Science.gov

Sample records for helium compound transfer

  1. High efficiency pump for space helium transfer

    NASA Technical Reports Server (NTRS)

    Hasenbein, Robert; Izenson, Michael G.; Swift, Walter L.; Sixsmith, Herbert

    1991-01-01

    A centrifugal pump was developed for the efficient and reliable transfer of liquid helium in space. The pump can be used to refill cryostats on orbiting satellites which use liquid helium for refrigeration at extremely low temperatures. The pump meets the head and flow requirements of on-orbit helium transfer: a flow rate of 800 L/hr at a head of 128 J/kg. The overall pump efficiency at the design point is 0.45. The design head and flow requirements are met with zero net positive suction head, which is the condition in an orbiting helium supply Dewar. The mass transfer efficiency calculated for a space transfer operation is 0.99. Steel ball bearings are used with gas fiber-reinforced teflon retainers to provide solid lubrication. These bearings have demonstrated the longest life in liquid helium endurance tests under simulated pumping conditions. Technology developed in the project also has application for liquid helium circulation in terrestrial facilities and for transfer of cryogenic rocket propellants in space.

  2. BASG thermomechanical pump helium 2 transfer tests

    NASA Technical Reports Server (NTRS)

    Mills, G. L.; Newell, D. A.; Urbach, A. R.

    1990-01-01

    The purpose of the effort described was to perform experiments and calculations related to using a thermomechanical pump in the space-based resupply of the Space Infrared Telescope Facility (SIRTF) with Helium 2. Thermomechanical (fountain effect) pumps have long been suggested as a means for pumping large quantities of Helium 2. The unique properties of Helium 2 have made it useful for cooling space instruments. Several space science missions, including SIRTF, are now being planned which would benefit greatly from on-orbit resupply of Helium 2. A series of experiments were performed to demonstrate that large volumes of Helium 2 can be transferred with a thermomechanical pump at high flow rates and at high efficiency from one dewar to another through valves and lines that are similar to the plumbing arrangement that would be necessary to accomplish such a transfer on-orbit. In addition, temperature, pressure, and flow rate data taken during the tests were used to verify and refine a computer model which was developed.

  3. Lifetime of a Chemically Bound Helium Compound

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Lundell, Jan; Gerber, R. Benny; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The rare-gas atoms are chemically inert, to an extent unique among all elements. This is due to the stable electronic structure of the atoms. Stable molecules with chemically bound rare-gas atoms are, however, known. A first such compound, XePtF6, W2S prepared in 1962 and since then a range of molecules containing radon, xenon and krypton have been obtained. Most recently, a first stable chemically bound compound of argon was prepared, leaving neon and helium as the only elements for which stable chemically bound molecules are not yet known. Electronic structure calculations predict that a metastable species HHeF exists, but significance of the result depends on the unknown lifetime. Here we report quantum dynamics calculations of the lifetime of HHeF, using accurate interactions computed from electronic structure theory. HHeF is shown to disintegrate by tunneling through energy barriers into He + HF and H + He + F the first channel greatly dominating. The lifetime of HHeF is more than 120 picoseconds, that of DHeF is 14 nanoseconds. The relatively long lifetimes are encouraging for the preparation prospects of this first chemically bound helium compound.

  4. Charge transfer in helium-rich supernova plasma

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.

    1994-01-01

    Charge transfer rate coefficients are estimated using Landau-Zener and modified Demkov approximations. The coefficients, augmented by those available from the literature, are used in statistical equilibrium equations describing the state of helium-rich supernova plasma. Such a plasma may describe both Type Ib and Type Ic supernova ejecta. The hypothesis that extensive mixing of metals with helium in Type Ic supernovae may provide a catalyst for rapid charge transfer that weakens the helium line emission by altering the excitation balance is tested. It is shown that charge transfer as a mechanism for suppressing helium line emission is ineffective unless the metal abundance is comparable to or larger than the helium abundance. This result supports an earlier conclusion that Type Ic supernovae must be helium poor relative to Type Ib events.

  5. Liquid acquisition devices for superfluid helium transfer

    NASA Technical Reports Server (NTRS)

    Dipirro, M. J.

    1990-01-01

    To transfer superfluid helium (He II) in the milli-g or micro-g environment in orbit, it is necessary to provide a reasonably steady supply of liquid to the inlet of the pump in the supply dewar. To accomplish this without providing an artificial gravity through acceleration requires a liquid acquisition device. Fluid swirl and electrostatic devices have been proposed to orientate the fluid. However, the simplest mechanisms appear to be the use of surface tension or the thermomechanical effect. This paper examines four concepts for providing He II to the inlet of a thermomechanical pump. The devices are a distributed thermomechanical pump, a distributed pump with a main thermomechanical pump, a screened channel system and a vane/sponge combination. Calculations on the efficiency of these types of liquid acquisition devices are made using laboratory data from tests involving small scale devices where applicable. These calculations show that the latter two types of liquid acquisition devices are the most efficient. Questions as to the probability of cavitation and the effect of the residual shuttle acceleration on their operation remain to be answered, however.

  6. Liquid helium pumps for in-orbit transfer

    NASA Technical Reports Server (NTRS)

    Kittel, P.

    1986-01-01

    Both mechanical and fountain-effect pumps are being considered for use in the in-orbit resupply of superfluid helium to a number of scientific instrument systems. This paper presents a review of the operating characteristics of these pumps. Particular emphasis will be given to the different methods of evaluating the efficiency of these pumps and their effectiveness in a transfer system.

  7. Methods of Helium Injection and Removal for Heat Transfer Augmentation

    NASA Technical Reports Server (NTRS)

    Haight, Harlan; Kegley, Jeff; Bourdreaux, Meghan

    2008-01-01

    While augmentation of heat transfer from a test article by helium gas at low pressures is well known, the method is rarely employed during space simulation testing because the test objectives usually involve simulation of an orbital thermal environment. Test objectives of cryogenic optical testing at Marshall Space Flight Center's X-ray Cryogenic Facility (XRCF) have typically not been constrained by orbital environment parameters. As a result, several methods of helium injection have been utilized at the XRCF since 1999 to decrease thermal transition times. A brief synopsis of these injection (and removal) methods including will be presented.

  8. Methods of Helium Injection and Removal for Heat Transfer Augmentation

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey

    2008-01-01

    While augmentation of heat transfer from a test article by helium gas at low pressures is well known, the method is rarely employed during space simulation testing because the test objectives are to simulate an orbital thermal environment. Test objectives of cryogenic optical testing at Marshall Space Flight Center's X-ray Calibration Facility (XRCF) have typically not been constrained by orbital environment parameters. As a result, several methods of helium injection have been utilized at the XRCF since 1999 to decrease thermal transition times. A brief synopsis of these injection (and removal) methods including will be presented.

  9. Mechanical pumps for superfluid helium transfer in space

    NASA Technical Reports Server (NTRS)

    Izenson, M. G.; Swift, W. L.

    1988-01-01

    Two alternate mechanical pump concepts have been identified for the transfer of superfluid helium in space. Both pumps provide flow at sufficient head and have operating characteristics suitable for the Space Infrared Telescope Facility (SIRTF) refill mission. One pump operates at a relatively low speed and utilizes mechanical roller bearings, while the other operates at a higher rotational speed using either electromagnetic or tilting pad gas-dynamic bearings. The use of gas bearings requires transfer of normal helium so that the gas pressure within the pump casing is high enough to operate the bearings. The operating characteristics of both pumps are predicted, the dimensions are estimated and major technology issues are identified. The major issues for each pump design are cavitation performance and bearing development. Roller bearings require quantified reliability for operation in space while electromagnetic bearings require basic development as well as a complex control system. The low speed pump has significantly poorer hydraulic efficiency than the high speed pump.

  10. Helium discharge detector for quantitation of volatile organohalogen compounds

    SciTech Connect

    Ryan, D.A.; Argentine, S.M.; Rice, G.W. )

    1990-04-15

    A helium discharge has been evaluated as an element-selective, gas chromatographic detector for volatile organohalogen compounds. Absolute limits of detection ranged from 3 pg for chloroform to 29 pg for p-dibromobenzene with a linear response of 10(3)-10(4). The relative response of the detector was determined to be based solely on the mass of the halogen species present. This feature allowed for relatively simple quantitation of chlorinated and brominated haloform species in water samples by the addition of a single internal standard for calibration of the halogen response.

  11. Acquisition and transfer of superfluid helium in space

    NASA Astrophysics Data System (ADS)

    Martin, T. A.; Gille, J. P.; Anderson, J. E.

    1990-03-01

    The unique physical properties of superfluid helium (SFHe) or He II strongly influence the design of a system for transfer of this fluid in space. Conventional methods of pumping, particularly pressure difference transfer and centrifugal pumping, are ineffective because of the inability to pressurize SFHe with helium vapor, either to provide the transfer force or to provide a suction head for a pump. The thermomechanical (TM) pump, however, relying on the two-fluid characteristics of SFHe, provides a viable approach for pumping the fluid. Examination of the functioning of a TM pump shows that the flow in the liquid acquistion device is unconventional. Only the superfluid component defined in the two-fluid model of SFHe flows into the pump and, therefore, from the liquid source to the pump inlet via the acquisition device. Experiments have been conducted to characterize this 'superflow' in small tubes, and results are extrapolated to show the effects of this unique flow mechanism on a typical full scale transfer system.

  12. Influence of Quantum Turbulence on the Processes of Heat Transfer and Boiling in Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Kondaurova, Luiza; Efimov, Victor; Tsoi, Alexey

    2017-04-01

    We demonstrate that in a wide range of heat fluxes the dynamics of heat transfer in superfluid helium is determined by the existence of remanent quantized vortices. The vortex density dynamics determines the rise of temperature near the heater and the boiling-up of superfluid helium. It permits to understand the results of the experiments of several groups.

  13. The effects of dual-domain mass transfer on the tritium-helium-3 dating method.

    PubMed

    Neumann, Rebecca B; Labolle, Eric M; Harvey, Charles F

    2008-07-01

    Diffusion of tritiated water (referred to as tritium) and helium-3 between mobile and immobile regions in aquifers (mass transfer) can affect tritium and helium-3 concentrations and hence tritium-helium-3 (3H/3He) ages that are used to estimate aquifer recharge and groundwater residence times. Tritium and helium-3 chromatographically separate during transport because their molecular diffusion coefficients differ. Simulations of tritium and helium-3 transport and diffusive mass transfer along stream tubes show that mass transfer can shift the 3H/3He age of the tritium and helium-3 concentration ([3H + 3He]) peak to dates much younger than the 1963 peak in atmospheric tritium. Furthermore, diffusive mass-transfer can cause the 3H/3He age to become younger downstream along a stream tube, even as the mean water-age must increase. Simulated patterns of [3H + 3He] versus 3H/3He age using a mass transfer model appear consistent with a variety of field data. These results suggest that diffusive mass transfer should be considered, especially when the [3H + 3He] peak is not well defined or appears younger than the atmospheric peak. 3H/3He data provide information about upstream mass-transfer processes that could be used to constrain mass-transfer models; however, uncritical acceptance of 3H/3He dates from aquifers with immobile regions could be misleading.

  14. a Measurement of Cross-Sections for Charge Transfer in Proton + Helium ---> Helium Ion + Hydrogen

    NASA Astrophysics Data System (ADS)

    Brower, Michael Chadbourne

    A microwave-resonance, optical-detection technique is used to measure the cross sections for charge transfer into the n = 3,L,m(,L) states of hydrogen by protons colliding with a helium gas target at energies between 30 and 80 keV. The feeding of the n = 3 states by states in higher n manifolds created by the collisions has been taken into account for the first time in this type of measurement, with a significant effect on the results. The final cross sections are one of only two measurements of the L,m(,L) cross sections in this system, and the only one to be able to resolve the 3d cross sections. The. uncertainties are 10% to 30% of the cross sections at all energies. The results are (UNFORMATTED TABLE FOLLOWS). Energy (keV). 30 50 60 80. (sigma)(,3s). 10('-18)cm('2) 1.6(3) 2.4(5) 2.0(4) 1.4(3). 3s(,0) 1 1 1 1. p(,0) 0.58(8) 0.19(2) 0.18(2) 0.13(1). p(,1) 0.36(6) 0.08(1) 0.04(1) 0.05(1). TOTAL 0.94(10) 0.27(2) 0.22(2) 0.18(1). d(,0) 0.055(10) 0.017(4) 0.019(4) 0.013(3). d(,1) 0.046(7) 0.014(3) 0.014(3) 0.010(2). d(,2) 0.022(4) 0.001(2) -0.002(2) -0.002(2). TOTAL 0.123(12) 0.032(5) 0.031(5) 0.021(4). (TABLE ENDS).

  15. Luminescence studies of trace gases through metastable transfer in cold helium jets

    NASA Astrophysics Data System (ADS)

    Wilde, Scott Colton

    Among the elements, Helium has the largest steps among its internal energy structure that can keep for long periods of time, hence the metastable helium moniker. It is referred to as a "nano-grenade" in some circles because of how much energy it can deliver to a space roughly the size of an atom. This work demonstrates a method to create metastable helium abundantly and it is used to excite trace amounts of oxygen to the point where the signal received from the oxygen was larger than the signal received from the helium in a cold atomized jet. Further cooling of the jet and turbulence added by a liquid helium surface worked to increase the oxygen signal and decrease the helium signal. This work investigates the possibility of forming a strong metastable helium source from a flowing helium gas jet excited by passing through ring electrodes introduced into a cryogenic environment using evaporated helium as a buffer gas. Prior study of luminescence from trace gases at cold helium temperatures is virtually absent and so it is the motivation for this work to blaze the trail in this subject. The absence of ionic oxygen spectral lines from the transfer of energy that was well over the first ionization potential of oxygen made for a deeper understanding of collision dynamics with multiple collision partners. This opened the possibility of using the high energy states of oxygen after metastable transfer as a lasing transition previously unavailable and a preliminary analysis suggested that the threshold for lasing action should be easily overcome if feedback were introduced by an optical cavity. To better understand the thermodynamics of the jet it was proposed to use diatomic nitrogen as an in situ thermometer, investigating whether the rotational degrees of freedom of the nitrogen molecule were in thermal equilibrium with the surrounding environment. If the gas was truly in thermodynamic equilibrium then the temperature given by the method of using collisions of a buffer

  16. Superfluid helium orbital resupply - The status of the SHOOT flight experiment and preliminary user requirements. [Superfluid Helium On-Orbit Transfer

    NASA Technical Reports Server (NTRS)

    Dipirro, Michael J.; Kittel, Peter

    1989-01-01

    The Superfluid Helium On-Orbit Transfer (SHOOT) flight experiment is designed to demonstrate the components and techniques necessary to resupply superfluid helium to satellites or Space Station based facilities. A top level description as well as the development status of the critical components to be used in SHOOT are discussed. Some of these components include the thermomechanical pump, the fluid acquisition system, the normal helium and superfluid helium phase separators, Venturi flow meter, cryogenic valves, burst disks, and astronaut-compatible EVA coupler and transfer line. The requirements for the control electronics and software are given. A preliminary description of the requirements that must be met by a satellite requiring superfluid helium servicing is given. In particular, minimum and optimum plumbing arrangements are shown, transfer line flow impedance and heat input impacts are assessed, instrumentation is described, and performance parameters are considered.

  17. Study of helium transfer technology for STICCR: Fluid management

    NASA Technical Reports Server (NTRS)

    Frank, D. J.; Yuan, S. W. K.; Grove, R. K.; Lheureux, J. M.

    1987-01-01

    The Space Infrared Telescope Facility (SIRTF) is a long life cryogenically cooled space based telescope for infrared astronomy from 2 to 700 microns currently under study and planned for launch in the mid 90's. SIRTF will operate as a multi-user facility, initially carrying 3 instruments at the focal plane. It will be cooled to below 2 K by superfluid liquid helium to achieve radiometric sensitivity limited only by the statistical fluctuations in the natural infrared background radiation over most of its spectral range. The lifetime of the mission will be limited by the lifetime of the liquid helium supply, and is currently baselined to be 2 years. Candidates are reviewed for a liquid management device to be used in the resupply of liquid helium, and for the selection of an appropriate candidate.

  18. Heat transfer resistances in the measurements of cold helium vapour temperature in a subatmospheric process line

    NASA Astrophysics Data System (ADS)

    Adamczyk, A.; Pietrowicz, S.; Fydrych, J.

    2017-02-01

    The superfluid helium technology, which is essentially used in particle accelerators, requires complex cryogenic systems that include long lines transferring cold helium vapours at a subathmospheric pressure below 50 mbar. Usually in large systems the subatmospheric pressure is generated by a set of warm and cold compressors. In consequence, the heat loads to the line and especially the helium temperature in the inlet to the cold compressors are crucial parameters. In order to measure the helium temperature the temperature sensors are usually fixed to the external surface of the process lines. However, this technique can lead to unwanted measurement errors and affect the temperature measurement dynamics mainly due to low thermal conductivity of the pipe wall material, large pipe diameters and low helium density. Assembling a temperature sensor in a well (cold finger) reaching the centerline of the flowing helium is a technique that can improve the measurement quality and dynamics (response time). The paper presents the numerical simulations of heat transfers occurring in the both measurement techniques and discusses the impacts of the heat transfer resistances on the temperature measurement dynamics.

  19. Analysis of dewar and transfer line cooldown in Superfluid Helium On-Orbit Transfer Flight Experiment (SHOOT)

    NASA Technical Reports Server (NTRS)

    Ng, Y. S.; Lee, J. H.

    1989-01-01

    The Superfluid Helium On-Orbit Transfer Flight Experiment (SHOOT) is designed to demonstrate the techniques and components required for orbital superfluid (He II) replenishment of observatories and satellites. One of the tasks planned in the experiment is to cool a warm cryogen tank and a warm transfer line to liquid helium temperature. A math model, based on single-phase vapor flow heat transfer, has been developed to predict the cooldown time, component temperature histories, and helium consumption rate, for various initial conditions of the components and for the thermomechanical pump heater powers of 2 W and 0.5 W. This paper discusses the model and the analytical results, which can be used for planning the experiment operations and determining the pump heater power required for the cooldown operation.

  20. Knowledge based and interactive control for the Superfluid Helium On-orbit Transfer Project

    NASA Technical Reports Server (NTRS)

    Castellano, Timothy P.; Raymond, Eric A.; Shapiro, Jeff C.; Robinson, Frank A.; Rosenthal, Donald A.

    1989-01-01

    NASA's Superfluid Helium On-Orbit Transfer (SHOOT) project is a Shuttle-based experiment designed to acquire data on the properties of superfluid helium in micro-gravity. Aft Flight Deck Computer Software for the SHOOT experiment is comprised of several monitoring programs which give the astronaut crew visibility into SHOOT systems and a rule based system which will provide process control, diagnosis and error recovery for a helium transfer without ground intervention. Given present Shuttle manifests, this software will become the first expert system to be used in space. The SHOOT Command and Monitoring System (CMS) software will provide a near real time highly interactive interface for the SHOOT principal investigator to control the experiment and to analyze and display its telemetry. The CMS software is targeted for all phases of the SHOOT project: hardware development, pre-flight pad servicing, in-flight operations, and post-flight data analysis.

  1. Verification testing of the superfluid helium on-orbit transfer (SHOOT) experiment

    NASA Astrophysics Data System (ADS)

    Volz, S.; Conaty, C.; Weintz, K.

    The Superfluid Helium On-Orbit Transfer (SHOOT) project is a secondary shuttle crossbay payload which flew on the STS-57/Endeavour mission. It was designed to develop and demonstrate the technologies required to resupply liquid helium containers in space, and to develop new technologies that may be used in other future space cryogenic systems. The SHOOT payload consists of two superfluid helium Dewars with helium management cryostats connected by a transfer line, and six avionics boxes for valve and heater control, temperature, pressure and fluid position monitoring and data processing and telemetry. The cryostats contain numerous specialized helium management components; including high and low flow phase separators, liquid/vapour discriminators, flowmeters, liquid level detectors, cryogenic mechanical valves and cryogenic relief valves and burst discs, and two varieties of fluid acquisition systems. To prepare the SHOOT payload for launch a series of functional, structural, thermal and reliability tests were conducted at every level of hardware assembly, from materials tests to system level thermal, structural and functional performance tests. We present here the verification tests and analyses developed and completed at each level of assembly. We discuss the trade-offs considered for, and the success (or failure) of, models and analyses to predict performance results. Finally, we present some lessons learned of potential interest to future cryogenic missions, whether on the Space Shuttle or on expendable launch vehicles.

  2. Proton transfer in histidine-tryptophan heterodimers embedded in helium droplets

    SciTech Connect

    Bellina, Bruno; Merthe, Daniel J.; Kresin, Vitaly V.

    2015-03-21

    We used cold helium droplets as nano-scale reactors to form and ionize, by electron bombardment and charge transfer, aromatic amino acid heterodimers of histidine with tryptophan, methyl-tryptophan, and indole. The molecular interaction occurring through an N–H ⋅ ⋅ ⋅ N hydrogen bond leads to a proton transfer from the indole group of tryptophan to the imidazole group of histidine in a radical cationic environment.

  3. Characterisation and optimisation of flexible transfer lines for liquid helium. Part II: Thermohydraulic modelling

    NASA Astrophysics Data System (ADS)

    Dittmar, N.; Haberstroh, Ch.; Hesse, U.; Krzyzowski, M.

    2016-10-01

    In part one of this publication experimental results for a single-channel transfer line used at liquid helium (LHe) decant stations are presented. The transfer of LHe into mobile dewars is an unavoidable process since the places of storage and usage are generally located apart from each other. The experimental results have shown that reasonable amounts of LHe evaporate due to heat leak and pressure drop. Thus, generated helium cold gas has to be collected and reliquefied, demanding a huge amount of electrical energy. Although this transfer process is common in cryogenic laboratories, no existing code could be found to model it. Therefore, a thermohydraulic model has been developed to model the LHe flow at operating conditions using published heat transfer and pressure drop correlations. This paper covers the basic equations used to calculate heat transfer and pressure drop, as well as the validation of the thermohydraulic code, and its application within the optimisation process. The final transfer line design features reduced heat leak and pressure drop values based on a combined measurement and modelling campaign in the range of 0.112 < pin < 0.148 MPa, 190 < G < 450 kg/(m2 s), and 0.04 < xout < 0.12.

  4. Charge transfer between O{sup +} ions and helium

    SciTech Connect

    Zhao, L.B.; Stancil, P.C.; Liebermann, H.P.; Funke, P.; Buenker, R.J.

    2005-06-15

    The charge-transfer processes O{sup +}({sup 4}S{sup 0},{sup 2}D{sup 0},{sup 2}P{sup 0})+He{yields}O({sup 3}P)+He{sup +} have been investigated by using a fully quantal molecular-orbital close-coupling (QMOCC) approach. Cross sections are presented for ion energies from 0.5 to 10 keV and compared with those from recent experiments and semiclassical theory. Good agreement is found between the QMOCC results and the measurements. Particular attention is given to addressing the metastable component of the experimental ion beams. We further argue that the so-called 'suppressed electron-capture effect' for metastable ions proposed by Wolfrum et al. is not a viable mechanism to explain their measurements. However, the current QMOCC calculations were found to reproduce neither the ground-state nor metastable-state cross sections predicted by the semiclassical method.

  5. Measurements of mixed convective heat transfer to low temperature helium in a horizontal channel

    NASA Technical Reports Server (NTRS)

    Yeroshenko, V. M.; Kuznetsov, Y. V.; Shevchenko, O. A.; Hendricks, R. C.; Daney, D. E.

    1979-01-01

    A horizontal 2.85 m long, 19 mm i.d. stainless steel heated circular channel was employed to measure coefficients of heat transfer to low temperature helium flow. Experimental parameters range from 6.5 to 15 K, from 0.12 to 0.3 MPa at heat fluxes up to 1000 W/m square and Reynolds numbers from 9,000 to 20,000. A significantly nonuniform distribution of heat transfer coefficients over the tube periphery is observed. Difference between temperatures on the upper and lower surfaces of the stainless steel channel wall was found to reach 9 K. It was noted that the highest temperature on the wall outer surface is displaced from its uppermost point. Measurements of local flow temperatures revealed vortical structure of the flow. The displacement of the point with the highest temperature is attributable to the effect of vortices. The relationships for calculating local and averaged coefficients of heat transfer are proposed.

  6. Charge transfer dissociation (CTD) mass spectrometry of peptide cations using kiloelectronvolt helium cations.

    PubMed

    Hoffmann, William D; Jackson, Glen P

    2014-11-01

    A kiloelectronvolt beam of helium ions is used to ionize and fragment precursor peptide ions starting in the 1+ charge state. The electron affinity of helium cations (24.6 eV) exceeds the ionization potential of protonated peptides and can therefore be used to abstract an electron from--or charge exchange with--the isolated precursor ions. Kiloelectronvolt energies are used, (1) to overcome the Coulombic repulsion barrier between the cationic reactants, (2) to overcome ion-defocussing effects in the ion trap, and (3) to provide additional activation energy. Charge transfer dissociation (CTD) of the [M+H](+) precursor of Substance P gives product ions such as [M+H](2+•) and a dominant series of a ions in both the 1+ and 2+ charge states. These observations, along with the less-abundant a + 1 ions, are consistent with ultraviolet photodissociation (UVPD) results of others and indicate that C-C(α) cleavages are possible through charge exchange with helium ions. Although the efficiencies and timescale of CTD are not yet suitable for on-line chromatography, this new approach to ion activation provides an additional potential tool for the interrogation of gas phase ions.

  7. SHOOT flowmeter and pressure transducers. [for Superfluid Helium On-Orbit Transfer system

    NASA Technical Reports Server (NTRS)

    Kashani, A.; Wilcox, R. A.; Spivak, A. L.; Daney, D. E.; Woodhouse, C. E.

    1990-01-01

    A venturi flowmeter has been designed and constructed for the Superfluid Helium On-Orbit Transfer (SHOOT) experiment. The calibration results obtained from the SHOOT venturi demonstrate the ability of the flowmeter to meet the requirements of the SHOOT experiment. Flow rates as low as 20 cu dm/h and as high as 800 cu dm/h have been measured. Performances of the SHOOT differential and absolute pressure transducers, which have undergone calibration and vibration tests, are also included. Throughout the tests, the responses of the transducers remained linear and repeatable to within + or - 1 percent of the full scales of the transducers.

  8. Use of Multiple Reheat Helium Brayton Cycles to Eliminate the Intermediate Heat Transfer Loop for Advanced Loop Type SFRs

    SciTech Connect

    Haihua Zhao; Hongbin Zhang; Samuel E. Bays

    2009-05-01

    The sodium intermediate heat transfer loop is used in existing sodium cooled fast reactor (SFR) plant design as a necessary safety measure to separate the radioactive primary loop sodium from the water of the steam Rankine power cycle. However, the intermediate heat transfer loop significantly increases the SFR plant cost and decreases the plant reliability due to the relatively high possibility of sodium leakage. A previous study shows that helium Brayton cycles with multiple reheat and intercooling for SFRs with reactor outlet temperature in the range of 510°C to 650°C can achieve thermal efficiencies comparable to or higher than steam cycles or recently proposed supercritical CO2 cycles. Use of inert helium as the power conversion working fluid provides major advantages over steam or CO2 by removing the requirement for safety systems to prevent and mitigate the sodium-water or sodium-CO2 reactions. A helium Brayton cycle power conversion system therefore makes the elimination of the intermediate heat transfer loop possible. This paper presents a pre-conceptual design of multiple reheat helium Brayton cycle for an advanced loop type SFR. This design widely refers the new horizontal shaft distributed PBMR helium power conversion design features. For a loop type SFR with reactor outlet temperature 550°C, the design achieves 42.4% thermal efficiency with favorable power density comparing with high temperature gas cooled reactors.

  9. Single electron transfer in He+-He+ collision and production of helium atom

    NASA Astrophysics Data System (ADS)

    Azizan, Shima; Fathi, Reza; Shojaei, Farideh

    2017-02-01

    The four body Born distorted wave (BDW-4B) approximation with correct boundary condition is used for single electron transfer in He+-He+ collision. The post and prior total cross sections are obtained in the energy range 10-1000 keV/amu and the post-prior discrepancy is estimated. The sensitivity of the results with respect to the choice of the final helium-like ground state wave function is evaluated through two different wave functions. The importance of the dynamic electron correlations is tested as a function of impact energy. Additional experimental data at higher impact energies is needed for a better assessment of the validity of the present theory.

  10. Lab tests of a thermomechanical pump for shoot. [Superfluid Helium On-Orbit Transfer

    NASA Technical Reports Server (NTRS)

    Dipirro, Michael J.; Boyle, Robert F.

    1988-01-01

    Laboratory tests of a thermomechanical (TM) pump utilizing a commercially available porous disk have been conducted. Various size disks, heater configurations, and outlet flow impedances have been used to characterize scale models of the pump proposed for the Superfluid Helium On-Orbit Transfer (SHOOT) Flight Experiment. The results yield the scalability of the TM pump to larger diameters, and hence larger pumping rates, the dependence of flow rate on back pressure and heater power, and the limits of pumping speed due to internal losses within the porous disk due to mutual and superfluid friction. Analysis indicates that for low back pressures the flow rate is limited by the superfluid friction rather than the mutual friction. For the porous plug used in the early tests this amounts to a practical limit of 4.4 liters per hour per square centimeter. For a baselined flight plug area of 180 sq cm this yields 790 liters per hour.

  11. Transient heat transfer in helium II due to a sudden vacuum break

    NASA Astrophysics Data System (ADS)

    Bosque, Ernesto S.; Dhuley, Ram C.; Van Sciver, Steven W.

    2014-01-01

    To ensure future cryogenic devices meet safety and operational specifications, significant value is gained from a developed understanding of the transient heat fluxes that result from failure of an insulating vacuum jacket around a helium II (He II)-cooled device. A novel, one-dimensional experiment is successfully performed examining the phenomena immediately following a vacuum rupture onto a cryosurface. In the experiment, a fast-opening (˜10 ms) valve isolates a rigid container of ultra high purity nitrogen (N2) gas kept at room temperature and adjustable pressure from a vertically oriented, highly evacuated (˜10-3 Pa) tube roughly 1 m in length. The bottom of the evacuated tube is sealed via a 2.54 mm thick copper disk, whose bottom surface is in intimate contact with an open column of He II (˜1.8 K). The evacuated tube, disk, and He II column share a diameter of 24 mm. Opening the valve results in a vacuum rupture. N2 gas is immediately drawn into the evacuated space and cryopumped onto the disk as a growing layer of solid cryodeposit. Various coupled transient heat transfer processes proceed as the internal energy of the warm gas is transferred through the growing layer of solid N2, through the copper disk, and into the He II column. This work examines the qualitative nature of these transient phenomena and the magnitude of the heat fluxes present through each of the series of thermal resistances.

  12. Exploration of solid helium 4 at multiple frequencies using a compound torsional oscillator

    NASA Astrophysics Data System (ADS)

    Keiderling, Michael C.

    Apparent but controversial evidence of supersolidity, a coexistence of crystalline and superfluid states, was observed in 2004. Samples of solid 4He were grown, in a chamber, inside a torsion oscillator (TO). The samples showed evidence of apparent decoupling from their container in the form of a resonant frequency increase of the TO as the temperature was lowered. We have developed a Compound torsion oscillator (CTO), with two resonant modes, that allows us to observe a single solid helium sample at two frequencies simultaneously. This thesis will cover the first comprehensive study on the frequency dependence of the apparent supersolid effect. This includes a study of the effect of varying 3He concentrations (x3) on the frequency dependence. Additionally a study on how changes in x3 affect the dissipation, which previous studies of x3 dependence have not explored. Also studied is how varying x3 affected the hysteresis first observed by Aoki et al. The CTO has allowed the exploration of the amplitude dependent effects in new ways. By exciting the sample at both frequencies simultaneously and varying the driving amplitude of one mode one can see how excitations at one mode affect what is observed at the other. The studies of the effects of varying x3 show results that are consistent with the dislocation movement model proposed by Iwasa. The collected data was not consistent with the simple supersolid model initially proposed. The studies of hysteresis show that the onset of hysteresis was dependent on x3 but was not frequency dependent. This lends credit to the hysteresis being due to the pinning and unpinning of 3He impurities. The studies of the effect of amplitude dependent effects show an asymmetry between the two frequencies. The higher frequency has a larger effect on the lower frequency than the lower frequency has on the higher. This is also inconsistent with the initial simple supersolid model.

  13. Noncavitating Pump For Liquid Helium

    NASA Technical Reports Server (NTRS)

    Hasenbein, Robert; Izenson, Michael; Swift, Walter; Sixsmith, Herbert

    1996-01-01

    Immersion pump features high efficiency in cryogenic service. Simple and reliable centrifugal pump transfers liquid helium with mass-transfer efficiency of 99 percent. Liquid helium drawn into pump by helical inducer, which pressurizes helium slightly to prevent cavitation when liquid enters impeller. Impeller then pressurizes liquid. Purpose of pump to transfer liquid helium from supply to receiver vessel, or to provide liquid helium flow for testing and experimentation.

  14. Development of helium transfer coupling of 1 MW-class HTS motor for podded ship propulsion system

    NASA Astrophysics Data System (ADS)

    Kosuge, Eiji; Gocho, Yoshitsugu; Okumura, Kagao; Yamaguchi, Mitsugi; Umemoto, Katsuya; Aizawa, Kiyoshi; Yokoyama, Minoru; Takao, Satoru

    2010-06-01

    Research and development of 1 MW superconducting motor are being made aiming at the efficiency improvement for the podded type ship propulsion. The basic machine configuration is similar to steam turbine generators, having a rotating horizontal shaft. As for the motor composed of rotating superconducting field, one of the most critical issues is to provide a technically viable helium transfer coupling (HTC). The field winding of 1 MW motor is cooled with cryogenic helium gas. The HTC needs to supply the cryogenic helium gas with an appropriate flow rate from the stationary part to the rotating field winding region through a hollowed shaft in order not to lose superconducting state of the winding. A full size prototype of HTC was developed prior to the actual one to demonstrate its technical acceptability. The fundamental data with regard to the supply of the refrigerated helium gas were successfully obtained at the rated speed. This work has been supported by New Energy, and Industrial Technology Development Organization (NEDO).

  15. Ab initio molecular treatment for charge transfer by P{sup 3+} ions on hydrogen and helium

    SciTech Connect

    Moussa, A.; Zaidi, A.; Lahmar, S.; Bacchus-Montabonel, M.-C.

    2010-02-15

    A theoretical treatment of charge-transfer processes induced by collision of phosphorus P{sup 3+}(3s{sup 2}){sup 1}S ions on atomic hydrogen and helium has been carried out using ab initio potential-energy curves and couplings at the multireference configuration interaction level of theory. The cross sections calculated by means of semiclassical collision methods show the existence of a significant charge transfer in the 0.1-700-keV laboratory energy range. Radial and rotational coupling interactions were analyzed for both collision systems.

  16. Study of metal transfer in CO2 laser+GMAW-P hybrid welding using argon-helium mixtures

    NASA Astrophysics Data System (ADS)

    Zhang, Wang; Hua, Xueming; Liao, Wei; Li, Fang; Wang, Min

    2014-03-01

    The metal transfer in CO2 Laser+GMAW-P hybrid welding by using argon-helium mixtures was investigated and the effect of the laser on the mental transfer is discussed. A 650 nm laser, in conjunction with the shadow graph technique, is used to observe the metal transfer process. In order to analyze the heat input to the droplet and the droplet internal current line distribution. An optical emission spectroscopy system was employed to estimate default parameter and optimized plasma temperature, electron number densities distribution. The results indicate that the CO2 plasma plume have a significant impact to the electrode melting, droplet formation, detachment, impingement onto the workpiece and weld morphology. Since the current distribution direction flow changes to the keyhole, to obtain a metal transfer mode of one droplet per pulse, the welding parameters should be adjusted to a higher pulse time (TP) and a lower voltage.

  17. 3D radiative transfer simulations of Eta Carinae's inner colliding winds - II. Ionization structure of helium at periastron

    NASA Astrophysics Data System (ADS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Paardekooper, J.-P.

    2015-06-01

    Spectral observations of the massive colliding wind binary Eta Carinae show phase-dependent variations, in intensity and velocity, of numerous helium emission and absorption lines throughout the entire 5.54-yr orbit. Approaching periastron, the 3D structure of the wind-wind interaction region (WWIR) gets highly distorted due to the eccentric (e ˜ 0.9) binary orbit. The secondary star (ηB) at these phases is located deep within the primary's dense wind photosphere. The combination of these effects is thought to be the cause of the particularly interesting features observed in the helium lines at periastron. We perform 3D radiative transfer simulations of η Car's interacting winds at periastron. Using the SIMPLEX radiative transfer algorithm, we post-process output from 3D smoothed particle hydrodynamic simulations of the inner 150 au of the η Car system for two different primary star mass-loss rates (dot{M}_{η A}). Using previous results from simulations at apastron as a guide for the initial conditions, we compute 3D helium ionization maps. We find that, for higher dot{M}_{η A}, ηB He0+-ionizing photons are not able to penetrate into the pre-shock primary wind. He+ due to ηB is only present in a thin layer along the leading arm of the WWIR and in a small region close to the stars. Lowering dot{M}_{η A} allows ηB's ionizing photons to reach the expanding unshocked secondary wind on the apastron side of the system, and create a low fraction of He+ in the pre-shock primary wind. With apastron on our side of the system, our results are qualitatively consistent with the observed variations in strength and radial velocity of η Car's helium emission and absorption lines, which helps better constrain the regions where these lines arise.

  18. Air-sea transfer of gas phase controlled compounds

    NASA Astrophysics Data System (ADS)

    Yang, M.; Bell, T. G.; Blomquist, B. W.; Fairall, C. W.; Brooks, I. M.; Nightingale, P. D.

    2016-05-01

    Gases in the atmosphere/ocean have solubility that spans several orders of magnitude. Resistance in the molecular sublayer on the waterside limits the air-sea exchange of sparingly soluble gases such as SF6 and CO2. In contrast, both aerodynamic and molecular diffusive resistances on the airside limit the exchange of highly soluble gases (as well as heat). Here we present direct measurements of air-sea methanol and acetone transfer from two open cruises: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The transfer of the highly soluble methanol is essentially completely airside controlled, while the less soluble acetone is subject to both airside and waterside resistances. Both compounds were measured concurrently using a proton-transfer-reaction mass spectrometer, with their fluxes quantified by the eddy covariance method. Up to a wind speed of 15 m s-1, observed air-sea transfer velocities of these two gases are largely consistent with the expected near linear wind speed dependence. Measured acetone transfer velocity is ∼30% lower than that of methanol, which is primarily due to the lower solubility of acetone. From this difference we estimate the “zero bubble” waterside transfer velocity, which agrees fairly well with interfacial gas transfer velocities predicted by the COARE model. At wind speeds above 15 m s-1, the transfer velocities of both compounds are lower than expected in the mean. Air-sea transfer of sensible heat (also airside controlled) also appears to be reduced at wind speeds over 20 m s-1. During these conditions, large waves and abundant whitecaps generate large amounts of sea spray, which is predicted to alter heat transfer and could also affect the air-sea exchange of soluble trace gases. We make an order of magnitude estimate for the impacts of sea spray on air-sea methanol transfer.

  19. Quasiclassical trajectory study of collisional energy transfer in toluene systems. II. Helium bath gas: Energy and temperature dependences, and angular momentum transfer

    NASA Astrophysics Data System (ADS)

    Lim, Kieran F.

    1994-11-01

    The collisional deactivation of highly vibrationally excited toluene-d0 and toluene-d8 by helium bath gas has been investigated using quasiclassical trajectory simulations. Collisional energy transfer was found to increase with initial toluene internal energy, in agreement with the experiments of Toselli and Barker [J. Chem. Phys. 97, 1809 (1992), and references therein]. The temperature dependence of <ΔE2>1/2 is predicted to be T(0.44±0.10), in agreement with the experiments of Heymann, Hippler, and Troe [J. Chem. Phys. 80, 1853 (1984)]. Toluene is found to have no net angular-momentum (rotational-energy) transfer to helium bath gas, although <ΔJ2>1/2 has a temperature dependence of T(0.31±0.07). Re-evaluation of earlier calculations [``Paper I:'' Lim, J. Chem. Phys. 100, 7385 (1994)] found that rotational energy transfer could be induced by increasing the mass of the collider, or by increasing the strength of the intermolecular interaction: in these cases, angular-momentum transfer depended on the initial excitation energy. In all cases, the final rotational distributions remained Boltzmann.

  20. Time-dependent calculations of transfer ionization by fast proton-helium collision in one-dimensional kinematics

    NASA Astrophysics Data System (ADS)

    Serov, Vladislav V.; Kheifets, A. S.

    2014-12-01

    We analyze a transfer ionization (TI) reaction in the fast proton-helium collision H++He →H0+He2 ++ e- by solving a time-dependent Schrödinger equation (TDSE) under the classical projectile motion approximation in one-dimensional kinematics. In addition, we construct various time-independent analogs of our model using lowest-order perturbation theory in the form of the Born series. By comparing various aspects of the TDSE and the Born series calculations, we conclude that the recent discrepancies of experimental and theoretical data may be attributed to deficiency of the Born models used by other authors. We demonstrate that the correct Born series for TI should include the momentum-space overlap between the double-ionization amplitude and the wave function of the transferred electron.

  1. Differential transfer of dietary flavour compounds into human breast milk.

    PubMed

    Hausner, Helene; Bredie, Wender L P; Mølgaard, Christian; Petersen, Mikael Agerlin; Møller, Per

    2008-09-03

    Transfer of dietary flavour compounds into human milk is believed to constitute the infant's early flavour experiences. This study reports on the time-dependent transfer of flavour compounds from the mother's diet to her breast milk using a within-subject design. Eighteen lactating mothers completed three test days on which they provided a baseline milk sample prior to ingestion of capsules containing 100 mg d-carvone, l-menthol, 3-methylbutyl acetate and trans-anethole. Milk samples were collected 2, 4, 6 and 8 h post-ingestion and analysed by a dynamic headspace method and gas chromatography-mass spectroscopy. The recovery quantities were adjusted for variations in milk fat content. Concentration-time profiles for d-carvone and trans-anethole revealed a maximum around 2 h post-ingestion, whereas the profile for l-menthol showed a plateau pattern. The ester 3-methylbutyl acetate could not be detected in the milk, but a single determination showed traces (<0.4 ppb) in a 1 h milk collection. Flavour compounds appeared to be transmitted differentially from the mother's diet to her milk. The results imply that human milk provides a reservoir for time-dependent chemosensory experiences to the infant; however, volatiles from the diet are transferred selectively and in relatively low amounts.

  2. Charge transfer vibronic transitions in uranyl tetrachloride compounds;

    SciTech Connect

    Liu, G. K.; Deifel, N. P.; Cahill, C. L.

    2012-01-01

    The electronic and vibronic interactions of uranyl (UO{sub 2}){sup 2+} in three tetrachloride crystals have been investigated with spectroscopic experiments and theoretical modeling. Analysis and simulation of the absorption and photoluminescence spectra have resulted in a quantitative understanding of the charge transfer vibronic transitions of uranyl in the crystals. The spectra obtained at liquid helium temperature consist of extremely narrow zero-phonon lines (ZPL) and vibronic bands. The observed ZPLs are assigned to the first group of the excited states formed by electronic excitation from the 3{sigma} ground state into the f{sub {delta}{phi}}, orbitals of uranyl. The Huang-Rhys theory of vibronic coupling is modified successfully for simulating both the absorption and luminescence spectra. It is shown that only vibronic coupling to the axially symmetric stretching mode is Franck-Condon allowed, whereas other modes are involved through coupling with the symmetric stretching mode. The energies of electronic transitions, vibration frequencies of various local modes, and changes in the O=U=O bond length of uranyl in different electronic states and in different coordination geometries are evaluated in empirical simulations of the optical spectra. Multiple uranyl sites derived from the resolution of a superlattice at low temperature are resolved by crystallographic characterization and time- and energy-resolved spectroscopic studies. The present empirical simulation provides insights into fundamental understanding of uranyl electronic interactions and is useful for quantitative characterization of uranyl coordination.

  3. Charge transfer vibronic transitions in uranyl tetrachloride compounds

    SciTech Connect

    Liu, Guokui; Deifel, Nicholas P.; Cahill, Christopher L.; Zhurov, Vladimir V.; Pinkerton, A. Alan

    2012-01-01

    The electronic and vibronic interactions of uranyl (UO₂)2+ in three tetrachloride crystals have been investigated with spectroscopic experiments and theoretical modeling. Analysis and simulation of the absorption and photoluminescence spectra have resulted in a quantitative understanding of the charge transfer vibronic transitions of uranyl in the crystals. The spectra obtained at liquid helium temperature consist of extremely narrow zero-phonon lines (ZPL) and vibronic bands. The observed ZPLs are assigned to the first group of the excited states formed by electronic excitation from the 3σ ground state into the fδ,Φ orbitals of uranyl. The Huang–Rhys theory of vibronic coupling is modified successfully for simulating both the absorption and luminescence spectra. It is shown that only vibronic coupling to the axially symmetric stretching mode is Franck–Condon allowed, whereas other modes are involved through coupling with the symmetric stretching mode. The energies of electronic transitions, vibration frequencies of various local modes, and changes in the O=U=O bond length of uranyl in different electronic states and in different coordination geometries are evaluated in empirical simulations of the optical spectra. Multiple uranyl sites derived from the resolution of a superlattice at low temperature are resolved by crystallographic characterization and time- and energy-resolved spectroscopic studies. The present empirical simulation provides insights into fundamental understanding of uranyl electronic interactions and is useful for quantitative characterization of uranyl coordination.

  4. A high-pressure van der Waals compound in solid nitrogen-helium mixtures

    NASA Technical Reports Server (NTRS)

    Vos, W. L.; Finger, L. W.; Hemley, R. J.; Hu, J. Z.; Mao, H. K.; Schouten, J. A.

    1992-01-01

    A detailed diamond anvil-cell study using synchrotron X-ray diffraction, Raman scattering, and optical microscopy has been conducted for the He-N system, with a view to the weakly-bound van der Waals molecule interactions that can be formed in the gas phase. High pressure is found to stabilize the formation of a stoichiometric, solid van der Waals compound of He(N2)11 composition which may exemplify a novel class of compounds found at high pressures in the interiors of the outer planets and their satellites.

  5. Experimental study of forced convection heat transfer during upward and downward flow of helium at high pressure and high temperature

    SciTech Connect

    Francisco Valentin; Narbeh Artoun; Masahiro Kawaji; Donald M. McEligot

    2015-08-01

    Fundamental high pressure/high temperature forced convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. The experiments utilize a high temperature/high pressure gas flow test facility constructed for forced convection and natural circulation experiments. The test section has a single 16.8 mm ID flow channel in a 2.7 m long, 108 mm OD graphite column with four 2.3kW electric heater rods placed symmetrically around the flow channel. This experimental study presents the role of buoyancy forces in enhancing or reducing convection heat transfer for helium at high pressures up to 70 bar and high temperatures up to 873 degrees K. Wall temperatures have been compared among 10 cases covering the inlet Re numbers ranging from 500 to 3,000. Downward flows display higher and lower wall temperatures in the upstream and downstream regions, respectively, than the upward flow cases due to the influence of buoyancy forces. In the entrance region, convection heat transfer is reduced due to buoyancy leading to higher wall temperatures, while in the downstream region, buoyancyinduced mixing causes higher convection heat transfer and lower wall temperatures. However, their influences are reduced as the Reynolds number increases. This experimental study is of specific interest to VHTR design and validation of safety analysis codes.

  6. Heat transfer in a compact tubular heat exchanger with helium gas at 3.5 MPa

    NASA Technical Reports Server (NTRS)

    Olson, Douglas A.; Glover, Michael P.

    1990-01-01

    A compact heat exchanger was constructed consisting of circular tubes in parallel brazed to a grooved base plate. This tube specimen heat exchanger was tested in an apparatus which radiatively heated the specimen on one side at a heat flux of up to 54 W/sq cm, and cooled the specimen with helium gas at 3.5 MPa and Reynolds numbers of 3000 to 35,000. The measured friction factor of the tube specimen was lower than that of a circular tube with fully developed turbulent flow, although the uncertainty was high due to entrance and exit losses. The measured Nusselt number, when modified to account for differences in fluid properties between the wall and the cooling fluid, agreed with past correlations for fully developed turbulent flow in circular tubes.

  7. Light noble gas chemistry: Structures, stabilities, and bonding of helium, neon and argon compounds

    SciTech Connect

    Frenking, G. ); Koch, W. ); Reichel, F. ); Cremer, D. )

    1990-05-23

    Theoretically determined geometries are reported for the light noble gas ions Ng{sub 2}C{sup 2+}, Ng{sub 2}N{sup 2+}, Ng{sub 2}O{sup 2+}, NgCCNg{sup 2+}, NgCCH{sup +}, NgCN{sup +}, and NgNC{sup +} (Ng = He, Ne, Ar) at the MP2/6-31G(d,p) level of theory. In a few cases, optimizations were carried out at CASSCF/6-31G(d,p). The thermodynamic stability of the Ng compounds is investigated at MP4(SDTQ)/6-311G(2df,2pd) for Ng = He, Ne and at MP4(SDTQ)/6-311G(d,p) for Ng = Ar. The structures and stabilities of the molecules are discussed in terms of donor-acceptor interactions between Ng and the respective fragment cation, by using molecular orbital arguments and utilizing the analysis of the electron density distribution and its associated Laplace field. Generally, there is an increase in Ng,X binding interactions of a noble gas molecule NgX with increasing atomic size of Ng. In some cases the Ne,X stabilization energies are slightly smaller than the corresponding He,X values because of repulsive p-{pi} interactions in the neon compounds. The argon molecules are in all cases significantly stronger bound.

  8. Heat transfer in a compact heat exchanger containing rectangular channels and using helium gas

    NASA Technical Reports Server (NTRS)

    Olson, D. A.

    1991-01-01

    Development of a National Aerospace Plane (NASP), which will fly at hypersonic speeds, require novel cooling techniques to manage the anticipated high heat fluxes on various components. A compact heat exchanger was constructed consisting of 12 parallel, rectangular channels in a flat piece of commercially pure nickel. The channel specimen was radiatively heated on the top side at heat fluxes of up to 77 W/sq cm, insulated on the back side, and cooled with helium gas flowing in the channels at 3.5 to 7.0 MPa and Reynolds numbers of 1400 to 28,000. The measured friction factor was lower than that of the accepted correlation for fully developed turbulent flow, although the uncertainty was high due to uncertainty in the channel height and a high ratio of dynamic pressure to pressure drop. The measured Nusselt number, when modified to account for differences in fluid properties between the wall and the cooling fluid, agreed with past correlations for fully developed turbulent flow in channels. Flow nonuniformity from channel-to-channel was as high as 12 pct above and 19 pct below the mean flow.

  9. Parity propensities in rotational energy transfer of OH X 2Pi(i) with helium

    NASA Technical Reports Server (NTRS)

    Wysong, Ingrid J.; Jeffries, Jay B.; Crosley, David R.

    1991-01-01

    Preliminary results of rotational energy transfer in ground state OH in collisions in He are reported. A surprising propensity is found: conservation of total parity is favored in collisions which change in spin-orbit component, the reversible reaction 2Pi3/2 yields 2Pi1/2. This has implications concerning the OH-He potential surface.

  10. Microsolvation in superfluid helium droplets studied by the electronic spectra of six porphyrin derivatives and one chlorine compound.

    PubMed

    Riechers, R; Pentlehner, D; Slenczka, A

    2013-06-28

    After almost two decades of high resolution molecular spectroscopy in superfluid helium droplets, the understanding of microsolvation is still the subject of intense experimental and theoretical research. According to the published spectroscopic work including microwave, infrared, and electronic spectroscopy, the latter appears to be particularly promising to study microsolvation because of the appearance of pure molecular transitions and spectrally separated phonon wings. Instead of studying the very details of the influence of the helium environment for one particular dopant molecule as previously done for phthalocyanine, the present study compares electronic spectra of a series of non-polar porphyrin derivatives when doped into helium droplets consisting of 10(4)-10(5) helium atoms. Thereby, we focus on the helium-induced fine structure, as revealed most clearly at the corresponding electronic origin. The interpretation and the assignment of particular features obtained in the fluorescence excitation spectra are based on additional investigations of dispersed emission spectra and of the saturation behavior. Besides many dopant-specific results, the experimental study provides strong evidence for a particular triple peak feature representing the characteristic signature of helium solvation for all seven related dopant species.

  11. Metastable charge-transfer state of californium(iii) compounds.

    PubMed

    Liu, Guokui; Cary, Samantha K; Albrecht-Schmitt, Thomas E

    2015-06-28

    Among a series of anomalous physical and chemical properties of Cf(iii) compounds revealed by recent investigations, the present work addresses the characteristics of the optical spectra of An(HDPA)3·H2O (An = Am, Cm, and Cf), especially the broadband photoluminescence from Cf(HDPA)3·H2O induced by ligand-to-metal charge transfer (CT). As a result of strong ion-ligand interactions and the relative ease of reducing Cf(iii) to Cf(ii), a CT transition occurs at low energy (<3 eV) via the formation of a metastable Cf(ii) state. It is shown that the systematic trend in CT transitions of the lanthanide series is not paralleled by actinide elements lighter than Cf(iii), and californium represents a turning point in the periodicity of the actinide series. Analyses and modeling of the temperature-dependent luminescence dynamics indicate that the metastable Cf(ii) charge-transfer state undergoes radiative and non-radiative relaxations. Broadening of the CT transition arises from strong vibronic coupling and hole-charge interactions in the valence band. The non-radiative relaxation of the metastable CT state results from a competition between phonon-relaxation and thermal tunneling that populates the excited states of Cf(iii).

  12. Simulating the absorption spectra of helium clusters (N = 70, 150, 231, 300) using a charge transfer correction to superposition of fragment single excitations.

    PubMed

    Ge, Qinghui; Mao, Yuezhi; White, Alec F; Epifanovsky, Evgeny; Closser, Kristina D; Head-Gordon, Martin

    2017-01-28

    Simulations of the n = 2 absorption spectra of HeN (N = 70, 150, 231, 300) clusters are reported, with nuclear configurations sampled by path integral molecular dynamics. The electronic structure is treated by a new approach, ALMO-CIS+CT, which is a formulation of configuration interaction singles (CIS) based on absolutely localized molecular orbitals (ALMOs). The method generalizes the previously reported ALMO-CIS model [K. D. Closser et al. J. Chem. Theory Comput. 11, 5791 (2015)] to include spatially localized charge transfer (CT) effects. It is designed to recover large numbers of excited states in atomic and molecular clusters, such as the entire n = 2 Rydberg band in helium clusters. ALMO-CIS+CT is shown to recover most of the error caused by neglecting charge transfer in ALMO-CIS and has comparable accuracy to standard CIS for helium clusters. For the n = 2 band, CT stabilizes states towards the blue edge by up to 0.5 eV. ALMO-CIS+CT retains the formal cubic scaling of ALMO-CIS with respect to system size. With improvements to the implementation over that originally reported for ALMO-CIS, ALMO-CIS+CT is able to treat helium clusters with hundreds of atoms using modest computing resources. A detailed simulation of the absorption spectra associated with the 2s and 2p bands of helium clusters up to 300 atoms is reported, using path integral molecular dynamics with a spherical boundary condition to generate atomic configurations at 3 K. The main features of experimentally reported fluorescence excitation spectra for helium clusters are reproduced.

  13. Simulating the absorption spectra of helium clusters (N = 70, 150, 231, 300) using a charge transfer correction to superposition of fragment single excitations

    NASA Astrophysics Data System (ADS)

    Ge, Qinghui; Mao, Yuezhi; White, Alec F.; Epifanovsky, Evgeny; Closser, Kristina D.; Head-Gordon, Martin

    2017-01-01

    Simulations of the n = 2 absorption spectra of HeN (N = 70, 150, 231, 300) clusters are reported, with nuclear configurations sampled by path integral molecular dynamics. The electronic structure is treated by a new approach, ALMO-CIS+CT, which is a formulation of configuration interaction singles (CIS) based on absolutely localized molecular orbitals (ALMOs). The method generalizes the previously reported ALMO-CIS model [K. D. Closser et al. J. Chem. Theory Comput. 11, 5791 (2015)] to include spatially localized charge transfer (CT) effects. It is designed to recover large numbers of excited states in atomic and molecular clusters, such as the entire n = 2 Rydberg band in helium clusters. ALMO-CIS+CT is shown to recover most of the error caused by neglecting charge transfer in ALMO-CIS and has comparable accuracy to standard CIS for helium clusters. For the n = 2 band, CT stabilizes states towards the blue edge by up to 0.5 eV. ALMO-CIS+CT retains the formal cubic scaling of ALMO-CIS with respect to system size. With improvements to the implementation over that originally reported for ALMO-CIS, ALMO-CIS+CT is able to treat helium clusters with hundreds of atoms using modest computing resources. A detailed simulation of the absorption spectra associated with the 2s and 2p bands of helium clusters up to 300 atoms is reported, using path integral molecular dynamics with a spherical boundary condition to generate atomic configurations at 3 K. The main features of experimentally reported fluorescence excitation spectra for helium clusters are reproduced.

  14. Helium Leak Detection of Vessels in Fuel Transfer Cell (FTC) of Prototype Fast Breeder Reactor (PFBR)

    NASA Astrophysics Data System (ADS)

    Dutta, N. G.

    2012-11-01

    Bharatiya Nabhikiya Vidyut Nigam (BHAVINI) is engaged in construction of 500MW Prototype Fast Breeder Reactor (PFBR) at Kalpak am, Chennai. In this very important and prestigious national programme Special Product Division (SPD) of M/s Kay Bouvet Engg.pvt. ltd. (M/s KBEPL) Satara is contributing in a major way by supplying many important sub-assemblies like- Under Water trolley (UWT), Airlocks (PAL, EAL) Container and Storage Rack (CSR) Vessels in Fuel Transfer Cell (FTC) etc for PFBR. SPD of KBEPL caters to the requirements of Government departments like - Department of Atomic Energy (DAE), BARC, Defense, and Government undertakings like NPCIL, BHAVINI, BHEL etc. and other precision Heavy Engg. Industries. SPD is equipped with large size Horizontal Boring Machines, Vertical Boring Machines, Planno milling, Vertical Turret Lathe (VTL) & Radial drilling Machine, different types of welding machines etc. PFBR is 500 MWE sodium cooled pool type reactor in which energy is produced by fissions of mixed oxides of Uranium and Plutonium pellets by fast neutrons and it also breeds uranium by conversion of thorium, put along with fuel rod in the reactor. In the long run, the breeder reactor produces more fuel then it consumes. India has taken the lead to go ahead with Fast Breeder Reactor Programme to produce electricity primarily because India has large reserve of Thorium. To use Thorium as further fuel in future, thorium has to be converted in Uranium by PFBR Technology.

  15. Mechanistic Study of Oxygen Atom Transfer Catalyzed by Rhenium Compounds

    SciTech Connect

    Shan, Xiaopeng

    2003-01-01

    Two ionic and one neutral methyl(oxo)rhenium(V) compounds were synthesized and structurally characterized. They were compared in reactivity towards the ligands triphenylphosphane, pyridines, pyridine N-oxides. Assistance from Broensted bases was found on ligand displacement of ionic rhenium compounds as well as nucleophile assistance on oxidation of all compounds. From the kinetic data, crystal structures, and an analysis of the intermediates, a structural formula of PicH+3- and mechanisms of ligand displacement and oxidation were proposed.

  16. Maternal transfer of organohalogenated compounds in sharks and stingrays.

    PubMed

    Weijs, Liesbeth; Briels, Nathalie; Adams, Douglas H; Lepoint, Gilles; Das, Krishna; Blust, Ronny; Covaci, Adrian

    2015-03-15

    Elasmobranchs can bioaccumulate considerable amounts of persistent organic pollutants (POPs) and utilize several reproductive strategies thereby influencing maternal transfer of contaminants. This study provides preliminary data on the POP transfer from pregnant females to offspring of three species (Atlantic stingrays, bonnethead, blacktip sharks) with different reproduction modes (aplacental, placental viviparity). Polychlorinated biphenyl (PCB) levels were generally higher than any other POPs. Stingrays and blacktip shark embryos contained the lowest POP concentrations while bonnetheads and the blacktip adult female had the highest concentrations. Results suggest that POPs are more readily transferred from the mother to the embryo compared to what is transferred to ova in stingrays. Statistically significant differences in levels of selected POPs were found between embryos from the left and right uterus within the same litter as well as between female and male embryos within the same litter for bonnetheads, but not for the blacktip sharks.

  17. Helium jet dispersion to atmosphere

    NASA Astrophysics Data System (ADS)

    Khan, Hasna J.

    On the event of loss of vacuum guard of superinsulated helium dewar, high rate of heat transfer into the tank occurs. The rapid boiling of liquid helium causes the burst disk to rupture at four atmospheres and consequently the helium passes to the atmosphere through vent lines. The gaseous helium forms a vertical buoyant jet as it exits the vent line into a stagnant environment. Characterization of the gaseous jet is achieved by detailed analysis of the axial and radial dependence of the flow parameters.

  18. Laminar Heat-Transfer and Pressure-Distribution Studies on a Series of Reentry Nose Shapes at a Mach Number of 19.4 in Helium

    NASA Technical Reports Server (NTRS)

    Wagner, Richard D., Jr.; Pine, W. Clint; Henderson, Arthur, Jr.

    1961-01-01

    An experimental investigation has been conducted in the 2-inch helium tunnel at the Langley Research Center at a Mach number of 19.4 to determine the pressure distributions and heat-transfer characteristics of a family of reentry nose shapes. The pressure and heat-transfer-rate distributions on the nose shapes are compared with theoretical predictions to ascertain the limitations and validity of the theories at hypersonic speeds. The experimental results were found to be adequately predicted by existing theories. Two of the nose shapes were tested with variable-length flow-separation spikes. The results obtained by previous investigators of spike-nose bodies were found to prevail at the higher Mach number of the present investigation.

  19. Heat and Momentum Transfer to Internal Turbulent Flow of Helium-Argon Mixtures in Circular Tubes. Revision

    DTIC Science & Technology

    1978-01-03

    internal convective flow with large property variations, Ph.D. dissertation, Univ. of Arizona (1968). 33. A. H. Shapiro, The Dynamics and Thermodynamics ...numbers for fully developed, constant property conditions are predicted within ±5.0 percent., An empirical equation that correlates the,helium-argon...data within ±15 ,prent,",and includes entrance and variable .,Codes/0.j.. ad /or Dis . . . . property effects is presented. Using a recently developed

  20. Intermolecula transfer and elimination of molecular hydrogen in thermal reactions of unsaturated organic compounds

    SciTech Connect

    Suria, Sabartanty

    1995-02-10

    Two reactions which are important to coal liquefaction include intermolecular transfer and the elimination of two hydrogen atoms. We have designed several model reactions to probe the viability of several hydrogen transfer and elimination pathways. This report described studies on these reactions using organic model compounds.

  1. Cross-Language Transfer of Insight into the Structure of Compound Words

    ERIC Educational Resources Information Center

    Zhang, Jie; Anderson, Richard C.; Li, Hong; Dong, Qiong; Wu, Xinchun; Zhang, Yan

    2010-01-01

    Cross-language transfer of awareness of the structure of compound words was investigated among native speakers of Chinese who were learning English as a second language. Chinese fifth graders received instruction in the morphology of four types of compound words in either Chinese or English. They then completed both the Chinese and English…

  2. Oligomer and mixed-metal compounds potential multielectron transfer catalysts

    SciTech Connect

    Rillema, D.P.

    1992-03-30

    Projects related to the design and characterization of multimetallic complexes has proceeded forward with a number of achievements. First, photoprocesses in hydrogel matrices lead to the conclusion that cationic metallochromophores could be ion exchanged into a hydrogel matrix ({kappa}-carageenan) and substantial photocurrents could be generated. Second, X-ray structures of Ru(bpy){sub 3}{sup 2+}, Ru(bpm){sub 3}{sup 2+} and Ru(bpz){sub 3}{sup 2+}, where bpy is 2,2{prime}-bipyridine, bpm is 2,2{prime}-bipyrimidine and bpz is 2,2{prime}-bipyrizine, were obtained and revealed similar Ru-N bond distances in each complex even though their {sigma}-donor and {pi}-acceptor character differ markedly. The structure parameters are expected to provide theoreticians with the information needed to probe the electronic character of the molecular systems and provide us with direction in our synthetic strategies. Third, a copper(I) complex was synthesized with a dimeric-ethane-bridged, 1,10-phenanthroline ligand that resulted in isolation of a bimetallic species. The copper(I) complex did luminesce weakly, suggesting that the dimer possesses potential electron transfer capability. Fourth, the photophysical properties of (Re(CO){sub 4}(L-L)){sup +}, where L-L = heterocyclic diimine ligands, and Pt(bph)X{sub 2}, where bph = the dianion of biphenyl and X = CH{sub 3}CN, py or ethylendiamine, displayed luminescence at high energy and underwent excited-state electron transfer. Such high energy emitters provide high driving forces for undergoing excited-state electron transfer. Fifth, both energy and electron transfer were observed in mixed-metal complexes bridged by 1,2-bis(2,2{prime}-bipyridyl-4{prime}-yl) ethane.

  3. 3D radiative transfer simulations of Eta Carinae's inner colliding winds - I. Ionization structure of helium at apastron

    NASA Astrophysics Data System (ADS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Paardekooper, J.-P.; Gull, T. R.

    2015-03-01

    The highly eccentric binary system Eta Carinae (η Car) shows numerous time-variable emission and absorption features. These observational signatures are the result of interactions between the complex three-dimensional (3D) wind-wind collision regions and photoionization by the luminous stars. Specifically, helium presents several interesting spectral features that provide important clues on the geometry and physical proprieties of the system and the individual stars. We use the SIMPLEX algorithm to post-process 3D smoothed particle hydrodynamics simulation output of the interacting winds in η Car in order to obtain the fractions of ionized helium assuming three different primary star (ηA) mass-loss rates. The resultant ionization maps constrain the regions where helium is singly- and doubly-ionized. We find that reducing ηA's mass-loss rate (dot{M}_{η A}) increases the volume of He+. Lowering dot{M}_{η A} produces large variations in the volume of He+ in the pre-shock ηA wind on the periastron side of the system. Our results show that binary orientations in which apastron is on our side of the system are more consistent with available observations. We suggest that small variations in dot{M}_{η A} might explain the observed increase in He I absorption in recent decades, although numerous questions regarding this scenario remain open. We also propose that the absence of broad He I lines in the spectra of η Car between its 1890's eruption and ˜1944 might be explained by ηB's He0+-ionizing photons not being able to penetrate the wind-wind interaction region, due to a higher dot{M}_{η A} at that time (by a factor ≳2, compared to the present value).

  4. 2-D numerical simulations of groundwater flow, heat transfer and 4He transport — implications for the He terrestrial budget and the mantle helium heat imbalance

    NASA Astrophysics Data System (ADS)

    Castro, Maria Clara; Patriarche, Delphine; Goblet, Patrick

    2005-09-01

    Because helium and heat production results from a common source, a continental 4He crustal flux of 4.65 * 10 - 14 mol m - 2 s - 1 has been estimated based on heat flow considerations. In addition, because the observed mantle He / heat flux ratio at the proximity of mid-ocean ridges (6.6 * 10 - 14 mol J - 1 ) is significantly lower than the radiogenic production ratio (1.5 * 10 - 12 mol J - 1 ), the presence of a terrestrial helium-heat imbalance was suggested. The latter could be explained by the presence of a layered mantle in which removal of He is impeded from the lower mantle [R.K. O'Nions, E.R. Oxburgh, Heat and helium in the Earth, Nature 306 (1983) 429-431; E.R. Oxburgh, R.K. O'Nions, Helium loss, tectonics, and the terrestrial heat budget, Science 237 (1987) 1583-1588]. van Keken et al. [P.E. van Keken, C.J. Ballentine, D. Porcelli, A dynamical investigation of the heat and helium imbalance, Earth Planet, Sci. Lett. 188 (2001) 421-434] have recently claimed that the helium-heat imbalance remains a robust observation. Such conclusions, however, were reached under the assumption that a steady-state regime was in place for both tracers and that their transport properties are similar at least in the upper portion of the crust. Here, through 2-D simulations of groundwater flow, heat transfer and 4He transport carried out simultaneously in the Carrizo aquifer and surrounding formations in southwest Texas, we assess the legitimacy of earlier assumptions. Specifically, we show that the driving transport mechanisms for He and heat are of a fundamentally different nature for a high range of permeabilities ( k ≤ 10 - 16 m 2) found in metamorphic and volcanic rocks at all depths in the crust. The assumption that transport properties for these two tracers are similar in the crust is thus unsound. We also show that total 4He / heat flux ratios lower than radiogenic production ratios do not reflect a He deficit in the crust or mantle original reservoir. Instead, they

  5. Transfer of steroidal and nonsteroidal compounds across guinea pig fetal membranes.

    PubMed

    Goldhawk, D E; Hobkirk, R

    1998-04-15

    Transfer of steroidal and nonsteroidal compounds across guinea pig amnion and chorion laeve was investigated as a function of stage of gestation, tissue orientation, steroid specificity, and molecular size. Each fetal membrane was examined at early and late stages of gestation, before and after pubic symphysis relaxation. Early amnion was impermeable to macromolecules and small charged molecules while [3H]estrone and [3H]pregnenolone were transferred, the latter depending on tissue orientation and involving conjugation at the basolateral interface. After symphysis dilation, amnion transferred all substrates tested with the exception of BSA; the molecular weight cutoff was approximately 5,000. Unlike amnion, early chorion transferred both free and conjugated steroids as well as inorganic sulfate. Transfer of estrone involved conjugation and depended on tissue orientation. Transfer of [3H]estrone-sulfate, [3H]estrone-glucuronide, and [3H]pregnenolone-sulfate was similar despite selective deconjugating activity toward estrone-sulfate. Near term, chorion was impermeable to inorganic sulfate and transfer of estrone-glucuronide depended on tissue orientation, involving deconjugation in the maternal to fetal direction. At no stage of gestation did chorion transfer macromolecules. These results suggest that the transfer of free and conjugated steroids across fetal membranes is differentially regulated by tissue, its stage of development, and direction of transfer.

  6. Helium Plants and Storage. Design Manual 24.2.

    DTIC Science & Technology

    1980-06-01

    Helium Air Separation System for a Supersonic Wind Tunnel.. 24.2-6 4 Four-Way Four-Port Valve ................................... 24.2-11 5 Friction...7) Weather and climatic conditions. 5. FACTS ON HELIUM. Federal agencies use helium in helium-shielded arc weld- ing, supersonic wind tunnels, and...station at the nearest railroad connection for transferring helium from railroad tank car to truck trailer. c. Compressor Station. Generally , the initial

  7. Implementation of the superfluid helium phase transition using finite element modeling: Simulation of transient heat transfer and He-I/He-II phase front movement in cooling channels of superconducting magnets

    NASA Astrophysics Data System (ADS)

    Bielert, E. R.; Verweij, A. P.; Ten Kate, H. H. J.

    2013-01-01

    In the thermal design of high magnetic field superconducting accelerator magnets, the emphasis is on the use of superfluid helium as a coolant and stabilizing medium. The very high effective thermal conductivity of helium below the lambda transition temperature significantly helps to extract heat from the coil windings during steady state and transient heat deposition. The layout and size of the helium channels have a strong effect on the maximum amount of heat that can be extracted from the porously insulated superconducting cables. To better understand the behavior of superfluid helium penetrating the magnet structure and coil windings, simulation based on a three dimensional finite element model can give valuable insight. The 3D geometries of interest can be regarded as a complex network of coupled 1D geometries. The governing physics is thus similar for both geometries and therefore validation of several and different 1D models is performed. Numerically obtained results and published experimental data are compared. Once the viability of the applied methods is proven, they can be incorporated into the 3D geometries. Not only the transport properties in the bulk of the helium are of interest, but also the strong non-linear behavior at the interfaces between solids and superfluid helium (Kapitza conductance) is important from an engineering point of view, since relatively large temperature jumps may occur here. In this work it is shown how He-II behavior in magnet windings can be simulated using COMSOL Multiphysics. 1D models are validated by experimental results taken from literature in order to improve existing 2D and 3D models with more complete physics. The examples discussed include transient heat transfer in 1D channels, Kapitza conductance and sub-cooling of normal liquid helium to temperatures below the lambda transition in long channels (phase front movement).

  8. Heat transfer through cyanate ester epoxy mix and epoxy TGPAP - DETDA electrical insulations at superfluid helium temperature

    NASA Astrophysics Data System (ADS)

    Pietrowicz, Slawomir; Four, Aurelian; Canfer, Simon; Jones, Stephanie; Baudouy, Bertrand

    2012-06-01

    A high magnetic field accelerator magnet of 13 T is being developed in Work Package 7 of the European Union FP7 project EuCARD. The application is to enable higher luminosities and energies for accelerators such as the LHC. The high magnetic field demands superconductors that require a heat treatment step such as Nb3Sn. This paper reports thermal tests on conventional composite electrical insulation with pressurized superfluid helium at atmospheric pressure as a coolant. Two composite insulation systems composed of cyanate ester epoxy mix or a tri-functional epoxy (TGPAP-DETDA) with Sglass fiber, have been chosen as candidate materials. The knowledge of their thermal properties is necessary for the thermal design and therefore samples have been tested in pressurized He II where heat is applied perpendicularly to the fibers between 1.6 K and 2.0 K. Overall thermal resistance is determined as a function of temperature and the results are compared with other electrical insulation systems used for accelerator magnets.

  9. Magnetically Recoverable Supported Ruthenium Catalyst for Hydrogenation of Alkynes and Transfer Hydrogenation of Carbonyl Compounds

    EPA Science Inventory

    A ruthenium (Ru) catalyst supported on magnetic nanoparticles (NiFe2O4) has been successfully synthesized and used for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The cata...

  10. Magnetic Silica-Supported Ruthenium Nanoparticles: An Efficient Catalyst for Transfer Hydrogenation of Carbonyl Compounds

    EPA Science Inventory

    One-pot synthesis of ruthenium nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium nano particles immobilization; the hydration of nitriles and transfer hydrogenation of carbonyl compounds occurs in hi...

  11. Helium tables.

    NASA Technical Reports Server (NTRS)

    Havill, Clinton H

    1928-01-01

    These tables are intended to provide a standard method and to facilitate the calculation of the quantity of "Standard Helium" in high pressure containers. The research data and the formulas used in the preparation of the tables were furnished by the Research Laboratory of Physical Chemistry, of the Massachusetts Institute of Technology.

  12. Applications of Groundwater Helium

    USGS Publications Warehouse

    Kulongoski, Justin T.; Hilton, David R.

    2011-01-01

    Helium abundance and isotope variations have widespread application in groundwater-related studies. This stems from the inert nature of this noble gas and the fact that its two isotopes ? helium-3 and helium-4 ? have distinct origins and vary widely in different terrestrial reservoirs. These attributes allow He concentrations and 3He/4He isotope ratios to be used to recognize and quantify the influence of a number of potential contributors to the total He budget of a groundwater sample. These are atmospheric components, such as air-equilibrated and air-entrained He, as well as terrigenic components, including in situ (aquifer) He, deep crustal and/or mantle He and tritiogenic 3He. Each of these components can be exploited to reveal information on a number of topics, from groundwater chronology, through degassing of the Earth?s crust to the role of faults in the transfer of mantle-derived volatiles to the surface. In this review, we present a guide to how groundwater He is collected from aquifer systems and quantitatively measured in the laboratory. We then illustrate the approach of resolving the measured He characteristics into its component structures using assumptions of endmember compositions. This is followed by a discussion of the application of groundwater He to the types of topics mentioned above using case studies from aquifers in California and Australia. Finally, we present possible future research directions involving dissolved He in groundwater.

  13. Cryogenic helium 2 systems for space applications

    NASA Technical Reports Server (NTRS)

    Urban, E.; Katz, L.; Hendricks, J.; Karr, G.

    1978-01-01

    Two cryogenic systems are described which will provide cooling for experiments to be flown on Spacelab 2 in the early 1980's. The first system cools a scanning infrared telescope by the transfer of cold helium gas from a separate superfluid helium storage dewar. The flexible design permits the helium storage dewar and transfer assembly to be designed independent of the infrared experiment. Where possible, modified commerical apparatus is used. The second cryogenic system utilizes a specially designed superfluid dewar in which a superfluid helium experiment chamber is immersed. Each dewar system employs a porous plug as a phase separator to hold the liquid helium within the dewar and provide cold gas to a vent line. To maintain the low vapor pressure of the superfluid, each system requires nearly continuous prelaunch vacuum pump service, and each will vent to space during the Spacelab 2 flight.

  14. Heat transfer analysis of compound multi-layer insulation for cryogenic tank under different service conditions

    NASA Astrophysics Data System (ADS)

    Zhu, H. L.; Yao, C.; Li, Y.; Pan, H. L.

    2016-05-01

    Future space missions require efficient delivery of large payloads over great distances, necessitating the use of high-energy cryogenic propellant. Therefore, reliable compound multi-layer insulation on cryogenic tank is a crucial part of future space exploration. Compound multi-layer insulation is composed of double-aluminized radiation shielding and separated by a combination of netting and bumper strips, with a foam substrate. Considering conduction, convection, and radiation in heat transfer, the thermal field of multi-layer insulation is analysis by theoretical analysis with different thickness of foam substrate and MLI. Based on the formerly theoretical analysis, the heat flux and apparent thermal conductivity are discussed under the different thickness of foam substrate and MLI. Finally, the optimum design of multi-layer thermal insulation is present in consideration of the thickness and insulation performance of multi-layer insulation.

  15. Laser-induced forward transfer of a bis-pyrene compound for OTFTs

    NASA Astrophysics Data System (ADS)

    Constantinescu, Catalin; Diallo, Abdou Karim; D'Aleo, Anthony; Fages, Frédéric; Videlot-Ackermann, Christine; Delaporte, Philippe; Alloncle, Anne-Patricia

    2015-05-01

    We present results on a newly synthesized bis-pyrene compound that, besides the typical fluorescence, also exhibits semiconducting properties. Thin films have been grown by vacuum thermal evaporation on oxidized silicon and on transparent quartz substrates. Micrometric-sized pixels have subsequently been printed by laser-induced forward transfer (LIFT), in air and at low pressure (90 mbar), by using a Nd:YAG laser source (355 nm, 50 ps pulse duration) to produce functional organic thin film transistors (o-TFTs). Top-contact (TC) configurations are emphasized, and the influence of the pressure and laser fluence during the LIFT procedure is discussed.

  16. Thermodynamic studies and hydride transfer reactions from a rhodium complex to BX3 compounds.

    PubMed

    Mock, Michael T; Potter, Robert G; Camaioni, Donald M; Li, Jun; Dougherty, William G; Kassel, W Scott; Twamley, Brendan; DuBois, Daniel L

    2009-10-14

    This study examines the use of transition-metal hydride complexes that can be generated by the heterolytic cleavage of H(2) gas to form B-H bonds. Specifically, these studies are focused on providing a reliable and quantitative method for determining when hydride transfer from transition-metal hydrides to three-coordinate BX(3) (X = OR, SPh, F, H; R = Ph, p-C(6)H(4)OMe, C(6)F(5), (t)Bu, Si(Me)(3)) compounds will be favorable. This involves both experimental and theoretical determinations of hydride transfer abilities. Thermodynamic hydride donor abilities (DeltaG(o)(H(-))) were determined for HRh(dmpe)(2) and HRh(depe)(2), where dmpe = 1,2-bis(dimethylphosphinoethane) and depe = 1,2-bis(diethylphosphinoethane), on a previously established scale in acetonitrile. This hydride donor ability was used to determine the hydride donor ability of [HBEt(3)](-) on this scale. Isodesmic reactions between [HBEt(3)](-) and selected BX(3) compounds to form BEt(3) and [HBX(3)](-) were examined computationally to determine their relative hydride affinities. The use of these scales of hydride donor abilities and hydride affinities for transition-metal hydrides and BX(3) compounds is illustrated with a few selected reactions relevant to the regeneration of ammonia borane. Our findings indicate that it is possible to form B-H bonds from B-X bonds, and the extent to which BX(3) compounds are reduced by transition-metal hydride complexes forming species containing multiple B-H bonds depends on the heterolytic B-X bond energy. An example is the reduction of B(SPh)(3) using HRh(dmpe)(2) in the presence of triethylamine to form Et(3)N-BH(3) in high yields.

  17. From Olive Fruits to Olive Oil: Phenolic Compound Transfer in Six Different Olive Cultivars Grown under the Same Agronomical Conditions

    PubMed Central

    Talhaoui, Nassima; Gómez-Caravaca, Ana María; León, Lorenzo; De la Rosa, Raúl; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-01-01

    Phenolic compounds are responsible of the nutritional and sensory quality of extra-virgin olive oil (EVOO). The composition of phenolic compounds in EVOO is related to the initial content of phenolic compounds in the olive-fruit tissues and the activity of enzymes acting on these compounds during the industrial process to produce the oil. In this work, the phenolic composition was studied in six major cultivars grown in the same orchard under the same agronomical and environmental conditions in an effort to test the effects of cultivars on phenolic composition in fruits and oils as well as on transfer between matrices. The phenolic fractions were identified and quantified using high-performance liquid chromatography-diode array detector-time-of-flight-mass spectrometry. A total of 33 phenolic compounds were determined in the fruit samples and a total of 20 compounds in their corresponding oils. Qualitative and quantitative differences in phenolic composition were found among cultivars in both matrices, as well as regarding the transfer rate of phenolic compounds from fruits to oil. The results also varied according to the different phenolic groups evaluated, with secoiridoids registering the highest transfer rates from fruits to oils. Moreover, wide-ranging differences have been noticed between cultivars for the transfer rates of secoiridoids (4.36%–65.63% of total transfer rate) and for flavonoids (0.18%–0.67% of total transfer rate). ‘Picual’ was the cultivar that transferred secoiridoids to oil at the highest rate, whereas ‘Changlot Real’ was the cultivar that transferred flavonoids at the highest rates instead. Principal-component analysis confirmed a strong genetic effect on the basis of the phenolic profile both in the olive fruits and in the oils. PMID:26959010

  18. From Olive Fruits to Olive Oil: Phenolic Compound Transfer in Six Different Olive Cultivars Grown under the Same Agronomical Conditions.

    PubMed

    Talhaoui, Nassima; Gómez-Caravaca, Ana María; León, Lorenzo; De la Rosa, Raúl; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-03-04

    Phenolic compounds are responsible of the nutritional and sensory quality of extra-virgin olive oil (EVOO). The composition of phenolic compounds in EVOO is related to the initial content of phenolic compounds in the olive-fruit tissues and the activity of enzymes acting on these compounds during the industrial process to produce the oil. In this work, the phenolic composition was studied in six major cultivars grown in the same orchard under the same agronomical and environmental conditions in an effort to test the effects of cultivars on phenolic composition in fruits and oils as well as on transfer between matrices. The phenolic fractions were identified and quantified using high-performance liquid chromatography-diode array detector-time-of-flight-mass spectrometry. A total of 33 phenolic compounds were determined in the fruit samples and a total of 20 compounds in their corresponding oils. Qualitative and quantitative differences in phenolic composition were found among cultivars in both matrices, as well as regarding the transfer rate of phenolic compounds from fruits to oil. The results also varied according to the different phenolic groups evaluated, with secoiridoids registering the highest transfer rates from fruits to oils. Moreover, wide-ranging differences have been noticed between cultivars for the transfer rates of secoiridoids (4.36%-65.63% of total transfer rate) and for flavonoids (0.18%-0.67% of total transfer rate). 'Picual' was the cultivar that transferred secoiridoids to oil at the highest rate, whereas 'Changlot Real' was the cultivar that transferred flavonoids at the highest rates instead. Principal-component analysis confirmed a strong genetic effect on the basis of the phenolic profile both in the olive fruits and in the oils.

  19. Dry Transfer Inoculation of Low-Moisture Spices Containing Antimicrobial Compounds.

    PubMed

    Hildebrandt, Ian M; Hu, Chuxuan; Grasso-Kelley, Elizabeth M; Ye, Peiran; Anderson, Nathan M; Keller, Susanne E

    2017-02-01

    Inoculation of a food product for use in subsequent validation studies typically makes use of a high concentration cocktail of microorganisms suspended in aqueous media. However, this inoculation method may prove difficult particularly when the food product is a low-moisture food containing antimicrobial compounds, such as some dried spices. In this study, a dry transfer method for inoculation of clove powder, oregano leaves, ginger powder, and ground black pepper with a five-serovar cocktail of Salmonella was developed and compared with a traditional aqueous inoculation procedure. Spices were inoculated at three levels, 10, 8, and 6 log CFU/g, by using both an aqueous suspension of Salmonella and a dry transfer of Salmonella from previously inoculated silica beads. At the highest inoculation level, the dry transfer method resulted in a significantly higher microbial load (P < 0.05) for ground cloves and oregano, but not for ginger and ground black pepper. At the intermediate inoculation level, differences were apparent only for ginger and black pepper. Inoculation levels of 6 log CFU/g resulted in recoveries below detection limits for both methods of inoculation. Additional examination on the survival of Salmonella on silica beads after inoculation and in clove powder after dry transfer from silica beads showed linear rates of decline, with a rate of -0.011 log CFU/g/day for beads and -0.015 log CFU/g/day for clove powder. The results suggest that dry transfer of Salmonella via inoculated silica beads is a viable alternative when traditional aqueous inoculation is not feasible.

  20. Electrochemical and theoretical analysis of the reactivity of shikonin derivatives: dissociative electron transfer in esterified compounds.

    PubMed

    Armendáriz-Vidales, Georgina; Frontana, Carlos

    2014-09-07

    An electrochemical and theoretical analysis of a series of shikonin derivatives in aprotic media is presented. Results showed that the first electrochemical reduction signal is a reversible monoelectronic transfer, generating a stable semiquinone intermediate; the corresponding E(I)⁰ values were correlated with calculated values of electroaccepting power (ω(+)) and adiabatic electron affinities (A(Ad)), obtained with BH and HLYP/6-311++G(2d,2p) and considering the solvent effect, revealing the influence of intramolecular hydrogen bonding and the substituting group at position C-2 in the experimental reduction potential. For the second reduction step, esterified compounds isobutyryl and isovalerylshikonin presented a coupled chemical reaction following dianion formation. Analysis of the variation of the dimensionless cathodic peak potential values (ξ(p)) as a function of the scan rate (v) functions and complementary experiments in benzonitrile suggested that this process follows a dissociative electron transfer, in which the rate of heterogeneous electron transfer is slow (~0.2 cm s(-1)), and the rate constant of the chemical process is at least 10(5) larger.

  1. Synthesis and hydride transfer reactions of cobalt and nickel hydride complexes to BX3 compounds.

    PubMed

    Mock, Michael T; Potter, Robert G; O'Hagan, Molly J; Camaioni, Donald M; Dougherty, William G; Kassel, W Scott; DuBois, Daniel L

    2011-12-05

    Hydrides of numerous transition metal complexes can be generated by the heterolytic cleavage of H(2) gas such that they offer alternatives to using main group hydrides in the regeneration of ammonia borane, a compound that has been intensely studied for hydrogen storage applications. Previously, we reported that HRh(dmpe)(2) (dmpe = 1,2-bis(dimethylphosphinoethane)) was capable of reducing a variety of BX(3) compounds having a hydride affinity (HA) greater than or equal to the HA of BEt(3). This study examines the reactivity of less expensive cobalt and nickel hydride complexes, HCo(dmpe)(2) and [HNi(dmpe)(2)](+), to form B-H bonds. The hydride donor abilities (ΔG(H(-))°) of HCo(dmpe)(2) and [HNi(dmpe)(2)](+) were positioned on a previously established scale in acetonitrile that is cross-referenced with calculated HAs of BX(3) compounds. The collective data guided our selection of BX(3) compounds to investigate and aided our analysis of factors that determine favorability of hydride transfer. HCo(dmpe)(2) was observed to transfer H(-) to BX(3) compounds with X = H, OC(6)F(5), and SPh. The reaction with B(SPh)(3) is accompanied by the formation of dmpe-(BH(3))(2) and dmpe-(BH(2)(SPh))(2) products that follow from a reduction of multiple B-SPh bonds and a loss of dmpe ligands from cobalt. Reactions between HCo(dmpe)(2) and B(SPh)(3) in the presence of triethylamine result in the formation of Et(3)N-BH(2)SPh and Et(3)N-BH(3) with no loss of a dmpe ligand. Reactions of the cationic complex [HNi(dmpe)(2)](+) with B(SPh)(3) under analogous conditions give Et(3)N-BH(2)SPh as the final product along with the nickel-thiolate complex [Ni(dmpe)(2)(SPh)](+). The synthesis and characterization of HCo(dedpe)(2) (dedpe = Et(2)PCH(2)CH(2)PPh(2)) from H(2) and a base is also discussed, including the formation of an uncommon trans dihydride species, trans-[(H)(2)Co(dedpe)(2)][BF(4)].

  2. Synthesis and Hydride Transfer Reactions of Cobalt and Nickel Hydride Complexes to BX₃ Compounds

    SciTech Connect

    Mock, Michael T.; Potter, Robert G.; O'Hagan, Molly; Camaioni, Donald M.; Dougherty, William G.; Kassel, W. Scott; DuBois, Daniel L.

    2011-10-31

    Hydrides of numerous transition metal complexes can be generated by the heterolytic cleavage of H₂ gas such that they offer alternatives to using main group hydrides in the regeneration of ammonia borane, a compound that has been intensely studied for hydrogen storage applications. Previously, we reported that HRh(dmpe)₂ (dmpe = 1,2-bis(dimethylphosphinoethane)) was capable of reducing a variety of BX₃ compounds having a hydride affinity (HA) greater than or equal to the HA of BEt₃. This study examines the reactivity of less expensive cobalt and nickel hydride complexes, HCo(dmpe)₂ and [HNi(dmpe)₂]+, to form B–H bonds. The hydride donor abilities (ΔGH °) of HCo(dmpe)₂ and [HNi(dmpe)₂]+ were positioned on a previously established scale in acetonitrile that is cross-referenced with calculated HAs of BX₃ compounds. The collective data guided our selection of BX₃ compounds to investigate and aided our analysis of factors that determine favorability of hydride transfer. HCo(dmpe)₂ was observed to transfer H to BX₃ compounds with X = H, OC₆F₅, and SPh. The reaction with B(SPh)₃ is accompanied by the formation of dmpe-(BH₃)₂ and dmpe-(BH₂(SPh))₂ products that follow from a reduction of multiple B–SPh bonds and a loss of dmpe ligands from cobalt. Reactions between HCo(dmpe)₂ and B(SPh)₃ in the presence of triethylamine result in the formation of Et₃N–BH₂SPh and Et₃N–BH₃ with no loss of a dmpe ligand. Reactions of the cationic complex [HNi(dmpe)₂]+ with B(SPh)₃ under analogous conditions give Et₃N–BH₂SPh as the final product along with the nickel–thiolate complex [Ni(dmpe)₂(SPh)]+. The synthesis and characterization of HCo(dedpe)₂ (dedpe = Et₂PCH₂CH₂PPh₂) from H₂ and a base is also discussed, including the formation of an uncommon trans dihydride species, trans-[(H)₂Co(dedpe)₂][BF₄].

  3. Synthesis and Hydride Transfer Reactions of Cobalt and Nickel Hydride Complexes to BX3 Compounds

    SciTech Connect

    Mock, Michael T.; Potter, Robert G.; O'Hagan, Molly J.; Camaioni, Donald M.; Dougherty, William G.; Kassel, W. S.; DuBois, Daniel L.

    2011-12-05

    Hydrides of numerous transition metal complexes can be generated by the heterolytic cleavage of H{sub 2} gas such that they offer alternatives to using main group hydrides in the regeneration of ammonia borane, a compound that has been intensely studied for hydrogen storage applications. Previously, we reported that HRh(dmpe){sub 2}, dmpe = 1,2-bis(dimethylphosphinoethane) was capable of reducing a variety of BX{sub 3} compounds having hydride affinity (HA) greater than or equal to HA of BEt{sub 3}. This study examines the reactivity of less expensive cobalt and nickel hydride complexes, (HCo(dmpe){sub 2} and [HNi(dmpe){sub 2}]{sup +}), to form B-H bonds. The hydride donor abilities ({Delta}G{sub H{sup -}}{sup o}) of HCo(dmpe){sub 2} and [HNi(dmpe){sub 2}]{sup +} were positioned on a previously established scale in acetonitrile that is cross-referenced with calculated HAs of BX{sub 3} compounds. The collective data guided our selection of BX{sub 3} compounds to investigate and aided our analysis of factors that determine favorability of hydride transfer. HCo(dmpe){sub 2} was observed to transfer H{sup -} to BX{sub 3} compounds with X = H, OC{sub 6}F{sub 5} and SPh. The reaction with B(SPh){sub 3} is accompanied by formation of (BH{sub 3}){sub 2}-dmpe and (BH{sub 2}SPh){sub 2}-dmpe products that follow from reduction of multiple BSPh bonds and loss of a dmpe ligand from Co. Reactions between HCo(dmpe){sub 2} and B(SPh){sub 3} in the presence of triethylamine result in formation of Et{sub 3}N-BH{sub 2}SPh and Et{sub 3}N-BH{sub 3} with no loss of dmpe ligand. Reactions of the cationic complex [HNi(dmpe){sub 2}]{sup +} with B(SPh){sub 3} under analogous conditions give Et{sub 3}N-BH{sub 2}SPh as the final product along with the nickel-thiolate complex [Ni(dmpe){sub 2}(SPh)]{sup +}. The synthesis and characterization of HCo(dedpe){sub 2} (dedpe = diethyldiphenyl(phosphino)ethane) from H{sub 2} and a base is also discussed; including the formation of an uncommon trans

  4. Performance Evaluation of the Scent Transfer Unit (STU) for Organic Compound Collection and Release

    SciTech Connect

    Eckenrode, Brian A.; Ramsey, Scott A.; StockhamMFS, Rex A.; Van Berkel, Gary J; Asano, Keiji G; Wolf, Dennis A

    2006-01-01

    The Scent Transfer UnitTM (STU-100) is a portable vacuum that uses airflow through a sterile gauze pad to capture a volatiles profile over evidentiary items for subsequent canine presentation to assist law enforcement personnel. This device was evaluated to determine its ability to trap and release organic compounds at ambient temperature under controlled laboratory conditions. Gas chromatography-mass spectrometry (GC-MS) analyses using a five-component volatiles mixture in methanol injected directly into a capture pad indicated that compound release could be detected initially and three days after time of collection. Additionally, fifteen compounds of a 39-component toxic organics gaseous mixture (10-1,000 ppbv) were trapped, released, and detected in the headspace of a volatiles capture pad after being exposed to this mixture using the STU-100 with analysis via GC-MS. Component release efficiencies at ambient temperature varied with the analyte; however, typical values of approximately 10 percent were obtained. Desorption at elevated temperatures of reported human odor/scent chemicals and colognes trapped by the STU-100 pads was measured and indicated that the STU-100 has a significant trapping efficiency at ambient temperature. Multivariate statistical analysis of subsequent mass spectral patterns was also performed.

  5. Maternally transferred dioxin-like compounds can affect the reproductive success of European eel.

    PubMed

    Foekema, Edwin M; Kotterman, Michiel; de Vries, Pepijn; Murk, Albertinka J

    2016-01-01

    Reported concentrations of dioxin-like compounds accumulated in the European eel (Anguilla anguilla) were used to perform a risk assessment for eel larval survival, taking into account a modeled amplification of tissue concentrations with a factor of 1.33 during spawning migration. The calculated concentrations of dioxin-like compounds finally deposited in the eggs were compared with the internal effect concentrations for survival of early life stages of the European eel; these concentrations, by lack of experimental data, were estimated from a sensitivity distribution based on literature data by assuming that eel larvae are among the 10% most sensitive teleost fish species. Given concentrations of dioxin-like contaminants and assuming a relatively high sensitivity, it can be expected that larvae from eggs produced by eel from highly contaminated locations in Europe will experience increased mortality as a result of maternally transferred dioxin-like contaminants. As historical persistent organic pollutant concentrations in eel tissue were higher, this impact must have been stronger in the past. Potential effects of other compounds or effects on the migration, condition, and fertility of the parental animals were not taken into account. It is important to further study the overall impact of contaminants on the reproductive success of the European eel as this may have been underestimated until now.

  6. Element and chemical compounds transfer in bio-crude from hydrothermal liquefaction of microalgae.

    PubMed

    Tang, Xiaohan; Zhang, Chao; Li, Zeyu; Yang, Xiaoyi

    2016-02-01

    In this study, hydrothermal liquefaction (HTL) experiments of Nannochloropsis and Spirulina were carried out at different temperatures (220-300 °C) to explore the effects of temperature on bio-crude yield and properties. The optimal temperature for bio-crude yield was around 260-280 °C. Transfers of element and chemical compounds in bio-crude were discussed in detail to deduce the reaction mechanism. The hydrogen and carbon recoveries were consistent with the results of bio-crude yields at every temperature point. The relative percentage of fatty acid in bio-crude decreased and the amine and amide increased for both microalgae with temperature rising. The N-heterocyclic compounds in bio-crude increased with temperature rising for Nannochloropsis, while decreased when temperature increased from 220 °C to 280 °C for Spirulina. Bio-crude gained at higher temperature or from microalgae with high protein content may contain high heteroatom compounds.

  7. An Assessment of Helium Evolution from Helium-Saturated Propellant Depressurization in Space

    NASA Technical Reports Server (NTRS)

    Nguyen, Bich N.; Best, Frederick; Wong, Tony; Kurwitz, Cable; McConnaughey, H. (Technical Monitor)

    2001-01-01

    Helium evolution from the transfer of helium-saturated propellant in space is quantified to assess its impacts from creating two-phase gas/liquid flow from the supply tank, gas injection into the receiving tank, and liquid discharge from the receiving tank. Propellant transfer takes place between two similar tanks whose maximum storage capacity is approximately 2.55 cubic meters each. The maximum on-orbit propellants transfer capability is 9000 lbm (fuel and oxidizer). The transfer line is approximately 1.27 cm in diameter and 6096 cm in length and comprised of the fluid interconnect system (FICS), the orbiter propellant transfer system (OPTS), and the International Space Station (ISS) propulsion module (ISSPM). The propellant transfer rate begins at approximately 11 liter per minute (lpm) and subsequently drops to approximately 0.5 lpm. The tank nominal operating pressure is approximately 1827 kPa (absolute). The line pressure drops for Monomethy1hydrazine (MMH) and Nitrogen tetroxide (NTO) at 11.3 lpm are approximately 202 kPa and 302 kPa, respectively. The pressure-drop results are based on a single-phase flow. The receiving tank is required to vent from approximately 1827 kPa to a lower pressure to affect propellant transfer. These pressure-drop scenarios cause the helium-saturated propellants to release excess helium. For tank ullage venting, the maximum volumes of helium evolved at tank pressure are approximately 0.5 ft3 for MMH and 2 ft3 for NTO. In microgravity environment, due to lack of body force, the helium evolution from a liquid body acts to propel it, which influences its fluid dynamics. For propellant transfer, the volume fractions of helium evolved at line pressure are 0.1% by volume for MMH and 0.6 % by volume for NTO at 11.3 lpm. The void fraction of helium evolved varies as an approximate second order power function of flow rate.

  8. Primary Kinetic Isotope Effects on Hydride Transfer from Heterocyclic Compounds to NAD+ Analogues

    NASA Astrophysics Data System (ADS)

    Kil, Hyun Joo; Lee, In-Sook Han

    2009-09-01

    Primary kinetic isotope effects (KIEs), kH/kD, have been determined spectrophotometrically for the reactions of NAD+ analogues (acridinium ions, 1a-e+, and quinolinium ion, 2+) with heteroaromatic compounds such as 3-methyl-2-phenylbenzothiazoline, 3H(D), and 1,3-dimethyl-2-phenylbenzimidazoline, 4H(D) in a mixed solvent containing four parts 2-propanol and one part water at 25.0 ± 0.1 °C. The KIEs decrease from 6.24 to 3.93 as the equilibrium constant, K, is increased from about 1 to 1012 by the structural variation in the hydride acceptor. The Marcus theory of atom transfer in a linear, triatomic model of the reaction, with tunneling, can explain the variation of KIE with K. The Marcus theory is based on a model involving no high-energy intermediates, leading to a one-step mechanism. The present system satisfies this condition.

  9. Role of dense shelf water cascading in the transfer of organochlorine compounds to open marine waters.

    PubMed

    Salvadó, Joan A; Grimalt, Joan O; López, Jordi F; Palanques, Albert; Heussner, Serge; Pasqual, Catalina; Sanchez-Vidal, Anna; Canals, Miquel

    2012-03-06

    Settling particles were collected by an array of sediment trap moorings deployed along the Cap de Creus (CCC) and Lacaze-Duthiers (LDC) submarine canyons and on the adjacent southern open slope (SOS) between October 2005 and October 2006. This array collected particles during common settling processes and particles transferred to deep waters by dense shelf water cascading (DSWC). Polychlorobiphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs), chlorobenzenes (CBzs)--pentachlorobenzene and hexachlorobenzene--and hexachlorocyclohexanes were analyzed in all samples. The results show much higher settling fluxes of these compounds during DSWC than during common sedimentation processes. The area of highest deposition was located between 1000 and 1500 m depth and extended along the canyons and outside them showing their channelling effects but also overflows of dense shelf water from these canyons. Higher fluxes were observed near the bottom (30 m above bottom; mab) than at intermediate waters (500 mab) which is consistent with the formation and sinking of dense water close to the continental shelf and main displacement through the slope by the bottom. DSWC involved the highest settling fluxes of these compounds ever described in marine continental slopes and pelagic areas, e.g., peak values of PCBs (960 ng · m(-2) · d(-1)), DDTs (2900 ng · m(-2) · d(-1)), CBzs (340 ng · m(-2) · d(-1)) and lindane (180 ng · m(-2) · d(-1)).

  10. Chromatographic detection of nitroaromatic and nitramine compounds by electrochemical reduction combined with photoluminescence following electron transfer.

    PubMed

    Woltman, S J; Even, W R; Sahlin, E; Weber, S G

    2000-10-15

    The oxidizing agent tris(bipyridyl)ruthenium(III), or Ru-(bpy)(3)3+, is used as a postcolumn reagent for the detection of nitroaromatic and nitramine explosive compounds. After separation, the explosives are reduced electrochemically to oxidizable products such as hydroxlamines and nitrosamines, and these products react readily with Ru-(bpy)(3)3+ and Ru(bpy)(3)2+. The photoluminescence from the latter is used for detection. A porous carbon electrode was used for on-line analyte reduction following chromatography. Another porous carbon electrode was used to generate the nonluminescent Ru(bpy)(3)3+ from Ru(bpy)(3)3+ on-line at high efficiency. The two streams were combined, and the Ru(bpy)(3)2+ produced by oxidation of the reduced analytes was detected by laser illumination and light detection. Reductive hydrodynamic voltammograms of nitrobenzene, 2,4,6-trinitrotoluene, and hexahydro-1,3,5-trinitro-1,3,5-triazine indicated that a potential of - 1500 mV vs Ag/AgCl was sufficient to achieve a maximum signal from the reduced analytes. HPLC with a water/acetonitrile gradient on a C-18 reversed-phase column was then used to determine these three compounds plus the four additional examples, 1,3,5,7-tetrazocine, 2,4-dinitrotoluene; 2,6-dinitrotoluene, and 4-nitrotoluene. For both hydrodynamic voltammetry and HPLC detection, the photoluminescence following electron-transfer signal was calibrated using the one-electron standards ferrocene and ferrocenecarboxylic acid. Detection limits were in the low-nanomolar range for 20-microL injections of nonpreconcentrated nitro compounds.

  11. Trophic transfer of naturally produced brominated aromatic compounds in a Baltic Sea food chain.

    PubMed

    Dahlgren, Elin; Lindqvist, Dennis; Dahlgren, Henrik; Asplund, Lillemor; Lehtilä, Kari

    2016-02-01

    Brominated aromatic compounds (BACs) are widely distributed in the marine environment. Some of these compounds are highly toxic, such as certain hydroxylated polybrominated diphenyl ethers (OH-PBDEs). In addition to anthropogenic emissions through use of BACs as e.g. flame retardants, BACs are natural products formed by marine organisms such as algae, sponges, and cyanobacteria. Little is known of the transfer of BACs from natural producers and further up in the trophic food chain. In this study it was observed that total sum of methoxylated polybrominated diphenyl ethers (MeO-PBDEs) and OH-PBDEs increased in concentration from the filamentous red alga Ceramium tenuicorne, via Gammarus sp. and three-spined stickleback (Gasterosteus aculeatus) to perch (Perca fluviatilis). The MeO-PBDEs, which were expected to bioaccumulate, increased in concentration accordingly up to perch, where the levels suddenly dropped dramatically. The opposite pattern was observed for OH-PBDEs, where the concentration exhibited a general trend of decline up the food web, but increased in perch, indicating metabolic demethylation of MeO-PBDEs. Debromination was also indicated to occur when progressing through the food chain resulting in high levels of tetra-brominated MeO-PBDE and OH-PBDE congeners in fish, while some penta- and hexa-brominated congeners were observed to be the dominant products in the alga. As it has been shown that OH-PBDEs are potent disruptors of oxidative phosphorylation and that mixtures of different congener may act synergistically in terms of this toxic mode of action, the high levels of OH-PBDEs detected in perch in this study warrants further investigation into potential effects of these compounds on Baltic wildlife, and monitoring of their levels.

  12. Energetic comparison between photoinduced electron-transfer reactions from NADH model compounds to organic and inorganic oxidants and hydride-transfer reactions from NADH model compounds to p-benzoquinone derivatives

    SciTech Connect

    Fukuzumi, S.; Koumitsu, S.; Hironaka, K.; Tanaka, T.

    1987-01-21

    Kinetic studies on photoinduced electron-transfer reactions from dihydropyridine compounds (PyH/sub 2/) as being NADH model compounds to organic and inorganic oxidants and hydride-transfer reactions from PyH/sub 2/ to p-benzoquinone derivatives (Q) in the absence and presence of Mg/sup 2 +/ ion are reported by determining over 150 rate constants. These results, combined with the values of Gibbs energy change of the photoinduced electron-transfer reactions as well as those of each step of the hydride-transfer reactions as being the e/sup -/-H/sup +/-e/sup -/ sequence, which are determined independently, revealed that the rate constants of the photoinduced electron-transfer reactions obey the Rehm-Weller-Gibbs energy relationship and that the activation barrier of the hydride-transfer reactions from PyH/sub 2/ to Q is dependent solely on the Gibbs energy changes of the initial electron transfer from PyH/sub 2/ to Q and the following proton transfer from PyH/sub 2//sup .+/ to Q/sup .-/ and thus independent of the Gibbs energy change of the final electron transfer from PyH/sup ./ to QH/sup ./. The retarding effect of Mg/sup 2 +/ ion observed on the photoinduced electron transfer and hydride-transfer reactions of PyH/sub 2/ is ascribed to the positive shifts of the redox potentials of the ground and excited states of PyH/sub 2/ due to the complex formation with Mg/sup 2 +/ ion.

  13. Novel R-plasmid conjugal transfer inhibitory and antibacterial activities of phenolic compounds from Mallotus philippensis (Lam.) Mull. Arg.

    PubMed

    Oyedemi, Blessing O M; Shinde, Vaibhav; Shinde, Kamlesh; Kakalou, Dionysia; Stapleton, Paul D; Gibbons, Simon

    2016-06-01

    Antimicrobial resistance severely limits the therapeutic options for many clinically important bacteria. In Gram-negative bacteria, multidrug resistance is commonly facilitated by plasmids that have the ability to accumulate and transfer refractory genes amongst bacterial populations. The aim of this study was to isolate and identify bioactive compounds from the medicinal plant Mallotus philippensis (Lam.) Mull. Arg. with both direct antibacterial properties and the capacity to inhibit plasmid conjugal transfer. A chloroform-soluble extract of M. philippensis was subjected to bioassay-guided fractionation using chromatographic and spectrometric techniques that led to the isolation of the known compounds rottlerin [5,7-dihydroxy-2,2-dimethyl-6-(2,4,6-trihydroxy-3-methyl-5-acetylbenzyl)-8-cinnamoyl-1,2-chromene] and the red compound (8-cinnamoyl-5,7-dihydroxy-2,2,6-trimethylchromene). Both compounds were characterised and elucidated using one-dimensional and two-dimensional nuclear magnetic resonance (NMR). Rottlerin and the red compound showed potent activities against a panel of clinically relevant Gram-positive bacteria, including meticillin-resistant Staphylococcus aureus (MRSA). No significant direct activities were observed against Gram-negative bacteria. However, both rottlerin and the red compound strongly inhibited conjugal transfer of the plasmids pKM101, TP114, pUB307 and R6K amongst Escherichia coli at a subinhibitory concentration of 100mg/L. Interestingly, despite the planar nature of the compounds, binding to plasmid DNA could not be demonstrated by a DNA electrophoretic mobility shift assay. These results show that rottlerin and the red compound are potential candidates for antibacterial drug lead development. Further studies are needed to elucidate the mode of inhibition of the conjugal transfer of plasmids.

  14. Helium-Recycling Plant

    NASA Technical Reports Server (NTRS)

    Cook, Joseph

    1996-01-01

    Proposed system recovers and stores helium gas for reuse. Maintains helium at 99.99-percent purity, preventing water vapor from atmosphere or lubricating oil from pumps from contaminating gas. System takes in gas at nearly constant low back pressure near atmospheric pressure; introduces little or no back pressure into source of helium. Concept also extended to recycling of other gases.

  15. Ruthenium supported on magnetic nanoparticles: An efficient and recoverable catalyst for hydrogenation of alkynes and transfer hydrogenation of carbonyl compounds

    EPA Science Inventory

    Ruthenium supported on surface modified magnetic nanoparticles (NiFe2O4) has been successfully synthesized and applied for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The ...

  16. Adsorption of perfluorinated compounds on aminated rice husk prepared by atom transfer radical polymerization.

    PubMed

    Deng, Shubo; Niu, Li; Bei, Yue; Wang, Bin; Huang, Jun; Yu, Gang

    2013-04-01

    Adsorption is considered as an effective method to remove perfluorinated compounds (PFCs) from aqueous solution. In this study, an aminated rice husk (RH) adsorbent was successfully prepared through surface-initiated atom transfer radical polymerization (ATRP) and subsequent amination reaction, and it was used to remove perfluorooctanoate (PFOA), perfluorobutanoic acid (PFBA) and perfluorooctane sulfonate (PFOS) from aqueous solution. Fourier transform infrared (FTIR) and scanning electron microscopy (SEM) analysis verified the presence of grafted polymer brushes and amine groups on the RH surface. The zero point of zeta potential of aminated RH was 8.5, which facilitated the sorption of anionic PFCs on the positively charged adsorbent at pH below 8.5. The sorption equilibria of PFOA, PFBA and PFOS were achieved within 5 h, 3 h and 9 h, respectively, faster than the reported porous adsorbents. Sorption isotherms showed that the adsorption capacities of PFOA, PFBA and PFOS on the aminated RH at pH 5.0 were 2.49, 1.70 and 2.65 mmol g(-1), respectively. Sorption behavior and X-ray photoelectron spectroscopy (XPS) analysis confirmed that the electrostatic and hydrophobic interactions were involved in the sorption process, and the micelles and hemi-micelles of PFOA and PFOS may form on the adsorbent surface.

  17. A theoretical study of conformational aspects and energy transfer between terthiophene and quinquethiophene in perhydrotriphenylene inclusion compounds.

    PubMed

    Vásquez, Sergio O

    2008-09-21

    A theoretical study of models with supramolecular architecture of co-inclusion compounds based on the host perhydrotriphenylene and guests terthiophene and quinquethiophene (PHTP:T3,T5) is carried out to elucidate in detail the conformational aspects of the oligomeric guest species in the PHTP matrix host. The factors that direct the geometry, location and separation of terthiophene and quinquethiophene within the channels of the PHTP host have been studied using semi-empirical and ab initio calculations. The movement of the guests inside the channel is subject to constraints preventing free rotations or axial displacements along the nanochannel. Optimal arrangement and the general trend of the relative order between T3 and T5 in the (PHTP:T3,T5) co-inclusion compound is obtained. Furthermore, excited state calculations allow the explanation of the spectral shifts of the included species in terms of the planarization of their geometries. An analysis of the energy transfer processes between the T3-T5 donor-acceptor pair based on the configurational details of the co-inclusion compound conclude that efficient transfer proceeds only through two different and perpendicular windows for the T3 --> T5 transfer. The results emphasize the importance for better understanding of the directional details of the energy transfer mechanisms in this kind of one-dimensional systems.

  18. Charge transfer on the metallic atom-pair bond, and the crystal structures adopted by intermetallic compounds.

    PubMed

    Rajasekharan, T; Seshubai, V

    2012-01-01

    It has been argued in our recent papers that the heat of formation of intermetallic compounds is mostly concentrated in the nearest neighbor unlike atom-pair bonds, and that the positive term in Miedema's equation is associated with charge transfer on the bond to maintain electroneutrality. In this paper, taking examples of some well populated crystal-structure types such as MgCu(2), AsNa(3), AuCu(3), MoSi(2) and SiCr(3) types, the effect of such charge transfer on the crystal structures adopted by intermetallic compounds is examined. It is shown that the correlation between the observed size changes of atoms on alloying and their electronegativity differences is supportive of the idea of charge transfer between atoms. It is argued that the electronegativity and valence differences need to be of the required magnitude and direction to alter, through charge transfer, the elemental radius ratios R(A)/R(B) to the internal radius ratios r(A)/r(B) allowed by the structure types. Since the size change of atoms on alloying is highly correlated to how different R(A)/R(B) is from the ideal radius ratio for a structure type, the lattice parameters of intermetallic compounds can be predicted with excellent accuracy knowing R(A)/R(B). A practical application of the approach developed in our recent papers to superalloy design is presented.

  19. Quenching of a photosensitized dye through single-electron transfer from trivalent phosphorus compounds

    PubMed

    Yasui; Tsujimoto; Itoh; Ohno

    2000-07-28

    Various types of trivalent phosphorus compounds 1 undergo single-electron transfer (SET) to the photoexcited state of rhodamine 6G (Rho+*) in aqueous acetonitrile to quench the fluorescence from Rho+*. The rate constants kp for the overall SET process were determined by the Stern-Volmer method. The rate is nearly constant at a diffusion-controlled limit in the region of E1/2(1) < 1.3 V (vs Ag/Ag+), whereas log kp depends linearly on E1/2(1) in the region of E1/2(1) > 1.3 V, the slope of the correlation line being -alphaF/RT with alpha = 0.2. The potential at which the change in dependence of log kp on E1/2(1) occurs (1.3 V) is in accordance with the value of E1/2(Rho+*) (1.22 V) that has been obtained experimentally. Thus, the SET step is exothermic when E1/2(1) < 1.3 V and endothermic when E1/2(1) > 1.3 V. The alpha-value (0.2) obtained in the endothermic region shows that the SET step from 1 to Rho+* is irreversible in this region. Trivalent phosphorus radical cation 1*+ generated in the SET step undergoes an ionic reaction with water in the solvent rapidly enough to make the SET step irreversible. In contrast, the SET from amines 2 and alkoxybenzenes 3 to Rho+* is reversible when the SET step is endothermic, meaning that the radical cations 2*+ and 3*+ generated in the SET step undergo rapid "back SET" in the ground state to regenerate 2 and 3.

  20. A tight-binding potential for helium in carbon systems

    NASA Astrophysics Data System (ADS)

    Granot, Rebecca; Baer, Roi

    2008-12-01

    The presence of helium in carbon systems, such as diamonds and fullerenes is of interest for planetary sciences, geophysics, astrophysics, and evolution biology. Such systems typically involve a large number of atoms and require a fast method for assessing the interaction potential and forces. We developed a tight-binding approach, based on density functional calculations, which includes a many-body potential term. This latter term is essential for consolidating the density functional results of helium in bulky diamond and Helium passing through a benzene ring which is important for helium-fullerene applications. The method is simple to apply and exhibits good transferability properties.

  1. Mass transfer and biodegradation of PAH compounds from coal tar. Quarterly technical report, January--March 1993

    SciTech Connect

    Ramaswami, A.; Ghoshal, S.; Luthy, R.G.

    1994-09-01

    This study examines the role of physico-chemical mass transfer processes on the rate of biotransformation of polycyclic aromatic hydrocarbon (PAH) compounds released from non-aqueous phase liquid (NAPL) coal tar present at residual saturation within a microporous medium. A simplified coupled dissolution-degradation model is developed that describes the concurrent mass transfer and biokinetic processes occurring in the system. Model results indicate that a dimensionless Damkohler number can be utilized to distinguish between systems that are mass transfer limited, and those that are limited by biological phenomena. The Damkohler number is estimated from independent laboratory experiments that measure the rates of aqueous phase dissolution and biodegradation of naphthalene from coal tar. Experimental data for Stroudsburg coal tar imbibed within 236 {mu}m diameter silica particles yield Damkohler numbers smaller than unity, indicating, for the particular system under study, that the overall rate of biotransformation of naphthalene is not limited by the mass transfer of naphthalene from coal tar to the bulk aqueous phase. There is a need for investigation of mass transfer for larger particles and/or other PAH compounds, and study of microbial rate-limiting phenomena including toxicity, inhibition and competitive substrate utilization.

  2. Mass transfer and biodegradation of PAH compounds from coal tar. Quarterly technical report, April--June 1993

    SciTech Connect

    Ramaswami, A.; Ghoshal, S.; Luthy, R.G.

    1994-09-01

    This study, examines the role of physico-chemical mass transfer processes on the rate of biotransformation of polycyclic aromatic hydrocarbon (PAH) compounds released from non-aqueous phase liquid (NAPL) coal tar present at residual saturation within a microporous medium. A simplified coupled dissolution-degradation model is developed that describes the concurrent mass transfer and biokinetic processes occurring in the system. Model results indicate that a dimensionless Damkohler number can be utilized to distinguish between systems that are mass transfer limited, and those that are limited by biological phenomena. The Damkohler number is estimated from independent laboratory experiments that measure the rates of aqueous phase dissolution and biodegradation of naphthalene from coal tar. Experimental data for Stroudsburg coal tar imbibed within 236 {mu}m diameter silica particles yield Damkohler numbers smaller than unity, indicating, for the particular system under study, that the overall rate of biotransformation of naphthalene is not limited by the mass transfer of naphthalene from coal tar to the bulk aqueous phase. There is a need for investigation of mass transfer for larger particles and/or other PAH compounds, and study, of microbial rate-limiting phenomena including toxicity, inhibition and competitive substrate utilization.

  3. Theoretical and experimental study on the intramolecular charge transfer excited state of the new highly fluorescent terpyridine compound

    NASA Astrophysics Data System (ADS)

    Song, Peng; Sun, Shi-Guo; Liu, Jian-Yong; Xu, Yong-Qian; Han, Ke-Li; Peng, Xiao-Jun

    2009-10-01

    Experimental and theoretical methods have been used to investigate the relaxation dynamics and photophysical properties of the donor-acceptor compound 4'-(4-N,N-diphenylaminophenyl)-2,2':6',2″-terpyridine (DPAPT), a compound which is found to exhibit efficient intramolecular charge transfer emission in polar solvents with relatively large Stokes shifts and strong solvatochromism. The difference between the ground and excited state dipole moments (Δ μ) is estimated to be 13.7 D on the basis of Lippert-Mataga models. To gain insight into the relaxation dynamics of DPAPT in the excited state, the potential energy curves for conformational relaxation are calculated. From the frontier molecular orbital (MO) pictures at the geometry of the twisted ICT excited state, the intramolecular charger transfer mainly takes place from HOMO (triphenylamine) to LUMO (terpyridine) in this donor-acceptor system.

  4. Helium II level measurement techniques

    NASA Astrophysics Data System (ADS)

    Celik, D.; Hilton, D. K.; Zhang, T.; Van Sciver, S. W.

    2001-05-01

    In this paper, a survey of cryogenic liquid level measurement techniques applicable to superfluid helium (He II) is given. The survey includes both continuous and discrete measurement techniques. A number of different probes and controlling circuits for this purpose have been described in the literature. They fall into one of the following categories: capacitive liquid level gauges, superconducting wire liquid level gauges, thermodynamic (heat transfer-based) liquid level gauges, resistive gauges, ultrasound and transmission line-based level detectors. The present paper reviews these techniques and their suitability for He II service. In addition to these methods, techniques for measuring the total liquid volume and mass gauging are also discussed.

  5. Blow-down analysis of helium from a cryogenic dewar

    NASA Technical Reports Server (NTRS)

    Khan, H. J.; Zhang, Q. Q.; Rhee, M.; Figueroa, O.

    1992-01-01

    NASA is currently developing Space Shuttle-based refilling of helium using superfluid helium on-orbit transfer (SHOOT). All the critical components of SHOOT need to be developed through ground-based tests. The helium dewar is one of these components. The Dewar consists of a vacuum vessel enclosing a superinsulated tank. The space between the vacuum vessel and the liquid tank is considered a common vacuum space. In the event that the vacuum is lost, the heat transfers to the dewar and the pressure inside the dewar increases rapidly, resulting in rupture of the dewar due to excessive pressure. Therefore, an emergency vent line is required for release of helium to prevent the dewar from rupturing. The study describes a numerical model for blow-down analysis in an emergency. This qualifies the design of the emergency vent line to be adequate for the assumed heat loads to the helium dewar.

  6. Blow-down analysis of helium from a cryogenic dewar

    NASA Astrophysics Data System (ADS)

    Khan, H. J.; Zhang, Q. Q.; Rhee, M.; Figueroa, O.

    NASA is currently developing Space Shuttle-based refilling of helium using superfluid helium on-orbit transfer (SHOOT). All the critical components of SHOOT need to be developed through ground-based tests. The helium dewar is one of these components. The Dewar consists of a vacuum vessel enclosing a superinsulated tank. The space between the vacuum vessel and the liquid tank is considered a common vacuum space. In the event that the vacuum is lost, the heat transfers to the dewar and the pressure inside the dewar increases rapidly, resulting in rupture of the dewar due to excessive pressure. Therefore, an emergency vent line is required for release of helium to prevent the dewar from rupturing. The study describes a numerical model for blow-down analysis in an emergency. This qualifies the design of the emergency vent line to be adequate for the assumed heat loads to the helium dewar.

  7. Volatile trace compounds released from municipal solid waste at the transfer stage: Evaluation of environmental impacts and odour pollution.

    PubMed

    Zhao, Yan; Lu, Wenjing; Wang, Hongtao

    2015-12-30

    Odour pollution caused by municipal solid waste is a public concern. This study quantitatively evaluated the concentration, environmental impacts, and olfaction of volatile trace compounds released from a waste transfer station. Seventy-six compounds were detected, and ethanol presented the highest releasing rate and ratio of 14.76 kg/d and 12.30 g/t of waste, respectively. Life cycle assessment showed that trichlorofluoromethane and dichlorodifluoromethane accounted for more than 99% of impact potentials to global warming and approximately 70% to human toxicity (non-carcinogenic). The major contributor for both photochemical ozone formation and ecotoxicity was ethanol. A detection threshold method was also used to evaluate odour pollution. Five compounds including methane thiol, hydrogen sulphide, ethanol, dimethyl disulphide, and dimethyl sulphide, with dilution multiples above one, were considered the critical compounds. Methane thiol showed the highest contribution to odour pollution of more than 90%, as indicated by its low threshold. Comparison of the contributions of the compounds to different environmental aspects indicated that typical pollutants varied based on specific evaluation targets and therefore should be comprehensively considered. This study provides important information and scientific methodology to elucidate the impacts of odourant compounds to the environment and odour pollution.

  8. Enhancement of Compound Selectivity Using a Radio Frequency Ion-Funnel Proton Transfer Reaction Mass Spectrometer: Improved Specificity for Explosive Compounds.

    PubMed

    González-Méndez, Ramón; Watts, Peter; Olivenza-León, David; Reich, D Fraser; Mullock, Stephen J; Corlett, Clive A; Cairns, Stuart; Hickey, Peter; Brookes, Matthew; Mayhew, Chris A

    2016-11-01

    A key issue with any analytical system based on mass spectrometry with no initial separation of compounds is to have a high level of confidence in chemical assignment. This is particularly true for areas of security, such as airports, and recent terrorist attacks have highlighted the need for reliable analytical instrumentation. Proton transfer reaction mass spectrometry is a useful technology for these purposes because the chances of false positives are small owing to the use of a mass spectrometric analysis. However, the detection of an ion at a given m/z for an explosive does not guarantee that that explosive is present. There is still some ambiguity associated with any chemical assignment owing to the presence of isobaric compounds and, depending on mass resolution, ions with the same nominal m/z. In this article we describe how for the first time the use of a radio frequency ion-funnel (RFIF) in the reaction region (drift tube) of a proton transfer reaction-time-of-flight-mass spectrometer (PTR-ToF-MS) can be used to enhance specificity by manipulating the ion-molecule chemistry through collisional induced processes. Results for trinitrotoluene, dinitrotoluenes, and nitrotoluenes are presented to demonstrate the advantages of this new RFIF-PTR-ToF-MS for analytical chemical purposes.

  9. Enhancement of Electron Transfer in Various Photo-Assisted Oxidation Processes for Nitro-Phenolic Compound Conversion

    NASA Astrophysics Data System (ADS)

    Khue, Do Ngoc; Lam, Tran Dai; Minh, Do Binh; Loi, Vu Duc; Nam, Nguyen Hoai; Bach, Vu Quang; Van Anh, Nguyen; Van Hoang, Nguyen; Hu'ng, Dao Duy

    2016-08-01

    The present study focuses on photo-assisted advanced oxidation processes (AOPs) with strongly enhanced electron transfer for degradation of nitro-phenolic compounds in aqueous medium. The effectiveness of these processes was estimated based on the pseudo-first order rate constant k determined from high-performance liquid chromatography. The degradation of four different nitro-phenolic compounds was systematically studied using selected AOPs; these four compounds were nitrophenol, dinitrophenol, trinitrophenol and trinitroresorcin. It was observed that the combination of ultraviolet light with hydrogen peroxide H2O2 enhanced and maintained hydroxyl radicals, and therefore increased the conversion yield of organic pollutants. These AOPs provided efficient and green removal of stable organic toxins found in a wide range of industrial wastewater.

  10. Crosslinguistic Transfer in the Acquisition of Compound Words in Persian-English Bilinguals

    ERIC Educational Resources Information Center

    Foroodi-Nejad, Farzaneh; Paradis, Johanne

    2009-01-01

    Crosslinguistic transfer in bilingual language acquisition has been widely reported in various linguistic domains (e.g., Dopke, 1998; Nicoladis, 1999; Paradis, 2001). In this study we examined structural overlap (Dopke, 2000; Muller and Hulk, 2001) and dominance (Yip and Matthews, 2000) as explanatory factors for crosslinguistic transfer in…

  11. Nitrate Remediation of Soil and Groundwater Using Phytoremediation: Transfer of Nitrogen Containing Compounds from the Subsurface to Surface Vegetation

    NASA Astrophysics Data System (ADS)

    Nelson, Sheldon

    2013-04-01

    Nitrate Remediation of Soil and Groundwater Using Phytoremediation: Transfer of Nitrogen Containing Compounds from the Subsurface to Surface Vegetation Sheldon Nelson Chevron Energy Technology Company 6001 Bollinger Canyon Road San Ramon, California 94583 snne@chevron.com The basic concept of using a plant-based remedial approach (phytoremediation) for nitrogen containing compounds is the incorporation and transformation of the inorganic nitrogen from the soil and/or groundwater (nitrate, ammonium) into plant biomass, thereby removing the constituent from the subsurface. There is a general preference in many plants for the ammonium nitrogen form during the early growth stage, with the uptake and accumulation of nitrate often increasing as the plant matures. The synthesis process refers to the variety of biochemical mechanisms that use ammonium or nitrate compounds to primarily form plant proteins, and to a lesser extent other nitrogen containing organic compounds. The shallow soil at the former warehouse facility test site is impacted primarily by elevated concentrations of nitrate, with a minimal presence of ammonium. Dissolved nitrate (NO3-) is the primary dissolved nitrogen compound in on-site groundwater, historically reaching concentrations of 1000 mg/L. The initial phases of the project consisted of the installation of approximately 1750 trees, planted in 10-foot centers in the areas impacted by nitrate and ammonia in the shallow soil and groundwater. As of the most recent groundwater analytical data, dissolved nitrate reductions of 40% to 96% have been observed in monitor wells located both within, and immediately downgradient of the planted area. In summary, an evaluation of time series groundwater analytical data from the initial planted groves suggests that the trees are an effective means of transfering nitrogen compounds from the subsurface to overlying vegetation. The mechanism of concentration reduction may be the uptake of residual nitrate from the

  12. Compound

    NASA Astrophysics Data System (ADS)

    Suzumura, Akitoshi; Watanabe, Masaki; Nagasako, Naoyuki; Asahi, Ryoji

    2014-06-01

    Recently, Cu-based chalcogenides such as Cu3SbSe4, Cu2Se, and Cu2SnSe3 have attracted much attention because of their high thermoelectric performance and their common feature of very low thermal conductivity. However, for practical use, materials without toxic elements such as selenium are preferable. In this paper, we report Se-free Cu3SbS4 thermoelectric material and improvement of its figure of merit ( ZT) by chemical substitutions. Substitutions of 3 at.% Ag for Cu and 2 at.% Ge for Sb lead to significant reductions in the thermal conductivity by 37% and 22%, respectively. These substitutions do not sacrifice the power factor, thus resulting in enhancement of the ZT value. The sensitivity of the thermal conductivity to chemical substitutions in these compounds is discussed in terms of the calculated phonon dispersion and previously proposed models for Cu-based chalcogenides. To improve the power factor, we optimize the hole carrier concentration by substitution of Ge for Sb, achieving a power factor of 16 μW/cm K2 at 573 K, which is better than the best reported for Se-based Cu3SbSe4 compounds.

  13. Geometry, kinematics and dynamic characteristics of a compound transfer zone: the Dongying anticline, Bohai Bay Basin, eastern China

    NASA Astrophysics Data System (ADS)

    Tian, Fei; Yang, Jianting; Cheng, Ming; Lei, Yuhong; Zhang, Likuan; Wang, Xiaoxue; Liu, Xin

    2016-01-01

    The Dongying anticline is an E-W striking complex fault-bounded block unit which located in the central Dongying Depression, Bohai Bay Basin. The anticline covers an area of approximately 12 km2. The overlying succession, which is mainly composed of Tertiary strata, is cut by normal faults with opposing dips. In terms of the general structure, the study area is located in a compound transfer zone with major bounding faults to the west (Ying 1 fault) and east (Ying -8 and -31 faults). Using three-dimensional seismic data, wireline log and checkshot data, the geometries and kinematics of faults in the transfer zone were studied, and fault displacements were calculated. The results show that when activity on the Ying 1 fault diminished, displacement was transferred to the Ying -8, Ying -31 and secondary faults so that total displacement increased. Dynamic analysis shows that the stress fields in the transfer zone were complex: the northern portion was a left-lateral extensional shear zone, and the southern portion was a right-lateral extensional shear zone. A model of potential hydrocarbon traps in the Dongying transfer zone was constructed based on the above data combined with the observed reservoir rock distribution and the sealing characteristics of the faults. The hydrocarbons were mainly expulsed from Minfeng Sag during deposition periods of Neogene Guantao and Minghuazhen Formations, and migrated along major faults from source kitchens to reservoirs. The secondary faults acted as barriers, resulting in the formation of fault-bound compartments. The high points of the anticline and well-sealed traps near secondary faults are potential targets. This paper provides a reservoir formation model of the low-order transfer zone and can be applied to the hydrocarbon exploration in transfer zones, especially the complex fault block oilfields in eastern China.

  14. Surface activity of branched alkylamino-compounds and their influence on phase transfer behavior in water solutions of dyes

    NASA Astrophysics Data System (ADS)

    Li, Cuiqin; Guo, Suyue; Lin, Zhiyu; Wang, Jun; Ge, Tengjie

    2016-02-01

    Two branched alkylamino-compounds (AAC, R12-0.5G, and R12-1.0G), were synthesized from dodecylamine, methyl acrylate and ethylenediamine. The surface tension measurements on branched alkylamino- compounds demonstrated that surface activity of R12-1.0G is superior to that of R12-0.5G at 25°C. It has been found that the self-assembly of R12-1.0G and lauric acid formed by electrostatic interaction and the self-assembly of the molecule might transfer water-soluble dyes from water to toluene. These AAC might be applied for treating dyes in wastewater. The mass ratio of lauric to toluene, the concentration of R12-1.0G, and hydrophilic groups of dyes affected the transfer rate of the water-soluble dyes. The transfer rates of the watersoluble dyes by R12-1.0G were higher than that of 1.0G polyacrylamide-acrylamide.

  15. The Descending Helium Balloon

    ERIC Educational Resources Information Center

    Helseth, Lars Egil

    2014-01-01

    I describe a simple and fascinating experiment wherein helium leaks out of a rubber balloon, thereby causing it to descend. An estimate of the volumetric leakage rate is made by measuring its rate of descent.

  16. Initial yields of DNA double-strand breaks and DNA Fragmentation patterns depend on linear energy transfer in tobacco BY-2 protoplasts irradiated with helium, carbon and neon ions.

    PubMed

    Yokota, Yuichiro; Yamada, Shinya; Hase, Yoshihiro; Shikazono, Naoya; Narumi, Issay; Tanaka, Atsushi; Inoue, Masayoshi

    2007-01-01

    The ability of ion beams to kill or mutate plant cells is known to depend on the linear energy transfer (LET) of the ions, although the mechanism of damage is poorly understood. In this study, DNA double-strand breaks (DSBs) were quantified by a DNA fragment-size analysis in tobacco protoplasts irradiated with high-LET ions. Tobacco BY-2 protoplasts, as a model of single plant cells, were irradiated with helium, carbon and neon ions having different LETs and with gamma rays. After irradiation, DNA fragments were separated into sizes between 1600 and 6.6 kbp by pulsed-field gel electrophoresis. Information on DNA fragmentation was obtained by staining the gels with SYBR Green I. Initial DSB yields were found to depend on LET, and the highest relative biological effectiveness (about 1.6) was obtained at 124 and 241 keV/microm carbon ions. High-LET carbon and neon ions induced short DNA fragments more efficiently than gamma rays. These results partially explain the large biological effects caused by high-LET ions in plants.

  17. Helium induced fine structure in the electronic spectra of anthracene derivatives doped into superfluid helium nanodroplets

    SciTech Connect

    Pentlehner, D.; Slenczka, A.

    2015-01-07

    Electronic spectra of organic molecules doped into superfluid helium nanodroplets show characteristic features induced by the helium environment. Besides a solvent induced shift of the electronic transition frequency, in many cases, a spectral fine structure can be resolved for electronic and vibronic transitions which goes beyond the expected feature of a zero phonon line accompanied by a phonon wing as known from matrix isolation spectroscopy. The spectral shape of the zero phonon line and the helium induced phonon wing depends strongly on the dopant species. Phonon wings, for example, are reported ranging from single or multiple sharp transitions to broad (Δν > 100 cm{sup −1}) diffuse signals. Despite the large number of example spectra in the literature, a quantitative understanding of the helium induced fine structure of the zero phonon line and the phonon wing is missing. Our approach is a systematic investigation of related molecular compounds, which may help to shed light on this key feature of microsolvation in superfluid helium droplets. This paper is part of a comparative study of the helium induced fine structure observed in electronic spectra of anthracene derivatives with particular emphasis on a spectrally sharp multiplet splitting at the electronic origin. In addition to previously discussed species, 9-cyanoanthracene and 9-chloroanthracene will be presented in this study for the first time.

  18. Anomalous charge and negative-charge-transfer insulating state in cuprate chain compound KCuO2

    NASA Astrophysics Data System (ADS)

    Choudhury, D.; Rivero, P.; Meyers, D.; Liu, X.; Cao, Y.; Middey, S.; Whitaker, M. J.; Barraza-Lopez, S.; Freeland, J. W.; Greenblatt, M.; Chakhalian, J.

    2015-11-01

    Using a combination of x-ray absorption spectroscopy (XAS) experiments and first-principles calculations, we demonstrate that insulating KCuO2 contains Cu in an unusually high formal 3+ valence state, and the ligand-to-metal (O-to-Cu) charge-transfer energy is intriguingly negative (Δ ˜-1.5 eV) and has a dominant (˜60 % ) ligand-hole character in the ground state akin to the high Tc cuprate Zhang-Rice state. Unlike most other formal Cu3 + compounds, the Cu 2 p XAS spectra of KCuO2 exhibit pronounced 3 d8 (Cu3 +) multiplet structures, which account for ˜40 % of its ground state wave function. Ab initio calculations elucidate the origin of the band gap in KCuO2 as arising primarily from strong intracluster Cu 3 d -O 2 p hybridizations (tpd); the value of the band gap decreases with a reduced value of tpd. Further, unlike conventional negative-charge-transfer insulators, the band gap in KCuO2 persists even for vanishing values of Coulomb repulsion U , underscoring the importance of single-particle band-structure effects connected to the one-dimensional nature of the compound.

  19. Technology transfer and application of SERS continuous monitor for trace organic compounds

    SciTech Connect

    Swindle, D.W. Jr.; Vo-Dinh, T.; Yalcintas, M.G.

    1992-04-01

    An in situ-enhanced Raman Scattering (SERS) continuous monitoring system was developed for exciting and collecting SERS signals generated on silver-coated microparticles deposited on a continuously rotating filter-paper support. SERS measurements were successfully conducted for several organic compounds. An in situ SERS fiber-optic system was also developed for exciting and collecting SERS signals generated from a sensing tip having silver-coated microparticles deposited on a glass-plate support. These devices will be very useful in remote identification of unknown chemicals from hazardous waste sites. This patented technology has been licensed from Oak Ridge National Laboratory to an analytical instrumentation firm which is in the process of completing development and marketing these detectors. Advantages to using this technology range from increased safety and sensitivity for detecting hazardous compounds to better statistics and reliable results. During this presentation, efforts of the Environmental Restoration Program to evaluate and support development of this technology will be described.

  20. KIC 8262223: A Post-mass Transfer Eclipsing Binary Consisting of a Delta Scuti Pulsator and a Helium White Dwarf Precursor

    NASA Astrophysics Data System (ADS)

    Guo, Zhao; Gies, Douglas R.; Matson, Rachel A.; García Hernández, Antonio; Han, Zhanwen; Chen, Xuefei

    2017-03-01

    KIC 8262223 is an eclipsing binary with a short orbital period (P = 1.61 day). The Kepler light curves are of Algol-type and display deep and partial eclipses, ellipsoidal variations, and pulsations of δ Scuti type. We analyzed the Kepler photometric data, complemented by phase-resolved spectra from the R-C Spectrograph on the 4 meter Mayall telescope at the Kitt Peak National Observatory and determined the fundamental parameters of this system. The low-mass and oversized secondary ({M}2=0.20{M}ȯ , {R}2=1.31{R}ȯ ) is the remnant of the donor star that transferred most of its mass to the gainer, and now the primary star. The current primary star is thus not a normal δ Scuti star but the result of mass accretion from a lower mass progenitor. We discuss the possible evolutionary history and demonstrate with the MESA evolution code that this system and several other systems discussed in prior literature can be understood as the result of non-conservative binary evolution for the formation of EL CVn-type binaries. The pulsations of the primary star can be explained as radial and non-radial pressure modes. The equilibrium models from single star evolutionary tracks can match the observed mass and radius ({M}1=1.94{M}ȯ , {R}1=1.67{R}ȯ ) but the predicted unstable modes associated with these models differ somewhat from those observed. We discuss the need for better theoretical understanding of such post-mass transfer δ Scuti pulsators.

  1. Compound heat transfer enhancement for shell side of double-pipe heat exchanger by helical fins and vortex generators

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Guo, Hongmei; Wu, Jianhua; Du, Wenjuan

    2012-07-01

    To improve heat transfer performance of shell side of double-pipe heat exchanger with helical fins on its inner tube, some vortex generators (VGs) were installed along the centerline of the helical channel. Heat transfer performance and pressure drop characteristic of the enhanced heat exchangers were investigated using air as the working fluid and steam as the heating medium. The helical fins were in the annulus and span its full width at different helical pitch. Wing-type VGs (delta or rectangular wing) and winglet-type VGs (delta or rectangular winglet pair) were used to combine with helical fins. The friction factor and Nusselt number can be well correlated by power-law correlations in the Reynolds number range studied. In order to evaluate the thermal performance of the shell side enhanced over the shell side without enhancement, comparisons were made under three constraints: (1) identical mass flow rate, IMF; (2) identical pressure drop, IPD and (3) identical pumping power, IPP. The results show the shell side enhanced by the compound heat transfer enhancement has better performance than the shell side only enhanced by helical fins at shorter helical pitch under the three constraints.

  2. Characterization of gaseous helium jet dispersion to atmosphere

    NASA Astrophysics Data System (ADS)

    Khan, H. J.; Figueroa, O.; Rhee, M.

    A major ground-based experiment to be performed for the Superfluid Helium On Orbit Transfer (SHOOT) program is the accidental loss of the vacuum guard of the super-insulated dewar. The design of the dewar vent-path requires adequate mass removal after a preset pressure is reached due to external heat transfer. The existing helium creates a turbulent buoyant jet, expanding in air with entrainment of the jet interface to the surrounding. Transient analysis is performed for axial and radial jet temperature prediction using the self-similarity assumption applied to mass, momentum, and the energy-balance equations of helium. The predicted jet temperature profiles with vertical and radial expansion up to 1.6 and 1.0 m, respectively, demonstrate the low temperature core established by gaseous helium. For all time steps, the axial and radial temperature predictions are observed to be within 8 and 20 percent, respectively.

  3. Feasibility of lunar Helium-3 mining

    NASA Astrophysics Data System (ADS)

    Kleinschneider, Andreas; Van Overstraeten, Dmitry; Van der Reijnst, Roy; Van Hoorn, Niels; Lamers, Marvin; Hubert, Laurent; Dijk, Bert; Blangé, Joey; Hogeveen, Joel; De Boer, Lennaert; Noomen, Ron

    With fossil fuels running out and global energy demand increasing, the need for alternative energy sources is apparent. Nuclear fusion using Helium-3 may be a solution. Helium-3 is a rare isotope on Earth, but it is abundant on the Moon. Throughout the space community lunar Helium-3 is often cited as a major reason to return to the Moon. Despite the potential of lunar Helium-3 mining, little research has been conducted on a full end-to-end mission. This abstract presents the results of a feasibility study conducted by students from Delft University of Technology. The goal of the study was to assess whether a continuous end-to-end mission to mine Helium-3 on the Moon and return it to Earth is a viable option for the future energy market. The set requirements for the representative end-to-end mission were to provide 10% of the global energy demand in the year 2040. The mission elements have been selected with multiple trade-offs among both conservative and novel concepts. A mission architecture with multiple decoupled elements for each transportation segment (LEO, transfer, lunar surface) was found to be the best option. It was found that the most critical element is the lunar mining operation itself. To supply 10% of the global energy demand in 2040, 200 tons of Helium-3 would be required per year. The resulting regolith mining rate would be 630 tons per second, based on an optimistic concentration of 20 ppb Helium-3 in lunar regolith. Between 1,700 to 2,000 Helium-3 mining vehicles would be required, if using University of Wisconsin’s Mark III miner. The required heating power, if mining both day and night, would add up to 39 GW. The resulting power system mass for the lunar operations would be in the order of 60,000 to 200,000 tons. A fleet of three lunar ascent/descent vehicles and 22 continuous-thrust vehicles for orbit transfer would be required. The costs of the mission elements have been spread out over expected lifetimes. The resulting profits from Helium

  4. Volatile organic compound emissions from dairy cows and their waste as measured by proton-transfer-reaction mass spectrometry.

    PubMed

    Shaw, Stephanie L; Mitloehner, Frank M; Jackson, Wendi; Depeters, Edward J; Fadel, James G; Robinson, Peter H; Holzinger, Rupert; Goldstein, Allen H

    2007-02-15

    California dairies house approximately 1.8 million lactating and 1.5 million dry cows and heifers. State air regulatory agencies view these dairies as a major air pollutant source, but emissions data are sparse, particularly for volatile organic compounds (VOCs). The objective of this work was to determine VOC emissions from lactating and dry dairy cows and their waste using an environmental chamber. Carbon dioxide and methane were measured to provide context for the VOCs. VOCs were measured by proton-transfer-reaction mass spectrometry (PTR-MS). The compounds with highest fluxes when cows plus waste were present were methanol, acetone + propanal, dimethylsulfide, and m/z 109 (likely 4-methyl-phenol). The compounds with highest fluxes from fresh waste (urine and feces) were methanol, m/z 109, and m/z 60 (likely trimethylamine). Ethanol fluxes are reported qualitatively, and several VOCs that were likely emitted (formaldehyde, methylamine, dimethylamine) were not detectable by PTR-MS. The sum of reactive VOC fluxes measured when cows were present was a factor of 6-10 less than estimates historically used for regulatory purposes. In addition, ozone formation potentials of the dominant VOCs were -10% those of typical combustion or biogenic VOCs. Thus dairy cattle have a comparatively small impact on ozone formation per VOC mass emitted.

  5. Acquisition system testing with superfluid helium. [cryopumping for space

    NASA Technical Reports Server (NTRS)

    Anderson, John E.; Fester, Dale A.; Dipirro, Michael J.

    1988-01-01

    Minus one-g outflow tests were conducted with superfluid helium in conjunction with a thermomechanical pump setup in order to study the use of capillary acquisition systems for NASA's Superfluid Helium On-Orbit Transfer (SHOOT) flight experiment. Results show that both fine mesh screen and porous sponge systems are capable of supplying superfluid helium to the thermomechanical pump inlet against a one-g head up to 4 cm, fulfilling the SHOOT requirements. Sponge results were found to be reproducible, while the screen results were not.

  6. A Measurement of the neutron electric form factor at very large momentum transfer using polaried electrions scattering from a polarized helium-3 target

    SciTech Connect

    Kelleher, Aidan

    2010-02-01

    Knowledge of the electric and magnetic elastic form factors of the nucleon is essential for an understanding of nucleon structure. Of the form factors, the electric form factor of the neutron has been measured over the smallest range in Q2 and with the lowest precision. Jefferson Lab experiment 02-013 used a novel new polarized 3 He target to nearly double the range of momentum transfer in which the neutron form factor has been studied and to measure it with much higher precision. Polarized electrons were scattered off this target, and both the scattered electron and neutron were detected. Gn E was measured to be 0.0242 ± 0.0020(stat) ± 0.0061(sys) and 0.0247 ± 0.0029(stat) ± 0.0031(sys) at Q2 = 1.7 and 2.5 GeV2 , respectively.

  7. Jahn-Teller effects in transition-metal compounds with small charge-transfer energy

    NASA Astrophysics Data System (ADS)

    Mizokawa, Takashi

    2013-04-01

    We have studied Jahn-Teller effects in Cs2Au2Br6, ACu3Co4O12(A=Ca or Y), and IrTe2 in which the ligand p-to-transition-metal d charge-transfer energy is small or negative. The Au+/Au3+ charge disproportionation of Cs2Au2Br6 manifests in Au 4f photoemission spectra. In Cs2Au2Br6 with negative Δ and intermediate U, the charge disproportionation can be described using effective d orbitals constructed from the Au 5d and Br 4p orbitals and is stabilized by the Jahn-Teller distortion of the Au3+ site with low-spin d8 configuration. In ACu3Co4O12, Δs for Cu3+ and Co4+ are negative and Us are very large. The Zhang-Rice picture is valid to describe the electronic state, and the valence change from Cu2+/Co4+ to Cu3+/Co3+ can be viewed as the O 2p hole transfer from Co to Cu or d9 + d6L → d9L + d6. In IrTe2, both Δ and U are small and the Ir 5d and Te 5p electrons are itinerant to form the multi-band Fermi surfaces. The ideas of band Jahn-Teller transition and Peierls transition are useful to describe the structural instabilities.

  8. TOL plasmid transfer during bacterial conjugation in vitro and rhizoremediation of oil compounds in vivo.

    PubMed

    Jussila, Minna M; Zhao, Ji; Suominen, Leena; Lindström, Kristina

    2007-03-01

    Molecular profiling methods for horizontal transfer of aromatics-degrading plasmids were developed and applied during rhizoremediation in vivo and conjugations in vitro. pWW0 was conjugated from Pseudomonas to Rhizobium. The xylE gene was detected both in Rhizobium galegae bv. officinalis and bv. orientalis, but it was neither stably maintained in orientalis nor functional in officinalis. TOL plasmids were a major group of catabolic plasmids among the bacterial strains isolated from the oil-contaminated rhizosphere of Galega orientalis. A new finding was that some Pseudomonas migulae and Pseudomonas oryzihabitans strains harbored a TOL plasmid with both pWW0- and pDK1-type xylE gene. P. oryzihabitans 29 had received the archetypal TOL plasmid pWW0 from Pseudomonas putida PaW85. As an application for environmental biotechnology, the biodegradation potential of oil-polluted soil and the success of bioremediation could be estimated by monitoring changes not only in the type and amount but also in transfer of degradation plasmids.

  9. Interactions of satellite-speed helium atoms with satellite surfaces. 2: Energy distributions of reflected helium atoms

    NASA Technical Reports Server (NTRS)

    Liu, S. M.; Knuth, E. L.

    1976-01-01

    Energy transfer in collisions of satellite-speed (7,000 m/sec) helium atoms with a cleaned 6061-T6 satellite-type aluminum surface was investigated using the molecular-beam technique. The amount of energy transferred was determined from the measured energy of the molecular-beam and the measured spatial and energy distributions of the reflected atoms. Spatial distributions of helium atoms scattered from a 6061-T6 aluminum surface were measured. The scattering pattern exhibits a prominent backscattering, probably due to the gross surface roughness and/or the relative lattice softness of the aluminum surface. Energy distributions of reflected helium atoms from the same surface were measured for six different incidence angles. For each incidence angle, distributions were measured at approximately sixty scattering positions. At a given scattering position, the energy spectra of the reflected helium atoms and the background gas were obtained using the retarding-field energy analyzer.

  10. Analysis of trace halocarbon contaminants in ultra high purity helium

    NASA Technical Reports Server (NTRS)

    Fewell, Larry L.

    1994-01-01

    This study describes the analysis of ultra high purity helium. Purification studies were conducted and containment removal was effected by the utilization of solid adsorbent purge-trap systems at cryogenic temperatures. Volatile organic compounds in ultra high purity helium were adsorbed on a solid adsorbent-cryogenic trap, and thermally desorbed trace halocarbon and other contaminants were analyzed by combined gas chromatography-mass spectrometry.

  11. Is solid helium a supersolid?

    SciTech Connect

    Hallock, Robert

    2015-05-15

    Recent experiments suggest that helium-4 atoms can flow through an experimental cell filled with solid helium. But that incompletely understood flow is quite different from the reported superfluid-like motion that so excited physicists a decade ago.

  12. Helium-refrigeration system

    SciTech Connect

    Specht, J.R.; Millar, B.; Sutherland, A.

    1995-08-01

    The design, procurement, and preliminary construction was completed for adding two more wet expansion engines to two helium refrigerators. These will be added in mid-year FY 1995. In addition a variable speed drive will be added to an existing helium compressor. This is part of an energy conservation upgrade project to reduce operating costs from the use of electricity and liquid nitrogen. This project involves the replacement of Joule-Thompson valves in the refrigerators with expansion engines resulting in system efficiency improvements of about 30% and improved system reliability.

  13. Thermodynamic Studies and Hydride Transfer Reactions from a Rhodium Complex to BX3 Compounds

    SciTech Connect

    Mock, Michael T; Potter, Robert G; Camaioni, Donald M; Li, Jun; Dougherty, William G; Kassel, W S; Twamley, Brendan; DuBois, Daniel L

    2009-10-14

    This study examines the use of transition-metal hydride complexes that can be generated by the heterolytic cleavage of H2 gas to form B–H bonds. Specifically, these studies are focused on providing a reliable and quantitative method for determining when hydride transfer from transition-metal hydrides to three-coordinate BX3 compounds will be favorable. This involves both experimental and theoretical determinations of hydride transfer abilities. Thermodynamic hydride donor abilities (ΔG°H-) were determined for HRh(dmpe)2 and HRh(depe)2, where dmpe = 1,2-bis(dimethylphosphinoethane) and depe = 1,2-bis(diethylphosphinoethane), on a previously established scale in acetonitrile. This hydride donor ability was used to determine the hydride donor ability of [HBEt3]⁻ on this scale. Isodesmic reactions between [HBEt3]⁻ and various BX3 complexes to form BEt3 and [HBX3]⁻ were examined computationally to determine the relative hydride affinities of various BX3 compounds. The use of these scales of hydride donor abilities and hydride affinities for transition-metal hydrides and BX3 compounds is illustrated with a few selected reactions relevant to the regeneration of ammonia borane. Our findings indicate that it is possible to form B-H bonds from B-X bonds, and the extent to which BX3 compounds are reduced by transition-metal hydride complexes forming species containing multiple B-H bonds depends on the heterolytic B-X bond energy. An example is the reduction of B(SPh)3 using HRh(dmpe)2 in the presence of triethylamine to form Et3N-BH3 in high yields. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  14. Cavitation in flowing superfluid helium

    NASA Technical Reports Server (NTRS)

    Daney, D. E.

    1988-01-01

    Flowing superfluid helium cavitates much more readily than normal liquid helium, and there is a marked difference in the cavitation behavior of the two fluids as the lambda point is traversed. Examples of cavitation in a turbine meter and centrifugal pump are given, together with measurements of the cavitation strength of flowing superfluid helium. The unusual cavitation behavior of superfluid helium is attributed to its immense thermal conductivity .

  15. D-π-A Compounds with Tunable Intramolecular Charge Transfer Achieved by Incorporation of Butenolide Nitriles as Acceptor Moieties.

    PubMed

    Moreno-Yruela, Carlos; Garín, Javier; Orduna, Jesús; Franco, Santiago; Quintero, Estefanía; López Navarrete, Juan T; Diosdado, Beatriz E; Villacampa, Belén; Casado, Juan; Andreu, Raquel

    2015-12-18

    Chromophores where a polyenic spacer separates a 4H-pyranylidene or benzothiazolylidene donor and three different butenolide nitriles have been synthesized and characterized. The role of 2(5H)-furanones as acceptor units on the polarization and the second-order nonlinear (NLO) properties has been studied. Thus, their incorporation gives rise to moderately polarized structures with NLO responses that compare favorably to those of related compounds featuring more efficient electron-withdrawing moieties. Derivatives of the proaromatic butenolide PhFu show the best nonlinearities. Benzothiazolylidene-containing chromophores present less alternated structures than their pyranylidene analogues, and, unlike most merocyanines, the degree of charge transfer does not decrease on lengthening the π-bridge.

  16. A new colorimetric chemodosimeter for Hg2+ based on charge-transfer compound of N-methylpyrrole with TCNQ.

    PubMed

    Kaur, Paramjit; Kaur, Sandeep; Kasetti, Yoganjaneyulu; Bharatam, Prasad V; Singh, Kamaljit

    2010-12-15

    Reaction of N-methylpyrrole and 7,7,8,8-tetracyanoquinodimethane (TCNQ) furnishes an intense blue unsymmetrical charge-transfer compound through regioselective attachment of tricyanoquinodimethane at the 2-position of N-methylpyrrole which was found to be selective chemodosimeter for Hg(2+) ions in CH(3)CN:H(2)O mixture (1:1 v/v, pH=7.0, 0.01 M HEPES, 0.15M NaCl) as well as in the solid state when supported on silica, over a variety of metal ions. A plausible mechanism for the sensing process has been proposed and supported through the characterization of the resulting Hg(2+) complex and the density functional theory (DFT) studies.

  17. Bioaccumulation and trophic transfer of perfluorinated compounds in a eutrophic freshwater food web.

    PubMed

    Xu, Jian; Guo, Chang-Sheng; Zhang, Yuan; Meng, Wei

    2014-01-01

    In this study, the bioaccumulation of perfluorinated compounds from a food web in Taihu Lake in China was investigated. The organisms included egret bird species, carnivorous fish, omnivorous fish, herbivorous fish, zooplankton, phytoplankton, zoobenthos and white shrimp. Isotope analysis by δ(13)C and δ(15)N indicated that the carnivorous fish and egret were the top predators in the studied web, occupying trophic levels intermediate between 3.66 and 4.61, while plankton was at the lowest trophic level. Perfluorinated carboxylates (PFCAs) with 9-12 carbons were significantly biomagnified, with trophic magnification factors (TMFs) ranging from 2.1 to 3.7. The TMF of perfluorooctane sulfonate (PFOS) (2.9) was generally comparable to or lower than those of the PFCAs in the same food web. All hazard ratio (HR) values reported for PFOS and perfluorooctanoate (PFOA) were less than unity, suggesting that the detected levels would not cause any immediate health effects to the people in Taihu Lake region through the consumption of shrimps and fish.

  18. Rapid Detection of Meat Spoilage by Measuring Volatile Organic Compounds by Using Proton Transfer Reaction Mass Spectrometry

    PubMed Central

    Mayr, D.; Margesin, R.; Klingsbichel, E.; Hartungen, E.; Jenewein, D.; Schinner, F.; Märk, T. D.

    2003-01-01

    The evolution of the microbial spoilage population for air- and vacuum-packaged meat (beef and pork) stored at 4°C was investigated over 11 days. We monitored the viable counts (mesophilic total aerobic bacteria, Pseudomonas spp., Enterobacteriaceae, lactic acid bacteria, and Enterococcus spp.) by the microbiological standard technique and by measuring the emission of volatile organic compounds (VOCs) with the recently developed proton transfer reaction mass spectrometry system. Storage time, packaging type, and meat type had statistically significant (P < 0.05) effects on the development of the bacterial numbers. The concentrations of many of the measured VOCs, e.g., sulfur compounds, largely increased over the storage time. We also observed a large difference in the emissions between vacuum- and air-packaged meat. We found statistically significant strong correlations (up to 99%) between some of the VOCs and the bacterial contamination. The concentrations of these VOCs increased linearly with the bacterial numbers. This study is a first step toward replacing the time-consuming plate counting by fast headspace air measurements, where the bacterial spoilage can be determined within minutes instead of days. PMID:12902260

  19. GW-BSE approach on S1 vertical transition energy of large charge transfer compounds: A performance assessment.

    PubMed

    Ziaei, Vafa; Bredow, Thomas

    2016-11-07

    In this work, we apply many-body perturbation theory (MBPT) on large critical charge transfer (CT) complexes to assess its performance on the S1 excitation energy. Since the S1 energy of CT compounds is heavily dependent on the Hartree-Fock (HF) exchange fraction in the reference density functional, MBPT opens a new way for reliable prediction of CT S1 energy without explicit knowledge of suitable amount of HF-exchange, in contrary to the time-dependent density functional theory (TD-DFT), where depending on various functionals, large errors can arise. Thus, simply by starting from a (semi-)local reference functional and performing update of Kohn-Sham (KS) energies in the Green's function G while keeping dynamical screened interaction (W(ω)) frozen to the mean-field level, we obtain impressingly highly accurate S1 energy at slightly higher computational cost in comparison to TD-DFT. However, this energy-only updating mechanism in G fails to work if the initial guess contains a fraction or 100% HF-exchange, and hence considerably inaccurate S1 energy is predicted. Furthermore, eigenvalue updating both in G and W(ω) overshoots the S1 energy due to enhanced underscreening of W(ω), independent of the (hybrid-)DFT starting orbitals. A full energy-update on top of HF orbitals even further overestimates the S1 energy. An additional update of KS wave functions within the Quasi-Particle Self-Consistent GW (QSGW) deteriorates results, in stark contrast to the good results obtained from QSGW for periodic systems. For the sake of transferability, we further present data of small critical non-charge transfer systems, confirming the outcomes of the CT-systems.

  20. GW-BSE approach on S1 vertical transition energy of large charge transfer compounds: A performance assessment

    NASA Astrophysics Data System (ADS)

    Ziaei, Vafa; Bredow, Thomas

    2016-11-01

    In this work, we apply many-body perturbation theory (MBPT) on large critical charge transfer (CT) complexes to assess its performance on the S1 excitation energy. Since the S1 energy of CT compounds is heavily dependent on the Hartree-Fock (HF) exchange fraction in the reference density functional, MBPT opens a new way for reliable prediction of CT S1 energy without explicit knowledge of suitable amount of HF-exchange, in contrary to the time-dependent density functional theory (TD-DFT), where depending on various functionals, large errors can arise. Thus, simply by starting from a (semi-)local reference functional and performing update of Kohn-Sham (KS) energies in the Green's function G while keeping dynamical screened interaction (W(ω)) frozen to the mean-field level, we obtain impressingly highly accurate S1 energy at slightly higher computational cost in comparison to TD-DFT. However, this energy-only updating mechanism in G fails to work if the initial guess contains a fraction or 100% HF-exchange, and hence considerably inaccurate S1 energy is predicted. Furthermore, eigenvalue updating both in G and W(ω) overshoots the S1 energy due to enhanced underscreening of W(ω), independent of the (hybrid-)DFT starting orbitals. A full energy-update on top of HF orbitals even further overestimates the S1 energy. An additional update of KS wave functions within the Quasi-Particle Self-Consistent GW (QSGW) deteriorates results, in stark contrast to the good results obtained from QSGW for periodic systems. For the sake of transferability, we further present data of small critical non-charge transfer systems, confirming the outcomes of the CT-systems.

  1. Helium anion formation inside helium droplets

    NASA Astrophysics Data System (ADS)

    Jabbour Al Maalouf, Elias; Reitshammer, Julia; Ribar, Anita; Scheier, Paul; Denifl, Stephan

    2016-07-01

    The formation of He∗- is examined with improved electron energy resolution of about 100 meV utilizing a hemispherical electron monochromator. The work presented provides a precise determination of the three previously determined resonance peak positions that significantly contribute to the formation of He∗- inside helium nanodroplets in the energy range from 20 eV to 29.5 eV. In addition, a new feature is identified located at 27.69 ± 0.18 eV that we assign to the presence of O2 as a dopant inside the droplet. With increasing droplet size a small blue shift of the resonance positions is observed. Also for the relatively low electron currents used in the present study (i.e., 15-70 nA) a quadratic dependence of the He∗- ion yield on the electron current is observed.

  2. Determination of ratios of Auger electrons emission probabilities and K-L shell vacancy transfer probability of Cr, Mn, Fe, Co, Ni, Cu and Zn compounds

    NASA Astrophysics Data System (ADS)

    Küçükönder, Adnan; Kavşut, Onur

    2017-02-01

    Ratios of emission probabilities of Auger electrons [u = p(KLX)/p(KLL), ν = p(KXY)/p(KLL)] and the vacancy transfer probabilities from K to L shell, ηKL for Cr, Mn, Fe, Co,Ni, Cu and Zn compounds were obtained using the experimental Kx-ray emission ratios and K-shell fluorescence yields. We were used the experimental Kβ/Kα intensity ratios and K shell fluorescence yields WK. Ratios of emission probabilities of Auger electrons and the vacancy transfer probabilities are changed by chemical effect for different for Cr, Mn, Fe, Co,Ni, Cu and Zn compounds.

  3. Formation of the helium extreme-UV resonance lines

    NASA Astrophysics Data System (ADS)

    Golding, T. P.; Leenaarts, J.; Carlsson, M.

    2017-01-01

    Context. While classical models successfully reproduce intensities of many transition region lines, they predict helium extreme-UV (EUV) line intensities roughly an order of magnitude lower than the observed value. Aims: Our aim is to determine the relevant formation mechanism(s) of the helium EUV resonance lines capable of explaining the high intensities under quiet Sun conditions. Methods: We synthesised and studied the emergent spectra from a 3D radiation-magnetohydrodynamics simulation model. The effects of coronal illumination and non-equilibrium ionisation of hydrogen and helium are included self-consistently in the numerical simulation. Results: Radiative transfer calculations result in helium EUV line intensities that are an order of magnitude larger than the intensities calculated under the classical assumptions. The enhanced intensity of He iλ584 is primarily caused by He ii recombination cascades. The enhanced intensity of He iiλ304 and He iiλ256 is caused primarily by non-equilibrium helium ionisation. Conclusions: The analysis shows that the long standing problem of the high helium EUV line intensities disappears when taking into account optically thick radiative transfer and non-equilibrium ionisation effects.

  4. Superfluid helium cryogenic systems for superconducting RF cavities at KEK

    SciTech Connect

    Nakai, H.; Hara, K.; Honma, T.; Hosoyama, K.; Kojima, Y.; Nakanishi, K.; Kanekiyo, T.; Morita, S.

    2014-01-29

    Recent accelerator projects at KEK, such as the Superconducting RF Test Facility (STF) for R and D of the International Linear Collider (ILC) project and the compact Energy Recovery Linac (cERL), employ superconducting RF cavities made of pure niobium, which can generate high gradient acceleration field. Since the operation temperature of these cavities is selected to be 2 K, we have developed two 2 K superfluid helium cryogenic systems for stable operation of superconducting RF cavities for each of STF and cERL. These two 2 K superfluid helium cryogenic systems are identical in principle. Since the operation mode of the cavities is different for STF and cERL, i.e. the pulse mode for STF and the continuous wave mode for cERL, the heat loads from the cavities are quite different. The 2 K superfluid helium cryogenic systems mainly consists of ordinary helium liquefiers/refrigerators, 2 K refrigerator cold boxes, helium gas pumping systems and high-performance transfer lines. The 2 K refrigerators and the high-performance transfer lines are designed by KEK. Some superconducting RF cavity cryomodules have been already connected to the 2 K superfluid helium cryogenic systems for STF and cERL respectively, and cooled down to 2 K successfully.

  5. Evaluation of helium cooling for fusion divertors

    SciTech Connect

    Baxi, C.B.

    1993-09-01

    The divertors of future fusion reactors will have a power throughput of several hundred MW. The peak heat flux on the diverter surface is estimated to be 5 to 15 MW/m{sup 2} at an average heat flux of 2 MW/m{sup 2}. The divertors have a requirement of both minimum temperature (100{degrees}C) and maximum temperature. The minimum temperature is dictated by the requirement to reduce the absorption of plasma, and the maximum temperature is determined by the thermo-mechanical properties of the plasma facing materials. Coolants that have been considered for fusion reactors are water, liquid metals and helium. Helium cooling has been shown to be very attractive from safety and other considerations. Helium is chemically and neutronically inert and is suitable for power conversion. The challenges associated with helium cooling are: (1) Manifold sizes; (2) Pumping power; and (3) Leak prevention. In this paper the first two of the above design issues are addressed. A variety of heat transfer enhancement techniques are considered to demonstrate that the manifold sizes and the pumping power can be reduced to acceptable levels. A helium-cooled diverter module was designed and fabricated by GA for steady-state heat flux of 10 MW/m{sup 2}. This module was recently tested at Sandia National Laboratories. At an inlet pressure of 4 MPa, the module was tested at a steady-state heat flux of 10 MW/m{sup 2}. The pumping power required was less than 1% of the power removed. These results verified the design prediction.

  6. Development of helium refrigeration/ liquefaction system at BARC, India

    NASA Astrophysics Data System (ADS)

    Ansari, N. A.; Goyal, M.; Chakravarty, A.; Menon, Rajendran S.; Jadhav, M.; Rane Nair, T., Sr.; Kumar, J.; Kumar, N.; Bharti, SK; Chakravarty, Abhilash; Jain, A.; Joemon, V.

    2017-02-01

    An experimental helium refrigerator/liquefier, using ultra high speed cryogenic turboexpanders, is designed and developed at Cryo-Technology Division, BARC. The developed system is based on the modified Claude cycle. The developed system is presently fully functional consisting of process compressor with gas management system, coldbox, helium receiver Dewar, tri-axial transfer line and helium recovery system. Extended trial runs are conducted to evaluate the performance of the developed system. During these trials, liquefaction rate of around 32 l/hr and refrigeration capacity of around 190W is achieved. The paper addresses design, development and commissioning aspects of the developed helium liquefier along with results of performance evaluation trial runs.

  7. The Hall D solenoid helium refrigeration system at JLab

    NASA Astrophysics Data System (ADS)

    Laverdure, N.; Creel, J.; Dixon, K.; Ganni, V.; Martin, F.; Norton, R.; Radovic, S.

    2014-01-01

    Hall D, the new Jefferson Lab experimental facility built for the 12GeV upgrade, features a LASS 1.85 m bore solenoid magnet supported by a 4.5 K helium refrigerator system. This system consists of a CTI 2800 4.5 K refrigerator cold box, three 150 hp screw compressors, helium gas management and storage, and liquid helium and nitrogen storage for stand-alone operation. The magnet interfaces with the cryo refrigeration system through an LN2-shielded distribution box and transfer line system, both designed and fabricated by JLab. The distribution box uses a thermo siphon design to respectively cool four magnet coils and shields with liquid helium and nitrogen. We describe the salient design features of the cryo system and discuss our recent commissioning experience.

  8. Auroral helium precipitation.

    NASA Technical Reports Server (NTRS)

    Axford, W. I.; Chivers, H. J. A.; Eberhardt, P.; Geiss, J.; Buehler, F.

    1972-01-01

    Application of the metal foil sampling technique, which has been used to measure helium, neon, and argon fluxes in the solar wind, to the problem of measuring the fluxes of these gases in the auroral primary radiation. Aluminum and platinum foils have been flown into two bright auroras and have been recovered. The foils have been analyzed for helium and neon isotopes with a mass spectrometer; so far only He4 has been detected. In the first flight the precipitating flux of He4 with particle energies above about 1 keV was approximately 1,000,000 per sq cm per sec, and the backscattered flux was smaller by about a factor of 10. In the second flight the aurora was less bright, and the He4 fluxes were lower by a factor of about 2. A rough analysis suggests that the mean energy of the incident particles was greater than 3 keV.

  9. Electron-helium scattering in Debye plasmas

    SciTech Connect

    Zammit, Mark C.; Fursa, Dmitry V.; Bray, Igor; Janev, R. K.

    2011-11-15

    Electron-helium scattering in weakly coupled hot-dense (Debye) plasma has been investigated using the convergent close-coupling method. The Yukawa-type Debye-Hueckel potential has been used to describe plasma Coulomb screening effects. Benchmark results are presented for momentum transfer cross sections, excitation, ionization, and total cross sections for scattering from the ground and metastable states of helium. Calculations cover the entire energy range up to 1000 eV for the no screening case and various Debye lengths (5-100 a{sub 0}). We find that as the screening interaction increases, the excitation and total cross sections decrease, while the total ionization cross sections increase.

  10. Transferable potentials for phase equilibria. 10. Explicit-hydrogen description of substituted benzenes and polycyclic aromatic compounds.

    PubMed

    Rai, Neeraj; Siepmann, J Ilja

    2013-01-10

    The explicit-hydrogen version of the transferable potentials for phase equilibria (TraPPE-EH) force field is extended to various substituted benzenes through the parametrization of the exocyclic groups -F, -Cl, -Br, -C≡N, and -OH and to polycyclic aromatic hydrocarbons through the parametrization of the aromatic linker carbon atom for multiple rings. The linker carbon together with the TraPPE-EH parameters for aromatic heterocycles constitutes a force field for fused-ring heterocycles. Configurational-bias Monte Carlo simulations in the Gibbs ensemble were carried out to compute vapor-liquid coexistence curves for fluorobenzene; chlorobenzene; bromobenzene; di-, tri-, and hexachlorobenzene isomers; 2-chlorofuran; 2-chlorothiophene; benzonitrile; phenol; dihydroxybenzene isomers; 1,4-benzoquinone; naphthalene; naphthalene-2-carbonitrile; naphthalen-2-ol; quinoline; benzo[b]thiophene; benzo[c]thiophene; benzoxazole; benzisoxazole; benzimidazole; benzothiazole; indole; isoindole; indazole; purine; anthracene; and phenanthrene. The agreement with the limited experimental data is very satisfactory, with saturated liquid densities and vapor pressures reproduced to within 1.5% and 15%, respectively. The mean unsigned percentage errors in the normal boiling points, critical temperatures, and critical densities are 0.9%, 1.2%, and 1.4%, respectively. Additional simulations were carried out for binary systems of benzene/benzonitrile, benzene/phenol, and naphthalene/methanol to illustrate the transferability of the developed potentials to binary systems containing compounds of different polarity and hydrogen-bonding ability. A detailed analysis of the liquid-phase structures is provided for selected neat systems and binary mixtures.

  11. Education in Helium Refrigeration

    NASA Astrophysics Data System (ADS)

    Gistau Baguer, G. M.

    2004-06-01

    On the one hand, at the end of the time I was active in helium refrigeration, I noticed that cryogenics was stepping into places where it was not yet used. For example, a conventional accelerator, operating at room temperature, was to be upgraded to reach higher particle energy. On the other hand, I was a little bit worried to let what I had so passionately learned during these years to be lost. Retirement made time available, and I came gradually to the idea to teach about what was my basic job. I thought also about other kinds of people who could be interested in such lessons: operators of refrigerators or liquefiers who, often by lack of time, did not get a proper introduction to their job when they started, young engineers who begin to work in cryogenics… and so on. Consequently, I have assembled a series of lessons about helium refrigeration. As the audiences have different levels of knowledge in the field of cryogenics, I looked for a way of teaching that is acceptable for all of them. The course is split into theory of heat exchangers, refrigeration cycles, technology and operation of main components, process control, and helium purity.

  12. Education in Helium Refrigeration

    SciTech Connect

    Gistau Baguer, G. M.

    2004-06-23

    On the one hand, at the end of the time I was active in helium refrigeration, I noticed that cryogenics was stepping into places where it was not yet used. For example, a conventional accelerator, operating at room temperature, was to be upgraded to reach higher particle energy. On the other hand, I was a little bit worried to let what I had so passionately learned during these years to be lost. Retirement made time available, and I came gradually to the idea to teach about what was my basic job. I thought also about other kinds of people who could be interested in such lessons: operators of refrigerators or liquefiers who, often by lack of time, did not get a proper introduction to their job when they started, young engineers who begin to work in cryogenics... and so on.Consequently, I have assembled a series of lessons about helium refrigeration. As the audiences have different levels of knowledge in the field of cryogenics, I looked for a way of teaching that is acceptable for all of them. The course is split into theory of heat exchangers, refrigeration cycles, technology and operation of main components, process control, and helium purity.

  13. Tracer aroma compound transfer from a solid and complex-flavored food matrix packed in treated papers or plastic packaging film.

    PubMed

    Dury-Brun, Cécile; Lequin, Sonia; Chalier, Pascale; Desobry, Stéphane; Voilley, Andrée

    2007-02-21

    The objective of this work was to study the transfer of four aroma compounds (ethyl butyrate, ethyl hexanoate, cis-3-hexenol, and benzaldehyde) from a solid and complex-flavored food matrix (sponge cake) toward and through packaging films placed in indirect contact during storage in accelerated aging conditions (38 degrees C and 86% relative humidity gradient). The efficiency of treated papers relative to that of standard paper and plastic as barrier was tested. Before storage, aroma compound volatility in the sponge cake was measured, and similar values were found between aroma compounds, due to the fat content of the sponge cake. Whatever the aroma compound, permeability values during storage were similar for the same packaging film. The plastic film was the highest barrier, whereas calendering and coating treatments applied to treated papers decreased effectively their permeability. An opposite trend was observed for aroma compound sorption into packaging films during storage.

  14. Helium anion formation inside helium droplets

    NASA Astrophysics Data System (ADS)

    Maalouf, Elias Jabbour Al; Reitshammer, Julia; Ribar, Anita; Scheier, Paul; Denifl, Stephan

    2016-07-01

    The formation of He∗- is examined with improved electron energy resolution of about 100 meV utilizing a hemispherical electron monochromator. The work presented provides a precise determination of the three previously determined resonance peak positions that significantly contribute to the formation of He∗- inside helium nanodroplets in the energy range from 20 eV to 29.5 eV. In addition, a new feature is identified located at 27.69 ± 0.18 eV that we assign to the presence of O2 as a dopant inside the droplet. With increasing droplet size a small blue shift of the resonance positions is observed. Also for the relatively low electron currents used in the present study (i.e., 15-70 nA) a quadratic dependence of the He∗- ion yield on the electron current is observed. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  15. Design and syntheses of electron-transfer photochromic metal-organic complexes using nonphotochromic ligands: a model compound and the roles of its ligands.

    PubMed

    Zhang, Cui-Juan; Chen, Zi-Wei; Lin, Rong-Guang; Zhang, Ming-Jian; Li, Pei-Xin; Wang, Ming-Sheng; Guo, Guo-Cong

    2014-01-21

    The model compound [Zn(HCOO)2(4,4'-bipy)] (1; 4,4'-bipy = 4,4'-bipyridine) is selected in this work to demonstrate the effectiveness of our previously proposed design strategy for electron-transfer photochromic metal-organic complexes. The electron-transfer photochromic behavior of 1 has been discovered for the first time. Experimental and theoretical data illustrate that the photochromism of 1 can be attributed to the electron transfer from formato to 4,4'-bipy and the formation of a radical photoproduct. The electron transfer prefers to occur between formato and 4,4'-bipy, which are combined directly by the Zn(II) atoms. A high-contrast (up to 8.3 times) photoluminescence switch occurs during the photochromic process. The similarity of photochromic behaviors among 1 and its analogues as well as viologen compounds has also been found. Photochromic studies of this model compound indicate that new electron-transfer photochromic metal-organic complexes can be largely designed and synthesized by the rational assembly of nonphotochromic electron-donating and electron-accepting ligands.

  16. The winter helium bulge revisited

    NASA Astrophysics Data System (ADS)

    Liu, Xianjing; Wang, Wenbin; Thayer, Jeffrey P.; Burns, Alan; Sutton, Eric; Solomon, Stanley C.; Qian, Liying; Lucas, Greg

    2014-10-01

    A newly implemented helium module in the National Center for Atmospheric Research-Thermosphere Ionosphere Electrodynamics general circulation model offers the first opportunity in three decades to describe helium behavior in the context of a first principles, self-consistent model and to test early theories of wintertime helium bulge formation. This study shows general agreement with the findings of Reber and Hays (1973) but articulates the definitive role of vertical advection in the bulge formation. Our findings indicate vertical advection and molecular diffusion are the dominate processes responsible for the solstice helium distribution. Horizontal winds indirectly contribute to the helium bulge formation by their divergent wind field that leads to vertical winds in order to maintain thermosphere mass continuity. As a minor gas, thermospheric helium does not contribute to mass continuity and its distribution is dictated by more local interactions and constraints.

  17. Genetic Diversity and Horizontal Transfer of Genes Involved in Oxidation of Reduced Phosphorus Compounds by Alcaligenes faecalis WM2072

    PubMed Central

    Wilson, Marlena M.; Metcalf, William W.

    2005-01-01

    Enrichment was performed to isolate organisms that could utilize reduced phosphorus compounds as their sole phosphorus sources. One isolate that grew well with either hypophosphite or phosphite was identified by 16S rRNA gene analysis as a strain of Alcaligenes faecalis. The genes required for oxidation of hypophosphite and phosphite by this organism were identified by using transposon mutagenesis and include homologs of the ptxD and htxA genes of Pseudomonas stutzeri WM88, which encode an NAD-dependent phosphite dehydrogenase (PtxD) and 2-oxoglutarate-dependent hypophosphite dioxygenase (HtxA). This organism also has the htxB, htxC, and htxD genes that comprise an ABC-type transporter, presumably for hypophosphite and phosphite transport. The role of these genes in reduced phosphorus metabolism was confirmed by analyzing the growth of mutants in which these genes were deleted. Sequencing data showed that htxA, htxB, htxC, and htxD are virtually identical to their homologs in P. stutzeri at the DNA level, indicating that horizontal gene transfer occurred. However, A. faecalis ptxD is very different from its P. stutzeri homolog and represents a new ptxD lineage. Therefore, this gene has ancient evolutionary roots in bacteria. These data suggest that there is strong evolutionary selection for the ability of microorganisms to oxidize hypophosphite and phosphite. PMID:15640200

  18. An Unusually Delocalized Mixed-Valence State of a Cyanidometal-Bridged Compound Induced by Thermal Electron Transfer.

    PubMed

    Ma, Xiao; Lin, Chen-Sheng; Zhu, Xiao-Quan; Hu, Sheng-Min; Sheng, Tian-Lu; Wu, Xin-Tao

    2017-02-01

    The heterometallic complexes trans-[Cp(dppe)FeNCRu(o-bpy)CNFe(dppe)Cp][PF6 ]n (1[PF6 ]n , n=2, 3, 4; o-bpy=1,2-bis(2,2'-bipyridyl-6-yl)ethane, dppe=1,2-bis(diphenylphosphino)ethane, Cp=1,3-cyclopentadiene) in three distinct states have been synthesized and fully characterized. 1(3+) [PF6 ]3 and 1(4+) [PF6 ]4 are the one- and two-electron oxidation products of 1(2+) [PF6 ]2 , respectively. The investigated results suggest that 1[PF6 ]3 is a Class II mixed valence compound. 1[PF6 ]4 after a thermal treatment at 400 K shows an unusually delocalized mixed valence state of [Fe(III) -NC-Ru(III) -CN-Fe(II) ], which is induced by electron transfer from the central Ru(II) to the terminal Fe(III) in 1[PF6 ]4 , which was confirmed by IR spectroscopy, magnetic data, and EPR and Mössbauer spectroscopy.

  19. Genetic diversity and horizontal transfer of genes involved in oxidation of reduced phosphorus compounds by Alcaligenes faecalis WM2072.

    PubMed

    Wilson, Marlena M; Metcalf, William W

    2005-01-01

    Enrichment was performed to isolate organisms that could utilize reduced phosphorus compounds as their sole phosphorus sources. One isolate that grew well with either hypophosphite or phosphite was identified by 16S rRNA gene analysis as a strain of Alcaligenes faecalis. The genes required for oxidation of hypophosphite and phosphite by this organism were identified by using transposon mutagenesis and include homologs of the ptxD and htxA genes of Pseudomonas stutzeri WM88, which encode an NAD-dependent phosphite dehydrogenase (PtxD) and 2-oxoglutarate-dependent hypophosphite dioxygenase (HtxA). This organism also has the htxB, htxC, and htxD genes that comprise an ABC-type transporter, presumably for hypophosphite and phosphite transport. The role of these genes in reduced phosphorus metabolism was confirmed by analyzing the growth of mutants in which these genes were deleted. Sequencing data showed that htxA, htxB, htxC, and htxD are virtually identical to their homologs in P. stutzeri at the DNA level, indicating that horizontal gene transfer occurred. However, A. faecalis ptxD is very different from its P. stutzeri homolog and represents a new ptxD lineage. Therefore, this gene has ancient evolutionary roots in bacteria. These data suggest that there is strong evolutionary selection for the ability of microorganisms to oxidize hypophosphite and phosphite.

  20. 48 CFR 52.208-8 - Required Sources for Helium and Helium Usage Data.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Helium and Helium Usage Data. 52.208-8 Section 52.208-8 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.208-8 Required Sources for Helium and Helium Usage Data. As prescribed in 8.505, insert the following clause: Required Sources for Helium and Helium Usage Data (APR 2002) (a)...

  1. 48 CFR 52.208-8 - Required Sources for Helium and Helium Usage Data.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Helium and Helium Usage Data. 52.208-8 Section 52.208-8 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.208-8 Required Sources for Helium and Helium Usage Data. As prescribed in 8.505, insert the following clause: Required Sources for Helium and Helium Usage Data (APR 2002) (a)...

  2. 48 CFR 52.208-8 - Required Sources for Helium and Helium Usage Data.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Helium and Helium Usage Data. 52.208-8 Section 52.208-8 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.208-8 Required Sources for Helium and Helium Usage Data. As prescribed in 8.505, insert the following clause: Required Sources for Helium and Helium Usage Data (APR 2002) (a)...

  3. Compact Instruments Measure Helium-Leak Rates

    NASA Technical Reports Server (NTRS)

    Stout, Stephen; Immer, Christopher

    2003-01-01

    Compact, lightweight instruments have been developed for measuring small flows of helium and/or detecting helium leaks in solenoid valves when the valves are nominally closed. These instruments do not impede the flows when the valves are nominally open. They can be integrated into newly fabricated valves or retrofitted to previously fabricated valves. Each instrument includes an upstream and a downstream thermistor separated by a heater, plus associated analog and digital heater-control, signal- conditioning, and data-processing circuits. The thermistors and heater are off-the-shelf surface mount components mounted on a circuit board in the flow path. The operation of the instrument is based on a well-established thermal mass-flow-measurement technique: Convection by the flow that one seeks to measure gives rise to transfer of heat from the heater to the downstream thermistor. The temperature difference measured by the thermistors is directly related to the rate of flow. The calibration curve from temperature gradient to helium flow is closely approximated via fifth-order polynomial. A microprocessor that is part of the electronic circuitry implements the calibration curve to compute the flow rate from the thermistor readings.

  4. Rayleigh Scattering by Helium in Stellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Fišák, J.; Kubát, J.; Krtička, J.

    2017-02-01

    We study the influence of Rayleigh scattering by helium on synthetic spectra and stellar atmosphere models. Rayleigh scattering by helium is often neglected in hot star atmosphere models. This approximation is justified by the small population of helium in stars with solar composition (about 10% by number) and lower Rayleigh scattering total cross section of helium with respect to neutral hydrogen. However, for stars with large helium abundances Rayleigh scattering by helium can be a significant opacity source.

  5. Diffusion of radiogenic helium in natural uranium oxides

    NASA Astrophysics Data System (ADS)

    Roudil, Danièle; Bonhoure, Jessica; Pik, Raphaël; Cuney, Michel; Jégou, Christophe; Gauthier-Lafaye, F.

    2008-08-01

    The issue of nuclear waste management - and especially spent fuel disposal - demands further research on the long-term behavior of helium and its impact on physical changes in UO 2 and (U,Pu)O 2 matrices subjected to self-irradiation. Helium produced by radioactive decay of the actinides concentrates in the grains or is trapped at the grain boundaries. Various scenarios can be considered, and can have a significant effect on the radionuclide source terms that will be accessible to water after the canisters have been breached. Helium production and matrix damage is generally simulated by external irradiation or with actinide-doped materials. A natural uranium oxide sample was studied to acquire data on the behavior of radiogenic helium and its diffusion under self-irradiation in spent fuel. The sample from the Pen Ar Ran deposit in the Vendée region of France dated at 320 ± 9 million of years was selected for its simple geological history, making it a suitable natural analog of spent fuel under repository conditions during the initial period in a closed system not subject to mass transfer with the surrounding environment. Helium outgassing measured by mass spectrometry to determine the He diffusion coefficients through the ore shows that: (i) a maximum of 5% (2.1% on average) of the helium produced during the last 320 Ma in this natural analog was conserved, (ii) about 33% of the residual helium is occluded in the matrix and vacancy defects (about 10 -5 mol g -1) and 67% in bubbles that were analyzed by HRTEM. A similar distribution has been observed in spent fuel and in (U 0.9,Pu 0.1)O 2. The results obtained for the natural Pen Ar Ran sample can be applied by analogy to spent fuel, especially in terms of the apparent solubility limit and the formation, characteristics and behavior of the helium bubbles.

  6. 80. DETAIL OF TYPICAL PRESSURE GAUGE IN NITROGEN AND HELIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    80. DETAIL OF TYPICAL PRESSURE GAUGE IN NITROGEN AND HELIUM STORAGE AND TRANSFER CONTROL SKIDS ON NORTH END OF SLC-3W FUEL APRON - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  7. Temperature rise in superfluid helium pumps

    SciTech Connect

    Kittel, P.

    1988-07-01

    The temperature rise of a fountain effect pump (FEP) and of a centrifugal pump (CP) are compared. Calculations and estimates presented here show that under the operating conditions expected during the resupply of superfluid helium in space, a centrifugal pump will produce a smaller temperature rise than will a fountain effect pump. The temperature rise for the FEP is calculated assuming an ideal pump, while the temperature rise of the CP is estimated from the measured performance of a prototype pump. As a result of this smaller temperature rise and of the different operating characteristics of the two types of pumps, transfers will be more effective using a centrifugal pump.

  8. Temperature rise in superfluid helium pumps

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1988-01-01

    The temperature rise of a fountain effect pump (FEP) and of a centrifugal pump (CP) are compared. Calculations and estimates presented here show that under the operating conditions expected during the resupply of superfluid helium in space, a centrifugal pump will produce a smaller temperature rise than will a fountain effect pump. The temperature rise for the FEP is calculated assuming an ideal pump, while the temperature rise of the CP is estimated from the measured performance of a prototype pump. As a result of this smaller temperature rise and of the different operating characteristics of the two types of pumps, transfers will be more effective using a centrifugal pump.

  9. Helium dilution refrigeration system

    DOEpatents

    Roach, P.R.; Gray, K.E.

    1988-09-13

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation is disclosed. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains [sup 3]He and [sup 4]He liquids which are precooled by a coupled container containing [sup 3]He liquid, enabling the phase separation of a [sup 3]He rich liquid phase from a dilute [sup 3]He-[sup 4]He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the [sup 3]He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute [sup 3]He-[sup 4]He liquid phase. 2 figs.

  10. Helium dilution refrigeration system

    DOEpatents

    Roach, Patrick R.; Gray, Kenneth E.

    1988-01-01

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains .sup.3 He and .sup.4 He liquids which are precooled by a coupled container containing .sup.3 He liquid, enabling the phase separation of a .sup.3 He rich liquid phase from a dilute .sup.3 He-.sup.4 He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the .sup.3 He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute .sup.3 He-.sup.4 He liquid phase.

  11. Heat transfer coefficients over a flat surface with air and CO{sub 2} injection through compound angle holes using a transient liquid crystal image method

    SciTech Connect

    Ekkad, S.V.; Zapata, D.; Han, J.C.

    1997-07-01

    This paper presents the detailed heat transfer coefficients over a flat surface with one row of injection holes inclined streamwise at 35 deg for three blowing ratios (M = 0.5--2.0). Three compound angles of 0, 45, and 90 deg with air (D.R. = 0.98) and CO{sub 2} (D.R. = 1.46) as coolants were tested at an elevated free-stream turbulence condition (Tu {approx} 8.5%). The experimental technique involves a liquid crystal coating on the test surface. Two related transient tests obtained detailed heat transfer coefficients and film effectiveness distributions. Heat transfer coefficients increase with increasing blowing ratio for a constant density ratio, but decrease with increasing density ratio for a constant blowing ratio. Heat transfer coefficients increase for both coolants over the test surface as the compound angle increases from 0 to 90 deg. The detailed heat transfer coefficients obtained using the transient liquid crystal technique, particularly in the near-hole region, will provide a better understanding of the film cooling process in gas turbine components.

  12. Lars Onsager Prize Talk: Quantum fluids: from liquid helium to cold atoms

    NASA Astrophysics Data System (ADS)

    Pethick, Christopher

    2008-03-01

    The study of quantum liquids has led to ideas and concepts of broad applicability. I shall illustrate this by examples from the physics of liquid helium-3, heavy-fermion compounds, quark-gluon plasmas and cold atomic gases.

  13. Helium diffusion in carbonates

    NASA Astrophysics Data System (ADS)

    Amidon, W. H.; Cherniak, D. J.; Watson, E. B.; Hobbs, D.

    2013-12-01

    The abundance and large grain size of carbonate minerals make them a potentially attractive target for 4He thermochronology and 3He cosmogenic dating, although the diffusive properties of helium in carbonates remain poorly understood. This work characterizes helium diffusion in calcite and dolomite to better understand the crystal-chemical factors controlling He transport and retentivity. Slabs of cleaved natural calcite and dolomite, and polished sections of calcite cut parallel or normal to c, were implanted with 3He at 3 MeV with a dose of 5x1015/cm2. Implanted carbonates were heated in 1-atm furnaces, and 3He distributions following diffusion anneals were profiled with Nuclear Reaction Analysis using the reaction 3He(d,p)4He. For 3He transport normal to cleavage surfaces in calcite, we obtain the following Arrhenius relation over the temperature range 78-300°C: Dcalcite = 9.0x10-9exp(-55 × 6 kJ mol-1/RT) m2sec-1. Diffusion in calcite exhibits marked anisotropy, with diffusion parallel to c about two orders of magnitude slower than diffusion normal to cleavage faces. He diffusivities for transport normal to the c-axis are similar in value to those normal to cleavage surfaces. Our findings are broadly consistent with helium diffusivities from step-heating measurements of calcite by Copeland et al. (2007); these bulk degassing data may reflect varying effects of diffusional anisotropy. Helium diffusion normal to cleavage surfaces in dolomite is significantly slower than diffusion in calcite, and has a much higher activation energy for diffusion. For dolomite, we obtain the following Arrhenius relation for He diffusion over the temperature range 150-400°C: Ddolomite = 9.0x10-8exp(-92 × 9 kJ mol-1/RT) m2sec-1. The role of crystallographic structure in influencing these differences among diffusivities was evaluated using the maximum aperture approach of Cherniak and Watson (2011), in which crystallographic structures are sectioned along possible diffusion

  14. Effect of charge transfer on the local order in liquid group IV isoelectronic compounds: neutron diffraction data versus numerical tight-binding simulations

    SciTech Connect

    Prigent, G.; Bellissent, R.; Gaspard, J.-P.; Bichara, C.

    1999-06-15

    In a simple tight-binding approach, we consider the role of charge transfer and entropy in the semiconductor-to-metal transition which may occur upon melting group IV elements and their isoelectronic III-V and II-VI compounds. In the liquid state, entropy is shown to destabilise the diamond structure in favor of a metallic simple cubic-like local order, while charge transfer tends to keep the semiconducting tetrahedral local order of the solid state. These results are consistent with neutron diffraction data.

  15. Study of excitation transfer in a flowing helium afterglow pumped with a tuneable dye laser. II - Measurement of the rate coefficient for the rotational relaxation of He2/3p 3Pi-g/.

    NASA Technical Reports Server (NTRS)

    Collins, C. B.; Johnson, B. W.

    1972-01-01

    The results of the use of a fast-transient fluorescence technique in the examination of rotational relaxation caused by collisions with neutral helium atoms are discussed. Details regarding the production and detection of reacting species are considered, together with the analytical method used. A dye laser system with 4-methylcoumarin producing a pumping flux in the 4650 A region was employed in the investigations.

  16. Precision spectroscopy of Helium

    SciTech Connect

    Cancio, P.; Giusfredi, G.; Mazzotti, D.; De Natale, P.; De Mauro, C.; Krachmalnicoff, V.; Inguscio, M.

    2005-05-05

    Accurate Quantum-Electrodynamics (QED) tests of the simplest bound three body atomic system are performed by precise laser spectroscopic measurements in atomic Helium. In this paper, we present a review of measurements between triplet states at 1083 nm (23S-23P) and at 389 nm (23S-33P). In 4He, such data have been used to measure the fine structure of the triplet P levels and, then, to determine the fine structure constant when compared with equally accurate theoretical calculations. Moreover, the absolute frequencies of the optical transitions have been used for Lamb-shift determinations of the levels involved with unprecedented accuracy. Finally, determination of the He isotopes nuclear structure and, in particular, a measurement of the nuclear charge radius, are performed by using hyperfine structure and isotope-shift measurements.

  17. The role of charge-transfer integral in determining and engineering the carrier mobilities of 9,10-di(2-naphthyl)anthracene compounds

    NASA Astrophysics Data System (ADS)

    Tse, S. C.; So, S. K.; Yeung, M. Y.; Lo, C. F.; Wen, S. W.; Chen, C. H.

    2006-05-01

    The charge transporting properties of t-butylated 9,10-di(2-naphthyl)anthracene (ADN) compounds have been investigated experimentally and computationally in relation to their molecular structures. The ADN compounds are found to be ambipolar with both electron and hole mobilities in the range of 1-4 × 10 -7 cm 2 V -1 s -1 (electric field 0.5-0.8 MV/cm). As the degree of t-butylation increases, the carrier mobility decreases progressively. The mobility reduction was examined by Marcus theory of reorganization energies. All ADN compounds possess similar reorganization energies of ˜0.3 eV. The reduction of carrier mobilities with increasing t-butylation can be attributed to a decrease in the charge-transfer integral or the wavefunction overlap.

  18. Ultrafast dynamics of a charge-transfer dimer as a model for the photoinduced phase transition of charge-transfer compounds.

    PubMed

    Lüer, Larry; Manzoni, Cristian; Cerullo, Giulio; Lanzani, Guglielmo; Meneghetti, Moreno

    2007-07-13

    By applying ultrafast pump-probe spectroscopy with 15 fs temporal resolution to (TMTTF(+))(2) dimers we provide a full picture of the structural relaxation following photoexcitation of their CT transition. Both population and coherent phonon dynamics allow tracking wave packet motion onto the multidimensional excited state potential energy surface, as obtained by density functional theory calculations. We show that the vibrations that are strongly coupled to the charge-transfer transition of the dimer correspond to those driving the photoinduced phase transition occurring in charge-transfer crystalline solids.

  19. Resource Letter SH-1: Superfluid Helium.

    ERIC Educational Resources Information Center

    Hallock, Robert B.

    1982-01-01

    Provides an annotated list of books, textbooks, and films on superfluid helium. Also lists research reports/reviews arranged by category, including among others, early history, microscopic understanding, ions in helium, helium in rotation, vortices and quantization, helium films and constricted geometrics, persistence flow, and superfluid helium…

  20. A search for pure compounds suitable for use as matrix in spectroscopic studies of radiation-produced radical cations. III. A selection of compounds based on the thermochemistry of hydrogen and proton transfer reactions between neutral molecules and their cations

    NASA Astrophysics Data System (ADS)

    Van den Bosch, Ann; Ceulemans, Jan

    A systematic investigation is made of the thermochemistry of hydrogen and proton transfer between neutral molecules and their cations covering the entire organic chemistry, with the aim of selecting those compounds that are suitable for use as matrices in spectroscopic studies of radiation-produced radical cations. Compounds that are characterized by positive reaction enthalpies may be considered promising for use as matrices in such studies. Calculations are based on experimentally determined ionization energies and proton affinities and on carbon-hydrogen bond strengths that are arbitrarily taken as 418 kJ.mol -1 (100 kcal.mol -1). Effects of actual deviations from this value are considered. In the aliphatic series of compounds, reaction enthalpies depend strongly on functional groups present. Marked positive reaction enthalpies are obtained for alkenes, alkadienes, thioethers, mercaptans, iodoalkanes and tertiary amines. Non-aromatic cyclic compounds generally behave as their aliphatic counterparts. Thus, positive reaction enthalpies are generally obtained for unsaturated alicyclic hydrocarbons and cyclic thioethers. Positive reaction enthalpies are also obtained for piperidine, quinuclidine, manxine and derivatives. In the homocyclic aromatic series of compounds, reaction enthalpies are generally positive. Thus, positive reaction enthalpies are obtained for aromatic hydrocarbons, fluoro- and chlorobenzenes, aromatic amines (amino group attached directly to the ring) and halo- and methoxyanilines. In the heterocyclic aromatic series of compounds reaction enthalpies are generally negative. This is for instance the case for a large number of pyridine derivatives, di- and triazines and a number of bi- and tricyclic compounds. Positive reaction enthalpies are however obtained for furan and pyrrole.

  1. Online volatile organic compound measurements using a newly developed proton-transfer ion-trap mass spectrometry instrument during New England Air Quality Study--Intercontinental Transport and Chemical Transformation 2004: performance, intercomparison, and compound identification.

    PubMed

    Warneke, Carsten; Kato, Shuji; De Gouw, Joost A; Goldan, Paul D; Kuster, William C; Shao, Min; Lovejoy, Edward R; Fall, Ray; Fehsenfeld, Fred C

    2005-07-15

    We have used a newly developed proton-transfer ion-trap mass spectrometry (PIT-MS) instrument for online trace gas analysis of volatile organic compounds (VOCs) during the 2004 New England Air Quality Study-Intercontinental Transport and Chemical Transformation study. The PIT-MS instrument uses proton-transfer reactions with H3O+ ions to ionize VOCs, similarto a PTR-MS (proton-transfer reaction mass spectrometry) instrument but uses an ion trap mass spectrometer to analyze the product ions. The advantages of an ion trap are the improved identification of VOCs and a near 100% duty cycle. During the experiment, the PIT-MS instrument had a detection limit between 0.05 and 0.3 pbbv (S/N = 3 (signal-to-noise ratio)) for 2-min integration time for most tested VOCs. PIT-MS was used for ambient air measurements onboard a research ship and agreed well with a gas chromatography mass spectrometer). The comparison included oxygenated VOCs, aromatic compounds, and others such as isoprene, monoterpenes, acetonitrile, and dimethyl sulfide. Automated collision-induced dissociation measurements were used to determine the contributions of acetone and propanal to the measured signal at 59 amu; both species are detected at this mass and are thus indistinguishable in conventional PTR-MS.

  2. Liquid Helium 3 and Solid Helium at Yale and Beyond

    NASA Astrophysics Data System (ADS)

    Lee, D. M.

    2006-03-01

    Many of the foundations of low temperature physics in the latter half of the twentieth century were built at Yale University under the leadership of Professor Cecil T. Lane who came to Yale in 1932 and Henry A. Fairbank who obtained his Ph.D. at Yale in 1944 under Lane's guidance. This discussion will mainly treat the contributions of Henry Fairbank and his students during the period between 1954 and 1963, when Henry Fairbank left Yale to become chairman of the Physics Dept. at Duke University. Following World War II small amounts of helium three became available to low temperature experimenters. Henry Fairbank’s graduate students were provided with the opportunity to investigate second sound in dilute and later concentrated mixtures of helium three in superfluid helium four. These measurements showed strong effects of the phase separation in helium 3 - helium 4 mixtures previously discovered in the laboratory of William Fairbank (a student of Lane and a brother of Henry Fairbank). As more helium three became available, studies of pure helium three were performed, including measurements of the thermal conductivity, the density and the specific heat. Early evidence for the melting curve minimum was found. The main emphasis in this work was to search for Fermi liquid behavior. Much of the later work in this area was performed by the group of John Wheatley at the University of Illinois. In studies of solid helium four at Yale, a surprising observation was made. Hitherto it had been thought that hcp was the stable phase throughout the low temperature part of the phase diagram. It was found via ultrasound experiments that a small silver of bcc solid existed at the lowest pressures. While this author was a graduate student at Yale, Henry Fairbank pointed out to him the possibility of cooling helium three via adiabatic compression from the liquid into the solid phase. (Pomeranchuk Cooling). A brief discussion is given of the use of this technique in the discovery of

  3. 48 CFR 52.208-8 - Required Sources for Helium and Helium Usage Data.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Office's Authorized List of Federal Helium Suppliers available via the Internet at http://www.nm.blm.gov..., insert the following clause: Required Sources for Helium and Helium Usage Data (APR 2002) (a)...

  4. Helium heater design for the helium direct cycle component test facility. [for gas-cooled nuclear reactor power plant

    NASA Technical Reports Server (NTRS)

    Larson, V. R.; Gunn, S. V.; Lee, J. C.

    1975-01-01

    The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.

  5. Radiation damage in gallium-stabilized δ-plutonium with helium bubbles

    NASA Astrophysics Data System (ADS)

    Wu, FengChao; Wang, Pei; Liu, XiaoYi; Wu, HengAn

    2017-02-01

    To understand the role of helium on self-irradiation effects in δ-plutonium, microstructure evolutions due to α-decay events near pre-existing helium bubbles in gallium-stabilized δ-plutonium are investigated using molecular dynamics simulations. Bubble promoting effect plays a dominating role in point defects production, resulting in increasing number of point defects. When lightweight helium atoms act as media, energy transfer discrepancy and altered spatial morphology of point defects induced by mass effect are revealed. The evolution of stacking faults surrounding the disordered core is studied and their binding effect on the propagation of point defects are presented. The cascade-induced bubble coalescence, resolution and re-nucleation driven by internal pressure are obtained in the investigation on helium behaviors. The intrinsic tendency in our simulated self-irradiation with helium bubbles is significant for understanding the underlying mechanism of aging in plutonium and its alloys.

  6. Pyridine-2,6-bis(monothiocarboxylic) acid and 2-aminopyridine as building blocks of a novel proton transfer compound: Solution and X-ray crystal structural studies

    NASA Astrophysics Data System (ADS)

    Moghimi, A.; Moosavi, S. M.; Kordestani, D.; Maddah, B.; Shamsipur, M.; Aghabozorg, H.; Ramezanipour, F.; Kickelbick, G.

    2007-02-01

    The synthesis of a novel proton transfer compound (2-apyH)(pdtcH), L, derived from pyridine-2,6-bis(monothiocarboxylic) acid, (pdtcH 2), is reported. This compound was prepared from the reaction between pdtcH 2, and 2-aminopyridine, (2-apy), in water as solvent. The characterization was performed using 1H and 13C solution NMR and single crystal X-ray diffraction analysis. Crystal structure analysis reveals that intra- and intermolecular proton transfer from the diacid pdtcH 2 to the base 2-apy results in the formation of a supramolecular network, which is self-assembled via non-covalent interactions. The monocationic (2-apyH) + and monoanionic (pdtcH) - building blocks are connected through H-bonding, π-π interactions and ion-pairing simultaneously as shown in the X-ray crystal structure. The monoanionic fragments are located almost parallel to each other and the cationic species have also situations nearly parallel to each other, positioning almost perpendicular to anions. The aqueous solution studies were accomplished by spectrophotometric and potentiometric pH titrations. The most abundant proton transfer species present at pH < 6 is (2-apyH)(pdtcH), in support of association between (2-apyH) + and (pdtcH) - in L, being similar to that observed by NMR spectroscopy and X-ray crystal structure analysis.

  7. Thermal characteristics of a low-loss liquid-helium dewar

    SciTech Connect

    Cha, Y.S.; Niemann, R.C.; Hull, J.R.

    1994-05-01

    A liquid helium dewar has been designed, fabricated, and operated successfully with a minimum background heat-loss rate of only a few milliwatts. The objective is to provide a facility that can be used to measure relatively low heat-loss rate (1--100 milliwatts) in a liquid helium environment. The experimental system consists mainly of an inner helium reservoir within an outer helium reservoir that is thermally shielded from the room-temperature environment by multiple insulation layers in a vacuum environment and a liquid nitrogen reservoir. The inner helium reservoir has a reduced cross-sectional (neck) area to minimize radiative and convective heat transfer to the liquid helium in the lower portion of the reservoir. Experimental results indicate that it takes a long time (>16 hours) for the system to cool down and reach the minimum heat-loss condition. Strong thermal interactions were observed between the inner and the outer reservoirs above the reduced cross-sectional area of the inner reservoir which is separated from the outer reservoir by a cylindrical stainless steel wall. Temperature measurements showed stratification in the vapor space above the liquid helium in the inner reservoir. Temperature distributions in the vapor space are not one-dimensional, and horizontal temperature gradients exist; this strongly suggests that natural convection may have persisted in the vapor space above the liquid helium in the inner reservoir. To alleviate the problem of strong thermal interactions between the inner and the outer reservoirs, we have since redesigned and tested an improved inner helium reservoir. The new reservoir has a heat intercept, an extended vacuum insulating space between the two helium reservoirs above the heat intercept, and an upper portion made of a thermally insulating epoxy fiberglass composite. Testing showed that interaction between the inner and the outer helium reservoirs of the new system is significantly lower than the original system.

  8. Application of cold beam of atoms and molecules for studying luminescence of oxygen atoms stimulated by metastable helium

    NASA Astrophysics Data System (ADS)

    Khmelenko, V. V.; Mao, S.; Meraki, A.; Wilde, S. C.; McColgan, P. T.; Pelmenev, A. A.; Boltnev, R. E.; Lee, D. M.

    2014-12-01

    We describe a method for creating a high flux beam of cold atoms and molecules. By using this beam method, spectroscopic studies of the afterglow of oxygen-helium gas mixtures at cryogenic temperatures were performed. The cooling by helium vapor of a helium jet containing trace amounts of oxygen after passing through a radiofrequency discharge zone led to the observation of strong emissions from atomic oxygen. The effect results from the increased efficiency of energy transfer from metastable helium atoms and molecules to the atomic oxygen in the cold dense helium vapor. The effect might find application for the detection of small quantities of impurities in helium gas as well as possible laser action.

  9. COSMIC-RAY HELIUM HARDENING

    SciTech Connect

    Ohira, Yutaka; Ioka, Kunihito

    2011-03-01

    Recent observations by the CREAM and ATIC-2 experiments suggest that (1) the spectrum of cosmic-ray (CR) helium is harder than that of CR protons below the knee energy, 10{sup 15}eV, and (2) all CR spectra become hard at {approx}>10{sup 11}eV nucleon{sup -1}. We propose a new idea, that higher energy CRs are generated in a more helium-rich region, to explain the hardening without introducing different sources for CR helium. The helium-to-proton ratio at {approx}100 TeV exceeds the Big Bang abundance Y = 0.25 by several times, and the different spectrum is not reproduced within the diffusive shock acceleration theory. We argue that CRs are produced in a chemically enriched region, such as a superbubble, and the outward-decreasing abundance naturally leads to the hard spectrum of CR helium if CRs escape from the supernova remnant shock in an energy-dependent way. We provide a simple analytical spectrum that also fits well the hardening due to the decreasing Mach number in the hot superbubble with {approx}10{sup 6} K. Our model predicts hard and concave spectra for heavier CR elements.

  10. Hydrogen and helium excitation by EUV radiation for the production of white-light flares

    NASA Technical Reports Server (NTRS)

    Poland, A. I.; Milkey, R. W.; Thompson, W. T.

    1988-01-01

    Non-LTE radiative transfer calculations for hydrogen and helium in a simple model atmosphere are used to demonstrate that EUV radiation cannot be the main energy source for white-light flares. The opacities in the Lyman continuum and the helium I and II continua are found to be much larger than the enhanced opacity in the visible hydrogen continuum. It is shown that the EUV radiation is absorbed before it can have a significant effect on the visible light continuum.

  11. Rogue mantle helium and neon.

    PubMed

    Albarède, Francis

    2008-02-15

    The canonical model of helium isotope geochemistry describes the lower mantle as undegassed, but this view conflicts with evidence of recycled material in the source of ocean island basalts. Because mantle helium is efficiently extracted by magmatic activity, it cannot remain in fertile mantle rocks for long periods of time. Here, I suggest that helium with high 3He/4He ratios, as well as neon rich in the solar component, diffused early in Earth's history from low-melting-point primordial material into residual refractory "reservoir" rocks, such as dunites. The difference in 3He/4He ratios of ocean-island and mid-ocean ridge basalts and the preservation of solar neon are ascribed to the reservoir rocks being stretched and tapped to different extents during melting.

  12. International solar polar mission: The vector helium magnetometer

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The functional requirements for the vector helium magnetometer (VHM) on the Solar Polar spacecraft are presented. The VHM is one of the two magnetometers on board that will measure the vector magnetic field along the Earth to Jupiter transfer trajectory, as well as in the vicinity of Jupiter and along the solar polar orbit following the Jupiter encounter. The interconnection between these two magnetometers and their shared data processing unit is illustrated.

  13. A computer simulation of the turbocharged turbo compounded diesel engine system: A description of the thermodynamic and heat transfer models

    NASA Technical Reports Server (NTRS)

    Assanis, D. N.; Ekchian, J. E.; Frank, R. M.; Heywood, J. B.

    1985-01-01

    A computer simulation of the turbocharged turbocompounded direct-injection diesel engine system was developed in order to study the performance characteristics of the total system as major design parameters and materials are varied. Quasi-steady flow models of the compressor, turbines, manifolds, intercooler, and ducting are coupled with a multicylinder reciprocator diesel model, where each cylinder undergoes the same thermodynamic cycle. The master cylinder model describes the reciprocator intake, compression, combustion and exhaust processes in sufficient detail to define the mass and energy transfers in each subsystem of the total engine system. Appropriate thermal loading models relate the heat flow through critical system components to material properties and design details. From this information, the simulation predicts the performance gains, and assesses the system design trade-offs which would result from the introduction of selected heat transfer reduction materials in key system components, over a range of operating conditions.

  14. Transferable potentials for phase equilibria. 9. Explicit hydrogen description of benzene and five-membered and six-membered heterocyclic aromatic compounds.

    PubMed

    Rai, Neeraj; Siepmann, J Ilja

    2007-09-13

    The explicit hydrogen version of the transferable potentials for phase equilibria (TraPPE-EH) force field is extended to benzene, pyridine, pyrimidine, pyrazine, pyridazine, thiophene, furan, pyrrole, thiazole, oxazole, isoxazole, imidazole, and pyrazole. While the Lennard-Jones parameters for carbon, hydrogen (two types), nitrogen (two types), oxygen, and sulfur are transferable for all 13 compounds, the partial charges are specific for each compound. The benzene dimer energies for sandwich, T-shape, and parallel-displaced configurations obtained for the TraPPE-EH force field compare favorably with high-level electronic structure calculations. Gibbs ensemble Monte Carlo simulations were carried out to compute the single-component vapor-liquid equilibria for benzene, pyridine, three diazenes, and eight five-membered heterocycles. The agreement with experimental data is excellent with the liquid densities and vapor pressures reproduced within 1 and 5%, respectively. The critical temperatures and normal boiling points are predicted with mean deviations of 0.8 and 1.6%, respectively.

  15. Probing quantum and dynamic effects in concerted proton-electron transfer reactions of phenol-base compounds.

    PubMed

    Markle, Todd F; Tenderholt, Adam L; Mayer, James M

    2012-01-12

    The oxidation of three phenols, which contain an intramolecular hydrogen bond to a pendent pyridine or amine group, has been shown, in a previous experimental study, to undergo concerted proton-electron transfer (CPET). In this reaction, the electron is transferred to an outer-sphere oxidant, and the proton is transferred from the oxygen to nitrogen atom. In the present study, this reaction is studied computationally using a version of Hammes-Schiffer's multistate continuum theory where CPET is formulated as a transmission frequency between neutral and cation vibrational-electronic states. The neutral and cation proton vibrational wave functions are computed from one-dimensional potential energy surfaces (PESs) for the transferring proton in a fixed heavy atom framework. The overlap integrals for these neutral/cation wave functions, considering several initial (i.e., neutral) and final (i.e., cation) vibrational states, are used to evaluate the relative rates of oxidation. The analysis is extended to heavy atom configurations with various proton donor-acceptor (i.e., O-N) distances to assess the importance of heavy atom "gating". Such changes in d(ON) dramatically affect the nature of the proton PESs and wave functions. Surprisingly, the most reactive configurations have similar donor-acceptor distances despite the large (~0.2 Å) differences in the optimized structures. These theoretical results qualitatively reproduce the experimental faster reactivity of the reaction of the pyridyl derivative 1 versus the CH(2)-pyridyl 2, but the computed factor of 5 is smaller than the experimental 10(2). The amine derivative is calculated to react similarly to 1, which does not agree with the experiments, likely due to some of the simplifying assumptions made in applying the theory. The computed kinetic isotope effects (KIEs) and their temperature dependence are in agreement with experimental results.

  16. Helium release during shale deformation: Experimental validation

    NASA Astrophysics Data System (ADS)

    Bauer, Stephen J.; Gardner, W. Payton; Heath, Jason E.

    2016-07-01

    This work describes initial experimental results of helium tracer release monitoring during deformation of shale. Naturally occurring radiogenic 4He is present in high concentration in most shales. During rock deformation, accumulated helium could be released as fractures are created and new transport pathways are created. We present the results of an experimental study in which confined reservoir shale samples, cored parallel and perpendicular to bedding, which were initially saturated with helium to simulate reservoir conditions, are subjected to triaxial compressive deformation. During the deformation experiment, differential stress, axial, and radial strains are systematically tracked. Release of helium is dynamically measured using a helium mass spectrometer leak detector. Helium released during deformation is observable at the laboratory scale and the release is tightly coupled to the shale deformation. These first measurements of dynamic helium release from rocks undergoing deformation show that helium provides information on the evolution of microstructure as a function of changes in stress and strain.

  17. On-line measurements of nitro organic compounds emitted from automobiles by proton transfer reaction mass spectrometry: Laboratory experiments and a field measurement

    NASA Astrophysics Data System (ADS)

    Inomata, S.; Tanimoto, H.; Fujitani, Y.; Fushimi, A.; Sato, K.; Sekimoto, K.; Yamada, H.; Hori, S.; Shimono, A.; Hikida, T.

    2011-12-01

    On-line measurements of nitro organic compounds in automobile exhaust were carried out by proton transfer reaction mass spectrometry (PTR-MS) with a chassis dynamometer. Diesel vehicles with oxidation catalyst system (diesel vehicle A) and with diesel PM-NOx reduction system ((diesel vehicle B) and a gasoline vehicle were used as a test vehicle. In the case of the diesel vehicle A, the emissions of nitromethane, nitrophenol (NPh), C7-, C8-, C9-, and C10-nitrophenols, and dihydroxynitrobenzenes (DHNB) were observed in the diesel exhaust from the experiment under the constant driving at 60 km hr-1. Temporal variations of mixing ratios for nitromethane, NPh, and DHNB along with related volatile organic compounds (VOCs) were measured during a transient driving cycle. The time-resolved measurement revealed that the nitromethane emission was strongly correlated with the emissions of CO, benzene, and acetone, which are relatively quickly produced in acceleration processes and appeared as sharp peaks. On the other hand, the NPh emission was moderately correlated with the emissions of acetic acid and phenol, which peaks were broad. The emission of nitromethane was observed from the exhaust of the diesel vehicle B but the emission of other nitro organic compounds was not observed. This suggests that the emission of nitro organic compounds besides nitromethane may depend on the diesel exhaust aftertreatment devices. The emission of nitromethane was also observed from the exhaust of the gasoline vehicle with cold start. An in-situ measurement of nitro organic compounds and their related VOCs was carried out at the crossing of an urban city, Kawasaki. Nitromethane was observed at the crossing and we found that the concentration of nitrometane varied rapidly. During the measurement, the maximum of the concentration of nitrometane reached 5 ppbv. Not only nitrophenols but also nitroaromatics were sometimes detected in the field measurement.

  18. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, R.S.; Todd, R.A.

    1985-04-09

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  19. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  20. In vivo analysis of palm wine (Elaeis guineensis) volatile organic compounds (VOCs) by proton transfer reaction-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lasekan, Ola; Otto, Sabine

    2009-04-01

    The in vivo volatile organic compounds (VOCs) release patterns in palm wine was carried out using the PTR-MS. In order to analyze the complex mixtures of VOCs in palm wine, the fragmentation patterns of 14 known aroma compounds of palm wine were also investigated. Results revealed masses m/z (43, 47, 61, 65, 75, 89 and 93) as the predominant ones measured in-breathe exhaled from the nose, during consumption of palm wine. Further studies of aroma's fragmentation patterns, showed that the m/z 43 is characteristic of fragment of various compounds, while m/z 47 is ethanol, m/z 61(acetic acid), m/z 65 (protonated ethanol cluster ions), m/z 75 (methyl acetate), m/z 89 (acetoin) and m/z 93 (2-phenylethanol) respectively. The dynamic release parameters (Imax and tmax) of the 7 masses revealed significant (P = 0.05) differences, between maximum intensity (Imax) and no significant (P = 0.05) differences between tmax among VOCs respectively.

  1. 21 CFR 184.1355 - Helium.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Helium. 184.1355 Section 184.1355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1355 Helium. (a) Helium (empirical formula He, CAS Reg. No. 7440-59-7) is...

  2. 21 CFR 582.1355 - Helium.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Helium. 582.1355 Section 582.1355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS... Helium. (a) Product. Helium. (b) Conditions of use. This substance is generally recognized as safe...

  3. 43 CFR 3100.1 - Helium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Helium. 3100.1 Section 3100.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE... Helium. The ownership of and the right to extract helium from all gas produced from lands leased...

  4. 43 CFR 3100.1 - Helium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Helium. 3100.1 Section 3100.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE... Helium. The ownership of and the right to extract helium from all gas produced from lands leased...

  5. 21 CFR 582.1355 - Helium.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Helium. 582.1355 Section 582.1355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS... Helium. (a) Product. Helium. (b) Conditions of use. This substance is generally recognized as safe...

  6. 21 CFR 184.1355 - Helium.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Helium. 184.1355 Section 184.1355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1355 Helium. (a) Helium (empirical formula He, CAS Reg. No. 7440-59-7) is...

  7. 21 CFR 184.1355 - Helium.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Helium. 184.1355 Section 184.1355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1355 Helium. (a) Helium (empirical formula He, CAS Reg. No. 7440-59-7) is a colorless,...

  8. 21 CFR 582.1355 - Helium.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Helium. 582.1355 Section 582.1355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS... Helium. (a) Product. Helium. (b) Conditions of use. This substance is generally recognized as safe...

  9. 43 CFR 3100.1 - Helium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Helium. 3100.1 Section 3100.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE... Helium. The ownership of and the right to extract helium from all gas produced from lands leased...

  10. Applying the helium ionization detector in chromatography

    NASA Technical Reports Server (NTRS)

    Gibson, E. K.; Andrawes, F. F.; Brazell, R. S.

    1981-01-01

    High noise levels and oversensitivity of helium detector make flame-ionization and thermal-conductivity detectors more suitable for chromotography. Deficiencies are eliminated by modifying helium device to operate in saturation rather than multiplication mode. Result is low background current, low noise, high stability, and high sensitivity. Detector analyzes halocarbons, hydrocarbons, hydrogen cyanide, ammonia, and inorganics without requiring expensive research-grade helium.

  11. 21 CFR 582.1355 - Helium.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Helium. 582.1355 Section 582.1355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS... Helium. (a) Product. Helium. (b) Conditions of use. This substance is generally recognized as safe...

  12. 21 CFR 184.1355 - Helium.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Helium. 184.1355 Section 184.1355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1355 Helium. (a) Helium (empirical formula He, CAS Reg. No. 7440-59-7) is...

  13. 43 CFR 3100.1 - Helium.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Helium. 3100.1 Section 3100.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE... Helium. The ownership of and the right to extract helium from all gas produced from lands leased...

  14. 21 CFR 582.1355 - Helium.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Helium. 582.1355 Section 582.1355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS... Helium. (a) Product. Helium. (b) Conditions of use. This substance is generally recognized as safe...

  15. 21 CFR 184.1355 - Helium.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Helium. 184.1355 Section 184.1355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1355 Helium. (a) Helium (empirical formula He, CAS Reg. No. 7440-59-7) is...

  16. Real-time analysis of organic compounds in ship engine aerosol emissions using resonance-enhanced multiphoton ionisation and proton transfer mass spectrometry.

    PubMed

    Radischat, Christian; Sippula, Olli; Stengel, Benjamin; Klingbeil, Sophie; Sklorz, Martin; Rabe, Rom; Streibel, Thorsten; Harndorf, Horst; Zimmermann, Ralf

    2015-08-01

    Organic combustion aerosols from a marine medium-speed diesel engine, capable to run on distillate (diesel fuel) and residual fuels (heavy fuel oil), were investigated under various operating conditions and engine parameters. The online chemical characterisation of the organic components was conducted using a resonance-enhanced multiphoton ionisation time-of-flight mass spectrometer (REMPI TOF MS) and a proton transfer reaction-quadrupole mass spectrometer (PTR-QMS). Oxygenated species, alkenes and aromatic hydrocarbons were characterised. Especially the aromatic hydrocarbons and their alkylated derivatives were very prominent in the exhaust of both fuels. Emission factors of known health-hazardous compounds (e.g. mono- and poly-aromatic hydrocarbons) were calculated and found in higher amounts for heavy fuel oil (HFO) at typical engine loadings. Lower engine loads lead in general to increasing emissions for both fuels for almost every compound, e.g. naphthalene emissions varied for diesel fuel exhaust between 0.7 mg/kWh (75 % engine load, late start of injection (SOI)) and 11.8 mg/kWh (10 % engine load, late SOI) and for HFO exhaust between 3.3 and 60.5 mg/kWh, respectively. Both used mass spectrometric techniques showed that they are particularly suitable methods for online monitoring of combustion compounds and very helpful for the characterisation of health-relevant substances. Graphical abstract Three-dimensional REMPI data of organic species in diesel fuel and heavy fuel oil exhaust.

  17. D0 Silicon Upgrade: Commissioning Test Results for D-Zero's Helium Refrigerator

    SciTech Connect

    Rucinski, Russ; /Fermilab

    1997-06-30

    The test objectives are: (1) Make liquid helium and measure refrigerator capacity; (2) Measure liquid helium dewar heat leak, transfer line heat leak, and liquid nitrogen consumption rates; (3) Operate all cryogenic transfer lines; (4) Get some running time on all components; (5) Debug mechanical components, instrumentation, DMACs user interface, tune loops, and otherwise shake out any problems; (6) Get some operating time in to get familiar with system behavior; (7) Revise and/or improve operating procedures to actual practice; and (8) Identify areas for future improvement. D-Zero's stand alone helium refrigerator (STAR) liquified helium at a rate of 114 L/hr. This is consistent with other STAR installations. Refrigeration capacity was not measured due to lack of a calibrated heat load. Measured heat leaks were within design values. The helium dewar loss was measured at 2 to 4 watts or 9% per day, the solenoid and VLPC helium transfer lines had a heat leak of about 20 watts each. The liquid nitrogen consumption rates of the mobile purifier, STAR, and LN2 subcooler were measured at 20 gph, 20 to 64 gph, and 3 gph respectively. All cryogenic transfer lines including the solenoid and visible light photon counter (VLPC) transfer lines were cooled to their cryogenic operating temperatures. This included independent cooling of nitrogen shields and liquid helium components. No major problems were observed. The system ran quite well. Many problems were identified and corrected as they came up. Areas for improvement were noted and will be implemented in the future. The instrumentation and control system operated commendably during the test. The commissioning test run was a worthwhile and successful venture.

  18. Why Helium Ends in "-Ium"

    ERIC Educational Resources Information Center

    Jensen, William B.; Holme, Thomas; Cooper, Melanie; White, Carol

    2004-01-01

    Edward Frankland and Norman Lockyer researched upon a gaseous spectra in relation to the physical constitution of the sun and named it as "helium" (from Greek "helios" meaning "sun"). Since Lockyer apparently never formally proposed the name in print, it is not known why he chose to use a metallic end "ium".

  19. Helium diffusion in the sun

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.; Pinsonneault, M. H.

    1992-01-01

    We calculate improved standard solar models using the new Livermore (OPAL) opacity tables, an accurate (exportable) nuclear energy generation routine which takes account of recent measurements and analyses, and the recent Anders-Grevesse determination of heavy element abundances. We also evaluate directly the effect of the diffusion of helium with respect to hydrogen on the calculated neutrino fluxes, on the primordial solar helium abundance, and on the depth of the convective zone. Helium diffusion increases the predicted event rates by about 0.8 SNU, or 11 percent of the total rate, in the chlorine solar neutrino experiment, by about 3.5 SNU, or 3 percent, in the gallium solar neutrino experiments, and by about 12 percent in the Kamiokande and SNO solar neutrino experiments. The best standard solar model including helium diffusion and the most accurate nuclear parameters, element abundances, and radiative opacity predicts a value of 8.0 SNU +/- 3.0 SNU for the C1-37 experiment and 132 +21/-17 SNU for the Ga - 71 experiment, where the uncertainties include 3 sigma errors for all measured input parameters.

  20. Linear free energy relationship and deuterium kinetic isotope effect observed on phospho and thiophosphoryl transfer reactions in some organophosphorous compounds

    NASA Astrophysics Data System (ADS)

    Lumbiny, B. J.; Hui, Z.; Islam, M. A.; Quader, M. A.; Rahman, M.

    2014-04-01

    Tetracoordinated organophosphorous compounds were synthesized, characterized and nucleophilic substitution reaction were investigated by varying substituents around phosphorous centre or in nucleophile considering its utility in biological and environmental system. The reactivity is expressed in terms of second-order rate constant, k2 and measured conductometrically. Linear Free Energy Relationship (LFER) tools mainly Hammett (ρ), Brönsted (β) LFER coefficients and deuterium kinetic isotope effects (KIEs) being determined for the pyridinolysis of 4 - chlorophenyl 4 - methoxy phenyl chlorophosphate, 1 in acetonitrile at 5.0 °C. The experimental data's were compared with those of structurally similar organophosphorous compounds reported earlier in quest for the mechanistic information. Nice linear correlation being found for Hammett (logk2 vs σx), having negative value of the ρX = -5.85 and Brönsted (logk2 vs pKa(x)) plots having large positive value for βX = 1.18 for 1 can be interpreted as SN2 process with greater extent of bond formation in transition state (TS) of 1. The observed kH/kD values of 1 is 1.00 ± 0.05 and net KIE, 1.32 suggests the primary KIE and indicates frontside nucleophilic attack through the partial deprotonation of pyridine occurs by the hydrogen bonding in the rate-determining step.

  1. Effectiveness of a Closed-System Transfer Device in Reducing Surface Contamination in a New Antineoplastic Drug-Compounding Unit: A Prospective, Controlled, Parallel Study

    PubMed Central

    Pinturaud, Marine; Soichot, Marion; Richeval, Camille; Humbert, Luc; Lebecque, Michèle; Sidikou, Ousseini; Barthelemy, Christine; Bonnabry, Pascal; Allorge, Delphine; Décaudin, Bertrand; Odou, Pascal

    2016-01-01

    Background The objective of this randomized, prospective and controlled study was to investigate the ability of a closed-system transfer device (CSTD; BD-Phaseal) to reduce the occupational exposure of two isolators to 10 cytotoxic drugs and compare to standard compounding devices. Methods and Findings The 6-month study started with the opening of a new compounding unit. Two isolators were set up with 2 workstations each, one to compound with standard devices (needles and spikes) and the other using the Phaseal system. Drugs were alternatively compounded in each isolator. Sampling involved wiping three surfaces (gloves, window, worktop), before and after a cleaning process. Exposure to ten antineoplastic drugs (cyclophosphamide, ifosfamide, dacarbazine, 5-FU, methotrexate, gemcitabine, cytarabine, irinotecan, doxorubicine and ganciclovir) was assessed on wipes by LC-MS/MS analysis. Contamination rates were compared using a Chi2 test and drug amounts by a Mann-Whitney test. Significance was defined for p<0.05. Overall contamination was lower in the “Phaseal” isolator than in the “Standard” isolator (12.24% vs. 26.39%; p < 0.0001) although it differed according to drug. Indeed, the contamination rates of gemcitabine were 49.3 and 43.4% (NS) for the Standard and Phaseal isolators, respectively, whereas for ganciclovir, they were 54.2 and 2.8% (p<0.0001). Gemcitabine amounts were 220.6 and 283.6 ng for the Standard and Phaseal isolators (NS), and ganciclovir amounts were 179.9 and 2.4 ng (p<0.0001). Conclusion This study confirms that using a CSTD may significantly decrease the chemical contamination of barrier isolators compared to standard devices for some drugs, although it does not eliminate contamination totally. PMID:27391697

  2. High-temperature helium-loop facility

    SciTech Connect

    Tokarz, R.D.

    1981-09-01

    The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100/sup 0/F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system.

  3. Helium damage and helium effusion in fully stabilised zirconia

    NASA Astrophysics Data System (ADS)

    Damen, P. M. G.; Matzke, Hj.; Ronchi, C.; Hiernaut, J.-P.; Wiss, T.; Fromknecht, R.; van Veen, A.; Labohm, F.

    2002-05-01

    Fully stabilised zirconia (FSZ) samples have been implanted with helium-ions of different energies (200 keV and 1 MeV) and with different fluences (1.4×10 13-1.4×10 16 He +/cm 2). Neutron depth profiling (NDP) for different annealing temperatures and effusion experiments in two different experimental systems with different thermal annealings have been performed on these samples. The samples were analysed by electron microscopy during the various annealing stages. For the low-fluence samples, the diffusion of helium is probably caused by vacancy assisted interstitial diffusion with an activation energy of 1.6 eV. In the highest fluence samples probably high pressure bubbles are formed during thermal annealing.

  4. Approximating the Helium Wavefunction in Positronium-Helium Scattering

    NASA Technical Reports Server (NTRS)

    DiRienzi, Joseph; Drachman, Richard J.

    2003-01-01

    In the Kohn variational treatment of the positronium- hydrogen scattering problem the scattering wave function is approximated by an expansion in some appropriate basis set, but the target and projectile wave functions are known exactly. In the positronium-helium case, however, a difficulty immediately arises in that the wave function of the helium target atom is not known exactly, and there are several ways to deal with the associated eigenvalue in formulating the variational scattering equations to be solved. In this work we will use the Kohn variational principle in the static exchange approximation to d e t e e the zero-energy scattering length for the Ps-He system, using a suite of approximate target functions. The results we obtain will be compared with each other and with corresponding values found by other approximation techniques.

  5. Exchange-spring like magnetic behavior of the tetragonal Heusler compound Mn2FeGa as a candidate for spin-transfer torque

    NASA Astrophysics Data System (ADS)

    Gasi, Teuta; Nayak, Ajaya K.; Winterlik, Jürgen; Ksenofontov, Vadim; Adler, Peter; Nicklas, Michael; Felser, Claudia

    2013-05-01

    We report structural, magnetic, and Mössbauer studies of the Heusler compound Mn2FeGa. Theoretical calculations predict that a tetragonal phase in Mn2FeGa could be an interesting candidate for spin torque transfer applications due to the presence of perpendicular magnetic anisotropy. Experimentally, we found that Mn2FeGa crystallizes in a tetragonal structure after annealing at low temperatures (≤400 °C), whereas, it becomes pseudocubic for higher annealing temperatures. The sample annealed at 400 °C shows a high Curie temperature of 650 K and a hard-magnetic behavior. We observed a nonsaturating and exchange-spring type of hysteresis loops, which indicates that the sample contains two different magnetic states. The Mössbauer measurements clearly support the structural and magnetic data. All these properties make the material a potential candidate for spintronic devices, especially in thin films with perpendicular magnetic anisotropy.

  6. The Arctic seasonal snow pack as a transfer mechanism and a reactor for lower atmosphere chemical compounds (Invited)

    NASA Astrophysics Data System (ADS)

    Douglas, T. A.

    2013-12-01

    The Polar Regions are snow covered for two thirds of the year (or longer) and in many locations there are few melt events during the winter. As a consequence, the late winter snow pack presents a spatial and temporal archive of the previous winter's precipitation, snow-atmosphere exchange, and within snow pack physical and chemical processes. However, to use the snow pack as a 'sensor' we have to understand the physical and chemical exchange processes between atmospheric compounds and snow and ice surfaces. Of equal importance is knowledge of the reactions that occur in and on snow and ice particle surfaces. Recent research has provided insights on the pathways individual compounds take from the lower atmosphere to snow and on the physical and chemical processes occurring within the snow pack at a variety of scales. Snow on or near sea ice has markedly higher major ion concentrations than snow on the terrestrial snow pack, most notably for chloride and bromide. This difference in chemical composition can be dramatic even in coastal regions where the land is only hundreds of meters away. As a consequence, we have to treat chemical cycling processes in/on snow on sea ice and snow on land differently. Since these halogens, particularly bromine, play critical roles in the spring time photochemical reactions that oxidize ozone and mercury their presence and fate on the sea ice snow pack is of particular interest. A future Arctic is expected to have a thinner, more dynamic sea ice cover that will arrive later and melt earlier. The areal extent of young ice production will likely increase markedly. This would lead to a different snow depositional and chemical regime on sea ice with potential ramifications for chemical exchange with the lower atmosphere. The roles of clear sky precipitation ('diamond dust') and surface hoar deposition in providing a unique lower atmospheric 'reactor' and potential source of water equivalence have been largely overlooked. This despite the

  7. Design analysis of a Helium re-condenser

    NASA Astrophysics Data System (ADS)

    Muley, P. K.; Bapat, S. L.; Atrey, M. D.

    2017-02-01

    Modern helium cryostats deploy a cryocooler with a re-condenser at its II stage for in-situ re-condensation of boil-off vapor. The present work is a vital step in the ongoing research work of design of cryocooler based 100 litre helium cryostat with in-situ re-condensation. The cryostat incorporates a two stage Gifford McMahon cryocooler having specified refrigerating capacity of 40 W at 43 K for I stage and 1 W at 4.2 K for II stage. Although design of cryostat ensures thermal load for cryocooler below its specified refrigerating capacity at the second stage, successful in-situ re-condensation depends on proper design of re-condenser which forms the objective of this work. The present work proposes design of helium re-condenser with straight rectangular fins. Fins are analyzed for optimization of thermal performance parameters such as condensation heat transfer coefficient, surface area for heat transfer, re-condensing capacity, efficiency and effectiveness. The present work provides design of re-condenser with 19 integral fins each of 10 mm height and 1.5 mm thickness with a gap of 1.5 mm between two fins, keeping in mind the manufacturing feasibility, having efficiency of 80.96 % and effectiveness of 10.34.

  8. Cold Helium Gas Pressurization For Spacecraft Cryogenic Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Morehead, Robert L.; Atwell. Matthew J.; Hurlbert, Eric A.; Melcher, J. C.

    2017-01-01

    To reduce the dry mass of a spacecraft pressurization system, helium pressurant may be stored at low temperature and high pressure to increase mass in a given tank volume. Warming this gas through an engine heat exchanger prior to tank pressurization both increases the system efficiency and simplifies the designs of intermediate hardware such as regulators, valves, etc. since the gas is no longer cryogenic. If this type of cold helium pressurization system is used in conjunction with a cryogenic propellant, though, a loss in overall system efficiency can be expected due to heat transfer from the warm ullage gas to the cryogenic propellant which results in a specific volume loss for the pressurant, interpreted as the Collapse Factor. Future spacecraft with cryogenic propellants will likely have a cold helium system, with increasing collapse factor effects as vehicle sizes decrease. To determine the collapse factor effects and overall implementation strategies for a representative design point, a cold helium system was hotfire tested on the Integrated Cryogenic Propulsion Test Article (ICPTA) in a thermal vacuum environment at the NASA Glenn Research Center Plum Brook Station. The ICPTA vehicle is a small lander-sized spacecraft prototype built at NASA Johnson Space Center utilizing cryogenic liquid oxygen/liquid methane propellants and cryogenic helium gas as a pressurant to operate one 2,800lbf 5:1 throttling main engine, two 28lbf Reaction Control Engines (RCE), and two 7lbf RCEs (Figure 1). This vehicle was hotfire tested at a variety of environmental conditions at NASA Plum Brook, ranging from ambient temperature/simulated high altitude, deep thermal/high altitude, and deep thermal/high vacuum conditions. A detailed summary of the vehicle design and testing campaign may be found in Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing, AIAA JPC 2017.

  9. Note: Control of liquid helium supply to cryopanels of Kolkata superconducting cyclotron

    SciTech Connect

    Bhattacharyya, T. K. Pal, G.

    2015-02-15

    The Kolkata superconducting cyclotron utilises liquid helium to cool the main magnet niobium-titanium (NbTi) coil and the cryopanels. Three liquid helium cooled cryopanels, placed inside the dees of the radio-frequency system, maintain the high vacuum in the acceleration region of the superconducting cyclotron. The small cryostat placed inside the cryogenic distribution manifold located at the basement of the superconducting cyclotron building supplies liquid helium in parallel branches to three cold heads, used for cooling their associated cryopanels. The level in the cryostat has to be maintained at an optimum value to ensure uninterrupted flow of liquid helium to these three cold heads. This paper describes the transfer function of the overall system, its tuning parameters, and discusses the actual control of cryostat level by using these parameters.

  10. Radiation and gas conduction heat transport across a helium dewer multilayer insulation system

    SciTech Connect

    Green, M.A.

    1995-02-01

    This report describes a method for calculating mixed heat transfer through the multilayer insulation used to insulated a 4K liquid helium cryostat. The method described permits one to estimate the insulation potential for a multilayer insulation system from first principles. The heat transfer regimes included are: radiation, conduction by free molecule gas conduction, and conduction through continuum gas conduction. Heat transfer in the transition region between the two gas conduction regimes is also included.

  11. Radiation and gas conduction heat transport across a helium dewar multilayer insulation system

    SciTech Connect

    Green, M.A.

    1994-10-10

    This report describes a method for calculating mixed heat transfer through the multilayer insulation used to insulate a 4 K liquid helium cryostat. The method described here permits one to estimate the insulation potential for a multilayer insulation system from first principles. The heat transfer regimes included are: radiation, conduction by free molecule gas conduction, and conduction through continuum gas conduction. Heat transfer in the transition region between the two gas conduction regimes is also included.

  12. STIRAP on helium: Excitation to Rydberg states

    NASA Astrophysics Data System (ADS)

    Yuan, Deqian

    Research in optically induced transitions between dierent atomic levels has a long history. For transitions between states driven by a coherent optical eld, the theoretical eciency could be ideally high as 100% but there could be many factors preventing this. In the three state helium atom excitation process, i.e. 23S→33P→nL , the stimulated emission from intermediate state makes it hard to achieve ecient population transfer to the nal state through an intuitive excitation order. One technique to achieve a higher eciency is Stimulated Raman Adiabatic Passage (STIRAP) which is being studied and under research in our lab. Unlike traditional three level excitation processes, STIRAP actually uses a counter intuitive pulsed laser beams timing arrangement. The excitation objects are metastable helium atoms traveling in a vacuum system with a longitudinal velocity of ~ 1070 m/s. We are using a 389 nm UV laser to connect the 23S and the 33P state and a frequency tunable ~790 nm IR laser to connect the 33P state and the dierent Rydberg states. A third 1083 nm wavelength laser beam drives the 23S → 23P transition to transversely separate the residual metastable atoms and the Rydberg atoms for eciency measurements. The data is taken by a stainless steel detector in the vacuum system. As the Rydberg atoms will get ionized by blackbody radiation under room temperature, we can utilize this for their detection. An ion detector sitting on the eld plate is capable to collect the ion signals of the Rydberg atoms for detection. So far the whole system has not been ready for data collection and measurement, so here we are using data and results from previous theses for discussions. The highest transition frequency that has ever been achieved in our lab is around 70% after corrections.

  13. Controlling Interfacial Reactions and Intermetallic Compound Growth at the Interface of a Lead-free Solder Joint with Layer-by-Layer Transferred Graphene.

    PubMed

    Ko, Yong-Ho; Lee, Jong-Dae; Yoon, Taeshik; Lee, Chang-Woo; Kim, Taek-Soo

    2016-03-02

    The immoderate growth of intermetallic compounds (IMCs) formed at the interface of a solder metal and the substrate during soldering can degrade the mechanical properties and reliability of a solder joint in electronic packaging. Therefore, it is critical to control IMC growth at the solder joints between the solder and the substrate. In this study, we investigated the control of interfacial reactions and IMC growth by the layer-by-layer transfer of graphene during the reflow process at the interface between Sn-3.0Ag-0.5Cu (in wt %) lead-free solder and Cu. As the number of graphene layers transferred onto the surface of the Cu substrate increased, the thickness of the total IMC (Cu6Sn5 and Cu3Sn) layer decreased. After 10 repetitions of the reflow process for 50 s above 217 °C, the melting temperature of Sn-3.0Ag-0.5Cu, with a peak temperature of 250 °C, the increase in thickness of the total IMC layer at the interface with multiple layers of graphene was decreased by more than 20% compared to that at the interface of bare Cu without graphene. Furthermore, the average diameter of the Cu6Sn5 scallops at the interface with multiple layers of graphene was smaller than that at the interface without graphene. Despite 10 repetitions of the reflow process, the growth of Cu3Sn at the interface with multiple layers of graphene was suppressed by more than 20% compared with that at the interface without graphene. The multiple layers of graphene at the interface between the solder metal and the Cu substrate hindered the diffusion of Cu atoms from the Cu substrate and suppressed the reactions between Cu and Sn in the solder. Thus, the multiple layers of graphene transferred at the interface between dissimilar metals can control the interfacial reaction and IMC growth occurring at the joining interface.

  14. Superfluid helium leak sealant study

    NASA Technical Reports Server (NTRS)

    Vorreiter, J. W.

    1981-01-01

    Twenty-one leak specimens were fabricated in the ends of stainless steel and aluminum tubes. Eighteen of these tubes were coated with a copolymer material to seal the leak. The other three specimens were left uncoated and served as control specimens. All 21 tubes were cold shocked in liquid helium 50 times and then the leak rate was measured while the tubes were submerged in superfluid helium at 1.7 K. During the cold shocks two of the coated specimens were mechanically damaged and eliminated from the test program. Of the remaining 16 coated specimens one suffered a total coating failure and resulting high leak rate. Another three of the coated specimens suffered partial coating failures. The leak rates of the uncoated specimens were also measured and reported. The significance of various leak rates is discussed in view of the infrared astronomical satellite (IRAS) Dewar performance.

  15. Confined helium on Lagrange meshes.

    PubMed

    Baye, D; Dohet-Eraly, J

    2015-12-21

    The Lagrange-mesh method has the simplicity of a calculation on a mesh and can have the accuracy of a variational method. It is applied to the study of a confined helium atom. Two types of confinement are considered. Soft confinements by potentials are studied in perimetric coordinates. Hard confinement in impenetrable spherical cavities is studied in a system of rescaled perimetric coordinates varying in [0,1] intervals. Energies and mean values of the distances between electrons and between an electron and the helium nucleus are calculated. A high accuracy of 11 to 15 significant figures is obtained with small computing times. Pressures acting on the confined atom are also computed. For sphere radii smaller than 1, their relative accuracies are better than 10(-10). For larger radii up to 10, they progressively decrease to 10(-3), still improving the best literature results.

  16. Elastic Electron Scattering from Tritium and Helium-3

    DOE R&D Accomplishments Database

    Collard, H.; Hofstadter, R.; Hughes, E. B.; Johansson, A.; Yearian, M. R.; Day, R. B.; Wagner, R. T.

    1964-10-01

    The mirror nuclei of tritium and helium-3 have been studied by the method of elastic electron scattering. Absolute cross sections have been measured for incident electron energies in the range 110 - 690 MeV at scattering angles lying between 40 degrees and 135 degrees in this energy range. The data have been interpreted in a straightforward manner and form factors are given for the distributions of charge and magnetic moment in the two nuclei over a range of four-momentum transfer squared 1.0 - 8.0 F{sup -2}. Model-independent radii of the charge and magnetic moment distributions are given and an attempt is made to deduce form factors describing the spatial distribution of the protons in tritium and helium-3.

  17. Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis.

    PubMed

    Steeghs, Marco; Bais, Harsh Pal; de Gouw, Joost; Goldan, Paul; Kuster, William; Northway, Megan; Fall, Ray; Vivanco, Jorge M

    2004-05-01

    Plant roots release about 5% to 20% of all photosynthetically-fixed carbon, and as a result create a carbon-rich environment for numerous rhizosphere organisms, including plant pathogens and symbiotic microbes. Although some characterization of root exudates has been achieved, especially of secondary metabolites and proteins, much less is known about volatile organic compounds (VOCs) released by roots. In this communication, we describe a novel approach to exploring these rhizosphere VOCs and their induction by biotic stresses. The VOC formation of Arabidopsis roots was analyzed using proton-transfer-reaction mass spectrometry (PTR-MS), a new technology that allows rapid and real time analysis of most biogenic VOCs without preconcentration or chromatography. Our studies revealed that the major VOCs released and identified by both PTR-MS and gas chromatography-mass spectrometry were either simple metabolites, ethanol, acetaldehyde, acetic acid, ethyl acetate, 2-butanone, 2,3,-butanedione, and acetone, or the monoterpene, 1,8-cineole. Some VOCs were found to be produced constitutively regardless of the treatment; other VOCs were induced specifically as a result of different compatible and noncompatible interactions between microbes and insects and Arabidopsis roots. Compatible interactions of Pseudomonas syringae DC3000 and Diuraphis noxia with Arabidopsis roots resulted in the rapid release of 1,8-cineole, a monoterpene that has not been previously reported in Arabidopsis. Mechanical injuries to Arabidopsis roots did not produce 1,8-cineole nor any C6 wound-VOCs; compatible interactions between Arabidopsis roots and Diuraphis noxia did not produce any wound compounds. This suggests that Arabidopsis roots respond to wounding differently from above-ground plant organs. Trials with incompatible interactions did not reveal a set of compounds that was significantly different compared to the noninfected roots. The PTR-MS method may open the way for functional root VOC

  18. In cleanroom, sub-ppb real-time monitoring of volatile organic compounds using proton-transfer reaction/time of flight/mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hayeck, Nathalie; Maillot, Philippe; Vitrani, Thomas; Pic, Nicolas; Wortham, Henri; Gligorovski, Sasho; Temime-Roussel, Brice; Mizzi, Aurélie; Poulet, Irène

    2014-04-01

    Refractory compounds such as Trimethylsilanol (TMS) and other organic compounds such as propylene glycol methyl ether acetate (PGMEA) used in the photolithography area of microelectronic cleanrooms have irreversible dramatic impact on optical lenses used on photolithography tools. There is a need for real-time, continuous measurements of organic contaminants in representative cleanroom environment especially in lithography zone. Such information is essential to properly evaluate the impact of organic contamination on optical lenses. In this study, a Proton-Transfer Reaction-Time-of-Flight Mass spectrometer (PTR-TOF-MS) was applied for real-time and continuous monitoring of fugitive organic contamination induced by the fabrication process. Three types of measurements were carried out using the PTR-TOF-MS in order to detect the volatile organic compounds (VOCs) next to the tools in the photolithography area and at the upstream and downstream of chemical filters used to purge the air in the cleanroom environment. A validation and verification of the results obtained with PTR-TOF-MS was performed by comparing these results with those obtained with an off-line technique that is Automated Thermal Desorber - Gas Chromatography - Mass Spectrometry (ATD-GC-MS) used as a reference analytical method. The emerged results from the PTR-TOF-MS analysis exhibited the temporal variation of the VOCs levels in the cleanroom environment during the fabrication process. While comparing the results emerging from the two techniques, a good agreement was found between the results obtained with PTR-TOF-MS and those obtained with ATD-GC-MS for the PGMEA, toluene and xylene. Regarding TMS, a significant difference was observed ascribed to the technical performance of both instruments.

  19. Proton-Transfer-Reaction Mass Spectrometry as a New Tool for Real Time Analysis of Root-Secreted Volatile Organic Compounds in Arabidopsis1

    PubMed Central

    Steeghs, Marco; Bais, Harsh Pal; de Gouw, Joost; Goldan, Paul; Kuster, William; Northway, Megan; Fall, Ray; Vivanco, Jorge M.

    2004-01-01

    Plant roots release about 5% to 20% of all photosynthetically-fixed carbon, and as a result create a carbon-rich environment for numerous rhizosphere organisms, including plant pathogens and symbiotic microbes. Although some characterization of root exudates has been achieved, especially of secondary metabolites and proteins, much less is known about volatile organic compounds (VOCs) released by roots. In this communication, we describe a novel approach to exploring these rhizosphere VOCs and their induction by biotic stresses. The VOC formation of Arabidopsis roots was analyzed using proton-transfer-reaction mass spectrometry (PTR-MS), a new technology that allows rapid and real time analysis of most biogenic VOCs without preconcentration or chromatography. Our studies revealed that the major VOCs released and identified by both PTR-MS and gas chromatography-mass spectrometry were either simple metabolites, ethanol, acetaldehyde, acetic acid, ethyl acetate, 2-butanone, 2,3,-butanedione, and acetone, or the monoterpene, 1,8-cineole. Some VOCs were found to be produced constitutively regardless of the treatment; other VOCs were induced specifically as a result of different compatible and noncompatible interactions between microbes and insects and Arabidopsis roots. Compatible interactions of Pseudomonas syringae DC3000 and Diuraphis noxia with Arabidopsis roots resulted in the rapid release of 1,8-cineole, a monoterpene that has not been previously reported in Arabidopsis. Mechanical injuries to Arabidopsis roots did not produce 1,8-cineole nor any C6 wound-VOCs; compatible interactions between Arabidopsis roots and Diuraphis noxia did not produce any wound compounds. This suggests that Arabidopsis roots respond to wounding differently from above-ground plant organs. Trials with incompatible interactions did not reveal a set of compounds that was significantly different compared to the noninfected roots. The PTR-MS method may open the way for functional root VOC

  20. HIV-Associated Facial Lipodystrophy: Experience of a Tertiary Referral Center With Fat and Dermis-Fat Compound Graft Transfer

    PubMed Central

    Casal, Diogo; Bexiga, Joaquim; Sousa, Juliana; Martins, João; Teófilo, Eugénio; Maltez, Fernando; Germano, Isabel; Videira e Castro, José

    2016-01-01

    Objectives: HIV-associated lipodystrophy is a common comorbidity in HIV-infected patients, having a profound impact on every aspect of patients’ lives, particularly when involving the face. Hence, it is of the utmost importance to evaluate the result of any potential therapies that may help solve HIV-associated facial lipodystrophy. The aim of this article was to evaluate the outcome of patients undergoing facial lipodystrophy correction surgery within our institution. Methods: A retrospective analysis of the clinical charts and iconographic information of patients regarding demographics, morphologic changes, surgical option, postoperative complications, results, and patient satisfaction assessed by a 1- to 10-point scale and by the Assessment of Body Change and Distress questionnaire. Results: Twenty-three patients were operated on from March 2011 to April 2015. Seventy-five percent of cases were treated with fat graft injection, whereas dermis-fat grafts were applied in 25% of patients. The former had their fat harvested more commonly from the abdomen, whereas in the latter case, the graft was harvested mostly from the inner aspect of arms. The mean volume of fat injected on each side of the face was 28.5 ± 22.7 mL. On a scale from 1 to 10, mean patient satisfaction was 7.7 ± 2.8. The Assessment of Body Change and Distress questionnaire revealed statistically significant improvements. Complications occurred in 25% of cases, the most frequent being significant reabsorption. No major complications occurred. Conclusions: Treatment of HIV-associated facial lipodystrophy with autologous fat or dermis-fat compound graft is a safe procedure with long-lasting results and unquestionable aesthetic and social benefits. PMID:28123628

  1. Detecting scintillations in liquid helium

    NASA Astrophysics Data System (ADS)

    Huffman, P. R.; McKinsey, D. N.

    2013-09-01

    We review our work in developing a tetraphenyl butadiene (TPB)-based detection system for a measurement of the neutron lifetime using magnetically confined ultracold neutrons (UCN). As part of the development of the detection system for this experiment, we studied the scintillation properties of liquid helium itself, characterized the fluorescent efficiencies of different fluors, and built and tested three detector geometries. We provide an overview of the results from these studies as well as references for additional information.

  2. Superfluid Helium Tanker (SFHT) study

    NASA Technical Reports Server (NTRS)

    Eberhardt, Ralph N.; Dominick, Sam M.; Anderson, John E.; Gille, John P.; Martin, Tim A.; Marino, John S.; Paynter, Howard L.; Traill, R. Eric; Herzl, Alfred; Gotlib, Sam

    1988-01-01

    Replenishment of superfluid helium (SFHe) offers the potential of extending the on-orbit life of observatories, satellite instruments, sensors and laboratories which operate in the 2 K temperature regime. A reference set of resupply customers was identified as representing realistic helium servicing requirements and interfaces for the first 10 years of superfluid helium tanker (SFHT) operations. These included the Space Infrared Telescope Facility (SIRTF), the Advanced X-ray Astrophysics Facility (AXAF), the Particle Astrophysics Magnet Facility (Astromag), and the Microgravity and Materials Processing Sciences Facility (MMPS)/Critical Point Phenomena Facility (CPPF). A mixed-fleet approach to SFHT utilization was considered. The tanker permits servicing from the Shuttle cargo bay, in situ when attached to the OMV and carried to the user spacecraft, and as a depot at the Space Station. A SFHT Dewar ground servicing concept was developed which uses a dedicated ground cooling heat exchanger to convert all the liquid, after initial fill as normal fluid, to superfluid for launch. This concept permits the tanker to be filled to a near full condition, and then cooled without any loss of fluid. The final load condition can be saturated superfluid with any desired ullage volume, or the tank can be totally filed and pressurized. The SFHT Dewar and helium plumbing system design has sufficient component redundancy to meet fail-operational, fail-safe requirements, and is designed structurally to meet a 50 mission life usage requirement. Technology development recommendations were made for the selected SFHT concept, and a Program Plan and cost estimate prepared for a phase C/D program spanning 72 months from initiation through first launch in 1997.

  3. Dynamics of Superfluid Helium in Low-Gravity

    NASA Technical Reports Server (NTRS)

    Frank, David J.

    1997-01-01

    This report summarizes the work performed under a contract entitled 'Dynamics of Superfluid Helium in Low Gravity'. This project performed verification tests, over a wide range of accelerations of two Computational Fluid Dynamics (CFD) codes of which one incorporates the two-fluid model of superfluid helium (SFHe). Helium was first liquefied in 1908 and not until the 1930s were the properties of helium below 2.2 K observed sufficiently to realize that it did not obey the ordinary physical laws of physics as applied to ordinary liquids. The term superfluidity became associated with these unique observations. The low temperature of SFHe and it's temperature unifonrmity have made it a significant cryogenic coolant for use in space applications in astronomical observations with infrared sensors and in low temperature physics. Superfluid helium has been used in instruments such as the Shuttle Infrared Astronomy Telescope (IRT), the Infrared Astronomy Satellite (IRAS), the Cosmic Background Observatory (COBE), and the Infrared Satellite Observatory (ISO). It is also used in the Space Infrared Telescope (SIRTF), Relativity Mission Satellite formally called Gravity Probe-B (GP-B), and the Test of the Equivalence Principle (STEP) presently under development. For GP-B and STEP, the use of SFHE is used to cool Superconducting Quantum Interference Detectors (SQUIDS) among other parts of the instruments. The Superfluid Helium On-Orbit Transfer (SHOOT) experiment flown in the Shuttle studied the behavior of SFHE. This experiment attempted to get low-gravity slosh data, however, the main emphasis was to study the low-gravity transfer of SFHE from tank to tank. These instruments carried tanks of SFHE of a few hundred liters to 2500 liters. The capability of modeling the behavior of SFHE is important to spacecraft control engineers who must design systems that can overcome disturbances created by the movement of the fluid. In addition instruments such as GP-B and STEP are very

  4. Vorticity matching in superfluid helium

    NASA Astrophysics Data System (ADS)

    Samuels, David C.

    1991-12-01

    Recent experiments have rekindled interest in high Reynolds number flows using superfluid helium. In a continuing series of experiments, the flow of helium II through various devices (smooth pipes, corrugated pipes, valves, venturies, turbine flowmeters, and coanda flowmeters for example) was investigated. In all cases, the measured values (typically, mass flow rates and pressure drops) were found to be well described by classical relations for high Reynolds flows. This is unexpected since helium II consists of two interpenetrating fluids; one fluid with nonzero viscosity (the normal fluid) and one with zero viscosity (the superfluid). Only the normal fluid component should directly obey classical relations. Since the experiments listed above only measure the external behavior of the flow (i.e., pressure drops over devices), there is a great deal of room for interpretation of their results. One possible interpretation is that in turbulent flows the normal fluid and the superfluid velocity fields are somehow 'locked' together, presumably by the mutual friction force between the superfluid vortex filaments and the normal fluid. We refer to this locking together of the two fluids as 'vorticity matching.'

  5. Investigations of levitated helium drops

    NASA Astrophysics Data System (ADS)

    Whitaker, Dwight Lawrence

    1999-11-01

    We report on the development of two systems capable of levitating drops of liquid helium. Helium drops of ˜20 mum have been levitated with the radiation pressure from two counter-propagating Nd:YAG laser beams. Drops are produced with a submerged piezoelectric transducer, and could be held for up to three minutes in our optical trap. Calculations show that Brillouin and Raman scattering of the laser light in the liquid helium produces a negligible rate of evaporation of the drop. Evaporation caused by the enhanced vapor pressure of the curved drop surfaces appears to be a significant effect limiting the drop lifetimes. Helium drops as large as 2 cm in diameter have been suspended in the earth's gravitational field with a magnetic field. A commercial superconducting solenoid provides the necessary field, field-gradient product required to levitate the drops. Drops are cooled to 0.5 K with a helium-3 refrigerator, and can be held in the trap indefinitely. We have found that when two or more drops are levitated in the same magnetic trap, the drops often remain in a state of apparent contact without coalescing. This effect is a result of the evaporation of liquid from between the two drops, and is found to occur only for normal fluid drops. We can induce shape oscillations in charged, levitated drops with an applied ac electric field. We have measured the resonance frequencies and damping rates for the l = 2 mode of oscillation as function of temperature. We have also developed a theory to describe the small amplitude shape oscillations of a He II drop surrounded by its saturated vapor. In our theory, we have considered two sets of boundary conditions---one where the drop does not evaporate and another in which the liquid and vapor are in thermodynamic equilibrium. We have found that both solutions give a frequency that agrees well with experiment, but that the data for the damping rate agree better with the solution without evaporation.

  6. 43 CFR 16.2 - Applications for helium disposition agreements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Applications for helium disposition... HELIUM § 16.2 Applications for helium disposition agreements. The application for a helium disposition... Secretary to determine that the proposal will conserve helium that will otherwise be wasted, drained,...

  7. 43 CFR 16.2 - Applications for helium disposition agreements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Applications for helium disposition... HELIUM § 16.2 Applications for helium disposition agreements. The application for a helium disposition... Secretary to determine that the proposal will conserve helium that will otherwise be wasted, drained,...

  8. 43 CFR 16.2 - Applications for helium disposition agreements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Applications for helium disposition... HELIUM § 16.2 Applications for helium disposition agreements. The application for a helium disposition... Secretary to determine that the proposal will conserve helium that will otherwise be wasted, drained,...

  9. 43 CFR 16.2 - Applications for helium disposition agreements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Applications for helium disposition... HELIUM § 16.2 Applications for helium disposition agreements. The application for a helium disposition... Secretary to determine that the proposal will conserve helium that will otherwise be wasted, drained,...

  10. 43 CFR 16.2 - Applications for helium disposition agreements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Applications for helium disposition... HELIUM § 16.2 Applications for helium disposition agreements. The application for a helium disposition... Secretary to determine that the proposal will conserve helium that will otherwise be wasted, drained,...

  11. Ras Laffan helium recovery unit 2

    NASA Astrophysics Data System (ADS)

    Fauve, Eric Arnaud; Grabié, Veronique; Grillot, David; Delcayre, Franck; Deschildre, Cindy

    2012-06-01

    In May 2010, Air Liquide was awarded a contract for the Engineering Procurement and Construction (Turnkey EPC) for a second helium recovery unit [RLH II] dedicated to the Ras Laffan refinery in Qatar. This unit will come in addition to the one [RLH I] delivered and commissioned by Air Liquide in 2005. It will increase the helium production of Qatar from 10% to 28% of worldwide production. RLH I and RLH II use Air Liquide Advanced Technologies helium liquefiers. With a production of 8 tons of liquid helium per day, the RLH I liquefier is the world largest, but not for long. Thanks to the newly developed turbine TC7, Air Liquide was able to propose for RLH II a single liquefier able to produce over 20 tons per day of liquid helium without liquid nitrogen pre-cooling. This liquefier using 6 Air Liquide turbines (TC series) will set a new record in the world of helium liquefaction.

  12. Helium recovery and purification at CHMFL

    NASA Astrophysics Data System (ADS)

    Li, J.; Meng, Q.; Ouyang, Z.; Shi, L.; Ai, X.; Chen, X.

    2017-02-01

    Currently, rising demand and declining reserves of helium have led to dramatic increases in the helium price. The High Magnetic Field Laboratory of Chinese Academy of Sciences (CHMFL) has made efforts since its foundation to increase the percentage of helium recovered. The piping network connects all the helium experimental facilities to the recovery system, and even exhaust ports of pressure relief valves and vacuum pumps are also connected. In each year, about 30,000 cubic meters helium gas is recovered. The recovery gas is purified, liquefied and supplied to the users again. This paper will provide details about the helium recovery and purification system at CHMFL, including system flowchart, components, problems and solutions.

  13. Thermodynamic properties of hydrogen-helium plasmas.

    NASA Technical Reports Server (NTRS)

    Nelson, H. F.

    1972-01-01

    Calculation of the thermodynamic properties of an atomic hydrogen-helium plasma for postulated conditions present in a stagnation shock layer of a spacecraft entering the atmosphere of Jupiter. These properties can be used to evaluate transport properties, to calculate convective heating, and to investigate nonequilibrium behavior. The calculations have been made for temperatures from 10,000 to 100,000 K, densities of 10 to the minus 7th and .00001 g cu cm, and three plasma compositions: pure hydrogen, 50% hydrogen/50% helium, and pure helium. The shock layer plasma consists of electrons, protons, atomic hydrogen, atomic helium, singly ionized helium, and doubly atomized helium. The thermodynamic properties which have been investigated are: pressure, average molecular weight, internal energy, enthalpy, entropy, specific heat, and isentropic speed of sound. A consistent model was used for the reduction of the ionization potential in the calculation of the partition functions.

  14. 48 CFR 52.208-8 - Required Sources for Helium and Helium Usage Data.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pressure and 70 degrees Fahrenheit temperature) of gaseous helium or 7510 liters of liquid helium delivered... provide to the Contracting Officer the following data within 10 days after the Contractor or...

  15. Energy, helium, and the future: II

    SciTech Connect

    Krupka, M.C.; Hammel, E.F.

    1980-01-01

    The importance of helium as a critical resource material has been recognized specifically by the scientific community and more generally by the 1960 Congressional mandate to institute a long-range conservation program. A major study mandated by the Energy Reorganization Act of 1974 resulted in the publication in 1975 of the document, The Energy-Related Applications of Helium, ERDA-13. This document contained a comprehensive review and analysis relating to helium resources and present and future supply/demand relationships with particular emphasis upon those helium-dependent energy-related technologies projected to be implemented in the post-2000 year time period, e.g., fusion. An updated overview of the helium situation as it exists today is presented. Since publication of ERDA-13, important changes in the data base underlying that document have occurred. The data have since been reexamined, revised, and new information included. Potential supplies of helium from both conventional and unconventional natural gas resources, projected supply/demand relationships to the year 2030 based upon a given power-generation scenario, projected helium demand for specific energy-related technologies, and the supply options (national and international) available to meet that demand are discussed. An updated review will be given of the energy requirements for the extraction of helium from natural gas as they relate to the concentration of helium. A discussion is given concerning the technical and economic feasibility of several methods available both now and conceptually possible, to extract helium from helium-lean natural gas, the atmosphere, and outer space. Finally, a brief review is given of the 1980 Congressional activities with respect to the introduction and possible passage of new helium conservation legislation.

  16. Helium cyclotron resonance within the earth's magnetosphere

    SciTech Connect

    Mauk, B.H.; McIlwain, C.E.; McPherron, R.L.

    1981-01-01

    A histogram of electromagnetic Alfven/ion cyclotron wave frequencies, sampled within the geostationary enviroment and normalized by the equatorial proton cyclotron frequency, shows a dramatic gap centered near the helium (He/sup +/) cyclotron frequency. Also, strongly cyclotron phase bunched helium ions (20--200 eV) have been observed directly within the vicinity of wave environments. These observations are interpreted as resulting from the absorption of the waves through cyclotron resonance by cool ambient populations of helium ions.

  17. Helium isotopic abundance variation in nature

    SciTech Connect

    Holden, N.E.

    1993-08-01

    The isotopic abundance of helium in nature has been reviewed. This atomic weight value is based on the value of helium in the atmosphere, which is invariant around the world and up to a distance of 100,000 feet. Helium does vary in natural gas, volcanic rocks and gases, ocean floor sediments, waters of various types and in radioactive minerals and ores due to {alpha} particle decay of radioactive nuclides.

  18. Radioactive transitions in the helium isoelectronic sequence

    NASA Technical Reports Server (NTRS)

    Dalgarno, A.

    1971-01-01

    The principles of the atomic spectrum theory are used to quantitatively analyze radiation transitions in two-electron helium-like atomic systems. Quantum theoretical methods, describing absorption and emission of a single photon in a radiative transition between two stationary states of an atomic system, reproduced the energy level diagram for the low lying states of helium. Reliable values are obtained from accurate variationally determined two-electron nonrelativistic wave functions for radiative transition probabilities of 2 3p states in the helium isoelectric sequence, and for the 2 1s and 2 3s1 states of the helium sequence.

  19. 43 CFR 3195.35 - What happens if I have an outstanding obligation to purchase refined helium under a Helium...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... obligation to purchase refined helium under a Helium Distribution Contract? 3195.35 Section 3195.35 Public... OF THE INTERIOR MINERALS MANAGEMENT (3000) HELIUM CONTRACTS Federal Helium Supplier Requirements § 3195.35 What happens if I have an outstanding obligation to purchase refined helium under a...

  20. 43 CFR 3195.35 - What happens if I have an outstanding obligation to purchase refined helium under a Helium...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... obligation to purchase refined helium under a Helium Distribution Contract? 3195.35 Section 3195.35 Public... OF THE INTERIOR MINERALS MANAGEMENT (3000) HELIUM CONTRACTS Federal Helium Supplier Requirements § 3195.35 What happens if I have an outstanding obligation to purchase refined helium under a...

  1. 43 CFR 3195.35 - What happens if I have an outstanding obligation to purchase refined helium under a Helium...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... obligation to purchase refined helium under a Helium Distribution Contract? 3195.35 Section 3195.35 Public... OF THE INTERIOR MINERALS MANAGEMENT (3000) HELIUM CONTRACTS Federal Helium Supplier Requirements § 3195.35 What happens if I have an outstanding obligation to purchase refined helium under a...

  2. 43 CFR 3195.35 - What happens if I have an outstanding obligation to purchase refined helium under a Helium...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... obligation to purchase refined helium under a Helium Distribution Contract? 3195.35 Section 3195.35 Public... OF THE INTERIOR MINERALS MANAGEMENT (3000) HELIUM CONTRACTS Federal Helium Supplier Requirements § 3195.35 What happens if I have an outstanding obligation to purchase refined helium under a...

  3. 43 CFR 3195.20 - Who must purchase major helium requirements from Federal helium suppliers?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Who must purchase major helium requirements from Federal helium suppliers? 3195.20 Section 3195.20 Public Lands: Interior Regulations Relating... (3000) HELIUM CONTRACTS Federal Agency Requirements § 3195.20 Who must purchase major...

  4. 43 CFR 3195.20 - Who must purchase major helium requirements from Federal helium suppliers?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Who must purchase major helium requirements from Federal helium suppliers? 3195.20 Section 3195.20 Public Lands: Interior Regulations Relating... (3000) HELIUM CONTRACTS Federal Agency Requirements § 3195.20 Who must purchase major...

  5. 43 CFR 3195.20 - Who must purchase major helium requirements from Federal helium suppliers?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Who must purchase major helium requirements from Federal helium suppliers? 3195.20 Section 3195.20 Public Lands: Interior Regulations Relating... (3000) HELIUM CONTRACTS Federal Agency Requirements § 3195.20 Who must purchase major...

  6. 43 CFR 3195.20 - Who must purchase major helium requirements from Federal helium suppliers?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Who must purchase major helium requirements from Federal helium suppliers? 3195.20 Section 3195.20 Public Lands: Interior Regulations Relating... (3000) HELIUM CONTRACTS Federal Agency Requirements § 3195.20 Who must purchase major...

  7. Time trends and transplacental transfer of perfluorinated compounds in melon-headed whales stranded along the Japanese coast in 1982, 2001/2002, and 2006.

    PubMed

    Hart, Kimberly; Kannan, Kurunthachalam; Isobe, Tomohiko; Takahashi, Shin; Yamada, Tadasu K; Miyazaki, Nobuyuki; Tanabe, Shinsuke

    2008-10-01

    As a result of the phase-out of production of perfluorooctanesulfonyl-based compounds by a major producer, concentrations of perfluorooctanesulfonate (PFOS) in marine mammals from North American and European coastal waters have been declining since the early 2000s. Nevertheless, temporal trends in perfluorochemical (PFC) concentrations in marine mammals from Asian coastal waters have not been examined. In this study, PFCs were determined in livers of melon-headed whales (Peponocephala electra) collected along the coast of Japan, from three mass strandings that occurred during the past 25 years. Concentrations of nine PFCs were determined in livers of 48 melon-headed whales that were collected during strandings in 1982, 2001/2002, and 2006. In addition, concentrations in liver tissues obtained from two pregnant females and their fetuses were compared for determination of transplacental transfer rates of PFCs during gestation. PFOS and perfluorooctanesulfonamide (PFOSA) were the predominant PFCs found in livers of melon-headed whales collected in 1982 (n = 22). PFOS, PFOSA, perfluoroundecanoate (PFUnDA), perfluorododecanoate (PFDoDA), perfluorodecanoate (PFDA), and perfluorononanoate (PFNA) were found in whales collected in 2001/2002 (n = 21) and in 2006 (n = 5). Concentrations of PFOS and PFOSA were approximately 10-fold higher in 2001/2002 than in 1982. Whereas concentrations of PFOSA then declined by 2-fold from 2001/ 2002 to 2006, concentrations of PFOS and perfluorocarboxylates did not decline after 2001/2002. Conversely, concentrations of PFNA and PFDA increased significantly from 2001/2002 to 2006. The proportion of perfluoroalkylsulfonates in total PFC concentrations decreased from 75% in 1982 to 51% in 2006. Conversely, the contribution of perfluorocarboxylates to total PFC concentrations increased from 25% in 1982 to 49% in 2006. PFUnDA was the major perfluorocarboxylate found in whale livers collected after 2000. Analysis of paired samples of mother

  8. Superfluid Helium Tanker (SFHT) study

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The accomplishments and recommendations of the two-phase Superfluid Helium Tanker (SFHT) study are presented. During the first phase of the study, the emphasis was on defining a comprehensive set of user requirements, establishing SFHT interface parameters and design requirements, and selecting a fluid subsystem design concept. During the second phase, an overall system design concept was constructed based on appropriate analyses and more detailed definition of requirements. Modifications needed to extend the baseline for use with cryogens other than SFHT have been determined, and technology development needs related to the recommended design have been assessed.

  9. Helium bubble bursting in tungsten

    SciTech Connect

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-12-28

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz.

  10. Quantum Dynamics of Helium Clusters

    DTIC Science & Technology

    1993-03-01

    helium clusters [10-12]. (10) DMC starts with the time - dependent Schr ~ dinger equation in imaginary time and has been employed most- The approximate...bound. (For example, the binding values may be computed by the Metropolis approach . energy of He 3 is five times greater than that of 1l1lie I We first...or four times for computational effort. If this is also the case with the the larger clusters) its original size. If the maximum en- DMC approach

  11. Formation of Au and tetrapyridyl porphyrin complexes in superfluid helium.

    PubMed

    Feng, Cheng; Latimer, Elspeth; Spence, Daniel; Al Hindawi, Aula M A A; Bullen, Shem; Boatwright, Adrian; Ellis, Andrew M; Yang, Shengfu

    2015-07-14

    Binary clusters containing a large organic molecule and metal atoms have been formed by the co-addition of 5,10,15,20-tetra(4-pyridyl)porphyrin (H2TPyP) molecules and gold atoms to superfluid helium nanodroplets, and the resulting complexes were then investigated by electron impact mass spectrometry. In addition to the parent ion H2TPyP yields fragments mainly from pyrrole, pyridine and methylpyridine ions because of the stability of their ring structures. When Au is co-added to the droplets the mass spectra are dominated by H2TPyP fragment ions with one or more Au atoms attached. We also show that by switching the order in which Au and H2TPyP are added to the helium droplets, different types of H2TPyP-Au complexes are clearly evident from the mass spectra. This study suggests a new route for the control over the growth of metal-organic compounds inside superfluid helium nanodroplets.

  12. A helium based pulsating heat pipe for superconducting magnets

    NASA Astrophysics Data System (ADS)

    Fonseca, Luis Diego; Miller, Franklin; Pfotenhauer, John

    2014-01-01

    This study was inspired to investigate an alternative cooling system using a helium-based pulsating heat pipes (PHP), for low temperature superconducting magnets. In addition, the same approach can be used for exploring other low temperature applications. The advantages of PHP for transferring heat and smoothing temperature profiles in various room temperature applications have been explored for the past 20 years. An experimental apparatus has been designed, fabricated and operated and is primarily composed of an evaporator and a condenser; in which both are thermally connected by a closed loop capillary tubing. The main goal is to measure the heat transfer properties of this device using helium as the working fluid. The evaporator end of the PHP is comprised of a copper winding in which heat loads up to 10 watts are generated, while the condenser is isothermal and can reach 4.2 K via a two stage Sumitomo RDK408A2 GM cryocooler. Various experimental design features are highlighted. Additionally, performance results in the form of heat transfer and temperature characteristics are provided as a function of average condenser temperature, PHP fill ratio, and evaporator heat load. Results are summarized in the form of a dimensionless correlation and compared to room temperature systems. Implications for superconducting magnet stability are highlighted.

  13. Design of subcooled helium II refrigerator with helium-3 cold compressor

    SciTech Connect

    Kato, D.; Saji, N.; Ohya, H.; Asakura, H.; Kubota, M.; Kaneko, Y.; Nagai, S.

    1994-12-31

    This paper will study the possibility of a He II refrigerator made up of three cold compressors by making use of helium-3 characteristics. This system is compact enough to fit inside a small cold box, so it can be easily connected with an existing helium-4 refrigerator. The authors designed the compressors, calculated the He II cooling capacity, 4.4 K refrigeration load, required inventory of helium-3, and Carnot efficiency. Though helium-3 is expensive, the required inventory of helium-3 to be filled inside this He II refrigerator was calculated to be small enough to prove practicality of constructing this refrigerator.

  14. Study on the fluorescence properties of a new intramolecular charge transfer compound 1,5-diphenyl-3-( N-ethylcarbazole-3-yl)-2-pyrazoline

    NASA Astrophysics Data System (ADS)

    Li, J. F.; Guan, B.; Li, D. X.; Dong, C.

    2007-10-01

    The fluorescence properties of a newly synthesized compound, 1,5-diphenyl-3-( N-ethylcarbazole-3-yl)-2-pyrazoline (DEP) have been studied. On excitation at 352 nm, the fluorescence spectrum exhibits a large red shift with an increase in the polarity of solvents. The intensity of the band is different in different solvents as well. The change in the dipole moment in various solvents at room temperature has been characterized by the absorption and steady state fluorescence techniques and calculated based on the Lippert-Mataga equation. DEP has an increase of dipole moment of 2.83 D units on excitation to the lowest singlet state. It is concluded that photo-induced charge transfer from N (1) to C (3) actually exists in the excited state of the pyrazoline moiety. Its fluorescence property is relative to viscosity and temperature of solvents. The ϕf of DEP in neutral medium or basic medium is higher than acidic medium. In addition, when the concentration of DEP is higher than 10 -3 M, its fluorescence is quenched by the collision of each molecule. The red shift of the maximum emission of DEP attributes to the formation of aggregates and the conjugate system is strengthened.

  15. Helium Speech: An Application of Standing Waves

    ERIC Educational Resources Information Center

    Wentworth, Christopher D.

    2011-01-01

    Taking a breath of helium gas and then speaking or singing to the class is a favorite demonstration for an introductory physics course, as it usually elicits appreciative laughter, which serves to energize the class session. Students will usually report that the helium speech "raises the frequency" of the voice. A more accurate description of the…

  16. Paramagnetic Attraction of Impurity-Helium Solids

    NASA Technical Reports Server (NTRS)

    Bernard, E. P.; Boltnev, R. E.; Khmelenko, V. V.; Lee, D. M.

    2003-01-01

    Impurity-helium solids are formed when a mixture of impurity and helium gases enters a volume of superfluid helium. Typical choices of impurity gas are hydrogen deuteride, deuterium, nitrogen, neon and argon, or a mixture of these. These solids consist of individual impurity atoms and molecules as well as clusters of impurity atoms and molecules covered with layers of solidified helium. The clusters have an imperfect crystalline structure and diameters ranging up to 90 angstroms, depending somewhat on the choice of impurity. Immediately following formation the clusters aggregate into loosely connected porous solids that are submerged in and completely permeated by the liquid helium. Im-He solids are extremely effective at stabilizing high concentrations of free radicals, which can be introduced by applying a high power RF dis- charge to the impurity gas mixture just before it strikes the super fluid helium. Average concentrations of 10(exp 19) nitrogen atoms/cc and 5 x 10(exp 18) deuterium atoms/cc can be achieved this way. It shows a typical sample formed from a mixture of atomic and molecular hydrogen and deuterium. It shows typical sample formed from atomic and molecular nitrogen. Much of the stability of Im-He solids is attributed to their very large surface area to volume ratio and their permeation by super fluid helium. Heat resulting from a chance meeting and recombination of free radicals is quickly dissipated by the super fluid helium instead of thermally promoting the diffusion of other nearby free radicals.

  17. Theoretical model of the helium pinhole microscope

    NASA Astrophysics Data System (ADS)

    Palau, Adrià Salvador; Bracco, Gianangelo; Holst, Bodil

    2016-12-01

    In recent years, the development of neutral helium microscopes has gained increasing interest. The low energy, charge neutrality, and inertness of the helium atoms makes helium microscopy an attractive candidate for the imaging of a range of samples. The simplest neutral helium microscope is the so-called pinhole microscope. It consists of a supersonic expansion helium beam collimated by two consecutive apertures (skimmer and pinhole), which together determine the beam spot size and hence the resolution at a given working distance to the sample. Due to the high ionization potential of neutral helium atoms, it is difficult to build efficient helium detectors. Therefore, it is crucial to optimize the microscope design to maximize the intensity for a given resolution and working distance. Here we present an optimization model for the helium pinhole microscope system. We show that for a given resolution and working distance, there is a single intensity maximum. Further we show that with present-day state-of-the-art detector technology (ionization efficiency 1 ×10-3 ), a resolution of the order of 600 nm at a working distance of 3 mm is possible. In order to make this quantification, we have assumed a Lambertian reflecting surface and calculated the beam spot size that gives a signal 100 cts/s within a solid angle of 0.02 π sr, following an existing design. Reducing the working distance to the micron range leads to an improved resolution of around 40 nm.

  18. LOX Tank Helium Removal for Propellant Scavenging

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2009-01-01

    System studies have shown a significant advantage to reusing the hydrogen and oxygen left in these tanks after landing on the Moon in fuel cells to generate power and water for surface systems. However in the current lander concepts, the helium used to pressurize the oxygen tank can substantially degrade fuel cell power and water output by covering the reacting surface with inert gas. This presentation documents an experimental investigation of methods to remove the helium pressurant while minimizing the amount of the oxygen lost. This investigation demonstrated that significant quantities of Helium (greater than 90% mole fraction) remain in the tank after draining. Although a single vent cycle reduced the helium quantity, large amounts of helium remained. Cyclic venting appeared to be more effective. Three vent cycles were sufficient to reduce the helium to small (less than 0.2%) quantities. Two vent cycles may be sufficient since once the tank has been brought up to pressure after the second vent cycle the helium concentration has been reduced to the less than 0.2% level. The re-pressurization process seemed to contribute to diluting helium. This is as expected since in order to raise the pressure liquid oxygen must be evaporated. Estimated liquid oxygen loss is on the order of 82 pounds (assuming the third vent cycle is not required).

  19. The Phenomenology of Ion Implantation-Induced Blistering and Thin-Layer Splitting in Compound Semiconductors

    NASA Astrophysics Data System (ADS)

    Singh, R.; Christiansen, S. H.; Moutanabbir, O.; Gösele, U.

    2010-10-01

    Hydrogen and/or helium implantation-induced surface blistering and layer splitting in compound semiconductors such as InP, GaAs, GaN, AlN, and ZnO are discussed. The blistering phenomenon depends on many parameters such as the semiconductor material, ion fluence, ion energy, and implantation temperature. The optimum values of these parameters for compound semiconductors are presented. The blistering and splitting processes in silicon have been studied in detail, motivated by the fabrication of the widely used silicon-on-insulator wafers. Hence, a comparison of the blistering process in Si and compound semiconductors is also presented. This comparative study is technologically relevant since ion implantation-induced layer splitting combined with direct wafer bonding in principle allows the transfer of any type of semiconductor layer onto any foreign substrate of choice—the technique is known as the ion-cut or Smart-Cut™ method. For the aforementioned compound semiconductors, investigations regarding layer transfer using the ion-cut method are still in their infancy. We report feasibility studies of layer transfer by the ion-cut method for some of the most important and widely used compound semiconductors. The importance of characteristic values for successful wafer bonding such as wafer bow and surface flatness as well as roughness are discussed, and difficulties in achieving some of these values are pointed out.

  20. Cellular effects of helium in different organs.

    PubMed

    Oei, Gezina T M L; Weber, Nina C; Hollmann, Markus W; Preckel, Benedikt

    2010-06-01

    Experimental research in cardiac and neuronal tissue has shown that besides volatile anesthetics and xenon, the nonanesthetic noble gas helium also reduces ischemia-reperfusion damage. Even though the distinct mechanisms of helium-induced organ protection are not completely unraveled, several signaling pathways have been identified. Beside the protective effects on heart and brain that are mainly obtained by different pre- and postconditioning protocols, helium also exerts effects in the lungs, the immune system, and the blood vessels. Obviously, this noble gas is biochemically not inert and exerts biologic effects, although until today the question remains open on how these changes are mediated. Because of its favorable characteristics and the lack of hemodynamic side effects, helium is suitable for use also in critically ill patients. This review covers the cellular effects of helium, which may lead to new clinical strategies of tissue salvage in ischemia-reperfusion situations, both within and outside the perioperative setting.

  1. Photoinduced charge, ion & energy transfer processes at transition-metal coordination compounds anchored to mesoporous, nanocrystalline metal-oxide thin films

    NASA Astrophysics Data System (ADS)

    Ardo, Shane

    Photovoltaics provide a direct means of converting photons into useful, electric power; however traditional silicon-based technologies are too expensive for global commercialization. Dye-sensitized mesoporous semiconducting thin films, when utilized in regenerative photoelectrochemical cells, are one category of next generation photovoltaics that could eventually circumvent this issue. In fact, their architecture also affords a clear platform for implementation of a direct, solar fuel-forming system. The mechanisms involved in the myriad of molecular processes that occur in these molecular--solid-state hybrid materials are poorly understood. Thus, the overriding goal of this dissertation was to evaluate sensitized mesoporous, nanocrystalline metal-oxide thin films critically so as to elucidate mechanistic phenomena. Using transient and steady-state absorption and emission spectroscopies as well as (photo)electrochemistry, various previously unobserved processes have been identified. Chapter 2 demonstrates for the first time that the electric fields emanating from these charged thin films affect surface-anchored molecular sensitizers via a Stark effect. In most cases, further, but incomplete, ionic screening of the charged nanoparticles from the sensitizers, as non-Faradaic electrolyte redistribution, was spectroscopically inferred after rapid semiconductor charging. Chapter 3 highlights the reactivity of Co(I) coordination-compound catalysts anchored to anatase TiO2 thin-film electrodes. Visible-light excitation resulted in prompt excited-state electron injection into TiO2 while introduction of benzylbromide into the fluid solution surrounding the thin film led to a 2e--transfer, oxidative-addition reaction to Co1 forming a stable Co--benzyl product. Subsequent visible-light excitation initiated a photocatalytic cycle for C--C bond formation. Unique to the nanocrystalline thin films employed here, Chapter 4 demonstrates that traditional time-resolved polarization

  2. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    NASA Astrophysics Data System (ADS)

    Chu, X. X.; Zhang, M. M.; Zhang, D. X.; Xu, D.; Qian, Y.; Liu, W.

    2014-01-01

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H2 from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H2 in helium recycle gas are less than 1 ppb.

  3. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    SciTech Connect

    Chu, X. X.; Zhang, D. X.; Qian, Y.; Liu, W.; Zhang, M. M.; Xu, D.

    2014-01-29

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H{sub 2} from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H{sub 2} in helium recycle gas are less than 1 ppb.

  4. Helium Reionization Simulations. I. Modeling Quasars as Radiation Sources

    NASA Astrophysics Data System (ADS)

    La Plante, Paul; Trac, Hy

    2016-09-01

    We introduce a new project to understand helium reionization using fully coupled N-body, hydrodynamics, and radiative transfer simulations. This project aims to capture correctly the thermal history of the intergalactic medium as a result of reionization and make predictions about the Lyα forest and baryon temperature-density relation. The dominant sources of radiation for this transition are quasars, so modeling the source population accurately is very important for making reliable predictions. In this first paper, we present a new method for populating dark matter halos with quasars. Our set of quasar models includes two different light curves, a lightbulb (simple on/off) and symmetric exponential model, and luminosity-dependent quasar lifetimes. Our method self-consistently reproduces an input quasar luminosity function given a halo catalog from an N-body simulation, and propagates quasars through the merger history of halo hosts. After calibrating quasar clustering using measurements from the Baryon Oscillation Spectroscopic Survey, we find that the characteristic mass of quasar hosts is {M}h˜ 2.5× {10}12 {h}-1 {M}⊙ for the lightbulb model, and {M}h˜ 2.3× {10}12 {h}-1 {M}⊙ for the exponential model. In the latter model, the peak quasar luminosity for a given halo mass is larger than that in the former, typically by a factor of 1.5-2. The effective lifetime for quasars in the lightbulb model is 59 Myr, and in the exponential case, the effective time constant is about 15 Myr. We include semi-analytic calculations of helium reionization, and discuss how to include these quasars as sources of ionizing radiation for full hydrodynamics with radiative transfer simulations in order to study helium reionization.

  5. Electric response in superfluid helium

    NASA Astrophysics Data System (ADS)

    Chagovets, Tymofiy V.

    2016-05-01

    We report an experimental investigation of the electric response of superfluid helium that arises in the presence of a second sound standing wave. It was found that the signal of the electric response is observed in a narrow range of second sound excitation power. The linear dependence of the signal amplitude has been derived at low excitation power, however, above some critical power, the amplitude of the signal is considerably decreased. It was established that the rapid change of the electric response is not associated with a turbulent regime generated by the second sound wave. A model of the appearance of the electric response as a result of the oscillation of electron bubbles in the normal fluid velocity field in the second sound wave is presented. Possible explanation for the decrease of the electric response are presented.

  6. Nondipole effects in helium photoionization

    NASA Astrophysics Data System (ADS)

    Argenti, Luca; Moccia, Roberto

    2010-12-01

    An accurate calculation of the nondipole anisotropy parameter γ in the photoionization of helium below the N = 2 threshold is presented. The calculated results are in fairly good agreement with the experimental results of Krässig et al (2002 Phys. Rev. Lett. 88 203002), but not as good as the accuracy of the calculation should have warranted. A careful examination of the possible causes for the observed discrepancies between theory and experiment seems to rule out any role either of the multipolar terms higher than the electric quadrupole, or of the singlet-triplet spin-orbit mixing. It is argued that such discrepancies might have an instrumental origin, due to the difficulty of measuring vanishingly small total cross sections σtot with the required accuracy. In such eventuality, it might be more appropriate to use a parameter other than γ, such as for instance the drag current, to measure the nondipole anisotropy of the photoelectron angular distribution.

  7. Atom lithography with metastable helium

    SciTech Connect

    Allred, Claire S.; Reeves, Jason; Corder, Christopher; Metcalf, Harold

    2010-02-15

    A bright metastable helium (He*) beam is collimated sequentially with the bichromatic force and three optical molasses velocity compression stages. Each He* atom in the beam has 20 eV of internal energy that can destroy a molecular resist assembled on a gold coated silicon wafer. Patterns in the resist are imprinted onto the gold layer with a standard selective etch. Patterning of the wafer with the He{sup *} was demonstrated with two methods. First, a mesh was used to protect parts of the wafer making an array of grid lines. Second, a standing wave of {lambda}=1083 nm light was used to channel and focus the He* atoms into lines separated by {lambda}/2. The patterns were measured with an atomic force microscope establishing an edge resolution of 80 nm. Our results are reliable and repeatable.

  8. Helium Saturation of Liquid Propellants

    NASA Technical Reports Server (NTRS)

    Yavrouian, A. H.; Moran, Clifford M.

    1990-01-01

    The research is in three areas which are: (1) techniques were devised for achieving the required levels of helium (He) saturation in liquid propellants (limited to monomethylhydrazine (MMH) and nitrogen tetroxide (NTO)); (2) the values were evaluated for equilibrium solubilities of He in liquid propellants as currently used in the industry; and (3) the He dissolved in liquid propellants were accurately measured. Conclusions drawn from these studies include: (1) Techniques for dissolving He in liquid propellants depending upon the capabilities of the testing facility (Verification of the quantity of gas dissolved is essential); (2) Until greater accuracy is obtained, the equilibrium solubility values of He in MMH and NTO as cited in the Air Force Propellant Handbooks should be accepted as standard (There are still enough uncertainties in the He saturation values to warrant further basic experimental studies); and (3) The manometric measurement of gas volume from a frozen sample of propellant should be the accepted method for gas analysis.

  9. Correlational analysis of Eu3+ charge transfer state using La effective charge in La-based mixed-anion host compounds

    NASA Astrophysics Data System (ADS)

    Yoshimatsu, Ryo; Okada, Masahiro; Ishigaki, Tadashi; Watanabe, Shinta; Honma, Tetsuo; Ohmi, Koutoku

    2017-03-01

    A prediction of the Eu3+ charge transfer state (E CT) was attempted in La-based mixed-anion host compounds. We paid attention to La3OF3S2:Eu, since it is expected to have a more covalent La site than La2O2S. The La effective charge (La EC) was proposed as the index factor of covalency and/or ionicity. The correlation between the experimental E CT and the calculated La EC was systematically analyzed for La2S3, LaFS, La2O2S, La2O3, LaOF, and LaF3 host materials, and good approximation was obtained using the single exponential function with a variable number of La ECs. According to the fitting curve, the E CT of La3OF3S2:Eu was predicted to be 5.8 and 2.1 eV for Eu3+ centers activated at ionic and covalent sites, respectively. To confirm the prediction accuracy, La3OF3S2:Eu phosphor powder samples were synthesized by solid-state reaction. From the photoluminescence excitation and absorption measurements, the E CT values of about 4.7 eV (ionic La site) and 2.4 eV (covalent La site) were obtained. Even though the energy difference between the predicted and experimental values is large for the higher E CT, La EC is the useful index factor for estimating E CT. In addition, it indicates that the estimation can be applied to phosphor materials having multication sites.

  10. Helium refrigeration considerations for cryomodule design

    SciTech Connect

    Ganni, V.; Knudsen, P.

    2014-01-29

    Many of the present day accelerators are based on superconducting radio frequency (SRF) cavities, packaged in cryo-modules (CM), which depend on helium refrigeration at sub-atmospheric pressures, nominally 2 K. These specialized helium refrigeration systems are quite cost intensive to produce and operate. Particularly as there is typically no work extraction below the 4.5-K supply, it is important that the exergy loss between this temperature level and the CM load temperature(s) be minimized by the process configuration choices. This paper will present, compare and discuss several possible helium distribution process arrangements to support the CM loads.

  11. Low gravity thermal stratification of liquid helium on SHOOT. [Superfluid Helium On-Orbit Transfer

    NASA Technical Reports Server (NTRS)

    Shirron, P. J.; Dipirro, M. J.

    1992-01-01

    Estimates of the extent and impact of thermal stratification are presented as well as predictions of the behavior of the HeI/HeII boundary. Although thermal stratification of cryogens can be problematic and lead to their inefficient use in low gravity, for SHOOT the occurrence is beneficial both during ground hold and in orbit and presents no hazards. On the ground the parasitic heat load is both reduced and more efficiently removed. In orbit the pumpdown proceeds at a much more rapid rate, allowing orbital operations to begin earlier. The thermal conductivity of the aluminum tank and the normal liquid plus cooling at the liquid/vapor interface as the vapor bubble grows are sufficient to prevent undesirably high vapor pressures in the tank.

  12. 21 CFR 868.1640 - Helium gas analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Helium gas analyzer. 868.1640 Section 868.1640...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1640 Helium gas analyzer. (a) Identification. A helium gas analyzer is a device intended to measure the concentration of helium in a...

  13. 21 CFR 868.1640 - Helium gas analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Helium gas analyzer. 868.1640 Section 868.1640...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1640 Helium gas analyzer. (a) Identification. A helium gas analyzer is a device intended to measure the concentration of helium in a...

  14. 21 CFR 868.1640 - Helium gas analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Helium gas analyzer. 868.1640 Section 868.1640...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1640 Helium gas analyzer. (a) Identification. A helium gas analyzer is a device intended to measure the concentration of helium in a...

  15. 21 CFR 868.1640 - Helium gas analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Helium gas analyzer. 868.1640 Section 868.1640...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1640 Helium gas analyzer. (a) Identification. A helium gas analyzer is a device intended to measure the concentration of helium in a...

  16. 21 CFR 868.1640 - Helium gas analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Helium gas analyzer. 868.1640 Section 868.1640...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1640 Helium gas analyzer. (a) Identification. A helium gas analyzer is a device intended to measure the concentration of helium in a...

  17. Lightweight Liquid Helium Dewar for High-Altitude Balloon Payloads

    NASA Technical Reports Server (NTRS)

    Kogut, Alan; James, Bryan; Fixsen, Dale

    2013-01-01

    evacuates the dewar vacuum space to provide the necessary thermal isolation. Liquid helium may then be transferred from the storage dewar into the bucket dewar to cool the telescope inside the bucket dewar. By splitting the functions of helium storage and in-flight thermal isolation, the parasitic mass associated with the dewar pressure vessel is eliminated to achieve factor-of-five or better reduction in mass. The lower mass allows flight on conventional scientific research balloons, even for telescopes 3 to 5 meters in diameter.

  18. Helium resources of the United States, 1987. Information Circular/1988

    SciTech Connect

    Miller, R.D.

    1987-01-01

    The helium-resources base of the United States was estimated by the Bureau of Mines to be 1040 Bcf as of January 1, 1987. These resources are divided into four categories in decreasing degree of assurance of their existence: (1) helium in storage and in proved natural gas reserves, 265 Bcf, (2) helium in probable natural gas resources, 228 Bcf, (3) helium in possible natural gas resources, 320 Bcf, and (4) helium in speculative natural gas resources, 227 Bcf. These helium resources are further divided into depleting and nondepleting, with the helium in storage being in a separate classification.

  19. Development of a transferline connecting a helium liquefier coldbox and a liquid helium Dewar

    NASA Astrophysics Data System (ADS)

    Menon, Rajendran S.; Rane, Tejas; Chakravarty, Anindya; Joemon, V.

    2017-02-01

    A helium liquefier with demonstrated capacity of 32 1/hr has been developed by BARC. Mumbai. A transferline for two way flow of helium between the helium liquefier coldbox and receiver Dewar has been developed in-house at BARC. Further, a functionally similar, but structurally improved transferline has been developed through a local fabricator. This paper describes and discusses issues related to the development of these cryogenic transferlines. The developed transferlines have been tested with a flow of liquid nitrogen and successfully utilised later in the helium liquefier plant.

  20. Development of charcoal sorbents for helium cryopumping

    SciTech Connect

    Sedgley, D.W.; Tobin, A.G.

    1984-01-01

    Testing of the cryogenically cooled charcoal using fusion-compatible binders for pumping helium has shown promising results. The program demonstrated comparable or improved performance with these binders compared to the charcoal (type and size) using an epoxy binder.

  1. Primary helium heater for propellant pressurization systems

    NASA Technical Reports Server (NTRS)

    Reichmuth, D. M.; Nguyen, T. V.; Pieper, J. L.

    1991-01-01

    The primary helium heater is a unique design that provides direct heating of pressurant gas for large pressure fed propulsion systems. It has been conceptually designed to supply a heated (800-1000 R) pressurization gas to both a liquid oxygen and an RP-1 propellant tank. This pressurization gas is generated within the heater by mixing super critical helium (40-300 R and 3000-1600 psi) with an appropriate amount of combustion products from a 4:1 throttling stoichiometric LO2/LH2 combustor. This simple, low cost and reliable mixer utilizes the large quantity of helium to provide stoichiometric combustor cooling, extend the throttling limits and enhance the combustion stability margin. Preliminary combustion, thermal, and CFD analyses confirm that this low-pressure-drop direct helium heater can provide the constant-temperature pressurant suitable for tank pressurization of both fuel and oxidizer tanks of large pressure fed vehicles.

  2. Helium Dilution Cryocooler for Space Applications

    NASA Technical Reports Server (NTRS)

    Roach, Pat; Hogan, Robert (Technical Monitor)

    2001-01-01

    NASA's New Millenium Program Space Technology presents the Helium Dilution Cryocooler for Space Applications. The topics include: 1) Capability; 2) Applications; and 3) Advantages. This paper is in viewgraph form.

  3. Helium Find Thaws the Cold Fusion Trail.

    ERIC Educational Resources Information Center

    Pennisi, E.

    1991-01-01

    Reported is a study of cold fusion in which trace amounts of helium, possible evidence of an actual fusion reaction, were found. Research methodology is detailed. The controversy over the validity of experimental results with cold fusion are reviewed. (CW)

  4. Helium and Enhanced Image of the Sun

    NASA Video Gallery

    This video blinks between an image in Helium and an enhanced image. The original image is from AIA on SDO and the enhanced image was created at the LM Solar and Astrophysics Laboratory (LMSAL) by D...

  5. CHARACTERIZING TRITIUM WASTE USING HELIUM RATIOS

    SciTech Connect

    Ovink, R.W.; McMahon, W.J.; Borghese, J.V.; Olsen, K.B.

    2003-02-27

    When routine sampling revealed greatly elevated tritium levels (3.14 x 105 Bq/L [8.5-million pCi/liter]) in the groundwater near a solid waste landfill at the Hanford Site, an innovative technique was used to assess the extent of the plume. Helium-3/helium-4 ratios, relative to ambient air-in-soil gas samples, were used to identify the tritium source and initially delineate the extent of the groundwater tritium plume. This approach is a modification of a technique developed in the late 1960s to age-date deep ocean water as part of the GEOSECS ocean monitoring program. Poreda, et al. (1) and Schlosser, et al. (2) applied this modified technique to shallow aquifers. A study was also conducted to demonstrate the concept of using helium-3 as a tool to locate vadose zone sources of tritium and tracking groundwater tritium plumes at Hanford (3). Seventy sampling points were installed around the perimeter and along four transects downgradient of the burial ground. Soil gas samples were collected, analyzed for helium isotopes, and helium-3/helium-4 ratios were calculated for these 70 points. The helium ratios indicated a vadose zone source of tritium along the northern edge of the burial ground that is likely the source of tritium in the groundwater. The helium ratios also indicate the groundwater plume is traveling east-northeast from the burial ground and that no up-gradient tritium sources are affecting the burial ground. Based on the helium ratio results, six downgradient groundwater sampling locations were identified to verify the tritium plume extent and groundwater tritium concentrations. The tritium results from the initial groundwater samples confirmed that elevated helium ratios were indicative of tritium contamination in the local groundwater. The measurement of helium isotopes in soil gas provided a rapid and cost- effective technique to define the shape and extent of tritium contamination from the burial ground. Using this soil gas sampling approach, the

  6. Radioactive Ions and Atoms in Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Dendooven, P.; Purushothaman, S.; Gloos, K.; ńystö, J.; Takahashi, N.; Huang, W. X.

    2006-04-01

    We are investigating the use of superfluid helium as a medium to handle and manipulate radioactive ions and atoms. Preliminary results on the extraction of positive ions from superfluid helium at temperatures close to 1 K are described. Increasing the electric field up to 1.2 kV/cm did not improve the extraction. Evaporating a thin surface layer of the liquid using second-sound pulses gave an extraction efficiency of 7.2 %.

  7. Helium Reionization in From New Sightlines

    NASA Astrophysics Data System (ADS)

    Syphers, David

    2017-01-01

    A very small number of sightlines to z~3 quasars have been studied in detail to show the progress of helium reionization. Although studying the same sightlines with each new UV spectrograph lead to a better understanding of them, the sightline variance is very strong during this patchy and extended process. We discuss detailed R>10,000 COS data from new sightlines, and what they reveal about the progress and end of helium reionization.

  8. Cosmogenic helium in a terrestrial igneous rock

    NASA Technical Reports Server (NTRS)

    Kurz, M. D.

    1986-01-01

    New helium isotopic measurements on samples from the Kula formation of Haleakala volcano of Hawaii are presented that are best explained by an in situ cosmogenic origin for a significant fraction of the He-3. Results from crushing and stepwise heating experiments, and consideration of the exposure age of the sample at the surface and the cosmic ray fluxes strongly support this hypothesis. Although crustal cosmogenic helium has been proposed previously, this represents its first unambiguous identification in a terrestrial sample.

  9. Perspectives on Lunar Helium-3

    NASA Astrophysics Data System (ADS)

    Schmitt, Harrison H.

    1999-01-01

    Global demand for energy will likely increase by a factor of six or eight by the mid-point of the 21st Century due to a combination of population increase, new energy intensive technologies, and aspirations for improved standards of living in the less-developed world (1). Lunar helium-3 (3He), with a resource base in the Tranquillitatis titanium-rich lunar maria (2,3) of at least 10,000 tonnes (4), represents one potential energy source to meet this rapidly escalating demand. The energy equivalent value of 3He delivered to operating fusion power plants on Earth would be about 3 billion per tonne relative to today's coal which supplies most of the approximately 90 billion domestic electrical power market (5). These numbers illustrate the magnitude of the business opportunity. The results from the Lunar Prospector neutron spectrometer (6) suggests that 3He also may be concentrated at the lunar poles along with solar wind hydrogen (7). Mining, extraction, processing, and transportation of helium to Earth requires new innovations in engineering but no known new engineering concepts (1). By-products of lunar 3He extraction, largely hydrogen, oxygen, and water, have large potential markets in space and ultimately will add to the economic attractiveness of this business opportunity (5). Inertial electrostatic confinement (IEC) fusion technology appears to be the most attractive and least capital intensive approach to terrestrial fusion power plants (8). Heavy lift launch costs comprise the largest cost uncertainty facing initial business planning, however, many factors, particularly long term production contracts, promise to lower these costs into the range of 1-2000 per kilogram versus about 70,000 per kilogram fully burdened for the Apollo Saturn V rocket (1). A private enterprise approach to developing lunar 3He and terrestrial IEC fusion power would be the most expeditious means of realizing this unique opportunity (9). In spite of the large, long-term potential

  10. Sonic helium detectors in the Fermilab Tevatron

    SciTech Connect

    Bossert, R.J.; /Fermilab

    2006-01-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years.

  11. Advanced helium magnetometer for space applications

    NASA Technical Reports Server (NTRS)

    Slocum, Robert E.

    1987-01-01

    The goal of this effort was demonstration of the concepts for an advanced helium magnetometer which meets the demands of future NASA earth orbiting, interplanetary, solar, and interstellar missions. The technical effort focused on optical pumping of helium with tunable solid state lasers. We were able to demonstrate the concept of a laser pumped helium magnetometer with improved accuracy, low power, and sensitivity of the order of 1 pT. A number of technical approaches were investigated for building a solid state laser tunable to the helium absorption line at 1083 nm. The laser selected was an Nd-doped LNA crystal pumped by a diode laser. Two laboratory versions of the lanthanum neodymium hexa-aluminate (LNA) laser were fabricated and used to conduct optical pumping experiments in helium and demonstrate laser pumped magnetometer concepts for both the low field vector mode and the scalar mode of operation. A digital resonance spectrometer was designed and built in order to evaluate the helium resonance signals and observe scalar magnetometer operation. The results indicate that the laser pumped sensor in the VHM mode is 45 times more sensitive than a lamp pumped sensor for identical system noise levels. A study was made of typical laser pumped resonance signals in the conventional magnetic resonance mode. The laser pumped sensor was operated as a scalar magnetometer, and it is concluded that magnetometers with 1 pT sensitivity can be achieved with the use of laser pumping and stable laser pump sources.

  12. Photocatalytic transformation of organic compounds in the presence of inorganic anions. 1. Hydroxyl-mediated and direct electron-transfer reactions of phenol on a titanium dioxide-fluoride system

    SciTech Connect

    Minero, C.; Mariella, G.; Maurino, V.; Pelizzetti, E.

    2000-03-21

    The effect of fluoride ions on the photocatalytic degradation of phenol in an aqueous suspension of TiO{sub 2} has been investigated. Fluoride ions displace surficial hydroxyl groups and coordinate surface-bound titanium atoms directly. For 0.01 M fluoride concentration and 0.10 g/L of TiO{sub 2} in the range pH 2-6, the degradation rate of phenol is up to 3 times that in the absence of fluoride ions. This behavior has been correlated with the computed surface speciation. The decrease in the degradation rate of phenol as a function of the substrate concentration observed in naked TiO{sub 2} at a high concentration of phenol (over 0.01 M) is largely diminished in the presence of fluoride ions. A photocatalytic model which takes into account the primary events and recombination reactions is able to account for these experimental results. The competition events and recombination reactions is able to account for these experimental results. The competition between OH-radical-mediated reaction versus direct electron transfer is discussed. Finally, under a helium atmosphere and in the presence of fluoride ions, phenol is slowly but significantly degraded, although total organic carbon does not decrease, suggesting the occurrence of a photocatalytically induced hydrolysis.

  13. Helium and Neon in Comets

    NASA Technical Reports Server (NTRS)

    Jewitt, David

    1996-01-01

    Two comets were observed with EUVE in late 1994. Both comet Mueller and comet Borrelly are short-period comets having well established orbital elements and accurate ephemerides. Spectra of 40 ksec were taken of each. No evidence for emission lines from either Helium or Neon was detected. We calculated limits on the production rates of these atoms (relative to solar) assuming a standard isotropic outflow model, with a gas streaming speed of 1 km/s. The 3-sigma (99.7% confidence) limits (1/100,000 for He, 0.8 for Ne) are based on a conservative estimate of the noise in the EUVE spectra. They are also weakly dependent on the precise pointing and tracking of the EUVE field of view relative to the comet during the integrations. These limits are consistent with ice formation temperatures T greater than or equal to 30 K, as judged from the gas trapping experiments of Bar-Nun. For comparison, the solar abundances of these elements are He/O = 110, Ne/O = 1/16. Neither limit was as constraining as we had initially hoped, mainly because comets Mueller and Borrelly were intrinsically less active than anticipated.

  14. Measurement of Helium-3/Helium-4 Ratios in Soil Gas at the 618-11 Burial Ground

    SciTech Connect

    Olsen, Khris B.; Dresel, P Evan; Evans, John C.

    2001-10-31

    Seventy soil gas-sampling points were installed around the perimeter of the 618-11 Burial Ground, approximately 400 feet downgradient of well 699-13-3A, and in four transects downgradient of the burial ground to a maximum distance of 3,100 feet. Soil gas samples were collected and analyzed for helium-3/helium-4 ratios from these 70 points. Helium-3/helium-4 ratios determined from the soil gas sampling points showed significant enrichments, relative to ambient air helium-3 concentrations. The highest concentrations were located along the northern perimeter of the burial ground. Helium-3/helium-4 ratios (normalized to the abundances in ambient air) ranged from 1.0 to 62 around the burial ground. The helium-3/helium-4 ratios from the 4 transect downgradient of the burial ground ranged from 0.988 to 1.68. The helium-3/helium-4 ratios from around the burial ground suggest there is a vadose zone source of tritium along the north side of the burial ground. This vadose zone source is likely the source of tritium in the groundwater. The helium-3/helium-4 ratios also suggest the groundwater plume is traveling east-northeast from the burial ground and the highest groundwater tritium value may be to the north of well 699-13-3A. Finally, there appears to be no immediately upgradient sources of tritium impacting the burial ground since all the upgradient helium-3/helium-4 ratios are approximately 1.0.

  15. The Elusive Excited Quintet [superscript 5]D of Tb(III): A Source of Luminescence and Resonance Energy Transfer in Terbium Compounds

    ERIC Educational Resources Information Center

    Klier, Kamil

    2010-01-01

    The understanding of electronic structure of atomic and molecular term states involved in spectroscopic transitions is aided by projecting combinations of micro-configurations to multi-electron states with "good" quantum numbers of angular momenta. In rare-earth (RE) compounds, atomic term labels are justifiably carried over to compounds, because…

  16. Effect of dislocations on helium retention in deformed pure iron

    NASA Astrophysics Data System (ADS)

    Gong, Y. H.; Cao, X. Z.; Jin, S. X.; Lu, E. Y.; Hu, Y. C.; Zhu, T.; Kuang, P.; Xu, Q.; Wang, B. Y.

    2016-12-01

    The effects of dislocations created by deformation on helium retention in pure iron, including the helium atoms diffusion along the dislocation line and desorption from dislocation trapping sites, were investigated. The dislocation defect was introduced in specimens by cold-rolling, and then 5 keV helium ions were implanted into the deformed specimens. Slow positron beam technology and thermal desorption spectroscopy were used to investigate the evolution of dislocation defects and the desorption behavior of helium atoms under influence of dislocation. The behaviors of S-E, W-E and S-W plots indicate clearly that lots of helium atoms remain in the deformed specimen and helium atoms combining with dislocation change the distribution of electron density. The helium desorption plot indicates that dislocation accelerates helium desorption at 293 K-600 K and facilitates helium dissociation from HenVm (n/m = 1.8) cluster.

  17. Helium transport in plasma edge regions

    NASA Astrophysics Data System (ADS)

    Abou-Gabal, Hanaa Hassan

    The transport of neutral helium atoms near diverter or limiter target plates in fusion devices was studied. Two simulation codes, based on Monte Carlo techniques, were developed. The first treats the problem in one-dimensional geometry and the second considers two-dimensional effects. The atomic processes of ionization of helium atoms by electron impact and elastic scattering with plasma ions are included. The total and differential elastic scattering cross-sections were calculated classically using an ab initio calculation of the interatomic potential. The thermal motion and the streaming of the ions along the magnetic field, which can be at an angle to the target plate, are included. Results obtained with the one-dimensional code show significant effects of elastic collisions below about 10 eV, causing a substantial fraction of the helium atoms to be reflected back to the target plate. This effect can be beneficial for the pumping of helium from the discharge chamber. The two-dimensional Monte Carlo code was used to study helium recycling near a flat, vented target plate. A parametric study is performed to examine the dependence of the pumping efficiency on plasma parameters and geometric aspects. Results show that the pumping of neutral helium can be increased by shortening and widening the ports as well as by increasing the angle between the magnetic field and the target plate. Also, keeping the ion temperature below about 10 eV and the plasma density around a few 10(exp 14) cu cm near the targe plate can be beneficial for the pumping of helium gas.

  18. Heat Transfer, Adiabatic Effectiveness and Injectant Distributions Downstream of Single Rows and Two Staggered Rows of Film-Cooling Holes with Simple and Compound Angles

    DTIC Science & Technology

    1991-12-01

    ROWS AND TWO STAGGERED ROWS OF FILM-COOLING HOLES WITH SIMPLE AND COMPOUND ANGLES 92-01241 by DIII l, p111111~ 11I Stephen Mark Jackson DECEMBER 1991...HOLES WITH SIMPLE AND COMPOUND ANGLES 12. PERSONAL AUTHORS STEPHEN MARK JACKSON 13a TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year. A4int, Day...Rows of Film-Cooling Holes with Simple and Compound Angles by Stephen Mark Jackson lieutenant, United States Navy B.S., United States Naval Academy, 1983

  19. Data-driven RBE parameterization for helium ion beams.

    PubMed

    Mairani, A; Magro, G; Dokic, I; Valle, S M; Tessonnier, T; Galm, R; Ciocca, M; Parodi, K; Ferrari, A; Jäkel, O; Haberer, T; Pedroni, P; Böhlen, T T

    2016-01-21

    Helium ion beams are expected to be available again in the near future for clinical use. A suitable formalism to obtain relative biological effectiveness (RBE) values for treatment planning (TP) studies is needed. In this work we developed a data-driven RBE parameterization based on published in vitro experimental values. The RBE parameterization has been developed within the framework of the linear-quadratic (LQ) model as a function of the helium linear energy transfer (LET), dose and the tissue specific parameter (α/β)ph of the LQ model for the reference radiation. Analytic expressions are provided, derived from the collected database, describing the RBEα = αHe/αph and Rβ = βHe/βph ratios as a function of LET. Calculated RBE values at 2 Gy photon dose and at 10% survival (RBE10) are compared with the experimental ones. Pearson's correlation coefficients were, respectively, 0.85 and 0.84 confirming the soundness of the introduced approach. Moreover, due to the lack of experimental data at low LET, clonogenic experiments have been performed irradiating A549 cell line with (α/β)ph = 5.4 Gy at the entrance of a 56.4 MeV u(-1)He beam at the Heidelberg Ion Beam Therapy Center. The proposed parameterization reproduces the measured cell survival within the experimental uncertainties. A RBE formula, which depends only on dose, LET and (α/β)ph as input parameters is proposed, allowing a straightforward implementation in a TP system.

  20. Electron occupancy of micro-structured helium-filled channels

    NASA Astrophysics Data System (ADS)

    Takita, Maika; Bradbury, F. R.; Lyon, S. A.

    2010-03-01

    The spins of electrons floating on the surface of superfluid helium have been suggested to be promising qubits. High charge transfer efficiency of electrons in a narrow channel clocked with underlying gates, has been previously reported.footnotetextG. Sabouret, F.R. Bradbury, S. Shankar, J.A. Bert, S.A. Lyon, Appl. Phys. Lett. 92, 082104 (2008). We have fabricated similar devices with an array of parallel channels and small gaps between the underlying gates. These channels are filled with superfluid helium by capillary action, onto which electrons are photoemitted. Electrons are initially trapped by a gate (``door''), so that they capacitively couple to a sense gate which is the input of a cold HEMT preamplifier. An oscillatory potential applied to a third gate moves electrons on and off the sense gate to allow lock-in detection. Electrons are allowed to escape the sensing region by slowly ramping down the door barrier. Features in the electron occupancy signal correlate with the oscillatory drive voltage and preamp gain, and show evidence of discrete occupancy as the channels depopulate.

  1. Ultracold metastable helium: Ramsey fringes and atom interferometry

    NASA Astrophysics Data System (ADS)

    Vassen, W.; Notermans, R. P. M. J. W.; Rengelink, R. J.; van der Beek, R. F. H. J.

    2016-12-01

    We report on interference studies in the internal and external degrees of freedom of metastable triplet helium atoms trapped near quantum degeneracy in a 1.5 μm optical dipole trap. Applying a single π /2 rf pulse we demonstrate that 50% of the atoms initially in the m=+1 state can be transferred to the magnetic field insensitive m=0 state. Two π /2 pulses with varying time delay allow a Ramsey-type measurement of the Zeeman shift for a high precision measurement of the 2 ^3S_1-2 ^1S_0 transition frequency. We show that this method also allows strong suppression of mean-field effects on the measurement of the Zeeman shift, which is necessary to reach the accuracy goal of 0.1 kHz on the absolute transition frequencies. Theoretically the feasibility of using metastable triplet helium atoms in the m=0 state for atom interferometry is studied demonstrating favorable conditions, compared to the alkali atoms that are used traditionally, for a non-QED determination of the fine structure constant.

  2. Suicide by asphyxiation due to helium inhalation.

    PubMed

    Howard, Matthew O; Hall, Martin T; Edwards, Jeffrey D; Vaughn, Michael G; Perron, Brian E; Winecker, Ruth E

    2011-03-01

    Suicide by asphyxiation using helium is the most widely-promoted method of "self-deliverance" by right-to-die advocates. However, little is known about persons committing such suicides or the circumstances and manner in which they are completed. Prior reports of suicides by asphyxiation involving helium were reviewed and deaths determined by the North Carolina Office of the Chief Medical Examiner to be helium-associated asphyxial suicides occurring between January 1, 2000 and December 31, 2008 were included in a new case series examined in this article. The 10 asphyxial suicides involving helium identified in North Carolina tended to occur almost exclusively in non-Hispanic, white men who were relatively young (M age = 41.1 T 11.6). In 6 of 10 cases, decedents suffered from significant psychiatric dysfunction; in 3 of these 6 cases, psychiatric disorders were present comorbidly with substance abuse. In none of these cases were decedents suffering from terminal illness. Most persons committing suicide with helium were free of terminal illness but suffered from psychiatric and/or substance use disorders.

  3. Thermal Performance of the XRS Helium Insert

    NASA Technical Reports Server (NTRS)

    Breon, Susan R.; DiPirro, Michael J.; Tuttle, James G.; Shirron, Peter J.; Warner, Brent A.; Boyle, Robert F.; Canavan, Edgar R.

    1999-01-01

    The X-Ray Spectrometer (XRS) is an instrument on the Japanese Astro-E satellite, scheduled for launch early in the year 2000. The XRS Helium Insert comprises a superfluid helium cryostat, an Adiabatic Demagnetization Refrigerator (ADR), and the XRS calorimeters with their cold electronics. The calorimeters are capable of detecting X-rays over the energy range 0.1 to 10 keV with a resolution of 12 eV. The Helium Insert completed its performance and verification testing at Goddard in January 1999. It was shipped to Japan, where it has been integrated with the neon dewar built by Sumitomo Heavy Industries. The Helium Insert was given a challenging lifetime requirement of 2.0 years with a goal of 2.5 years. Based on the results of the thermal performance tests, the predicted on-orbit lifetime is 2.6 years with a margin of 30%. This is the result of both higher efficiency in the ADR cycle and the low temperature top-off, more than compensating for an increase in the parasitic heat load. This paper presents a summary of the key design features and the results of the thermal testing of the XRS Helium Insert.

  4. Hydrodynamic simulations of the core helium flash

    NASA Astrophysics Data System (ADS)

    Mocák, Miroslav; Müller, Ewald; Weiss, Achim; Kifonidis, Konstantinos

    2008-10-01

    We desribe and discuss hydrodynamic simulations of the core helium flash using an initial model of a 1.25 M⊙ star with a metallicity of 0.02 near at its peak. Past research concerned with the dynamics of the core helium flash is inconclusive. Its results range from a confirmation of the standard picture, where the star remains in hydrostatic equilibrium during the flash (Deupree 1996), to a disruption or a significant mass loss of the star (Edwards 1969; Cole & Deupree 1980). However, the most recent multidimensional hydrodynamic study (Dearborn et al. 2006) suggests a quiescent behavior of the core helium flash and seems to rule out an explosive scenario. Here we present partial results of a new comprehensive study of the core helium flash, which seem to confirm this qualitative behavior and give a better insight into operation of the convection zone powered by helium burning during the flash. The hydrodynamic evolution is followed on a computational grid in spherical coordinates using our new version of the multi-dimensional hydrodynamic code HERAKLES, which is based on a direct Eulerian implementation of the piecewise parabolic method.

  5. TRANSPARENT HELIUM IN STRIPPED ENVELOPE SUPERNOVAE

    SciTech Connect

    Piro, Anthony L.; Morozova, Viktoriya S.

    2014-09-01

    Using simple arguments based on photometric light curves and velocity evolution, we propose that some stripped envelope supernovae (SNe) show signs that a significant fraction of their helium is effectively transparent. The main pieces of evidence are the relatively low velocities with little velocity evolution, as are expected deep inside an exploding star, along with temperatures that are too low to ionize helium. This means that the helium should not contribute to the shaping of the main SN light curve, and thus the total helium mass may be difficult to measure from simple light curve modeling. Conversely, such modeling may be more useful for constraining the mass of the carbon/oxygen core of the SN progenitor. Other stripped envelope SNe show higher velocities and larger velocity gradients, which require an additional opacity source (perhaps the mixing of heavier elements or radioactive nickel) to prevent the helium from being transparent. We discuss ways in which similar analysis can provide insights into the differences and similarities between SNe Ib and Ic, which will lead to a better understanding of their respective formation mechanisms.

  6. Use of an autosampler for dynamic headspace extraction of volatile compounds from grains and effect of added water on the extraction.

    PubMed

    Ram, M S; Seitz, L M; Rengarajan, R

    1999-10-01

    An autosampler attached to a purge and trap instrument was used to aid routine analyses of grain samples for volatile compounds associated with off-odors. Trapped volatiles were transferred to a gas chromatograph/mass spectrometer instrument for separation and detection. Dynamic extraction of volatiles from approximately 18 g of whole grain at 80 degrees C was accomplished by purging helium through a sample vial with a Teflon-lined septum on each end. The autosampler automatically added internal standard to the sample before purging began, which required the addition of 1 mL of water for complete transfer of the standard to the sample. The added water enhanced extraction of 1-octen-3-ol, 1-octen-3-one, and some other compounds from soybeans but not from starchy grains such as corn and wheat. Addition of a free radical scavenger, such as citric acid, greatly diminished the recovery of 1-octen-3-ol and 1-octen-3-one from soybeans.

  7. Helium Speech: An Application of Standing Waves

    NASA Astrophysics Data System (ADS)

    Wentworth, Christopher D.

    2011-04-01

    Taking a breath of helium gas and then speaking or singing to the class is a favorite demonstration for an introductory physics course, as it usually elicits appreciative laughter, which serves to energize the class session. Students will usually report that the helium speech "raises the frequency" of the voice. A more accurate description of the phenomenon requires that we distinguish between the frequencies of sound produced by the larynx and the filtering of those frequencies by the vocal tract. We will describe here an experiment done by introductory physics students that uses helium speech as a context for learning about the human vocal system and as an application of the standing sound-wave concept. Modern acoustic analysis software easily obtained by instructors for student use allows data to be obtained and analyzed quickly.

  8. Quantum Halo States in Helium Tetramers.

    PubMed

    Stipanović, Petar; Vranješ Markić, Leandra; Boronat, Jordi

    2017-01-12

    The universality of quantum halo states enables a comparison of systems from different fields of physics, as demonstrated in two- and three-body clusters. In the present work, we studied weakly bound helium tetramers in order to test whether some of these four-body realistic systems qualify as halos. Their ground-state binding energies and structural properties were thoroughly estimated using the diffusion Monte Carlo method with pure estimators. Helium tetramer properties proved to be less sensitive on the potential model than previously evaluated trimer properties. We predict the existence of realistic four-body halo (4)He2(3)He2, whereas (4)He4 and (4)He3(3)He are close to the border and thus can be used as prototypes of quasi-halo systems. Our results could be tested by the experimental determination of the tetramers' structural properties using a setup similar to the one developed for the study of helium trimers.

  9. Helium corona-assisted air discharge

    SciTech Connect

    Jiang Nan; Gao Lei; Ji Ailing; Cao Zexian

    2011-10-15

    Operation of atmospheric discharge of electronegative gases including air at low voltages yet without consuming any inert gas will enormously promote the application of non-thermal plasmas. By taking advantage of the low onset voltage for helium corona, air discharge was successfully launched at much reduced voltages with a needle-plate system partly contained in a helium-filled glass bulb--for a needle-plate distance of 12 mm, 1.0 kV suffices. Ultraviolet emission from helium corona facilitates the discharging of air, and the discharge current manifests distinct features such as relatively broad Trichel pulses in both half periods. This design allows safe and economic implementation of atmospheric discharge of electronegative gases, which will find a broad palette of applications in surface modification, plasma medicine and gas treatment, etc.

  10. Thermodynamic properties of hydrogen-helium plasmas

    NASA Technical Reports Server (NTRS)

    Nelson, H. F.

    1971-01-01

    The thermodynamic properties of an atomic hydrogen-helium plasma are calculated and tabulated for temperatures from 10,000 to 100,000 K as a function of the mass fraction ratio of atomic hydrogen. The tabulation is for densities from 10 to the minus 10th power to 10 to the minus 6th power gm/cu cm and for hydrogen mass fraction ratios of 0, 0.333, 0.600, 0.800, and 1.0, which correspond to pure helium, 50 percent hydrogen per unit volume, 75 percent hydrogen per unit volume, 89 percent hydrogen per unit volume, and pure hydrogen plasmas, respectively. From an appended computer program, calculations can be made at other densities and mass fractions. The program output agrees well with previous thermodynamic property calculations for limiting cases of pure hydrogen and pure helium plasmas.

  11. Laser spectroscopic measurement of helium isotope ratios.

    SciTech Connect

    Wang, L.-B.; Mueller, P.; Holt, R. J.; Lu, Z.-T.; O'Connor, T. P.; Sano, Y.; Sturchio, N.; Univ. of Illinois; Univ. of Tokyo; Univ. of Illinois at Chicago

    2003-06-13

    A sensitive laser spectroscopic method has been applied to the quantitative determination of the isotope ratio of helium at the level of {sup 3}He/{sup 4}He = 10{sup -7}--10{sup -5}. The resonant absorption of 1083 nm laser light by the metastable {sup 3}He atoms in a discharge cell was measured with the frequency modulation saturation spectroscopy technique while the abundance of {sup 4}He was measured by a direct absorption technique. The results on three different samples extracted from the atmosphere and commercial helium gas were in good agreement with values obtained with mass spectrometry. The achieved 3{sigma} detection limit of {sup 3}He in helium is 4 x 10{sup -9}. This demonstration required a 200 {mu}L STP sample of He. The sensitivity can be further improved, and the required sample size reduced, by several orders of magnitude with the addition of cavity enhanced spectroscopy.

  12. Superfluid helium-4 in one dimensional channel

    NASA Astrophysics Data System (ADS)

    Kim, Duk Y.; Banavar, Samhita; Chan, Moses H. W.; Hayes, John; Sazio, Pier

    2013-03-01

    Superfluidity, as superconductivity, cannot exist in a strict one-dimensional system. However, the experiments employing porous media showed that superfluid helium can flow through the pores of nanometer size. Here we report a study of the flow of liquid helium through a single hollow glass fiber of 4 cm in length with an open id of 150 nm between 1.6 and 2.3 K. We found the superfluid transition temperature was suppressed in the hollow cylinder and that there is no flow above the transition. Critical velocity at temperature below the transition temperature was determined. Our results bear some similarity to that found by Savard et. al. studying the flow of helium through a nanohole in a silicon nitrite membrane. Experimental study at Penn State is supported by NSF Grants No. DMR 1103159.

  13. Component separation of oceanic helium

    NASA Astrophysics Data System (ADS)

    Roether, Wolfgang; Well, Roland; Putzka, Alfred; Rüth, Christine

    1998-11-01

    A new procedure to quantify the components of oceanic helium ("terrigenic" 3He and 4He released from the ocean floor and "tritiugenic" 3He from tritium decay) is described. Terrigenic He and nonatmospheric 3He (i.e., terrigenic and tritiugenic combined) are obtained in terms of measured concentrations of the He isotopes and also of neon (Ne) (which improves the separation considerably), assuming terrigenic He to vanish in the mixed layer. For the subsequent separation of terrigenic and tritiugenic 3He, additional information is required and 3He due to natural tritium represents a complication. The procedure is applied to data from a hydrographic section in the South Atlantic (19°S, 1991) and one in the Eastern Mediterranean (1987). The 1σ data precisions and a systematic error accounting for uncertainties in mixed-layer He are approximately 0.3%. Sections of the new representations of oceanic He and 3He and comparisons to the nearest classical quantities (i.e., 3He, He) are presented. In the South Atlantic the 3He distribution reflects the hydrographic structure. East of 20°W the average 3He/4He ratio of terrigenic He below 800 m is 4.5±0.8 times the atmospheric ratio, which implies a substantial contribution of crustal He. In the upper waters, tritiugenic 3He (0.5 tritium units, ±20%) is separated from terrigenic 3He. In the Eastern Mediterranean, tritiugenic 3He is quantified throughout the water column in the presence of substantial levels of terrigenic He; the release rate of terrigenic He from the sea floor is found to be 3.1±1.2 1010 atoms m-2 s-1, similar to the rate for continental crust, with a mantle He contribution of 5±1.2% only. Recommendations for future work are to reduce the mentioned systematic error and the uncertainty margins of the He and Ne solubilities and of 3He due to natural tritium.

  14. Pump performance requirement for the liquid helium orbital resupply tanker

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Ng, Y. S.

    1988-01-01

    The Liquid Helium Orbital Resupply Tanker (currently renamed to Superfluid Helium Tanker) will greatly enhance the lifetime of the space missions which require superfluid helium. The Superfluid Helium Tanker pump performance requirement is driven by the superfluid helium replenishment needs of the Space Infrared Telescope Facility (SIRTF). SIRTF is one of the space missions which will require on-orbit superfluid helium resupply in the 1990s. The Superfluid Helium Tanker will carry at least 10,000 L of superfluid helium and provide a minimum pump head of 170 torr (0 to 200 L/h) to cool SIRTF from 150 to 2 K. When the SIRTF tank starts to collect liquid, a minimum flow rate of 300 L/h with a pump head of 60 torr is required to fill the 4000-liter tank.

  15. 5. INTERIOR, LOOKING PAST HELIUM COMPRESSORS NO. 3 AND NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. INTERIOR, LOOKING PAST HELIUM COMPRESSORS NO. 3 AND NO. 2, TO NORTHEAST FRONT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Helium Compression Plant, Test Area 1-115, intersection of Altair & Saturn Boulevards, Boron, Kern County, CA

  16. 2. SOUTHEAST SIDE. HIGH PRESSURE HELIUM STORAGE TANKS AT LEFT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SOUTHEAST SIDE. HIGH PRESSURE HELIUM STORAGE TANKS AT LEFT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Helium Compression Plant, Test Area 1-115, intersection of Altair & Saturn Boulevards, Boron, Kern County, CA

  17. Helium building no. 2 west and south sides. Looking 70 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Helium building no. 2 west and south sides. Looking 70 ENE. - Marine Corps Air Station Tustin, Helium Tank Building No. 1, Near intersection of Meffett Avenue & Maxfield Street, Tustin, Orange County, CA

  18. Helium building no. 2 east and north sides. Looking 270 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Helium building no. 2 east and north sides. Looking 270 W. - Marine Corps Air Station Tustin, Helium Tank Building No. 1, Near intersection of Meffett Avenue & Maxfield Street, Tustin, Orange County, CA

  19. 8. ORIGINAL HELIUM COMPRESSOR, CIRCA 1957, BY HASKELL ENGINEERING, GLENDALE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. ORIGINAL HELIUM COMPRESSOR, CIRCA 1957, BY HASKELL ENGINEERING, GLENDALE, CALIFORNIA. Looking north. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Helium Compression Plant, Test Area 1-115, intersection of Altair & Saturn Boulevards, Boron, Kern County, CA

  20. EPR and ENDOR studies of cryoreduced compounds II of peroxidases and myoglobin. Proton-coupled electron transfer and protonation status of ferryl hemes.

    PubMed

    Davydov, Roman; Osborne, Robert L; Kim, Sun Hee; Dawson, John H; Hoffman, Brian M

    2008-05-06

    The nature of the [Fe(IV)-O] center in hemoprotein Compounds II has recently received considerable attention, as several experimental and theoretical investigations have suggested that this group is not necessarily the traditionally assumed ferryl ion, [Fe(IV)=O]2+, but can be the protonated ferryl, [Fe(IV)-OH]3+. We show here that cryoreduction of the EPR-silent Compound II by gamma-irradiation at 77 K produces Fe(III) species retaining the structure of the precursor [Fe(IV)=O]2+ or [Fe(IV)-OH]3+, and that the properties of the cryogenerated species provide a report on structural features and the protonation state of the parent Compound II when studied by EPR and 1H and 14N ENDOR spectroscopies. To give the broadest view of the properties of Compounds II we have carried out such measurements on cryoreduced Compounds II of HRP, Mb, DHP and CPO and on CCP Compound ES. EPR and ENDOR spectra of cryoreduced HRP II, CPO II and CCP ES are characteristic of low-spin hydroxy-Fe(III) heme species. In contrast, cryoreduced "globins", Mb II, Hb II, and DHP II, show EPR spectra having lower rhombicity. In addition the cryogenerated ferric "globin" species display strongly coupled exchangeable (1)H ENDOR signals, with A max approximately 20 MHz and a iso approximately 14 MHz, both substantially greater than for hydroxide/water ligand protons. Upon annealing at T > 180 K the cryoreduced globin compounds II relax to the low-spin hydroxy-ferric form with a solvent kinetic isotope effect, KIE > 6. The results presented here together with published resonance Raman and Mossbauer data suggest that the high-valent iron center of globin and HRP compounds II, as well as of CCP ES, is [Fe(IV)=O]2+, and that its cryoreduction produces [Fe(III)-O]+. Instead, as proposed by Green and co-workers, CPO II contains [Fe(IV)-OH]3+ which forms [Fe(III)-OH]2+ upon radiolysis. The [Fe(III)-O]+ generated by cryoreduction of HRP II and CCP ES protonate at 77 K, presumably because the heme is linked to

  1. The dynamics and helium distribution in hydrogen-helium fluid planets

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.; Salpeter, E. E.

    1977-01-01

    The simple case of a homogeneous planet without first-order phase transitions is considered and an investigation is conducted concerning a pure hydrogen planet in which a first-order phase transition takes place from fluid molecular hydrogen to fluid metallic hydrogen. Attention is also given to convection in the presence of a compositional gradient, the effects of helium insolubility in a cooling hydrogen-helium planet, a hydrogen-helium planet in its early evolution, and the case in which influence of phase transition occurs much later in the evolution of the planet.

  2. Comparison of Carbon Dioxide and Helium as Fire Extinguishing Agents for Spacecraft

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman; Son, Youngjin; Ronney, Paul D.

    2004-01-01

    The effects of radiation heat transfer in microgravity compared to convection heat transfer in earth gravity for opposed-flow (downward) over thermally-thick fuel using low density foam fuel were investigated. Microgravity experiments on flame spread over thermally-thick fuels were conducted using foam fuels to obtain low density and thermal conductivity, and thus large flame spread rate compared to dense fuels such as PMMA. And thereby valid microgravity results were obtained even in 2.2 second drop-tower experiments not to mention for the longer duration tests in Zero Gravity Facility. Contrast to the conventional understanding, it was found that steady flame spread can occur over thick fuels in quiescent microgravity environments, especially when radiatively-active diluent gases such as CO2 were employed. This is proposed to result from radiative heat transfer from the flame to the fuel surface, which could lead to steady spread even when the amount of the heat transfer via conduction from the flame to the fuel bed is negligible. Radiative effects are more significant at microgravity conditions because the flame is thicker and thus the volume of radiating combustion products is larger as well. These results suggested that helium may be a better inert or extinguishment agent on both a mass and a mole bases at microgravity even though CO2 is much better on a mole bases at earth gravity, and these are relevant to studies of fire safety in manned spacecraft, particularly the International Space Station that uses CO2 fire extinguishers. CO2 may not be as effective as an extinguishing agent at microgravity as it is at earth gravity in some conditions because of the differences in spread mechanisms between the two cases. In particular, the difference between conduction-dominated heat transport to the fuel bed at earth gravity and radiation-dominated heat transport at microgravity indicates that radiatively-inert diluent such as helium could be preferable in

  3. Comparison of Carbon Dioxide and Helium as Fire Extinguishing Agents for Spacecraft

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman; Son, Youngjin; Ronney, Paul D.

    2004-01-01

    The effects of radiation heat transfer in microgravity compared to convection heat transfer in earth gravity for opposed-flow (downward) over thermally-thick fuel using low density foam fuel were investigated. Microgravity experiments on flame spread over thermally-thick fuels were conducted using foam fuels to obtain low density and thermal conductivity, and thus large flame spread rate compared to dense fuels such as PMMA. And thereby valid microgravity results were obtained even in 2.2 second drop-tower experiments not to mention for the longer duration tests in Zero Gravity Facility. Contrast to the conventional understanding, it was found that steady flame spread can occur over thick fuels in quiescent microgravity environments, especially when radiatively-active diluent gases such as CO2 were employed. This is proposed to result from radiative heat transfer from the flame to the fuel surface, which could lead to steady spread even when the amount of the heat transfer via conduction from the flame to the fuel bed is negligible. Radiative effects are more significant at microgravity conditions because the flame is thicker and thus the volume of radiating combustion products is larger as well. These results suggested that helium may be a better inert or extinguishment agent on both a mass and a mole bases at microgravity even though CO2 is much better on a mole bases at earth gravity, and these are relevant to studies of fire safety in manned spacecraft, particularly the International Space Station that uses CO2 fire extinguishers. CO2 may not be as effective as an extinguishing agent at g as it is at earth gravity in some conditions because of the differences in spread mechanisms between the two cases. In particular, the difference between conduction-dominated heat transport to the fuel bed at earth gravity and radiation-dominated heat transport at g indicates that radiatively-inert diluent such as helium could be preferable in g applications. Helium may be a

  4. A quantitative study of valence electron transfer in the skutterudite compound CoP3 by combining x-ray induced Auger and photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Diplas, S.; Prytz, Ø.; Karlsen, O. B.; Watts, J. F.; Taftø, J.

    2007-06-01

    We use the sum of the ionization and Auger energy, the so-called Auger parameter, measured from the x-ray photoelectron spectrum, to study the valence electron distribution in the skutterudite CoP3. The electron transfer between Co and P was estimated using models relating changes in Auger parameter values to charge transfer. It was found that each P atom gains 0.24 e-, and considering the unit formula CoP3 this is equivalent to a donation of 0.72 e- per Co atom. This is in agreement with a recent electron energy-loss spectroscopy study, which indicates a charge transfer of 0.77 e-/atom from Co to P.

  5. Experimental assessment and modeling of interphase mass transfer rates of organic compounds in multiphase subsurface systems. Final report, July 1, 1989--June 30, 1993

    SciTech Connect

    Abriola, L.M.; Weber, W.J. Jr.

    1993-10-01

    Results of an experimental investigation into strady state dissolution of nonaqueous phase liquids (NAPLS) entrapped within water saturated porous media are presented. Influence of porous media type, NAPL characteristics, and aqueous phase flow velocity are examined for transient and steady-state dissolution of NAPL. Entrapped NAPL distributions are examined and are found to influence mass transfer between the phases. A phenomenological model for the steady state mass transfer process is developed which expresses a lumped mass transfer coefficient as a function of the hydrodynamics of the system and grain size parameters as a surrogate measure of the NAPL distribution. Transient dissolution data is used to develop two alternative phenomenological models for mass transfer. The models are incorporated into a onedimensional numerical simulator and are shown to be effective predictors of transient dissolution data in similar experimental systems. In order to further explore the effects of scale and heterogeneities on NAPL dissolution, the sphere model is incorporated into a two-dimensional simulator and is used to explore long-term dissolution of a TCE (trichloroethylene) spill in a layered system of sands. The simulation demonstrates the significance of heterogeneity, both in controlling the initial distribution of NAPL and the rate of NAPL dissolution.

  6. Theoretical research of helium pulsating heat pipe under steady state conditions

    NASA Astrophysics Data System (ADS)

    Xu, D.; Liu, H. M.; Li, L. F.; Huang, R. J.; Wang, W.

    2015-12-01

    As a new-type heat pipe, pulsating heat pipe (PHP) has several outstanding features, such as great heat transport ability, strong adjustability, small size and simple construction. PHP is a complex two-phase flow system associated with many physical subjects and parameters, which utilizes the pressure and temperature changes in volume expansion and contraction during phase changes to excite the pulsation motion of liquid plugs and vapor bubbles in the capillary tube between the evaporator and the condenser. At present time, some experimental investigation of helium PHP have been done. However, theoretical research of helium PHP is rare. In this paper, the physical and mathematical models of operating mechanism for helium PHP under steady state are established based on the conservation of mass, momentum, and energy. Several important parameters are correlated and solved, including the liquid filling ratio, flow velocity, heat power, temperature, etc. Based on the results, the operational driving force and flow resistances of helium PHP are analysed, and the flow and heat transfer is further studied.

  7. THE VISCOSITY OF HELIUM-CESIUM MIXTURES,

    DTIC Science & Technology

    The viscosities of helium-cesium mixtures having mole fractions of cesium from zero to unity were evaluated using a Lennard - Jones 6-12 interaction potential for all encounters in the Enskog Chapman expressions for the viscosity of a binary mixture. (Author)

  8. Electrons on helium — The ``polaron'' transition

    NASA Astrophysics Data System (ADS)

    Andrei, E. Y.; Grimes, C. C.; Adams, G.

    1984-07-01

    We describe the observation of the polaronic transition of a system of electrons supported above a helium film. The electron mobility drops sharply by more than four orders of magnitude as the film thickness is reduced below ≈ 1000 Å. The transition was observed in the temperature range 0.4 ⩽ T ⩽ 1 K.

  9. Energetic helium particles trapped in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Chen, Jiasheng; Guzik, T. Gregory; Sang, Yeming; Wefel, John P.; Cooper, John F.

    1994-01-01

    High energy (approximately 40-100 MeV/nucleon) geomagnetically trapped helium nuclei have been measured, for the first time, by the ONR-604 instrument during the 1990/1991 Combined Release and Radiation Effects Satellite (CRRES) mission. The helium events observed at L less than 2.3 have a pitch angle distribution peaking perpendicular to the local magnetic field and are contained in peaks located at L = 1.2 and 1.9. The events in each peak can be characterized by power law energy spectra with indices of 10.0 +/- 0.7 for L = 1.9-2.3 and 6.8 +/- 1.0 for L = 1.15-1.3, before the large storm of 24 March 1991. CRRES was active during solar maximum when the anomalous component is excluded from the inner heliosphere, making it unlikely that the observed events derived from the anomalous component. The trapped helium counting rates decrease gradually with time indicating that these high energy ions were not injected by flares during the 1990/91 mission. Flare injection prior to mid-1990 may account for the highest energy particles, while solar wind injection during magnetic storms and subsequent acceleration could account for the helium at lower energies.

  10. Excitation of helium ion by positron impact

    SciTech Connect

    Khan, P.; Ghosh, A.S.

    1986-01-01

    Three (1s,2s,2p) and five (1s,2s,2p,3s-bar,3p-bar) -state close-coupling methods have been employed to calculate the n = 2 excitation cross sections of helium ion by positron impact. The effect of pseudostate is found to be very pronounced in the case of 1s-2s excitation.

  11. The Weakest Link: Bonding between Helium Atoms

    ERIC Educational Resources Information Center

    Lohr, Lawrence L.; Blinder, S. M.

    2007-01-01

    A highly simplified model for helium dimers that reproduces their essential features without the need for elaborate computation is presented. The He-He potential is predicted to have minimum of 10.9 K at a nuclear separation of 5.61 bohrs.

  12. 30 CFR 256.11 - Helium.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Helium. 256.11 Section 256.11 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas,...

  13. Thermal flickers: A semianalytical approach. [helium stars

    NASA Technical Reports Server (NTRS)

    Perdang, J.; Buchler, J. R.

    1980-01-01

    In order to enhance physical insight into the nature of thermal oscillations arising from a thin helium burning shell, the behavior in its phase plane of a simple two zone model which, however, contains all the relevant physics is analyzed. This simple model very naturally reproduces thermal flickers and is relatively insensitive to all but two parameters.

  14. Atmospheric helium and geomagnetic field reversals.

    NASA Technical Reports Server (NTRS)

    Sheldon, W. R.; Kern, J. W.

    1972-01-01

    The problem of the earth's helium budget is examined in the light of recent work on the interaction of the solar wind with nonmagnetic planets. It is proposed that the dominant mode of helium (He4) loss is ion pumping by the solar wind during geomagnetic field reversals, when the earth's magnetic field is very small. The interaction of the solar wind with the earth's upper atmosphere during such a period is found to involve the formation of a bow shock. The penetration altitude of the shock-heated solar plasma is calculated to be about 700 km, and ionization rates above this level are estimated for a cascade ionization (electron avalanche) process to average 10 to the 9th power ions/sq cm/sec. The calculated ionization rates and the capacity of the solar wind to remove ionized helium (He4) from the upper atmosphere during geomagnetic dipole reversals are sufficient to yield a secular equilibrium over geologic time scales. The upward transport of helium from the lower atmosphere under these conditions is found to be adequate to sustain the proposed loss rate.

  15. 30 CFR 556.11 - Helium.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and Sulphur Management, General... helium from all gas produced from the leased area. (b) In case the United States elects to take...

  16. 30 CFR 556.11 - Helium.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and Sulphur Management, General... helium from all gas produced from the leased area. (b) In case the United States elects to take...

  17. 30 CFR 556.11 - Helium.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Outer Continental Shelf Oil, Gas, and Sulphur Management, General... helium from all gas produced from the leased area. (b) In case the United States elects to take...

  18. Helium and Sulfur Hexafluoride in Musical Instruments

    ERIC Educational Resources Information Center

    Forinash, Kyle; Dixon, Cory L.

    2014-01-01

    The effects of inhaled helium on the human voice were investigated in a recent article in "The Physics Teacher." As mentioned in that article, demonstrations of the effect are a popular classroom activity. If the number of YouTube videos is any indication, the effects of sulfur hexafluoride on the human voice are equally popular.…

  19. 43 CFR 3195.24 - What must I do before contacting a non-Federal helium supplier for my helium needs?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-Federal helium supplier for my helium needs? 3195.24 Section 3195.24 Public Lands: Interior Regulations... MANAGEMENT (3000) HELIUM CONTRACTS Federal Agency Requirements § 3195.24 What must I do before contacting a non-Federal helium supplier for my helium needs? You must make an initial determination about...

  20. 43 CFR 3195.24 - What must I do before contacting a non-Federal helium supplier for my helium needs?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-Federal helium supplier for my helium needs? 3195.24 Section 3195.24 Public Lands: Interior Regulations... MANAGEMENT (3000) HELIUM CONTRACTS Federal Agency Requirements § 3195.24 What must I do before contacting a non-Federal helium supplier for my helium needs? You must make an initial determination about...

  1. 43 CFR 3195.24 - What must I do before contacting a non-Federal helium supplier for my helium needs?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-Federal helium supplier for my helium needs? 3195.24 Section 3195.24 Public Lands: Interior Regulations... MANAGEMENT (3000) HELIUM CONTRACTS Federal Agency Requirements § 3195.24 What must I do before contacting a non-Federal helium supplier for my helium needs? You must make an initial determination about...

  2. 43 CFR 3195.24 - What must I do before contacting a non-Federal helium supplier for my helium needs?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-Federal helium supplier for my helium needs? 3195.24 Section 3195.24 Public Lands: Interior Regulations... MANAGEMENT (3000) HELIUM CONTRACTS Federal Agency Requirements § 3195.24 What must I do before contacting a non-Federal helium supplier for my helium needs? You must make an initial determination about...

  3. A study of the thermal conductivity of composite material Cu-epoxide resin at superfluid helium temperatures

    NASA Astrophysics Data System (ADS)

    Wang, H. L.; Wu, T. H.; Guo, F. Z.

    1994-02-01

    The influence of Kapitza thermal resistance of the composite material at superfluid helium temperatures is studied from the point of view of the heat transfer theory of cryogenics. A numerical model is developed for calculating the effective thermal conductivity coefficient of Cu-epoxide resin with the wires arranged in a square or crosswise. Experimental investigations have also been made at superfluid helium temperatures. The effective thermal conductivity coefficient of this kind of composite material measured by experiment is λ e=0.5929W/m·K.

  4. Survey of helium in soil gases of Long Valley, Califorina

    SciTech Connect

    Hinkle, M.E.; Kilburn, J.E.

    1980-01-01

    Soil and water samples in and around the Long Valley geothermal area, Mono County, California, were collected and analyzed for helium by means of a modified mass spectrometer leak detector to see what relationship helium concentrations might have to geothermal features of the area, and to previously studied mercury anomalies in the area. Anomalously high concentrations of helium occurred over part of a major Sierra Nevada frontal fault and over other faults outside of the caldera. Anomalously low concentrations of helium occurred in several areas of high mercury concentrations, which were also areas of hydrothermal alteration. Quantities of helium exsolved from water samples did not fit any pattern.

  5. Method to control the amount of helium during leak testing

    SciTech Connect

    Frank E. Jurvic, Jr.

    2002-03-29

    The purpose of this paper is to demonstrate a method for limiting the amount of helium administered during leak testing and provide a method for keeping the atmospheric helium in a location to a minimum to eliminate backstreaming into the system. This method utilizes the permeability of a balloon. The transporting of helium to the leak check area is also safer by not requiring a cylinder in the leak check location. Utilizing the many shapes of balloons and partially filling of the balloon, any configuration can deliver helium to the leak location. The balloon I filled for the test fell to the floor with the amount of helium I put into the balloon.

  6. The effects of convective overshooting on naked helium stars

    NASA Astrophysics Data System (ADS)

    Yan, Jing-Zhi; Zhu, Chun-Hua; Wang, Zhao-Jun; Lü, Guo-Liang

    2016-09-01

    Using stellar evolutionary models, we investigate the effects of convective overshooting on naked helium stars. We find that a larger value of overshooting parameter δov results in a larger convective core, which prolongs the lifetimes of naked helium stars on the helium main sequence and leads to higher effective temperatures and luminosities. For naked helium stars with masses lower than about 0.8 M⊙, they hardly become giant stars as a result of a weak burning shell. However, naked helium stars with masses between about 0.8 M⊙ and 1.1 M⊙ can evolve into giant branch phases, and finally become carbon oxygen white dwarfs.

  7. The role of phytoplankton composition, biomass and cell volume in accumulation and transfer of endocrine disrupting compounds in the Southern Baltic Sea (The Gulf of Gdansk).

    PubMed

    Staniszewska, Marta; Nehring, Iga; Zgrundo, Aleksandra

    2015-12-01

    Endocrine disrupting compounds (EDCs) like bisphenol A (BPA), 4-tert-octylphenol (OP) and 4-nonylphenol (NP) are introduced to the trophic webs through among others phytoplankton. This paper describes BPA, OP and NP concentrations in phytoplankton in the Gulf of Gdansk (Southern Baltic Sea) in the years 2011-2012. The assays of BPA, OP and NP in samples were performed using HPLC with fluorescence detection. The concentrations of BPA, the most commonly used of the three compounds, were over ten times higher than OP and NP concentrations. The concentrations of the studied EDCs in phytoplankton from the Gulf of Gdansk depended on anthropogenic factors and on phytoplankton properties (species composition, biomass, volume). An increase in phytoplankton biomass did not always result in an increase of BPA, OP and NP concentrations. However, the load of the studied EDCs accumulated in phytoplankton biomass increase with a rise of biomass. An increase in BPA, OP and NP concentrations was effected by biomass growth and the proportions ofciliates, dinoflagellates, diatoms and green algae. A strong positive correlation between OP and NP concentrations and negative correlation between BPA concentrations and biomass of organisms with cells measuring <1000 μm(3) in volume results from the differing properties of these compounds.

  8. Molecular dynamics study of helium bubble pressure in tungsten

    NASA Astrophysics Data System (ADS)

    Cui, Jiechao; Li, Min; Wang, Jun; Hou, Qing

    2015-06-01

    Molecular dynamics simulations were performed to calculate the stress field in a tungsten matrix containing a nano-scale helium bubble. A helium bubble in tungsten is found to consist of a core and an interface of finite thickness of approximately 0.6 nm. The core contains only helium atoms that are uniformly distributed. The interface is composed of both helium and tungsten atoms. In the periphery region of the helium bubble, the stress filed is found to follow the stress formula based on the elasticity theory of solid. The pressure difference between both sides of the interface can be well described by the Young-Laplace equation for the core size of a helium bubble as small as 0.48 nm. A comparison was performed between the pressure in the helium bubble core and the pressure in pure helium. For a core size larger than 0.3 nm, the pressure in the core of a helium bubble is in good agreement with the pressure in pure helium of the same helium density. These results provide guidance to larger scale simulation methods, such as in kinetic Monte Carlo methods and rate theory.

  9. Review of Membranes for Helium Separation and Purification.

    PubMed

    Scholes, Colin A; Ghosh, Ujjal K

    2017-02-17

    Membrane gas separation has potential for the recovery and purification of helium, because the majority of membranes have selectivity for helium. This review reports on the current state of the research and patent literature for membranes undertaking helium separation. This includes direct recovery from natural gas, as an ancillary stage in natural gas processing, as well as niche applications where helium recycling has potential. A review of the available polymeric and inorganic membranes for helium separation is provided. Commercial gas separation membranes in comparable gas industries are discussed in terms of their potential in helium separation. Also presented are the various membrane process designs patented for the recovery and purification of helium from various sources, as these demonstrate that it is viable to separate helium through currently available polymeric membranes. This review places a particular focus on those processes where membranes are combined in series with another separation technology, commonly pressure swing adsorption. These combined processes have the most potential for membranes to produce a high purity helium product. The review demonstrates that membrane gas separation is technically feasible for helium recovery and purification, though membranes are currently only applied in niche applications focused on reusing helium rather than separation from natural sources.

  10. Review of Membranes for Helium Separation and Purification

    PubMed Central

    Scholes, Colin A.; Ghosh, Ujjal K.

    2017-01-01

    Membrane gas separation has potential for the recovery and purification of helium, because the majority of membranes have selectivity for helium. This review reports on the current state of the research and patent literature for membranes undertaking helium separation. This includes direct recovery from natural gas, as an ancillary stage in natural gas processing, as well as niche applications where helium recycling has potential. A review of the available polymeric and inorganic membranes for helium separation is provided. Commercial gas separation membranes in comparable gas industries are discussed in terms of their potential in helium separation. Also presented are the various membrane process designs patented for the recovery and purification of helium from various sources, as these demonstrate that it is viable to separate helium through currently available polymeric membranes. This review places a particular focus on those processes where membranes are combined in series with another separation technology, commonly pressure swing adsorption. These combined processes have the most potential for membranes to produce a high purity helium product. The review demonstrates that membrane gas separation is technically feasible for helium recovery and purification, though membranes are currently only applied in niche applications focused on reusing helium rather than separation from natural sources. PMID:28218644

  11. Helium Accumulation Behavior in Iron Based Model Alloys

    SciTech Connect

    Sugano, R.; Morishita, K.; Kimura, A.

    2003-09-15

    Helium desorption from Fe-based model alloys irradiated by energetic helium ions was measured during post-irradiation annealing to investigate the energetics and kinetics of formation and annihilation of helium-related defects. Desorption temperatures were observed to be widely ranged from 450 to 1500 K, indicating that helium is bound to a wide variety of trapping sites such as vacancies and dislocations at various binding states. Such a feature is also observed in fusion ferritic steel. A comparison of helium desorption spectra obtained using Fe, Fe-Cr and Fe-Cr-Ni alloys showed that helium is more strongly trapped in bcc Fe than fcc Fe. It indicates that the long distance migration of helium takes place less frequently in bcc matrix, which may reduce the probability of helium clustering. Fusion ferric steel has a lot of trapping sites for helium such as dislocations, solute atoms, the interface of precipitates, impurities and lath boundaries, and so on, and in addition, it has bct matrix, indicating that most of helium atoms must be dispersed in the matrix and therefore it is difficult for them to cluster as a bubble. This may be a reason for higher helium resistance of the steel.

  12. Thermal desorption behavior of helium in aged titanium tritide films

    NASA Astrophysics Data System (ADS)

    Cheng, G. J.; Shi, L. Q.; Zhou, X. S.; Liang, J. H.; Wang, W. D.; Long, X. G.; Yang, B. F.; Peng, S. M.

    2015-11-01

    The desorption behavior of helium in TiT(1.5∼1.8)-x3Hex film samples (x = 0.0022-0.22) was investigated by thermal desorption technique in vacuum condition in this paper. The thermal helium desorption spectrometry (THDS) of aging titanium tritide films prepared by electron beam evaporation revealed that, depending on the decayed 3He concentration in the samples, there are more than four states of helium existing in the films. The divided four zones in THDS based on helium states represent respectively: (1) the mobile single helium atoms with low activation energy in all aging samples resulted from the interstitial sites or dissociated from interstitial clusters, loops and dislocations, (2) helium bubbles inside the grain lattices, (3) helium bubbles in the grain boundaries and interconnected networks of dislocations in the helium concentration of 3Hegen/Ti > 0.0094, and (4) helium bubbles near or linked to the film surface by interconnected channel for later aging stage with 3Hegen/Ti > 0.18. The proportion of helium desorption in each zone was estimated, and dissociated energies of helium for different trapping states were given.

  13. Trapping helium in Y{sub 2}Ti{sub 2}O{sub 7} compared to in matrix iron: A first principles study

    SciTech Connect

    Yang, Litong; Jiang, Yong E-mail: odette@engineering.ucsb.edu; Robert Odette, G. E-mail: odette@engineering.ucsb.edu; Yamamoto, Takuya; Liu, Zuming; Liu, Yong

    2014-04-14

    Pyrochlore Y{sub 2}Ti{sub 2}O{sub 7} is a primary precipitate phase in nano-structured ferritic alloys (NFAs) for fission and fusion energy applications. We report a theoretical study for assessing the relative stability of trapping helium in Y{sub 2}Ti{sub 2}O{sub 7} versus in matrix iron. Various defect structures and the associated energies are examined and compared. Results reveal that helium can be deeply trapped in Y{sub 2}Ti{sub 2}O{sub 7} and that the corresponding self-interaction is essentially repulsive. Transmutant helium in NFAs prefers to occupy individual octa-interstitial sites in Y{sub 2}Ti{sub 2}O{sub 7}, before forming small clusters in Y{sub 2}Ti{sub 2}O{sub 7}. Helium partitioning in NFAs depends on the number and dispersion of Y{sub 2}Ti{sub 2}O{sub 7}; and thus initially, bubble formation and growth in iron matrix can be largely suppressed. Charge transfer occurs from helium to neighboring oxygen anions, but not to neighboring metal cations, suggesting a general effectiveness of trapping helium in oxides. Reasons for the ultimate fate of helium to form small nm-scale interface bubbles are also discussed.

  14. Helium-3 from the mantle - Primordial signal or cosmic dust?

    NASA Technical Reports Server (NTRS)

    Anderson, Don L.

    1993-01-01

    Helium-3 in hotspot magmas has been used as unambiguous evidence for the existence of a primordial, undegassed reservoir deep in the Earth's mantle. However, a large amount of helium-3 is delivered to the Earth's surface by interplanetary dust particles (IDPs). Recycling of deep-sea sediments containing these particles to the mantle, and eventual incorporation in magma, can explain the high helium-3/helium-4 ratios of hotspot magmas. Basalts with high helium-3/helium-4 ratios may represent degassing of helium introduced by ancient (probably 1.5 to 2.0 billion years old) pelagic sediments rather than degassing of primordial lower mantle material brought to the surface in plumes. Influx of IDPs can also explain the neon and siderophile compositions of mantle samples.

  15. A superfluid helium system for an LST IR experiment

    NASA Technical Reports Server (NTRS)

    Breckenridge, R. W., Jr.; Moore, R. W., Jr.

    1975-01-01

    The results are presented of a study program directed toward evaluating the problems associated with cooling an LST instrument to 2 K for a year by using superfluid helium as the cooling means. The results include the parametric analysis of systems using helium only, and systems using helium plus a shield cryogen. A baseline system, using helium only is described. The baseline system is sized for an instrument heat leak of 50 mw. It contains 71 Kg of superfluid helium and has a total, filled weight of 217 Kg. A brief assessment of the technical problems associated with a long life, spaceborne superfluid helium storage system is also made. It is concluded that a one year life, superfluid helium cooling system is feasible, pending experimental verification of a suitable low g vent system.

  16. Measurement of Helium-3/Helium-4 Ratios in Soil Gas at the 618-11 Burial Ground

    SciTech Connect

    Olsen, Khris B; Dresel, P Evan; Evans, John C

    2001-10-31

    Seventy soil gas-sampling points were installed around the perimeter of the 618-11 Burial Ground, approximately 400 feet downgradient of well 699-13-3A, and in four transects downgradient of the burial ground to a maximum distance of 3,100 feet. Soil gas samples were collected and analyzed for helium-3/helium-4 ratios from these 70 points. Helium-3/helium-4 ratios determined from the soil gas sampling points showed significant enrichments, relative to ambient air helium-3 concentrations. The highest concentrations were located along the northern perimeter of the burial ground. Helium-3/helium-4 ratios (normalized to the abundances in ambient air) ranged from 1.0 to 62 around the burial ground. The helium-3/helium-4 ratios from the 4 transect downgradient of the burial ground ranged from 0.988 to 1.68. The helium-3/helium-4 ratios from around the burial ground suggest there is a vadose zone source of tritium along the north side of the burial ground.

  17. Development and Dissemination of a Nationwide Helium Database for a National Assessment of Helium Resources.

    NASA Astrophysics Data System (ADS)

    Brennan, S. T.; East, J. A., II; Garrity, C. P.

    2015-12-01

    In 2013, Congress passed the Helium Stewardship Act requiring the U.S. Geological Survey (USGS) to undertake a national helium gas resource assessment to determine the nation's helium resources. An important initial component necessary to complete this assessment was the development of a comprehensive database of Helium (He) concentrations from petroleum exploration wells. Because Helium is often used as the carrier gas for compositional analyses for commercial and exploratory oil and gas wells, this limits the available helium concentration data. A literature search in peer-reviewed publications, state geologic survey databases, USGS energy geochemical databases, and the Bureau of Land Management databases provided approximately 16,000 data points from wells that had measurable He concentrations in the gas composition analyses. The data from these wells includes, date of sample collection, American Petroleum Institute well number, formation name, field name, depth of sample collection, and location. The gas compositional analyses, some performed as far back as 1934, do not all have the same level of precision and accuracy, therefore the date of the analysis is critical to the assessment as it indicates the relative amount of uncertainty in the analytical results. Non-proprietary data was used to create a GIS based interactive web interface that allows users to visualize, inspect, interact, and download our most current He data. The user can click on individual locations to see the available data at that location, as well as zoom in and out on a data density map. Concentrations on the map range from .04 mol% (lowest concentration of economic value) to 12% (highest naturally occurring values). This visual interface will allow users to develop a rapid appreciation of the areas with the highest potential for high helium concentrations within oil and gas fields.

  18. Higher resolution helium measuring system for deuterium plasma on EAST tokamak via normal Penning gauge

    NASA Astrophysics Data System (ADS)

    Houyin, Wang; Jiansheng, Hu; Yaowei, Yu; Bin, Cao; Jinhua, Wu; Guoqing, Shen; Zhao, Wan; EAST, Contributors

    2017-01-01

    Although the deuterium and helium have almost the same mass, a Penning Optical Gas Analyzer (POGA) system on the basis of the spectroscopic method and Penning discharging has been designed on EAST, since 2014. The POGA system was developed successfully in 2015, it was the first time that EAST could detect helium partial pressure in deuterium plasma (wall conditioning and plasma operation scenario). With dedicated calibration and proper adjustment of the parameters, the minimum concentration of helium in deuterium gas can be measured as about 0.5% instead of 1% on the other tokamak devices. Moreover, the He and D2 partial pressures are measured simultaneously. At present, the measurable range of deuterium partial pressure is 1 × 10-7 mbar to 1 × 10-5 mbar, meanwhile the range of helium is 1 × 10-8 mbar to 1 × 10-5 mbar. The measurable range can be modified by means of the adjustment of POGA system’s parameters. It is possible to detect the interesting part of the gas with a time resolution of less than 5 ms (the 200 ms because of conductance of transfer pipe at present). The POGA system was routinely employed to wall conditioning and helium enrichment investigation in 2015. Last but not the least, the low temperature plasma of POGA is generated by normal penning gauge Pfeiffer IKR gauge instead of Alcatel CF2P, which has been suspended for a few years and was used for almost all the POGA systems in the world.

  19. Heating rate measurements over 30 deg and 40 deg (half angle) blunt cones in air and helium in the Langley expansion tube facility

    NASA Technical Reports Server (NTRS)

    Reddy, N. M.

    1980-01-01

    Convective heat transfer measurements, made on the conical portion of spherically blunted cones (30 deg and 40 deg half angle) in an expansion tube are discussed. The test gases used were helium and air; flow velocities were about 6.8 km/sec for helium and about 5.1 km/sec for air. The measured heating rates are compared with calculated results using a viscous shock layer computer code. For air, various techniques to determine flow velocity yielded identical results, but for helium, the flow velocity varied by as much as eight percent depending on which technique was used. The measured heating rates are in satisfactory agreement with calculation for helium, assuming the lower flow velocity, the measurements are significantly greater than theory and the discrepancy increased with increasing distance along the cone.

  20. UV-induced hydrogen-atom transfer in 3,6-dithiopyridazine and in model compounds 2-thiopyridine and 3-thiopyridazine.

    PubMed

    Rostkowska, Hanna; Lapinski, Leszek; Reva, Igor; Almeida, Bruno J A N; Nowak, Maciej J; Fausto, Rui

    2011-11-10

    Monomeric 3,6-dithiopyridazine (3-mercapto- 6(1H)-pyridazinethione) was studied using the matrix-isolation method combined with quantum chemical calculations. The monomers of 3,6-dithiopyridazine, trapped from the gas phase into a low-temperature Ar matrix, were found to adopt the thione-thiol structure. In agreement with this experimental observation, the thione-thiol form was predicted (at the QCISD level) to be more stable by 13.5 kJ mol(-1) and by 39.6 kJ mol(-1) than the dithiol and the dithione tautomers, respectively. Monomers of 3,6-dithiopyridazine isolated in Ar matrixes were then irradiated with broadband UV (λ > 335 nm) light. Upon such irradiation, the thione-thiol form of the compound converted into the dithiol tautomer. The same phototransformation was observed when monochromatic λ = 385 nm laser light was used for irradiation. This allowed a first observation and spectral characterization of the dithiol form of 3,6-dithiopyridazine. Subsequent irradiation of the UV-generated dithiol tautomer with shorter-wavelength UV (λ > 275 nm) light led to partial repopulation of the thione-thiol form. Spectral signatures of the analogous photoreversibility were also found for the phototautomeric transformation in the model compound 3-thiopyridazine. The reliability of the QCISD predictions of relative energies of thiol and thione tautomeric forms was tested on the archetype example of 2-thiopyridine. For this compound, the comparison of the computed relative energy 10.9 kJ mol(-1) with the experimental estimate 10.0 ± 1.5 kJ mol(-1) (both in favor of the thiol form) was more than satisfactory.

  1. Super-Maxwellian helium evaporation from pure and salty water

    SciTech Connect

    Hahn, Christine; Kann, Zachary R.; Faust, Jennifer A.; Skinner, J. L. E-mail: nathanson@chem.wisc.edu; Nathanson, Gilbert M. E-mail: nathanson@chem.wisc.edu

    2016-01-28

    Helium atoms evaporate from pure water and salty solutions in super-Maxwellian speed distributions, as observed experimentally and modeled theoretically. The experiments are performed by monitoring the velocities of dissolved He atoms that evaporate from microjets of pure water at 252 K and 4–8.5 molal LiCl and LiBr at 232–252 K. The average He atom energies exceed the flux-weighted Maxwell-Boltzmann average of 2RT by 30% for pure water and 70% for 8.5m LiBr. Classical molecular dynamics simulations closely reproduce the observed speed distributions and provide microscopic insight into the forces that eject the He atoms from solution. Comparisons of the density profile and He kinetic energies across the water-vacuum interface indicate that the He atoms are accelerated by He–water collisions within the top 1-2 layers of the liquid. We also find that the average He atom kinetic energy scales with the free energy of solvation of this sparingly soluble gas. This free-energy difference reflects the steeply decreasing potential of mean force on the He atoms in the interfacial region, whose gradient is the repulsive force that tends to expel the atoms. The accompanying sharp decrease in water density suppresses the He–water collisions that would otherwise maintain a Maxwell-Boltzmann distribution, allowing the He atom to escape at high energies. Helium is especially affected by this reduction in collisions because its weak interactions make energy transfer inefficient.

  2. Super-Maxwellian helium evaporation from pure and salty water.

    PubMed

    Hahn, Christine; Kann, Zachary R; Faust, Jennifer A; Skinner, J L; Nathanson, Gilbert M

    2016-01-28

    Helium atoms evaporate from pure water and salty solutions in super-Maxwellian speed distributions, as observed experimentally and modeled theoretically. The experiments are performed by monitoring the velocities of dissolved He atoms that evaporate from microjets of pure water at 252 K and 4-8.5 molal LiCl and LiBr at 232-252 K. The average He atom energies exceed the flux-weighted Maxwell-Boltzmann average of 2RT by 30% for pure water and 70% for 8.5m LiBr. Classical molecular dynamics simulations closely reproduce the observed speed distributions and provide microscopic insight into the forces that eject the He atoms from solution. Comparisons of the density profile and He kinetic energies across the water-vacuum interface indicate that the He atoms are accelerated by He-water collisions within the top 1-2 layers of the liquid. We also find that the average He atom kinetic energy scales with the free energy of solvation of this sparingly soluble gas. This free-energy difference reflects the steeply decreasing potential of mean force on the He atoms in the interfacial region, whose gradient is the repulsive force that tends to expel the atoms. The accompanying sharp decrease in water density suppresses the He-water collisions that would otherwise maintain a Maxwell-Boltzmann distribution, allowing the He atom to escape at high energies. Helium is especially affected by this reduction in collisions because its weak interactions make energy transfer inefficient.

  3. Data-driven RBE parameterization for helium ion beams

    NASA Astrophysics Data System (ADS)

    Mairani, A.; Magro, G.; Dokic, I.; Valle, S. M.; Tessonnier, T.; Galm, R.; Ciocca, M.; Parodi, K.; Ferrari, A.; Jäkel, O.; Haberer, T.; Pedroni, P.; Böhlen, T. T.

    2016-01-01

    Helium ion beams are expected to be available again in the near future for clinical use. A suitable formalism to obtain relative biological effectiveness (RBE) values for treatment planning (TP) studies is needed. In this work we developed a data-driven RBE parameterization based on published in vitro experimental values. The RBE parameterization has been developed within the framework of the linear-quadratic (LQ) model as a function of the helium linear energy transfer (LET), dose and the tissue specific parameter {{(α /β )}\\text{ph}} of the LQ model for the reference radiation. Analytic expressions are provided, derived from the collected database, describing the \\text{RB}{{\\text{E}}α}={α\\text{He}}/{α\\text{ph}} and {{\\text{R}}β}={β\\text{He}}/{β\\text{ph}} ratios as a function of LET. Calculated RBE values at 2 Gy photon dose and at 10% survival (\\text{RB}{{\\text{E}}10} ) are compared with the experimental ones. Pearson’s correlation coefficients were, respectively, 0.85 and 0.84 confirming the soundness of the introduced approach. Moreover, due to the lack of experimental data at low LET, clonogenic experiments have been performed irradiating A549 cell line with {{(α /β )}\\text{ph}}=5.4 Gy at the entrance of a 56.4 MeV u-1He beam at the Heidelberg Ion Beam Therapy Center. The proposed parameterization reproduces the measured cell survival within the experimental uncertainties. A RBE formula, which depends only on dose, LET and {{(α /β )}\\text{ph}} as input parameters is proposed, allowing a straightforward implementation in a TP system.

  4. The effect of helium on microstructural evolution and mechanical properties of Fe-Cr-Ni alloys as determined in a spectral tailoring experiment

    SciTech Connect

    Sekimura, N. ); Garner, F.A. ); Griffin, R.D. )

    1991-11-01

    Fe-15Cr-XNi alloys irradiated at both low (0.66 to 1.2) and very high (27 to 58) helium/dpa levels exhibit significantly different levels of strengthening due to an unprecedented refinement of cavity microstructure at the very high helium levels. When compounded with the nickel dependence of helium generation, the cavity distribution for some irradiation conditions and alloy compositions can be driven below the critical radius for bubble-to-void conversion, leading to a delay in swelling. The critical radius also appears to be dependent on the nickel level. The refinement may not have resulted from the high helium levels alone, however but also may have been influenced by differences in displacement rate and temperature history in the two experiments.

  5. High-resolution heat-transfer-coefficient maps applicable to compound-curve surfaces using liquid crystals in a transient wind tunnel

    NASA Technical Reports Server (NTRS)

    Jones, Terry V.; Hippensteele, Steven A.

    1988-01-01

    Tests were performed in a transient heat transfer tunnel in which the model under test was preheated prior to allowing room temperature air to be suddenly drawn over the model. The resulting movement of isothermal contours on the model is revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record is obtained of a temperature and time data pair for all points on the model during a single test. Experiments on a duct model are reported in which the model was preheated using a hot air stream. A manner in which initial model temperature nonuniformities could be taken into account was investigated. The duct model was also tested with a steady-state measurement technique and results were compared with the transient measurements, but recognizing that differences existed between the upstream thermal boundary conditions. The steady-state and transient measurements were shown to be consistent with predicted values. The main advantage of this transient heat transfer technique using liquid crystals is that since the test model need not be actively heated, high-resolution measurements on surfaces with complex shapes may be obtained.

  6. Intensification of volatile organic compounds mass transfer in a compact scrubber using the O3/H2O2 advanced oxidation process: kinetic study and hydroxyl radical tracking.

    PubMed

    Biard, Pierre-François; Couvert, Annabelle; Renner, Christophe; Levasseur, Jean-Pierre

    2011-11-01

    This study assesses the potential of ozonation and advanced oxidation process O(3)/H(2)O(2) to enhance the dimethyldisulfide (DMDS) mass transfer in a compact chemical scrubber developed for air treatment applications. Theoretical calculations, through Hatta number and enhancement factor evaluations for two parallel irreversible reactions, were compared to experimental data and enabled the description of the mass transfer mechanisms. These calculations required the determination of the kinetic constant of the DMDS oxidation by molecular ozone ( [Formula: see text] ) and the measurement of the hydroxyl radical concentration within the scrubber. The competitive kinetic method using the 1,2-dihydroxybenzene (resorcinol) enabled to determine a value of the kinetic constant [Formula: see text] of 1.1×10(6)M(-1)s(-1) at 293K. Then, experiments using para-chlorobenzoic acid in solution allowed measuring the average hydroxyl concentration in the scrubber between the inlet and the outlet depending on the chemical conditions (pH and inlet O(3) and H(2)O(2) concentrations). High hydroxyl radical concentrations (10(-8)M) and ratio of the HO°-to-O(3) exposure (R(ct)≈10(-4)) were put in evidence.

  7. High-resolution heat-transfer-coefficient maps applicable to compound-curve surfaces using liquid crystals in a transient wind tunnel

    NASA Technical Reports Server (NTRS)

    Jones, T. V.; Hippensteele, S. A.

    1987-01-01

    Tests were performed in a transient heat transfer tunnel in which the model under test was preheated prior to allowing room temperature air to be suddenly drawn over the model. The resulting movement of isothermal contours on the model is revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record is obtained of a temperature and time data pair for all points on the model during a single test. Experiments on a duct model are reported in which the model was preheated using a hot air stream. A manner in which initial model temperature nonuniformities could be taken into account was investigated. The duct model was also tested with a steady-state measurement technique and results were compared with the transient measurements, but recognizing that differences existed between the upstream thermal boundary conditions. The steady-state and transient measurements were shown to be consistent with predicted values. The main advantage of this transient heat transfer technique using liquid crystals is that since the test model need not be actively heated, high-resolution measurements on surfaces with complex shapes may be obtained.

  8. Cryogenic adsorber design in a helium refrigeration system

    NASA Astrophysics Data System (ADS)

    Hu, Zhongjun; Zhang, Ning; Li, Zhengyu; Li, Q.

    2012-06-01

    The cryogenic adsorber is specially designed to eliminate impurities in gaseous helium such as O2, and N2 which is normally difficult to remove, based on the reversible cryotrapping of impurities on an activated carbon bed. The coconut shell activated carbon is adopted because of its developed micropore structure and specific surface area. This activated carbon adsorption is mostly determined by the micropore structure, and the adsorption rate of impurities is inversely proportional to the square of the particle sizes. The active carbon absorber's maximum permissible flow velocity is 0.25 m/s. When the gas flow velocity increases, the adsorption diffusion rate of the adsorbent is reduced, because an increase in the magnitude of the velocity resulted in a reduced amount of heat transfer to a unit volume of impure gas. According to the numerical simulation of N2 adsorption dynamics, the appropriate void tower link speed and the saturated adsorption capacity are determined. Then the diameter and height of the adsorber are designed. The mass transfer length should be taken into account in the adsorber height design. The pressure decrease is also calculated. The important factors that influence the adsorber pressure decrease are the void tower speed, the adsorbed layer height, and the active carbon particle shape and size.

  9. Helium-ion-induced human cataractogenesis

    NASA Technical Reports Server (NTRS)

    Blakely, E. A.; Daftari, I. K.; Meecham, W. J.; Alonso, L. C.; Collier, J. M.; Kroll, S. M.; Gillette, E. L.; Lee, A. C.; Lett, J. T.; Cox, A. B.

    1994-01-01

    Retrospective and ongoing analyses of clinical records from 347 primary intraocular melanoman patients treated with helium ions at Lawrence Berkeley Laboratory (LBL) will allow examination of the exposure-response data for human cataract; which is a complication of the therapy from incidental exposure of the lens. Direct particle beam traversal of at least a portion of the lens usually is unavoidable in treatment of posterior intraocular tumors. The precise treatment planned for each patient permits quantitative assessment of the lenticular dose and its radiation quality. We are reporting our preliminary results on the development of helium-ion-induced lens opacifications and cataracts in 54 of these patients who had 10% or less of their lens in the treatment field. We believe these studies will be relevant to estimating the human risk for cataract in space flight.

  10. Quantum model of the Thomson helium atom

    NASA Astrophysics Data System (ADS)

    Kazaryan, E. M.; Shakhnazaryan, V. A.; Sarkisyan, H. A.; Gusev, A. A.

    2014-03-01

    A quantum model of the Thomson helium atom is considered within the framework of stationary perturbation theory. It is shown that from a formal point of view this problem is similar to that of two-electron states in a parabolic quantum dot. The ground state energy of the quantum Thomson helium atom is estimated on the basis of Heisenberg's uncertainty principle. The ground state energies obtained in the first order of perturbation theory and qualitative estimate provide, respectively, upper and lower estimates of eigenvalues derived by numerically solving the problem for a quantum model. The conditions under which the Kohn theorem holds in this system, when the values of resonance absorption frequencies are independent of the Coulomb interaction between electrons, are discussed.

  11. Three Dimensional Particle Tracking in Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Megson, Peter

    2016-11-01

    Superfluid helium is a macroscopic quantum state which exhibits exotic physical properties, such as flow without friction and ballistic heat transport. Superfluid flow is irrotational except about line-like topological phase defects with quantized circulation, known as quatized vortices. The presence of these vortices and their dynamics is the dominating factor of turbulence in superfluid flows. One commonly studied regime of superfluid turbulence is thermal counterflow, where a local heat flux drives the formation and growth of a tangle of vortices. This talk will present experimental studies of counterflow turbulence performed using a multi-camera three-dimensional imaging apparatus with micron-sized ice tracer particles as well as fluorescent nanoparticles. In particular, we will discuss the measurement of three-dimensional velocties and their autocorrelations. Additionally, we are developing new techniques for optical studies of bulk superfluid helium, with particular focus on characterizing tracer particles and particle dispersal mechanisms. Funding from NSF DMR-1407472.

  12. Helium circulator design considerations for modular high temperature gas-cooled reactor plant

    SciTech Connect

    McDonald, C.F.; Nichols, M.K.

    1986-12-01

    Efforts are in progress to develop a standard modular high temperature gas-cooled reactor (MHTGR) plant that is amenable to design certification and serial production. The MHTGR reference design, based on a steam cycle power conversion system, utilizes a 350 MW(t) annular reactor core with prismatic fuel elements. Flexibility in power rating is afforded by utilizing a multiplicity of the standard module. The circulator, which is an electric motor-driven helium compressor, is a key component in the primary system of the nuclear plant, since it facilitates thermal energy transfer from the reactor core to the steam generator; and, hence, to the external turbo-generator set. This paper highlights the helium circulator design considerations for the reference MHTGR plant and includes a discussion on the major features of the turbomachine concept, operational characteristics, and the technology base that exists in the US.

  13. An ETF TF-coil concept employing NbTi alloy, bath cooled with superfluid helium

    NASA Astrophysics Data System (ADS)

    Hsu, Y.-H.; Purcell, J. R.; Alcorn, J. S.; Homeyer, W.

    1981-01-01

    A preliminary study has been performed to assess the feasibility and engineering consideration of employing NbTi alloy conductor, bath cooled with superfluid helium (He II), in an Engineering Test Facility (ETF) toroidal field (TF) coil. This study indicates that saturated superfluid helium (He II) merits serious consideration as an alternative to the use of He I for high field (11-12 tesla) NbTi alloy TF-coils, which require bath temperatures below 4 K. The primary advantages of He II over reduced temperature (2.5-3 K) He I are two: (1) Due to the extremely high thermal conductivity of He II, almost all of the sub-lambda enthalpy is available to absorb local or transient heat loads; and (2) the relatively high surface heat transfer results in substantially improved conductor stability characteristics. The disadvantages of He II relative to reduced temperature He I are increased refrigeration power and pumping requirements, and some additional system complexity.

  14. Particle-Vortex Interaction in Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Barenghi, Carlo F.

    2008-11-01

    The application of the classical Particle Image Velocimetry (PIV) technique in liquid helium has opened the way to better visualization of superfluid turbulence. To interpret the data, it is necessary to understand the interaction between micron-size tracer particles and vortex lines. This talk summarizes current understanding of this interaction resulting from theoretical and numerical calculations. In collaboration with Yuri A. Sergeev, Newcastle University.

  15. Helium isotope ratios in Ethiopian Rift basalts

    NASA Astrophysics Data System (ADS)

    Scarsi, P.; Craig, H.

    1996-11-01

    Helium isotope ratios were measured in olivine and pyroxene phenocrysts from basalts of the Ethiopian Rift Valley and Afar Depression between 6° and 15°N and 37° and 43°E. 3He/4He ratios range from 6 to 17 times the atmospheric value (RA = 1.4 × 10-6), that is, from ratios less than typical MORB (depleted mantle) helium (R/RA= 8 ± 1) to ratios similar to high-3He hotspots and to the Yellowstone hotspot (R/RA= 16.5). The high 3He/4He ratios occur all along the Ethiopian Rift and well up into the Afar Depression, with a maximum value of 17.0 RA at 8°N in the Rift Axis and a high value of 14.2 RA in the central Tat'Ali sector of the Afar Depression. The ratios decrease to MORB-like values near the edge of the Red Sea, and to sub-MORB ratios (5-6 RA) at the northern end of the Rift (Zula Peninsula) and at the southern end, at lakes Abaya and Chamo. The Ethiopian Rift provides the only continental hotspot terrain in which helium isotope ratios can be compared in detail between volcanic lavas and associated geothermal and volcanic gases, a primary motivation for this work. Comparison with our previously measured ratios in fluids and gases (range 2-15 RA) shows excellent agreement in the areas sampled for both lavas and fluids, and indicates that high-temperature volcanic fluids can be used for establishing helium isotope signatures in such terrains. The high-3He values in both fluids and basalts show that a Primitive Mantle (PM) component is required and that a Lower Mantle High-3He plume is strongly involved as a driving force in the rifting process of the East African Rift System.

  16. Correlation of Helium Solubility in Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    VanDresar, Neil T.; Zimmerli, Gregory A.

    2012-01-01

    A correlation has been developed for the equilibrium mole fraction of soluble gaseous helium in liquid nitrogen as a function of temperature and pressure. Experimental solubility data was compiled and provided by National Institute of Standards and Technology (NIST). Data from six sources was used to develop a correlation within the range of 0.5 to 9.9 MPa and 72.0 to 119.6 K. The relative standard deviation of the correlation is 6.9 percent.

  17. Helium synthesis, neutrino flavors, and cosmological implications

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1979-01-01

    The problem of the production of helium in big bang cosmology is re-examined in the light of several recent astrophysical observations. These data, and theoretical particle physics considerations, lead to some important inconsistencies in the standard big bang model and suggest that a more complicated picture is needed. Thus, recent constraints on the number of neutrino flavors, as well as constraints on the mean density (openness) of the universe, need not be valid.

  18. Test program, helium II orbital resupply coupling

    NASA Technical Reports Server (NTRS)

    Hyatt, William S.

    1991-01-01

    The full scope of this program was to have included development tests, design and production of custom test equipment and acceptance and qualification testing of prototype and protoflight coupling hardware. This program was performed by Ball Aerospace Systems Division, Boulder, Colorado until its premature termination in May 1991. Development tests were performed on cryogenic face seals and flow control devices at superfluid helium (He II) conditions. Special equipment was developed to allow quantified leak detection at large leak rates up to 8.4 x 10(exp -4) SCCS. Two major fixtures were developed and characterized: The Cryogenic Test Fixture (CTF) and the Thermal Mismatch Fixture (Glovebox). The CTF allows the coupling hardware to be filled with liquid nitrogen (LN2), liquid helium (LHe) or sub-cooled liquid helium when hardware flow control valves are either open or closed. Heat leak measurements, internal and external helium leakage measurements, cryogenic proof pressure tests and external load applications are performed in this fixture. Special reusable MLI closures were developed to provide repeatable installations in the CTF. The Thermal Mismatch Fixture allows all design configurations of coupling hardware to be engaged and disengaged while measuring applied forces and torques. Any two hardware components may be individually thermally preconditioned within the range of 117 deg K to 350 deg K prior to engage/disengage cycling. This verifies dimensional compatibility and operation when thermally mismatched. A clean, dry GN2 atmosphere is maintained in the fixture at all times. The first shipset of hardware was received, inspected and cycled at room temperature just prior to program termination.

  19. Combined cold compressor/ejector helium refrigerator

    DOEpatents

    Brown, Donald P.

    1985-01-01

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  20. Combined cold compressor/ejector helium refrigerator

    DOEpatents

    Brown, D.P.

    1984-06-05

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  1. Closed-loop pulsed helium ionization detector

    DOEpatents

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detector for gas chromatography is operated in a constant current, pulse-modulated mode by configuring the detector, electrometer and a high voltage pulser in a closed-loop control system. The detector current is maintained at a fixed level by varying the frequency of fixed-width, high-voltage bias pulses applied to the detector. An output signal proportional to the pulse frequency is produced which is indicative of the charge collected for a detected species.

  2. Test program, helium II orbital resupply coupling

    NASA Astrophysics Data System (ADS)

    Hyatt, William S.

    1991-12-01

    The full scope of this program was to have included development tests, design and production of custom test equipment and acceptance and qualification testing of prototype and protoflight coupling hardware. This program was performed by Ball Aerospace Systems Division, Boulder, Colorado until its premature termination in May 1991. Development tests were performed on cryogenic face seals and flow control devices at superfluid helium (He II) conditions. Special equipment was developed to allow quantified leak detection at large leak rates up to 8.4 x 10(exp -4) SCCS. Two major fixtures were developed and characterized: The Cryogenic Test Fixture (CTF) and the Thermal Mismatch Fixture (Glovebox). The CTF allows the coupling hardware to be filled with liquid nitrogen (LN2), liquid helium (LHe) or sub-cooled liquid helium when hardware flow control valves are either open or closed. Heat leak measurements, internal and external helium leakage measurements, cryogenic proof pressure tests and external load applications are performed in this fixture. Special reusable MLI closures were developed to provide repeatable installations in the CTF. The Thermal Mismatch Fixture allows all design configurations of coupling hardware to be engaged and disengaged while measuring applied forces and torques. Any two hardware components may be individually thermally preconditioned within the range of 117 deg K to 350 deg K prior to engage/disengage cycling. This verifies dimensional compatibility and operation when thermally mismatched. A clean, dry GN2 atmosphere is maintained in the fixture at all times. The first shipset of hardware was received, inspected and cycled at room temperature just prior to program termination.

  3. Tkachenko waves in rotating superfluid helium

    SciTech Connect

    Andereck, C.D.; Chalupa, J.; Glaberson, W.I.

    1980-01-07

    The resonant response of a stack of disks driven into torsional oscillation within a container of rotating superfluid helium has been observed. It is shown that the oscillation modes excited are related to Tkachenko waves, that is, vortex displacement waves in the vortex array propagating in a direction transverse to the vortex lines. In particular, the resonances occur at peaks in the vortex wave density of states.

  4. Magnetic Levitation and Noncoalescence of Liquid Helium

    SciTech Connect

    Weilert, M.; Whitaker, D.; Maris, H.; Seidel, G.

    1996-12-01

    We describe experiments in which drops of liquid helium-4, as large as 2cm in diameter, are magnetically levitated. We have found that, when two or more drops are levitated in the same magnetic trap, the drops often remain in a state of apparent contact without coalescing. It appears that this effect is caused by the slow evaporation of liquid from the drops. {copyright} {ital 1996 The American Physical Society.}

  5. The evolution of hydrogen-helium stars.

    NASA Technical Reports Server (NTRS)

    Ezer, D.; Cameron, A. G. W.

    1971-01-01

    Investigation of the premain sequence evolution and the main sequence evolution of stars of 5, 10, 20, 30, 100, and 200 solar masses. Normal stars in this entire mass range normally convert hydrogen into helium by the CN-cycle on the main sequence. The present hydrogen-helium stars of 5 and 10 solar masses must reach higher central temperatures in order to convert hydrogen to helium by the proton-proton chains. Consequently, the mean densities in the stars are greater, and the surface temperatures are higher than in normal stars. In the stars of 20 solar masses and larger, the proton-proton chains do not succeed in supplying the necessary luminosity of the stars by the time the contraction has produced a central temperature near 10 to the 8th K. At that point triple-alpha reactions generate small amounts of C12, which then acts as a catalyst in the CN-cycle, the rate of which is then limited by the beta-decays occurring within the cycle. During the evolution of these more massive stars, the central temperature remains in the vicinity of 10 to the 8th K, and the surface temperature on the main sequence approaches 100,000.

  6. Feasibility study for long lifetime helium dewar

    NASA Technical Reports Server (NTRS)

    Parmley, R. T.

    1981-01-01

    A feasible concept for a launchable three year lifetime helium dewar was investigted. Current helium dewar designs were examined to see where the largest potential reductions in parasitic heat loads can be made. The study was also devoted to examining support concepts. The support concept chosen, a passive orbital disconnect strut (PODS), has an orbital support conductance that is lower by more than an order of magnitude over current tension band supports. This lower support conductance cuts the total dewar weight in half for the same three year life time requirements. Effort was also concentrated on efficient wire feed through designs and vapor cooling of the multilayer insulation, supports, wire feed throughs and plumbing penetrations. A single stage helium dewar vs. dual stage dewars with a guard cryogen of nitrogen or neon was examined. The single stage dewar concept was selected. Different support concepts were analyzed from which the PODS support concepts was chosen. A preliminary design of the dewar was thermally and structurally analyzed and laid out including system weights, thermal performance and performance sensitivities.

  7. Surface tension effects in levitated helium drops

    NASA Astrophysics Data System (ADS)

    Vicente, Carlos Luis

    We report our investigations of surface tension driven flows in magnetically levitated 4He drops. By levitating helium drops in a magnetic trap we are able to observe the free surface of drops as they undergo shape oscillations. We also study the dynamics of the free surface during the process of coalescence. Our experimental method allows us to excite shape oscillations in the levitated helium drops and measure their normal mode frequencies. By measuring the frequency of the fundamental (l = 2) mode, we obtain new measurements of the surface tension of helium for temperatures between 1.5 and 0.5 K. Our measurements extrapolate to a value of 0.375 erg cm -2 at T = 0 K. Our results agree with the capillary wave measurements of Roche et al., and Atkins and Narahra. We study how the shape of the trap used to levitate the drops influences the resonant frequency of the l = 2 mode. Measurements of the frequency spectrum were performed using different trap potentials. We have calculated the resonant frequencies for the trap shapes produced by different magnet coil currents. We compare our measurements of the resonant frequencies at various magnet currents with these theoretical predictions and find good agreement. We describe experiments to study the coalescence of He II drops levitated in a magnetic trap. Using a high speed CCD camera, we have produced movies of drops coalescing at temperatures as low as 0.7 K. We examine some interesting features of the motion during and following coalescence.

  8. Helium refrigeration system for hydrogen liquefaction applications

    NASA Astrophysics Data System (ADS)

    Nair, J. Kumar, Sr.; Menon, RS; Goyal, M.; Ansari, NA; Chakravarty, A.; Joemon, V.

    2017-02-01

    Liquid hydrogen around 20 K is used as cold moderator for generating “cold neutron beam” in nuclear research reactors. A cryogenic helium refrigeration system is the core upon which such hydrogen liquefaction applications are built. A thermodynamic process based on reversed Brayton cycle with two stage expansion using high speed cryogenic turboexpanders (TEX) along with a pair of compact high effectiveness process heat exchangers (HX), is well suited for such applications. An existing helium refrigeration system, which had earlier demonstrated a refrigeration capacity of 470 W at around 20 K, is modified based on past operational experiences and newer application requirements. Modifications include addition of a new heat exchanger to simulate cryogenic process load and two other heat exchangers for controlling the temperatures of helium streams leading out to the application system. To incorporate these changes, cryogenic piping inside the cold box is suitably modified. This paper presents process simulation, sizing of new heat exchangers as well as fabrication aspects of the modified cryogenic process piping.

  9. Helium-flow measurement using ultrasonic technique

    SciTech Connect

    Sondericker, J.H.

    1983-01-01

    While designing cryogenic instrumentation for the Colliding Beam Accelerator (CBA) helium-distribution system it became clear that accurate measurement of mass flow of helium which varied in temperature from room to sub-cooled conditions would be difficult. Conventional venturi flow meters full scale differential pressure signal would decrease by more than an order of magnitude during cooldown causing unacceptable error at operating temperature. At sub-cooled temperatures, helium would be pumped around cooling loops by an efficient, low head pressure circulating compressor. Additional pressure drop meant more pump work was necessary to compress the fluid resulting in a higher outlet temperature. The ideal mass flowmeter for this application was one which did not add pressure drop to the system, functioned over the entire temperature range, has high resolution and delivers accurate mass flow measurement data. Ultrasonic flow measurement techniques used successfully by the process industry, seemed to meet all the necessary requirements. An extensive search for a supplier of such a device found that none of the commercial stock flowmeters were adaptable to cryogenic service so the development of the instrument was undertaken by the CBA Cryogenic Control and Instrumentation Engineering Group at BNL.

  10. Quantum entanglement in helium-like ions

    NASA Astrophysics Data System (ADS)

    Lin, Y.-C.; Ho, Y. K.

    2012-06-01

    Recently, there have been considerable interests to investigate quantum entanglement in two-electron atoms [1-3]. Here we investigate quantum entanglement for the ground and excited states of helium-like ions using correlated wave functions, concentrating on the particle-particle entanglement coming from the continuous spatial degrees of freedom. We use the two-electron wave functions constructed by employing B-spline basis to calculate the linear entropy of the reduced density matrix L=1-TrA(ρA^2 ) as a measure of the spatial entanglement. HereρA=TrB(| >AB AB<|) is the one-electron reduced density matrix obtained after tracing the two-electron density matrix over the degrees of freedom of the other electron. We have investigated the spatial entanglement for the helium-like systems with Z=1 to Z=10. For the helium atoms (Z=2), we have calculated the linear entropy for the ground state and the 1sns ^1S^e (n=2-10) excited states. Results are compared with other calculations [1-3]. [4pt] [1] J. P. Coe and I. D'Amico, J. Phys.: Conf. Ser. 254, 012010 (2010) [0pt] [2] D. Manzano et. al., J. Phys. A: Math. Theor. 43, 275301 (2010) [0pt] [3] J. S. Dehesa et. al., J. Phys. B 45, 015504 (2012)

  11. Development of charcoal sorbents for helium cryopumping

    SciTech Connect

    Sedgley, D.W.; Tobin, A.G.

    1985-09-30

    Improved methods for cryopumping helium were developed for application to fusion reactors where high helium generation rates are expected. This study period evaluated charcoal particle size, bonding agent type and thickness, and substrate thickness. The optimum combination of charcoal, bond, and substrate was used to form a scaled-up panel for evaluation in the Tritium Systems Test Assembly (TSTA) at Los Alamos. The optimum combination is a 12 x 30 mesh coconut charcoal attached to a 0.48 cm thick copper substrate by a 0.015 cm thick silver phosphorus copper braze. A copper cement bond for attaching charcoal to a substrate was identified and tested. Helium pumping performance of this combination was comparable to that of the charcoal braze system. Environmental tests showed the charcoal's susceptibility to vacuum chamber contamination. Performance degradation followed exposure of ambient temperature charcoal to a vacuum for prolonged periods. Maintaining a liquid nitrogen-cooled shield between the charcoal and the source of contamination prevented this degradation. A combination of bake-out and LN shielding effected recovery of degraded performance.

  12. Excited-state electronic coupling and photoinduced multiple electron transfer in two related ligand-bridged hexanuclear mixed-valence compounds.

    PubMed

    Pfennig, Brian W; Mordas, Carolyn J; McCloskey, Alex; Lockard, Jenny V; Salmon, Patty M; Cohen, Jamie L; Watson, David F; Bocarsly, Andrew B

    2002-08-26

    The synthesis, characterization, electrochemical, photophysical, and photochemical properties of two hexanuclear mixed-valence compounds are reported. Each supramolecular species consists of two cyano-bridged [(NC)(5)Fe(II)-CN-Pt(IV)(NH(3))(3)L-NC-Fe(II)(CN)(5)] triads that are linked to each other through a Pt(IV)-L-Pt(IV) bridge, where L = 4,4'-dipyridyl (bpy) or 3,3'-dimethyl-4,4'-dipyridyl (dmb). The major difference between the two compounds is the electronic nature of the bridging ligand between the two Pt atoms. Both species exhibit a broad Fe(II) --> Pt(IV) intervalent (IT) absorption band at 421 nm with an oscillator strength that is approximately four times that for [(NC)(5)Fe(II)-CN-Pt(IV)(NH(3))(5)] and twice that for [(NC)(5)Fe(II)-CN-Pt(IV)(NH(3))(4)-NC-Fe(II)(CN)(5)].(4-) When L = bpy, the resonance Raman spectrum obtained by irradiating the IT band at 488 nm exhibits several dipyridyl ring modes at 1604, 1291, and 1234 cm(-1) which are not present in the spectrum when L = dmb. In addition, femtosecond pump-probe spectroscopy performed at 400 nm yields a transient bleach of the IT absorption band with a single exponential decay of 3.5 ps for L = bpy, compared with only 1.8 ps for L = dmb and 2.1 ps for [(NC)(5)Fe(II)-CN-Pt(IV)(NH(3))(4)-NC-Fe(II)(CN)(5)].(4-) Last, prolonged irradiation of the complexes at 488 nm leads to the formation of 4 equiv of ferricyanide with a quantum efficiency of 0.0014 for L = bpy and 0.0011 for L = dmb. The transient absorption, resonance Raman, and photochemical data suggest that the degree of excited electronic coupling in these compounds is tunable by changing the electronic nature of the Pt-L-Pt bridging ligand.

  13. Investigating differences in the root to shoot transfer and xylem sap solubility of organic compounds between zucchini, squash and soybean using a pressure chamber method.

    PubMed

    Garvin, Naho; Doucette, William J; White, Jason C

    2015-07-01

    A pressure chamber method was used to examine differences in the root to shoot transfer and xylem sap solubility of caffeine (log Kow=-0.07), triclocarban (log Kow=3.5-4.2) and endosulfan (log Kow=3.8-4.8) for zucchini (cucurbita pepo ssp pepo), squash (cucurbita pepo ssp ovifera), and soybean (glycine max L.). Transpiration stream concentration factors (TSCF) for caffeine (TSCF=0.8) were statistically equivalent for all plant species. However, for the more hydrophobic endosulfan and triclocarban, the TSCF values for zucchini (TSCF=0.6 and 0.4, respectively) were 3 and 10 times greater than the soybean and squash (TSCF=0.2 and 0.05, respectively). The difference in TSCF values was examined by comparing the measured solubilities of caffeine, endosulfan and triclocarban in deionized water to those in soybean and zucchini xylem saps using a modified shake flask method. The measured solubility of organic contaminants in xylem sap has not previously been reported. Caffeine solubilities in the xylem saps of soybean and zucchini were statistically equal to deionized water (21500mgL(-1)) while endosulfan and triclocarban solubilities in the zucchini xylem sap were significantly greater (0.43 and 0.21mgL(-1), respectively) than that of the soybean xylem sap (0.31 and 0.11mgL(-1), respectively) and deionized water (0.34 and 0.11mgL(-1), respectively). This suggests that the enhanced root to shoot transfer of hydrophobic organics reported for zucchini is partly due to increased solubility in the xylem sap. Further xylem sap characterization is needed to determine the mechanism of solubility enhancement.

  14. In situ controlled modification of the helium density in single helium-filled nanobubbles

    SciTech Connect

    David, M.-L. Pailloux, F.; Alix, K.; Mauchamp, V.; Pizzagalli, L.; Couillard, M.; Botton, G. A.

    2014-03-28

    We demonstrate that the helium density and corresponding pressure can be modified in single nano-scale bubbles embedded in semiconductors by using the electron beam of a scanning transmission electron microscope as a multifunctional probe: the measurement probe for imaging and chemical analysis and the irradiation source to modify concomitantly the pressure in a controllable way by fine tuning of the electron beam parameters. The control of the detrapping rate is achieved by varying the experimental conditions. The underlying physical mechanisms are discussed; our experimental observations suggest that the helium detrapping from bubbles could be interpreted in terms of direct ballistic collisions, leading to the ejection of the helium atoms from the bubble.

  15. An attempt to evaluate the effect of proton-coupled electron transfer on the H-abstraction step of the reaction between 1,1-dimethylhydrazine and cytochrome P450 compound I

    NASA Astrophysics Data System (ADS)

    Hirao, Hajime; Chuanprasit, Pratanphorn

    2015-02-01

    A series of density functional theory and G4 calculations are performed to quantify the extent to which proton-coupled electron transfer (PCET) lowers the barrier for H-abstraction in the reaction between 1,1-dimethylhydrazine (UDMH) and the compound I intermediate of a cytochrome P450 enzyme. The homolytic bond dissociation energy of UDMH is larger than that of 1,4-cyclohexadiene; nevertheless, the H-abstraction barrier is significantly lower for the former substrate. The barrier lowering in the UDMH reaction caused by PCET is roughly estimated to be 9 kcal/mol. Valence bond structures are analyzed in detail to figure out how PCET lowers the barrier height.

  16. Neutron-induced helium implantation in GCFR cladding

    SciTech Connect

    Yamada, H.; Poeppel, R. B.; Sevy, R. H.

    1980-10-01

    The neutron-induced implantation of helium atoms on the exterior surfaces of the cladding of a prototypic gas-cooled fast reactor (GCFR) has been investigated analytically. A flux of recoil helium particles as high as 4.2 x 10/sup 10/ He/cm/sup 2/.s at the cladding surface has been calculated at the peak power location in the core of a 300-MWe GCFR. The calculated profile of the helium implantation rates indicates that although some helium is implanted as deep as 20 ..mu..m, more than 99% of helium particles are implanted in the first 2-..mu..m-deep layer below the cladding surface. Therefore, the implanted helium particles should mainly affect surface properties of the GCFR cladding.

  17. THERMAL UNIFORMITY OF LIQUID HELIUM IN ELECTRON BUBBLE CHAMBER.

    SciTech Connect

    WANG,L.; JIA,L.

    2002-07-22

    A CRYOGENIC RESEARCH APPARATUS TO MEASURE THE MOVEMENT OF ELECTRONS UNDER A HIGH ELECTRIC FIELD IN A LIQUID HELIUM BATH WAS DESIGNED AND BUILT AT THE BROOKHAVEN NATIONAL LABORATORY AND THE NEVIS LABORATORY OF COLUMBIA UNIVERSITY. THE LIQUID HELIUM CHAMBER IS A DOUBLE WALLED CYLINDRICAL CONTAINER EQUIPPED WITH 5 OPTICS WINDOWS AND 10 HIGH VOLTAGE CABLES. TO SHIELD THE LIQUID HELIUM CHAMBER AGAINST THE EXTERNAL HEAT LOADS AND TO PROVIDE THE THERMAL UNIFORMITY IN THE LIQUID HELIUM CHAMBER, THE DOUBLE WALLED JACKET WAS COOLED BY A PUMPED HELIUM BATH. THE HELIUM CHAMBER WAS BUILT INTO A COMMERICAL LN2 / LHE CRYOSTAT. THIS PAPER PRESENTS THE DESIGN AND THE NUMERICAL SIMULATION ANALYSIS ON THERMAL UNIFORMITY OF THE ELECTRON BUBBLE CHAMBER.

  18. Metastable Aluminum Atoms Floating on the Surface of Helium Nanodroplets.

    PubMed

    Jeffs, Jay; Besley, Nicholas A; Stace, Anthony J; Sarma, Gautam; Cunningham, Ethan M; Boatwright, Adrian; Yang, Shengfu; Ellis, Andrew M

    2015-06-12

    Metal atoms have proved to be sensitive probes of the properties of superfluid helium nanodroplets. To date, all experiments on the doping of helium droplets have concentrated on the attachment of metal atoms in their ground electronic states. Here we report the first examples of metal atoms in excited states becoming attached to helium nanodroplets. The atoms in question are aluminum, and they have been generated by laser ablation in a metastable quartet state, which attaches to and remains on the surface of helium droplets. Evidence for a surface location comes from electronic spectra, which consist of very narrow absorption profiles that show very small spectral shifts. Supporting ab initio calculations show there to be an energy incentive for a metastable Al atom to remain on the surface of a helium droplet rather than move to the interior. The results suggest that helium droplets may provide a method for the capture and transport of metastable excited atomic and molecular species.

  19. Dynamics of small mobile helium clusters near tungsten surfaces

    NASA Astrophysics Data System (ADS)

    Hu, Lin; Hammond, Karl D.; Wirth, Brian D.; Maroudas, Dimitrios

    2014-08-01

    We report the results of a systematic atomic-scale analysis of the dynamics of small mobile helium clusters in tungsten, near tungsten surfaces. These helium clusters are attracted to tungsten surfaces due to an elastic interaction force that drives surface segregation. As the clusters migrate toward the surface, trap mutation and cluster dissociation are activated at rates higher than in the bulk. These kinetic processes are responsible for important structural, morphological, and compositional features in plasma-exposed tungsten, including surface adatoms, near-surface immobile helium-vacancy complexes, and retained helium content. Detailed results are presented for di-helium and tri-helium clusters near low-Miller-index tungsten surfaces.

  20. Capacity enhancement of indigenous expansion engine based helium liquefier

    NASA Astrophysics Data System (ADS)

    Doohan, R. S.; Kush, P. K.; Maheshwari, G.

    2017-02-01

    Development of technology and understanding for large capacity helium refrigeration and liquefaction at helium temperature is indispensable for coming-up projects. A new version of helium liquefier designed and built to provide approximately 35 liters of liquid helium per hour. The refrigeration capacity of this reciprocating type expansion engine machine has been increased from its predecessor version with continuous improvement and deficiency debugging. The helium liquefier has been built using components by local industries including cryogenic Aluminum plate fin heat exchangers. Two compressors with nearly identical capacity have been deployed for the operation of system. Together they consume about 110 kW of electric power. The system employs liquid Nitrogen precooling to enhance liquid Helium yield. This paper describes details of the cryogenic expander design improvements, reconfiguration of heat exchangers, performance simulation and their experimental validation.

  1. Synthesis of imine and reduced imine compounds containing aromatic sulfonamide: use as catalyst for in situ generation of ruthenium catalysts in transfer hydrogenation of acetophenone derivatives.

    PubMed

    Dayan, Serkan; Arslan, Fatma; Kayacı, Nilgün; Kalaycioglu, Nilgun Ozpozan

    2014-01-01

    Three imine and three reduced imine ligands containing aromatic sulfonamide (2-7) were isolated by a simple method and characterized by FT-IR, NMR, and elemental analysis. Meanwhile, the interaction of 2-7 ligands with [(p-cymene)RuCl2]2 was analyzed in situ by UV-vis spectrophotometer. The in situ generated catalytic system derived from N-(2-(benzylideneamino)phenyl)-2,4,6-trimethyl-benzenesulfonamides and N-(2-(benzylamino)phenyl)-2,4,6-trimethyl-benzenesulfonamides with [(p-cymene)RuCl2]2 was used as a catalyst in the transfer hydrogenation (TH) of p-substituted acetophenone derivatives. The catalytic systems displayed high activities, which increased in the order 7<4<5<6<1<2<3. The best activity for the TH of 4-chloroacetophenone was provided with the [(p-cymene)RuCl2]2/ligand (3) catalytic system (turnover frequency values: 720 h(-1) for 10 min on S/C: 500/1).

  2. Introduction of distillate rosemary leaves into the diet of the Murciano-Granadina goat: transfer of polyphenolic compounds to goats' milk and the plasma of suckling goat kids.

    PubMed

    Jordán, Maria José; Moñino, María Inmaculada; Martínez, Cristina; Lafuente, Arturo; Sotomayor, José Antonio

    2010-07-28

    The effect of the introduction of distilled rosemary leaves into the diet of the Murciano-Granadina goat on the polyphenolic profile of the goats' milk during the physiological stages of gestation and lactation was studied. The inclusion of rosemary leaves into the animal diet modified neither animal productivity (milk yield) nor milk quality. The following components were found in increased concentration (P < 0.05) in the goats' milk after the introduction of rosemary leaves into their diet: flavonoids hesperidin, naringin, and genkwanin; gallic acid; and phenolic diterpenes carnosol and carnosic acid. With regard to the transfer of polyphenols to the plasma of the suckling goat kid, a statistically significant increase (P < 0.05) in rosmarinic acid, carnosic acid, and carnosol concentrations was detected. From this point of view, distillate rosemary leaves can be proposed as an ingredient in ruminant feed because they both alter neither the yield nor the quality of Murciano-Granadina goats' milk and allow for an increased concentration of polyphenolic components in the goats' milk and in the plasma of the suckling goat kid.

  3. Coherent manipulation of Rydberg helium atoms in inhomogeneous electric fields

    NASA Astrophysics Data System (ADS)

    Lee, Seung Hyun

    Coherent manipulation of atomic motion has been a subject of increased interest in atomic physics because it provides the opportunity to perform precision spectroscopy. Since the first demonstration of laser cooling techniques, exerting controlled optical forces on neutral atoms has made it possible to develop new tools for working on the near-atomic scale. While most of these tools are based on manipulating atoms with laser light, a different method which exploits the interaction of Rydberg atoms with inhomogeneous electrostatic fields to control the atomic motion was proposed in 1981. Atoms in Rydberg states have a large dipole moment because their outer electrons are located far from the core. Due to the relatively strong dipole interaction, therefore, the motion of Rydberg atoms can be affected even by weak and moderate field gradients. Ultimately, it is desirable to maximize the population in the Rydberg states to increase the intensity of the beam focused by an electrostatic lens. In a new approach to achieve a highly efficient population transfer, we take advantage of the highly efficient Stimulated Raman Adiabatic Passage (STIRAP) excitation technique. In this thesis, we first present an investigation of the Stark-shifted atomic energy levels and compare our observations to numerical calculations. Once the state with the highest transition efficiency has been identified we employ the coherent STIRAP excitation technique in order to achieve a complete population transfer from the metastable ground state to the target state via an intermediate state in the three-level ladder system 23S1 → 33 P2 → nLj of triplet helium. In order to fulfill the strict conditions for STIRAP, we also need to know the Rabi frequencies of the laser fields. For this purpose, the Autler-Townes effect is also examined. Finally, we demonstrate an example of atom optics by focusing the atomic beam with our electrostatic lens after preparing the metastable helium atoms in one of the

  4. Synthesis and structures of Se analogues of the antithyroid drug 6-n-propyl-2-thiouracil and its alkyl derivatives: formation of dimeric Se-Se compounds and deselenation reactions of charge-transfer adducts of diiodine.

    PubMed

    Antoniadis, Constantinos D; Hadjikakou, Sotiris K; Hadjiliadis, Nick; Papakyriakou, Athanasios; Baril, Martin; Butler, Ian S

    2006-09-06

    Four selenium analogues of the antithyroid drug 6-n-propyl-2-thiouracil (PTU), of formulae RSeU, (R = methyl (Me) (1), ethyl (Et) (2), n-propyl (nPr) (3), and isopropyl (iPr) 4), have been synthesized. Reaction of 1-4 with diiodine in a 1:1 molar ratio in dichloromethane results in the formation of [(RSeU)I(2)] (R = methyl (5), ethyl (6), n-propyl (7) and isopropyl (8)). All compounds have been characterized by elemental analysis, FT-Raman, FT-IR, UV/Vis, (1)H-, (13)C-, (77)Se-1D and -2D NMR spectroscopy, and ESI-MS spectrometric techniques. Recrystallization of 4 from dichloromethane afforded (4CH(2)Cl(2)). Crystals of [(nPrSeU)I(2)] (7), a charge-transfer complex, were obtained from chloroform solutions, while crystallization of 6 and 7 from acetone afforded the diselenides [N-(6-Et-4-pyrimidone)(6-EtSeU)(2)] (92 H(2)O) and [N-(6-nPr-4-pyrimidone)(6-nPrSeU)(2)] (10) as oxidation products. Recrystallization of 7 from methanol/acetonitrile solutions led to deselenation with the formation of 6-n-propyl-2-uracil (nPrU) (11). [(nPrSeU)I(2)] (7) was found to be a charge-transfer complex with a Se--I bond. These results are discussed in relation to the mechanism of action of antithyroid drugs.

  5. On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research

    NASA Astrophysics Data System (ADS)

    Lindinger, W.; Hansel, A.; Jordan, A.

    1998-02-01

    A proton transfer reaction mass spectrometer (PTR-MS) system has been developed which allows for on-line measurements of trace components with concentrations as low as a few pptv. The method is based on reactions of H3O+ ions, which perform non-dissociative proton transfer to most of the common volatile organic compounds (VOCs) but do not react with any of the components present in clean air. Medical applications by means of breath analysis allow for monitoring of metabolic processes in the human body, and examples of food research are discussed on the basis of VOC emissions from fruit, coffee and meat. Environmental applications include investigations of VOC emissions from decaying biomatter which have been found to be an important source for tropospheric acetone, methanol and ethanol. On-line monitoring of the diurnal variations of VOCs in the troposphere yield data demonstrating the present sensitivity of PTR-MS to be in the range of a few pptv. Finally, PTR-MS has proven to be an ideal tool to measure Henry's law constants and their dependencies on temperature as well as on the salt content of water.

  6. Transport and extraction of radioactive ions stopped in superfluid helium

    NASA Astrophysics Data System (ADS)

    Huang, W. X.; Dendooven, P.; Gloos, K.; Takahashi, N.; Arutyunov, K.; Pekola, J. P.; Äystö, J.

    2003-05-01

    A new approach to convert a high energy beam to a low energy one, which is essential for the next generation radioactive ion beam facilities, has been proposed and tested at Jyväskylä, Finland. An open 223Ra alpha-decay-recoil source has been used to produce radioactive ions in superfluid helium. The alpha spectra demonstrate that the recoiling 219Rn ions have been extracted out of liquid helium. This first observation of the extraction of heavy positive ions across the superfluid helium surface was possible thanks to the high sensitivity of radioactivity detection. An efficiency of 36% was obtained for the ion extraction out of liquid helium.

  7. A study of helium mobility in polycrystalline uranium dioxide

    NASA Astrophysics Data System (ADS)

    Garcia, P.; Martin, G.; Desgardin, P.; Carlot, G.; Sauvage, T.; Sabathier, C.; Castellier, E.; Khodja, H.; Barthe, M.-F.

    2012-11-01

    The mobility of Helium in polycrystalline uranium dioxide was studied by implanting samples with 3He ions at depths of approximately 1 μm and at concentrations in the region of 0.1 at.%. Samples were subsequently annealed at temperatures ranging between 700 °C and 1100 °C. Helium movement was then characterised using three different types of Nuclear Reaction Analysis (NRA) techniques based on the 3He(d,α)p reaction. The fraction of helium released from samples was measured during annealing at high temperature as a function of time. After each annealing sequence, helium depth profiles were obtained for each sample. In some cases, samples were characterised over small areas (60 × 60 μm2), using a micrometre size deuteron beam. This enables the measurement of helium distributions at the surface of samples. Using this novel approach which provides time and space dependent information relating to helium atom location, we show that grain boundaries act as effective short circuits for helium movement and release at all temperatures. Also, at temperatures above approximately 800 °C, in areas around the grain boundaries extending into the grain over distances of the order of microns, helium diffusion is high. In areas further into the grain, diffusion proceeds much more slowly presumably as a result of helium cluster formation. These observations are interpreted based on radiation damage production and annealing processes.

  8. Helium vs. Proton Induced Displacement Damage in Electronic Materials

    NASA Technical Reports Server (NTRS)

    Ringo, Sawnese; Barghouty, A. F.

    2010-01-01

    In this project, the specific effects of displacement damage due to the passage of protons and helium nuclei on some typical electronic materials will be evaluated and contrasted. As the electronic material absorbs the energetic proton and helium momentum, degradation of performance occurs, eventually leading to overall failure. Helium nuclei traveling at the same speed as protons are expected to impart more to the material displacement damage; due to the larger mass, and thus momentum, of helium nuclei compared to protons. Damage due to displacement of atoms in their crystalline structure can change the physical properties and hence performance of the electronic materials.

  9. Helium resources of the United States, 1989. Information Circular/1990

    SciTech Connect

    Miller, R.D.; Hamak, J.E.

    1990-01-01

    The helium resources base of the United States was estimated by the Bureau of Mines to be 894.6 Bcf as of January 1, 1989. These resources are divided into four categories in decreasing degree of the assurance of their existence: (1) helium in storage and in proved natural gas reserves, 282.4 Bcf, (2) helium in probable natural gas resources, estimated at 237.7 Bcf, (3) helium in possible natural gas resources, estimated to be 263.1 Bcf, and (4) helium in speculative natural gas resources, 111.4 Bcf. These helium resources are further divided into depleting and nondepleting, with the helium in storage being in a separate classification. The depleting resources are those associated with natural gasfields that are, or will be, produced for the natural gas they contain. Almost all of the helium in potential (probable, possible, and speculative) natural gas resources is included in this classification. These depleting resources are estimated to contain 775 Bcf of the total helium resource base.

  10. Simplified Helium Refrigerator Cycle Analysis Using the `Carnot Step'

    NASA Astrophysics Data System (ADS)

    Knudsen, P.; Ganni, V.

    2006-04-01

    An analysis of the Claude form of an idealized helium liquefier for the minimum input work reveals the `Carnot Step' for helium refrigerator cycles. As the `Carnot Step' for a multi-stage polytropic compression process consists of equal pressure ratio stages; similarly for an idealized helium liquefier the `Carnot Step' consists of equal temperature ratio stages for a given number of expansion stages. This paper presents the analytical basis and some useful equations for the preliminary examination of existing and new Claude helium refrigeration cycles.

  11. Modeling of helium transport and exhaust in the LHD edge

    NASA Astrophysics Data System (ADS)

    Bader, A.; Kobayashi, M.; Schmitz, O.; Akerson, A. R.; Effenberg, F.; Frerichs, H.; Feng, Y.; Hegna, C. C.; Ida, K.; The LHD Experimental Group

    2016-12-01

    Experimental results from LHD show a reduction of helium concentration in the plasma with the introduction of a magnetic island on the m/n  =  1/1 resonant surface in the plasma edge. Simulations of the plasma with and without the island are carried out with the coupled code EMC3-EIRENE and compared to charge exchange recombination spectroscopy measurements of ionized core helium, and visible spectroscopy measurements of edge neutral helium. The numerical simulations indicate that the experimental parameters lie in a high density regime where the impurity transport is dominated by the outward directed friction force. The EMC3-EIRENE simulations capture the reduction in helium transport well and indicate that: (1) the reduction in core helium is a result of increased outward transport caused by the magnetic island and an increased opening of the edge-surface layer to the divertor plates; (2) the dominant source of neutral helium is best modeled by recycled helium at the targets; and (3) ionized helium density profiles are best matched in the simulations when there is a large core helium source in addition to a smaller edge source.

  12. Effects of alkoxy groups on arene rings of lignin β-O-4 model compounds on the efficiencies of single electron transfer-promoted photochemical and enzymatic C-C Bond Cleavage Reactions.

    PubMed

    Lim, Suk Hyun; Nahm, Keepyung; Ra, Choon Sup; Cho, Dae Won; Yoon, Ung Chan; Latham, John A; Dunaway-Mariano, Debra; Mariano, Patrick S

    2013-09-20

    To gain information about how alkoxy substitution in arene rings of β-O-4 structural units within lignin governs the efficiencies/rates of radical cation C1-C2 bond cleavage reactions, single electron transfer (SET) photochemical and lignin peroxidase-catalyzed oxidation reactions of dimeric/tetrameric model compounds have been explored. The results show that the radical cations derived from less alkoxy-substituted dimeric β-O-4 models undergo more rapid C1-C2 bond cleavage than those of more alkoxy-substituted analogues. These findings gained support from the results of DFT calculations, which demonstrate that C1-C2 bond dissociation energies of β-O-4 radical cations decrease as the degree of alkoxy substitution decreases. In SET reactions of tetrameric compounds consisting of two β-O-4 units, containing different degrees of alkoxy substitution, regioselective radical cation C-C bond cleavage was observed to occur in one case at the C1-C2 bond in the less alkoxy-substituted β-O-4 moiety. However, regioselective C1-C2 cleavage in the more alkoxy-substituted β-O-4 moiety was observed in another case, suggesting that other factors might participate in controlling this process. These observations show that lignins containing greater proportions of less rather than more alkoxylated rings as part of β-O-4 units would be more efficiently cleaved by SET mechanisms.

  13. Proton transfer reaction time-of-flight mass spectrometry monitoring of the evolution of volatile compounds during lactic acid fermentation of milk.

    PubMed

    Soukoulis, Christos; Aprea, Eugenio; Biasioli, Franco; Cappellin, Luca; Schuhfried, Erna; Märk, Tilmann D; Gasperi, Flavia

    2010-07-30

    We apply, for first time, the recently developed proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) apparatus as a rapid method for the monitoring of lactic acid fermentation (LAF) of milk. PTR-TOF-MS has been proposed as a very fast, highly sensitive and versatile technique but there have been no reports of its application to dynamic biochemical processes with relevance to the food industry. LAF is a biochemical-physicochemical dynamic process particularly relevant for the dairy industry as it is an important step in the production of many dairy products. Further, LAF is important in the utilization of the by-products of the cheese industry, such as whey wastewaters. We show that PTR-TOF-MS is a powerful method for the monitoring of major volatile organic chemicals (VOCs) formed or depleted during LAF, including acetaldehyde, diacetyl, acetoin and 2-propanone, and it also provides information about the evolution of minor VOCs such as acetic acid, 2,3-pentanedione, ethanol, and off-flavor related VOCs such as dimethyl sulfide and furfural. This can be very important considering that the conventional measurement of pH decrease during LAF is often ineffective due to the reduced response of pH electrodes resulting from the formation of protein sediments. Solid-phase microextraction gas chromatography/mass spectrometry (SPME-GC/MS) data on the inoculated milk base and final fermented product are also presented to supporting peak identification. We demonstrate that PTR-TOF-MS can be used as a rapid, efficient and non-invasive method for the monitoring of LAF from headspace, supplying important data about the quality of the final product and that it may be used to monitor the efficacy of manufacturing practices.

  14. The formation of a helium white dwarf in a close binary system with diffusion

    NASA Astrophysics Data System (ADS)

    Benvenuto, O. G.; De Vito, M. A.

    2004-07-01

    We study the evolution of a system composed of a 1.4-Msolar neutron star and a normal, solar composition star of 2 Msolar in orbit with a period of 1 d. Calculations were performed employing the binary HYDRO code presented by Benvenuto & De Vito that handle the mass transfer rate in a fully implicit way. We then included the main standard physical ingredients together with the diffusion processes and a proper outer boundary condition. We have assumed fully non-conservative mass transfer episodes. In order to study the interplay of mass loss episodes and diffusion we considered evolutionary sequences with and without diffusion in which all Roche lobe overflows (RLOFs) produce mass transfer. Another two sequences in which thermonuclearly driven RLOFs were not allowed to drive mass transfer have been computed with and without diffusion. As far as we are aware, this study represents the first binary evolution calculations in which diffusion is considered. The system produces a helium white dwarf of ~0.21 Msolar in an orbit with a period of ~4.3 d for the four cases. We find that mass transfer episodes induced by hydrogen thermonuclear flashes drive a tiny amount of mass transfer. As diffusion produces stronger flashes, the amount of hydrogen-rich matter transferred is slightly higher than in the models without diffusion. We find that diffusion is the main agent in determining the evolutionary time-scale of low-mass white dwarfs even in the presence of mass transfer episodes.

  15. A new approach to constrain basal helium flux into aquifers for better estimation of groundwater ages by Helium 4

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takuya; Sturchio, Neil C.; Chang, Hung K.; Gastmans, Didier; Araguas-Araguas, Luis J.; Jiang, Wei; Lu, Zheng-Tian; Mueller, Peter; Yokochi, Reika; Purtschert, Roland; Zongyu, Chen; Shuiming, Hu; Aggarwal, Pradeep K.

    2016-04-01

    beams, minimizing the size of the sample to be processed for analysis. Being a noble gas, krypton does not form compounds in the aquifer and is only derived from atmospheric sources. The long half-life and the lack of geochemical interactions make this radionuclide an excellent tracer to estimate groundwater ages in deep aquifer systems. Krypton-81 results offer also the possibility of calibrating groundwater ages derived from helium-4 accumulation method. Until recently, helium-4 ages were calibrated to account for the basal helium flux on carbon-14 ages, but the relatively short half-life of carbon-14 often led to inaccurate age estimates for groundwater ages older than about 100 000 years. We will present a new approach to utilize 81Kr to optimize the parameters of conceptual groundwater flow model and the size of 4He basal flux, which yielded a reasonable agreement between 81Kr and 4He ages in two large and old aquifers in Brazil (Aggarwal et al., Nature Geoscience, 8, 35-39, 2015) and in the North China Plain.

  16. Helium embrittlement of a lamellar titanium aluminide

    NASA Astrophysics Data System (ADS)

    Magnusson, P.; Chen, J.; Jung, P.; Sauvage, T.; Hoffelner, W.; Spätig, Ph.

    2013-03-01

    Embrittlement by helium was investigated in a lamellar TiAl alloy under two conditions: Specimens were implanted to various amounts of helium up to 762 appm at temperatures from 630 °C to 1000 °C and some of them subsequently creep-tested at the same temperature under stresses from 150 to 300 MPa. The microstructure and fracture surfaces of creep-deformed and non-creep-deformed specimens were then studied by transmission electron microscopy (TEM) and by scanning electron microscopy (SEM), respectively. Specimens were implanted to various amounts of helium at a low temperature (150 °C) and post-implantation annealed at elevated temperatures for TEM studies. Embrittlement was revealed by reduction in time- and strain-to-rupture and by a transition in fracture surface from ductile to an inter-lamellar appearance. Embrittlement occurred above a critical He concentration, which decreased from about 10 appm at 700 °C to below 6 appm at 900 °C. TEM showed that embrittlement could be associated to reaching a critical bubble diameter of about 5 nm. Bubble diameters increased with increasing temperature ranging in high-temperature implanted specimens from about 3 nm (630 °C) to 20 nm (1000 °C) and in post-implantation annealed ones from 1.2 nm (600 °C) to 2.2 nm (900 °C), respectively. With increasing temperature, the bubble distribution grew less homogenous with a lower density of larger bubbles situated preferentially at interfaces and sinks. This was ascribed to a change in bubble nucleation mode from homogeneous di-atomic nucleation at lower temperatures to multi-atomic nucleation at sinks at higher temperature.

  17. Helium transport and ash control studies

    SciTech Connect

    Miley, G.H.

    1992-01-01

    The Primary goal of this research is to develop a helium (ash) transport scaling law based on experimental data from devices such as TFTR and JET. To illustrate the importance of this, we have studied ash accumulation effects on ignition requirements using a O-D transport model. Ash accumulation is characterized in the model by the ratio of the helium particle confinement time to the energy confinement time t{sub {alpha}}/t{sub E}. Results show that the ignition window'' shrinks rapidly as t{sub {alpha}}/t{sub E} increases, closing for high t{sub {alpha}}/t{sub E} increases, closing for high t{sub {alpha}}/t{sub E}. A best'' value for t{sub {alpha}}/t{sub E} will ultimately be determined from our scaling law studies. A helium transport scaling law is being sought that expresses the transport coefficients (D{sub {alpha}}, V{sub {alpha}}) as a function of the local plasma parameters. This is necessary for use in transport code calculations, e.g. for BALDUR. Based on experimental data from L-mode plasma operation in TFTR, a scaling law to a power law expression has been obtained using a least-square fit method. It is found that the transport coefficients are strongly affected by the local magnetic field and safety factor q. A preliminary conclusion from this work is that active control of ash buildup must be developed. To study control, we have developed a O-D plasma model which employs a simple pole-placement control model. Some preliminary calculations with this model are presented.

  18. 76 FR 30362 - Federal Acquisition Regulation; Submission for OMB Review; Acquisition of Helium

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ...; Submission for OMB Review; Acquisition of Helium AGENCY: Department of Defense (DOD), General Services... approved information collection requirement concerning acquisition of helium. Public comments are... Collection 9000- 0113, Acquisition of Helium, by any of the following methods: Regulations.gov :...

  19. Production of thorium-229 using helium nuclei

    DOEpatents

    Mirzadeh, Saed [Knoxville, TN; Garland, Marc Alan [Knoxville, TN

    2010-12-14

    A method for producing .sup.229Th includes the steps of providing .sup.226Ra as a target material, and bombarding the target material with alpha particles, helium-3, or neutrons to form .sup.229Th. When neutrons are used, the neutrons preferably include an epithermal neutron flux of at least 1.times.10.sup.13 n s.sup.-1cm.sup.-2. .sup.228Ra can also be bombarded with thermal and/or energetic neutrons to result in a neutron capture reaction to form .sup.229Th. Using .sup.230Th as a target material, .sup.229Th can be formed using neutron, gamma ray, proton or deuteron bombardment.

  20. Energy loss of helium ions in zinc

    SciTech Connect

    Lantschner, G.H.; Eckardt, J.C.; Lifschitz, A.F.; Arista, N.R.; Araujo, L.L.; Duarte, P.F.; Santos, J.H.R. dos; Behar, M.; Dias, J.F.; Grande, P.L.; Montanari, C.C.; Miraglia, J.E.

    2004-06-01

    The energy loss of helium ions in zinc has been measured in the energy range from 37.5 to 1750 keV/amu using the transmission technique and the Rutherford backscattering method. In addition, calculations using the extended Friedel sum rule, the unitary convolution approximation, and the local plasma approximation have been performed. The contributions of the inner-shell and valence electrons to the total energy loss are separately evaluated. The measurements and calculations are in good agreement over an extended range of energies, and both of them yield stopping values higher than those provided by SRIM 2003.

  1. Attosecond quantum-beat spectroscopy in helium

    NASA Astrophysics Data System (ADS)

    Shivaram, Niranjan; Tong, Xiao-Min; Timmers, Henry; Sandhu, Arvinder

    2016-03-01

    The evolution of electron wavepackets determines the course of many physical and chemical phenomena, and attosecond spectroscopy aims to measure and control such dynamics in real time. Here, we investigate radial electron wavepacket motion in helium by using an XUV attosecond pulse train to prepare a coherent superposition of excited states and a delayed femtosecond IR pulse to ionize them. Quantum-beat signals observed in the high resolution photoelectron spectrogram allow us to follow the field-free evolution of the bound electron wavepacket and determine the time-dependent ionization dynamics of the low-lying 2{{p}} state.

  2. Simulation program for central helium liquefier

    SciTech Connect

    Kawamura, S.

    1984-02-20

    The computer program described here analyzes the performance of Fermilab Central Helium Liquefier (CHL) and predicts the values of the plant thermodynamic variables at all process points in the plant. To simulate CHL, this program is modified from the prototype program which was developed by Hitachi Ltd. a couple of years ago. This program takes care of only the steady state simulation and takes account of the change of the turbine efficiency, the pressure drops and the UA values of the heat exchangers. How to use the program is shown.

  3. Variable helium diffusion characteristics in fluorite

    NASA Astrophysics Data System (ADS)

    Wolff, R.; Dunkl, I.; Kempe, U.; Stockli, D.; Wiedenbeck, M.; von Eynatten, H.

    2016-09-01

    Precise analysis of the diffusion characteristics of helium in fluorite is crucial for establishing the new fluorite (U-Th-Sm)/He thermochronometer (FHe), which potentially provides a powerful tool for dating ore deposits unsuitable for the application of conventional geochronometers. Incremental helium outgassing experiments performed on fluorites derived from a spectrum of geological environments suggest a thermally activated volume diffusion mechanism. The diffusion behaviour is highly variable and the parameters range between log D0/a2 = 0.30 ± 0.27-7.27 ± 0.46 s-1 and Ea = 96 ± 3.5-182 ± 3.8 kJ/mol. Despite the fact that the CaF2 content of natural fluorites in most cases exceeds 99 weight percent, the closure temperature (Tc) of the fluorite (U-Th-Sm)/He thermochronometer as calculated from these diffusion parameters varies between 46 ± 14 °C and 169 ± 9 °C, considering a 125 μm fragment size. Here we establish that minor substitutions of calcium by rare earth elements and yttrium (REE + Y) and related charge compensation by sodium, fluorine, oxygen and/or vacancies in the fluorite crystal lattice have a significant impact on the diffusivity of helium in the mineral. With increasing REE + Y concentrations F vacancies are reduced and key diffusion pathways are narrowed. Consequently, a higher closure temperature is to be expected. An empirical case study confirms this variability: two fluorite samples from the same deposit (Horni Krupka, Czech Republic) with ca. 170 °C and ca. 43 °C Tc yield highly different (U-Th-Sm)/He ages of 290 ± 10 Ma and 79 ± 10 Ma, respectively. Accordingly, the fluorite sample with the high Tc could have quantitatively retained helium since the formation of the fluorite-bearing ores in the Permian, despite subsequent Mesozoic burial and associated regional hydrothermal heating. In contrast, the fluorite with the low Tc yields a Late Cretaceous age close to the apatite fission track (AFT) and apatite (U-Th)/He ages (AHe

  4. Stability of the Helium-Antiproton System

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.

    2006-01-01

    In the course of their Born-Oppenheimer calculations of this system Todd and Armour noted that the lowest-lying state closely resembles the hydrogen negative ion, since the antiproton lies very close to the helium nucleus and shields one unit of nuclear charge. In the present paper this observation will be taken seriously to produce a variationally correct estimate of the total energy of this system, along with a similar estimate of the energy of the once-ionized system. The nonadiabatic effect of exactly treating the reduced masses improves the results.

  5. Heat capacity of helium in cylindrical environments

    NASA Astrophysics Data System (ADS)

    Gatica, S. M.; Hernández, E. S.; Szybisz, L.

    2003-10-01

    We perform a systematic investigation of the structure, elementary, and phonon excitations of quantum fluid 4He adsorbed in the interior of carbon nanotubes. We show that the helium fluid inside the cylinder behaves exactly as in planar films on a graphite substrate, presenting the same kind of layering transition. This tendency is confirmed by the behavior of a single 3He impurity diluted into adsorbed 4He. We also present a simple description of the lowest excitation modes of the adsorbed fluid and compute the low-temperature contribution of the phonon spectrum to the specific heat, which displays the dimensionality characteristics reported in previous works.

  6. Lamb shift in the muonic helium ion

    SciTech Connect

    Martynenko, A. P.

    2007-07-15

    The Lamb shift (2P{sub 1/2}-2S{sub 1/2}) in the muonic helium ion ({mu}-{sub 2}{sup 4}He){sup +} is calculated with the account of contributions of orders {alpha}{sup 3}, {alpha}{sup 4}, {alpha}{sup 5}, and {alpha}{sup 6}. Special attention is given to corrections of the electron vacuum polarization, the nuclear structure, and recoil effects. The obtained numerical value of the Lamb shift 1381.72 meV can be considered as a reliable estimate for the comparison with experimental data.

  7. Helium Isotopic Ratios of Core Samples from IODP Exp. 319 (NanTroSEIZE Stage 2)

    NASA Astrophysics Data System (ADS)

    Horiguchi, K.; Matsuda, J.; Wiersberg, T.; Shimo, Y.; Tamura, H.; Kumagai, H.; Suzuki, K.; Saito, S.; Kinoshita, M.; Araki, E.; Byrne, T.; McNeill, L. C.; Saffer, D.; Takahashi, K.; Eguchi, N. O.; Toczko, S.

    2009-12-01

    IODP Exp.319 of Nankai Trough Seismogenic Zone Drilling Program Stage 2 started at May 2009. Various advanced technologies including first riser-based scientific ocean drilling were carried out at this cruise. The Hole C0009A (Site C0009/ Hole A) recovered cutting and partly core samples from 703.9-1604 mbsf by riser-drilling. The core samples were collected between the depth of 1510.5 and 1593.9 mbsf. Here we report preliminary helium isotopic ratios of these cores. We collected three types of samples for our study: (1) gas of cores, (2) whole round cores (100 cc) and (3) small whole round cores (10 cc). The gas samples were taken immediately after the core recovery. The gas samples were collected from each core section by using a syringe, and it was transferred to the glass bottle using the water displacement method. The glass bottle was made by Pyrex glass with vacuum valve at each end. We collected two sizes of whole round core samples (100 cc and 10 cc) The 100 cc cores were collected from the bottom and top sections of coring. The 10 cc cores were taken from the other sections. The outer parts of these samples were carefully removed to avoid contaminations from drilling fluid. After the removal of contamination, we immediately stored the 100 cc samples into vacuum container and 10 cc samples into plastic bag under a dry condition, respectively. The gas samples were measured for helium isotopic ratios. The noble gas measurement was carried out at Osaka University by using VG5400 mass spectrometer. We measured helium isotopic ratio and 4He/20Ne ratio. The latter is useful for making correction of the air contamination. The obtained result of helium isotopic ratios shows that the radiogenic helium is prominent in all samples. In addition, the helium isotope ratios show a trend that the ratio at shallower part is slightly higher than that at deeper part. It is conceivable that this trend is due to the larger radiogenic ingrowths at the deeper part. However, the

  8. Improving the accuracy of helium and neon measurements in ocean waters

    NASA Astrophysics Data System (ADS)

    Vogt, M.; Roether, W.; Vogel, S.; Sueltenfuss, J.

    2012-04-01

    about half, which means that the gas in the head space can directly be admitted into the mass spectrometer, because only about 1% of the helium and neon remains in solution. The uncertainty of the helium and neon concentrations introduced by the procedure does not exceed ± 0.05% and blanks are about negligible. The device is simple and handling fast. Experience on a cruise into the tropical Atlantic has proven that the sampling procedure can be applied reliably in the field. We also devised a way to transfer air samples into identical ampoules.

  9. Magneto-optical trap for metastable helium at 389 nm

    SciTech Connect

    Koelemeij, J.C.J.; Stas, R.J.W.; Hogervorst, W.; Vassen, W.

    2003-05-01

    We have constructed a magneto-optical trap (MOT) for metastable triplet helium atoms utilizing the 2 {sup 3}S{sub 1}{yields}3 {sup 3}P{sub 2} line at 389 nm as the trapping and cooling transition. The far-red-detuned MOT (detuning {delta}=-41 MHz) typically contains few times 10{sup 7} atoms at a relatively high ({approx}10{sup 9} cm{sup -3}) density, which is a consequence of the large momentum transfer per photon at 389 nm and a small two-body loss rate coefficient (2x10{sup -10} cm{sup 3}/s<{beta}<1.0x10{sup -9} cm{sup 3}/s). The two-body loss rate is more than five times smaller than in a MOT on the commonly used 2 {sup 3}S{sub 1}{yields}2 {sup 3}P{sub 2} line at 1083 nm. Furthermore, laser cooling at 389 nm results in temperatures somewhat lower than those achieved using 1083 nm. The 389-nm MOT exhibits small losses due to two-photon ionization, which have been investigated as well.

  10. Thermal helium desorption behavior in advanced ferritic steels

    NASA Astrophysics Data System (ADS)

    Kimura, Akihiko; Sugano, R.; Matsushita, Y.; Ukai, S.

    2005-02-01

    Thermal helium desorption measurements were performed to investigate the difference in the helium trapping and accumulation behavior among a reduced activation ferritic (RAF) steel and oxide dispersion strengthening (ODS) steels after implantation of He+ ions at room temperature. Thermal helium desorption spectra (THDS) were obtained during annealing to 1200 °C at a heating rate of 1 °C/s. The THDS of the ODS steels are very similar to that of the RAF steel, except for the presence of the peak in the temperature range from 800 to 1000 °C, where the α γ transformation related helium desorption from the γ-phase is considered to occur in the 9Cr-ODS martensitic steels. The fraction of helium desorption becomes larger at higher temperatures, and this trend is increased with the amount of implanted helium. In the 9Cr-ODS steels, the fraction of helium desorption by bubble migration mechanism was smaller than that in the RAF steel. This suggests that the bubble formation was suppressed in the ODS steels. In the 12Cr-ODS steel, the fraction of helium desorption by bubble migration reached more than 90%, suggesting that the trapping capacity of martensite phase in the 9Cr-ODS steel is rather large.

  11. DIRECT EVALUATION OF THE HELIUM ABUNDANCES IN OMEGA CENTAURI

    SciTech Connect

    Dupree, A. K.; Avrett, E. H. E-mail: eavrett@cfa.harvard.edu

    2013-08-20

    A direct measure of the helium abundances from the near-infrared transition of He I at 1.08 {mu}m is obtained for two nearly identical red giant stars in the globular cluster Omega Centauri. One star exhibits the He I line; the line is weak or absent in the other star. Detailed non-local thermal equilibrium semi-empirical models including expansion in spherical geometry are developed to match the chromospheric H{alpha}, H{beta}, and Ca II K lines, in order to predict the helium profile and derive a helium abundance. The red giant spectra suggest a helium abundance of Y {<=} 0.22 (LEID 54064) and Y = 0.39-0.44 (LEID 54084) corresponding to a difference in the abundance {Delta}Y {>=} 0.17. Helium is enhanced in the giant star (LEID 54084) that also contains enhanced aluminum and magnesium. This direct evaluation of the helium abundances gives observational support to the theoretical conjecture that multiple populations harbor enhanced helium in addition to light elements that are products of high-temperature hydrogen burning. We demonstrate that the 1.08 {mu}m He I line can yield a helium abundance in cool stars when constraints on the semi-empirical chromospheric model are provided by other spectroscopic features.

  12. Helium nanobubble release from Pd surface: An atomic simulation

    SciTech Connect

    Wang, Liang; Hu, Wangyu; Deng, Huiqiu; Xiao, Shifang; Yang, Jianyu; Gao, Fei; Heinisch, Howard L.; Hu, Shilin

    2011-02-14

    Molecular dynamic simulations of helium atoms escaping from a helium-filled nano-bubble near the surface of crystalline palladium reveal unexpected behavior. Significant deformation and cracking near the helium bubble occur initially, and then a channel forms between the bubble and the surface, providing a pathway for helium atoms to propagate towards the surface. The helium atoms erupt from the bubble in an instantaneous and volcano-like process, which leads to surface deformation consisting of cavity formation on the surface, along with modification and atomic rearrangement at the periphery of the cavity. The present simulation results show that, near the palladium surface, there is a helium-bubble-free zone, or denuded zone, with a typical thickness of about 3.0 nm. Combined with experimental measurements and continuum-scale evolutionary model predictions, the present atomic simulations demonstrate that the thickness of the denuded zone, which contains a low concentration of helium atoms, is somewhat larger than the diameter of the helium bubbles in the metal tritide. Furthermore, a relationship between the tensile strength and thickness of metal film is also determined.

  13. Coupling of the coronal helium abundance to the solar wind

    NASA Technical Reports Server (NTRS)

    Hansteen, Viggo H.; Leer, Egil; Holzer, Thomas E.

    1994-01-01

    Models of the transition region-corona-solar wind system are investigated in order to find the coronal helium abundance and to study the role played by coronal helium in controlling the solar wind proton flux. The thermal force on alpha-particles in the transition region sets the flow of helium into the corona. The frictional coupling between alpha-particles and protons and/or the electric polarization field determines the proton flux in the solar wind as well as the fate of the coronal helium content. The models are constructed by solving the time-dependent population and momentum equations for all species of hydrogen and helium in an atmosphere with a given temperature profile. Several temperature profiles are considered in order to very the roles of frictional coupling and electric polarization field in the solar wind, and the thermal force in the transition region. Steady-state solutions are found for coronae with a hydrogen flux at 1 AU of 1.0 x 10(exp 9)/cm(exp 2)/sec or larger. For coronae with lower hydrogen fluxes, the helium flux into the corona is larger than the flux 'pulled out' by the solar wind protons, and solutions with increasing coronal helium content are found. The timescale for forming a helium-filled corona, that may allow for a steady outflow, is long compared to the mixing time for the corona.

  14. Characterization of charcoals for helium cryopumping in fusion devices

    SciTech Connect

    Sedgley, D.W.; Tobin, A.G.; Batzer, T.H.; Call, W.R.

    1987-07-01

    The capability of charcoal as a sorbent for helium at cryogenic temperatures depends upon charcoal characteristics that are not well understood. Previous work by the authors has indicated that the charcoals' pumping capability for helium depends as much on their source as on their particle size distributions. To develop a correlation between the physical characteristics of charcoal and helium pumping performance, different charcoals based on wood, coal, coconut, and a petroleum by-product were obtained from commercial sources. They were bonded to an aluminum substrate, and cooled to liquid-helium temperatures in a vacuum chamber. The helium pumping speed at constant throughput versus quantity of helium absorbed was measured for each charcoal grade. Porosimetry measurements on each charcoal grade using nitrogen as the sorbent gas were made that included total surface area, adsorption and desorption isotherms, and pore area and pore volume distributions. Significant differences in helium pumping performance and in pore size distribution were observed. Comparisons are made between helium pumping performance and charcoal characteristics and a possible correlation is identified.

  15. The adsorption of helium atoms on coronene cations

    NASA Astrophysics Data System (ADS)

    Kurzthaler, Thomas; Rasul, Bilal; Kuhn, Martin; Lindinger, Albrecht; Scheier, Paul; Ellis, Andrew M.

    2016-08-01

    We report the first experimental study of the attachment of multiple foreign atoms to a cationic polycyclic aromatic hydrocarbon (PAH). The chosen PAH was coronene, C24H12, which was added to liquid helium nanodroplets and then subjected to electron bombardment. Using mass spectrometry, coronene cations decorated with helium atoms were clearly seen and the spectrum shows peaks with anomalously high intensities ("magic number" peaks), which represent ion-helium complexes with added stability. The data suggest the formation of a rigid helium layer consisting of 38 helium atoms that completely cover both faces of the coronene ion. Additional magic numbers can be seen for the further addition of 3 and 6 helium atoms, which are thought to attach to the edge of the coronene. The observation of magic numbers for the addition of 38 and 44 helium atoms is in good agreement with a recent path integral Monte Carlo prediction for helium atoms on neutral coronene. An understanding of how atoms and molecules attach to PAH ions is important for a number of reasons including the potential role such complexes might play in the chemistry of the interstellar medium.

  16. Turnkey Helium Purification and Liquefaction Plant for DARWIN, Australia

    NASA Astrophysics Data System (ADS)

    Lindemann, U.; Boeck, S.; Blum, L.; Kurtcuoglu, K.

    2010-04-01

    The Linde Group, through its Australian subsidiary BOC Limited, has signed an agreement with Darwin LNG Pty Ltd for the supply of feed-gas to Linde's new helium refining and liquefaction facility in Darwin, Australia. Linde Kryotechnik AG, located in Switzerland, has carried out the engineering and fabrication of the equipment for the turn key helium plant. The raw feed gas flow of 20'730 Nm3/h contains up to of 3 mol% helium. The purification process of the feed gas consists of partial condensation of nitrogen in two stages, cryogenic adsorption and finally catalytic oxidation of hydrogen followed by a dryer system. Downstream of the purification the refined helium is liquefied using a modified Bryton process and stored in a 30'000 gal LHe tank. For further distribution and export of the liquid helium there are two stations available for filling of truck trailers and containers. The liquid nitrogen, required for refrigeration capacity to the nitrogen removal stages in the purification process as well as for the pre-cooling of the pure helium in the liquefaction process, is generated on site during the feed gas purification process. The optimized process provides low power consumption, maximum helium recovery and a minimum helium loss.

  17. Helium on Venus - Implications for uranium and thorium

    NASA Technical Reports Server (NTRS)

    Prather, M. J.; Mcelroy, M. B.

    1983-01-01

    Helium is removed at an average rate of 10 to the 6th atoms per square centimeter per second from Venus's atmosphere by the solar wind following ionization above the plasmapause. The surface source of helium-4 on Venus is similar to that on earth, suggesting comparable abundances of crustal uranium and thorium.

  18. Testing of a Helium Loop Heat Pipe for Large Area Cryocooling

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Robinson, Franklin

    2016-01-01

    Future NASA space telescopes and exploration missions require cryocooling of large areas such as optics, detector arrays, and cryogenic propellant tanks. One device that can potentially be used to provide closed-loop cryocooling is the cryogenic loop heat pipe (CLHP). A CLHP has many advantages over other devices in terms of reduced mass, reduced vibration, high reliability, and long life. A helium CLHP has been tested extensively in a thermal vacuum chamber using a cryocooler as the heat sink to characterize its transient and steady performance and verify its ability to cool large areas or components in the 3K temperature range. A copper plate with attached electrical heaters was used to simulate the heat source, and heat was collected by the CLHP evaporator and transferred to the cryocooler for ultimate heat rejection. The helium CLHP thermal performance test included cool-down from the ambient temperature, startup, capillary limit, heat removal capability, rapid power changes, and long duration steady state operation. The helium CLHP demonstrated robust operation under steady state and transient conditions. The loop could be cooled from the ambient temperature to subcritical temperatures very effectively, and could start successfully without pre-conditioning by simply applying power to both the capillary pump and the evaporator plate. It could adapt to rapid changes in the heat load, and reach a new steady state very quickly. Heat removal between 10mW and 140mW was demonstrated, yielding a power turn down ratio of 14. When the CLHP capillary limit was exceeded, the loop could resume its normal function by reducing the power to the capillary pump. Steady state operations up to 17 hours at several heat loads were demonstrated. The ability of the helium CLHP to cool large areas was therefore successfully verified.

  19. One- and Two-Color Resonant Photoionization Spectroscopy of Chromium-Doped Helium Nanodroplets

    PubMed Central

    2014-01-01

    We investigate the photoinduced relaxation dynamics of Cr atoms embedded into superfluid helium nanodroplets. One- and two-color resonant two-photon ionization (1CR2PI and 2CR2PI, respectively) are applied to study the two strong ground state transitions z7P2,3,4° ← a7S3 and y7P2,3,4° ← a7S3. Upon photoexcitation, Cr* atoms are ejected from the droplet in various excited states, as well as paired with helium atoms as Cr*–Hen exciplexes. For the y7P2,3,4° intermediate state, comparison of the two methods reveals that energetically lower states than previously identified are also populated. With 1CR2PI we find that the population of ejected z5P3° states is reduced for increasing droplet size, indicating that population is transferred preferentially to lower states during longer interaction with the droplet. In the 2CR2PI spectra we find evidence for generation of bare Cr atoms in their septet ground state (a7S3) and metastable quintet state (a5S2), which we attribute to a photoinduced fast excitation–relaxation cycle mediated by the droplet. A fraction of Cr atoms in these ground and metastable states is attached to helium atoms, as indicated by blue wings next to bare atom spectral lines. These relaxation channels provide new insight into the interaction of excited transition metal atoms with helium nanodroplets. PMID:24708058

  20. Testing of a Helium Loop Heat Pipe for Large Area Cryocooling

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Robinson, Franklin Lee

    2015-01-01

    Future NASA space telescopes and exploration missions require cryocooling of large areas such as optics, detector arrays, and cryogenic propellant tanks. One device that can potentially be used to provide closed-loop cryocooling is the cryogenic loop heat pipe (CLHP). A CLHP has many advantages over other devices in terms of reduced mass, reduced vibration, high reliability, and long life. A helium CLHP has been tested extensively in a thermal vacuum chamber using a cryocooler as the heat sink to characterize its transient and steady performance and verify its ability to cool large areas or components in the 3K temperature range. A copper plate with attached electrical heters was used to simulate the heat source, and heat was collected by the CLHP evaporator and transferred to the cryocooler for ultimate heat rejection. The helium CLHP thermal performance test included cool-down from the ambient temperature, startup, capillary limit, heat removal capability, rapid power changes, and long duration steady state operation. The helium CLHP demonstrated robust operation under steady state and transient conditions. The loop could be cooled from the ambient temperature to subcritical temperatures very effectively, and could start successfully without pre-conditioning by simply applying power to both the capillary pump and the evaporator plate. It could adapt to rapid changes in the heat load, and reach a new steady state very quickly. Heat removal between 10mW and 140mW was demonstrated, yielding a power turn down ratio of 14. When the CLHP capillary limit was exceeded, the loop could resume its normal function by reducing the power to the capillary pump. Steady state operations up to 17 hours at several heat loads were demonstrated. The ability of the helium CLHP to cool large areas was therefore successfully verified.

  1. Liquid uranium alloy-helium fission reactor

    DOEpatents

    Minkov, Vladimir

    1986-01-01

    This invention teaches a nuclear fission reactor having a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200.degree.-1800.degree. C. range, and even higher to 2500.degree. C., limited only by the thermal effectiveness of the structural materials, increasing the efficiency of power generation from the normal 30-35% with 300.degree.-500.degree. C. upper limit temperature to 50-65%. Irradiation of the circulating liquid fuel, as contrasted to only localized irradiation of a solid fuel, provides improved fuel utilization.

  2. Liquid uranium alloy-helium fission reactor

    DOEpatents

    Minkov, V.

    1984-06-13

    This invention describes a nuclear fission reactor which has a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200 to 1800/sup 0/C range, and even higher to 2500/sup 0/C.

  3. Electron impact ionization-excitation of Helium

    NASA Astrophysics Data System (ADS)

    Ancarani, Lorenzo Ugo; Gomez, A. I.; Gasaneo, G.; Mitnik, D. M.; Ambrosio, M. J.

    2016-09-01

    We calculate triple differential cross sections (TDCS) for the process of ionization-excitation of Helium by fast electron impact in which the residual ion is left in the n =2 excited state. We chose the strongly asymmetric kinematics used in the experiment performed by Dupré et al.. In a perturbative scheme, for high projectile energies the four-body problem reduces to a three-body one and, within that framework, we solve the time- independent Schrödinger equation with a Sturmian approach. The method, based on Generalized Sturmian Functions (GSF), is employed to obtain the initial ground state of Helium, the single-continuum state and the scattering wave function; for each of them, the GSF basis is constructed with the corresponding adequate asymptotic conditions. Besides, the method presents the following advantage: the scattering amplitudes can be extracted directly in the asymptotic region of the scattering solution, and thus the TDCS can be obtained without requiring a matrix element evaluation.

  4. Fiber-Cavity Optomechanics with Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Flowers-Jacobs, Nathan E.; Kashkanova, Anna D.; Shkarin, Alexey B.; Hoch, Scott W.; Deutsch, Christian; Reichel, Jakob; Harris, Jack G. E.

    2014-03-01

    In a typical optomechanical device, the resonance frequency of a cavity is coupled to mechanical motion through the radiation pressure force. To date, experimental cavities have predominately coupled to a resonant mechanical mode of a solid structure, often a lithographically-defined beam or membrane. We will describe our progress towards realizing an optomechanical device in which an optical fiber-cavity couples to the acoustic modes of superfluid helium. In this system, the optical modes and the acoustic modes of the superfluid are co-located between the mirrored ends of two fiber optic cables. Changes in the density of the superfluid change the effective length of the cavity which results in a standard, linear optomechanical coupling between the 300 MHz acoustic resonances and the 200 THz optical resonances. This type of device is motivated by the self-aligning nature of the acoustic and optical modes (which eases the difficulties of operating at cryogenic temperatures) and by the low optical and mechanical losses of superfluid helium. Although we expect the mechanical quality factor to be limited by acoustic radiation into the glass fiber, we will describe a proposal to realize a dual-band Bragg mirror to confine the optical and acoustic modes more efficiently. Supported by NSF Grant #1106110, ARO Grant #W911NF-13-1-0104, and the DARPA/MTO ORCHID program through a grant from AFOSR.

  5. Neutrons on a surface of liquid helium

    NASA Astrophysics Data System (ADS)

    Grigoriev, P. D.; Zimmer, O.; Grigoriev, A. D.; Ziman, T.

    2016-08-01

    We investigate the possibility of ultracold neutron (UCN) storage in quantum states defined by the combined potentials of the Earth's gravity and the neutron optical repulsion by a horizontal surface of liquid helium. We analyze the stability of the lowest quantum state, which is most susceptible to perturbations due to surface excitations, against scattering by helium atoms in the vapor and by excitations of the liquid, comprised of ripplons, phonons, and surfons. This is an unusual scattering problem since the kinetic energy of the neutron parallel to the surface may be much greater than the binding energies perpendicular. The total scattering time of these UCNs at 0.7 K is found to exceed 1 h, and rapidly increases with decreasing temperature. Such low scattering rates should enable high-precision measurements of the sequence of discrete energy levels, thus providing improved tests of short-range gravity. The system might also be useful for neutron β -decay experiments. We also sketch new experimental propositions for level population and trapping of ultracold neutrons above a flat horizontal mirror.

  6. Numerical Studies of Properties of Confined Helium

    NASA Technical Reports Server (NTRS)

    Manousakis, Efstratios

    2003-01-01

    We carry out state of the art simulations of properties of confined liquid helium near the superfluid transition to a degree of accuracy which allows to make predictions for the outcome of fundamental physics experiments in microgravity. First we report our results for the finite-size scaling behavior of heat capacity of superfluids for cubic and parallel-plate geometry. This allows us to study the crossover from zero and two dimensions to three dimensions. Our calculated scaling functions are in good agreement with recently measured specific heat scaling functions for the above mentioned geometries. We also present our results of a quantum simulation of submonolayer of molecular hydrogen deposited on an ideal graphite substrate using path-integral quantum Monte Carlo simulation. We find that the monolayer phase diagram is rich and very similar to that of helium monolayer. We are able to uncover the main features of the complex monolayer phase diagram, such as the commensurate solid phases and the commensurate to incommensurate transition, in agreement with the experiments and to find some features which are missing from the experimental analysis.

  7. Submersion of potassium clusters in helium nanodroplets

    NASA Astrophysics Data System (ADS)

    An der Lan, Lukas; Bartl, Peter; Leidlmair, Christian; Schöbel, Harald; Denifl, Stephan; Märk, Tilmann D.; Ellis, Andrew M.; Scheier, Paul

    2012-03-01

    Small alkali clusters do not submerge in liquid helium nanodroplets but instead survive predominantly in high spin states that reside on the surface of the nanodroplet. However, a recent theoretical prediction by Stark and Kresin [Phys. Rev. BPLRBAQ1098-012110.1103/PhysRevB.81.085401 81, 085401 (2010)], based on a classical description of the energetics of bubble formation for a fully submerged alkali cluster, suggests that the alkali clusters can submerge on energetic grounds when they exceed a critical size. Following recent work on sodium clusters, where ion yield data from electron impact mass spectrometry was used to obtain the first experimental evidence for alkali cluster submersion, we report here on similar experiments for potassium clusters. Evidence is presented for full cluster submersion at n>80 for Kn clusters, which is in good agreement with the recent theoretical prediction. In an additional observation, we report “magic number” sizes for both Kn+ and Kn2+ ions derived from helium droplets, which are found to be consistent with the jellium model.

  8. The primordial helium abundance from updated emissivities

    SciTech Connect

    Aver, Erik; Olive, Keith A.; Skillman, Evan D.; Porter, R.L. E-mail: olive@umn.edu E-mail: skillman@astro.umn.edu

    2013-11-01

    Observations of metal-poor extragalactic H II regions allow the determination of the primordial helium abundance, Y{sub p}. The He I emissivities are the foundation of the model of the H II region's emission. Porter, Ferland, Storey, and Detisch (2012) have recently published updated He I emissivities based on improved photoionization cross-sections. We incorporate these new atomic data and update our recent Markov Chain Monte Carlo analysis of the dataset published by Izotov, Thuan, and Stasi'nska (2007). As before, cuts are made to promote quality and reliability, and only solutions which fit the data within 95% confidence level are used to determine the primordial He abundance. The previously qualifying dataset is almost entirely retained and with strong concordance between the physical parameters. Overall, an upward bias from the new emissivities leads to a decrease in Y{sub p}. In addition, we find a general trend to larger uncertainties in individual objects (due to changes in the emissivities) and an increased variance (due to additional objects included). From a regression to zero metallicity, we determine Y{sub p} = 0.2465 ± 0.0097, in good agreement with the BBN result, Y{sub p} = 0.2485 ± 0.0002, based on the Planck determination of the baryon density. In the future, a better understanding of why a large fraction of spectra are not well fit by the model will be crucial to achieving an increase in the precision of the primordial helium abundance determination.

  9. Ionoluminescence in the helium ion microscope.

    PubMed

    Boden, Stuart A; Franklin, Thomas M W; Scipioni, Larry; Bagnall, Darren M; Rutt, Harvey N

    2012-12-01

    Ionoluminescence (IL) is the emission of light from a material due to excitation by an ion beam. In this work, a helium ion microscope (HIM) has been used in conjunction with a luminescence detection system to characterize IL from materials in an analogous way to how cathodoluminescence (CL) is characterized in a scanning electron microscope (SEM). A survey of the helium ion beam induced IL characteristics, including images and spectra, of a variety of materials known to exhibit CL in an SEM is presented. Direct band-gap semiconductors that luminesce strongly in the SEM are found not do so in the HIM, possibly due to defect-related nonradiative pathways created by the ion beam. Other materials do, however, exhibit IL, including a cerium-doped garnet sample, quantum dots, and rare-earth doped LaPO4 nanocrystals. These emissions are a result of transitions between f electron states or transitions across size dependent band gaps. In all these samples, IL is found to decay with exposure to the beam, fitting well to double exponential functions. In an exploration of the potential of this technique for biological tagging applications, imaging with the IL emitted by rare-earth doped LaPO4 nanocrystals, simultaneously with secondary electron imaging, is demonstrated at a range of magnifications.

  10. From Liquid Helium to Granular Materials

    NASA Astrophysics Data System (ADS)

    Behringer, Robert P.

    2016-11-01

    This article provides a brief history of work that I have either carried out with Horst Meyer, or that was connected in some way with experiences reaching back to the laboratory known as LTM for low temperature [physics] Meyer, at Duke University. It is not intended as a complete review of all relevant work, but rather to hit highlights. My work with Horst started with studies of critical phenomena in liquid helium. This system provided an extremely rich and diverse testing ground for then newly emerging theories of static and dynamic critical phenomena. A key aspect of the experimental work with Horst was high-precision measurements of temperature and pressure. The ability to measure thermal properties with exceptional precision was at the core of this work. It also provided a natural springboard for entirely different investigations of Rayleigh-Bénard convection, which had just been initiated by Guenter Ahlers. My postdoc with Guenter provided a whole new set of experiences involving convection, dynamical instabilities, and chaos, where again the special properties, measurement techniques, and creative approaches to research associated with liquid helium were critical. In fact, later, knowledge of these techniques allowed me to start a whole new research direction in granular materials, which is a primary focus of my current research.

  11. Efficient helium recondensing using a 4 K pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Wang, Chao

    2005-12-01

    This paper introduces helium recondensing in a 4000 l dewar using a 4 K pulse tube cryocooler at Amundsen-Scott research station at the South Pole. The helium dewar has a normal boil-off rate of 14 l/day. Two features of cooling the dewar neck by helium vapor and precooling helium gas to be liquefied ensured high efficiency of the pulse tube recondenser in this application. The liquefier/recondenser has being successfully operating in the dewar at South Pole station since February 2005. It not only maintains zero boil-off of the dewar, but also liquefies helium gas supplied from outside of the dewar with a rate around 2.7 l/day.

  12. Detailed and simplified nonequilibrium helium ionization in the solar atmosphere

    SciTech Connect

    Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit E-mail: mats.carlsson@astro.uio.no

    2014-03-20

    Helium ionization plays an important role in the energy balance of the upper chromosphere and transition region. Helium spectral lines are also often used as diagnostics of these regions. We carry out one-dimensional radiation-hydrodynamics simulations of the solar atmosphere and find that the helium ionization is set mostly by photoionization and direct collisional ionization, counteracted by radiative recombination cascades. By introducing an additional recombination rate mimicking the recombination cascades, we construct a simplified three-level helium model atom consisting of only the ground states. This model atom is suitable for modeling nonequilibrium helium ionization in three-dimensional numerical models. We perform a brief investigation of the formation of the He I 10830 and He II 304 spectral lines. Both lines show nonequilibrium features that are not recovered with statistical equilibrium models, and caution should therefore be exercised when such models are used as a basis for interpretating observations.

  13. Helium cooling systems for large superconducting physics detector magnets

    NASA Astrophysics Data System (ADS)

    Green, M. A.

    The large superconducting detector magnets used for high energy physics experiments are virtually all indirectly cooled. In general, these detector magnets are not cryogenically stabilized. Therefore, there are a number of choices for cooling large indirectly cooled detector magnets. These choices include; 1) forced two-phase helium cooling driven by the helium refrigerator J-T circuit, 2) forced two-phase helium cooling driven by a helium pump, and 3) a peculation gravity feed cooling system which uses liquid helium from a large storage dewar. The choices for the cooling of a large detector magnet are illustrated by applying these concepts to a 4.2 meter diameter 0.5 tesla thin superconducting solenoid for an experiment at the Relativistic Heavy Ion Collider (RHIC).

  14. Double photoionization of helium with synchrotron x-rays: Proceedings

    SciTech Connect

    Not Available

    1994-01-01

    This report contains papers on the following topics: Overview and comparison of photoionization with charged particle impact; The ratio of double to single ionization of helium: the relationship of photon and bare charged particle impact ionization; Double photoionization of helium at high energies; Compton scattering of photons from electrons bound in light elements; Electron ionization and the Compton effect in double ionization of helium; Elimination of two atomic electrons by a single energy photon; Double photoionization of helium at intermediate energies; Double Photoionization: Gauge Dependence, Coulomb Explosion; Single and Double Ionization by high energy photon impact; The effect of Compton Scattering on the double to single ionization ratio in helium; and Double ionization of He by photoionization and Compton scattering. These papers have been cataloged separately for the database.

  15. Cosmic Ray Helium Intensities over the Solar Cycle from ACE

    NASA Technical Reports Server (NTRS)

    DeNolfo, G. A.; Yanasak, N. E.; Binns, W. R.; Cohen, C. M. S.; Cummings, A. C.; Davis, A. J.; George, J. S.; Hink. P. L.; Israel, M. H.; Lave, K.; Leske, R. A.; Mewaldt, R. A.; Moskalenko, I. V.; Ogliore, R.; Stone, E. C.; Von Rosenvinge, T. T.; Wiedenback, M. E.

    2007-01-01

    Observations of cosmic-ray helium energy spectra provide important constraints on cosmic ray origin and propagation. However, helium intensities measured at Earth are affected by solar modulation, especially below several GeV/nucleon. Observations of helium intensities over a solar cycle are important for understanding how solar modulation affects galactic cosmic ray intensities and for separating the contributions of anomalous and galactic cosmic rays. The Cosmic Ray Isotope Spectrometer (CRIS) on ACE has been measuring cosmic ray isotopes, including helium, since 1997 with high statistical precision. We present helium elemental intensities between approx. 10 to approx. 100 MeV/nucleon from the Solar Isotope Spectrometer (SIS) and CRIS observations over a solar cycle and compare these results with the observations from other satellite and balloon-borne instruments, and with GCR transport and solar modulation models.

  16. 43 CFR 3195.31 - What are the general terms of an In-Kind Crude Helium Sales Contract?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Crude Helium Sales Contract? 3195.31 Section 3195.31 Public Lands: Interior Regulations Relating to...) HELIUM CONTRACTS Federal Helium Supplier Requirements § 3195.31 What are the general terms of an In-Kind Crude Helium Sales Contract? A BLM helium In-Kind Crude Helium Sales Contract requires you to:...

  17. 43 CFR 3195.31 - What are the general terms of an In-Kind Crude Helium Sales Contract?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Crude Helium Sales Contract? 3195.31 Section 3195.31 Public Lands: Interior Regulations Relating to...) HELIUM CONTRACTS Federal Helium Supplier Requirements § 3195.31 What are the general terms of an In-Kind Crude Helium Sales Contract? A BLM helium In-Kind Crude Helium Sales Contract requires you to:...

  18. 43 CFR 3195.31 - What are the general terms of an In-Kind Crude Helium Sales Contract?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Crude Helium Sales Contract? 3195.31 Section 3195.31 Public Lands: Interior Regulations Relating to...) HELIUM CONTRACTS Federal Helium Supplier Requirements § 3195.31 What are the general terms of an In-Kind Crude Helium Sales Contract? A BLM helium In-Kind Crude Helium Sales Contract requires you to:...

  19. 43 CFR 3195.31 - What are the general terms of an In-Kind Crude Helium Sales Contract?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Crude Helium Sales Contract? 3195.31 Section 3195.31 Public Lands: Interior Regulations Relating to...) HELIUM CONTRACTS Federal Helium Supplier Requirements § 3195.31 What are the general terms of an In-Kind Crude Helium Sales Contract? A BLM helium In-Kind Crude Helium Sales Contract requires you to:...

  20. Using Uncertainty Principle to Find the Ground-State Energy of the Helium and a Helium-like Hookean Atom

    ERIC Educational Resources Information Center

    Harbola, Varun

    2011-01-01

    In this paper, we accurately estimate the ground-state energy and the atomic radius of the helium atom and a helium-like Hookean atom by employing the uncertainty principle in conjunction with the variational approach. We show that with the use of the uncertainty principle, electrons are found to be spread over a radial region, giving an electron…

  1. Cold electrons in silicon and on superfluid helium

    NASA Astrophysics Data System (ADS)

    Bradbury, Forrest Riley

    Experiments presented herein are conducted in two material systems with the single motivation of understanding how to control quantum information. After introducing quantum information, we explain why these two material systems, donor electron spins in silicon and electron spins on the surface of superfluid helium, are strong candidates to become viable qubits, the building blocks of quantum information processing. Our experiments probe the relevant physical structure and demonstrate new techniques for qubit state control. We measure the Stark shift of 121Sb donor electron spins in silicon using pulsed electron spin resonance at 0.35 T. Interdigitated metal gates on top of an Sb-implanted 28Si epi-layer apply electric fields at donor sites. Two quadratic Stark effects are resolved: a decrease of the hyperfine coupling between electron and nuclear spins of the donor and a decrease in electron Zeeman g-factor. The hyperfine term prevails at our X-band magnetic fields of 0.35T, while the g-factor term is expected to dominate at higher magnetic fields. A significant linear Stark effect is also observed, which we suggest arises from strain. We discuss the results in the context of the Kane model quantum computer, confirming that Stark tuning is a convenient way to change the spin resonance energy of individual electrons, and thus provide addressability using electrostatic gates. We also measure the transport of surface electrons on liquid helium at 1.5K using micro-fabricated channel devices. The channels, which are filled with superfluid 4He by capillary action, have small underlying metal gates for electron control and detection. Initial studies with simple self-fabricated devices inspired the use of silicon devices for advantages in complexity and advanced processing capabilities. Our silicon device has 120 parallel channels and an intersecting perpendicular channel with 3 microm and 2.5 microm widths, respectively. Connected as in a 3-phase charge coupled device

  2. Helium processing for deuterium/helium burns in ITER's physics phase

    SciTech Connect

    Finn, P.A.; Sze, D.K.

    1991-01-01

    The requirements for vacuum pumping and fuel processing for deuterium/helium (D/{sup 3}He) burns in the physics operating phase for the International Thermonuclear Experimental Reactor (ITER) were assessed. These burns are expected to have low fusion power (100 MW), short burn times ({le}30 s), limited operation (2000 shots), and a fractional burn {approximately}0.3%. For the physics phase, the fuel processing system will include several units to separate deuterium and helium (activated charcoal bed, SAES getter and a Pd/Ag diffuser), as well as an isotopic separation system to separate {sup 3}He and {sup 4}He. The needed vacuum system's cryosorption surface area may be as large as 10 m{sup 2} if the burn time is {approximately}200 s, the fractional burn is <0.3%, or the fusion power is >100 MW. 8 refs., 1 fig., 4 tabs.

  3. Analisys of Helium fluxes and Helium Enhancement in 24th solar cycle with PAMELA Experiment

    NASA Astrophysics Data System (ADS)

    Mergé, Matteo

    2015-04-01

    The properties of solar energetic particles (SEPs) have long been modeled to constrain the proposed scenarios for particle acceleration. The challenge, however, is that the signatures of acceleration gleaned from SEP observations are modified as a consequence of transport within interplanetary space. PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) is a space-borne experiment launched in a semi-polar orbit on 15 June 2006 and continuously collecting data since then. On-board instrumentation is built around a permanent magnet with a silicon microstrip tracker, providing charge and track deflection information. The unique observations from PAMELA provide an essential link between highest and lowest energy particles. Several events registered during the 24th solar activity cycle showed an increase in the helium particle density, those events are good candidates to study the helium enhancement phenomena (an increase in H to He ratio at low energies) and to address the charge/mass dependence of acceleration mechanisms.

  4. Three-body recombination in cold helium-helium-alkali-metal-atom collisions

    SciTech Connect

    Suno, Hiroya; Esry, B. D.

    2009-12-15

    Three-body recombination in helium-helium-alkali-metal collisions at cold temperatures is studied using the adiabatic hyperspherical representation. The rates for the three-body recombination processes {sup 4}He+{sup 4}He+X->{sup 4}He+{sup 4}HeX and {sup 4}He+{sup 4}He+X->{sup 4}He{sub 2}+X, with X={sup 7}Li, {sup 23}Na, {sup 39}K, {sup 85}Rb, and {sup 133}Cs, are calculated at nonzero collision energies by including not only zero total angular momentum, J=0, states but also J>0 states. The three-body recombination rates show a relatively weak dependence on the alkali-metal species, differing from each other only by about one order of magnitude, except for the {sup 4}He-{sup 4}He-{sup 23}Na system.

  5. Low-dimensional hydrogen-bonded structures in the 1:1 and 1:2 proton-transfer compounds of 4,5-dichlorophthalic acid with the aliphatic Lewis bases triethylamine, diethylamine, n-butylamine and piperidine.

    PubMed

    Smith, Graham; Wermuth, Urs D

    2010-07-01

    The structures of the proton-transfer compounds of 4,5-dichlorophthalic acid (DCPA) with the aliphatic Lewis bases triethylamine, diethylamine, n-butylamine and piperidine, namely triethylaminium 2-carboxy-4,5-dichlorobenzoate, C(6)H(16)N(+) x C(8)H(3)Cl(2)O(4)(-), (I), diethylaminium 2-carboxy-4,5-dichlorobenzoate, C(4)H(12)N(+) x C(8)H(3)Cl(2)O(4)(-), (II), bis(butanaminium) 4,5-dichlorobenzene-1,2-dicarboxylate monohydrate, 2C(4)H(12)N(+) x C(8)H(2)Cl(2)O(4)(2-) x H(2)O, (III), and bis(piperidinium) 4,5-dichlorobenzene-1,2-dicarboxylate monohydrate, 2C(5)H(12)N(+) x C(8)H(2)Cl(2)O(4)(2-) x H(2)O, (IV), have been determined at 200 K. All compounds have hydrogen-bonding associations, giving discrete cation-anion units in (I) and linear chains in (II), while (III) and (IV) both have two-dimensional structures. In (I), a discrete cation-anion unit is formed through an asymmetric R(1)(2)(4) N(+)-H...O(2) hydrogen-bonding association, whereas in (II), chains are formed through linear N-H...O associations involving both aminium H-atom donors. In compounds (III) and (IV), the primary N-H...O-linked cation-anion units are extended into a two-dimensional sheet structure via amide-carboxyl N-H...O and amide-carbonyl N-H...O interactions. In the 1:1 salts (I) and (II), the hydrogen 4,5-dichlorophthalate anions are essentially planar with short intramolecular carboxyl-carboxyl O-H...O hydrogen bonds [O...O = 2.4223 (14) and 2.388 (2) A, respectively]. This work provides a further example of the uncommon zero-dimensional hydrogen-bonded DCPA-Lewis base salt and the one-dimensional chain structure type, while even with the hydrate structures of the 1:2 salts with the primary and secondary amines, the low dimensionality generally associated with 1:1 DCPA salts is also found.

  6. TRIFLUOROMETHYL COMPOUNDS OF GERMANIUM

    DTIC Science & Technology

    FLUORIDES, *GERMANIUM COMPOUNDS, *HALIDES, *ORGANOMETALLIC COMPOUNDS, ALKYL RADICALS, ARSENIC COMPOUNDS, CHEMICAL BONDS, CHEMICAL REACTIONS ...CHLORIDES, CHLORINE COMPOUNDS, HYDROLYSIS, IODIDES, METHYL RADICALS, POTASSIUM COMPOUNDS, PYROLYSIS, STABILITY, SYNTHESIS, TIN COMPOUNDS.

  7. Superconducting cable cooling system by helium gas and a mixture of gas and liquid helium

    DOEpatents

    Dean, John W.

    1977-01-01

    Thermally contacting, oppositely streaming cryogenic fluid streams in the same enclosure in a closed cycle that changes from a cool high pressure helium gas to a cooler reduced pressure helium fluid comprised of a mixture of gas and boiling liquid so as to be near the same temperature but at different pressures respectively in go and return legs that are in thermal contact with each other and in thermal contact with a longitudinally extending superconducting transmission line enclosed in the same cable enclosure that insulates the line from the ambient at a temperature T.sub.1. By first circulating the fluid in a go leg from a refrigerator at one end of the line as a high pressure helium gas near the normal boiling temperature of helium; then circulating the gas through an expander at the other end of the line where the gas becomes a mixture of reduced pressure gas and boiling liquid at its boiling temperature; then by circulating the mixture in a return leg that is separated from but in thermal contact with the gas in the go leg and in the same enclosure therewith; and finally returning the resulting low pressure gas to the refrigerator for compression into a high pressure gas at T.sub.2 is a closed cycle, where T.sub.1 >T.sub.2, the temperature distribution is such that the line temperature is nearly constant along its length from the refrigerator to the expander due to the boiling of the liquid in the mixture. A heat exchanger between the go and return lines removes the gas from the liquid in the return leg while cooling the go leg.

  8. Effect of ion flux on helium retention in helium-irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Rivera, A.; Valles, G.; Caturla, M. J.; Martin-Bragado, I.

    2013-05-01

    Helium retention in irradiated tungsten leads to swelling, pore formation, sample exfoliation and embrittlement with deleterious consequences in many applications. In particular, the use of tungsten in future nuclear fusion plants is proposed due to its good refractory properties. However, serious concerns about tungsten survivability stems from the fact that it must withstand severe irradiation conditions. In magnetic fusion as well as in inertial fusion (particularly with direct drive targets), tungsten components will be exposed to low and high energy ion irradiation (helium), respectively. A common feature is that the most detrimental situations will take place in pulsed mode, i.e., high flux irradiation. There is increasing evidence of a correlation between a high helium flux and an enhancement of detrimental effects on tungsten. Nevertheless, the nature of these effects is not well understood due to the subtleties imposed by the exact temperature profile evolution, ion energy, pulse duration, existence of impurities and simultaneous irradiation with other species. Object Kinetic Monte Carlo is the technique of choice to simulate the evolution of radiation-induced damage inside solids in large temporal and space scales. We have used the recently developed code MMonCa (Modular Monte Carlo simulator), presented at COSIRES 2012 for the first time, to study He retention (and in general defect evolution) in tungsten samples irradiated with high intensity helium pulses. The code simulates the interactions among a large variety of defects and during the irradiation stage and the subsequent annealing steps. The results show that the pulsed mode leads to significantly higher He retention at temperatures higher than 700 K. In this paper we discuss the process of He retention in terms of trap evolution. In addition, we discuss the implications of these findings for inertial fusion.

  9. Helium and Sulfur Hexafluoride in Musical Instruments

    NASA Astrophysics Data System (ADS)

    Forinash, Kyle; Dixon, Cory L.

    2014-11-01

    The effects of inhaled helium on the human voice were investigated in a recent article in The Physics Teacher.1 As mentioned in that article, demonstrations of the effect are a popular classroom activity. If the number of YouTube videos is any indication, the effects of sulfur hexafluoride on the human voice are equally popular. However, there appears to be little information available on the effects of either of these gases on musical instruments.2 We describe here the results of a student project that involved measuring the frequency shifts in an organ pipe, a trumpet, and a trombone as the result of filling the instruments with these two gases. The project was one of several possible end-of-semester projects required in an elective science of sound course for non-science majors.

  10. Investigating Electrical Breakdown in Liquid Helium

    NASA Astrophysics Data System (ADS)

    Bouman, Nathaniel; SNS nEDM Collaboration

    2016-09-01

    The SNS nEDM experiment at Oak Ridge National Laboratory aims to search for the electric dipole moment of the neutron (nEDM) at the 3x10-28 level. The experiment is currently in the critical component demonstration phase. The design of the experiment calls for an electric field of 75 kV/cm across the experimental cells between electrodes within a bath of liquid helium (LHe). However, the electric breakdown phenomenon in LHe is poorly understood. Experiments investigating the breakdown of LHe were carried out at Los Alamos National Laboratory using a small-scale high voltage (SSHV) test apparatus at temperatures from 1.7K to 4K. Effects of varying temperature, pressure, and electrode surface conditions on LHe breakdown were investigated. Results and their implications to the SNS nEDM experiment will be presented.

  11. Positronium and Electron Scattering on Helium

    NASA Technical Reports Server (NTRS)

    DiRienzi, Joseph

    2011-01-01

    A recent work [1] establishes experimentally that Positronium scattering by atoms of various elements is surprisingly close in total cross-section to that of an isolated electron of the same velocity. In this work we will look at the scattering of Ps on Helium and compare it to a determination of the scattering of an e- with the same element. For both the Ps scattering and the e- scattering on He, we assume the symmetrization of the e- with the closed shell He electrons is the dominant interaction. A local effective potential employed in [2] and [3] is used to model the electron exchange and cross- sections are determined for a set of partial waves. For the Ps scattering we include as a secondary effect the Van der Waals interaction. For single e- scattering of He, we also employ a short range Coulomb potential and dispersion as contributing effects. Results of the cross-sections determined in each case are then compared

  12. Lunar Helium-3 and Fusion Power

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The NASA Office of Exploration sponsored the NASA Lunar Helium-3 and Fusion Power Workshop. The meeting was held to understand the potential of using He-3 from the moon for terrestrial fusion power production. It provided an overview, two parallel working sessions, a review of sessions, and discussions. The lunar mining session concluded that mining, beneficiation, separation, and return of He-3 from the moon would be possible but that a large scale operation and improved technology is required. The fusion power session concluded that: (1) that He-3 offers significant, possibly compelling, advantages over fusion of tritium, principally increased reactor life, reduced radioactive wastes, and high efficiency conversion, (2) that detailed assessment of the potential of the D/He-3 fuel cycle requires more information, and (3) D/He-3 fusion may be best for commercial purposes, although D/T fusion is more near term.

  13. Helium isotopes and tectonics in southern Italy

    SciTech Connect

    Sano, Yuji; Wakita, Hiroshi ); Nuccio, M.P. ); Italiano, F.

    1989-06-01

    Geodynamic evolution of southern Italy can be understood within the framework of the Mediterranean-Alpine System. Subduction of a plate along the Sicily-Calabrian forearc under the Tyrrhenian Sea has been suggested by many geophysicists, although it is not yet confirmed and remains somewhat controversial. Helium isotope ratios provide useful information on the geotectonic structure of the region. The authors report here the {sup 3}H/{sup 4}He ratios of terrestrial gas samples from southern Italy. The observed {sup 3}He/{sup 4}He ratios are relatively high in the Eolian volcanic arc region and low in the other areas. Dichotomous explanations are presented. Firstly, volcanic arc-forearc hypothesis suggests the subduction along the Sicily-Calabrian forearc. Secondly, horizontal transport hypothesis is described based on the relationship between the ratios and radial distance from the recent spreading basin in Southern Tyrrhenian Sea.

  14. Testing CPT Invariance with Antiprotonic Helium Atoms

    SciTech Connect

    Horvath, Dezso

    2008-08-08

    The structure of matter is related to symmetries at every level of study. CPT symmetry is one of the most important laws of field theory: it states the invariance of physical properties when one simultaneously changes the signs of the charge and of the spatial and time coordinates of free elementary particles. Although in general opinion CPT symmetry is not violated in Nature, there are theoretical attempts to develop CPT-violating models. The Antiproton Decelerator at CERN has been built to test CPT invariance. The ASACUSA experiment compares the properties of particles and antiparticles by studying the antiprotonic helium atom via laser spectroscopy and measuring the mass, charge and magnetic moment of the antiproton as compared to those of the proton.

  15. An Update of the Primordial Helium Abundance

    NASA Astrophysics Data System (ADS)

    Peimbert, Antonio; Peimbert, Manuel; Luridiana, Valentina

    2015-08-01

    Three of the best determinations of the primordial helium abundance (Yp) are those obtained from low metallicity HII regions by Aver, Olive, Porter, & Skillman (2013); Izotov, Thuan, & Guseva (2014); and Peimbert, Peimbert, & Luridiana (2007). In this poster we update the Yp determination by Peimbert et al. taking into account, among other aspects, recent advances in the determination of the He atomic physical parameters, the temperature structure, the collisional effects of high temperatures on the Balmer lines, as well as the effect of H and He bound-bound absorption.We compare our results with those of Aver et al. and Izotov et al. and point out possible explanations for the differences among the three determinations. We also compare our results with those obtained with the Plank satellite considering recent measurements of the neutron mean life; this comparison has implications on the determination of the number of light neutrino families.

  16. Compact hydrogen/helium isotope mass spectrometer

    DOEpatents

    Funsten, Herbert O.; McComas, David J.; Scime, Earl E.

    1996-01-01

    The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

  17. Characterization of reconnecting vortices in superfluid helium

    PubMed Central

    Bewley, Gregory P.; Paoletti, Matthew S.; Sreenivasan, Katepalli R.; Lathrop, Daniel P.

    2008-01-01

    When two vortices cross, each of them breaks into two parts and exchanges part of itself for part of the other. This process, called vortex reconnection, occurs in classical and superfluids, and in magnetized plasmas and superconductors. We present the first experimental observations of reconnection between quantized vortices in superfluid helium. We do so by imaging micrometer-sized solid hydrogen particles trapped on quantized vortex cores and by inferring the occurrence of reconnection from the motions of groups of recoiling particles. We show that the distance separating particles on the just-reconnected vortex lines grows as a power law in time. The average value of the scaling exponent is approximately ½, consistent with the self-similar evolution of the vortices. PMID:18768790

  18. Vacancy-induced flow of solid helium

    NASA Astrophysics Data System (ADS)

    Benedek, Giorgio; Kalinin, Anton; Nieto, Pablo; Toennies, J. Peter

    2016-03-01

    The pulsed flow of solid 4He through a narrow capillary in a flow system which issues into vacuum is investigated at temperatures between 1.64 and 2.66 K and pressures between 54 and 104 bars. After each pulse three different capillary flow regimes are observed as the upstream pressure decreases: an oscillatory [mini-geyser (MG)] regime, a constant flow (CF) regime with a linearly decreasing pressure difference, and a nonresistant (NR) regime. A quantitative analysis of the three regimes suggests that the flow of solid 4He is driven by a counterflow of excess vacancies, which are injected downstream of the capillary at the solid/liquid interface near the micrometric orifice exposed to vacuum. The CF regime, where the flow velocity is found to be independent of the pressure difference, and the NR regime, where the solid flows as a Bernoulli fluid, suggest a new dynamic phase of solid helium induced by a steady influx of vacancies.

  19. Ion Beam Scattering by Background Helium

    NASA Astrophysics Data System (ADS)

    Grillet, Anne; Hughes, Thomas; Boerner, Jeremiah

    2015-11-01

    The presence of background gases can cause charged particle beams to become more diffuse due to scattering. Calculations for the transport of an ion beam have been performed using Aleph, a particle-in-cell plasma modeling code, and verified against a general envelop equation for charged particle beams. We have investigated the influence of background helium on the coherence and transmitted current of the ion beam. Collisions between ions and neutral particles were calculated assuming isotropic elastic scattering. Since this tends to predict larger scattering angles than are expected at high energies, these are conservative estimates for beam scattering. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration.

  20. Radiative corrections to the polarizability of helium.

    PubMed

    Łach, Grzegorz; Jeziorski, Bogumił; Szalewicz, Krzysztof

    2004-06-11

    The complete alpha(3) QED correction to the helium atom polarizability is computed assuming an infinite nuclear mass and found to be equal to 0.000030666(3) a.u., with the contribution from the electric-field dependence of the Bethe logarithm amounting to 0.000000193(2) a.u. After including the alpha(2) and alpha(3) corrections for the nuclear recoil and the leading part of the alpha(4) QED correction, we find that the molar polarizability of 4He is 0.51725419(9)(4) cm(3)/mol. The first of the two error bounds is dominated by the uncertainty of alpha(4) and higher-order QED corrections and the second reflects the uncertainty of the Avogadro constant.