteran Targets Using Molecular Docking.

    PubMed

    Ahmad, Aftab; Javed, Muhammad R; Rao, Abdul Q; Khan, Muhammad A U; Ahad, Ammara; Din, Salah Ud; Shahid, Ahmad A; Husnain, Tayyab

    2015-01-01

    Study and research of Bt (Bacillus thuringiensis) transgenic plants have opened new ways to combat insect pests. Over the decades, however, insect pests, especially the Lepidopteran, have developed tolerance against Bt delta-endotoxins. Such issues can be addressed through the development of novel toxins with greater toxicity and affinity against a broad range of insect receptors. In this computational study, functional domains of Bacillus thuringiensis crystal delta-endotoxin (Cry1Ac) insecticidal protein and vegetative insecticidal protein (Vip3Aa) have been fused to develop a broad-range Vip3Aa-Cry1Ac fusion protein. Cry1Ac and Vip3Aa are non-homologous insecticidal proteins possessing receptors against different targets within the midgut of insects. The insecticidal proteins were fused to broaden the insecticidal activity. Molecular docking analysis of the fusion protein against aminopeptidase-N (APN) and cadherin receptors of five Lepidopteran insects (Agrotis ipsilon, Helicoverpa armigera, Pectinophora gossypiella, Spodoptera exigua, and Spodoptera litura) revealed that the Ser290, Ser293, Leu337, Thr340, and Arg437 residues of the fusion protein are involved in the interaction with insect receptors. The Helicoverpa armigera cadherin receptor, however, showed no interaction, which might be due to either loss or burial of interactive residues inside the fusion protein. These findings revealed that the Vip3Aa-Cry1Ac fusion protein has a strong affinity against Lepidopteran insect receptors and hence has a potential to be an efficient broad-range insecticidal protein.

  7. Host plant flowering increases both adult oviposition preference and larval performance of a generalist herbivore.

    PubMed

    Liu, Zhudong; Scheirs, Jan; Heckel, David G

    2010-04-01

    Most adult Lepidoptera feed on nectar, whereas caterpillars consume mainly structural tissue such as leaves, stems, flowers, and/or fruits. This may result in behavioral trade-offs in which search time for high-quality oviposition sites suitable for larval food is restricted by adult foraging needs. Here we report on the preference for and performance on flowering and nonflowering host plants of the generalist herbivore Helicoverpa armigera to explore whether there are such behavioral trade-offs between moth and their caterpillars offpsring. We found that the adult moths have a strong oviposition preference for flowering tobacco and sunflower plants. Young caterpillars preferred to feed on the inflorescences. Adult-realized fecundity was almost 10 times higher when ovipositing on flowering plants. Weight at pupation, which is correlated with potential future fecundity of the caterpillars, was also higher when feeding on flowers. We found no evidence for a behavioral trade-off and conclude that a general preference for flowers by Helicoverpa armigera is highly beneficial from a nutritional perspective for both adults and larvae. The results suggest that the manipulation of flowering plants for the attraction of oviposition is relevant to pest control of this polyphagous species.

  8. Kinetics of plasmid transfer among Bacillus cereus group strains within lepidopteran larvae.

    PubMed

    Yuan, Y M; Hu, X M; Liu, H Z; Hansen, Bjarne Munk; Yan, J P; Yuan, Z M

    2007-06-01

    The cry toxin encoding plasmid pHT73 was transferred from Bacillus thuringiensis subspecies kurstaki KT0 to six B. cereus group strains in three lepidopteran (Spodoptera exigua, Plutella xyllostella and Helicoverpa armigera) larvae by conjugation. The conjugation kinetics of the plasmid was precisely studied during the larval infection using a new protocol. The infections were performed with both vegetative and sporulated strains. However, larval death only occurred when infections were made with spore and toxin preparations. Likewise, spore germinations of both donor and recipient strains were only observed in killed larvae, 44-56 h post-infection. Accordingly, kinetics showed that gene transfer between B. thuringiensis strain KT0 and other B. cereus strains only took place in dead larvae among vegetatively growing bacteria. The conjugational transfer ratios varied among different strain combinations and different larvae. The highest transfer ratio reached 5.83 x 10(-6) CFU/donor between the KT0 and the AW05R recipient in Helicoverpa armigera, and all transconjugants gained the ability to produce the insecticidal crystal. These results indicated that horizontal gene transfer among B. cereus group strains might play a key role for the acquisition of extra plasmids and evolution of these strains in toxin susceptible insect larvae.

  9. In-Silico Determination of Insecticidal Potential of Vip3Aa-Cry1Ac Fusion Protein Against Lepidopteran Targets Using Molecular Docking

    PubMed Central

    Ahmad, Aftab; Javed, Muhammad R.; Rao, Abdul Q.; Khan, Muhammad A. U.; Ahad, Ammara; Din, Salah ud; Shahid, Ahmad A.; Husnain, Tayyab

    2015-01-01

    Study and research of Bt (Bacillus thuringiensis) transgenic plants have opened new ways to combat insect pests. Over the decades, however, insect pests, especially the Lepidopteran, have developed tolerance against Bt delta-endotoxins. Such issues can be addressed through the development of novel toxins with greater toxicity and affinity against a broad range of insect receptors. In this computational study, functional domains of Bacillus thuringiensis crystal delta-endotoxin (Cry1Ac) insecticidal protein and vegetative insecticidal protein (Vip3Aa) have been fused to develop a broad-range Vip3Aa-Cry1Ac fusion protein. Cry1Ac and Vip3Aa are non-homologous insecticidal proteins possessing receptors against different targets within the midgut of insects. The insecticidal proteins were fused to broaden the insecticidal activity. Molecular docking analysis of the fusion protein against aminopeptidase-N (APN) and cadherin receptors of five Lepidopteran insects (Agrotis ipsilon, Helicoverpa armigera, Pectinophora gossypiella, Spodoptera exigua, and Spodoptera litura) revealed that the Ser290, Ser293, Leu337, Thr340, and Arg437 residues of the fusion protein are involved in the interaction with insect receptors. The Helicoverpa armigera cadherin receptor, however, showed no interaction, which might be due to either loss or burial of interactive residues inside the fusion protein. These findings revealed that the Vip3Aa-Cry1Ac fusion protein has a strong affinity against Lepidopteran insect receptors and hence has a potential to be an efficient broad-range insecticidal protein. PMID:26697037

  10. Tarsi of Male Heliothine Moths Contain Aldehydes and Butyrate Esters as Potential Pheromone Components.

    PubMed

    Choi, Man-Yeon; Ahn, Seung-Joon; Park, Kye-Chung; Meer, Robert Vander; Cardé, Ring T; Jurenka, Russell

    2016-05-01

    The Noctuidae are one of the most speciose moth families and include the genera Helicoverpa and Heliothis. Females use (Z)-11-hexadecenal as the major component of their sex pheromones except for Helicoverpa assulta and Helicoverpa gelotopoeon, both of which utilize (Z)-9-hexadecenal. The minor compounds found in heliothine sex pheromone glands vary with species, but hexadecanal has been found in the pheromone gland of almost all heliothine females so far investigated. In this study, we found a large amount (0.5-1.5 μg) of hexadecanal and octadecanal on the legs of males of four heliothine species, Helicoverpa zea, Helicoverpa armigera, H. assulta, and Heliothis virescens. The hexadecanal was found on and released from the tarsi, and was in much lower levels or not detected on the remaining parts of the leg (tibia, femur, trochanter, and coxa). Lower amounts (0.05-0.5 μg) of hexadecanal were found on female tarsi. This is the first known sex pheromone compound to be identified from the legs of nocturnal moths. Large amounts of butyrate esters (about 16 μg) also were found on tarsi of males with lower amounts on female tarsi. Males deposited the butyrate esters while walking on a glass surface. Decapitation did not reduce the levels of hexadecanal on the tarsi of H. zea males, indicating that hexadecanal production is not under the same neuroendocrine regulation system as the production of female sex pheromone. Based on electroantennogram studies, female antennae had a relatively high response to hexadecanal compared to male antennae. We consider the possible role of aldehydes and butyrate esters as courtship signals in heliothine moths.

  11. Cotton bollworm resistance to Bt transgenic cotton: a case analysis.

    PubMed

    Liu, ChenXi; Li, YunHe; Gao, YuLin; Ning, ChangMing; Wu, KongMing

    2010-08-01

    Cotton bollworm (Helicoverpa armigera) is one of the most serious insect pests of cotton. Transgenic cotton expressing Cry toxins derived from a soil bacterium, Bacillus thuringiensis (Bt), has been produced to target this pest. Bt cotton has been widely planted around the world, and this has resulted in efficient control of bollworm populations with reduced use of synthetic insecticides. However, evolution of resistance by this pest threatens the continued success of Bt cotton. To date, no field populations of bollworm have evolved significant levels of resistance; however, several laboratory-selected Cry-resistant strains of H. armigera have been obtained, which suggests that bollworm has the capacity to evolve resistance to Bt. The development of resistance to Bt is of great concern, and there is a vast body of research in this area aimed at ensuring the continued success of Bt cotton. Here, we review studies on the evolution of Bt resistance in H. armigera, focusing on the biochemical and molecular basis of Bt resistance. We also discuss resistance management strategies, and monitoring programs implemented in China, Australia, and India.

  12. Structure-function relationship of a bio-pesticidal trypsin/chymotrypsin inhibitor from winged bean.

    PubMed

    Banerjee, Sayanika; Giri, Ashok P; Gupta, Vidya S; Dutta, Samir Kumar

    2017-03-01

    Protease inhibitors are essential bio-molecules that serve as a model system for the study of protein structure and protease-protease inhibitor interaction. We here report a bi-functional serine protease inhibitor from winged bean (WBCTI) that completely retains its inhibitory property against trypsin and chymotrypsin even after heating at 70°C. Detailed circular dichroism and fluorescence studies at different temperatures, 30-90°C, have been performed to understand the reason behind thermal stability of the protein. On the basis of our results it appears that WBCTI maintains its canonical structure up to 70°C. Above that the heat induced conformational change becomes irreversible which causes aggregation followed by precipitation of the protein. Moreover, the activity and stability of the secondary structure are found to decrease drastically in presence of dithiothreitol indicating that the protein acquires additional stability for the occurrence of two disulfide bonds. In addition to the structural characterization, an important property of WBCTI against the polyphagous pest Helicoverpa armigera has been explored in present study. WBCTI has showed reasonable inhibition of the mid-gut proteases of H. armigera. In artificial feeding trial through addition of WBCTI in diet resulted in significant growth retardation, delayed pupae formation and higher mortality of H. armigera larvae.

  13. Peripheral genetic structure of Helicoverpa zea indicates asymmetrical panmixia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seasonal climatic shifts create peripheral habitats that alternate between habitable and uninhabitable for migratory species. Such dynamic peripheral habitats are potential sites where migratory species could evolve high genetic diversity resulting from convergence of immigrants from multiple region...

  14. Challenges to monitoring Bt resistance in Helicoverpa zea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic crops that produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are widely grown in many countries for the control of lepidopteran pests. The evolution of resistance in these pests to transgenic crops producing Bt toxins threatens the prolonged success of this imp...

  15. Monitoring and adaptive resistance management in Australia for Bt-cotton: current status and future challenges.

    PubMed

    Downes, Sharon; Mahon, Rod; Olsen, Karen

    2007-07-01

    In the mid-1990 s the Australian Cotton industry adopted an insect-resistant variety of cotton (Ingard) which expresses the Bt toxin Cry1Ac that is specific to a group of insects including the target Helicoverpa armigera. A conservative resistance management plan (RMP), that restricted the area planted to Ingard, was implemented to preserve the efficacy of Cry1Ac until two-gene transgenic cotton was available. In 2004/05 Bollgard II replaced Ingard as the transgenic cotton available in Australia. It improves on Ingard by incorporating an additional insecticidal protein (Cry2Ab). If an appropriate refuge is grown, there is no restriction on the area planted to Bollgard II. In 2004/05 and 2005/06 the Bollgard II acreage represented approximately 80 of the total area planted to cotton in Australia. The sensitivity of field-collected populations of H. armigera to Bt products was assayed before and subsequent to the widespread deployment of Ingard cotton. In 2002 screens against Cry2Ab were developed in preparation for replacement of Ingard with Bollgard II. There have been no reported field failures of Bollgard II due to resistance. However, while alleles that confer resistance to H. armigera in the field are rare for Cry1Ac, they are surprisingly common for Cry2Ab. We present an overview of the current approach adopted in Australia to monitor and adaptively manage resistance to Bt-cotton in field populations of H. armigera and discuss the implications of our findings to date. We also highlight future challenges for resistance management in Australia, many of which extend to other Bt-crop and pest systems.

  16. Interaction of glucosinolate content of Arabidopsis thaliana mutant lines and feeding and oviposition by generalist and specialist lepidopterans.

    PubMed

    Badenes-Perez, Francisco R; Reichelt, Michael; Gershenzon, Jonathan; Heckel, David G

    2013-02-01

    The diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), is an insect specialized on glucosinolate-containing Brassicaceae that uses glucosinolates in host-plant recognition. We used wild-type and mutants of Arabidopsis thaliana (L.) Heynh. (Brassicaceae) to investigate the interaction between plant glucosinolate and myrosinase content and herbivory by larvae of the generalist Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) and the specialist P. xylostella. We also measured glucosinolate changes as a result of herbivory by these larvae to investigate whether herbivory and glucosinolate induction had an effect on oviposition preference by P. xylostella. Feeding by H. armigera and P. xylostella larvae was 2.1 and 2.5 times less, respectively, on apk1 apk2 plants (with almost no aliphatic glucosinolates) than on wild-type plants. However, there were no differences in feeding by H. armigera and P. xylostella larvae on wild-type, gsm1 (different concentrations of aliphatic glucosinolates compared to wild-type plants), and tgg1 tgg2 plants (lacking major myrosinases). Glucosinolate induction (up to twofold) as a result of herbivory occurred in some cases, depending on both the plant line and the herbivore. For H. armigera, induction, when observed, was noted mostly for indolic glucosinolates, while for P. xylostella, induction was observed in both aliphatic and indolic glucosinolates, but not in all plant lines. For H. armigera, glucosinolate induction, when observed, resulted in an increase of glucosinolate content, while for P. xylostella, induction resulted in both a decrease and an increase in glucosinolate content. Two-choice tests with wild-type and mutant plants were conducted with larvae and ovipositing moths. There were no significant differences in preference of larvae and ovipositing moths between wild-type and gsm1 mutants and between wild-type and tgg1 tgg2 mutants. However, both larvae and ovipositing moths preferred wild-type over apk

  17. Comparative Analysis of HaSNPV-AC53 and Derived Strains

    PubMed Central

    Noune, Christopher; Hauxwell, Caroline

    2016-01-01

    Complete genome sequences of two Australian isolates of H. armigera single nucleopolyhedrovirus (HaSNPV) and nine strains isolated by plaque selection in tissue culture identified multiple polymorphisms in tissue culture-derived strains compared to the consensus sequence of the parent isolate. Nine open reading frames (ORFs) in all tissue culture-derived strains contained changes in nucleotide sequences that resulted in changes in predicted amino acid sequence compared to the parent isolate. Of these, changes in predicted amino acid sequence of six ORFs were identical in all nine derived strains. Comparison of sequences and maximum likelihood estimation (MLE) of specific ORFs and whole genome sequences were used to compare the isolates and derived strains to published sequence data from other HaSNPV isolates. The Australian isolates and derived strains had greater sequence similarity to New World SNPV isolates from H. zea than to Old World isolates from H. armigera, but with characteristics associated with both. Three distinct geographic clusters within HaSNPV genome sequences were identified: Australia/Americas, Europe/Africa/India, and China. Comparison of sequences and fragmentation of ORFs suggest that geographic movement and passage in vitro result in distinct patterns of baculovirus strain selection and evolution. PMID:27809232

  18. Design, synthesis and insecticidal activity of novel phenylurea derivatives.

    PubMed

    Sun, Jialong; Zhou, Yuanming

    2015-03-19

    A series of novel phenylurea derivatives were designed and synthesized according to the method of active groups linkage and the principle of aromatic groups bioisosterism in this study. The structures of the novel phenylurea derivatives were confirmed based on ESI-MS, IR and 1H-NMR spectral data. All of the compounds were evaluated for the insecticidal activity against the third instars larvae of Spodoptera exigua Hiibner, Plutella xyllostella Linnaeus, Helicoverpa armigera Hubner and Pieris rapae Linne respectively, at the concentration of 10 mg/L. The results showed that all of the derivatives displayed strong insecticidal activity. Most of the compounds presented higher insecticidal activity against S. exigua than the reference compounds tebufenozide, chlorbenzuron and metaflumizone. Among the synthesized compounds, 3b, 3d, 3f, 4b and 4g displayed broad spectrum insecticidal activity.

  19. Enhancement of Bacillus thuringiensis insecticidal activity by combining Cry1Ac and bi-functional toxin HWTX-XI from spider.

    PubMed

    Sun, Yunjun; Fu, Zujiao; He, Xiaohong; Yuan, Chunhua; Ding, Xuezhi; Xia, Liqiu

    2016-03-01

    In order to assess the potency of bi-functional HWTX-XI toxin from spider Ornithoctonus huwena in improving the insecticidal activity of Bacillus thuringiensis, a fusion gene of cry1Ac and hwtx-XI was constructed and expressed in an acrystalliferous B. thuringiensis strain Cry(-)B. Western blot analysis and microscopic observation revealed that the recombinant strain could express 140-kDa Cry1Ac-HWTX-XI fusion protein and produce parasporal inclusions during sporulation. Bioassay using the larvae of Helicoverpa armigera and Spodoptera exigua showed that the Cry1Ac-HWTX-XI fusion was more toxic than the control Cry1Ac protoxin, as revealed by 95% lethal concentration. Our study indicated that the HWTX-XI from spider might be a candidate for enhancing the toxicity of B. thuringiensis products.

  20. Safety assessment and detection method of genetically modified Chinese Kale (Brassica oleracea cv. alboglabra ).

    PubMed

    Lin, Chih-Hui; Lu, Chien-Te; Lin, Hsin-Tang; Pan, Tzu-Ming

    2009-03-11

    Sporamins are tuberous storage proteins and account for 80% of soluble protein in sweet potato tubers with trypsin-inhibitory activity. The expression of sporamin protein in transgenic Chinese kale (line BoA 3-1) conferred insecticidal activity toward corn earworm [ Helicoverpa armigera (Hubner)] in a previous report. In this study, we present a preliminary safety assessment of transgenic Chinese kale BoA 3-1. Bioinformatic and simulated gastric fluid (SGF) analyses were performed to evaluate the allergenicity of sporamin protein. The substantial equivalence between transgenic Chinese kale and its wild-type host has been demonstrated by the comparison of important constituents. A reliable real-time polymerase chain reaction (PCR) detection method was also developed to control sample quality. Despite the results of most evaluations in this study being negative, the safety of sporamin in transgenic Chinese kale BoA 3-1 was uncluded because of the allergenic risk revealed by bioinformatic analysis.

  1. cDNA cloning and heterologous expression of a wheat proteinase inhibitor of subtilisin and chymotrypsin (WSCI) that interferes with digestive enzymes of insect pests.

    PubMed

    Di Gennaro, Simone; Ficca, Anna G; Panichi, Daniela; Poerio, Elia

    2005-04-01

    A cDNA encoding the proteinase inhibitor WSCI (wheat subtilisin/chymotrypsin inhibitor) was isolated by RT-PCR. Degenerate oligonucleotide primers were designed based on the amino acid sequence of WSCI and on the nucleotide sequence of the two homologous inhibitors (CI-2A and CI-2B) isolated from barley. For large-scale production, wsci cDNA was cloned into the E. coli vector pGEX-2T. The fusion protein GST-WSCI was efficiently produced in the bacterial expression system and, as the native inhibitor, was capable of inhibiting bacterial subtilisin, mammalian chymotrypsins and chymotrypsin-like activities present in crude extracts of a number of insect larvae ( Helicoverpa armigera , Plodia interpunctella and Tenebrio molitor ). The recombinant protein produced was also able to interfere with chymotrypsin-like activity isolated from immature wheat caryopses. These findings support a physiological role for this inhibitor during grain maturation.

  2. Synthesis and antiviral, insecticidal, and fungicidal activities of gossypol derivatives containing alkylimine, oxime or hydrazine moiety.

    PubMed

    Li, Ling; Li, Zheng; Wang, Kailiang; Liu, Yuxiu; Li, Yongqiang; Wang, Qingmin

    2016-02-01

    Gossypol is a part of the cotton plant's defense system against pathogens and herbivorous insects. To discover gossypol analogs with broad spectrum and high activity, a series of gossypol alkylamine Schiff base, oxime and hydrazone derivatives were synthesised and bioassayed. The biological results indicated that most of these derivatives exhibited higher anti-TMV activity than gossypol. Interestingly, the activities of compounds 10, 15, 18, 20, 23 and 26 were much higher than that of ribavirin. Furthermore, compound 26, which was low toxicity to rat, showed better activity than control plant virus inhibitors in the field. Additionally, allyl amine Schiff base (9) displayed remarkable insecticidal activities against Mythimna separata, Helicoverpa armigera and Ostrinia nubilalis, whereas (pyridin-3-yl)methanamine Schiff base (13) showed excellent activity against Culex pipiens pallens. The fungicidal results revealed that all of compounds exhibited good activity against Physalospora piricola.

  3. Unusually high frequency of genes encoding vegetative insecticidal proteins in an Australian Bacillus thuringiensis collection.

    PubMed

    Beard, Cheryl E; Court, Leon; Boets, Annemie; Mourant, Roslyn; Van Rie, Jeroen; Akhurst, Raymond J

    2008-09-01

    Of 188 Australian Bacillus thuringiensis strains screened for genes encoding soluble insecticidal proteins by polymerase chain reaction/restriction-length fragment polymorphism (RFLP) analysis, 87% showed the presence of such genes. Although 135 isolates (72%) produced an RFLP pattern identical to that expected for vip3A genes, 29 isolates possessed a novel vip-like gene. The novel vip-like gene was cloned from B. thuringiensis isolate C81, and sequence analysis demonstrated that it was 94% identical to the vip3Ba1 gene. The new gene was designated vip3Bb2. Cell-free supernatants from both the B. thuringiensis strain C81 and from Escherichia coli expressing the Vip3Bb2 protein were toxic for the cotton bollworm, Helicoverpa armigera.

  4. Autographa californica multiple nucleopolyhedrovirus PK-1 is essential for nucleocapsid assembly

    SciTech Connect

    Liang, Changyong; Li, Min; Dai, Xuejuan; Zhao, Shuling; Hou, Yanling; Zhang, Yongli; Lan, Dandan; Wang, Yun; Chen, Xinwen

    2013-09-01

    PK-1 (Ac10) is a baculovirus-encoded serine/threonine kinase and its function is unclear. Our results showed that a pk-1 knockout AcMNPV failed to produce infectious progeny, while the pk-1 repair virus could rescue this defect. qPCR analysis demonstrated that pk-1 deletion did not affect viral DNA replication. Analysis of the repaired recombinants with truncated pk-1 mutants demonstrated that the catalytic domain of protein kinases of PK-1 was essential to viral infectivity. Moreover, those PK-1 mutants that could rescue the infectious BV production defect exhibited kinase activity in vitro. Therefore, it is suggested that the kinase activity of PK-1 is essential in regulating viral propagation. Electron microscopy revealed that pk-1 deletion affected the formation of normal nucleocapsids. Masses of electron-lucent tubular structures were present in cell transfected with pk-1 knockout bacmid. Therefore, PK-1 appears to phosphorylate some viral or cellular proteins that are essential for DNA packaging to regulate nucleocapsid assembly. - Highlights: • A pk-1 knockout AcMNPV failed to produce infectious progeny. • The pk-1 deletion did not affect viral DNA replication. • The catalytic domain of protein kinases (PKc) of PK-1 was essential to viral infectivity. • The kinase activity of PK-1 is essential in regulating viral propagation. • PK-1 appears to phosphorylate some viral proteins that are essential for DNA packaging to regulate nucleocapsid assembly.

  5. A Highly Efficient and Simple Construction Strategy for Producing Recombinant Baculovirus Bombyx mori Nucleopolyhedrovirus

    PubMed Central

    Liu, Xingjian; Wei, Yonglong; Li, Yinü; Li, Haoyang; Yang, Xin; Yi, Yongzhu; Zhang, Zhifang

    2016-01-01

    The silkworm baculovirus expression system is widely used to produce recombinant proteins. Several strategies for constructing recombinant viruses that contain foreign genes have been reported. Here, we developed a novel defective-rescue BmNPV Bacmid (reBmBac) expression system. A CopyControl origin of replication was introduced into the viral genome to facilitate its genetic manipulation in Escherichia coli and to ensure the preparation of large amounts of high quality reBmBac DNA as well as high quality recombinant baculoviruses. The ORF1629, cathepsin and chitinase genes were partially deleted or rendered defective to improve the efficiency of recombinant baculovirus generation and the expression of foreign genes. The system was validated by the successful expression of luciferase reporter gene and porcine interferon γ. This system can be used to produce batches of recombinant baculoviruses and target proteins rapidly and efficiently in silkworms. PMID:27008267

  6. Proteotoxic stress induced by Autographa californica nucleopolyhedrovirus infection of Spodoptera frugiperda Sf9 cells

    SciTech Connect

    Lyupina, Yulia V.; Abaturova, Svetlana B.; Erokhov, Pavel A.; Orlova, Olga V.; Beljelarskaya, Svetlana N.; Mikhailov, Victor S.

    2013-02-05

    Baculovirus AcMNPV causes proteotoxicity in Sf9 cells as revealed by accumulation of ubiquitinated proteins and aggresomes in the course of infection. Inhibition of proteasomes by lactacystin increased markedly the stock of ubiquitinated proteins indicating a primary role of proteasomes in detoxication. The proteasomes were present in Sf9 cells as 26S and 20S complexes whose protease activity did not change during infection. Proteasome inhibition caused a delay in the initiation of viral DNA replication suggesting an important role of proteasomes at early stages in infection. However, lactacystin did not affect ongoing replication indicating that active proteasomes are not required for genome amplification. At late stages in infection (24-48 hpi), aggresomes containing the ubiquitinated proteins and HSP/HSC70s showed gradual fusion with the vacuole-like structures identified as lysosomes by antibody to cathepsin D. This result suggests that lysosomes may assist in protection against proteotoxicity caused by baculoviruses absorbing the ubiquitinated proteins.

  7. Proteotoxic stress induced by Autographa californica nucleopolyhedrovirus infection of Spodoptera frugiperda Sf9 cells.

    PubMed

    Lyupina, Yulia V; Abaturova, Svetlana B; Erokhov, Pavel A; Orlova, Olga V; Beljelarskaya, Svetlana N; Mikhailov, Victor S

    2013-02-05

    Baculovirus AcMNPV causes proteotoxicity in Sf9 cells as revealed by accumulation of ubiquitinated proteins and aggresomes in the course of infection. Inhibition of proteasomes by lactacystin increased markedly the stock of ubiquitinated proteins indicating a primary role of proteasomes in detoxication. The proteasomes were present in Sf9 cells as 26S and 20S complexes whose protease activity did not change during infection. Proteasome inhibition caused a delay in the initiation of viral DNA replication suggesting an important role of proteasomes at early stages in infection. However, lactacystin did not affect ongoing replication indicating that active proteasomes are not required for genome amplification. At late stages in infection (24-48 hpi), aggresomes containing the ubiquitinated proteins and HSP/HSC70s showed gradual fusion with the vacuole-like structures identified as lysosomes by antibody to cathepsin D. This result suggests that lysosomes may assist in protection against proteotoxicity caused by baculoviruses absorbing the ubiquitinated proteins.

  8. Tea, coffee, and cocoa as ultraviolet radiation protectants for beet armyworm nucleopolyhedrovirus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The addition of 1% (wt/v) aqueous extracts of cocoa (Theobroma cacao L.) (Malvales: Malvaceae), coffee (Coffea arabica L.) (Gentianales: Rubiaceae), green, and black tea (Camellia sinensis L.) (Ericales: Theaceae) provided excellent ultraviolet (UV) radiation protection for the beet armyworm, Spodo...

  9. Susceptibility of Autographa californica multiple nucleopolyhedrovirus to inhibitors of DNA replication.

    PubMed

    Thumbi, David K; Arif, Basil M; Krell, Peter J

    2007-12-01

    The objectives of this study were to develop methods to evaluate the susceptibility of the type baculovirus AcMNPV to various antiviral compounds and to select potential inhibitors for investigating baculovirus DNA replication. In concert with the classical cytopathic effects (CPE) and cytotoxicity inhibition assays, two approaches, which could be amenable for high throughput application for evaluating several classes of known antiviral compounds were developed. (i) An indirect approach based on spectrofluorimetric analysis of EGFP expression in Sf21 cells infected with a recombinant AcMNPV (AcEGFP) and (ii) a direct DNA quantitative assay based on quantitative real time PCR (qPCR). Initial CPE results suggested that of 21 compounds tested, aphidicolin, abacavir, camptothecin, (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU), l-mimosine, hydroxyurea and phosphonoacetic acid (PAA) were selective inhibitors of AcMNPV replication. Consistent with the CPE results, the EGFP fluorescence and the qPCR of viral DNA accumulation exhibited a dose dependent depression of EGFP expression and DNA accumulation, respectively, in infected cells exposed to them. The inhibitory effects of aphidicolin, abacavir, l-mimosine and hydroxyurea on AcMNPV DNA replication were reversible. Taken together, both spectrofluorimetric and qPCR assays are suitable and rapid quantitative approaches to investigate inhibitors of baculovirus DNA replication in infected cells.

  10. Insect Resistance to Bacillus thuringiensis Toxin Cry2Ab Is Conferred by Mutations in an ABC Transporter Subfamily A Protein

    PubMed Central

    Tay, Wee Tek; Mahon, Rod J.; Heckel, David G.; Walsh, Thomas K.; Downes, Sharon; James, William J.; Lee, Sui-Fai; Reineke, Annette; Williams, Adam K.; Gordon, Karl H. J.

    2015-01-01

    The use of conventional chemical insecticides and bacterial toxins to control lepidopteran pests of global agriculture has imposed significant selection pressure leading to the rapid evolution of insecticide resistance. Transgenic crops (e.g., cotton) expressing the Bt Cry toxins are now used world wide to control these pests, including the highly polyphagous and invasive cotton bollworm Helicoverpa armigera. Since 2004, the Cry2Ab toxin has become widely used for controlling H. armigera, often used in combination with Cry1Ac to delay resistance evolution. Isolation of H. armigera and H. punctigera individuals heterozygous for Cry2Ab resistance in 2002 and 2004, respectively, allowed aspects of Cry2Ab resistance (level, fitness costs, genetic dominance, complementation tests) to be characterised in both species. However, the gene identity and genetic changes conferring this resistance were unknown, as was the detailed Cry2Ab mode of action. No cross-resistance to Cry1Ac was observed in mutant lines. Biphasic linkage analysis of a Cry2Ab-resistant H. armigera family followed by exon-primed intron-crossing (EPIC) marker mapping and candidate gene sequencing identified three independent resistance-associated INDEL mutations in an ATP-Binding Cassette (ABC) transporter gene we named HaABCA2. A deletion mutation was also identified in the H. punctigera homolog from the resistant line. All mutations truncate the ABCA2 protein. Isolation of further Cry2Ab resistance alleles in the same gene from field H. armigera populations indicates unequal resistance allele frequencies and the potential for Bt resistance evolution. Identification of the gene involved in resistance as an ABC transporter of the A subfamily adds to the body of evidence on the crucial role this gene family plays in the mode of action of the Bt Cry toxins. The structural differences between the ABCA2, and that of the C subfamily required for Cry1Ac toxicity, indicate differences in the detailed mode

  11. Baited traps may be an alternative to conventional pesticides in integrated crop management of chicory (Compositae) in South Africa.

    PubMed

    Midgley, J M; Hill, M P; Villet, M H

    2008-02-01

    Chicory, Chicorium intybus L. (Compositae), is a major field crop in the Eastern Cape Province of South Africa. Several pests feed on the leaves of the plant, resulting in reduced yield. The most important of these are the noctuid moths Helicoverpa armigera (Hübner), Chrysodeixis acuta (Walker), and Trichoplusia orichalcea (F.). The use of attract-and-kill traps offers an alternative to broad-based insecticides in the control of these species. Three fields were treated with normal insecticides and three fields with yellow-baited traps. Eight additional traps were placed in each field, with half of the traps containing the insecticide 2,2-dichlorovinyl dimethyl phosphate (dichlorvos) and half without dichlorvos; and half yellow and half green. Total moth numbers and nonphytophage diversity were measured from these eight traps. Although no differences in H. armigera or T. orichalcea catches were observed between insecticide- and trap-treated fields, numbers of C. acuta and the total number of moths were significantly higher in insecticide-treated fields. Yellow traps containing dichlorvos contained more moths than yellow traps without dichlorvos, or green traps with dichlorvos, or green traps without dichlorvos; but they also contained more nonphytophagous insects. Yellow traps also enhanced the catches of thrips on card traps associated with them. These results offer an opportunity for the South African chicory industry to reduce pesticide applications and thus mitigate environmental impacts.

  12. Ignoring the irrelevant: auditory tolerance of audible but innocuous sounds in the bat-detecting ears of moths

    NASA Astrophysics Data System (ADS)

    Fullard, James H.; Ratcliffe, John M.; Jacobs, David S.

    2008-03-01

    Noctuid moths listen for the echolocation calls of hunting bats and respond to these predator cues with evasive flight. The African bollworm moth, Helicoverpa armigera, feeds at flowers near intensely singing cicadas, Platypleura capensis, yet does not avoid them. We determined that the moth can hear the cicada by observing that both of its auditory receptors (A1 and A2 cells) respond to the cicada’s song. The firing response of the A1 cell rapidly adapts to the song and develops spike periods in less than a second that are in excess of those reported to elicit avoidance flight to bats in earlier studies. The possibility also exists that for at least part of the day, sensory input in the form of olfaction or vision overrides the moth’s auditory responses. While auditory tolerance appears to allow H. armigera to exploit a food resource in close proximity to acoustic interference, it may render their hearing defence ineffective and make them vulnerable to predation by bats during the evening when cicadas continue to sing. Our study describes the first field observation of an eared insect ignoring audible but innocuous sounds.

  13. Synthetic fusion-protein containing domains of Bt Cry1Ac and Allium sativum lectin (ASAL) conferred enhanced insecticidal activity against major lepidopteran pests.

    PubMed

    Tajne, Sunita; Boddupally, Dayakar; Sadumpati, Vijayakumar; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao

    2014-02-10

    Different transgenic crop plants, developed with δ-endotoxins of Bacillus thuringiensis (Bt) and mannose-specific plant lectins, exhibited significant protection against chewing and sucking insects. In the present study, a synthetic gene (cry-asal) encoding the fusion-protein having 488 amino acids, comprising DI and DII domains from Bt Cry1Ac and Allium sativum agglutinin (ASAL), was cloned and expressed in Escherichia coli. Ligand blot analysis disclosed that the fusion-protein could bind to more number of receptors of brush border membrane vesicle (BBMV) proteins of Helicoverpa armigera. Artificial diet bioassays revealed that 0.025 μg/g and 0.50 μg/g of fusion-protein were sufficient to cause 100% mortality in Pectinophora gossypiella and H. armigera insects, respectively. As compared to Cry1Ac, the fusion-protein showed enhanced (8-fold and 30-fold) insecticidal activity against two major lepidopteran pests. Binding of fusion-protein to the additional receptors in the midgut cells of insects is attributable to its enhanced entomotoxic effect. The synthetic gene, first of its kind, appears promising and might serve as a potential candidate for engineering crop plants against major insect pests.

  14. A screening of five Bacillus thuringiensis Vip3A proteins for their activity against lepidopteran pests.

    PubMed

    Ruiz de Escudero, Iñigo; Banyuls, Núria; Bel, Yolanda; Maeztu, Mireya; Escriche, Baltasar; Muñoz, Delia; Caballero, Primitivo; Ferré, Juan

    2014-03-01

    Five Bacillus thuringiensis Vip3A proteins (Vip3Aa, Vip3Ab, Vip3Ad, Vip3Ae and Vip3Af) and their corresponding trypsin-activated toxins were tested for their toxicity against eight lepidopteran pests: Agrotis ipsilon, Helicoverpa armigera, Mamestra brassicae, Spodoptera exigua, Spodoptera frugiperda, Spodoptera littoralis, Ostrinia nubilalis and Lobesia botrana. Toxicity was first tested at a high dose at 7 and 10 days. No major differences were found when comparing protoxins vs. trypsin-activated toxins. The proteins that were active against most of the insect species were Vip3Aa, Vip3Ae and Vip3Af, followed by Vip3Ab. Vip3Ad was non-toxic to any of the species tested. Considering the results by insect species, A. ipsilon, S. frugiperda and S. littoralis were susceptible to Vip3Aa, Vip3Ab, Vip3Ae and Vip3Af; S. exigua was susceptible to Vip3Aa and Vip3Ae, and moderately susceptible to Vip3Ab; M. brassicae and L. botrana were susceptible to Vip3Aa, Vip3Ae and Vip3Af; H. armigera was moderately susceptible to Vip3Aa, Vip3Ae and Vip3Af, and O. nubilalis was tolerant to all Vip3 proteins tested, although it showed some susceptibility to Vip3Af. The results obtained will help to design new combinations of insecticidal protein genes in transgenic crops or in recombinant bacteria for the control of insect pests.

  15. Baculovirus studies in new, indigenous lepidopteran cell lines.

    PubMed

    Pant, U; Sudeep, A B; Athawale, S S; Vipat, V C

    2002-01-01

    Eight lepidopteran cell lines were established recently and their susceptibility to different insect viruses was studied. Two Spodoptera litura cell lines from the larval and pupal ovaries, were found highly susceptible to S. litura nuclear polyhedrosis virus (SLNPV, 5-6 x 10(6) NPV/ml). The Helicoverpa armigera cell line from the embryonic tissue was highly susceptible to H. armigera NPV (HaNPV, 6.3 x 10(6) NPV/ml). These in vitro grown SLNPV and HaNPV caused 100% mortality to respective 2nd instar larvae. The susceptibility of the cryo-preserved cell lines to respective baculoviruses (SLNPV/HaNPV) was studied and no significant difference in their susceptibility status was observed. The cultures could grow as suspension culture on shakers and may find application for in vitro production of wild type/recombinant baculoviruses as bio-insecticides. S. litura and Bombyx mori cell lines from larval ovaries, were highly susceptible to Autographa californica NPV (5.5 x 10(6) NPV/ml) and Bombyx mori NPV (BmNPV, 6.1 x 10(6) NPV/ml) respectively. These cell lines may find application in baculovirus expression vector studies for the production of recombinant proteins, useful in the development of diagnostic kits or as vaccines.

  16. Weakening density dependence from climate change and agricultural intensification triggers pest outbreaks: a 37-year observation of cotton bollworms.

    PubMed

    Ouyang, Fang; Hui, Cang; Ge, Saiying; Men, Xin-Yuan; Zhao, Zi-Hua; Shi, Pei-Jian; Zhang, Yong-Sheng; Li, Bai-Lian

    2014-09-01

    Understanding drivers of population fluctuation, especially for agricultural pests, is central to the provision of agro-ecosystem services. Here, we examine the role of endogenous density dependence and exogenous factors of climate and human activity in regulating the 37-year population dynamics of an important agricultural insect pest, the cotton bollworm (Helicoverpa armigera), in North China from 1975 to 2011. Quantitative time-series analysis provided strong evidence explaining long-term population dynamics of the cotton bollworm and its driving factors. Rising temperature and declining rainfall exacerbated the effect of agricultural intensification on continuously weakening the negative density dependence in regulating the population dynamics of cotton bollworms. Consequently, ongoing climate change and agricultural intensification unleashed the tightly regulated pest population and triggered the regional outbreak of H. armigera in 1992. Although the negative density dependence can effectively regulate the population change rate to fluctuate around zero at stable equilibrium levels before and after outbreak in the 1992, the population equilibrium jumped to a higher density level with apparently larger amplitudes after the outbreak. The results highlight the possibility for exogenous factors to induce pest outbreaks and alter the population regulating mechanism of negative density dependence and, thus, the stable equilibrium of the pest population, often to a higher level, posing considerable risks to the provision of agro-ecosystem services and regional food security. Efficient and timely measures of pest management in the era of Anthropocene should target the strengthening and revival of weakening density dependence caused by climate change and human activities.

  17. Pollen-mediated gene flow from transgenic cotton under greenhouse conditions is dependent on different pollinators

    PubMed Central

    Yan, Shuo; Zhu, Jialin; Zhu, Weilong; Li, Zhen; Shelton, Anthony M.; Luo, Junyu; Cui, Jinjie; Zhang, Qingwen; Liu, Xiaoxia

    2015-01-01

    With the large-scale release of genetically modified (GM) crops, there are ecological concerns on transgene movement from GM crops to non-GM counterparts and wild relatives. In this research, we conducted greenhouse experiments to measure pollen-mediated gene flow (PGF) in the absence and presence of pollinators (Bombus ignitus, Apis mellifera and Pieris rapae) in one GM cotton (resistant to the insect Helicoverpa armigera and the herbicide glyphosate) and two non-GM lines (Shiyuan321 and Hai7124) during 2012 and 2013. Our results revealed that: (1) PGF varied depending on the pollinator species, and was highest with B. ignitus (10.83%) and lowest with P. rapae (2.71%); (2) PGF with B. ignitus depended on the distance between GM and non-GM cottons; (3) total PGF to Shiyuan321 (8.61%) was higher than to Hai7124 (4.10%). To confirm gene flow, we tested hybrids carrying transgenes for their resistance to glyphosate and H. armigera, and most hybrids showed strong resistance to the herbicide and insect. Our research confirmed that PGF depended on pollinator species, distance between plants and the receptor plant. PMID:26525573

  18. Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense.

    PubMed

    Shroff, Rohit; Vergara, Fredd; Muck, Alexander; Svatos, Ales; Gershenzon, Jonathan

    2008-04-22

    The spatial distribution of plant defenses within a leaf may be critical in explaining patterns of herbivory. The generalist lepidopteran larvae, Helicoverpa armigera (the cotton bollworm), avoided the midvein and periphery of Arabidopsis thaliana rosette leaves and fed almost exclusively on the inner lamina. This feeding pattern was attributed to glucosinolates because it was not evident in a myrosinase mutant that lacks the ability to activate glucosinolate defenses by hydrolysis. To measure the spatial distribution of glucosinolates in A. thaliana leaves at a fine scale, we constructed ion intensity maps from MALDI-TOF (matrix assisted laser desorption/ionization-time of flight) mass spectra. The major glucosinolates were found to be more abundant in tissues of the midvein and the periphery of the leaf than the inner lamina, patterns that were validated by HPLC analyses of dissected leaves. In addition, there were differences in the proportions of the three major glucosinolates in different leaf regions. Hence, the distribution of glucosinolates within the leaf appears to control the feeding preference of H. armigera larvae. The preferential allocation of glucosinolates to the periphery may play a key role in the defense of leaves by creating a barrier to the feeding of chewing herbivores that frequently approach leaves from the edge.

  19. Bio-physical evaluation and in vivo delivery of plant proteinase inhibitor immobilized on silica nanospheres.

    PubMed

    Khandelwal, Neha; Doke, Dhananjay S; Khandare, Jayant J; Jawale, Priyanka V; Biradar, Ankush V; Giri, Ashok P

    2015-06-01

    Recombinant expression of Capsicum annuum proteinase inhibitors (CanPI-13) and its application via synthetic carrier for the crop protection is the prime objective of our study. Herein, we explored proteinase inhibitor peptide immobilization on silica based nanospheres and rods followed by its pH mediated release in vitro and in vivo. Initial studies suggested silica nanospheres to be a suitable candidate for peptide immobilization. Furthermore, the interactions were characterized biophysically to ascertain their conformational stability and biological activity. Interestingly, bioactive peptide loading at acidic pH on nanospheres was found to be 62% and showed 56% of peptide release at pH 10, simulating gut milieu of the target pest Helicoverpa armigera. Additionally, in vivo study demonstrated significant reduction in insect body mass (158 mg) as compared to the control insects (265 mg) on 8th day after feeding with CanPI-13 based silica nanospheres. The study confirms that peptide immobilized silica nanosphere is capable of affecting overall growth and development of the feeding insects, which is known to hamper fecundity and fertility of the insects. Our study illustrates the utility and development of peptide-nanocarrier based platform in delivering diverse biologically active complexes specific to gut pH of H. armigera.

  20. The characterization of SaPIN2b, a plant trichome-localized proteinase inhibitor from Solanum americanum.

    PubMed

    Luo, Ming; Ding, Ling-Wen; Ge, Zhi-Juan; Wang, Zhen-Yu; Hu, Bo-Lun; Yang, Xiao-Bei; Sun, Qiao-Yang; Xu, Zeng-Fu

    2012-11-16

    Proteinase inhibitors play an important role in plant resistance of insects and pathogens. In this study, we characterized the serine proteinase inhibitor SaPIN2b, which is constitutively expressed in Solanum americanum trichomes and contains two conserved motifs of the proteinase inhibitor II (PIN2) family. The recombinant SaPIN2b (rSaPIN2b), which was expressed in Escherichia coli, was demonstrated to be a potent proteinase inhibitor against a panel of serine proteinases, including subtilisin A, chymotrypsin and trypsin. Moreover, rSaPIN2b also effectively inhibited the proteinase activities of midgut trypsin-like proteinases that were extracted from the devastating pest Helicoverpa armigera. Furthermore, the overexpression of SaPIN2b in transgenic tobacco plants resulted in enhanced resistance against H. armigera. Taken together, our results demonstrated that SaPIN2b is a potent serine proteinase inhibitor that may act as a protective protein in plant defense against insect attacks.

  1. Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense

    PubMed Central

    Shroff, Rohit; Vergara, Fredd; Muck, Alexander; Svatoš, Aleš; Gershenzon, Jonathan

    2008-01-01

    The spatial distribution of plant defenses within a leaf may be critical in explaining patterns of herbivory. The generalist lepidopteran larvae, Helicoverpa armigera (the cotton bollworm), avoided the midvein and periphery of Arabidopsis thaliana rosette leaves and fed almost exclusively on the inner lamina. This feeding pattern was attributed to glucosinolates because it was not evident in a myrosinase mutant that lacks the ability to activate glucosinolate defenses by hydrolysis. To measure the spatial distribution of glucosinolates in A. thaliana leaves at a fine scale, we constructed ion intensity maps from MALDI-TOF (matrix assisted laser desorption/ionization-time of flight) mass spectra. The major glucosinolates were found to be more abundant in tissues of the midvein and the periphery of the leaf than the inner lamina, patterns that were validated by HPLC analyses of dissected leaves. In addition, there were differences in the proportions of the three major glucosinolates in different leaf regions. Hence, the distribution of glucosinolates within the leaf appears to control the feeding preference of H. armigera larvae. The preferential allocation of glucosinolates to the periphery may play a key role in the defense of leaves by creating a barrier to the feeding of chewing herbivores that frequently approach leaves from the edge. PMID:18408160

  2. Expansion of a bitter taste receptor family in a polyphagous insect herbivore

    PubMed Central

    Xu, Wei; Papanicolaou, Alexie; Zhang, Hui-Jie; Anderson, Alisha

    2016-01-01

    The Insect taste system plays a central role in feeding behaviours and co-evolution of insect-host interactions. Gustatory receptors form the interface between the insect taste system and the environment. From genome and transcriptome sequencing we identified 197 novel gustatory receptor (GR) genes from the polyphagous pest Helicoverpa armigera. These GRs include a significantly expanded bitter receptor family (180 GRs) that could be further divided into three categories based on polypeptide lengths, gene structure and amino acid sequence. Type 1 includes 29 bitter Gr genes that possess introns. Type 2 includes 13 long intronless bitter Gr genes, while Type 3 comprises 131 short intronless bitter Gr genes. Calcium imaging analysis demonstrated that three Type 3 GRs (HarmGR35, HarmGR50 and HarmGR195) can be activated by a crude extract of cotton leaves. HarmGR195, a GR specifically and selectively expressed in adult tarsi, showed a specific response to proline, an amino acid widely present in plant tissues. We hypothesise that the expansion in the H. armigera GR family may be functionally tied to its polyphagous behavior. Understanding the molecular basis of polyphagy may provide opportunities for the development of new environmentally friendly pest control strategies. PMID:27032373

  3. Conserved chemosensory proteins in the proboscis and eyes of Lepidoptera

    PubMed Central

    Zhu, Jiao; Iovinella, Immacolata; Dani, Francesca Romana; Liu, Yu-Ling; Huang, Ling-Qiao; Liu, Yang; Wang, Chen-Zhu; Pelosi, Paolo; Wang, Guirong

    2016-01-01

    Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) are endowed with several different functions besides being carriers for pheromones and odorants. Based on a previous report of a CSP acting as surfactant in the proboscis of the moth Helicoverpa armigera, we revealed the presence of orthologue proteins in two other moths Plutella xylostella and Chilo suppressalis, as well as two butterflies Papilio machaon and Pieris rapae, using immunodetection and proteomic analysis. The unusual conservation of these proteins across large phylogenetic distances indicated a common specific function for these CSPs. This fact prompted us to search for other functions of these proteins and discovered that CSPs are abundantly expressed in the eyes of H. armigera and possibly involved as carriers for carotenoids and visual pigments. This hypothesis is supported by ligand-binding experiments and docking simulations with retinol and β-carotene. This last orange pigment, occurring in many fruits and vegetables, is an antioxidant and the precursor of visual pigments. We propose that structurally related CSPs solubilise nutritionally important carotenoids in the proboscis, while they act as carriers of both β-carotene and its derived products 3-hydroxyretinol and 3-hydroxyretinal in the eye. The use of soluble olfactory proteins, such as CSPs, as carriers for visual pigments in insects, here reported for the first time, parallels the function of retinol-binding protein in vertebrates, a lipocalin structurally related to vertebrate odorant-binding proteins. PMID:27877091

  4. Development of specific ITS markers for plant DNA identification within herbivorous insects.

    PubMed

    Pumariño, L; Alomar, O; Agustí, N

    2011-06-01

    DNA-based techniques have proved to be very useful methods to study trophic relationships between pests and their natural enemies. However, most predators are best defined as omnivores, and the identification of plant-specific DNA should also allow the identification of the plant species the predators have been feeding on. In this study, a PCR approach based on the development of specific primers was developed as a self-marking technique to detect plant DNA within the gut of one heteropteran omnivorous predator (Macrolophus pygmaeus) and two lepidopteran pest species (Helicoverpa armigera and Tuta absoluta). Specific tomato primers were designed from the ITS 1-2 region, which allowed the amplification of a tomato DNA fragment of 332 bp within the three insect species tested in all cases (100% of detection at t=0) and did not detect DNA of other plants nor of the starved insects. Plant DNA half-lives at 25°C ranged from 5.8 h, to 27.7 h and 28.7 h within M. pygmaeus, H. armigera and T. absoluta, respectively. Tomato DNA detection within field-collected M. pygmaeus suggests dietary mixing in this omnivorous predator and showed a higher detection of tomato DNA in females and nymphs than males. This study provides a useful tool to detect and to identify plant food sources of arthropods and to evaluate crop colonization from surrounding vegetation in conservation biological control programs.

  5. Emamectin, a novel insecticide for controlling field crop pests.

    PubMed

    Ishaaya, Isaac; Kontsedalov, Svetlana; Horowitz, A Rami

    2002-11-01

    Emamectin is a macrocyclic lactone insecticide with low toxicity to non-target organisms and the environment, and is considered an important component in pest-management programmes for controlling field crop pests. It is a powerful compound for controlling the cotton bollworm Helicoverpa armigera (Hübner). A spray concentration of 25 mg AI litre-1 in a cotton field resulted in over 90% suppression of H armigera larvae up to day 28 after treatment, while similar mortality of the Egyptian cotton leafworm Spodoptera littoralis Boisduval, under the same conditions, was maintained for 3 days only. Emamectin is a potent compound for controlling the western flower thrips Frankliniella occidentalis (Pergande) under both laboratory and field conditions and its activity on adults was over 10-fold greater than that of abamectin. Spray concentrations of 10 and 50 mg AI litre-1 in Ageratum houstonianum Mill flowers resulted in total suppression of adults up to day 11 and of larvae up to day 20 after treatment. Under standard laboratory conditions, emamectin exhibits a considerable activity on the whitefly Bemisia tabaci (Gennadius) and the leafminer Liriomyza huidobrensis (Blanchard). Further studies are required to evaluate its potential activity on the latter pests under field conditions.

  6. Dominant resistance to Bt cotton and minor cross-resistance to Bt toxin Cry2Ab in cotton bollworm from China

    PubMed Central

    Jin, Lin; Wei, Yiyun; Zhang, Lei; Yang, Yihua; Tabashnik, Bruce E; Wu, Yidong

    2013-01-01

    Evolution of resistance by insect pests threatens the long-term benefits of transgenic crops that produce insecticidal proteins from Bacillus thuringiensis (Bt). Previous work has detected increases in the frequency of resistance to Bt toxin Cry1Ac in populations of cotton bollworm, Helicoverpa armigera, from northern China where Bt cotton producing Cry1Ac has been grown extensively for more than a decade. Confirming that trend, we report evidence from 2011 showing that the percentage of individuals resistant to a diagnostic concentration of Cry1Ac was significantly higher in two populations from different provinces of northern China (1.4% and 2.3%) compared with previously tested susceptible field populations (0%). We isolated two resistant strains: one from each of the two field-selected populations. Relative to a susceptible strain, the two strains had 460- and 1200-fold resistance to Cry1Ac, respectively. Both strains had dominant resistance to a diagnostic concentration of Cry1Ac in diet and to Bt cotton leaves containing Cry1Ac. Both strains had low, but significant cross-resistance to Cry2Ab (4.2- and 5.9-fold), which is used widely as the second toxin in two-toxin Bt cotton. Compared with resistance in other strains of H. armigera, the resistance in the two strains characterized here may be especially difficult to suppress. PMID:24478804

  7. Sound-sensitive neurons innervate the ventro-lateral protocerebrum of the heliothine moth brain.

    PubMed

    Pfuhl, Gerit; Zhao, Xin-Cheng; Ian, Elena; Surlykke, Annemarie; Berg, Bente G

    2014-02-01

    Many noctuid moth species perceive ultrasound via tympanic ears that are located at the metathorax. Whereas the neural processing of auditory information is well studied at the peripheral and first synaptic level, little is known about the features characterizing higher order sound-sensitive neurons in the moth brain. During intracellular recordings from the lateral protocerebrum in the brain of three noctuid moth species, Heliothis virescens, Helicoverpa armigera and Helicoverpa assulta, we found an assembly of neurons responding to transient sound pulses of broad bandwidth. The majority of the auditory neurons ascended from the ventral cord and ramified densely within the anterior region of the ventro-lateral protocerebrum. The physiological and morphological characteristics of these auditory neurons were similar. We detected one additional sound-sensitive neuron, a brain interneuron with its soma positioned near the calyces of mushroom bodies and with numerous neuronal processes in the ventro-lateral protocerebrum. Mass-staining of ventral-cord neurons supported the assumption that the ventro-lateral region of the moth brain was the main target for the auditory projections ascending from the ventral cord.

  8. A global approach to resistance monitoring.

    PubMed

    Sivasupramaniam, Sakuntala; Head, Graham P; English, Leigh; Li, Yue Jin; Vaughn, Ty T

    2007-07-01

    Transgenic crops producing insecticidal toxins from the bacterium Bacillus thuringiensis (Bt) have been grown in many parts of the world since 1996. In the United States, the Environmental Protection Agency (EPA) has required that industry submit insect resistance management (IRM) plans for each Bt corn and cotton product commercialized. A coalition of stakeholders including the EPA, USDA, academic scientists, industry, and grower organizations have cooperated in developing specific IRM strategies. Resistance monitoring (requiring submission of annual reports to the EPA), and a remedial action plan addressing any contingency if resistance should occur, are important elements of these strategies. At a global level, Monsanto conducts baseline susceptibility studies (prior to commercialization), followed by monitoring studies on target pest populations, for all of its commercialized Bt crop products. To date, Monsanto has conducted baseline/monitoring studies in Argentina, Australia, Brazil, Canada, China, Colombia, India, Mexico, the Philippines, South Africa, Spain, and the United States. Examples of pests on which resistance monitoring has been conducted include cotton bollworm, Helicoverpa zea, European corn borer, Ostrinia nubilalis, pink bollworm, Pectinophora gossypiella, Southwestern corn borer, Diatraea grandiosella, tobacco budworm, Heliothis virescens, and western corn rootworm, Diabrotica virgifera virgifera, in the United States, cotton bollworm, Helicoverpa armigera, in China, India and Australia, and H. virescens and H. zea in Mexico. No field-selected resistance to Bt crops has been documented.

  9. Binding sites for Bacillus thuringiensis Cry2Ae toxin on heliothine brush border membrane vesicles are not shared with Cry1A, Cry1F, or Vip3A toxin.

    PubMed

    Gouffon, C; Van Vliet, A; Van Rie, J; Jansens, S; Jurat-Fuentes, J L

    2011-05-01

    The use of combinations of Bacillus thuringiensis (Bt) toxins with diverse modes of action for insect pest control has been proposed as the most efficient strategy to increase target range and delay the onset of insect resistance. Considering that most cases of cross-resistance to Bt toxins in laboratory-selected insect colonies are due to alteration of common toxin binding sites, independent modes of action can be defined as toxins sharing limited or no binding sites in brush border membrane vesicles (BBMV) prepared from the target insect larvae. In this paper, we report on the specific binding of Cry2Ae toxin to binding sites on BBMV from larvae of the three most commercially relevant heliothine species, Heliothis virescens, Helicoverpa zea, and Helicoverpa armigera. Using chromatographic purification under reducing conditions before labeling, we detected specific binding of radiolabeled Cry2Ae, which allowed us to perform competition assays using Cry1Ab, Cry1Ac, Cry1Fa, Vip3A, Cry2Ae, and Cry2Ab toxins as competitors. In these assays, Cry2Ae binding sites were shared with Cry2Ab but not with the tested Cry1 or Vip3A toxins. Our data support the use of Cry2Ae toxin in combination with Cry1 or Vip3A toxins in strategies to increase target range and delay the onset of heliothine resistance.

  10. Binding Sites for Bacillus thuringiensis Cry2Ae Toxin on Heliothine Brush Border Membrane Vesicles Are Not Shared with Cry1A, Cry1F, or Vip3A Toxin ▿

    PubMed Central

    Gouffon, C.; Van Vliet, A.; Van Rie, J.; Jansens, S.; Jurat-Fuentes, J. L.

    2011-01-01

    The use of combinations of Bacillus thuringiensis (Bt) toxins with diverse modes of action for insect pest control has been proposed as the most efficient strategy to increase target range and delay the onset of insect resistance. Considering that most cases of cross-resistance to Bt toxins in laboratory-selected insect colonies are due to alteration of common toxin binding sites, independent modes of action can be defined as toxins sharing limited or no binding sites in brush border membrane vesicles (BBMV) prepared from the target insect larvae. In this paper, we report on the specific binding of Cry2Ae toxin to binding sites on BBMV from larvae of the three most commercially relevant heliothine species, Heliothis virescens, Helicoverpa zea, and Helicoverpa armigera. Using chromatographic purification under reducing conditions before labeling, we detected specific binding of radiolabeled Cry2Ae, which allowed us to perform competition assays using Cry1Ab, Cry1Ac, Cry1Fa, Vip3A, Cry2Ae, and Cry2Ab toxins as competitors. In these assays, Cry2Ae binding sites were shared with Cry2Ab but not with the tested Cry1 or Vip3A toxins. Our data support the use of Cry2Ae toxin in combination with Cry1 or Vip3A toxins in strategies to increase target range and delay the onset of heliothine resistance. PMID:21441333

  11. Next-generation transgenic cotton: pyramiding RNAi and Bt counters insect resistance.

    PubMed

    Ni, Mi; Ma, Wei; Wang, Xiaofang; Gao, Meijing; Dai, Yan; Wei, Xiaoli; Zhang, Lei; Peng, Yonggang; Chen, Shuyuan; Ding, Lingyun; Tian, Yue; Li, Jie; Wang, Haiping; Wang, Xiaolin; Xu, Guowang; Guo, Wangzhen; Yang, Yihua; Wu, Yidong; Heuberger, Shannon; Tabashnik, Bruce E; Zhang, Tianzhen; Zhu, Zhen

    2017-02-15

    Transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are extensively cultivated worldwide. To counter rapidly increasing pest resistance to crops that produce single Bt toxins, transgenic plant 'pyramids' producing two or more Bt toxins that kill the same pest have been widely adopted. However, cross-resistance and antagonism between Bt toxins limit the sustainability of this approach. Here we describe development and testing of the first pyramids of cotton combining protection from a Bt toxin and RNA interference (RNAi). We developed two types of transgenic cotton plants producing double-stranded RNA (dsRNA) from the global lepidopteran pest Helicoverpa