Science.gov

Sample records for heliospheric plasma turbulence

  1. Modelling turbulence in the outer heliosphere

    NASA Astrophysics Data System (ADS)

    Macek, Wieslaw

    2016-07-01

    Turbulence is complex behaviour that is ubiquitous both in laboratory and astrophysical magnetized plasmas. Notwithstanding the progress in simulation of turbulence in various continuous media, its mechanism is still not sufficiently clear. Therefore, following the basic idea of Kolmogorov, some phenomenological models of scaling behaviour have been proposed, including fractal and multifractal modelling, that can reveal the intermittent character of turbulence. Based on wealth of data provided by deep spacecraft missions including Voyager 1 and 2, these models show that the turbulence in the entire heliosphere is intermittent and multifractal. Moreover, the degree of multifractality decreases with the heliocentric distance and is modulated by the phases of the solar cycles, also beyond the heliospheric termination shock, i. e. in the heliosheath. However, in the very local interstellar medium beyond the heliopause turbulence becomes rather weak and less intermittent, as shown by recent measurements from Voyager 1. This suggests that the heliosphere is immersed in a relatively quiet environment. Hence these studies of turbulence, especially at the heliospheric boundaries, demonstrate that the outer heliosphere provides an interesting possibility to look into turbulence in various media.

  2. Modeling Heliospheric Plasma Turbulence: A Critique of the Effects of Completeness, Realism and Size

    NASA Astrophysics Data System (ADS)

    Matthaeus, W. H.; Wan, M.; Parashar, T.; Shay, M. A.

    2015-12-01

    With the Solar Probe and Solar Orbiter missions approaching, and the highly capable instruments of MMS already in orbit, there is an upwelling of interest in understanding plasma turbulence and related effects at kinetic scales. Accordingly a variety of methods have been employed to study kinetic turbulence and in particular dissipation and cascade processes and their effects on protons, electrons and minor ions. Here we discuss the influence of system size, and the completeness and realism of the several kinetic physics models that are employed. One important issue is whether coherent structures such as current sheets can be properly represented and evolved in smaller systems; this is particular important when turbulence is intermittent and non-self similar, so that couplings become nonlocal in scale. Another factor is resolution, both spatial and statistical - what are the effects of counting statistics in PIC and velocity filamentation in Vlasov models? Also discussed is the efficacy and strategic use of models with reduced physics and/or dimensionality - hybrid, Reduced MHD and gyrokinetics, for example. It is suggested, using several example problems, how the cross comparison of models in the context of a framework such as Turbochallenge may have wide ranging conceptual impact.

  3. Particle acceleration, transport and turbulence in cosmic and heliospheric physics

    NASA Technical Reports Server (NTRS)

    Matthaeus, W.

    1992-01-01

    In this progress report, the long term goals, recent scientific progress, and organizational activities are described. The scientific focus of this annual report is in three areas: first, the physics of particle acceleration and transport, including heliospheric modulation and transport, shock acceleration and galactic propagation and reacceleration of cosmic rays; second, the development of theories of the interaction of turbulence and large scale plasma and magnetic field structures, as in winds and shocks; third, the elucidation of the nature of magnetohydrodynamic turbulence processes and the role such turbulence processes might play in heliospheric, galactic, cosmic ray physics, and other space physics applications.

  4. Three-Dimensional Reconnection and Turbulence in the Outer Heliosphere

    NASA Astrophysics Data System (ADS)

    Gingell, P.; Burgess, D.; Matteini, L.

    2015-12-01

    In the outer heliosphere, close to the heliopause, we can expect the heliospheric current sheet to form a region of closely-packed, thin current sheets. These structures may be subject to an ion-kinetic tearing instability, and hence generate magnetic islands and hot populations of ions associated with magnetic reconnection. It has been suggested that reconnection processes in this environment have important implications for local particle transport, influencing the porosity of the sectored heliosheath, and for the generation of anomalous cosmic rays via acceleration at reconnection sites. We study this complex environment by means of three-dimensional hybrid simulations over long time scales, in order to capture the evolution of the system from linear growth of the tearing instability at early times, to a fully developed turbulent cascade at late times. Simulations are conducted using both force-free and Harris current sheet equilibria, with varying plasma beta and guide field angle. We discuss the evolution of the magnetic topology, and how changes in the initial conditions affect reconnection rates, particle acceleration, cross-boundary transport and magnetic spectra. We also examine the effect of including an energetic population of interstellar H+ pick-up ions. Finally, given the turbulent end state in the simulations, we also investigate the multiple current sheet system as a general scenario for driving turbulence, and as an alternative to the common methods for simulating decaying turbulence.

  5. Slow Mode Waves in the Heliospheric Plasma Sheet

    NASA Technical Reports Server (NTRS)

    Smith, Edward. J.; Zhou, Xiaoyan

    2007-01-01

    We report the results of a search for waves/turbulence in the Heliospheric Plasma Sheet (HPS) surrounding the Heliospheric Current Sheet (HCS). The HPS is treated as a distinctive heliospheric structure distinguished by relatively high Beta, slow speed plasma. The data used in the investigation are from a previously published study of the thicknesses of the HPS and HCS that were obtained in January to May 2004 when Ulysses was near aphelion at 5 AU. The advantage of using these data is that the HPS is thicker at large radial distances and the spacecraft spends longer intervals inside the plasma sheet. From the study of the magnetic field and solar wind velocity components, we conclude that, if Alfven waves are present, they are weak and are dominated by variations in the field magnitude, B, and solar wind density, NP, that are anti-correlated.

  6. Commission 49: Interplanetary Plasma and Heliosphere

    NASA Astrophysics Data System (ADS)

    Gopalswamy, Natchimuthuk; Mann, Ingrid; Bougeret, Jean-Louise; Briand, Carine; Lallement, Rosine; Lario, David; Manoharan, P. K.; Shibata, Kazunari; Webb, David F.

    2012-04-01

    Commission 49 (Interplanetary Plasma and Heliosphere) is part of IAU Division II (Sun and Heliosphere). The research topics include large-scale solar disturbances such as coronal mass ejections (CMEs), shocks, and corotating interaction regions (CIRs) propagating into the heliosphere. The disturbances propagate through the solar wind, which essentially defines the heliosphere. The solar disturbances provide large-scale laboratory to study plasma processes over various time and spatial scales, the highest spatial scale being the size of the heliosphere itself (~100 AU). These solar disturbances are related to solar activity in the form of active regions and coronal holes. Solar eruptions are accompanied by particle acceleration and the particles can be hazardous to life on earth in various ways from modifying the ionosphere to damaging space technology and increasing lifetime radiation dosage to astronauts and airplane crew. Particle acceleration in solar eruptions poses fundamental physics questions because the underlying mechanisms are not fully understood. One of important processes is the particle acceleration by shocks, which occurs throughout the heliosphere. The heliosphere has both neutral and ionized material, with interesting interaction between the two components.

  7. ION-SCALE TURBULENCE IN THE INNER HELIOSPHERE: RADIAL DEPENDENCE

    SciTech Connect

    Comisel, H.; Motschmann, U.; Büchner, J.; Narita, Y.; Nariyuki, Y.

    2015-10-20

    The evolution of the ion-scale plasma turbulence in the inner heliosphere is studied by associating the plasma parameters for hybrid-code turbulence simulations to the radial distance from the Sun via a Solar wind model based mapping procedure. Using a mapping based on a one-dimensional solar wind expansion model, the resulting ion-kinetic scale turbulence is related to the solar wind distance from the Sun. For this purpose the mapping is carried out for various values of ion beta that correspond to the heliocentric distance. It is shown that the relevant normal modes such as ion cyclotron and ion Bernstein modes will occur first at radial distances of about 0.2–0.3 AU, i.e., near the Mercury orbit. This finding can be used as a reference, a prediction to guide the in situ measurements to be performed by the upcoming Solar Orbiter and Solar Probe Plus missions. Furthermore, a radial dependence of the wave-vector anisotropy was obtained. For astrophysical objects this means that the spatial scales of filamentary structures in interstellar media or astrophysical jets can be predicted for photometric observations.

  8. Dynamical age of solar wind turbulence in the outer heliosphere

    NASA Astrophysics Data System (ADS)

    Matthaeus, William H.; Smith, Charles W.; Oughton, Sean

    1998-04-01

    In an evolving turbulent medium, a natural timescale can be defined in terms of the energy decay time. The time evolution may be complicated by other effects such as energy supply due to driving, and spatial inhomogeneity. In the solar wind the turbulence appears not to be simply engaging in free decay, but rather the energy level observed at a particular position in the heliosphere is affected by expansion, 'mixing', and driving by stream shear. Here we discuss a new approach for estimating the 'age' of solar wind turbulence as a function of heliocentric distance, using the local turbulent decay rate as the natural clock, but taking into account expansion and driving effects. The simplified formalism presented here is appropriate to low cross helicity turbulence in the outer heliosphere especially at low heliolatitudes. We employ Voyager data to illustrate our method, which improves upon the familiar estimates in terms of local eddy turnover times.

  9. Pickup ion-mediated plasma physics of the outer heliosphere and very local interstellar medium

    NASA Astrophysics Data System (ADS)

    Zank, G. P.

    2016-12-01

    Observations of plasma and turbulence in the outer heliosphere (the distant supersonic solar wind and the subsonic solar wind beyond the heliospheric termination shock) made by the Voyager Interstellar Mission and the energetic neutral atom observations made by the IBEX spacecraft have revealed that the underlying plasma in the outer heliosphere and very local interstellar medium (VLISM) comprises distinct thermal proton and electron and suprathermal pickup ion (PUI) populations. Estimates of the appropriate collisional frequencies show that the multi-component plasma is not collisionally equilibrated in either the outer heliosphere or VLISM. Furthermore, suprathermal PUIs in these regions form a thermodynamically dominant component. We review briefly a subset of the observations that led to the realization that the solar wind-VLISM interaction region is described by a non-equilibrated multi-component plasma and summarizes the derivation of suitable plasma models that describe a PUI-mediated plasma.

  10. Interplanetary magnetic field as a detector of turbulence in the inner heliosphere

    NASA Astrophysics Data System (ADS)

    Khabarova, O.

    2013-12-01

    Analysis of the interplanetary magnetic field (IMF) behavior at different scales may give a key for understanding of turbulence spatial evolution in the heliosphere. It has been known that the solar wind plasma becomes more and more turbulent with heliocentric distance. Recent multi-spacecraft investigations of the large-scale IMF [1] show unexpectedly fast lost of the regular sector structure of the solar wind in the inner heliosphere. In the ecliptic plane, it seems to be broken at 3-4 AU, much closer to the Sun than the Parker spiral gets perpendicular to the sunward direction. At the same time, the high-latitude solar wind remains more structured at the same heliocentric distances [2]. This fact may bear evidence of radial increase of turbulence and intermittency in the solar wind due to magnetic reconnection. The magnetic reconnection recurrently occurs at the large-scale heliospheric current sheet (HCS) as well as at smaller-scale current sheets during the solar wind expansion [3]. As a result, a significant part of the heliosphere is filled with secondary current sheets as well as with waves and accelerated particles in some vicinity of the HCS. Under averaging, it looks as a radial increase of turbulence, especially in low latitudes. It also can be considered as one of the main causes of the break of the expected IMF radial dependence law [1, 2]. Results of the consequent multi-spacecraft analysis of plasma and magnetic filed turbulence characteristics at different heliocentric distances and heliolatitudes will be discussed. 1. O. Khabarova, V. Obridko, Puzzles of the Interplanetary Magnetic Field in the Inner Heliosphere, 2012, Astrophysical Journal, 761, 2, 82, doi:10.1088/0004-637X/761/2/82, http://arxiv.org/pdf/1204.6672v2.pdf 2. O.V. Khabarova, The interplanetary magnetic field: radial and latitudinal dependences, Astronomy Reports, 2013, 57, 11, http://arxiv.org/ftp/arxiv/papers/1305/1305.1204.pdf 3. V. Zharkova, O. Khabarova, Particle Acceleration in

  11. Turbulence transport modeling of the temporal outer heliosphere

    SciTech Connect

    Adhikari, L.; Zank, G. P.; Hu, Q.; Dosch, A.

    2014-09-20

    The solar wind can be regarded as a turbulent magnetofluid, evolving in an expanding solar wind and subject to turbulent driving by a variety of in situ sources. Furthermore, the solar wind and the drivers of turbulence are highly time-dependent and change with solar cycle. Turbulence transport models describing low-frequency magnetic and velocity fluctuations in the solar wind have so far neglected solar cycle effects. Here we consider the effects of solar cycle variability on a turbulence transport model developed by Zank et al. This model is appropriate for the solar wind beyond about 1 AU, and extensions have described the steady-state dependence of the magnetic energy density fluctuations, correlation length, and solar wind temperature throughout the outer heliosphere. We find that the temporal solar wind introduces a periodic variability, particularly beyond ∼10 AU, in the magnetic energy density fluctuations, correlation length, and solar wind temperature. The variability is insufficient to account for the full observed variability in these quantities, but we find that the time-dependent solutions trace the steady-state solutions quite well, suggesting that the steady-state models are reasonable first approximations.

  12. Division II: Commission 49: Interplanetary Plasma and the Heliosphere

    NASA Astrophysics Data System (ADS)

    Gopalswamy, Natchimuthuk; Mann, Ingrid; Bougeret, Jean-Louis; Briand, Carine; Lallement, Rosine; Lario, David; Manoharan, P. K.; Shibata, Kazunari; Webb, David F.

    2015-08-01

    The President of IAU Commission 49 (C49; Interplanetary Plasma and the Heliosphere), Nat Gopalswamy, chaired the business meeting of C10, which took place on August 23, 2012 in the venue of the IAU General Assembly in Beijing (2:00 - 3:30 PM, Room 405).

  13. Meridional plasma flow in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Lazarus, A. J.; Yedidia, B.; Villanueva, L.; Mcnutt, R. L., Jr.; Belcher, J. W.; Villante, U.; Burlaga, L. F.

    1988-01-01

    Voyager 2 observations made in the outer heliosphere near 25 AU and within 2 deg of the heliographic equatorial plane show periodic variations in the meridional (North/South) flow velocities that are much more prominent than the East/West variations. An autocorrelation analysis shows that the flow variation has a period of about 25.5 days in the latter half of 1986, in approximate agreement with the solar rotation period. The results suggest that increased pressure in interaction regions remains the best candidate for the driver of the nonradial flows.

  14. Thickness of Heliospheric Current and Plasma Sheets: Dependence on Distance

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Smith, E. J.; Winterhalter, D.; McComas, D. J.; Skoug, R. M.; Goldstein, B. E.; Smith, C. W.

    2005-05-01

    Heliospheric current sheets (HCS) are well defined structures that separate the interplanetary magnetic fields with inverse polarities. Surrounded by heliospheric plasma sheets (HPS), the current sheets stretch throughout the heliosphere. Interesting questions that still remain unanswered include how the thickness of these structures will change along the distance? And what determines the thickness of these structures? To answer these fundamental questions, we have carried out a study of the HCS and HPS using recent Ulysses data near 5 AU. When the results were compared with earlier studies at 1 AU using ISEE-3 data, they were surprising and unexplained. Although the plasma sheet grew thicker, the embedded current sheet grew thinner! Using data under the same (or very similar) circumstances, we have extended the analysis in two ways. First, the same current-plasma sheets studied at 5 AU have been identified at 1 AU using ACE data. Second, data obtained while Ulysses was en-route to Jupiter near 3 AU have been analyzed. This three-point investigation reveals the thickness variation along the distance and enables the examination of the controller of this variation.

  15. Turbulent complex (dusty) plasma

    NASA Astrophysics Data System (ADS)

    Zhdanov, Sergey; Schwabe, Mierk

    2017-04-01

    As a paradigm of complex system dynamics, solid particles immersed into a weakly ionized plasma, so called complex (dusty) plasmas, were (and continue to be) a subject of many detailed studies. Special types of dynamical activity have been registered, in particular, spontaneous pairing, entanglement and cooperative action of a great number of particles resulting in formation of vortices, self-propelling, tunneling, and turbulent movements. In the size domain of 1-10 mkm normally used in experiments with complex plasmas, the characteristic dynamic time-scale is of the order of 0.01-0.1 s, and these particles can be visualized individually in real time, providing an atomistic (kinetic) level of investigations. The low-R turbulent flow induced either by the instability in a complex plasma cloud or formed behind a projectile passing through the cloud is a typical scenario. Our simulations showed formation of a fully developed system of vortices and demonstrated that the velocity structure functions scale very close to the theoretical predictions. As an important element of self-organization, cooperative and turbulent particle motions are present in many physical, astrophysical, and biological systems. Therefore, experiments with turbulent wakes and turbulent complex plasma oscillations are a promising mean to observe and study in detail the anomalous transport on the level of individual particles.

  16. Electromagnetic strong plasma turbulence

    SciTech Connect

    Melatos, A.; Jenet, F. A.; Robinson, P. A.

    2007-02-15

    The first large-scale simulations of continuously driven, two-dimensional electromagnetic strong plasma turbulence are performed, for electron thermal speeds 0.01c{<=}v{<=}0.57c, by integrating the Zakharov equations for coupled Langmuir and transverse (T) waves near the plasma frequency. Turbulence scalings and wave number spectra are calculated, a transition is found from a mix of trapped and free T eigenstates for v{>=}0.1c to just free eigenstates for v{<=}0.1c, and wave energy densities are observed to undergo slow quasiperiodic oscillations.

  17. Division E Commission 49: Interplanetary Plasma and Heliosphere

    NASA Astrophysics Data System (ADS)

    Mann, Ingrid; Manoharan, P. K.; Gopalswamy, Natchimuthuk; Briand, Carine; Chashei, Igor V.; Gibson, Sarah E.; Lario, David; Hanaoka, Yoichiro; Malandraki, Olga; Kontar, Eduard; Richardson, John D.

    2016-04-01

    After a little more than forty years of work related to the interplanetary plasma and the heliosphere the IAU's Commission 49 was formally discontinued in 2015. The commission started its work when the first spacecraft were launched to measure the solar wind in-situ away from Earth orbit, both inward and outward from 1 AU. It now hands over its activities to a new commission during an era of space research when Voyager 1 measures in-situ the parameters of the local interstellar medium at the edge of the heliosphere. The commission will be succeeded by C.E3 with a similar area of responsibility but with more focused specific tasks that the community intends to address during the coming several years. This report includes a short description of the motivation for this commission and of the historical context. It then describes work from 2012 to 2015 during the present solar cycle 24 that has been the weakest in the space era so far. It gave rise to a large number of studies on solar energetic particles and cosmic rays. Other studies addressed e.g. the variation of the solar wind structure and energetic particle fluxes on long time scales, the detection of dust in the solar wind and the Voyager measurements at the edge of the heliosphere. The research is based on measurements from spacecraft that are at present operational and motivated by the upcoming Solar Probe + and Solar Orbiter missions to explore the vicinity of the Sun. We also report here the progress on new and planned radio instruments and their importance for heliospheric studies. Contributors to this report are Carine Briand, Yoichiro Hanaoka, Eduard Kontar, David Lario, Ingrid Mann, John D. Richardson.

  18. The role of magnetohydrodynamics in heliospheric space plasma physics research

    NASA Technical Reports Server (NTRS)

    Dryer, Murray; Smith, Zdenka Kopal; Wu, Shi Tsan

    1988-01-01

    Magnetohydrodynamics (MHD) is a fairly recent extension of the field of fluid mechanics. While much remains to be done, it has successfully been applied to the contemporary field of heliospheric space plasma research to evaluate the 'macroscopic picture' of some vital topics via the use of conducting fluid equations and numerical modeling and simulations. Some representative examples from solar and interplanetary physics are described to demonstrate that the continuum approach to global problems (while keeping in mind the assumptions and limitations therein) can be very successful in providing insight and large scale interpretations of otherwise intractable problems in space physics.

  19. Self-consistent Simulations of Plasma-Neutral in a Partially Ionized Astrophysical Turbulent Plasma

    NASA Astrophysics Data System (ADS)

    Shaikh, Dastgeer; Zank, G. P.

    2010-03-01

    A local turbulence model is developed to study energy cascades in the heliosheath and outer heliosphere (OH) based on self-consistent two-dimensional fluid simulations. The model describes a partially ionized magnetofluid OH that couples a neutral hydrogen fluid with a plasma primarily through charge-exchange interactions. Charge-exchange interactions are ubiquitous in warm heliospheric plasma, and the strength of the interaction depends largely on the relative speed between the plasma and the neutral fluid. Unlike small-length scale linear collisional dissipation in a single fluid, charge-exchange processes introduce channels that can be effective on a variety of length scales that depend on the neutral and plasma densities, temperature, relative velocities, charge-exchange cross section, and the characteristic length scales. We find, from scaling arguments and nonlinear coupled fluid simulations, that charge-exchange interactions modify spectral transfer associated with large-scale energy-containing eddies. Consequently, the turbulent cascade rate prolongs spectral transfer among inertial range turbulent modes. Turbulent spectra associated with the neutral and plasma fluids are therefore steeper than those predicted by Kolmogorov's phenomenology. Our work is important in the context of the global heliospheric interaction, the energization and transport of cosmic rays, gamma-ray bursts, interstellar density spectra, etc. Furthermore, the plasma-neutral coupling is crucial in understanding the energy dissipation mechanism in molecular clouds and star formation processes.

  20. Instabilities and Plasma Mixing at the Heliospheric Boundary

    NASA Astrophysics Data System (ADS)

    Avinash, K.; Zank, G. P.

    2014-12-01

    The stability of the heliopause (HP) that separates the tenuous heliosheath plasma from the relatively dense plasma of the local interstellar medium (LISM) is examined using a fully general model that includes all the important physical process pertaining to the heliosphere e.g., resonant charge exchange with neutral hydrogen, plasma flows and magnetic fields in the outer and inner heliosheath, and energetic neutral ENA) from the inner heliosheath. Charge exchange introduces Rayleigh Taylor (RT) like instability in the nose region of HP, the strong flow shear excites Kelvin-Helmholtz (KH) like instability in the flanks while mixed RT-KH modes are unstable in the shoulder region in between. ENA are found to be essential for the instability of flanks in the presence of magnetic field stabilization. Further, the mixing of the LISM plasma with solar wind (SW) plasma is across the HP caused by these instabilities is examined. The magnetic field in the OHS and IHS are oriented approximately parallel to each (on either side of HP). Such field lines normally do not experience reconnection However, we show that in the nonlinear phase, local mushroom like structures of RT and RT-KH mode will drag the OHS field lines across HP into the inner heliosheath. Driven by local plasma flows, these field lines will reconnect with magnetic field lines in the HIS. This reconnection of fields in OHS and IHS will greatly enhance the mixing of plasma across the HP. This scenario is examined using Sweet-Parker and Petscheck models of driven reconnection. The reconnection rates and mixing rates with collisional resistivity and anomalous resistivity are evaluated and compared with other mechanisms of mixing to assess the importance of reconnection in plasma mixing across HP.

  1. ADVECTIVE TRANSPORT OF INTERSTELLAR PLASMA INTO THE HELIOSPHERE ACROSS THE RECONNECTING HELIOPAUSE

    SciTech Connect

    Strumik, M.; Grzedzielski, S.; Czechowski, A.; Macek, W. M.; Ratkiewicz, R.

    2014-02-10

    We discuss results of magnetohydrodynamical model simulations of plasma dynamics in the proximity of the heliopause (HP). The model is shown to fit details of the magnetic field variations observed by the Voyager 1 spacecraft during the transition from the heliosphere to the local interstellar medium (LISM). We propose an interpretation of magnetic field structures observed by Voyager 1 in terms of fine-scale physical processes. Our simulations reveal an effective transport mechanism of relatively dense LISM plasma across the reconnecting HP into the heliosphere. The mechanism is associated with annihilation of magnetic sectors in the heliospheric plasma near the HP.

  2. An Unusual Heliospheric Plasma Sheet Crossing at 1 AU

    NASA Astrophysics Data System (ADS)

    Wu, C. C.; Liou, K.; Vourlidas, A.; Lepping, R. P.; Wang, Y. M.; Plunkett, S. P.; Socker, D. G.; Wu, S. T.

    2014-12-01

    At 11:46UT on September 9, 2011, the Wind spacecraft encountered an interplanetary (IP) fast forward shock. The shock was followed almost immediately (~5 minutes) by a short duration (~35 minutes), extremely large density pulse with a density peak of ~100 cm-3. While a sharp increase in the solar wind density is typical of an IP shock downstream, the unusual large density increase prompts a further investigation. After a close examination of other in situ data from Wind, we find the density pulse was associated with (1) a spike in the plasma beta (ratio of thermal to magnetic pressure), (2) multiple sign changes in the azimuthal angle of magnetic field, (3) depressed magnetic field, (4) a small radial component of magnetic field, and (5) a large (>90 degrees) pitch-angle change in suprathermal electrons (>200 eV) across the density pulse. We conclude that the density pulse is the heliospheric plasma sheet and the estimated thickness is ~820,000km. The unusually large density pulse is likely to be a result of the shock compression from behind. This view is supported by our 3D magnetohydrodynamic simulation. The detailed result and implications will be discussed. *This work is supported partially by ONR 6.1 program

  3. Coherent structures, dissipation and intermittency in plasma turbulence

    NASA Astrophysics Data System (ADS)

    Wan, M.; Matthaeus, W. H.; Roytershteyn, V.; Parashar, T.; Shay, M. A.; Karimabadi, H.; Wu, P.

    2015-12-01

    The nature of collisionless dissipation in turbulent plasmas such as the solar wind and the solar corona has been hotly debated recently. Here we report results from high resolution, fully kinetic simulations of plasmas turbulence in both two and three dimensions. The simulations show development of turbulent coherent structures, characterized by sheet-like current density structures spanning a range of scales. Results from particle-in-cell (PIC) simulations are also compared with MHD simulations in terms of coherent structures, dissipation and intermittency. An important conclusion, for all simulations examined, is that the dissipation is concentrated in very small volumes, reminiscent of the scenario that motivates the Kolmogorov refined similarity hypothesis in hydrodynamic turbulence. Extrapolated to large heliospheric system sizes, this leads to the expectation of significant departures from heating processes that operate uniformly in space. Results from latest 3D driven PIC simulations, as well as the connection to solar wind observations, will also be discussed.

  4. Plasma wave generation near the inner heliospheric shock

    NASA Technical Reports Server (NTRS)

    Macek, W. M.; Cairns, I. H.; Kurth, W. S.; Gurnett, D. A.

    1991-01-01

    There is mounting evidence that the Voyager 1 and 2 and Pioneer 11 spacecraft may approach the inner (termination) heliospheric shock near the end of this century. It is argued here, by analogy with planetary bow shocks, that energetic electrons backstreaming from the heliospheric shock along the magnetic field should be unstable to the generation of Langmuir waves by the electron beam instability. Analytic expressions for the cutoff velocity, corresponding to the beam speed of the electrons backstreaming from the shock, are derived for a standard solar wind model. At the front side of the heliosphere the maximum beam velocity is expected to be at the meridian passing through the nose of the shock, which is assumed to be aligned with the Very Local Inter-Stellar Medium flow. This foreshock region and the associated Langmuir waves are relevant to both the expected in situ observations of the heliospheric boundaries, and to the low-frequency (2-3 kHz) radio emissions observed by the Voyager spacecraft in the outer heliosphere. Provided that these radio emissions are generated by Langmuir waves, the minimum Langmuir wave electric fields at the remote source are estimated to be greater than about 3 - 30 microV/m.

  5. PLASMA HEATING DURING A CORONAL MASS EJECTION OBSERVED BY THE SOLAR AND HELIOSPHERIC OBSERVATORY

    SciTech Connect

    Murphy, N. A.; Raymond, J. C.; Korreck, K. E.

    2011-07-01

    We perform a time-dependent ionization analysis to constrain plasma heating requirements during a fast partial halo coronal mass ejection (CME) observed on 2000 June 28 by the Ultraviolet Coronagraph Spectrometer (UVCS) aboard the Solar and Heliospheric Observatory (SOHO). We use two methods to derive densities from the UVCS measurements, including a density sensitive O V line ratio at 1213.85 and 1218.35 A, and radiative pumping of the O VI {lambda}{lambda}1032, 1038 doublet by chromospheric emission lines. The most strongly constrained feature shows cumulative plasma heating comparable to or greater than the kinetic energy, while features observed earlier during the event show plasma heating of order or less than the kinetic energy. SOHO Michelson Doppler Imager observations are used to estimate the active region magnetic energy. We consider candidate plasma heating mechanisms and provide constraints when possible. Because this CME was associated with a relatively weak flare, the contribution from flare energy (e.g., through thermal conduction or energetic particles) is probably small; however, the flare may have been partially behind the limb. Wave heating by photospheric motions requires heating rates to be significantly larger than those previously inferred for coronal holes, but the eruption itself could drive waves that heat the plasma. Heating by small-scale reconnection in the flux rope or by the CME current sheet is not significantly constrained. UVCS line widths suggest that turbulence must be replenished continually and dissipated on timescales shorter than the propagation time in order to be an intermediate step in CME heating.

  6. Beam Plasma Turbulence Study.

    DTIC Science & Technology

    1983-05-01

    Ney, and J . F. Karczewski, Spae Sci. Instrum ., 4, 143 (1978). -- ’.. ...... .. " ’- -’ ... -,,, ,i, ,, - . --. : s v.-’ Z XW , - .. . Ř ’ - ’ " p...interactions with the able plasma theorists, Dr. J . R. Jasperse at the Air Force Geophysics Laboratory, Drs. B. Basu and J . Retterer of the Space Data Analysis...Drs. J . D. Winningham and J . Burch at the Southwest Research Institute, Dr. D. Klumpar of the University of Texas at Dallas, Dr. P. Kintner of the

  7. Trajectory structures in turbulent plasmas

    SciTech Connect

    Vlad, Madalina; Spineanu, Florin

    2006-11-03

    Particle stochastic advection in two dimensional divergence free velocity fields is studied. The special statistical properties of this process (non-Gaussian distribution, memory effects and quasi-coherent behavior) are determined using a new approach, the nested subensemble method. The effect of the statistics of trajectories on the evolution of drift turbulence in magnetized plasmas is studied. It essentialy consists in the tendency of structure formation.

  8. Electromagnetic scattering from turbulent plasmas

    SciTech Connect

    Resendes, D.G. Instituto Superior Tecnico, Rua Rovisco Pais, Lisboa )

    1992-11-15

    A self-consistent multiple-scattering theory of vector electromagnetic waves scattered from a turbulent plasma is presented. This approach provides a general and systematic treatment to all orders in turbulence of the scattering of electromagnetic waves in terms of the properties of the turbulent structure of the scattering system and is applicable in the full regime from underdense to overdense plasmas. To illustrate the theory, a plasma consisting of a finite number density of discrete scatterers with a simple geometry and statistical properties is chosen. In this approach the exact solution for a single scatterer is obtained first. From it the configuration-dependent solution for {ital N} scatterers is constructed. Rather than solving explicitly for this solution and then averaging, the averaging operation will be taken first in order to find an approximate equation obeyed by the mean or coherent field. The coherent and incoherent scattering are then determined in terms of the coherent field and the backscatter is evaluated. The coherent and incoherent scattering, our principal results, are expressed in a plane-wave basis in a form suitable for numerical computation. A number of interesting phenomena which may readily be incorporated into the theory are indicated.

  9. Turbulence in solar wind and laboratory plasmas

    SciTech Connect

    Carbone, V.

    2010-06-16

    Recent studies of plasma turbulence based on measurements within solar wind and laboratory plasmas has been discussed. Evidences for the presence of a turbulent energy cascade, using the Yaglom's law for MHD turbulence, has been provided through data from the Ulysses spacecraft. This allows, for the first time, a direct estimate of the turbulent energy transfer rate, which can contribute to the in situ heating of the solar wind. The energy cascade has been evidenced also for ExB electrostatic turbulence in laboratory magnetized plasmas using measurements of intermittent transport (bursty turbulence) at the edge of the RFX-mod reversed field pinch plasma device. Finally the problem of the dispersive region of turbulence in solar wind above the ion-cyclotron frequency, where a spectral break is usually observed, and the problem of dissipation in a collisionless fluid as the solar wind, are briefly discussed.

  10. Using Field-Particle Correlations to Diagnose the Collisionless Damping of Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Howes, Gregory; Klein, Kristropher

    2016-10-01

    Plasma turbulence occurs ubiquitously throughout the heliosphere, yet our understanding of how turbulence governs energy transport and plasma heating remains incomplete, constituting a grand challenge problem in heliophysics. In weakly collisional heliospheric plasmas, such as the solar corona and solar wind, damping of the turbulent fluctuations occurs due to collisionless interactions between the electromagnetic fields and the individual plasma particles. A particular challenge in diagnosing this energy transfer is that spacecraft measurements are typically limited to a single point in space. Here we present an innovative field-particle correlation technique that can be used with single-point measurements to estimate the energization of the plasma particles due to the damping of the electromagnetic fields, providing vital new information about this how energy transfer is distributed as a function of particle velocity. This technique has the promise to transform our ability to diagnose the kinetic plasma physical mechanisms responsible for not only the damping of turbulence, but also the energy conversion in both collisionless magnetic reconnection and particle acceleration. The work has been supported by NSF CAREER Award AGS-1054061, NSF AGS-1331355, and DOE DE-SC0014599.

  11. Strong turbulence of plasma waves

    NASA Technical Reports Server (NTRS)

    Goldman, M. V.

    1984-01-01

    This paper reviews recent work related to modulational instability and wave envelope self-focusing in dynamical and statistical systems. After introductory remarks pertinent to nonlinear optics realizations of these effects, the author summarizes the status of the subject in plasma physics, where it has come to be called 'strong Langmuir turbulence'. The paper treats the historical development of pertinent concepts, analytical theory, numerical simulations, laboratory experiments, and spacecraft observations. The role of self-similar self-focusing Langmuir envelope wave packets is emphasized, both in the Zakharov equation model for the wave dynamics and in a statistical theory based on this dynamical model.

  12. Global Variation of Meteor Trail Plasma Turbulence

    NASA Technical Reports Server (NTRS)

    Dyrud, L. P.; Hinrichs, J.; Urbina, J.

    2011-01-01

    We present the first global simulations on the occurrence of meteor trail plasma irregularities. These results seek to answer the following questions: when a meteoroid disintegrates in the atmosphere will the resulting trail become plasma turbulent, what are the factors influencing the development of turbulence, and how do they vary on a global scale. Understanding meteor trail plasma turbulence is important because turbulent meteor trails are visible as non-specular trails to coherent radars, and turbulence influences the evolution of specular radar meteor trails, particularly regarding the inference of mesospheric temperatures from trail diffusion rates, and their usage for meteor burst communication. We provide evidence of the significant effect that neutral atmospheric winds and density, and ionospheric plasma density have on the variability of meteor trail evolution and the observation of nonspecular meteor trails, and demonstrate that trails are far less likely to become and remain turbulent in daylight, explaining several observational trends using non-specular and specular meteor trails.

  13. Two-Dimensional Turbulence in Magnetized Plasmas

    ERIC Educational Resources Information Center

    Kendl, A.

    2008-01-01

    In an inhomogeneous magnetized plasma the transport of energy and particles perpendicular to the magnetic field is in general mainly caused by quasi two-dimensional turbulent fluid mixing. The physics of turbulence and structure formation is of ubiquitous importance to every magnetically confined laboratory plasma for experimental or industrial…

  14. Two-Dimensional Turbulence in Magnetized Plasmas

    ERIC Educational Resources Information Center

    Kendl, A.

    2008-01-01

    In an inhomogeneous magnetized plasma the transport of energy and particles perpendicular to the magnetic field is in general mainly caused by quasi two-dimensional turbulent fluid mixing. The physics of turbulence and structure formation is of ubiquitous importance to every magnetically confined laboratory plasma for experimental or industrial…

  15. Magnetohydrodynamic turbulence and turbulent dynamo in partially ionized plasma

    NASA Astrophysics Data System (ADS)

    Xu, Siyao; Lazarian, A.

    2017-06-01

    Astrophysical fluids are turbulent, magnetized, and frequently partially ionized. As an example of astrophysical turbulence, the interstellar turbulence extends over a remarkably large range of spatial scales and participates in key astrophysical processes happening on different ranges of scales. Significant progress has been achieved in the understanding of the magnetohydrodynamic (MHD) turbulence since the turn of the century, and this enables us to better describe turbulence in magnetized and partially ionized plasmas. In fact, the modern revolutionized picture of MHD turbulence physics facilitates the development of various theoretical domains, including the damping process for dissipating MHD turbulence and the dynamo process for generating MHD turbulence with many important astrophysical implications. In this paper, we review some important findings from our recent theoretical works to demonstrate the interconnection between the properties of MHD turbulence and those of turbulent dynamo in a partially ionized gas. We also briefly exemplify some new tentative studies on how the revised basic processes influence the associated outstanding astrophysical problems in areas such as magnetic reconnection, cosmic ray scattering, and magnetic field amplification in both the early and present-day universe.

  16. Turbulence modelling of thermal plasma flows

    NASA Astrophysics Data System (ADS)

    Shigeta, Masaya

    2016-12-01

    This article presents a discussion of the ideas for modelling turbulent thermal plasma flows, reviewing the challenges, efforts, and state-of-the-art simulations. Demonstrative simulations are also performed to present the importance of numerical methods as well as physical models to express turbulent features. A large eddy simulation has been applied to turbulent thermal plasma flows to treat time-dependent and 3D motions of multi-scale eddies. Sub-grid scale models to be used should be able to express not only turbulent but also laminar states because both states co-exist in and around thermal plasmas which have large variations of density as well as transport properties under low Mach-number conditions. Suitable solution algorithms and differencing schemes must be chosen and combined appropriately to capture multi-scale eddies and steep gradients of temperature and chemical species, which are turbulent features of thermal plasma flows with locally variable Reynolds and Mach numbers. Several simulations using different methods under different conditions show commonly that high-temperature plasma regions exhibit less turbulent structures, with only large eddies, whereas low-temperature regions tend to be more turbulent, with numerous small eddies. These numerical results agree with both theoretical insight and photographs that show the characteristics of eddies. Results also show that a turbulence transition of a thermal plasma jet through a generation-breakup process of eddies in a torch is dominated by fluid dynamic instability after ejection rather than non-uniform or unsteady phenomena.

  17. Development of turbulence in a dusty plasma

    NASA Astrophysics Data System (ADS)

    Schwabe, Mierk; Zhdanov, Sergey; Räth, Christoph

    2016-10-01

    Complex or dusty plasmas are low temperature plasmas which contain micrometer-sized particles (``dust''). The microparticles obtain high charges and interact with each other, effectively forming a solid, liquid or gas state in which the microparticles take over the role of molecules in conventional systems. Complex plasmas often are in a turbulent state, for instance when instabilities like the ``heartbeat'' instability or intense waves are present. The movement of the microparticles, the carriers of the turbulent interactions in complex plasmas, can be directly followed, unlike that of atoms and molecules in conventional experiments on turbulence. Here we present results of an experiment on the development of turbulence in a complex plasma in the PK-3 Plus laboratory on board the International Space Station. The microparticle cloud was first stabilized against an instability. Once the stabilization was turned off, the cloud became unstable, and the movement of the particles became turbulent. In the report, we show how the energy spectra evolve during the development of turbulence. In the case of fully developed turbulence, the spectra display multiple cascades explaining well the transport of turbulent energy and enstrophy.

  18. Recent developments in plasma turbulence and turbulent transport

    SciTech Connect

    Terry, P.W.

    1997-09-22

    This report contains viewgraphs of recent developments in plasma turbulence and turbulent transport. Localized nonlinear structures occur under a variety of circumstances in turbulent, magnetically confined plasmas, arising in both kinetic and fluid descriptions, i.e., in either wave-particle or three-wave coupling interactions. These structures are non wavelike. They cannot be incorporated in the collective wave response, but interact with collective modes through their shielding by the plasma dielectric. These structures are predicted to modify turbulence-driven transport in a way that in consistent with, or in some cases are confirmed by recent experimental observations. In kinetic theory, non wavelike structures are localized perturbations of phase space density. There are two types of structures. Holes are self-trapped, while clumps have a self-potential that is too weak to resist deformation and mixing by ambient potential fluctuations. Clumps remain correlated in turbulence if their spatial extent is smaller than the correlation length of the scattering fields. In magnetic turbulence, clumps travel along stochastic magnetic fields, shielded by the plasma dielectric. A drag on the clump macro-particle is exerted by the shielding, inducing emission into the collective response. The emission in turn damps back on the particle distribution via Landau dampling. The exchange of energy between clumps and particles, as mediated by the collective mode, imposes constraints on transport. For a turbulent spectrum whose mean wavenumber along the equilibrium magnetic field is nonzero, the electron thermal flux is proportional to the ion thermal velocity. Conventional predictions (which account only for collective modes) are larger by the square root of the ion to electron mass ratio. Recent measurements are consistent with the small flux. In fluid plasma,s localized coherent structures can occur as intense vortices.

  19. Observations of velocity shear driven plasma turbulence

    NASA Technical Reports Server (NTRS)

    Kintner, P. M., Jr.

    1976-01-01

    Electrostatic and magnetic turbulence observations from HAWKEYE-1 during the low altitude portion of its elliptical orbit over the Southern Hemisphere are presented. The magnetic turbulence is confined near the auroral zone and is similar to that seen at higher altitudes by HEOS-2 in the polar cusp. The electrostatic turbulence is composed of a background component with a power spectral index of 1.89 + or - .26 and an intense component with a power spectral index of 2.80 + or - .34. The intense electrostatic turbulence and the magnetic turbulence correlate with velocity shears in the convective plasma flow. Since velocity shear instabilities are most unstable to wave vectors perpendicular to the magnetic field, the shear correlated turbulence is anticipated to be two dimensional in character and to have a power spectral index of 3 which agrees with that observed in the intense electrostatic turbulence.

  20. Scaling laws in magnetized plasma turbulence

    SciTech Connect

    Boldyrev, Stanislav

    2015-06-28

    Interactions of plasma motion with magnetic fields occur in nature and in the laboratory in an impressively broad range of scales, from megaparsecs in astrophysical systems to centimeters in fusion devices. The fact that such an enormous array of phenomena can be effectively studied lies in the existence of fundamental scaling laws in plasma turbulence, which allow one to scale the results of analytic and numerical modeling to the sized of galaxies, velocities of supernovae explosions, or magnetic fields in fusion devices. Magnetohydrodynamics (MHD) provides the simplest framework for describing magnetic plasma turbulence. Recently, a number of new features of MHD turbulence have been discovered and an impressive array of thought-provoking phenomenological theories have been put forward. However, these theories have conflicting predictions, and the currently available numerical simulations are not able to resolve the contradictions. MHD turbulence exhibits a variety of regimes unusual in regular hydrodynamic turbulence. Depending on the strength of the guide magnetic field it can be dominated by weakly interacting Alfv\\'en waves or strongly interacting wave packets. At small scales such turbulence is locally anisotropic and imbalanced (cross-helical). In a stark contrast with hydrodynamic turbulence, which tends to ``forget'' global constrains and become uniform and isotropic at small scales, MHD turbulence becomes progressively more anisotropic and unbalanced at small scales. Magnetic field plays a fundamental role in turbulent dynamics. Even when such a field is not imposed by external sources, it is self-consistently generated by the magnetic dynamo action. This project aims at a comprehensive study of universal regimes of magnetic plasma turbulence, combining the modern analytic approaches with the state of the art numerical simulations. The proposed study focuses on the three topics: weak MHD turbulence, which is relevant for laboratory devices, the solar

  1. Plasma sheet turbulence observed by Cluster II

    NASA Technical Reports Server (NTRS)

    Weygand, James M.; Kivelson, M. G.; Khurana, K. K.; Schwarzl, H. K.; Thompson, S. M.; McPherron, R. L.; Balogh, A.; Kistler, L. M.; Goldstein, M. L.; Borovsky, J.

    2005-01-01

    Cluster fluxgate magnetometer (FGM) and ion spectrometer (CIS) data are employed to analyze magnetic field fluctuations within the plasma sheet during passages through the magnetotail region in the summers of 2001 and 2002 and, in particular, to look for characteristics of magnetohydrodynamic (MHD) turbulence. Power spectral indices determined from power spectral density functions are on average larger than Kolmogorov's theoretical value for fluid turbulence as well as Kraichnan's theoretical value for MHD plasma turbulence. Probability distribution functions of the magnetic fluctuations show a scaling law over a large range of temporal scales with non-Gaussian distributions at small dissipative scales and inertial scales and more Gaussian distribution at large driving scales. Furthermore, a multifractal analysis of the magnetic field components shows scaling behavior in the inertial range of the fluctuations from about 20 s to 13 min for moments through the fifth order. Both the scaling behavior of the probability distribution functions and the multifractal structure function suggest that intermittent turbulence is present within the plasma sheet. The unique multispacecraft aspect and fortuitous spacecraft spacing allow us to examine the turbulent eddy scale sizes. Dynamic autocorrelation and cross correlation analysis of the magnetic field components allow us to determine that eddy scale sizes fit within the plasma sheet. These results suggest that magnetic field turbulence is occurring within the plasma sheet resulting in turbulent energy dissipation.

  2. Boundary Plasma Turbulence Simulations for Tokamaks

    SciTech Connect

    Xu, X; Umansky, M; Dudson, B; Snyder, P

    2008-05-15

    The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.

  3. Future heliospheric missions from Russian perspective

    NASA Astrophysics Data System (ADS)

    Petrukovich, Anatoli; Izmodenov, Vladislav; Zelenyi, Lev; Kuzin, Sergey; Kuznetsov, Vladimir; Eismont, Natan

    Structure and plasma processes of the heliosphere will be in the focus of attention for the next decade with the launch of Solar Orbiter, Solar Probe Plus, Interhelioprobe and SPORT, as well as the continuing flight of Voyagers and New Horizons. We review possible scientific goals and technical challenges for even more distant projects which are under discussion now. The projects include high-ecliptic observations with the help of solar sail, remote observations of heliospheric outer boundaries with interstellar medium as well as local high resolution turbulence studies. A major future challenge for the space weather research is the support for manned spaceflight beyond low Earth orbit.

  4. Using In Situ and Remote Sensing Data to Model the Plasma Flow throughout the Heliosphere

    NASA Astrophysics Data System (ADS)

    Kim, T. K.; Pogorelov, N. V.; Arge, C. N.; Jackson, B. V.; Kryukov, I.; Manoharan, P. K.; Tropf, D.; Yu, H. S.; Zank, G. P.

    2015-12-01

    The solar wind is a turbulent medium with physical properties fluctuating on multiple scales. We model three-dimensional solar wind plasma flow using our own software, Multi-Scale Fluid-Kinetic Simulation Suite, which, in addition to the thermal solar wind plasma, takes into account charge exchange of solar wind protons with interstellar neutral atoms and treats nonthermal ions (pickup ions, PUIs) born during this process as a separate fluid. Additionally, our model includes a description of turbulence generated by PUIs. For this investigation, we run our model using plasma and turbulence parameters from OMNI data as time-dependent boundary conditions at 1 AU for the Reynolds-averaged MHD equations and investigate the evolution of plasma and turbulent fluctuations along the trajectory of the New Horizons spacecraft, which recently passed by Pluto nearly ten years after launch. We also present solar wind simulations starting at 0.1 AU outwards using interplanetary scintillation data as boundary conditions. Simulations are compared with OMNI and STEREO data. The purpose of this study is to create a time-dependent solar wind model capable of reproducing the plasma flow, magnetic field, and turbulence along the trajectories of Solar Probe Plus and Solar Orbiter.

  5. A Hilbert-Huang transform approach to space plasma turbulence at kinetic scales

    NASA Astrophysics Data System (ADS)

    Consolini, G.; Alberti, T.; Yordanova, E.; Marcucci, M. F.; Echim, M.

    2017-09-01

    Heliospheric space plasmas are highly turbulent media and display multiscale fluctuations over a wide range of scales from the magnetohydrodynamic domain down to the kinetic one. The study of turbulence features is traditionally based on spectral and canonical structure function analysis. Here, we present an novel approach to the analysis of the multiscale nature of plasma turbulent fluctuations by means of Hilbert-Huang Transform (HHT). In particular we present a preliminary application of this technique to magnetic field fluctuations at kinetic scales in a fast solar wind stream as observed by Cluster mission. The HHT-energy spectrum reveals the intermittent and multiscale nature of fluctuation frequency at kinetic scales indicating that there are no-persistent and long standing frequencies.

  6. Experimental Achievements on Plasma Confinement and Turbulence

    SciTech Connect

    Fujisawa, A.

    2009-02-19

    This article presents a brief review of the experimental studies on turbulence and resultant transport in toroidal plasmas. The article focuses on two topics, physics of transport barrier and the role of mesoscale structure on plasma confinement, i.e. zonal flows. The two topics show the important roles of the mutual interactions between sheared flows, zonal flows and drift waves for plasma turbulence and transport. The findings can lead us to further generalized concept of the disparate scale interactions which could give a fundamental understanding of the plasma confinement from the first principle.

  7. Transport phenomena in a turbulent plasma

    NASA Astrophysics Data System (ADS)

    Bychenkov, V. Iu.; Gradov, O. M.; Silin, V. P.

    1984-04-01

    The results of a theory of ion-sound turbulence in a plasma which takes into account the electron quasilinear relaxation effect and the nonlinear wave interaction are presented. The transport coefficients characterizing the electrical current and heat flux in the plasma are obtained. A new point of view on the anomalous collision frequency is given.

  8. Global MHD Simulations of Space Plasma Environments: Heliosphere, Comets, Magnetospheres of Plants and Satellites

    NASA Technical Reports Server (NTRS)

    Kabin, K.; Hansen, K. C.; Gombosi, T. I.; Combi, M. R.; Linde, T. J.; DeZeeuw, D. L.; Groth, C. P. T.; Powell, K. G.; Nagy, A. F.

    2000-01-01

    Magnetohydrodynamics (MHD) provides an approximate description of a great variety of processes in space physics. Accurate numerical solutions of the MHD equations are still a challenge, but in the past decade a number of robust methods have appeared. Once these techniques made the direct solution of MHD equations feasible, a number of global three-dimensional models were designed and applied to many space physics objects. The range of these objects is truly astonishing, including active galactic nuclei, the heliosphere, the solar corona, and the solar wind interaction with planets, satellites, and comets. Outside the realm of space physics, MHD theory has been applied to such diverse problems as laboratory plasmas and electromagnetic casting of liquid metals. In this paper we present a broad spectrum of models of different phenomena in space science developed in the recent years at the University of Michigan. Although the physical systems addressed by these models are different, they all use the MHD equations as a unifying basis.

  9. Nusselt number scaling in tokamak plasma turbulence

    SciTech Connect

    Takeda, K.; Benkadda, S.; Hamaguchi, S.; Wakatani, M.

    2005-05-15

    Anomalous heat transport caused by ion temperature gradient (ITG) driven turbulence in tokamak plasmas is evaluated from numerical simulations of the two-dimensional (2D) partial-differential equations of the ITG model and of a reduced 1D version derived from a quasilinear approximation. In the strongly turbulent state, intermittent bursts of thermal transport are observed in both cases. In the strongly turbulent regime, the reduced model as well as the direct numerical simulation show that the Nusselt number Nu (normalized heat flux) scales with the normalized ion pressure gradient K{sub i} as Nu{proportional_to}K{sub i}{sup 1/3}. Since the Rayleigh number for ITG turbulence is proportional to K{sub i}, the Nusselt number scaling for ITG turbulence is thus similar to the classical thermal transport scaling for Rayleigh-Benard convections in neutral fluids.

  10. Origin and turbulence spreading of plasma blobs

    SciTech Connect

    Manz, P.; Birkenmeier, G.; Stroth, U.; Ribeiro, T. T.; Scott, B. D.; Carralero, D.; Müller, S. H.; Müller, H. W.; Wolfrum, E.; Fuchert, G.

    2015-02-15

    The formation of plasma blobs is studied by analyzing their trajectories in a gyrofluid simulation in the vicinity of the separatrix. Most blobs arise at the maximum radial electric field outside the separatrix. In general, blob generation is not bound to one particular radial position or instability. A simple model of turbulence spreading for the scrape-off layer is derived. The simulations show that the blob dynamics can be represented by turbulence spreading, which constitutes a substantial energy drive for far scrape-off layer turbulence and is a more suitable quantity to study blob generation compared to the skewness.

  11. Evolution of ion-acoustic plasma turbulence

    NASA Astrophysics Data System (ADS)

    Bychenkov, V. Iu.; Gradov, O. M.

    1986-03-01

    The evolution of ion-acoustic turbulence is studied on the basis of a numerical solution of the nonstationary equation for in-acoustic waves. Consideration is given to conditions under which the excitation threshold of long-wave ion-acoustic oscillations is exceeded as the result of instability saturation due to quasi-linear relaxation of electrons on turbulent pulsations and the induced scattering of ions by the ion sound. Distributed spectra of ion-acoustic turbulence are established in the plasma under these conditions.

  12. The turbulent bremsstrahlung (plasma-maser) effect

    SciTech Connect

    Vladimirov, S. V.

    2011-01-04

    Because of nonlinear interaction between particles and waves, energy conversion between waves of large frequency difference can occur without particle population inversion or resonant wave-wave interaction. The effect involves the nonresonant interaction of the plasma particles with a pair of plasma modes of large frequency difference, and wave energy is converted into particle energy. This effect can appear in laboratory as well as astrophysical plasmas and is important in determining the transport properties of weakly turbulent plasmas. Here, the most important aspects of the plasma-maser theory is discussed.

  13. Global simulations of plasma turbulence in laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Ricci, P.; Fasoli, A.; Furno, I.; Jolliet, S.; Loizu, J.; Mosetto, A.; Rogers, B. N.; Theiler, C.

    2012-04-01

    The Global Braginskii Solver (GBS) code has been developed in the last few years to simulate plasma turbulence in laboratory plasmas [1]. By solving the drift-reduced Braginkii equation in magnetic configurations of increasing complexity, from linear devices to the Simple Magnetized Toroidal (SMT) configuration, GBS performs non-linear self-consistent global three-dimensional simulations of the plasma dynamics, as the result of the interplay among the plasma source, the turbulent transport, and the plasma losses at the vessel. This gradual approach has allowed gaining a deep understanding of the turbulence dynamics, by identifying the instabilities responsible for driving plasma turbulence and to estimate the turbulence saturation amplitude. In particular, simulation results have pointed out the need of global simulations to correctly represent the dynamics of laboratory plasmas, as well as the importance of not separating fluctuations and equilibrium quantities. A code validation development project has been conducted side by side with the GBS development [2]. Such validation project has lead to the establishment of a rigorous methodology to carry out experiment-simulation comparison, and has allowed quantifying precisely the level of agreement between the GBS results and the experimental data from the TORPEX experiment at CRPP. [1] P. Ricci, B.N. Rogers, S. Brunner, Phys. Rev. Lett. 100, 225002 (2008); P. Ricci and B. N. Rogers, Phys. Rev. Lett. 104, 145001 (2010); B. N. Rogers and P. Ricci, Phys. Rev. Lett. 104, 225002 (2010); B. Li et al., Phys. Rev. E 83, 056406 (2011). [2] P. Ricci et al, Phys. Plasmas 16, 055703 (2009); P. Ricci et al., Phys. Plasmas 18, 032109 (2011).

  14. Plasma surrounding the global heliosphere at large distances controlled by the solar cycle

    NASA Astrophysics Data System (ADS)

    Dialynas, Konstantinos; Krimigis, Stamatios; Mitchell, Donald; Decker, Robert; Roelof, Edmond

    2016-04-01

    The past decade can be characterized by a series of key, groundbreaking remote energetic neutral atom (ENA) images (INCA, IBEX) and in-situ ion (Voyager 1 & 2) observations concerning the characteristics and interactions of the heliosphere with the Local Interstellar Medium (LISM). Voyagers 1 and 2 (V1, V2) discovered the reservoir of ions and electrons that constitute the heliosheath (HS) after crossing the termination shock (TS) 35deg north and 32deg south of the ecliptic plane at 94 and 84 astronomical units (1 AU= 1.5 x108 km), respectively. The in situ measurements by each Voyager were placed in a global context by remote sensing images using ENA obtained with the Ion and Neutral Camera (INCA) onboard Cassini orbiting Saturn. The ENA images contain a 5.2-55 keV hydrogen (H) ENA region (Belt) that loops through the celestial sphere and contributes to balancing the pressure of the interstellar magnetic field (ISMF). The success of any future mission with dedicated ENA detectors (e.g. the IMAP mission), highly depends on the antecedent understanding of the details of the plasma processes in the Heliosphere as revealed by remote sensing of the plasma environment characteristics. Therefore, we address here one of the remaining and most important questions: "Where do the 5-55 keV ENAs that INCA measures come from?". We analyzed INCA all-sky maps from 2003 to 2015 and compare the solar cycle (SC) variation of the ENAs in both the nose (upstream) and anti-nose (downstream) directions with the intensities of > 30 keV ions (source of ENA through charge exchange-CE with H) measured in-situ by V1 and V2, in overlapping energy bands ~30-55 keV. ENA intensities decrease during the declining phase of SC23 by ~x3 from 2003 to 2011 but recover through 2014 (SC24); similarly, V1 and V2 ion intensities also decrease and then recover through 2014. The similarity of time profiles of remotely sensed ENA and locally measured ions are consistent with (a) ENA originating in the HS

  15. X-Ray Emission in the Heliosphere: Ion-Neutral Collisions as a Plasma Diagnostic

    NASA Astrophysics Data System (ADS)

    Cravens, Tom; Sibeck, David; Collier, MIchael

    2015-04-01

    The solar corona is the most powerful source of x-rays in the solar system but x-ray emission has also been observed from planets, including the Earth and Jupiter, from the Moon, from comets, and from interstellar gas entering the heliosphere. Astrophysical x-ray emission primarily comes from hot plasmas, such as in the million degree solar corona. The gas and plasma in planetary atmospheres are rather cold and the x-ray emission is driven by solar radiation and/or the solar wind. For example, x-rays from Venus come from the scattering and K-shell fluorescence of solar x-rays from the neutral atmosphere. Auroral x-ray emission at Earth and Jupiter is produced by energetic electron and ion precipitation from the magnetospheres into the atmospheres. Cometary and heliospheric x-ray emission is caused by charge transfer of high charge state solar wind ions (e.g., O7+, C6+,…) with neutral hydrogen and helium.An important source of solar system x-rays is the solar wind charge exchange (SWCX) mechanism. The solar wind originates in the hot solar corona and species heavier than helium (comprising about 0.1% of the gas) are highly-charged (e.g., O7+, C6+, Fe12+,….). Such ions undergo charge transfer collisions when they encounter neutral gas (e.g., cometary or interstellar gas or the Earth’s geocoronal hydrogen). The product ions are in highly-excited states and, subsequently, emit soft x-ray photons. The SWCX mechanism can explain the observed cometary x-ray emission and can also explain part of the soft x-ray background (the other part of which originates in the hot interstellar medium).The Earth has an extensive hot hydrogen exosphere, or geocorona, that is visible in scattered solar Lyman alpha. X-ray emission is produced in the magnetosheath due to the SWCX mechanism as the solar wind interacts with the exospheric gas. The most intense x-ray emission comes from the subsolar sheath region and from the cusp regions. Imaging of this emission by a spacecraft located

  16. Evolving Waves and Turbulence in the Outer Corona and Inner Heliosphere: The Accelerating Expanding Box

    NASA Astrophysics Data System (ADS)

    Tenerani, Anna; Velli, Marco

    2017-07-01

    Alfvénic fluctuations in the solar wind display many properties reflecting an ongoing nonlinear cascade, e.g., a well-defined spectrum in frequency, together with some characteristics more commonly associated with the linear propagation of waves from the Sun, such as the variation of fluctuation amplitude with distance, dominated by solar wind expansion effects. Therefore, both nonlinearities and expansion must be included simultaneously in any successful model of solar wind turbulence evolution. Because of the disparate spatial scales involved, direct numerical simulations of turbulence in the solar wind represent an arduous task, especially if one wants to go beyond the incompressible approximation. Indeed, most simulations neglect solar wind expansion effects entirely. Here we develop a numerical model to simulate turbulent fluctuations from the outer corona to 1 au and beyond, including the sub-Alfvénic corona. The accelerating expanding box (AEB) extends the validity of previous expanding box models by taking into account both the acceleration of the solar wind and the inhomogeneity of background density and magnetic field. Our method incorporates a background accelerating wind within a magnetic field that naturally follows the Parker spiral evolution using a two-scale analysis in which the macroscopic spatial effect coupling fluctuations with background gradients becomes a time-dependent coupling term in a homogeneous box. In this paper we describe the AEB model in detail and discuss its main properties, illustrating its validity by studying Alfvén wave propagation across the Alfvén critical point.

  17. Structure of nonlocality of plasma turbulence

    NASA Astrophysics Data System (ADS)

    Gürcan, Ö. D.; Vermare, L.; Hennequin, P.; Berionni, V.; Diamond, P. H.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, P.; Grandgirard, V.; McDevitt, C. J.; Morel, P.; Sarazin, Y.; Storelli, A.; Bourdelle, C.; the Tore Supra Team

    2013-07-01

    Various indications on the weakly nonlocal character of turbulent plasma transport both from experimental fluctuation measurements from Tore Supra and observations from the full-f, flux-driven gyrokinetic code GYSELA are reported. A simple Fisher equation model of this weakly nonlocal dynamics can be formulated in terms of an evolution equation for the turbulent entropy density, which contains the basic phenomenon of radial turbulence spreading in addition to avalanche-like dynamics via coupling to profile modulations. A derivation of this model, which contains the so-called beach effect, a diffusive and convective flux components for the flux of turbulence intensity, in addition to linear group propagation is given, starting from the drift-kinetic equation. The proposed model has the form of a transport equation for turbulence intensity, and may be considered as an addition to transport modelling. The kinetic fluxes given, can be computed using model closures, or local gyrokinetics. The model is also used in a particular setup that represents the near edge region as a relatively stable zone between the core and edge region where the energy injection is locally more substantial. It is observed that with constant, physical coefficients, the model gives a convincing qualitative profile of fluctuation intensity when the turbulence is coming from the core region with either a group velocity or a convective flux.

  18. Complexity and Intermittent Turbulence in Space Plasmas

    NASA Technical Reports Server (NTRS)

    Chang, Tom; Tam, Sunny W. Y.; Wu, Cheng-Chin

    2004-01-01

    Sporadic and localized interactions of coherent structures arising from plasma resonances can be the origin of "complexity" of the coexistence of non- propagating spatiotemporal fluctuations and propagating modes in space plasmas. Numerical simulation results are presented to demonstrate the intermittent character of the non-propagating fluctuations. The technique of the dynamic renormalization-group is introduced and applied to the study of scale invariance of such type of multiscale fluctuations. We also demonstrate that the particle interactions with the intermittent turbulence can lead to the efficient energization of the plasma populations. An example related to the ion acceleration processes in the auroral zone is provided.

  19. Magnetic curvature effects on plasma interchange turbulence

    SciTech Connect

    Li, B. Liao, X.; Sun, C. K.; Ou, W.; Liu, D.; Gui, G.; Wang, X. G.

    2016-06-15

    The magnetic curvature effects on plasma interchange turbulence and transport in the Z-pinch and dipole-like systems are explored with two-fluid global simulations. By comparing the transport levels in the systems with a different magnetic curvature, we show that the interchange-mode driven transport strongly depends on the magnetic geometry. For the system with large magnetic curvature, the pressure and density profiles are strongly peaked in a marginally stable state and the nonlinear evolution of interchange modes produces the global convective cells in the azimuthal direction, which lead to the low level of turbulent convective transport.

  20. Measuring Collisionless Damping in Heliospheric Plasmas using Field-Particle Correlations

    NASA Astrophysics Data System (ADS)

    Klein, K. G.; Howes, G. G.

    2016-08-01

    An innovative field-particle correlation technique is proposed that uses single-point measurements of the electromagnetic fields and particle velocity distribution functions to investigate the net transfer of energy from fields to particles associated with the collisionless damping of turbulent fluctuations in weakly collisional plasmas, such as the solar wind. In addition to providing a direct estimate of the local rate of energy transfer between fields and particles, it provides vital new information about the distribution of that energy transfer in velocity space. This velocity-space signature can potentially be used to identify the dominant collisionless mechanism responsible for the damping of turbulent fluctuations in the solar wind. The application of this novel field-particle correlation technique is illustrated using the simplified case of the Landau damping of Langmuir waves in an electrostatic 1D-1V Vlasov-Poisson plasma, showing that the procedure both estimates the local rate of energy transfer from the electrostatic field to the electrons and indicates the resonant nature of this interaction. Modifications of the technique to enable single-point spacecraft measurements of fields and particles to diagnose the collisionless damping of turbulent fluctuations in the solar wind are discussed, yielding a method with the potential to transform our ability to maximize the scientific return from current and upcoming spacecraft missions, such as the Magnetospheric Multiscale (MMS) and Solar Probe Plus missions.

  1. Magnetic field amplification in turbulent astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Federrath, Christoph

    2016-12-01

    Magnetic fields play an important role in astrophysical accretion discs and in the interstellar and intergalactic medium. They drive jets, suppress fragmentation in star-forming clouds and can have a significant impact on the accretion rate of stars. However, the exact amplification mechanisms of cosmic magnetic fields remain relatively poorly understood. Here, I start by reviewing recent advances in the numerical and theoretical modelling of the turbulent dynamo, which may explain the origin of galactic and intergalactic magnetic fields. While dynamo action was previously investigated in great detail for incompressible plasmas, I here place particular emphasis on highly compressible astrophysical plasmas, which are characterised by strong density fluctuations and shocks, such as the interstellar medium. I find that dynamo action works not only in subsonic plasmas, but also in highly supersonic, compressible plasmas, as well as for low and high magnetic Prandtl numbers. I further present new numerical simulations from which I determine the growth of the turbulent (un-ordered) magnetic field component ( turb$ ) in the presence of weak and strong guide fields ( 0$ ). I vary 0$ over five orders of magnitude and find that the dependence of turb$ on 0$ is relatively weak, and can be explained with a simple theoretical model in which the turbulence provides the energy to amplify turb$ . Finally, I discuss some important implications of magnetic fields for the structure of accretion discs, the launching of jets and the star-formation rate of interstellar clouds.

  2. INTERPRETING POWER ANISOTROPY MEASUREMENTS IN PLASMA TURBULENCE

    SciTech Connect

    Chen, C. H. K.; Wicks, R. T.; Horbury, T. S.; Schekochihin, A. A.

    2010-03-10

    A relationship is derived between power anisotropy and wavevector anisotropy in turbulent fluctuations. This can be used to interpret plasma turbulence measurements, for example, in the solar wind. If fluctuations are spatially anisotropic, then the ion gyroscale break point in measured spectra in the directions parallel and perpendicular to the magnetic field would not occur at the same frequency, and similarly for the electron gyroscale break point. This is an important consideration when interpreting solar wind measurements in terms of anisotropic turbulence theories. Model magnetic field power spectra are presented assuming a cascade of critically balanced Alfven waves in the inertial range and kinetic Alfven waves in the dissipation range. The variation of power anisotropy with scale is compared to existing solar wind measurements, and the similarities and differences are discussed.

  3. Flux Rope Formation and Self-Generated Turbulent Reconnection Driven by the Plasmoid Instability in the Heliosphere

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, A.; Huang, Y. M.

    2015-12-01

    It has been established that the Sweet-Parker current layer in high Lundquist number reconnection is unstable to the super-Alfvénic plasmoid instability. Past two-dimensional magnetohydrodynamic simulations have demonstrated that the plasmoid instability leads to a new regime where the Sweet-Parker current layer changes into a chain of plasmoids connected by secondary current sheets, and the averaged reconnection rate becomes nearly independent of the Lundquist number. In this work, three-dimensional simulations with a guide field shows that the additional degree of freedom allows plasmoid instabilities to grow at oblique angles. We present a scenario in which large-scale oblique tearing modes overlap with each other, break flux surfaces, and stir up a spectrum of smaller-scale tearing modes, leading eventually to self-generated turbulent reconnection. The averaged reconnection rate in the self-generated turbulent state is of the order of a hundredth of the characteristic Alfvén speed, which is similar to the two-dimensional result but is an order of magnitude lower than the fastest reconnection rate reported in recent studies of externally driven three-dimensional turbulent reconnection. Kinematic and magnetic energy fluctuations both form elongated eddies along the direction of local magnetic field, which is a signature of anisotropic magnetohydrodynamic turbulence. Both energy fluctuations satisfy power-law spectra in the inertial range. The anisotropy of turbulence eddies is found to be nearly scale-independent, in contrast with the prediction of the Goldreich-Sridhar (GS) theory for anisotropic turbulence in a homogeneous plasma permeated by a uniform magnetic field. The effect of varying the magnitude of the toroidal field on the critical balance condition underlying the GS theory is discussed.

  4. Turbulent dynamo in a collisionless plasma

    PubMed Central

    Rincon, François; Califano, Francesco; Schekochihin, Alexander A.; Valentini, Francesco

    2016-01-01

    Magnetic fields pervade the entire universe and affect the formation and evolution of astrophysical systems from cosmological to planetary scales. The generation and dynamical amplification of extragalactic magnetic fields through cosmic times (up to microgauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions, and on scales of at least tens of kiloparsecs) are major puzzles largely unconstrained by observations. A dynamo effect converting kinetic flow energy into magnetic energy is often invoked in that context; however, extragalactic plasmas are weakly collisional (as opposed to magnetohydrodynamic fluids), and whether magnetic field growth and sustainment through an efficient turbulent dynamo instability are possible in such plasmas is not established. Fully kinetic numerical simulations of the Vlasov equation in a 6D-phase space necessary to answer this question have, until recently, remained beyond computational capabilities. Here, we show by means of such simulations that magnetic field amplification by dynamo instability does occur in a stochastically driven, nonrelativistic subsonic flow of initially unmagnetized collisionless plasma. We also find that the dynamo self-accelerates and becomes entangled with kinetic instabilities as magnetization increases. The results suggest that such a plasma dynamo may be realizable in laboratory experiments, support the idea that intracluster medium turbulence may have significantly contributed to the amplification of cluster magnetic fields up to near-equipartition levels on a timescale shorter than the Hubble time, and emphasize the crucial role of multiscale kinetic physics in high-energy astrophysical plasmas. PMID:27035981

  5. Turbulent dynamo in a collisionless plasma

    NASA Astrophysics Data System (ADS)

    Rincon, François; Califano, Francesco; Schekochihin, Alexander A.; Valentini, Francesco

    2016-04-01

    Magnetic fields pervade the entire universe and affect the formation and evolution of astrophysical systems from cosmological to planetary scales. The generation and dynamical amplification of extragalactic magnetic fields through cosmic times (up to microgauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions, and on scales of at least tens of kiloparsecs) are major puzzles largely unconstrained by observations. A dynamo effect converting kinetic flow energy into magnetic energy is often invoked in that context; however, extragalactic plasmas are weakly collisional (as opposed to magnetohydrodynamic fluids), and whether magnetic field growth and sustainment through an efficient turbulent dynamo instability are possible in such plasmas is not established. Fully kinetic numerical simulations of the Vlasov equation in a 6D-phase space necessary to answer this question have, until recently, remained beyond computational capabilities. Here, we show by means of such simulations that magnetic field amplification by dynamo instability does occur in a stochastically driven, nonrelativistic subsonic flow of initially unmagnetized collisionless plasma. We also find that the dynamo self-accelerates and becomes entangled with kinetic instabilities as magnetization increases. The results suggest that such a plasma dynamo may be realizable in laboratory experiments, support the idea that intracluster medium turbulence may have significantly contributed to the amplification of cluster magnetic fields up to near-equipartition levels on a timescale shorter than the Hubble time, and emphasize the crucial role of multiscale kinetic physics in high-energy astrophysical plasmas.

  6. Generation of quasistationary magnetic fields in a turbulent laser plasma

    NASA Astrophysics Data System (ADS)

    Bychenkov, V. Iu.; Gradov, O. M.; Chokparova, G. A.

    1984-07-01

    A theory is derived for the generation of quasi-stationary magnetic fields in a laser plasma with well developed ion-acoustic turbulence. Qualitative changes are caused in the nature of the magnetic-field generation by an anomalous anisotropic transport in the turbulent plasma. The role played by turbulent diffusion and thermodiffusive transport in the magnetic-field saturation is discussed.

  7. Techniques for the remote sensing of space plasma in the heliosphere via energetic neutral atoms - A review

    NASA Technical Reports Server (NTRS)

    Hsieh, K. C.; Curtis, C. C.; Fan, C. Y.; Gruntman, M. A.

    1992-01-01

    A survey is conducted for state-of-the-art techniques for detecting energetic neutral atoms (ENAs) in the 100-300 keV range, in regions from the heliospheric boundary to the auroral zones where the solar wind plays a crucial role. While ENA spectrometry allows sampling of the mass and energy distributions of a distant plasma, ENA imaging gives a global view of the structures and dynamics of an extended plasma. The ENA instrument designs discussed share many components which exhibit excellent flight performance as elements in charged-particle analyzers for space missions.

  8. Techniques for the remote sensing of space plasma in the heliosphere via energetic neutral atoms - A review

    NASA Technical Reports Server (NTRS)

    Hsieh, K. C.; Curtis, C. C.; Fan, C. Y.; Gruntman, M. A.

    1992-01-01

    A survey is conducted for state-of-the-art techniques for detecting energetic neutral atoms (ENAs) in the 100-300 keV range, in regions from the heliospheric boundary to the auroral zones where the solar wind plays a crucial role. While ENA spectrometry allows sampling of the mass and energy distributions of a distant plasma, ENA imaging gives a global view of the structures and dynamics of an extended plasma. The ENA instrument designs discussed share many components which exhibit excellent flight performance as elements in charged-particle analyzers for space missions.

  9. PLASMA EMISSION BY WEAK TURBULENCE PROCESSES

    SciTech Connect

    Ziebell, L. F.; Gaelzer, R.; Yoon, P. H.; Pavan, J. E-mail: rudi.gaelzer@ufrgs.br E-mail: joel.pavan@ufpel.edu.br

    2014-11-10

    The plasma emission is the radiation mechanism responsible for solar type II and type III radio bursts. The first theory of plasma emission was put forth in the 1950s, but the rigorous demonstration of the process based upon first principles had been lacking. The present Letter reports the first complete numerical solution of electromagnetic weak turbulence equations. It is shown that the fundamental emission is dominant and unless the beam speed is substantially higher than the electron thermal speed, the harmonic emission is not likely to be generated. The present findings may be useful for validating reduced models and for interpreting particle-in-cell simulations.

  10. Multifractality in plasma edge electrostatic turbulence

    NASA Astrophysics Data System (ADS)

    Neto, C. Rodrigues; Guimarães-Filho, Z. O.; Caldas, I. L.; Nascimento, I. C.; Kuznetsov, Yu. K.

    2008-08-01

    Plasma edge turbulence in Tokamak Chauffage Alfvén Brésilien (TCABR) [R. M. O. Galvão et al., Plasma Phys. Contr. Fusion 43, 1181 (2001)] is investigated for multifractal properties of the fluctuating floating electrostatic potential measured by Langmuir probes. The multifractality in this signal is characterized by the full multifractal spectra determined by applying the wavelet transform modulus maxima. In this work, the dependence of the multifractal spectrum with the radial position is presented. The multifractality degree inside the plasma increases with the radial position reaching a maximum near the plasma edge and becoming almost constant in the scrape-off layer. Comparisons between these results with those obtained for random test time series with the same Hurst exponents and data length statistically confirm the reported multifractal behavior. Moreover, the persistence of these signals, characterized by their Hurst exponent, present radial profile similar to the deterministic component estimated from analysis based on dynamical recurrences.

  11. New Thermodynamical Force in Plasma Phase Space that Controls Turbulence and Turbulent Transport

    PubMed Central

    Itoh, Sanae-I.; Itoh, Kimitaka

    2012-01-01

    Physics of turbulence and turbulent transport has been developed on the central dogma that spatial gradients constitute the controlling parameters, such as Reynolds number and Rayleigh number. Recent experiments with the nonequilibrium plasmas in magnetic confinement devices, however, have shown that the turbulence and transport change much faster than global parameters, after an abrupt change of heating power. Here we propose a theory of turbulence in inhomogeneous magnetized plasmas, showing that the heating power directly influences the turbulence. New mechanism, that an external source couples with plasma fluctuations in phase space so as to affect turbulence, is investigated. A new thermodynamical force in phase-space, i.e., the derivative of heating power by plasma pressure, plays the role of new control parameter, in addition to spatial gradients. Following the change of turbulence, turbulent transport is modified accordingly. The condition under which this new effect can be observed is also evaluated. PMID:23155481

  12. Transport Bifurcation in Plasma Interchange Turbulence

    NASA Astrophysics Data System (ADS)

    Li, Bo

    2016-10-01

    Transport bifurcation and mean shear flow generation in plasma interchange turbulence are explored with self-consistent two-fluid simulations in a flux-driven system with both closed and open field line regions. The nonlinear evolution of interchange modes shows the presence of two confinement regimes characterized by the low and high mean flow shear. By increasing the input heat flux above a certain threshold, large-amplitude oscillations in the turbulent and mean flow energy are induced. Both clockwise and counter-clockwise types of oscillations are found before the transition to the second regime. The fluctuation energy is decisively transferred to the mean flows by large-amplitude Reynolds power as turbulent intensity increases. Consequently, a transition to the second regime occurs, in which strong mean shear flows are generated in the plasma edge. The peak of the spectrum shifts to higher wavenumbers as the large-scale turbulent eddies are suppressed by the mean shear flow. The transition back to the first regime is then triggered by decreasing the input heat flux to a level much lower than the threshold for the forward transition, showing strong hysteresis. During the back transition, the mean flow decreases as the energy transfer process is reversed. This transport bifurcation, based on a field-line-averaged 2D model, has also been reproduced in our recent 3D simulations of resistive interchange turbulence, in which the ion and electron temperatures are separated and the parallel current is involved. Supported by the MOST of China Grant No. 2013GB112006, US DOE Contract No. DE-FC02-08ER54966, US DOE by LLNL under Contract DE-AC52-07NA2734.

  13. Laser diagnostics for plasma turbulence

    NASA Astrophysics Data System (ADS)

    The purpose of this effort is to further develop the multiple-beam laser scattering diagnostic for tokamak plasmas. Present laser scattering diagnostics have very poor spatial resolution. Yet good spatial resolution is necessary if adequate comparison of theory and experiment is to occur. The proposed multiple beam scattering diagnostic promises a spatial resolution of approximately 10 cm at a fluctuation wave number of 5 cm(exp -1) when the angular envelope of the beams is 0.1 radians. A larger angular envelope would further improve the spatial resolution. This kind of spatial resolution is impossible with current laser scattering diagnostics. Enclosed are two items. These items constitute the major results of this study. Appendix A is a draft of a paper being prepared for submission to the journal on the review of scientific instruments. This paper consists of three sections. Section 1 compares the proposed diagnostic to conventional laser scattering diagnostics and argues for the need of increased spatial resolution. Section 2 presents a thorough rendering of the conceptual basis of the proposed multiple beam diagnostic. Section 3 presents an optical design suitable for use on the TEXT upgrade tokamak. Appendix B is a schematic of a proposed proof-of-principle bench-top experiment of the multiple beam scattering diagnostic. It is designed to demonstrate the concept thoroughly at a greatly reduced cost. An actual multiple beam CO2 laser scattering experiment on a controlled laboratory plasma would be a good follow-up before attempting construction of the diagnostic on a major tokamak.

  14. Weak Turbulence Effects in Space Plasmas

    NASA Astrophysics Data System (ADS)

    Crabtree, Chris

    2012-10-01

    With the advent of multi-satellite missions such as Cluster and the Radiation Belt Storm Probes (RBSP) space plasmas have become a rich laboratory for the detailed and fundamental study of plasma turbulence. Space offers a diversity of plasma environments to directly test theory and simulation, from high-β plasmas in the solar-wind and the Earth's magnetotail, to low-β multi-species plasmas in the radiation belts and ionosphere. Recent theoretical work has demonstrated that by considering the effects of induced non-linear scattering (non-linear Landau damping, to be referred to as NL scattering) of electromagnetic waves leads to testable predictions in both storm-time radiation belt plasmas and the solar wind turbulent spectrum at scales below the ion gyroradius. In the radiation belts, VLF waves (with frequencies between the ion and electron gyrofrequencies) of sufficient amplitude may be nonlinearly scattered near the lower-hybrid surface inside the plasmasphere. Upon scattering a portion of these waves can return to the ionosphere where they may be reflected. This process can lead to the formation of a VLF wave cavity [1] that can efficiently resonate with the energetic (MeV) trapped electron population and quickly precipitate these particles into the ionosphere [2]. In the solar wind, the large-scale Alfvenic fluctuations can be shown to lead to a plateau in the electron distribution function that reduces the Landau damping of kinetic Alfven waves (KaWs). With the reduction of the linear damping the NL scattering of KAWs becomes important and leads to a non-local redistribution of energy in k-space and results in a steeper turbulent spectrum [3]. The edges of the plateaus are also unstable to electromagnetic left hand polarized ion cyclotron-Alfven waves as well as right hand polarized magnetosonic-whistler waves. These waves can pitch angle scatter the ion super-thermal velocity component to provide perpendicular ion heating [4]. [4pt] [1] C. Crabtree, L

  15. Plasma Turbulence in the Local Bubble

    NASA Astrophysics Data System (ADS)

    Spangler, Steven R.

    Turbulence in the Local Bubble could play an important role in the thermodynamics of the gas that is there. This turbulence could also determine the transport of cosmic rays and perhaps heat flow through this phase of the interstellar medium. The best astronomical technique for measuring turbulence in astrophysical plasmas is radio scintillation. Scintillation measurements yield information on the intensity and spectral characteristics of plasma turbulence between the source of the radio waves and the observer. Measurements of the level of scattering to the nearby pulsar B0950+08 by Philips and Clegg in 1992 showed a markedly lower value for the line-of-sight averaged turbulent intensity parameter than is observed for other pulsars, qualitatively consistent with radio wave propagation through a highly rarefied plasma. In this paper, we discuss the observational progress that has been made since that time. The main development has been improved measurements of pulsar parallaxes with the Very Long Baseline Array. This provides better knowledge of the media along the lines of sight. At present, there are four pulsars (B0950+08, B1133+16, J0437-4715, and B0809+74) whose lines of sight seem to lie mainly within the local bubble. The mean densities and line of sight components of the interstellar magnetic field along these lines of sight are smaller than nominal values for pulsars, but not by as large a factor as might be expected. Three of the four pulsars also have measurements of interstellar scintillation. The value of the parameter is smaller than normal for two of them, but is completely nominal for the third. This inconclusive status of affairs could be improved by measurements and analysis of "arcs" in "secondary spectra" of pulsars, which contain information on the location and intensity of localized screens of turbulence along the lines of sight. Similar data could be obtained from observations of highly compact extragalactic radio sources

  16. Plasma Turbulence in the Local Bubble

    NASA Astrophysics Data System (ADS)

    Spangler, Steven R.

    2009-03-01

    Turbulence in the Local Bubble could play an important role in the thermodynamics of the gas that is there. This turbulence could also determine the transport of cosmic rays and perhaps heat flow through this phase of the interstellar medium. The best astronomical technique for measuring turbulence in astrophysical plasmas is radio scintillation. Scintillation measurements yield information on the intensity and spectral characteristics of plasma turbulence between the source of the radio waves and the observer. Measurements of the level of scattering to the nearby pulsar B0950+08 by Philips and Clegg in 1992 showed a markedly lower value for the line-of-sight averaged turbulent intensity parameter < C {/N 2}> than is observed for other pulsars, qualitatively consistent with radio wave propagation through a highly rarefied plasma. In this paper, we discuss the observational progress that has been made since that time. The main development has been improved measurements of pulsar parallaxes with the Very Long Baseline Array. This provides better knowledge of the media along the lines of sight. At present, there are four pulsars (B0950+08, B1133+16, J0437-4715, and B0809+74) whose lines of sight seem to lie mainly within the local bubble. The mean densities and line of sight components of the interstellar magnetic field along these lines of sight are smaller than nominal values for pulsars, but not by as large a factor as might be expected. Three of the four pulsars also have measurements of interstellar scintillation. The value of the parameter < C {/N 2}> is smaller than normal for two of them, but is completely nominal for the third. This inconclusive status of affairs could be improved by measurements and analysis of “arcs” in “secondary spectra” of pulsars, which contain information on the location and intensity of localized screens of turbulence along the lines of sight. Similar data could be obtained from observations of highly compact extragalactic

  17. Turbulent particle transport in magnetized fusion plasma

    NASA Astrophysics Data System (ADS)

    Bourdelle, C.

    2005-05-01

    Understanding the mechanisms responsible for particle transport is of the utmost importance for magnetized fusion plasmas. A peaked density profile is attractive to improve the fusion rate, which is proportional to the square of the density, and to self-generate a large fraction of non-inductive current required for continuous operation. Experiments in various tokamak devices (ASDEX Upgrade, DIII-D, JET, TCV, TEXT, TFTR) indicate the existence of a turbulent particle pinch. Recently, such a turbulent pinch has been unambiguously identified in Tore Supra very long discharges, in the absence of both collisional particle pinch and central particle source, for more than 4 min (Hoang et al 2003 Phys. Rev. Lett. 90 155002). This turbulent pinch is predicted by a quasilinear theory of particle transport (Weiland J et al 1989 Nucl. Fusion 29 1810), and confirmed by non-linear turbulence simulations (Garbet et al 2003 Phys. Rev. Lett. 91 035001) and general considerations based on the conservation of motion invariants (Baker et al 2004 Phys. Plasmas 11 992). Experimentally, the particle pinch is found to be sensitive to the magnetic field gradient in many cases (Hoang et al 2004 Phys. Rev. Lett. 93 135003, Zabolotsky et al 2003 Plasma Phys. Control. Fusion 45 735, Weisen et al 2004 Plasma Phys. Control. Fusion 46 751, Baker et al 2000 Nucl. Fusion 40 1003), to the temperature profile (Hoang et al 2004 Phys. Rev. Lett. 93 135003, Angioni et al 2004 Nucl. Fusion 44 827) and also to the collisionality that changes the nature of the microturbulence (Angioni et al 2003 Phys. Rev. Lett. 90 205003, Garzotti et al 2003 Nucl. Fusion 43 1829, Weisen et al 2004 31st EPS Conf. on Plasma Phys. (London) vol 28G (ECA) P-1.146, Lopes Cardozo N J 1995 Plasma Phys. Control. Fusion 37 799). The consistency of some of the observed dependences with the theoretical predictions gives us a clearer understanding of the particle pinch in tokamaks, allowing us to predict more accurately the density

  18. Mixing of the Interstellar and Solar Plasmas at the Heliospheric Interface

    DOE PAGES

    Pogorelov, N. V.; Borovikov, S. N.

    2015-10-12

    From the ideal MHD perspective, the heliopause is a tangential discontinuity that separates the solar wind plasma from the local interstellar medium plasma. There are physical processes, however, that make the heliopause permeable. They can be subdivided into kinetic and MHD categories. Kinetic processes occur on small length and time scales, and cannot be resolved with MHD equations. On the other hand, MHD instabilities of the heliopause have much larger scales and can be easily observed by spacecraft. The heliopause may also be a subject of magnetic reconnection. In this paper, we discuss mechanisms of plasma mixing at the heliopausemore » in the context of Voyager 1 observations. Numerical results are obtained with a Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS), which is a package of numerical codes capable of performing adaptive mesh refinement simulations of complex plasma flows in the presence of discontinuities and charge exchange between ions and neutral atoms. The flow of the ionized component is described with the ideal MHD equations, while the transport of atoms is governed either by the Boltzmann equation or multiple Euler gas dynamics equations. The code can also treat nonthermal ions and turbulence produced by them.« less

  19. Mixing of the Interstellar and Solar Plasmas at the Heliospheric Interface

    SciTech Connect

    Pogorelov, N. V.; Borovikov, S. N.

    2015-10-12

    From the ideal MHD perspective, the heliopause is a tangential discontinuity that separates the solar wind plasma from the local interstellar medium plasma. There are physical processes, however, that make the heliopause permeable. They can be subdivided into kinetic and MHD categories. Kinetic processes occur on small length and time scales, and cannot be resolved with MHD equations. On the other hand, MHD instabilities of the heliopause have much larger scales and can be easily observed by spacecraft. The heliopause may also be a subject of magnetic reconnection. In this paper, we discuss mechanisms of plasma mixing at the heliopause in the context of Voyager 1 observations. Numerical results are obtained with a Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS), which is a package of numerical codes capable of performing adaptive mesh refinement simulations of complex plasma flows in the presence of discontinuities and charge exchange between ions and neutral atoms. The flow of the ionized component is described with the ideal MHD equations, while the transport of atoms is governed either by the Boltzmann equation or multiple Euler gas dynamics equations. The code can also treat nonthermal ions and turbulence produced by them.

  20. Space plasma turbulent dissipation - Reality or myth?

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.

    1985-01-01

    A prevalent approach to understanding magnetospheric dynamics is to combine a hydromagnetic description of the large scale magnetic structure and convection flows with a locally determined anomalous dissipation which develops in boundary layers. Three problems (nose and tail reconnection, auroral field-aligned currents, and diffuse auroral precipitation) are critically examined to test the validity of this theoretical philosophy. Although the expected plasma wave turbulence is observed for each case, the concept of local anomalous dissipation fails to provide an adequate or complete description of the phenomenae.

  1. Weak turbulence theory for collisional plasmas

    NASA Astrophysics Data System (ADS)

    Yoon, P. H.; Ziebell, L. F.; Kontar, E. P.; Schlickeiser, R.

    2016-03-01

    Plasma is an ionized gas in which the collective behavior dominates over the individual particle interactions. For this reason, plasma is often treated as collisionless or collision-free. However, the discrete nature of the particles can be important, and often, the description of plasmas is incomplete without properly taking the discrete particle effects into account. The weak turbulence theory is a perturbative nonlinear theory, whose essential formalism was developed in the late 1950s and 1960s and continued on through the early 1980s. However, the standard material found in the literature does not treat the discrete particle effects and the associated fluctuations emitted spontaneously by thermal particles completely. Plasma particles emit electromagnetic fluctuations in all frequencies and wave vectors, but in the standard literature, the fluctuations are approximately treated by considering only those frequency-wave number regimes corresponding to the eigenmodes (or normal modes) satisfying the dispersion relations, while ignoring contributions from noneigenmodes. The present paper shows that the noneigenmode fluctuations modify the particle kinetic equation so that the generalized equation includes the Balescu-Lénard-Landau collision integral and also modify the wave kinetic equation to include not only the collisional damping term but also a term that depicts the bremsstrahlung emission of plasma normal modes.

  2. Weak turbulence theory for collisional plasmas.

    PubMed

    Yoon, P H; Ziebell, L F; Kontar, E P; Schlickeiser, R

    2016-03-01

    Plasma is an ionized gas in which the collective behavior dominates over the individual particle interactions. For this reason, plasma is often treated as collisionless or collision-free. However, the discrete nature of the particles can be important, and often, the description of plasmas is incomplete without properly taking the discrete particle effects into account. The weak turbulence theory is a perturbative nonlinear theory, whose essential formalism was developed in the late 1950s and 1960s and continued on through the early 1980s. However, the standard material found in the literature does not treat the discrete particle effects and the associated fluctuations emitted spontaneously by thermal particles completely. Plasma particles emit electromagnetic fluctuations in all frequencies and wave vectors, but in the standard literature, the fluctuations are approximately treated by considering only those frequency-wave number regimes corresponding to the eigenmodes (or normal modes) satisfying the dispersion relations, while ignoring contributions from noneigenmodes. The present paper shows that the noneigenmode fluctuations modify the particle kinetic equation so that the generalized equation includes the Balescu-Lénard-Landau collision integral and also modify the wave kinetic equation to include not only the collisional damping term but also a term that depicts the bremsstrahlung emission of plasma normal modes.

  3. Visualization of plasma turbulence with laser-induced fluorescence (invited)

    SciTech Connect

    Levinton, Fred M.; Trintchouk, Fedor

    2001-01-01

    Turbulence is a key factor limiting the performance of fusion devices. Plasma edge turbulence determines the boundary values of the plasma density and temperature, which in turn determine the internal gradients and controls global plasma transport. In recent years, significant progress has been made in modeling turbulence behavior in plasmas and its effect on transport. Progress has also been made in diagnostics for turbulence measurement; however, there is still a large gap in our understanding of it. An approach to improve this situation is to experimentally visualize the turbulence, that is, a high resolution 2-D image of the plasma density. Visualization of turbulence can improve the connection to theory and help validate theoretical models. One method that has been successfully developed to visualize turbulence in gases and fluids is planar laser-induced fluorescence. We have recently applied this technique to visualize turbulence and structures in a plasma. This was accomplished using an Alexandrite laser that is tunable between 700 and 800 nm, and from 350 to 400 nm with second harmonic generation. The fluorescence light from an argon ion transition has been imaged onto an intensified charged coupled device camera that is gated in synchronization with the laser. Images from the plasma show a rotating structure at 30 kHz in addition to small scale turbulence.

  4. Validation metrics for turbulent plasma transport

    SciTech Connect

    Holland, C.

    2016-06-15

    Developing accurate models of plasma dynamics is essential for confident predictive modeling of current and future fusion devices. In modern computer science and engineering, formal verification and validation processes are used to assess model accuracy and establish confidence in the predictive capabilities of a given model. This paper provides an overview of the key guiding principles and best practices for the development of validation metrics, illustrated using examples from investigations of turbulent transport in magnetically confined plasmas. Particular emphasis is given to the importance of uncertainty quantification and its inclusion within the metrics, and the need for utilizing synthetic diagnostics to enable quantitatively meaningful comparisons between simulation and experiment. As a starting point, the structure of commonly used global transport model metrics and their limitations is reviewed. An alternate approach is then presented, which focuses upon comparisons of predicted local fluxes, fluctuations, and equilibrium gradients against observation. The utility of metrics based upon these comparisons is demonstrated by applying them to gyrokinetic predictions of turbulent transport in a variety of discharges performed on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)], as part of a multi-year transport model validation activity.

  5. Validation metrics for turbulent plasma transport

    NASA Astrophysics Data System (ADS)

    Holland, C.

    2016-06-01

    Developing accurate models of plasma dynamics is essential for confident predictive modeling of current and future fusion devices. In modern computer science and engineering, formal verification and validation processes are used to assess model accuracy and establish confidence in the predictive capabilities of a given model. This paper provides an overview of the key guiding principles and best practices for the development of validation metrics, illustrated using examples from investigations of turbulent transport in magnetically confined plasmas. Particular emphasis is given to the importance of uncertainty quantification and its inclusion within the metrics, and the need for utilizing synthetic diagnostics to enable quantitatively meaningful comparisons between simulation and experiment. As a starting point, the structure of commonly used global transport model metrics and their limitations is reviewed. An alternate approach is then presented, which focuses upon comparisons of predicted local fluxes, fluctuations, and equilibrium gradients against observation. The utility of metrics based upon these comparisons is demonstrated by applying them to gyrokinetic predictions of turbulent transport in a variety of discharges performed on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)], as part of a multi-year transport model validation activity.

  6. On the possible effect of Hall currents and anisotropy of the thermal conductivity on the plasma flow in heliospheric interface

    NASA Astrophysics Data System (ADS)

    Baranov, Vladimir

    Under physical conditions of cosmic plasma the cyclotron frequency of electrons is almost always much greater than the frequency of their collisions. In particular, this inequality is fulfilled in the heliospheric interface. In this case the effect of magnetic field gives rise to the anisotropy of transport coefficients (viscosity, thermal-and electro-conductivities). It is shown in our presentation, that the most important dissipative process in the heliospheric interface is thermal conduction along the magnetic field lines because the Peclet number determining this process is quite small. It means that its effect has to be definitely taken into account in the energy equation at theoretical modelling. Hall currents, which arise due to the electro-conductivity anisotropy, determine the dispersion processes. The effect of Hall currents on the principle of the freezing-in magnetic field and on a wave propagation is discussed. In particular, it is shown that the interplanetary magnetic field can penetrate through the heliopause into the interstellar plasma even if it is the tangential discontinuity. The value of this penetration is estimated.

  7. The development of magnetic field line wander in gyrokinetic plasma turbulence: dependence on amplitude of turbulence

    NASA Astrophysics Data System (ADS)

    Bourouaine, Sofiane; Howes, Gregory G.

    2017-06-01

    The dynamics of a turbulent plasma not only manifests the transport of energy from large to small scales, but also can lead to a tangling of the magnetic field that threads through the plasma. The resulting magnetic field line wander can have a large impact on a number of other important processes, such as the propagation of energetic particles through the turbulent plasma. Here we explore the saturation of the turbulent cascade, the development of stochasticity due to turbulent tangling of the magnetic field lines and the separation of field lines through the turbulent dynamics using nonlinear gyrokinetic simulations of weakly collisional plasma turbulence, relevant to many turbulent space and astrophysical plasma environments. We determine the characteristic time 2$ for the saturation of the turbulent perpendicular magnetic energy spectrum. We find that the turbulent magnetic field becomes completely stochastic at time 2$ for strong turbulence, and at 2$ for weak turbulence. However, when the nonlinearity parameter of the turbulence, a dimensionless measure of the amplitude of the turbulence, reaches a threshold value (within the regime of weak turbulence) the magnetic field stochasticity does not fully develop, at least within the evolution time interval 22$ . Finally, we quantify the mean square displacement of magnetic field lines in the turbulent magnetic field with a functional form 2\\rangle =A(z/L\\Vert )p$ ( \\Vert $ is the correlation length parallel to the magnetic background field \\mathbf{0}$ , is the distance along \\mathbf{0}$ direction), providing functional forms of the amplitude coefficient and power-law exponent as a function of the nonlinearity parameter.

  8. The transport anisotropy effect in a turbulent plasma

    NASA Astrophysics Data System (ADS)

    Bychenkov, V. Iu.; Gradov, O. M.; Silin, V. P.

    1982-12-01

    The theory of transport phenomena in a plasma with developed ion-acoustic turbulence is formulated. The transport anisotropy effect, caused by a temperature gradient, is observed. The corresponding fluxes across the effective force vector which generates the turbulence are substantially larger than longitudinal fluxes in a plasma with a comparatively low degree of nonisothermality. In a strongly nonisothermal plasma, the suppression of transverse fluxes occurs, corresponding to an increase in the thermal insulation of current-carrying plasma columns.

  9. Measuring plasma turbulence using low coherence microwave radiation

    SciTech Connect

    Smith, D. R.

    2012-02-20

    Low coherence backscattering (LCBS) is a proposed diagnostic technique for measuring plasma turbulence and fluctuations. LCBS is an adaptation of optical coherence tomography, a biomedical imaging technique. Calculations and simulations show LCBS measurements can achieve centimeter-scale spatial resolution using low coherence microwave radiation. LCBS measurements exhibit several advantages over standard plasma turbulence measurement techniques including immunity to spurious reflections and measurement access in hollow density profiles. Also, LCBS is scalable for 1-D profile measurements and 2-D turbulence imaging.

  10. Radially propagating shock waves in the outer heliosphere: The evidence from Pioneer 10 energetic particle and plasma observations

    SciTech Connect

    McDonald, F.B.; Trainor, J.H.; Mihalov, J.D.; Wolfe, J.H.; Webber, W.R.

    1981-06-15

    At heliocentric distances between 14 and 22 AU, some 14 increases in the flux of 1 MeV protons have been identified over a 3 yr period by the NASA Goddard/University of New Hampshire cosmic-ray experiment on Pioneer 10. These increases appear to be associated with large solar flares. Combining the particle data with the Pioneer 10 plasma observations from the NASA/Ames plasma analyzer reveals that the particle increases are produced by radially propagating shock waves generated by the solar events. While the characteristics of these particle events in the distant heliosphere appear to differ greatly from those observed at 1 AU, they represent the evolution expected as the interplanetary magnetic field becomes almost azimuthal. These long-lived shocks provide a valuable in situ laboratory for directly studying particle acceleration under a variety of conditions. They may also represent a significant factor in producing the long-term modulation of galactic cosmic rays.

  11. Charged-particle transport in turbulent astrophysical plasmas

    NASA Technical Reports Server (NTRS)

    Newman, C. E., Jr.

    1972-01-01

    The effect of electromagnetic fluctuations, or plasma turbulence, on the motion of the individual particles in a plasma is investigated. Two alternative methods are used to find a general equation governing the time-evolution of a distribution of charged particles subject to both an external force field and the random fields of the fluctuations. It is found that, for the high-temperature, low-density plasmas frequently encountered in the study of astrophysics, the presence of even a small amount of turbulence can have a very important effect on the behavior of the plasma. Two problems in which turbulence plays an important role are treated.

  12. Interplanetary conditions during 3-kHz radio-wave detections in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Maclennan, C. G.; Gold, R. E.

    1985-01-01

    Plasma waves detected by the Voyager 1 and 2 spacecraft beyond about 12 AU that may be associated with the turbulence expected at the heliopause are interpreted in terms of the characteristics of the interplanetary medium at large heliocentric distances. The low-energy charged-particle environment in the outer heliosphere during the observations of the unusual plasma-wave signals is addressed. The particle data suggest that the outer heliosphere was unusually stable and free of transient shock and particle events for the roughly eight months during the wave observations.

  13. Interplanetary conditions during 3-kHz radio-wave detections in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Maclennan, C. G.; Gold, R. E.

    1985-01-01

    Plasma waves detected by the Voyager 1 and 2 spacecraft beyond about 12 AU that may be associated with the turbulence expected at the heliopause are interpreted in terms of the characteristics of the interplanetary medium at large heliocentric distances. The low-energy charged-particle environment in the outer heliosphere during the observations of the unusual plasma-wave signals is addressed. The particle data suggest that the outer heliosphere was unusually stable and free of transient shock and particle events for the roughly eight months during the wave observations.

  14. A Concept of Cross-Ferroic Plasma Turbulence

    PubMed Central

    Inagaki, S.; Kobayashi, T.; Kosuga, Y.; Itoh, S.-I.; Mitsuzono, T.; Nagashima, Y.; Arakawa, H.; Yamada, T.; Miwa, Y.; Kasuya, N.; Sasaki, M.; Lesur, M.; Fujisawa, A.; Itoh, K.

    2016-01-01

    The variety of scalar and vector fields in laboratory and nature plasmas is formed by plasma turbulence. Drift-wave fluctuations, driven by density gradients in magnetized plasmas, are known to relax the density gradient while they can generate flows. On the other hand, the sheared flow in the direction of magnetic fields causes Kelvin-Helmholtz type instabilities, which mix particle and momentum. These different types of fluctuations coexist in laboratory and nature, so that the multiple mechanisms for structural formation exist in extremely non-equilibrium plasmas. Here we report the discovery of a new order in plasma turbulence, in which chained structure formation is realized by cross-interaction between inhomogeneities of scalar and vector fields. The concept of cross-ferroic turbulence is developed, and the causal relation in the multiple mechanisms behind structural formation is identified, by measuring the relaxation rate and dissipation power caused by the complex turbulence-driven flux. PMID:26917218

  15. The Heliosphere

    NASA Image and Video Library

    The heliosphere is a bubble that surrounds our entire solar system and is inflated by the outward solar wind, which pushes out and deflects the material from the part of the galactic medium through...

  16. Mass dependency of turbulent parameters in stationary glow discharge plasmas

    SciTech Connect

    Titus, J. B.; Alexander, A. B.; Wiggins, D. L.; Johnson, J. A. III

    2013-05-15

    A direct current glow discharge tube is used to determine how mass changes the effects of certain turbulence characteristics in a weakly ionized gas. Helium, neon, argon, and krypton plasmas were created, and an axial magnetic field, varied from 0.0 to 550.0 Gauss, was used to enhance mass dependent properties of turbulence. From the power spectra of light emission variations associated with velocity fluctuations, determination of mass dependency on turbulent characteristic unstable modes, energy associated with turbulence, and the rate at which energy is transferred from scale to scale are measured. The magnetic field strength is found to be too weak to overcome particle diffusion to the walls to affect the turbulence in all four types of plasmas, though mass dependency is still detected. Though the total energy and the rate at which the energy moves between scales are mass invariant, the amplitude of the instability modes that characterize each plasma are dependent on mass.

  17. Comparing simulation of plasma turbulence with experiment

    NASA Astrophysics Data System (ADS)

    Ross, David W.; Bravenec, Ronald V.; Dorland, William; Beer, Michael A.; Hammett, G. W.; McKee, George R.; Fonck, Raymond J.; Murakami, Masanori; Burrell, Keith H.; Jackson, Gary L.; Staebler, Gary M.

    2002-01-01

    The direct quantitative correspondence between theoretical predictions and the measured plasma fluctuations and transport is tested by performing nonlinear gyro-Landau-fluid simulations with the GRYFFIN (or ITG) code [W. Dorland and G. W. Hammett, Phys. Fluids B 5, 812 (1993); M. A. Beer and G. W. Hammett, Phys. Plasmas 3, 4046 (1996)]. In an L-mode reference discharge in the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)], which has relatively large fluctuations and transport, the turbulence is dominated by ion temperature gradient (ITG) modes. Trapped electron modes and impurity drift waves also play a role. Density fluctuations are measured by beam emission spectroscopy [R. J. Fonck, P. A. Duperrex, and S. F. Paul, Rev. Sci. Instrum. 61, 3487 (1990)]. Experimental fluxes and corresponding diffusivities are analyzed by the TRANSP code [R. J. Hawryluk, in Physics of Plasmas Close to Thermonuclear Conditions, edited by B. Coppi, G. G. Leotta, D. Pfirsch, R. Pozzoli, and E. Sindoni (Pergamon, Oxford, 1980), Vol. 1, p. 19]. The shape of the simulated wave number spectrum is close to the measured one. The simulated ion thermal transport, corrected for E×B low shear, exceeds the experimental value by a factor of 1.5 to 2.0. The simulation overestimates the density fluctuation level by an even larger factor. On the other hand, the simulation underestimates the electron thermal transport, which may be accounted for by modes that are not accessible to the simulation or to the BES measurement.

  18. Interplay between fast ions and turbulence in magnetic fusion plasmas

    NASA Astrophysics Data System (ADS)

    Dumont, R. J.; Zarzoso, D.; Sarazin, Y.; Garbet, X.; Strugarek, A.; Abiteboul, J.; Cartier-Michaud, T.; Dif-Pradalier, G.; Ghendrih, Ph; Girardo, J.-B.; Grandgirard, V.; Latu, G.; Passeron, C.; Thomine, O.

    2013-12-01

    Evidence for the impact of energetic particles (EPs) on turbulence is given in this paper. Firstly, the excitation of electrostatic instabilities in linear gyrokinetic simulations performed with the global GYSELA code by introducing distribution functions typical of fast ions in tokamak plasmas is presented. The obtained mode is unambiguously characterized as an EGAM, i.e. a geodesic acoustic mode (GAM) excited by EPs. The influence of EGAMs on turbulence and associated transport is then analyzed by implementing a source adapted to the inclusion of fast particle populations in non-linear simulations. This source successfully excites EGAMs in the presence of turbulence, which leads to a drastic reduction of the turbulent transport. However, this reduction is only transient; it is followed by an increase of the turbulent activity, characterized by a complex interaction between the EGAMs and the turbulence. In the subsequent steady-state regime, turbulent transport appears to be modulated at the EGAM frequency.

  19. MULTIFRACTAL STRUCTURES DETECTED BY VOYAGER 1 AT THE HELIOSPHERIC BOUNDARIES

    SciTech Connect

    Macek, W. M.; Burlaga, L. F. E-mail: anna.wawrzaszek@cbk.waw.pl

    2014-10-01

    To better understand the dynamics of turbulent systems, we have proposed a phenomenological model based on a generalized Cantor set with two rescaling and one weight parameters. In this Letter, using recent Voyager 1 magnetic field data, we extend our two-scale multifractal analysis further in the heliosheath beyond the heliospheric termination shock, and even now near the heliopause, when entering the interstellar medium for the first time in human history. We have identified the scaling inertial region for magnetized heliospheric plasma between the termination shock and the heliopause. We also show that the degree of multifractality decreases with the heliocentric distance and is still modulated by the phases of the solar cycle in the entire heliosphere including the heliosheath. Moreover, we observe the change of scaling toward a nonintermittent (nonmultifractal) behavior in the nearby interstellar medium, just beyond the heliopause. We argue that this loss of multifractal behavior could be a signature of the expected crossing of the heliopause by Voyager 2 in the near future. The results obtained demonstrate that our phenomenological multifractal model exhibits some properties of intermittent turbulence in the solar system plasmas, and we hope that it could shed light on universal characteristics of turbulence.

  20. A dynamical model of plasma turbulence in the solar wind

    PubMed Central

    Howes, G. G.

    2015-01-01

    A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kinetic plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfvén waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfvén waves with the development of small-scale current sheets is presented and its physical implications are discussed. This model leads to a simplified perspective on the nature of turbulence in a weakly collisional plasma: the nonlinear interactions responsible for the turbulent cascade of energy and the formation of current sheets are essentially fluid in nature, while the collisionless damping of the turbulent fluctuations and the energy injection by kinetic instabilities are essentially kinetic in nature. PMID:25848075

  1. A dynamical model of plasma turbulence in the solar wind.

    PubMed

    Howes, G G

    2015-05-13

    A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kinetic plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfvén waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfvén waves with the development of small-scale current sheets is presented and its physical implications are discussed. This model leads to a simplified perspective on the nature of turbulence in a weakly collisional plasma: the nonlinear interactions responsible for the turbulent cascade of energy and the formation of current sheets are essentially fluid in nature, while the collisionless damping of the turbulent fluctuations and the energy injection by kinetic instabilities are essentially kinetic in nature.

  2. Nondiffusive transport regimes for suprathermal ions in turbulent plasmas.

    PubMed

    Bovet, A; Fasoli, A; Ricci, P; Furno, I; Gustafson, K

    2015-04-01

    The understanding of the transport of suprathermal ions in the presence of turbulence is important for fusion plasmas in the burning regime that will characterize reactors, and for space plasmas to understand the physics of particle acceleration. Here, three-dimensional measurements of a suprathermal ion beam in the toroidal plasma device TORPEX are presented. These measurements demonstrate, in a turbulent plasma, the existence of subdiffusive and superdiffusive transport of suprathermal ions, depending on their energy. This result stems from the unprecedented combination of uniquely resolved measurements and first-principles numerical simulations that reveal the mechanisms responsible for the nondiffusive transport. The transport regime is determined by the interaction of the suprathermal ion orbits with the turbulent plasma dynamics, and is strongly affected by the ratio of the suprathermal ion energy to the background plasma temperature.

  3. Turbulence studies in Tokamak boundary plasmas with realistic divertor geometry

    SciTech Connect

    Xu, X.Q.

    1998-10-14

    Results are presented from the 3D nonlocal electromagnetic turbulence code BOUT [1] and the linearized shooting code BAL[2] to study turbulence in tokamak boundary plasmas and its relationship to the L-H transition, in a realistic divertor plasma geometry. The key results include: (1) the identification of the dominant, resistive X-point mode in divertor geometry and (2) turbulence suppression in the L-H transition by shear in the ExB drift speed, ion diamagnetism and finite polarization. Based on the simulation results, a parameterization of the transport is given that includes the dependence on the relevant physical parameters.

  4. A soliton gas model for astrophysical magnetized plasma turbulence

    NASA Astrophysics Data System (ADS)

    Spangler, S. R.; Sheerin, J. P.

    1982-06-01

    Plasma turbulence is considered as an ensemble of solitons. The derivation of the Alfven soliton by Spangler and Sheering (1981) is reviewed, and expressions are derived for the magnetic irregularity spectrum and the relationship between the magnetic and density irregularity power spectra. A derived expression also provides the answer to the question of the correlation between magnetic field and density enhancements. The properties of the turbulence model are compared with observations of plasma turbulence in the solar wind, and are found to reasonably account for them.

  5. The energetic coupling of scales in gyrokinetic plasma turbulence

    SciTech Connect

    Teaca, Bogdan; Jenko, Frank

    2014-07-15

    In magnetized plasma turbulence, the couplings of perpendicular spatial scales that arise due to the nonlinear interactions are analyzed from the perspective of the free-energy exchanges. The plasmas considered here, with appropriate ion or electron adiabatic electro-neutrality responses, are described by the gyrokinetic formalism in a toroidal magnetic geometry. Turbulence develops due to the electrostatic fluctuations driven by temperature gradient instabilities, either ion temperature gradient (ITG) or electron temperature gradient (ETG). The analysis consists in decomposing the system into a series of scale structures, while accounting separately for contributions made by modes possessing special symmetries (e.g., the zonal flow modes). The interaction of these scales is analyzed using the energy transfer functions, including a forward and backward decomposition, scale fluxes, and locality functions. The comparison between the ITG and ETG cases shows that ETG turbulence has a more pronounced classical turbulent behavior, exhibiting a stronger energy cascade, with implications for gyrokinetic turbulence modeling.

  6. The energetic coupling of scales in gyrokinetic plasma turbulence

    NASA Astrophysics Data System (ADS)

    Teaca, Bogdan; Navarro, Alejandro Bañón; Jenko, Frank

    2014-07-01

    In magnetized plasma turbulence, the couplings of perpendicular spatial scales that arise due to the nonlinear interactions are analyzed from the perspective of the free-energy exchanges. The plasmas considered here, with appropriate ion or electron adiabatic electro-neutrality responses, are described by the gyrokinetic formalism in a toroidal magnetic geometry. Turbulence develops due to the electrostatic fluctuations driven by temperature gradient instabilities, either ion temperature gradient (ITG) or electron temperature gradient (ETG). The analysis consists in decomposing the system into a series of scale structures, while accounting separately for contributions made by modes possessing special symmetries (e.g., the zonal flow modes). The interaction of these scales is analyzed using the energy transfer functions, including a forward and backward decomposition, scale fluxes, and locality functions. The comparison between the ITG and ETG cases shows that ETG turbulence has a more pronounced classical turbulent behavior, exhibiting a stronger energy cascade, with implications for gyrokinetic turbulence modeling.

  7. Toward the Theory of Turbulence in Magnetized Plasmas

    SciTech Connect

    Boldyrev, Stanislav

    2013-07-26

    The goal of the project was to develop a theory of turbulence in magnetized plasmas at large scales, that is, scales larger than the characteristic plasma microscales (ion gyroscale, ion inertial scale, etc.). Collisions of counter-propagating Alfven packets govern the turbulent cascade of energy toward small scales. It has been established that such an energy cascade is intrinsically anisotropic, in that it predominantly supplies energy to the modes with mostly field-perpendicular wave numbers. The resulting energy spectrum of MHD turbulence, and the structure of the fluctuations were studied both analytically and numerically. A new parallel numerical code was developed for simulating reduced MHD equations driven by an external force. The numerical setting was proposed, where the spectral properties of the force could be varied in order to simulate either strong or weak turbulent regimes. It has been found both analytically and numerically that weak MHD turbulence spontaneously generates a “condensate”, that is, concentration of magnetic and kinetic energy at small k{sub {parallel}}. A related topic that was addressed in the project is turbulent dynamo action, that is, generation of magnetic field in a turbulent flow. We were specifically concentrated on the generation of large-scale magnetic field compared to the scales of the turbulent velocity field. We investigate magnetic field amplification in a turbulent velocity field with nonzero helicity, in the framework of the kinematic Kazantsev-Kraichnan model.

  8. Current Sheet Formation and Self-Organization in Turbulent Plasmas

    NASA Astrophysics Data System (ADS)

    Spangler, Steven

    2009-05-01

    Self-Organization can be defined as the process by which a physical system, in the course of its evolution, changes its spatial structure, the form of its equations of motion, or key coefficients in those equations. A turbulent magnetohydrodynamic (MHD) fluid can exhibit self-organization, so defined. A turbulent MHD fluid with collisional resistivity has a low rate of dissipation of turbulent energy. However, as the turbulence develops, it forms thin current sheets in which the current density increases exponentially. When the electron drift speed becomes comparable to or exceeds the ion acoustic speed, plasma instabilities can enhance the resistivity, and thus the dissipation rate. In turbulent evolution of this kind, an MHD fluid can transform itself from a low dissipation to a high dissipation state. Calculations show that it is plausible that turbulence in the solar corona could exhibit this behavior.

  9. A weakened cascade model for turbulence in astrophysical plasmas

    SciTech Connect

    Howes, G. G.; TenBarge, J. M.; Dorland, W.

    2011-10-15

    A refined cascade model for kinetic turbulence in weakly collisional astrophysical plasmas is presented that includes both the transition between weak and strong turbulence and the effect of nonlocal interactions on the nonlinear transfer of energy. The model describes the transition between weak and strong MHD turbulence and the complementary transition from strong kinetic Alfven wave (KAW) turbulence to weak dissipating KAW turbulence, a new regime of weak turbulence in which the effects of shearing by large scale motions and kinetic dissipation play an important role. The inclusion of the effect of nonlocal motions on the nonlinear energy cascade rate in the dissipation range, specifically the shearing by large-scale motions, is proposed to explain the nearly power-law energy spectra observed in the dissipation range of both kinetic numerical simulations and solar wind observations.

  10. Nonlinear phenomena, turbulence and anomalous transport in fusion plasmas

    SciTech Connect

    Hidalgo, C.; Estrada, T.; Sanchez, E.; Branas, B.; Garcia-Cortes, I.; Van Milligen, B.P.; Balbin, R.; Pedrosa, M.A.; Sanchez, J.; Carreras, B.A.

    1995-02-01

    The nonlinear nature of the plasma turbulence, as measured by bicoherence analysis, has been studied in stellarator (ATF and W7AS) and tokamak (PBXM) devices. In ATF, little nonlinear interaction is found in the scrape-off layer region whereas the strength of the coupling is enhanced in the edge plasma region where the level of fluctuations is consistent with the theoretical expectations from resistive interchange modes. In W7AS the level of bicoherence is significantly smaller than in ATF. The comparison ATF/W7AS/PBXM suggest the important role of the magnetic shear to determine nonlinear behavior of the turbulence. The level of bicoherence also depends on the plasma conditions: in particular, it increases at the H-mode transition. The comparison between the nonlinear behavior of the turbulence in tokamaks and stellarators allows experimental verification of theoretical turbulence models.

  11. Reverse Energy Cascade in Turbulent Weakly Ionized Plasmas

    NASA Technical Reports Server (NTRS)

    Williams, Kyron; Appartaim, R.; Belay, K.; Johnson, J. A., III

    1998-01-01

    For systems far from equilibrium, the neglect of a role for viscous effects in turbulence may be generally inappropriate when the relaxation time for the molecular process approaches the local flow time (Orou et al. (1996)). Furthermore, for stationary collisional plasmas, the conventional Reynolds number is irrelevant under circumstances where the standard features of turbulence in ordinary gases are observed in the plasma (Johnson et al. (1987)). The current theoretical understanding of these turbulent phenomenon is particularly inadequate for turbulence associated with ionizing shock waves; generally speaking, thermodynamic, acoustic and pressure fluctuations are all seen as amplified across the shock wave followed by a dramatic decay (relaminarization) usually attributed to a lack of importance of viscosity in the turbulent regions. This decay would be accelerated when the flow speed is also reduced due to the importance usually given to the conventional Reynolds number (which is directly proportional to velocity) as a quality of turbulence index. However, evidence supporting this consensus is lacking. By contrast, recent evidence of vanishing triple correlations form De Silva et al. (1996) provides strong support for early theoretical speculation of inherently molecular effects in macroscopic turbulence in Tsuge (1974). This specifically suggests that the role of compressive effects ordinarily associated with the shock wave could be significantly muted by the existence of a strongly turbulent local environment. There is also more recent theoretical speculation (Frisch et al. (1984)) of an inherently and previously unsuspected non-dissipative nature to turbulence, with energy conservation being nurtured by reverse energy cascades in the turbulent fluctuation spectra. Furthermore, the role which might be played by fluctuations on quantum mechanical phenomena and variations in molecular parameters is completely unknown, especially of the sort which might be found

  12. Reverse Energy Cascade in Turbulent Weakly Ionized Plasmas

    NASA Technical Reports Server (NTRS)

    Williams, Kyron; Appartaim, R.; Belay, K.; Johnson, J. A., III

    1998-01-01

    For systems far from equilibrium, the neglect of a role for viscous effects in turbulence may be generally inappropriate when the relaxation time for the molecular process approaches the local flow time (Orou et al. (1996)). Furthermore, for stationary collisional plasmas, the conventional Reynolds number is irrelevant under circumstances where the standard features of turbulence in ordinary gases are observed in the plasma (Johnson et al. (1987)). The current theoretical understanding of these turbulent phenomenon is particularly inadequate for turbulence associated with ionizing shock waves; generally speaking, thermodynamic, acoustic and pressure fluctuations are all seen as amplified across the shock wave followed by a dramatic decay (relaminarization) usually attributed to a lack of importance of viscosity in the turbulent regions. This decay would be accelerated when the flow speed is also reduced due to the importance usually given to the conventional Reynolds number (which is directly proportional to velocity) as a quality of turbulence index. However, evidence supporting this consensus is lacking. By contrast, recent evidence of vanishing triple correlations form De Silva et al. (1996) provides strong support for early theoretical speculation of inherently molecular effects in macroscopic turbulence in Tsuge (1974). This specifically suggests that the role of compressive effects ordinarily associated with the shock wave could be significantly muted by the existence of a strongly turbulent local environment. There is also more recent theoretical speculation (Frisch et al. (1984)) of an inherently and previously unsuspected non-dissipative nature to turbulence, with energy conservation being nurtured by reverse energy cascades in the turbulent fluctuation spectra. Furthermore, the role which might be played by fluctuations on quantum mechanical phenomena and variations in molecular parameters is completely unknown, especially of the sort which might be found

  13. Multidimensional Visualization of MHD and Turbulence in Fusion Plasmas [Multi-dimensional Visualization of Turbulence in Fusion Plasmas

    SciTech Connect

    Muscatello, Christopher M.; Domier, Calvin W.; Hu, Xing; Luhmann, Neville C.; Ren, Xiaoxin; Riemenschneider, Paul; Spear, Alexander; Yu, Liubing; Tobias, Benjamin

    2014-08-13

    Here, quasi-optical imaging at sub-THz frequencies has had a major impact on fusion plasma diagnostics. Mm-wave imaging reflectometry utilizes microwaves to actively probe fusion plasmas, inferring the local properties of electron density fluctuations. Electron cyclotron emission imaging is a multichannel radiometer that passively measures the spontaneous emission of microwaves from the plasma to infer local properties of electron temperature fluctuations. These imaging diagnostics work together to diagnose the characteristics of turbulence. Important quantities such as amplitude and wavenumber of coherent fluctuations, correlation lengths and decor relation times of turbulence, and poloidal flow velocity of the plasma are readily inferred.

  14. A Field-Particle Correlation Technique to Explore the Collisionless Damping of Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Klein, Kristopher

    2016-10-01

    The nature of the dominant mechanisms which damp turbulent electromagnetic fluctuations remains an unanswered question in the study of a variety of collisionless plasma systems. Proposed damping mechanisms can be generally, but not exclusively, classified as resonant, e.g. Landau and cyclotron damping, non-resonant, e.g. stochastic ion heating, and intermittent, e.g. energization via current sheets or magnetic reconnection. To determine the role these mechanisms play in turbulent plasmas, we propose the application of field-particle correlations to time series of single spatial point observations of the type typically measured in the solar wind. This correlation, motivated by the form of the collisionless Vlasov equation, is the time averaged product of the factors comprising the nonlinear field-particle interaction term. The correlation both captures the secular transfer of energy between fields and perturbed plasma distributions by averaging out the conservative oscillatory energy transfer, and retains the velocity space structure of the secular transfer, allowing for observational characterization of the damping mechanism. Field-particle correlations are applied to a set of nonlinear kinetic numerical simulations of increasing complexity, including electrostatic, gyrokinetic, and hybrid Vlasov-Maxwell systems. These correlations are shown to capture the secular energy transfer between fields and particles and distinguish between the mechanisms accessible to the chosen system. We conclude with a discussion of the application of this general technique to data from current and upcoming spacecraft missions, including MMS, DSCOVR, Solar Probe Plus and THOR, which should help in determining which damping mechanisms operate in a variety of heliospheric plasmas. This work was performed in collaboration with Gregory Howes, Jason TenBarge, Nuno Loureiro, Ryusuke Numata, Francesco Valetini, Oreste Pezzi, Matt Kunz, Justin Kasper, and Chris Chen, with support from Grants

  15. Turbulent boundary-layer control with plasma spanwise travelling waves

    NASA Astrophysics Data System (ADS)

    Whalley, Richard D.; Choi, Kwing-So

    2014-08-01

    Arrays of dielectric-barrier-discharge plasma actuators have been designed to generate spanwise travelling waves in the turbulent boundary layer for possible skin-friction drag reductions. Particle image velocimetry was used to elucidate the modifications to turbulence structures created by the plasma spanwise travelling waves. It has been observed that the plasma spanwise travelling waves amalgamated streamwise vortices, lifting low-speed fluid from the near-wall region up and around the peripheries of their cores to form wide ribbons of low-speed streamwise velocity within the viscous sublayer.

  16. Status and Verification of Edge Plasma Turbulence Code BOUT

    SciTech Connect

    Umansky, M V; Xu, X Q; Dudson, B; LoDestro, L L; Myra, J R

    2009-01-08

    The BOUT code is a detailed numerical model of tokamak edge turbulence based on collisional plasma uid equations. BOUT solves for time evolution of plasma uid variables: plasma density N{sub i}, parallel ion velocity V{sub {parallel}i}, electron temperature T{sub e}, ion temperature T{sub i}, electric potential {phi}, parallel current j{sub {parallel}}, and parallel vector potential A{sub {parallel}}, in realistic 3D divertor tokamak geometry. The current status of the code, physics model, algorithms, and implementation is described. Results of verification testing are presented along with illustrative applications to tokamak edge turbulence.

  17. Gyrokinetic turbulence simulations at high plasma beta

    SciTech Connect

    Pueschel, M. J.; Kammerer, M.; Jenko, F.

    2008-10-15

    Electromagnetic gyrokinetic turbulence simulations employing Cyclone Base Case parameters are presented for {beta} values up to and beyond the kinetic ballooning threshold. The {beta} scaling of the turbulent transport is found to be linked to a complex interplay of linear and nonlinear effects. Linear investigation of the kinetic ballooning mode is performed in detail, while nonlinearly, it is found to dominate the turbulence only in a fairly narrow range of {beta} values just below the respective ideal limit. The magnetic transport scales like {beta}{sup 2} and is well described by a Rechester-Rosenbluth-type ansatz.

  18. Study of edge turbulence in dimensionally similar laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Stroth, Ulrich

    2003-10-01

    In recent years, the numerical simulation of turbulence has made considerable progress. Predictions are made for large plasma volumes taking into account realistic magnetic geometries. Because of diagnostic limitations, in fusion plasmas the means of experimental testing of the models are rather limited. Toroidal low-temperature plasmas offer the possibility for detailed comparisons between experiment and simulation. Due to the reduced plasma parameters, the relevant quantities can be measured in the entire plasma. At the same time, the relevant non-dimensional parameters can be comparable to those in the edge of fusion plasmas. This presentation reports on results from the torsatron TJ-K [1,2] operated with a low-temperature plasma. The data are compared with simulations using the drift-Alfven-wave code DALF3 [3]. Langmuir probe arrays with 64 tips are used to measure the spatial structure of the turbulence. The same analyses techniques are applied to experimental and numerical data. The measured properties of spectra and probability density functions are reproduced by the code. Although the plasma in experiment and simulation does not exhibit critical pressure gradients, the radial transport fluctuations are strongly intermittent in both cases. Using Hydrogen, Helium and Argon as working gases, the scale parameter ρs could be varied by more than a factor of ten. As predicted by theory, the size of the turbulent eddies increases with ρ_s. The measured cross-phase between density and potential fluctuations are small, indicating the importance of the drift-wave dynamics for the turbulence in toroidal plasmas. The wave number spectra decay with an exponent of -3 as one would expect for the enstrophy cascade in 2D turbulence. [1] N. Krause et al., Rev. Sci. Instr. 73, 3474 (2002) [2] C. Lechte et al., New J. of Physics 4, 34 (2002) [3] B. Scott, Plasma Phys. Contr. Fusion 39, 1635 (1997)

  19. Turbulent transport of alpha particles in reactor plasmas

    SciTech Connect

    Estrada-Mila, C.; Candy, J.; Waltz, R. E.

    2006-11-15

    A systematic study of the behavior of energetic ions in reactor plasmas is presented. Using self-consistent gyrokinetic simulations, in concert with an analytic asymptotic theory, it is found that alpha particles can interact significantly with core ion-temperature-gradient turbulence. Specifically, the per-particle flux of energetic alphas is comparable to the per-particle flux of thermal species (deuterium or helium ash). This finding opposes the conventional wisdom that energetic ions, because of their large gyroradii, do not interact with the turbulence. For the parameters studied, a turbulent modification of the alpha-particle density profile appears to be stronger than turbulent modification of the alpha-particle pressure profile. Crude estimates indicate that the alpha density modification, which is directly proportional to the core turbulence intensity, could be in the range of 15% at midradius in a reactor. The corresponding modification of the alpha-particle pressure profile is predicted to be smaller (in the 1% range)

  20. Turbulence and Transport in Multi-Ion Species Plasmas in the Large Plasma Device

    NASA Astrophysics Data System (ADS)

    Robertson, Jeffrey

    2016-10-01

    Understanding of turbulence and transport in multi-ion-species plasmas is important for establishing predictive capability for burning tokamak plasmas with comparable densities of D and T. Fundamental modifications to drift-wave instabilities and resulting turbulence are expected from theoretical studies, including new instabilities driven by dissimilar ion density gradients. Even in pure ion species plasmas, transport mysteries remain regarding dependence on ion mass such as the isotope scaling of turbulent transport. Recently, experiments have been performed on the Large Plasma Device at UCLA in which mixed Hydrogen-Helium plasmas were created and the relative concentration was varied systematically. The properties of edge turbulence and transport rates were documented and initial results will be presented. Experimental results are will also be compared to linear drift-wave instability theory in plasmas with multiple ion species.

  1. BOOK REVIEW: Plasma and Fluid Turbulence: Theory and Modelling

    NASA Astrophysics Data System (ADS)

    Yoshizawa, A.; Itoh, S. I.; Itoh, K.

    2003-03-01

    The area of turbulence has been covered by many books over the years. This has, of course, mainly been fluid turbulence, while the area of plasma turbulence has been treated much less. This book by Yoshizawa et al covers both plasma and fluid turbulence, in a way that does justice to both areas at the same time as cross-disciplinary aspects are illuminated. The book should be useful to physicists working in both areas partly because it examines fundamental aspects in a pedagogical way, partly because it is up to date and partly because of the cross-disciplinary aspects which enrich both areas. It is written as an advanced textbook. The reader should have previous knowledge of at least one of the areas and also some background in statistical physics. The book starts with the very important and highly up to date area of structure formation which is relevant both to fluids and plasmas. Here, pipe flow of fluids is treated as an introduction to the area, then follows discussion of the generation of magnetic fields by turbulent motion in stellar objects and stucture formation in plasmas confined by a magnetic field. Also the concept of bifurcation is introduced. This part builds up knowledge from the simple fluid case to the problems of magnetic confinement of plasmas in a very pedagogical way. It continues by introducing the fundamentals of fluid turbulence. This is done very systematically and concepts useful for industrial applications like the K-e method and several ways of heuristic modelling are introduced. Also the two dimensional vortex equation, which is also relevant to magnetized plasmas is introduced. In chapter 5 the statistical theory of turbulence is treated. It starts with a very nice and easy to understand example of renormalization of a simple nonlinear equation where the exact solution is known. It introduces the method of partial renormalization, Greens functions and the direct interaction approximation (DIA). The book then continues with an

  2. How turbulence fronts induce plasma spin-up

    NASA Astrophysics Data System (ADS)

    Kosuga, Y.; Itoh, S.-I.; Diamond, P. H.; Itoh, K.

    2017-03-01

    A calculation which describes the spin-up of toroidal plasmas by the radial propagation of turbulence fronts with broken parallel symmetry is presented. The associated flux of parallel momentum is calculated by using a two-scale direct-interaction approximation in the weak turbulence limit. We show that fluctuation momentum spreads faster than mean flow momentum. Specifically, the turbulent flux of wave momentum is stronger than the momentum pinch. The scattering of fluctuation momentum can induce edge-core coupling of toroidal flows, as observed in experiments.

  3. Heliospheric Latitude Variations of Properties of Cometary Plasma Tails: A Test of the Ulysses Comet Watch Paradigm

    NASA Astrophysics Data System (ADS)

    Brandt, John C.; Snow, Martin

    2000-11-01

    Images of comets de Vico in 1995, Hyakutake in 1996, and Hale-Bopp in 1997 taken by observers in the Ulysses Comet Watch clearly show plasma tail properties reflecting the demarcation of the solar wind into distinct equatorial and polar regions with the boundary determined by the maximum extent of the heliospheric current sheet (HCS). Generally, (1) comet plasma tails in the polar region appear relatively undisturbed (as expected from a steady solar wind), while comet tails in the equatorial region appear disturbed (as expected from a highly varying solar wind); (2) disconnection events (DEs) are observed only in the equatorial region where comets pierce the HCS; (3) the position angle of the plasma tail is consistent with a solar wind speed of 750 km s -1 in the polar region and an average solar wind speed of 450 km s -1 in the equatorial region. While the paradigm seems firm, it was established during a limited range of the solar cycle, and an extension to other ranges is desirable. We test this paradigm using the published record for essentially the entire 20th century. The catalogs of M. J. S. Belton and J. C. Brandt (1966, Astrophys. J. Suppl.13, 125-332)—giving comet tail orientations and descriptive data—and M. B. Niedner (1981, Astrophys. J. Suppl.46, 141-157)—giving DE data—were the principal sources. When combined with the DEs in Comet Halley (J. C. Brandt et al. 1999, Icarus137, 69-83) and the Ulysses-era comets, the data set is extensive. Results for the test are as follows: (1) Images of Comet Mrkos (1957d) clearly show the change of appearance from polar to equatorial regions. We discuss the unusual case of Comet Borrelly (1903c) and present an evaluation of the descriptive notes in the Belton and Brandt catalog. (2) The observed latitude envelope of DEs as a function of solar cycle is consistent with the maximum extent of the HCS. The HCS extends to higher latitudes at solar maximum (cf. J. T. Hoeksema 1991, Adv. Space Res.11, (1)15-(1)24; S

  4. SELF-CONSISTENT MODEL OF THE INTERSTELLAR PICKUP PROTONS, ALFVENIC TURBULENCE, AND CORE SOLAR WIND IN THE OUTER HELIOSPHERE

    SciTech Connect

    Gamayunov, Konstantin V.; Zhang Ming; Rassoul, Hamid K.; Pogorelov, Nikolai V.; Heerikhuisen, Jacob

    2012-09-20

    A self-consistent model of the interstellar pickup protons, the slab component of the Alfvenic turbulence, and core solar wind (SW) protons is presented for r {>=} 1 along with the initial results of and comparison with the Voyager 2 (V2) observations. Two kinetic equations are used for the pickup proton distribution and Alfvenic power spectral density, and a third equation governs SW temperature including source due to the Alfven wave energy dissipation. A fraction of the pickup proton free energy, f{sub D} , which is actually released in the waveform during isotropization, is taken from the quasi-linear consideration without preexisting turbulence, whereas we use observations to specify the strength of the large-scale driving, C{sub sh}, for turbulence. The main conclusions of our study can be summarized as follows. (1) For C{sub sh} Almost-Equal-To 1-1.5 and f{sub D} Almost-Equal-To 0.7-1, the model slab component agrees well with the V2 observations of the total transverse magnetic fluctuations starting from {approx}8 AU. This indicates that the slab component at low-latitudes makes up a majority of the transverse magnetic fluctuations beyond 8-10 AU. (2) The model core SW temperature agrees well with the V2 observations for r {approx}> 20 AU if f{sub D} Almost-Equal-To 0.7-1. (3) A combined effect of the Wentzel-Kramers-Brillouin attenuation, large-scale driving, and pickup proton generated waves results in the energy sink in the region r {approx}< 10 AU, while wave energy is pumped in the turbulence beyond 10 AU. Without energy pumping, the nonlinear energy cascade is suppressed for r {approx}< 10 AU, supplying only a small energy fraction into the k-region of dissipation by the core SW protons. A similar situation takes place for the two-dimensional turbulence. (4) The energy source due to the resonant Alfven wave damping by the core SW protons is small at heliocentric distances r {approx}< 10 AU for both the slab and the two-dimensional turbulent components

  5. Inner Heliosphere Science

    NASA Technical Reports Server (NTRS)

    Sillter, Edward C., Jr.

    2007-01-01

    The future HELEX mission concept by NASA/ESA to the inner heliosphere (0.22 AU < r < 0.7 AU) and the possibility of a Solar Probe mission to the Sun (9.5 Rs < r < 0.7 AU) will allow for a comprehensive exploration of the inner heliosphere with the prospect for major discoveries and resolution of long standing issues of heliospheric science. The new Solar Probe mission being considered is equatorial and will allow exploration of the streamer belt region from a closeup perspective. We'll be able to look for the suprathermal ion population some think are necessary as the seed population for SEP events, look closeup at CMEs and formation of shock inside the Alfven critical point, probe the outer boundaries of the streamer belts, reconnection within the current sheets, MHD waves and turbulence and the inner source where they are felt to form and may reveal themselves as pickup ions. All will be launched around Solar Minimum with rise in solar activity toward the end of these missions. Extended missions could then occur during Solar Maximum. I'll talk about the complement of instrumentation and mission strategies.

  6. Physics of the inner heliosphere 1-10R sub O plasma diagnostics and models

    NASA Technical Reports Server (NTRS)

    Withbroe, G. L.

    1984-01-01

    The physics of solar wind flow in the acceleration region and impulsive phenomena in the solar corona is studied. The study of magnetohydrodynamic wave propagation in the corona and the solutions for steady state and time dependent solar wind equations gives insights concerning the physics of the solar wind acceleration region, plasma heating and plasma acceleration processes and the formation of shocks. Also studied is the development of techniques for placing constraints on the mechanisms responsible for coronal heating.

  7. Remote sensing of plasma motion and turbulence near the Alfvén surface

    NASA Astrophysics Data System (ADS)

    DeForest, C. E.

    2015-12-01

    Despite a rich nearly-century-long history, Thomson scattering has not been fully exploited as a remote-sensing tool in the corona and nascent solar wind. In particular, stable deep-space coronagraphs such as SOHO/LASCO and STEREO/SECCHI enable time-dependent, photometric analyses that transcend basic feature tracking and brightness estimation. These techniques offer direct insight into the plasma conditions in the outer corona. In particular, fluctuations in the outer coronal brightness comprise both the familiar inhomogeneous "blobs" of material first tracked quantitatively with SOHO/LASCO, and also a recently-discovered compressive wave field that permits remote probing of the plasma even though individual wave fronts do not stand out visually. I will discuss recent and current measurements of this wave field in the outer corona as a means to probe outer coronal heating and wind acceleration near the transition from corona to heliosphere (known as the Alfvén surface); and present current results from a study of the transition from mostly smooth to mostly turbulent flow in the nascent solar wind.

  8. Kinetic signatures and intermittent turbulence in the solar wind plasma.

    PubMed

    Osman, K T; Matthaeus, W H; Hnat, B; Chapman, S C

    2012-06-29

    A connection between kinetic processes and intermittent turbulence is observed in the solar wind plasma using measurements from the Wind spacecraft at 1 A.U. In particular, kinetic effects such as temperature anisotropy and plasma heating are concentrated near coherent structures, such as current sheets, which are nonuniformly distributed in space. Furthermore, these coherent structures are preferentially found in plasma unstable to the mirror and firehose instabilities. The inhomogeneous heating in these regions, which is present in both the magnetic field parallel and perpendicular temperature components, results in protons at least 3-4 times hotter than under typical stable plasma conditions. These results offer a new understanding of kinetic processes in a turbulent regime, where linear Vlasov theory is not sufficient to explain the inhomogeneous plasma dynamics operating near non-Gaussian structures.

  9. MAGNETIZED JETS DRIVEN BY THE SUN: THE STRUCTURE OF THE HELIOSPHERE REVISITED

    SciTech Connect

    Opher, M.; Drake, J. F.; Zieger, B.; Gombosi, T. I.

    2015-02-20

    The classic accepted view of the heliosphere is a quiescent, comet-like shape aligned in the direction of the Sun’s travel through the interstellar medium (ISM) extending for thousands of astronomical units (AUs). Here, we show, based on magnetohydrodynamic (MHD) simulations, that the tension (hoop) force of the twisted magnetic field of the Sun confines the solar wind plasma beyond the termination shock and drives jets to the north and south very much like astrophysical jets. These jets are deflected into the tail region by the motion of the Sun through the ISM similar to bent galactic jets moving through the intergalactic medium. The interstellar wind blows the two jets into the tail but is not strong enough to force the lobes into a single comet-like tail, as happens to some astrophysical jets. Instead, the interstellar wind flows around the heliosphere and into the equatorial region between the two jets. As in some astrophysical jets that are kink unstable, we show here that the heliospheric jets are turbulent (due to large-scale MHD instabilities and reconnection) and strongly mix the solar wind with the ISM beyond 400 AU. The resulting turbulence has important implications for particle acceleration in the heliosphere. The two-lobe structure is consistent with the energetic neutral atom (ENA) images of the heliotail from IBEX where two lobes are visible in the north and south and the suggestion from the Cassini ENAs that the heliosphere is “tailless.”.

  10. Magnetized Jets Driven By the Sun: The Structure of the Heliosphere Revisited

    NASA Astrophysics Data System (ADS)

    Opher, Merav

    2015-11-01

    The classic accepted view of the heliosphere is a quiescent, comet-like shape aligned in the direction of the Sun's travel through the interstellar medium (ISM) extending for thousands of astronomical units (AUs). Here, we show, based on magnetohydrodynamic (MHD) simulations, that the tension (hoop) force of the twisted magnetic field of the Sun confines the solar wind plasma beyond the termination shock and drives jets to the north and south very much like astrophysical jets. These jets are deflected into the tail region by the motion of the Sun through the ISM similar to bent galactic jets moving through the intergalactic medium. The interstellar wind blows the two jets into the tail but is not strong enough to force the lobes into a single comet-like tail, as happens to some astrophysical jets. Instead, the interstellar wind flows around the heliosphere and into the equatorial region between the two jets. As in some astrophysical jets that are kink unstable, we show here that the heliospheric jets are turbulent (due to large-scale MHD instabilities and reconnection) and strongly mix the solar wind with the ISM. The resulting turbulence has important implications for particle acceleration in the heliosphere. The two-lobe structure is consistent with the energetic neutral atom (ENA) images of the heliotail from IBEX where two lobes are visible in the north and south and the suggestion from the Cassini ENAs that the heliosphere is ``tailless.''

  11. Magnetized Jets Driven By the Sun: the Structure of the Heliosphere Revisited

    NASA Astrophysics Data System (ADS)

    Opher, M.; Drake, J. F.; Zieger, B.; Gombosi, T. I.

    2015-02-01

    The classic accepted view of the heliosphere is a quiescent, comet-like shape aligned in the direction of the Sun’s travel through the interstellar medium (ISM) extending for thousands of astronomical units (AUs). Here, we show, based on magnetohydrodynamic (MHD) simulations, that the tension (hoop) force of the twisted magnetic field of the Sun confines the solar wind plasma beyond the termination shock and drives jets to the north and south very much like astrophysical jets. These jets are deflected into the tail region by the motion of the Sun through the ISM similar to bent galactic jets moving through the intergalactic medium. The interstellar wind blows the two jets into the tail but is not strong enough to force the lobes into a single comet-like tail, as happens to some astrophysical jets. Instead, the interstellar wind flows around the heliosphere and into the equatorial region between the two jets. As in some astrophysical jets that are kink unstable, we show here that the heliospheric jets are turbulent (due to large-scale MHD instabilities and reconnection) and strongly mix the solar wind with the ISM beyond 400 AU. The resulting turbulence has important implications for particle acceleration in the heliosphere. The two-lobe structure is consistent with the energetic neutral atom (ENA) images of the heliotail from IBEX where two lobes are visible in the north and south and the suggestion from the Cassini ENAs that the heliosphere is “tailless.”

  12. Observation of an Extremely Large-Density Heliospheric Plasma Sheet Compressed by an Interplanetary Shock at 1 AU

    NASA Astrophysics Data System (ADS)

    Wu, Chin-Chun; Liou, Kan; Lepping, R. P.; Vourlidas, Angelos; Plunkett, Simon; Socker, Dennis; Wu, S. T.

    2017-08-01

    At 11:46 UT on 9 September 2011, the Wind spacecraft encountered an interplanetary (IP) fast-forward shock. The shock was followed almost immediately by a short-duration (˜ 35 minutes) extremely dense pulse (with a peak ˜ 94 cm-3). The pulse induced an extremely large positive impulse (SYM-H = 74 nT and Dst = 48 nT) on the ground. A close examination of other in situ parameters from Wind shows that the density pulse was associated with i) a spike in the plasma β (ratio of thermal to magnetic pressure), ii) multiple sign changes in the azimuthal component of the magnetic field (B_{φ}), iii) a depressed magnetic field magnitude, iv) a small radial component of the magnetic field, and v) a large (> 90°) change in the suprathermal (˜ 255 eV) electron pitch angle across the density pulse. We conclude that the density pulse is associated with the heliospheric plasma sheet (HPS). The thickness of the HPS is estimated to be {˜} 8.2×105 km. The HPS density peak is about five times the value of a medium-sized density peak inside the HPS (˜ 18 cm-3) at 1 AU. Our global three-dimensional magnetohydrodynamic simulation results (Wu et al. in J. Geophys. Res. 212, 1839, 2016) suggest that the extremely large density pulse may be the result of the compression of the HPS by an IP shock crossing or an interaction between an interplanetary shock and a corotating interaction region.

  13. Plasma Heating During Magnetic Reconnection: Implications for Turbulent Dissipation

    NASA Astrophysics Data System (ADS)

    Shay, M. A.; Parashar, T.; Matthaeus, W. H.; Haggerty, C. C.

    2015-12-01

    Current sheets and associated intermittency are known to be prevalent in many turbulent plasmas and have been shown to be correlated with heating in observations of solar wind turbulence [1] and dissipation in kinetic particle-in-cell simulations [5]. Most intriguing, recent PIC simulations have found that the relative ion to electron heating ratio is strongly dependent on the turbulence amplitude [3]. An important question is whether magnetic reconnection is an important mechanism responsible for this heating. Studies focused on laminar reconnection have made significant progress recently on the magnitude and physics responsible for heating during magnetic reconnection [2,4]. The ambient Alfven speed of plasma flowing into the reconnection region plays a critical role, with heating initially taking the form of counterstreaming beams generated by non-local acceleration mechanism. However, there are significant uncertainties with how to link this basic reconnection heating with generic heating in a turbulent plasma. In this presentation, our current understanding of heating due to reconnection will be reviewed, and the factors determining the applicability of this heating to turbulent dissipation and heating will be discussed. These ideas will be explored through the comparison of kinetic PIC simulations of turbulence with reconnection heating models. Key aspects that will be examined are the effect of differing turbulent conditions on the magnitude and anisotropy of the heating, as well as the ion to electron heating ratio. [1] Osman et al., ApJ Letters, 727, L11, 2011. [2] Phan, et al., GRL, 40, 50917, 2013. [3] Wu et al., ApJ Letters, 763, L30, 2013. [4] Shay et al., Phys. Plasmas, 21, 122902, 2014. [5] Wan et al., PRL, 114, 175002, 2015.

  14. Plasma turbulence in the downstream ionosheath of Venus

    NASA Technical Reports Server (NTRS)

    Intriligator, D. S.; Scarf, F. L.

    1982-01-01

    Observations made by the Pioneer Venus Orbiter plasma analyzer and the plasma wave instrument in the Venus ionosheath are compared. Large increases in plasma wave turbulence levels appear to be connected with changing plasma distributions and interpenetrating plasma beams. Some of these plasma waves are identified as Doppler - shifted ion acoustic waves due to beam/beam interactions, but it is noted that different forms of instabilities are probably also operative. The changes in the temperature, intensity and energy of the peak in the PVO plasma distributions are similar to those observed by Venera 10 closer to the planet and appear to be evidence for rarefaction and compression in the downstream ionosheath. Some of the changes in the PVO plasma distributions may be related to the presence of a second ion population or the acceleration of protons.

  15. Space-Time Localization of Plasma Turbulence Using Multiple Spacecraft Radio Links

    NASA Technical Reports Server (NTRS)

    Armstrong, John W.; Estabrook, Frank B.

    2011-01-01

    Space weather is described as the variability of solar wind plasma that can disturb satellites and systems and affect human space exploration. Accurate prediction requires information of the heliosphere inside the orbit of the Earth. However, for predictions using remote sensing, one needs not only plane-of-sky position but also range information the third spatial dimension to show the distance to the plasma disturbances and thus when they might propagate or co-rotate to create disturbances at the orbit of the Earth. Appropriately processed radio signals from spacecraft having communications lines-of-sight passing through the inner heliosphere can be used for this spacetime localization of plasma disturbances. The solar plasma has an electron density- and radio-wavelength-dependent index of refraction. An approximately monochromatic wave propagating through a thin layer of plasma turbulence causes a geometrical-optics phase shift proportional to the electron density at the point of passage, the radio wavelength, and the thickness of the layer. This phase shift is the same for a wave propagating either up or down through the layer at the point of passage. This attribute can be used for space-time localization of plasma irregularities. The transfer function of plasma irregularities to the observed time series depends on the Doppler tracking mode. When spacecraft observations are in the two-way mode (downlink radio signal phase-locked to an uplink radio transmission), plasma fluctuations have a two-pulse response in the Doppler. In the two-way mode, the Doppler time series y2(t) is the difference between the frequency of the downlink signal received and the frequency of a ground reference oscillator. A plasma blob localized at a distance x along the line of sight perturbs the phase on both the up and down link, giving rise to two events in the two-way tracking time series separated by a time lag depending the blob s distance from the Earth: T2-2x/c, where T2 is the

  16. Turbulence and Plasma Physics in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Schekochihin, Alexander

    2005-10-01

    The intracluster medium appears to be in a turbulent state. It is also threaded by randomly tangled magnetic fields. In the past few years there has been a dramatic increase in the quantity and quality of observational data on cluster turbulence and magnetic fields. The observed magnetic fields are strong enough to be dynamically important. The turbulence and magnetic field regulate the viscous heating and heat transport that determine the thermal structure of clusters. A coherent theory of magnetized cluster turbulence is necessary for understanding cluster behaviour on both large and small scales. The strength and certainly the structure of the cluster fields are determined by their interaction with the turbulence. This talk will first describe the fundamental properties of the turbulent generation of magnetic fields: (1) what type of field structure can be produced and maintained; (2) how a dynamical saturated state is achieved; (3) what are the observable signatures of the field structure in clusters. The field structure in no small measure depends on the nature of the viscous and magnetic cutoffs. These are determined by the plasma physics of the intracluster medium, which has very low collisionality. It will be shown that, under very general conditions, cluster plasmas threaded by weak magnetic fields are subject to firehose and mirror instabilities. These are driven by the anisotropies of the plasma pressure (viscous stress) that naturally arise in any weakly magnetized plasma that has low collisionality and is subject to stirring. The effect is captured by the extended MHD model with Braginskii viscosity, but, as the instability growth rates are proportional to the wavenumber down to the ion gyroscale, MHD equations with Braginskii viscosity are not well posed and a fully kinetic description is necessary. The instabilities may lead to the amplification of magnetic fields in clusters to the observed strength of ˜10μG on cosmologically trivial time scales

  17. Turbulent and directed plasma motions in solar flares

    NASA Technical Reports Server (NTRS)

    Fludra, A.; Bentley, R. D.; Lemen, J. R.; Jakimiec, J.; Sylwester, J.

    1989-01-01

    An improved method for fitting asymmetric soft X-ray line profiles from solar flares is presented. A two-component model is used where one component represents the total emission from directed upflow plasma and the other the emission from the plasma at rest. Unlike previous methods, the width of the moving component is independent from that of the stationary component. Time variations of flare plasma characteristics (i.e., temperature, emission measure of moving and stationary plasma, upflow and turbulent velocities) are derived from the Ca XIX and Fe XXV spectra recorded by the Bent Crystal Spectrometer on the Solar Maximum Mission. The fitting technique provides a statistical estimation for the uncertainties in the fitting parameters. The relationship between the directed and turbulent motions has been studied, and a correlation of the random and directed motions has been found in some flares with intensive plasma upflows. Mean temperatures of the upflowing and stationary plasmas are compared for the first time from ratios of calcium to iron X-ray line intensities. Finally, evidence for turbulent motions and the possibility of plasma upflow late into the decay phase is presented and discussed.

  18. Suppression of phase mixing in drift-kinetic plasma turbulence

    SciTech Connect

    Parker, J. T.; Highcock, E. G.; Schekochihin, A. A.; Dellar, P. J.

    2016-07-15

    Transfer of free energy from large to small velocity-space scales by phase mixing leads to Landau damping in a linear plasma. In a turbulent drift-kinetic plasma, this transfer is statistically nearly canceled by an inverse transfer from small to large velocity-space scales due to “anti-phase-mixing” modes excited by a stochastic form of plasma echo. Fluid moments (density, velocity, and temperature) are thus approximately energetically isolated from the higher moments of the distribution function, so phase mixing is ineffective as a dissipation mechanism when the plasma collisionality is small.

  19. RF wave propagation and scattering in turbulent tokamak plasmas

    SciTech Connect

    Horton, W. Michoski, C.; Peysson, Y.; Decker, J.

    2015-12-10

    Drift wave turbulence driven by the steep electron and ion temperature gradients in H-mode divertor tokamaks produce scattering of the RF waves used for heating and current drive. The X-ray emission spectra produced by the fast electrons require the turbulence broaden RF wave spectrum. Both the 5 GHz Lower Hybrid waves and the 170 GHz electron cyclotron [EC] RF waves experience scattering and diffraction by the electron density fluctuations. With strong LHCD there are bifurcations in the coupled turbulent transport dynamics giving improved steady-state confinement states. The stochastic scattering of the RF rays makes the prediction of the distribution of the rays and the associated particle heating a statistical problem. Thus, we introduce a Fokker-Planck equation for the probably density of the RF rays. The general frame work of the coupled system of coupled high frequency current driving rays with the low-frequency turbulent transport determines the profiles of the plasma density and temperatures.

  20. Investigation of an Oscillating Surface Plasma for Turbulent Drag Reduction

    NASA Technical Reports Server (NTRS)

    Wilkinson, Stephen P.

    2003-01-01

    An oscillating, weakly ionized surface plasma has been investigated for use in turbulent boundary layer viscous drag reduction. The study was based on reports showing that mechanical spanwise oscillations of a wall can reduce viscous drag due to a turbulent boundary layer by up to 40%. It was hypothesized that the plasma induced body force in high electric field gradients of a surface plasma along strip electrodes could also be configured to oscillate the flow. Thin dielectric panels with millimeter-scale, flush- mounted, triad electrode arrays with one and two-phase high voltage excitation were tested. Results showed that while a small oscillation could be obtained, the effect was lost at a low frequency (less than 100Hz). Furthermore, a mean flow was generated during the oscillation that complicates the effect. Hot-wire and pitot probe diagnostics are presented along with phase-averaged images revealing plasma structure.

  1. Simultaneous Multi-angle Measurements of Plasma Turbulence at HAARP

    NASA Astrophysics Data System (ADS)

    Watanabe, Naomi; Golkowski, Mark; Sheerin, James; University of Colorado Denver Team

    2013-10-01

    We report the results from a recent series of experiments employing the HAARP HF transmitter to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) located at HAARP, the Super DARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Short pulse, low duty cycle experiments demonstrate control and suppression of artificial field-aligned irregularities (AFAI). This allows the isolation of ponderomotive plasma turbulence effects. For the first time, plasma line spectra measured simultaneously in different spots of the interaction region displayed marked but contemporaneous differences dependent on the aspect angle of the HF pump beam and the pointing angle of the MUIR diagnostic radar. Outshifted Plasma Line (OPL) spectra, rarely observed in past experiments, occurred with sufficient regularity for experimentation. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.

  2. Simultaneous Multi-angle Measurements of Plasma Turbulence at HAARP

    NASA Astrophysics Data System (ADS)

    Watanabe, Naomi

    We report the results from a recent series of experiments employing the HAARP HF transmitter to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the Super DARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Short pulse, low duty cycle experiments demonstrate control and suppression of artificial field-aligned irregularities (AFAI). This allows the isolation of ponderomotive plasma turbulence effects. For the first time, plasma line spectra measured simultaneously in different spots of the interaction region displayed marked but contemporaneous differences dependent on the aspect angle of the HF pump beam and the pointing angle of the MUIR diagnostic radar. Outshifted Plasma Line spectra, rarely observed in past experiments, occurred with sufficient regularity for experimentation. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.

  3. Energy transfer and dual cascade in kinetic magnetized plasma turbulence.

    PubMed

    Plunk, G G; Tatsuno, T

    2011-04-22

    The question of how nonlinear interactions redistribute the energy of fluctuations across available degrees of freedom is of fundamental importance in the study of turbulence and transport in magnetized weakly collisional plasmas, ranging from space settings to fusion devices. In this Letter, we present a theory for the dual cascade found in such plasmas, which predicts a range of new behavior that distinguishes this cascade from that of neutral fluid turbulence. These phenomena are explained in terms of the constrained nature of spectral transfer in nonlinear gyrokinetics. Accompanying this theory are the first observations of these phenomena, obtained via direct numerical simulations using the gyrokinetic code AstroGK. The basic mechanisms that are found provide a framework for understanding the turbulent energy transfer that couples scales both locally and nonlocally.

  4. Physics of the Inner Heliosphere 1-10 Rs: Plasma Diagnostics and Models

    NASA Technical Reports Server (NTRS)

    Habbal, Shadia R.

    1998-01-01

    While the mechanisms responsible for the solar corona and the high-speed solar wind streams are still unknown, model computations offer means of predicting the properties of such mechanisms in light of the empirical constraints currently available. Modeling and data analysis efforts were aimed at understanding the plasma properties of the acceleration of the solar wind, its filamentary nature, and the conditions needed to account for a rapidly accelerating solar wind, reaching its terminal speed within 10 R(sub s). A sequence of models ranging from steady one-fluid descriptions of the solar wind to multi-fluid time-dependent models were developed. Plasma diagnostics evolved from the analysis of data acquired from Skylab to SOHO, and complemented by ground-based observations.

  5. Turbulence in laboratory and natural plasmas: Connecting the dots

    NASA Astrophysics Data System (ADS)

    Jenko, Frank

    2015-11-01

    It is widely recognized that turbulence is an important and fascinating frontier topic of both basic and applied plasma physics. Numerous aspects of this paradigmatic example of self-organization in nonlinear systems far from thermodynamic equilibrium remain to be better understood. Meanwhile, for both laboratory and natural plasmas, an impressive combination of new experimental and observational data, new theoretical concepts, and new computational capabilities (on the brink of the exascale era) have become available. Thus, it seems fair to say that we are currently facing a golden age of plasma turbulence research, characterized by fundamental new insights regarding the role and nature of turbulent processes in phenomena like cross-field transport, particle acceleration and propagation, plasma heating, magnetic reconnection, or dynamo action. At the same time, there starts to emerge a more unified view of this key topic of basic plasma physics, putting it into the much broader context of complex systems research and connecting it, e.g., to condensed matter physics and biophysics. I will describe recent advances and future challenges in this vibrant area of plasma physics, highlighting novel insights into the redistribution and dissipation of energy in turbulent plasmas at kinetic scales, using gyrokinetic, hybrid, and fully kinetic approaches in a complementary fashion. In this context, I will discuss, among other things, the influence of damped eigenmodes, the importance of nonlocal interactions, the origin and nature of non-universal power law spectra, as well as the role of coherent structures. Moreover, I will outline exciting new research opportunities on the horizon, combining extreme scale simulations with basic plasma and fusion experiments as well as with observations from satellites.

  6. Role of Plasma Elongation on Turbulent Transport in Magnetically Confined Plasmas

    SciTech Connect

    Angelino, P.; Garbet, X.; Ghendrih, Ph.; Grandgirard, V.; Sarazin, Y.; Dif-Pradalier, G.; Bottino, A.

    2009-05-15

    The theoretical study of plasma turbulence is of central importance to fusion research. Experimental evidence indicates that the confinement time results mainly from the turbulent transport of energy, the magnitude of which depends on the turbulent state resulting from nonlinear saturation mechanisms, in particular, the self-generation of coherent macroscopic structures and large scale flows. Plasma geometry has a strong impact on the structure and magnitude of these flows and also modifies the mode linear growth rates. Nonlinear global gyrokinetic simulations in realistic tokamak magnetohydrodynamic equilibria show how plasma shape can control the turbulent transport. Results are best described in terms of an effective temperature gradient. With increasing plasma elongation, the nonlinear critical effective gradient is not modified while the stiffness of transport is decreasing.

  7. Role of plasma elongation on turbulent transport in magnetically confined plasmas.

    PubMed

    Angelino, P; Garbet, X; Villard, L; Bottino, A; Jolliet, S; Ghendrih, Ph; Grandgirard, V; McMillan, B F; Sarazin, Y; Dif-Pradalier, G; Tran, T M

    2009-05-15

    The theoretical study of plasma turbulence is of central importance to fusion research. Experimental evidence indicates that the confinement time results mainly from the turbulent transport of energy, the magnitude of which depends on the turbulent state resulting from nonlinear saturation mechanisms, in particular, the self-generation of coherent macroscopic structures and large scale flows. Plasma geometry has a strong impact on the structure and magnitude of these flows and also modifies the mode linear growth rates. Nonlinear global gyrokinetic simulations in realistic tokamak magnetohydrodynamic equilibria show how plasma shape can control the turbulent transport. Results are best described in terms of an effective temperature gradient. With increasing plasma elongation, the nonlinear critical effective gradient is not modified while the stiffness of transport is decreasing.

  8. Role of Plasma Elongation on Turbulent Transport in Magnetically Confined Plasmas

    NASA Astrophysics Data System (ADS)

    Angelino, P.; Garbet, X.; Villard, L.; Bottino, A.; Jolliet, S.; Ghendrih, Ph.; Grandgirard, V.; McMillan, B. F.; Sarazin, Y.; Dif-Pradalier, G.; Tran, T. M.

    2009-05-01

    The theoretical study of plasma turbulence is of central importance to fusion research. Experimental evidence indicates that the confinement time results mainly from the turbulent transport of energy, the magnitude of which depends on the turbulent state resulting from nonlinear saturation mechanisms, in particular, the self-generation of coherent macroscopic structures and large scale flows. Plasma geometry has a strong impact on the structure and magnitude of these flows and also modifies the mode linear growth rates. Nonlinear global gyrokinetic simulations in realistic tokamak magnetohydrodynamic equilibria show how plasma shape can control the turbulent transport. Results are best described in terms of an effective temperature gradient. With increasing plasma elongation, the nonlinear critical effective gradient is not modified while the stiffness of transport is decreasing.

  9. Spontaneous emission of electromagnetic radiation in turbulent plasmas

    SciTech Connect

    Ziebell, L. F.; Yoon, P. H.; Simões, F. J. R.; Pavan, J.; Gaelzer, R.

    2014-01-15

    Known radiation emission mechanisms in plasmas include bremmstrahlung (or free-free emission), gyro- and synchrotron radiation, cyclotron maser, and plasma emission. For unmagnetized plasmas, only bremmstrahlung and plasma emissions are viable. Of these, bremmstrahlung becomes inoperative in the absence of collisions, and the plasma emission requires the presence of electron beam, followed by various scattering and conversion processes. The present Letter proposes a new type of radiation emission process for plasmas in a state of thermodynamic quasi-equilibrium between particles and enhanced Langmuir turbulence. The radiation emission mechanism proposed in the present Letter is not predicted by the linear theory of thermal plasmas, but it relies on nonlinear wave-particle resonance processes. The electromagnetic particle-in-cell numerical simulation supports the new mechanism.

  10. Magnetised plasma turbulence in clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Schekochihin, A.; Cowley, S.; Kulsrud, R.; Hammett, G.; Sharma, P.

    2005-06-01

    Cluster plasmas are magnetised already at very low magnetic field strength. Low collisionality implies that conservation of the first adiabatic invariant results in an anisotropic viscous stress (Braginskii viscosity) or, equivalently, anisotropic plasma pressure. This triggers firehose and mirror instabilities, which have growth rates proportional to the wavenumber down to scales of the order of ion Larmor radius. This means that MHD equations with Braginskii viscosity are not well posed and fully kinetic description is necessary. In this paper, we review the basic picture of small-scale dynamo in the cluster plasma and attempt to reconcile it with the existence of plasma instabilities at collisionless scales.

  11. ECRH microwave beam broadening in the edge turbulent plasma

    SciTech Connect

    Sysoeva, E. V.; Gusakov, E. Z.; Popov, A. Yu.; Silva, F. da; Heuraux, S.

    2014-02-12

    The influence of turbulent plasma density fluctuations on angular and spatial beam width is treated analytically in the framework of WKB based eikonal method. Reasonable agreement of analytical and numerical treatment results is demonstrated within the domain of quasi-optical approximation validity. Significant broadening of microwave beams is predicted for future ECRH experiments at ITER.

  12. The Solar Wind in the Outer Heliosphere and Heliosheath

    NASA Astrophysics Data System (ADS)

    Richardson, J. D.; Burlaga, L. F.

    2013-06-01

    The solar wind environment has a large influence on the transport of cosmic rays. This chapter discusses the observations of the solar wind plasma and magnetic field in the outer heliosphere and the heliosheath. In the supersonic solar wind, interaction regions with large magnetic fields form barriers to cosmic ray transport. This effect, the "CR-B" relationship, has been quantified and is shown to be valid everywhere inside the termination shock (TS). In the heliosheath, this relationship breaks down, perhaps because of a change in the nature of the turbulence. Turbulence is compressive in the heliosheath, whereas it was non-compressive in the solar wind. The plasma pressure in the outer heliosphere is dominated by the pickup ions which gain most of the flow energy at the TS. The heliosheath plasma and magnetic field are highly variable on scales as small as ten minutes. The plasma flow turns away from the nose roughly as predicted, but the radial speeds at Voyager 1 are much less than those at Voyager 2, which is not understood. Despite predictions to the contrary, magnetic reconnection is not an important process in the inner heliosheath with only one observed occurrence to date.

  13. The Solar Wind in the Outer Heliosphere and Heliosheath

    NASA Technical Reports Server (NTRS)

    Richardson, J. D.; Burlaga, L. F.

    2011-01-01

    The solar wind environment has a large influence on the transport of cosmic rays. This chapter discusses the observations of the solar wind plasma and magnetic field in the outer heliosphere and the heliosheath. In the supersonic solar wind, interaction regions with large magnetic fields form barriers to cosmic ray transport. This effect, the "CR-B" relationship, has been quantified and is shown to be valid everywhere inside the termination shock (TS). In the heliosheath, this relationship breaks down, perhaps because of a change in the nature of the turbulence. Turbulence is compressive in the heliosheath, whereas it was non-compressive in the solar wind. The plasma pressure in the outer heliosphere is dominated by the pickup ions which gain most of the flow energy at the TS. The heliosheath plasma and magnetic field are highly variable on scales as small as ten minutes. The plasma flow turns away from the nose roughly as predicted, but the radial speeds at Voyager 1 are much less than those at Voyager 2, which is not understood. Despite predictions to the contrary, magnetic reconnection is not an important process in the inner heliosheath with only one observed occurrence to date.

  14. The Solar Wind in the Outer Heliosphere and Heliosheath

    NASA Technical Reports Server (NTRS)

    Richardson, J. D.; Burlaga, L. F.

    2011-01-01

    The solar wind environment has a large influence on the transport of cosmic rays. This chapter discusses the observations of the solar wind plasma and magnetic field in the outer heliosphere and the heliosheath. In the supersonic solar wind, interaction regions with large magnetic fields form barriers to cosmic ray transport. This effect, the "CR-B" relationship, has been quantified and is shown to be valid everywhere inside the termination shock (TS). In the heliosheath, this relationship breaks down, perhaps because of a change in the nature of the turbulence. Turbulence is compressive in the heliosheath, whereas it was non-compressive in the solar wind. The plasma pressure in the outer heliosphere is dominated by the pickup ions which gain most of the flow energy at the TS. The heliosheath plasma and magnetic field are highly variable on scales as small as ten minutes. The plasma flow turns away from the nose roughly as predicted, but the radial speeds at Voyager 1 are much less than those at Voyager 2, which is not understood. Despite predictions to the contrary, magnetic reconnection is not an important process in the inner heliosheath with only one observed occurrence to date.

  15. PARTICLE-IN-CELL SIMULATIONS OF CONTINUOUSLY DRIVEN MIRROR AND ION CYCLOTRON INSTABILITIES IN HIGH BETA ASTROPHYSICAL AND HELIOSPHERIC PLASMAS

    SciTech Connect

    Riquelme, Mario A.; Quataert, Eliot; Verscharen, Daniel E-mail: eliot@berkeley.edu

    2015-02-10

    We use particle-in-cell simulations to study the nonlinear evolution of ion velocity space instabilities in an idealized problem in which a background velocity shear continuously amplifies the magnetic field. We simulate the astrophysically relevant regime where the shear timescale is long compared to the ion cyclotron period, and the plasma beta is β ∼ 1-100. The background field amplification in our calculation is meant to mimic processes such as turbulent fluctuations or MHD-scale instabilities. The field amplification continuously drives a pressure anisotropy with p > p {sub ∥} and the plasma becomes unstable to the mirror and ion cyclotron instabilities. In all cases, the nonlinear state is dominated by the mirror instability, not the ion cyclotron instability, and the plasma pressure anisotropy saturates near the threshold for the linear mirror instability. The magnetic field fluctuations initially undergo exponential growth but saturate in a secular phase in which the fluctuations grow on the same timescale as the background magnetic field (with δB ∼ 0.3 (B) in the secular phase). At early times, the ion magnetic moment is well-conserved but once the fluctuation amplitudes exceed δB ∼ 0.1 (B), the magnetic moment is no longer conserved but instead changes on a timescale comparable to that of the mean magnetic field. We discuss the implications of our results for low-collisionality astrophysical plasmas, including the near-Earth solar wind and low-luminosity accretion disks around black holes.

  16. Particle-in-cell Simulations of Continuously Driven Mirror and Ion Cyclotron Instabilities in High Beta Astrophysical and Heliospheric Plasmas

    NASA Astrophysics Data System (ADS)

    Riquelme, Mario A.; Quataert, Eliot; Verscharen, Daniel

    2015-02-01

    We use particle-in-cell simulations to study the nonlinear evolution of ion velocity space instabilities in an idealized problem in which a background velocity shear continuously amplifies the magnetic field. We simulate the astrophysically relevant regime where the shear timescale is long compared to the ion cyclotron period, and the plasma beta is β ~ 1-100. The background field amplification in our calculation is meant to mimic processes such as turbulent fluctuations or MHD-scale instabilities. The field amplification continuously drives a pressure anisotropy with p > p ∥ and the plasma becomes unstable to the mirror and ion cyclotron instabilities. In all cases, the nonlinear state is dominated by the mirror instability, not the ion cyclotron instability, and the plasma pressure anisotropy saturates near the threshold for the linear mirror instability. The magnetic field fluctuations initially undergo exponential growth but saturate in a secular phase in which the fluctuations grow on the same timescale as the background magnetic field (with δB ~ 0.3 langBrang in the secular phase). At early times, the ion magnetic moment is well-conserved but once the fluctuation amplitudes exceed δB ~ 0.1 langBrang, the magnetic moment is no longer conserved but instead changes on a timescale comparable to that of the mean magnetic field. We discuss the implications of our results for low-collisionality astrophysical plasmas, including the near-Earth solar wind and low-luminosity accretion disks around black holes.

  17. Magnetogenesis and magnetothermal equilibria in turbulent galaxy-cluster plasmas

    NASA Astrophysics Data System (ADS)

    Schekochihin, Alexander

    2011-04-01

    We do not know the exact mechanism of magnetic field generation in magnetised weakly collisional (or collisionless) turbulent plasma. We do know that large-scale MHD motions in such plasmas are subject to fast small-scale kinetic instabilities (mirror and firehose) triggered (at high beta) by pressure anisotropies and that these anisotropies will always arise in a turbulent plasma. Therefore, standard MHD equations cannot be used to describe the turbulent dynamo. I will argue that the likely scenario in such plasmas is explosively fast growth of magnetic fluctuations to dynamical levels. I will further argue that if an efficient turbulent dynamo is assumed, radiative cooling in such plasmas can be balanced in a thermally stable way by turbulent heating, whose rate is set by the condition that plasma locally remains in a marginal state with respect to the mirror and firehose instabilities. This thermal stability suggests that a cooling catastrophe is not inevitable, although whether this old problem is thus resolved depends on whether a number of assumptions about the nonlinear behaviour of the instabilities, strength of turbulence and efficiency of the dynamo are borne out by first- principles microphysical theory, simulations or plasma experiments.References:A. A. Schekochihin, M. Brueggen, L. Feretti, M. W. Kunz, and L. Rudnick, Space Sci. Rev., in preparation (2011)M. W. Kunz, A. A. Schekochihin, S. C. Cowley, J. J. Binney, and J. S. Sanders, Mon. Not. R. Astron. Soc., in press (2011) [e-print arXiv:1003.2719]M. S. Rosin, A. A. Schekochihin, F. Rincon, and S. C. Cowley, Mon. Not. R. Astron. Soc., in press (2011) [e-print arXiv:1002.4017]A. A. Schekochihin, S. C. Cowley, F. Rincon, and M. S. Rosin, Mon. Not. R. Astron. Soc. 405, 291 (2010) [e-print arXiv:0912.1359]A. A. Schekochihin, S. C. Cowley, R. M. Kulsrud, M. S. Rosin, and T. Heinemann, Phys. Rev. Lett. 100, 081301 (2008) [e-print arXiv:0709.3828]A. A. Schekochihin and S. C. Cowley, Phys. Plasmas 13, 056501

  18. Effects of turbulence on the Thomson scattering process in turbulent plasmas by the scattering of electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Jung, Young-Dae

    2013-05-01

    The effects of turbulence on the Thomson scattering process are investigated in turbulent plasmas. The Thomson scattering cross section in turbulent plasmas is obtained by the fluctuation-dissipation theorem and plasma dielectric function as a function of the diffusion coefficient, wave number, and Debye length. It is demonstrated that the turbulence effect suppresses the Thomson scattering cross section. It is also shown that the turbulence effect on the Thomson scattering process decreases with increasing thermal energy. The dependence of the wave number on the total Thomson scattering cross section including the turbulent structure factor is also discussed. This paper is dedicated to the late Prof. P. K. Shukla in memory of exciting and stimulating collaborations on effective interaction potentials in various astrophysical and laboratory plasmas.

  19. Granular fluctuations in plasma turbulence and their role in transport

    SciTech Connect

    Terry, P.W.

    1993-04-01

    Three general types of granular or discrete fluctuations in plasma turbulence are reviewed, with emphasis placed on their unique role in fluctuation-induced transport. These fluctuations are clumps, holes, and vortices, and represent structures that are not part of the normal mode response, the basis of conventional descriptions of plasma turbulence and transport. These fluctuations interact with the normal mode response to produce profound modifications of transport. The self-consistent linking of fields and particle distributions through quasineutrality and Ampere's law is shown to be crucial in calculating these modifications. In particular, it is pointed out that collisionless electron motion along perturbed magnetic fields produces almost no transport of field aligned current across equilibrium surfaces. It is also shown that clumps are granular structures which are turbulently mixed, whereas holes and vortices avoid mixing and relaxation through strong self-binding effects. The distinction between structures that are mixed and those that are persistent is probed in an analysis of the interaction of an intense vortex and ambient turbulent fluctuations. It is shown that, above a critical amplitude, the shearing of eddies due to the differential rotation of the vortex suppresses the fluctuations that mix its vorticity, allowing it to achieve a lifetime greatly in excess of the turbulent interaction time scale.

  20. Granular fluctuations in plasma turbulence and their role in transport

    SciTech Connect

    Terry, P.W.

    1993-04-01

    Three general types of granular or discrete fluctuations in plasma turbulence are reviewed, with emphasis placed on their unique role in fluctuation-induced transport. These fluctuations are clumps, holes, and vortices, and represent structures that are not part of the normal mode response, the basis of conventional descriptions of plasma turbulence and transport. These fluctuations interact with the normal mode response to produce profound modifications of transport. The self-consistent linking of fields and particle distributions through quasineutrality and Ampere`s law is shown to be crucial in calculating these modifications. In particular, it is pointed out that collisionless electron motion along perturbed magnetic fields produces almost no transport of field aligned current across equilibrium surfaces. It is also shown that clumps are granular structures which are turbulently mixed, whereas holes and vortices avoid mixing and relaxation through strong self-binding effects. The distinction between structures that are mixed and those that are persistent is probed in an analysis of the interaction of an intense vortex and ambient turbulent fluctuations. It is shown that, above a critical amplitude, the shearing of eddies due to the differential rotation of the vortex suppresses the fluctuations that mix its vorticity, allowing it to achieve a lifetime greatly in excess of the turbulent interaction time scale.

  1. Plasma turbulence, suprathermal ion dynamics and code validation on the basic plasma physics device TORPEX

    NASA Astrophysics Data System (ADS)

    Furno, I.; Avino, F.; Bovet, A.; Diallo, A.; Fasoli, A.; Gustafson, K.; Iraji, D.; Labit, B.; Loizu, J.; Müller, S. H.; Plyushchev, G.; Podestà, M.; Poli, F. M.; Ricci, P.; Theiler, C.

    2015-06-01

    The TORPEX basic plasma physics device at the Center for Plasma Physics Research (CRPP) in Lausanne, Switzerland is described. In TORPEX, simple magnetized toroidal configurations, a paradigm for the tokamak scrape-off layer (SOL), as well as more complex magnetic geometries of direct relevance for fusion are produced. Plasmas of different gases are created and sustained by microwaves in the electron-cyclotron (EC) frequency range. Full diagnostic access allows for a complete characterization of plasma fluctuations and wave fields throughout the entire plasma volume, opening new avenues to validate numerical codes. We detail recent advances in the understanding of basic aspects of plasma turbulence, including its development from linearly unstable electrostatic modes, the formation of filamentary structures, or blobs, and its influence on the transport of energy, plasma bulk and suprathermal ions. We present a methodology for the validation of plasma turbulence codes, which focuses on quantitative assessment of the agreement between numerical simulations and TORPEX experimental data.

  2. ENERGETIC PARTICLE ANISOTROPIES AT THE HELIOSPHERIC BOUNDARY

    SciTech Connect

    Florinski, V.; Le Roux, J. A.; Jokipii, J. R.; Alouani-Bibi, F.

    2013-10-20

    In 2012 August the Voyager 1 space probe entered a distinctly new region of space characterized by a virtual absence of heliospheric energetic ions and magnetic fluctuations, now interpreted as a part of the local interstellar cloud. Prior to their disappearance, the ion distributions strongly peaked at a 90° pitch angle, implying rapid escape of streaming particles along the magnetic field lines. Here we investigate the process of particle crossing from the heliosheath into the interstellar space, using a kinetic approach that resolves scales of the particle's cyclotron radius and smaller. It is demonstrated that a 'pancake' pitch-angle distribution naturally arises at a tangential discontinuity separating a weakly turbulent plasma from a laminar region with a very low pitch-angle scattering rate. The relatively long persistence of gyrating ions is interpreted in terms of field line meandering facilitating their cross-field diffusion within the depletion region.

  3. Turbulent contributions to Ohm's law in axisymmetric magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Chavdarovski, I.; Gatto, R.

    2017-07-01

    The effect of magnetic turbulence in shaping the current density in axisymmetric magnetized plasmas is analyzed using a turbulent extension of Ohm's law derived from the self-consistent action-angle transport theory. Besides the well-known hyper-resistive (helicity-conserving) contribution, the generalized Ohm's law contains an anomalous resistivity term and a turbulent bootstrap-like term proportional to the current density derivative. The numerical solution of the equation for equilibrium and turbulence profiles characteristic of conventional and advanced scenarios shows that, through the "turbulent bootstrap" effect and anomalous resistivity, power and parallel current can be generated which are a sizable portion (about 20%-25%) of the corresponding effects associated with the neoclassical bootstrap effect. The degree of alignment of the turbulence peak and the pressure gradient plays an important role in defining the steady-state regime. In a fully bootstrapped tokamak, the hyper-resistivity is essential in overcoming the intrinsic limitation of the hollow current profile.

  4. GYROKINETIC PARTICLE SIMULATION OF TURBULENT TRANSPORT IN BURNING PLASMAS

    SciTech Connect

    Horton, Claude Wendell

    2014-06-10

    The SciDAC project at the IFS advanced the state of high performance computing for turbulent structures and turbulent transport. The team project with Prof Zhihong Lin [PI] at Univ California Irvine produced new understanding of the turbulent electron transport. The simulations were performed at the Texas Advanced Computer Center TACC and the NERSC facility by Wendell Horton, Lee Leonard and the IFS Graduate Students working in that group. The research included a Validation of the electron turbulent transport code using the data from a steady state university experiment at the University of Columbia in which detailed probe measurements of the turbulence in steady state were used for wide range of temperature gradients to compare with the simulation data. These results were published in a joint paper with Texas graduate student Dr. Xiangrong Fu using the work in his PhD dissertation. X.R. Fu, W. Horton, Y. Xiao, Z. Lin, A.K. Sen and V. Sokolov, “Validation of electron Temperature gradient turbulence in the Columbia Linear Machine, Phys. Plasmas 19, 032303 (2012).

  5. Three-dimensional turbulence structure in space and astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Narita, Yasuhito; Comisel, Horia; Motschmann, Uwe

    2016-04-01

    Plasma turbulence appears in the solar wind and around the Earth bow shock, and serves as an ideal natural laboratory for studying turbulence structure, mechanisms of energy cascade and dissipation, and particle energization. Understanding dissipation mechanisms and particle energization is relevant to astrophysical applications such as accretion disks, interstellar medium, and supernova explosions. Our knowledge on turbulence structure and dissipation mechanisms has been advanced so much through the past decade thanks to multi-point measurements in space. Using the Cluster measurements in the solar wind, the three-dimensional filamentary structure of solar wind turbulence has experimentally been revealed from magnetohydrodynamic scales (at about 1,000 to 10,000 km) down to ion kinetic scales (at about 100 km). The filamentation process has also been confirmed by hybrid simulations of ion-kinetic turbulence. Based on a review of filamentation process, wave modes, spectral anisotropy models from the Cluster observations and the hybrid simulations, observational scenarios for understanding particle energization process for the THOR mission concept (Turbulence Heating Observer) are discussed.

  6. Strongly turbulent stabilization of electron beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Freund, H. P.; Haber, I.; Palmadesso, P.; Papadopoulos, K.

    1980-01-01

    The stabilization of electron beam interactions due to strongly turbulent nonlinearities is studied analytically and numerically for a wide range of plasma parameters. A fluid mode coupling code is described in which the effects of electron and ion Landau damping and linear growth due to the energetic electron beam are included in a phenomenological manner. Stabilization of the instability is found to occur when the amplitudes of the unstable modes exceed the threshold of the oscillating two-stream instability. The coordinate space structure of the turbulent spectrum which results clearly shows that soliton-like structures are formed by this process. Phenomenological models of both the initial stabilization and the asymptotic states are developed. Scaling laws between the beam-plasma growth rate and the fluctuations in the fields and plasma density are found in both cases, and shown to be in good agreement with the results of the simulation.

  7. Strongly turbulent stabilization of electron beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Freund, H. P.; Haber, I.; Palmadesso, P.; Papadopoulos, K.

    1980-01-01

    The stabilization of electron beam interactions due to strongly turbulent nonlinearities is studied analytically and numerically for a wide range of plasma parameters. A fluid mode coupling code is described in which the effects of electron and ion Landau damping and linear growth due to the energetic electron beam are included in a phenomenological manner. Stabilization of the instability is found to occur when the amplitudes of the unstable modes exceed the threshold of the oscillating two-stream instability. The coordinate space structure of the turbulent spectrum which results clearly shows that soliton-like structures are formed by this process. Phenomenological models of both the initial stabilization and the asymptotic states are developed. Scaling laws between the beam-plasma growth rate and the fluctuations in the fields and plasma density are found in both cases, and shown to be in good agreement with the results of the simulation.

  8. Plasma shaping effects on tokamak scrape-off layer turbulence

    NASA Astrophysics Data System (ADS)

    Riva, Fabio; Lanti, Emmanuel; Jolliet, Sébastien; Ricci, Paolo

    2017-03-01

    The impact of plasma shaping on tokamak scrape-off layer (SOL) turbulence is investigated. The drift-reduced Braginskii equations are written for arbitrary magnetic geometries, and an analytical equilibrium model is used to introduce the dependence of turbulence equations on tokamak inverse aspect ratio (ε ), Shafranov’s shift (Δ), elongation (κ), and triangularity (δ). A linear study of plasma shaping effects on the growth rate of resistive ballooning modes (RBMs) and resistive drift waves (RDWs) reveals that RBMs are strongly stabilized by elongation and negative triangularity, while RDWs are only slightly stabilized in non-circular magnetic geometries. Assuming that the linear instabilities saturate due to nonlinear local flattening of the plasma gradient, the equilibrium gradient pressure length {L}p=-{p}e/{{\

  9. Heliospheric Observations of Energetic Particles

    NASA Technical Reports Server (NTRS)

    Summerlin, Errol J.

    2011-01-01

    Heliospheric observations of energetic particles have shown that, on long time averages, a consistent v^-5 power-law index arises even in the absence of transient events. This implies an ubiquitous acceleration process present in the solar wind that is required to generate these power-law tails and maintain them against adiabatic losses and coulomb-collisions which will cool and thermalize the plasma respectively. Though the details of this acceleration process are being debated within the community, most agree that the energy required for these tails comes from fluctuations in the magnetic field which are damped as the energy is transferred to particles. Given this source for the tail, is it then reasonable to assume that the turbulent LISM should give rise to such a power-law tail as well? IBEX observations clearly show a power-law tail of index approximately -5 in energetic neutral atoms. The simplest explanation for the origins of these ENAs are that they are energetic ions which have charge-exchanged with a neutral atom. However, this would imply that energetic ions possess a v^-5 power-law distribution at keV energies at the source of these ENAs. If the source is presumed to be the LISM, it provides additional options for explaining the, so called, IBEX ribbon. This presentation will discuss some of these options as well as potential mechanisms for the generation of a power-law spectrum in the LISM.

  10. Universal probability distribution function for bursty transport in plasma turbulence.

    PubMed

    Sandberg, I; Benkadda, S; Garbet, X; Ropokis, G; Hizanidis, K; del-Castillo-Negrete, D

    2009-10-16

    Bursty transport phenomena associated with convective motion present universal statistical characteristics among different physical systems. In this Letter, a stochastic univariate model and the associated probability distribution function for the description of bursty transport in plasma turbulence is presented. The proposed stochastic process recovers the universal distribution of density fluctuations observed in plasma edge of several magnetic confinement devices and the remarkable scaling between their skewness S and kurtosis K. Similar statistical characteristics of variabilities have been also observed in other physical systems that are characterized by convection such as the x-ray fluctuations emitted by the Cygnus X-1 accretion disc plasmas and the sea surface temperature fluctuations.

  11. COSMIC-RAY TRANSPORT THEORY IN PARTIALLY TURBULENT SPACE PLASMAS WITH COMPRESSIBLE MAGNETIC TURBULENCE

    SciTech Connect

    Casanova, S.; Schlickeiser, R.

    2012-02-01

    Recently, a new transport theory of cosmic rays in magnetized space plasmas extending the quasilinear approximation to the particle orbit has been developed for the case of an axisymmetric incompressible magnetic turbulence. Here, we generalize the approach to the important physical case of a compressible plasma. As previously obtained in the case of an incompressible plasma, we allow arbitrary gyrophase deviations from the unperturbed spiral orbits in the uniform magnetic field. For the case of quasi-stationary and spatially homogeneous magnetic turbulence we derive, in the small Larmor radius approximation, gyrophase-averaged cosmic-ray Fokker-Planck coefficients. Upper limits for the perpendicular and pitch-angle Fokker-Planck coefficients and for the perpendicular and parallel spatial diffusion coefficients are presented.

  12. Intermittency, coherent structures and dissipation in plasma turbulence

    SciTech Connect

    Wan, M.; Matthaeus, W. H.; Parashar, T. N.; Wu, P.; Roytershteyn, V.; Karimabadi, H.

    2016-04-15

    Collisionless dissipation in turbulent plasmas such as the solar wind and the solar corona has been an intensively studied subject recently, with new insights often emerging from numerical simulation. Here we report results from high resolution, fully kinetic simulations of plasma turbulence in both two (2D) and three (3D) dimensions, studying the relationship between intermittency and dissipation. The simulations show development of turbulent coherent structures, characterized by sheet-like current density structures spanning a range of scales. An approximate dissipation measure is employed, based on work done by the electromagnetic field in the local electron fluid frame. This surrogate dissipation measure is highly concentrated in small subvolumes in both 2D and 3D simulations. Fully kinetic simulations are also compared with magnetohydrodynamics (MHD) simulations in terms of coherent structures and dissipation. The interesting result emerges that the conditional averages of dissipation measure scale very similarly with normalized current density J in 2D and 3D particle-in-cell and in MHD. To the extent that the surrogate dissipation measure is accurate, this result implies that on average dissipation scales as ∼J{sup 2} in turbulent kinetic plasma. Multifractal intermittency is seen in the inertial range in both 2D and 3D, but at scales ∼ion inertial length, the scaling is closer to monofractal.

  13. Turbulence in strongly coupled dusty plasmas using generalized hydrodynamic description

    SciTech Connect

    Tiwari, Sanat Kumar; Dharodi, Vikram Singh; Das, Amita; Patel, Bhavesh G.; Kaw, Predhiman

    2015-02-15

    The properties of decaying turbulence have been studied with the help of a Generalized Hydrodynamic (GHD) fluid model in the context of strongly coupled dusty plasma medium in two dimensions. The GHD model treats the strongly coupled dusty plasma system as a visco-elastic medium. The incompressible limit of the GHD model is considered here. The studies carried out here are, however, applicable to a wider class of visco-elastic systems, and are not merely confined to the dusty plasma medium. Our simulations studies show that an initial spectrum that is confined in a limited domain of wave numbers becomes broad, even when the Reynold's number is much less than the critical value required for the onset of turbulence in Newtonian fluids. This is a signature of elastic turbulence, where Weissenberg's number also plays an important role on the onset of turbulence. This feature has been observed in several experiments. It is also shown that the existence of memory relaxation time parameter and the transverse shear wave inhibit the normal process (for 2-D systems) of inverse spectral cascade in this case. A detailed simulation study has been carried out for the understanding of this inhibition.

  14. Turbulent-driven intrinsic rotation in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Barnes, Michael; Parra, Felix; Lee, Jungpyo; Belli, Emily; Nave, Filomena; White, Anne

    2013-10-01

    Tokamak plasmas are routinely observed to rotate even in the absence of an externally applied torque. This ``intrinsic'' rotation exhibits several robust features, including rotation reversals with varying plasma density and current and rotation peaking at the transition from low confinement to high confinement regimes. Conservation of toroidal angular momentum dictates that the intrinsic rotation is determined by momentum redistribution within the plasma, which is dominated by turbulent transport. The turbulent momentum transport, and thus the intrinsic rotation profile, is driven by formally small effects that are usually neglected. We present a gyrokinetic theory that makes use of the smallness of the poloidal to total magnetic field ratio to self-consistently include the dominant effects driving intrinsic turbulent momentum transport in tokamaks. These effects (including slow radial profile variation, slow poloidal turbulence variation, and diamagnetic corrections to the equilibrium Maxwellian) have now been implemented in the local, delta-f gyrokinetic code GS2. We describe important features of the numerical implementation and show numerical results on intrinsic momentum transport that are qualitatively consistent with experimental rotation reversals.

  15. Fractional Transport in Strongly Turbulent Plasmas

    NASA Astrophysics Data System (ADS)

    Isliker, Heinz; Vlahos, Loukas; Constantinescu, Dana

    2017-07-01

    We analyze statistically the energization of particles in a large scale environment of strong turbulence that is fragmented into a large number of distributed current filaments. The turbulent environment is generated through strongly perturbed, 3D, resistive magnetohydrodynamics simulations, and it emerges naturally from the nonlinear evolution, without a specific reconnection geometry being set up. Based on test-particle simulations, we estimate the transport coefficients in energy space for use in the classical Fokker-Planck (FP) equation, and we show that the latter fails to reproduce the simulation results. The reason is that transport in energy space is highly anomalous (strange), the particles perform Levy flights, and the energy distributions show extended power-law tails. Newly then, we motivate the use and derive the specific form of a fractional transport equation (FTE), we determine its parameters and the order of the fractional derivatives from the simulation data, and we show that the FTE is able to reproduce the high energy part of the simulation data very well. The procedure for determining the FTE parameters also makes clear that it is the analysis of the simulation data that allows us to make the decision whether a classical FP equation or a FTE is appropriate.

  16. Ion temperature gradient turbulence in helical and axisymmetric RFP plasmas

    SciTech Connect

    Predebon, I.; Xanthopoulos, P.

    2015-05-15

    Turbulence induced by the ion temperature gradient (ITG) is investigated in the helical and axisymmetric plasma states of a reversed field pinch device by means of gyrokinetic calculations. The two magnetic configurations are systematically compared, both linearly and nonlinearly, in order to evaluate the impact of the geometry on the instability and its ensuing transport, as well as on the production of zonal flows. Despite its enhanced confinement, the high-current helical state demonstrates a lower ITG stability threshold compared to the axisymmetric state, and ITG turbulence is expected to become an important contributor to the total heat transport.

  17. Anisotropy in solar wind plasma turbulence.

    PubMed

    Oughton, S; Matthaeus, W H; Wan, M; Osman, K T

    2015-05-13

    A review of spectral anisotropy and variance anisotropy for solar wind fluctuations is given, with the discussion covering inertial range and dissipation range scales. For the inertial range, theory, simulations and observations are more or less in accord, in that fluctuation energy is found to be primarily in modes with quasi-perpendicular wavevectors (relative to a suitably defined mean magnetic field), and also that most of the fluctuation energy is in the vector components transverse to the mean field. Energy transfer in the parallel direction and the energy levels in the parallel components are both relatively weak. In the dissipation range, observations indicate that variance anisotropy tends to decrease towards isotropic levels as the electron gyroradius is approached; spectral anisotropy results are mixed. Evidence for and against wave interpretations and turbulence interpretations of these features will be discussed. We also present new simulation results concerning evolution of variance anisotropy for different classes of initial conditions, each with typical background solar wind parameters.

  18. A basic plasma test for gyrokinetics: GDC turbulence in LAPD

    NASA Astrophysics Data System (ADS)

    Pueschel, M. J.; Rossi, G.; Told, D.; Terry, P. W.; Jenko, F.; Carter, T. A.

    2017-02-01

    Providing an important step towards validating gyrokinetics under comparatively little-explored conditions, simulations of pressure-gradient-driven plasma turbulence in the Large Plasma Device (LAPD) are compared with experimental observations. The corresponding signatures confirm the existence of a novel regime of turbulence, based on the recently-discovered gradient-driven drift coupling (GDC) instability, which is thus confirmed as a candidate mechanism for turbulence in basic, space and astrophysical plasmas. Despite the limitations of flux-tube gyrokinetics for this scenario, when accounting for box size scaling by applying a scalar factor η =6, agreement between simulations and experiment improves to within a factor of two for key observables: compressional magnetic, density, and temperature fluctuations, both in amplitude and structure. Thus, a first, strong indication is presented that the GDC instability seen in gyrokinetics appears to operate in the experiment and that the essential instability physics is present in the numerical model. Overall, the gyrokinetic framework and its numerical implementation in the Gene code therefore perform well for LAPD plasmas very different from their brethren in fusion experiments.

  19. Studies of Aspect Angle Dependence of Plasma Turbulence at HAARP

    NASA Astrophysics Data System (ADS)

    Adham, N.; Sheerin, J. P.; Wood, M. R.; Roe, R. G.; Gerres, J. M.; Watkins, B. J.; Bristow, W. A.; Bernhardt, P. A.; Selcher, C. A.

    2010-12-01

    We report the results from a recent series of campaigns employing the HAARP HF transmitter to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Short pulse, low duty cycle experiments demonstrate control and suppression of artificial field-aligned irregularities (AFAI). This allows the isolation of ponderomotive plasma turbulence effects. Plasma line spectra exhibit a marked dependence on the aspect angle of the HF pump beam and the pointing of the MUIR diagnostic radar. Refraction is shown to play an important role in the observed plasma line spectral density as a function of zenith angle including the discovery of a second region of strong turbulence displaced southward from the primary HF interaction region along the geomagnetic field line. Background ionospheric conditions are also observed to have a significant effect. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.

  20. Turbulent transport of alpha particles in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Croitoru, A.; Palade, D. I.; Vlad, M.; Spineanu, F.

    2017-03-01

    We investigate the \\boldsymbol{E}× \\boldsymbol{B} diffusion of fusion born α particles in tokamak plasmas. We determine the transport regimes for a realistic model that has the characteristics of the ion temperature gradient (ITG) or of the trapped electron mode (TEM) driven turbulence. It includes a spectrum of potential fluctuations that is modeled using the results of the numerical simulations, the drift of the potential with the effective diamagnetic velocity and the parallel motion. Our semi-analytical statistical approach is based on the decorrelation trajectory method (DTM), which is adapted to the gyrokinetic approximation. We obtain the transport coefficients as a function of the parameters of the turbulence and of the energy of the α particles. According to our results, significant turbulent transport of the α particles can appear only at energies of the order of 100 KeV. We determine the corresponding conditions.

  1. Hall MHD Stability and Turbulence in Magnetically Accelerated Plasmas

    SciTech Connect

    H. R. Strauss

    2012-11-27

    The object of the research was to develop theory and carry out simulations of the Z pinch and plasma opening switch (POS), and compare with experimental results. In the case of the Z pinch, there was experimental evidence of ion kinetic energy greatly in excess of the ion thermal energy. It was thought that this was perhaps due to fine scale turbulence. The simulations showed that the ion energy was predominantly laminar, not turbulent. Preliminary studies of a new Z pinch experiment with an axial magnetic field were carried out. The axial magnetic is relevant to magneto - inertial fusion. These studies indicate the axial magnetic field makes the Z pinch more turbulent. Results were also obtained on Hall magnetohydrodynamic instability of the POS.

  2. Neoclassical diffusion in a turbulent plasma

    SciTech Connect

    Yushmanov, P. . Inst. Atomnoj Ehnergii Texas Univ., Austin, TX . Inst. for Fusion Studies)

    1991-11-01

    This work describes a new approach to plasma transport where the toroidal drift motion is considered as a perturbation to the fluctuating velocity. Percolation theory is used to determine the scaling of the diffusion coefficient. Several neoclassical phenomena should persist even when diffusion is enhanced from neoclassical predictions. Numerical simulation results support the theoretical scaling arguments.

  3. Stable Modes in Saturation of Instability-Driven Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Terry, P. W.

    2016-10-01

    Saturation of instability-driven plasma turbulence, apart from cases with quasilinear flattening, has been treated almost universally as an energy-transfer or wavenumber scattering process, with the Kolmogorov cascade as the idealized paradigm. This view is being modified by the realization that for a broad parameter range wavenumber transfer is subjected to heavy damping at the same scales as the instability through transfer to a separate space of stable modes. The densely populated, nonlinearly driven stable-mode space can be represented by roots of the linear dielectric or empirically extracted modes of a singular value decomposition. This new understanding of instability-driven turbulence brings to light fluctuation characteristics, transport processes, and saturation mechanisms that cannot be anticipated solely from analysis of the linear instability or the related quasilinear transport approximation. This tutorial describes key aspects of the new paradigm, including characterization of stable modes, quantitative measures of the branching ratio between wavenumber transfer and transfer to stable modes, simultaneity of transfer to stable modes as contrasted to wavenumber cascades, equipartition of energy dissipation rate among stable modes, and zonal-flow regulation of ion temperature gradient (ITG) turbulence by catalyzing transfer to stable modes. It is shown that ballooning-parity ITG turbulence creates a stochastic magnetic field by exciting a stable microtearing mode and that zonal-flow catalyzed transfer to stable modes yields a turbulence level proportional to zonal flow damping. In stellarator trapped electron mode turbulence, stable ion modes become energy driving sources via cross correlations between non orthogonal modes. Stable mode effects are shown to arise for a range of fusion plasmas systems and for astrophysically relevant Kelvin-Helmholtz instability. Supported by USDOE.

  4. Magnetic Turbulence in Colliding Laser-Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Collette, A.; Gekelman, W.; Vincena, S.

    2007-05-01

    The expansion and interaction of dense plasmas in the presence of a magnetized background plasma is important in many astrophysical processes, among them coronal mass ejections and the many examples of plasma jets from astrophotography. Turbulence is expected to be present in many such configurations. We describe a series of experiments which involve the collision of two dense (initially, n > 1015cm-3) laser-produced plasmas within an ambient, highly magnetized background plasma. The laser-produced plasmas form diamagnetic cavities in which a large percentage of the background magnetic field (600G) has been expelled. First-stage observations of these structures have been completed using a fast (3ns exposure) camera. The photographs indicate complicated structure at late times, in addition to coherent corrugated structures on the bubble surfaces. The data hint at the presence of turbulence in the interaction. The second stage of observation will consist of direct investigation of the magnetic field using probes. A novel diagnostic system composed of small (300-500 micron) 3-axis differential magnetic field probes in conjunction with a ceramic motor system capable of extremely fine (sub-micron) positioning accuracy is currently under development. An ensemble of magnetic field data from fixed and movable probes makes possible the calculation of the cross-spectral function. Initial data from photography and a prototype probe will be presented.

  5. First 3-D simulations of meteor plasma dynamics and turbulence

    NASA Astrophysics Data System (ADS)

    Oppenheim, Meers M.; Dimant, Yakov S.

    2015-02-01

    Millions of small but detectable meteors hit the Earth's atmosphere every second, creating trails of hot plasma that turbulently diffuse into the background atmosphere. For over 60 years, radars have detected meteor plasmas and used these signals to infer characteristics of the meteoroid population and upper atmosphere, but, despite the importance of meteor radar measurements, the complex processes by which these plasmas evolve have never been thoroughly explained or modeled. In this paper, we present the first fully 3-D simulations of meteor evolution, showing meteor plasmas developing instabilities, becoming turbulent, and inhomogeneously diffusing into the background ionosphere. These instabilities explain the characteristics and strength of many radar observations, in particular the high-resolution nonspecular echoes made by large radars. The simulations reveal how meteors create strong electric fields that dig out deep plasma channels along the Earth's magnetic fields. They also allow researchers to explore the impacts of the intense winds and wind shears, commonly found at these altitudes, on meteor plasma evolution. This study will allow the development of more sophisticated models of meteor radar signals, enabling the extraction of detailed information about the properties of meteoroid particles and the atmosphere.

  6. Free energy and entropy flows in magnetised plasma turbulence

    NASA Astrophysics Data System (ADS)

    Schekochihin, A.; Cowley, S.; Dorland, W.; Howes, G. G.; Quataert, E.; Tatsuno, T.; Plunk, G.; TenBarge, J.; Mallet, A.; Kanekar, A.

    2011-12-01

    Just as fluid turbulence can be conceptualised as a cascade of kinetic energy from large to small scales, kinetic plasma turbulence is a cascade of free energy in the 6D phase space (position and velocity). I will discuss this as a general principle and then specialise to the case of magnetised plasma turbulence at kinetic (sub-ion-Larmor) scales. At these scales, the free energy flux arriving from the inertial range splits into two channels: the kinetic Alfven wave cascade destined to be dissipated into electron heat and the ion entropy cascade, resulting in ion heating. The phase-space nature of the cascade is particularly manifest in this case as the ion entropy cascade involves simultaneous generation of small spatial scales and small scales in velocity space, the latter via a nonlinear phase-mixing process due to ion gyromotion. I will also discuss how the electron Landau damping and the associated process of parallel phase mixing fit into this cascade picture and whether they represent an effective dissipation mechanism in a strongly turbulent nonlinear system.

  7. Altitude characteristics of plasma turbulence excited with the Tromso superheater

    SciTech Connect

    Djuth, F.T.; Elder, J.H. ); Stubbe, P.; Kohl, H. ); Sulzer, M.P. ); Rietveld, M.T. )

    1994-01-01

    Langmuir/ion turbulence excited with the upgraded high-power (1.2-GW effective radiated power) HF heating facility at Tromso, Norway, has been recently studied with the European Incoherent Scatter VHF and UHF incoherent scatter radars. In this report the authors focus on the altitudinal development of the turbulence observed at the highest HF power levels available. Quite remarkably, the observed plasma turbulence plunges downward in altitude over timescales of tens of seconds following HF beam turn-on; the bottom altitude is generally reached after [approximately]30 s. This phenomenon has a well-defined HF power threshold. It is most likely caused by changes in the electron density profile brought about by HF heating of the electron gas. If this is the case, then the heat source must be nonlinearly dependent on HF power. Overall, the characteristics of the Tromso turbulence are quite distinctive when compared to similar high-resolution measurements made at Arecibo Observatory, Puerto Rico. After HF transmissions have been made for tens of seconds at Tromso, billowing altitude structures are often seen, in sharp contrast to layers of turbulence observed at Arecibo. 17 refs., 3 figs.

  8. Transition to subcritical turbulence in a tokamak plasma

    NASA Astrophysics Data System (ADS)

    van Wyk, F.; Highcock, E. G.; Schekochihin, A. A.; Roach, C. M.; Field, A. R.; Dorland, W.

    2016-12-01

    Tokamak turbulence, driven by the ion-temperature gradient and occurring in the presence of flow shear, is investigated by means of local, ion-scale, electrostatic gyrokinetic simulations (with both kinetic ions and electrons) of the conditions in the outer core of the Mega-Ampere Spherical Tokamak (MAST). A parameter scan in the local values of the ion-temperature gradient and flow shear is performed. It is demonstrated that the experimentally observed state is near the stability threshold and that this stability threshold is nonlinear: sheared turbulence is subcritical, i.e. the system is formally stable to small perturbations, but, given a large enough initial perturbation, it transitions to a turbulent state. A scenario for such a transition is proposed and supported by numerical results: close to threshold, the nonlinear saturated state and the associated anomalous heat transport are dominated by long-lived coherent structures, which drift across the domain, have finite amplitudes, but are not volume filling; as the system is taken away from the threshold into the more unstable regime, the number of these structures increases until they overlap and a more conventional chaotic state emerges. Whereas this appears to represent a new scenario for transition to turbulence in tokamak plasmas, it is reminiscent of the behaviour of other subcritically turbulent systems, e.g. pipe flows and Keplerian magnetorotational accretion flows.

  9. Complexity Induced Anisotropic Bimodal Intermittent Turbulence in Space Plasmas

    NASA Technical Reports Server (NTRS)

    Chang, Tom; Tam, Sunny W. Y.; Wu, Cheng-Chin

    2004-01-01

    The "physics of complexity" in space plasmas is the central theme of this exposition. It is demonstrated that the sporadic and localized interactions of magnetic coherent structures arising from the plasma resonances can be the source for the coexistence of nonpropagating spatiotemporal fluctuations and propagating modes. Non-Gaussian probability distribution functions of the intermittent fluctuations from direct numerical simulations are obtained and discussed. Power spectra and local intermittency measures using the wavelet analyses are presented to display the spottiness of the small-scale turbulent fluctuations and the non-uniformity of coarse-grained dissipation that can lead to magnetic topological reconfigurations. The technique of the dynamic renormalization group is applied to the study of the scaling properties of such type of multiscale fluctuations. Charged particle interactions with both the propagating and nonpropagating portions of the intermittent turbulence are also described.

  10. Intermittent dissipation and heating in 3D kinetic plasma turbulence

    NASA Astrophysics Data System (ADS)

    Wan, M.; Matthaeus, W. H.; Roytershteyn, V.; Karimabadi, H.; Parashar, T.; Wu, P.; Shay, M. A.

    2014-12-01

    The nature of collisionless dissipation has been hotlydebated in recent years, with alternative ideas posed interms of various wave modes, such as kinetic Alfven waves,whistlers, linear Vlasov instabilities, cyclotron resonance,and Landau damping. Here we use large scale, fully kinetic3D simulations of collisionless plasma turbulence which showthe development of turbulence characterized by sheet-likecurrent density structures spanning a range of scales.We present evidence that these structures are sites for heatingand dissipation, and that stronger current structures signifyhigher dissipation rates. The analyses focus on quantities such as J.E, electron and proton temperatures, and PVI of the magnetic field. Evidently, kinetic scale plasma,like magnetohydrodynamics, becomes intermittent due tocurrent sheet formation, leading to the expectationthat heating and dissipation in astrophysical and space plasmasmay be highly nonuniform. Comparison with previousresults from 2D kinetic simulations, as well as high frequencysolar wind observational data will also be discussed.

  11. Edge transport bifurcation in plasma resistive interchange turbulence

    NASA Astrophysics Data System (ADS)

    Li, B.; Wang, X. Y.; Sun, C. K.; Meng, C.; Zhou, A.; Liu, D.

    2017-05-01

    Transport bifurcation and mean E × B shear flow generation in resistive interchange turbulence are explored with self-consistent fluid simulations in a flux-driven system with both closed and open field line regions. The nonlinear evolution of resistive interchange modes shows the presence of two confinement regimes characterized by low and high mean E × B shear flows. By increasing the heat flux above a threshold, large-amplitude fluctuations are induced in the plasma edge region and a transition to the state of reduced turbulent transport occurs as the Reynolds power exceeds the fluctuation energy input rate for a sufficient time period. The flux-gradient relationship shows a sharp bifurcation in the plasma edge transport.

  12. Anisotropy in solar wind plasma turbulence

    PubMed Central

    Oughton, S.; Matthaeus, W. H.; Wan, M.; Osman, K. T.

    2015-01-01

    A review of spectral anisotropy and variance anisotropy for solar wind fluctuations is given, with the discussion covering inertial range and dissipation range scales. For the inertial range, theory, simulations and observations are more or less in accord, in that fluctuation energy is found to be primarily in modes with quasi-perpendicular wavevectors (relative to a suitably defined mean magnetic field), and also that most of the fluctuation energy is in the vector components transverse to the mean field. Energy transfer in the parallel direction and the energy levels in the parallel components are both relatively weak. In the dissipation range, observations indicate that variance anisotropy tends to decrease towards isotropic levels as the electron gyroradius is approached; spectral anisotropy results are mixed. Evidence for and against wave interpretations and turbulence interpretations of these features will be discussed. We also present new simulation results concerning evolution of variance anisotropy for different classes of initial conditions, each with typical background solar wind parameters. PMID:25848082

  13. The Heliospheric Magnetic Field

    NASA Astrophysics Data System (ADS)

    Owens, Mathew J.; Forsyth, Robert J.

    2013-12-01

    The heliospheric magnetic field (HMF) is the extension of the coronal magnetic field carried out into the solar system by the solar wind. It is the means by which the Sun interacts with planetary magnetospheres and channels charged particles propagating through the heliosphere. As the HMF remains rooted at the solar photosphere as the Sun rotates, the large-scale HMF traces out an Archimedean spiral. This pattern is distorted by the interaction of fast and slow solar wind streams, as well as the interplanetary manifestations of transient solar eruptions called coronal mass ejections. On the smaller scale, the HMF exhibits an array of waves, discontinuities, and turbulence, which give hints to the solar wind formation process. This review aims to summarise observations and theory of the small- and large-scale structure of the HMF. Solar-cycle and cycle-to-cycle evolution of the HMF is discussed in terms of recent spacecraft observations and pre-spaceage proxies for the HMF in geomagnetic and galactic cosmic ray records.

  14. Trapped Electron Mode Turbulence Driven Intrinsic Rotation in Tokamak Plasmas

    SciTech Connect

    Wang, W. X.; Hahm, T. S.; Ethier, S.; Zakharov, L. E.

    2011-02-07

    Recent progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported with emphasis on electron thermal transport dominated regimes. The turbulence driven intrinsic torque associated with nonlinear residual stress generation by the fluctuation intensity and the intensity gradient in the presence of zonal flow shear induced asymmetry in the parallel wavenumber spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current. These results qualitatively reproduce empirical scalings of intrinsic rotation observed in various experiments. The origin of current scaling is found to be due to enhanced kll symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The physics origin for the linear dependence of intrinsic torque on pressure gradient is that both turbulence intensity and the zonal flow shear, which are two key ingredients for driving residual stress, increase with the strength of turbulence drive, which is R0/LTe and R0/Lne for the trapped electron mode. __________________________________________________

  15. On Kraichnan's 'direct interaction approximation' and Kolmogoroff's theory in two-dimensional plasma turbulence

    SciTech Connect

    Kulsrud, R.M.; Sudan, R.N.

    1981-04-01

    The nonlinear damping in a strongly turbulent convecting plasma computed by Kraichnan's modified direct inteaction approximation and the power spectrum are rederived in a physically transparent form using Kolmogoroff's theory of turbulence.

  16. On the estimation by Kadomtsev of coefficients of turbulent transport in magnetized plasma

    SciTech Connect

    Nedospasov, A. V.

    2009-06-15

    The behavior of plasma in magnetic field is, as a rule, defined by nonlinear interaction of numerous oscillations and exhibits a complex turbulent pattern. Such state of plasma cannot described by linear and quasilinear theories. This paper reflects on the history of studying turbulence in magnetized plasma. In 1964, Kadomtsev (1928-1998) suggested [B. B. Kadomtsev, Vopr. Teor. Plazmy 4, 188 (1964)] that for estimation of coefficients of turbulent transport of plasma across the magnetic field, only the results of linear approximation of plasma instabilities can be used. Examples of experimental validation of the suggested approach, in particular regarding properties of turbulent positive column of discharge in a strong magnetic field, of ionization turbulence of weakly ionized plasma in crossed E, H, fields, and of turbulence of wall plasma in tokamaks, are discussed.

  17. The Dynamic Heliosphere: Outstanding Issues

    NASA Astrophysics Data System (ADS)

    Florinski, V.; Balogh, A.; Jokipii, J. R.; McComas, D. J.; Opher, M.; Pogorelov, N. V.; Richardson, J. D.; Stone, E. C.; Wood, B. E.

    Properties of the heliospheric interface, a complex product of an interaction between charged and neutral particles and magnetic fields in the heliosphere and surrounding Circumheliospheric Medium, are far from being fully understood. Recent Voyager spacecraft encounters with the termination shock and their observations in the heliosheath revealed multiple energetic particle populations and noticeable spatial asymmetries not accounted for by the classic theories. Some of the challenges still facing space physicists include the origin of anomalous cosmic rays, particle acceleration downstream of the termination shock, the role of interstellar magnetic fields in producing the global asymmetry of the interface, the influence of charge exchange and interstellar neutral atoms on heliospheric plasma flows, and the signatures of solar magnetic cycle in the heliosheath. These and other outstanding issues are reviewed in this joint report of working groups 4 and 6.

  18. Fundamental statistical descriptions of plasma turbulence in magnetic fields

    NASA Astrophysics Data System (ADS)

    Krommes, John A.

    2002-04-01

    A pedagogical review of the historical development and current status (as of early 2000) of systematic statistical theories of plasma turbulence is undertaken. Emphasis is on conceptual foundations and methodology, not practical applications. Particular attention is paid to equations and formalism appropriate to strongly magnetized, fully ionized plasmas. Extensive reference to the literature on neutral-fluid turbulence is made, but the unique properties and problems of plasmas are emphasized throughout. Discussions are given of quasilinear theory, weak-turbulence theory, resonance-broadening theory, and the clump algorithm. The direct-interaction approximation (DIA) is developed as a central focus of the article, and its relationship to the earlier plasma theories is explained. Various methods of renormalized perturbation theory are described, then unified with the aid of the generating-functional formalism of Martin, Siggia, and Rose. A general expression for the renormalized dielectric function is deduced and discussed in detail. Modern approaches such as decimation and PDF methods are described. Derivations of DIA-based Markovian closures are discussed. The eddy-damped quasinormal Markovian (EDQNM) closure is shown to be nonrealizable in the presence of waves, and a new realizable Markovian closure is presented. The test-field model and a realizable modification thereof are also summarized. Numerical solutions of various closures for some plasma-physics paradigms are reviewed. The variational approach to bounds on transport is developed. Miscellaneous topics include Onsager symmetries for turbulence, the interpretation of entropy balances for both kinetic and fluid descriptions, self-organized criticality, statistical interactions between disparate scales, and the roles of both mean and random shear. Appendices are provided on Fourier transform conventions, dimensional and scaling analysis, the derivations of nonlinear gyrokinetic and gyrofluid equations

  19. Low frequency turbulence in space plasmas with dust impurities

    NASA Astrophysics Data System (ADS)

    Atamaniuk, Barbara; Volokitin, Alexander S.; Rothkaehl, Hanna

    2013-04-01

    In order to enhance our understanding of the rich plasma physical processes that drive the solar-terrestrial space environment and to create the adequate and rich services for Space Weather Program, we need to increase our ability to perform multi-point measurements by means of different sensors. Moon as the natural spacecraft can be a target for localisation the radio receiver dedicated to monitoring Earth's space environment and obtain a much more complete picture of electromagnetic plasma turbulence in different space regions than those available hitherto. Moreover this diagnostic can give the information about the localisation and property of the plasmopause, magnetosheet, magnetopause, bow shock, solar wind and radio burst and CME. It is well known that even systems with a finite number of interacting waves can be realized in the turbulent state of the active media. At the same time the essential role of dissipation of the waves suggests that, at low threshold of instability, a typical perturbed state of the plasma can be described as a finite set of interacting waves, some of which are unstable and others are strongly damped. In such cases, the number of waves remains finite, but because of competition between the instability and damping of the waves when they interact, the dynamics of the amplitudes of the waves becomes stochastic in nature and the so-called few-mode turbulence. In analyzing the conditions of the various modes of instability of nonlinear low-frequency waves and discussed the transition from quasi-periodic regime to a few-mode turbulence, and then to the fully developed turbulence, depending on the density and composition of the dust component of the plasma. An important topic for lunar missions is understanding how the charged dust behaves, roles of dust transport, levitated dust and electrodynamics around the lunar surface . It could be essential for ensuring the continued safe operation of equipment and long-term exploration. Lunar dust is

  20. Low-frequency instabilities and plasma turbulence

    NASA Technical Reports Server (NTRS)

    Ilic, D. B.

    1973-01-01

    A theoretical and experimental study is reported of steady-state and time-dependent characteristics of the positive column and the hollow cathode discharge (HCD). The steady state of a non-isothermal, cylindrical positive column in an axial magnetic field is described by three moment equations in the plasma approximation. Volume generation of electron-ion pairs by single-stage ionization, the presence of axial current, and collisions with neutrals are considered. The theory covers the range from the low pressure, collisionless regime to the intermediate pressure, collisional regime. It yields radial profiles of the charged particle velocities, density, potential, electron and ion temperatures, and demonstrates similarity laws for the positive column. The results are compared with two moment theories and with experimental data on He, Ar and Hg found in the literature for a wide range of pressures. A simple generalization of the isothermal theory for an infinitely long cylinder in an axial magnetic field to the case of a finite column with axial current flow is also demonstrated.

  1. Detonability of white dwarf plasma: turbulence models at low densities

    NASA Astrophysics Data System (ADS)

    Fenn, D.; Plewa, T.

    2017-06-01

    We study the conditions required to produce self-sustained detonations in turbulent, carbon-oxygen degenerate plasma at low densities. We perform a series of three-dimensional hydrodynamic simulations of turbulence driven with various degrees of compressibility. The average conditions in the simulations are representative of models of merging binary white dwarfs. We find that material with very short ignition times is abundant in case turbulence is driven compressively. This material forms contiguous structures that persist over many ignition times, and that we identify as prospective detonation kernels. Detailed analysis of prospective kernels reveals that these objects are centrally condensed and their shape is characterized by low curvature, supportive of self-sustained detonations. The key characteristic of the newly proposed detonation mechanism is thus high degree of compressibility of turbulent drive. The simulated detonation kernels have sizes notably smaller than the spatial resolution of any white dwarf merger simulation performed to date. The resolution required to resolve kernels is 0.1 km. Our results indicate a high probability of detonations in such well-resolved simulations of carbon-oxygen white dwarf mergers. These simulations will likely produce detonations in systems of lower total mass, thus broadening the population of white dwarf binaries capable of producing Type Ia supernovae. Consequently, we expect a downward revision of the lower limit of the total merger mass that is capable of producing a prompt detonation. We review application of the new detonation mechanism to various explosion scenarios of single, Chandrasekhar-mass white dwarfs.

  2. Strong Turbulence in Alkali Halide Negative Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Sheehan, Daniel

    1999-11-01

    Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 <= fracm_+m- <= 20 are achievable. The source will allow tests of strong turbulence theory^2. 1 Sheehan, D.P., et al., Phys. Fluids B5, 1593 (1993). 2 Tsytovich, V. and Wharton, C.W., Comm. Plasma Phys. Cont. Fusion 4, 91 (1978).

  3. Coherent structure and Intermittent Turbulence in the Solar Wind Plasma

    NASA Astrophysics Data System (ADS)

    Sondhiya, Deepak Kumar; Gwal, Ashok Kumar; Kasde, Satish Kumar

    2016-07-01

    We analyze the coherent structures and intermittent turbulence in the solar wind plasma using measurements from the Wind spacecraft. Previously established novel wavelet and higher order statistics are used in this work. We analyze the wavelet power spectrum of various solar wind plasma parameters. We construct a statistical significance level in the wavelet power spectrum to quantify the interference effects arising from filling missing data in the time series, allowing extraction of significant power from the measured data. We analyze each wavelet power spectra for transient coherency, and global periodicities resulting from the superposition of repeating coherent structures. Furthermore, these coherent structures are preferentially found in plasma unstable to the mirror and firehose instabilities. These results offer a new understanding of various processes in a turbulent regime. Finally, we discuss the implications of our results for current theories of solar wind generation and describe future work for determining the relationship between the coherent structures in our ionic composition data and the structure of the coronal magnetic field. Keywords: Wavelet Power Spectrum, Coherent structure and Solar wind plasma

  4. Turbulent energy transfer in electromagnetic turbulence: hints from a Reversed Field Pinch plasma

    NASA Astrophysics Data System (ADS)

    Vianello, N.; Bergsaker, H.

    2005-10-01

    The relationship between electromagnetic turbulence and sheared plasma flow in a Reversed Field Pinch is addressed. ExB sheared flows and turbulence at the edge tends to organize themeselves near marginal stability, suggesting an underlying energy exchange process between turbulence and mean flow. In MHD this process is well described through the quantity P which represents the energy transfer (per mass and time unit) from turbulence to mean fields. In the edge region of RFP configuration, where magnetic field is mainly poloidal and the mean ExB is consequently toroidal, the quantity P results: P =[ -ρμ0 + ]Vφr where Vφ is the mean ExB toroidal flow, ρ the mean mass density and b and v the fluctuations of velocity and magnetic field respectively. Both the radial profiles and the temporal evolution of P have been measured in the edge region of Extrap-T2R Reversed Field Pinch experiment. The results support the existence of oscillating energy exchange process between fluctuations and mean flow.

  5. Model of An Expanding Heliosphere

    NASA Astrophysics Data System (ADS)

    Song, P.; Vasyliunas, V. M.

    2015-12-01

    Conventional models of the heliosphere assume that the heliopause is formed, similarly to the magnetopause of a planet, at the location where the total pressure of the exterior (interstellar) medium is balanced by the total pressure of the interior (heliospheric) medium. The heliosphere, however, differs greatly from a planetary magnetosphere in being dominated by a continuous interior source of mass (present in some planetary magnetospheres, notably Jupiter and Saturn, but not to anything like the same extent), and it differs as well from systems with large interior mass sources such as comets (to which it has also been compared) in being threaded by magnetic flux from its central object (the Sun). The heliosphere must thus expand continually as more and more mass is put into it by the solar wind, with the heliopause marching into the interstellar medium at some non-zero speed while maintaining the plasma total (thermal plus magnetic) pressure equal to that of the interstellar medium. A steady state heliosphere is, strictly speaking, impossible unless and until the distinction between the heliospheric and the interstellar medium has disappeared. The geometry of the expansion can be visualized in different ways. Conventionally it is taken for granted that the expansion is deflected by interstellar flow sideways and channeled into an extended wake/tail region, the rest of the heliosphere being in apparently steady state. Even if this may occur, it would be at a distance much larger than commonly assumed. We explore the alternative possibility of a heliosphere expanding predominantly in the radial direction and describe some of its properties. The input from solar wind and interplanetary magnetic field during each solar cycle forms a shell, with subsequent cycles adding shells of alternating magnetic polarities. The ultimate extent of the heliosphere (in all directions) and the number of shells can be limited by the time until either the solar output or the

  6. Fundamental Statistical Descriptions of Plasma Turbulence in Magnetic Fields

    SciTech Connect

    John A. Krommes

    2001-02-16

    A pedagogical review of the historical development and current status (as of early 2000) of systematic statistical theories of plasma turbulence is undertaken. Emphasis is on conceptual foundations and methodology, not practical applications. Particular attention is paid to equations and formalism appropriate to strongly magnetized, fully ionized plasmas. Extensive reference to the literature on neutral-fluid turbulence is made, but the unique properties and problems of plasmas are emphasized throughout. Discussions are given of quasilinear theory, weak-turbulence theory, resonance-broadening theory, and the clump algorithm. Those are developed independently, then shown to be special cases of the direct-interaction approximation (DIA), which provides a central focus for the article. Various methods of renormalized perturbation theory are described, then unified with the aid of the generating-functional formalism of Martin, Siggia, and Rose. A general expression for the renormalized dielectric function is deduced and discussed in detail. Modern approaches such as decimation and PDF methods are described. Derivations of DIA-based Markovian closures are discussed. The eddy-damped quasinormal Markovian closure is shown to be nonrealizable in the presence of waves, and a new realizable Markovian closure is presented. The test-field model and a realizable modification thereof are also summarized. Numerical solutions of various closures for some plasma-physics paradigms are reviewed. The variational approach to bounds on transport is developed. Miscellaneous topics include Onsager symmetries for turbulence, the interpretation of entropy balances for both kinetic and fluid descriptions, self-organized criticality, statistical interactions between disparate scales, and the roles of both mean and random shear. Appendices are provided on Fourier transform conventions, dimensional and scaling analysis, the derivations of nonlinear gyrokinetic and gyrofluid equations

  7. A Model of the Heliosphere with Jets

    NASA Astrophysics Data System (ADS)

    Drake, James; Swisdak, Marc; Opher, Merav

    2015-11-01

    The conventional picture of the heliosphere is that of a comet-shaped structure with an extended tail produced by the relative motion of the sun through the local interstellar medium. Recent magnetohydrodynamic (MHD) simulations of the heliosphere have revealed that the heliosphere drives magnetized jets to the north and south similar to those driven by the Crab Nebula. That the sun's magnetic field can drive such jets when β = 8 πP /B2 >> 1 in the outer heliosphere is a major surprise. An analytic model of the heliosheath (HS) is developed in the limit in which the interstellar flow and magnetic field are neglected. The heliosphere in this limit is axi-symmetric and the overall structure of the HS is controlled by the solar magnetic field even for very high β. The tension of the solar magnetic field produces a drop in the total pressure between the termination shock and the HP. This same pressure drop accelerates the plasma flow into the north and south directions to form two collimated jets. MHD simulations of the global heliosphere embedded in a stationary interstellar medium match well with the analytic model. Evidence from the distribution of energetic neutral atoms from the outer heliosphere from IBEX and CASSINI supports the picture of a heliosphere with jets.

  8. Plasma turbulence and impulsive UV line emission in solar flares

    NASA Technical Reports Server (NTRS)

    Brown, John C.

    1986-01-01

    Observations show that hard X-ray burst and UV lines rise and fall simultaneously on time scales of seconds. Hydrodynamic simulations of beam-heated atmospheres, based on collisional transport, however, produce only a gradual fall in UV emission, when the beam flux falls, due to the long time scale of conductive relaxation. It is suggested that this discrepancy might be explained by onset of plasma turbulence driven by the strong heat flux or by the beam return current going unstable. Such turbulence greatly reduces electrical and thermal conductivities. Fall in electrical conductivity reduces the hard X-ray flux by enhanced ohmic dissipation of the return current, while fall in thermal conductivity may cause the UV line to fall by reducing the transition region thickness.

  9. Solar system plasma Turbulence: Observations, inteRmittency and Multifractals

    NASA Astrophysics Data System (ADS)

    Echim, Marius M.

    2016-04-01

    The FP7 project STORM is funded by the European Commission to "add value to existing data bases through a more comprehensive interpretation". STORM targets plasma and magnetic field databases collected in the solar wind (Ulysses and also some planetary missions), planetary magnetospheres (Venus Express, Cluster, a few orbits from Cassini), cometary magnetosheaths (e.g. Haley from Giotto observations). The project applies the same package of analysis methods on geomagnetic field observations from ground and on derived indices (e.g. AE, AL, AU, SYM-H). The analysis strategy adopted in STORM is built on the principle of increasing complexity, from lower (like, e.g., the Power Spectral Density - PSD) to higher order analyses (the Probability Distribution Functions - PDFs, Structure Functions - SFs, Fractals and Multifractals - MFs). Therefore STORM targets not only the spectral behavior of turbulent fluctuations but also their topology and scale behavior inferred from advanced mathematical algorithms and geometrical-like analogs. STORM started in January 2013 and ended in December 2015. We will report on a selection of scientific and technical achievements and will highlight: (1) the radial evolution of solar wind turbulence and intermittency based on Ulysses data with some contributions from Venus Express and Cluster; (2) comparative study of fast and slow wind turbulence and intermittency at solar minimum; (3) comparative study of the planetary response (Venus and Earth magnetosheaths) to turbulent solar wind; (4) the critical behavior of geomagnetic fluctuations and indices; (5) an integrated library for non-linear analysis of time series that includes all the approaches adopted in STORM to investigate solar system plasma turbulence. STORM delivers an unprecedented volume of analysed data for turbulence. The project made indeed a systematic survey, orbit by orbit, of data available from ESA repositories and Principal Investigators and provides results ordered as a

  10. Electrostatic turbulence in the low-density plasma column

    NASA Astrophysics Data System (ADS)

    Ricci, Daria; Granucci, Gustavo; Garavaglia, Saul; Cremona, Anna; Minelli, Daniele; Mellera, Vittoria

    2010-11-01

    Electron plasma density fluctuations are observed in plasma when a radial pressure gradient excites drift waves. The linear machine GyM (R=0.125 m, L= 2.11 m, B<0.1T), operating at IFP-CNR since 2008, has started experiments aimed at characterizing drift waves excited in its non-uniform magnetized plasma. Two different plasma sources (magnetron 2.45 GHz or hot filament) have been used to sustain plasma with adjustable sections (1.5 cmplasma density have been observed and characterized as a function of the injected RF power. The dynamic (frequency and amplitude) of such fluctuations has been related to the spontaneous radial electric field consequence of different electron density profiles. The results from the new probe array, recently implemented in GyM to provide a deeper study of the spatial distribution of turbulence, are shown.

  11. Observation of Pedestal Plasma Turbulence on EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Zhang, Tao; Han, Xiang; Zhang, Shoubiao; Wang, Yumin; Liu, Zixi; Yang, Yao; Liu, Shaocheng; Shi, Nan; Ling, Bili; Li, Jiangang; The EAST Team

    2013-08-01

    Pedestal plasma turbulence was experimentally studied by microwave reflectometry on EAST tokamak. The characteristics of edge pedestal turbulence during dithering L-H transition, ELM-free H-mode phase and inter-ELM phase have recently been studied on EAST. An edge spatial structure of density fluctuation and its dithering temporal evolution is observed for the first time on the EAST tokamak during the L-H transition phase. A coherent mode usually appears during the ELM-free phase prior to the first ELM on EAST tokamak. The mode frequency gradually decreases as the pedestal evolves. Analysis shows that the coherent mode is in the pedestal region inside the separatrix. In plasma with type-III ELMs, a precursor mode before ELM is usually observed. The frequency of the precursor was initially about 150 kHz and gradually decreased till the next ELM. The mode amplitude increases or shows saturation before ELM. In the plasma with compound ELMs composed of high and low frequency ELMs, the precursor was also observed before the high frequency ELM while the harmonic oscillations with frequencies of 20 kHz, 40 kHz and 60 kHz appear before the low frequency ELM.

  12. Dynamics of Turbulence Suppression in a Helicon Plasma

    NASA Astrophysics Data System (ADS)

    Hayes, Tiffany; Gilmore, Mark

    2012-10-01

    Experiments are currently being conducted in the the Helicon-Cathode Device (HelCat) at the University of New Mexico. The goal is to the study in detail the transition from a turbulent to a non-turbulent state in the presence of flow shear. HelCat has intrinsic fluctuations that have been identified as drift-waves. Using simple electrode biasing, it has been found that these fluctuations can be completely suppressed. In some extreme cases, a different instability, possibly the Kelvin-Helmholtz instability, can be excited. Detailed studies are underway in order to understand the characteristics of each mode, and to elucidate the underlying physics that cause the change between an unstable plasma, and an instability-free plasma. Dynamics being observed include changes in flow profiles, both azimuthal and parallel, as well as changes in potential and temperature gradients. Further understanding is being sought using several computer codes developed at EPFL: a linear stability solver (LSS,footnotetextP. Ricci and B.N. Rogers (2009). Phys Plasmas 16, 062303. a one-dimensional PIC code/sheath solver, ODISEE,footnotetextJ. Loizu, P. Ricci, and C. Theiler (2011). Phys Rev E 83, 016406 and a global, 3D Braginski code, GBS.footnotetextRicci, Rogers (2009) A basic overview of results will be presented.

  13. Particle Energization throughout the Heliosphere: Opportunities with IMAP

    NASA Astrophysics Data System (ADS)

    Zank, Gary

    2016-04-01

    Understanding the radiation environment at the Earth and beyond is one of the critical elements in our developing Space Weather capabilities and strategy. Furthermore, the energization of charged particles in a collisionless plasma remains one of the compelling unsolved yet universal problems in space physics and astrophysics. The proposed instrumentation of IMAP enables two critical goals: 1) real-time monitoring of the radiation and plasma environment as part of a Space Weather capability, and 2) making coordinated simultaneous measurements of all the basic plasma parameters needed to develop a comprehensive and detailed understanding of fundamental particle energization processes. Since the session addresses the "Physics of particle acceleration", we will survey briefly the critical open problems associated with particle acceleration during quiet and active solar wind periods. At least three elements will be discussed. 1) Dissipative processes in the quiet solar wind and at shock waves. For the former, we discuss emerging ideas about the dissipation of turbulence via structures such as flux ropes and their role in possibly energizing charged particles during quiet times, especially in the vicinity of the heliospheric current sheet. In the latter, reflected ions play an essential role in dissipative processes at both quasi-perpendicular and quasi-parallel shocks. This in turn has consequences for the energization of particles, the generation of turbulence upstream and downstream of the shock, and the importance of a pre-existing suprathermal ion population. 2) What is the role of pre-existing energetic particles versus injection from a background thermal population of charged particles in the context of diffusive shock acceleration? Does the pre-existing suprathermal particle population play a fundamental role in the dissipation processes governing heliospheric shock, as suggested by the case of the heliospheric termination shock and pickup ions? 3) What is the

  14. Transport equation for plasmas in a stationary-homogeneous turbulence

    SciTech Connect

    Wang, Shaojie

    2016-02-15

    For a plasma in a stationary homogeneous turbulence, the Fokker-Planck equation is derived from the nonlinear Vlasov equation by introducing the entropy principle. The ensemble average in evaluating the kinetic diffusion tensor, whose symmetry has been proved, can be computed in a straightforward way when the fluctuating particle trajectories are provided. As an application, it has been shown that a mean parallel electric filed can drive a particle flux through the Stokes-Einstein relation, independent of the details of the fluctuations.

  15. Length of magnetic field lines in turbulent plasmas.

    PubMed

    Nunez, Manuel

    2002-06-01

    An estimation of the length of any magnetic field line in a two-dimensional periodic magnetohydrodynamic problem is provided. This is done by using some classical function theory results on the analytic extension of the vector potential. The essential parameter, the maximum of this extension, may be analyzed in the case of turbulent plasmas by admitting the Iroshnikov-Kraichnan statistics, establishing in this way a relation between the length of any magnetic field line and the energy dissipation scale. (c) 2002 American Institute of Physics.

  16. Turbulent boundary-layer control with plasma actuators.

    PubMed

    Choi, Kwing-So; Jukes, Timothy; Whalley, Richard

    2011-04-13

    This paper reviews turbulent boundary-layer control strategies for skin-friction reduction of aerodynamic bodies. The focus is placed on the drag-reduction mechanisms by two flow control techniques-spanwise oscillation and spanwise travelling wave, which were demonstrated to give up to 45 per cent skin-friction reductions. We show that these techniques can be implemented by dielectric-barrier discharge plasma actuators, which are electric devices that do not require any moving parts or complicated ducting. The experimental results show different modifications to the near-wall structures depending on the control technique.

  17. Exploring turbulent energy dissipation and particle energization in space plasmas: the science of THOR mission

    NASA Astrophysics Data System (ADS)

    Retinò, Alessandro

    2016-04-01

    The Universe is permeated by hot, turbulent magnetized plasmas. They are found in active galactic nuclei, supernova remnants, the intergalactic and interstellar medium, as well as in the solar corona, the solar wind and the Earth's magnetosphere. Turbulent plasmas are also found in laboratory devices such as e.g. tokamaks. Our comprehension of the plasma Universe is largely based on measurements of electromagnetic radiation such as light or X-rays which originate from particles that are heated and accelerated as a result of energy dissipation in turbulent environments. Therefore it is of key importance to study and understand how plasma is energized by turbulence. Most of the energy dissipation occurs at kinetic scales, where plasma no longer behaves as a fluid and the properties of individual plasma species (electrons, protons and other ions) become important. THOR (Turbulent Heating ObserveR - http://thor.irfu.se/) is a space mission currently in Study Phase as candidate for M-class mission within the Cosmic Vision program of the European Space Agency. The scientific theme of the THOR mission is turbulent energy dissipation and particle energization in space plasmas, which ties in with ESA's Cosmic Vision science. The main focus is on turbulence and shock processes, however areas where the different fundamental processes interact, such as reconnection in turbulence or shock generated turbulence, are also of high importance. The THOR mission aims to address fundamental questions such as how plasma is heated and particles are accelerated by turbulent fluctuations at kinetic scales, how energy is partitioned among different plasma components and how dissipation operates in different regimes of turbulence. To reach the goal, a careful design of the THOR spacecraft and its payload is ongoing, together with a strong interaction with numerical simulations. Here we present the science of THOR mission and we discuss implications of THOR observations for space

  18. Nonlocal wave turbulence in non-Abelian plasmas

    NASA Astrophysics Data System (ADS)

    Mehtar-Tani, Yacine

    2017-10-01

    We investigate driven wave turbulence in non-Abelian plasmas, in the framework of kinetic theory where both elastic and inelastic processes are considered in the small angle approximation. The gluon spectrum, that forms in the presence of a steady source, is shown to be controlled by nonlocal interactions in momentum space, in contrast to the universal Kolmogorov-Zakharov spectra. Assuming strongly nonlocal interactions, we show that inelastic processes are dominant in the IR and cause a thermal bath to form below the forcing scale, as a result of a detailed balance between radiation and absorption of soft gluons by the hard ones. Above the forcing scale, the inelastic collision term reduces to an inhomogeneous diffusion-like equation yielding a spectrum that spreads to the UV as t 1 / 2, similarly to elastic processes. Due to nonlocal interactions the non-universal turbulent spectrum is not steady and flattens when time goes on toward the thermal distribution. This analysis is complemented by numerical simulations, where we observe that in the explored time interval the spectral exponent of the nonlocal turbulent cascade is close to -2 in agreement with simulations of classical Yang-Mills equations.

  19. Fusion plasma turbulence described by modified sandpile dynamics.

    PubMed

    Ghendrih, Philippe; Ciraolo, Guido; Dif-Pradalier, Guilhem; Norscini, Claudia; Sarazin, Yanick; Abiteboul, Jérémie; Cartier-Michaud, Thomas; Garbet, Xavier; Grandgirard, Virginie; Strugarek, Antoine

    2014-04-01

    Transport in fusion plasmas is investigated with modified sandpile models. Based on results from more complete simulations, the sandpile model is modified in steps. Models with a constant source are obtained by coupling two sandpiles. Decoupling the mean field from the bursts allows one to develop a reduced model which captures some of the key features of flux-driven simulations. In the latter sandpile model, turbulent transport is mediated by the burst field while the mean-field gradient governs the transfer to the bursts. This allows one to investigate spreading, namely turbulent transport into stable regions, and transport barriers, regions where the transfer from the mean field to turbulence is reduced. Both cases are found to exhibit intermittent behaviors when the system undergoes spontaneous transitions between different transport regimes. Finally, one couples to the sandpile algorithm a species evolution algorithm that assigns a quality factor to each site. The latter appears to self-generate corrugations, or micro-barriers. These are found to naturally cluster radially in structures that are large enough to impact confinement. The mechanisms introduced to alleviate the clustering, destabilization of the corrugation by overloading and by secondary instabilities at critical radial extents, are shown to generate long-range relaxation events in space and in time with quasiperiodic reorganization of the corrugation pattern.

  20. Heliospheric Plasma Sheet (HPS) Impingement onto the Magnetosphere Causing Relativistic Electron Dropouts (REDs): Possible Consequences for Atmospheric Vorticity

    NASA Astrophysics Data System (ADS)

    Tsurutani, B.; Hajra, R.; Tanimori, T.; Takada, A.; Bhanu, R.; Mannucci, A. J.; Lakhina, G. S.; Kozyra, J.; Shiokawa, K.; Lee, L. C.; Echer, E.; Reddy, V.; Gonzalez, W.

    2016-12-01

    A new scenario is presented for the cause of magnetospheric relativistic electron decreases (REDs) and potential effects in the atmosphere and on weather. High density solar wind heliospheric plasmasheet (HPS) events impinge onto the magnetosphere, compressing it along with remnant noon-sector outer-zone magnetospheric 10-100 keV protons. The betatron accelerated protons generate coherent EMIC waves through a temperature anisotropy (T┴/T|| > 1) instability. The waves in turn interact with relativistic electrons and cause the rapid loss of these particles to a small region of the atmosphere. A peak total energy deposition of 3 x 1020 ergs is derived for the precipitating electrons. Maximum energy deposition and creation of electron-ion pairs at 30-50 km and at < 30 km altitude are quantified. We focus attention on the relevant Wilcox et al. [1973] correlation between solar wind heliospheric current sheet (HCS) crossings and high atmospheric vorticity centers at 300 mb altitude. The Tinsley et al. [1994] global circuit model is also discussed in light of our new findings. Other possible scenarios potentially affecting weather are discussed.

  1. Shear Alfvén waves in turbulent plasmas.

    PubMed

    Núñez, Manuel

    2002-03-01

    The rate of decay of shear Alfvén waves along a magnetic field line of a diffusive plasma grows with the number of nodes of the initial perturbation. It is reasonable to think that the energy dissipation produced by this decay will be small if the perturbation was localized in a small set. This does not happen in turbulent plasmas: transport of the oscillation by the flow involves the whole domain. A general relation is obtained proving that the global energy dissipation is bounded below by an exponential of the number of nodes of any shear Alfvén wave along a segment of any field line of the average magnetic field.

  2. Dependence of Turbulence Spatial Correlation Lengths on Plasma Rotation

    NASA Astrophysics Data System (ADS)

    Parisi, Jason; Barnes, Michael; Parra, Felix I.; Roach, Colin M.

    2015-11-01

    We present the results from nonlinear gyrokinetic simulations in GS2 to investigate the parallel and perpendicular correlation lengths of electrostatic turbulence in tokamak plasmas with rotation. These correlation lengths are characterised for a range of parameters, including the E × B shear, γE. We observe that the correlation lengths decrease as γE increases. Simulation results are compared against scaling laws deduced from the critical balance conjecture, which states that nonlinear perpendicular decorrelation times and parallel streaming times are comparable at all spatial scales. This work received funding from Euratom grant agreement No 633053 and from the RCUK Energy Programme [grant number EP/I501045], and gyrokinetic calculations were performed on ARCHER via the Plasma HEC Consortium [EPSRC Grant No.EP/L000237/1].

  3. Structures and turbulent relaxation in non-neutral plasmas

    NASA Astrophysics Data System (ADS)

    Romé, M.; Chen, S.; Maero, G.

    2017-01-01

    The transverse dynamics of a magnetized pure electron plasma confined in a Penning-Malmberg trap is analogous to that of a two-dimensional (2D) ideal fluid. The dynamics of a system in a regime of external forcing due to the application of time-dependent potentials on different azimuthal sectors of the confining circular wall is studied numerically by means of 2D particle-in-cell simulations. The evolution of turbulence starting from an annular initial density distribution is investigated for different kinds and parameters of forcing by means of wavelet-based multiresolution analysis. From an experimental point of view, the analyzed forcing technique is useful to excite or damp different diocotron perturbations and therefore for the control and manipulation of plasma evolution. Nonetheless, the numerical results indicate that even in a weak forcing regime the system evolution is sensitive to small initial density fluctuations.

  4. Impact of plasma parameter on self-organization of electron temperature gradient driven turbulence

    NASA Astrophysics Data System (ADS)

    Kawai, C.; Idomura, Y.; Maeyama, S.; Ogawa, Y.

    2017-04-01

    Self-organization in the slab electron temperature gradient driven (ETG) turbulence is investigated based on gyrokinetic simulations and the Hasegawa-Mima (HM) equation. The scale and the anisotropy of self-organized turbulent structures vary depending on the Rhines scale and the characteristic scale given by the adiabatic response term in the HM equation. The former is determined by competition between the linear wave dispersion and the nonlinear turbulent cascade, while the latter is given as the scale, at which the turbulent cascade is impeded. These scales are controlled by plasma parameters such as the density and temperature gradient, and the temperature ratio of ion to electron. It is found that depending on the plasma parameters, the ETG turbulence shows either isotropic turbulence or zonal flows, which give significantly different transport levels. Although the modulational instability excites zonal modes regardless of the plasma parameters, the final turbulent structure is determined by the self-organization process.

  5. Magnetic turbulence in a table-top laser-plasma relevant to astrophysical scenarios

    NASA Astrophysics Data System (ADS)

    Chatterjee, Gourab; Schoeffler, Kevin M.; Kumar Singh, Prashant; Adak, Amitava; Lad, Amit D.; Sengupta, Sudip; Kaw, Predhiman; Silva, Luis O.; Das, Amita; Kumar, G. Ravindra

    2017-06-01

    Turbulent magnetic fields abound in nature, pervading astrophysical, solar, terrestrial and laboratory plasmas. Understanding the ubiquity of magnetic turbulence and its role in the universe is an outstanding scientific challenge. Here, we report on the transition of magnetic turbulence from an initially electron-driven regime to one dominated by ion-magnetization in a laboratory plasma produced by an intense, table-top laser. Our observations at the magnetized ion scale of the saturated turbulent spectrum bear a striking resemblance with spacecraft measurements of the solar wind magnetic-field spectrum, including the emergence of a spectral kink. Despite originating from diverse energy injection sources (namely, electrons in the laboratory experiment and ion free-energy sources in the solar wind), the turbulent spectra exhibit remarkable parallels. This demonstrates the independence of turbulent spectral properties from the driving source of the turbulence and highlights the potential of small-scale, table-top laboratory experiments for investigating turbulence in astrophysical environments.

  6. Turbulent convective flows in the solar photospheric plasma

    NASA Astrophysics Data System (ADS)

    Caroli, A.; Giannattasio, F.; Fanfoni, M.; Del Moro, D.; Consolini, G.; Berrilli, F.

    2015-10-01

    > The origin of the 22-year solar magnetic cycle lies below the photosphere where multiscale plasma motions, due to turbulent convection, produce magnetic fields. The most powerful intensity and velocity signals are associated with convection cells, called granules, with a scale of typically 1 Mm and a lifetime of a few minutes. Small-scale magnetic elements (SMEs), ubiquitous on the solar photosphere, are passively transported by associated plasma flows. This advection makes their traces very suitable for defining the convective regime of the photosphere. Therefore the solar photosphere offers an exceptional opportunity to investigate convective motions, associated with compressible, stratified, magnetic, rotating and large Rayleigh number stellar plasmas. The magnetograms used here come from a Hinode/SOT uninterrupted 25-hour sequence of spectropolarimetric images. The mean-square displacement of SMEs has been modelled with a power law with spectral index . We found for times up to and for times up to . An alternative way to investigate the advective-diffusive motion of SMEs is to look at the evolution of the two-dimensional probability distribution function (PDF) for the displacements. Although at very short time scales the PDFs are affected by pixel resolution, for times shorter than the PDFs seem to broaden symmetrically with time. In contrast, at longer times a multi-peaked feature of the PDFs emerges, which suggests the non-trivial nature of the diffusion-advection process of magnetic elements. A Voronoi distribution analysis shows that the observed small-scale distribution of SMEs involves the complex details of highly nonlinear small-scale interactions of turbulent convective flows detected in solar photospheric plasma.

  7. Plasma turbulence measured with fast frequency swept reflectometry in JET H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Clairet, F.; Sirinelli, A.; Meneses, L.; Contributors, JET

    2016-12-01

    In this work we present recent achievements to provide precise measurements of turbulence on JET H-mode plasmas using frequency sweeping reflectometry diagnostic. The plasma density fluctuations retrieved from swept reflected signals, first initiated with the Tore Supra reflectometry (Heuraux et al 2003 Rev. Sci. Instrum. 74 1501, Vermare et al 2006 Nucl. Fusion 46 S743, Gerbaud et al 2006 Rev. Sci. Instrum. 77 10E928), provides a radial profile of the density fluctuation level and its spectral structure. Using the complete set of the JET X-mode fast sweeping heterodyne reflectometers we have determined the temporal dynamic of the density fluctuation profile from the edge to the center during an H-mode discharge. At the L-H transition, the turbulence reduction seems to occur, at first, simultaneously from the edge to the center then deepens at the edge at ρ ~ 0.95 and this deepening propagates toward the center with a steepening of the wavenumber spectra. During an edge localized mode (ELM) event, a substantial density fluctuations increase has been observed with a localized turbulent wave front propagating toward the center accompanying a particle transport. We also show that type-III ELMs sustain a steady and high level of plasma turbulence compare to type-I.

  8. Plasma flow, turbulence and magnetic islands in TJ-II

    NASA Astrophysics Data System (ADS)

    Estrada, T.; Ascasíbar, E.; Blanco, E.; Cappa, A.; Hidalgo, C.; Ida, K.; López-Fraguas, A.; van Milligen, B. Ph

    2016-02-01

    The effect of magnetic islands on plasma flow and turbulence has been experimentally investigated in ohmically induced magnetic configuration scans at the stellarator TJ-II. This operational mode allows sweeping the radial position of a low order rational surface from the plasma core towards the edge in a controlled way, what reveals effects that are difficult to notice in scans performed on a shot to shot basis. The main diagnostic used in the present work is a two-channel Doppler reflectometer that allows the measurement of the perpendicular rotation velocity of the turbulence and density fluctuations with good spatial and temporal resolution. A characteristic signature of the n/m  =  3/2 magnetic island as it crosses the measurement position is clearly detected: the perpendicular flow reverses at the center of the magnetic island and a flow shear develops at the island boundaries. Fluctuations of the perpendicular flow and density have been also measured along the 3/2 magnetic island. An increase in the low frequency flow oscillations is measured at the magnetic island boundaries together with a reduction in the density fluctuation level; the later being more pronounced at the inner island boundary. These observations could explain the link between magnetic islands and transport barriers observed in a number of fusion devices.

  9. Extreme Scale Plasma Turbulence Simulations on Top Supercomputers Worldwide

    DOE PAGES

    Tang, William; Wang, Bei; Ethier, Stephane; ...

    2016-11-01

    The goal of the extreme scale plasma turbulence studies described in this paper is to expedite the delivery of reliable predictions on confinement physics in large magnetic fusion systems by using world-class supercomputers to carry out simulations with unprecedented resolution and temporal duration. This has involved architecture-dependent optimizations of performance scaling and addressing code portability and energy issues, with the metrics for multi-platform comparisons being 'time-to-solution' and 'energy-to-solution'. Realistic results addressing how confinement losses caused by plasma turbulence scale from present-day devices to the much larger $25 billion international ITER fusion facility have been enabled by innovative advances in themore » GTC-P code including (i) implementation of one-sided communication from MPI 3.0 standard; (ii) creative optimization techniques on Xeon Phi processors; and (iii) development of a novel performance model for the key kernels of the PIC code. Our results show that modeling data movement is sufficient to predict performance on modern supercomputer platforms.« less

  10. Three-dimensional plasma actuation for faster transition to turbulence

    NASA Astrophysics Data System (ADS)

    Das Gupta, Arnob; Roy, Subrata

    2017-10-01

    We demonstrate that a 3D non-linear plasma actuation method creates secondary instabilities by forming lambda vortices for a spatially developing turbulent boundary layer flow over a flat plate. Both bypass transition and controlled transition processes are numerically investigated using wall resolved modal discontinuous Galerkin based implicit large eddy simulation. The largest momentum thickness based Reynolds numbers ≤ft( R{{e}θ } \\right) tested are 1250 and 1100 for the bypass transition and the controlled transition, respectively. The 3D actuation method is based on a square serpentine plasma actuator (Durscher and Roy 2012 J. Phys. D: Appl. Phys. 45 035202). The transition is achieved via oblique wave transition by perturbing the flow at a frequency of 1 kHz with amplitude of 10% of the freestream velocity. Although the flow is perturbed at a single frequency, the instabilities arising due to the nonlinear interaction between the consecutive lambda vortices, creates subharmonic lambda vortices (half of the fundamental frequency), which finally break down into fully turbulent flow. These interactions have been thoroughly studied and discussed. Since the actuation creates oblique wave transition it will allow faster transition compared to the standard secondary instability mechanism with similar disturbance amplitude reducing the amount of energy input required for flow control.

  11. Transition of energy transfer from MHD turbulence to kinetic plasma

    NASA Astrophysics Data System (ADS)

    Yang, Yan; Matthaeus, William; Parashar, Tulasi; Shi, Yipeng; Wan, Minping; Chen, Shiyi

    2016-11-01

    The classical energy cascade scenario is of great importance in explaining the heating of corona and solar wind. One can envision that energy residing in large-scale fluctuations is transported to smaller scales where dissipation occurs and finally drives kinetic processes that absorb the energy flux and energize charged particles. Here we inquire how the cascade operates in a compressible plasma, and how the characteristics of energy transfer vary going from MHD to kinetic scales. When filtering MHD equations, we can get an apparent inertial range over which the conservative energy cascade occurs and the scale locality of energy transfer is similar to the cases of incompressible MHD turbulence. Pervasive shocks not only make a significant difference on energy cascade and magnetic amplification, but can also introduce considerable pressure dilation, a complement of viscous and ohmic dissipation that can trigger an alternative channel of the conversion between kinetic and internal energy. The procedure can also be applied to the Vlasov equation and kinetic simulation, in comparison with MHD turbulence, and is a good candidate to investigate the energy cascade process and the analogous role of the (tensor) pressure dilation in collisionless plasma.

  12. Extreme Scale Plasma Turbulence Simulations on Top Supercomputers Worldwide

    SciTech Connect

    Tang, William; Wang, Bei; Ethier, Stephane; Kwasniewski, Grzegorz; Hoefler, Torsten; Ibrahim, Khaled Z.; Madduri, Kamesh; Williams, Samuel; Oliker, Leonid; Rosales-Fernandez, Carlos; Williams, Tim

    2016-11-01

    The goal of the extreme scale plasma turbulence studies described in this paper is to expedite the delivery of reliable predictions on confinement physics in large magnetic fusion systems by using world-class supercomputers to carry out simulations with unprecedented resolution and temporal duration. This has involved architecture-dependent optimizations of performance scaling and addressing code portability and energy issues, with the metrics for multi-platform comparisons being 'time-to-solution' and 'energy-to-solution'. Realistic results addressing how confinement losses caused by plasma turbulence scale from present-day devices to the much larger $25 billion international ITER fusion facility have been enabled by innovative advances in the GTC-P code including (i) implementation of one-sided communication from MPI 3.0 standard; (ii) creative optimization techniques on Xeon Phi processors; and (iii) development of a novel performance model for the key kernels of the PIC code. Our results show that modeling data movement is sufficient to predict performance on modern supercomputer platforms.

  13. Ion-cyclotron turbulence and diagonal double layers in a magnetospheric plasma

    NASA Technical Reports Server (NTRS)

    Liperovskiy, V. A.; Pudovkin, M. I.; Skuridin, G. A.; Shalimov, S. L.

    1981-01-01

    A survey of current concepts regarding electrostatic ion-cyclotron turbulence (theory and experiment), and regarding inclined double potential layers in the magnetospheric plasma is presented. Anomalous resistance governed by electrostatic ion-cyclotron turbulence, and one-dimensional and two-dimensional models of double electrostatic layers in the magnetospheric plasma are examined.

  14. A region of intense plasma wave turbulence on auroral field lines

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Frank, L. A.

    1976-01-01

    This report presents a detailed study of the plasma wave turbulence observed by HAWKEYE-1 and IMP-6 on high latitude auroral field lines and investigates the relationship of this turbulence to magnetic field and plasma measurements obtained in the same region.

  15. Thomson Scattering of Plasma Turbulence in PSI-2

    NASA Astrophysics Data System (ADS)

    Hubeny, Michael; Schweer, Bernd; Luggenhölscher, Dirk; Czarnetzki, Uwe; Unterberg, Bernhard

    2016-09-01

    Linear plasma devices are widely used to study fundamental plasma characteristics and to simulate particle and heat loads representing first wall/divertor conditions of fusion reactors. In high power discharges at PSI-2 the plasma edge exhibits turbulence with intermittent transport events. The combination of Thomson Scattering by a photon counting method and a fast framing CMOS camera in conjunction with conditional averaging gives access to the evolution of density and temperature profiles during transient plasma dynamics. Radial density and temperature profiles in Ar, D2, He and Ne discharges were measured and compared with existing diagnostics. In high power, low gas-feed Argon discharges the dominating m=1 rotation was found to correspond to a 20% Te fluctuation amplitude around the temporal mean at the profile maxima. In the edge of D2 discharges transients are selected by conditional averaging and a significant temperature increase was found in the edge of TS profiles upon ejection accompanied by a 20% drop in bulk density.

  16. Electromagnetic turbulence and transport in increased β LAPD Plasmas

    NASA Astrophysics Data System (ADS)

    Rossi, Giovanni; Carter, Troy; Pueschel, Mj; Jenko, Frank; Terry, Paul; Told, Daniel

    2016-10-01

    The new LaB6 plasma source in LAPD has enabled the production of magnetized, increased β plasmas (up to 15%). We report on the modifications of pressure-gradient-driven turbulence and transport with increased plasma β. Density fluctuations decrease with increasing β while magnetic fluctuations increase. B ⊥ fluctuations saturate while parallel (compressional) magnetic fluctuations increase continuously with β. At the highest β values Î δ ||/ δ B ⊥ 2 and δ B/B 1%. The measurements are consistent with the excitation of the Gradient-driven Drift Coupling (GDC). This instability prefers k|| = 0 and grows in finite β plasmas due to density and temperature gradients through the production of parallel magnetic field fluctuations and resulting ⊥ B|| drifts. Comparisons between experimental measurements and theoretical predictions for the GDC will be shown. Direct measurements of electrostatic particle flux have been performed and show a strong reduction with increasing β. No evidence is found (e.g. density profile shape) of enhanced confinement, suggesting that other transport mechanisms are active. Preliminary measurements indicate that electromagnetic transport due to parallel magnetic field fluctuations at first increases with β but is subsequently suppressed at higher β values.

  17. Shukla-Spatschek diffusion effects on surface plasma waves in astrophysical turbulent plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-02-01

    The effects of Shukla-Spatschek turbulent diffusion on a temporal mode of surface waves propagating at the interface of an astrophysical turbulent plasma are investigated. The damping rates for high and low modes of surface wave are kinetically derived by employing the Vlasov-Poisson equation and the specular reflection boundary condition. We found that the diffusion caused by the fluctuating electric fields leads to damping for both high and low modes of surface waves. The high-mode damping is enhanced with an increase of the wavenumber and the diffusion coefficient, but suppressed by an increase of electron thermal energy. By contrast, the low-mode damping is suppressed as the wavenumber and the thermal energy increase although it is enhanced as the diffusion increases. The variation of the damping rate due to the Shukla-Spatschek turbulent diffusion is also discussed.

  18. Turbulence and bias-induced flows in simple magnetized toroidal plasmas

    SciTech Connect

    Li, B.; Rogers, B. N.; Ricci, P.; Gentle, K. W.; Bhattacharjee, A.

    2011-05-15

    Turbulence and bias-induced flows in simple magnetized toroidal plasmas are explored with global three-dimensional fluid simulations, focusing on the parameters of the Helimak experiment. The simulations show that plasma turbulence and transport in the regime of interest are dominated by the ideal interchange instability. The application of a bias voltage alters the structure of the plasma potential, resulting in the equilibrium sheared flows.These bias-induced vertical flows located in the gradient region appear to reduce the radial extent of turbulent structures,and thereby lower the radial plasma transport on the low field side.

  19. Galactic Cosmic Rays in the Outer Heliosphere

    NASA Technical Reports Server (NTRS)

    Florinski, V.; Washimi, H.; Pogorelov, N. V.; Adams, J. H.

    2010-01-01

    We report a next generation model of galactic cosmic ray (GCR) transport in the three dimensional heliosphere. Our model is based on an accurate three-dimensional representation of the heliospheric interface. This representation is obtained by taking into account the interaction between partially ionized, magnetized plasma flows of the solar wind and the local interstellar medium. Our model reveals that after entering the heliosphere GCRs are stored in the heliosheath for several years. The preferred GCR entry locations are near the nose of the heliopause and at high latitudes. Low-energy (hundreds of MeV) galactic ions observed in the heliosheath have spent, on average, a longer time in the solar wind than those observed in the inner heliosphere, which would explain their cooled-off spectra at these energies. We also discuss radial gradients in the heliosheath and the implications for future Voyager observations

  20. Subgrid-scale modeling for the study of compressible magnetohydrodynamic turbulence in space plasmas

    NASA Astrophysics Data System (ADS)

    Chernyshov, A. A.; Karelsky, K. V.; Petrosyan, A. S.

    2014-05-01

    A state-of-the-art review is given of research by computing physics methods on compressible magnetohydrodynamic turbulence in space plasmas. The presence of magnetic fields and compressibility in this case makes space plasma turbulence much less amenable to direct numerical simulations than a neutral incompressible fluid. The large eddy simulation method is discussed, which was developed as an alternative to direct modeling and which filters the initial magnetohydrodynamic equations and uses the subgrid-scale modeling of universal small-scale turbulence. A detailed analysis is made of both the method itself and different subgrid-scale parametrizations for compressible magnetohydrodynamic turbulent flows in polytropic and heat-conducting plasmas. The application of subgrid-scale modeling to study turbulence in the local interstellar medium and the scale-invariant spectra of magnetohydrodynamic turbulence are discussed.

  1. Turbulent hydrodynamics experiments using a new plasma piston

    SciTech Connect

    Edwards, J.; Glendinning, S. G.; Suter, L. J.; Remington, B. A.; Landen, O.; Turner, R. E.; Shepard, T. J.; Lasinski, B.; Budil, K.; Robey, H.

    2000-05-01

    A new method for performing compressible hydrodynamic instability experiments using high-power lasers is presented. A plasma piston is created by supersonically heating a low-density carbon based foam with x-rays from a gold hohlraum heated to {approx}200 eV by a {approx}1 ns Nova laser pulse [E. M. Campbell et al., Laser Part. Beams 9, 209 (1991)]. The piston causes an almost shockless acceleration of a thin, higher-density payload consisting of a layer of gold, initially 1/2 {mu}m thick, supported on 10 {mu}m of solid plastic, at {approx}45 {mu}m/ns{sup 2}. The payload is also heated by hohlraum x-rays to in excess of 150 eV so that the Au layer expands to {approx}20 {mu}m prior to the onset of instability growth. The Atwood number between foam and Au is {approx}0.7. Rayleigh-Taylor instability, seeded by the random fibrous structure of the foam, causes a turbulent mixing region with a Reynolds number >10{sup 5} to develop between piston and Au. The macroscopic width of the mixing region was inferred from the change in Au layer width, which was recorded via time resolved x-radiography. The mix width thus inferred is demonstrated to depend on the magnitude of the initial foam seed. For a small initial seed, the bubble front in the turbulent mixing region is estimated indirectly to grow as {approx}0.036{+-}0.19 [{integral}{radical}(Ag)dt]{sup 2} which would imply for a constant acceleration 0.036{+-}0.019 Agt{sup 2}. More direct measurement techniques must be developed in larger scale experiments to remove potential complicating factors and reduce the error bar to a level that would permit the measurements to discriminate between various theories and models of turbulent mixing. (c) 2000 American Institute of Physics.

  2. Magnetorotational Turbulence and Dynamo in a Collisionless Plasma

    NASA Astrophysics Data System (ADS)

    Kunz, Matthew W.; Stone, James M.; Quataert, Eliot

    2016-12-01

    We present results from the first 3D kinetic numerical simulation of magnetorotational turbulence and dynamo, using the local shearing-box model of a collisionless accretion disk. The kinetic magnetorotational instability grows from a subthermal magnetic field having zero net flux over the computational domain to generate self-sustained turbulence and outward angular-momentum transport. Significant Maxwell and Reynolds stresses are accompanied by comparable viscous stresses produced by field-aligned ion pressure anisotropy, which is regulated primarily by the mirror and ion-cyclotron instabilities through particle trapping and pitch-angle scattering. The latter endow the plasma with an effective viscosity that is biased with respect to the magnetic-field direction and spatiotemporally variable. Energy spectra suggest an Alfvén-wave cascade at large scales and a kinetic-Alfvén-wave cascade at small scales, with strong small-scale density fluctuations and weak nonaxisymmetric density waves. Ions undergo nonthermal particle acceleration, their distribution accurately described by a κ distribution. These results have implications for the properties of low-collisionality accretion flows, such as that near the black hole at the Galactic center.

  3. Magnetorotational Turbulence and Dynamo in a Collisionless Plasma.

    PubMed

    Kunz, Matthew W; Stone, James M; Quataert, Eliot

    2016-12-02

    We present results from the first 3D kinetic numerical simulation of magnetorotational turbulence and dynamo, using the local shearing-box model of a collisionless accretion disk. The kinetic magnetorotational instability grows from a subthermal magnetic field having zero net flux over the computational domain to generate self-sustained turbulence and outward angular-momentum transport. Significant Maxwell and Reynolds stresses are accompanied by comparable viscous stresses produced by field-aligned ion pressure anisotropy, which is regulated primarily by the mirror and ion-cyclotron instabilities through particle trapping and pitch-angle scattering. The latter endow the plasma with an effective viscosity that is biased with respect to the magnetic-field direction and spatiotemporally variable. Energy spectra suggest an Alfvén-wave cascade at large scales and a kinetic-Alfvén-wave cascade at small scales, with strong small-scale density fluctuations and weak nonaxisymmetric density waves. Ions undergo nonthermal particle acceleration, their distribution accurately described by a κ distribution. These results have implications for the properties of low-collisionality accretion flows, such as that near the black hole at the Galactic center.

  4. Effects of Plasma Shaping on Nonlinear Gyrokinetic Turbulence

    SciTech Connect

    E. A. Belli; Hammett, G. W.; Dorland, W.

    2008-08-01

    The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the GS2 code [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995); W. Dorland, F. Jenko, M. Kotschenreuther, and B.N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. Studies of the scaling of nonlinear turbulence with shaping parameters are performed using analytic equilibria based on interpolations of representative shapes of the Joint European Torus (JET) [P.H. Rebut and B.E. Keen, Fusion Technol. 11, 13 (1987)]. High shaping is found to be a stabilizing influence on both the linear ion-temperature-gradient (ITG) instability and the nonlinear ITG turbulence. For the parameter regime studied here, a scaling of the heat flux with elongation of χ ~ κ-1.5 or κ-2.0, depending on the triangularity, is observed at fixed average temperature gradient. While this is not as strong as empirical elongation scalings, it is also found that high shaping results in a larger Dimits upshift of the nonlinear critical temperature gradient due to an enhancement of the Rosenbluth-Hinton residual zonal flows.

  5. Kinetic theory of weak turbulence in magnetized plasmas: Perpendicular propagation

    SciTech Connect

    Yoon, Peter H.

    2015-08-15

    The present paper formulates a weak turbulence theory in which electromagnetic perturbations are assumed to propagate in directions perpendicular to the ambient magnetic field. By assuming that all wave vectors lie in one direction transverse to the ambient magnetic field, the linear solution and second-order nonlinear solutions to the equation for the perturbed distribution function are obtained. Nonlinear perturbed current from the second-order nonlinearity is derived in general form, but the limiting situation of cold plasma temperature is taken in order to derive an explicit nonlinear wave kinetic equation that describes three-wave decay/coalescence interactions among X and Z modes. A potential application of the present formalism is also discussed.

  6. Two dimensional turbulence in inviscid fluids or guiding center plasmas

    NASA Technical Reports Server (NTRS)

    Seyler, C. E., Jr.; Salu, Y.; Montgomery, D.; Knorr, G.

    1975-01-01

    Analytic theory for two-dimensional turbulent equilibria for the inviscid Navier-Stokes equations is examined mathematically. Application of the technique to electrostatic guiding center plasma is discussed. A good fit is demonstrated for the approach to a predicted energy per Fourier mode obtained from a two-temperature canonical ensemble. Negative as well as positive temperature regimes are explored. Fluctuations about the mean energy per mode also compare well with theory. In the regime of alpha less than zero, beta greater than zero, with the minimum value of alpha plus beta times k squared near zero, contour plots of the stream function reveal macroscopic vortex structures similar to those seen previously in discrete vortex simulations. Eulerian direct interaction equations, which can be used to follow the approach to inviscid equilibrium, are derived.

  7. Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas.

    PubMed

    Meinecke, Jena; Tzeferacos, Petros; Bell, Anthony; Bingham, Robert; Clarke, Robert; Churazov, Eugene; Crowston, Robert; Doyle, Hugo; Drake, R Paul; Heathcote, Robert; Koenig, Michel; Kuramitsu, Yasuhiro; Kuranz, Carolyn; Lee, Dongwook; MacDonald, Michael; Murphy, Christopher; Notley, Margaret; Park, Hye-Sook; Pelka, Alexander; Ravasio, Alessandra; Reville, Brian; Sakawa, Youichi; Wan, Willow; Woolsey, Nigel; Yurchak, Roman; Miniati, Francesco; Schekochihin, Alexander; Lamb, Don; Gregori, Gianluca

    2015-07-07

    The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe.

  8. Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas

    PubMed Central

    Meinecke, Jena; Tzeferacos, Petros; Bell, Anthony; Bingham, Robert; Clarke, Robert; Churazov, Eugene; Crowston, Robert; Doyle, Hugo; Drake, R. Paul; Heathcote, Robert; Koenig, Michel; Kuramitsu, Yasuhiro; Kuranz, Carolyn; Lee, Dongwook; MacDonald, Michael; Murphy, Christopher; Notley, Margaret; Park, Hye-Sook; Pelka, Alexander; Ravasio, Alessandra; Reville, Brian; Sakawa, Youichi; Wan, Willow; Woolsey, Nigel; Yurchak, Roman; Miniati, Francesco; Schekochihin, Alexander; Lamb, Don; Gregori, Gianluca

    2015-01-01

    The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe. PMID:26100873

  9. Azimuthal inhomogeneity of turbulence structure and its impact on intermittent particle transport in linear magnetized plasmas

    SciTech Connect

    Kobayashi, T.; Inagaki, S.; Sasaki, M.; Nagashima, Y.; Kasuya, N.; Fujisawa, A.; Itoh, S.-I.; Kosuga, Y.; Arakawa, H.; Yamada, T.; Miwa, Y.; Itoh, K.

    2015-11-15

    Fluctuation component in the turbulence regime is found to be azimuthally localized at a phase of the global coherent modes in a linear magnetized plasma PANTA. Spatial distribution of squared bicoherence is given in the azimuthal cross section as an indicator of nonlinear energy transfer function from the global coherent mode to the turbulence. Squared bicoherence is strong at a phase where the turbulence amplitude is large. As a result of the turbulence localization, time evolution of radial particle flux becomes bursty. Statistical features such as skewness and kurtosis are strongly modified by the localized turbulence component, although contribution to mean particle flux profile is small.

  10. Three-Fluid Magnetohydrodynamic Modeling of the Solar Wind in the Outer Heliosphere

    NASA Technical Reports Server (NTRS)

    Usmanov, Arcadi V.; Goldstein, Melvyn L.; Matthaeus, William H.

    2011-01-01

    We have developed a three-fluid, fully three-dimensional magnetohydrodynamic model of the solar wind plasma in the outer heliosphere as a co-moving system of solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Our approach takes into account the effects of electron heat conduction and dissipation of Alfvenic turbulence on the spatial evolution of the solar wind plasma and interplanetary magnetic fields. The turbulence transport model is based on the Reynolds decomposition of physical variables into mean and fluctuating components and uses the turbulent phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. We solve the coupled set of the three-fluid equations for the mean-field solar wind and the turbulence equations for the turbulence energy, cross helicity, and correlation length. The equations are written in the rotating frame of reference and include heating by turbulent dissipation, energy transfer from interstellar pickup protons to solar wind protons, and solar wind deceleration due to the interaction with the interstellar hydrogen. The numerical solution is constructed by the time relaxation method in the region from 0.3 to 100 AU. Initial results from the novel model are presented.

  11. Early propagation of energetic particles across the mean field in turbulent plasmas

    NASA Astrophysics Data System (ADS)

    Laitinen, T.; Dalla, S.; Marriott, D.

    2017-09-01

    Propagation of energetic particles across the mean field direction in turbulent magnetic fields is often described as spatial diffusion. Recently, it has been suggested that initially the particles propagate systematically along meandering field lines, and only later reach the time-asymptotic diffusive cross-field propagation. In this paper, we analyse cross-field propagation of 1-100 MeV protons in composite 2D-slab turbulence superposed on a constant background magnetic field, using full-orbit particle simulations, to study the non-diffusive phase of particle propagation with a wide range of turbulence parameters. We show that the early-time non-diffusive propagation of the particles is consistent with particle propagation along turbulently meandering field lines. This results in a wide cross-field extent of the particles already at the initial arrival of particles to a given distance along the mean field direction, unlike when using spatial diffusion particle transport models. The cross-field extent of the particle distribution remains constant for up to tens of hours in turbulence environment consistent with the inner heliosphere during solar energetic particle events. Subsequently, the particles escape from their initial meandering field lines, and the particle propagation across the mean field reaches time-asymptotic diffusion. Our analysis shows that in order to understand solar energetic particle event origins, particle transport modelling must include non-diffusive particle propagation along meandering field lines.

  12. Interaction between plasma synthetic jet and subsonic turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Zong, Haohua; Kotsonis, Marios

    2017-04-01

    This paper experimentally investigates the interaction between a plasma synthetic jet (PSJ) and a subsonic turbulent boundary layer (TBL) using a hotwire anemometer and phase-locked particle imaging velocimetry. The PSJ is interacting with a fully developed turbulent boundary layer developing on the flat wall of a square wind tunnel section of 1.7 m length. The Reynolds number based on the freestream velocity (U∞ = 20 m/s) and the boundary layer thickness (δ99 = 34.5 mm) at the location of interaction is 44 400. A large-volume (1696 mm3) three-electrode plasma synthetic jet actuator (PSJA) with a round exit orifice (D = 2 mm) is adopted to produce high-speed (92 m/s) and short-duration (Tjet = 1 ms) pulsed jets. The exit velocity variation of the adopted PSJA in a crossflow is shown to remain almost identical to that in quiescent conditions. However, the flow structures emanating from the interaction between the PSJ and the TBL are significantly different from what were observed in quiescent conditions. In the midspan xy plane (z = 0 mm), the erupted jet body initially follows a wall-normal trajectory accompanied by the formation of a distinctive front vortex ring. After three convective time scales the jet bends to the crossflow, thus limiting the peak penetration depth to approximately 0.58δ99. Comparison of the normalized jet trajectories indicates that the penetration ability of the PSJ is less than steady jets with the same momentum flow velocity. Prior to the jet diminishing, a recirculation region is observed in the leeward side of the jet body, experiencing first an expansion and then a contraction in the area. In the cross-stream yz plane, the signature structure of jets in a crossflow, the counter-rotating vortex pair (CVP), transports high-momentum flow from the outer layer to the near-wall region, leading to a fuller velocity profile and a drop in the boundary layer shape factor (1.3 to 1.2). In contrast to steady jets, the CVP produced by the PSJ

  13. Virtual Energetic Particle Observatory for the Heliospheric Data Environment

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Armstrong, T. P.; Hill, M. E.; Lal, N.; McGuire, R. E.; McKibben, R. B.; Narock, T. W.; Szabo, A.; Tranquille, C.

    2007-01-01

    The heliosphere is pervaded by interplanetary energetic particles, traditionally also called cosmic rays, from solar, internal heliospheric, and galactic sources. The particles species of interest to heliophysics extend from plasma energies to the GeV energies of galactic cosmic rays still measurably affected by heliospheric modulation and the still higher energies contributing to atmospheric ionization. The NASA and international Heliospheric Network of operational and legacy spacecraft measures interplanetary fluxes of these particles. Spatial coverage extends from the inner heliosphere and geospace to the heliosheath boundary region now being traversed by Voyager 1 and soon by Voyager 2. Science objectives include investigation of solar flare and coronal mass ejection events, acceleration and transport of interplanetary particles within the inner heliosphere, cosmic ray interactions with planetary surfaces and atmospheres, sources of suprathermal and anomalous cosmic ray ions in the outer heliosphere, and solar cycle modulation of galactic cosmic rays. The Virtual Energetic Particle Observatory (VEPO) will improve access and usability of selected spacecraft and sub-orbital NASA heliospheric energetic particle data sets as a newly approved effort within the evolving heliophysics virtual observatory environment. In this presentation, we will describe current VEPO science requirements, our initial priorities and an overview of our strategy to implement VEPO rapidly and at minimal cost by working within the high-level framework of the Virtual Heliospheric Observatory (VHO). VEPO will also leverage existing data services of NASA's Space Physics Data Facility and other existing capabilities of the U.S. and international heliospheric research communities.

  14. Virtual Energetic Particle Observatory for the Heliospheric Data Environment

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Armstrong, T. P.; Hill, M. E.; Lal, N.; McGuire, R. E.; McKibben, R. B.; Narock, T. W.; Szabo, A.; Tranquille, C.

    2007-01-01

    The heliosphere is pervaded by interplanetary energetic particles, traditionally also called cosmic rays, from solar, internal heliospheric, and galactic sources. The particles species of interest to heliophysics extend from plasma energies to the GeV energies of galactic cosmic rays still measurably affected by heliospheric modulation and the still higher energies contributing to atmospheric ionization. The NASA and international Heliospheric Network of operational and legacy spacecraft measures interplanetary fluxes of these particles. Spatial coverage extends from the inner heliosphere and geospace to the heliosheath boundary region now being traversed by Voyager 1 and soon by Voyager 2. Science objectives include investigation of solar flare and coronal mass ejection events, acceleration and transport of interplanetary particles within the inner heliosphere, cosmic ray interactions with planetary surfaces and atmospheres, sources of suprathermal and anomalous cosmic ray ions in the outer heliosphere, and solar cycle modulation of galactic cosmic rays. The Virtual Energetic Particle Observatory (VEPO) will improve access and usability of selected spacecraft and sub-orbital NASA heliospheric energetic particle data sets as a newly approved effort within the evolving heliophysics virtual observatory environment. In this presentation, we will describe current VEPO science requirements, our initial priorities and an overview of our strategy to implement VEPO rapidly and at minimal cost by working within the high-level framework of the Virtual Heliospheric Observatory (VHO). VEPO will also leverage existing data services of NASA's Space Physics Data Facility and other existing capabilities of the U.S. and international heliospheric research communities.

  15. Permutation entropy and statistical complexity analysis of turbulence in laboratory plasmas and the solar wind.

    PubMed

    Weck, P J; Schaffner, D A; Brown, M R; Wicks, R T

    2015-02-01

    The Bandt-Pompe permutation entropy and the Jensen-Shannon statistical complexity are used to analyze fluctuating time series of three different turbulent plasmas: the magnetohydrodynamic (MHD) turbulence in the plasma wind tunnel of the Swarthmore Spheromak Experiment (SSX), drift-wave turbulence of ion saturation current fluctuations in the edge of the Large Plasma Device (LAPD), and fully developed turbulent magnetic fluctuations of the solar wind taken from the Wind spacecraft. The entropy and complexity values are presented as coordinates on the CH plane for comparison among the different plasma environments and other fluctuation models. The solar wind is found to have the highest permutation entropy and lowest statistical complexity of the three data sets analyzed. Both laboratory data sets have larger values of statistical complexity, suggesting that these systems have fewer degrees of freedom in their fluctuations, with SSX magnetic fluctuations having slightly less complexity than the LAPD edge I(sat). The CH plane coordinates are compared to the shape and distribution of a spectral decomposition of the wave forms. These results suggest that fully developed turbulence (solar wind) occupies the lower-right region of the CH plane, and that other plasma systems considered to be turbulent have less permutation entropy and more statistical complexity. This paper presents use of this statistical analysis tool on solar wind plasma, as well as on an MHD turbulent experimental plasma.

  16. Anisotropy of the energetic neutral atom flux in the heliosphere

    NASA Technical Reports Server (NTRS)

    Gruntman, Michael A.

    1992-01-01

    Characteristics of the energetic neutral atoms born at the heliospheric interface are considered for plasma flow structure resulting from a two-shock model of the interaction between the solar wind and the interstellar medium. The energy distributions of heliospheric energetic neutral atoms (HELENAs) are calculated and it is shown that the HELENA flux is highly anisotropic at the earth's orbit. The characteristics of the HELENA flux are highly sensitive to the size of the heliosphere. This supports the conclusion that measurements of HELENAs from the earth's orbit would provide an efficient tool to remotely study the heliosphere.

  17. The time evolution of turbulent parameters in reversed-field pinch plasmas

    SciTech Connect

    Titus, J. B.; Alexander, Brandon; Johnson, J. A. III

    2013-04-28

    Turbulence is abundant in fully ionized fusion plasmas, with unique turbulent characteristics in different phases of the discharge. Using Fourier and chaos-based techniques, a set of parameters have been developed to profile the time evolution of turbulence in high temperature, fusion plasmas, specifically in self-organized, reversed-field pinch plasma in the Madison Symmetric Torus. With constant density and plasma current, the turbulence profile is measured during ramp-up, magnetic reconnection, and increased confinement phases. During magnetic reconnection, a scan of plasma current is performed with a constant density. Analysis revealed that the energy associated with turbulence (turbulent energy) is found to increase when changes in magnetic energy occur and is correlated to edge ion temperatures. As the turbulent energy increases with increasing current, the rate at which this energy flow between scales (spectral index) and anti-persistence of the fluctuations increases (Hurst exponent). These turbulent parameters are then compared to the ramp-up phase and increased confinement regime.

  18. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device

    NASA Astrophysics Data System (ADS)

    Whalley, Richard D.; Walsh, James L.

    2016-08-01

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence.

  19. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device.

    PubMed

    Whalley, Richard D; Walsh, James L

    2016-08-26

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence.

  20. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device

    PubMed Central

    Whalley, Richard D.; Walsh, James L.

    2016-01-01

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence. PMID:27561246

  1. Turbulent Mixing Layer Control using Ns-DBD Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Singh, Ashish; Little, Jesse

    2016-11-01

    A low speed turbulent mixing layer (Reθo =1282, U1 /U2 = 0 . 28 and U2 = 11 . 8 m / s) is subject to nanosecond pulse driven dielectric barrier discharge (ns-DBD) plasma actuation. The forcing frequency corresponds to a Strouhal number (St) of 0.032 which is the most amplified frequency based on stability theory. Flow response is studied as a function of the pulse energy, the energy input time scale (carrier frequency) and the duration of actuation (duty cycle). It is found that successful actuation requires a combination of forcing parameters. An evaluation of the forcing efficacy is achieved by examining different flow quantities such as momentum thickness, vorticity and velocity fluctuations. In accordance with past work, a dependence is found between the initial shear layer thickness and the energy coupled to the flow. More complex relationships are also revealed such as a limitation on the maximum pulse energy which yields control. Also, the pulse energy and the carrier frequency (inverse of period between successive pulses) are interdependent whereby an optimum exists between them and extreme values of either parameter is inconsonant with the control desired. These observations establish a rich and complex process behind ns-DBD plasma actuation. Air Force Office of Scientific Research (FA9550-12-1-0044).

  2. Scattering of radio frequency waves by turbulence in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Ram, Abhay K.

    2016-10-01

    In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments and incoherent fluctuations due to turbulence are routinely observed in the scrape-off layer. Radio frequency (RF) electromagnetic waves, excited by antenna structures placed near the wall of a tokamak, have to propagate through the scrape-off layer before reaching the core of the plasma. While the effect of fluctuations on RF waves has not been quantified experimentally, there are telltale signs, arising from differences between results from simulations and from experiments, that fluctuations can modify the spectrum of RF waves. Any effect on RF waves in the scrape-off layer can have important experimental consequences. For example, electron cyclotron waves are expected to stabilize the deleterious neoclassical tearing mode (NTM) in ITER. Spectral and polarization changes due to scattering will modify the spatial location and profile of the current driven by the RF waves, thereby affecting the control of NTMs. Pioneering theoretical studies and complementary computer simulations have been pursued to elucidate the impact of fluctuations on RF waves. From the full complement of Maxwell's equations for cold, magnetized plasmas, it is shown that the Poynting flux in the wake of filaments develops spatial structure due to diffraction and shadowing. The uniformity of power flow into the plasma is affected by side-scattering, modifications to the wave spectrum, and coupling to plasma waves other than the incident RF wave. The Snell's law and the Fresnel equations have been reformulated within the context of magnetized plasmas. They are distinctly different from their counterparts in scalar dielectric media, and reveal new and important physical insight into the scattering of RF waves. The Snell's law and Fresnel equations are the basis for the Kirchhoff approximation necessary to determine properties of the scattered waves. Furthermore, this theory is also relevant for studying back

  3. Investigation of turbulence in reversed field pinch plasma by using microwave imaging reflectometry

    SciTech Connect

    Shi, Z. B.; Nagayama, Y.; Hamada, Y.; Yamaguchi, S.; Hirano, Y.; Kiyama, S.; Koguchi, H.; Sakakita, H.; Michael, C. A.; Yambe, K.

    2011-10-15

    Turbulence in the reversed field pinch (RFP) plasma has been investigated by using the microwave imaging reflectometry in the toroidal pinch experiment RX (TPE-RX). In conventional RFP plasma, the fluctuations are dominated by the intermittent blob-like structures. These structures are accompanied with the generation of magnetic field, the strong turbulence, and high nonlinear coupling among the high and low k modes. The pulsed poloidal current drive operation, which improves the plasma confinement significantly, suppresses the dynamo, the turbulence, and the blob-like structures.

  4. Turbulent relaxation and meta-stable equilibrium states of an electron plasma

    NASA Astrophysics Data System (ADS)

    Rodgers, Douglas J.

    A Malmberg-Penning electron trap allows for the experimental study of nearly ideal, two-dimensional (2D) inviscid (Euler) hydrodynamics. This is perhaps the simplest case of self organizing nonlinear turbulence, and is therefore a paradigm for dynamo theory, Taylor relaxation, selective decay and other nonlinear fluid processes. The dynamical relaxation of a pure electron plasma in the guiding-center-drift approximation is studied, comparing experiments, numerical simulations and statistical theories of weakly-dissipative 2D turbulence. The nonuniform metastable equilibrium states resulting from turbulent evolution are examined, and are well-described by a maximum entropy principle for constrained circulation, energy, and angular momentum. The turbulent decay of the system is also examined, and a similarity decay law is proposed which incorporates the substantial enstrophy trapped in the metastable equilibrium. This law approaches Batchelor's t-2 self-similar decay in the limit of strong turbulence, and is verified in turbulent evolution in the electron plasma experiment.

  5. Simulation of turbulence in the divertor region of tokamak edge plasma

    NASA Astrophysics Data System (ADS)

    Umansky, M. V.; Rognlien, T. D.; Xu, X. Q.

    2005-03-01

    Results are presented for turbulence simulations with the fluid edge turbulence code BOUT [X.Q. Xu, R.H. Cohen, Contr. Plas. Phys. 36 (1998) 158]. The present study is focussed on turbulence in the divertor leg region and on the role of the X-point in the structure of turbulence. Results of the present calculations indicate that the ballooning effects are important for the divertor fluctuations. The X-point shear leads to weak correlation of turbulence across the X-point regions, in particular for large toroidal wavenumber. For the saturated amplitudes of the divertor region turbulence it is found that amplitudes of density fluctuations are roughly proportional to the local density of the background plasma. The amplitudes of electron temperature and electric potential fluctuations are roughly proportional to the local electron temperature of the background plasma.

  6. Recent Developments in Reconnection Theory: the Plasmoid Instability, Self-Generated Turbulence, and Implications for Laboratory and Space Plasmas

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Amitava

    2015-11-01

    In recent years, new developments in reconnection theory have challenged classical nonlinear reconnection models. One of these developments is the so-called plasmoid instability of thin current sheets that grows at super-Alfvenic growth rates. Within the resistive MHD model, this instability alters qualitatively the predictions of the Sweet-Parker model, leading to a new nonlinear regime of fast reconnection in which the reconnection rate itself becomes independent of S. This regime has also been seen in Hall MHD as well as fully kinetic simulations, and thus appears to be a universal feature of thin current sheet dynamics, including applications to reconnection forced by the solar wind in the heliosphere and spontaneously unstable sawtooth oscillations in tokamaks. Plasmoids, which can grow by coalescence to large sizes, provide a powerful mechanism for coupling between global and kinetic scales as well as an efficient accelerator of particles to high energies. In two dimensions, the plasmoids are characterized by power-law distribution functions followed by exponential tails. In three dimensions, the instability produces self-generated and strongly anisotropic turbulence in which the reconnection rate for the mean-fields remain approximately at the two-dimensional value, but the energy spectra deviate significantly from anisotropic strong MHD turbulence phenomenology. A new phase diagram of fast reconnection has been proposed, guiding the design of future experiments in magnetically confined and high-energy-density plasmas, and have important implications for explorations of the reconnection layer in the recently launched Magnetospheric Multiscale (MMS) mission. This research is supported by DOE, NASA, and NSF.

  7. Magnetized Jets Driven by the Sun, the Structure of the Heliosphere Revisited: Consequences for Draping of BISM ahead of the HP and Time Variability of ENAs

    NASA Astrophysics Data System (ADS)

    Opher, M.; Drake, J. F.; Zieger, B.; Michael, A.; Toth, G.; Swisdak, M.; Gombosi, T. I.

    2015-12-01

    Recently we proposed (Opher et al. 2015) that the structure of the heliosphere might be very different than we previously thought. The classic accepted view of the heliosphere is a quiescent, comet-like shape aligned in the direction of the Sun's travel through the interstellar medium (ISM) extending for thousands of astronomical units. We have shown, based on magnetohydrodynamic (MHD) simulations, that the tension force of the twisted magnetic field of the Sun confines the solar wind plasma beyond the termination shock and drives jets to the north and south very much like astrophysical jets. These heliospheric jets are deflected into the tail region by the motion of the Sun through the ISM. As in some astrophysical jets the interstellar wind blows the two jets into the tail but is not strong enough to force the lobes into a single comet-like tail. Instead, the interstellar wind flows around the heliosphere and into the equatorial region between the two jets. We show that the heliospheric jets are turbulent (due to large-scale MHD instabilities and reconnection) and strongly mix the solar wind with the ISM. The resulting turbulence has important implications for particle acceleration in the heliosphere. The two-lobe structure is consistent with the energetic neutral atom (ENA) images of the heliotail from IBEX where two lobes are visible in the north and south and the suggestion from the Cassini ENAs that the heliosphere is "tailless." The new structure of the heliosphere is supported by recent analytic work (Drake et al. 2015) that shows that even in high β heliosheath the magnetic field plays a crucial role in funneling the solar wind in two jets. Here we present these recent results and show that the heliospheric jets mediate the draping of the magnetic field and the conditions ahead of the heliopause. We show that reconnection between the interstellar and solar magnetic field both at the flanks of the jets and in between them twist the interstellar magnetic

  8. Differential turbulent heating of different ions in electron cyclotron resonance ion source plasma

    SciTech Connect

    Elizarov, L.I.; Ivanov, A.A.; Serebrennikov, K.S.; Vostrikova, E.A.

    2006-03-15

    The article considers the collisionless ion sound turbulent heating of different ions in an electron cyclotron resonance ion source (ECRIS). The ion sound arises due to parametric instability of pumping wave propagating along the magnetic field with the frequency close to that of electron cyclotron. Within the framework of turbulent heating model the different ions temperatures are calculated in gas-mixing ECRIS plasma.

  9. Ionization effects and modeling considerations for sudden viscous dissipation in compressing plasma turbulence

    NASA Astrophysics Data System (ADS)

    Davidovits, Seth; Fisch, Nat

    2016-10-01

    Turbulent plasma flow, amplified by rapid 3D compression, can be suddenly dissipated under continuing compression. This sudden dissipation comes about because the plasma viscosity is very sensitive to temperature, μ T 5 / 2 . We discuss approaches to constructing simple models to capture the turbulence energy growth and dissipation during rapid plasma compressions. Additionally, we explore the effects on compressing turbulence of plasma ionization during compression, to which the viscosity is also very sensitive. We show plasma ionization during compression enables larger turbulence growth, compared to when there is no plasma ionization. Further, ionization during compression can prevent the sudden dissipation effect, and can also make the difference between increasing and decreasing turbulence energy under compression. The influence exerted by ionization opens up the prospect for control of turbulence growth and sudden dissipation timing through choice of the plasma ion species. This work was supported by DOE through Contracts No. DE-AC02-09CH1-1466 and NNSA 67350-9960 (Prime # DOE DE-NA0001836), by DTRA HDTRA1-11-1-0037, and by NSF Contract No. PHY-1506122.

  10. MHD processes in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.

    1984-01-01

    The magnetic field measurements from Voyager and the magnetohydrodynamic (MHD) processes in the outer heliosphere are reviewed. A bibliography of the experimental and theoretical work concerning magnetic fields and plasmas observed in the outer heliosphere is given. Emphasis in this review is on basic concepts and dynamical processes involving the magnetic field. The theory that serves to explain and unify the interplanetary magnetic field and plasma observations is magnetohydrodynamics. Basic physical processes and observations that relate directly to solutions of the MHD equations are emphasized, but obtaining solutions of this complex system of equations involves various assumptions and approximations. The spatial and temporal complexity of the outer heliosphere and some approaches for dealing with this complexity are discussed.

  11. SPECTRAL BREAKS OF ALFVÉNIC TURBULENCE IN A COLLISIONLESS PLASMA

    SciTech Connect

    Boldyrev, Stanislav; Xia, Qian; Zhdankin, Vladimir; Chen, Christopher H. K.

    2015-06-20

    Recent observations reveal that magnetic turbulence in the nearly colisionless solar wind plasma extends to scales smaller than the plasma microscales, such as ion gyroradius and ion inertial length. Measured breaks in the spectra of magnetic and density fluctuations at high frequencies are thought to be related to the transition from large-scale hydromagnetic to small-scale kinetic turbulence. The scales of such transitions and the responsible physical mechanisms are not well understood however. In the present work we emphasize the crucial role of the plasma parameters in the transition to kinetic turbulence, such as the ion and electron plasma beta, the electron to ion temperature ratio, the degree of obliquity of turbulent fluctuations. We then propose an explanation for the spectral breaks reported in recent observations.

  12. Turbulent acceleration and heating in toroidal magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Garbet, X.; Esteve, D.; Sarazin, Y.; Abiteboul, J.; Bourdelle, C.; Dif-Pradalier, G.; Ghendrih, P.; Grandgirard, V.; Latu, G.; Smolyakov, A.

    2013-07-01

    It is shown that turbulence is responsible for a source of momentum, which cannot be recast as a divergence of a momentum flux. This process is similar to turbulent heating, with similar properties. The sum over all species vanishes up to polarization contributions. Hence, toroidal momentum is transferred from species to species, mediated by turbulence. As for momentum flux, symmetry breaking is needed. Flow shear is investigated as a source of symmetry breaking, leading to a source of momentum proportional to the shear rate. Turbulent acceleration is significant for ion species. It is found that it is proportional to the charge number Z, while turbulent heating scales as Z2/A, where A is the mass number. It is maximum in the edge, where the E × B flow shear rate and turbulence intensity are maximum. When both are large enough, the turbulent torque may overcome the collisional friction between impurities and main ions, thus leading to different toroidal velocities.

  13. The role of the plasma current in turbulence decrease during lower hybrid current drive

    NASA Astrophysics Data System (ADS)

    Antar, G.; Ekedahl, A.; Goniche, M.; Asghar, A.; Žàček, F.

    2017-03-01

    The interaction of radio frequency (RF) waves with edge turbulence has resurfaced after the results obtained on many tokamaks showing that edge turbulence decreases when the ion cyclotron frequency heating (ICRH) is switched on. Using the lower hybrid (LH) waves to drive current into tokamak plasmas, this issue presented contradicting results with some tokamaks (FTU & HT-7) showing a net decrease, similar to the ICRH results, and others (Tore Supra) did not. In this article, these apparent discrepancies among tokamaks and RF wave frequencies are removed. It is found that turbulence large-scale structures in the scrape-off layer decrease at high enough plasma currents (Ip) on the Tore Supra tokamak. We distinguish three regimes: At low Ip's, no modification is detected with statistical properties of turbulence similar to ohmic plasmas even with PLH reaching 4.8 MW. At moderate plasma currents, turbulence properties are modified only at a high LH power. At high plasma currents, turbulent large scales are reduced to values smaller than 1 cm, and this is accompanied by a net decrease in the level of turbulence of about 30% even with a moderate LH power.

  14. Interhelioprobe Mission for Solar and Heliospheric Studies

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Vladimir; Zelenyi, Lev; Zimovets, Ivan

    2016-07-01

    A new concept has been adopted for the Interhelioprobe mission intended for studying the inner heliosphere and the Sun at short distances and from out-of-ecliptic positions. In accordance with this concept, two identical SC spaced by a quarter of a period on heliocentric orbits inclined to the ecliptic plane in different directions will orbit the Sun, thus ensuring continuous out-of-ecliptic solar observations and measurements in the heliosphere. The scientific payload will comprise instruments for remote observations of the Sun (Optical photometer, Magnetograph, Chemical Composition Analyzer, EUV Imager-Spectrometer, Coronagraph, X-ray Imager, Heliospheric Imager, X-ray Polarimeter, and Gamma-Spectrometers) and in-situ measurements in the heliosphere (Solar Wind Ion Analyzer, Solar Wind Electron Analyzer, Solar Wind Plasma Analyzers, Energetic Particle Telescope, Neutron Detector, Magnetic Wave Complex, Magnetometer, and Radio Spectrometer Detector). The instruments will study the structure and dynamics of the magnetic fields and plasma flows in the polar regions of the Sun, solar flares and mass ejections, the heating of the solar corona and solar wind acceleration, acceleration and propagation of energetic particles in the Sun and heliosphere, the solar wind, as well as disturbances and ejections that come from the Sun to the Earth and control space weather in the near-Earth space. The schedule of the mission and the development status of the instruments and the spacecraft are provided.

  15. Approaching the investigation of plasma turbulence through a rigorous verification and validation procedure: A practical example

    SciTech Connect

    Ricci, P. Riva, F.; Theiler, C.; Fasoli, A.; Furno, I.; Halpern, F. D.; Loizu, J.

    2015-05-15

    In the present work, a Verification and Validation procedure is presented and applied showing, through a practical example, how it can contribute to advancing our physics understanding of plasma turbulence. Bridging the gap between plasma physics and other scientific domains, in particular, the computational fluid dynamics community, a rigorous methodology for the verification of a plasma simulation code is presented, based on the method of manufactured solutions. This methodology assesses that the model equations are correctly solved, within the order of accuracy of the numerical scheme. The technique to carry out a solution verification is described to provide a rigorous estimate of the uncertainty affecting the numerical results. A methodology for plasma turbulence code validation is also discussed, focusing on quantitative assessment of the agreement between experiments and simulations. The Verification and Validation methodology is then applied to the study of plasma turbulence in the basic plasma physics experiment TORPEX [Fasoli et al., Phys. Plasmas 13, 055902 (2006)], considering both two-dimensional and three-dimensional simulations carried out with the GBS code [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. The validation procedure allows progress in the understanding of the turbulent dynamics in TORPEX, by pinpointing the presence of a turbulent regime transition, due to the competition between the resistive and ideal interchange instabilities.

  16. Anomalous transport in turbulent plasmas and continuous time random walks

    SciTech Connect

    Balescu, R.

    1995-05-01

    The possibility of a model of anomalous transport problems in a turbulent plasma by a purely stochastic process is investigated. The theory of continuous time random walks (CTRW`s) is briefly reviewed. It is shown that a particular class, called the standard long tail CTRW`s is of special interest for the description of subdiffusive transport. Its evolution is described by a non-Markovian diffusion equation that is constructed in such a way as to yield exact values for all the moments of the density profile. The concept of a CTRW model is compared to an exact solution of a simple test problem: transport of charged particles in a fluctuating magnetic field in the limit of infinite perpendicular correlation length. Although the well-known behavior of the mean square displacement proportional to {ital t}{sup 1/2} is easily recovered, the exact density profile cannot be modeled by a CTRW. However, the quasilinear approximation of the kinetic equation has the form of a non-Markovian diffusion equation and can thus be generated by a CTRW.

  17. Electromagnetic gyrokinetic turbulence in finite-beta helical plasmas

    SciTech Connect

    Ishizawa, A.; Watanabe, T.-H.; Sugama, H.; Nakajima, N.; Maeyama, S.

    2014-05-15

    A saturation mechanism for microturbulence in a regime of weak zonal flow generation is investigated by means of electromagnetic gyrokinetic simulations. The study identifies a new saturation process of the kinetic ballooning mode (KBM) turbulence originating from the spatial structure of the KBM instabilities in a finite-beta Large Helical Device (LHD) plasma. Specifically, the most unstable KBM in LHD has an inclined mode structure with respect to the mid-plane of a torus, i.e., it has a finite radial wave-number in flux tube coordinates, in contrast to KBMs in tokamaks as well as ion-temperature gradient modes in tokamaks and helical systems. The simulations reveal that the growth of KBMs in LHD is saturated by nonlinear interactions of oppositely inclined convection cells through mutual shearing as well as by the zonal flow. The saturation mechanism is quantitatively investigated by analysis of the nonlinear entropy transfer that shows not only the mutual shearing but also a self-interaction with an elongated mode structure along the magnetic field line.

  18. Influence of Dupree diffusivity on the occurrence scattering time advance in turbulent plasmas

    SciTech Connect

    Lee, Myoung-Jae; Jung, Young-Dae

    2015-12-15

    The influence of Dupree diffusivity on the occurrence scattering time advance for the electron-ion collision is investigated in turbulent plasmas. The second-order eikonal method and the effective Dupree potential term associated with the plasma turbulence are employed to obtain the occurrence scattering time as a function of the diffusion coefficient, impact parameter, collision energy, thermal energy, and Debye length. The result shows that the occurrence scattering time advance decreases with an increase of the Dupree diffusivity. Hence, we have found that the influence of plasma turbulence diminishes the occurrence time advance in forward electron-ion collisions in thermal turbulent plasmas. The occurrence time advance shows that the propensity of the occurrence time advance increases with increasing scattering angle. It is also found that the effect of turbulence due to the Dupree diffusivity on the occurrence scattering time advance decreases with an increase of the thermal energy. In addition, the variation of the plasma turbulence on the occurrence scattering time advance due to the plasma parameters is also discussed.

  19. Bit error rate performance of free-space optical link under effect of plasma sheath turbulence

    NASA Astrophysics Data System (ADS)

    Li, Jiangting; Yang, Shaofei; Guo, Lixin; Cheng, Mingjian; Gong, Teng

    2017-08-01

    Based on the power spectrum of the refractive-index fluctuation in the plasma sheath turbulence, the expressions for wave structure functions and scintillation index of optical wave propagating in a turbulent plasma sheath are derived. The effect of the turbulence microstructure on the propagation characteristics of optical waves are simulated and analyzed. Finally, the bit error performance of a free-space optical (FSO) link is investigated under the effect of plasma sheath turbulence. The results indicate that the spherical waves have a better communication performance in the FSO link. In addition, a greater variance of the refractive index fluctuation causes a more severe fluctuation in electron density, temperature, and collision frequency inside the plasma sheath. However, when the outer scale is close to the thickness of the plasma sheath, the turbulence eddies have almost no influence on the wave propagation. Therefore, the bit error rate (BER) obviously increases with the increase in variance of the refractive index fluctuation and the decrease in the outer scale. These results are fundamental for evaluating the performance of the FSO link under the effect of plasma sheath turbulence.

  20. Turbulent amplification of magnetic field in laser plasma interaction and astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Tiwary, Prem Pyari; Sharma, Swati; Singh, Ram Kishor; Kumari, Anju; Satsangi, V. R.; Sharma, R. P.

    2017-06-01

    The investigation of the nonlinear evolution of magnetosonic wave (MSW) in the presence of density fluctuations at the background has been presented in this paper. The propagation of a single beam or counter propagation of beams is assumed to change the background density accordingly. The model equation for MSW has been obtained by considering the effect of modified plasma density in the background, along with the nonlinear ponderomotive force. The equation so found has been numerically solved to study its effect on the localization of MSW. From the results, the localized and filamentary structures of the MSW can be observed. The effect of variation of the amplitude of density perturbation has been studied on the amplification of magnetic field. To get better insight of these structures, a semi-analytical model with paraxial approximation has been studied. The effect of background density fluctuations on the resulting turbulent spectrum has been evaluated. The results show that the turbulent spectrum gets flattened towards smaller scales as the counter propagation of beams takes place as compared to the single beam propagation. The nonlinear interaction presented here may be important in interpreting the phenomenon of turbulence and magnetic field amplification due to mergers and jets in central galaxy.

  1. Proper Orthogonal Decomposition of two-dimensional turbulence in a pure electron plasma

    SciTech Connect

    Lepreti, F.; Vecchio, A.; Carbone, V.

    2010-06-16

    The free-decaying two-dimensional (2D) turbulence in a pure electron plasma confined in the Malmberg-Penning trap ELTRAP is investigated experimentally and analyzed through the Proper Orthogonal Decomposition (POD). POD is used to extract coherent structures of the flow from a sequence of plasma density measurements, which represent the vorticity of the 2D fluid. The coherent structures that are energetically dominant are identified and their spatio-temporal dynamics is studied over the time evolution of turbulence. The results suggests the the dominant POD modes can be identified with diocotron modes which appear to be active during both the onset and relaxation phases of turbulence.

  2. Turbulent fluctuations in the main core of TFTR plasmas with negative magnetic shear

    SciTech Connect

    Mazzucato, E.; Beer, M.; Bell, M.G.

    1997-04-01

    Turbulent fluctuations in plasmas with reversed magnetic shear have been investigated in TFTR. Under intense auxiliary heating, these plasmas are observed to bifurcate into two states with different transport properties. In the state with better confinement, it has been found that the level of fluctuations is very small throughout most of the region with negative shear. By contrast, the state with lower confinement is characterized by large bursts of fluctuations which suggest a competition between the driving and the suppression of turbulence. These results are consistent with the suppression of turbulence by the ExB velocity shear.

  3. Feedback control of plasma instabilities with charged particle beams and study of plasma turbulence

    NASA Technical Reports Server (NTRS)

    Tham, Philip Kin-Wah

    1994-01-01

    . A plasma instability is usually observed in its saturated state and appears as a single feature in the frequency spectrum with a single azimuthal and parallel wavenumbers. The physics of the non-zero spectral width was investigated in detail because the finite spectral width can cause "turbulent" transport. One aspect of the "turbulence" was investigated by obtaining the scaling of the linear growth rate of the instabilities with the fluctuation levels. The linear growth rates were measured with the established gated feedback technique. The research showed that the ExB instability evolves into a quasi-coherent state when the fluctuation level is high. The coherent aspects were studied with a bispectral analysis. Moreover, the single spectral feature was discovered to be actually composed of a few radial harmonics. The radial harmonics play a role in the nonlinear saturation of the instability via three-wave coupling.

  4. The Virtual Heliospheric Observatory (VHO)

    NASA Technical Reports Server (NTRS)

    Szabo, A.; Narock, T.

    2005-01-01

    Based on the experience gained through the development of the distributed L1 data environment for magnetic field and solar wind plasma observations from ACE, WIND, SOHO and Genesis, a Virtual Heliospheric Observatory (VHO) proposal was submitted to the NASA VxO opportunity. This presentation will detail what specific architecture and methods will be implemented for VHO, should this proposal be funded. Also, examples will be given how typical users will be able to take advantage the rich VHO feature set. Finally, the envisioned method of query exchange between VHO and other VxOs will be discussed.

  5. Plasma turbulence in the equatorial ionospheric F region

    NASA Astrophysics Data System (ADS)

    McDaniel, Rickey Dale

    Equatorial spread F is a spectacular phenomenon in which the equatorial region ionosphere is reshaped after sunset. The plasma instabilities responsible for equatorial spread F are fascinating since they occur on time scales ranging from seconds to hours and length scales from centimeters to tens of kilometers. The plasma irregularities that occur in the F region also influence the performance and reliability of space borne and ground based electronic systems and may cause the disruption of satellite operations, communications, navigation, and electrical power distribution grids, leading to potentially broad economic losses. The ionospheric model equations that describe these plasma instabilities display different dynamical behavior based on the value of the ion-neutral collision frequency. The transition occurs at the so-called inertial regime of the ionosphere, where the model equations are similar to the Navier Stokes equations except applied to inhomogeneous fluids. A general analytic solution does not exist for these nonlinear equations; however, a numerical model is developed by maintaining charge neutrality in the vicinity of a circular bubble rising from the collisional to the inertial regime. Using this model, we are able to determine the location of the inertial regime as a function of local time, longitude, season, and solar cycle. The model results determine that the regime occurs generally from about 2000 and 2100 local time and 500-900 km apex height. Also, the model predicts that solar minimum periods are generally more conducive for inertial effects than solar maximum periods. Time series analysis performed on Dynamics Explorer II ion density data show that a turbulent cascade form in the inertial regime predicted by the model. Intermediate scale density power spectra all obey k-5/3 spectra scaling when measured in altitude and local time windows predicted by our model as failing within the inertial regime. Meanwhile, density power spectra for data

  6. Studies of Zonal Flows Driven by Drift Mode Turbulence in Laboratory and Space Plasmas

    NASA Astrophysics Data System (ADS)

    Bingham, R.; Trines, R.; Mendonça, J. T.; Silva, L. O.; Shukla, P. K.; Dunlop, M. W.; Vaivads, A.; Davies, J. A.; Bamford, R. A.; Mori, W. B.; Tynan, G.

    2008-10-01

    The interaction between broadband drift mode turbulence and zonal flows is an important topic associated with transport at plasma boundaries. The generation of zonal flows by the modulational instability of broad band drift waves has resulted in the observation of self organized solitary wave structures at the magnetopause. To understand these structures and their importance to future burning plasmas and space plasmas we have developed a unique numerical simulation code that describes drift wave—zonal flow turbulence. We show that observations by cluster spacecraft confirms the role of drift wave zonal flow turbulence at the Earth's magnetopause and further demonstrates that the magnetopause boundary acts in a s similar manner to transport barriers in tokamak fusion devices. Thus cementing the relationship between the plasma physics of laboratory devices and space plasmas.

  7. Intermittency, avalanche statistics, and long-term correlations in a turbulent plasma

    NASA Astrophysics Data System (ADS)

    Castellanos, Omar; López, Juan M.; Sentíes, José M.; Anabitarte, Ernesto

    2013-04-01

    We study the turbulent dynamics of a helium plasma in a non-confining cylindrical configuration. Our experimental setup allows us to analyze particle transport in different plasma regions. We find that, whereas the transport is diffusive in the innermost regions of the plasma, distinctive non-diffusive features appear in regions away from the center. Indeed, at the plasma edge we find that particle flux exhibits a power-law distribution of avalanche durations, intermittency, and long-term correlations.

  8. Applications of continuous and orthogonal wavelet transforms to MHD and plasma turbulence

    NASA Astrophysics Data System (ADS)

    Farge, Marie; Schneider, Kai

    2016-10-01

    Wavelet analysis and compression tools are presented and different applications to study MHD and plasma turbulence are illustrated. We use the continuous and the orthogonal wavelet transform to develop several statistical diagnostics based on the wavelet coefficients. We show how to extract coherent structures out of fully developed turbulent flows using wavelet-based denoising and describe multiscale numerical simulation schemes using wavelets. Several examples for analyzing, compressing and computing one, two and three dimensional turbulent MHD or plasma flows are presented. Details can be found in M. Farge and K. Schneider. Wavelet transforms and their applications to MHD and plasma turbulence: A review. Support by the French Research Federation for Fusion Studies within the framework of the European Fusion Development Agreement (EFDA) is thankfully acknowledged.

  9. Gyrokinetic simulation of turbulence driven geodesic acoustic modes in edge plasmas of HL-2A tokamak

    SciTech Connect

    Liu Feng; Zhao, K. J.; Lin, Z.; Dong, J. Q.

    2010-11-15

    Strong correlation between high frequency microturbulence and low frequency geodesic acoustic mode (GAM) has been observed in the edge plasmas of the HL-2A tokamak, suggesting possible GAM generation via three wave coupling with turbulence, which is in turn modulated by the GAM. In this work, we use the gyrokinetic toroidal code to study the linear and nonlinear development of the drift instabilities, as well as the generation of the GAM (and low frequency zonal flows) and its interaction with the turbulence for realistic parameters in the edge plasmas of the HL-2A tokamak for the first time. The simulation results indicate that the unstable drift wave drives strong turbulence in the edge plasma of HL-2A. In addition, the generation of the GAM and its interaction with the turbulence are all observed in the nonlinear simulation. The simulation results are in reasonable agreement with the experimental observations.

  10. A Squashed Heliosphere

    NASA Image and Video Library

    Heliophysics' finding of the 'squashed' heliosphere when Voyager 1 and 2 crossed the bubble of solar wind at different distances from the sun. This led to a change in the way we see the shape of ou...

  11. Mapping the Heliosphere

    NASA Image and Video Library

    2011-04-28

    Data from NASA Cassini spacecraft have enabled scientists to create this map of the heliosphere, the bubble of charged particles around our sun. Charged particles stream out from our sun in a phenomenon known as solar wind.

  12. Sentinels of the Heliosphere

    NASA Image and Video Library

    Heliophysics describes the study of the Sun, its atmosphere or the heliosphere, and the planets within it as a system. This visualization tours areas from the Sun to the boundary between the Sun an...

  13. Low Frequency Turbulence as the Source of High Frequency Waves in Multi-Component Space Plasmas

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Krivorutsky, Emmanuel N.; Uritsky, Vadim M.

    2011-01-01

    Space plasmas support a wide variety of waves, and wave-particle interactions as well as wavewave interactions are of crucial importance to magnetospheric and ionospheric plasma behavior. High frequency wave turbulence generation by the low frequency (LF) turbulence is restricted by two interconnected requirements: the turbulence should be strong enough and/or the coherent wave trains should have the appropriate length. These requirements are strongly relaxed in the multi-component plasmas, due to the heavy ions large drift velocity in the field of LF wave. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves, in particular those associated with LF turbulence, may generate LHW s in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We also argue that the described scenario can playa vital role in various parts of the outer magnetosphere featuring strong LF turbulence accompanied by LHW activity. Using the data from THEMIS spacecraft, we validate the conditions for such cross-scale coupling in the near-Earth "flow-braking" magnetotail region during the passage of sharp injection/dipolarization fronts, as well as in the turbulent outflow region of the midtail reconnection site.

  14. Phase space structures in gyrokinetic simulations of fusion plasma turbulence

    NASA Astrophysics Data System (ADS)

    Ghendrih, Philippe; Norscini, Claudia; Cartier-Michaud, Thomas; Dif-Pradalier, Guilhem; Abiteboul, Jérémie; Dong, Yue; Garbet, Xavier; Gürcan, Ozgür; Hennequin, Pascale; Grandgirard, Virginie; Latu, Guillaume; Morel, Pierre; Sarazin, Yanick; Storelli, Alexandre; Vermare, Laure

    2014-10-01

    Gyrokinetic simulations of fusion plasmas give extensive information in 5D on turbulence and transport. This paper highlights a few of these challenging physics in global, flux driven simulations using experimental inputs from Tore Supra shot TS45511. The electrostatic gyrokinetic code GYSELA is used for these simulations. The 3D structure of avalanches indicates that these structures propagate radially at localised toroidal angles and then expand along the field line at sound speed to form the filaments. Analysing the poloidal mode structure of the potential fluctuations (at a given toroidal location), one finds that the low modes m = 0 and m = 1 exhibit a global structure; the magnitude of the m = 0 mode is much larger than that of the m = 1 mode. The shear layers of the corrugation structures are thus found to be dominated by the m = 0 contribution, that are comparable to that of the zonal flows. This global mode seems to localise the m = 2 mode but has little effect on the localisation of the higher mode numbers. However when analysing the pulsation of the latter modes one finds that all modes exhibit a similar phase velocity, comparable to the local zonal flow velocity. The consequent dispersion like relation between the modes pulsation and the mode numbers provides a means to measure the zonal flow. Temperature fluctuations and the turbulent heat flux are localised between the corrugation structures. Temperature fluctuations are found to exhibit two scales, small fluctuations that are localised by the corrugation shear layers, and appear to bounce back and forth radially, and large fluctuations, also readily observed on the flux, which are associated to the disruption of the corrugations. The radial ballistic velocity of both avalanche events if of the order of 0.5ρ∗c0 where ρ∗ = ρ0/a, a being the tokamak minor radius and ρ0 being the characteristic Larmor radius, ρ0 = c0/Ω0. c0 is the reference ion thermal velocity and Ω0 = qiB0/mi the reference

  15. High density turbulent plasma processes from a shock tube. Final performance report

    SciTech Connect

    Johnson, J.A. III

    1997-01-01

    A broad-based set of measurements has begun on high density turbulent plasma processes. This includes determinations of new plasma physics and the initiation of work on new diagnostics for collisional plasmas as follows: (1) A transient increase is observed in both the spectral energy decay rate and the degree of chaotic complexity at the interface of a shock wave and a turbulent ionized gas. Even though the gas is apparently brought to rest by the shock wave, no evidence is found either of prompt relaminarization or of any systematic influence of end-wall material thermal conductivities on the turbulence parameters. (2) Point fluorescence emissions and averaged spectral line evolutions in turbulent plasmas produced in both the primary and the reflected shock wave flows exhibit ergodicity in the standard turbulence parameters. The data show first evidence of a reverse energy cascade in the collisional turbulent plasma. This suggests that the fully turbulent environment can be described using a stationary state formulation. In these same data, the author finds compelling evidence for a turbulent Stark effect on neutral emission lines in these data which is associated with evidence of large coherent structures and dominant modes in the Fourier analyses of the fluctuations in the optical spectra. (3) A neutral beam generator has been assembled by coupling a Colutron Ion Gun to a charge exchange chamber. Beam-target collisions where the target species is neutral and the beam is either singly charged or neutral have been performed using argon as the working gas. Spectral analysis of the emission shows specific radiative transitions characteristic of both Ar I and Ar II, indicating that some ionization of the target gas results. Gas and plasma parameters such as density, pressure, temperature and flow velocity and their fluctuations can now be followed in real time by spectroscopic analysis of carefully chosen radiative emissions.

  16. The Heliosphere in Space

    NASA Astrophysics Data System (ADS)

    Frisch, P. C.; Hanson, A. J.; Fu, P. C.

    2008-12-01

    A scientifically accurate visualization of the Journey of the Sun through deep space has been created in order to share the excitement of heliospheric physics and scientific discovery with the non-expert. The MHD heliosphere model of Linde (1998) displays the interaction of the solar wind with the interstellar medium for a supersonic heliosphere traveling through a low density magnetized interstellar medium. The camera viewpoint follows the solar motion through a virtual space of the Milky Way Galaxy. This space is constructed from real data placed in the three-dimensional solar neighborhood, and populated with Hipparcos stars in front of a precisely aligned image of the Milky Way itself. The celestial audio track of this three minute movie includes the music of the heliosphere, heard by the two Voyager satellites as 3 kHz emissions from the edge of the heliosphere. This short heliosphere visualization can be downloaded from http://www.cs.indiana.edu/~soljourn/pub/AstroBioScene7Sound.mov, and the full scientific data visualization of the Solar Journey is available commercially.

  17. Plasma wave signatures of collisionless shocks and the role of plasma wave turbulence in shock formation

    NASA Technical Reports Server (NTRS)

    Mellott, M. M.

    1986-01-01

    Observations of the plasma waves associated with collisionless shocks are reviewed, and the understanding of their generation mechanisms and their importance to shock physics are summarized. The emphasis is on waves generated directly at the shock, especially ion acoustic and lower-hybrid-like modes. The observations are discussed in the context of shock structure, with attention given to the distinctions between waves generated in the shock foot and ramp. The behavior of resistive, dispersive, and supercritical quasi-perpendicular shocks is contrasted. Evidence for the operation of various generation mechanisms, including interactions with cross-field currents, gyrating reflected ions, and field-aligned electron beams, are summarized. The various forms of plasma heating which are actually observed are outlined, and the role of the various wave modes in this heating is discussed. Conclusion, it is argued that, while plasma wave turbulence may play a vital role in plasma heating for some special shocks, it is of second-order importance in most cases.

  18. Modeling Secondary Neutral Helium in the Heliosphere

    NASA Astrophysics Data System (ADS)

    Müller, Hans-Reinhard; Möbius, Eberhard; Wood, Brian E.

    2016-11-01

    An accurate, analytic heliospheric neutral test-particle code for helium atoms from the interstellar medium (ISM) is coupled to global heliospheric models dominated by hydrogen and protons from the solar wind and the ISM. This coupling enables the forward-calculation of secondary helium neutrals from first principles. Secondaries are produced predominantly in the outer heliosheath, upwind of the heliopause, by charge exchange of helium ions with neutral atoms. The forward model integrates the secondary production terms along neutral trajectories and calculates the combined neutral helium phase space density in the innermost heliosphere where it can be related to in-situ observations. The phase space density of the secondary component is lower than that of primary neutral helium, but its presence can change the analysis of primaries and the ISM, and can yield valuable insight into the characteristics of the plasma in the outer heliosheath.

  19. Report of the cosmic and heliospheric panel

    NASA Technical Reports Server (NTRS)

    Mewaldt, Richard A.; Mason, Glenn M.; Barnes, Aaron; Binns, W. Robert; Burlaga, Leonard F.; Cherry, Michael L.; Holzer, Thomas E.; Jokipii, J. R.; Jones, Vernon; Ling, James C.

    1991-01-01

    The Cosmic and Heliospheric Branch proposes a bold new program for the years 1995 to 2010 that is centered on the following two themes: (1) the global heliosphere and interstellar space; and (2) cosmic particle acceleration and the evolution of matter. Within these major themes are more specific goals that have been studied and continue to be examined for a better understanding of their processes. These include: origin, structure, and evolution of the solar wind; interaction of the heliosphere, the solar wind, and the interstellar medium; fundamental microscopic and macroscopic plasma processes; acceleration and transport of energetic particles; and the origin and evolution of matter. Finally, the report summarizes a wide variety of proposed small and large space missions.

  20. Diagnosis of Magnetic Structures and Intermittency in Space Plasma Turbulence using the Method of Surrogate Data

    NASA Technical Reports Server (NTRS)

    Sahraoui, Fouad; Goldstein, Melvyn

    2008-01-01

    Several observations in space plasmas have reported the presence of coherent structures at different plasma scales. Structure formation is believed to be a direct consequence of nonlinear interactions between the plasma modes, which depend strongly on phase synchronization of those modes. Despite this important role of the phases in turbulence, very limited work has been however devoted to study the phases as a potential tracers of nonlinearities in comparison with the wealth of literature on power spectra of turbulence where phases are totally missed. We present a method based on surrogate data to systematically detect coherent structures in turbulent signals. The new method has been applied successfully to magnetosheath turbulence (Sahraoui, Phys. Rev. E, 2008, in press), where the relationship between the identified phase coherence and intermittency (classically identified as non Gaussian tails of the PDFs) as well as the energy cascade has been studied. Here we review the main results obtained in that study and show further applications to small scale solar wind turbulence. Implications of the results on theoretical modelling of space turbulence (applicability of weak/wave turbulence, its validity limits and its connection to intermittency) will be discussed.

  1. Diagnosis of Magnetic Structures and Intermittency in Space Plasma Turbulence using the Method of Surrogate Data

    NASA Technical Reports Server (NTRS)

    Sahraoui, Fouad; Goldstein, Melvyn

    2008-01-01

    Several observations in space plasmas have reported the presence of coherent structures at different plasma scales. Structure formation is believed to be a direct consequence of nonlinear interactions between the plasma modes, which depend strongly on phase synchronization of those modes. Despite this important role of the phases in turbulence, very limited work has been however devoted to study the phases as a potential tracers of nonlinearities in comparison with the wealth of literature on power spectra of turbulence where phases are totally missed. We present a method based on surrogate data to systematically detect coherent structures in turbulent signals. The new method has been applied successfully to magnetosheath turbulence (Sahraoui, Phys. Rev. E, 2008, in press), where the relationship between the identified phase coherence and intermittency (classically identified as non Gaussian tails of the PDFs) as well as the energy cascade has been studied. Here we review the main results obtained in that study and show further applications to small scale solar wind turbulence. Implications of the results on theoretical modelling of space turbulence (applicability of weak/wave turbulence, its validity limits and its connection to intermittency) will be discussed.

  2. Magnetic turbulence in a table-top laser-plasma relevant to astrophysical scenarios

    PubMed Central

    Chatterjee, Gourab; Schoeffler, Kevin M.; Kumar Singh, Prashant; Adak, Amitava; Lad, Amit D.; Sengupta, Sudip; Kaw, Predhiman; Silva, Luis O.; Das, Amita; Kumar, G. Ravindra

    2017-01-01

    Turbulent magnetic fields abound in nature, pervading astrophysical, solar, terrestrial and laboratory plasmas. Understanding the ubiquity of magnetic turbulence and its role in the universe is an outstanding scientific challenge. Here, we report on the transition of magnetic turbulence from an initially electron-driven regime to one dominated by ion-magnetization in a laboratory plasma produced by an intense, table-top laser. Our observations at the magnetized ion scale of the saturated turbulent spectrum bear a striking resemblance with spacecraft measurements of the solar wind magnetic-field spectrum, including the emergence of a spectral kink. Despite originating from diverse energy injection sources (namely, electrons in the laboratory experiment and ion free-energy sources in the solar wind), the turbulent spectra exhibit remarkable parallels. This demonstrates the independence of turbulent spectral properties from the driving source of the turbulence and highlights the potential of small-scale, table-top laboratory experiments for investigating turbulence in astrophysical environments. PMID:28665398

  3. Probabilistic analysis of turbulent structures from two-dimensional plasma imaging

    SciTech Connect

    Mueller, S. H.; Diallo, A.; Fasoli, A.; Furno, I.; Labit, B.; Plyushchev, G.; Podesta, M.; Poli, F. M.

    2006-10-15

    A method is presented to construct object-related structure observables, such as size, mass, shape, and trajectories from two-dimensional plasma imaging data. The probability distributions of these observables, deduced from measurements of many realizations, provide a robust framework in which the fluctuations, the turbulence, and the related transport are characterized. The results for imaging data recorded in the presence of drift-interchange instabilities and turbulence on the TORPEX toroidal plasma experiment [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)] are discussed.

  4. Invited Review Article: Gas puff imaging diagnostics of edge plasma turbulence in magnetic fusion devices

    DOE PAGES

    Zweben, S. J.; Terry, J. L.; Stotler, D. P.; ...

    2017-04-27

    Gas puff imaging (GPI) is a diagnostic of plasma turbulence which uses a puff of neutral gas at the plasma edge to increase the local visible light emission for improved space-time resolution of plasma fluctuations. This paper reviews gas puff imaging diagnostics of edge plasma turbulence in magnetic fusion research, with a focus on the instrumentation, diagnostic cross-checks, and interpretation issues. The gas puff imaging hardware, optics, and detectors are described for about 10 GPI systems implemented over the past similar to 15 years. Comparison of GPI results with other edge turbulence diagnostic results is described, and many common featuresmore » are observed. Here, several issues in the interpretation of GPI measurements are discussed, and potential improvements in hardware and modeling are suggested.« less

  5. Whole-volume integrated gyrokinetic simulation of plasma turbulence in realistic diverted-tokamak geometry

    SciTech Connect

    Chang, C S; Ku, Seung-Hoe; Diamond, P. H.; Adams, Mark; Tchoua, Roselyne B; Chen, Yang; Cummings, J.; D'Azevedo, Ed F; Dif-Pradalier, Guilhem; Ethier, Stephane; Greengard, Leslie; Hahm, Taik Soo; Hinton, Fred; Keyes, David E; Klasky, Scott A; Lin, Z.; Lofstead, J.; Park, G.; Podhorszki, Norbert; Schwan, Karsten; Shoshani, A.; Silver, D.; Wolf, M.; Worley, Patrick H; Zorin, Denis

    2009-01-01

    Performance prediction for ITER is based upon the ubiquitous experimental observation that the plasma energy confinement in the device core is strongly coupled to the edge confinement for an unknown reason. The coupling time-scale is much shorter than the plasma transport time-scale. In order to understand this critical observation, a multi-scale turbulence-neoclassical simulation of integrated edge-core plasma in a realistic diverted geometry is a necessity, but has been a formidable task. Thanks to the recent development in high performance computing, we have succeeded in the integrated multiscale gyrokinetic simulation of the ion-temperature-gradient driven turbulence in realistic diverted tokamak geometry for the first time. It is found that modification of the self-organized criticality in the core plasma by nonlocal core-edge coupling of ITG turbulence can be responsible for the core-edge confinement coupling.

  6. Whole-volume integrated gyrokinetc simulation of plasma turbulence in realistic diverted-tokamak geometry

    SciTech Connect

    Chang, C S; Ku, Seung-Hoe; Diamond, Patrick; Adams, Mark; Tchoua, Roselyne B; Chen, Yang; Cummings, Julian; D'Azevedo, Eduardo; Dif-Pradalier, Guilhem; Ethier, Stephane; Greengard, Leslie; Hahm, Taik Soo; Hinton, Fred; Keyes, David E; Klasky, Scott A; Lin, Zhihong; Lofstead, J.; Park, G.; Parker, Scott; Podhorszki, Norbert; Schwan, Karsten; Shoshani, A.; Silver, D.; Weitzner, Harold; Wolf, M.; Worley, Patrick H; Yoon, E.; Zorin, Denis

    2009-01-01

    Performance prediction for ITER is based upon the ubiquitous experimental observation that the plasma energy confinement in the device core is strongly coupled to the edge confinement for an unknown reason. The coupling time-scale is much shorter than the plasma transport time-scale. In order to understand this critical observation, a multi-scale turbulence-neoclassical simulation of integrated edge-core plasma in a realistic diverted geometry is a necessity, but has been a formidable task. Thanks to the recent development in high performance computing, we have succeeded in the integrated multiscale gyrokinetic simulation of the ion-temperature-gradient driven turbulence in realistic diverted tokamak geometry for the first time. It is found that modification of the self-organized criticality in the core plasma by nonlocal core-edge coupling of ITG turbulence can be responsible for the core-edge confinement coupling.

  7. Whole-volume integrated gyrokinetic simulation of plasma turbulence in realistic diverted-tokamak geometry

    NASA Astrophysics Data System (ADS)

    Chang, C. S.; Ku, S.; Diamond, P.; Adams, M.; Barreto, R.; Chen, Y.; Cummings, J.; D'Azevedo, E.; Dif-Pradalier, G.; Ethier, S.; Greengard, L.; Hahm, T. S.; Hinton, F.; Keyes, D.; Klasky, S.; Lin, Z.; Lofstead, J.; Park, G.; Parker, S.; Podhorszki, N.; Schwan, K.; Shoshani, A.; Silver, D.; Wolf, M.; Worley, P.; Weitzner, H.; Yoon, E.; Zorin, D.

    2009-07-01

    Performance prediction for ITER is based upon the ubiquitous experimental observation that the plasma energy confinement in the device core is strongly coupled to the edge confinement for an unknown reason. The coupling time-scale is much shorter than the plasma transport time-scale. In order to understand this critical observation, a multi-scale turbulence-neoclassical simulation of integrated edge-core plasma in a realistic diverted geometry is a necessity, but has been a formidable task. Thanks to the recent development in high performance computing, we have succeeded in the integrated multiscale gyrokinetic simulation of the ion-temperature-gradient driven turbulence in realistic diverted tokamak geometry for the first time. It is found that modification of the self-organized criticality in the core plasma by nonlocal core-edge coupling of ITG turbulence can be responsible for the core-edge confinement coupling.

  8. Turbulence and atomic physics in magnetically confined plasmas

    NASA Astrophysics Data System (ADS)

    Marandet, Y.; Bufferand, H.; Ciraolo, G.; Nace, N.; Serre, E.; Tamain, P.; Valentinuzzi, M.

    2017-03-01

    An overview of issues related to the interplay between atomic process and turbulence in the peripheral regions of magnetically confined fusion devices is presented. Both atomic processes and turbulence play key roles for fusion, but have most of the time been treated separately. The effects of fluctuations on the time averaged ionization balance, on the transport of neutral particles (atoms and molecules) are discussed, using stochastic models to generate fluctuations with statistically relevant properties. Then applications to optical diagnostics of turbulence, namely gas puff imaging and beam emission spectroscopy are discussed.

  9. The Interstellar Heliopause Probe/Heliospheric Explorer: IHP/HEX

    NASA Astrophysics Data System (ADS)

    Wimmer-Schweingruber, Robert F.; McNutt, Ralph L.

    2010-03-01

    The Sun, driving a supersonic solar wind, cuts out of the local interstellar medium a giant plasma bubble, the heliosphere. Dedicated deep-space missions have greatly enhanced our understanding of our immediate neighborhood. Ulysses is the only spacecraft exploring the third, out-of-ecliptic dimension, while SOHO has allowed us to better understand the influence of the Sun and to image the glow of interstellar matter in the heliosphere. Both Voyager spacecraft have recently encountered the innermost boundary of this plasma bubble, the termination shock, and are returning exciting yet puzzling data of this remote region. The next logical step is to leave the heliosphere and to thereby map out in unprecedented detail the structure of the outer heliosphere and its boundaries, the termination shock, the heliosheath, the heliopause, and, after leaving the heliosphere, to discover the true nature of the hydrogen wall, the bow shock, and the local interstellar medium beyond. This will greatly advance our understanding of the heliosphere that is the best-known example for astrospheres as found around other stars. Thus, IHP/HEX will allow us to discover, explore, and understand fundamental astrophysical processes in the largest accessible plasma laboratory, the heliosphere.

  10. Turbulent fluctuations during pellet injection into a dipole confined plasma torus

    NASA Astrophysics Data System (ADS)

    Garnier, D. T.; Mauel, M. E.; Roberts, T. M.; Kesner, J.; Woskov, P. P.

    2017-01-01

    We report measurements of the turbulent evolution of the plasma density profile following the fast injection of lithium pellets into the Levitated Dipole Experiment (LDX) [Boxer et al., Nat. Phys. 6, 207 (2010)]. As the pellet passes through the plasma, it provides a significant internal particle source and allows investigation of density profile evolution, turbulent relaxation, and turbulent fluctuations. The total electron number within the dipole plasma torus increases by more than a factor of three, and the central density increases by more than a factor of five. During these large changes in density, the shape of the density profile is nearly "stationary" such that the gradient of the particle number within tubes of equal magnetic flux vanishes. In comparison to the usual case, when the particle source is neutral gas at the plasma edge, the internal source from the pellet causes the toroidal phase velocity of the fluctuations to reverse and changes the average particle flux at the plasma edge. An edge particle source creates an inward turbulent pinch, but an internal particle source increases the outward turbulent particle flux. Statistical properties of the turbulence are measured by multiple microwave interferometers and by an array of probes at the edge. The spatial structures of the largest amplitude modes have long radial and toroidal wavelengths. Estimates of the local and toroidally averaged turbulent particle flux show intermittency and a non-Gaussian probability distribution function. The measured fluctuations, both before and during pellet injection, have frequency and wavenumber dispersion consistent with theoretical expectations for interchange and entropy modes excited within a dipole plasma torus having warm electrons and cool ions.

  11. Experimental Investigation of Active Feedback Control of Turbulent Transport in a Magnetized Plasma

    SciTech Connect

    Gilmore, Mark Allen

    2013-07-07

    A new and unique basic plasma science laboratory device - the HelCat device (HELicon-CAThode) - has been constructed and is operating at the University of New Mexico. HelCat is a 4 m long, 0.5 m diameter device, with magnetic field up to 2.2 kG, that has two independent plasmas sources - an RF helicon source, and a thermionic cathode. These two sources, which can operate independently or simultaneously, are capable of producing plasmas with a wide range of parameters and turbulence characteristics, well suited to a variety of basic plasma physics experiments. An extensive set of plasma diagnostics is also operating. Experiments investigating the active feedback control of turbulent transport of particles and heat via electrode biasing to affect plasma ExB flows are underway, and ongoing.

  12. Formation of self-consistent pressure profiles in simulation of turbulent convection in tokamak plasmas

    SciTech Connect

    Pastukhov, V. P. Smirnov, D. V.

    2016-04-15

    The formation of pressure profiles in turbulent tokamak plasmas in ohmic heating regimes and transient regimes induced by turning-on of electron-cyclotron resonance (ECR) heating is investigated. The study is based on self-consistent modeling of low-frequency turbulent plasma convection described by an adiabatically reduced set of hydrodynamic-type equations. The simulations show that, in the ohmic heating stage, turbulence forms and maintains profiles of the total plasma pressure corresponding to turbulent relaxed states. These profiles are close to self-consistent profiles of the total plasma pressure experimentally observed on the T-10 tokamak in ohmic regimes with different values of the safety factor q{sub L} at the limiter. Simulations of nonstationary regimes induced by turning-on of on- and off-axis ECR heating show that the total plasma pressure profiles in the transient regimes remain close to those in the turbulent-relaxed state, as well as to the profiles experimentally observed on T-10.

  13. Turbulent transport across shear layers in magnetically confined plasmas

    SciTech Connect

    Nold, B.; Ramisch, M.; Manz, P.; Birkenmeier, G.; Ribeiro, T. T.; Müller, H. W.; Scott, B. D.; Fuchert, G.; Stroth, U.

    2014-10-15

    Shear layers modify the turbulence in diverse ways and do not only suppress it. A spatial-temporal investigation of gyrofluid simulations in comparison with experiments allows to identify further details of the transport process across shear layers. Blobs in and outside a shear layer merge, thereby exchange particles and heat and subsequently break up. Via this mechanism particles and heat are transported radially across shear layers. Turbulence spreading is the immanent mechanism behind this process.

  14. Symmetry breaking in MAST plasma turbulence due to toroidal flow shear

    NASA Astrophysics Data System (ADS)

    Fox, M. F. J.; van Wyk, F.; Field, A. R.; Ghim, Y.-c.; Parra, F. I.; Schekochihin, A. A.; the MAST Team

    2017-03-01

    The flow shear associated with the differential toroidal rotation of tokamak plasmas breaks an underlying symmetry of the turbulent fluctuations imposed by the up–down symmetry of the magnetic equilibrium. Using experimental beam-emission-spectroscopy measurements and gyrokinetic simulations, this symmetry breaking in ion-scale turbulence in MAST is shown to manifest itself as a tilt of the spatial correlation function and a finite skew in the distribution of the fluctuating density field. The tilt is a statistical expression of the ‘shearing’ of the turbulent structures by the mean flow. The skewness of the distribution is related to the emergence of long-lived density structures in sheared, near-marginal plasma turbulence. The extent to which these effects are pronounced is argued (with the aid of the simulations) to depend on the distance from the nonlinear stability threshold. Away from the threshold, the symmetry is effectively restored.

  15. Generation of a magnetic island by edge turbulence in tokamak plasmas

    SciTech Connect

    Poyé, A.; Agullo, O.; Muraglia, M.; Benkadda, S.; Dubuit, N.; Garbet, X.; Sen, A.

    2015-03-15

    We investigate, through extensive 3D magneto-hydro-dynamics numerical simulations, the nonlinear excitation of a large scale magnetic island and its dynamical properties due to the presence of small-scale turbulence. Turbulence is induced by a steep pressure gradient in the edge region [B. D. Scott, Plasma Phys. Controlled Fusion 49, S25 (2007)], close to the separatrix in tokamaks where there is an X-point magnetic configuration. We find that quasi-resonant localized interchange modes at the plasma edge can beat together and produce extended modes that transfer energy to the lowest order resonant surface in an inner stable zone and induce a seed magnetic island. The island width displays high frequency fluctuations that are associated with the fluctuating nature of the energy transfer process from the turbulence, while its mean size is controlled by the magnetic energy content of the turbulence.

  16. Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves

    NASA Astrophysics Data System (ADS)

    Grach, S. M.; Sergeev, E. N.; Mishin, E. V.; Shindin, A. V.

    2017-02-01

    A review is given of the current state-of-the-art of experimental studies and the theoretical understanding of nonlinear phenomena that occur in the ionospheric F-layer irradiated by high-power high-frequency ground-based transmitters. The main focus is on the dynamic features of high-frequency turbulence (plasma waves) and low-frequency turbulence (density irregularities of various scales) that have been studied in experiments at the Sura and HAARP heating facilities operated in temporal and frequency regimes specially designed with consideration of the characteristic properties of nonlinear processes in the perturbed ionosphere using modern radio receivers and optical instruments. Experimental results are compared with theoretical turbulence models for a magnetized collisional plasma in a high-frequency electromagnetic field, allowing the identification of the processes responsible for the observed features of artificial ionospheric turbulence.

  17. Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves

    NASA Astrophysics Data System (ADS)

    Grach, S. M.; Sergeev, E. N.; Mishin, E. V.; Shindin, A. V.

    2016-11-01

    A review is given of the current state-of-the-art of experimental studies and the theoretical understanding of nonlinear phenomena that occur in the ionospheric F-layer irradiated by high-power high-frequency ground-based transmitters. The main focus is on the dynamic features of high-frequency turbulence (plasma waves) and low-frequency turbulence (density irregularities of various scales) that have been studied in experiments at the Sura and HAARP heating facilities operated in temporal and frequency regimes specially designed with consideration of the characteristic properties of nonlinear processes in the perturbed ionosphere using modern radio receivers and optical instruments. Experimental results are compared with theoretical turbulence models for a magnetized collisional plasma in a high-frequency electromagnetic field, allowing the identification of the processes responsible for the observed features of artificial ionospheric turbulence.

  18. Regulating drift-wave plasma turbulence into spatiotemporal patterns by pinning coupling.

    PubMed

    Liu, Panpan; Yang, Lei; Deng, Zhigang; Wang, Xingang

    2011-07-01

    Using the technique of pinning coupling in chaos control, we investigate how the two-dimensional drift-wave plasma turbulence described by the Hasegawa-Mima equation can be regulated into different spatiotemporal patterns. It is shown both analytically and numerically that, depending on the pattern structure of the target, the pinning strength necessary for regulating the turbulence could have a large variation. More specifically, with the increase of the wave number of the target, the critical pinning strength is found to be increased by a power-law scaling. Moreover, in both the transition and transient process of the pinning regulation, the modes of the turbulence are found to be suppressed in a hierarchical fashion, that is, by the sequence of mode wave number. The findings give insight into the dynamics of drift-wave turbulence, as well as indicative to the design of new control techniques for real-world turbulence.

  19. Closure of a kinetic model of plasma in strong turbulence by relaxation

    NASA Technical Reports Server (NTRS)

    Tchen, C. M.

    1978-01-01

    A Fokker-Planck kinetic equation for a turbulent plasma is derived by a repeated cascade decomposition. Calculation of the propagator and the kinetic equation determine the transport coefficients (diffusivity and turbulent viscosity) by means of a closure based on a relaxation procedure governing the approach to equilibrium. The k to the minus third power spectral law is obtained, which governs the coupling between the velocity and the electrostatic field fluctuations.

  20. Route to Drift Wave Chaos and Turbulence in a Bounded Low-{beta} Plasma Experiment

    SciTech Connect

    Klinger, T.; Latten, A.; Piel, A.; Bonhomme, G.; Pierre, T.; Dudok de Wit, T.

    1997-11-01

    The transition scenario from stability to drift wave turbulence is experimentally investigated in a magnetized low-{beta} plasma with cylindrical geometry. It is demonstrated that the temporal dynamics is determined by the interaction and destabilization of spatiotemporal patterns, in particular, traveling waves. The analysis of the temporal and the spatiotemporal data shows that the bifurcations sequence towards weakly developed turbulence follows the Ruelle-Takens scenario. {copyright} {ital 1997} {ital The American Physical Society}

  1. From coherent structures to turbulence spectra

    NASA Astrophysics Data System (ADS)

    Lion, Sonny; Alexandrova, Olga; Zaslavsky, Arnaud

    2016-04-01

    Turbulence in the solar wind has been attracting attention since first in-situ measurements in the Heliosphere. Still a lot of open questions remain. In particular, the nature of turbulence around plasma kinetic scales, where self-similarity breaks down and no-power law behaviour of the turbulent spectrum is expected. It is known that approaching these small scales, Probability Distribution Functions (PDF) of magnetic fluctuations deviate strongly from the Gaussian distribution. This is called intermittency and is usually interpreted as presence of coherent structures. Here, using magnetic field waveforms and their wavelet coefficients, we study the nature of these intermittent events. We propose as well a universal description of magnetic fluctuations PDF using a four-parameter function and we describe the evolution of this parameters with increasing frequencies. Using two different approaches we establish the connection between intermittency and the evolution of the turbulent spectrum at ion scales. Finally the relationship between intermittency and ion temperature is discussed.

  2. A Model of the Heliosphere with Jets

    NASA Astrophysics Data System (ADS)

    Drake, J. F.; Swisdak, M.; Opher, M.

    2015-12-01

    The conventional picture of the heliosphere is that of a comet-shaped structure with an extended tail produced by the relative motion of the sun through the local interstellar medium (LISM). On the other hand, the measurements of energetic neutral atoms (ENAs) by IBEX and CASSINI produced some surprises. The CASSINI ENA fluxes from the direction of the nose and the tail were comparable, leading the CASSINI observers to conclude that the heliosphere was ``tailless''. The IBEX observations from the tail revealed that the hardest spectrum of ENAs were localized in two lobes at high latitude while the softest spectra were at low latitudes. Recent MHD simulations of the global heliosphere have revealed that the heliosphere drives magnetized jets to the north and south similar to those driven by the Crab Nebula and other astrophysical objects [1]. That the sun's magnetic field can drive such jets when the magnetic pressure in the outer heliosphere is small compared with the local plasma pressure (β=8∏ P/B2 >> 1) is a major surprise. An analytic model of the heliosheath (HS) between the termination shock (TS) and the heliopause (HP) is developed in the limit in which the interstellar flow and magnetic field are neglected [2]. The heliosphere in this limit is axisymmetric. The overall structure of the HS and HP are controlled by the solar magnetic field even in the limit of very high β because the large pressure in the HS is to lowest order balanced by the pressure of the LISM. The tension of the solar magnetic field produces a drop in the total pressure between the TS and the HP. This same pressure drop accelerates the plasma flow downstream of the TS into the north and south directions to form two collimated jets. The radii of these jets are controlled by the flow through the TS and the acceleration of this flow by the magnetic field -- a stronger solar magnetic field boosts the velocity of the jets and reduces the radii of the jets and the HP. Magnetohydrodynamic

  3. Compressible sub-Alfvénic MHD turbulence in low-beta plasmas.

    PubMed

    Cho, Jungyeon; Lazarian, A

    2002-06-17

    We present a model for compressible sub-Alfvénic isothermal magnetohydrodynamic (MHD) turbulence in low- beta plasmas and numerically test it. We separate MHD fluctuations into three distinct families: Alfvén, slow, and fast modes. We find that production of slow and fast modes by Alfvénic turbulence is suppressed. As a result, Alfvén modes in compressible regime exhibit scalings and anisotropy similar to those in incompressible regime. Slow modes passively mimic Alfvén modes. However, fast modes show isotropy and a scaling similar to acoustic turbulence.

  4. Magnetosheath Plasma Turbulence and Its Spatiotemporal Evolution as Observed by the Cluster Spacecraft

    SciTech Connect

    Yordanova, E.; Vaivads, A.; Andre, M.; Buchert, S. C.; Voeroes, Z.

    2008-05-23

    We study the plasma turbulence, at scales larger than the ion inertial length scale, downstream of a quasiparallel bow shock using Cluster multispacecraft measurements. We show that turbulence is intermittent and well described by the extended structure function model, which takes into account the spatial inhomogeneity of the cascade rate. For the first time we use multispacecraft observations to characterize the evolution of magnetosheath turbulence, particularly its intermittency, as a function of the distance from the bow shock. The intermittency significantly changes over the distance of the order of 100 ion inertial lengths, being increasingly stronger and anisotropic away from the bow shock.

  5. Dynamics of turbulent front at the correlation between atmospheric pressure plasma jet & gas flow field

    NASA Astrophysics Data System (ADS)

    Ghasemi, Maede; Xu, Haitao; Pei, Xuekai; Lu, Xinpei

    2016-09-01

    Among variety of plasma applications, there is significant interest recently in the use of plasma as an actuator in flow control for aerodynamic applications in which the correlation between atmospheric pressure plasma jet (APPJ) and gas flow field is a crucial role. In this contribution, dynamic characterizations of the turbulent flow field in APPj are investigated by focusing on the effect of different parameters of APPJ, such as applied voltage, pulse repetition frequency, gas flow rate, and time duration of the pulse We utilized Schlieren photography and photomultiplier tubes (PMT) as a signal triggering of an intensified charge coupled device (ICCD) and also a high speed camera to examine the formation of the turbulent front and its dynamics. The results reveal that the turbulent front will appear earlier and closer to the tube nozzle by increasing the gas flow rate and applied voltage amplitude. It is found that the pulse time duration and repetition frequency cannot change the dynamics and formation of the turbulent front. Further investigation demonstrated that every pulse can excite one turbulent front which is created in a specific position in a laminar region and propagates downstream and the effect of increasing frequency results in the increasing of the number of turbulent front and expansion of their region of formation.

  6. Sheared E×B flow and plasma turbulence viscosity in a Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Vianello, N.; Antoni, V.; Spada, E.; Spolaore, M.; Serianni, G.; Regnoli, G.; Zuin, M.; Cavazzana, R.; Bergsåker, H.; Cecconello, M.; Drake, J. R.

    2004-11-01

    The relationship between electromagnetic turbulence and sheared plasma flow in Reversed Field Pinch configuration is addressed. The momentum balance equation for a compressible plasma is considered and the terms involved are measured in the outer region of Extrap-T2R RFP device. It results that electrostatic fluctuations determine the plasma flow through the electrostatic component of Reynolds Stress tensor. This term involves spatial and temporal scales comparable to those of MHD activity. The derived experimental perpendicular viscosity is consistent with anomalous diffusion, the latter being discussed in terms of electrostatic turbulence background and coherent structures emerging from fluctuations. The results indicate a dynamical interplay between turbulence, anomalous transport and mean E×B profiles. The momentum balance has been studied also in non-stationary condition during the application of Pulsed Poloidal Current Drive, which is known to reduce the amplitude of MHD modes.

  7. Gyrokinetic continuum simulation of turbulence in a straight open-field-line plasma

    DOE PAGES

    Shi, E. L.; Hammett, G. W.; Stoltzfus-Dueck, T.; ...

    2017-05-29

    Here, five-dimensional gyrokinetic continuum simulations of electrostatic plasma turbulence in a straight, open-field-line geometry have been performed using a full- discontinuous-Galerkin approach implemented in the Gkeyll code. While various simplifications have been used for now, such as long-wavelength approximations in the gyrokinetic Poisson equation and the Hamiltonian, these simulations include the basic elements of a fusion-device scrape-off layer: localised sources to model plasma outflow from the core, cross-field turbulent transport, parallel flow along magnetic field lines, and parallel losses at the limiter or divertor with sheath-model boundary conditions. The set of sheath-model boundary conditions used in the model allows currentsmore » to flow through the walls. In addition to details of the numerical approach, results from numerical simulations of turbulence in the Large Plasma Device, a linear device featuring straight magnetic field lines, are presented.« less

  8. Gyrokinetic continuum simulation of turbulence in a straight open-field-line plasma

    NASA Astrophysics Data System (ADS)

    Shi, E. L.; Hammett, G. W.; Stoltzfus-Dueck, T.; Hakim, A.

    2017-06-01

    Five-dimensional gyrokinetic continuum simulations of electrostatic plasma turbulence in a straight, open-field-line geometry have been performed using a full- discontinuous-Galerkin approach implemented in the Gkeyll code. While various simplifications have been used for now, such as long-wavelength approximations in the gyrokinetic Poisson equation and the Hamiltonian, these simulations include the basic elements of a fusion-device scrape-off layer: localised sources to model plasma outflow from the core, cross-field turbulent transport, parallel flow along magnetic field lines, and parallel losses at the limiter or divertor with sheath-model boundary conditions. The set of sheath-model boundary conditions used in the model allows currents to flow through the walls. In addition to details of the numerical approach, results from numerical simulations of turbulence in the Large Plasma Device, a linear device featuring straight magnetic field lines, are presented.

  9. Simulation of edge-plasma profiles and turbulence related to L-H transitions in tokamaks

    SciTech Connect

    Cohen, R H; Rognlien, T D; Xu, X Q

    1999-09-21

    Understanding plasma profile evolution and plasma turbulence are two important aspects of developing a predictive model for edge-plasma in tokamaks and other fusion-related devices. Here they describe results relevant to the L-H transition phenomena observed in tokamaks obtained from two simulations codes which emphasize the two aspects of the problem. UEDGE solves for the two-dimensional (2-D) profiles of a multi-species plasma and neutrals given some anomalous cross-field diffusion coefficients, and BOUT solves for the three-dimensional (3-D) turbulence that gives rise to the anomalous diffusion. These two codes are thus complementary in solving different aspects of the edge-plasma transport problem; ultimately, they want to couple the codes so that UEDGE uses BOUT's turbulence transport results, and BOUT uses UEDGE's plasma profiles with a fully automated iteration procedure. This goal is beyond the present paper; here they show how each aspect of the problem, i.e., profiles and turbulent transport, can contribute to L-H type transitions.

  10. Effect of turbulence on the dissipation of the space-charge wave in a bounded turbulent plasma column

    SciTech Connect

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-07-15

    The dispersion relation and the dissipation process of the space-charge wave propagating in a bounded plasma such as a cylindrical waveguide are investigated by employing the longitudinal dielectric permittivity that contains the diffusivity based on the Dupree theory of turbulent plasma. We derived the dispersion relation for space-charge wave in terms of the radius of cylindrical waveguide and the roots of the Bessel function of the first kind which appears as the boundary condition. We find that the wave frequency for a lower-order root of the Bessel function is higher than that of a higher-order root. We also find that the dissipation is greatest for the lowest-order root, but it is suppressed significantly as the order of the root increases. The wave frequency and the dissipation process are enhanced as the radius of cylindrical waveguide increases. However, they are always smaller than the case of bulk plasma. We find that the diffusivity of turbulent plasma would enhance the damping of space-charge waves, especially, in the range of small wave number. For a large wave number, the diffusivity has little effect on the damping.

  11. HELCATS - Heliospheric Cataloguing, Analysis and Techniques Service

    NASA Astrophysics Data System (ADS)

    Harrison, Richard; Davies, Jackie; Perry, Chris; Moestl, Christian; Rouillard, Alexis; Bothmer, Volker; Rodriguez, Luciano; Eastwood, Jonathan; Kilpua, Emilia; Gallagher, Peter

    2016-04-01

    Understanding the evolution of the solar wind is fundamental to advancing our knowledge of energy and mass transport in the solar system, rendering it crucial to space weather and its prediction. The advent of truly wide-angle heliospheric imaging has revolutionised the study of both transient (CMEs) and background (SIRs/CIRs) solar wind plasma structures, by enabling their direct and continuous observation out to 1 AU and beyond. The EU-funded FP7 HELCATS project combines European expertise in heliospheric imaging, built up in particular through lead involvement in NASA's STEREO mission, with expertise in solar and coronal imaging as well as in-situ and radio measurements of solar wind phenomena, in a programme of work that will enable a much wider exploitation and understanding of heliospheric imaging observations. With HELCATS, we are (1.) cataloguing transient and background solar wind structures imaged in the heliosphere by STEREO/HI, since launch in late October 2006 to date, including estimates of their kinematic properties based on a variety of established techniques and more speculative, approaches; (2.) evaluating these kinematic properties, and thereby the validity of these techniques, through comparison with solar source observations and in-situ measurements made at multiple points throughout the heliosphere; (3.) appraising the potential for initialising advanced numerical models based on these kinematic properties; (4.) assessing the complementarity of radio observations (in particular of Type II radio bursts and interplanetary scintillation) in combination with heliospheric imagery. We will, in this presentation, provide an overview of progress from the first 18 months of the HELCATS project.

  12. Non-thermal Dupree diffusivity and shielding effects on atomic collisions in Lorentzian turbulent plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-05-01

    The influence of non-thermal Dupree turbulence and the plasma shielding on the electron-ion collision is investigated in Lorentzian turbulent plasmas. The second-order eikonal analysis and the effective interaction potential including the Lorentzian far-field term are employed to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the diffusion coefficient, impact parameter, collision energy, Debye length and spectral index of the astrophysical Lorentzian plasma. It is shown that the non-thermal effect suppresses the eikonal scattering phase shift. However, it enhances the eikonal collision cross section in astrophysical non-thermal turbulent plasmas. The effect of non-thermal turbulence on the eikonal atomic collision cross section is weakened with increasing collision energy. The variation of the atomic cross section due to the non-thermal Dupree turbulence is also discussed. This research was supported by Nuclear Fusion Research Program through NRF funded by the Ministry of Science, ICT & Future Planning (Grant No. 2015M1A7A1A01002786).

  13. Turbulence, flows and edge localized mode (ELM) dynamics in limiter H-mode plasmas in TEXTOR

    NASA Astrophysics Data System (ADS)

    Soldatov, S.; Krämer-Flecken, A.; Kantor, M.; Unterberg, B.; Sun, Y.; Van Oost, G.; Reiter, D.; TEXTOR Team

    2010-08-01

    The turbulence, plasma flow and edge localized mode (ELM) dynamics in the limiter H-mode TEXTOR plasmas are investigated. Properties of both ambient turbulence within 0 < k⊥ < 4.2 cm-1 and coherent modes are studied on the ELM time scale in detail. The turbulence level near the pedestal is shown to evolve several times with the period of ELMs. Within the inter-ELM period the 'silent stage' is found which is characterized by an extremely low (below that for Ohmic plasmas) turbulence level and a phase growth in the reflectometry signal. The silent stage is associated with the quasi-steady state when the pedestal is formed and confinement is improved between two successive ELMs. Quasi-coherent density oscillations near the pedestal region with m ≈ 3, 5, 16 and 38 are measured with correlation reflectometry. Low-m modes are found to reveal the signatures of precursor mode. At first, the radial structure of the rotation shear and radial electric field Er in limiter H-mode in TEXTOR is presented. The characteristic negative electric field well with the sharp gradient ∇Er ≈ 250 V cm-2 at ≈2 cm inside separatrix is resolved. The Er × B rotation profile defines both the resulting plasma rotation in the electron diamagnetic drift direction and a significant rotation shear near the separatrix which exceeds the decorrelation rate of ambient turbulence by several times.

  14. Characteristics of Turbulence-driven Plasma Flow and Origin of Experimental Empirical Scalings of Intrinsic Rotation

    SciTech Connect

    Wang, W. X.; Hahm, T. S.; Ethier, S.; Rewoldt, G.; Tang, W. M.; Lee, W. W.; Diamond, P. H.

    2011-03-20

    Toroidal plasma flow driven by turbulent torque associated with nonlinear residual stress generation is shown to recover the observed key features of intrinsic rotation in experiments. Specifically, the turbulence-driven intrinsic rotation scales close to linearly with plasma gradients and the inverse of the plasma current, qualitatively reproducing empirical scalings obtained from a large experimental data base. The effect of magnetic shear on the symmetry breaking in the parallel wavenumber spectrum is identified. The origin of the current scaling is found to be the enhanced kll symmetry breaking induced by increased radial variation of the safety factor as the current decreases. The physics origin for the linear dependence of intrinsic rotation on the pressure gradient comes from the fact that both turbulence intensity and the zonal flow shear, which are two key ingredients for driving the residual stress, are increased with the strength of the turbulence drives, which are R/LTe and R/Lne for the collisionless trapped electron mode (CTEM). Highlighted results also include robust radial pinches in toroidal flow, heat and particle transport driven by CTEM turbulence, which emerge "in phase", and are shown to play important roles in determining plasma profiles. Also discussed are experimental tests proposed to validate findings from these gyrokinetic simulations.

  15. Characterization of radial turbulent fluxes in the Santander linear plasma machine

    NASA Astrophysics Data System (ADS)

    Mier, J. A.; Sánchez, R.; Newman, D. E.; Castellanos, O. F.; Anabitarte, E.; Sentíes, J. M.; van Milligen, B. Ph.

    2014-05-01

    It is shown that the statistical and correlation properties of the local turbulent flux measured at different radial locations of the cold, weakly ionized plasmas inside the Santander Linear Plasma Machine [Castellanos et al., Plasma Phys. Control. Fusion 47, 2067 (2005)] are consistent with diffusive-like transport dynamics. This is in contrast to the dynamical behavior inferred from similar measurements taken in hotter, fully ionized tokamak and stellarator edge plasmas, in which long-term correlations and other features characteristic of complex, non-diffusive transport dynamics have been reported in the past. These results may shed some light on a recent controversy regarding the possible universality of the dynamics of turbulent transport in magnetized plasmas.

  16. Characterization of radial turbulent fluxes in the Santander linear plasma machine

    SciTech Connect

    Mier, J. A. Anabitarte, E.; Sentíes, J. M.; Sánchez, R.; Newman, D. E.; Castellanos, O. F.; Milligen, B. Ph. van

    2014-05-15

    It is shown that the statistical and correlation properties of the local turbulent flux measured at different radial locations of the cold, weakly ionized plasmas inside the Santander Linear Plasma Machine [Castellanos et al., Plasma Phys. Control. Fusion 47, 2067 (2005)] are consistent with diffusive-like transport dynamics. This is in contrast to the dynamical behavior inferred from similar measurements taken in hotter, fully ionized tokamak and stellarator edge plasmas, in which long-term correlations and other features characteristic of complex, non-diffusive transport dynamics have been reported in the past. These results may shed some light on a recent controversy regarding the possible universality of the dynamics of turbulent transport in magnetized plasmas.

  17. Turbulent General Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Eyink, G. L.

    2015-07-01

    Plasma flows with a magnetohydrodynamic (MHD)-like turbulent inertial range, such as the solar wind, require a generalization of general magnetic reconnection (GMR) theory. We introduce the slip velocity source vector per unit arclength of field line, the ratio of the curl of the non-ideal electric field in the generalized Ohm’s Law and magnetic field strength. It diverges at magnetic nulls, unifying GMR with null-point reconnection. Only under restrictive assumptions is the slip velocity related to the gradient of quasi-potential (which is the integral of parallel electric field along magnetic field lines). In a turbulent inertial range, the non-ideal field becomes tiny while its curl is large, so that line slippage occurs even while ideal MHD becomes accurate. The resolution is that ideal MHD is valid for a turbulent inertial range only in a weak sense that does not imply magnetic line freezing. The notion of weak solution is explained in terms of renormalization group (RG) type theory. The weak validity of the ideal Ohm’s law in the inertial range is shown via rigorous estimates of the terms in the generalized Ohm’s Law. All non-ideal terms are irrelevant in the RG sense and large-scale reconnection is thus governed solely by ideal dynamics. We discuss the implications for heliospheric reconnection, in particular for deviations from the Parker spiral model. Solar wind observations show that reconnection in a turbulence-broadened heliospheric current sheet, which is consistent with Lazarian-Vishniac theory, leads to slip velocities that cause field lines to lag relative to the spiral model.

  18. TURBULENT GENERAL MAGNETIC RECONNECTION

    SciTech Connect

    Eyink, G. L.

    2015-07-10

    Plasma flows with a magnetohydrodynamic (MHD)-like turbulent inertial range, such as the solar wind, require a generalization of general magnetic reconnection (GMR) theory. We introduce the slip velocity source vector per unit arclength of field line, the ratio of the curl of the non-ideal electric field in the generalized Ohm’s Law and magnetic field strength. It diverges at magnetic nulls, unifying GMR with null-point reconnection. Only under restrictive assumptions is the slip velocity related to the gradient of quasi-potential (which is the integral of parallel electric field along magnetic field lines). In a turbulent inertial range, the non-ideal field becomes tiny while its curl is large, so that line slippage occurs even while ideal MHD becomes accurate. The resolution is that ideal MHD is valid for a turbulent inertial range only in a weak sense that does not imply magnetic line freezing. The notion of weak solution is explained in terms of renormalization group (RG) type theory. The weak validity of the ideal Ohm’s law in the inertial range is shown via rigorous estimates of the terms in the generalized Ohm’s Law. All non-ideal terms are irrelevant in the RG sense and large-scale reconnection is thus governed solely by ideal dynamics. We discuss the implications for heliospheric reconnection, in particular for deviations from the Parker spiral model. Solar wind observations show that reconnection in a turbulence-broadened heliospheric current sheet, which is consistent with Lazarian–Vishniac theory, leads to slip velocities that cause field lines to lag relative to the spiral model.

  19. Multi-Field/-Scale Interaction of Neoclassical Tearing Modes with Turbulence and Impact on Plasma Confinement

    NASA Astrophysics Data System (ADS)

    Bardoczi, Laszlo

    Neoclassical Tearing Modes (NTMs) are a major impediment in the development of operational scenarios of present toroidal fusion devices. The multi-scale and non-linear interaction of NTMs with turbulence has been an active field of theoretical plasma research in the past decade for its role in plasma confinement. However, little to no experimental effort has been devoted to explore this interaction. As part of this thesis, dedicated experiments were conducted utilizing the full complement of the DIII-D turbulence diagnostics to study the effect of NTM on turbulence as well as the effect of turbulence on NTM growth. The first localized measurements of long and intermediate wavelength turbulent density fluctuations and long wavelength turbulent electron temperature fluctuations modified by magnetic islands are presented. These long and intermediate wavelengths correspond to the expected Ion Temperature Gradient (ITG) and Trapped Electron Mode (TEM) scales, respectively. Two regimes were observed when tracking density fluctuations during NTM evolution: (1) small islands are characterized by steep electron temperature radial profile and turbulence levels comparable to that of the background; (2) large islands have a flat electron temperature profile and reduced turbulence level at the O-point. Radially outside of the large island, the electron temperature profile is steeper and the turbulence level increased compared to the no or small island case. It was also found that turbulence is reduced in the O-point region compared to the X-point region. This helical structure of turbulence modification leads to a 15% modulation of the density fluctuation power as the island rotates in the lab frame and this modulation is nearly in phase with the electron temperature modulation. These measurements were also used to determine the turbulence penetration length scale at the island separatrix and was found that the turbulence penetration length scale is on the order of the

  20. Effects of turbulent plasma scattering on the X-ray spectra of celestial bodies

    NASA Astrophysics Data System (ADS)

    Li, X.-Q.; Zhang, Z.-D.

    1981-12-01

    The paper investigates the effect of scattering by plasma turbulence on the Compton process, which converts Langmuir turbulent plasmas into high-frequency electromagnetic waves. The analysis demonstrates that the scattering greatly alters the spectral characteristics of the high-frequency radiation. A structural model for the active region producing the radiation is developed, and the temperature distribution in the X-radiation region of a large flare is calculated, showing the same general trend as the empirical distribution Machado et. al (1975) for low-temperature flares.

  1. Reconnection AND Bursty Bulk Flow Associated Turbulence IN THE Earth'S Plasma Sheet

    NASA Astrophysics Data System (ADS)

    Voros, Z.; Nakamura, R.; Baumjohann, W.; Runov, A.; Volwerk, M.; Jankovicova, D.; Balogh, A.; Klecker, B.

    2006-12-01

    Reconnection related fast flows in the Earth's plasma sheet can be associated with several accompanying phenomena, such as magnetic field dipolarization, current sheet thinning and turbulence. Statistical analysis of multi-scale properties of turbulence facilitates to understand the interaction of the plasma flow with the dipolar magnetic field and to recognize the remote or nearby temporal and spatial characteristics of reconnection. The main emphasis of this presentation is on differentiating between the specific statistical features of flow associated fluctuations at different distances from the reconnection site.

  2. Ion acoustic turbulence and transport in a plasma in a strong electric field

    NASA Astrophysics Data System (ADS)

    Bychenkov, V. Iu.; Gradov, O. M.; Silin, V. P.

    1984-01-01

    A theory is derived for the nonlinear state which is established in a plasma when the ion acoustic instability is suppressed by nonlinear induced wave scattering by ions, and there is a quasi-linear relaxation of electrons among turbulent fluctuations. The behavior of the ion acoustic noise spectrum and of transport processes in strong fields, where the anomalous plasma resistance is a square-root function of the field intensity, is found. In this region of electric fields there is a universal distribution of the ion acoustic fluctuations in the magnitude of the wave vector and in angle for the turbulence spectrum.

  3. Fundamental emission via wave advection from a collapsing wave packet in electromagnetic strong plasma turbulence

    SciTech Connect

    Jenet, F. A.; Melatos, A.; Robinson, P. A.

    2007-10-15

    Zakharov simulations of nonlinear wave collapse in continuously driven two-dimensional, electromagnetic strong plasma turbulence with electron thermal speeds v{>=}0.01c show that for v < or approx. 0.1c, dipole radiation occurs near the plasma frequency, mainly near arrest, but for v > or approx. 0.1c, a new mechanism applies in which energy oscillates between trapped Langmuir and transverse modes until collapse is arrested, after which trapped transverse waves are advected into incoherent interpacket turbulence by an expanding annular density well, where they detrap. The multipole structure, Poynting flux, source current, and radiation angular momentum are computed.

  4. Statistical description of turbulent transport for flux driven toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Imadera, K.; Kishimoto, Y.; Li, J. Q.; Nordman, H.

    2017-06-01

    A novel methodology to analyze non-Gaussian probability distribution functions (PDFs) of intermittent turbulent transport in global full-f gyrokinetic simulations is presented. In this work, the auto-regressive integrated moving average (ARIMA) model is applied to time series data of intermittent turbulent heat transport to separate noise and oscillatory trends, allowing for the extraction of non-Gaussian features of the PDFs. It was shown that non-Gaussian tails of the PDFs from first principles based gyrokinetic simulations agree with an analytical estimation based on a two fluid model.

  5. Solar wind eddies and the heliospheric current sheet

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Mccomas, D. J.; Bame, S. J.; Goldstein, B. E.

    1995-01-01

    Ulysses has collected data between 1 and 5 AU during, and just following solar maximum, when the heliospheric current sheet (HCS) can be thought of as reaching its maximum tilt and being subject to the maximum amount of turbulence in the solar wind. The Ulysses solar wind plasma instrument measures the vector velocity and can be used to estimate the flow speed and direction in turbulent 'eddies' in the solar wind that are a fraction of an astronomical unit in size and last (have either a turnover or dynamical interaction time of) several hours to more than a day. Here, in a simple exercise, these solar wind eddies at the HCS are characterized using Ulysses data. This character is then used to define a model flow field with eddies that is imposed on an ideal HCS to estimate how the HCS will be deformed by the flow. This model inherently results in the complexity of the HCS increasing with heliocentric distance, but the result is a measure of the degree to which the observed change in complexity is a measure of the importance of solar wind flows in deforming the HCS. By comparison with randomly selected intervals not located on the HCS, it appears that eddies on the HCS are similar to those elsewhere at this time during the solar cycle, as is the resultant deformation of the interplanetary magnetic field (IMF). The IMF deformation is analogous to what is often termed the 'random walk' of interplanetary magnetic field lines.

  6. Suppressed ion-scale turbulence in a hot high-β plasma

    NASA Astrophysics Data System (ADS)

    Schmitz, L.; Fulton, D. P.; Ruskov, E.; Lau, C.; Deng, B. H.; Tajima, T.; Binderbauer, M. W.; Holod, I.; Lin, Z.; Gota, H.; Tuszewski, M.; Dettrick, S. A.; Steinhauer, L. C.

    2016-12-01

    An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements.

  7. Suppressed ion-scale turbulence in a hot high-β plasma.

    PubMed

    Schmitz, L; Fulton, D P; Ruskov, E; Lau, C; Deng, B H; Tajima, T; Binderbauer, M W; Holod, I; Lin, Z; Gota, H; Tuszewski, M; Dettrick, S A; Steinhauer, L C

    2016-12-21

    An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements.

  8. Suppressed ion-scale turbulence in a hot high-β plasma

    PubMed Central

    Schmitz, L.; Fulton, D. P.; Ruskov, E.; Lau, C.; Deng, B. H.; Tajima, T.; Binderbauer, M. W.; Holod, I.; Lin, Z.; Gota, H.; Tuszewski, M.; Dettrick, S. A.; Steinhauer, L. C.

    2016-01-01

    An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements. PMID:28000675

  9. Vortices, Reconnection and Turbulence in High Electron-Beta Plasmas

    SciTech Connect

    Stenzel, R. L.

    2004-08-31

    Plasmas in which the kinetic energy exceeds the magnetic energy by a significant factor are common in space and in the laboratory. Such plasmas can convect magnetic fields and create null points in whose vicinity first the ions become unmagnetized, then the electrons. This project focuses on the detailed study of the transition regime of these plasmas.

  10. Cosmic rays in the heliosphere

    NASA Technical Reports Server (NTRS)

    Webber, William R.

    1987-01-01

    The different types of cosmic ray particles and their role in the heliosphere are briefly described. The rates of various energetic particles were examined as a function of time and used to derive various differential energy gradients. The Pioneer and Voyager cosmic ray observations throughout the heliosphere are indeed giving a perspective on the three-dimensional character and size of the heliosphere. Most clearly the observations are emphasizing the role that transient variations in the outer heliosphere, and most likely the heliospheric boundary shock, play in the 11 year solar cycle modulation of cosmic rays.

  11. The Potential for Characterizing the Heliosphere and Disturbances with LOFAR Faraday Rotation Observations

    NASA Astrophysics Data System (ADS)

    Salah, J. E.; Kasper, J. C.; Oberoi, D.; Lonsdale, C.; Lazarus, A. J.; Bird, M. K.

    2003-12-01

    A linearly polarized radio wave propagating along a magnetic field line may be represented as a combination of two components with right and left-hand circular polarizations. In a magnetized plasma such as the heliosphere these two circular polarizations experience different indices of refraction, leading to a phase lag between the two components. This phase lag results in Faraday Rotation - an overall rotation of the angle of the original linearly polarized wave. The extent of Faraday Rotation is proportional to the component of the magnetic field along the direction of propagation, the electron number density, and the square of the wavelength of the radiation. Faraday Rotation may be used to probe the three-dimensional electron number density and magnetic field topology of both the background heliosphere and of transients such as coronal mass ejections (CMEs). It is particularly interesting to note that the rotation is proportional to the total electron number density, in contrast to the signals from Interplanetary Scintillation (IPS), which are only a function of density fluctuations. Prior work in this topic typically involves monitoring variation in the polarization of either extragalactic sources or of transmitted telemetry from spacecraft such as Helios. These observations have been successfully used to study turbulence and propagating transients in the inner heliosphere. We have begun a study of the potential for the Low Frequency Array (LOFAR) to characterize both the background heliosphere and transients. LOFAR is a possible aperture synthesis radio interferometer for the 10-240 MHz range consisting of hundreds of thousands of individual receivers. The array will operate as a fully digitally steered instrument, in which the signals from the antennae may be combined to simultaneously image multiple regions in the sky. Among the factors which make LOFAR appealing to Faraday Rotation studies are the large wavelengths of the observations, the high sensitivity

  12. Plasma Turbulence and Kinetic Instabilities at Ion Scales in the Expanding Solar Wind

    NASA Astrophysics Data System (ADS)

    Hellinger, Petr; Matteini, Lorenzo; Landi, Simone; Verdini, Andrea; Franci, Luca; Trávníček, Pavel M.

    2015-10-01

    The relationship between a decaying strong turbulence and kinetic instabilities in a slowly expanding plasma is investigated using two-dimensional (2D) hybrid expanding box simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we start with a spectrum of large-scale, linearly polarized, random-phase Alfvénic fluctuations that have energy equipartition between kinetic and magnetic fluctuations and vanishing correlation between the two fields. A turbulent cascade rapidly develops; magnetic field fluctuations exhibit a power-law spectrum at large scales and a steeper spectrum at ion scales. The turbulent cascade leads to an overall anisotropic proton heating, protons are heated in the perpendicular direction, and, initially, also in the parallel direction. The imposed expansion leads to generation of a large parallel proton temperature anisotropy which is at later stages partly reduced by turbulence. The turbulent heating is not sufficient to overcome the expansion-driven perpendicular cooling and the system eventually drives the oblique firehose instability in a form of localized nonlinear wave packets which efficiently reduce the parallel temperature anisotropy. This work demonstrates that kinetic instabilities may coexist with strong plasma turbulence even in a constrained 2D regime.

  13. Multiple heliospheric current sheets and coronal streamer belt dynamics

    NASA Technical Reports Server (NTRS)

    Crooker, N. U.; Siscoe, G. L.; Shodhan, S.; Webb, D. F.; Gosling, J. T.; Smith, E. J.

    1993-01-01

    The occurrence of multiple directional discontinuities in the coronal streamer belt at sector boundary crossings in the heliosphere, often ascribed to waves or kinks in the heliospheric current sheet, may alternatively be attributed to a network of extended current sheets from multiple helmet streamers with a hierarchy of sizes at the base of the corona. Frequent transient outflows from these helmets can account for a variety of signatures observed at sector boundaries, including ordered field rotations, planar magnetic structures and sandwichlike plasma structure.

  14. The Self-Consistent Generation of Current Sheets in Astrophysical Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Howes, Gregory

    2014-10-01

    In space and astrophysical plasma turbulence, it has long been recognized that dissipation occurs predominantly in intermittent current sheets, with vigorous activity in the past few years focused on obtaining observational evidence for such localized dissipation in the near-Earth solar wind. The nature of these magnetic discontinuities and their associated current sheets measured in the solar wind remains unclear--are these discontinuities due to filamentary magnetic structure in the solar wind, or do they arise dynamically from turbulent interactions? Recent analytical solution, numerical validation, and experimental verification of the nonlinear energy transfer in Alfven wave collisions, the nonlinear interactions between counterpropagating Alfven waves, has established this interaction as the fundamental building block of astrophysical plasma turbulence. Here I will present first-principles analytical calculations and supporting numerical simulations that Alfven wave collisions in the strong turbulence limit naturally produce current sheets, providing the first theoretical unification of models of plasma turbulence mediated by Alfven waves with ideas on localized dissipation in current sheets. Supported by NSF CAREER Award AGS-1054061, NSF Grant PHY-10033446, and NASA Grant NNX10AC91G.

  15. A tutorial introduction to the statistical theory of turbulent plasmas, a half-century after Kadomtsev's Plasma Turbulence and the resonance-broadening theory of Dupree and Weinstock

    NASA Astrophysics Data System (ADS)

    Krommes, John A.

    2015-12-01

    > In honour of the 50th anniversary of the influential review/monograph on plasma turbulence by B. B. Kadomtsev as well as the seminal works of T. H. Dupree and J. Weinstock on resonance-broadening theory, an introductory tutorial is given about some highlights of the statistical-dynamical description of turbulent plasmas and fluids, including the ideas of nonlinear incoherent noise, coherent damping, and self-consistent dielectric response. The statistical closure problem is introduced. Incoherent noise and coherent damping are illustrated with a solvable model of passive advection. Self-consistency introduces turbulent polarization effects that are described by the dielectric function . Dupree's method of using to estimate the saturation level of turbulence is described; then it is explained why a more complete theory that includes nonlinear noise is required. The general theory is best formulated in terms of Dyson equations for the covariance and an infinitesimal response function , which subsumes . An important example is the direct-interaction approximation (DIA). It is shown how to use Novikov's theorem to develop an -space approach to the DIA that is complementary to the original -space approach of Kraichnan. A dielectric function is defined for arbitrary quadratically nonlinear systems, including the Navier-Stokes equation, and an algorithm for determining the form of in the DIA is sketched. The independent insights of Kadomtsev and Kraichnan about the problem of the DIA with random Galilean invariance are described. The mixing-length formula for drift-wave saturation is discussed in the context of closures that include nonlinear noise (shielded by ). The role of in the calculation of the symmetry-breaking (zonostrophic) instability of homogeneous turbulence to the generation of inhomogeneous mean flows is addressed. The second-order cumulant expansion and the stochastic structural stability theory are also discussed in that context. Various historical

  16. Local Regulation of Interchange Turbulence in a Dipole-Confined Plasma Torus using Current-Collection Feedback

    NASA Astrophysics Data System (ADS)

    Roberts, T. Maximillian

    2014-10-01

    Turbulence in a dipole-confined plasma is dominated by interchange fluctuations with complex dynamics and short coherence. We report the first laboratory demonstration of the regulation of interchange turbulence in a plasma torus confined by an axisymmetric dipole magnet using active feedback. Feedback is performed by varying the bias to an electrode in proportion to the electric potential measured at other locations. The phase and amplitude of the bias to the electrode is adjusted with a linear circuit, forming a relatively broad-band current-collection feedback system. Changing the gain and phase of collection results in modification of turbulent fluctuations, observed as amplification or suppression of turbulent spectrum. Significantly, power can be either extracted from or injected into the turbulence. When the gain and phase are adjusted to suppress turbulence, the external circuit becomes a controlled load extracting power from the plasma. This is analogous to the regulation of magnetospheric convection by ionospheric currents. When the gain and phase of the external circuit is adjusted to amplify turbulence, the direction of power flow from the electrode reverses, enhancing the fluctuations. Although we observe significant changes to the intensity and spectrum of plasma fluctuations, these changes appear only on those magnetic field lines within a region near the current collector equal in size to the turbulent correlation length and shifted in the direction of the electron magnetic drift. We conclude that the effects of this feedback on turbulence in a dipole plasma torus is localized. The clear influence of current-collection feedback on interchange turbulence suggests the possibility of global regulation of turbulent motion using multiple sensor and electrode pairs as well as the ability to perform controlled tests of bounce-averaged gyrokinetic theory of turbulence in the geometry of a dipole plasma torus. Supported by NSF-DOE Partnership for Plasma

  17. Fluctuation-induced shear flow and energy transfer in plasma interchange turbulence

    SciTech Connect

    Li, B.; Sun, C. K.; Wang, X. Y.; Zhou, A.; Wang, X. G.; Ernst, D. R.

    2015-11-15

    Fluctuation-induced E × B shear flow and energy transfer for plasma interchange turbulence are examined in a flux-driven system with both closed and open magnetic field lines. The nonlinear evolution of interchange turbulence shows the presence of two confinement regimes characterized by low and high E × B flow shear. In the first regime, the large-scale turbulent convection is dominant and the mean E × B shear flow is at a relatively low level. By increasing the heat flux above a certain threshold, the increased turbulent intensity gives rise to the transfer of energy from fluctuations to mean E × B flows. As a result, a transition to the second regime occurs, in which a strong mean E × B shear flow is generated.

  18. Turbulent momentum transport in core tokamak plasmas and penetration of scrape-off layer flows

    NASA Astrophysics Data System (ADS)

    Abiteboul, J.; Ghendrih, Ph; Grandgirard, V.; Cartier-Michaud, T.; Dif-Pradalier, G.; Garbet, X.; Latu, G.; Passeron, C.; Sarazin, Y.; Strugarek, A.; Thomine, O.; Zarzoso, D.

    2013-07-01

    The turbulent transport of toroidal angular momentum in the core of a tokamak plasma is investigated in global, full-f gyrokinetic simulations, performed with the GYSELA code in the flux-driven regime. During the initial turbulent phase, a front of positive Reynolds stress propagates radially, generating intrinsic toroidal rotation from a vanishing initial profile. This is also accompanied by a propagating front of turbulent heat flux. In the statistical steady-state regime, turbulent transport exhibits large-scale avalanche-like events which are found to transport both heat and momentum, and similar statistical properties are obtained for both fluxes. The impact of scrape-off layer flows is also investigated by modifying the boundary conditions in the simulations. The observed impact is radially localized for L-mode like poloidal profiles of parallel velocity at the edge, while a constant velocity at the edge can modify the core toroidal rotation profile in a large fraction of the radial domain.

  19. Interaction of neutral atoms and plasma turbulence in the tokamak edge region

    NASA Astrophysics Data System (ADS)

    Wersal, Christoph; Ricci, Paolo; Jorge, Rogerio; Morales, Jorge; Paruta, Paola; Riva, Fabio

    2016-10-01

    A novel first-principles self-consistent model that couples plasma and neutral atom physics suitable for the simulation of turbulent plasma behaviour in the tokamak edge region has been developed and implemented in the GBS code. While the plasma is modelled by the drift-reduced two fluid Braginskii equations, a kinetic model is used for the neutrals, valid in short and in long mean free path scenarios. The model includes ionization, charge-exchange, recombination, and elastic collisional processes. The model was used to study the transition form the sheath to the conduction limited regime, to include gas puffs in the simulations, and to investigate the interplay between neutral atoms and plasma turbulence.

  20. Experimental observation of electron-temperature-gradient turbulence in a laboratory plasma.

    PubMed

    Mattoo, S K; Singh, S K; Awasthi, L M; Singh, R; Kaw, P K

    2012-06-22

    We report the observation of electron-temperature-gradient (ETG) driven turbulence in the laboratory plasma of a large volume plasma device. The removal of unutilized primary ionizing and nonthermal electrons from uniform density plasma and the imposition and control of the gradient in the electron temperature (T[Symbol: see text] T(e)) are all achieved by placing a large (2 m diameter) magnetic electron energy filter in the middle of the device. In the dressed plasma, the observed ETG turbulence in the lower hybrid range of frequencies ν = (1-80 kHz) is characterized by a broadband with a power law. The mean wave number k perpendicular ρ(e) = (0.1-0.2) satisfies the condition k perpendicular ρ(e) ≤ 1, where ρ(e) is the electron Larmor radius.

  1. Energy Dissipation and Landau Damping in Two- and Three-dimensional Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Li, Tak Chu; Howes, Gregory G.; Klein, Kristopher G.; TenBarge, Jason M.

    2016-12-01

    Plasma turbulence is ubiquitous in space and astrophysical plasmas, playing an important role in plasma energization, but the physical mechanisms leading to dissipation of the turbulent energy remain to be definitively identified. Kinetic simulations in two dimensions (2D) have been extensively used to study the dissipation process. How the limitation to 2D affects energy dissipation remains unclear. This work provides a model of comparison between two- and three-dimensional (3D) plasma turbulence using gyrokinetic simulations; it also explores the dynamics of distribution functions during the dissipation process. It is found that both 2D and 3D nonlinear gyrokinetic simulations of a low-beta plasma generate electron velocity-space structures with the same characteristics as that of the linear Landau damping of Alfvén waves in a 3D linear simulation. The continual occurrence of the velocity-space structures throughout the turbulence simulations suggests that the action of Landau damping may be responsible for the turbulent energy transfer to electrons in both 2D and 3D, and makes possible the subsequent irreversible heating of the plasma through collisional smoothing of the velocity-space fluctuations. Although, in the 2D case where variation along the equilibrium magnetic field is absent, it may be expected that Landau damping is not possible, a common trigonometric factor appears in the 2D resonant denominator, leaving the resonance condition unchanged from the 3D case. The evolution of the 2D and 3D cases is qualitatively similar. However, quantitatively, the nonlinear energy cascade and subsequent dissipation is significantly slower in the 2D case.

  2. Plasma density irregularities in the equatorial D-region produced by neutral turbulence

    NASA Astrophysics Data System (ADS)

    Sinha, H. S. S.

    1992-01-01

    Plasma density irregularities in the D-region are studied in a large-scale size range (1-300 m) during the daytime. The amplitude of these irregularities ranges from a few percent for small-scale sizes (under 15 m) to 10-15 percent for larger-scale sizes (15-300 m). Spectra of all the daytime irregularities clearly exhibit a change in the spectral index at a scale corresponding to a few tens of meters. Turbulence parameters, namely the vertical turbulent velocity, the energy dissipation rate, the eddy diffusion coefficient, the bouyancy scale, and the Kolmogorov microscale are derived. The spectral index of the irregularities in the inertial subrange is found to be very close to -5/3, indicating that these irregularities are produced by the neutral turbulence mechanism. These irregularities are distinctly different, in their appearance and extent, from the irregularities produced by plasma instabilities such as cross-field and two-stream instabilities.

  3. Particle pinch and collisionality in gyrokinetic simulations of tokamak plasma turbulence

    SciTech Connect

    Angioni, C.; Candy, J.; Waltz, R. E.; Fable, E.; Maslov, M.; Weisen, H.; Peeters, A. G.

    2009-06-15

    The generic problem of how, in a turbulent plasma, the experimentally relevant conditions of a particle flux very close to the null are achieved, despite the presence of strong heat fluxes, is addressed. Nonlinear gyrokinetic simulations of plasma turbulence in tokamaks reveal a complex dependence of the particle flux as a function of the turbulent spatial scale and of the velocity space as collisionality is increased. At experimental values of collisionality, the particle flux is found close to the null, in agreement with the experiment, due to the balance between inward and outward contributions at small and large scales, respectively. These simulations provide full theoretical support to the prediction of a peaked density profile in a future nuclear fusion reactor.

  4. Effect of driving frequency on excitation of turbulence in a kinetic plasma

    SciTech Connect

    Parashar, T. N.; Shay, M. A.; Matthaeus, W. H.; Servidio, S.; Breech, B.

    2011-09-15

    The effect of driving frequency on the efficiency of turbulence generation through magnetic forcing is studied using kinetic hybrid simulations with fully kinetic ions and fluid electrons. The efficiency of driving is quantified by examining the energy input into magnetic field as well as the thermal energy for various driving frequencies. The driving is efficient in exciting turbulence and heating the plasma when the time period of the driving is larger than the nonlinear time of the system. For driving at faster time scales, the energy input is weak and the steady state energy is much lower. The heating of the plasma is correlated with intermittent properties of the magnetic field, which are manifested as non-Gaussian statistics. Implications for turbulence in solar corona are discussed.

  5. Observation of turbulent intermittency scaling with magnetic helicity in an MHD plasma wind tunnel.

    PubMed

    Schaffner, D A; Wan, A; Brown, M R

    2014-04-25

    The intermittency in turbulent magnetic field fluctuations has been observed to scale with the amount of magnetic helicity injected into a laboratory plasma. An unstable spheromak injected into the MHD wind tunnel of the Swarthmore Spheromak Experiment displays turbulent magnetic and plasma fluctuations as it relaxes into a Taylor state. The level of intermittency of this turbulence is determined by finding the flatness of the probability distribution function of increments for magnetic pickup coil fluctuations B˙(t). The intermittency increases with the injected helicity, but spectral indices are unaffected by this variation. While evidence is provided which supports the hypothesis that current sheets and reconnection sites are related to the generation of this intermittent signal, the true nature of the observed intermittency remains unknown.

  6. Turbulent transport and heating in the auroral plasma of the topside ionosphere

    NASA Technical Reports Server (NTRS)

    Ionson, J. A.; Ong, R. S. B.; Fontheim, E. G.

    1979-01-01

    Using plasma parameters from a typical stormtime ionospheric energy balance model, we have investigated the effects of plasma turbulence on the auroral magnetoplasma. The turbulence is assumed to be comprised of electrostatic ion cyclotron waves. These waves have been driven to a nonthermal level by a geomagnetic field-aligned, current-driven instability. The evolution of this instability is shown to proceed in two stages and indicates an anomalous increase in field-aligned electrical resistivity and cross-field ion thermal conductivity as well as a decrease in electron thermal conductivity along the geomagnetic field. In addition, this turbulence heats ions perpendicular to the geomagnetic field and hence leads to a significant ion temperature anisotropy.

  7. Optical and electrical diagnostics for the investigation of edge turbulence in fusion plasmas

    SciTech Connect

    Cavazzana, R.; Scarin, P.; Serianni, G.; Agostini, M.; Degli Agostini, F.; Cervaro, V.; Lotto, L.; Yagi, Y.; Sakakita, H.; Koguchi, H.; Hirano, Y.

    2004-10-01

    A new, two dimensional and fast diagnostic system has been developed for studying the dynamic structure of plasma turbulence; it will be used in the edge of the reversed-field pinch devices TPE-RX and RFX. The system consists of a gas-puffing nozzle, 32 optical channels measuring H{sub {alpha}} emitted from the puffed gas (to study the optical emissivity of turbulent patterns and to analyze structures in two dimensions), and an array of Langmuir probes (to compare the turbulent pattern with the optical method and to measure the local plasma parameters). The signals can be acquired at 10 Msamples/s with 2 MHz band width. The design of the system, calibrations, and tests of the electronic circuitry and the optical sensors are presented.

  8. Kinetic turbulence and non-thermal particle acceleration in relativistically hot plasma

    NASA Astrophysics Data System (ADS)

    Zhdankin, Vladimir; Werner, Gregory; Uzdensky, Dmitri

    2016-10-01

    We describe particle-in-cell numerical simulations of driven turbulence in collisionless, relativistically hot pair plasma. We initialize each simulation as a thermal bath, which is disrupted by the driving to develop turbulent fluctuations across a broad range of scales. We measure the energy spectra at fluid scales and at sub-Larmor scales, showing them to be consistent with a magnetohydrodynamic cascade and phase-space cascade, respectively. We demonstrate that a non-thermal particle distribution develops across a broad range of energies, with a late-time power-law index that decreases with increasing magnetization (decreasing plasma beta), much like in similar studies of magnetic reconnection. We suggest that turbulence may a ubiquitous and versatile mechanism of non-thermal particle acceleration in high energy astrophysical systems such as pulsar wind nebulae.

  9. On the properties of energy transfer in solar wind turbulence.

    NASA Astrophysics Data System (ADS)

    Sorriso-Valvo, Luca; Marino, Raffaele; Chen, Christopher H. K.; Wicks, Robert; Nigro, Giuseppina

    2017-04-01

    Spacecraft observations have shown that the solar wind plasma is heated during its expansion in the heliosphere. The necessary energy is made available at small scales by a turbulent cascade, although the nature of the heating processes is still debated. Because of the intermittent nature of turbulence, the small-scale energy is inhomogeneously distributed in space, resulting for example in the formation of highly localized current sheets and eddies. In order to understand the small-scale plasma processes occurring in the solar wind, the global and local properties of such energy distribution must be known. Here we study such properties using a proxy derived from the Von Karman-Howart relation for magnetohydrodynamics. The statistical properties of the energy transfer rate in the fluid range of scales are studied in detail using WIND spacecraft plasma and magnetic field measurements and discussed in the framework of the multifractal turbulent cascade. Dependence of the energy dissipation proxy on the solar wind conditions (speed, type, solar activity...) is analysed, and its evolution during solar wind expansion in the heliosphere is described using Helios II and Ulysses measurements. A comparison with other proxies, such as the PVI, is performed. Finally, the local singularity properties of the energy dissipation proxy are conditionally compared to the corresponding particle velocity distributions. This allows the identification of specific plasma features occurring near turbulent dissipation events, and could be used as enhanced mode trigger in future space missions.

  10. IRIS Diagnoses of Man-Made and Naturally-Occurring Ionospheric Plasma Turbulence

    DTIC Science & Technology

    2005-03-01

    swept-frequency HF radar that operates between 1 and 20 MHz. Output ionograms are plots of radar reflection heights as functions of frequency...corresponding to the local ionospheric plasma density). Diffuse echoes on ionograms called spread F, indicate the presence of plasma turbulence in the... Ionograms were recorded every 5 minutes. The ionosonde and ISR operated simultaneously to monitor the occurrence of spread-F due to bottomside

  11. Comparison of deep space and near-earth observations of plasma turbulence at solar wind discontinuities

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.; Fredricks, R. W.; Green, I. M.

    1972-01-01

    Simultaneous observations of plasma waves from the electric field instruments on Pioneer 9 and OGO 5 are used to illustrate the difference between near-earth and deep space conditions. It is shown that the experimental study of true interplanetary wave-particle interactions is difficult to carry out from an earth orbiter because the earth provides significant fluxes of nonthermal particles that generate intense plasma turbulence in the upstream region.

  12. Langmuir turbulence driven by beams in solar wind plasmas with long wavelength density fluctuations

    SciTech Connect

    Krafft, C.; Volokitin, A.

    2016-03-25

    The self-consistent evolution of Langmuir turbulence generated by electron beams in solar wind plasmas with density inhomogeneities is calculated by numerical simulations based on a 1D Hamiltonian model. It is shown, owing to numerical simulations performed with parameters relevant to type III solar bursts’ conditions at 1 AU, that the presence of long-wavelength random density fluctuations of sufficiently large average level crucially modifies the well-known process of beam interaction with Langmuir waves in homogeneous plasmas.

  13. Turbulence and wave particle interactions in solar-terrestrial plasmas

    NASA Technical Reports Server (NTRS)

    Dulk, G. A.; Goldman, M. V.; Toomre, J.

    1985-01-01

    Activities in the following study areas are reported: (1) particle and wave processes in solar flares; (2) solar convection zone turbulence; and (3) solar radiation emission. To investigate the amplification of cyclotron maser radiation in solar flares, a radio frequency. (RF) heating model was developed for the corona surrounding the energy release site. Then nonlinear simulations of compressible convection display prominent penetration by plumes into regions of stable stratification at the base of the solar convection zone, leading to the excitation of internal gravity waves there. Lastly, linear saturation of electron-beam-driven Langmuir waves by ambient density fluctuations, nonlinear saturation by strong turbulence processes, and radiation emission mechanisms are examined. An additional section discusses solar magnetic fields and hydromagnetic waves in inhomogeneous media, and the effect of magnetic fields on stellar oscillation.

  14. Global full-f gyrokinetic simulations of plasma turbulence

    NASA Astrophysics Data System (ADS)

    Grandgirard, V.; Sarazin, Y.; Angelino, P.; Bottino, A.; Crouseilles, N.; Darmet, G.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, Ph; Jolliet, S.; Latu, G.; Sonnendrücker, E.; Villard, L.

    2007-12-01

    Critical physical issues can be specifically tackled with the global full-f gyrokinetic code GYSELA. Three main results are presented. First, the self-consistent treatment of equilibrium and fluctuations highlights the competition between two compensation mechanisms for the curvature driven vertical charge separation, namely, parallel flow and polarization. The impact of the latter on the turbulent transport is discussed. In the non-linear regime, the benchmark with the Particle-In-Cell code ORB5 looks satisfactory. Second, the transport scaling with ρ* is found to depend both on ρ* itself and on the distance to the linear threshold. Finally, a statistical steady-state turbulent regime is achieved in a reduced version of GYSELA by prescribing a constant heat source.

  15. On the Nonlinear Conductivity Tensor for an Unmagnetized Relativistic Turbulent Plasma.

    DTIC Science & Technology

    1982-02-01

    New York (1977). (10) L. M. Al’tshul’ and V. I. Karpman , The Kinetics of Waves in a Weakly Turbulent Plasma, Zh. Eksp. Teor. Fiz., 47 (1964), 1552...LONTZ DEFENSE FOR RESEARCH & ENGINEERING ATTN B. D. GUENTHER DIR ENERGY TECHNOLOGY OFFICE ATTN TECH LIBRARY ATTN J. R. AIREY RESEARCH TRIANGLE PARK, NC

  16. Alfvén wave collisions, the fundamental building block of plasma turbulence. I. Asymptotic solution

    SciTech Connect

    Howes, G. G.; Nielson, K. D.

    2013-07-15

    The nonlinear interaction between counterpropagating Alfvén waves is the physical mechanism underlying the cascade of energy to small scales in astrophysical plasma turbulence. Beginning with the equations for incompressible MHD, an asymptotic analytical solution for the nonlinear evolution of these Alfvén wave collisions is derived in the weakly nonlinear limit. The resulting qualitative picture of nonlinear energy transfer due to this mechanism involves two steps: first, the primary counterpropagating Alfvén waves interact to generate an inherently nonlinear, purely magnetic secondary fluctuation with no parallel variation; second, the two primary waves each interact with this secondary fluctuation to transfer energy secularly to two tertiary Alfvén waves. These tertiary modes are linear Alfvén waves with the same parallel wavenumber as the primary waves, indicating the lack of a parallel cascade. The amplitude of these tertiary modes increases linearly with time due to the coherent nature of the resonant four-wave interaction responsible for the nonlinear energy transfer. The implications of this analytical solution for turbulence in astrophysical plasmas are discussed. The solution presented here provides valuable intuition about the nonlinear interactions underlying magnetized plasma turbulence, in support of an experimental program to verify in the laboratory the nature of this fundamental building block of astrophysical plasma turbulence.

  17. Application of Soft Computing Techniques to Experimental Space Plasma Turbulence Observations - Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Bates, I.; Lawton, A.; Breikin, T.; Dunlop, M.

    Space Systems Group, University of Sheffield, U.K. Automatic Control and Systems Engineering, University of Sheffield, U.K. 3 Imperial College, London, U.K.A Genetic Algorithm (GA) approach is presented to solve a problem for turbulent space plasma system modelling in the form of Generalised Frequency Response Functions (GFRFs), using in-situ multi-satellite magnetic field measurements of the plasma turbulence. Soft Computing techniques have now been used for many years in Industry for nonlinear system identification. These techniques approach the problem of understanding a system, e.g. a chemical plant or a jet engine, by model structure selection and fitting parameters of the chosen model for the system using measured inputs and outputs of the system, which can then be used to determine physical characteristics of the system. GAs are one such technique that has been developed, providing essentially a series of solutions that evolve in a way to improve the model. Experimental space plasma turbulence studies have benefited from these System Identification techniques. Multi-point satellite observations provide input and output measurements of the turbulent plasma system. In previous work it was found natural to fit parameters to GFRFs, which derive from Volterra series and lead to quantitative measurements of linear wave-field growth and higher order wave-wave interactions. In previous work these techniques were applied using a Least Squares (LS) parameter fit. Results using GAs are compared to results obtained from the LS approach.

  18. Effects of Surface Wave Turbulence on the Steep Density Gradients in Laser-Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Gradov, O. M.; Stenflo, L.

    1984-01-01

    We point out that the surface wave turbulence in the plasma region where the temperature and density have large gradients can reduce the thermal flux and consequently steepen the temperature and density profiles significantly. An expression for the resultant density gradient as a function of the stationary intensity of the excited surface modes is also calculated.

  19. Theory of coherent electron-scale magnetic structures in space plasma turbulence

    NASA Astrophysics Data System (ADS)

    Jovanović, Dušan; Alexandrova, Olga; Maksimović, Milan

    2015-08-01

    Recent spacecraft observations in the solar wind and in the Earth’s magnetosheath indicate that the dissipation range of magnetic turbulence probably takes place at electron scales. Here, we derive nonlinear electron magnetohydrodynamic (EMHD) equations for warm plasma, i.e. with the ratio of thermodynamic and magnetic pressures, β ∼ 1. This model describes plasma turbulence under the solar wind and magnetosheath conditions on the electron spatial scales and with the characteristic frequency that does not exceed the electron gyrofrequency. We show that at electron scales and in the presence of a sufficiently large temperature anisotropy {T}{e\\perp }/{T}{e\\parallel }\\gt 1, there exist self-organized, coherent, nonlinear dipole vortex structures associated with obliquely propagating whistler waves. These can be visualized as pairs of counterstreaming helicoidal currents that produce both the compressional and torsional perturbations of the magnetic field. In contrast to the previously known long-range EMHD dipolar vortices in a cold plasma, this novel solution is an evanescent mode, strongly localized in space (with wave numbers {k}\\perp \\gg {k}\\parallel ). It can constitute a building block for the plasma turbulence at short scales and provide a possible scenario of turbulence dissipation at electron scales.

  20. Probing plasma turbulence by modulating the electron temperature gradient

    SciTech Connect

    DeBoo, J. C.; Petty, C. C.; Holland, C.; Rhodes, T. L.; Schmitz, L.; Wang, G.; Doyle, E. J.; Hillesheim, J.; Peebles, W. A.; Zeng, L.; White, A. E.; Austin, M. E.; Yan, Z.

    2010-05-15

    The local value of a/L{sub Te}, a turbulence drive term, was modulated with electron cyclotron heating in L-mode discharges on DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] and the density and electron temperature fluctuations in low, intermediate, and high-k regimes were measured and compared with nonlinear gyrokinetic turbulence simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)]. The local drive term at rhoapprox0.6 was reduced by up to 50%, which produced comparable reductions in electron temperature fluctuations at low-k. At intermediate k, k{sub t}hetaapprox4 cm{sup -1} and k{sub t}hetarho{sub s}approx0.8, a very interesting and unexpected result was observed where density fluctuations increased by up to 10% when the local drive term was decreased by 50%. Initial comparisons of simulations from GYRO with the thermal diffusivity from power balance analysis and measured turbulence response are reported. Simulations for the case with the lowest drive term are challenging as they are near the marginal value of a/L{sub Te} for trapped electron mode activity.

  1. CENTORI: A global toroidal electromagnetic two-fluid plasma turbulence code

    NASA Astrophysics Data System (ADS)

    Knight, P. J.; Thyagaraja, A.; Edwards, T. D.; Hein, J.; Romanelli, M.; McClements, K. G.

    2012-11-01

    A new global two-fluid electromagnetic turbulence code, CENTORI, has been developed for the purpose of studying magnetically-confined fusion plasmas on energy confinement timescales. This code is used to evolve the combined system of electron and ion fluid equations and Maxwell equations in toroidal configurations with axisymmetric equilibria. Uniquely, the equilibrium is co-evolved with the turbulence, and is thus modified by it. CENTORI is applicable to tokamaks of arbitrary aspect ratio and high plasma beta. A predictor-corrector, semi-implicit finite difference scheme is used to compute the time evolution of fluid quantities and fields. Vector operations and the evaluation of flux surface averages are speeded up by choosing the Jacobian of the transformation from laboratory to plasma coordinates to be a function of the equilibrium poloidal magnetic flux. A subroutine, GRASS, is used to co-evolve the plasma equilibrium by computing the steady-state solutions of a diffusion equation with a pseudo-time derivative. The code is written in Fortran 95 and is efficiently parallelised using Message Passing Interface (MPI). Illustrative examples of output from simulations of a tearing mode in a large aspect ratio tokamak plasma and of turbulence in an elongated conventional aspect ratio tokamak plasma are provided.

  2. Effects of Bursty Bulk Flows on the Turbulence in the Plasma Sheet.

    NASA Astrophysics Data System (ADS)

    Stepanova, M. V.; Antonova, E. E.

    2014-12-01

    Recent studies have shown the importance of turbulent processes in the dynamics of the magnetosphere of the Earth, including plasma and energy transport and the plasma sheet stability. We studied the properties of the turbulent plasma sheet in the presence and in the absence of the bursty bulk flow events for different phases of geomagnetic substorms and for quiet geomagnetic conditions. The criteria used for the selection of BBFs are similar to ones established by Angelopoulos et al., (JGR, 1994). The classification of time intervals as quiet, expansion phase, and recovery phase was based on the variation of the AL-index (Stepanova et al., 2011). Statistical analysis was performed using the data of THEMIS probes during tail-science seasons. It was found that the plasma pressure is the parameter which experienced major variation if we compare the data for different substrom phases, and also in the presence and absence of BBFs: The radial plasma pressure profiles are steaper during the substorm expansion phase, the presence of BBFs smoothes this effect, especially during the recovery phase and the quiet time. Study of eddy diffusion showed that even in the absence of BBFs the plasma sheet is strongly turbulent. Analysis of bulk velocity data 20 minutes before and after a BBF showed that the BBFs could generate additional vorticity at the leading and trailing edges, but their contribution is not decisive.

  3. An intercomparison of plasma turbulence at three comets: Grigg-Skjellerup, Giacobini-Zinner, and Halley

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Glassmeier, K.-H.; Neubauer, F. M.

    1995-01-01

    We examine and intercompare the LF plasma wave turbulence at three comets: Grigg-Skjellerup (GS), Giacobini-Zinner (GZ), and Halley (H). All three have power spectral peaks at the local ion cyclotron frequency (the pump wave) at approx. 10(exp -2) Hz, and a power-law fall-off at higher frequencies that suggest the development of turbulent cascades. The power laws for the three comets are approximately f(exp -1.9), f(exp -1.9) and f(exp -2.1), respectively. However, other than the similarities in the power spectra, we find the magnetic field turbulence is considerably different at the three comets. Phase steepening is demonstrated to occur at the trailing edges of the GS waves. This is probably due to nonlinear steepening plus dispersion of the left-hand mode components. A coherency analysis of GZ turbulence indicates that it is primarily composed of righthanded mode components, i.e., the turbulence is 'whistlermode.' This too can be explained by nonlinear steepening plus dispersion of the magnetosonic waves. At the level of GS and GZ turbulence development when the spacecraft measurements were made, classical three-wave processes, such as the decay or modulation instabilities do not appear to play important roles. It is most likely that the nonlinear steepening and dispersive time scales are more rapid than three-wave processes, and the latter had not had time to develop for the relatively 'new' turbulence. The wave turbulence at Halley is linearly polarized. The exact nature of this turbulence is still not well understood at this time. Several possibilities are suggested, based on our preliminary analyses.

  4. Intrinsic momentum generation by a combined neoclassical and turbulence mechanism in diverted DIII-D plasma edge

    SciTech Connect

    Seo, Janghoon; Choe, W.; Chang, C. S.; Ku, S.; Kwon, J. M.; Müller, Stefan H.

    2014-09-15

    Fluid Reynolds stress from turbulence has usually been considered to be responsible for the anomalous toroidal momentum transport in tokamak plasma. Experiment by Müller et al. [Phys. Rev. Lett. 106, 115001 (2011)], however, reported that neither the observed edge rotation profile nor the inward momentum transport phenomenon at the edge region of an H-mode plasma could be explained by the fluid Reynolds stress measured with reciprocating Langmuir-probe. The full-function gyrokinetic code XGC1 is used to explain, for the first time, Müller et al.'s experimental observations. It is discovered that, unlike in the plasma core, the fluid Reynolds stress from turbulence is not sufficient for momentum transport physics in plasma edge. The “turbulent neoclassical” physics arising from the interaction between kinetic neoclassical orbit dynamics and plasma turbulence is key in the tokamak edge region across the plasma pedestal into core.

  5. Turbulence and selective decay in the SSX plasma wind tunnel

    NASA Astrophysics Data System (ADS)

    Gray, Tim; Brown, Michael; Dandurand, Dan; Fisher, Mike; Flanagan, Ken; Weinhold, Darren; Lukin, V.

    2011-10-01

    A helical, relaxed plasma state has been observed in a long cylindrical volume. The cylinder has dimensions L = 1 m and R = 0 . 08 m. The cylinder is long enough so that the predicted minimum energy state is a close approximation to the infinite cylinder solution. The plasma is injected at v >= 50 km/s by a coaxial magnetized plasma gun located at one end of the cylindrical volume. Typical plasma parameters are Ti = 25 eV, ne >=1015 cm-3, and B = 0 . 25 T. The relaxed state is rapidly attained in 1-2 axial Alfvén times after initiation of the plasma. Magnetic data is favorably compared with an analytical model. Magnetic data exhibits broadband fluctuations of the measured axial modes during the formation period. The broadband activity rapidly decays as the energy condenses into the lowest energy mode, which is in agreement to the minimum energy eigenstate of ∇ × B --> = λ B --> . While the global structure roughly corresponds to the minimum energy eigenstate for the wind tunnel geometry, the plasma is high beta (β = 0 . 5) and does not have a flat λ profile. Merging with plasma plumes injected from both ends of the cylinder will be compared to the non-merging plasmas. Supported by US DOE and NSF.

  6. Turbulent reconnection and its implications.

    PubMed

    Lazarian, A; Eyink, G; Vishniac, E; Kowal, G

    2015-05-13

    Magnetic reconnection is a process of magnetic field topology change, which is one of the most fundamental processes happening in magnetized plasmas. In most astrophysical environments, the Reynolds numbers corresponding to plasma flows are large and therefore the transition to turbulence is inevitable. This turbulence, which can be pre-existing or driven by magnetic reconnection itself, must be taken into account for any theory of magnetic reconnection that attempts to describe the process in the aforementioned environments. This necessity is obvious as three-dimensional high-resolution numerical simulations show the transition to the turbulence state of initially laminar reconnecting magnetic fields. We discuss ideas of how turbulence can modify reconnection with the focus on the Lazarian & Vishniac (Lazarian & Vishniac 1999 Astrophys. J. 517, 700-718 (doi:10.1086/307233)) reconnection model. We present numerical evidence supporting the model and demonstrate that it is closely connected to the experimentally proven concept of Richardson dispersion/diffusion as well as to more recent advances in understanding of the Lagrangian dynamics of magnetized fluids. We point out that the generalized Ohm's law that accounts for turbulent motion predicts the subdominance of the microphysical plasma effects for reconnection for realistically turbulent media. We show that one of the most dramatic consequences of turbulence is the violation of the generally accepted notion of magnetic flux freezing. This notion is a cornerstone of most theories dealing with magnetized plasmas, and therefore its change induces fundamental shifts in accepted paradigms, for instance, turbulent reconnection entails reconnection diffusion process that is essential for understanding star formation. We argue that at sufficiently high Reynolds numbers the process of tearing reconnection should transfer to turbulent reconnection. We discuss flares that are predicted by turbulent reconnection and relate

  7. Turbulent reconnection and its implications

    PubMed Central

    Lazarian, A.; Eyink, G.; Vishniac, E.; Kowal, G.

    2015-01-01

    Magnetic reconnection is a process of magnetic field topology change, which is one of the most fundamental processes happening in magnetized plasmas. In most astrophysical environments, the Reynolds numbers corresponding to plasma flows are large and therefore the transition to turbulence is inevitable. This turbulence, which can be pre-existing or driven by magnetic reconnection itself, must be taken into account for any theory of magnetic reconnection that attempts to describe the process in the aforementioned environments. This necessity is obvious as three-dimensional high-resolution numerical simulations show the transition to the turbulence state of initially laminar reconnecting magnetic fields. We discuss ideas of how turbulence can modify reconnection with the focus on the Lazarian & Vishniac (Lazarian & Vishniac 1999 Astrophys. J. 517, 700–718 ()) reconnection model. We present numerical evidence supporting the model and demonstrate that it is closely connected to the experimentally proven concept of Richardson dispersion/diffusion as well as to more recent advances in understanding of the Lagrangian dynamics of magnetized fluids. We point out that the generalized Ohm's law that accounts for turbulent motion predicts the subdominance of the microphysical plasma effects for reconnection for realistically turbulent media. We show that one of the most dramatic consequences of turbulence is the violation of the generally accepted notion of magnetic flux freezing. This notion is a cornerstone of most theories dealing with magnetized plasmas, and therefore its change induces fundamental shifts in accepted paradigms, for instance, turbulent reconnection entails reconnection diffusion process that is essential for understanding star formation. We argue that at sufficiently high Reynolds numbers the process of tearing reconnection should transfer to turbulent reconnection. We discuss flares that are predicted by turbulent reconnection and relate this process to

  8. Sheaths: A Comparison of Magnetospheric, ICME, and Heliospheric Sheaths

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.; Richardson, J. D.; Liu, W.

    2007-01-01

    When a supersonic flow encounters an obstacles, shocks form to divert the flow around the obstacle. The region between the shock and the obstacle is the sheath, where the supersonic flow is compressed, heated, decelerated, and deflected. Supersonic flows, obstacles, and thus sheaths are observed on many scales throughout the Universe. We compare three examples seen in the heliosphere, illustrating the interaction of the solar wind with obstacles of three very different scales lengths. Magnetosheaths form behind planetary bow shocks on scales ranging from tens to 100 planetary radii. ICME sheath form behind shocks driven by solar disturbances on scale lengths of a few to tens of AU. The heliosheath forms behind the termination shock due to the obstacle presented by the interstellar medium on scale lengths of tens to a hundred AU. Despite this range in scales some common features have been observed. Magnetic holes, possibly due to mirror mode waves, have been observed in all three of these sheaths. Plasma depletion layers are observed in planetary and ICME sheaths. Other features observed in some sheaths are wave activity (ion cyclotron, plasma), energetic particles, transmission of Alfven waves/shocks, tangential discontinuities turbulence behind quasi-parallel shocks, standing slow mode waves, and reconnection on the obstacle boundary. We compare these sheath regions, discussing similarities and differences and how these may relate to the scale lengths of these regions.

  9. Temporal and spatial turbulent spectra of MHD plasma and an observation of variance anisotropy

    SciTech Connect

    Schaffner, D. A.; Brown, M. R.; Lukin, V. S.

    2014-08-01

    The nature of magnetohydrodynamic (MHD) turbulence is analyzed through both temporal and spatial magnetic fluctuation spectra. A magnetically turbulent plasma is produced in the MHD wind tunnel configuration of the Swarthmore Spheromak Experiment. The power of magnetic fluctuations is projected into directions perpendicular and parallel to a local mean field; the ratio of these quantities shows the presence of variance anisotropy which varies as a function of frequency. Comparisons among magnetic, velocity, and density spectra are also made, demonstrating that the energy of the turbulence observed is primarily seeded by magnetic fields created during plasma production. Direct spatial spectra are constructed using multi-channel diagnostics and are used to compare to frequency spectra converted to spatial scales using the Taylor hypothesis. Evidence for the observation of dissipation due to ion inertial length scale physics is also discussed, as well as the role laboratory experiments can play in understanding turbulence typically studied in space settings such as the solar wind. Finally, all turbulence results are shown to compare fairly well to a Hall-MHD simulation of the experiment.

  10. The nonlinear coupling between gyroradius scale turbulence and mesoscale magnetic islands in fusion plasmas

    SciTech Connect

    Hornsby, W. A.; Peeters, A. G.; Snodin, A. P.; Casson, F. J.; Camenen, Y.; Szepesi, G.; Siccinio, M.; Poli, E.

    2010-09-15

    The interaction between small scale turbulence (of the order of the ion Larmor radius) and mesoscale magnetic islands is investigated within the gyrokinetic framework. Turbulence, driven by background temperature and density gradients, over nonlinear mode coupling, pumps energy into long wavelength modes, and can result in an electrostatic vortex mode that coincides with the magnetic island. The strength of the vortex is strongly enhanced by the modified plasma flow response connected with the change in topology, and the transport it generates can compete with the parallel motion along the perturbed magnetic field. Despite the stabilizing effect of sheared plasma flows in and around the island, the net effect of the island is a degradation of the confinement. When density and temperature gradients inside the island are below the threshold for turbulence generation, turbulent fluctuations still persist through turbulence convection and spreading. The latter mechanisms then generate a finite transport flux and, consequently, a finite pressure gradient in the island. A finite radial temperature gradient inside the island is also shown to persist due to the trapped particles, which do not move along the field around the island. In the low collisionality regime, the finite gradient in the trapped population leads to the generation of a bootstrap current, which reduces the neoclassical drive.

  11. Analysis of the radial and poloidal turbulent transport in the edge tokamak plasma

    NASA Astrophysics Data System (ADS)

    Meshkani, S.; Ghoranneviss, M.; Lafouti, M.; Salar Elahi, A.; Salar Elahi

    2013-10-01

    In this paper, turbulent transport in the edge plasma of the IR-T1 tokamak (r/a = 0.9) in the presence of a resonant helical magnetic field (RHF) and a biased limiter has been investigated and analyzed. The time evolution of potential fluctuation, and electric field and turbulent transport have been measured by using two arrays of the Langmuir probes in both the radial and poloidal directions. The experiments have been done in different regimes such as limiter biasing and RHF, and both of them. The analyses have been done by the fast Fourier transport method and their spectral features are obtained with the help of the standard autocorrelation technique. The results show that radial turbulent transport decreases about 60% after positive biasing application, while it increases about 40% after negative biasing. The effect of positive biasing on poloidal turbulent transport displays an increase of about 55%, while the negative bias voltage decreases the poloidal turbulent transport about 30%. Consequently, confinement is improved and plasma density rises significantly due to the applied positive biasing in IR-T1. However, the results are reversed when negative biasing is applied. Also, in this work, the results of the applied RHF (L = 3) are compared with biasing results and analyzed.

  12. Tracing Heliospheric Structures to Their Solar Origin

    NASA Astrophysics Data System (ADS)

    Wimmer-Schweingruber, R. F.

    2014-12-01

    The solar wind creates a giant plasma bubble in our immediate, very local interstellar medium (VLISM), the heliosphere. As is true for every physical system, its structure is determined by dynamic processes and by the boundary conditions at the Sun and in the VLISM. Because of the supersonic expansion of the solar wind the structure of the inner (several AU) heliosphere is (nearly) exclusively determined by the Sun. As simple as this may all appear, the problem of linking heliospheric structure to solar features is remarkably complex and has so far eluded satisfactory solutions. ESA and NASA have implemented the Solar Orbiter and Solar Probe Plus missions to tackle and solve the mystery of how the Sun creates and controls the heliosphere. Previous missions, especially the twin Helios mission, lacked two crucial elements, remote-sensing of solar features and their dynamics, and composition measurements of the solar plasma, wind, and energetic particles. Solar Orbiter has both elements in its highly sophisticated payload and will allow us to link solar features to the solar wind sampled in situ by using composition and energetic particles as tracers. The composition of the solar wind is altered from its photospheric origin by two processes very probably acting at different altitudes in the solar atmosphere. Elemental composition of the solar wind appears to be fractionated by its First Ionization Potential (FIP) or time (FIT), indicating that some mechanism separates neutral atoms from ions. This requires temperatures low enough to allow a substantial neutral fraction of the solar plasma and therefore the FIP-effect is believed to act primarily in the chromosphere. Charge states on the other hand are determined by the expansion and acceleration of the solar wind and the electron temperature high in the corona. Solar Orbiter will allow remote-sensing measurements of the elemental composition of solar features and comparison with that measured in situ after the solar

  13. New Constraints on Plasma Turbulence in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Spangler, S. R.; Spitler, L. G.

    2005-12-01

    One suggestion for coronal heating invokes the dissipation of high frequency, Alfvén-ion cyclotron waves which are generated in the photosphere and chromosphere and propagate into the corona. As we have previously noted (Spangler and Mancuso 2000, ApJ 530, 491) the properties of such waves can be constrained by radioastronomical observations. The observational effect is Faraday screen depolarization, in which stochastic Faraday rotation randomizes the polarization position angle on scales smaller than the telescope beam. We present observations made with the NRAO Very Large Array on August 16 and 18, 2003, when the radio galaxy 3C228 was viewed through the corona at heliocentric distances of 6.7 and 5.2 R⊙, respectively. The depolarization parameter D ≡ (m)/(m0) was measured, where m is the fractional linear polarization measured through the corona, and m0 is the intrinsic degree of polarization. Measurements were available for both hot spots of 3C228, and on both days of observation. The measurements are consistent with D=1 for both components on both days. These results are in agreement with, but superior to, previous reports of no coronal screen depolarization. Equations from Spangler and Mancuso (2000) are used to constrain the dimensionless amplitude and outer scale of the coronal turbulence. Turbulence with a dimensionless amplitude of 50 % or greater, and outer scale larger than 1000-2000 km, would have produced depolarization close to, or in excess of our limits. Turbulence with smaller dimensionless amplitude and outer scale would not have been detected with these measurements. This research was supported by grant ATM-0354782 from the National Science Foundation.

  14. Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas

    SciTech Connect

    Diamond, P.H.; Lin, Z.; Wang, W.; Horton, W.; Klasky, S.; Decyk, V.; Ma, K.-L.; Chames, J.; Adams, M.

    2011-09-21

    The three-year project GPS-TTBP resulted in over 152 publications and 135 presentations. This summary focuses on the scientific progress made by the project team. A major focus of the project was on the physics intrinsic rotation in tokamaks. Progress included the first ever flux driven study of net intrinsic spin-up, mediated by boundary effects (in collaboration with CPES), detailed studies of the microphysics origins of the Rice scaling, comparative studies of symmetry breaking mechanisms, a pioneering study of intrinsic torque driven by trapped electron modes, and studies of intrinsic rotation generation as a thermodynamic engine. Validation studies were performed with C-Mod, DIII-D and CSDX. This work resulted in very successful completion of the FY2010 Theory Milestone Activity for OFES, and several prominent papers of the 2008 and 2010 IAEA Conferences. A second major focus was on the relation between zonal flow formation and transport non-locality. This culminated in the discovery of the ExB staircase - a conceptually new phenomenon. This also makes useful interdisciplinary contact with the physics of the PV staircase, well-known in oceans and atmospheres. A third topic where progress was made was in the simulation and theory of turbulence spreading. This work, now well cited, is important for understanding the dynamics of non-locality in turbulent transport. Progress was made in studies of conjectured non-diffusive transport in trapped electron turbulence. Pioneering studies of ITB formation, coupling to intrinsic rotation and hysteresis were completed. These results may be especially significant for future ITER operation. All told, the physics per dollar performance of this project was quite good. The intense focus was beneficial and SciDAC resources were essential to its success.

  15. Evolution of solar wind turbulence and intermittency over the solar cycle

    NASA Astrophysics Data System (ADS)

    Väisänen, Pauli; Virtanen, Ilpo; Echim, Marius; Munteanu, Costel; Mursula, Kalevi

    2016-04-01

    Solar wind is a natural, near-by plasma physics laboratory, which offers possibilities to study plasma physical phenomena over a wide range of parameter values that are difficult to reach in ground-based laboratories. Accordingly, the solar wind is subject of many studies of, e.g., intermittency, turbulence and other nonlinear space plasma phenomena. Turbulence is an important feature of the solar wind dynamics, e.g., for the energy transfer mechanisms and their scale invariance, the solar wind evolution, the structure of the heliospheric magnetic field (HMF), the particle energization and heating, and for phenomena related to solar wind interaction with the planetary plasma systems. Here we analyse high resolution measurements of the solar wind and the heliospheric magnetic field provided by several ESA and NASA satellites, including ACE, STEREO, Ulysses and Cluster. This collection of satellites allows us to compile and study nearly 20 years of high-resolution solar wind and HMF measurements from the start of solar cycle 23 to the current declining phase of solar cycle 24. Long-term studies require homogeneity and, therefore, we pay great attention to the reliability and consistency of the data, in particular to instrumental defects like spin harmonics, the purity of the solar wind and its possible contamination in the foreshock by magnetospheric ions. We study how the different key-descriptors of turbulence like the slope of the power law of power spectral density and the kurtosis of the fluctuations of the heliospheric magnetic field vary over the solar cycle.

  16. Mechanisms for the convergence of time-parallelized, parareal turbulent plasma simulations

    SciTech Connect

    Reynolds-Barredo, J.; Newman, David E; Sanchez, R.; Samaddar, D.; Berry, Lee A; Elwasif, Wael R

    2012-01-01

    Parareal is a recent algorithm able to parallelize the time dimension in spite of its sequential nature. It has been applied to several linear and nonlinear problems and, very recently, to a simulation of fully-developed, two-dimensional drift wave turbulence. The mere fact that parareal works in such a turbulent regime is in itself somewhat unexpected, due to the characteristic sensitivity of turbulence to any change in initial conditions. This fundamental property of any turbulent system should render the iterative correction procedure characteristic of the parareal method inoperative, but this seems not to be the case. In addition, the choices that must be made to implement parareal (division of the temporal domain, election of the coarse solver and so on) are currently made using trial-and-error approaches. Here, we identify the mechanisms responsible for the convergence of parareal of these simulations of drift wave turbulence. We also investigate which conditions these mechanisms impose on any successful parareal implementation. The results reported here should be useful to guide future implementations of parareal within the much wider context of fully-developed fluid and plasma turbulent simulations.

  17. Gyrokinetic Particle Simulation of Compressible Electromagnetic Turbulence in High-β Plasmas

    SciTech Connect

    Lin, Zhihong

    2014-03-13

    Supported by this award, the PI and his research group at the University of California, Irvine (UCI) have carried out computational and theoretical studies of instability, turbulence, and transport in laboratory and space plasmas. Several massively parallel, gyrokinetic particle simulation codes have been developed to study electromagnetic turbulence in space and laboratory plasmas. In space plasma projects, the simulation codes have been successfully applied to study the spectral cascade and plasma heating in kinetic Alfven wave turbulence, the linear and nonlinear properties of compressible modes including mirror instability and drift compressional mode, and the stability of the current sheet instabilities with finite guide field in the context of collisionless magnetic reconnection. The research results have been published in 25 journal papers and presented at many national and international conferences. Reprints of publications, source codes, and other research-related information are also available to general public on the PI’s webpage (http://phoenix.ps.uci.edu/zlin/). Two PhD theses in space plasma physics are highlighted in this report.

  18. Turbulence induced radial transport of toroidal momentum in boundary plasma of EAST tokamak

    SciTech Connect

    Zhao, N.; Yan, N. Xu, G. S.; Wang, H. Q.; Wang, L.; Ding, S. Y.; Chen, R.; Chen, L.; Zhang, W.; Hu, G. H.; Shao, L. M.; Wang, Z. X.

    2016-06-15

    Turbulence induced toroidal momentum transport in boundary plasma is investigated in H-mode discharge using Langmuir-Mach probes on EAST. The Reynolds stress is found to drive an inward toroidal momentum transport, while the outflow of particles convects the toroidal momentum outwards in the edge plasma. The Reynolds stress driven momentum transport dominates over the passive momentum transport carried by particle flux, which potentially provides a momentum source for the edge plasma. The outflow of particles delivers a momentum flux into the scrape-off layer (SOL) region, contributing as a momentum source for the SOL flows. At the L-H transitions, the outward momentum transport suddenly decreases due to the suppression of edge turbulence and associated particle transport. The SOL flows start to decelerate as plasma entering into H-mode. The contributions from turbulent Reynolds stress and particle transport for the toroidal momentum transport are identified. These results shed lights on the understanding of edge plasma accelerating at L-H transitions.

  19. Von-Karman scaling of proton and electron heating in turbulent plasma

    NASA Astrophysics Data System (ADS)

    Parashar, T. N.; Matthaeus, W. H.; Wan, M.; Shay, M. A.

    2015-12-01

    Abstract: A self consistent description of plasma dissipation requires fully kinetic treatment. In recent publications, we have addressed how proton heating depends on large scale parameters [1,2] and how the system size simulated affects the plasma energetics [3]. Here, we study the relative heating of protons and electrons as it depends on large scale parameters. We also discuss the dependence of this relative heating on von-Karman decay rates, along with implications for turbulent dissipation challenge. An interesting possibility is that turbulent heating and heating in reconnection might be understood in a unified way [4]. [1] Wu et al, PRL, 111,121105 (2013) [2] Matthaeus et al, ApJ, 790, 155 (2014) [3] Parashar et al, ApJ (under review)[4] Shay et al, Physics of Plasmas, 21, 122902 (2014)

  20. Short-wavelength plasma turbulence and temperature anisotropy instabilities: Recent computational progress

    DOE PAGES

    Gary, S. Peter

    2015-04-06

    Plasma turbulence consists of an ensemble of enhanced, broadband electromagnetic fluctuations, typically driven by multi-wave interactions which transfer energy in wavevector space via non- linear cascade processes. In addition, temperature anisotropy instabilities in collisionless plasmas are driven by quasi-linear wave–particle interactions which transfer particle kinetic energy to field fluctuation energy; the resulting enhanced fluctuations are typically narrowband in wavevector magnitude and direction. Whatever their sources, short-wavelength fluctuations are those at which charged particle kinetic, that is, velocity-space, properties are important; these are generally wavelengths of the order of or shorter than the ion inertial length or the thermal ion gyroradius.more » The purpose of this review is to summarize and interpret recent computational results concerning short-wavelength plasma turbulence, short-wavelength temperature anisotropy instabilities and relationships between the two phenomena.« less

  1. Short-wavelength plasma turbulence and temperature anisotropy instabilities: recent computational progress

    PubMed Central

    Gary, S. Peter

    2015-01-01

    Plasma turbulence consists of an ensemble of enhanced, broadband electromagnetic fluctuations, typically driven by multi-wave interactions which transfer energy in wavevector space via non- linear cascade processes. Temperature anisotropy instabilities in collisionless plasmas are driven by quasi-linear wave–particle interactions which transfer particle kinetic energy to field fluctuation energy; the resulting enhanced fluctuations are typically narrowband in wavevector magnitude and direction. Whatever their sources, short-wavelength fluctuations are those at which charged particle kinetic, that is, velocity-space, properties are important; these are generally wavelengths of the order of or shorter than the ion inertial length or the thermal ion gyroradius. The purpose of this review is to summarize and interpret recent computational results concerning short-wavelength plasma turbulence, short-wavelength temperature anisotropy instabilities and relationships between the two phenomena. PMID:25848081

  2. Development of the Megahertz Planar Laser-induced Fluorescence Diagnostic for Plasma Turbulence Visualization

    SciTech Connect

    Aleksey Kuritsyn; Fred M. Levinton

    2004-04-27

    A megahertz LIF-based diagnostic system for measuring ion density fluctuations in two spatial dimensions is described. Well resolved spatial and temporal 2D images of turbulent structures will be useful in understanding ion turbulence in magnetically confined plasmas which is a key factor in the performance of fusion experimental devices. A sheet beam of a megahertz repetition rate tunable Alexandrite laser is used to excite ion emission from argon plasma. The fluorescence emitted from the plane of the laser beam is detected with a narrow band interference filter and intensified ultra-fast CCD camera providing 2D images of relative ion density fluctuations every microsecond. It is expected that the edge plasma on fusion devices will be accessible to this technique.

  3. Development of the megahertz planar laser-induced fluorescence diagnostic for plasma turbulence visualization

    SciTech Connect

    Kuritsyn, Aleksey; Levinton, Fred M.

    2004-10-01

    A megahertz laser-induced fluorescence-based diagnostic system for measuring ion density fluctuations in two spatial dimensions is described. Well resolved spatial and temporal two-dimensional (2D) images of turbulent structures will be useful in understanding ion turbulence in magnetically confined plasmas which is a key factor in the performance of fusion experimental devices. A sheet beam of a megahertz repetition rate tunable Alexandrite laser is used to excite ion emission from argon plasma. The fluorescence emitted from the plane of the laser beam is detected with a narrow band interference filter and intensified ultrafast charge coupled device camera providing 2D images of relative ion density fluctuations every microsecond. It is expected that the edge plasma on fusion devices will be accessible to this technique.

  4. Development of the megahertz planar laser-induced fluorescence diagnostic for plasma turbulence visualization

    NASA Astrophysics Data System (ADS)

    Kuritsyn, Aleksey; Levinton, Fred M.

    2004-10-01

    A megahertz laser-induced fluorescence-based diagnostic system for measuring ion density fluctuations in two spatial dimensions is described. Well resolved spatial and temporal two-dimensional (2D) images of turbulent structures will be useful in understanding ion turbulence in magnetically confined plasmas which is a key factor in the performance of fusion experimental devices. A sheet beam of a megahertz repetition rate tunable Alexandrite laser is used to excite ion emission from argon plasma. The fluorescence emitted from the plane of the laser beam is detected with a narrow band interference filter and intensified ultrafast charge coupled device camera providing 2D images of relative ion density fluctuations every microsecond. It is expected that the edge plasma on fusion devices will be accessible to this technique.

  5. The Heliosphere in Time

    NASA Astrophysics Data System (ADS)

    McCracken, Ken; Beer, Juerg; Steinhilber, Friedhelm; Abreu, Jose

    2013-06-01

    The paleo-cosmic ray records are used to study the properties of the heliosphere and solar processes over the past 9300 years. They show that both varied greatly over that time, ranging from ˜26 "Grand Minima" of duration 50-100 yr when the Sun was inactive, to periods similar to the past 50 years of strong solar activity. This shows that the detailed information regarding the heliosphere gained during the "space era" represents an extreme case, and is not representative of the majority of the past 9300 yr. The data confirm that the 11 and 22-year cycles of solar activity continued through the Spoerer and Maunder Grand Minima. Throughout the 9300 yr interval, "Grand Minima" usually occurred in groups of 2 to 4, similar to the group of four that occurred in the interval 1000-1800 AD. The groups are separated by ˜1000 yr intervals without Grand Minima. Frequency spectra of the full 9300 yr record show that the heliospheric and solar phenomena exhibit >10 well-defined and persistent periodicities. We speculate that the solar dynamo exhibits a 2300 yr periodicity, wherein it alternates between two different states of activity. In the first (˜800 yr duration) solar activity weakens greatly every 100-200 yr resulting in a sequence of Grand Minima, while in the other, the solar dynamo suffers smaller changes; the centenary scale solar and heliospheric changes are smaller, being similar to those that occurred in the interval 1890-1910. The paleo-cosmic ray evidence suggests that the Sun has now entered this more uniform period of activity, following the sequence of Grand Minima (Wolf, Spoerer, Maunder, and Dalton) that occurred between 1000 and 1800 AD.

  6. Theoretical and Numerical Study of Anomalous Turbulent Transport in Plasmas

    DTIC Science & Technology

    1991-02-05

    Robert Barker of AFOSR and our plasma laboratory was involved in the program during the period of the contract. The selected undergraduate students were...involved in the related research. They participated in a weekly plasma seminar with graduate students and presented their assigned topics at the...seminar. The names of undergraduate students and the titles of their final reports are listed here. From May 16 to August 31. 1987: 1. Theodore Christopher

  7. Double Langmuir frequency radiation due to transformation processes in turbulent plasma

    NASA Astrophysics Data System (ADS)

    Pavlenko, V. N.; Panchenko, V. G.; Beloshenko, N. A.

    2015-04-01

    We investigate the transformation process of longitudinal Langmuir wave into the transverse electromagnetic wave in turbulent plasma subjected to an upper hybrid pump. The case, when upper hybrid pump wave decays into daughter and ion - sound waves is considered. The transformation of the Langmuir wave into electromagnetic one is considered as the possible mechanism of energy radiation from the plasma. It is shown that the frequency of such radiation is chosen to be near double electron Langmuir frequency 2ωpe . These results give us the possibility to explain the nature of radiation from the laboratory and cosmic plasmas (particularly, from the solar crown).

  8. Nonlinear competition of turbulent structures and improved confinement in magnetized cylindrical plasmas

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Kasuya, N.; Itoh, K.; Yagi, M.; Itoh, S.-I.

    2014-11-01

    Nonlinear competition of turbulent structures and their roles in transport are investigated by using three-dimensional simulation code of resistive drift wave turbulence in magnetized cylindrical plasmas. Selective formation of zonal flows and streamers has been obtained by controlling the strength of damping of the zonal flow. In addition, there is an energy path from the drift waves to a flute type structure, which is linearly stable, and it becomes effective just below the stability boundary of the zonal flow. The flute structure directly induces transport effectively, and affects the drift waves and the zonal flow. A large amplitude zonal flow is formed selectively even with existence of the flute structure. The property of the particle confinement is investigated by changing the particle source intensity, which controls the strength of driving of the drift waves. The characteristic of the particle confinement changes according to turbulent states, and an improved confinement regime is obtained in the zonal flow dominant state. Study on cylindrical plasmas reveals the fundamental mechanism of improved confinement in the magnetized plasma with influence of turbulent structural formation.

  9. Turbulent electromagnetic filaments in actively modulated toroidal plasma edge

    NASA Astrophysics Data System (ADS)

    Spolaore, M.; Agostini, M.; Momo, B.; Rea, C.; Vianello, N.; Zuin, M.; Cavazzana, R.; De Masi, G.; Innocente, P.; Marrelli, L.; Martines, E.; Mazzi, A.; Puiatti, M. E.; Spagnolo, S.; Spizzo, G.; Scarin, P.; Terranova, D.; Zanca, P.

    2015-06-01

    Filament or blob structures have been observed in all magnetic configurations with very similar features despite the difference in the magnetic geometry, and are believed to play an important role in convecting particles and energy towards the wall. Despite their different generation mechanism, turbulent structures and edge-localized mode (ELM) filaments share some common physical features. The electromagnetic effects on filament structures deserve particular interest, among others reasons for the implication they could have for ELM, related for instance to their dynamics in the transition region between closed and open field lines or to the possibility, at high beta regimes, of causing line bending which could enhance the interaction of blobs with the first wall. A direct characterization of the effects of active modification of the edge topology on EM turbulent filament structures is presented, comparing reversed field pinch and tokamak configurations. Measurements are obtained in the RFX-mod device, which allows operation in both configurations and with different equilibria. The RFX-mod experiment versatility is exploited also from the point of view of the active control of the edge magnetic topology, equipped with an advanced system for edge boundary feedback control. Three different case studies of actively controlled magnetic perturbations are shown, focusing on the filament interaction with local magnetic islands. High-frequency fluctuations, characterizing electrostatic and magnetic filament features, and the associated transport coefficients have been observed to be strongly affected by the island proximity and topology.

  10. Role of nonlinear localized structures and turbulence in magnetized plasma

    NASA Astrophysics Data System (ADS)

    Pathak, Neha; Yadav, Nitin; Uma, R.; Sharma, R. P.

    2016-09-01

    In the present study, we have analyzed the field localization of kinetic Alfvén wave (KAW) due to the presence of background density perturbation, which are assumed to be originated by the three dimensionally propagating low frequency KAW. These localized structures play an important role for energy transportation at smaller scales in the dispersion range of magnetic power spectrum. For the present model, governing dynamic equations of high frequency pump KAW and low frequency KAW has been derived by considering ponderomotive nonlinearity. Further, these coupled equations have been numerically solved to analyze the resulting localized structures of pump KAW and magnetic power spectrum in the magnetopause regime. Numerically calculated spectrum exhibits inertial range having spectral index of -3/2 followed by steeper scaling; this steepening in the turbulent spectrum is a signature of energy transportation from larger to smaller scales. In this way, the proposed mechanism, which is based on nonlinear wave-wave interaction, may be useful for understanding the particle acceleration and turbulence in magnetopause.

  11. Intermittency of solar system plasma turbulence near Venus and Earth

    NASA Astrophysics Data System (ADS)

    Teodorescu, Eliza; Echim, Marius; Chang, Tom

    2016-04-01

    We analyze magnetic field data from Venus Express (VEX) and CLUSTER to investigate the turbulent properties of the solar wind and the Earth's and Venus' magnetosheaths. A systematic study of the PDFs (Probability Distribution Functions) of the measured magnetic fluctuations and their fourth order moments (kurtosis) reveals numerous intermittent time series. The presence of intermittency is marked by non-Gaussian PDFs with heavy wings and a scale dependent kurtosis. Higher order analyses on the scale dependence of several moment orders of the PDFs, the structure functions, along with the scaling of the kurtosis allow for a selection of scales that pertain to different scaling regimes, governed by different physics. On such sub-ranges of scales we investigate the fractal structure of fluctuations through the Rank Ordered Multifractal Analysis - ROMA (Chang and Wu, 2008). ROMA is applied to a selection of intermittent magnetic field time series in the solar wind and planetary magnetosheaths and helps to quantify the turbulence properties through the estimation of a spectrum of local Hurst exponents. Research supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 313038/STORM, and a grant of the Romanian Ministry of National Education, CNCS - UEFISCDI, project number PN-II-ID-PCE-2012-4-0418.

  12. Conservation laws for collisional and turbulent transport processes in toroidal plasmas with large mean flows

    NASA Astrophysics Data System (ADS)

    Sugama, H.; Nunami, M.; Nakata, M.; Watanabe, T.-H.

    2017-02-01

    A novel gyrokinetic formulation is presented by including collisional effects into the Lagrangian variational principle to yield the governing equations for background and turbulent electromagnetic fields and gyrocenter distribution functions, which can simultaneously describe classical, neoclassical, and turbulent transport processes in toroidal plasmas with large toroidal flows on the order of the ion thermal velocity. Noether's theorem modified for collisional systems and the collision operator given in terms of Poisson brackets are applied to derivation of the particle, energy, and toroidal momentum balance equations in the conservative forms, which are desirable properties for long-time global transport simulation.

  13. Flux tube train model for local turbulence simulation of toroidal plasmas

    SciTech Connect

    Watanabe, T.-H.; Sugama, H.; Ishizawa, A.; Nunami, M.

    2015-02-15

    A new simulation method for local turbulence in toroidal plasmas is developed by extending the conventional idea of the flux tube model. In the new approach, a train of flux tubes is employed, where flux tube simulation boxes are serially connected at each end along a field line so as to preserve a symmetry of the local gyrokinetic equations for image modes in an axisymmetric torus. Validity of the flux tube train model is confirmed against the toroidal ion temperature gradient turbulence for a case with a long parallel correlation of fluctuations, demonstrating numerical advantages over the conventional method in the time step size and the symmetry-preserving property.

  14. Transitions to spatiotemporal chaos and turbulence of flute instabilities in a low-{beta} magnetized plasma

    SciTech Connect

    Brochard, F.; Gravier, E.; Bonhomme, G.

    2006-03-15

    The spatiotemporal transition scenario of flute instabilities from a regular to a turbulent state is experimentally investigated in the low-{beta} plasma column of a thermionic discharge. The same transition scenario, i.e., the Ruelle-Takens route to turbulence, is found for both the Kelvin-Helmholtz and the Rayleigh-Taylor instabilities. It is demonstrated that the transition can be more or less smooth, according to the discharge mode. In both cases, a strong radial dependence is observed, which is linked to the velocity shear layer in the case of the Kelvin-Helmholtz instability.

  15. Transitions to spatiotemporal chaos and turbulence of flute instabilities in a magnetized plasma.

    PubMed

    Brochard, F; Gravier, E; Bonhomme, G

    2006-03-01

    The spatiotemporal transition scenario of flute instabilities from a regular to a turbulent state is experimentally investigated in the plasma column of a thermionic discharge. The same transition scenario, i.e., the Ruelle-Takens route to turbulence, is found for both the Kelvin-Helmholtz and the Rayleigh-Taylor instabilities. It is demonstrated that the transition can be more or less smooth, according to the discharge mode. In both cases, a strong radial dependence is observed, which is linked to the velocity shear layer in the case of the Kelvin-Helmholtz instability.

  16. On the validity of the local diffusive paradigm in turbulent plasma transport

    NASA Astrophysics Data System (ADS)

    Dif-Pradalier, G.; Diamond, P. H.; Grandgirard, V.; Sarazin, Y.; Abiteboul, J.; Garbet, X.; Ghendrih, Ph.; Strugarek, A.; Ku, S.; Chang, C. S.

    2010-08-01

    A systematic, constructive and self-consistent procedure to quantify nonlocal, nondiffusive action at a distance in plasma turbulence is exposed and applied to turbulent heat fluxes computed from the state-of-the-art full- f , flux-driven gyrokinetic GYSELA and XGC1 codes. A striking commonality is found: heat transport below a dynamically selected mesoscale has the structure of a Lévy distribution, is strongly nonlocal, nondiffusive, scale-free, and avalanche mediated; at larger scales, we report the observation of a self-organized flow structure which we call the “ E×B staircase” after its planetary analog.

  17. On the validity of the local diffusive paradigm in turbulent plasma transport.

    PubMed

    Dif-Pradalier, G; Diamond, P H; Grandgirard, V; Sarazin, Y; Abiteboul, J; Garbet, X; Ghendrih, Ph; Strugarek, A; Ku, S; Chang, C S

    2010-08-01

    A systematic, constructive and self-consistent procedure to quantify nonlocal, nondiffusive action at a distance in plasma turbulence is exposed and applied to turbulent heat fluxes computed from the state-of-the-art full- f, flux-driven gyrokinetic GYSELA and XGC1 codes. A striking commonality is found: heat transport below a dynamically selected mesoscale has the structure of a Lévy distribution, is strongly nonlocal, nondiffusive, scale-free, and avalanche mediated; at larger scales, we report the observation of a self-organized flow structure which we call the " E × B staircase" after its planetary analog.

  18. SOLAR WIND MODELING WITH TURBULENCE TRANSPORT AND HEATING

    SciTech Connect

    Usmanov, Arcadi V.; Goldstein, Melvyn L.; Matthaeus, William H.; Breech, Benjamin A.

    2011-02-01

    We have developed an axisymmetric steady-state solar wind model that describes properties of the large-scale solar wind, interplanetary magnetic field, and turbulence throughout the heliosphere from 0.3 AU to 100 AU. The model is based on numerical solutions of large-scale Reynolds-averaged magnetohydrodynamic equations coupled with a set of small-scale transport equations for the turbulence energy, normalized cross helicity, and correlation scale. The combined set of time-dependent equations is solved in the frame of reference corotating with the Sun using a time-relaxation method. We use the model to study the self-consistent interaction between the large-scale solar wind and smaller-scale turbulence and the role of the turbulence in the large-scale structure and temperature distribution in the solar wind. To illuminate the roles of the turbulent cascade and the pickup protons in heating the solar wind depending on the heliocentric distance, we compare the model results with and without turbulence/pickup protons. The variations of plasma temperature in the outer heliosphere are compared with Ulysses and Voyager 2 observations.

  19. Experimental Investigation of Turbulent-driven Sheared Parallel Flows in the CSDX Plasma Device

    NASA Astrophysics Data System (ADS)

    Tynan, George; Hong, Rongjie; Li, Jiacong; Thakur, Saikat; Diamond, Patrick

    2016-10-01

    Parallel velocity and its radial shear is a key element for both accessing improved confinement regimes and controlling the impurity transport in tokamak devices. In this study, the development of radially sheared parallel plasma flows in plasmas without magnetic shear is investigated using laser induced fluorescence, multi-tip Langmuir and Mach probes in the CSDX helicon linear plasma device. Results show that a mean parallel velocity shear grows as the radial gradient of plasma density increased. The sheared flow onset corresponds to the onset of a finite parallel Reynolds stress that acts to reinforce the flow. As a result, the mean parallel flow gains energy from the turbulence that, in turn, is driven by the density gradient. This results in a flow away from the plasma source in the central region of the plasma and a reverse flow in far-peripheral region of the plasma column. The results motivate a model of negative viscosity induced by the turbulent stress which may help explain the origin of intrinsic parallel flow in systems without magnetic shear.

  20. Complexity methods applied to turbulence in plasma astrophysics

    NASA Astrophysics Data System (ADS)

    Vlahos, L.; Isliker, H.

    2016-09-01

    In this review many of the well known tools for the analysis of Complex systems are used in order to study the global coupling of the turbulent convection zone with the solar atmosphere where the magnetic energy is dissipated explosively. Several well documented observations are not easy to interpret with the use of Magnetohydrodynamic (MHD) and/or Kinetic numerical codes. Such observations are: (1) The size distribution of the Active Regions (AR) on the solar surface, (2) The fractal and multi fractal characteristics of the observed magnetograms, (3) The Self-Organised characteristics of the explosive magnetic energy release and (4) the very efficient acceleration of particles during the flaring periods in the solar corona. We review briefly the work published the last twenty five years on the above issues and propose solutions by using methods borrowed from the analysis of complex systems. The scenario which emerged is as follows: (a) The fully developed turbulence in the convection zone generates and transports magnetic flux tubes to the solar surface. Using probabilistic percolation models we were able to reproduce the size distribution and the fractal properties of the emerged and randomly moving magnetic flux tubes. (b) Using a Non Linear Force Free (NLFF) magnetic extrapolation numerical code we can explore how the emerged magnetic flux tubes interact nonlinearly and form thin and Unstable Current Sheets (UCS) inside the coronal part of the AR. (c) The fragmentation of the UCS and the redistribution of the magnetic field locally, when the local current exceeds a Critical threshold, is a key process which drives avalanches and forms coherent structures. This local reorganization of the magnetic field enhances the energy dissipation and influences the global evolution of the complex magnetic topology. Using a Cellular Automaton and following the simple rules of Self Organized Criticality (SOC), we were able to reproduce the statistical characteristics of the

  1. Orszag Tang vortex - Kinetic study of a turbulent plasma

    SciTech Connect

    Parashar, T. N.; Servidio, S.; Shay, M. A.; Matthaeus, W. H.; Cassak, P. A.

    2010-03-25

    Kinetic evolution of the Orszag-Tang vortex is studied using collisionless hybrid simulations based on particle in cell ions and fluid electrons. In magnetohydrodynamics (MHD) this configuration leads rapidly to broadband turbulence. An earlier study estimated the dissipation in the system. A comparison of MHD and hybrid simulations showed similar behavior at large scales but substantial differences at small scales. The hybrid magnetic energy spectrum shows a break at the scale where Hall term in the Ohm's law becomes important. The protons heat perpendicularly and most of the energy is dissipated through magnetic interactions. Here, the space time structure of the system is studied using frequency-wavenumber (k-omega) decomposition. No clear resonances appear, ruling out the cyclotron resonances as a likely candidate for the perpendicular heating. The only distinguishable wave modes present, which constitute a small percentage of total energy, are magnetosonic modes.

  2. Kinetic dissipation and anisotropic heating in a turbulent collisionless plasma

    SciTech Connect

    Parashar, T. N.; Shay, M. A.; Cassak, P. A.; Matthaeus, W. H.

    2009-03-15

    The kinetic evolution of the Orszag-Tang vortex is studied using collisionless hybrid simulations. In magnetohydrodynamics (MHD) this configuration leads rapidly to broadband turbulence. At large length scales, the evolution of the hybrid simulations is very similar to MHD, with magnetic power spectra displaying scaling similar to a Kolmogorov scaling of -5/3. At small scales, differences from MHD arise, as energy dissipates into heat almost exclusively through the magnetic field. The magnetic energy spectrum of the hybrid simulation shows a break where linear theory predicts that the Hall term in Ohm's law becomes significant, leading to dispersive kinetic Alfven waves. A key result is that protons are heated preferentially in the plane perpendicular to the mean magnetic field, creating a proton temperature anisotropy of the type observed in the corona and solar wind.

  3. Turbulence, Waves and Instabilities in the Solar Plasma

    NASA Astrophysics Data System (ADS)

    Erdélyi, R.; Petrovay, K.; Roberts, B.; Aschwanden, M.

    2003-12-01

    Significant advances have been made recently in both the theoretical understanding and observation of small-scale turbulence in different layers of the Sun, and in the instabilities that give rise to them. The general development of solar physics, however, has led to such a degree of specialization as to hinder interaction between workers in the field. This book therefore presents studies of different layers and regions of the Sun, but from the same aspect, concentrating on the study of small-scale motions. The main emphasis is on the common theoretical roots of these phenomena, but the book also contains an extensive treatment of the observational aspects. Link: http://www.springer.com/east/home?SGWID=5-102-22-3362=5696-0&changeHeader=true

  4. Comments on adiabatic modifications to plasma turbulence theory

    SciTech Connect

    Krommes, J.A.

    1980-11-01

    Catto earlier introduced an interesting and plausible modification of the usual resonance-broadening prescription for obtaining the nonlinear dielectric function. He argued reasonably that one should employ that prescription only for the nonadiabatic response, and that one should treat the adiabatic response essentially exactly. However, Misguich, in a recent Comment on Catto's work, found an apparent divergence in a form for the renormalized dielectric which he argued was equivalent to Catto's. Misguich was thus led to conclude that, at least for stationary turbulence, Catto's form was suspect, and that a more intricate renormalization might have to be used to obtain a sensible, convergent result. It is argued that this conclusion is incorrect, at least for the reasons Misguich gives.

  5. Radio Emissions from the Outer Heliosphere

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Kurth, W. S.

    1996-01-01

    For nearly fifteen years the Voyager 1 and 2 spacecraft have been detecting an unusual radio emission in the outer heliosphere in the frequency range from about 2 to 3 kHz. Two major events have been observed, the first in 1983-84 and the second in 1992-93. In both cases the onset of the radio emission occurred about 400 days after a period of intense solar activity, the first in mid-July 1982, and the second in May-June 1991. These two periods of solar activity produced the two deepest cosmic ray Forbush decreases ever observed. Forbush decreases are indicative of a system of strong shocks and associated disturbances propagating outward through the heliosphere. The radio emission is believed to have been produced when this system of shocks and disturbances interacted with one of the outer boundaries of the heliosphere, most likely in the vicinity of the the heliopause. The emission is believed to be generated by the shock-driven Langmuir-wave mode conversion mechanism, which produces radiation at the plasma frequency (f(sub p)) and at twice the plasma frequency (2f(sub p)). From the 400-day travel time and the known speed of the shocks, the distance to the interaction region can be computed, and is estimated to be in the range from about 110 to 160 AU.

  6. Turbulence

    NASA Astrophysics Data System (ADS)

    Frisch, Uriel

    1996-01-01

    Written five centuries after the first studies of Leonardo da Vinci and half a century after A.N. Kolmogorov's first attempt to predict the properties of flow, this textbook presents a modern account of turbulence, one of the greatest challenges in physics. "Fully developed turbulence" is ubiquitous in both cosmic and natural environments, in engineering applications and in everyday life. Elementary presentations of dynamical systems ideas, probabilistic methods (including the theory of large deviations) and fractal geometry make this a self-contained textbook. This is the first book on turbulence to use modern ideas from chaos and symmetry breaking. The book will appeal to first-year graduate students in mathematics, physics, astrophysics, geosciences and engineering, as well as professional scientists and engineers.

  7. Continuum Gyrokinetic Simulations of Turbulence in Open-Field-Line Plasmas

    NASA Astrophysics Data System (ADS)

    Shi, E. L.; Hammett, G. W.; Stoltzfus-Dueck, T.; Hakim, A.

    2016-10-01

    We have performed our first 3D2V gyrokinetic simulations of electrostatic plasma turbulence in open-field-line geometries using the full-F discontinuous-Galerkin code Gkeyll. These simulations include the basic elements of a scrape-off layer: localized sources to model plasma outflow from the core, cross-field turbulent transport, parallel flow along magnetic field lines, and parallel losses at the limiter or divertor with sheath boundary conditions. The set of boundary conditions used in our model allows currents to flow through the walls and satisfies energy conservation. In addition to details of our numerical approach, we will present results from flux-tube simulations of devices containing straight-field lines (such as LAPD) and helical-field-lines (such as the TORPEX simple magnetized torus). Preliminary results show turbulent fluctuation levels similar to fluid simulations, which are comparable to the observed fluctuation level in LAPD but somewhat smaller than observed in TORPEX. This research was supported by the Max-Planck/Princeton Center for Plasma Physics, the SciDAC Center for the Study of Plasma Microturbulence, and U.S. DOE contract DE-AC02-09CH11466.

  8. Intermittency and scaling of vorticity in drift-interchange plasma turbulence

    NASA Astrophysics Data System (ADS)

    Hnat, Bogdan; Dura, Paula; Robinson, James; Dendy, Richard

    2012-10-01

    Vorticity plays a central role in particle and energy transport driven by fluid and drift turbulence in plasmas with magnetic fields. Characterising the largest spatiotemporal concentrations of vorticity, and quantifying the scaling of vorticity with plasma parameters and system size, is therefore important for tokamak transport studies. We address this using a modified Hasegawa-Wakatani model, extended (J M Dewhurst et al, Phys. Plasmas 16, 072306 (2009)) to include a background magnetic field gradient. Although vorticity is defined in terms of gradients in the underlying fluid velocity, we find that the statistical properties of fluctuations in vorticity can differ significantly from those of fluctuations in velocity and density. We relate this to changes in the morphology of coherent structures within the turbulence, and to the nature of turbulent interactions -- cascade, or few-wave coupling. Some of the key properties depend on the direction of the magnetic field gradient. This may give rise to differences between inboard and outboard edge plasma transport in tokamaks.

  9. Self-regulation of E x B flow shear via plasma turbulence.

    PubMed

    Vianello, N; Spada, E; Antoni, V; Spolaore, M; Serianni, G; Regnoli, G; Cavazzana, R; Bergsåker, H; Drake, J R

    2005-04-08

    The momentum balance has been applied to the ExB flow in the edge region of a reversed field pinch (RFP) configuration. All terms, including those involving fluctuations, have been measured in stationary condition in the edge region of the Extrap-T2R RFP experiment. It is found that the component of the Reynolds stress driven by electrostatic fluctuations is the term playing the major role in driving the shear of the ExB flow to a value marginal for turbulent suppression, so that the results are in favor of a turbulence self-regulating mechanism underlying the momentum balance at the edge. Balancing the sheared flow driving and damping terms, the plasma viscosity is found anomalous and consistent with the diffusivity due to electrostatic turbulence.

  10. Self-Regulation of E×B Flow Shear via Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Vianello, N.; Spada, E.; Antoni, V.; Spolaore, M.; Serianni, G.; Regnoli, G.; Cavazzana, R.; Bergsåker, H.; Drake, J. R.

    2005-04-01

    The momentum balance has been applied to the E×B flow in the edge region of a reversed field pinch (RFP) configuration. All terms, including those involving fluctuations, have been measured in stationary condition in the edge region of the Extrap-T2R RFP experiment. It is found that the component of the Reynolds stress driven by electrostatic fluctuations is the term playing the major role in driving the shear of the E×B flow to a value marginal for turbulent suppression, so that the results are in favor of a turbulence self-regulating mechanism underlying the momentum balance at the edge. Balancing the sheared flow driving and damping terms, the plasma viscosity is found anomalous and consistent with the diffusivity due to electrostatic turbulence.

  11. Bifurcation Theory of the Transition to Collisionless Ion-temperature-gradient-driven Plasma Turbulence

    SciTech Connect

    Kolesnikov, R.A.; Krommes, J.A.

    2005-09-22

    The collisionless limit of the transition to ion-temperature-gradient-driven plasma turbulence is considered with a dynamical-systems approach. The importance of systematic analysis for understanding the differences in the bifurcations and dynamics of linearly damped and undamped systems is emphasized. A model with ten degrees of freedom is studied as a concrete example. A four-dimensional center manifold (CM) is analyzed, and fixed points of its dynamics are identified and used to predict a ''Dimits shift'' of the threshold for turbulence due to the excitation of zonal flows. The exact value of that shift in terms of physical parameters is established for the model; the effects of higher-order truncations on the dynamics are noted. Multiple-scale analysis of the CM equations is used to discuss possible effects of modulational instability on scenarios for the transition to turbulence in both collisional and collisionless cases.

  12. Mean and Oscillating Plasma Flows and Turbulence Interactions across the L-H Confinement Transition

    SciTech Connect

    Conway, G. D.; Angioni, C.; Ryter, F.; Sauter, P.; Vicente, J.

    2011-02-11

    A complex interaction between turbulence driven ExB zonal flow oscillations, i.e., geodesic acoustic modes (GAMs), the turbulence, and mean equilibrium flows is observed during the low to high (L-H) plasma confinement mode transition in the ASDEX Upgrade tokamak. Below the L-H threshold at low densities a limit-cycle oscillation forms with competition between the turbulence level and the GAM flow shearing. At higher densities the cycle is diminished, while in the H mode the cycle duration becomes too short to sustain the GAM, which is replaced by large amplitude broadband flow perturbations. Initially GAM amplitude increases as the H-mode transition is approached, but is then suppressed in the H mode by enhanced mean flow shear.

  13. STATISTICS OF THE VELOCITY GRADIENT TENSOR IN SPACE PLASMA TURBULENT FLOWS

    SciTech Connect

    Consolini, Giuseppe; Marcucci, Maria Federica; Pallocchia, Giuseppe; Materassi, Massimo

    2015-10-10

    In the last decade, significant advances have been presented for the theoretical characterization and experimental techniques used to measure and model all of the components of the velocity gradient tensor in the framework of fluid turbulence. Here, we attempt the evaluation of the small-scale velocity gradient tensor for a case study of space plasma turbulence, observed in the Earth's magnetosheath region by the CLUSTER mission. In detail, we investigate the joint statistics P(R, Q) of the velocity gradient geometric invariants R and Q, and find that this P(R, Q) is similar to that of the low end of the inertial range for fluid turbulence, with a pronounced increase in the statistics along the so-called Vieillefosse tail. In the context of hydrodynamics, this result is referred to as the dissipation/dissipation-production due to vortex stretching.

  14. Mean and oscillating plasma flows and turbulence interactions across the L-H confinement transition.

    PubMed

    Conway, G D; Angioni, C; Ryter, F; Sauter, P; Vicente, J

    2011-02-11

    A complex interaction between turbulence driven E × B zonal flow oscillations, i.e., geodesic acoustic modes (GAMs), the turbulence, and mean equilibrium flows is observed during the low to high (L-H) plasma confinement mode transition in the ASDEX Upgrade tokamak. Below the L-H threshold at low densities a limit-cycle oscillation forms with competition between the turbulence level and the GAM flow shearing. At higher densities the cycle is diminished, while in the H mode the cycle duration becomes too short to sustain the GAM, which is replaced by large amplitude broadband flow perturbations. Initially GAM amplitude increases as the H-mode transition is approached, but is then suppressed in the H mode by enhanced mean flow shear.

  15. Resonance line radiation originating from a region with well-developed plasma turbulence

    NASA Astrophysics Data System (ADS)

    Kleiman, E. B.; Koulinich, V. V.

    1994-10-01

    This study considers the influence of the effects of scattering due to Langmuir turbulent pulsations in the transfer of radiation in the spectral lines. The transfer equation of radiation in spectral lines, by taking into account scattering due to Langmuir turbulent pulsations, is written in a form convenient for application by numerical methods. The profile's intensity for a plane-parallel finite isothermal slab of a turbulent plasma in the case of complete redistribution of scattering by an atom are obtained. Numerical studies show that in this case with the broadening of spectral lines and the decreasing of self-reversal, the Langmuir frequency nupe is of the same order as the electronic Doppler width delta nuDe. Creation of the line satellites when nupe is larger than the line width delta nu is shown with the aid of numerical methods.

  16. Observation of Double Impurity Critical Gradients for Electromagnetic Turbulence Excitation in Tokamak Plasmas.

    PubMed

    Zhong, W L; Shen, Y; Zou, X L; Gao, J M; Shi, Z B; Dong, J Q; Duan, X R; Xu, M; Cui, Z Y; Li, Y G; Ji, X Q; Yu, D L; Cheng, J; Xiao, G L; Jiang, M; Yang, Z C; Zhang, B Y; Shi, P W; Liu, Z T; Song, X M; Ding, X T; Liu, Yong

    2016-07-22

    The impact of impurity ions on a pedestal has been investigated in the HL-2A Tokamak, at the Southwestern Institute of Physics, Chengdu, China. Experimental results have clearly shown that during the H-mode phase, an electromagnetic turbulence was excited in the edge plasma region, where the impurity ions exhibited a peaked profile. It has been found that double impurity critical gradients are responsible for triggering the turbulence. Strong stiffness of the impurity profile has been observed during cyclic transitions between the I-phase and H-mode regime. The results suggest that the underlying physics of the self-regulated edge impurity profile offers the possibility for an active control of the pedestal dynamics via pedestal turbulence.

  17. Radio Wave Scattering in the Outer Heliosphere: Preliminary Calculations

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1995-01-01

    Detailed first estimates are presented of angular broadening in the outer heliosphere due to scattering of radio waves by density irregularities. The application is to the 2-3 kHz radiation observed by Voyager. Two plausible turbulence models, which account very well for scattering within 1 AU, are extrapolated beyond 10 AU. Both models predict significant angular broadening in the outer heliosphere, accounting semi- quantitatively alone for the source sizes inferred from roll modulation data. Predictions are presented for radial variations in the apparent source size if scattering is important. Comparisons with available data argue that scattering is important (and indeed is the dominant contributor to the apparent source size) and that the radiation source is located in the outer heliosphere. Other evidence that scattering is important, such as the fluctuations in apparent source direction and intensity, are also identified. The effects of scattering should be included in future analyses of the 2-3 kHz emissions.

  18. A Review of Nonlinear Low Frequency (LF) Wave Observations in Space Plasmas: On the Development of Plasma Turbulence

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.

    1995-01-01

    As the lead-off presentation for the topic of nonlinear waves and their evolution, we will illustrate some prominent examples of waves in space plasmas. We will describe recent observations detected within planetary foreshocks, near comets and in interplanetary space. It is believed that the nonlinear LF plasma wave features discussed here are part of and may be basic to the development of plasma turbulence. In this sense, this is one area of space plasma physics that is fundamental, with applications to fusion physics and astrophysics as well. It is hoped that the reader(s) will be stimulated to study nonlinear wave development themselves, if he/she is not already involved.

  19. Cosmic-ray picture of the heliosphere

    NASA Technical Reports Server (NTRS)

    Venkatesan, D.

    1985-01-01

    The existing data base on the characteristics of the heliosphere is discussed. It is known that solar gravity is less than necessary to hold all the solar material, and therefore a supersonic solar wind exists. Skylab soft X-ray photographs revealed the existence of coronal holes, which evolve in an 11 yr cycle. It has been proposed that all but the highest energy cosmic rays detected on earth can be attributed to solar and heliospheric origins, a controversial view which requires further empirical and theoretical work on particle acceleration processes and regions of interaction of the solar wind with interplanetary plasma. It is possible that a warped solar current sheet stretches to interplanetary space and organizes the solar magnetic field and thereby guides cosmic rays. An inverse correlation has been identified between the sunspot cycle and cosmic ray intensity. The features and effects of solar flares, subsequent shock waves and high speed particle streams are also discussed.

  20. Development of a long pulse plasma gun discharge for magnetic turbulence studies

    NASA Astrophysics Data System (ADS)

    Schaffner, David

    2016-10-01

    A long pulse ( 300 μs) plasma gun discharge is in development at the Bryn Mawr College Plasma Laboratory for the production of sustained magnetized plasma injection for magnetohydrodynamic (MHD) turbulence studies. An array of eight 0.5mF parallel capacitors are used to create a pulse-forming-network (PFN) with a plateaued current output of 50kA for at least 200 of the 300 μs pulse. A 24cm inner diameter plasma gun provides stuffing flux fields at the stuffing threshold in order to allow for the continuous injection of magnetic helicity. Plasma is injected into a 24cm diameter flux-conserving aluminum chamber with a high density port array for fine spatial resolution diagnostic access. Fluctuations of magnetic field and saturation current are measured using pickup probes and Langmuir probes respectively.

  1. Laser induced fluorescence measurements of axial velocity, velocity shear, and parallel ion temperature profiles during the route to plasma turbulence in a linear magnetized plasma device

    NASA Astrophysics Data System (ADS)

    Chakraborty Thakur, S.; Adriany, K.; Gosselin, J. J.; McKee, J.; Scime, E. E.; Sears, S. H.; Tynan, G. R.

    2016-11-01

    We report experimental measurements of the axial plasma flow and the parallel ion temperature in a magnetized linear plasma device. We used laser induced fluorescence to measure Doppler resolved ion velocity distribution functions in argon plasma to obtain spatially resolved axial velocities and parallel ion temperatures. We also show changes in the parallel velocity profiles during the transition from resistive drift wave dominated plasma to a state of weak turbulence driven by multiple plasma instabilities.

  2. Synergistic cross-scale coupling of turbulence in a tokamak plasma

    SciTech Connect

    Howard, N. T.; Holland, C.; White, A. E.; Greenwald, M.; Candy, J.

    2014-11-15

    For the first time, nonlinear gyrokinetic simulations spanning both the ion and electron spatio-temporal scales have been performed with realistic electron mass ratio ((m{sub D}∕m{sub e}){sup 1∕2 }= 60.0), realistic geometry, and all experimental inputs, demonstrating the coexistence and synergy of ion (k{sub θ}ρ{sub s}∼O(1.0)) and electron-scale (k{sub θ}ρ{sub e}∼O(1.0)) turbulence in the core of a tokamak plasma. All multi-scale simulations utilized the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] to study the coupling of ion and electron-scale turbulence in the core (r/a = 0.6) of an Alcator C-Mod L-mode discharge shown previously to exhibit an under-prediction of the electron heat flux when using simulations only including ion-scale turbulence. Electron-scale turbulence is found to play a dominant role in setting the electron heat flux level and radially elongated (k{sub r} ≪ k{sub θ}) “streamers” are found to coexist with ion-scale eddies in experimental plasma conditions. Inclusion of electron-scale turbulence in these simulations is found to increase both ion and electron heat flux levels by enhancing the transport at the ion-scale while also driving electron heat flux at sub-ρ{sub i} scales. The combined increases in the low and high-k driven electron heat flux may explain previously observed discrepancies between simulated and experimental electron heat fluxes and indicates a complex interaction of short and long wavelength turbulence.

  3. Synergistic cross-scale coupling of turbulence in a tokamak plasma

    NASA Astrophysics Data System (ADS)

    Howard, N. T.; Holland, C.; White, A. E.; Greenwald, M.; Candy, J.

    2014-11-01

    For the first time, nonlinear gyrokinetic simulations spanning both the ion and electron spatio-temporal scales have been performed with realistic electron mass ratio ((mD/me)1/2 = 60.0), realistic geometry, and all experimental inputs, demonstrating the coexistence and synergy of ion (kθρs˜O (1.0 ) ) and electron-scale (kθρe˜O (1.0 ) ) turbulence in the core of a tokamak plasma. All multi-scale simulations utilized the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] to study the coupling of ion and electron-scale turbulence in the core (r/a = 0.6) of an Alcator C-Mod L-mode discharge shown previously to exhibit an under-prediction of the electron heat flux when using simulations only including ion-scale turbulence. Electron-scale turbulence is found to play a dominant role in setting the electron heat flux level and radially elongated (kr ≪ kθ) "streamers" are found to coexist with ion-scale eddies in experimental plasma conditions. Inclusion of electron-scale turbulence in these simulations is found to increase both ion and electron heat flux levels by enhancing the transport at the ion-scale while also driving electron heat flux at sub-ρi scales. The combined increases in the low and high-k driven electron heat flux may explain previously observed discrepancies between simulated and experimental electron heat fluxes and indicates a complex interaction of short and long wavelength turbulence.

  4. Modelling for turbulent transport of nanoparticles growing around a thermal plasma jet

    NASA Astrophysics Data System (ADS)

    Shigeta, Masaya

    2015-09-01

    Modelling works for expressing the simultaneous processes of growth and transport of nanoparticles around a turbulent-like thermal plasma jet are presented. From the physical aspect, extending the previous model, a simple-but-consistent model which requires less computational costs is developed to describe the nanoparticles' birth and collective growth through homogeneous nucleation, heterogeneous condensation, and coagulation among themselves as well as transports by convection, diffusion, and thermophoresis. From the mathematical aspect, an original simulation code with higher accuracy is developed to express thermal plasma turbulence and to capture steep gradients in the spatial distribution of nanoparticles. As a base case, an argon thermal plasma jet is ejected at 1.5 slm from the nozzle, and iron vapor is supplied at 0.1 g/min with the plasma jet. The computation shows that the high-temperature plasma jet entrains the surrounding non-ionized gas because of Kelvin-Helmholtz instability at their interface. The instability waves grow up and then the interface rolls up to eddies. As the jet goes downstream, the eddies break to smaller ones, which lead to turbulence transition. This feature has also been reported in the experimental study. The iron vapor is transported with the plasma flow and simultaneously diffuses across the plasma's fringe where the vapor experiences the temperature decrease. As a result, the vapor changes its phase to nanoparticles through nucleation and condensation. The nanoparticles are also transported by convection and diffusion. The regions of large diameters coincide with those of low number densities of nanoparticles, because the size of nanoparticles increases through coagulation among themselves decreasing their own numbers.

  5. Cosmic ray transport in astrophysical plasmas

    SciTech Connect

    Schlickeiser, R.

    2015-09-15

    Since the development of satellite space technology about 50 years ago the solar heliosphere is explored almost routinely by several spacecrafts carrying detectors for measuring the properties of the interplanetary medium including energetic charged particles (cosmic rays), solar wind particle densities, and electromagnetic fields. In 2012, the Voyager 1 spacecraft has even left what could be described as the heliospheric modulation region, as indicated by the sudden disappearance of low energy heliospheric cosmic ray particles. With the available in-situ measurements of interplanetary turbulent electromagnetic fields and of the momentum spectra of different cosmic ray species in different interplanetary environments, the heliosphere is the best cosmic laboratory to test our understanding of the transport and acceleration of cosmic rays in space plasmas. I review both the historical development and the current state of various cosmic ray transport equations. Similarities and differences to transport theories for terrestrial fusion plasmas are highlighted. Any progress in cosmic ray transport requires a detailed understanding of the electromagnetic turbulence that is responsible for the scattering and acceleration of these particles.

  6. II. Transport of Nearly Incompressible Magnetohydrodynamic Turbulence from 1 to 75 au

    NASA Astrophysics Data System (ADS)

    Adhikari, L.; Zank, G. P.; Hunana, P.; Shiota, D.; Bruno, R.; Hu, Q.; Telloni, D.

    2017-06-01

    The thermal plasma beta in the solar wind and the solar corona is of the order of β ˜ 1 and β \\ll 1. Zank et al. developed 2D and slab turbulence transport model equations of the order of β ˜ 1 and β \\ll 1 using nearly incompressible (NI) theory. We solve the Zank et al. NI MHD coupled turbulence transport equations for the inhomogeneous solar wind from 1 to 75 au, and compare the numerical solutions to Voyager 2 observations. We find that (1) the 2D turbulent energies are larger than the slab energies throughout the heliosphere; (2) the 2D turbulent energies decrease more slowly than the slab turbulent energies within ˜4 au, while the slab energies increase and the 2D energies flatten in the outer heliosphere; (3) the 2D normalized cross-helicity decreases faster than the slab normalized cross-helicity within ˜4 au; (4) the 2D normalized residual energy is more magnetically dominated than the slab; (5) the variance of density fluctuations decreases more rapidly than {r}-4 within ˜10 au, and more slowly in the outer heliosphere; and (6) the observed variance in magnetic field fluctuations as a function of the thermal plasma beta is described by the two-component turbulence transport model. In summary, the NI MHD two-component Zank et al. turbulence transport model captures the behavior of the forward, backward, and total energies in the fluctuating Elsässer variables, the variance in the magnetic field, kinetic energy, and density fluctuations, the cross-helicities and residual energies, the thermal temperature and plasma beta, and the various correlation lengths.

  7. Turbulent Transport in a Three-dimensional Solar Wind

    NASA Astrophysics Data System (ADS)

    Shiota, D.; Zank, G. P.; Adhikari, L.; Hunana, P.; Telloni, D.; Bruno, R.

    2017-03-01

    Turbulence in the solar wind can play essential roles in the heating of coronal and solar wind plasma and the acceleration of the solar wind and energetic particles. Turbulence sources are not well understood and thought to be partly enhanced by interaction with the large-scale inhomogeneity of the solar wind and the interplanetary magnetic field and/or transported from the solar corona. To investigate the interaction with background inhomogeneity and the turbulence sources, we have developed a new 3D MHD model that includes the transport and dissipation of turbulence using the theoretical model of Zank et al. We solve for the temporal and spatial evolution of three moments or variables, the energy in the forward and backward fluctuating modes and the residual energy and their three corresponding correlation lengths. The transport model is coupled to our 3D model of the inhomogeneous solar wind. We present results of the coupled solar wind-turbulence model assuming a simple tilted dipole magnetic configuration that mimics solar minimum conditions, together with several comparative intermediate cases. By considering eight possible solar wind and turbulence source configurations, we show that the large-scale solar wind and IMF inhomogeneity and the strength of the turbulence sources significantly affect the distribution of turbulence in the heliosphere within 6 au. We compare the predicted turbulence distribution results from a complete solar minimum model with in situ measurements made by the Helios and Ulysses spacecraft, finding that the synthetic profiles of the turbulence intensities show reasonable agreement with observations.

  8. Identification of new turbulence contributions to plasma transport and confinement in spherical tokamak regime

    DOE PAGES

    Wang, W. X.; Ethier, S.; Ren, Y.; ...

    2015-10-15

    Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E x B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transportmore » that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around kθρs ~ 0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E x B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E x B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Furthermore, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma transport in

  9. Identification of new turbulence contributions to plasma transport and confinement in spherical tokamak regime

    NASA Astrophysics Data System (ADS)

    Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.; Li, Z. Q.

    2015-10-01

    Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E ×B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transport that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around kθρs˜0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E ×B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E ×B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Moreover, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma transport in advanced ST

  10. Identification of new turbulence contributions to plasma transport and confinement in spherical tokamak regime

    SciTech Connect

    Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.; Li, Z. Q.

    2015-10-15

    Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E x B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transport that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around kθρs ~ 0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E x B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E x B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Furthermore, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma

  11. Runaway electrons and turbulence in a current-carrying stellarator plasma

    SciTech Connect

    Volkov, E.D.; Perepelkin, N.F.; Suprunenko, V.A.; Arsen'ev, A.V.; Burchenko, P.Y.; Vasil'ev, M.P.; Kotsubanov, V.D.; Kulaga, A.E.; Rubtsov, K.S.; Slavnyi, A.S.

    1984-07-01

    A disruption of the free acceleration of electrons in a magnetized, ohmically heated plasma in the Uragan-2 and Sirius stellarators has been observed and studied. Depending on the electric field and the ratio E/E/sub c//sub r/, the plasma heating in a stellarator may fall in one of three regimes associated with the appearance of a tail on the electron energy distribution: free acceleration (runaway) of electrons in a relatively cool plasma with a classical conductivity, at E<0.1E/sub c//sub r/; limited acceleration at Eapprox.(0.1--1.0)E/sub c//sub r/; and total disruption of the free acceleration in a hot plasma at E>E/sub c//sub r/. The behavior of the electron tail from one regime to another over the course of the discharge is related to the development of various stages of microinstabilities near the plasma frequency ..omega../sub pe/ and the ion plasma frequency ..omega../sub ..pi../. It appears that these instabilities stabilize the current drift velocity at various levels. The turbulent heating of electrons and ions at the anomalous resistance and the suppression of the free electron acceleration arise near a threshold Eapprox.E/sub c//sub r/. Results on the turbulent heating of ions carried out in various tokamaks and stellarators are compared.

  12. Intrinsic rotation reversal, non-local transport, and turbulence transition in KSTAR L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Shi, Y. J.; Kwon, J. M.; Diamond, P. H.; Ko, W. H.; Choi, M. J.; Ko, S. H.; Hahn, S. H.; Na, D. H.; Leem, J. E.; Lee, J. A.; Yang, S. M.; Lee, K. D.; Joung, M.; Jeong, J. H.; Yoo, J. W.; Lee, W. C.; Lee, J. H.; Bae, Y. S.; Lee, S. G.; Yoon, S. W.; Ida, K.; Na, Y.-S.

    2017-06-01

    Experiments of electron cyclotron resonance heating (ECH) power scan in KSTAR tokamak clearly demonstrate that both the cutoff density for non-local heat transport (NLT) and the threshold density for intrinsic rotation reversal can be determined by the collisionality. We demonstrate that NLT can be affected by ECH, and the intrinsic rotation direction follows the changes of NLT. The cutoff density of NLT and threshold density for rotation reversal can be significantly increased by ECH. The poloidal flow of turbulence in core plasma is in the electron and the ion diamagnetic direction in ECH plasmas and high density OH plasma, respectively. The auto-power spectra of density fluctuation are almost the same in the outer region for both ECH and OH plasmas. On the other hand, the divergence in density fluctuation spectra at high frequency range between OH and ECH plasma is clearly observed in core region. The features of linear confinement and saturated confinement also appeared in ECH plasma, which is similar to the linear ohmic confinement (LOC) mode and saturate ohmic confinement (SOC) mode. All these observations in macroscopic parameters and micro fluctuations suggest a possible link between the macro phenomena and the structural changes in turbulence mode.

  13. On-Off intermittency detected at the onset of turbulence in a magnetized plasma column

    NASA Astrophysics Data System (ADS)

    Pierre, Thiery

    2016-10-01

    The transition to turbulence is investigated in a rotating linear magnetized plasma column (MISTRAL device) and the role of the noise is emphasized. The destabilization is induced by injection of electrons on the axis of the device biasing the anode of the source plasma. Starting from a rotating plasma, that can be compared to a laminar regime in fluid dynamics, the slight increase of the potential of the source plasma leads to the onset of intermittent bursts in the edge corresponding to the expulsion of plasma blobs and to the transient destruction of the stable rotating plasma column. The statistical analysis of the time series of the density at the onset of the intermittency is performed. The distribution of the recurrence time of the turbulent bursts and the distribution of the duration of the laminar phases are analyzed. At the threshold, a power law is found for the distribution of the laminar duration with critical exponent -3/2. This dynamical behavior is similar to On-off intermittency (Platt, Spiegel, Tresser, PRL 70, 279,1993) induced by Gaussian noise superimposed on the control parameter. When the control parameter is increased, the distribution evolves towards an exponential decay law.

  14. Heliospheric plasma sheet (HPS) impingement onto the magnetosphere as a cause of relativistic electron dropouts (REDs) via coherent EMIC wave scattering with possible consequences for climate change mechanisms

    NASA Astrophysics Data System (ADS)

    Tsurutani, B. T.; Hajra, R.; Tanimori, T.; Takada, A.; Bhanu, R.; Mannucci, A. J.; Lakhina, G. S.; Kozyra, J. U.; Shiokawa, K.; Lee, L. C.; Echer, E.; Reddy, R. V.; Gonzalez, W. D.

    2016-10-01

    A new scenario is presented for the cause of magnetospheric relativistic electron decreases (REDs) and potential effects in the atmosphere and on climate. High-density solar wind heliospheric plasmasheet (HPS) events impinge onto the magnetosphere, compressing it along with remnant noon-sector outer-zone magnetospheric 10-100 keV protons. The betatron accelerated protons generate coherent electromagnetic ion cyclotron (EMIC) waves through a temperature anisotropy (T⊥/T|| > 1) instability. The waves in turn interact with relativistic electrons and cause the rapid loss of these particles to a small region of the atmosphere. A peak total energy deposition of 3 × 1020 ergs is derived for the precipitating electrons. Maximum energy deposition and creation of electron-ion pairs at 30-50 km and at < 30 km altitude are quantified. We focus the readers' attention on the relevance of this present work to two climate change mechanisms. Wilcox et al. (1973) noted a correlation between solar wind heliospheric current sheet (HCS) crossings and high atmospheric vorticity centers at 300 mb altitude. Tinsley et al. has constructed a global circuit model which depends on particle precipitation into the atmosphere. Other possible scenarios potentially affecting weather/climate change are also discussed.

  15. Self-regulating Drift wave -- Zonal Flow turbulence in a linear plasma device

    NASA Astrophysics Data System (ADS)

    Xie, Jinlin; Chen, Ran; Hu, Guanghai; Jin, Xiaoli; Li, Hong; Liu, Wandong; Yu, Changxuan

    2012-10-01

    Here we report new and interesting results about the DW-ZF system in a linear plasma device with much better control environments to illustrate important Zonal flow physics: (1) The three-dimensional spectral features of the LFZF have been provided. In particular, it is identified that the LFZF damping is dominated by ion-neutral collision in our case. Also experimental evidence of the shearing effect of ZF on DW has been given. (2) A zonal flow dominated state of the DW-ZF system has been achieved. Theoretically, it has been predicted that a significant portion of the turbulence energy can be stored in the Zonal Flows for the case of low collisionality plasmas. In our experiments we achieve a zonal flow dominated state, in which the maximum ratio of the ZF energy to the total turbulence energy is about 80%, which seems to support the hypothesis of zonostropic state in geostrophic turbulence. (3) The self-regulating dynamics in the DW-ZF system is clearly elucidated. The evolution of the energy partition ratio of drift-wave turbulence and zonal flow is investigated with varying magnetic field strength, which is found consistent with the general prey-predator model.

  16. Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas

    PubMed Central

    Mondal, Sudipta; Narayanan, V.; Ding, Wen Jun; Lad, Amit D.; Hao, Biao; Ahmad, Saima; Wang, Wei Min; Sheng, Zheng Ming; Sengupta, Sudip; Kaw, Predhiman; Das, Amita; Kumar, G. Ravindra

    2012-01-01

    Turbulence in fluids is a ubiquitous, fascinating, and complex natural phenomenon that is not yet fully understood. Unraveling turbulence in high density, high temperature plasmas is an even bigger challenge because of the importance of electromagnetic forces and the typically violent environments. Fascinating and novel behavior of hot dense matter has so far been only indirectly inferred because of the enormous difficulties of making observations on such matter. Here, we present direct evidence of turbulence in giant magnetic fields created in an overdense, hot plasma by relativistic intensity (1018W/cm2) femtosecond laser pulses. We have obtained magneto-optic polarigrams at femtosecond time intervals, simultaneously with micrometer spatial resolution. The spatial profiles of the magnetic field show randomness and their k spectra exhibit a power law along with certain well defined peaks at scales shorter than skin depth. Detailed two-dimensional particle-in-cell simulations delineate the underlying interaction between forward currents of relativistic energy “hot” electrons created by the laser pulse and “cold” return currents of thermal electrons induced in the target. Our results are not only fundamentally interesting but should also arouse interest on the role of magnetic turbulence induced resistivity in the context of fast ignition of laser fusion, and the possibility of experimentally simulating such structures with respect to the sun and other stellar environments. PMID:22566660

  17. Compressible Relativistic Magnetohydrodynamic Turbulence in Magnetically Dominated Plasmas and Implications for a Strong-coupling Regime

    NASA Astrophysics Data System (ADS)

    Takamoto, Makoto; Lazarian, Alexandre

    2016-11-01

    In this Letter, we report compressible mode effects on relativistic magnetohydrodynamic (RMHD) turbulence in Poynting-dominated plasmas using three-dimensional numerical simulations. We decomposed fluctuations in the turbulence into 3 MHD modes (fast, slow, and Alfvén) following the procedure of mode decomposition in Cho & Lazarian, and analyzed their energy spectra and structure functions separately. We also analyzed the ratio of compressible mode to Alfvén mode energy with respect to its Mach number. We found the ratio of compressible mode increases not only with the Alfvén Mach number, but also with the background magnetization, which indicates a strong coupling between the fast and Alfvén modes. It also signifies the appearance of a new regime of RMHD turbulence in Poynting-dominated plasmas where the fast and Alfvén modes are strongly coupled and, unlike the non-relativistic MHD regime, cannot be treated separately. This finding will affect particle acceleration efficiency obtained by assuming Alfvénic critical-balance turbulence and can change the resulting photon spectra emitted by non-thermal electrons.

  18. Modification of turbulent transport with continuous variation of flow shear in the large plasma device.

    PubMed

    Schaffner, D A; Carter, T A; Rossi, G D; Guice, D S; Maggs, J E; Vincena, S; Friedman, B

    2012-09-28

    Continuous control over azimuthal flow and shear in the edge of the Large Plasma Device (LAPD) has been achieved using a biasable limiter which has allowed a careful study of the effect of flow shear on pressure-gradient-driven turbulence and transport in the LAPD. The LAPD rotates spontaneously in the ion diamagnetic direction; positive limiter bias first reduces, then minimizes (producing a near-zero shear state), and finally reverses the flow into the electron diamagnetic direction. Degradation of particle confinement is observed in the minimum shearing state and a reduction in the turbulent particle flux is observed with increasing shearing in both flow directions. Near-complete suppression of the turbulent particle flux is observed for shearing rates comparable to the turbulent autocorrelation rate measured in the minimum shear state. Turbulent flux suppression is dominated by amplitude reduction in low-frequency (<10 kHz) density fluctuations. An increase in fluctuations for the highest shearing states is observed with the emergence of a coherent mode which does not lead to net particle transport. The variations of density fluctuations are fit well with power laws and compare favorably to simple models of shear suppression of transport.

  19. Hard X-ray generation in the turbulent plasma of solar flares

    NASA Astrophysics Data System (ADS)

    Charikov, Yu. E.; Shabalin, A. N.

    2016-12-01

    The influence of scattering of accelerated electrons in the turbulent plasma on the transformation of their distribution function is studied. The turbulence is connected with the emergence of magnetic inhomogeneities and ion-sound mode. The level of ion-sound turbulence is specified by the ratio W s/ nk B T e = 10-3, while the value of magnetic fluctuations is δB/B = 10-3. Different initial angular distributions of the function of accelerated-electron source are regarded: from isotropic to narrow directional distributions. For the chosen energy-density values of the ion-sound turbulence and the level of magnetic fluctuations, it is shown that both types of turbulence lead to a qualitative change in the hard X-ray brightness along the loop, moreover their influence was found to be different. Models with magnetic fluctuations and the ion sound can be distinguished not only by the difference in the hard X-ray distribution along the loop but also by the photon spectrum.

  20. Spectral analysis of forced turbulence in a non-neutral plasma

    NASA Astrophysics Data System (ADS)

    Chen, S.; Maero, G.; Romé, M.

    2017-06-01

    The paper investigates the dynamics of magnetized non-neutral (electron) plasmas subjected to external electric field perturbations. A two-dimensional (2-D) particle-in-cell code is effectively exploited to model this system with a special attention to the role that non-axisymmetric, multipolar radio frequency (RF) drives applied to the cylindrical (circular) boundary play on the insurgence of azimuthal instabilities and the subsequent formation of coherent structures preventing the relaxation to a fully developed turbulent state, when the RF fields are chosen in the frequency range of the low-order fluid modes themselves. The isomorphism of such system with a 2-D inviscid incompressible fluid offers an insight into the details of forced 2-D fluid turbulence. The choice of different initial density (i.e. fluid vorticity) distributions allows for a selection of conditions where different levels of turbulence and intermittency are expected and a range of final states is achieved. Integral and spectral quantities of interest are computed along the flow using a multiresolution analysis based on a wavelet decomposition of both enstrophy and energy 2-D maps. The analysis of a variety of cases shows that the qualitative features of turbulent relaxation are similar in conditions of both free and forced evolution; at the same time, fine details of the flow beyond the self-similarity turbulence properties are highlighted in particular in the formation of structures and their timing, where the influence of the initial conditions and the effect of the external forcing can be distinguished.

  1. Self-Consistent Simulation of Turbulence and Transport in Tokamak Edge Plasmas

    SciTech Connect

    Rognlien, T D; Umansky, M V; Xu, X Q; Cohen, R H

    2003-09-03

    The status of coupling the fluid 3D turbulence code BOUT and the fluid plasma/neutral 2D transport code UEDGE is reported, where both codes simulate the edge region of diverted tokamaks from several cm inside the magnetic separatrix to the far scrape-off layer (SOL), thereby including the magnetic X-point. Because the characteristic time scale of the turbulence is short ({approx} 10{sup -5}-10{sup -4}s) and the profile evolution time scale can be long ({approx} 10{sup -2}-10{sup -1} s owing to recycling), an iterative scheme is used that relaxes the turbulent fluxes passed from BOUT to UEDGE and the profiles from UEDGE to BOUT over many coupling steps. Each code is run on its own characteristic time scale, yielding a statistically averaged steady state. For this initial study, the ion and neutral densities and parallel velocities are evolved, while the temperature profiles are stationary. Here the turbulence code is run in the electrostatic approximation. For this example of self-consistent coupling with strong L-mode-like turbulence, the ion flux to the main-chamber exceeds that to the divertor plates.

  2. Methods of Plasma Turbulence Analysis: Application to Shock Studies

    SciTech Connect

    Balikhin, M.A.; Walker, S.N.

    2005-08-01

    The availability of multisatellite observations (e.g. ISEE, AMPTE, and Cluster) has triggered the development of new methods of analysis to shed light on the complex dynamics inherent in the solar wind and magnetosphere. This paper looks at the results of two such methods. Firstly, the phase differencing method is used to determine the properties of waves observed upstream of a quasiperpendicular bow shock. The resulting dispersion relation is then interpreted as evidence that the waves are generated as a result of the dynamics of the shock front. The second, NARMAX, is used to investigate the linear and nonlinear processes if the plasma observed at a antiparallel shock. The results show that for a small amplitude whistler wavetrain, third order nonlinear interactions are only important at the interface between the shocklet and the wavetrain. For higher amplitude wavetrains, the phase of the linear term describing the plasma is shifted.

  3. A source of plasma turbulence at the ionopause of Venus

    NASA Technical Reports Server (NTRS)

    Daniell, R. E., Jr.

    1981-01-01

    The microscopic aspects of the interaction of the solar wind with the ionosphere of Venus are explored, in light of simultaneous suprathermal ion and low frequency electric field signal measurements by Pioneer Venus instruments which suggest that the two ionopause phenomena may be causally related. Both parallel and perpendicular propagating waves are examined for instability, in the presence of planetary ions added to the flowing ionosheath plasma, by linear Vlasov theory. While for the low beta plasma conditions of the ionopause neither electrostatic nor electromagnetic parallel propagating waves are found to be unstable, perpendicular propagating electrostatic waves are unstable and have the proper frequency-wavelength relation to be Doppler shifted into the observed 100-Hz channel.

  4. Development of Data Analysis Techniques to Provide Photometric Images for a Heliospheric Imager

    DTIC Science & Technology

    2008-10-31

    signed / / signed / JANET C. JOHNSTON...ejections Heliospheric plasma 3D tomography Zodiacal light Spaceborne optical instrument Janet C. Johnston UNCL UNCL UNCL...waves. The instrument evolved from the heliospheric imaging capability demonstrated by the zodiacal light photometers of the Helios spacecraft. A near

  5. THIN CURRENT SHEETS AND ASSOCIATED ELECTRON HEATING IN TURBULENT SPACE PLASMA

    SciTech Connect

    Chasapis, A.; Retinò, A.; Sahraoui, F.; Canu, P.; Vaivads, A.; Khotyaintsev, Yu. V.; Sundkvist, D.; Greco, A.; Sorriso-Valvo, L.

    2015-05-01

    Intermittent structures, such as thin current sheets, are abundant in turbulent plasmas. Numerical simulations indicate that such current sheets are important sites of energy dissipation and particle heating occurring at kinetic scales. However, direct evidence of dissipation and associated heating within current sheets is scarce. Here, we show a new statistical study of local electron heating within proton-scale current sheets by using high-resolution spacecraft data. Current sheets are detected using the Partial Variance of Increments (PVI) method which identifies regions of strong intermittency. We find that strong electron heating occurs in high PVI (>3) current sheets while no significant heating occurs in low PVI cases (<3), indicating that the former are dominant for energy dissipation. Current sheets corresponding to very high PVI (>5) show the strongest heating and most of the time are consistent with ongoing magnetic reconnection. This suggests that reconnection is important for electron heating and dissipation at kinetic scales in turbulent plasmas.

  6. MMS Observations of Ion-scale Magnetic Island in the Magnetosheath Turbulent Plasma

    NASA Astrophysics Data System (ADS)

    Huang, S.; Sahraoui, F.; Retino, A.; Le Contel, O.; Yuan, Z.; Chasapis, A.; Aunai, N.; Breuillard, H.; Deng, X.; Zhou, M.; Fu, H.; Pang, Y.; Wang, D.; Torbert, R. B.; Goodrich, K.; Ergun, R.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Russell, C. T.; Pollock, C.; Giles, B. L.; Moore, T. E.; Magnes, W.; Strangeway, R. J.; Bromund, K. R.; Leinweber, H. K.; Plaschke, F.; Anderson, B. J.; Burch, J. L.

    2016-12-01

    In this letter, first observations of ion-scale magnetic island from the Magnetospheric Multiscale (MMS) mission in the magnetosheath turbulent plasma are presented. The magnetic island is characterized by bipolar variation of magnetic fields with magnetic field compression, strong core field, density depletion and strong currents dominated by the parallel component to the local magnetic field. The estimated size of magnetic island is about 8di, where di is the ion inertial length. Distinct particle behaviors and wave activities inside and at the edges of the magnetic island are observed: parallel electron beam accompanied with electrostatic solitary waves and strong electromagnetic lower hybrid drift waves inside the magnetic island; bidirectional electron beams, whistler waves, weak electromagnetic lower hybrid drift waves and strong broadband electrostatic noise at the edges of the magnetic island. Our observations demonstrate that highly dynamical, strong wave activities and electron-scale physics occur within ion-scale magnetic islands in the magnetosheath turbulent plasma.

  7. MMS Observations of Ion-Scale Magnetic Island in the Magnetosheath Turbulent Plasma

    NASA Technical Reports Server (NTRS)

    Huang, S. Y.; Sahraoui, F.; Retino, A.; Contel, O. Le; Yuan, Z. G.; Chasapis, A.; Aunai, N.; Breuillard, H.; Deng, X. H.; Zhou, M.; hide

    2016-01-01

    In this letter, first observations of ion-scale magnetic island from the Magnetospheric Multiscale mission in the magnetosheath turbulent plasma are presented. The magnetic island is characterized by bipolar variation of magnetic fields with magnetic field compression, strong core field, density depletion, and strong currents dominated by the parallel component to the local magnetic field. The estimated size of magnetic island is about 8 di, where di is the ion inertial length. Distinct particle behaviors and wave activities inside and at the edges of the magnetic island are observed: parallel electron beam accompanied with electrostatic solitary waves and strong electromagnetic lower hybrid drift waves inside the magnetic island and bidirectional electron beams, whistler waves, weak electromagnetic lower hybrid drift waves, and strong broadband electrostatic noise at the edges of the magnetic island. Our observations demonstrate that highly dynamical, strong wave activities and electron-scale physics occur within ion-scale magnetic islands in the magnetosheath turbulent plasma..

  8. Plasma wave turbulence in the strong coupling region at comet Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.; Kennel, C. F.; Scarf, F. L.; Smith, E. J.; Tsurutani, B. T.; Bame, S. J.; Thomsen, M. F.; Hynds, R.; Wenzel, K. P.

    1986-01-01

    Within 100,000 km of comet Giacobini-Zinner's nucleus, strong plasma wave turbulence was detected by the ICE electric and magnetic field wave instruments. The spatial profiles of the wave amplitudes are compared with measurements of the heavy ion fluxes of cometary origin, the plasma electron density, and the magnetic field strength. The general similarity of the wave and heavy ion profiles suggest that the waves might be generated by free energy in the pick-up ion distribution function. However, the expected parallel streaming instability of electrostatic modes generates waves with frequencies that are too low to explain the observations. The observed low frequency magnetic turbulence is plausibly explained by the lower hybrid loss-cone instability of heavy ions.

  9. Application of turbulent flow chromatography to the metabonomic analysis of human plasma: comparison with protein precipitation.

    PubMed

    Michopoulos, Filippos; Edge, Antony M; Theodoridis, Georgios; Wilson, Ian D

    2010-06-01

    The use of turbulent flow chromatography (TFC) as a method for the rapid metabonomic LC-MS analysis of plasma as an alternative to solvent-based protein precipitation has been investigated. This comparison has shown that TFC can be effectively used in this application with the benefit that off-line sample handling is significantly reduced. However, analysis of the data obtained via TFC for human plasma reveals substantial differences in the overall metabolite profiles compared with methanol-precipitated HPLC-MS. This seems in part at least to be related to greatly reduced amounts of phospholipids (ca. 10 fold reduction) for the turbulent flow methodology compared with protein-precipitated samples. The significance of these differences with respect to metabolite profiles as a result of the sample preparation method used are discussed.

  10. Thin Current Sheets and Associated Electron Heating in Turbulent Space Plasma

    NASA Astrophysics Data System (ADS)

    Chasapis, A.; Retinò, A.; Sahraoui, F.; Vaivads, A.; Khotyaintsev, Yu. V.; Sundkvist, D.; Greco, A.; Sorriso-Valvo, L.; Canu, P.

    2015-05-01

    Intermittent structures, such as thin current sheets, are abundant in turbulent plasmas. Numerical simulations indicate that such current sheets are important sites of energy dissipation and particle heating occurring at kinetic scales. However, direct evidence of dissipation and associated heating within current sheets is scarce. Here, we show a new statistical study of local electron heating within proton-scale current sheets by using high-resolution spacecraft data. Current sheets are detected using the Partial Variance of Increments (PVI) method which identifies regions of strong intermittency. We find that strong electron heating occurs in high PVI (>3) current sheets while no significant heating occurs in low PVI cases (<3), indicating that the former are dominant for energy dissipation. Current sheets corresponding to very high PVI (>5) show the strongest heating and most of the time are consistent with ongoing magnetic reconnection. This suggests that reconnection is important for electron heating and dissipation at kinetic scales in turbulent plasmas.

  11. Microtearing mode (MTM) turbulence in JIPPT-IIU tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Hamada, Y.; Watari, T.; Nishizawa, A.; Yamagishi, O.; Narihara, K.; Ida, K.; Kawasumi, Y.; Ido, T.; Kojima, M.; Toi, K.; the JIPPT-IIU Group

    2015-04-01

    Magnetic, density and potential fluctuations up to 500 kHz at several spatial points have been observed in the core region of JIPPT-IIU tokamak plasmas using a heavy ion beam probe. The frequency spectra of the density and magnetic oscillations are found to be similar, whereas there are large differences in the phase, coherence and frequency dependences deduced from signals at adjacent sample volumes. These differences allow us to ascribe the detected magnetic fluctuations to the microtearing mode (MTM) by simple dispersion relations of the MTM in collisionless and intermediate regimes. The frequency-integrated level of magnetic fluctuations around 150 kHz (100-200 kHz) is \\tilde{{B}}r /Bt ≈ 1× 10-4 , a level high enough for the ergodization of the magnetic surface and enhanced electron heat loss as derived by Rechester and Rosenbluth (1978 Phys. Rev. Lett. 40 38). This level is consistent with the measurements performed using cross-polarization scattering of microwaves in the Tore Supra tokamak. Our results are the first direct experimental verification of the MTM in the core region of tokamak plasmas, which has been recently observed in gyrokinetic simulations using a very fine mesh in tokamak and ST plasmas.

  12. Steady State Turbulent Transport in Magnetic Fusion Plasmas

    SciTech Connect

    Lee, W. W.; Ethier, S.; Kolesnikov, R.; Wang, W. X.; Tang, W. M.

    2007-12-20

    For more than a decade, the study of microturbulence, driven by ion temperature gradient (ITG) drift instabilities in tokamak devices, has been an active area of research in magnetic fusion science for both experimentalists and theorists alike. One of the important impetus for this avenue of research was the discovery of the radial streamers associated the ITG modes in the early nineties using a Particle-In-Cell (PIC) code. Since then, ITG simulations based on the codes with increasing realism have become possible with the dramatic increase in computing power. The notable examples were the demonstration of the importance of nonlinearly generated zonal flows in regulating ion thermal transport and the transition from Bohm to GyroBoham scaling with increased device size. In this paper, we will describe another interesting nonlinear physical process associated with the parallel acceleration of the ions, that is found to play an important role for the steady state turbulent transport. Its discovery is again through the use of the modern massively parallel supercomputers.

  13. Gyrokinetic simulations of collisionless reconnection in turbulent non-uniform plasmas

    SciTech Connect

    Kobayashi, Sumire; Rogers, Barrett N.; Numata, Ryusuke

    2014-04-15

    We present nonlinear gyrokinetic simulations of collisionless magnetic reconnection with non-uniformities in the plasma density, the electron temperature, and the ion temperature. The density gradient can stabilize reconnection due to diamagnetic effects but destabilize driftwave modes that produce turbulence. The electron temperature gradient triggers microtearing modes that drive rapid small-scale reconnection and strong electron heat transport. The ion temperature gradient destabilizes ion temperature gradient modes that, like the driftwaves, may enhance reconnection in some cases.

  14. Turbulent Transport in Fusion Plasmas, Effects of Toroidicity and Fluid Closure

    SciTech Connect

    Weiland, Jan

    2009-11-10

    Basic aspects of turbulent transport in toroidal magnetized plasmas are discussed. In particular Kadomtsev's mixing length estimate is found to work well for the Cyclone base case at the experimental gradient. Generalizations to include non-Markovian effects and off diagonal fluxes are given. The importance of toroidal effects is stressed These enter particularly strongly in convective or off diagonal fluxes. This feature applies also to momentum ttransport.

  15. Langmuir probe-based observables for plasma-turbulence code validation and application to the TORPEX basic plasma physics experiment

    SciTech Connect

    Ricci, Paolo; Theiler, C.; Fasoli, A.; Furno, I.; Labit, B.; Mueller, S. H.; Podesta, M.; Poli, F. M.

    2009-05-15

    The methodology for plasma-turbulence code validation is discussed, with focus on the quantities to use for the simulation-experiment comparison, i.e., the validation observables, and application to the TORPEX basic plasma physics experiment [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)]. The considered validation observables are deduced from Langmuir probe measurements and are ordered into a primacy hierarchy, according to the number of model assumptions and to the combinations of measurements needed to form each of them. The lowest levels of the primacy hierarchy correspond to observables that require the lowest number of model assumptions and measurement combinations, such as the statistical and spectral properties of the ion saturation current time trace, while at the highest levels, quantities such as particle transport are considered. The comparison of the observables at the lowest levels in the hierarchy is more stringent than at the highest levels. Examples of the use of the proposed observables are applied to a specific TORPEX plasma configuration characterized by interchange-driven turbulence.

  16. Hybrid Vlasov-Maxwell simulations of two-dimensional turbulence in plasmas

    SciTech Connect

    Valentini, F.; Servidio, S.; Veltri, P.; Perrone, D.; Califano, F.; Matthaeus, W. H.

    2014-08-15

    Turbulence in plasmas is a very challenging problem since it involves wave-particle interactions, which are responsible for phenomena such as plasma dissipation, acceleration mechanisms, heating, temperature anisotropy, and so on. In this work, a hybrid Vlasov-Maxwell numerical code is employed to study local kinetic processes in a two-dimensional turbulent regime. In the present model, ions are treated as a kinetic species, while electrons are considered as a fluid. As recently reported in [S. Servidio, Phys. Rev. Lett. 108, 045001 (2012)], nearby regions of strong magnetic activity, kinetic effects manifest through a deformation of the ion velocity distribution function that consequently departs from the equilibrium Maxwellian configuration. Here, the structure of turbulence is investigated in detail in phase space, by evaluating the high-order moments of the particle velocity distribution, i.e., temperature, skewness, and kurtosis. This analysis provides quantitative information about the non-Maxwellian character of the system dynamics. This departure from local thermodynamic equilibrium triggers several processes commonly observed in many astrophysical and laboratory plasmas.

  17. Heating and acceleration of solar wind ions by turbulent wave spectrum in inhomogeneous expanding plasma

    SciTech Connect

    Ofman, Leon; Ozak, Nataly; Viñas, Adolfo F.

    2016-03-25

    Near the Sun (< 10R{sub s}) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super-Alfvénic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.

  18. Heating and Acceleration of Solar Wind Ions by Turbulent Wave Spectrum in Inhomogeneous Expanding Plasma

    NASA Technical Reports Server (NTRS)

    Ofman, Leon; Ozak, Nataly; Vinas, Adolfo F.

    2016-01-01

    Near the Sun (< 10Rs) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super- Alfvenic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.

  19. Spectral characteristics of low-frequency plasma turbulence upstream of Comet P/Halley

    NASA Technical Reports Server (NTRS)

    Glassmeier, K.-H.; Coates, A. J.; Johnstone, A. D.; Acuna, M. H.; Goldstein, M. L.

    1989-01-01

    Two upstream regions have been identified in Giotto spacecraft magnetic field and plasma measurements subjected to cross-spectral analyses, in order to determine this cometary environment's low-frequency plasma turbulence spectral characteristics. One region's solar wind magnetic field was approximately parallel, and the other's perpendicular, to the solar wind flow velocity direction. Additional divergences relate to the regions having magnetic field lines that are either connected or disconnected to the cometary bow shock wave in either the quasi-parallel or quasi-perpendicular regions.

  20. Kelvin-Helmholtz turbulence associated with collisionless shocks in laser produced plasmas.

    PubMed

    Kuramitsu, Y; Sakawa, Y; Dono, S; Gregory, C D; Pikuz, S A; Loupias, B; Koenig, M; Waugh, J N; Woolsey, N; Morita, T; Moritaka, T; Sano, T; Matsumoto, Y; Mizuta, A; Ohnishi, N; Takabe, H

    2012-05-11

    We report the experimental results of a turbulent electric field driven by Kelvin-Helmholtz instability associated with laser produced collisionless shock waves. By irradiating an aluminum double plane target with a high-power laser, counterstreaming plasma flows are generated. As the consequence of the two plasma interactions, two shock waves and the contact surface are excited. The shock electric field and transverse modulation of the contact surface are observed by proton radiography. Performing hydrodynamic simulations, we reproduce the time evolutions of the reverse shocks and the transverse modulation driven by Kelvin-Helmholtz instability.

  1. Generation of electrostatic shocks and turbulence through the interaction of conics with the background plasma

    NASA Astrophysics Data System (ADS)

    Pottelette, R.; Treumann, R.; Bauer, O. H.; Lebreton, J. P.

    1985-01-01

    Experimental results, obtained during the PORCUPINE experiment and dealing with the interaction of an artificial ion conic with the background auroral plasma, are presented. In addition, these results are compared to the measurements performed by the S3-3 satellite when natural ion conics are present. This comparison shows that the physical processes associated with the neutralization of conical ion distributions and with their interaction with the background plasma induce the same kind of electrostatic shocks and turbulence as those recorded by S3-3.

  2. Kinetic Theory of Turbulence in Magnetized Plasmas, Charged Particle Acceleration,and Cross-Scale Coupling

    DTIC Science & Technology

    2013-12-26

    694/1/618 (2009). [2] P. H. Yoon and T.-M. Fang, Proton heating by parallel Alfven wave cascade, Physics of Plasmas 16, 062314, doi: 10.1063...ANSI Std Z39-18 [5] C. S. Wu, P. H. Yoon, and C. B. Wang, On non-resonant proton heating via intrinsic Alfvenic turbulence, Physics of Plasmas 16...interaction, J. Geophys. Res. 115, A01103, doi: 10.1029/2009JA014447 (2010). [10] J. Pavan, L. F. Ziebell, P. H. Yoon, and R. Gaelzer, Ionospheric ion

  3. Experimental investigation of dynamical coupling between turbulent transport and parallel flows in the JET plasma-boundary region.

    PubMed

    Hidalgo, C; Gonçalves, B; Silva, C; Pedrosa, M A; Erents, K; Hron, M; Matthews, G F

    2003-08-08

    The dynamical coupling between turbulent transport and parallel flows has been investigated in the plasma boundary region of the Joint European Torus tokamak. Experimental results show that there is a dynamical relationship between transport and parallel flows. As the size of transport events increases, parallel flows also increase. These results show that turbulent transport can drive parallel flows in the plasma boundary of fusion plasmas. This new type of measurement is an important element to unravel the overall picture connecting radial transport and flows in fusion plasmas.

  4. Propagation of Interplanetary Disturbances in the Outer Heliosphere

    NASA Technical Reports Server (NTRS)

    Wang, Chi

    2005-01-01

    Contents include the following: 1. We have developed a one-dimensional, spherically symmetric, multi-fluid MHD model that includes solar wind protons and electrons, pickup ions, and interstellar neutral hydrogen. This model advances the existing solar wind models for the outer heliosphere in two important ways: one is that it distinguishes solar wind protons from pickup ions, and the other is that it allows for energy transfer from pickup ions to the solar wind protons. Model results compare favorably with the Voyager 2 observations. 2. 2. Solar wind slowdown and interstellar neutral density. The solar wind in the outer heliosphere is fundamentally different from that in the inner heliosphere since the effects of interstellar neutrals become significant. 3. ICME propagation from the inner to outer heliosphere. Large coronal mass ejections (CMEs) have major effects on the structure of the solar wind and the heliosphere. The plasma and magnetic field can be compressed ahead of interplanetary CMEs. 4. During the current solar cycle (Cycle 23), several major CMEs associated with solar flares produced large transient shocks which were observed by widely-separated spacecraft such as Wind at Earth and Voyager 2 beyond 60 AU. Using data from these spacecraft, we use the multi-fluid model to investigate shock propagation and interaction in the heliosphere. Specifically, we studied the Bastille Day 2000, April 2001 and Halloween 2003 events. 5. Statistical properties of the solar wind in the outer heliosphere. In a collaboration with L.F. Burlaga of GSFC, it is shown that the basic statistical properties of the solar wind in the outer heliosphere can be well produced by our model. We studied the large-scale heliospheric magnetic field strength fluctuations as a function of distance from the Sun during the declining phase of a solar cycle, using our numerical model with observations made at 1 AU during 1995 as input. 6. Radial heliospheric magnetic field events. The

  5. Electrostatic turbulence and transport in a simple magnetized plasma

    SciTech Connect

    Fasoli, A.; Labit, B.; McGrath, M.; Mueller, S.H.; Plyushchev, G.; Podesta, M.; Poli, F.M.

    2006-05-15

    Gradient driven electrostatic instabilities are investigated in TORPEX [A. Fasoli, B. Labit, M. McGrath, S. H. Mueller, M. Podesta, and F. M. Poli, Bull. Am. Phys. Soc. 48, 119 (2003)], a toroidal device (R=1 m, a=0.2 m) in which plasmas are produced by microwaves (P{<=}20 kW) with f{sub rf}=2.45 GHz, in the electron cyclotron frequency range. Typical density and temperature are n{sub e}{<=}10{sup 17} m{sup -3} and T{sub e}{approx_equal}5 eV, respectively. The magnetic field is mainly toroidal ({<=}0.1 T), with a small vertical component ({<=}4 mT). Instabilities that can be generally identified as drift-interchange waves are observed and characterized for different levels of collisionality with neutrals. The frequency spectrum and the spatial profile of the fluctuation-induced flux are measured. An 86-tip probe is used to reconstruct the spatio-temporal evolution of density structures across the plasma cross section. The measured structures are characterized statistically, and related quantitative observables are constructed.

  6. Studies of HF-induced Strong Plasma Turbulence at the HAARP Ionospheric Observatory

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Adham, N.; Watanabe, N.; Watkins, B. J.; Bristow, W. A.; Selcher, C. A.; Bernhardt, P. A.

    2011-10-01

    High power HF transmitters may induce a number of plasma instabilities in the interaction region of overdense ionospheric plasma. We report results from our recent experiments using over one gigawatt of HF power (ERP) to generate and study strong Langmuir turbulence (SLT) and particle acceleration at the HAARP Observatory, Gakona, Alaska. Among the effects observed and studied in UHF radar backscatter are: SLT spectra including the outshifted plasma line or free-mode, appearance of a short timescale ponderomotive overshoot effect, collapse, cascade and co-existing spectra, control of artificial field-aligned irregularities (AFAI), the aspect angle dependence of the plasma line spectra, and suprathermal electrons. Mapping the intensity of SLT versus pointing angle, we have discovered a number of regions of strong interaction displaced from the primary HF interaction region. Stimulated electromagnetic emission (SEE) measurements complement radar measurements. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.

  7. Studies of HF-induced Strong Plasma Turbulence at the HAARP Ionospheric Observatory

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Adham, N.; Roe, R. G. E.; Keith, M. R.; Watkins, B. J.; Bristow, W. A.; Bernhardt, P. A.; Selcher, C. A.

    2010-11-01

    High power HF transmitters may induce a number of plasma instabilities in the interaction region of overdense ionospheric plasma. We report results from our recent experiments using over one gigawatt of HF power (ERP) to generate and study strong Langmuir turbulence (SLT) and particle acceleration at the HAARP Observatory, Gakona, Alaska. Among the effects observed and studied in UHF radar backscatter are: SLT spectra including the outshifted plasma line or free-mode, appearance of a short timescale ponderomotive overshoot effect, collapse, cascade and co-existing spectra, control of artificial field-aligned irregularities (AFAI), the aspect angle dependence of the plasma line spectra, and suprathermal electrons. Mapping the intensity of SLT versus pointing angle, we have discovered a number of regions of strong interaction displaced from the primary HF interaction region. Stimulated electromagnetic emission (SEE) measurements complement radar measurements. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.

  8. A coarse-grained kinetic equation for neutral particles in turbulent fusion plasmas

    SciTech Connect

    Mekkaoui, A.; Marandet, Y.; Genesio, P.; Rosato, J.; Stamm, R.; Capes, H.; Koubiti, M.; Godbert-Mouret, L.; Catoire, F.

    2012-06-15

    A coarse-grained kinetic equation for neutral particles (atoms, molecules) in magnetized fusion plasmas, valid on time scales large compared to the turbulence correlation time, is presented. This equation includes the effects of plasma density fluctuations, described by gamma statistics, on the transport of neutral particles. These effects have so far been neglected in plasma edge modeling, in spite of the fact that the amplitude of fluctuations can be of order unity. Density fluctuations are shown to have a marked effect on the screening of neutrals and on the spatial localization of the ionization source, in particular at high density. The coarse-grained equations obtained in this work are readily implemented in edge code suites currently used for fusion plasma analysis and future divertor design (ITER, DEMO).

  9. Effects of plasma turbulence on electron collection by a high-voltage spherical probe in a magnetized plasma

    NASA Astrophysics Data System (ADS)

    Palmadesso, P. J.; Ganguli, G.

    1992-05-01

    The effects of electron trapping and plasma turbulence on the current-voltage relation for a positively charged high-voltage spherical probe in a magnetized plasma are studied. When the neutral density is low enough so that ionization can be ignored, the present results indicate that the sheath structure and the current-voltage relation of a charged sphere configured as the originally planned SPEAR I experiment would be substantially influenced by the combined action of trapped electrons and plasma instabilities. Reduced levels of current collection relative to Linson's (1969) model are found. Variation of the scattering parameter over the whole range of physically realizable values results in a range of predicted current collection values which is a small fraction of the interval between the Parker-Murphy and Langmuir-Blodgett limits.

  10. Turbulent mixing of the solar wind with the interstellar medium

    NASA Astrophysics Data System (ADS)

    Veselovsky, Igor; Zeldovich, Maria; Verigin, Michael

    We demonstrate both theoretically and using recent experimental data, that interaction of the solar wind with the interstellar medium is not laminar as supposed in many theoretical and numerical models, but essentially turbulent. Evidences favoring the latter scenario are based on "Voyager" spacecraft observations of plasma, magnetic field and energetic particle parameters, which are inconsistent with laminar theories. Inhomogeneous and time-variable solar wind streams often show variations with relative amplitudes of an order of one in magnetic fields, velocity, density, temperature and other plasma parameters at different time scales from minutes to years. This could bring to their non-linear submagnetosonic and supermagnetosonic interactions on the way in the heliosphere to its boundaries and beyond. The relative variations in energy and amount of supra-thermal and accelerated ions are orders of magnitude stronger. Another cause and free energy source of turbulent behavior with possible saw-tooth relaxation type oscillations at the boundary is due to instabilities of interacting solar wind and interstellar flows. As a consequence, the heliosphere should have a turbulent comet-like shape in the interstellar wind what can be established only based on future measurements. Nevertheless, one can not expect any universal scaling here because of different ranges of dimensionless parameters suggesting non-steady state situation with not-fully developed inhomogeneous and intermittent turbulence. Possible indications are discussed on the existence of traveling perturbations in the interstellar medium influencing the outer heliosphere. This study was supported by the RFBR grants 07-02-00147, 06-05-64500, INTAS 03-51-6202 and MSU Interdisciplinary Scientific Project. It is also fulfilled as a part of the Programs of the Russian Academy of Sciences: "Origin and evolution of stars and galaxies" (P-04), "Solar activity and physical processes in the Sun-Earth system" (P-16

  11. The heliospheric energy source

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1986-01-01

    The solar wind and the heliosphere exist as a consequence of the heat input to the corona, particularly the coronal holes. The necessary energy input to coronal holes has been estimated to be 10 to the 6th erg/sq cm sec, requiring Alfven waves with rms fluid velocities of 100 km/sec. Observational upper limits on coronal fluid velocities are of the order of 25 km/sec, which may not apply to the transparent coronal hole. Alternatively it has been suggested that coronal holes may be heated by agitation from neighboring active regions, suggesting that the vigor of a coronal hole depends upon its location. The Ulysses Mission will provide a direct comparison of the strength of the high speed wind from coronal holes at low latitude and coronal holes at high latitude, from which the nature of the presently unknown energy sources of the coronal holes and the resulting structure of the heliosphere may be better judged. The question is fundamental to the dynamics of the windspheres of all stars.

  12. The heliospheric energy source

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1986-01-01

    The solar wind and the heliosphere exist as a consequence of the heat input to the corona, particularly the coronal holes. The necessary energy input to coronal holes has been estimated to be 10 to the 6th erg/sq cm sec, requiring Alfven waves with rms fluid velocities of 100 km/sec. Observational upper limits on coronal fluid velocities are of the order of 25 km/sec, which may not apply to the transparent coronal hole. Alternatively it has been suggested that coronal holes may be heated by agitation from neighboring active regions, suggesting that the vigor of a coronal hole depends upon its location. The Ulysses Mission will provide a direct comparison of the strength of the high speed wind from coronal holes at low latitude and coronal holes at high latitude, from which the nature of the presently unknown energy sources of the coronal holes and the resulting structure of the heliosphere may be better judged. The question is fundamental to the dynamics of the windspheres of all stars.

  13. Driving the Heliospheric Jellyfish

    NASA Astrophysics Data System (ADS)

    Leamon, R. J.; Mcintosh, S. W.

    2016-12-01

    Recent observational work has demonstrated that the enigmatic sunspotcycle and global magnetic environment of the Sun which source theeruptive events and modulate the solar wind, respectively, can beexplained in terms of the intra- and extra-hemispheric interaction ofmagnetic activity bands that belong to the 22-year magnetic polaritycycle. Those activity bands appear to be anchored deep in the Sun'sconvective interior and governed by the rotation of our star's radiativezone. We have also observed that those magnetic bands exhibit strongquasi-annual variability in the rotating convecting system which resultsin a significant local modulation of solar surface magnetism, forcingthe production of large eruptive events in each hemisphere that mouldsthe global-scale solar magnetic field and the solar-wind-inflatedheliosphere. Together with significant changes in the Sun's ultraviolet(UV), extreme ultraviolet (EUV), and X-Ray irradiance, these eruptivefluctuations ensnare all the Heliosphere (all of Heliophysics) like thetentacles of a jellyfish, and can be inferred in variations of suchwide-ranging phenomena as the South Atlantic Anomaly, the thermosphere,the radiation belts, and the can address ``Has Voyager left theHeliosphere?''

  14. Gyrokinetic study of turbulent convection of heavy impurities in tokamak plasmas at comparable ion and electron heat fluxes

    NASA Astrophysics Data System (ADS)

    Angioni, C.; Bilato, R.; Casson, F. J.; Fable, E.; Mantica, P.; Odstrcil, T.; Valisa, M.; ASDEX Upgrade Team; Contributors, JET

    2017-02-01

    In tokamaks, the role of turbulent transport of heavy impurities, relative to that of neoclassical transport, increases with increasing size of the plasma, as clarified by means of general scalings, which use the ITER standard scenario parameters as reference, and by actual results from a selection of discharges from ASDEX Upgrade and JET. This motivates the theoretical investigation of the properties of the turbulent convection of heavy impurities by nonlinear gyrokinetic simulations in the experimentally relevant conditions of comparable ion and electron heat fluxes. These conditions also correspond to an intermediate regime between dominant ion temperature gradient turbulence and trapped electron mode turbulence. At moderate plasma toroidal rotation, the turbulent convection of heavy impurities, computed with nonlinear gyrokinetic simulations, is found to be directed outward, in contrast to that obtained by quasi-linear calculations based on the most unstable linear mode, which is directed inward. In this mixed turbulence regime, with comparable electron and ion heat fluxes, the nonlinear results of the impurity transport can be explained by the coexistence of both ion temperature gradient and trapped electron modes in the turbulent state, both contributing to the turbulent convection and diffusion of the impurity. The impact of toroidal rotation on the turbulent convection is also clarified.

  15. Efforts to Simulate Solar Wind Turbulence

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    2007-01-01

    A three-dimensional integration of the MHD equations in spherical coordinates has been developed that attempts to simulate a variety of solar wind conditions. These include the interaction of Alfven wave packets and the development of a turbulent cascade, the role of the heliospheric current sheet, the role of quasi-two-dimensional fluctuations in determining how magnetic field lines meander throughout the heliosphere, and the role of interstellar pickup ions in perturbing the solar wind in the outer heliosphere.

  16. Simulation of magnetohydrodynamics turbulence with application to plasma-assisted supersonic combustion

    NASA Astrophysics Data System (ADS)

    Miki, Kenji

    Plasma assisted combustion (PAC) is a promising alternative to hold or ignite a fuel and air mixture in a supersonic environment. Efficient supersonic combustion is of primary importance for SCRAMJET technology. The advantages of PAC is the addition of large amounts of energy to specific regions of the SCRAMJET flow-field for short periods of time, and as a result accelerate the fuel/air kinetic rates to achieve a self-sustaining condition. Moreover, the promise of enhancement of fuel-air mixing by magnetohydrodynamics (MHD) flow control offers significant improvement of combustion performance. The development of a numerical tool for investigating high-temperature chemistry and plasmadynamic effects of a discharge arc is desired to gain understanding of PAC technology and the potential improvement of the operational efficiency of SCRAMJET engines. The main objective of this research is to develop a comprehensive model with the capability of modeling both high Reynolds number and high magnetic Reynolds number turbulent flow for application to supersonic combustor. The development of this model can be divided into three categories: first, the development of a self-consistent MHD numerical model capable of modeling magnetic turbulence in high magnetic Reynolds number applications. Second, the development of a gas discharge model which models the interaction of externally applied fields in conductive medium. Third, the development of models necessary for studying supersonic combustion applications with plasma-assistance such the extension of chemical kinetics models to extremely high temperature and non-equilibrium phenomenon. Finally, these models are combined and utilized to model plasma assisted combustion in a SCRAMJET. Two types of plasmas are investigated: an equilibrium electrical discharge (arc) and a non-equilibrium plasma jet. It is shown that both plasmas significantly increase the concentration of radicals such as O, OH and H, and both have positive impact

  17. HELCATS - Heliospheric Cataloguing, Analysis and Techniques Service

    NASA Astrophysics Data System (ADS)

    Barnes, D.; Harrison, R. A.; Davies, J. A.; Byrne, J.; Perry, C. H.; Moestl, C.; Rouillard, A. P.; Bothmer, V.; Rodriguez, L.; Eastwood, J. P.; Kilpua, E.; Odstrcil, D.; Gallagher, P.

    2015-12-01

    Understanding the evolution of the solar wind is fundamental to advancing our knowledge of energy and mass transport in the Solar System, making it crucial to space weather and its prediction. The advent of truly wide-angle heliospheric imaging has revolutionised the study of both transient (CMEs) and background (IRs) solar wind plasma structures, by enabling their direct and continuous observation out to 1 AU and beyond. The EU-funded FP7 HELCATS project combines European expertise in heliospheric imaging, built up in particular through lead involvement in NASA's STEREO mission, with expertise in solar and coronal imaging as well as in-situ and radio measurements of solar wind phenomena, in a programme of work that will enable a much wider exploitation and understanding of heliospheric imaging observations. The HELCATS project endeavors to catalogue transient and background solar wind structures imaged by STEREO/HI throughout the duration of the mission. This catalogue will include estimates of their kinematic properties using a variety of established and more speculative approaches, which are to be evaluated through comparisons with solar source and in-situ measurements. The potential for driving numerical models from these kinematic properties is to be assessed, as is their complementarity to radio observations, specifically Type II bursts and interplanetary scintillation. This presentation provides an overview of the HELCATS project and its progress in first 18 months of operations.

  18. Starprobe - Coronal plasma turbulence effects on tracking and telemetry

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Woo, R.; Koerner, M.

    1982-01-01

    The telemetry and tracking problems expected for Starprobe, a solar flyby with a perihelion of 4 solar radii, are discussed. The Starprobe is intended to obtain measurements of the solar quadrupole moment within an accuracy of 1/100,000,000, allowing more accurate modelling of the solar interior. Obstacles are perceived for Doppler velocity measurements due to RF signal amplitude and phase scintillations created by the solar corona. Model calculations are presented for the propagation effects in the maximum disturbance area, and an open loop two-way Doppler system is described. The system comprises X-band and S-band uplinks and downlinks to eliminate the plasma-induced phase scintillations, means of correcting unfolding errors caused by S-band amplitude scintillations, and a new method of estimating the Doppler frequency.

  19. SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas

    SciTech Connect

    Lin, Zhihong

    2013-12-18

    During the first year of the SciDAC gyrokinetic particle simulation (GPS) project, the GPS team (Zhihong Lin, Liu Chen, Yasutaro Nishimura, and Igor Holod) at the University of California, Irvine (UCI) studied the tokamak electron transport driven by electron temperature gradient (ETG) turbulence, and by trapped electron mode (TEM) turbulence and ion temperature gradient (ITG) turbulence with kinetic electron effects, extended our studies of ITG turbulence spreading to core-edge coupling. We have developed and optimized an elliptic solver using finite element method (FEM), which enables the implementation of advanced kinetic electron models (split-weight scheme and hybrid model) in the SciDAC GPS production code GTC. The GTC code has been ported and optimized on both scalar and vector parallel computer architectures, and is being transformed into objected-oriented style to facilitate collaborative code development. During this period, the UCI team members presented 11 invited talks at major national and international conferences, published 22 papers in peer-reviewed journals and 10 papers in conference proceedings. The UCI hosted the annual SciDAC Workshop on Plasma Turbulence sponsored by the GPS Center, 2005-2007. The workshop was attended by about fifties US and foreign researchers and financially sponsored several gradual students from MIT, Princeton University, Germany, Switzerland, and Finland. A new SciDAC postdoc, Igor Holod, has arrived at UCI to initiate global particle simulation of magnetohydrodynamics turbulence driven by energetic particle modes. The PI, Z. Lin, has been promoted to the Associate Professor with tenure at UCI.

  20. Heavy ion beam probing—diagnostics to study potential and turbulence in toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Melnikov, A. V.; Krupnik, L. I.; Eliseev, L. G.; Barcala, J. M.; Bravo, A.; Chmyga, A. A.; Deshko, G. N.; Drabinskij, M. A.; Hidalgo, C.; Khabanov, P. O.; Khrebtov, S. M.; Kharchev, N. K.; Komarov, A. D.; Kozachek, A. S.; Lopez, J.; Lysenko, S. E.; Martin, G.; Molinero, A.; de Pablos, J. L.; Soleto, A.; Ufimtsev, M. V.; Zenin, V. N.; Zhezhera, A. I.; T-10 Team; TJ-II Team

    2017-07-01

    Heavy ion beam probing (HIBP) is a unique diagnostics to study the core plasma potential and turbulence. Advanced HIBPs operate in the T-10 tokamak and TJ-II flexible heliac with fine focused (<1 cm) and intense (100 µA) beams. They provide measurements in the wide density interval {{\\overline{n}}\\text{e}}   =  (0.3-5)  ×  1019 m-3, in a wide range of Ohmic and electron cyclotron resonance heated (ECRH) discharges with various currents at T-10, and in the wide range of magnetic configurations with ECR and neutral beam injection (NBI) heating at TJ-II. Time evolution of the radial profiles and/or local values of plasma parameters from high field side (HFS) to low field side (LFS), -1  <  ρ  <  1, is observed in TJ-II by 125 keV Cs+ ions in a single shot, while LFS (+0.2  <  ρ  <  1) is observed in T-10 by 300 keV Tl+ ions. Multi-slit energy analyzers provide simultaneously data on the plasma potential φ (by the beam extra energy), plasma density n e (by the beam current), poloidal magnetic field B pol (by the beam toroidal shift), poloidal electric filed E pol that allows one to derive the electrostatic turbulent particle flux ΓE×B. The cross-phase of density oscillations produces the phase velocity of their poloidal propagation or rotation; also it gives the poloidal mode number. Dual HIBP, consisting of two identical HIBPs located ¼ torus apart provide the long-range correlations of core plasma parameters. Low-noise high-gain electronics allows us to study broadband turbulence and quasi-coherent modes like geodesic acoustic modes and Alfvén eigenmodes.