Science.gov

Sample records for helium dilution effect

  1. Helium dilution refrigeration system

    DOEpatents

    Roach, P.R.; Gray, K.E.

    1988-09-13

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation is disclosed. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains [sup 3]He and [sup 4]He liquids which are precooled by a coupled container containing [sup 3]He liquid, enabling the phase separation of a [sup 3]He rich liquid phase from a dilute [sup 3]He-[sup 4]He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the [sup 3]He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute [sup 3]He-[sup 4]He liquid phase. 2 figs.

  2. Helium dilution refrigeration system

    DOEpatents

    Roach, Patrick R.; Gray, Kenneth E.

    1988-01-01

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains .sup.3 He and .sup.4 He liquids which are precooled by a coupled container containing .sup.3 He liquid, enabling the phase separation of a .sup.3 He rich liquid phase from a dilute .sup.3 He-.sup.4 He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the .sup.3 He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute .sup.3 He-.sup.4 He liquid phase.

  3. Helium Dilution Cryocooler for Space Applications

    NASA Technical Reports Server (NTRS)

    Roach, Pat; Hogan, Robert (Technical Monitor)

    2001-01-01

    NASA's New Millenium Program Space Technology presents the Helium Dilution Cryocooler for Space Applications. The topics include: 1) Capability; 2) Applications; and 3) Advantages. This paper is in viewgraph form.

  4. A Microgravity Helium Dilution Cooler

    NASA Technical Reports Server (NTRS)

    Roach, Pat R.; Sperans, Joel (Technical Monitor)

    1994-01-01

    We are developing a He-3-He-4 dilution cooler to operate in microgravity. It uses charcoal adsorption pumps and heaters for its operation; it has no moving parts. It currently operates cyclically to well below 0.1 K and we have designed a version to operate continuously. We expect that the continuous version will be able to provide the long-duration cooling that many experiments need at temperatures down to 0.040 K. More importantly, such a dilution cooler could provide the precooling that enables the use of adiabatic demagnetization techniques that can reach temperatures below 0.001 K. At temperatures below 0.002 K many fascinating microgravity experiments on superfluid He-3 become possible. Among the possibilities are: research into a superfluid He-3 gyroscope, study of the nucleation of the B-phase of superfluid He-3 when the sample is floating out of contact with walls, study of the anisotropy of the surface tension of the B-phase, and NMR experiments on tiny free-floating clusters of superfluid He-3 atoms that should model the shell structure of nuclei.

  5. Effect of Ti/Cr additive on helium diffusion and segregation in dilute vanadium alloys

    NASA Astrophysics Data System (ADS)

    Zou, Tingting; Zhang, Pengbo; Zhao, Jijun; Zheng, Pengfei; Chen, Jiming

    2017-02-01

    The effect of Ti/Cr additive on He diffusion and segregation properties in dilute vanadium alloys is investigated using first-principles calculations. First we determined the He preference site and investigated the He-Cr/He-Ti interactions. Energetically, He prefers to segregate to Ti regions rather than Cr regions. The most stable site for interstitial He is a tetrahedral site near Ti. He-Ti interactions have a weak attraction while He-Cr interactions have a weak repulsion. Kinetically, He diffusion to Ti has a lower energy barrier; contrarily the He barrier increases towards Cr. Furthermore, we discuss the stability of Hen-Cr/Ti complexes and Hen-vacancy-Cr and Ti complexes with n = 1-8. It is found that the HenTi complexes are more stable than the HenCr complexes while the Hen-vacancy-Ti complexes are less favorable than Hen-vacancy-Cr. The findings give a reference for understanding the mechanism of He embrittlement under irradiation.

  6. Helium 3/Helium 4 dilution cryocooler for space

    NASA Technical Reports Server (NTRS)

    Hendricks, John B.; Dingus, Michael L.

    1991-01-01

    Prototype dilution cryocoolers based on dilution refrigeration and adiabatic demagnetization refrigeration (ADR) cycles were designed, constructed, and tested. Although devices the devices did not operate as fully functional dilution cryocoolers, important information was gathered. The porous metal phase separator was demonstrated to operate in the -1-g configuration; this phase separation is the critical element in the He-3 circulation dilution cryocooler. Improvements in instrumentation needed for additional tests and development were identified.

  7. Bedside assessment of the effects of positive end-expiratory pressure on lung inflation and recruitment by the helium dilution technique and electrical impedance tomography.

    PubMed

    Mauri, Tommaso; Eronia, Nilde; Turrini, Cecilia; Battistini, Marta; Grasselli, Giacomo; Rona, Roberto; Volta, Carlo Alberto; Bellani, Giacomo; Pesenti, Antonio

    2016-10-01

    Higher positive end-expiratory pressure might induce lung inflation and recruitment, yielding enhanced regional lung protection. We measured positive end-expiratory pressure-related lung volume changes by electrical impedance tomography and by the helium dilution technique. We also used electrical impedance tomography to assess the effects of positive end-expiratory pressure on regional determinants of ventilator-induced lung injury. A prospective randomized crossover study was performed on 20 intubated adult patients: 12 with acute hypoxemic respiratory failure and 8 with acute respiratory distress syndrome. Each patient underwent protective controlled ventilation at lower (7 [7, 8] cmH2O) and higher (12 [12, 13] cmH2O) positive end-expiratory pressures. At the end of each phase, we collected ventilation, helium dilution, and electrical impedance tomography data. Positive end-expiratory pressure-induced changes in lung inflation and recruitment measured by electrical impedance tomography and helium dilution showed close correlations (R (2) = 0.78, p < 0.001 and R (2) = 0.68, p < 0.001, respectively) but with relatively variable limits of agreement. At higher positive end-expiratory pressure, recruitment was evident in all lung regions (p < 0.01) and heterogeneity of tidal ventilation distribution was reduced by increased tidal volume distending the dependent lung (p < 0.001); in the non-dependent lung, on the other hand, compliance decreased (p < 0.001) and tidal hyperinflation significantly increased (p < 0.001). In the subgroup of ARDS patients (but not in the whole study population) tidal hyperinflation in the dependent lung regions decreased at higher positive end-expiratory pressure (p = 0.05), probably indicating higher potential for recruitment. Close correlations exist between bedside assessment of positive end-expiratory pressure-induced changes in lung inflation and recruitment by the helium dilution and electrical impedance tomography

  8. A helium-3/helium-4 dilution cryocooler for operation in zero gravity

    NASA Technical Reports Server (NTRS)

    Hendricks, John B.

    1988-01-01

    This research effort covered the development of He-3/He-4 dilution cryocooler cycles for use in zero gravity. The dilution cryocooler is currently the method of choice for producing temperatures below 0.3 Kelvin in the laboratory. However, the current dilution cryocooler depends on gravity for their operation, so some modification is required for zero gravity operation. In this effort, we have demonstrated, by analysis, that the zero gravity dilution cryocooler is feasible. We have developed a cycle that uses He-3 circulation, and an alternate cycle that uses superfluid He-4 circulation. The key elements of both cycles were demonstrated experimentally. The development of a true 'zero-gravity' dilution cryocooler is now possible, and should be undertaken in a follow-on effort.

  9. Spin Transport in Dilute, Spin-Polarized Solutions of Helium-Three in Helium-Four

    NASA Astrophysics Data System (ADS)

    McAllaster, Donald R.

    1992-01-01

    We have investigated ^3He spin diffusion in two dilute solutions of ^3 He in ^4He, with atomic fraction x^3=1.82times 10^{-3} and 6.26 times 10 ^{-4}, spin-polarized by an 8 T field. We do not find evidence that the diffusion coefficient for spins transverse to the average magnetization (D _|) declines or saturates at temperatures down to 0.20T_{rm F}, contrary to previous experiment (Gully and Mullin 1984) but in accord with current theory. We have compared our measurements with the latest theory of Jeon and Mullin (1991); our data is mostly in good agreement with their theory if a slightly modified version of a ^3 He-^3He interaction due to Ebner (1967) is used. The congruence between data and theory supports the conclusion that the s-wave approximation to the interaction is not useful for transport calculations even for these rather dilute solutions. There may be an one unresolved discrepancy: our diffusion constant for the lowest concentration at the lowest temperatures is 25% higher than theory predicts. This could be due to a polarization dependance for D_| or to a modification of the boundary condition by a bound ^3He state, or possibly due to errors in the theoretical calculation.

  10. The measurement of lung volumes using body plethysmography and helium dilution methods in COPD patients: a correlation and diagnosis analysis

    PubMed Central

    Tang, Yongjiang; Zhang, Mingke; Feng, Yulin; Liang, Binmiao

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) is a chronic airway disease characterized by persistent airflow limitation. Moreover, lung hyperinflation evaluated by lung volumes is also the key pathophysiologic process during COPD progression. Nevertheless, there is still no preferred method to evaluate lung volumes. For this study, we recruited 170 patients with stable COPD to assess lung volumes stratified by airflow limitation severity. Lung volumes including residual volume (RV) and total lung capacity (TLC) were determined by both body plethysmography and helium dilution methods. The discrepancies between these two methods were recorded as ΔRV%pred, ΔTLC%pred, and ΔRV/TLC. We found that ΔRV%pred, ΔTLC%pred, and ΔRV/TLC increased significantly with the severity of COPD. The differences of lung capacity between these two methods were negatively correlated with FEV1%pred, and diffusing capacity for carbon monoxide (DLCO%pred). Moreover, the receiver operating characteristic (ROC) for ΔTLC%pred to distinguish severe COPD from non-severe COPD had an area under curve (AUC) of 0.886. The differences of lung volume parameters measured by body plethysmography and helium dilution methods were associated with airflow limitation and can effectively differentiate COPD severity, which may be a supportive method to assess the lung function of stable COPD patients. PMID:27876834

  11. Cellular effects of helium in different organs.

    PubMed

    Oei, Gezina T M L; Weber, Nina C; Hollmann, Markus W; Preckel, Benedikt

    2010-06-01

    Experimental research in cardiac and neuronal tissue has shown that besides volatile anesthetics and xenon, the nonanesthetic noble gas helium also reduces ischemia-reperfusion damage. Even though the distinct mechanisms of helium-induced organ protection are not completely unraveled, several signaling pathways have been identified. Beside the protective effects on heart and brain that are mainly obtained by different pre- and postconditioning protocols, helium also exerts effects in the lungs, the immune system, and the blood vessels. Obviously, this noble gas is biochemically not inert and exerts biologic effects, although until today the question remains open on how these changes are mediated. Because of its favorable characteristics and the lack of hemodynamic side effects, helium is suitable for use also in critically ill patients. This review covers the cellular effects of helium, which may lead to new clinical strategies of tissue salvage in ischemia-reperfusion situations, both within and outside the perioperative setting.

  12. [Monitoring of functional residual capacity by bedside real-time concentration via helium dilution technique].

    PubMed

    Liu, Qi; Chen, Rongchang; Jia, Liuqun; Wang, Huan; Li, Wen; Zheng, Qingsi; Cheng, Zhe

    2015-07-21

    To explore the accuracy, precision and repeatability of bedside real-time concentration monitoring via helium dilution (RHe) in ventilated dogs with and without acute respiratory distress syndrome (ARDS). Functional residual capacity (FRC) measurements were performed with computer tomography (FRCCT) and RHe (FRCRHe) in 18 adult male beagle dogs. Blood gas analysis was conducted for baseline, post-lung injury and end-of-experiment. Vital signs were monitored continuously. And the differences were compared between two techniques and repeated FRCRHes. For healthy lungs, FRCCT and FRCRHe were linearly correlated (R² = 0.89, P < 0.0001). Bias between FRCRHe and FRCCT was 6.3 ± 27.6 ml (1.5% ± 7.1%) with 95% confidence interval limits of -47.7 and 60.3 ml respectively. For ARDS lung, FRCRHe = 0.693 × FRCCT + 66.4 (R² = 0.507, P < 0.00 1). Bias between FRCRHe and FRCCT was 7.9 ± 271 ml (4.5% ± 13.6%) with 95% confidence interval limits of -45.3 and 61.1 ml respectively. And the differences of repeated FRCRHes were -0.1% ± 5.8% and 0.2% ± 9% in normal and ARDS lungs respectively. The technique of bedside RHe may be used for measuring FRC with excellent accuracy, precision and repeatability.

  13. Nitrogen washout/washin, helium dilution and computed tomography in the assessment of end expiratory lung volume

    PubMed Central

    Chiumello, Davide; Cressoni, Massimo; Chierichetti, Monica; Tallarini, Federica; Botticelli, Marco; Berto, Virna; Mietto, Cristina; Gattinoni, Luciano

    2008-01-01

    Introduction End expiratory lung volume (EELV) measurement in the clinical setting is routinely performed using the helium dilution technique. A ventilator that implements a simplified version of the nitrogen washout/washin technique is now available. We compared the EELV measured by spiral computed tomography (CT) taken as gold standard with the lung volume measured with the modified nitrogen washout/washin and with the helium dilution technique. Methods Patients admitted to the general intensive care unit of Ospedale Maggiore Policlinico Mangiagalli Regina Elena requiring ventilatory support and, for clinical reasons, thoracic CT scanning were enrolled in this study. We performed two EELV measurements with the modified nitrogen washout/washin technique (increasing and decreasing inspired oxygen fraction (FiO2) by 10%), one EELV measurement with the helium dilution technique and a CT scan. All measurements were taken at 5 cmH2O airway pressure. Each CT scan slice was manually delineated and gas volume was computed with custom-made software. Results Thirty patients were enrolled (age = 66 +/- 10 years, body mass index = 26 +/- 18 Kg/m2, male/female ratio = 21/9, partial arterial pressure of carbon dioxide (PaO2)/FiO2 = 190 +/- 71). The EELV measured with the modified nitrogen washout/washin technique showed a very good correlation (r2 = 0.89) with the data computed from the CT with a bias of 94 +/- 143 ml (15 +/- 18%, p = 0.001), within the limits of accuracy declared by the manufacturer (20%). The bias was shown to be highly reproducible, either decreasing or increasing the FiO2 being 117+/-170 and 70+/-160 ml (p = 0.27), respectively. The EELV measured with the helium dilution method showed a good correlation with the CT scan data (r2 = 0.91) with a negative bias of 136 +/- 133 ml, and appeared to be more correct at low lung volumes. Conclusions The EELV measurement with the helium dilution technique (at low volumes) and modified nitrogen washout/washin technique

  14. Nondipole effects in helium photoionization

    NASA Astrophysics Data System (ADS)

    Argenti, Luca; Moccia, Roberto

    2010-12-01

    An accurate calculation of the nondipole anisotropy parameter γ in the photoionization of helium below the N = 2 threshold is presented. The calculated results are in fairly good agreement with the experimental results of Krässig et al (2002 Phys. Rev. Lett. 88 203002), but not as good as the accuracy of the calculation should have warranted. A careful examination of the possible causes for the observed discrepancies between theory and experiment seems to rule out any role either of the multipolar terms higher than the electric quadrupole, or of the singlet-triplet spin-orbit mixing. It is argued that such discrepancies might have an instrumental origin, due to the difficulty of measuring vanishingly small total cross sections σtot with the required accuracy. In such eventuality, it might be more appropriate to use a parameter other than γ, such as for instance the drag current, to measure the nondipole anisotropy of the photoelectron angular distribution.

  15. Dilution

    PubMed Central

    Lavie, Nilli; Torralbo, Ana

    2010-01-01

    Load theory of attention proposes that distractor processing is reduced in tasks with high perceptual load that exhaust attentional capacity within task-relevant processing. In contrast, tasks of low perceptual load leave spare capacity that spills over, resulting in the perception of task-irrelevant, potentially distracting stimuli. Tsal and Benoni (2010) find that distractor response competition effects can be reduced under conditions with a high search set size but low perceptual load (due to a singleton color target). They claim that the usual effect of search set size on distractor processing is not due to attentional load but instead attribute this to lower level visual interference. Here, we propose an account for their findings within load theory. We argue that in tasks of low perceptual load but high set size, an irrelevant distractor competes with the search nontargets for remaining capacity. Thus, distractor processing is reduced under conditions in which the search nontargets receive the spillover of capacity instead of the irrelevant distractor. We report a new experiment testing this prediction. Our new results demonstrate that, when peripheral distractor processing is reduced, it is the search nontargets nearest to the target that are perceived instead. Our findings provide new evidence for the spare capacity spillover hypothesis made by load theory and rule out accounts in terms of lower level visual interference (or mere “dilution”) for cases of reduced distractor processing under low load in displays of high set size. We also discuss additional evidence that discounts the viability of Tsal and Benoni's dilution account as an alternative to perceptual load. PMID:21133554

  16. Mossbauer effect in dilute iron alloys

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1975-01-01

    The effects of variable concentration, x, of Aluminum, Germanium, and Lanthanum atoms in Iron lattice on various Mossbauer parameters was studied. Dilute binary alloys of (Fe-Al), (Fe-Ge), (Fe-Al) containing up to x = 2 a/o of the dilute constituent were prepared in the form of ingots and rolled to a thickness of 0.001 in. Mossbauer spectra of these targets were then studied in transmission geometry to measure changes in the hyperfine field, peak widths isomer shifts as well as the ratio of the intensities of peaks (1,6) to the intensities of peaks (2,5). It was shown that the concept of effective hyperfine structure field in very dilute alloys provides a useful means of studying the effects of progressively increasing the solute concentration on host lattice properties.

  17. Tritium Decay Helium-3 Effects in Tungsten

    SciTech Connect

    Shimada, M.; Merrill, B. J.

    2016-06-01

    A critical challenge for long-term operation of ITER and beyond to a Demonstration reactor (DEMO) and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to steady-state/transient heat fluxes and intense neutral/ion particle fluxes under the extreme fusion nuclear environment, while at the same time minimizing in-vessel tritium inventories and permeation fluxes into the PFC’s coolant. Tritium will diffuse in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [1,2]. Tritium decay into helium-3 may also play a major role in microstructural evolution (e.g. helium embrittlement) in tungsten due to relatively low helium-4 production (e.g. He/dpa ratio of 0.4-0.7 appm [3]) in tungsten. Tritium-decay helium-3 effect on tungsten is hardly understood, and its database is very limited. Two tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) were exposed to high flux (ion flux of 1.0x1022 m-2s-1 and ion fluence of 1.0x1026 m-2) 0.5%T2/D2 plasma at two different temperatures (200, and 500°C) in Tritium Plasma Experiment (TPE) at Idaho National Laboratory. Tritium implanted samples were stored at ambient temperature in air for more than 3 years to investigate tritium decay helium-3 effect in tungsten. The tritium distributions on plasma-exposed was monitored by a tritium imaging plate technique during storage period [4]. Thermal desorption spectroscopy was performed with a ramp rate of 10°C/min up to 900°C to outgas residual deuterium and tritium but keep helium-3 in tungsten. These helium-3 implanted samples were exposed to deuterium plasma in TPE to investigate helium-3 effect on deuterium behavior in tungsten. The results show that tritium surface concentration in 200°C sample decreased to 30 %, but tritium surface concentration in 500°C sample did not alter over the 3 years storage period, indicating possible tritium

  18. Effect of dislocations on helium retention in deformed pure iron

    NASA Astrophysics Data System (ADS)

    Gong, Y. H.; Cao, X. Z.; Jin, S. X.; Lu, E. Y.; Hu, Y. C.; Zhu, T.; Kuang, P.; Xu, Q.; Wang, B. Y.

    2016-12-01

    The effects of dislocations created by deformation on helium retention in pure iron, including the helium atoms diffusion along the dislocation line and desorption from dislocation trapping sites, were investigated. The dislocation defect was introduced in specimens by cold-rolling, and then 5 keV helium ions were implanted into the deformed specimens. Slow positron beam technology and thermal desorption spectroscopy were used to investigate the evolution of dislocation defects and the desorption behavior of helium atoms under influence of dislocation. The behaviors of S-E, W-E and S-W plots indicate clearly that lots of helium atoms remain in the deformed specimen and helium atoms combining with dislocation change the distribution of electron density. The helium desorption plot indicates that dislocation accelerates helium desorption at 293 K-600 K and facilitates helium dissociation from HenVm (n/m = 1.8) cluster.

  19. Influence of MHD effects and edge conditions on ITER helium ash accumulation and sustained ignition

    SciTech Connect

    Redi, M.H.; Cohen, S.A.

    1990-06-01

    Dilution of reacting species by build-up of helium ash and its effect on ignition in the ITER tokamak have been studies in a series of simulations with the one-dimensional BALDUR transport code. Thermal diffusivities, obtained from ITER scaling laws and with radial variations observed in JET, gave {tau}{sub E} {approx} 2--4 sec. Refueling of deuterium and tritium maintained constant electron density, while carbon recycling was 100% and the helium ash recycling was varied from 1.0 to 0.5. Including MHD effects, specifically sawteeth and beta limits, we find that ignition can be sustained for 200 seconds with R{sub helium} = 0.95. These simulations, the only non-zero-dimensional, time-dependent simulations thus far made for ITER plasmas, emphasize that edge plasma conditions, MHD behavior, and helium particle transport are critical synergistic issues for sustained ignition. 27 refs., 2 figs., 1 tab.

  20. Declining ecosystem health and the dilution effect

    PubMed Central

    Khalil, Hussein; Ecke, Frauke; Evander, Magnus; Magnusson, Magnus; Hörnfeldt, Birger

    2016-01-01

    The “dilution effect” implies that where species vary in susceptibility to infection by a pathogen, higher diversity often leads to lower infection prevalence in hosts. For directly transmitted pathogens, non-host species may “dilute” infection directly (1) and indirectly (2). Competitors and predators may (1) alter host behavior to reduce pathogen transmission or (2) reduce host density. In a well-studied system, we tested the dilution of the zoonotic Puumala hantavirus (PUUV) in bank voles (Myodes glareolus) by two competitors and a predator. Our study was based on long-term PUUV infection data (2003–2013) in northern Sweden. The field vole (Microtus agrestis) and the common shrew (Sorex araneus) are bank vole competitors and Tengmalm’s owl (Aegolius funereus) is a main predator of bank voles. Infection probability in bank voles decreased when common shrew density increased, suggesting that common shrews reduced PUUV transmission. Field voles suppressed bank vole density in meadows and clear-cuts and indirectly diluted PUUV infection. Further, Tengmalm’s owl decline in 1980–2013 may have contributed to higher PUUV infection rates in bank voles in 2003–2013 compared to 1979–1986. Our study provides further evidence for dilution effect and suggests that owls may have an important role in reducing disease risk. PMID:27499001

  1. The effects of convective overshooting on naked helium stars

    NASA Astrophysics Data System (ADS)

    Yan, Jing-Zhi; Zhu, Chun-Hua; Wang, Zhao-Jun; Lü, Guo-Liang

    2016-09-01

    Using stellar evolutionary models, we investigate the effects of convective overshooting on naked helium stars. We find that a larger value of overshooting parameter δov results in a larger convective core, which prolongs the lifetimes of naked helium stars on the helium main sequence and leads to higher effective temperatures and luminosities. For naked helium stars with masses lower than about 0.8 M⊙, they hardly become giant stars as a result of a weak burning shell. However, naked helium stars with masses between about 0.8 M⊙ and 1.1 M⊙ can evolve into giant branch phases, and finally become carbon oxygen white dwarfs.

  2. Diluting the burden of load: perceptual load effects are simply dilution effects.

    PubMed

    Tsal, Yehoshua; Benoni, Hanna

    2010-12-01

    The substantial distractor interference obtained for small displays when the target appears alone is reduced in large displays when the target is embedded among neutral letters. This finding has been interpreted as reflecting low-load and high-load processing, respectively, thereby supporting the theory of perceptual load (Lavie & Tsal, 1994). However, a possible alternative interpretation of this effect is that the distractor is similarly processed in both displays, yet its interference in the large ones is diluted by the presence of the neutral letters. We separated the effects of load and dilution by introducing dilution displays. They contained as many letters as the high-load displays but were clearly distinguished from the target, thus allowing for a low-load processing mode. Distractor interference obtained under both the low-load and high-load conditions disappeared under the dilution condition. Hence, the display size effect traditionally misattributed to perceptual load is fully accounted for by dilution. Furthermore, when dilution is controlled for, it is high load not low load producing greater interference.

  3. Effective viscosity of dilute bacterial suspensions

    NASA Astrophysics Data System (ADS)

    Haines, Brian M.

    This dissertation explores the bulk (volume averaged) properties of suspensions of microswimmers in a fluid. A microswimmer is a microscopic object that propels itself through a fluid. A common example of a microswimmer is a bacterium, such as Bacillus subtilis. Our particular interest is the bulk rheological properties of suspensions of bacteria -- that is, studying how such a suspension deforms under the application of an external force. In the simplest case, the rheology of a fluid can be described by a scalar effective viscosity. The goal of this dissertation is to find explicit formulae for the effective viscosity in terms of known geometric and physical parameters characterizing bacteria and use them to explain experimental observations. Throughout the dissertation, we consider bacterial suspensions in the dilute limit, where bacteria are assumed to be so far apart that interactions between them are negligible. This simplifies calculations significantly and is the regime in which the most striking experimental results have been observed. We first study suspensions of self-propelled particles using a two-dimensional (2D) Partial Differential Equation (PDE) model. A bacterium is modeled as a disk in 2D with self-propulsion provided by a point force in the fluid. A formula is obtained for the effective viscosity of such suspensions in the dilute limit. This formula includes the two terms that are found in the 2D version of Einstein's classical result for a passive suspension of spheres. To this, our main contribution is added, an additional term due to self-propulsion which depends on the physical and geometric properties of the suspension. This work demonstrates how bacterial self-propulsion can alter the viscosity of a fluid and highlights the importance of bacterial orientation. Next, we present a more realistic PDE model for dilute suspensions of swimming bacteria in a three-dimensional fluid. In this work, a bacterium is modeled as a prolate spheroid with

  4. Substrate Effects in Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Steel, Stephen Chris

    1990-01-01

    The self emptying beaker technique was used to study the superfluid properties of ^3He confined in the van der Waals film adsorbed on the surface of a metal beaker. The experimental cell was designed to minimize thermal gradients along the ^3 He film. In contrast to the results of an earlier experiment by Sachrajda et al, which suggested that film flow occurred at temperatures as high as 3.5 mK (SACH-85), no flow was observed above the bulk transition temperature T_sp{rm c}{rm B} = 0.93 mK. The transition temperatures measured using round rim beakers agreed with theory, giving the predicted normal-superfluid phase boundary 2 delta/xi(T) = pi, where delta is the film thickness and xi(T) is the temperature dependent coherence length. The ^3He film thickness was inferred from Atkins' oscillation measurements of ^4He films on the same substrate. When a ^4He monolayer was adsorbed on the surface of a copper beaker, it suppressed the diffuse scattering of ^3He quasiparticles at the copper wall, an effect first observed by Freeman et al using a mylar substrate (FRMN-88). With the ^4He monolayer in place, there was no measurable suppression of the transition temperature, even for films as thin as 100 nm. This suggests that the ^3 He quasiparticle scattering at the free liquid surface as well as the ^4He covered substrate was specular. This is the first evidence of the nature of the scattering at the free surface. After the ^3He level in the beaker had dropped between 15 and 85 mu m, the flow rate abruptly dropped by a factor to ten or more. This may be associated with the transition between the superfluid B-phase, expected in thick films, and the superfluid A-phase, expected in thin films. The observed critical currents are roughly an order of magnitude smaller than predicted by the pair breaking limit, suggesting some other dissipation mechanism is responsible for limiting the current.

  5. Nitrogen dilution effect on the flammability limits for hydrocarbons.

    PubMed

    Chen, Chan-Cheng; Wang, Tzu-Chi; Liaw, Horng-Jang; Chen, Hui-Chu

    2009-07-30

    Theoretical models to predict the upper/lower flammability limits of hydrocarbons diluted with inert nitrogen gas are proposed in this study. It is found that there are linear relations between the reciprocal of the upper/lower flammability limits and the reciprocal of the molar fraction of hydrocarbon in the hydrocarbon/inert nitrogen mixture. Such linearity is examined by experimental data reported in the literature, which include the cases of methane, propane, ethylene and propylene. The R-squared values (R(2)) of the regression lines of the cases explored are all greater than 0.989 for upper flammability limit (UFL). The theoretical slope of the predictive line for lower flammability limit (LFL) is found to be very close to zero for all explored cases; and this result successfully explains the experimental fact that adding inert nitrogen to a flammable material has very limited effect on LFL. Because limit oxygen concentration (LOC) could be taken as the intersectional point of the UFL curve and LFL curve, a LOC-based method is proposed to predict the slope of the UFL curve when experimental data of UFL are not available. This LOC-based method predicts the UFL with average error ranging from 2.17% to 5.84% and maximum error ranging from 8.58% to 12.18% for the cases explored. The predictive models for inert gas of nitrogen are also extended to the case of inert gas other than nitrogen. Through the extended models, it was found that the inert ability of an inert gas depends on its mean molar heat capacity at the adiabatic flame temperature. Theoretical calculation shows that the inert abilities of carbon dioxide, steam, nitrogen and helium are in the following order: carbon dioxide>steam>nitrogen>helium; and this sequence conforms to the existing experimental data reported in the literature.

  6. Helium-induced hardening effect in polycrystalline tungsten

    NASA Astrophysics Data System (ADS)

    Kong, Fanhang; Qu, Miao; Yan, Sha; Zhang, Ailin; Peng, Shixiang; Xue, Jianming; Wang, Yugang

    2017-09-01

    In this paper, helium induced hardening effect of tungsten was investigated. 50 keV He2+ ions at fluences vary from 5 × 1015 cm-2 to 5 × 1017 cm-2 were implanted into polycrystalline tungsten at RT to create helium bubble-rich layers near the surface. The microstructure and mechanical properties of the irradiated specimens were studied by TEM and nano-indentor. Helium bubble rich layers are formed in near surface region, and the layers become thicker with the rise of fluences. Helium bubbles in the area of helium concentration peak are found to grow up, while the bubble density is almost unchanged. Obvious hardening effect is induced by helium implantation in tungsten. Micro hardness increases rapidly with the fluence firstly, and more slowly when the fluence is above 5 × 1016 cm-2. The hardening effect of tungsten can be attributed to helium bubbles, which is found to be in agreement with the Bacon-Orowan stress formula. The growing diameter is the major factor rather than helium bubbles density (voids distance) in the process of helium implantation at fluences below 5 × 1017 cm-2.

  7. Clinical Roles of Lung Volumes Detected by Body Plethysmography and Helium Dilution in Asthmatic Patients: A Correlation and Diagnosis Analysis

    PubMed Central

    Luo, Jian; Liu, Dan; Chen, Guo; Liang, Binmiao; Liu, Chuntao

    2017-01-01

    Roles of lung volumes in asthma remain controversial. We aimed to evaluate the efficacy of lung volumes in differentiating asthma severity levels. Consecutive outpatients with chronic persistent asthma were enrolled, and body plethysmography (BP) and helium dilution (HD) were performed simultaneously to extract RV%pred, TLC%pred, and RV/TLC. Significant negative correlations were found between FEV1%pred and RV%pred (r = −0.557, P < 0.001), TLC%pred (r = −0.387, P < 0.001), and RV/TLC (r = −0.485, P < 0.001) measured by BP, as well as difference in volumes between these two techniques (ΔRV%pred, ΔTLC%pred and ΔRV/TLC). In mild and moderate asthma, AUC of RV%pred detected by BP and ΔTLC%pred was 0.723 (95%CI 0.571–0.874, P = 0.005) and 0.739 (95%CI 0.607–0.872, P = 0.002) with sensitivity and specificity being 79.41% and 88.24%, and 65.22% and 56.52% at cut-off of 145.40% and 14.23%, respectively. In moderate and severe asthma, AUC of RV%pred detected by BP and ΔTLC%pred was 0.782 (95%CI 0.671–0.893, P < 0.001) and 0.788 (95%CI 0.681–0.894, P < 0.002) with sensitivity and specificity being 77.78% and 97.22%, and 73.53% and 52.94% at cut-off of 179.85% and 20.22%, respectively. In conclusion, lung volumes are reliable complement of FEV1 in identifying asthma severity levels. PMID:28098214

  8. Can the single-breath helium dilution method predict lung volumes as measured by whole-body plethysmography?*

    PubMed Central

    Coertjens, Patrícia Chaves; Knorst, Marli Maria; Dumke, Anelise; Pasqualoto, Adriane Schmidt; Riboldi, João; Barreto, Sérgio Saldanha Menna

    2013-01-01

    OBJECTIVE: To compare TLC and RV values obtained by the single-breath helium dilution (SBHD) method with those obtained by whole-body plethysmography (WBP) in patients with normal lung function, patients with obstructive lung disease (OLD), and patients with restrictive lung disease (RLD), varying in severity, and to devise equations to estimate the SBHD results. METHODS: This was a retrospective cross-sectional study involving 169 individuals, of whom 93 and 49 presented with OLD and RLD, respectively, the remaining 27 having normal lung function. All patients underwent spirometry and lung volume measurement by both methods. RESULTS: TLC and RV were higher by WBP than by SBHD. The discrepancy between the methods was more pronounced in the OLD group, correlating with the severity of airflow obstruction. In the OLD group, the correlation coefficient of the comparison between the two methods was 0.57 and 0.56 for TLC and RV, respectively (p < 0.001 for both). We used regression equations, adjusted for the groups studied, in order to predict the WBP values of TLC and RV, using the corresponding SBHD values. It was possible to create regression equations to predict differences in TLC and RV between the two methods only for the OLD group. The TLC and RV equations were, respectively, ∆TLCWBP-SBHD in L = 5.264 − 0.060 × FEV1/FVC (r2 = 0.33; adjusted r2 = 0.32) and ∆RVWBP-SBHD in L = 4.862 − 0.055 × FEV1/FVC (r2 = 0.31; adjusted r2 = 0.30). CONCLUSIONS: The correction of TLC and RV results obtained by SBHD can improve the accuracy of this method for assessing lung volumes in patients with OLD. However, additional studies are needed in order to validate these equations. PMID:24473761

  9. Attentional sets influence perceptual load effects, but not dilution effects.

    PubMed

    Benoni, Hanna; Zivony, Alon; Tsal, Yehoshua

    2014-01-01

    Perceptual load theory [Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance, 21, 451-468.; Lavie, N., & Tsal, Y. (1994) Perceptual load as a major determinant of the locus of selection in visual attention. Perception & Psychophysics, 56, 183-197.] proposes that interference from distractors can only be avoided in situations of high perceptual load. This theory has been supported by blocked design manipulations separating low load (when the target appears alone) and high load (when the target is embedded among neutral letters). Tsal and Benoni [(2010a). Diluting the burden of load: Perceptual load effects are simply dilution effects. Journal of Experimental Psychology: Human Perception and Performance, 36, 1645-1656.; Benoni, H., & Tsal, Y. (2010). Where have we gone wrong? Perceptual load does not affect selective attention. Vision Research, 50, 1292-1298.] have recently shown that these manipulations confound perceptual load with "dilution" (the mere presence of additional heterogeneous items in high-load situations). Theeuwes, Kramer, and Belopolsky [(2004). Attentional set interacts with perceptual load in visual search. Psychonomic Bulletin & Review, 11, 697-702.] independently questioned load theory by suggesting that attentional sets might also affect distractor interference. When high load and low load were intermixed, and participants could not prepare for the presentation that followed, both the low-load and high-load trials showed distractor interference. This result may also challenge the dilution account, which proposes a stimulus-driven mechanism. In the current study, we presented subjects with both fixed and mixed blocks, including a mix of dilution trials with low-load trials and with high-load trials. We thus separated the effect of dilution from load and tested the influence of attentional sets on each component. The results revealed that whereas

  10. The Effect of Dilution on the Structure of Microbial Communities

    NASA Technical Reports Server (NTRS)

    Mills, Aaron L.

    2000-01-01

    To determine how dilution of microbial communities affects the diversity of the diluted assemblage a series of numerical simulations were conducted that determined the theoretical change in diversity, richness, and evenness of the community with serial dilution. The results of the simulation suggested that the effects are non linear with a high degree of dependence on the initial evenness of the community being diluted. A series of incubation experiments using a range of dilutions of raw sewage as an inoculum into sterile sewage was used for comparison to the simulations. The diluted communities were maintained in batch fed reactors (three day retention time) for nine days. The communities were harvested and examined by conventional plating and by molecular analysis of the whole-community DNA using AFLP and T-RFLP. Additional, CLPP analysis was also applied. The effects on richness predicted by the numerical simulations were confirmed by the analyses used. The diluted communities fell into three groups, a low dilution, intermediate dilution, and high dilution group, which corresponded well with the groupings obtained for community richness in simulation. The grouping demonstrated the non-linear nature of dilution of whole communities. Furthermore, the results implied that the undiluted community consisted of a few dominant types accompanied by a number of rare (low abundance) types as is typical in unevenly distributed communities.

  11. Surface layering effect of diluted Intralipid

    NASA Astrophysics Data System (ADS)

    Foschum, F.; Bodenschatz, N.; Krauter, P.; Nothelfer, S.; Liemert, A.; Simon, E.; Kröner, S.; Kienle, A.

    2015-07-01

    In this study the formation of a surface layer on top of an Intralipid dilution was studied. By use of spatial frequency reflectance and spatially resolved reflectance the surface layer could be characterized. The influence on the determination of the optical properties assuming a semi-infinite medium in the theory was investigated. By use of an angularly resolved reflectance device the formation even on a horizontally orientated glass slide could be shown.

  12. Biodiversity inhibits parasites: Broad evidence for the dilution effect.

    PubMed

    Civitello, David J; Cohen, Jeremy; Fatima, Hiba; Halstead, Neal T; Liriano, Josue; McMahon, Taegan A; Ortega, C Nicole; Sauer, Erin Louise; Sehgal, Tanya; Young, Suzanne; Rohr, Jason R

    2015-07-14

    Infectious diseases of humans, wildlife, and domesticated species are increasing worldwide, driving the need to understand the mechanisms that shape outbreaks. Simultaneously, human activities are drastically reducing biodiversity. These concurrent patterns have prompted repeated suggestions that biodiversity and disease are linked. For example, the dilution effect hypothesis posits that these patterns are causally related; diverse host communities inhibit the spread of parasites via several mechanisms, such as by regulating populations of susceptible hosts or interfering with parasite transmission. However, the generality of the dilution effect hypothesis remains controversial, especially for zoonotic diseases of humans. Here we provide broad evidence that host diversity inhibits parasite abundance using a meta-analysis of 202 effect sizes on 61 parasite species. The magnitude of these effects was independent of host density, study design, and type and specialization of parasites, indicating that dilution was robust across all ecological contexts examined. However, the magnitude of dilution was more closely related to the frequency, rather than density, of focal host species. Importantly, observational studies overwhelmingly documented dilution effects, and there was also significant evidence for dilution effects of zoonotic parasites of humans. Thus, dilution effects occur commonly in nature, and they may modulate human disease risk. A second analysis identified similar effects of diversity in plant-herbivore systems. Thus, although there can be exceptions, our results indicate that biodiversity generally decreases parasitism and herbivory. Consequently, anthropogenic declines in biodiversity could increase human and wildlife diseases and decrease crop and forest production.

  13. [Effect of Helium on Diamond Films Deposited Using Microwave PCVD].

    PubMed

    Cao, Wei; Ma, Zhi-bin; Tao, Li-ping; Gao, Pan; Li, Yi-cheng; Fu, Qiu-ming

    2015-03-01

    Optical emission spectroscopy (OES) was used to in situ diagnose the CH4-H2-He plasma in order to know the effect of helium on the diamond growth by microwave plasma chemical vapor deposition (MPCVD). The spatial distribution of radicals in the plasma as a function of helium addition was studied. The diamond films deposited in different helium volume fraction were investigated using scanning electron microscope (SEM) and Raman spectroscopy. The results show that the spectra intensity of radicals of H(α), H(β), H(γ), CH and C2 increases with the increasing of helium volume fraction, especially, that of radical H(α) has the most improvement. The spectrum space diagnosis results show that the uniformity of C2, CH radicals in the plasma tends to poor due to the helium addition and resulted in a different thickness along the radial direction The measurement of deposition rate shows that the addition of helium is useful for the improvement of the growth rate of diamond films, due to relative concentration of carbon radicals was increased. The deposition rate increases by 24% when the volume fraction of He was increased from 0 vol. % to 4.7 vol.%. The micrographs of SEM reveal that with the increasing of helium volume fraction, the diamond films' crystallite orientation changes from (111) to disorder and a twins growth becomes obvious. The secondary nucleation density during growth increases because the high relatively concentration of C2 radicals under higher helium volume fraction (4.7 vol. %). In addition, the substrate was etched and sputtered by the plasma, which introduced metallic atoms into the plasma during the deposition of diamond films. Eventually, the existing of secondary nucleation and impurity atoms lead to the appearance of twins and results in the compressive dress.

  14. The antimicrobial effects of helium and helium-air plasma on Staphylococcus aureus and Clostridium difficile.

    PubMed

    Galvin, S; Cahill, O; O'Connor, N; Cafolla, A A; Daniels, S; Humphreys, H

    2013-08-01

    Healthcare-associated infections (HCAI) affect 5-10% of acute hospital admissions. Environmental decontamination is an important component of all strategies to prevent HCAI as many bacterial causes survive and persist in the environment, which serve as ongoing reservoirs of infection. Current approaches such as cleaning with detergents and the use of chemical disinfectant are suboptimal. We assessed the efficacy of helium and helium-air plasma in killing Staphylococcus aureus and Clostridium difficile on a glass surface and studied the impact on bacterial cells using atomic force microscopy (AFM). Both plasma types exhibited bactericidal effects on Staph. aureus (log3·6 - >log7), with increased activity against methicillin-resistant strains, but had a negligible effect on Cl. difficile spores (<1log). AFM demonstrated cell surface disruption. The addition of air increased the microbicidal activity of the plasma and decreased the exposure time required for an equivalent log reduction. Further evaluation of cold plasma systems is warranted with, for example, different bacteria and on surfaces more reminiscent of the health care environment as this approach has potential as an effective decontaminant. Many bacterial causes of healthcare infection can survive in the inanimate environment for lengthy periods and be transmitted to patients. Furthermore, current methods of environmental decontamination such as detergents, chemical disinfectants or gaseous fumigation are suboptimal for a variety of reasons. We assessed the efficacy of helium and helium-air plasma as a decontaminant and demonstrated a significant reduction in bacterial counts of Staphylococcus aureus on a glass surface. Atomic force microscopy morphologically confirmed the impact on bacterial cells. This approach warrants further study as an alternative to current options for hospital hygiene. © 2013 The Society for Applied Microbiology.

  15. Surface tension effects in levitated helium drops

    NASA Astrophysics Data System (ADS)

    Vicente, Carlos Luis

    We report our investigations of surface tension driven flows in magnetically levitated 4He drops. By levitating helium drops in a magnetic trap we are able to observe the free surface of drops as they undergo shape oscillations. We also study the dynamics of the free surface during the process of coalescence. Our experimental method allows us to excite shape oscillations in the levitated helium drops and measure their normal mode frequencies. By measuring the frequency of the fundamental (l = 2) mode, we obtain new measurements of the surface tension of helium for temperatures between 1.5 and 0.5 K. Our measurements extrapolate to a value of 0.375 erg cm -2 at T = 0 K. Our results agree with the capillary wave measurements of Roche et al., and Atkins and Narahra. We study how the shape of the trap used to levitate the drops influences the resonant frequency of the l = 2 mode. Measurements of the frequency spectrum were performed using different trap potentials. We have calculated the resonant frequencies for the trap shapes produced by different magnet coil currents. We compare our measurements of the resonant frequencies at various magnet currents with these theoretical predictions and find good agreement. We describe experiments to study the coalescence of He II drops levitated in a magnetic trap. Using a high speed CCD camera, we have produced movies of drops coalescing at temperatures as low as 0.7 K. We examine some interesting features of the motion during and following coalescence.

  16. Effect of ion flux on helium retention in helium-irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Rivera, A.; Valles, G.; Caturla, M. J.; Martin-Bragado, I.

    2013-05-01

    Helium retention in irradiated tungsten leads to swelling, pore formation, sample exfoliation and embrittlement with deleterious consequences in many applications. In particular, the use of tungsten in future nuclear fusion plants is proposed due to its good refractory properties. However, serious concerns about tungsten survivability stems from the fact that it must withstand severe irradiation conditions. In magnetic fusion as well as in inertial fusion (particularly with direct drive targets), tungsten components will be exposed to low and high energy ion irradiation (helium), respectively. A common feature is that the most detrimental situations will take place in pulsed mode, i.e., high flux irradiation. There is increasing evidence of a correlation between a high helium flux and an enhancement of detrimental effects on tungsten. Nevertheless, the nature of these effects is not well understood due to the subtleties imposed by the exact temperature profile evolution, ion energy, pulse duration, existence of impurities and simultaneous irradiation with other species. Object Kinetic Monte Carlo is the technique of choice to simulate the evolution of radiation-induced damage inside solids in large temporal and space scales. We have used the recently developed code MMonCa (Modular Monte Carlo simulator), presented at COSIRES 2012 for the first time, to study He retention (and in general defect evolution) in tungsten samples irradiated with high intensity helium pulses. The code simulates the interactions among a large variety of defects and during the irradiation stage and the subsequent annealing steps. The results show that the pulsed mode leads to significantly higher He retention at temperatures higher than 700 K. In this paper we discuss the process of He retention in terms of trap evolution. In addition, we discuss the implications of these findings for inertial fusion.

  17. Effect of Helium Elasticity on Torsional Oscillator Measurements

    NASA Astrophysics Data System (ADS)

    Maris, Humphrey J.; Balibar, Sebastien

    2011-01-01

    In 2004 Kim and Chan performed a torsional oscillator measurement of the rotational inertia of solid helium-4. They found frequency changes which were interpreted in terms of a non-classical rotational inertia, that is a partial superfluidity or "supersolidity" of solid helium-4. Since then there have been many further studies using various versions of this technique. One important question that arises in these experiments is the possible effect on the oscillator frequency of changes in the elasticity of the solid helium; this can produce a change in frequency that adds to any effect due to superfluidity. In this paper we give a general discussion of the effect of changes in elasticity on the oscillator frequency and consider how the magnitude of the effect is influenced by the oscillator design. Our results should help make it possible to discriminate between frequency changes due to changes in elasticity and changes due to supersolidity.

  18. Irradiation damage effects on helium migration in sintered uranium dioxide

    NASA Astrophysics Data System (ADS)

    Martin, G.; Sabathier, C.; Carlot, G.; Desgardin, P.; Raepsaet, C.; Sauvage, T.; Khodja, H.; Garcia, P.

    2012-02-01

    In this study, the effects of radiation on helium migration are investigated through the analysis of polycrystalline uranium dioxide samples irradiated at fluences up to 5 × 10 15 at. cm -2 with 8 MeV iodine ions. Following irradiation, samples are implanted with 500 keV 3He + ions at fluences in the range of 10 16 at. cm -2. Three nuclear reaction analysis (NRA) techniques are subsequently implemented using the 3He( 2H, 1H) 4He reaction. The influence of temperature using NRA was first studied based upon 3He depth profile changes and the on-line monitoring of helium release. The effect of the sample microstructure was also investigated at the grain scale by performing analyses of the helium spatial distribution with a nuclear microprobe. Neither substantial helium release nor depth profile changes are observed at temperatures below 900 °C in irradiated samples. Following annealing at temperatures above 1000 °C, a substantial proportion of the implanted helium is released from the samples. From this temperature upwards, the two dimensional He cartographies reveal that the gas has been preferentially released in the vicinity of grain boundaries. These results can be interpreted in the light of previous studies in terms of gas precipitation and re-solution. Helium precipitation is enhanced in irradiated samples up to 900 °C because of the presence of irradiation induced defects. At temperatures in excess of 1000 °C, the precipitated helium is partly returned to the matrix hence it is preferentially released in regions adjacent to grain boundaries, which appear to act as defect sinks.

  19. Heat input and dilution effects in microalloyed steel weld metals

    SciTech Connect

    Hunt, A.C. ); Kluken, A.O. . Div. of Metallurgy); Edwards, G.R. . Center for Welding and Joining Research)

    1994-01-01

    The sensitivity of weld metal microstructure and mechanical properties to variations in both heat input (i.e., cooling rate) and weld dilution in submerged arc (SA) welding of microalloyed steel was examined. Weldments were prepared with weld metal dilutions of approximately 40% and 70% at heat inputs of 2.0, 3.3, 4.6, and 5.3 kJ/mm, using two commercial welding wires and a basic commercial flux. The high dilution welds, which were ordinary bead-on-plate welds, resulted in microstructures that ranged from ferrite with aligned second phase at low heat inputs to acicular ferrite at high heat inputs. Special over-welding techniques were used to make the low dilution welds, allowing use of the same welding parameters as those for the high dilution welds. The technique involved remelting of weld metal to simulate the effect of multipass welding. The microstructure of these welds was predominantly acicular ferrite, independent of heat input. As a consequence, the low dilution welds had superior toughness compared to the high dilution welds.

  20. Dilution and stoichiometry effects on gas reburning: An experimental study

    SciTech Connect

    Bilbao, R.; Alzueta, M.U.; Millera, A.; Prada, L.

    1997-06-01

    Gas reburning is a NO{sub x} reduction technique that can be applied to different combustion systems. The influence of stoichiometry and dilution effects on the efficiency of the gas reburning process has been studied from an experimental point of view at a temperature of 1,100 C. Methane, ethane, and natural gas have been used as reburning fuels. The results obtained show that both stoichiometry and dilution level are very important parameters for the performance of the process.

  1. A quantitative experiment on the fountain effect in superfluid helium

    NASA Astrophysics Data System (ADS)

    Amigó, M. L.; Herrera, T.; Neñer, L.; Peralta Gavensky, L.; Turco, F.; Luzuriaga, J.

    2017-09-01

    Superfluid helium, a state of matter existing at low temperatures, shows many remarkable properties. One example is the so called fountain effect, where a heater can produce a jet of helium. This converts heat into mechanical motion; a machine with no moving parts, but working only below 2 K. Allen and Jones first demonstrated the effect in 1938, but their work was basically qualitative. We now present data of a quantitative version of the experiment. We have measured the heat supplied, the temperature and the height of the jet produced. We also develop equations, based on the two-fluid model of superfluid helium, that give a satisfactory fit to the data. The experiment has been performed by advanced undergraduate students in our home institution, and illustrates in a vivid way some of the striking properties of the superfluid state.

  2. Effect of helium on tensile properties of vanadium alloys

    SciTech Connect

    Chung, H.M.; Billone, M.C.; Smith, D.L.

    1997-08-01

    Tensile properties of V-4Cr-4Ti (Heat BL-47), 3Ti-1Si (BL-45), and V-5Ti (BL-46) alloys after irradiation in a conventional irradiation experiment and in the Dynamic Helium Charging Experiment (DHCE) were reported previously. This paper presents revised tensile properties of these alloys, with a focus on the effects of dynamically generated helium of ductility and work-hardening capability at <500{degrees}C. After conventional irradiation (negligible helium generation) at {approx}427{degrees}C, a 30-kg heat of V-4Cr-4Ti (BL-47) exhibited very low uniform elongation, manifesting a strong susceptibility to loss of work-hardening capability. In contrast, a 15-kg heat of V-3Ti-1Si (BL -45) exhibited relatively high uniform elongation ({approx}4%) during conventional irradiation at {approx}427{degrees}C, showing that the heat is resistant to loss of work-hardening capability.

  3. Growth process of hydrogenated amorphous carbon films synthesized by atmospheric pressure plasma enhanced CVD using nitrogen and helium as a dilution gas

    NASA Astrophysics Data System (ADS)

    Mori, Takanori; Sakurai, Takachika; Sato, Taiki; Shirakura, Akira; Suzuki, Tetsuya

    2016-04-01

    Hydrogenated amorphous carbon films with various thicknesses were synthesized by dielectric barrier discharge-based plasma deposition under atmospheric pressure diluted with nitrogen (N2) and helium (He) at various pulse frequencies. The C2H2/N2 film showed cauliflower-like-particles that grew bigger with the increase in film’s thickness. At 5 kHz, the film with a thickness of 2.7 µm and smooth surface was synthesized. On the other hand, the films synthesized from C2H2/He had a smooth surface and was densely packed with domed particles. The domed particles extended with the increase in the film thickness, enabling it to grow successfully to 37 µm with a smooth surface.

  4. High-dilution effects revisited. 2. Pharmacodynamic mechanisms.

    PubMed

    Bellavite, Paolo; Marzotto, Marta; Olioso, Debora; Moratti, Elisabetta; Conforti, Anita

    2014-01-01

    The pharmacodynamics aspects of homeopathic remedies are appraised by laboratory studies on the biological effects at various levels (cellular, molecular and systemic). The major question is how these medicines may work in the body. The possible answers concern the identification of biological targets, the means of drug-receptor interactions, the mechanisms of signal transmission and amplification, and the models of inversion of effects according to the traditional 'simile' rule. These problems are handled by two experimental and theoretical lines, according to the doses or dilutions considered (low-medium versus high dilutions). Homeopathic formulations in low-medium dilutions, containing molecules in the range of ultra-low doses, exploit the extreme sensitivity of biological systems to exogenous and endogenous signals. Their effects are interpreted in the framework of hormesis theories and paradoxical pharmacology. The hypotheses regarding the action mechanisms of highly diluted/dynamized solutions (beyond Avogadro-Loschmidt limit) variously invoke sensitivity to bioelectromagnetic information, participation of water chains in signalling, and regulation of bifurcation points of systemic networks. High-dilution pharmacology is emerging as a pioneering subject in the domain of nanomedicine and is providing greater plausibility to the puzzling claims of homeopathy.

  5. Coffee-ring effect beyond the dilute limit

    NASA Astrophysics Data System (ADS)

    Kim, Jin Young; Ryu, Seul-A.; Kim, Hyungdae; Kim, Joon Heon; Park, Jung Su; Park, Yong Seok; Oh, Jeong Su; Weon, Byung Mook

    2015-11-01

    The coffee-ring effect, which is a natural generation of outward capillary flows inside drying coffee drops, is valid at the dilute limit of initial solute concentrations. If the solute is not dilute, the ring deposit is forced to have a non-zero width; higher initial concentration leads to a wider ring. Here we study the coffee-ring effect in the dense limit by demonstrating differences with various initial coffee concentrations from 0.1% to 60%. The coffee drops with high initial concentrations of real coffee particles show interesting evaporation dynamics: dense coffee drops tend to evaporate slowly. This result is different from the classic coffee-ring effect in the dilute limit. We suppose that the slow evaporation of dense coffee drops is associated with the ring growth dynamics. The coffee-ring effect becomes more significant in modern technologies such as self-assembly of nanoparticles, ink-jet printing, painting and ceramics. The complexity in evaporation dynamics of colloidal fluids would be able to be understood by expanding the coffee-ring effects in the dilute as well as the dense limits.

  6. Effect of electron correlation in proton-helium collisions

    NASA Astrophysics Data System (ADS)

    Ghavaminia, H.

    2015-03-01

    The four-body Born approximation is applied in post form to calculate the differential and total cross-sections for single electron capture from helium atoms by impact of the fast protons in the intermediate energy range. Theoretical results are obtained for hydrogen formation in ground state using full correlated accurate wave function for helium. The present results are compared with the results obtained from one parameter uncorrelated wave function to provide a clear visualization for the effect of electron correlation on the cross-sections. Comparison between the results for different wave functions shows the sensitivity of the processes on the electron-electron correlation especially at small scattering angles. The results are also compared with experimental data. The present calculated results show a general agreement with experimental finding for differential cross-sections and pursue the excellent trend with the measurement and other theoretical findings for total cross-sections.

  7. The Dilution Effect and Information Integration in Perceptual Decision Making.

    PubMed

    Hotaling, Jared M; Cohen, Andrew L; Shiffrin, Richard M; Busemeyer, Jerome R

    2015-01-01

    In cognitive science there is a seeming paradox: On the one hand, studies of human judgment and decision making have repeatedly shown that people systematically violate optimal behavior when integrating information from multiple sources. On the other hand, optimal models, often Bayesian, have been successful at accounting for information integration in fields such as categorization, memory, and perception. This apparent conflict could be due, in part, to different materials and designs that lead to differences in the nature of processing. Stimuli that require controlled integration of information, such as the quantitative or linguistic information (commonly found in judgment studies), may lead to suboptimal performance. In contrast, perceptual stimuli may lend themselves to automatic processing, resulting in integration that is closer to optimal. We tested this hypothesis with an experiment in which participants categorized faces based on resemblance to a family patriarch. The amount of evidence contained in the top and bottom halves of each test face was independently manipulated. These data allow us to investigate a canonical example of sub-optimal information integration from the judgment and decision making literature, the dilution effect. Splitting the top and bottom halves of a face, a manipulation meant to encourage controlled integration of information, produced farther from optimal behavior and larger dilution effects. The Multi-component Information Accumulation model, a hybrid optimal/averaging model of information integration, successfully accounts for key accuracy, response time, and dilution effects.

  8. The Dilution Effect and Information Integration in Perceptual Decision Making

    PubMed Central

    Hotaling, Jared M.; Cohen, Andrew L.; Shiffrin, Richard M.; Busemeyer, Jerome R.

    2015-01-01

    In cognitive science there is a seeming paradox: On the one hand, studies of human judgment and decision making have repeatedly shown that people systematically violate optimal behavior when integrating information from multiple sources. On the other hand, optimal models, often Bayesian, have been successful at accounting for information integration in fields such as categorization, memory, and perception. This apparent conflict could be due, in part, to different materials and designs that lead to differences in the nature of processing. Stimuli that require controlled integration of information, such as the quantitative or linguistic information (commonly found in judgment studies), may lead to suboptimal performance. In contrast, perceptual stimuli may lend themselves to automatic processing, resulting in integration that is closer to optimal. We tested this hypothesis with an experiment in which participants categorized faces based on resemblance to a family patriarch. The amount of evidence contained in the top and bottom halves of each test face was independently manipulated. These data allow us to investigate a canonical example of sub-optimal information integration from the judgment and decision making literature, the dilution effect. Splitting the top and bottom halves of a face, a manipulation meant to encourage controlled integration of information, produced farther from optimal behavior and larger dilution effects. The Multi-component Information Accumulation model, a hybrid optimal/averaging model of information integration, successfully accounts for key accuracy, response time, and dilution effects. PMID:26406323

  9. First-principles study of helium, carbon, and nitrogen in austenite, dilute austenitic iron alloys, and nickel

    NASA Astrophysics Data System (ADS)

    Hepburn, D. J.; Ferguson, D.; Gardner, S.; Ackland, G. J.

    2013-07-01

    An extensive set of first-principles density functional theory calculations have been performed to study the behavior of He, C, and N solutes in austenite, dilute Fe-Cr-Ni austenitic alloys, and Ni in order to investigate their influence on the microstructural evolution of austenitic steel alloys under irradiation. The results show that austenite behaves much like other face-centered cubic metals and like Ni in particular. Strong similarities were also observed between austenite and ferrite. We find that interstitial He is most stable in the tetrahedral site and migrates with a low barrier energy of between 0.1 and 0.2 eV. It binds strongly into clusters as well as overcoordinated lattice defects and forms highly stable He-vacancy (VmHen) clusters. Interstitial He clusters of sufficient size were shown to be unstable to self-interstitial emission and VHen cluster formation. The binding of additional He and V to existing VmHen clusters increases with cluster size, leading to unbounded growth and He bubble formation. Clusters with n/m around 1.3 were found to be most stable with a dissociation energy of 2.8 eV for He and V release. Substitutional He migrates via the dissociative mechanism in a thermal vacancy population but can migrate via the vacancy mechanism in irradiated environments as a stable V2He complex. Both C and N are most stable octahedrally and exhibit migration energies in the range from 1.3 to 1.6 eV. Interactions between pairs of these solutes are either repulsive or negligible. A vacancy can stably bind up to two C or N atoms with binding energies per solute atom up to 0.4 eV for C and up to 0.6 eV for N. Calculations in Ni, however, show that this may not result in vacancy trapping as VC and VN complexes can migrate cooperatively with barrier energies comparable to the isolated vacancy. This should also lead to enhanced C and N mobility in irradiated materials and may result in solute segregation to defect sinks. Binding to larger vacancy clusters

  10. Hormetic effects of extremely diluted solutions on gene expression.

    PubMed

    Dei, Andrea; Bernardini, Simonetta

    2015-04-01

    This paper summarizes the results of investigations showing how molecular biological tools, such as DNA-microarrays, can provide useful suggestions about the behaviour of human organisms treated with microamounts of drugs or homeopathic medicines. The results reviewed here suggest firstly that the action of drugs is not quenched by ultra-high dilution and proceeds through modulation of gene expressions. The efficacy of drug solutions seems to be maintained in ultra-highly diluted preparations, a fact which constitutes a challenge to the dogma of quantization of matter. The second and more important result is that the different gene expression profiles of cell systems treated with the same drugs at different dilutions suggest the existence of hormetic mechanisms. The gene expression profiles of cells treated with copper(II) sulfate, Gelsemium sempervirens and Apis mellifica, are characterized by the same common denominator of the concentration-dependent inversion of gene expression, which can justify at a molecular level the concept of simile adopted in homeopathy. The main conclusion we draw from these results is that these procedures provide new kinds of information and a tool for disclosing the mechanisms involved in hormetic effects. The application of these effects to modern medicine may allow researchers to conceive unprecedented therapeutic applications or to optimize the currently used ones in the framework of a low-dose pharmacology based on a reliable experimental platform. Copyright © 2015 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  11. Effective Mass of an Electron Bubble in Superfluid Helium-4

    NASA Astrophysics Data System (ADS)

    Huang, Yunhu; Maris, Humphrey J.

    2017-02-01

    We present the results of computer simulations of the motion of an electron bubble through superfluid helium-4 when acted upon by an electric field. The simulations are based on an extended version of the Gross-Pitaevskii equation. The temperature is assumed to be sufficiently low for the drag exerted on the bubble by thermal excitations to be negligible, and the calculations are made for velocities below the critical velocitie for nucleation of vortices and roton production. We calculate the effective mass m* of the bubble and obtain results in excellent agreement with the measurements of Poitrenaud and Williams, and Ellis, McClintock, and Bowley.

  12. Effect of boundary conditions on the kinetics of helium release from structural materials

    NASA Astrophysics Data System (ADS)

    Zaluzhnyi, A. G.

    2015-11-01

    Gaseous products of nuclear reactions (specifically, helium) play a significant part in altering the material properties upon irradiation. It is known that atoms of inert gases promote the generation and growth of pores in irradiated materials and affect phenomena such as swelling, high-temperature irradiation embrittlement, etc. Therefore, a study of the behavior of helium (its production, accumulation, retention, and release) within structural materials is fairly topical. In order to validate the methods of express imitation of accumulation and retention of helium within structural materials under reactor irradiation, we perform a comparative analysis of the spectra of the rate of gas release from samples of austenitic steel 0Kh16N15M3B that were saturated with helium in different ways, i.e., through irradiation in a cyclotron, a magnetic massseparation setup, the IRT-2000 reactor, the BOR-60 reactor, and using the so-called tritium trick technique. The effect of the presence of dislocations and grain boundaries on the release of helium from materials is evaluated. The results of the research conducted show that the kinetics of helium release from samples saturated with helium through the bombardment with alpha particles of different energies, which ensures the simultaneous introduction of helium and radiation defects (in wide ranges of helium concentration and radiation damage) into the material lattice, is similar to the kinetics of helium release from samples irradiated in reactors.

  13. Spectrophotometry of extreme helium stars - Ultraviolet fluxes and effective temperatures

    NASA Technical Reports Server (NTRS)

    Heber, U.; Drilling, J. S.; Schoenberner, D.; Lynas-Gray, A. E.

    1984-01-01

    Ultraviolet flux distributions are presented for the extremely helium rich stars BD +10 deg 2179, HD 124448, LSS 3378, BD -9 deg 4395, LSE 78, HD 160641, LSIV -1 deg 2, BD 1 deg 3438, HD 168476, MV Sgr, LS IV-14 deg 109 (CD -35 deg 11760), LSII +33 deg 5 and BD +1 deg 4381 (LSIV +2 deg 13) obtained with the International Ultraviolet Explorer (IUE). Broadband photometry and a newly computed grid of line blanketed model atmospheres were used to determine accurate angular diameters and total stellar fluxes. The resultant effective temperatures are in most cases in satisfactory agreement with those based on broadband photometry and/or high resolution spectroscopy in the visible. For two objects, LSII +33 deg 5 and LSE 78, disagreement was found between the IUE observations and broadband photometry: the colors predict temperatures around 20,000 K, whereas the UV spectra indicate much lower photospheric temperatures of 14,000 to 15,000 K. The new temperature scale for extreme helium stars extends to lower effective temperatures than that of Heber and Schoenberner (1981) and covers the range from 8,500 K to 32,000 K. Previously announced in STAR as N83-24433

  14. Double-photoionization of helium including quadrupole radiation effects

    SciTech Connect

    Colgan, James; Ludlow, J A; Lee, Teck - Ghee; Pindzola, M S; Robicheaux, F

    2009-01-01

    Non-perturbative time-dependent close-coupling calculations are carried out for the double photoionization of helium including both dipole and quadrupole radiation effects. At a photon energy of 800 eV, accessible at CUlTent synchrotron light sources, the quadrupole interaction contributes around 6% to the total integral double photoionization cross section. The pure quadrupole single energy differential cross section shows a local maxima at equal energy sharing, as opposed to the minimum found in the pure dipole single energy differential cross section. The sum of the pure dipole and pure quadrupole single energy differentials is insensitive to non-dipole effects at 800 eV. However, the triple differential cross section at equal energy sharing of the two ejected electrons shows strong non-dipole effects due to the quadrupole interaction that may be experimentally observable.

  15. Effects of helium and hydrogen on radiation-induced microstructural changes in austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Jin, Hyung-Ha; Ko, Eunsol; Lim, Sangyeop; Kwon, Junhyun

    2015-09-01

    Microstructural changes in austenitic stainless steel by helium, hydrogen, and iron ion irradiation were investigated with transmission electron microscopy. Typical radiation-induced changes, such as the formation of Frank loops in the matrix and radiation-induced segregation (RIS) or depletion at grain boundaries, were observed after ion irradiation. The helium ion irradiation led to the formation of cavities both at grain boundaries and in the matrix, as well as the development of smaller Frank loops. The hydrogen ion irradiation generated stronger RIS behavior at the grain boundaries compared to irradiation with helium and iron ions. The effects of helium and hydrogen on radiation-induced microstructural changes were discussed.

  16. Correlation effects in dilute particle-polymer mixtures

    SciTech Connect

    Chatterjee, A.P.; Schweizer, K.S.

    1998-12-01

    The influence of chain connectivity and polymer excluded volume correlations on macromolecule-induced depletion interactions between spherical particles in the athermal limit is analyzed based on integral equation methods. Results for the sphere{endash}sphere second virial coefficient (B{sub 2}{sup cc}) and polymer-induced potential of mean force derived within the Percus{endash}Yevick (PY) and hypernetted chain (HNC) closure approximations for the polymer reference interaction site model (PRISM) are compared with those from prior theories for the depletion interaction which employ simplified models for macromolecules and/or ignore intermolecular packing effects. Distinctive differences are often found depending on system parameters, which are interpreted in terms of many-body correlation effects or nonathermal solvent quality. Comparisons with scaling and field-theoretic approaches in the dilute polymer limit, and limitations of the PY closure, are briefly addressed. {copyright} {ital 1998 American Institute of Physics.}

  17. Kappa effect pulsational instability for hot extreme helium stars

    SciTech Connect

    Cox, A.N.

    1990-01-01

    A long standing problem for the hydrogen deficient stars has been the mechanism for the pulsation instability for the hottest members of this class. The usual {kappa} mechanism works well for stars that are in the hydrogen and helium ionization instability strip, and this strip extends to perhaps 20,000K at high luminosity. However, several stars are definitely hotter. Investigations for another ionization instability strip, such as for carbon, have always shown that there is not enough carbon to produce a rapid enough increase of opacity with temperature to give the well-known {kappa} effect. This is so even though these hydrogen deficient stars do show enhanced carbon in their spectra. A strong stellar wind can produce the observed hydrogen deficiency. Another popular mechanism is mass loss in a binary system through the Roche lobe. It now is possible that the missing pulsational instability mechanism is the rapid increase of iron lines absorption as the temperature increases above about 150,000K in the low density envelopes of these luminous stars. Recent calculations shows that the n = 3 to n = 3 transitions in iron that were assumed unimportant in the earlier Los Alamos calculations can double or triple the opacity suddenly as the iron lines appear in a very sensitive part of the spectrum of the diffusing photons. It has been proposed that these iron lines also cause the many varieties of normal B star pulsations, and the hydrogen deficient stars are merely another example of this new {kappa} effect for pulsating stars. The extreme helium star V2076 Oph at 31,900K, and 38,900 L{sub {circle dot}} for a mass of 1.4 M{sub {circle dot}} pulsates in the radial fundamental model at about 1 day period with a very large linear growth rate when the iron lines more than double the opacity, but is stable otherwise.

  18. Effect of dynamically charged helium on tensile properties of V-4Cr-4Ti

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Nowicki, L.; Smith, D.L.

    1995-04-01

    The objective of this work is to determine the effect of displacement damage and dynamically charged helium on tensile properties of V-4Cr-4Ti alloy irradiated to 18-31 dpa at 425-600{degree}C in the Dynamic Helium Charging Experiment (DHCE).

  19. LOX Tank Helium Removal for Propellant Scavenging

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2009-01-01

    System studies have shown a significant advantage to reusing the hydrogen and oxygen left in these tanks after landing on the Moon in fuel cells to generate power and water for surface systems. However in the current lander concepts, the helium used to pressurize the oxygen tank can substantially degrade fuel cell power and water output by covering the reacting surface with inert gas. This presentation documents an experimental investigation of methods to remove the helium pressurant while minimizing the amount of the oxygen lost. This investigation demonstrated that significant quantities of Helium (greater than 90% mole fraction) remain in the tank after draining. Although a single vent cycle reduced the helium quantity, large amounts of helium remained. Cyclic venting appeared to be more effective. Three vent cycles were sufficient to reduce the helium to small (less than 0.2%) quantities. Two vent cycles may be sufficient since once the tank has been brought up to pressure after the second vent cycle the helium concentration has been reduced to the less than 0.2% level. The re-pressurization process seemed to contribute to diluting helium. This is as expected since in order to raise the pressure liquid oxygen must be evaporated. Estimated liquid oxygen loss is on the order of 82 pounds (assuming the third vent cycle is not required).

  20. Helium cryogenics

    SciTech Connect

    Van Sciver, S.W.

    1986-01-01

    The goal of this work is to bridge the gap between physics and engineering aspects of helium fluids to encourage their use and enhance their usefulness in low-temperature systems. Topics covered include thermodynamic laws, electrical and thermal conductivities, spin systems, virial expansion, liquid He I, transport properties, density of helium as a quantum fluid, vortices and turbulence in He II, Kapitza conductance, acoustic mismatch theory, nucleate boiling heta transfer, surface effects, general considerations of internal flow, ideal liquefaction, stirling cycle, and the helium-3 isotope.

  1. The stabilizing effect of gelatin on dilutions of various tuberculins

    PubMed Central

    Toman, K.; Hejdová, E.; Polánsky, F.; Štěrbová, E.; Guld, J.

    1968-01-01

    Adsorption of highly diluted tuberculin to the inner surface of containers is particularly pronounced for acid-precipitated PPD, and certain such preparations are routinely issued with the non-ionic detergent Tween 80 as a stabilizing agent. It has been shown, however, that Tween 80, besides its anti-adsorptive effect, also has a depressive in vivo effect, especially on tuberculin reactions that would have been weak even for a test without Tween. The authors have shown in a previous report that gelatin (0.1%) also has an anti-adsorptive effect, without apparently modifying the reaction in vivo. In the present report, the effect of gelatin on tuberculins other than acid-precipitated PPD is examined, and the loss due to surface activity in the container is found to be considerably less, though still significant, for instance, for the International Standard of PPD of Mammalian Tuberculin. The loss is particularly pronounced, and the stabilizing effect of gelatin is particularly striking, for ampoules only partly filled (i.e., with an inner surface that is large in relation to the volume of the content). It is suggested that gelatin, or some similar substance with little or no in vivo action, might be used more readily, and for more kinds of tuberculin, than Tween 80, provided that further critical studies do not reveal any so far unknown factor. PMID:5306127

  2. A reassessment of the effects of helium on Charpy impact properties of ferritic/martensitic steels

    SciTech Connect

    Gelles, D.S.; Hamilton, M.L.; Hankin, G.L.

    1998-03-01

    To test the effect of helium on Charpy impact properties of ferritic/martensitic steels, two approaches are reviewed: quantification of results of tests performed on specimens irradiated in reactors with very different neutron spectra, and isotopic tailoring experiments. Data analysis can show that if the differences in reactor response are indeed due to helium effects, then irradiation in a fusion machine at 400 C to 100 dpa and 1000 appm He will result in a ductile to brittle transition temperature shift of over 500 C. However, the response as a function of dose and helium level is unlikely to be simply due to helium based on physical reasoning. Shear punch tests and microstructural examinations also support this conclusion based on irradiated samples of a series of alloys made by adding various isotopes of nickel in order to vary the production of helium during irradiation in HFIR. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys. However, helium itself, up to 75 appm at over 7 dpa appears to have little effect on the mechanical properties of the alloys. This behavior is instead understood to result from complex precipitation response. The database for effects of helium on embrittlement based on nickel additions is therefore probably misleading and experiments should be redesigned to avoid nickel precipitation.

  3. A review of some effects of helium on charpy impact properties of ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Gelles, D. S.; Hankin, G. L.; Hamilton, M. L.

    1998-10-01

    To evaluate the effect of helium on Charpy impact properties of ferritic/martensitic steels, two approaches are reviewed: quantification of results of earlier tests performed by other researchers on specimens irradiated in reactors with very different neutron spectra, and evaluation of isotopic tailoring experiments. Data analysis can show that if the differences in reactor response are indeed due to helium effects, then irradiation in a fusion machine at 400°C to 100 dpa and 1000 appm He will result in a ductile-to-brittle transition temperature (DBTT) shift of over 500°C. However, it can be shown that the response as a function of dose and helium level is unlikely to be simply due to helium based on physical reasoning. Shear punch tests and microstructural examinations support this conclusion based on irradiated samples of a series of alloys made by adding various isotopes of nickel in order to vary the production of helium during irradiation in High Flux Isotope Reactor (HFIR). The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys. However, helium itself, up to 75 appm at over 7 dpa appears to have little effect on the mechanical properties of the alloys. This behavior is instead understood to result from complex precipitation response. The database for effects of helium on embrittlement based on nickel additions is therefore probably misleading and experiments should be redesigned to avoid nickel precipitation.

  4. Stability on time-dependent domains: convective and dilution effects

    NASA Astrophysics Data System (ADS)

    Krechetnikov, R.; Knobloch, E.

    2017-03-01

    We explore near-critical behavior of spatially extended systems on time-dependent spatial domains with convective and dilution effects due to domain flow. As a paradigm, we use the Swift-Hohenberg equation, which is the simplest nonlinear model with a non-zero critical wavenumber, to study dynamic pattern formation on time-dependent domains. A universal amplitude equation governing weakly nonlinear evolution of patterns on time-dependent domains is derived and proves to be a generalization of the standard Ginzburg-Landau equation. Its key solutions identified here demonstrate a substantial variety-spatially periodic states with a time-dependent wavenumber, steady spatially non-periodic states, and pulse-train solutions-in contrast to extended systems on time-fixed domains. The effects of domain flow, such as bifurcation delay due to domain growth and destabilization due to oscillatory domain flow, on the Eckhaus instability responsible for phase slips in spatially periodic states are analyzed with the help of both local and global stability analyses. A nonlinear phase equation describing the approach to a phase-slip event is derived. Detailed analysis of a phase slip using multiple time scale methods demonstrates different mechanisms governing the wavelength changing process at different stages.

  5. EFFECT OF TRITIUM AND DECAY HELIUM ON WELDMENT FRACTURE TOUGHNESS

    SciTech Connect

    Morgan, M; Scott West, S; Michael Tosten, M

    2006-09-26

    The fracture toughness data collected in this study are needed to assess the long-term effects of tritium and its decay product on tritium reservoirs. The results show that tritium and decay helium have negative effects on the fracture toughness properties of stainless steel and its weldments. The data and report from this study has been included in a material property database for use in tritium reservoir modeling efforts like the Technology Investment Program ''Lifecycle Engineering for Tritium Reservoirs''. A number of conclusions can be drawn from the data: (1) For unexposed Type 304L stainless steel, the fracture toughness of weldments was two to three times higher than the base metal toughness. (2) Tritium exposure lowered the fracture toughness properties of both base metals and weldments. This was characterized by lower J{sub Q} values and lower J-da curves. (3) Tritium-exposed-and-aged base metals and weldments had lower fracture toughness values than unexposed ones but still retained good toughness properties.

  6. Effect of helium-neon laser on musculoskeletal trigger points

    SciTech Connect

    Snyder-Mackler, L.; Bork, C.; Bourbon, B.; Trumbore, D.

    1986-07-01

    Cold lasers have been proposed recently as a therapeutic tool for treating a wide variety of pathological conditions, including wounds, arthritis, orthopedic problems, and pain. These proposed therapeutic effects largely have been unsubstantiated by research. A randomized, double blind study was undertaken to ascertain the effect of a helium-neon (He-Ne) laser on the resistance of areas of skin overlying musculoskeletal trigger points. These areas usually demonstrate decreased skin resistance when compared with the surrounding tissue. Thirty patients with musculoskeletal trigger points were assigned randomly to either an experimental or a placebo group. In addition to standard physical therapy, each patient received three 15-second applications of a He-Ne laser or placebo stimulation from an identical unit that did not emit a laser. The results of a two-way analysis of covariance with one repeated measure showed a statistically significant increase (p less than .007) in skin resistance. This increase in an abnormal skin resistance pattern may accompany the resolution of pathological conditions.

  7. Helium effects on the mechanical properties of neutron-irradiated Cr-Mo ferritic steels

    SciTech Connect

    Klueh, R.L.

    1990-01-01

    In the first wall of a fusion rector, large amounts of transmutation helium will be produced simultaneously with the displacement damage caused by high-energy neutrons from the fusion reaction. One method used to simulate irradiation effects for ferritic steels is to add nickel to the steels and irradiate them in a mixed-spectrum reactor. Fast neutrons in the spectrum produce displacement damage, while transmutation helium is produced by a two-step reaction of {sup 58}Ni with thermal neutrons. This technique has been used to investigate the effect of helium on tensile properties and toughness. Results from these studies are summarized.

  8. Double Photoionization of Helium Atom using effective Charges

    NASA Astrophysics Data System (ADS)

    Saha, Hari P.

    2012-06-01

    We will report the results of our investigation on double photoionization of helium atom using the recently extended MCHF method [1] for double photoionization of atoms. Calculation will be performed using wave functions for the initial and the final states with and without the electron correlation. The initial state wave function will be calculated using both the HF and MCHF methods The final state wave functions will be obtained using the asymptotic effective charge [2,3] to represent the electron correlation between the two final state continuum electrons. Using these wave functions, the triple differential cross sections will be calculated for 30 eV excess photon energy. The single and total integral cross sections will be obtained for photon energies from threshold to 300 eV. The results will be compared with the available experimental and the theoretical data. [4pt] [1] Hari P. Saha, J.Phys. B (submitted) [0pt] [2] M.R.H. Rudge, Rev. Mod. Phys. 40, 564 (1968) [0pt] [3] C.Pan and A.F Starace, Phys. Rev. Lett. 67, 185 (1991); Phys. Rev. A45, 4588 (1992)

  9. Effect of helium irradiation on deuterium permeation behavior in tungsten

    NASA Astrophysics Data System (ADS)

    Uemura, Yuki; Sakurada, Shodai; Fujita, Hiroe; Azuma, Keisuke; Zhou, Quilai; Hatano, Yuji; Yoshida, Naoaki; Watanabe, Hideo; Oyaizu, Makoto; Isobe, Kanetsugu; Shimada, Masashi; Buchenauer, Dean; Kolasinski, Robert; Chikada, Takumi; Oya, Yasuhisa

    2017-07-01

    In this study, we measured deuterium (D) gas-driven permeation through tungsten (W) foils that had been pre-damaged by helium ions (He+). The goal of this work was to determine how ion-induced damage affects hydrogen isotope permeation. At 873 K, the D permeability for W irradiated by 3.0 keV He+ was approximately one order of magnitude lower than that for un-damaged W. This difference diminished with increasing temperature. Even after heating to 1173 K, the permeability returned to less than half of the value measured for un-damaged W. We propose that this is due to nucleation of He bubbles near the surface which potentially serve as a barrier to diffusion deeper into the bulk. Exposure at higher temperatures shows that the D permeability and diffusion coefficients return to levels observed for undamaged material. It is possible that these effects are linked to annealing of defects introduced by ion damage, and whether the defects are stabilized by the presence of trapped He.

  10. Effect of dilution of stool soluble component on growth and development of Strongyloides stercoralis.

    PubMed

    Anamnart, Witthaya; Intapan, Pewpan Maleewong; Pattanawongsa, Attarat; Chamavit, Pennapa; Kaewsawat, Supreecha; Maleewong, Wanchai

    2015-06-02

    Dispersion or dilution of stool by water from heavy rainfall may affect Strongyloides stercoralis free-living development producing infective filariform larvae (FL). This study examined effect of water dilution of stool on survival of S. stercoralis free-living development. One g of stool was prepared in water so that its soluble component was diluted sequentially from 1:2 to 1:480. Three dishes were used to compare FL production in three culture conditions: stool suspension, stool sediment deposited in soil, and isolated rhabditiform larvae (RhL) deposited in soil. The fourth dish was for developmental observation of RhL into free-living stages. Numerous FL were generated from undiluted or 1:2 diluted stool and stool sediment placed on soil. However, starting from dilution 1:5, FL production continuously decreased in both stool suspensions and stool sediments placed on soil. RhL isolated from stool dilutions placed on soil gave rise to few FL. Worm mating were seen at 24-30 hours in dilutions 1:20-1:120 only. Highest numbers of FL from indirect free-living cycle were 1/3 of those from control. FL production decreased as stool dilution increased, and reached zero production at 1:160 dilution. Rainfall may disperse or dilute stool so that nutritional supplement for S. stercoralis free-living development is insufficient.

  11. Effect of dilution of stool soluble component on growth and development of Strongyloides stercoralis

    PubMed Central

    Anamnart, Witthaya; Maleewong Intapan, Pewpan; Pattanawongsa, Attarat; Chamavit, Pennapa; Kaewsawat, Supreecha; Maleewong, Wanchai

    2015-01-01

    Dispersion or dilution of stool by water from heavy rainfall may affect Strongyloides stercoralis free-living development producing infective filariform larvae (FL). This study examined effect of water dilution of stool on survival of S. stercoralis free-living development. One g of stool was prepared in water so that its soluble component was diluted sequentially from 1:2 to 1:480. Three dishes were used to compare FL production in three culture conditions: stool suspension, stool sediment deposited in soil, and isolated rhabditiform larvae (RhL) deposited in soil. The fourth dish was for developmental observation of RhL into free-living stages. Numerous FL were generated from undiluted or 1:2 diluted stool and stool sediment placed on soil. However, starting from dilution 1:5, FL production continuously decreased in both stool suspensions and stool sediments placed on soil. RhL isolated from stool dilutions placed on soil gave rise to few FL. Worm mating were seen at 24-30 hours in dilutions 1:20-1:120 only. Highest numbers of FL from indirect free-living cycle were 1/3 of those from control. FL production decreased as stool dilution increased, and reached zero production at 1:160 dilution. Rainfall may disperse or dilute stool so that nutritional supplement for S. stercoralis free-living development is insufficient. PMID:26035061

  12. Soil chemistry in lithologically diverse datasets: the quartz dilution effect

    USGS Publications Warehouse

    Bern, Carleton R.

    2009-01-01

    National- and continental-scale soil geochemical datasets are likely to move our understanding of broad soil geochemistry patterns forward significantly. Patterns of chemistry and mineralogy delineated from these datasets are strongly influenced by the composition of the soil parent material, which itself is largely a function of lithology and particle size sorting. Such controls present a challenge by obscuring subtler patterns arising from subsequent pedogenic processes. Here the effect of quartz concentration is examined in moist-climate soils from a pilot dataset of the North American Soil Geochemical Landscapes Project. Due to variable and high quartz contents (6.2–81.7 wt.%), and its residual and inert nature in soil, quartz is demonstrated to influence broad patterns in soil chemistry. A dilution effect is observed whereby concentrations of various elements are significantly and strongly negatively correlated with quartz. Quartz content drives artificial positive correlations between concentrations of some elements and obscures negative correlations between others. Unadjusted soil data show the highly mobile base cations Ca, Mg, and Na to be often strongly positively correlated with intermediately mobile Al or Fe, and generally uncorrelated with the relatively immobile high-field-strength elements (HFS) Ti and Nb. Both patterns are contrary to broad expectations for soils being weathered and leached. After transforming bulk soil chemistry to a quartz-free basis, the base cations are generally uncorrelated with Al and Fe, and negative correlations generally emerge with the HFS elements. Quartz-free element data may be a useful tool for elucidating patterns of weathering or parent-material chemistry in large soil datasets.

  13. Liquid Helium 3 and Solid Helium at Yale and Beyond

    NASA Astrophysics Data System (ADS)

    Lee, D. M.

    2006-03-01

    Many of the foundations of low temperature physics in the latter half of the twentieth century were built at Yale University under the leadership of Professor Cecil T. Lane who came to Yale in 1932 and Henry A. Fairbank who obtained his Ph.D. at Yale in 1944 under Lane's guidance. This discussion will mainly treat the contributions of Henry Fairbank and his students during the period between 1954 and 1963, when Henry Fairbank left Yale to become chairman of the Physics Dept. at Duke University. Following World War II small amounts of helium three became available to low temperature experimenters. Henry Fairbank’s graduate students were provided with the opportunity to investigate second sound in dilute and later concentrated mixtures of helium three in superfluid helium four. These measurements showed strong effects of the phase separation in helium 3 - helium 4 mixtures previously discovered in the laboratory of William Fairbank (a student of Lane and a brother of Henry Fairbank). As more helium three became available, studies of pure helium three were performed, including measurements of the thermal conductivity, the density and the specific heat. Early evidence for the melting curve minimum was found. The main emphasis in this work was to search for Fermi liquid behavior. Much of the later work in this area was performed by the group of John Wheatley at the University of Illinois. In studies of solid helium four at Yale, a surprising observation was made. Hitherto it had been thought that hcp was the stable phase throughout the low temperature part of the phase diagram. It was found via ultrasound experiments that a small silver of bcc solid existed at the lowest pressures. While this author was a graduate student at Yale, Henry Fairbank pointed out to him the possibility of cooling helium three via adiabatic compression from the liquid into the solid phase. (Pomeranchuk Cooling). A brief discussion is given of the use of this technique in the discovery of

  14. The helium effect at grain boundaries in Fe-Cr alloys: A first-principles study

    NASA Astrophysics Data System (ADS)

    Zemła, M. R.; Wróbel, J. S.; Wejrzanowski, T.; Nguyen-Manh, D.; Kurzydłowski, K. J.

    2017-02-01

    Helium is produced in the structural materials in nuclear power plants by nuclear transmutation following neutron irradiation. Since the solubility of helium in all metals is extremely low, helium tends to be trapped at defects such as vacancies, dislocations and grain boundaries, which cause material embrittlement. Density functional theory (DFT) calculations were performed in order to investigate the helium effect at grain boundaries (GBs) in iron-chromium alloys. Both cohesive energy and magnetic properties at symmetric Σ3(1 1 1) and Σ5(2 1 0) tilt Fe GBs are studied in the presence of Cr and He atoms. It is found that the presence of Cr atoms increases cohesive energy, at different He concentrations, and strongly influences magnetic properties at the GBs. The effect of the segregation energy of helium atom as a function of the different positions of Cr atoms located inside/outside a GB has been considered. Results of the present first-principles study enable one to clarify the role of Cr in understanding the helium effect in Fe-Cr-based alloys.

  15. Effects of diluting medium and holding time on sperm motility analysis by CASA in ram.

    PubMed

    Mostafapor, Somayeh; Farrokhi Ardebili, Farhad

    2014-01-01

    The aim of this study was to evaluate the effects of dilution rate and holding time on various motility parameters using computer-assisted sperm analysis (CASA). The semen samples were collected from three Ghezel rams. Samples were diluted in seminal plasma (SP), phosphate-buffered saline (PBS) containing 1% bovine serum albumin (BSA) and Bioexcell. The motility parameters that computed and recorded by CASA include curvilinear velocity (VCL), straight line velocity (VSL), average path velocity (VAP), straightness (STR), linearity (LIN), amplitude of lateral head displacement (ALH), and beat cross frequency (BCF). In all diluters, there was a decrease in the average of all three parameters of sperms movement velocity as the time passed, but density of this decrease was more intensive in SP. The average of ALH between diluters indicated a significant difference, as it was more in Bioexcell in comparison with the similar amount in SP and PBS. The average of LIN in the diluted sperms in Bioexcell was less than two other diluters in all three times. The motility parameters of the diluted sperms in Bioexcell and PBS indicated an important and considerable difference with the diluted sperms in SP. According to the gained results, the Bioexcell has greater ability in preserving motility of sperm in comparison with the other diluters but as SP is considered as physiological environment for sperm. It seems that the evaluation of the motility parameters in Bioexcell and PBS cannot be an accurate and comparable evaluation with SP.

  16. Relativistic effects in double ionization of helium via Compton scattering

    NASA Astrophysics Data System (ADS)

    Kaliman, Zoran; Pisk, Krunoslav

    2017-08-01

    In this article we present the relativistic calculations, based on the QED theory, for double ionization of helium by the Compton scattering. In particular, we calculate the contribution of the spin-flip amplitude to the total cross section. Due to this amplitude the final triplet spin state of the ejected electrons is possible. In the calculations based on the non-relativistic A2 term of the electron-photon interaction only the singlet spin state for the final electrons is allowed. We further assume the shake-off mechanism for process of double ionization. For the ground state of helium we use both the non-correlated and highly correlated wave function. We also discuss a degree of the scattered photon polarization in correlation with the formation of spin triplet state. Our calculations cover the photon impact energy range from 150 to 1000 keV.

  17. First-principles prediction of interstitial carbon, nitrogen, and oxygen effects on the helium behavior in nickel

    NASA Astrophysics Data System (ADS)

    Zhang, Xun; Ren, Cui-Lan; Han, Han; Wang, Cheng-Bin; Huang, He-Fei; Yin, Ya-Ru; Zhang, Wei; Lumpkin, Gregory; Huai, Ping; Zhu, Zhi-Yuan

    2017-08-01

    The effects of interstitial carbon, nitrogen, and oxygen (C/N/O) on the helium behavior in nickel are studied by using first-principles calculations. The interstitial C/N/O changes the occupying priority of helium to the first nearest neighbor Oct-site, which is related to local strain effect and chemical bonding between helium and its adjacent atoms. Both binding energy calculation and diffusion property analysis confirm that the interstitial C/N/O can trap helium in nickel. Moreover, with lower binding energy and larger trapping radii to helium, the interstitial oxygen has significant effect on helium trapping compared with that of nitrogen and carbon. With more helium aggregating at vacancy, the C/N/O would also trap smaller helium clusters and repel larger ones, indicating that the interstitial C/N/O could disperse helium bubbles and further inhibit their growth in nickel. This work helps to understand the helium embrittlement resistant mechanisms of the initial nucleation sites for second phase nanoparticles in nickel-based alloys.

  18. Some effects of argon and helium upon explosions of carbon monoxide and oxygen

    NASA Technical Reports Server (NTRS)

    Fiock, Ernst F; Roeder, Carl H

    1937-01-01

    Report presents the results of an investigation conducted to study the effects of the inert gases, argon and helium, upon flame speed and expansion ratio in exploding mixtures of carbon monoxide, oxygen and water.For the particular gas mixtures investigated the results show that: (1) With the possible exception of helium in small amounts the addition of inert gas always produces decreased flame speed and expansion ratio; (2) like volumes of argon and helium have very different effects upon flame speed but practically the same effect upon expansion ratio; and (3) the difference in the effect of these two gases upon speed is independent of the ratio of carbon monoxide to oxygen. A discussion of some possible modes by which inert gases may produce the observed effects is included.

  19. Linking manipulative experiments to field data to test the dilution effect.

    PubMed

    Venesky, Matthew D; Liu, Xuan; Sauer, Erin L; Rohr, Jason R

    2014-05-01

    The dilution effect, the hypothesis that biodiversity reduces disease risk, has received support in many systems. However, few dilution effect studies have linked mechanistic experiments to field patterns to establish both causality and ecological relevance. We conducted a series of laboratory experiments and tested the dilution effect hypothesis in an amphibian-Batrachochytrium dendrobatidis (Bd) system and tested for consistency between our laboratory experiments and field patterns of amphibian species richness, host identity and Bd prevalence. In our laboratory experiments, we show that tadpoles can filter feed Bd zoospores and that the degree of suspension feeding was positively associated with their dilution potential. The obligate suspension feeder, Gastrophryne carolinensis, generally diluted the risk of chytridiomycosis for tadpoles of Bufo terrestris and Hyla cinerea, whereas tadpoles of B. terrestris (an obligate benthos feeder) generally amplified infections for the other species. In addition, G. carolinensis reduced Bd abundance on H. cinerea more so in the presence than absence of B. terrestris and B. terrestris amplified Bd abundance on H. cinerea more so in the absence than presence of G. carolinensis. Also, when ignoring species identity, species richness was a significant negative predictor of Bd abundance. In our analysis of field data, the presence of Bufo spp. and Gastrophryne spp. were significant positive and negative predictors of Bd prevalence, respectively, even after controlling for climate, vegetation, anthropogenic factors (human footprint), species richness and sampling effort. These patterns of dilution and amplification supported our laboratory findings, demonstrating that the results are likely ecologically relevant. The results from our laboratory and field data support the dilution effect hypothesis and also suggest that dilution and amplification are predictable based on host traits. Our study is among the first to link

  20. Effect of helium on structure and compression behavior of SiO2 glass

    PubMed Central

    Shen, Guoyin; Mei, Qiang; Prakapenka, Vitali B.; Lazor, Peter; Sinogeikin, Stanislav; Meng, Yue; Park, Changyong

    2011-01-01

    The behavior of volatiles is crucial for understanding the evolution of the Earth’s interior, hydrosphere, and atmosphere. Noble gases as neutral species can serve as probes and be used for examining gas solubility in silicate melts and structural responses to any gas inclusion. Here, we report experimental results that reveal a strong effect of helium on the intermediate range structural order of SiO2 glass and an unusually rigid behavior of the glass. The structure factor data show that the first sharp diffraction peak position of SiO2 glass in helium medium remains essentially the same under pressures up to 18.6 GPa, suggesting that helium may have entered in the voids in SiO2 glass under pressure. The dissolved helium makes the SiO2 glass much less compressible at high pressures. GeO2 glass and SiO2 glass with H2 as pressure medium do not display this effect. These observations suggest that the effect of helium on the structure and compression of SiO2 glass is unique. PMID:21444785

  1. Relativistic and quantum electrodynamics effects in the helium pair potential.

    PubMed

    Przybytek, M; Cencek, W; Komasa, J; Łach, G; Jeziorski, B; Szalewicz, K

    2010-05-07

    The helium pair potential was computed including relativistic and quantum electrodynamics contributions as well as improved accuracy adiabatic ones. Accurate asymptotic expansions were used for large distances R. Error estimates show that the present potential is more accurate than any published to date. The computed dissociation energy and the average R for the (4)He(2) bound state are 1.62+/-0.03 mK and 47.1+/-0.5 A. These values can be compared with the measured ones: 1.1(-0.2)(+0.3) mK and 52+/-4 A [R. E. Grisenti, Phys. Rev. Lett. 85, 2284 (2000)].

  2. Effective helium burning rates and the production of the neutrino nuclei.

    PubMed

    Austin, Sam M; West, Christopher; Heger, Alexander

    2014-03-21

    Effective values for the key helium burning reaction rates, triple-α and (12)C(α, γ)(16)O, are obtained by adjusting their strengths so as to obtain the best match with the solar abundance pattern of isotopes uniquely or predominately made in core-collapse supernovae. These effective rates are then used to determine the production of the neutrino isotopes. The use of effective rates considerably reduces the uncertainties in the production factors arising from uncertainties in the helium burning rates, and improves our ability to use the production of B11 to constrain the neutrino emission from supernovae.

  3. Effective Interactions, Transport Properties, and Elementary Excitations in Helium Three-Helium Four Mixtures.

    NASA Astrophysics Data System (ADS)

    Hsu, Wei-Chan

    A unified theory of effective interaction, elementary excitations, transport properties, and possible superfluidity of ('3)He-('4)He mixtures has been developed. The basic approach is patterned after that of Aldrich and Pines (AP) for pure ('4)He and ('3)He, in which the consequence of the strong interactions in ('3)He and ('4)He is described in terms of self-consistent fields. The strength of these fields are determined by physical arguments, static measurement, and sum rule considerations. A set of pseudopotentials has been developed to describe the ('3)He-('3)He and ('3)He-('4)He interactions. In the long wavelength and zero concentration limit, these potentials are obtained by the thermo-dynamic argument of Bardeen, Baym, and Pines. At finite concentration and finite momentum-transfer, we obtain these potentials with the aids of a scaling law and the AP pseudopotential theory. From these pseudopotentials we calculate the scattering amplitudes, transport coefficients, and normal-superfluid transition temperature as functions of ('3)He concentration. We obtain good agreement between theory and experiment for low temperature transport coefficients, and predict the ('3)He superfluid transition temperature to be < 10('-8)(DEGREES)K. The(' )change in the density fluctuation excitation spectrum of ('4)He atoms in ('3)He-('4)He mixtures is calculated by including three physical effects: (i) the change in the particle density, (ii) mode-mode coupling between ('4)He and ('3)He density fluctuation, (iii) direct scattering of ('4)He rotons against ('3)He quasiparticles. By using the theory developed by Aldrich and Pines, the pseudopotentials developed in this thesis and the 3He quasiparticle spectrum proposed by Greywall, we calculate the first two effects without any free parameter, and(' )obtain excellent agreement with experiment at low temperatures(' )(T < 0.7(DEGREES)K). A schematic model is introduced to describe the(' )effect of roton-('3)He quasiparticle collisions

  4. Effect of helium-oxygen (heliox) gas mixtures on the function of four pediatric ventilators.

    PubMed

    Berkenbosch, John W; Grueber, Ryan E; Dabbagh, Osuama; McKibben, Andrew W

    2003-07-01

    To evaluate the effects of helium on the function of four ventilators commonly used in pediatrics: the Bird VIP, Bird VIP Gold, Servo 300, and Servo 900C. Prospective setting. Research laboratory at a university hospital. Helium was administered as an 80:20 mixture of helium-oxygen through the air inlet of the ventilator. Delivered fraction of inspired oxygen (Fio(2)) was compared with the Fio(2) set on the blender dial. Inspiratory displayed tidal volume was recorded as an indicator of what the ventilator "believed" it had delivered and was compared with the V(T) displayed during ventilation with 100% oxygen (control). Actual delivered V(T) was measured by a Neonatal Bicore connected to the side port of a "bag-in-box" spirometer, making measurements independent of inspired gas properties, and was compared with V(T) delivered during ventilation with 100% oxygen. Five gas mixtures were evaluated: Fio(2) = 0.2, 0.4, 0.6, 0.8, and 1.0 (balance helium). Delivered Fio(2) was less than set Fio(2) on the Servo 900C and VIP ventilators. V(T) displayed was minimally altered by helium during volume-controlled ventilation but substantially decreased during pressure-controlled ventilation, particularly with the Bird ventilators. During volume-controlled ventilation, V(T) delivered was substantially increased by helium with the Bird and, to a lesser degree, the Servo 900C ventilators. In contrast, V(T) delivered decreased slightly in helium with the Servo 300. The same pattern, but with a decreased magnitude, was observed for V(T) delivered during pressure-controlled ventilation. The addition of helium has a significant effect on Fio(2) delivery, displayed inspiratory V(T), and actual delivered V(T) during both volume- and pressure-controlled ventilation in four ventilators commonly used in pediatric critical care. These effects are both ventilator specific and ventilation mode specific, mandating vigilance during helium ventilation in clinical practice.

  5. The influence of the resonance effects on the radiative characteristics of helium plasma

    NASA Astrophysics Data System (ADS)

    Koryukina, E. V.; Koryukin, V. I.

    2017-05-01

    In the present work, the influence of an alternating circularly polarized electric field on the energy spectrum of the He atom is studied. The calculations are performed by the method of the energy matrix diagonalization of an atom in the electric field. This method has allowed us to study the behaviour of the helium energy spectrum from the same numerical procedure under resonant and non-resonant excitations by the electric field. Based on the calculation results, we have found that the resonance effects take place not only in the vicinity of resonance, but they influence the shift directions of the Stark states even under non-resonant excitation. Additionally, we have established that the helium energy spectrum behaves consistently in the electric field. The results obtained have allowed us to clarify mechanisms of the influence of the resonance effects on the radiative characteristics of helium plasma.

  6. Ab initio investigation of helium in Y2Ti2O7: Mobility and effects on mechanical properties

    NASA Astrophysics Data System (ADS)

    Danielson, T.; Tea, E.; Hin, C.

    2016-08-01

    Oxide nanoclusters (NCs) in nanostructured ferritic alloys (NFAs) are known to be efficient trapping sites for the transmutation product helium. In this study, the migration barriers and potential energy surfaces of helium in Y2Ti2O7 are presented to explain the mobility of helium through oxide NCs and shed light on the accumulation of helium and the trapping mechanisms of the oxides. A complex tunnel-shaped potential energy surface is identified and gives rise to relatively large migration barriers. Subsequently, the effect of helium accumulation on the mechanical properties of Y2Ti2O7 oxide nanoclusters is investigated and it is shown that the mechanical properties of the oxide do not significantly degrade as helium accumulates.

  7. Reducing the matrix effects in chemical analysis: fusion of isotope dilution and standard addition methods

    NASA Astrophysics Data System (ADS)

    Pagliano, Enea; Meija, Juris

    2016-04-01

    The combination of isotope dilution and mass spectrometry has become an ubiquitous tool of chemical analysis. Often perceived as one of the most accurate methods of chemical analysis, it is not without shortcomings. Current isotope dilution equations are not capable of fully addressing one of the key problems encountered in chemical analysis: the possible effect of sample matrix on measured isotope ratios. The method of standard addition does compensate for the effect of sample matrix by making sure that all measured solutions have identical composition. While it is impossible to attain such condition in traditional isotope dilution, we present equations which allow for matrix-matching between all measured solutions by fusion of isotope dilution and standard addition methods.

  8. Crystal orientation effects on helium ion depth distributions and adatom formation processes in plasma-facing tungsten

    SciTech Connect

    Hammond, Karl D.; Wirth, Brian D.

    2014-10-14

    We present atomistic simulations that show the effect of surface orientation on helium depth distributions and surface feature formation as a result of low-energy helium plasma exposure. We find a pronounced effect of surface orientation on the initial depth of implanted helium ions, as well as a difference in reflection and helium retention across different surface orientations. Our results indicate that single helium interstitials are sufficient to induce the formation of adatom/substitutional helium pairs under certain highly corrugated tungsten surfaces, such as (1 1 1)-orientations, leading to the formation of a relatively concentrated layer of immobile helium immediately below the surface. The energies involved for helium-induced adatom formation on (1 1 1) and (2 1 1) surfaces are exoergic for even a single adatom very close to the surface, while (0 0 1) and (0 1 1) surfaces require two or even three helium atoms in a cluster before a substitutional helium cluster and adatom will form with reasonable probability. This phenomenon results in much higher initial helium retention during helium plasma exposure to (1 1 1) and (2 1 1) tungsten surfaces than is observed for (0 0 1) or (0 1 1) surfaces and is much higher than can be attributed to differences in the initial depth distributions alone. The layer thus formed may serve as nucleation sites for further bubble formation and growth or as a source of material embrittlement or fatigue, which may have implications for the formation of tungsten “fuzz” in plasma-facing divertors for magnetic-confinement nuclear fusion reactors and/or the lifetime of such divertors.

  9. Crystal orientation effects on helium ion depth distributions and adatom formation processes in plasma-facing tungsten

    NASA Astrophysics Data System (ADS)

    Hammond, Karl D.; Wirth, Brian D.

    2014-10-01

    We present atomistic simulations that show the effect of surface orientation on helium depth distributions and surface feature formation as a result of low-energy helium plasma exposure. We find a pronounced effect of surface orientation on the initial depth of implanted helium ions, as well as a difference in reflection and helium retention across different surface orientations. Our results indicate that single helium interstitials are sufficient to induce the formation of adatom/substitutional helium pairs under certain highly corrugated tungsten surfaces, such as {1 1 1}-orientations, leading to the formation of a relatively concentrated layer of immobile helium immediately below the surface. The energies involved for helium-induced adatom formation on {1 1 1} and {2 1 1} surfaces are exoergic for even a single adatom very close to the surface, while {0 0 1} and {0 1 1} surfaces require two or even three helium atoms in a cluster before a substitutional helium cluster and adatom will form with reasonable probability. This phenomenon results in much higher initial helium retention during helium plasma exposure to {1 1 1} and {2 1 1} tungsten surfaces than is observed for {0 0 1} or {0 1 1} surfaces and is much higher than can be attributed to differences in the initial depth distributions alone. The layer thus formed may serve as nucleation sites for further bubble formation and growth or as a source of material embrittlement or fatigue, which may have implications for the formation of tungsten "fuzz" in plasma-facing divertors for magnetic-confinement nuclear fusion reactors and/or the lifetime of such divertors.

  10. Transient Effects in Planar Solidification of Dilute Binary Alloys

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M.P.

    2008-01-01

    The initial transient during planar solidification of dilute binary alloys is studied in the framework of the boundary integral method that leads to the non-linear Volterra integral governing equation. An analytical solution of this equation is obtained for the case of a constant growth rate which constitutes the well-known Tiller's formula for the solute transient. The more physically relevant, constant ramping down temperature case has been studied both numerically and analytically. In particular, an asymptotic analytical solution is obtained for the initial transient behavior. A numerical technique to solve the non-linear Volterra equation is developed and the solution is obtained for a family of the governing parameters. For the rapid solidification condition, growth rate spikes have been observed even for the infinite kinetics model. When recirculating fluid flow is included into the analysis, the spike feature is dramatically diminished. Finally, we have investigated planar solidification with a fluctuating temperature field as a possible mechanism for frequently observed solute trapping bands.

  11. Transient Effects in Planar Solidification of Dilute Binary Alloys

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Volz, Martin P.

    2008-01-01

    The initial transient during planar solidification of dilute binary alloys is studied in the framework of the boundary integral method that leads to the non-linear Volterra integral governing equation. An analytical solution of this equation is obtained for the case of a constant growth rate which constitutes the well-known Tiller's formula for the solute transient. The more physically relevant, constant ramping down temperature case has been studied both numerically and analytically. In particular, an asymptotic analytical solution is obtained for the initial transient behavior. A numerical technique to solve the non-linear Volterra equation is developed and the solution is obtained for a family of the governing parameters. For the rapid solidification condition, growth rate spikes have been observed even for the infinite kinetics model. When recirculating fluid flow is included into the analysis, the spike feature is dramatically diminished. Finally, we have investigated planar solidification with a fluctuating temperature field as a possible mechanism for frequently observed solute trapping bands.

  12. Effective doping of low energy ions into superfluid helium droplets

    PubMed Central

    Zhang, Jie; Chen, Lei; Freund, William M.; Kong, Wei

    2015-01-01

    We report a facile method of doping cations from an electrospray ionization (ESI) source into superfluid helium droplets. By decelerating and stopping the ion pulse of reserpine and substance P from an ESI source in the path of the droplet beam, about 104 ion-doped droplets (one ion per droplet) can be recorded, corresponding to a pickup efficiency of nearly 1 out of 1000 ions. We attribute the success of this simple approach to the long residence time of the cations in the droplet beam. The resulting size of the doped droplets, on the order of 105/droplet, is measured using deflection and retardation methods. Our method does not require an ion trap in the doping region, which significantly simplifies the experimental setup and procedure for future spectroscopic and diffraction studies. PMID:26298127

  13. Effective doping of low energy ions into superfluid helium droplets.

    PubMed

    Zhang, Jie; Chen, Lei; Freund, William M; Kong, Wei

    2015-08-21

    We report a facile method of doping cations from an electrospray ionization (ESI) source into superfluid helium droplets. By decelerating and stopping the ion pulse of reserpine and substance P from an ESI source in the path of the droplet beam, about 10(4) ion-doped droplets (one ion per droplet) can be recorded, corresponding to a pickup efficiency of nearly 1 out of 1000 ions. We attribute the success of this simple approach to the long residence time of the cations in the droplet beam. The resulting size of the doped droplets, on the order of 10(5)/droplet, is measured using deflection and retardation methods. Our method does not require an ion trap in the doping region, which significantly simplifies the experimental setup and procedure for future spectroscopic and diffraction studies.

  14. Effective doping of low energy ions into superfluid helium droplets

    SciTech Connect

    Zhang, Jie; Chen, Lei; Freund, William M.; Kong, Wei

    2015-08-21

    We report a facile method of doping cations from an electrospray ionization (ESI) source into superfluid helium droplets. By decelerating and stopping the ion pulse of reserpine and substance P from an ESI source in the path of the droplet beam, about 10{sup 4} ion-doped droplets (one ion per droplet) can be recorded, corresponding to a pickup efficiency of nearly 1 out of 1000 ions. We attribute the success of this simple approach to the long residence time of the cations in the droplet beam. The resulting size of the doped droplets, on the order of 10{sup 5}/droplet, is measured using deflection and retardation methods. Our method does not require an ion trap in the doping region, which significantly simplifies the experimental setup and procedure for future spectroscopic and diffraction studies.

  15. Thermal effects in the anomalous growth of helium crystals

    SciTech Connect

    Tsymbalenko, V. L.

    2006-12-15

    Variations in pressure and thermal response have been synchronously measured beginning from the moment of nucleation of a helium crystal, at the onset of anomalously fast growth and during this growth, and in the course of relaxation to the normal kinetics. The measurements were performed at temperatures within 0.4-0.7 K in a range of pressures from the boundary of the anomalous growth region up to an overpressure of {delta}P {approx} 25 mbar. A superconductor bolometer with an rms noise of about 10 {mu}K was used as the fast-response thermal sensor. Temperature variations related to changes in the pressure and the heat dissipation during crystal growth were observed. The upper boundary of possible variations in the internal energy of the crystal is estimated as 1-20% of the excess energy of the system prior to the onset of anomalous growth.

  16. Polarization effects in ionization-excitation of helium

    NASA Astrophysics Data System (ADS)

    Bartschat, Klaus; Andersen, Nils

    2004-05-01

    We present a parameterization of experiments for simultaneous ionization-excitation of helium, leaving the He^+ ion in the excited n=2 states. In addition to the wellknown observables for coherent excitation of an atomic or ionic P-state [1], we explore the additional opportunities provided by the degeneracy of the 2s and 2p states in a purely Coulombic system. Results from model calculations for some of the new observables are presented, together with the corresponding polarized charge clouds. These observables should be measurable using, e.g., the COLTRIMS technique [2]. [1] N. Andersen and K. Bartschat, Polarization, Alignment, and Orientation in Atomic Collisions (Springer, New York 2001) [2] J. Ullrich et al., Rep. Prog. Phys. 66 (2003) 1463

  17. Helium generation rates in isotopically tailored Fe-Cr-Ni alloys irradiated in FFTF/MOTA

    SciTech Connect

    Greenwood, L.R.; Garner, F.A.; Oliver, B.M.

    1991-11-01

    Three Fe-Cr-Ni alloys have been doped with 0.4% {sup 59}Ni for side-by-side irradiations of doped and undoped materials in order to determine the effects of fusion-relevant levels of helium production on microstructural development and mechanical properties. The alloys were irradiated in three successive cycles of the Materials Open Test Assembly (MOTA) located in the Fast Flux Test Facility (FFTF). Following irradiation, helium levels were measured by isotope dilution mass spectrometry. The highest level of helium achieved in doped alloys was 172 appm at 9.1 dpa for a helium(appm)-to-dpa ratio of 18.9. The overall pattern of predicted helium generation rates in doped and undoped alloys is in good agreement with the helium measurements.

  18. EFFECTS OF HELIUM PRECONDITIONING ON INTESTINAL ISCHEMIA AND REPERFUSION INJURY IN RATS.

    PubMed

    Du, Lei; Zhang, Rongjia; Luo, Tianhang; Nie, Mingming; Bi, Jianwei

    2015-10-01

    Intestinal ischemia-reperfusion (I/R) injury can occur in clinical settings such as organ transplantation, cardiopulmonary bypass and trauma. The noble gas helium attenuates I/R injury in a number of animal organs and thus may offer a strategy for reducing I/R-induced intestinal injury in clinical settings. In the present study, we used four different helium preconditioning (HPC) profiles to investigate the potential beneficial effect of HPC on I/R-induced intestinal injury. Male Sprague-Dawley rats were pretreated with three cycles of air breathing for 5 min combined with three cycles of breathing a 70% helium:30% oxygen mixture for either 2, 5, 10, or 15 min, after which they were subjected to 60-min intestinal ischemia and 60-min reperfusion. Sixty minutes after reperfusion, the intestinal tissues of the variously treated rats were analyzed using histology, immunohistochemistry, terminal dUTP nick-end labeling staining, myeloperoxidase activity assay, Western blotting, and enzyme-linked immunosorbent assay for tumor necrosis factor α and macrophage inflammatory protein 1α. Intestinal permeability was assayed by measuring fluorescein isothiocyanate-dextran release in blood samples. The results showed that the HPC profile consisting of three cycles of 10 or 15 min of helium breathing and three cycles of 5 min of air breathing reduced I/R-induced intestinal injury, cell apoptosis, and the inflammatory response. However, the 2- or 5-min helium breathing did not confer any protective effects. It seems that longer helium episodes should be used in HPC profiles designed to attenuate intestinal I/R injury.

  19. Effects of dilution on dissolved oxygen depletion and microbial populations in the biochemical oxygen demand determination.

    PubMed

    Seo, Kyo Seong; Chang, Ho Nam; Park, Joong Kon; Choo, Kwang-Ho

    2007-09-01

    The biochemical oxygen demand (BOD) value is still a key parameter that can determine the level of organics, particularly the content of biodegradable organics in water. In this work, the effects of sample dilution, which should be done inevitably to get appropriate dissolved oxygen (DO) depletion, on the measurement of 5-day BOD (BOD(5)), was investigated with and without seeding using natural and synthetic water. The dilution effects were also evaluated for water samples taken in different seasons such as summer and winter because water temperature can cause a change in the types of microbial species, thus leading to different oxygen depletion profiles during BOD testing. The predation phenomenon between microbial cells was found to be dependent on the inorganic nutrients and carbon sources, showing a change in cell populations according to cell size after 5-day incubation. The dilution of water samples for BOD determination was linked to changes in the environment for microbial growth such as nutrition. The predation phenomenon between microbial cells was more important with less dilution. BOD(5) increased with the specific amount of inorganic nutrient per microbial mass when the natural water was diluted. When seeding was done for synthetic water samples, the seed volume also affected BOD due to the rate of organic uptake by microbes. BOD(5) increased with the specific bacterial population per organic source supplied at the beginning of BOD measurement. For more accurate BOD measurements, specific guidelines on dilution should be established.

  20. Effects of dilution on elastohydrodynamic coating flow of an anti-HIV microbicide vehicle

    NASA Astrophysics Data System (ADS)

    Szeri, Andrew; Park, Su Chan; Tasoglu, Savas; Katz, David F.

    2009-11-01

    Elastohydrodynamic lubrication over soft substrates characterizes the drug delivery of anti-HIV topical microbicides carried in gel vehicles. These gels are under development to prevent HIV transmission into vulnerable vaginal mucosa during intercourse. Their effectiveness depends on completeness and durability of coating, as well as on the active ingredients. Here we investigate the influence of dilution by vaginal fluid on the coating flows that serve to protect the user. The effects of dilution by vaginal fluid simulant are assessed through rheological experiments at variable dilution of the gel vehicle. This involves determination of the way parameters in a Carreau model of a shear-thinning gel are modified by dilution. The changes in coating are determined from a computational model, based on dilution rheology measured in the laboratory. The elastohydrodynamic lubrication model of Szeri, et al. Physics of Fluids (2008) is supplemented with a convective-diffusive transport equation to handle dilution, and solved using a multi-step scheme in a moving domain.

  1. Effects of hydrogen and helium produced by transmutation reactions on void formation in copper isotopic alloys irradiated with neutrons

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Yoshiie, T.; Sato, K.

    2009-04-01

    Three kinds of copper isotopic alloys 63Cu, 63+65Cu (50 at.% 63Cu + 50 at.% 65Cu) and 65Cu were used to investigate the intrinsic effects and the synergetic effects of transmutation productions, hydrogen and helium, on void swelling. Helium is produced from 63Cu by ( n, α) reaction and hydrogen by 63Cu and 65Cu by ( n, p) reaction under the fission neutron irradiation. It was found that both hydrogen and helium enhanced the void swelling of copper. Although production of hydrogen was higher than that of helium in the present work, the effect of hydrogen was only prominent at 646 K but not at 683 K. The effect of helium on void swelling appeared at 683 K.

  2. Effects of transverse photon exchange in helium Rydberg states - Corrections beyond the Coulomb-Breit interaction

    NASA Technical Reports Server (NTRS)

    Au, C. K.

    1989-01-01

    The Breit correction only accounts for part of the transverse photon exchange correction in the calculation of the energy levels in helium Rydberg states. The remaining leading corrections are identified and each is expressed in an effective potential form. The relevance to the Casimir correction potential in various limits is also discussed.

  3. The effect of dilution on the gas retention behavior of Tank 241-SY- 103 waste

    SciTech Connect

    Bredt, P.R.; Tingey, S.M.

    1996-01-01

    Twenty-five of the 177 underground waste storage tanks on the Hanford Site have been placed on the Flammable Gas watch list. These 25 tanks, containing high-level waste generated during plutonium and uranium processing, have been identified as potentially capable of accumulating flammable gases above the lower flammability limit (Babad et al. 1991). In the case of Tanks 241-SY-101 and 241-SY-103, it has been proposed that diluting the tank waste may mitigate this hazard (Hudson et al. 1995; Stewart et al. 1994). The effect of dilution on the ability of waste from Tank 241-SY-103 to accumulate gas was studied at Pacific Northwest National Laboratory. A similar study has been completed for waste from Tank 241-SY-101 (Bredt et al. 1995). Because of the additional waste-storage volume available in Tank 241-SY-103 and because the waste is assumed to be similar to that currently in Tank 241-SY-101, Tank 241-SY-103 became the target for a demonstration of passive mitigation through in-tank dilution. In 1994, plans for the in-tank dilution demonstration were deferred pending a decision on whether to pursue dilution as a mitigation strategy. However, because Tank 241-SY-103 is an early retrieval target, determination of how waste properties vary with dilution will still be required.

  4. Effect of 800 keV argon ions pre-damage on the helium blister formation of tungsten exposed to 60 keV helium ions

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Han, Wenjia; Yu, Jiangang; Zhu, Kaigui

    2016-04-01

    This study aims to investigate the effect of Ar8+ ions pre-damage on the following He2+ irradiation behavior of polycrystalline tungsten. We compared the irradiation resistance performance against 60 keV He2+ ions of undamaged tungsten samples with that of pre-damaged samples which were preliminarily exposed to 800 keV Ar8+ ions at a fluence of 4 × 1019 ions m-2. The experimental results indicate that the helium blistering of tungsten could be effectively relieved by the Ar8+ ions pre-damage, while the retention of helium around low energy desorption sites in the pre-damaged tungsten was larger than that of the undamaged samples. A strong orientation dependence of blistering had been observed, with the blister occurred preferentially on the surface of grains with normal direction close to <111>. The Ar8+ ions irradiation-induced damage altered the morphology of helium bubbles in tungsten exposed to the following He2+ irradiation significantly. The intensity of helium release peaks at relatively low temperatures (<600 K) was enhanced due to Ar8+ ions pre-damage.

  5. The diversity-disease relationship: evidence for and criticisms of the dilution effect.

    PubMed

    Huang, Z Y X; VAN Langevelde, F; Estrada-Peña, A; Suzán, G; DE Boer, W F

    2016-08-01

    The dilution effect, that high host species diversity can reduce disease risk, has attracted much attention in the context of global biodiversity decline and increasing disease emergence. Recent studies have criticized the generality of the dilution effect and argued that it only occurs under certain circumstances. Nevertheless, evidence for the existence of a dilution effect was reported in about 80% of the studies that addressed the diversity-disease relationship, and a recent meta-analysis found that the dilution effect is widespread. We here review supporting and critical studies, point out the causes underlying the current disputes. The dilution is expected to be strong when the competent host species tend to remain when species diversity declines, characterized as a negative relationship between species' reservoir competence and local extinction risk. We here conclude that most studies support a negative competence-extinction relationship. We then synthesize the current knowledge on how the diversity-disease relationship can be modified by particular species in community, by the scales of analyses, and by the disease risk measures. We also highlight the complex role of habitat fragmentation in the diversity-disease relationship from epidemiological, evolutionary and ecological perspectives, and construct a synthetic framework integrating these three perspectives. We suggest that future studies should test the diversity-disease relationship across different scales and consider the multiple effects of landscape fragmentation.

  6. Effects of pneumoperitoneum with carbon dioxide and helium on renal function and morphology in rats.

    PubMed

    Freitas, Pedro Felipe Silva de; Durães, Leonardo Castro; Carvalho, Felipe Augusto Neves Oliveira de; Duarte, Sérgio Andurte Carvalho; Carneiro, Fabiana Pirani; Sousa, João Batista de

    2013-07-01

    To evaluate the effects of pneumoperitoneum with carbon dioxide and helium on renal function and morphology in a rat model. Twenty four rats were randomized into three groups (n=8): gasless insufflation ('open', Pressure=0 mmHg), carbon dioxide pneumoperitoneum at 12 mmHg, and helium pneumoperitoneum at 12 mmHg; all lasting 90 minutes.. A cystostomy was performed and the bladder was emptied. At the end of the experiment, the urine produced, a blood sample and the left kidney of each animal were collected. The following variables were obtained: serum sodium, potassium, urea and creatinine, urine volume and creatinine. The creatinine clearance was estimated for each animal. The kidneys were stained with hematoxylin and eosin (HE) and evaluated by a pathologist blinded to the groups. The CO2 and Helium groups did not differ in the variables evaluated. Both developed oliguria (p<0.001 vs. gasless). The CO2 group presented hyperkalemia compared to gasless (p=0.05), which did not attain significance in the helium group. Histopathological analysis revealed mild hydropic degeneration and congestion in the three groups, with no significant difference among them. The type of gas resulted in no difference in the variables of renal function and morphology assessed. The increase in serum potassium was only observed with CO2 insufflation suggests a combined effect of elevated intra-abdominal pressure and metabolic effects of pneumoperitoneum.

  7. Effects of Matrix Viscoelasticity on Rheology of Dilute and Semi-Dilute Suspensions of Non Brownian Rigid Spheres

    NASA Astrophysics Data System (ADS)

    Grizzuti, Nino; Pasquino, Rossana

    2008-07-01

    The rheology of non-Brownian, inertialess rigid spheres suspended in viscoelastic fluids was investigated in the dilute and semi-dilute regimes (volume fractions up to 10%), where interparticle interactions become increasingly relevant. PMMA spherical particles were suspended in viscoelastic Polydimethylsiloxanes (PDMS). A Newtonian fluid (Polyisobutilene, PIB) was also used as a reference system. As expected, both the viscosity and the viscoelastic moduli increased with increasing solid volume fraction. The rheological parameters showed a simple scaling behaviour when their normalized values (with respect to the pure fluid) were considered. Viscosity and moduli were found to be independent upon shear rate and frequency, respectively. Following Batchelor's approach for non-dilute Newtonian suspensions, a second order polynomial dependency for the rheological properties was assumed. While the Newtonian reference fluid was found to obey well Batchelor's theoretical predictions, the viscoelastic suspensions showed more pronounced deviations from the linear dilute behavior, resulting in a second order polynomial coefficient substantially larger than that predicted by Batchelor for Newtonian systems. It was also found that the same concentration dependence was followed by both elastic and loss modulus.

  8. The physiological effects of hydrostatic pressure are not equivalent to those of helium pressure on Rana pipiens.

    PubMed Central

    Dodson, B A; Furmaniuk, Z W; Miller, K W

    1985-01-01

    The effects of helium pressure and hydrostatic pressure on Rana pipiens were compared. Both agents caused paralysis at pressures greater than 135 atmospheres (1 atm = 101.325 kPa), but the median pressure for hydrostatic-pressure-induced paralysis was 35 atm less than that for helium pressure. When the ability of both pressurizing agents to reverse urethane-induced anaesthesia was compared, it was found that hydrostatic pressure raised the median dose for anaesthesia 2.2-fold more per atmosphere than did helium pressure. Animals that were lightly anaesthetized by urethane at 110 atm hydrostatic pressure became more deeply anaesthetized when helium was admitted isobarically into the pressure chamber. This difference in depth of anaesthesia between hydrostatic pressure and helium pressure is consistent with helium possessing an inherent anaesthetic effect. The abilities of other gases to pressure-reverse urethane anaesthesia were also determined. The degree of attenuation of the full pressure reversal effect observed with hydrostatic pressure was proportional to the lipid solubility of the gases, increasing in the order helium, neon, hydrogen, nitrogen and argon. Our data on the difference between hydrostatic and helium pressure are consistent with the critical volume hypothesis. PMID:3874954

  9. Evaluation of Moisturizing Effect of Heparinoid Ointment (Hirudoid Soft Ointment) Diluted by White Petrolatum (Propeto).

    PubMed

    Manabe, Haruka; Nozawa, Akane; Matsumoto, Mika; Ohtani, Michiteru

    2017-01-01

     Steroid ointments are frequently mixed with moisturizer. It was reported that steroid ointments mixed with moisturizer increase permeability. There are only few studies done on the permeability of the moisturizer. We researched moisturizing effect of heparinoid ointment (Hirudoid Soft ointment) diluted with white petrolatum (Propeto) on the dry skin models by measuring water content of stratum. Two to four fold dilution of Hirudoid to white petrolatum resulted in a significant decrease in the moisturizing effect of the active ingredient. There was no significant difference in moisturizing effect between four times diluted mixture and white petrolatum alone. This leads to the conclusion that steroid ointment mixture with moisturizer is frequently used, but we should take more caution regarding the decrease of moisturizing effect.

  10. Dilution effect and identity effect by wildlife in the persistence and recurrence of bovine tuberculosis.

    PubMed

    Huang, Z Y X; Xu, C; VAN Langevelde, F; Prins, H H T; Ben Jebara, K; DE Boer, W F

    2014-06-01

    Current theories on disease-diversity relationships predict a strong influence of host richness on disease transmission. In addition, identity effect, caused by the occurrence of particular species, can also modify disease risk. We tested the richness effect and the identity effects of mammal species on bovine tuberculosis (bTB), based on the regional bTB outbreak data in cattle from 2005-2010 in Africa. Besides, we also tested which other factors were associated with the regional bTB persistence and recurrence in cattle. Our results suggested a dilution effect, where higher mammal species richness (MSR) was associated with reduced probabilities of bTB persistence and recurrence in interaction with cattle density. African buffalo had a positive effect on bTB recurrence and a positive interaction effect with cattle density on bTB persistence, indicating an additive positive identity effect of buffalo. The presence of greater kudu had no effect on bTB recurrence or bTB persistence. Climatic variables only act as risk factors for bTB persistence. In summary, our study identified both a dilution effect and identity effect of wildlife and showed that bTB persistence and recurrence were correlated with different sets of risk factors. These results are relevant for more effective control strategies and better targeted surveillance measures in bTB.

  11. Effects of Extreme Dilutions of Apis mellifica Preparations on Gene Expression Profiles of Human Cells

    PubMed Central

    Bigagli, Elisabetta; Luceri, Cristina; Bernardini, Simonetta; Dolara, Piero

    2016-01-01

    Gene expression analysis has been employed in the past to test the effects of high dilutions on cell systems. However, most of the previous studies were restricted to the investigation of few dilutions, making it difficult to explore underlying mechanisms of action. Using whole-genome transcriptomic analysis, we investigated the effects of a wide range of Apis mellifica dilutions on gene expression profiles of human cells. RWPE-1 cells, a nonneoplastic adult human epithelial prostate cell line, were exposed to Apis mellifica preparations (3C, 5C, 7C, 9C, 12C, 15C, and 30C) or to the reference solvent solutions for 24 hours; nonexposed cells were also checked for gene expression variations. Our results showed that even the most diluted solutions retained the ability to trigger significant variations in gene expression. Gene pathway analysis revealed consistent variations in gene expression induced by Apis mellifica when compared to nonexposed reference cells but not to reference solvent solutions. Since the effects of Apis Mellifica at extreme dilutions did not show dose–effect relationships, the biological or functional interpretation of these results remains uncertain. PMID:26788033

  12. Optical diagnostics with radiation trapping effect in low density and low temperature helium plasma

    SciTech Connect

    Lee, Wonwook Kwon, Duck-Hee; Park, Kyungdeuk; Oh, Cha-Hwan

    2016-06-15

    Low density (n{sub e} < 10{sup 11 }cm{sup −3}) and low temperature (T{sub e} < 10 eV) helium plasma was generated by hot filament discharge. Electron temperature and density of neutral helium plasma were measured by Langmuir probe and were determined by line intensity ratio method using optical emission spectroscopy with population modelings. Simple corona model and collisional-radiative (CR) model without consideration for radiation trapping effect are applied. In addition, CR model taking into account the radiation trapping effect (RTE) is adopted. The change of single line intensity ratio as a function of electron temperature and density were investigated when the RTE is included and excluded. The changes of multi line intensity ratios as a function of electron temperature were scanned for various radiative-excitation rate coefficients from the ground state and the helium gas pressures related with the RTE. Our CR modeling with RTE results in fairly better agreement of the spectroscopic diagnostics for the plasma temperature or density with the Langmuir probe measurements for various helium gas pressures than corona modeling and CR modeling without RTE.

  13. Optical diagnostics with radiation trapping effect in low density and low temperature helium plasma

    NASA Astrophysics Data System (ADS)

    Lee, Wonwook; Park, Kyungdeuk; Kwon, Duck-Hee; Oh, Cha-Hwan

    2016-06-01

    Low density (ne < 1011 cm-3) and low temperature (Te < 10 eV) helium plasma was generated by hot filament discharge. Electron temperature and density of neutral helium plasma were measured by Langmuir probe and were determined by line intensity ratio method using optical emission spectroscopy with population modelings. Simple corona model and collisional-radiative (CR) model without consideration for radiation trapping effect are applied. In addition, CR model taking into account the radiation trapping effect (RTE) is adopted. The change of single line intensity ratio as a function of electron temperature and density were investigated when the RTE is included and excluded. The changes of multi line intensity ratios as a function of electron temperature were scanned for various radiative-excitation rate coefficients from the ground state and the helium gas pressures related with the RTE. Our CR modeling with RTE results in fairly better agreement of the spectroscopic diagnostics for the plasma temperature or density with the Langmuir probe measurements for various helium gas pressures than corona modeling and CR modeling without RTE.

  14. Irradiation effects of displacement damage and gas atoms in Yttria-stabilized zirconia irradiated by Au and helium ions

    NASA Astrophysics Data System (ADS)

    Zhang, Yanwen; Zhao, Ziqiang; Guo, Gang

    2017-07-01

    Single and sequential ion beam irradiated Yttria-stabilized zirconia (YSZ) was carried out to study the irradiation effects of vacancies and helium gas atoms. The results show that the displacement damage value of sequential ion beam irradiation is less than that of single He ion irradiation and larger than that of single Au ion irradiation. The irradiation effects of displacement damage (mainly vacancies) and gas atoms may lead to a strong reduction of the interstitial helium atoms. Sequential ion beam irradiation generates more vacancies-helium bubbles than single helium ion irradiation. The results are important for fundamental understanding of interaction between vacancy and helium bubbles, and it also plays a guiding role in the practical industrial applications in the nuclear reactor.

  15. EFFECT OF HELIUM ON THE RESPIRATION AND GLYCOLYSIS OF MOUSE LIVER SLICES

    PubMed Central

    South, Frank E.; Cook, Sherburne F.

    1953-01-01

    It has been shown that helium has the ability to affect variously the rates of certain metabolic reactions in vitro as compared to nitrogen. An attempt has been made to approximate the sites of action in mouse liver preparations. The following results have been obtained by the substitution of a mixture of 80 per cent helium and 20 per cent oxygen for air: (a) An increase in the rate of oxygen consumption and carbon dioxide production to the same degree, the respiratory quotient remaining unchanged. (b) A decrease in the magnitude of cyanide inhibition. The effectiveness of helium increases with the degree of the cyanide inhibition. (c) No effect on the activity of slices which have been poisoned with fluoride when either lactate or pyruvate has been added as a substrate. (d) A change in the rate, and the slope of the curve of oxygen consumption in liver homogenates which are utilizing pyruvate as a substrate. The use of helium relative to nitrogen under anaerobic conditions causes: (a) A depression of the glycolytic rates in both mouse liver slices and diaphragm. (b) An increase in the carbon dioxide evolution and lactic acid production of mouse liver homogenates oxidizing either glucose and hexose diphosphate, or hexose diphosphate alone. In neither slices nor homogenates does the addition of fluoride and the use of pyruvate as the hydrogen acceptor alter the fundamental response of the preparations. The following hypotheses have been advanced and discussed in order to explain the observed phenomena: 1. Helium does not alter the substrate utilized by the tissue. 2. The gas interferes in some way with the cyanide-cytochrome oxidase bond, but may not affect cytochrome oxidase in the absence of cyanide. 3. The citric acid cycle is not subject to the influence of helium in tissue slices, but is altered in an unexplained fashion in homogenates. It is postulated that a rearrangement of particulate surfaces may be the significant factor here. 4. The glycolytic cycle is

  16. The effects of gas dilution on the nanoparticles nucleation in a low pressure capacitively coupled acetylene discharge

    NASA Astrophysics Data System (ADS)

    Akhoundi, A.; Foroutan, G.

    2017-05-01

    The effects of gas dilution on the chemistry of macromolecules and nucleation of nanoparticles in a low pressure radio-frequency acetylene discharge are investigated by employing a self-consistent, one dimensional multi-fluid model. Ar, He, and H2 are used for the dilution with different percentages, keeping the total gas inlet constant. The results of numerical simulations showed that the nucleation rate decreases monotonically with H2 fraction, when the plasma is diluted in hydrogen. But, for Ar and He diluted plasmas, the nucleation increases with increasing of the dilution up to 40%, and then declines. Diluting acetylene in Ar increases the electron number density and consequently the rate of electron impact hydrocarbon dissociation, the latter in turn leads to a more effective polymerization and nanoparticle nucleation. Radicals are identified as the most important species during the nucleation process and their number density is always higher in Ar diluted plasma than the other two.

  17. Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Zhang, Jie; Freund, William M.; Kong, Wei

    2015-07-01

    We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs+ is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature, the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs+-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 106 helium atoms when the source temperature is between 14 K and 17 K.

  18. Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets

    SciTech Connect

    Chen, Lei; Zhang, Jie; Freund, William M.; Kong, Wei

    2015-07-28

    We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs{sup +} is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature, the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs{sup +}-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 10{sup 6} helium atoms when the source temperature is between 14 K and 17 K.

  19. Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets.

    PubMed

    Chen, Lei; Zhang, Jie; Freund, William M; Kong, Wei

    2015-07-28

    We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs(+) is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature, the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs(+)-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 10(6) helium atoms when the source temperature is between 14 K and 17 K.

  20. Effects of Helium Ion Irradiation on Properties of Crystalline and Amorphous Multiphase Ceramic Coatings

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Hu, Liangbin; Qiu, Changjun; He, Bin; Wang, Zhongchang

    2017-08-01

    The Al2O3-TiO2 crystalline and amorphous multiphase ceramic coatings were prepared on a martensitic steel by laser in situ reaction technique and impose irradiation with 200 keV He ions at different doses. The helium ion irradiation goes 1.55 μm deep from the surface of coating, and the displacement per atom (dpa) for the Al2O3-TiO2 coating is 20.0. When the irradiation fluency is 5 × 1017 ions/cm2, defects are identified in crystalline areas and there form interfacial areas in the coating. These crystal defects tend to migrate and converge at the interfaces. Moreover, helium ion irradiation is found to exert no effect on surface chemical composition and phase constitution of the coatings, while surface mechanical properties for the coatings after irradiation differ from those before irradiation. Further nano-indentation experiments reveal that surface nano-hardness of the Al2O3-TiO2 multiphase coatings decreases as the helium ions irradiation flux increases. Such Al2O3-TiO2 crystalline and amorphous multiphase ceramic coatings exhibit the strongest resistance against helium ion irradiation which shall be applied as candidate structural materials for accelerator-driven sub-critical system to handle the nuclear waste under extreme conditions.

  1. Effect of grain microstructure on thermal helium desorption from pure iron

    NASA Astrophysics Data System (ADS)

    Lefaix-Jeuland, H.; Moll, S.; Jourdan, T.; Legendre, F.

    2013-03-01

    Experiments were carried out to evidence the role played by grain boundaries on He/Fe interactions. Three microstructures involving grain sizes from 2 to 100 μm in average diameter were irradiated with 8-keV 4He+ ions at 298 K and helium desorption was then studied during constant rate heating by thermal desorption spectroscopy (TDS) from room temperature to 1330 K. The two larger microstructures (40 and 100 μm) could be characterised with the same multiple desorption groups, combining helium involved in small and large clusters as well as in bubbles. The finer microstructural scale (2 μm) was peculiar due to the existence of a broad split of desorption peak (at 856 and 917 K). Such a peak is ascribed to the movement of grain boundaries during recrystallization which drains helium towards surface. The high density of grain boundaries in the finer microstructure also explains the thermal shift and the larger desorption at low temperatures. As a first step towards the quantitative assessment of this effect, cluster dynamics simulation have been performed in order to give the quantity of helium trapped in grain boundaries for the different microstructures.

  2. Effects of Helium Ion Irradiation on Properties of Crystalline and Amorphous Multiphase Ceramic Coatings

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Hu, Liangbin; Qiu, Changjun; He, Bin; Wang, Zhongchang

    2017-06-01

    The Al2O3-TiO2 crystalline and amorphous multiphase ceramic coatings were prepared on a martensitic steel by laser in situ reaction technique and impose irradiation with 200 keV He ions at different doses. The helium ion irradiation goes 1.55 μm deep from the surface of coating, and the displacement per atom (dpa) for the Al2O3-TiO2 coating is 20.0. When the irradiation fluency is 5 × 1017 ions/cm2, defects are identified in crystalline areas and there form interfacial areas in the coating. These crystal defects tend to migrate and converge at the interfaces. Moreover, helium ion irradiation is found to exert no effect on surface chemical composition and phase constitution of the coatings, while surface mechanical properties for the coatings after irradiation differ from those before irradiation. Further nano-indentation experiments reveal that surface nano-hardness of the Al2O3-TiO2 multiphase coatings decreases as the helium ions irradiation flux increases. Such Al2O3-TiO2 crystalline and amorphous multiphase ceramic coatings exhibit the strongest resistance against helium ion irradiation which shall be applied as candidate structural materials for accelerator-driven sub-critical system to handle the nuclear waste under extreme conditions.

  3. Direct evidence of mismatching effect on H emission in laser-induced atmospheric helium gas plasma

    SciTech Connect

    Zener Sukra Lie; Koo Hendrik Kurniawan; May On Tjia; Rinda, Hedwig; Suliyanti, Maria Margaretha; Syahrun Nur Abdulmadjid; Nasrullah Idris; Alion Mangasi Marpaung; Marincan Pardede; Jobiliong, Eric; Muliadi Ramli; Heri Suyanto; Fukumoto, Kenichi; Kagawa, Kiichiro

    2013-02-07

    A time-resolved orthogonal double pulse laser-induced breakdown spectroscopy (LIBS) with helium surrounding gas is developed for the explicit demonstration of time mismatch between the passage of fast moving impurity hydrogen atoms and the formation of thermal shock wave plasma generated by the relatively slow moving major host atoms of much greater masses ablated from the same sample. Although this so-called 'mismatching effect' has been consistently shown to be responsible for the gas pressure induced intensity diminution of hydrogen emission in a number of LIBS measurements using different ambient gases, its explicit demonstration has yet to be reported. The previously reported helium assisted excitation process has made possible the use of surrounding helium gas in our experimental set-up for showing that the ablated hydrogen atoms indeed move faster than the simultaneously ablated much heavier major host atoms as signaled by the earlier H emission in the helium plasma generated by a separate laser prior to the laser ablation. This conclusion is further substantiated by the observed dominant distribution of H atoms in the forward cone-shaped target plasma.

  4. Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets

    PubMed Central

    Chen, Lei; Zhang, Jie; Freund, William M.; Kong, Wei

    2015-01-01

    We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs+ is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature, the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs+-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 106 helium atoms when the source temperature is between 14 K and 17 K. PMID:26233132

  5. Effects of helium on inflammatory and oxidative stress-induced endothelial cell damage.

    PubMed

    Smit, Kirsten F; Kerindongo, Raphaela P; Böing, Anita; Nieuwland, Rienk; Hollmann, Markus W; Preckel, Benedikt; Weber, Nina C

    2015-09-10

    Helium induces preconditioning in human endothelium protecting against postischemic endothelial dysfunction. Circulating endothelial microparticles are markers of endothelial dysfunction derived in response to injury. Another noble gas, xenon, protected human umbilical vein endothelial cells (HUVEC) against inflammatory stress in vitro. We hypothesised that helium protects the endothelium in vitro against inflammatory and oxidative stress. HUVEC were isolated from fresh umbilical cords and grown upon confluence. Cells were subjected to starving medium for 12h before the experiment and treated for either 3 × 5 min or 1 × 30 min with helium (5% CO2, 25% O2, 70% He) or control gas (5% CO2, 25% O2, 70% N2) in a specialised gas chamber. Subsequently, cells were stimulated with TNF-α (40 ng/ml for 24h or 10 ng/ml for 2h) or H2O2 (500 μM for 2h) or left untreated. Adhesion molecule expression was analysed using real-time quantitative polymerase chain reaction. Caspase-3 expression and viability of the cells was measured by flowcytometry. Microparticles were investigated by nanoparticle tracking analysis. Helium had no effect on adhesion molecule expression after TNF-α stimulation but in combination with oxidative stress decreased cell viability (68.9 ± 1.3% and 58 ± 1.9%) compared to control. Helium further increased TNF-α induced release of caspase-3 containing particles compared to TNF-α alone (6.4 × 10(6) ± 1.1 × 10(6) and 2.9 × 10(6) ± 0.7 × 10(6), respectively). Prolonged exposure of helium increased microparticle formation (2.4 × 10(9) ± 0.5 × 10(9)) compared to control (1.7 × 10(9) ± 0.2 × 10(9)). Summarized, helium increases inflammatory and oxidative stress-induced endothelial damage and is thus not biologically inert. A possible noxious effects on the cellular level causing alterations in microparticle formation both in number and content should be acknowledged. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Use of sediment serial dilution series to establish biological effect levels and clean-up goals

    SciTech Connect

    Timmer, E.; DeLong, T.; Millard, J.; Dobroski, C.

    1995-12-31

    A sediment serial dilution study was used to determine biological effect levels for two freshwater invertebrates, Chironomus tentans and Hyalella azteca. The sediments for the test were collected from a New England brook which contained elevated levels of lead and polychlorinated aromatic hydrocarbons. The objective of the sediment dilution study was two-fold: (1 ) to provide a site-specific estimation of biological effect levels, thus reducing uncertainties associated with using literature-based values, and (2) to establish clean-up goals specific to this freshwater system.

  7. Magnetic Field Modulated Photoreflectance Study of the Electron Effective Mass in Dilute Nitride Semiconductors

    SciTech Connect

    Mori, N.; Hiejima, K.; Kubo, H.; Patane, A.; Eaves, L.

    2011-12-23

    Magnetic field modulated photoreflectance measurements are performed on the dilute nitride semiconductor Ga(AsN) in quantizing magnetic fields. From the measured cyclotron energies, the conduction band effective mass and its dependence on the nitrogen content are determined. The effective mass is found to become significantly heavier in samples with high nitrogen composition (>0.1%).

  8. Diffusion of helium in carbonates: Effects of mineral structure and composition

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Amidon, W.; Hobbs, D.; Watson, E. B.

    2015-09-01

    Diffusion of helium has been characterized in four carbonates: calcite, dolomite, magnesite, and aragonite. Cleaved or oriented and polished slabs of carbonate minerals were implanted with 100 keV or 3 MeV 3He at doses of 5 × 10153He/cm2 and 1 × 10163He/cm2, respectively, and annealed in 1-atm furnaces. 3He distributions following diffusion experiments were measured with nuclear reaction analysis using the reaction 3He(d,p)4He. Our results show that He diffusion in calcite is the fastest among the carbonates studied, with diffusivities progressively slower in magnesite, dolomite and aragonite. In the case of the isomorphic trigonal carbonates (calcite, dolomite, magnesite), these observations are broadly consistent with predictions based on lattice characteristics such as unit cell size and inter-atomic apertures, with diffusivities faster in more open carbonate structures. Dolomite is an exception to this trend, suggesting that its unique ordered R3 crystal structure may play a role in slowing helium diffusion. Diffusion is anisotropic in all of the trigonal carbonates, and is typically slowest for diffusion along the c direction, and faster for diffusion normal to c and in directions normal to cleavage surfaces. The patterns of diffusional anisotropy are predicted to first order by the size of limiting inter-atomic apertures along any given crystallographic direction, providing additional support to the concept of modeling crystal lattices as "molecular sieves" with regard to diffusion of helium. When the effects of anisotropy and diffusion domain size are considered, our results are in reasonable agreement with previous results from bulk degassing of natural samples. Modeling of helium diffusive loss shows that calcite and magnesite are unlikely to be retentive of helium on the Earth's surface for typical grain sizes and time/temperature conditions. Dolomite and aragonite may be retentive under cooler conditions, but because helium retention is strongly

  9. Effective Rheological Properties in Semi-dilute Bacterial Suspensions.

    PubMed

    Potomkin, Mykhailo; Ryan, Shawn D; Berlyand, Leonid

    2016-03-01

    Interactions between swimming bacteria have led to remarkable experimentally observable macroscopic properties such as the reduction in the effective viscosity, enhanced mixing, and diffusion. In this work, we study an individual-based model for a suspension of interacting point dipoles representing bacteria in order to gain greater insight into the physical mechanisms responsible for the drastic reduction in the effective viscosity. In particular, asymptotic analysis is carried out on the corresponding kinetic equation governing the distribution of bacteria orientations. This allows one to derive an explicit asymptotic formula for the effective viscosity of the bacterial suspension in the limit of bacterium non-sphericity. The results show good qualitative agreement with numerical simulations and previous experimental observations. Finally, we justify our approach by proving existence, uniqueness, and regularity properties for this kinetic PDE model.

  10. Effective field theory for dilute fermions with pairing

    SciTech Connect

    Furnstahl, R.J. Hammer, H.-W. Puglia, S.J.

    2007-11-15

    Effective field theory (EFT) methods for a uniform system of fermions with short-range, natural interactions are extended to include pairing correlations, as part of a program to develop a systematic Kohn-Sham density functional theory (DFT) for medium and heavy nuclei. An effective action formalism for local composite operators leads to a free-energy functional that includes pairing by applying an inversion method order by order in the EFT expansion. A consistent renormalization scheme is demonstrated for the uniform system through next-to-leading order, which includes induced-interaction corrections to pairing.

  11. The effect of confinement on liquid helium near the lambda line

    SciTech Connect

    Larson, M.E.

    1993-12-31

    This thesis is the compilation of several projects relevant to the behavior of confined liquid helium near the {lambda}-line. The first project described is the development of two new high resolution thermometers optimized for specific heat studies of helium confined in pores. One of the thermometers is a superconductive transition thermometer (STT). The STT has a temperature resolution of about 5nK. The other high resolution thermometer described is a magnetic susceptibility thermometer. This thermometer measures the magnetization of copper ammonium bromide (CAB) using a SQUID magnetometer. The CAB thermometer has an observed sensitivity of about 20nK. Suggestions for improvements in both thermometers are made. Simulation work on the temperature profile of a thermal conductivity cell near T{lambda} is described. The simulations are compared with the experimental results, and a careful study of the stability of the numerics is described. The study of helium confined into pores and films is described next. Both previous theoretical and experimental work on finite size effects in liquid helium are described. The geometry provided by glass capillary arrays is analyzed to determine what would be observed when the specific heat of helium confined to the arrays is measured. Finally, I describe my measurements of the isobaric thermal expansion coefficient {beta}{sub P} of 4He confined in an aerogel for several isobars along the {lambda}-line. {beta}{sub P} is an asymptotically linear function of C{sub P} near the superfluid transition temperature {Tc}. Therefore, fits to power laws in t {triple_bond} T/{Tc} - 1 give the specific heat exponents {alpha} and {alpha}{prime} and amplitude ratio A{prime}/A. Such fits gave different exponents {alpha} {approx} -0.6 and {alpha}{prime} {approx} -1.0 above and below {Tc}.

  12. Optical spacing effect in organic photovoltaic cells incorporating a dilute acceptor layer

    SciTech Connect

    Menke, S. Matthew; Lindsay, Christopher D.; Holmes, Russell J.

    2014-06-16

    The addition of spacing layers in organic photovoltaic cells (OPVs) can enhance light absorption by optimizing the spatial distribution of the incident optical field in the multilayer structure. We explore the optical spacing effect in OPVs achieved using a diluted electron acceptor layer of C{sub 60}. While optical spacing is often realized by optimizing buffer layer thickness, we find that optical spacing via dilution leads to cells with similar or enhanced photocurrent. This is observed despite a smaller quantity of absorbing molecules, suggesting a more efficient use of absorbed photons. In fact, dilution is found to concentrate optical absorption near the electron donor-acceptor interface, resulting in a marked increase in the exciton diffusion efficiency. Contrasting the use of changes in thickness to engineer optical absorption, the use of dilution does not significantly alter the overall thickness of the OPV. Optical spacing via dilution is shown to be a viable alternative to more traditional optical spacing techniques and may be especially useful in the continued optimization of next-generation, tandem OPVs where it is important to minimize competition for optical absorption between individual sub-cells.

  13. Hypoxia, an adjunct in helium-cold hypothermia - Sparing effect on hepatic and cardiac metabolites.

    NASA Technical Reports Server (NTRS)

    Anderson, G. L.; Resch, G. E.; Musacchia, X. J.

    1973-01-01

    Investigation of the effect of hypoxia on the depletion of metabolites that occurs in helium-aided induction of hypothermia. Hypoxic slowing of the heart of a hamster while exposed to cold helox is demonstrated. An attempt is made to evaluate the relative importance of cardiac slowing and limitation of thermogenesis in determining the effect of hypoxia. In explanation of the results presented, it is suggested that hypoxia limits the energy expenditure by the heart during induction.

  14. Lithium in halo stars - Constraining the effects of helium diffusion on globular cluster ages and cosmology

    NASA Technical Reports Server (NTRS)

    Deliyannis, Constantine P.; Demarque, Pierre

    1991-01-01

    Stellar evolutionary models with diffusion are used to show that observations of lithium in extreme halo stars provide crucial constraints on the magnitude of the effects of helium diffusion. The flatness of the observed Li-T(eff) relation severely constrains diffusion Li isochrones, which tend to curve downward toward higher T(eff). It is argued that Li observations at the hot edge of the plateau are particularly important in constraining the effects of helium diffusion; yet, they are currently few in number. It is proposed that additional observations are required there, as well as below 5500 K, to define more securely the morphology of the halo Li abundances. Implications for the primordial Li abundance are considered. It is suggested that a conservative upper limit to the initial Li abundance, due to diffusive effects alone, is 2.35.

  15. Effect of dilute strongly pinning impurities on charge density waves

    NASA Astrophysics Data System (ADS)

    Okamoto, Jun-ichi; Millis, Andrew J.

    2015-05-01

    We study theoretically the effects of strong pinning centers on a charge density wave in the limit that the charge density wave coherence length is shorter than the average interimpurity distance. An analysis based on a Ginzburg-Landau model shows that long-range forces arising from the elastic response of the charge density wave induce a kind of collective pinning which suppresses impurity-induced phase fluctuations, leading to a long-range ordered ground state. The correlations induced by impurities are characterized by a length scale parametrically longer than the average interimpurity distance. Long-wavelength fluctuations are found to be gapped, implying the stability of the ground state. We also present Monte Carlo simulations that confirm the basic features of the analytical results.

  16. Stochastic dilution effects weaken deterministic effects of niche-based processes in species rich forests.

    PubMed

    Wang, Xugao; Wiegand, Thorsten; Kraft, Nathan J B; Swenson, Nathan G; Davies, Stuart J; Hao, Zhanqing; Howe, Robert; Lin, Yiching; Ma, Keping; Mi, Xiangcheng; Su, Sheng-Hsin; Sun, I-fang; Wolf, Amy

    2016-02-01

    Recent theory predicts that stochastic dilution effects may result in species-rich communities with statistically independent species spatial distributions, even if the underlying ecological processes structuring the community are driven by deterministic niche differences. Stochastic dilution is a consequence of the stochastic geometry of biodiversity where the identities of the nearest neighbors of individuals of a given species are largely unpredictable. Under such circumstances, the outcome of deterministic species interactions may vary greatly among individuals of a given species. Consequently, nonrandom patterns in the biotic neighborhoods of species, which might be expected from coexistence or community assembly theory (e.g., individuals of a given species are neighbored by phylogenetically similar species), are weakened or do not emerge, resulting in statistical independence of species spatial distributions. We used data on phylogenetic and functional similarity of tree species in five large forest dynamics plots located across a gradient of species richness to test predictions of the stochastic dilution hypothesis. To quantify the biotic neighborhood of a focal species we used the mean phylogenetic (or functional) dissimilarity of the individuals of the focal species to all species within a local neighborhood. We then compared the biotic neighborhood of species to predictions from stochastic null models to test if a focal species was surrounded by more or less similar species than expected by chance. The proportions of focal species that showed spatial independence with respect to their biotic neighborhoods increased with total species richness. Locally dominant, high-abundance species were more likely to be surrounded by species that were statistically more similar or more dissimilar than expected by chance. Our results suggest that stochasticity may play a stronger role in shaping the spatial structure of species rich tropical forest communities than it

  17. Effective mass of a charged carrier in a nonpolar liquid: Snowball effect in superfluid helium

    SciTech Connect

    Chikina, I.; Varlamov, A. A.

    2007-05-01

    The problem of a correct definition of the charged carrier effective mass in superfluid helium is revised. It is shown that the effective mass of such a quasiparticle can be introduced without Atkins's idea about the solidification of liquid He{sup 4} in the close vicinity of an ion (the so-called ''snowball'' model). Moreover, in addition to the generalization of Atkins's model, the charged carrier effective mass formation is considered within the framework of the two-fluid scenario. The physical reasons of the normal-fluid contribution divergency and the way of the corresponding regularization procedure are discussed. Agreement between the theory and the available experimental data is found in a wide range of temperatures.

  18. Effective mass of a charged carrier in a nonpolar liquid: Snowball effect in superfluid helium

    NASA Astrophysics Data System (ADS)

    Chikina, I.; Shikin, V.; Varlamov, A. A.

    2007-05-01

    The problem of a correct definition of the charged carrier effective mass in superfluid helium is revised. It is shown that the effective mass of such a quasiparticle can be introduced without Atkins’s idea about the solidification of liquid He4 in the close vicinity of an ion (the so-called “snowball” model). Moreover, in addition to the generalization of Atkins’s model, the charged carrier effective mass formation is considered within the framework of the two-fluid scenario. The physical reasons of the normal-fluid contribution divergency and the way of the corresponding regularization procedure are discussed. Agreement between the theory and the available experimental data is found in a wide range of temperatures.

  19. Hall effect in gallium manganese arsenide-diluted magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Ruzmetov, Dmitry A.

    A series of GaMnAs samples with various Mn concentrations and thicknesses is extensively studied in this thesis. The influence of annealing on the magnetic, lattice, and electron transport properties of GaMnAs is investigated. X-ray analysis allowed the lattice constants and the strains due to the lattice mismatch between the GaMnAs film and a GaAs substrate for each sample to be determined. Magnetometric measurements confirm the expected anisotropic ferromagnetic characteristics of these semiconductors, and the measured magnetization in hard and easy axis directions indicates that only around 40% of Mn ions contribute to the ferromagnetism. As a result of the study of the electron transport in GaMnAs at high temperatures, we found that the anomalous contribution to the Hall resistivity dominates over the ordinary contribution up to 380 K in our samples. The measured Hall coefficient of metallic samples with low Mn content above the Curie temperature (TC) can be fit with a model that takes into account the ordinary and anomalous contributions to the Hall resistivity. According to our model, the spontaneous Hall coefficient (RS) in our samples is proportional to the square of the longitudinal resistivity above TC, which corresponds to a temperature-independent Hall conductivity, and we checked for one sample that this form of RS holds also at the liquid He temperature. This indicates that the physical mechanism responsible for the anomalous Hall effect (AHE) remains unchanged in the transition from ferromagnetic to paramagnetic phases of the semiconductor. It is found that the temperature dependence of the AHE above TC can be described except for RS(T) with the Curie-Weiss law for the paramagnetic susceptibility with the inclusion of a small, negative, temperature and Mn content independent correction to the susceptibility, which may originate from the diamagnetism of the GaAs matrix. The good agreement between the measured and fitting Hall data suggests that the

  20. Effects of liquid helium bubble formation in a superconducting cavity cryogenic system

    SciTech Connect

    Chang, X.; Wang, E.; Xin, T.

    2011-03-01

    We constructed a simple prototype model based on the geometry of the 56 MHz superconducting cavity for RHIC. We studied the formation, in this prototype, of bubbles of liquid helium and their thermal effects on the cavity. We found that due to the low viscosity of the liquid helium, and its small surface tension, no large bubbles formed. The tiny bubbles, generated from most of the area, behaved like light gas travelling in a free space and escaped from the trapping region. The bubbles that were generated in the trapping area, due to its descending geometry, are much bigger than the other bubbles, but due to the liquid flow generated by heating, they still are negligible compared to the size of the trapping region. We expected that the effects of bubbles in our 56 MHz cavity during operation might well be negligible.

  1. Broadband microwave absorption and standing wave effect in helium capacitively coupled plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Yachun; He, Xiang; Chen, Jianping; Chen, Li; Zhang, Hongchao; Ni, Xiaowu; Lu, Jian; Shen, Zhonghua

    2017-08-01

    The broadband microwave absorption of a large volume helium plasma, which is generated by two parallel rectangular plates based on the principle of capacitively coupled plasma (CCP) is developed in this paper. The transmission attenuation is simulated by the combination of the time-dependent fluid model and dispersion equation, and measured by a high dynamic range measurement system in a frequency range of 1 -12 GHz . The results show that the plasma can absorb microwave energy efficiently, especially in the frequency range of 1 -5 GHz , where the transmission attenuation is more than -5 dB . The attenuation increases with gas pressures and applied voltages. Besides, the standing wave effect in plasma can increase the microwave absorption effectively. The numerical and experimental results have a qualitative agreement, and these characteristics suggest that the helium CCP has tremendous potential to be applied in plasma stealth.

  2. Cluster dynamics modeling of the effect of high dose irradiation and helium on the microstructure of austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Brimbal, Daniel; Fournier, Lionel; Barbu, Alain

    2016-01-01

    A mean field cluster dynamics model has been developed in order to study the effect of high dose irradiation and helium on the microstructural evolution of metals. In this model, self-interstitial clusters, stacking-fault tetrahedra and helium-vacancy clusters are taken into account, in a configuration well adapted to austenitic stainless steels. For small helium-vacancy cluster sizes, the densities of each small cluster are calculated. However, for large sizes, only the mean number of helium atoms per cluster size is calculated. This aspect allows us to calculate the evolution of the microstructural features up to high irradiation doses in a few minutes. It is shown that the presence of stacking-fault tetrahedra notably reduces cavity sizes below 400 °C, but they have little influence on the microstructure above this temperature. The binding energies of vacancies to cavities are calculated using a new method essentially based on ab initio data. It is shown that helium has little effect on the cavity microstructure at 300 °C. However, at higher temperatures, even small helium production rates such as those typical of sodium-fast-reactors induce a notable increase in cavity density compared to an irradiation without helium.

  3. Subtask 12G2: Effects of dynamically charged helium on tensile properties of V-4Cr-4Ti

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Nowicki, L.; Smith, D.L.

    1995-03-01

    The objective of this work is to determine the effect of displacement damage and dynamically charged helium on tensile properties of V-4Cr-4Ti alloy irradiated to 18-31 dpa at 425-600{degrees}C in the Dynamic Helium Charging Experiment (DHCE). One property of vanadium-base alloys that is not well understood in terms of their potential use as fusion reactor structural materials is the effect of simultaneous generation of helium and neutron damage under conditions relevant to fusion reactor operation. In the present Dynamic Helium Charging Experiment (DHCE), helium was produced uniformly in the specimen at linear rates of {approx}0.4 to 4.2 appm helium/dpa by the decay of tritium during irradiation to 18-31 dpa at 425-600{degrees}C in the Li-filled DHCE capsules in the Fast Flux Test Facility. This report presents results of postirradiation tests of tensile properties of V-4Cr-4Ti, an alloy identified as the most promising vanadium-base alloy for fusion reactors on the basis of its superior baseline and irradiation properties. Effects of helium on tensile strength and ductility were insignificant after irradiation and testing at >420{degrees}C. Contrary to initial expectation, room-temperature ductilities of DHCE specimens were higher than those of non-DHCE specimens (in which there was negligible helium generation), whereas strengths were lower, indicating that different types of hardening centers are produced during DHCE and non-DHCE irradiation. In strong contrast to tritium-trick experiments in which dense coalescence of helium bubbles is produced on grain boundaries in the absence of displacement damage, no intergranular fracture was observed in any tensile specimens irradiated in the DHCE. 25 refs., 2 figs., 3 tabs.

  4. Subtask 12G1: Effects of dynamically charged helium on swelling and microstructure of vanadium-base alloys

    SciTech Connect

    Chung, H.M.; Nowicki, L.; Gazda, J.; Smith, D.L.

    1995-03-01

    The objective of this work is to determine void structure, distribution, and density changes of several vanadium-base alloys irradiated in the Dynamic Helium Charging Experiment (DHCE). Combined effects of dynamically charged helium and neutron damage on density change, void distribution, and microstructural evolution of V-4Cr-4Ti alloy have been determined after irradiation to 18-31 dpa at 425-600{degrees}C in the DHCE, and the results compared with those from a non-DHCE in which helium generation was negligible. For specimens irradiated to {approx}18-31 dpa at 500-600{degrees}C with a helium generation rate of 0.4-4.2 appm He/dpa, only a few helium bubbles were observed at the interface of grain matrices and some of the Ti(O,N,C) precipitates, and no microvoids or helium bubbles were observed either in grain matrices or near grain boundaries. Under these conditions, dynamically produced helium atoms seem to be trapped in the grain matrix without significant bubble nucleation or growth, and in accordance with this, density changes from DHCE and non-DHCE (negligible helium generation) were similar for comparable fluence and irradiation temperature. Only for specimens irradiated to {approx}31 dpa at 425{degrees}C, when helium was generated at a rate of 0.4-0.8 appm helium/dpa, were diffuse helium bubbles observed in limited regions of grain matrices and near {approx}15% of the grain boundaries in densities significantly lower than those in the extensive coalescences of helium bubbles typical of other alloys irradiated in tritium-trick experiments. Density changes of specimens irradiated at 425{degrees}C in the DHCE were significantly higher than those from non-DHCE irradiation. Microstructural evolution in V-4Cr-4Ti was similar for DHCE and non-DHCE except for helium bubble number density and distribution. As in non-DHCE, the irradiation-induced precipitation of ultrafine Ti{sub 5}Si{sub 3} was observed for DHCE at >500{degrees}C but not at 425{degrees}C.

  5. Osteoinductive porous titanium implants: effect of sodium removal by dilute HCl treatment.

    PubMed

    Takemoto, Mitsuru; Fujibayashi, Shunsuke; Neo, Masashi; Suzuki, Jun; Matsushita, Tomiharu; Kokubo, Tadashi; Nakamura, Takashi

    2006-05-01

    In a previous study, we observed that chemically and thermally treated plasma-sprayed porous titanium possesses intrinsic osteoinductivity and that bone formation occurs after 12 months in the muscles of beagle dogs. The aim of this study was to optimize the surface treatment and to accelerate the osteoinductivity. Previous studies have reported that sodium removal converts the sodium titanate layer on the surface of an alkali-treated titanium plate into a more bioactive titania layer. In this study, we developed a dilute hydrochloric acid (HCl) treatment for porous titanium, which removed sodium from the complexly shaped porous structure more effectively than conventional hot water treatment. Three types of surface treatments were applied: (a) alkali and heat treatment (AH treatment); (b) alkali, hot water, and heat treatment (Water-AH treatment); and (c) alkali, dilute HCl, hot water, and heat treatment (HCl-AH treatment). The osteoinductivity of the materials implanted in the back muscles of adult beagle dogs was examined at 3, 6, and 12 months. The HCl-AH-treated porous bioactive titanium implant had the highest osteoinductivity, with induction of a large amount of bone formation within 3 months. The dilute HCl treatment was considered to give both chemical (titania formation and sodium removal) and topographic (etching) effects on the titanium surface, although we cannot determine which is the predominant factor. Nevertheless, adding the dilute HCl treatment to the conventional chemical and thermal treatments is a promising candidate for advanced surface treatment of porous titanium implants.

  6. Cosmological recombination: feedback of helium photons and its effect on the recombination spectrum

    NASA Astrophysics Data System (ADS)

    Chluba, J.; Sunyaev, R. A.

    2010-02-01

    In this paper, we consider the reprocessing of high-frequency photons emitted by HeII and HeI during the epoch of cosmological recombination by HeI and HI. We demonstrate that, in comparison to computations which neglect all feedback processes, the number of cosmological recombination photons that are related to the presence of helium in the early Universe could be increased by ~40-70 per cent. Our computations imply that per helium nucleus ~3-6 additional photons could be produced. Therefore, a total of ~12-14 helium-related photons per helium atom are emitted during cosmological recombination. This is an important addition to cosmological recombination spectrum which in the future may render it slightly easier to determine the primordial abundance of helium using differential measurements of the cosmic microwave background (CMB) energy spectrum. Also, since these photons are the only witnesses of the feedback process at high redshift, observing them in principle offers a way to check our understanding of the recombination physics. Here, most interestingly, the feedback of HeII photons on HeI leads to the appearance of several additional, rather narrow spectral features in the HeI recombination spectrum at low frequencies. Consequently, the signatures of helium-related features in the CMB spectral distortion from cosmological recombination at some given frequency can exceed the average level of ~17 per cent several times. We find that in particular the bands around ν ~ 10, ~35, ~80 and ~200GHz seem to be affected strongly. In addition, we computed the changes in the cosmological ionization history, finding that only the feedback of primary HeI photons on the dynamics of HeII -> HeI recombination has an effect, producing a change of ΔNe/Ne ~ +0.17 per cent at z ~ 2300. This result seems to be ~2-3 times smaller than the one obtained in earlier computations for this process, however, the difference will not be very important for the analysis of future CMB data.

  7. Charge Dependent Effects in Double-Photo-Ionization of Helium-Like Ions

    NASA Astrophysics Data System (ADS)

    Foster, Matt; Colgan, James

    2006-10-01

    A study is made of triple differential cross sections (TDCS) for double-photo-ionization (DPI) of helium-like ions. The angular distribution between the equal energy outgoing electrons is examined as a function of the nuclear target charge. Time-dependent close-coupling theory (TDCC) will be used to solve the time-dependent Schr"odinger equation for both outgoing electrons. The TDCC method treats the correlation between the electrons without approximation. Previous theoretical models that have calculated the TDCS for helium-like ions have only included the electron-electron interaction through approximate perturbative methods. We will analyze the effects of the electron correlation and its dependence relative to the nuclear charge. We will compare our calculations with previous experimental and theoretical work, where available.

  8. A controlled approach to the emotional dilution of the Stroop effect.

    PubMed

    Fackrell, Kathryn; Edmondson-Jones, Mark; Hall, Deborah A

    2013-01-01

    We re-examined a modified emotional Stroop task that included an additional colour-word alongside the emotional word, providing the response conflict of the traditional Stroop task. Negative emotionally salient (i.e. unpleasant') words are claimed to capture attention, producing a smaller Stroop effect for negative words compared to neutral words; this phenomenon is called the emotional dilution of the Stroop effect. To address previous limitations, this study compared negative words with lexically matched neutral words in a powered sample of 45 participants. Results demonstrated an emotional Stroop effect (slower colour-naming responses for negative words) and a traditional Stroop effect but not an emotional dilution of the Stroop effect. This finding is at odds with claims that other processing resources are diminished through the failure to disengage attention from emotional information. No matter how attention towards emotional information builds up over time, our findings indicate that attentional resources are not fully captured by negative words.

  9. Effects of helium-oxygen mixtures on endotracheal tubes: an in vitro study.

    PubMed

    Gerbeaux, Patrick; Gainnier, Marc; Arnal, Jean-Michel; Papazian, Laurent; Jean, Philippe; Sainty, Jean-Marie

    2005-01-01

    To determine flow pattern and critical Reynolds numbers in endotracheal tubes submitted to different helium-oxygen mixtures under laboratory conditions. Flow-pressure relationships were performed for seven endotracheal tubes (rectilinear position, entry length applied) with distal end open to atmosphere (predicted internal diameters: 6-9 mm). Nine helium-oxygen mixtures were tested, with FIHe varying from zero to 0.78 (increment: 10%). Nine flows were tested, with rates varying from 0.25 to 1.60 l s(-1) (increment: 0.15 l s(-1)). Gas flow resistance was calculated, and for each endotracheal tube, a Moody diagram was realised. Flow regime and critical Reynolds numbers were then determined (fully established laminar, nonestablished laminar, smooth turbulent, or rough). Even low concentration of helium in inspiratory mixture reduces endotracheal tubes resistance. Effect is maximal for high flows, small tube and high FIHe. Critical Reynolds numbers are inversely correlated to tube diameter. Under laboratory conditions, flow pattern in endotracheal tubes varies from fully established laminar to rough. Knowledge of the critical Reynolds numbers allows correct application of fluid mechanic formula when studying tube or gaseous mixture effects on respiratory mechanisms.

  10. Dilution rates for tailpipe emissions: effects of vehicle shape, tailpipe position, and exhaust velocity.

    PubMed

    Chang, Victor W C; Hildemann, Lynn M; Chang, Cheng-hisn

    2009-06-01

    The rate at which motor vehicle exhaust undergoes dilution with ambient air will greatly affect the size distribution characteristics of the particulate emissions. Wind tunnel experiments were conducted to investigate the impacts of vehicle shape, tailpipe orientation, and exhaust exit velocity on the dilution profiles under steady driving conditions for three model vehicles: a light-duty truck, a passenger car, and a heavy-duty tractor head. A three dimensional array of 60 sensors provided simultaneous measurements of dilution ratios for the emissions in the near- and far-wake regions downstream of the vehicle. The processes underlying the observations were investigated via nondimensionalization. Many of the trends seen substantially downstream can be well generalized using a simple nondimensionalization technique; however, this is not true in the near-wake region (within a downstream distance equivalent to a few vehicle heights). In the near-wake region, using the vehicle width and length to normalize for the vehicle shape is not enough to fully account for the variations seen. Including the exhaust flow rate in the nondimensionalization process is effective further downwind but does not adequately capture the complexity in the near-wake region. Tailpipe orientation and location are also shown to be influential factors affecting the near-wake dilution characteristics.

  11. Effect of diluting agent on sensitivity in capillary electrophoresis with amperometric detection.

    PubMed

    Wang, Qingjiang; Ding, Fei; Li, Hui; He, Pingang; Fang, Yuzhi

    2003-05-01

    Besides the running buffer, pH of buffer, separation voltage and sampling time, the diluting agent was studied in this paper as one of the important factors influencing the sensitivity in capillary electrophoresis (CE) with amperometric detection (AD) when electrokinectic sampling was used. Clonidine hydrochloride, hydrochlorothiazide and rutin, which are positively charged, neutral and negatively charged, respectively, in aqueous solutions, could be perfectly separated by CE with 25 mmol x L(-1) Na(2)B(4)O(7) - 50 mmol x L(-1) NaH(2)PO(4) as running buffer and detected by measuring their current responses with AD. Before CE running, some kinds of diluents including water, methanol, formamide, running buffer, hydrochloric acid and sodium hydroxide were, respectively, applied to dilute the stock solutions of above three analytes and their effects on the sensitivity of CE-AD were investigated. The results showed that for electrokinetic injection, the current responses of these three analytes were greatly affected in different ways when different diluting agents were used. This method was applied to simultaneously determine the active ingredients in one Chinese compound hypotensor named Zhen Ju Jiang Ya Pian, in which the contents of clonidine hydrochloride, hydrochlorothiazide and rutin is very different as 0.03 mg : 5 mg : 20 mg per tablet, and satisfactory results were obtained by adjusting their sensitivity by selecting the suitable diluting agent.

  12. Dilution effect in bovine tuberculosis: risk factors for regional disease occurrence in Africa.

    PubMed

    Huang, Zheng Y X; de Boer, Willem F; van Langevelde, Frank; Xu, Chi; Ben Jebara, Karim; Berlingieri, Francesco; Prins, Herbert H T

    2013-08-22

    Changes in host diversity have been postulated to influence the risk of infectious diseases, including both dilution and amplification effects. The dilution effect refers to a negative relationship between biodiversity and disease risk, whereas the amplification effect occurs when biodiversity increases disease risk. We tested these effects with an influential disease, bovine tuberculosis (BTB), which is widespread in many countries, causing severe economic losses. Based on the BTB outbreak data in cattle from 2005 to 2010, we also tested, using generalized linear mixed models, which other factors were associated with the regional BTB presence in cattle in Africa. The interdependencies of predictors and their correlations with BTB presence were examined using path analysis. Our results suggested a dilution effect, where increased mammal species richness was associated with reduced probability of BTB presence after adjustment for cattle density. In addition, our results also suggested that areas with BTB infection in the preceding year, higher cattle density and larger percentage of area occupied by African buffalo were more likely to report BTB outbreaks. Climatic variables only indirectly influenced the risk of BTB presence through their effects on cattle density and wildlife distribution. Since most studies investigating the role of wildlife species on BTB transmission only involve single-species analysis, more efforts are needed to better understand the effect of the structure of wildlife communities on BTB dynamics.

  13. Stability and preservative effectiveness of treprostinil sodium after dilution in common intravenous diluents.

    PubMed

    Phares, Kenneth R; Weiser, William E; Miller, Stephen P; Myers, Melissa A; Wade, Michael

    2003-05-01

    The stability of treprostinil sodium after dilution in three common i.v. infusion vehicles was assessed. The chemical stability of treprostinil sodium was tested over a 48-hour period at 40 degrees C and 75% relative humidity after dilution in each of three diluents: sterile water for injection, 0.9% sodium chloride injection, and 5% dextrose injection, and after passage through an i.v. delivery system. Chemical analysis was conducted by using a validated stability-indicating high-performance liquid chromatographic assay, visually inspecting the solutions, and measuring the pH of each solution. The preservative effectiveness of the solutions was tested by the recovery of inoculations of compendial microorganisms after 48 hours in dilute solutions of treprostinil sodium. All assay results for treprostinil were within 90.0% to 110.0% of the prepared solutions diluted at 0.004 and 0.13 mg/mL treprostinil sodium in sterile water for injection and 0.9% sodium chloride injection. The assay results were the same for dilute treprostinil solutions in 5% dextrose injection at concentrations of 0.02 and 0.13 mg/mL. The pH values for these solutions remained within acceptable values of 6.0 to 7.2 for the stability study. No change in physical appearance or any visible particulate matter was observed. Approximately 70% of metacresol, the preservative, in the dilute treprostinil sodium solutions was removed before reaching the terminal end of the tubing. None of the dilute treprostinil sodium solutions supported microbial growth in the cassette reservoirs for the organisms considered. Treprostinil sodium 0.13 mg/mL solution in sterile water for injection, 0.9% sodium chloride for injection, and 5% dextrose for injection appeared to be stable after storage in controlled ambulatory drug-delivery systems for 48 hours at 40 degrees C and 75% relative humidity. Treprostinil sodium 0.004 mg/mL in sterile water and 0.9% sodium chloride for injection and 0.02 mg/mL in 5% dextrose

  14. Biological effects and toxicity of diluted bitumen and its constituents in freshwater systems.

    PubMed

    Dew, William A; Hontela, Alice; Rood, Stewart B; Pyle, Greg G

    2015-11-01

    Approximately 50 billion cubic meters of bitumen resides within the oil sands region of Alberta, Canada. To facilitate the transport of bitumen from where it is extracted to where it is processed, the bitumen is diluted with natural gas condensate ('dilbit'), synthetic crude from hydrocracking bitumen ('synbit'), or a mixture of both ('dilsynbit'). A primary consideration for the effects of diluted bitumen products on freshwater organisms and ecosystems is whether it will float on the water surface or sink and interact with the stream or lake sediments. Evidence from a spill near Kalamazoo, MI, in 2010 and laboratory testing demonstrate that the nature of the spill and weathering of the dilbit, synbit or dilsynbit prior to and during contact with water will dictate whether the product floats or sinks. Subsequent toxicological data on the effects of dilbit and other diluted bitumen products on freshwater organisms and ecosystems are scarce. However, the current literature indicates that dilbit or bitumen can have significant effects on a wide variety of toxicological endpoints. This review synthesizes the currently available literature concerning the fate and effects of dilbit and synbit spilled into freshwater, and the effects of bitumen and bitumen products on aquatic organisms and ecosystems. Dilbit is likely to provide ecological impacts that are similar to and extend from those that follow from exposure to lighter crude oil, but the prospect of bitumen settling after binding to suspended sediments elevates the risk for benthic impacts in streams and lakes.

  15. Helium ion irradiation behavior of Ni-1wt.%SiCNP composite and the effect of ion flux

    NASA Astrophysics Data System (ADS)

    Zhou, X. L.; Huang, H. F.; Xie, R.; Thorogood, G. J.; Yang, C.; Li, Z. J.; Xu, H. J.

    2015-12-01

    Silicon carbide nanoparticle-reinforced nickel metal (Ni-SiCNP composite) samples were bombarded by helium ions with fluences of 1 × 1016 and 3 × 1016 ions/cm2 at two different fluxes. The microstructural and mechanical changes were characterized via TEM and nanoindentation. Nano-scaled helium bubbles in the shape of spheres were observed in the samples irradiated at high flux and polygons at low flux. The number of helium bubbles increased with the fluence, whereas their mean size remained unaffected. In addition, the nanohardness of the damage layer also increased as the fluence increased. In addition this study suggests that a higher flux results in a higher number of smaller helium bubbles, while showing no obvious effect on the irradiation-induced hardening of the materials.

  16. The Effects of Helium Bubble Microstructure on Ductility in Annealed and HERF 21Cr-6Ni-9Mn Stainless Steel

    SciTech Connect

    Tosten, M.H.; Morgan, M.J.

    1998-01-01

    This study examined the effects of microstructure on the ambient temperature embrittlement from hydrogen isotopes and decay helium in 21Cr-6Ni-9Mn stainless steel. Hydrogen and tritium-exposed 21Cr-6Ni-9Mn stainless steel tensile samples were pulled to failure and then characterized by transmission electron microscopy (TEM) and optical microscopy. This study determined that ductility differences between annealed and high-energy-rate-forged (HERF) stainless steel containing tritium and its decay product, helium, could be related to differences in the helium bubble microstructures. The HERF microstructures were more resistant to tritium-induced embrittlement than annealed microstructures because the high number density of helium bubbles on dislocations trap tritium within the matrix and away from the grain boundaries.

  17. Effects of particle transport on helium ash accumulation and sustained ignition in the ITER (International Tokamak Experimental Reactor) design

    SciTech Connect

    Redi, M.H.; Cohen, S.A.

    1990-01-01

    The buildup of helium ash in the proposed ITER experiment has been studied in a series of simulations with the BALDUR transport code. Using radially dependent thermal diffusivities which were scaled from JET values, we studied the role of particle transport coefficients and edge recycling on helium poisoning of ignition. A sustained ignition was obtained when the exhaust of helium from the edge plasma was allowed to exceed 10% of the helium flux into the edge plasma from the core plasma, and the ratio of particle (He ion) to thermal diffusivities, D/{chi}, was larger than 1/4. The simulations included the effects of sawtooth oscillations, radiative as well as conductive energy loss channels, and density profile variations. 29 refs., 11 figs.

  18. Site dilution in SrRuO3: effects on structural and magnetic properties

    NASA Astrophysics Data System (ADS)

    Gupta, Renu; Pramanik, A. K.

    2017-03-01

    We have investigated the effect of site dilution with substitution of nonmagnetic element in SrRu1‑x Ti x O3 (x  ⩽  0.7). The nature of ferromagnetic state in SrRuO3 is believed to be of itinerant type with transition temperature {{T}\\text{c}}∼ 162 K. Crystallographically, SrRuO3 has a distorted orthorhombic structure. Substitution of \\text{T}{{\\text{i}}+4} (3d 0) for Ru+4 (4d 4), however, does not introduce significant structural modification due to their matching ionic radii. This substitution, on the other hand, is expected to tune the electronic correlation effect and the d electron density in the system. With Ti substitution, we find that magnetic moment and Curie temperature decreases but T c remains unchanged which has been attributed to opposite tuning of electron correlation effect and density of states within the framework of itinerant ferromagnetism. The estimated critical exponent (β) related to magnetization implies a mean-field type of magnetic nature in SrRuO3. The value of β further increases with x which is understood from the dilution effect of magnetic lattice. The system evolves to exhibit Griffiths phase like behavior above T c which is usually realized in diluted ferromagnet following local moment model of magnetism. Our detail analysis of magnetization data indicates that magnetic state in SrRuO3 has contribution from both itinerant and local moment model of magnetism.

  19. Helium effects on irradiation dmage in V alloys

    SciTech Connect

    Doraiswamy, N.; Alexander, D.

    1996-10-01

    Preliminary investigations were performed on V-4Cr-4Ti samples to observe the effects of He on the irradiation induced microstructural changes by subjecting 3 mm electropolished V-4Cr-4Ti TEM disks, with and without prior He implantation, to 200 keV He irradiation at room temperature and monitoring, in-situ, the microstructural evolution as a function of total dose with an intermediate voltage electron microscope directly connected to an ion implanter. A high density of black dot defects were formed at very low doses in both He pre-implanted and unimplanted samples.

  20. Effects of Synthetic Versus Natural Colloid Resuscitation on Inducing Dilutional Coagulopathy and Increasing Hemorrhage in Rabbits

    DTIC Science & Technology

    2008-05-01

    data are consistent with several in vitro studies in which blood was diluted with hydroxyethyl starch , gelatin , al- bumin or dextran, and coagulation...profound haemodilution with hydroxyethyl starch 6%, modified fluid gelatin 4% and dextran 40 10% on coagulation profile measured by thromboelastography...effects of gelatin solutions on platelet function: a comparison with hydroxyethyl starch solutions. Anaesthesia. 2005;60:554–559. 55. Deusch E, Gamsjager T

  1. Temperature and Atomic Oxygen Effects on Helium Leak Rates of a Candidate Main Interface Seal

    NASA Technical Reports Server (NTRS)

    Penney, Nicholas; Wasowski, Janice L.; Daniels, Christopher C.

    2011-01-01

    Helium leak tests were completed to characterize the leak rate of a 54 in. diameter composite space docking seal design in support of the National Aeronautics and Space Administration s (NASA's) Low Impact Docking System (LIDS). The evaluated seal design was a candidate for the main interface seal on the LIDS, which would be compressed between two vehicles, while docked, to prevent the escape of breathable air from the vehicles and into the vacuum of space. Leak tests completed at nominal temperatures of -30, 20, and 50 C on untreated and atomic oxygen (AO) exposed test samples were examined to determine the influence of both test temperature and AO exposure on the performance of the composite seal assembly. Results obtained for untreated seal samples showed leak rates which increased with increased test temperature. This general trend was not observed in tests of the AO exposed specimens. Initial examination of collected test data suggested that AO exposure resulted in higher helium leak rates, however, further analysis showed that the differences observed in the 20 and 50 C tests between the untreated and AO exposed samples were within the experimental error of the test method. Lack of discernable trends in the test data prevented concrete conclusions about the effects of test temperature and AO exposure on helium leak rates of the candidate seal design from being drawn. To facilitate a comparison of the current test data with results from previous leak tests using air as the test fluid, helium leak rates were converted to air leak rates using standard conversion factors for viscous and molecular flow. Flow rates calculated using the viscous flow conversion factor were significantly higher than the experimental air leakage values, whereas values calculated using the molecular flow conversion factor were significantly lower than the experimentally obtained air leak rates. The difference in these sets of converted flow rates and their deviation from the

  2. Spectroscopic study of energetic helium-ion irradiation effects on nuclear graphite tiles

    NASA Astrophysics Data System (ADS)

    Kim, Do Wan; Lee, K. W.; Choi, D. M.; Noh, S. J.; Kim, H. S.; Lee, Cheol Eui

    2016-02-01

    Helium ion-irradiation effects on the nuclear graphite tiles were studied in order to understand the structural modifications and damages that can be produced by fusion reaction in tokamaks. The surface morphological changes due to increasing dose of the irradiation were examined by the field-effect scanning electron microscopy, and X-ray photoelectron spectroscopy elucidated the changes in the shallow surface bonding configurations caused by the energetic irradiation. Raman spectroscopy revealed the structural defects and diamond-like carbon sites that increased with increasing irradiation dose, and the average inter-defect distance was found from the Raman peak intensities as a function of the irradiation dose.

  3. Cytotoxic effects of ultra-diluted remedies on breast cancer cells.

    PubMed

    Frenkel, Moshe; Mishra, Bal Mukund; Sen, Subrata; Yang, Peiying; Pawlus, Alison; Vence, Luis; Leblanc, Aimee; Cohen, Lorenzo; Banerji, Pratip; Banerji, Prasanta

    2010-02-01

    The use of ultra-diluted natural products in the management of disease and treatment of cancer has generated a lot of interest and controversy. We conducted an in vitro study to determine if products prescribed by a clinic in India have any effect on breast cancer cell lines. We studied four ultra-diluted remedies (Carcinosin, Phytolacca, Conium and Thuja) against two human breast adenocarcinoma cell lines (MCF-7 and MDA-MB-231) and a cell line derived from immortalized normal human mammary epithelial cells (HMLE). The remedies exerted preferential cytotoxic effects against the two breast cancer cell lines, causing cell cycle delay/arrest and apoptosis. These effects were accompanied by altered expression of the cell cycle regulatory proteins, including downregulation of phosphorylated Rb and upregulation of the CDK inhibitor p27, which were likely responsible for the cell cycle delay/arrest as well as induction of the apoptotic cascade that manifested in the activation of caspase 7 and cleavage of PARP in the treated cells. The findings demonstrate biological activity of these natural products when presented at ultra-diluted doses. Further in-depth studies with additional cell lines and animal models are warranted to explore the clinical applicability of these agents.

  4. A Observational Study of the Austral Spring Stratosphere: Dynamics, Ozone Transport and the Ozone Dilution Effect.

    NASA Astrophysics Data System (ADS)

    Atkinson, Roger John

    In the present work, we have carried out an observational investigation of the ozone dilution issue, by examining the evolution of the austral spring stratosphere in each year from 1979 to 1989. The December 1987 event is first examined in more detail. A coordinate transformation technique is used on SAGE ozone data to obtain a three-dimensional description of the hemispheric ozone distribution immediately prior to the event. Contour advection with surgery (CAS) is used to describe the stratospheric material evolution during the period of the event, and this provides a detailed description of the quasi-horizontal ozone transports which occurred. The 'potential vorticity tendency' form of the quasi-geostrophic omega equation is solved to provide insight into the horizontal scales and vertical domain of the dynamical processes primarily responsible for the component of the total ozone changes due to vertical advection. Finally, by imposing a 'no ozone hole' ozone distribution during the period, and comparing the implied ozone changes with those obtained from the unmodified reconstruction, we isolate the component of the observed ozone changes attributable to their presence of Antarctic ozone depletion. The analysis reveals that the event contained a significant ozone dilution component, and that a smaller but more widespread effect may have followed during the latter part of the month. This subsequent period is next examined more briefly to provide a crude estimate of the overall impact of the 1987 Antarctic ozone hole on the summertime mid-latitude ozone column. The broader issue of ozone dilution occurring in other years, and at other stages of the season, is then considered. A synoptic analysis of the springtime dynamical evolution each year is performed to identify other potential dilution events. The springtime SAGE ozone data from 1979 to 1989 are used, via the coordinate transformation technique, to provide a detailed description of the day-to-day evolution of

  5. Effects of dilution rates, animal species and instruments on the spectrophotometric determination of sperm counts.

    PubMed

    Rondeau, M; Rouleau, M

    1981-06-01

    Using semen from bull, boar and stallion as well as different spectrophotometers, we established the calibration curves relating the optical density of a sperm sample to the sperm count obtained on the hemacytometer. The results show that, for a given spectrophotometer, the calibration curve is not characteristic of the animal species we studied. The differences in size of the spermatozoa are probably too small to account for the anticipated specificity of the calibration curve. Furthermore, the fact that different dilution rates must be used, because of the vastly different concentrations of spermatozoa which is characteristic of those species, has no effect on the calibration curves since the dilution rate is shown to be artefactual. On the other hand, for a given semen, the calibration curve varies depending upon the spectrophotometry used. However, if two instruments have the same characteristic in terms of spectral bandwidth, the calibration curves are not statistically different.

  6. The effective surface energy of heterogeneous solids measured by inverse gas chromatography at infinite dilution.

    PubMed

    Sun, Chenhang; Berg, John C

    2003-04-15

    Inverse gas chromatography (IGC) at infinite dilution has been widely used to access the nonspecific surface free energy of solid materials. Since most practical surfaces are heterogeneous, the effective surface energy given by IGC at infinite dilution is somehow averaged over the whole sample surface, but the rule of averaging has thus far not been established. To address this problem, infinite dilution IGC analysis was carried out on mixtures of known heterogeneity. These materials are obtained by mixing two types of solid particles with significantly different surface energies as characterized individually with IGC, and results are obtained for binary combinations in varying proportions. It is found that when all surface components have the same accessibility by probe molecules, the effective surface energy of such a heterogeneous surface is related to the surface energy distribution by a square root linear relationship, square root sigma(eff)(LW)= summation operator (i)phi(i) square root sigma(i)(LW), where sigma(i)(LW) refers to the nonspecific (Lifshitz-van der Waals) surface energy of patches i, and phi(i) to their area fraction.

  7. Effect of methodology, dilution, and exposure time on the tuberculocidal activity of glutaraldehyde-based disinfectants.

    PubMed Central

    Cole, E C; Rutala, W A; Nessen, L; Wannamaker, N S; Weber, D J

    1990-01-01

    The Association of Official Analytical Chemists (AOAC) test for assessing the tuberculocidal activity of disinfectants has been shown to be variable. A modified AOAC test, which substituted Middlebrook 7H9 broth as the primary subculture medium and used neutralization by dilution, was compared with the standard AOAC method to assess the mycobactericidal activity of three glutaraldehyde-based disinfectants at 20 degrees C and various exposure times. These changes had a marked effect on results, with the modified AOAC test providing more positive penicylinders per 10 replicates in 12 of the 13 comparisons that provided positive results. These differences were observed with both Mycobacterium bovis (ATCC 35743) and a clinical isolate of Mycobacterium tuberculosis. The effects of various exposure times to and dilutions of the glutaraldehyde-based disinfectants were also examined. The minimum exposure time needed to inactivate reliably M. bovis or M. tuberculosis with 2% glutaraldehyde was 20 min at 20 degrees C. Diluting 2% glutaraldehyde caused a significant decline in mycobactericidal activity. Modification of the standard AOAC test to improve its sensitivity in detecting the failure of disinfectants to inactivate mycobacteria is indicated. PMID:2116760

  8. Effects of Ignition and Injection Perturbation under Lean and Dilute GDI Engine Operation

    SciTech Connect

    Wallner, Thomas; Kaul, Brian C; Sevik, James; Scarcelli, Riccardo; Wagner, Robert M

    2015-01-01

    Turbocharged gasoline direct injection (GDI) engines are quickly becoming more prominent in light-duty automotive applications because of their potential improvements in efficiency and fuel economy. While EGR dilute and lean operation serve as potential pathways to further improve efficiencies and emissions in GDI engines, they also pose challenges for stable engine operation. Tests were performed on a single-cylinder research engine that is representative of current automotive-style GDI engines. Baseline cases were performed under steady-state operating conditions where combustion phasing and dilution levels were varied to determine the effects on indicated efficiency and combustion stability. Sensitivity studies were then carried out by introducing binary low-high perturbation of spark timing and injection duration on a cycle-by-cycle basis under EGR dilute and lean operation to determine dominant feedback mechanisms. Ignition perturbation was phased early/late of MBT timing, and injection perturbation was set fuel rich/lean of the given air-to-fuel ratio. COVIMEP was used to define acceptable operation limits when comparing different perturbation cases. Overall sensitivity data shows COVIMEP is more sensitive to injection perturbation over ignition perturbation. This is because of the greater effect injection perturbation has on combustion phasing, ignition delay, and combustion duration.

  9. The neuroprotective effects of xenon and helium in an in vitro model of traumatic brain injury.

    PubMed

    Coburn, Mark; Maze, Mervyn; Franks, Nicholas P

    2008-02-01

    The "inert" gas xenon has been shown to be an effective neuroprotectant in a variety of in vitro and in vivo models of neuronal injury. We examined its neuroprotective properties in an in vitro model of traumatic brain injury. Controlled laboratory study. Academic research laboratory. Organotypic hippocampal brain slices from mice pups. The cultured brain slices were subjected to a focal mechanical trauma, and injury was monitored in the presence and absence of inert gases at normal and elevated pressures and under both normothermic and hypothermic conditions. Neuronal injury was quantified using propidium iodide, which becomes fluorescent only when it enters injured cells. Low pressures of both helium and xenon were effective neuroprotectants when applied in addition to 1 atm of air. Moreover, both gases were effective at normal pressures when they replaced nitrogen in a gas mixture. The inert gases helium and xenon are effective neuroprotectants in a model for traumatic brain injury, and this novel treatment warrants further investigation. Xenon was particularly effective at reducing the secondary injury that developed following the initial trauma and could be administered at least 3 hrs postinjury with only a small reduction in efficacy.

  10. Modeling and Measuring the Effects of Radiation Damage Annealing on Helium Diffusion Kinetics in Apatite

    NASA Astrophysics Data System (ADS)

    Willett, C. D.; Fox, M.; Shuster, D. L.

    2016-12-01

    Understanding helium diffusion kinetics in apatite is critical for the accurate interpretation of (U-Th)/He thermochronometric data. This problem is complicated by the observation that helium diffusivity is not a simple function of temperature, but may evolve as a function of damage to the apatite crystal lattice resulting from alpha recoil. This `radiation damage' increases as a function of the amount of radiometric parent products, or effective uranium concentration, and time, but decreases due to thermal annealing of damage, necessitating a detailed understanding of radiation damage production and annealing in cases of burial heating over geologic timescales. Published observations [1,2] suggest that annealing rates of damage caused by alpha recoil and fission tracks in apatite differ. Existing models, however, assume the diffusion kinetics resulting from the two sources of damage are identical [3], demonstrating the need for further investigation of these damage sources. We present modeling and experimental work designed to interrogate the effects of radiation damage and its annealing on helium diffusion kinetics in apatite. Using previously published results [4] that investigated the effects of annealing temperature and duration on measured helium diffusivity, we fit a set of functions that are then integrated into a numerical model that tracks the evolution of radiation damage and apparent (U-Th)/He age. We compare the results of this model calibration to existing models [3]. In addition, we present data from two suites of diffusion experiments. The first suite, intended to test the published methodology and results, uses Durango apatite, while the second uses Sierran (CA) granite as a first test to determine if apatite of varying chemistry and age responds differently to the thermal annealing of radiation damage. Ultimately, the updated model and experimental results will benefit the interpretation of the effects of radiation damage accumulation and

  11. Effect of random synaptic dilution on recalling dynamics in an oscillator neural network

    NASA Astrophysics Data System (ADS)

    Kitano, Katsunori; Aoyagi, Toshio

    1998-05-01

    In the present paper, we study the effect of random synaptic dilution in an oscillator neural network in which information is encoded by the relative timing of neuronal firing. In order to analyze the recalling process in this oscillator network, we apply the method of statistical neurodynamics. The results show that the dynamical equations are described by some macroscopic order parameters, such as that representing the overlap with the retrieved pattern. We also present the phase diagram showing both the basin of attraction and the equilibrium overlap in the retrieval state. Our results are supported by numerical simulation. Consequently, it is found that both the attractor and the basin are preserved even though dilution is promoted. Moreover, as compared with the basin of attraction in the traditional binary model, it is suggested that the oscillator model is more robust against the synaptic dilution. Taking into account the fact that oscillator networks contain more detailed information than binary networks, the obtained results constitute significant support for the plausibility of temporal coding.

  12. Effects of insulin on glucose turnover rates in vivo: isotope dilution versus constant specific activity technique.

    PubMed

    Hother-Nielsen, O; Henriksen, J E; Holst, J J; Beck-Nielsen, H

    1996-01-01

    The conventional isotope dilution technique was compared with the more accurate constant specific activity (SA) method at six different insulin levels. Paired euglycemic clamp studies were performed in 30 normal subjects (4-hour insulin infusion: 5, 10, 20, 40, 80, and 160 mU . m-2 . min-1) using primed-constant 3-3H-glucose infusion and either conventional unlabeled glucose infusates (Cold-GINF) or labeled glucose infusates (Hot-GINF) to maintain constant SA. At all insulin levels, both glucose disappearance (Rd) and hepatic glucose production (HGP) were underestimated by the conventional technique, and errors during the first 2 hours correlated with glucose infusion rates (GIRs) (r = .93, P < .00001). During the second hour, mean underestimation of HGP varied from 20% +/- 9% to 84% +/- 16% of basal rates from low-dose to high-dose insulin infusion studies. During prolonged equilibration (3 to 4 hours), errors decreased but were still significant in the two low-dose insulin infusion protocols during the fourth hour. In conclusion, using the conventional isotope dilution technique, suppression of glucose production was overestimated and stimulation of glucose Rd was underestimated, and these errors were greater the higher the GIR. Thus, artifactually greater hepatic and smaller peripheral effects may have been assumed for factors or therapies that influence insulin sensitivity in previous studies using a conventional isotope dilution technique, and therefore, reevaluation of these issues may be relevant in future studies.

  13. FUEL EFFECTS ON COMBUSTION WITH EGR DILUTION IN SPARK IGNITED ENGINES

    SciTech Connect

    Szybist, James P

    2016-01-01

    The use of EGR as a diluent allows operation with an overall stoichiometric charge composition, and the addition of cooled EGR results in well-understood thermodynamic benefits for improved fuel consumption. This study investigates the effect of fuel on the combustion and emission response of EGR dilution in spark ignited engines. A 2.0 L GM Ecotec LNF engine equipped with the production side-mounted direct injection (DI) fueling system is used in this study. Ethanol, isooctane and certified gasoline are investigated with EGR from 0% to the EGR dilution tolerance. Constant BMEP at 2000 rpm was operated with varying CA50 from 8 CAD to 16 CAD aTDCf. The results show that ethanol gives the largest EGR tolerance at a given combustion phasing, engine load and speed. The improved EGR dilution tolerance with ethanol is attributed to a faster flame speed, which manifests itself as shorter combustion duration. Data shows that the combustion stability limit occurs at a critical combustion duration that is fuel independent. Due to different flame speeds, this critical combustion duration occurs at different EGR levels for the different fuels.

  14. Molecular crowding has no effect on the dilution thermodynamics of the biologically relevant cation mixtures.

    PubMed

    Głogocka, Daria; Przybyło, Magdalena; Langner, Marek

    2017-04-01

    The ionic composition of intracellular space is rigorously maintained in the expense of high-energy expenditure. It has been recently postulated that the cytoplasmic ionic composition is optimized so the energy cost of the fluctuations of calcium ion concentration is minimized. Specifically, thermodynamic arguments have been produced to show that the presence of potassium ions at concentrations higher than 100 mM reduce extend of the energy dissipation required for the dilution of calcium cations. No such effect has been measured when sodium ions were present in the solution or when the other divalent cation magnesium was diluted. The experimental observation has been interpreted as the indication of the formation of ionic clusters composed of calcium, chloride and potassium. In order to test the possibility that such clusters may be preserved in biological space, the thermodynamics of ionic mixtures dilution in solutions containing albumins and model lipid bilayers have been measured. Obtained thermograms clearly demonstrate that the energetics of calcium/potassium mixture is qualitatively different from calcium/sodium mixture indicating that the presence of the biologically relevant quantities of proteins and membrane hydrophilic surfaces do not interfere with the properties of the intracellular aqueous phase.

  15. Effect of dilute tungsten alloying on the dynamic strength of tantalum under ramp compression

    NASA Astrophysics Data System (ADS)

    Alexander, C. S.; Brown, J. L.; Millett, J. C. F.; Whiteman, G.; Asay, J. R.; Bourne, N. K.

    2015-06-01

    The strength of tantalum and tantalum alloys are of considerable interest due to their widespread use in both military and industrial applications. Previous work has shown that strength in these materials is tied to dislocation density and mobility within the microstructure. Accordingly, strength has been observed to increase with dilute alloying which serves to increase the dislocation density. In this study, we examine the effect of alloying on the strength of a dilute tantalum-tungsten alloy (2.5 weight percent W) under ramp compression. The strength of the alloy is measured using the ``self-consistent'' technique which examines the response under longitudinal unloading from peak compression. The results are compared to previous studies of pure tantalum and dilute tantalum-tungsten alloys under both shock and ramp compression and indicate strengthening of the alloy when compared to pure tantalum. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  16. Effects of Fuel Composition on EGR Dilution Tolerance in Spark Ignited Engines

    SciTech Connect

    Szybist, James P

    2016-01-01

    Fuel-specific differences in exhaust gas recirculation (EGR) dilution tolerance are studied in a modern, direct-injection single-cylinder research engine. A total of 6 model fuel blends are examined at a constant research octane number (RON) of 95 using n-heptane, iso-octane, toluene, and ethanol. Laminar flame speeds for these mixtures, which were calculated two different methods (an energy fraction mixing rule and a detailed kinetic simulation), spanned a range of about 6 cm/s. A constant fueling nominal load of 350 kPa IMEPg at 2000 rpm was operated with varying CA50 from 8-20 CAD aTDCf, and with EGR increasing until a COV of IMEP of 5% is reached. The results illustrate that flame speed affects EGR dilution tolerance; fuels with increased flame speeds increase EGR tolerance. Specifically, flame speed correlates most closely to the initial flame kernel growth, measured as the time of ignition to 5% mass fraction burned. The effect of the latent heat of vaporization on the flame speed is taken into account for the ethanol-containing fuels. At a 30 vol% blend level, the increased enthalpy of vaporization of ethanol compared to conventional hydrocarbons can decrease the temperature at the time of ignition by a maximum of 15 C, which can account for up to a 3.5 cm/s decrease in flame speed. The ethanol-containing fuels, however, still exhibit a flame speed advantage, and a dilution tolerance advantage over the slower flame-speed fuels. The fuel-specific differences in dilution tolerance are significant at the condition examined, allowing for a 50% relative increase in EGR (4% absolute difference in EGR) at a constant COV of IMEP of 3%.

  17. Effect of carbon and alloying solute atoms on helium behaviors in α-Fe

    NASA Astrophysics Data System (ADS)

    Zhang, Yange; You, Yu-Wei; Xu, Yichun; Liu, C. S.; Chen, J. L.; Luo, G.-N.

    2017-02-01

    Helium bubbles could strongly degrade the mechanical properties of ferritic steels in fission and fusion systems. The formation of helium bubble is directly affected by the interactions between helium and the compositions in steels, such as solute atoms, carbon and irradiation defects. We thereby performed systematical first-principles calculations to investigate the interactions of solute-helium and carbon-solute-helium. It is found that substitutional helium is more attractive than interstitial helium to all the considered 3p, 4p, 5p and 6p solutes. The attraction between carbon and substitutional helium suggests the carbon-solute-helium complex can be formed stably. By examining the charge density difference and thermal stability, it is found that the ternary complex shows stronger attraction with He than that of solute-helium pair for some solutes (S, Se, In, Te, Pb and Bi) and the complex could existed in iron stably at 700 K. The present theoretical results may be helpful for exploring alloy additions to mitigate the formation of large helium bubbles.

  18. Quantum interference effects in laser spectroscopy of muonic hydrogen, deuterium, and helium-3

    NASA Astrophysics Data System (ADS)

    Amaro, Pedro; Franke, Beatrice; Krauth, Julian J.; Diepold, Marc; Fratini, Filippo; Safari, Laleh; Machado, Jorge; Antognini, Aldo; Kottmann, Franz; Indelicato, Paul; Pohl, Randolf; Santos, José Paulo

    2015-08-01

    Quantum interference between energetically close states is theoretically investigated, with the state structure being observed via laser spectroscopy. In this work, we focus on hyperfine states of selected hydrogenic muonic isotopes, and on how quantum interference affects the measured Lamb shift. The process of photon excitation and subsequent photon decay is implemented within the framework of nonrelativistic second-order perturbation theory. Due to its experimental interest, calculations are performed for muonic hydrogen, deuterium, and helium-3. We restrict our analysis to the case of photon scattering by incident linear polarized photons and the polarization of the scattered photons not being observed. We conclude that while quantum interference effects can be safely neglected in muonic hydrogen and helium-3, in the case of muonic deuterium there are resonances with close proximity, where quantum interference effects can induce shifts up to a few percent of the linewidth, assuming a pointlike detector. However, by taking into account the geometry of the setup used by the CREMA collaboration, this effect is reduced to less than 0.2% of the linewidth in all possible cases, which makes it irrelevant at the present level of accuracy.

  19. Optical investigation of effective permeability of dilute magnetic dielectrics with magnetic field

    SciTech Connect

    Banerjee, Ananya Sarkar, A.

    2016-05-06

    The prime objective of this paper is to investigate the magnetic nature of dilute magnetic dielectrics (DMD) under variation of external magnetic field. The said variation is studied over developed nano-sized Gadolinium Oxide as a DMD system. The observed experimental field variation of the effective magnetic permeability is analyzed results of optical experiment. The experiment records the variation of Brewster angle of incident polarized LASER beam from the surface of developed DMD specimen with applied out of plane external magnetic field. The effective refractive index and hence relative magnetic permeability were estimated following electro-magnetic theory. The overall results obtained and agreement between theory and experiment are good.

  20. Testing the Effects of Helium Pressurant on Thermodynamic Vent System Performance with Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S.; Tucker, S.

    2006-01-01

    In support of the development of a zero gravity pressure control capability for liquid hydrogen, testing was conducted at the Marshall Space Flight Center using the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the effects of helium pressurant on the performance of a spray bar thermodynamic vent system (TVS). Fourteen days of testing was performed in August - September 2005, with an ambient heat leak of about 70-80 watts and tank fill levels of 90%, 50%, and 25%. The TVS successfully controlled the tank pressure within a +/- 3.45 kPa (+/- 0.5 psi) band with various helium concentration levels in the ullage. Relative to pressure control with an "all hydrogen" ullage, the helium presence resulted in 10 to 30 per cent longer pressure reduction durations, depending on the fill level, during the mixing/venting phase of the control cycle. Additionally, the automated control cycle was based on mixing alone for pressure reduction until the pressure versus time slope became positive, at which time the Joule-Thomson vent was opened. Testing was also conducted to evaluate thermodynamic venting without the mixer operating, first with liquid then with vapor at the recirculation line inlet. Although ullage stratification was present, the ullage pressure was successfully controlled without the mixer operating. Thus, if vapor surrounded the pump inlet in a reduced gravity situation, the ullage pressure can still be controlled by venting through the TVS Joule Thomson valve and heat exchanger. It was evident that the spray bar configuration, which extends almost the entire length of the tank, enabled significant thermal energy removal from the ullage even without the mixer operating. Details regarding the test setup and procedures are presented in the paper. 1

  1. Testing the Effects of Helium Pressurant on Thermodynamic Vent System Performance with Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S.; Tucker, S.

    2006-01-01

    In support of the development of a zero gravity pressure control capability for liquid hydrogen, testing was conducted at the Marshall Space Flight Center using the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the effects of helium pressurant on the performance of a spray bar thermodynamic vent system (TVS). Fourteen days of testing was performed in August - September 2005, with an ambient heat leak of about 70-80 watts and tank fill levels of 90%, 50%, and 25%. The TVS successfully controlled the tank pressure within a +/- 3.45 kPa (+/- 0.5 psi) band with various helium concentration levels in the ullage. Relative to pressure control with an "all hydrogen" ullage, the helium presence resulted in 10 to 30 per cent longer pressure reduction durations, depending on the fill level, during the mixing/venting phase of the control cycle. Additionally, the automated control cycle was based on mixing alone for pressure reduction until the pressure versus time slope became positive, at which time the Joule-Thomson vent was opened. Testing was also conducted to evaluate thermodynamic venting without the mixer operating, first with liquid then with vapor at the recirculation line inlet. Although ullage stratification was present, the ullage pressure was successfully controlled without the mixer operating. Thus, if vapor surrounded the pump inlet in a reduced gravity situation, the ullage pressure can still be controlled by venting through the TVS Joule Thomson valve and heat exchanger. It was evident that the spray bar configuration, which extends almost the entire length of the tank, enabled significant thermal energy removal from the ullage even without the mixer operating. Details regarding the test setup and procedures are presented in the paper. 1

  2. Effects of volcano profile on dilute pyroclastic density currents: Numerical simulations

    NASA Astrophysics Data System (ADS)

    Doronzo, D. M.; Valentine, G. A.; Dellino, P.; de Tullio, M. D.

    2012-04-01

    volcano, and although they accelerate as they reach the lower, steeper slopes, the acceleration is reduced because of the upstream loss of pyroclasts (lower density contrast with the atmosphere). The dynamic pressure, a measure of the damage that can be caused by PDCs, reflects these complex relations. Details are found in Valentine et al. (2011). Reference Valentine G.A., Doronzo D.M., Dellino P., de Tullio M.D. (2011), Effects of volcano profile on dilute pyroclastic density currents: Numerical simulations, Geology, 39, 947-950.

  3. Effect of rhenium addition on tungsten fuzz formation in helium plasmas

    NASA Astrophysics Data System (ADS)

    Khan, Aneeqa; De Temmerman, Gregory; Morgan, Thomas W.; Ward, Michael B.

    2016-06-01

    The effect of the addition of rhenium to tungsten on the formation of a nanostructure referred to as 'fuzz' when exposed to helium plasmas at fusion relevant ion fluxes was investigated in the Magnum and Pilot PSI devices at the FOM Institute DIFFER. The effect rhenium had on fuzz growth was seen to be dependent on time, temperature and flux. Initial fuzz growth was seen to be highly dependent on grain orientation, with rhenium having little effect. Once the fuzz was fully developed, the effect of grain orientation disappeared and the rhenium had an inhibiting effect on growth. This could be beneficial for inhibiting fuzz growth in a future fusion reactor, where transmutation of tungsten to rhenium is expected. It also appears that erosion or annealing of the fuzz is limiting growth of fuzz at higher temperatures in the range of ∼1340 °C.

  4. Spectral photometry of extreme helium stars: Ultraviolet fluxes and effective temperature

    NASA Technical Reports Server (NTRS)

    Drilling, J. S.; Schoenberner, D.; Heber, U.; Lynas-Gray, A. E.

    1982-01-01

    Ultraviolet flux distributions are presented for the extremely helium rich stars BD +10 deg 2179, HD 124448, LSS 3378, BD -9 deg 4395, LSE 78, HD 160641, LSIV -1 deg 2, BD 1 deg 3438, HD 168476, MV Sgr, LS IV-14 deg 109 (CD -35 deg 11760), LSII +33 deg 5 and BD +1 deg 4381 (LSIV +2 deg 13) obtained with the International Ultraviolet Explorer (IUE). Broad band photometry and a newly computed grid of line blanketed model atmospheres were used to determine accurate angular diameters and total stellar fluxes. The resultant effective temperatures are in most cases in satisfactory agreement with those based on broad band photometry and/or high resolution spectroscopy in the visible. For two objects, LSII +33 deg 5 and LSE 78, disagreement was found between the IUE observations and broadband photometry: the colors predict temperatures around 20,000 K, whereas the UV spectra indicate much lower photospheric temperatures of 14,000 to 15,000 K. The new temperature scale for extreme helium stars extends to lower effective temperatures than that of Heber and Schoenberner (1981) and covers the range from 8,500 K to 32,000 K.

  5. Determination of effective axion masses in the helium-3 buffer of CAST

    SciTech Connect

    Ruz, J

    2011-11-18

    The CERN Axion Solar Telescope (CAST) is a ground based experiment located in Geneva (Switzerland) searching for axions coming from the Sun. Axions, hypothetical particles that not only could solve the strong CP problem but also be one of the favored candidates for dark matter, can be produced in the core of the Sun via the Primakoff effect. They can be reconverted into X-ray photons on Earth in the presence of strong electromagnetic fields. In order to look for axions, CAST points a decommissioned LHC prototype dipole magnet with different X-ray detectors installed in both ends of the magnet towards the Sun. The analysis of the data acquired during the first phase of the experiment yielded the most restrictive experimental upper limit on the axion-to-photon coupling constant for axion masses up to about 0.02 eV/c{sup 2}. During the second phase, CAST extends its mass sensitivity by tuning the electron density present in the magnetic field region. Injecting precise amounts of helium gas has enabled CAST to look for axion masses up to 1.2 eV/c{sup 2}. This paper studies the determination of the effective axion masses scanned at CAST during its second phase. The use of a helium gas buffer at temperatures of 1.8 K has required a detailed knowledge of the gas density distribution. Complete sets of computational fluid dynamic simulations validated with experimental data have been crucial to obtain accurate results.

  6. Helium-abundance and other composition effects on the properties of stellar surface convection in solar-like main-sequence stars

    SciTech Connect

    Tanner, Joel D.; Basu, Sarbani; Demarque, Pierre

    2013-12-01

    We investigate the effect of helium abundance and α-element enhancement on the properties of convection in envelopes of solar-like main-sequence stars using a grid of three-dimensional radiation hydrodynamic simulations. Helium abundance increases the mean molecular weight of the gas and alters opacity by displacing hydrogen. Since the scale of the effect of helium may depend on the metallicity, the grid consists of simulations with three helium abundances (Y = 0.1, 0.2, 0.3), each with two metallicities (Z = 0.001, 0.020). We find that changing the helium mass fraction generally affects structure and convective dynamics in a way opposite to that of metallicity. Furthermore, the effect is considerably smaller than that of metallicity. The signature of helium differs from that of metallicity in the manner in which the photospheric velocity distribution is affected. We also find that helium abundance and surface gravity behave largely in similar ways, but differ in the way they affect the mean molecular weight. A simple model for spectral line formation suggests that the bisectors and absolute Doppler shifts of spectral lines depend on the helium abundance. We look at the effect of α-element enhancement and find that it has a considerably smaller effect on the convective dynamics in the superadiabatic layer compared to that of helium abundance.

  7. Contrasting Foraging Patterns: Testing Resource-Concentration and Dilution Effects with Pollinators and Seed Predators.

    PubMed

    Wenninger, Alexandria; Kim, Tania N; Spiesman, Brian J; Gratton, Claudio

    2016-06-03

    Resource concentration effects occur when high resource density patches attract and support more foragers than low density patches. In contrast, resource dilution effects can occur if high density patches support fewer consumers. In this study, we examined the foraging rates of pollinators and seed predators on two perennial plant species (Rudbeckia triloba and Verbena stricta) as functions of resource density. Specifically, we examined whether resource-dense patches (densities of flower and seeds on individual plants) resulted in greater visitation and seed removal rates, respectively. We also examined whether foraging rates were context-dependent by conducting the study in two sites that varied in resource densities. For pollinators, we found negative relationships between the density of flowers per plant and visitation rates, suggesting dilution effects. For seed predators, we found positive relationships consistent with concentration effects. Saturation effects and differences in foraging behaviors might explain the opposite relationships; most of the seed predators were ants (recruitment-based foragers), and pollinators were mostly solitary foragers. We also found that foraging rates were site-dependent, possibly due to site-level differences in resource abundance and consumer densities. These results suggest that these two plant species may benefit from producing as many flowers as possible, given high levels of pollination and low seed predation.

  8. Contrasting Foraging Patterns: Testing Resource-Concentration and Dilution Effects with Pollinators and Seed Predators

    PubMed Central

    Wenninger, Alexandria; Kim, Tania N.; Spiesman, Brian J.; Gratton, Claudio

    2016-01-01

    Resource concentration effects occur when high resource density patches attract and support more foragers than low density patches. In contrast, resource dilution effects can occur if high density patches support fewer consumers. In this study, we examined the foraging rates of pollinators and seed predators on two perennial plant species (Rudbeckia triloba and Verbena stricta) as functions of resource density. Specifically, we examined whether resource-dense patches (densities of flower and seeds on individual plants) resulted in greater visitation and seed removal rates, respectively. We also examined whether foraging rates were context-dependent by conducting the study in two sites that varied in resource densities. For pollinators, we found negative relationships between the density of flowers per plant and visitation rates, suggesting dilution effects. For seed predators, we found positive relationships consistent with concentration effects. Saturation effects and differences in foraging behaviors might explain the opposite relationships; most of the seed predators were ants (recruitment-based foragers), and pollinators were mostly solitary foragers. We also found that foraging rates were site-dependent, possibly due to site-level differences in resource abundance and consumer densities. These results suggest that these two plant species may benefit from producing as many flowers as possible, given high levels of pollination and low seed predation. PMID:27271673

  9. Effects of diamagnetic Ga dilution on the Faraday response of bismuth-doped iron garnet films

    NASA Astrophysics Data System (ADS)

    Garzarella, A.; Shinn, M. A.; Wu, Dong Ho

    2016-06-01

    In bismuth-doped iron garnets, diamagnetic dilution of Fe with Ga is a well-known method to increase the Faraday rotation response under externally applied magnetic fields. It is found, however, that while this method improves responsivity at larger field strengths, the responsivity under smaller fields (which are more typical in sensing applications) is generally unaffected by Ga doping. The data indicate that the low-field responsivity is limited by anomalous pinning effects in the rotational magnetization process of the ferromagnetic domains. To overcome this, a magnetic biasing technique was developed, which enhances responsivity by activating Barkhausen steps in the films to free the domains from their pinning sites.

  10. Effect of Gravity on the Near Field Flow Structure of Helium Jet in Air

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Parthasarathy, Ramkumar; Griffin, DeVon

    2002-01-01

    Experiments have shown that a low-density jet injected into a high-density surrounding medium undergoes periodic oscillations in the near field. Although the flow oscillations in these jets at Richardson numbers about unity are attributed to the buoyancy, the direct physical evidence has not been acquired in the experiments. If the instability were indeed caused by buoyancy, the near-field flow structure would undergo drastic changes upon removal of gravity in the microgravity environment. The present study was conducted to investigate this effect by simulating microgravity environment in the 2.2-second drop tower at the NASA Glenn Research Center. The non-intrusive, rainbow schlieren deflectometry technique was used for quantitative measurements of helium concentrations in buoyant and non-buoyant jets. Results in a steady jet show that the radial growth of the jet shear layer in Earth gravity is hindered by the buoyant acceleration. The jet in microgravity was 30 to 70 percent wider than that in Earth gravity. The microgravity jet showed typical growth of a constant density jet shear layer. In case of a self-excited helium jet in Earth gravity, the flow oscillations continued as the jet flow adjusted to microgravity conditions in the drop tower. The flow oscillations were however not present at the end of the drop when steady microgravity conditions were reached.

  11. Focused helium-ion beam irradiation effects on electrical properties of multi-layer WSe2

    NASA Astrophysics Data System (ADS)

    Pudasaini, Pushpa Raj; Stanford, Michael; Cross, Nick; Duscher, Gerd; Mandrus, David; Rack, Philip

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving great attention due to their excellent opto-electronic properties. Tuning optical and electrical properties of mono and few layers TMDs, such as Tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to fabricate the next generation opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on structural, optical and electrical properties of few layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy and electrical measurements. By controlling the ion irradiation dose, we selectively introduced precise defects in few layer WSe2 thereby locally tuning the electrically resistivity of the material. Hole transport in the few layer WSe2 is severely affected compared to electron transport for the same dose of helium ion beam irradiation studied. Furthermore, by selectively exposing the ion beams, we demonstrate the lateral p-n junction in few layer WSe2 flakes, which constitute an important advance towards two dimensional opto-electronic devices. Materials Science and Technology Division, ORNL, Oak Ridge, TN 37831, USA.

  12. Testing the Effects of Helium Pressurant on Thermodynamic Vent System Performance with Liquid Hydrogen

    NASA Astrophysics Data System (ADS)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S. L.; Tucker, S.

    2008-03-01

    In support of the development of a micro-gravity pressure control capability for liquid hydrogen, testing was conducted at the Marshall Space Flight Center (MSFC) with the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the effects of helium pressurant on the performance of a spray-bar thermodynamic vent system (TVS). The testing, with an ambient heat leak of about 70 W and tank fill levels of 90, 50, and 25%, was performed for 14 days during August and September 2005. The TVS successfully controlled the tank pressure within a ±3.45 kPa band with various gaseous helium (GHe) masses in the ullage. Relative to pressure control with an "all hydrogen" ullage, the GHe presence resulted in 37 to 68% longer pressure reduction cycle durations, depending on the fill level, during the mixing/venting phase of the control cycle. Testing was also conducted to evaluate thermodynamic venting without the recirculation pump operating, at a very low fill level. Although ullage stratification was present, the ullage pressure was successfully controlled without the pump. It was evident that the spray-bar and heat exchanger configuration, which extended almost the entire length of the tank, enabled significant thermal energy removal from the ullage even without the pump operating.

  13. Effect of heat treatment in atmosphere on mechanical properties of pure titanium at liquid helium temperature

    SciTech Connect

    Konosu, S.; Nakaniwa, T.; Ivano, O.

    1998-05-12

    Due to their extreme friability, nuclear fusion superconductivity coil materials (NbTi, Nb{sub 3}Sn, Nb{sub 3}Al) are placed in pure titanium rectangular parallelepiped sleeves called conduits, of about 1 mm in wall thickness, and subjected to sintering heat treatment (50 to 200 hours at 923 to 1,023K) to produce superconductive materials. In use, the superconductive coil is immersed in liquid helium (4.2K) and as immense currents flow through the coil, the conduit is subjected to very large electromagnetic forces. As pure titanium is a highly active material, oxided scale forms on the surface when it is heated to high temperatures under atmospheric conditions, together with the formation, beneath the oxided scale, of an oxygen-rich layer possessing intense oxygen solubility. While oxided scale, because of its ability to reduce hydrogen absorption, is being actively used as a means to prevent the hydrogen embrittlement of titanium, it is believed that this leads to a deterioration of the mechanical properties because the oxygen-rich layer is deficient in ductility. The current research is intended to clarify the effect on the tensile test properties at liquid helium temperature (4.2K) of pure titanium and the oxygen-rich layer which forms thereon as a result of the heat treatment under atmospheric conditions.

  14. The effects of high pressure helium and nitrogen on the release of acetylcholine from the guinea-pig ileum

    PubMed Central

    Little, Hilary J.; Paton, W.D.M.

    1979-01-01

    1 The effects of high pressures of helium and of nitrogen on acetylcholine release were tested using the guinea-pig ileum as a model preparation. A superfusion system was designed in which this tissue could be maintained under physiological conditions in a high pressure chamber. 2 Helium, at a pressure of 136 atm slightly increased the spontaneous output of acetylcholine but produced no significant changes at 68 atm (136 atm is close to the lethal pressure for small mammals). 3 The acetylcholine release evoked by electrical stimulation or by 55 mM potassium was not altered by 136 atm of helium. Effects on tetrodotoxin-treated tissues were not consistent. 4 Nitrogen, which in contrast to helium possesses general anaesthetic properties, caused considerable increases in spontaneous and in electrically evoked acetylcholine output at pressures which produce anaesthesia. These increases were not changed when helium was used to increase the total pressure to 136 atm, although this reverses the general anaesthetic actions of nitrogen in vivo. 5 The increases in rate of acetylcholine release produced by nitrogen were observed in tetrodotoxintreated tissues and in tissues from reserpine-treated animals. In a calcium-free medium the increases were considerably smaller. 6 The conclusions from these results are that while high pressures of helium caused little or no change in acetylcholine release rates, nitrogen produced large changes, which were not due to effects on axonal conduction. The effect of nitrogen is not apparently related to its general anaesthetic actions. Differences such as these in transmitter release would be likely to contribute to the differing physiological effects of these two gases. PMID:40648

  15. The effect of hydrogen isotopes and helium on the tensile properties of 21-6-9 stainless steel

    SciTech Connect

    Morgan, M.J.; Lohmeier, D.

    1990-01-01

    High-energy-rate-forged (HERF) stainless steels are used as the materials of construction for pressure vessels designed for the containment of hydrogen and its isotopes. Hydrogen and helium, the decay product of tritium, are known to embrittle these materials. HERF stainless steels have a relatively good resistance to hydrogen-and-helium-induced embrittlement when compared to annealed stainless steels due to their high number density of dislocations, which act as traps for hydrogen and helium. However, the degree of embrittlement in these materials can vary considerably because of microstructure and yield strength variations introduced during the forging process. In this study the effect of hydrogen and tritium on the tensile properties of 21-6-9 stainless steel was measured as a function of HERF yield strength in the range of 660 to 930 MPa. The effect of microstructure was studied also be conducting tensile tests with HERF and annealed samples.

  16. Effects of sequential tungsten and helium ion implantation on nano-indentation hardness of tungsten

    SciTech Connect

    Armstrong, D. E. J.; Edmondson, P. D.; Roberts, S. G.

    2013-06-24

    To simulate neutron and helium damage in a fusion reactor first wall sequential self-ion implantation up to 13 dpa followed by helium-ion implantation up to 3000 appm was performed to produce damaged layers of {approx}2 {mu}m depth in pure tungsten. The hardness of these layers was measured using nanoindentation and was studied using transmission electron microscopy. Substantial hardness increases were seen in helium implanted regions, with smaller hardness increases in regions which had already been self-ion implanted, thus, containing pre-existing dislocation loops. This suggests that, for the same helium content, helium trapped in distributed vacancies gives stronger hardening than helium trapped in vacancies condensed into dislocation loops.

  17. Effects of sequential tungsten and helium ion implantation on nano-indentation hardness of tungsten

    NASA Astrophysics Data System (ADS)

    Armstrong, D. E. J.; Edmondson, P. D.; Roberts, S. G.

    2013-06-01

    To simulate neutron and helium damage in a fusion reactor first wall sequential self-ion implantation up to 13 dpa followed by helium-ion implantation up to 3000 appm was performed to produce damaged layers of ˜2 μm depth in pure tungsten. The hardness of these layers was measured using nanoindentation and was studied using transmission electron microscopy. Substantial hardness increases were seen in helium implanted regions, with smaller hardness increases in regions which had already been self-ion implanted, thus, containing pre-existing dislocation loops. This suggests that, for the same helium content, helium trapped in distributed vacancies gives stronger hardening than helium trapped in vacancies condensed into dislocation loops.

  18. The Effective Mass of a Charged Carrier in a Nonpolar Liquid:. Applications to Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Varlamov, Andrei; Chikina, Ioulia; Shikin, Valeriy

    The problem of a correct definition of the charged carrier effective mass in superfluid helium is revised. It is shown that the effective mass of such a quasi-particle can be introduced without Atkins's idea about the solidification of liquid He4 in the close vicinity of an ion (the so-called “snowball” model). Moreover, in addition to generalization of the Atkins's model, the charged carrier effective mass formation is considered within the framework of the two-fluid scenario. The physical reasons of the normal fluid contribution divergency and the way of corresponding regularization procedure are discussed. Agreement between the theory and the available experimental data is found in a wide range of temperatures.

  19. The Effective Mass of a Charged Carrier in a Nonpolar Liquid:. Applications to Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Varlamov, Andrei; Chikina, Ioulia; Shikin, Valeriy

    2009-12-01

    The problem of a correct definition of the charged carrier effective mass in superfluid helium is revised. It is shown that the effective mass of such a quasi-particle can be introduced without Atkins's idea about the solidification of liquid He4 in the close vicinity of an ion (the so-called "snowball" model). Moreover, in addition to generalization of the Atkins's model, the charged carrier effective mass formation is considered within the framework of the two-fluid scenario. The physical reasons of the normal fluid contribution divergency and the way of corresponding regularization procedure are discussed. Agreement between the theory and the available experimental data is found in a wide range of temperatures.

  20. Electrically driven magnetization of diluted magnetic semiconductors actuated by the Overhauser effect.

    PubMed

    Siddiqui, L; Zainuddin, A N M; Datta, S

    2010-06-02

    It is well known that the Curie temperature, and hence the magnetization, in diluted magnetic semiconductors (DMS) like Ga(1-x)Mn(x)As can be controlled by changing the equilibrium density of holes in the material. Here, we propose that even with a constant hole density, large changes in the magnetization can be obtained with a relatively small imbalance in the quasi-Fermi levels for up-spin and down-spin electrons. We show, by coupling the mean field theory of diluted magnetic semiconductor ferromagnetism with master equations governing the Mn spin-dynamics, that a mere splitting of the up-spin and down-spin quasi-Fermi levels by 0.1 meV will produce the effect of an external magnetic field as large as 1 T as long as the alternative relaxation paths for Mn spins (i.e. spin-lattice relaxation) can be neglected. The physics is similar to the classic Overhauser effect, also called the dynamic nuclear polarization, with the Mn impurities playing the role of the nucleus. We propose that a lateral spin-valve structure in an anti-parallel configuration with a DMS as the channel can be used to demonstrate this effect, as quasi-Fermi level splitting of such magnitude, inside the channel of similar systems, has already been experimentally demonstrated to produce polarization of paramagnetic impurity spins.

  1. Effects of Coaxial Air on Nitrogen-Diluted Hydrogen Jet Diffusion Flame Length and NOx Emission

    SciTech Connect

    Weiland, N.T.; Chen, R.-H.; Strakey, P.A.

    2007-10-01

    Turbulent nitrogen-diluted hydrogen jet diffusion flames with high velocity coaxial air flows are investigated for their NOx emission levels. This study is motivated by the DOE turbine program’s goal of achieving 2 ppm dry low NOx from turbine combustors running on nitrogen-diluted high-hydrogen fuels. In this study, effects of coaxial air velocity and momentum are varied while maintaining low overall equivalence ratios to eliminate the effects of recirculation of combustion products on flame lengths, flame temperatures, and resulting NOx emission levels. The nature of flame length and NOx emission scaling relationships are found to vary, depending on whether the combined fuel and coaxial air jet is fuel-rich or fuel-lean. In the absence of differential diffusion effects, flame lengths agree well with predicted trends, and NOx emissions levels are shown to decrease with increasing coaxial air velocity, as expected. Normalizing the NOx emission index with a flame residence time reveals some interesting trends, and indicates that a global flame strain based on the difference between the fuel and coaxial air velocities, as is traditionally used, is not a viable parameter for scaling the normalized NOx emissions of coaxial air jet diffusion flames.

  2. Suppression effect of nano-sized oxide particles on helium irradiation hardening in F82H-ODS steel

    NASA Astrophysics Data System (ADS)

    Chen, S.; Wang, Y.; Tadaki, K.; Hashimoto, N.; Ohnuki, S.

    2014-12-01

    Helium implantation was performed to investigate irradiation hardening in ferritic/martensitic steels. Depth dependence of nano-hardness was obtained using a Berkovich nano-indenter, and then nano-hardness was extracted from Nix-Gao model. The correlation between irradiation hardening and the concentration 500-2000 appm of helium was plotted. Nano-hardness increases as a function of helium concentration. F82H-ODS with a higher nano-hardness provides a lower irradiation hardening than F82H-IEA. Cross-sectional transmission electron microscopy (XTEM) revealed that cavities with a uniform distribution were formed after helium implantation at 2000 appm helium concentration, showing a mean size of 1.1 nm with an average number density of 4.9 × 1023 m-3 in F82H-IEA and 1.3 nm with 7.4 × 1023 m-3 in F82H-ODS. Orowan model was applied to evaluate the hardening from dispersed cavities. The significant difference of hardening between calculation and nano-indentation result of F82H-ODS indicates that oxide particles may shield the hardening effect from cavities because of the complex multi-interaction.

  3. Radiation effects on microstructure and hardness of a titanium aluminide alloy irradiated by helium ions at room and elevated temperatures

    NASA Astrophysics Data System (ADS)

    Wei, Tao; Zhu, Hanliang; Ionescu, Mihail; Dayal, Pranesh; Davis, Joel; Carr, David; Harrison, Robert; Edwards, Lyndon

    2015-04-01

    A 45XD TiAl alloy possessing a lamellar microstructure was irradiated using 5 MeV helium ions to a fluence of 5 × 1021 ion m-2 (5000 appm) with a dose of about 1 dpa (displacements per atom). A uniform helium ion stopping damage region about 17 μm deep from the target surface was achieved by applying an energy degrading wheel. Radiation damage defects including helium-vacancy clusters and small helium bubbles were found in the microstructure of the samples irradiated at room temperature. With increasing irradiation temperature to 300 °C and 500 °C helium bubbles were clearly observed in both the α2 and γ phases of the irradiated microstructure. By means of nanoindentation significant irradiation hardening was measured. For the samples irradiated at room temperature the hardness increased from 5.6 GPa to 8.5 GPa and the irradiation-hardening effect reduced to approximately 8.0 GPa for the samples irradiated at 300 °C and 500 °C.

  4. Growth rate effects on the formation of dislocation loops around deep helium bubbles in Tungsten

    DOE PAGES

    Sandoval, Luis; Perez, Danny; Uberuaga, Blas P.; ...

    2016-11-15

    Here, the growth process of spherical helium bubbles located 6 nm below a (100) surface is studied using molecular dynamics and parallel replica dynamics simulations, over growth rates from 106 to 1012 helium atoms per second. Slower growth rates lead to a release of pressure and lower helium content as compared with fast growth cases. In addition, at slower growth rates, helium bubbles are not decorated by multiple dislocation loops, as these tend to merge or emit given sufficient time. At faster rates, dislocation loops nucleate faster than they can emit, leading to a more complicated dislocation structure around themore » bubble.« less

  5. Growth rate effects on the formation of dislocation loops around deep helium bubbles in Tungsten

    SciTech Connect

    Sandoval, Luis; Perez, Danny; Uberuaga, Blas P.; Voter, Arthur Ford

    2016-11-15

    Here, the growth process of spherical helium bubbles located 6 nm below a (100) surface is studied using molecular dynamics and parallel replica dynamics simulations, over growth rates from 106 to 1012 helium atoms per second. Slower growth rates lead to a release of pressure and lower helium content as compared with fast growth cases. In addition, at slower growth rates, helium bubbles are not decorated by multiple dislocation loops, as these tend to merge or emit given sufficient time. At faster rates, dislocation loops nucleate faster than they can emit, leading to a more complicated dislocation structure around the bubble.

  6. The Effects of Curvature and Expansion on Helium Detonations on White Dwarf Surfaces

    NASA Astrophysics Data System (ADS)

    Moore, Kevin; Townsley, Dean M.; Bildsten, Lars

    2013-10-01

    Accreted helium layers on white dwarfs have been highlighted for many decades as a possible site for a detonation triggered by a thermonuclear runaway. In this paper, we find the minimum helium layer thickness that will sustain a steady laterally propagating detonation and show that it depends on the density and composition of the helium layer, specifically 12C and 16O. Detonations in these thin helium layers have speeds slower than the Chapman-Jouget (CJ) speed from complete helium burning, v CJ = 1.5 × 109 cm s-1. Though gravitationally unbound, the ashes still have unburned helium (≈80% in the thinnest cases) and only reach up to heavy elements such as 40Ca, 44Ti, 48Cr, and 52Fe. It is rare for these thin shells to generate large amounts of 56Ni. We also find a new set of solutions that can propagate in even thinner helium layers when 16O is present at a minimum mass fraction of ≈0.07. Driven by energy release from α captures on 16O and subsequent elements, these slow detonations only create ashes up to 28Si in the outer detonated He shell. We close by discussing how the unbound helium burning ashes may create faint and fast "Ia" supernovae as well as events with virtually no radioactivity, and speculate on how the slower helium detonation velocities impact the off-center ignition of a carbon detonation that could cause a Type Ia supernova in the double detonation scenario.

  7. Effect of simultaneous helium implantation on the microstructure evolution of Inconel X-750 superalloy during dual-beam irradiation

    NASA Astrophysics Data System (ADS)

    Changizian, P.; Zhang, H. K.; Yao, Z.

    2015-12-01

    This study focuses on investigation into the effect of helium implantation on microstructure evolution in Inconel X-750 superalloy during dual-beam (Ni+/He+) irradiation. The 1 MeV Ni+ ions with the damage rate of 10-3 dpa/s as well as 15 keV He+ ions using rate of 200 appm/dpa were simultaneously employed to irradiate specimens at 400 °C to different doses. Microstructure characterization has been conducted using high-resolution analytical transmission electron microscopy (TEM). The TEM results show that simultaneous helium injection has significant influence on irradiation-induced microstructural changes. The disordering of γ‧ (Ni3 (Al, Ti)) precipitates shows noticeable delay in dose level compared to mono heavy ion irradiation, which is attributed to the effect of helium on promoting the dynamic reordering process. In contrast to previous studies on single-beam ion irradiation, in which no cavities were reported even at high doses, very small (2-5 nm) cavities were detected after irradiation to 5 dpa, which proved that helium plays crucial role in cavity formation. TEM characterization also indicates that the helium implantation affects the development of dislocation loops during irradiation. Large 1/3 <1 1 1> Frank loops in the size of 10-20 nm developed during irradiation at 400 °C, whereas similar big loops detected at higher irradiation temperature (500 °C) during sole ion irradiation. This implies that the effect of helium on trapping the vacancies can help to develop the interstitial Frank loops at lower irradiation temperatures.

  8. Studies on the effects of helium on the microstructural evolution of V-3.8Cr-3.9Ti

    SciTech Connect

    Doraiswamy, N.; Kestel, B.; Alexander, D.E.

    1997-04-01

    The favorable physical and mechanical properties of V-3.8Cr-3.9Ti (wt.%), when subjected to neutron irradiation, has lead to considerable attention being focused on it for use in fusion reactor structural applications. However, there is limited data on the effects of helium on physical and mechanical properties of this alloy. Understanding these effects are important since helium will be generated by direct {alpha}-injection or transmutation reactions in the fusion environment, typically at a rate of {approx}5 appm He/dpa. Helium has been shown to cause substantial embrittlement, even at room temperature in vanadium and its alloys. Recent simulations of the fusion environment using the Dynamic Helium Charging Experiments (DHCE) have also indicated that the mechanical properties of vanadium alloys are altered by the presence of helium in post irradiation tests performed at room temperature. While the strengths were lower, room temperature ductilities of the DHCE specimens were higher than those of non-DHCE specimens. These changes have been attributed to the formation of different types of hardening centers in these alloys due to He trapping. Independent thermal desorption experiments suggest that these hardening centers may be associated with helium-vacancy-X (where X = O, N, and C) complexes. These complexes are stable below 290{degrees}C and persist at room temperature. However, there has been no direct microstructural evidence correlating the complexes with irradiation effects. An examination of the irradiation induced microstructure in samples preimplanted with He to different levels would enable such a correlation.

  9. An observational study of the ozone dilution effect: Ozone transport in the austral spring stratosphere

    NASA Technical Reports Server (NTRS)

    Atkinson, Roger J.; Plumb, R. Alan

    1994-01-01

    In a previous observational analysis, Atkinson et al (1989) ascribed a sudden decrease in Southern Hemisphere midlatitude total ozone during December 1987 to an 'ozone dilution effect' brought about by the breakup of the polar stratospheric vortex at that time. A question alluded to but unanswered by that study was the degree to which the observed total ozone decrease might have been caused by the quasi-horizontal equatorward transport of 'ozone hold' air from within the vortex, and to what degree by the vertical advection from lower levels of air naturally low in ozone, a dynamical adjustment process which must accompany the equatorward outbreak of a discrete high-latitude airmass. In the present study, analyses of Ertel potential vorticity, TOMS total ozone, and SAGE and ozone sonde vertical profile data are employed using a novel technique to examine the 1987 event in greater detail, to answer this question. Recent progress is then reported in refining the technique and extending the investigation to examine the dynamical evolution of the austral spring stratosphere during other recent years, to shed more light on the precise nature, frequency, and severity of such 'ozone dilution' events, and the effect that this process may have on long term ozone behavior in the Southern Hemisphere.

  10. Spin-polarization effects in homogeneous and non-homogeneous diluted magnetic semiconductor heterostructures.

    PubMed

    Rodrigues, Sara C P; Sipahi, Guilherme M; Scolfaro, Luísa M R; da Silva, Eronides F

    2010-09-17

    Spin polarization is a key characteristic in developing spintronic devices. Diluted magnetic heterostructures (DMH), where subsequent layers of conventional and diluted magnetic semiconductors (DMS) are alternate, are one of the possible ways to obtain it. Si being the basis of modern electronics, Si or other group-IV DMH can be used to build spintronic devices directly integrated with conventional ones. In this work we study the physical properties and the spin-polarization effects of p-type DMH based in group-IV semiconductors (Si, Ge, SiGe, and SiC), by performing self-consistent [Formula: see text] calculations in the local spin density approximation. We show that high spin polarization can be maintained in these structures below certain values of the carrier concentrations. Full spin polarization is attained in the low carrier concentration regime for carrier concentrations in the DMS layer up to approximately 2.0 x 10(19) cm(-3) for Si and up to approximately 6.0 x 10(19) cm(-3) for SiC. Partial, but still important spin polarization can be achieved for all studied group-IV DMH, with the exception of Ge for carrier concentrations up to 6.0 x 10(19) cm(-3). The role played by the effective masses and the energy splitting of the spin-orbit split-off hole bands is also discussed throughout the paper.

  11. Effect of helium implantation on mechanical properties and microstructure evolution of reduced-activation 9Cr-2W martensitic steel

    NASA Astrophysics Data System (ADS)

    Kasada, R.; Morimura, T.; Hasegawa, A.; Kimura, A.

    2001-10-01

    A reduced-activation martensitic steel was implanted with helium up to 580 at. ppm by using 36 MeV α-beam between 353 and 423 K along with displacement damage up to 0.226 dpa. The implantation-induced increase in ductile-brittle transition temperature (DBTT) was estimated to be 98 K for the standard charpy V-notched (CVN) specimen implanted with 580 at. ppm He, through the conversion of small punch (SP) test results by an empirical relationship. It is clarified from comparison with neutron irradiation data that the increase in DBTT as well as implantation-induced hardening is interpreted simply in terms of displacement damage, suggesting that there is no significant effect of helium on both the irradiation hardening and the fracture toughness of the steel. No fracture mode change by the helium implantation was observed in the SP tests, showing a complete cleavage fracture mode in the lower shelf energy region.

  12. Vaporization behavior of lithium oxide: Effect of water vapor in helium carrier gas

    NASA Astrophysics Data System (ADS)

    Tetenbaum, M.; Johnson, C. E.

    1984-04-01

    The effect of water vapor in a helium carrier gas on the vaporization behavior of lithium oxide has been investigated in the temperature range 1023 to 1273 K. Based on the reaction Li 2O(s)+H 2O(g) → 2LiOH(g), the results of this study yield second and third law heats of reaction of 79.0 ± 3 and 82.1 ± 1 kcal/mol. Moisture significantly enhances the volatility of lithium oxide. The pronounced effect of water vapor on the volatilization of Li 2O (as LiOH) is important in understanding the behavior of a Li 2O solid breeding blanket in anticipated fusion reactor environments.

  13. Search for Anisotropic Effects of HCP Solid Helium on Optical Lines of Cesium Impurities

    NASA Astrophysics Data System (ADS)

    Melich, M.; Dupont-Roc, J.; Jacquier, Philippe

    2008-02-01

    The anisotropic effect of a hcp 4He solid matrix on cesium atoms has been proposed as a tool to reveal the parity violating anapole moment of its nucleus. It should also result in splitting the D2 optical excitation line in a way depending on the light polarization. An experimental investigation has been set up using oriented hcp helium crystals in which cesium metal grains are embedded. Atoms are created by laser sputtering from this grains. Optical absorption spectra of the D2 line have been recorded in the temperature range of 1.0 to 1.4 K at liquid/solid coexistence pressure by monitoring the fluorescence on the D2 line at 950 nm. No significant effect of the light polarization has been found, suggesting a statistically isotropic disordered solid environment for the cesium atoms.

  14. Effect of helium-neon laser irradiation on peripheral sensory nerve latency

    SciTech Connect

    Snyder-Mackler, L.; Bork, C.E.

    1988-02-01

    The purpose of this randomized, double-blind study was to determine the effect of a helium-neon (He-Ne) laser on latency of peripheral sensory nerve. Forty healthy subjects with no history of right upper extremity pathological conditions were assigned to either a Laser or a Placebo Group. Six 1-cm2 blocks along a 12-cm segment of the subjects' right superficial radial nerve received 20-second applications of either the He-Ne laser or a placebo. We assessed differences between pretest and posttest latencies with t tests for correlated and independent samples. The Laser Group showed a statistically significant increase in latency that corresponded to a decrease in sensory nerve conduction velocity. Short-duration He-Ne laser application significantly increased the distal latency of the superficial radial nerve. This finding provides information about the mechanism of the reported pain-relieving effect of the He-Ne laser.

  15. The Effects of the Pauli Exclusion Principle in Determining the Ionization Energies of the Helium Atom and Helium-Like Ions

    ERIC Educational Resources Information Center

    Deeney, F. A.; O'Leary, J. P.

    2012-01-01

    For helium and helium-like ions, we have examined the differences between the values of the ionization energies as calculated from the Bohr theory and those measured in experiments. We find that these differences vary linearly with the atomic number of the system. Using this result, we show how the Bohr model for single-electron systems may be…

  16. The Effects of the Pauli Exclusion Principle in Determining the Ionization Energies of the Helium Atom and Helium-Like Ions

    ERIC Educational Resources Information Center

    Deeney, F. A.; O'Leary, J. P.

    2012-01-01

    For helium and helium-like ions, we have examined the differences between the values of the ionization energies as calculated from the Bohr theory and those measured in experiments. We find that these differences vary linearly with the atomic number of the system. Using this result, we show how the Bohr model for single-electron systems may be…

  17. The effects of disorder on superflow in the quantum solid helium-4

    NASA Astrophysics Data System (ADS)

    West, Joshua T.

    The existence of a superfluid-like phase in solid helium was predicted in the late 1960's. The first convincing experimental evidence of such a phase was the non-classical rotational inertia (NCRI) measurements published in 2004 by Kim and Chan. Uncovering the exact microscopic mechanism giving rise to this effect is the subject of this dissertation. The majority of the work concentrates on exploring the effect of various types of disorder on NCRI and performing some of the first simultaneous measurements of crystal quality and NCRI. We have measured the effect of 3He impurities in solid 4He crystals, from isotopically pure 4He (<1ppb 3He) up to 30 ppm. We find that the onset temperature and the broadness of the transition increase continuously with the 3He concentration. We have also studied ultra-high purity 4He crystals down to temperatures of ˜1 mK finding no additional features in the period or dissipation. The sample quality dependence of NCRI was measured by growing samples with various methods known to produce crystals of high or low quality. The addition of disorder is observed to increase the magnitude of NCRI and the onset temperature. Higher quality crystals were found to be more reproducible from sample to sample. In some crystals, annealing was found to reduce the NCRI and dissipation. However, there was always appears to be some non-zero minimum NCRI. The first combined sample characterization and torsional oscillator measurements were made for solid helium confined within aerogel. Torsional oscillator measurements were made at Penn State and a complimentary x-ray scattering experiment was performed at the APS synchrotron facility. Although the samples were highly disordered (with an average grain size of 1000 A) the NCRI signals were comparable with those from high quality crystals, the data were also highly reproducible, as with the high quality samples. A set of complimentary torsional oscillator and heat capacity measurements with helium

  18. Experimental measurements for the effect of dilution procedure in blood esterases as animals biomarker for exposure to OP compounds.

    PubMed

    Abass, Kasim Sakran

    2014-01-01

    Organophosphate compounds can bind to carboxylesterase, which may lower the concentration of organophosphate pesticides at the target site enzyme, cholinesterase. It is unclear from the literature whether it is the carboxylesterase affinity for the organophosphate and/or the number of carboxylesterase molecules that is the dominant factor in determining the protective potential of carboxylesterase. The fundamental dilutions and kinetic effects of esterase enzyme are still poorly understood. This study aims to confirm and extend our current knowledge about the effects of dilutions on esterases activities in the blood for birds with respect to protecting the enzyme from organophosphate inhibition. There was significantly higher esterases activities in dilution 1 : 10 in the all blood samples from quail, duck, and chick compared to other dilutions (1 : 5, 1 : 15, 1 : 20, and 1 : 25) in all cases. Furthermore, our results also pointed to the importance of estimating different dilutions effects prior to using in birds as biomarker tools of environmental exposure. Concentration-inhibition curves were determined for the inhibitor in the presence of dilutions 1 : 5, 1 : 10, plus 1 : 15 (to stimulate carboxylesterase). Point estimates (concentrations calculated to produce 20, 50, and 80% inhibition) were compared across conditions and served as a measure of esterase-mediated detoxification. Results with well-known inhibitors (malathion) were in agreement with the literature, serving to support the use of this assay. Among the thiol-esters dilution 1 : 5 was observed to have the highest specificity constant (k(cat)/K(m)), and the K m and k cat values were 176 μM and 16,765 s(-1), respectively, for S-phenyl thioacetate ester, while detected in dilution 1: 15 was the lowest specificity constant (k(cat)/K(m)), and the Km and k cat values were 943 μM and 1154 s(-1), respectively, for acetylthiocholine iodide ester.

  19. Effects of Dilution, Polarization Ratio, and Energy Transfer on Photoalignment of Liquid Crystals Using Coumarin-Containing Polymer Films

    SciTech Connect

    Kim, C.; Wallace, J.U.; Chen, S.H.; Merkel, P.B.

    2008-05-27

    Orientation of a nematic liquid crystal, E-7, was investigated using coumarin-containing polymethacrylates to elucidate the roles played by the dilution of coumarin and the polarization ratio of irradiation. Dilution of coumarin by inert moieties had adverse effects on a nematic cell’s number density of disclinations and its orientational order parameter in the parallel but not the perpendicular regime. In addition, both dilution of coumarin and a decreasing polarization ratio resulted in a lower extent of coumarin dimerization at crossover, Xc. The significantly reduced Xc in a homopolymer comprising triphenylamine and coumarin was attributed to the dilution of coumarin and the diminished polarization ratio caused by competing absorption with simultaneous triplet energy transfer from triphenylamine to coumarin moieties.

  20. Interrogating the Effects of Radiation Damage Annealing on Helium Diffusion Kinetics in Apatite

    NASA Astrophysics Data System (ADS)

    Willett, C. D.; Fox, M.; Shuster, D. L.

    2015-12-01

    Apatite (U-Th)/He thermochronology is commonly used to study landscape evolution and potential links between climate, erosion and tectonics. The technique relies on a quantitative understanding of (i) helium diffusion kinetics in apatite, (ii) an evolving 4He concentration, (iii) accumulating damage to the crystal lattice caused by radioactive decay[1], and (iv) the thermal annealing of such damage[2],[3], which are each functions of both time and temperature. Uncertainty in existing models of helium diffusion kinetics has resulted in conflicting conclusions, especially in settings involving burial heating through geologic time. The effects of alpha recoil damage annealing are currently assumed to follow the kinetics of fission track annealing (e.g., reference [3]), although this assumption is difficult to fully validate. Here, we present results of modeling exercises and a suite of experiments designed to interrogate the effects of damage annealing on He diffusivity in apatite that are independent of empirical calibrations of fission track annealing. We use the existing experimental results for Durango apatite[2] to develop and calibrate a new function that predicts the effects of annealing temperature and duration on measured diffusivity. We also present a suite of experiments conducted on apatite from Sierra Nevada, CA granite to establish whether apatites with different chemical compositions have the same behavior as Durango apatite. Crystals were heated under vacuum to temperatures between 250 and 500°C for 1, 10, or 100 hours. The samples were then irradiated with ~220 MeV protons to produce spallogenic 3He, the diffusant then used in step-heating diffusion experiments. We compare the results of these experiments and model calibrations to existing models. Citations: [1]Shuster, D., Flowers R., and Farley K., (2006), EPSL 249(3-4), 148-161; [2]Shuster, D. and Farley, K., (2009), GCA 73 (1), 6183-6196; [3]Flowers, R., Ketcham, R., Shuster, D. and Farley, K

  1. Effect of modularity on the Glauber dynamics of the dilute spin glass model

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Man

    2014-11-01

    We study the Glauber dynamics of the dilute, infinite-ranged spin glass model, the so-called dilute Sherrington-Kirkpatrick (dSK) model. The dSK model has sparse couplings and can be classified by the modularity ( M) of the coupling matrix. We investigate the effect of the modularity on the relaxation dynamics starting from a random initial state. By using the Glauber dynamics and the replica method, we derive the relaxation dynamics equations for the magnetization ( m) and the energy per spin ( r), in addition to the equation for the spin glass order parameter ( q αβ ). In the replica symmetric (RS) analysis, we find that there are two solutions for the RS spin glass order parameter ( q): q = 0which is stable for r < 1/2 and q = (-1+4 r 2)/(32 r 4) which is stable for r > 1/2 in the non-modular system and q = 0 which is stable for r < 1/ and q = (-1+8 r 2)/(128 r 4) which is stable for r > 1/ in the completely modular system. By substituting the proper q values into the equations for r, we find that the relaxation dynamics of r depends on the modularity, M. These results suggest that, in the context of evolutionary theory, the modularity may emerge spontaneously in the point-mutation-only framework (Glauber dynamics) under a changing environment.

  2. Effect of dilution and contaminants on sand grouted with colloidal silica

    SciTech Connect

    Persoff, P.; Apps, J.; Moridis, G.; Whang, J.M.

    1999-06-01

    Colloidal silica is a low-viscosity chemical grout. Samples of grouted sand were made by pouring sand into liquid grout in molds, with the grout diluted to concentrations ranging from 5 to 27% silica by weight. The unconfined compressive strength of the grouted sand, measured after 7 days, was proportional to the silica concentration, up to a maximum of 400 kPa. The hydraulic conductivity of the grouted sand decreased with increasing silica concentration in a nearly log-linear manner down to a minimum of 2 {times} 10{sup {minus}9} cm/s, and was below 1 {times} 10{sup {minus}7} cm/s for grouts with 7.4% silica or more. Inclusion of 5% volumetric saturation of organics (tetrachloroethene, CCl{sub 4}, or aniline) in the samples had little effect on the strength or hydraulic conductivity. Samples were immersed in test liquids (organics, HCl diluted to pH 3, distilled water saturated with organics, and distilled water control) for up to 1 year. All samples increased in strength except for those immersed in aniline; samples immersed in water saturated with aniline were also weaker than control samples.

  3. Gravitational and radiative effects on the escape of helium from the moon

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.

    1978-01-01

    On the moon, and probably on Mercury and other similar regolith-covered bodies with tenuous atmosphere, the dominant gas is He-4. It arises as the radiogenic product of the decay of uranium and thorium within any planet, but its major source appears to be the alpha particle flux of the solar wind. The moon intercepts solar wind helium at an average rate of 1.1 times 10 to the 24th atom/sec, and loses it at the same rate. Some helium may escape directly as the result of the process of solar wind soil bombardment which may release previously trapped helium at superthermal speeds. Atmospheric models have been calculated with the total helium influx as source. Subsequent comparison of model and measured helium concentrations indicates that the fraction of helium escaping via the atmosphere may range from 20% to 100% of the solar wind influx. Of the escaping atmosphere, most of the helium (about 93%) becomes trapped in earth orbit, while about 5% gets trapped in satellite orbits about the moon. Owing to a 6 month lifetime for helium in solar radiation, the satellite atoms form a lunar corona that exceeds the lunar atmosphere in total abundance by a factor of 4 to 5.

  4. Finite Size Effects in Adsorption of Helium Mixtures by Alkali Substrates

    NASA Astrophysics Data System (ADS)

    Barranco, M.; Guilleumas, M.; Hernández, E. S.; Mayol, R.; Pi, M.; Szybisz, L.

    2004-08-01

    We investigate the behavior of mixed 3He-4He droplets on alkali surfaces at zero temperature, within the frame of Finite Range Density Functional theory. The properties of one single 3He atom on 4He_N4 droplets on different alkali surfaces are addressed, and the energetics and structure of 4He_N4+3He_N3 systems on Cs surfaces, for nanoscopic 4He drops, are analyzed through the solutions of the mean field equations for varying number N3 of 3He atoms. We discuss the size effects on the single particle spectrum of 3He atoms and on the shapes of both helium distributions.

  5. Estimating the Effect of Helium and Nitrogen Mixing on Deposition Efficiency in Cold Spray

    NASA Astrophysics Data System (ADS)

    Ozdemir, Ozan C.; Widener, Christian A.; Helfritch, Dennis; Delfanian, Fereidoon

    2016-04-01

    Cold spray is a developing technology that is increasingly finding applications for coating of similar and dissimilar metals, repairing geometric tolerance defects to extend expensive part life and additive manufacturing across a variety of industries. Expensive helium is used to accelerate the particles to higher velocities in order to achieve the highest deposit strengths and to spray hard-to-deposit materials. Minimal information is available in the literature studying the effects of He-N2 mixing on coating deposition efficiency, and how He can potentially be conserved by gas mixing. In this study, a one-dimensional simulation method is presented for estimating the deposition efficiency of aluminum coatings, where He-N2 mixture ratios are varied. The simulation estimations are experimentally validated through velocity measurements and single particle impact tests for Al6061.

  6. Effect of Compton scattering on the double-to-single photoionization ratio in helium

    NASA Astrophysics Data System (ADS)

    Sagurton, M.; Bartlett, R. J.; Samson, J. A. R.; He, Z. X.; Morgan, D.

    1995-10-01

    The effect of Compton scattering on the ratio of double-to-single ionization from photon impact in helium has been measured for 2.1<=hν<=5.5 keV using a time-of-flight ion spectrometer with a high relative collection efficiency for Compton ions. Single ionization from Compton scattering is found to contribute measurably to a reduction in the ionization ratio for hν>~3.5 keV. Our measurements are compared with predictions based on recent calculations of the single and double ionization cross sections for photoabsorption and Compton scattering by Hino et al. [Phys. Rev. A 48, 1271 (1993), Phys. Rev. Lett. 72, 1620 (1994)], Andersson et al. [Phys. Rev. Lett. 71, 50 (1993)], and Surić et al. [Phys. Rev. Lett. 73, 790 (1994)].

  7. Effect of oxide particle distribution on the helium-induced fracture of copper

    SciTech Connect

    Wheeler, D.A.

    1990-01-01

    Long-term exposure to tritium (H[sup 3]) gas can degrade the mechanical properties of copper alloys while similar exposure to protium (H[sup 1]) gas does not cause such degradation. This difference in behavior is attributed to the presence of helium which is generated by the radioactive decay of tritium. The accumulation of helium, which is virtually insoluble in the copper lattice, can cause the nucleation of cavities along grain boundaries and promote intergranular fracture. Permeation studies have shown that oxide particles act as trap sites for diffusing hydrogen isotopes, and thus may affect the susceptibility of copper to helium-induced degradation by altering the initial tritium distribution in the metal lattice. Tensile and metallographic data demonstrate that oxide particles trap both tritium and helium and decrease the susceptibility of copper to helium-induced intergranular fracture. 25 refs, 3 tabs, 12 figs.

  8. Effect of oxide particle distribution on the helium-induced fracture of copper

    SciTech Connect

    Wheeler, D.A.

    1990-12-31

    Long-term exposure to tritium (H{sup 3}) gas can degrade the mechanical properties of copper alloys while similar exposure to protium (H{sup 1}) gas does not cause such degradation. This difference in behavior is attributed to the presence of helium which is generated by the radioactive decay of tritium. The accumulation of helium, which is virtually insoluble in the copper lattice, can cause the nucleation of cavities along grain boundaries and promote intergranular fracture. Permeation studies have shown that oxide particles act as trap sites for diffusing hydrogen isotopes, and thus may affect the susceptibility of copper to helium-induced degradation by altering the initial tritium distribution in the metal lattice. Tensile and metallographic data demonstrate that oxide particles trap both tritium and helium and decrease the susceptibility of copper to helium-induced intergranular fracture. 25 refs, 3 tabs, 12 figs.

  9. Solvation of molecules in superfluid helium enhances the “interaction induced localization” effect

    SciTech Connect

    Walewski, Łukasz Forbert, Harald; Marx, Dominik

    2014-04-14

    Atomic nuclei become delocalized at low temperatures as a result of quantum effects, whereas they are point-like in the high temperature (classical) limit. For non-interacting nuclei, the delocalization upon lowering the temperature is quantitatively described in terms of the thermal de Broglie wavelength of free particles. Clearly, light non-interacting nuclei – the proton being a prominent one – are much more delocalized at low temperatures compared to heavy nuclei, such as non-interacting oxygen having water in mind. However, strong interactions due to chemical bonding in conjunction with ultra-low temperatures characteristic to superfluid helium nanodroplets change this common picture substantially for nuclei in molecules or clusters. It turns out that protons shared in hydrogen bonds undergo an extreme “interaction induced localization” at temperatures on the order of 1 K, which compresses the protonic spatial distributions to the size of the much heavier donor or acceptor atoms, such as O or Cl nuclei, corresponding to about 0.1% of the volume occupied by a non-interacting proton at the same temperature. Moreover, applying our recently developed hybrid ab initio path integral molecular dynamics/bosonic path integral Monte Carlo quantum simulation technique to a HCl/water cluster, HCl(H{sub 2}O){sub 4}, we find that helium solvation has a significant additional localizing effect of up to about 30% in volume. In particular, the solvent-induced excess localization is the stronger the lesser the given nucleus is already localized in the gas phase reference situation.

  10. Dilution effects on the antiferromagnetic Kondo semiconductor CeOs2Al10

    NASA Astrophysics Data System (ADS)

    Okada, Y.; Kawabata, J.; Yamada, Y.; Muro, Y.; Takabatake, T.

    2017-04-01

    We have studied the effects of dilution of Ce sublattice on the unusual antiferromagnetic (AFM) order in the Kondo semiconductor CeOs2Al10 at 28.5 K by the magnetic, transport and specific-heat measurements of single crystals of Ce1-zLazOs2Al10. The effective magnetic moment and paramagnetic Curie temperature hardly change with z up to 0.5, indicating that the 4f state remains unchanged at high temperatures. The suppression of the Néel temperature TN is much weaker than that in 5d hole doped system, Ce(Os1-yRey)2Al10. Therefore, the AFM interaction is robust against the violation of the coherent Ce sublattice. The activation energy in the resistivity decreases in parallel with TN, confirming the argument that the presence of the c-f hybridization gap is a requisite for the unusual AFM order in this system.

  11. Droplet evaporation method as a new potential approach for highlighting the effectiveness of ultra high dilutions.

    PubMed

    Kokornaczyk, Maria Olga; Trebbi, Grazia; Dinelli, Giovanni; Marotti, Ilaria; Bregola, Valeria; Nani, Daniele; Borghini, Francesco; Betti, Lucietta

    2014-04-01

    This study sought to verify whether the droplet evaporation method (DEM) can be applied to assess the effectiveness of ultra-high dilutions (UHDs). We studied the shape characteristics of the polycrystalline structures formed during droplet evaporation of wheat seed leakages. The experimental protocol tested both unstressed seeds and seeds stressed with arsenic trioxide 5mM, treated with either ultra-high dilutions of the same stressor substance, or with water as a control. The experimental groups were analyzed by DEM and in vitro growth tests. DEM patterns were evaluated for their local connected fractal dimension (measure of complexity) and fluctuating asymmetry (measure of symmetry exactness). Treatment with arsenic at UHD of both stressed and non-stressed seeds increased the local connected fractal dimension levels and bilateral symmetry exactness values in the polycrystalline structures, as compared to the water treatment. The results of in vitro growth tests revealed a stimulating effect of arsenic at UHD vs. control, and a correlation between the changes in growth rate and the crystallographic values of the polycrystalline structures was observed. The results indicate that polycrystalline structures are sensitive to UHDs, and so for the first time provide grounds for the use of DEM as a new tool for testing UHD effectiveness. DEM could find application as a treatment pre-selection tool, or to monitor sample conditions during treatment. Moreover, when applied to biological liquids (such as saliva, blood, blood serum, etc.), DEM might provide information about UHD effectiveness on human and animal health. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Multiple component end-member mixing model of dilution: hydrochemical effects of construction water at Yucca Mountain, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Lu, Guoping; Sonnenthal, Eric L.; Bodvarsson, Gudmundur S.

    2008-12-01

    The standard dual-component and two-member linear mixing model is often used to quantify water mixing of different sources. However, it is no longer applicable whenever actual mixture concentrations are not exactly known because of dilution. For example, low-water-content (low-porosity) rock samples are leached for pore-water chemical compositions, which therefore are diluted in the leachates. A multicomponent, two-member mixing model of dilution has been developed to quantify mixing of water sources and multiple chemical components experiencing dilution in leaching. This extended mixing model was used to quantify fracture-matrix interaction in construction-water migration tests along the Exploratory Studies Facility (ESF) tunnel at Yucca Mountain, Nevada, USA. The model effectively recovers the spatial distribution of water and chemical compositions released from the construction water, and provides invaluable data on the matrix fracture interaction. The methodology and formulations described here are applicable to many sorts of mixing-dilution problems, including dilution in petroleum reservoirs, hydrospheres, chemical constituents in rocks and minerals, monitoring of drilling fluids, and leaching, as well as to environmental science studies.

  13. Ethanol production from industrial hemp: effect of combined dilute acid/steam pretreatment and economic aspects.

    PubMed

    Kuglarz, Mariusz; Gunnarsson, Ingólfur B; Svensson, Sven-Erik; Prade, Thomas; Johansson, Eva; Angelidaki, Irini

    2014-07-01

    In the present study, combined steam (140-180°C) and dilute-acid pre-hydrolysis (0.0-2.0%) were applied to industrial hemp (Cannabis sativa L.), as pretreatment for lignocellulosic bioethanol production. The influence of the pretreatment conditions and cultivation type on the hydrolysis and ethanol yields was also evaluated. Pretreatment with 1% sulfuric acid at 180°C resulted in the highest glucose yield (73-74%) and ethanol yield of 75-79% (0.38-0.40 g-ethanol/g-glucose). Taking into account the costs of biomass processing, from field to ethanol facility storage, the field-dried hemp pretreated at the optimal conditions showed positive economic results. The type of hemp cultivation (organic or conventional) did not influence significantly the effectiveness of the pretreatment as well as subsequent enzymatic hydrolysis and ethanol fermentation.

  14. A numerical study of the effects of curvature and convergence on dilution jet mixing

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Reynolds, R.; White, C.

    1987-01-01

    An analytical program was conducted to assemble and assess a three-dimensional turbulent viscous flow computer code capable of analyzing the flow field in the transition liners of small gas turbine engines. This code is of the TEACH type with hybrid numerics, and uses the power law and SIMPLER algorithms, an orthogonal curvilinear coordinate system, and an algebraic Reynolds stress turbulence model. The assessments performed in this study, consistent with results in the literature, showed that in its present form this code is capable of predicting trends and qualitative results. The assembled code was used to perform a numerical experiment to investigate the effects of curvature and convergence in the transition liner on the mixing of single and opposed rows of cool dilution jets injected into a hot mainstream flow.

  15. A Numerical Study of the Effects of Curvature and Convergence on Dilution Jet Mixing

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Reynolds, R.; White, C.

    1987-01-01

    An analytical program was conducted to assemble and assess a three-dimensional turbulent viscous flow computer code capable of analyzing the flow field in the transition liners of small gas turbine engines. This code is of the TEACH type with hybrid numerics, and uses the power law and SIMPLER algorithms, an orthogonal curvilinear coordinate system, and an algebraic Reynolds stress turbulence model. The assessments performed in this study, consistent with results in the literature, showed that in its present form this code is capable of predicting trends and qualitative results. The assembled code was used to perform a numerical experiment to investigate the effects of curvature and convergence in the transition liner on the mixing of single and opposed rows of cool dilution jets injected into a hot mainstream flow.

  16. Effect of dilute acid pretreatment on the conversion of barley straw with grains to fermentable sugars.

    PubMed

    Yang, Ming; Kuittinen, Suvi; Zhang, Junhua; Keinänen, Markku; Pappinen, Ari

    2013-10-01

    This study investigated the effects of pretreatment conditions, dilute sulfuric acid concentration and treatment time, on the carbohydrate solubility of a mixture of barley straw and grain. The conditions were expressed as combined severity (CS) to evaluate sugar recovery from pretreated samples. Enzymatic hydrolysates from the lignocellulose pretreatment residues were also included to the results. CS was positively correlating with glucose recovery in all conditions, but in higher acid concentrations CS did not predict xylose recovery. It appeared that the residual xylan better indicate the xylose release. An optimal fermentable sugar yield from the mixture of barley straw and grain was obtained by maintaining the CS at around 1.38, corresponding to an overall glucose yield of 96% and a xylose yield of 57%.

  17. Effects of a semiconductor matrix on the band anticrossing in dilute group II-VI oxides

    NASA Astrophysics Data System (ADS)

    Wełna, M.; Kudrawiec, R.; Nabetani, Y.; Tanaka, T.; Jaquez, M.; Dubon, O. D.; Yu, K. M.; Walukiewicz, W.

    2015-08-01

    The effect of a semiconductor matrix on the band anticrossing interaction is studied for four different dilute-oxide material systems: ZnSO, ZnSeO, ZnTeO, and ZnCdTeO. The choice of host material allows for independent control of the energy separation between the conduction band edge and the O energy level as well as the coupling parameter. The transition energies measured by photoreflectance and optical absorption are well explained by the band anticrossing model with the coupling parameter increasing from 1.35 eV for ZnSO to 2.8 eV for ZnTeO and showing approximately linear dependence on the electronegativity difference between O and the host anion.

  18. Hydrogen effects in dilute III-N-V alloys: From defect engineering to nanostructuring

    SciTech Connect

    Pettinari, G.; Felici, M.; Capizzi, M.; Polimeni, A.; Trotta, R.

    2014-01-07

    The variation of the band gap energy of III-N-V semiconductors induced by hydrogen incorporation is the most striking effect that H produces in these materials. A special emphasis is given here to the combination of N-activity passivation by hydrogen with H diffusion kinetics in dilute nitrides. Secondary ion mass spectrometry shows an extremely steep (smaller than 5 nm/decade) forefront of the H diffusion profile in Ga(AsN) under appropriate hydrogenation conditions. This discovery prompts the opportunity for an in-plane nanostructuring of hydrogen incorporation and, hence, for a modulation of the material band gap energy at the nanoscale. The properties of quantum dots fabricated by a lithographically defined hydrogenation are presented, showing the zero-dimensional character of these novel nanostructures. Applicative prospects of this nanofabrication method are finally outlined.

  19. THE EFFECTS OF CURVATURE AND EXPANSION ON HELIUM DETONATIONS ON WHITE DWARF SURFACES

    SciTech Connect

    Moore, Kevin; Bildsten, Lars; Townsley, Dean M.

    2013-10-20

    Accreted helium layers on white dwarfs have been highlighted for many decades as a possible site for a detonation triggered by a thermonuclear runaway. In this paper, we find the minimum helium layer thickness that will sustain a steady laterally propagating detonation and show that it depends on the density and composition of the helium layer, specifically {sup 12}C and {sup 16}O. Detonations in these thin helium layers have speeds slower than the Chapman-Jouget (CJ) speed from complete helium burning, v{sub CJ} = 1.5 × 10{sup 9} cm s{sup –1}. Though gravitationally unbound, the ashes still have unburned helium (≈80% in the thinnest cases) and only reach up to heavy elements such as {sup 40}Ca, {sup 44}Ti, {sup 48}Cr, and {sup 52}Fe. It is rare for these thin shells to generate large amounts of {sup 56}Ni. We also find a new set of solutions that can propagate in even thinner helium layers when {sup 16}O is present at a minimum mass fraction of ≈0.07. Driven by energy release from α captures on {sup 16}O and subsequent elements, these slow detonations only create ashes up to {sup 28}Si in the outer detonated He shell. We close by discussing how the unbound helium burning ashes may create faint and fast 'Ia' supernovae as well as events with virtually no radioactivity, and speculate on how the slower helium detonation velocities impact the off-center ignition of a carbon detonation that could cause a Type Ia supernova in the double detonation scenario.

  20. Balancing the dilution and oddity effects: decisions depend on body size.

    PubMed

    Rodgers, Gwendolen M; Ward, Jonathan R; Askwith, Beth; Morrell, Lesley J

    2011-01-01

    Grouping behaviour, common across the animal kingdom, is known to reduce an individual's risk of predation; particularly through dilution of individual risk and predator confusion (predator inability to single out an individual for attack). Theory predicts greater risk of predation to individuals more conspicuous to predators by difference in appearance from the group (the 'oddity' effect). Thus, animals should choose group mates close in appearance to themselves (eg. similar size), whilst also choosing a large group. We used the Trinidadian guppy (Poecilia reticulata), a well known model species of group-living freshwater fish, in a series of binary choice trials investigating the outcome of conflict between preferences for large and phenotypically matched groups along a predation risk gradient. We found body-size dependent differences in the resultant social decisions. Large fish preferred shoaling with size-matched individuals, while small fish demonstrated no preference. There was a trend towards reduced preferences for the matched shoal under increased predation risk. Small fish were more active than large fish, moving between shoals more frequently. Activity levels increased as predation risk decreased. We found no effect of unmatched shoal size on preferences or activity. Our results suggest that predation risk and individual body size act together to influence shoaling decisions. Oddity was more important for large than small fish, reducing in importance at higher predation risks. Dilution was potentially of limited importance at these shoal sizes. Activity levels may relate to how much sampling of each shoal was needed by the test fish during decision making. Predation pressure may select for better decision makers to survive to larger size, or that older, larger fish have learned to make shoaling decisions more efficiently, and this, combined with their size relative to shoal-mates, and attractiveness as prey items influences shoaling decisions.

  1. Effect of lacrimal punctal occlusion on tear production and tear fluorescein dilution in normal dogs.

    PubMed

    Gelatt, K N; MacKay, E O; Widenhouse, C; Widenhouse, T S; Stopek, J B

    2006-01-01

    To evaluate effects of lacrimal punctal plugs positioned in either the upper, lower, or combination of upper and lower lacrimal canaliculi on plug retention and tolerance; tear production, as measured by the Schirmer tear test; and the dilution of fluorescein within the tear film in normal dogs. Lacrimal punctal plugs were positioned in the lower, upper, or combination of lower and upper plugs in six laboratory-quality Beagles under topical anesthesia. Retention of plugs was evaluated daily from 8 to 23 days by visual inspection and slit-lamp biomicroscopy. Schirmer tear tests (STT 1 without topical anesthesia) were performed at 48-h intervals. Dilution of fluorescein was determined at 5- and 45-min post-fluorescein instillations once weekly. Lacrimal punctal plugs of 0.4 and 0.6 mm in diameter were retained for 14 (lower plugs: 100%) and 23 days (75%), and for the upper plugs at 8 days less often (75%), and were infrequently locally nonirritating. Combination of lower and upper plugs seemed to adversely affect retention of either plug. When loss of the plugs occurred, a next larger size plug was necessary suggesting some stretching of the lacrimal canaliculi occurred. Pre- and postplug placement STT results indicated no change with lower and combination lacrimal punctal plugs, but decreased levels following upper lacrimal punctal plugs. Tear fluorescein levels at 5 and 45 min in control eye (no punctum plugs) were 3.39% and 0.14%, respectively. With lower, upper, and the combination of lower and upper lacrimal puncta plugs, tear fluorescein levels at 45 min were higher than the controls (lower: 0.76%; upper: 0.45%, and combination 0.56%). Lacrimal punctal silicone plugs are retained for 8-23 days in the lower, upper, and combined lower and upper canaliculi at high rates. Effects on STT levels appear limited. Fluorescein within the tear film persists longer with all different positioned lacrimal punctum plugs than in the control eyes.

  2. Balancing the Dilution and Oddity Effects: Decisions Depend on Body Size

    PubMed Central

    Rodgers, Gwendolen M.; Ward, Jonathan R.; Askwith, Beth; Morrell, Lesley J.

    2011-01-01

    Background Grouping behaviour, common across the animal kingdom, is known to reduce an individual's risk of predation; particularly through dilution of individual risk and predator confusion (predator inability to single out an individual for attack). Theory predicts greater risk of predation to individuals more conspicuous to predators by difference in appearance from the group (the ‘oddity’ effect). Thus, animals should choose group mates close in appearance to themselves (eg. similar size), whilst also choosing a large group. Methodology and Principal Findings We used the Trinidadian guppy (Poecilia reticulata), a well known model species of group-living freshwater fish, in a series of binary choice trials investigating the outcome of conflict between preferences for large and phenotypically matched groups along a predation risk gradient. We found body-size dependent differences in the resultant social decisions. Large fish preferred shoaling with size-matched individuals, while small fish demonstrated no preference. There was a trend towards reduced preferences for the matched shoal under increased predation risk. Small fish were more active than large fish, moving between shoals more frequently. Activity levels increased as predation risk decreased. We found no effect of unmatched shoal size on preferences or activity. Conclusions and Significance Our results suggest that predation risk and individual body size act together to influence shoaling decisions. Oddity was more important for large than small fish, reducing in importance at higher predation risks. Dilution was potentially of limited importance at these shoal sizes. Activity levels may relate to how much sampling of each shoal was needed by the test fish during decision making. Predation pressure may select for better decision makers to survive to larger size, or that older, larger fish have learned to make shoaling decisions more efficiently, and this, combined with their size relative to shoal

  3. Dilute nitric or nitrous acid solution containing halide ions as effective media for pure gold dissolution.

    PubMed

    Hojo, Masashi; Yamamoto, Masahiko; Okamura, Kei

    2015-08-14

    The greatly enhanced oxidation ability of dilute aqueous nitric acid (0.10-2.0 mol L(-1)) containing bromide and iodide salts as well as chloride salts has been examined based on the dissolution kinetics of pure gold at 30-60 °C. It has been found that bromide salts are more effective than chloride salts in gaining the ability of dissolving gold in dilute aqueous nitric acid solution. At 60 °C, a piece of gold-wire (ca. 20 mg) is dissolved in 20 mL of as low as 0.10 mol L(-1) HNO3 solution containing 1.0-5.0 mol L(-1) NaBr and the dissolution rate constant, log(k/s(-1)), increases linearly (from -5.78 to -4.52) with the increasing NaBr concentration. The addition of organic solvents, such as acetonitrile and acetic acid, causes acceleration of gold dissolution in LiBr and NaBr solutions. With increasing MeCN contents, for instance, the log(k/s(-1)) value of 0.10 mol L(-1) HNO3 solution containing 2.0 mol L(-1) NaBr increases linearly from -5.30 to -4.61 at 30% (v/v) MeCN. The bromide salts affect the gold dissolution rate constant in the order of KBr < NaBr < LiBr < CaBr2. With increasing NaI concentration (0.20-3.0 mol L(-1)), some acceleration in log(k/s(-1)) of 0.50 or 1.0 mol L(-1) HNO3 solution has been observed; however, the slope of acceleration as the function of NaI concentration is much smaller than that of NaCl or NaBr. The gold dissolution ability has been examined also for nitrous acid containing chloride and bromide ions at 35 °C. The NaNO2 solution containing twice or more amounts of HX (X = Cl, Br) gives the maximum efficiency for gold dissolution, according to the log(k/s(-1)) values of the mixed solutions of NaNO2 (0.10-2.0 mol L(-1)) and HX of various concentrations. The influence of oxidation by dilute nitric and nitrous acids on the gold dissolution is discussed from the standpoint of the redox potentials in "modified" aqueous solutions and not of the changes in the activity coefficients of ions.

  4. Effects of synthetic versus natural colloid resuscitation on inducing dilutional coagulopathy and increasing hemorrhage in rabbits.

    PubMed

    Kheirabadi, Bijan S; Crissey, Jacqueline M; Deguzman, Rodolfo; Perez, Michael R; Cox, Ashley B; Dubick, Michael A; Holcomb, John B

    2008-05-01

    : On the basis of logistic benefits of colloids over crystalloids, the U.S. military selected Hextend for resuscitation of combat casualties in the field. We investigated the effects of resuscitation with this fluid, as well as other colloids, on coagulation and uncontrolled bleeding in rabbits subjected to a splenic injury. : Anesthetized male New Zealand white rabbits (3.3 kg +/- 0.2 kg) were divided into three groups and subjected to hypothermia (35 degrees C +/- 0.5 degrees C) and approximately 40% isovolemic blood exchange (hemodilution) with Hextend (H); Dextran70 (D); or 5% human albumin (A) solution (n = 8/group). Complete blood count, arterial blood gas, and coagulation values were measured before and after hemodilution. Laparotomy was performed and a standard splenic injury causing uncontrolled hemorrhage was made. Rabbits were resuscitated (25 mL/kg) with the same colloid used for hemodilution to restore baseline blood pressure. Animals were monitored for 2 hours or until death. Blood loss and survival times were measured. : There were no differences among groups in pH, Hct, fibrinogen, or platelets before or after hemodilution. Hct, fibrinogen, and platelets were reduced by 45% to 60% in all groups. Prothrombin time (PT) and activated partial thromboplastin time were prolonged in all the rabbits with the greatest increase in A group. Thrombelastograph (TEG) analysis showed longer initial reaction (R) and clotting (K) times, slower clotting rate and lower clot strength in H and D than A diluted blood. R time was faster and K time remained unchanged in A group after hemodilution. Thrombin generation potential and peak concentration of thrombin were unchanged in A samples but significantly reduced in H and D diluted samples. Subsequent splenic injury led to almost equal blood losses ( approximately 54 +/- 1 mL/kg) in H and D groups, which were higher (p < 0.01) than in A rabbits (37 +/- 4 mL/kg). This resulted in death of 100% (H), 75% (D), and 50% (A) of

  5. Effect of two types of helium circulators on the performance of a subsonic nuclear powered airplane

    NASA Technical Reports Server (NTRS)

    Strack, W. C.

    1971-01-01

    Two types of helium circulators are analytically compared on the bases of their influence on airplane payload and on propulsion system variables. One type of circulator is driven by the turbofan engines with power takeoff shafting while the other, a turbocirculator, is powered by a turbine placed in the helium loop between the nuclear reactor and the helium-to-air heat exchangers inside the engines. Typical results show that the turbocirculator yields more payload for circulator efficiencies greater than 0.82. Optimum engine and heat exchanger temperatures and pressures are significantly lower in the turbocirculator case compared to the engine-driven circulator scheme.

  6. Effects of helium content of microstructural development in Type 316 stainless steel under neutron irradiation

    SciTech Connect

    Maziasz, P.J.

    1985-11-01

    This work investigated the sensitivity of microstructural evolution, particularly precipitate development, to increased helium content during thermal aging and during neutron irradiation. Helium (110 at. ppM) was cold preinjected into solution annealed (SA) DO-heat type 316 stainess steel (316) via cyclotron irradiation. These specimens were then exposed side by side with uninjected samples. Continuous helium generation was increased considerably relative to EBR-II irradiation by irradiation in HFIR. Data were obtained from quantitative analytical electron microscopy (AEM) in thin foils and on extraction replicas. 480 refs., 86 figs., 19 tabs.

  7. The effects of heating and dilution on the rheological and physical properties of Tank 241-SY-101 waste

    SciTech Connect

    Tingey, J.M.; Bredt, P.R.; Shade, E.H.

    1994-10-01

    Of the 177 high-level waste underground storage tanks at the Hanford Site, 25 have been identified as being potentially capable of generating and releasing flammable gas. Tank 241-SY-101 has exhibited periodic releases of gas, and in some cases the gas released has exceeded the lower flammable gas limit. The components of the released gas from Tank 241-SY-101 are hydrogen, nitrous oxide, nitrogen, ammonia, carbon monoxide, and methane. A mitigation strategy that may effectively reduce the retention and release of these gases and the release of flammable gases is dilution coupled with eating of the tank wastes. The purpose of this work was to determine changes in rheological and physical properties caused by heating and dilution of actual 241-SY-101 waste. In May and December 1991, following periodic gas releases, samples of the waste in Tank 241-SY-101 were obtained. Current work quantified the effects of heating coupled with NaOH dilution of a combination of waste samples from Tank 241-SY-101 characteristic of a non-convective layer. The experimental approach and results of this heating and dilution study on Tank 241-SY-101 waste samples are described in Sections 2 and 3, respectively. In Section 3.1, a discussion of the rheological properties of the waste as a function of shearing forces, volume percent dilution, and temperature is presented. In Section 3.2, the physical properties of the waste dilutions are described, including the densities of the slurry, filtered solids, and filtrate; the settling behavior; and the percent filtered solids in the composite sample and each of the composite dilutions. A brief discussion of the results and uncertainties is given is Section 3.3. The conclusions of this investigation are reported in Section 4.

  8. Effects of Dilute Acid Pretreatment on Cellulose DP and the Relationship Between DP Reduction and Cellulose Digestibility

    SciTech Connect

    Wang, W.; Chen, X.; Tucker, M.; Himmel, M. E.; Johnson, D. K.

    2012-01-01

    The degree of polymerization(DP) of cellulose is considered to be one of the most important properties affecting the enzymatic hydrolysis of cellulose. Various pure cellulosic and biomass materials have been used in a study of the effect of dilute acid treatment on cellulose DP. A substantial reduction in DP was found for all pure cellulosic materials studied even at conditions that would be considered relatively mild for pretreatment. The effect of dilute acid pretreatment on cellulose DP in biomass samples was also investigated. Corn stover pretreated with dilute acid under the most optimal conditions contained cellulose with a DPw in the range of 1600{approx}3500, which is much higher than the level-off DP(DPw 150{approx}300) obtained with pure celluloses. The effect of DP reduction on the saccharification of celluloses was also studied. From this study it does not appear that cellulose DP is a main factor affecting cellulose saccharification.

  9. Microstructure of HIPed and SPSed 9Cr-ODS steel and its effect on helium bubble formation

    NASA Astrophysics Data System (ADS)

    Lu, Chenyang; Lu, Zheng; Xie, Rui; Liu, Chunming; Wang, Lumin

    2016-06-01

    Two 9Cr-ODS steels with the same nominal composition were consolidated by hot isostatic pressing (HIP, named COS-1) and spark plasma sintering (SPS, named COS-2). Helium ions were implanted into COS-1, COS-2 and non-ODS Eurofer 97 steels up at 673 K. Microstructures before and after helium ion implantations were carefully characterized. The results show a bimodal grain size distribution in COS-2 and a more uniform grain size distribution in COS-1. Nanoscale clusters of GP-zone type Y-Ti-O and Y2Ti2O7 pyrochlore as well as large spinel Mn(Ti)Cr2O4 particles are all observed in the two ODS steels. The Y-Ti-enriched nano-oxides in COS-1 exhibit higher number density and smaller size than in COS-2. The Y-Ti-enriched nano-oxides in fine grains of COS-2 show higher number density and smaller size than that in coarse grains of COS-2. Nano-oxides effectively trap helium atoms and lead to the formation of high density and ultra-fine helium bubbles.

  10. Effects of metastable species in helium and argon atmospheric pressure plasma jets (APPJs) on inactivation of periodontopathogenic bacteria

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Young; Kim, Kyoung-Hwa; Seol, Yang-Jo; Kim, Su-Jeong; Bae, Byeongjun; Huh, Sung-Ryul; Kim, Gon-Ho

    2016-05-01

    The helium and argon have been widely used as discharge gases in atmospheric pressure plasma jets (APPJs) for bacteria inactivation. The APPJs show apparent different in bullet propagation speed and bacteria inactivation rate apparently vary with discharge gas species. This work shows that these two distinctive features of APPJs can be linked through one factor, the metastable energy level. The effects of helium and argon metastable species on APPJ discharge mechanism for reactive oxygen nitrogen species (RONS) generation in APPJs are investigated by experiments and numerical estimation. The discharge mechanism is investigated by using the bullet velocity from the electric field which is obtained with laser induced fluorescence (LIF) measurement. The measured electric field also applied on the estimation of RONS generation, as electron energy source term in numerical particle reaction. The estimated RONS number is verified by comparing NO and OH densities to the inactivation rate of periodontitis bacteria. The characteristic time for bacteria inactivation of the helium-APPJ was found to be 1.63 min., which is significantly less than that of the argon-APPJ, 12.1 min. In argon-APPJ, the argon metastable preserve the energy due to the lack of the Penning ionization. Thus the surface temperature increase is significantly higher than helium-APPJ case. It implies that the metastable energy plays important role in both of APPJ bullet propagation and bacteria inactivation mechanism.

  11. Effect of dilution with beverages on the smell and taste of oral acetylcysteine.

    PubMed

    Crouch, Barbara Insley; Caravati, E Martin; Dandoy, Christopher

    2007-09-15

    The effect of dilution with beverages on the smell and taste of oral acetylcysteine was studied. A 5% solution of acetylcysteine was prepared from a 20% solution using water, Fresca, Coca-Cola, cranberry juice, or chocolate milk. Adult pharmacy students blinded to the diluent used a visual analogue scale (VAS) to rate the smell and taste for each 5% solution. For the taste evaluation, approximately 10 mL of each 5% solution was placed in a cup with a lid and straw. The difference in VAS scores for taste and smell was measured using the Kruskal-Wallis rank sum test. Comparisons were performed using the Mann-Whitney U test and the Bonferroni adjustment, with the level of significance set at <0.005. A total of 42 adult students participated in the study. Fresca was rated as the least offensive diluent with respect to smell by 22 students (52%) and taste by 33 students (79%). The chocolate milk-acetylcysteine solution was rated as the most offensive smelling by 22 students (52%) and most the offensive tasting by 11 students (26%). Cranberry juice was rated the most offensive tasting by 12 students (29%). The VAS score for Fresca was significantly lower than for all other beverages with respect to both smell and taste (p < 0.005). Acetylcysteine 20% oral solution diluted with Fresca to a 5% solution was reported to have the least offensive odor and taste and should be considered as an option when attempting to improve the palatability of oral acetylcysteine to adults.

  12. Effects of helium and air inhalation on the innate and early adaptive immune system in healthy volunteers ex vivo.

    PubMed

    Oei, Gezina T M L; Smit, Kirsten F; vd Vondervoort, Djai; Brevoord, Daniel; Hoogendijk, Arjan; Wieland, Catharina W; Hollmann, Markus W; Preckel, Benedikt; Weber, Nina C

    2012-09-24

    Helium inhalation protects myocardium, brain and endothelium against ischemia/reperfusion injury in animals and humans, when applied according to specific "conditioning" protocols. Before widespread use of this "conditioning" agent in clinical practice, negative side effects have to be ruled out. We investigated the effect of prolonged helium inhalation on the responsiveness of the human immune response in whole blood ex vivo. Male healthy volunteers inhaled 30 minutes heliox (79%He/21%O(2)) or air in a cross over design, with two weeks between measurements. Blood was withdrawn at T0 (baseline), T1 (25 min inhalation) and T2-T5 (1, 2, 6, 24 h after inhalation) and incubated with lipopolysaccharide (LPS), lipoteichoic acid (LTA), T-cell stimuli anti-CD3/ anti-CD28 (TCS) or RPMI (as control) for 2, 4 and 24 hours or not incubated (0 h). An additional group of six volunteers inhaled 60 minutes of heliox or air, followed by blood incubation with LPS and RPMI. Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), interferon-γ (IFN-γ) and interleukin-2 (IL-2) was analyzed by cytometric bead array. Statistical analysis was performed by the Wilcoxon test for matched samples. Incubation with LPS, LTA or TCS significantly increased TNF-α, IL-1β, IL-6, IL-8, IFN-γ and IL-2 in comparison to incubation with RPMI alone. Thirty min of helium inhalation did not influence the amounts of TNF-α, IL-1β, IL-6, IL-8, IFN-γ and IL-2 in comparison to air. Sixty min of helium inhalation did not affect cytokine production after LPS stimulation. We conclude that 79% helium inhalation does not affect the responsiveness of the human immune system in healthy volunteers. Dutch Trial Register: http://www.trialregister.nl/ NTR2152.

  13. Effects of helium and air inhalation on the innate and early adaptive immune system in healthy volunteers ex vivo

    PubMed Central

    2012-01-01

    Background Helium inhalation protects myocardium, brain and endothelium against ischemia/reperfusion injury in animals and humans, when applied according to specific “conditioning” protocols. Before widespread use of this “conditioning” agent in clinical practice, negative side effects have to be ruled out. We investigated the effect of prolonged helium inhalation on the responsiveness of the human immune response in whole blood ex vivo. Methods Male healthy volunteers inhaled 30 minutes heliox (79%He/21%O2) or air in a cross over design, with two weeks between measurements. Blood was withdrawn at T0 (baseline), T1 (25 min inhalation) and T2-T5 (1, 2, 6, 24 h after inhalation) and incubated with lipopolysaccharide (LPS), lipoteichoic acid (LTA), T-cell stimuli anti-CD3/ anti-CD28 (TCS) or RPMI (as control) for 2, 4 and 24 hours or not incubated (0 h). An additional group of six volunteers inhaled 60 minutes of heliox or air, followed by blood incubation with LPS and RPMI. Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), interferon-γ (IFN-γ) and interleukin-2 (IL-2) was analyzed by cytometric bead array. Statistical analysis was performed by the Wilcoxon test for matched samples. Results Incubation with LPS, LTA or TCS significantly increased TNF-α, IL-1β, IL-6, IL-8, IFN-γ and IL-2 in comparison to incubation with RPMI alone. Thirty min of helium inhalation did not influence the amounts of TNF-α, IL-1β, IL-6, IL-8, IFN-γ and IL-2 in comparison to air. Sixty min of helium inhalation did not affect cytokine production after LPS stimulation. Conclusions We conclude that 79% helium inhalation does not affect the responsiveness of the human immune system in healthy volunteers. Trial registration Dutch Trial Register: http://www.trialregister.nl/ NTR2152 PMID:23006534

  14. Effect of low-power radiation (helium/neon) upon submandibulary glands.

    PubMed

    Plavnik, Luis M; De Crosa, Marta E; Malberti, Alicia I

    2003-08-01

    The aim of this work was to study the effect of low-power laser radiation on guinea pig salivary glands. Low-power laser radiation changes some cellular functions. The effect on salivary glands has not been sufficiently studied. One hundred and forty-four male guinea pigs (150 +/- 30 g body weight) were used. The animals were divided into two groups: control group (fed animals and those undergoing 2, 4, 8, 10, and 12 h of fasting) and experimental group (irradiated). Both the right and left submandibular glands were later irradiated with helium-neon laser at 7-mW power, with a 0.75-mm spot, under continuous pulse for 2 min in a one-session exposure; a 11.2 J/cm(2) energy density was applied. Then, the irradiated animals were fed, or underwent 2, 4, 8, 10 and 12 h of fasting. Samples of submandibular glands were taken with a punch (5 mm diameter) and were used for optic and transmission electron microscopy studies. The structural observations showed that the irradiation effect was progressive; and showed a trophic stimulant effect at 2 h following irradiation, with vasodilatation, vascular congestion, perivascular infiltrate, and a necrotic picture of glandular parenchyma at longer times. The ultrastructural observations showed alterations of rough endoplasmic reticulum. We propose that low-power laser radiation with the doses applied in this study disturbs protein synthesis and secretion of guinea pig submandibulary glands.

  15. Helium-neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria.

    PubMed

    Hu, Wan-Ping; Wang, Jeh-Jeng; Yu, Chia-Li; Lan, Cheng-Che E; Chen, Gow-Shing; Yu, Hsin-Su

    2007-08-01

    Previous reports have shown that cellular functions could be influenced by visual light (400-700 nm). Recent evidence indicates that cellular proliferation could be triggered by the interaction of a helium-neon laser (He-Ne laser, 632.8 nm) with the mitochondrial photoacceptor-cytochrome c oxidase. Our previous studies demonstrated that He-Ne irradiation induced an increase in cell proliferation, but not migration, in the melanoma cell line A2058 cell. The aim of this study was to investigate the underlying mechanisms involved in photostimulatory effects induced by an He-Ne laser. Using the A2058 cell as a model for cell proliferation, the photobiologic effects induced by an He-Ne laser were studied. He-Ne irradiation immediately induced an increase in mitochondrial membrane potential (delta psi(mt)), ATP, and cAMP via enhanced cytochrome c oxidase activity and promoted phosphorylation of Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) expressions. He-Ne irradiation-induced A2058 cell proliferation was significantly abrogated by the addition of delta psi(mt) and JNK inhibitors. Moreover, treatment with an He-Ne laser resulted in delayed effects on IL-8 and transforming growth factor-beta1 release from A2058 cells. These results suggest that He-Ne irradiation elicits photostimulatory effects in mitochondria processes, which involve JNK/AP-1 activation and enhanced growth factor release, and ultimately lead to A2058 cell proliferation.

  16. The effect of dilute acid pre-treatment process in bioethanol production from durian (Durio zibethinus) seeds waste

    NASA Astrophysics Data System (ADS)

    Ghazali, K. A.; Salleh, S. F.; Riayatsyah, T. M. I.; Aditiya, H. B.; Mahlia, T. M. I.

    2016-03-01

    Lignocellulosic biomass is one of the promising feedstocks for bioethanol production. The process starts from pre-treatment, hydrolysis, fermentation, distillation and finally obtaining the final product, ethanol. The efficiency of enzymatic hydrolysis of cellulosic biomass depends heavily on the effectiveness of the pre-treatment step which main function is to break the lignin structure of the biomass. This work aims to investigate the effects of dilute acid pre-treatment on the enzymatic hydrolysis of durian seeds waste to glucose and the subsequent bioethanol fermentation process. The yield of glucose from dilute acid pre-treated sample using 0.6% H2SO4 and 5% substrate concentration shows significant value of 23.4951 g/L. Combination of dilute acid pre-treatment and enzymatic hydrolysis using 150U of enzyme able to yield 50.0944 g/L of glucose content higher compared to normal pre-treated sample of 8.1093 g/L. Dilute acid pre-treatment sample also shows stable and efficient yeast activity during fermentation process with lowest glucose content at 2.9636 g/L compared to 14.7583g/L for normal pre-treated sample. Based on the result, it can be concluded that dilute acid pre-treatment increase the yield of ethanol from bioethanol production process.

  17. The effects of inhomogeneous boundary dilution on the coating flow of an anti-HIV microbicide vehicle

    NASA Astrophysics Data System (ADS)

    Tasoglu, Savas; Peters, Jennifer J.; Park, Su Chan; Verguet, Stéphane; Katz, David F.; Szeri, Andrew J.

    2011-09-01

    A recent study in South Africa has confirmed, for the first time, that a vaginal gel formulation of the antiretroviral drug Tenofovir, when topically applied, significantly inhibits sexual HIV transmission to women [Karim et al., Science 329, 1168 (2010)]. However, the gel for this drug and anti-HIV microbicide gels in general have not been designed using an understanding of how gel spreading and retention in the vagina govern successful drug delivery. Elastohydrodynamic lubrication theory can be applied to model spreading of microbicide gels [Szeri et al., Phys. Fluids 20, 083101 (2008)]. This should incorporate the full rheological behavior of a gel, including how rheological properties change due to contact with, and dilution by, ambient vaginal fluids. Here, we extend our initial analysis, incorporating the effects of gel dilution due to contact with vaginal fluid produced at the gel-tissue interface. Our original model is supplemented with a convective-diffusive transport equation to characterize water transport into the gel and, thus, local gel dilution. The problem is solved using a multi-step scheme in a moving domain. The association between local dilution of gel and rheological properties is obtained experimentally, delineating the way constitutive parameters of a shear-thinning gel are modified by dilution. Results show that dilution accelerates the coating flow by creating a slippery region near the vaginal wall akin to a dilution boundary layer, especially if the boundary flux exceeds a certain value. On the other hand, if the diffusion coefficient of boundary fluid is increased, the slippery region diminishes in extent and the overall rate of gel spreading decreases.

  18. Helium tables.

    NASA Technical Reports Server (NTRS)

    Havill, Clinton H

    1928-01-01

    These tables are intended to provide a standard method and to facilitate the calculation of the quantity of "Standard Helium" in high pressure containers. The research data and the formulas used in the preparation of the tables were furnished by the Research Laboratory of Physical Chemistry, of the Massachusetts Institute of Technology.

  19. Diffusion effects on the helium abundance of the solar transition region and corona

    NASA Technical Reports Server (NTRS)

    Hansteen, Viggo H.; Holzer, Thomas E.; Leer, Egil

    1993-01-01

    The diffusion of helium in the solar transition region is studied by solving the mass and momentum conservation equations for a hydrogen-helium plasma given a representative temperature profile. Steady state solutions show that two distinct atmospheres may result. In cases where the thermal force on alpha-particles is balanced by the partial pressure gradient force, helium is the dominant coronal species. On the other hand, if it is the frictional force between protons and alpha-particles which balances the thermal force on alpha-particles then hydrogen is the major coronal component. In order to explore which of these solutions are attainable within reasonable time scales, the time-dependent equations are solved, starting from an initial state with a uniform helium abundance of 10 percent. The atmosphere as a whole is close to hydrostatic equilibrium, but due the thermal forces the individual elements are not. This force inbalance leads to a differential flow between species. It is found that this differential flow leads to a significant enhancement of the coronal helium abundance. Even for the relatively shallow temperature gradient used the helium abundance in the lower corona increases to 30 percent over a 24 hr period.

  20. The effects of dual-domain mass transfer on the tritium-helium-3 dating method.

    PubMed

    Neumann, Rebecca B; Labolle, Eric M; Harvey, Charles F

    2008-07-01

    Diffusion of tritiated water (referred to as tritium) and helium-3 between mobile and immobile regions in aquifers (mass transfer) can affect tritium and helium-3 concentrations and hence tritium-helium-3 (3H/3He) ages that are used to estimate aquifer recharge and groundwater residence times. Tritium and helium-3 chromatographically separate during transport because their molecular diffusion coefficients differ. Simulations of tritium and helium-3 transport and diffusive mass transfer along stream tubes show that mass transfer can shift the 3H/3He age of the tritium and helium-3 concentration ([3H + 3He]) peak to dates much younger than the 1963 peak in atmospheric tritium. Furthermore, diffusive mass-transfer can cause the 3H/3He age to become younger downstream along a stream tube, even as the mean water-age must increase. Simulated patterns of [3H + 3He] versus 3H/3He age using a mass transfer model appear consistent with a variety of field data. These results suggest that diffusive mass transfer should be considered, especially when the [3H + 3He] peak is not well defined or appears younger than the atmospheric peak. 3H/3He data provide information about upstream mass-transfer processes that could be used to constrain mass-transfer models; however, uncritical acceptance of 3H/3He dates from aquifers with immobile regions could be misleading.

  1. Effect of helium nanoclusters on the spectroscopic properties of embedded SF6: Ionization, excitation and vibration

    NASA Astrophysics Data System (ADS)

    Dehdashti-Jahromi, M.; Farrokhpour, H.

    2017-02-01

    Ionization and excitation energies, IR and Raman spectra of sulfur hexafluoride (SF6), located inside helium (He) nanoclusters with different sizes (SF6@Hen; n = 20, 40, 60), were calculated. The effect of the cluster size on the spectroscopic properties of the SF6 was investigated and found that the Hen-SF6 interaction in the He clusters with large number of atoms is small so that the ionization and absorption energies of SF6 are not affected while for small He nanoclusters the Hen-SF6 interaction is more important. The effect of Hen-SF6 interaction and deformation of the fragments on the photoelectron and absorption spectra of SF6@Hen were separated theoretically and discussed in details. It was deduced that the effect of the cluster size on the IR and Raman vibrational frequencies of the SF6 is negligible for the cluster size range considered in this work. Density functional theory (DFT) employing M06-2X functional and 6-31 + G(df) basis set were used for optimizing the structures of SF6@Hen. Symmetry adapted cluster-configuration interaction (SAC-CI) methodology, with the same basis set, were used to calculate the ionization and excitation energies of the SF6@Hen structures. Using the calculated ionization and absorption energies and their intensities, the photoelectron and absorption spectra of the considered SF6@Hen structures were simulated and compared with the experiment.

  2. Effect of helium nanoclusters on the spectroscopic properties of embedded SF6: Ionization, excitation and vibration.

    PubMed

    Dehdashti-Jahromi, M; Farrokhpour, H

    2017-02-15

    Ionization and excitation energies, IR and Raman spectra of sulfur hexafluoride (SF6), located inside helium (He) nanoclusters with different sizes (SF6@Hen; n=20, 40, 60), were calculated. The effect of the cluster size on the spectroscopic properties of the SF6 was investigated and found that the Hen-SF6 interaction in the He clusters with large number of atoms is small so that the ionization and absorption energies of SF6 are not affected while for small He nanoclusters the Hen-SF6 interaction is more important. The effect of Hen-SF6 interaction and deformation of the fragments on the photoelectron and absorption spectra of SF6@Hen were separated theoretically and discussed in details. It was deduced that the effect of the cluster size on the IR and Raman vibrational frequencies of the SF6 is negligible for the cluster size range considered in this work. Density functional theory (DFT) employing M06-2X functional and 6-31+G(df) basis set were used for optimizing the structures of SF6@Hen. Symmetry adapted cluster-configuration interaction (SAC-CI) methodology, with the same basis set, were used to calculate the ionization and excitation energies of the SF6@Hen structures. Using the calculated ionization and absorption energies and their intensities, the photoelectron and absorption spectra of the considered SF6@Hen structures were simulated and compared with the experiment. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. [Radioprotective effect of helium-neon laser radiation for fibroblast cells].

    PubMed

    Voskanian, K Sh; Mitsyn, G V; Gaevskiĭ, V N

    2007-01-01

    Effects of combined exposure to 633-nm laser waves and gamma-radiation, and laser waves and protons with the energy of 150 MeV on survivablilty of mice fibroblast cells C3H10T1/2 were compared. Cell suspension (1 - 5 x 10(5) cells/ml) was distributed in 2-ml plastic vials with 1 cm in diameter time interval between two exposures in a combination was no more than 60 s. immediately after exposure a required quantity of cells was inoculated in special vials for survivability assessment. Based on results of the experiment, preliminary and repeated laser treatment was favorable to survivability of fibroblast cells subjected to gamma- or proton irradiation (dose variation factor was within 1.3 to 2.2). Simultaneous exposure of C3H10T1/2 cells to the laser and proton beams also increased their survivability. The radioprotective effect of the helium-neon laser on fibroblasts earlier exposed to ionizing radiation is of chief interest, as most of the present-day radioprotectors are effective only if introduced into organism prior to exposure.

  4. Helium effects on mechanical properties and microstructure of high fluence ion-irradiated RAFM steel

    NASA Astrophysics Data System (ADS)

    Ogiwara, H.; Kohyama, A.; Tanigawa, H.; Sakasegawa, H.

    2007-08-01

    Reduced-activation ferritic/martensitic steels, RAFS, are leading candidates for the blanket and first wall of fusion reactors, and effects of displacement damage and helium production on mechanical properties and microstructures are important to these applications. Because it is the most effective way to obtain systematic and accurate information about microstructural response under fusion environment, single-(Fe 3+) and dual-(Fe 3+ + He +) irradiations were performed followed by TEM observation and nano-indentation hardness measurement. Dual-ion irradiation at 420 °C induced finer defect clusters compared to single-ion irradiation. These fine defect clusters caused large differences in the hardness increase between these irradiations. TEM analysis clarified that radiation induced precipitates were MX precipitates (M: Ta, W). Small defects invisible to TEM possibly caused the large increase in hardness, in addition to the hardness increment produced by radiation induced MX. In this work, radiation hardening and microstructural evolution accompanied by the synergistic effects to high fluences are discussed.

  5. Helium-neon laser radiation effect on fish embryos and larvae

    NASA Astrophysics Data System (ADS)

    Uzdensky, Anatoly B.

    1994-09-01

    Helium-neon laser irradiation (HNLI) is an effective biostimulating agent but its influence on embryonal processes is almost unknown. We have studied fish embryos and larvae development, viability, and growth after HNLI of fish eggs at different stages. With this aim carp, grass carp, sturgeon, and stellared sturgeon eggs were incubated in Petri plates or in fish-breeding apparatuses and were irradiated in situ with different exposures. Then we studied hutchling percentage, larvae survival and growth dynamics, and morphological anomalies percentage. HNLI effect depended on irradiation exposures and intensity, embryonal stages, and fish species. Laser eggs irradiation essentially affected larvae viability and growth in the postembryonal phase. For example, HNLI of sturgeon spawn at cleavage stage or grass carp at organogenesis decreased larvae survival rate. On the contrary HNLI at gastrulation or embryonal motorics stages markedly increased larvae survival rate and decreased the morphological anomalies percentage. We determined most effective irradiation regimes depending of fish species which may be used in practical fish-breeding.

  6. The effect of ultrasound on particle size, color, viscosity and polyphenol oxidase activity of diluted avocado puree.

    PubMed

    Bi, Xiufang; Hemar, Yacine; Balaban, Murat O; Liao, Xiaojun

    2015-11-01

    The effect of ultrasound treatment on particle size, color, viscosity, polyphenol oxidase (PPO) activity and microstructure in diluted avocado puree was investigated. The treatments were carried out at 20 kHz (375 W/cm(2)) for 0-10 min. The surface mean diameter (D[3,2]) was reduced to 13.44 μm from an original value of 52.31 μm by ultrasound after 1 min. A higher L(∗) value, ΔE value and lower a(∗) value was observed in ultrasound treated samples. The avocado puree dilution followed pseudoplastic flow behavior, and the viscosity of diluted avocado puree (at 100 s(-1)) after ultrasound treatment for 1 min was 6.0 and 74.4 times higher than the control samples for dilution levels of 1:2 and 1:9, respectively. PPO activity greatly increased under all treatment conditions. A maximum increase of 25.1%, 36.9% and 187.8% in PPO activity was found in samples with dilution ratios of 1:2, 1:5 and 1:9, respectively. The increase in viscosity and measured PPO activity might be related to the decrease in particle size. The microscopy images further confirmed that ultrasound treatment induced disruption of avocado puree structure.

  7. Effectiveness of in-room air filtration and dilution ventilation for tuberculosis infection control

    SciTech Connect

    Miller-Leiden, S.; Lobascio, C.; Nazaroff, W.W.; Macher, J.M.

    1996-09-01

    Tuberculosis (TB) is a public health problem that may pose substantial risks to health care workers and others. TB infection occurs by inhalation of airborne bacteria emitted by persons with active disease. We experimentally evaluated the effectiveness of in-room air filtration systems, specifically portable air filters (PAFs) and ceiling-mounted air filters (CMAFs), in conjunction with dilution ventilation, for controlling TB exposure in high-risk settings. For each experiment, a test aerosol was continuously generated and released into a full-sized room. With the in-room air filter and room ventilation system operating, time-averaged airborne particle concentrations were measured at several points. The effectiveness of in-room air filtration plus ventilation was determined by comparing particle concentrations with and without device operation. The four PAFs and three CMAFs we evaluated reduced room-average particle concentrations, typically by 30% to 90%, relative to a baseline scenario with two air-changes per hour of ventilation (outside air) only. Increasing the rate of air flow recirculating through the filter and/or air flow from the ventilation did not always increase effectiveness. Concentrations were generally higher near the emission source than elsewhere in the room. Both the air flow configuration of the filter and its placement within the room were important. 46 refs., 12 figs., 1 tab.

  8. Effect of hydrodynamic correlations on the dynamics of polymers in dilute solution

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Cheng; Gompper, Gerhard; Winkler, Roland G.

    2013-04-01

    We analyze the effect of time-dependent hydrodynamic interactions on the dynamics of flexible polymers in dilute solution. In analytical calculations, the fluctuating hydrodynamics approach is adopted to describe the fluid, and a Gaussian model to represented the polymer. Simulations are performed exploiting the multiparticle collision dynamics approach, a mesoscale hydrodynamic simulation technique, to explicitly describe the fluid. Polymer center-of-mass velocity correlation functions are calculated for various polymer lengths. Similarly, segment mean square displacements are discussed and polymer diffusion coefficients are determined. Particular attention is paid to the influence of sound propagation on the various properties. The simulations reveal a strong effect of hydrodynamic interactions. Specifically, the time dependence of the center-of-mass velocity correlation functions is determined by polymer properties over a length-dependent time window, but are asymptotically solely governed by fluid correlations, with a long-time tail decaying as t-3/2. The correlation functions are heavily influenced by sound modes for short polymers, an effect which gradually disappears with increasing polymer length. We find excellent agreement between analytical and simulation results. This allows us to provide a theory-based asymptotic value for the polymer diffusion coefficient in the limit of large system sizes, which is based on a single finite-system-size simulation.

  9. Effect of cyclic chain architecture on properties of dilute solutions of polyethylene from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Jang, Seung Soon; ćaǧin, Tahir; Goddard, William A.

    2003-07-01

    We have used molecular dynamics methods to investigate the effects of cyclic chain architecture on the properties of dilute solutions. In order to include solvent effects in estimating these properties, we use a van der Waals scaling factor determined for each solvent by matching to the theta condition. We predict that the theta temperature (θ) of cyclic PE (c-PE) is ˜10% lower than for the linear case (l-PE). This can be compared to the experimental results for polystyrene (PS), where θ for cyclic PS is 2% lower. For conditions corresponding to n-pentane solvent, we predict that cyclic/linear is 0.59 for all temperatures above 350 K. The deviation from the ratio of 0.50-0.53 expected from analytic theory is due to the competition between chain stiffness and excluded volume effects. To calculate the intrinsic viscosity of c-PE and l-PE we extended the Bloomfield-Zimm type theory to include chain stiffness corrections. We find that for the theta temperature, the ratio of viscosities for c-PE and l-PE is 0.71, which is 7% higher than the value of 0.66 from the freely jointed chain model. This difference is caused by the larger value of cyclic/linear from the simulations.

  10. An Investigation Into the Effects of In Vitro Dilution With Different Colloid Resuscitation Fluids on Clot Microstructure Formation.

    PubMed

    Lawrence, Matthew James; Marsden, Nick; Kaczynski, Jakub; Davies, Gareth; Davies, Nia; Hawkins, Karl; Perumal, Sounder; Brown, Martin Rowan; Morris, Keith; Davidson, Simon J; Williams, Phylip Rhodri; Evans, Phillip Adrian

    2016-11-01

    Balancing the beneficial effects of resuscitation fluids against their detrimental effect on hemostasis is an important clinical issue. We aim to compare the in vitro effects of 3 different colloid resuscitation fluids (4.5% albumin, hydroxyethyl starch [Voluven 6%], and gelatin [Geloplasma]) on clot microstructure formation using a novel viscoelastic technique, the gel point. This novel hemorheologic technique measures the biophysical properties of the clot and provides an assessment of clot microstructure from its viscoelastic properties. Importantly, in contrast to many assays in routine clinical use, the measurement is performed using unadulterated whole blood in a near-patient setting and provides rapid assessment of coagulation. We hypothesized that different colloids will have a lesser or greater detrimental effect on clot microstructure formation when compared against each other. Healthy volunteers were recruited into the study (n = 104), and a 20-mL sample of whole blood was obtained. Each volunteer was assigned to 1 of the 3 fluids, and the sample was diluted to 1 of 5 different dilutions (baseline, 10%, 20%, 40%, and 60%). The blood was tested using the gel point technique, which measures clot mechanical strength and quantifies clot microstructure (df) at the incipient stages of fibrin formation. df and clot mechanical strength decrease with progressive dilution for all 3 fluids. A significant reduction in df from baseline was recorded at dilutions of 20% for albumin (P < .0001), 40% for starch (P < .0001), and 60% for gelatin (P < .0001). We also observed significant differences, in terms of df, when comparing the different types of colloid (P < .0001). We found that albumin dilution produced the largest changes in clot microstructure, providing the lowest values of df (= 1.41 ± 0.061 at 60% dilution) compared with starch (1.52 ± 0.081) and gelatin (1.58 ± 0.063). We show that dilution with all 3 fluids has a significant effect on coagulation at even

  11. Effects of compound-specific dilution on transient transport and solute breakthrough: A pore-scale analysis

    NASA Astrophysics Data System (ADS)

    Rolle, Massimo; Kitanidis, Peter K.

    2014-09-01

    This pore-scale modeling study in saturated porous media shows that compound-specific effects are important not only at steady-state and for the lateral displacement of solutes with different diffusivities but also for transient transport and solute breakthrough. We performed flow and transport simulations in two-dimensional pore-scale domains with different arrangement of the solid grains leading to distinct characteristics of flow variability and connectivity, representing mildly and highly heterogeneous porous media, respectively. The results obtained for a range of average velocities representative of groundwater flow (0.1-10 m/day), show significant effects of aqueous diffusion on solute breakthrough curves. However, the magnitude of such effects can be masked by the flux-averaging approach used to measure solute breakthrough and can hinder the correct interpretation of the true dilution of different solutes. We propose, as a metric of mixing, a transient flux-related dilution index that allows quantifying the evolution of solute dilution at a given position along the main flow direction. For the different solute transport scenarios we obtained dilution breakthrough curves that complement and add important information to traditional solute breakthrough curves. Such dilution breakthrough curves allow capturing the compound-specific mixing of the different solutes and provide useful insights on the interplay between advective and diffusive processes, mass transfer limitations, and incomplete mixing in the heterogeneous pore-scale domains. The quantification of dilution for conservative solutes is in good agreement with the outcomes of mixing-controlled reactive transport simulations, in which the mass and concentration breakthrough curves of the product of an instantaneous transformation of two initially segregated reactants were used as measures of reactive mixing.

  12. Microscopic dynamics of superfluid Helium confined in mesopores

    NASA Astrophysics Data System (ADS)

    Prisk, Timothy R.

    This dissertation reports an inelastic neutron scattering study of superfluid helium confined within FSM-16, a high surface area, porous silica glass. Its tubular pores are monodisperse, only a few nanometers in diameter, and ordered in a regular triangular lattice structure. The neutron scattering data clearly distinguishes between three different pore filling regimes. First, close to monolayer coverage, the adsorbed helium forms an amorphous, inert solid which neither displays superflow nor supports well-defined, low energy excitations. Second, when the adsorbed helium forms a thin fluid film approximately one atomic layer thick on top of the solid layer, it supports a dramatically modified phonon-roton spectrum as well as a compressed layer roton. The energies of these modified phonon-roton modes are consistent with those of a dilute, low-density film, one in which the average interatomic spacing is greater than the average interatomic spacing within the bulk liquid. These dilute layer modes correspond to the excitations of the bulk liquid under negative absolute pressure. Finally, when the pores are completely saturated with liquid, the modified phonon-roton spectrum disappears altogether. Instead, bulk-like modes coexist with the compressed layer mode. The qualitative difference between these three pore-filling regimes is reflected in their effective vibrational density of states.

  13. Helium irradiation effects in single crystals of MgAl 2O 4

    NASA Astrophysics Data System (ADS)

    Neeft, E. A. C.; Schram, R. P. C.; van Veen, A.; Labohm, F.; Fedorov, A. V.

    2000-05-01

    Magnesium aluminate spinel, (MgAl2O4), is a promising material as a uranium free matrix for the transmutation of americium. Fission products and α-particles are produced during the transmutation. The impact of α-particles is simulated by 30 keV 3He ion implantations at room temperature (RT) with the doses 6.2, 16, 20 and 53×1015 cm-2. In another set of experiments a single crystal MgAl2O4 (1 0 0) sample is irradiated with α-particles (4.5 MeV) from a 241Am source at RT to a dose of 1.3×1012 cm-2. Helium release from the implanted samples was studied by thermal desorption spectrometry (TDS). The numerical analysis of the experimental thermal desorption results of α-implanted samples to a very low helium concentration (0.0288 appm in the irradiation zone of 12.4 μm) show that helium release is dominated by helium interstitial diffusion with an activation energy of 1.8 eV. In the case of high dose implantation to 1.74 at.% in the implantation zone approximately of 100 nm, helium is released from He-vacancy clusters with the activation energy of 2.35 eV. The evolution of the helium concentration profile in the temperature range from RT to 1483 K is monitored by neutron depth profiling (NDP). It confirms that the release of helium is governed by dissociation from vacancy clusters.

  14. Solar wind termination shock and heliosheath effects on the modulation of cosmic ray protons, anti-protons and Helium

    NASA Astrophysics Data System (ADS)

    Langner, U. W.; Potgieter, M. S.

    The interest in the role of the solar wind termination shock (TS) and heliosheath in cosmic ray (CR) modulation studies has increased significantly as the Voyager 1 and 2 spacecraft approach the estimated position of the TS. For this work the modulation of galactic CR protons, anti-protons, Helium, and anomalous protons and Helium, and the consequent charge-sign dependence, are studied with an improved and extended two-dimensional numerical model including a TS with diffusive shock acceleration, a heliosheath and drifts. The modulation is computed using improved local interstellar spectra (LIS) for almost all the species of interest and new fundamentally derived diffusion coefficients, applicable to a number of CR species during both magnetic polarity cycles of the Sun. The model also allows comparisons of modulation with and without a TS and between solar minimum and moderate maximum conditions. The modulation of protons and Helium with their respective anomalous components are also studied to establish the consequent charge-sign dependence at low energies and the influence on the computed ratio bar{p}/p. In an accompanying, paper the ratios e-/p, and e-/He will be shown. The level of modulation in the simulated heliosheath, and the importance of this modulation "barrier" and the TS for the different species are illustrated. From the computations it is possible to estimate the ratio of modulation occurring in the heliosheath to the total modulation between the heliopause and Earth for the mentioned species. It has been found that the modulation in the heliosheath depends on the particle species, is strongly dependent on the energy of the CRs, on the polarity cycle and is enhanced by the inclusion of the TS. The computed modulation for the considered species is surprisingly different and the heliosheath is important for CR modulation. The effects of the TS on modulation are more pronounced for polarity cycles when particles are drifting primarily in the equatorial

  15. Effects of diluted bitumen exposure on juvenile sockeye salmon: From cells to performance.

    PubMed

    Alderman, Sarah L; Lin, Feng; Farrell, Anthony P; Kennedy, Christopher J; Gillis, Todd E

    2017-02-01

    Diluted bitumen (dilbit; the product of oil sands extraction) is transported through freshwater ecosystems critical to Pacific salmon. This is concerning, because crude oil disrupts cardiac development, morphology, and function in embryonic fish, and cardiac impairment in salmon can have major consequences on migratory success and fitness. The sensitivity of early life-stage salmon to dilbit and its specific cardiotoxic effects are unknown. Sockeye salmon parr were exposed to environmentally relevant concentrations of the water-soluble fraction (WSF) of dilbit for 1 wk and 4 wk, followed by an examination of molecular, morphological, and organismal endpoints related to cardiotoxicity. We show that parr are sensitive to WSF of dilbit, with total polycyclic aromatic hydrocarbon (PAH) concentrations of 3.5 µg/L sufficient to induce a liver biomarker of PAH exposure, and total PAH of 16.4 µg/L and 66.7 µg/L inducing PAH biomarkers in the heart. Furthermore, WSF of dilbit induces concentration-dependent cardiac remodeling coincident with performance effects: fish exposed to 66.7 µg/L total PAH have relatively fewer myocytes and more collagen in the compact myocardium and impaired swimming performance at 4 wk, whereas the opposite changes occur in fish exposed to 3.5 µg/L total PAH. The results demonstrate cardiac sensitivity to dilbit exposure that could directly impact sockeye migratory success. Environ Toxicol Chem 2017;36:354-360. © 2016 SETAC.

  16. Effect of Confinement on the Aggregation Kinetics of Dilute Magnetorheological Fluids

    NASA Astrophysics Data System (ADS)

    Shahrivar, Keshvad; Carreón-González, Elizabeth; de Vicente, Juan

    2017-10-01

    The goal of this study is to investigate the field-driven structuration of model magnetorheological (MR) fluids in narrow gaps (below 1 mm) for high shear applications. With this in mind, we study the influence of confinement in the aggregation kinetics of dilute carbonyl iron suspensions under strong fields (λ ≈ {10}6) in rectangular microchannels using video-microscopy, image analysis and particle level dynamic simulations. Channel widths studied are ranged in the interval [75–1000 μm]. In these particular suspensions the experimental and simulation time scales according to: {t}{{s}}\\propto {λ }-1{φ }2{{D}}-2.614{W}* -0.227, where λ is the Lambda parameter, {φ }2{{D}} is the particle surface fraction and W* is the reduced microchannel width. We show that the effect of channel width is crucial in the dynamic exponent and in the saturation (long time) mean cluster size. In contrast, it has no effect in the onset of the tip-to-tip aggregation process.

  17. Elastic effects of dilute polymer solution on bubble generation in a microfluidic flow-focusing channel

    NASA Astrophysics Data System (ADS)

    Kim, Dong Young; Shim, Tae Soup; Kim, Ju Min

    2017-05-01

    Recently, two-phase flow in microfluidics has attracted much attention because of its importance in generating droplets or bubbles that can be used as building blocks for material synthesis and biological applications. However, there are many unresolved issues in understanding droplet and bubble generation processes, especially when complex fluids are involved. In this study, we investigated elastic effects on bubble generation processes in a flow-focusing geometry and the shapes of the produced bubbles flowing through a microchannel. We used dilute polymer solutions with nearly constant shear viscosities so that the shear-thinning effects on bubble generation could be precluded. We observed that a very small amount of polymer (poly(ethylene oxide) at O(10) ppm) significantly affects bubble generation. When the polymer was added to a Newtonian fluid, the fluctuation in bubble size increased notably, which was attributed to the chaotic flow dynamics in the flow-focusing region. In addition, it was demonstrated that the bubbles were thinner along the minor axis in the viscoelastic fluid than they were in the Newtonian fluid. We expect that the current results will contribute to understanding the dynamics of two-phase flow in microchannels and the design and operation of the microfluidic devices to generate microbubbles.

  18. Experimental Measurements for the Effect of Dilution Procedure in Blood Esterases as Animals Biomarker for Exposure to OP Compounds

    PubMed Central

    Abass, Kasim Sakran

    2014-01-01

    Organophosphate compounds can bind to carboxylesterase, which may lower the concentration of organophosphate pesticides at the target site enzyme, cholinesterase. It is unclear from the literature whether it is the carboxylesterase affinity for the organophosphate and/or the number of carboxylesterase molecules that is the dominant factor in determining the protective potential of carboxylesterase. The fundamental dilutions and kinetic effects of esterase enzyme are still poorly understood. This study aims to confirm and extend our current knowledge about the effects of dilutions on esterases activities in the blood for birds with respect to protecting the enzyme from organophosphate inhibition. There was significantly higher esterases activities in dilution 1 : 10 in the all blood samples from quail, duck, and chick compared to other dilutions (1 : 5, 1 : 15, 1 : 20, and 1 : 25) in all cases. Furthermore, our results also pointed to the importance of estimating different dilutions effects prior to using in birds as biomarker tools of environmental exposure. Concentration-inhibition curves were determined for the inhibitor in the presence of dilutions 1 : 5, 1 : 10, plus 1 : 15 (to stimulate carboxylesterase). Point estimates (concentrations calculated to produce 20, 50, and 80% inhibition) were compared across conditions and served as a measure of esterase-mediated detoxification. Results with well-known inhibitors (malathion) were in agreement with the literature, serving to support the use of this assay. Among the thiol-esters dilution 1 : 5 was observed to have the highest specificity constant (kcat/Km), and the Km and kcat values were 176 μM and 16,765 s−1, respectively, for S-phenyl thioacetate ester, while detected in dilution 1 : 15 was the lowest specificity constant (kcat/Km), and the Km and kcat values were 943 μM and 1154 s−1, respectively, for acetylthiocholine iodide ester. PMID:24864243

  19. Dose-effect study of Gelsemium sempervirens in high dilutions on anxiety-related responses in mice

    PubMed Central

    Magnani, Paolo; Conforti, Anita; Zanolin, Elisabetta; Marzotto, Marta

    2010-01-01

    Introduction This study was designed to investigate the putative anxiolytic-like activity of ultra-low doses of Gelsemium sempervirens (G. sempervirens), produced according to the homeopathic pharmacopeia. Methods Five different centesimal (C) dilutions of G. sempervirens (4C, 5C, 7C, 9C and 30C), the drug buspirone (5 mg/kg) and solvent vehicle were delivered intraperitoneally to groups of ICR-CD1 mice over a period of 9 days. The behavioral effects were assessed in the open-field (OF) and light–dark (LD) tests in blind and randomized fashion. Results Most G. sempervirens dilutions did not affect the total distance traveled in the OF (only the 5C had an almost significant stimulatory effect on this parameter), indicating that the medicine caused no sedation effects or unspecific changes in locomotor activity. In the same test, buspirone induced a slight but statistically significant decrease in locomotion. G. sempervirens showed little stimulatory activity on the time spent and distance traveled in the central zone of the OF, but this effect was not statistically significant. In the LD test, G. sempervirens increased the % time spent in the light compartment, an indicator of anxiolytic-like activity, with a statistically significant effect using the 5C, 9C and 30C dilutions. These effects were comparable to those of buspirone. The number of transitions between the compartments of the LD test markedly increased with G. sempervirens 5C, 9C and 30C dilutions. Conclusion The overall pattern of results provides evidence that G. sempervirens acts on the emotional reactivity of mice, and that its anxiolytic-like effects are apparent, with a non-linear relationship, even at high dilutions. PMID:20401745

  20. Dilution Confusion: Conventions for Defining a Dilution

    ERIC Educational Resources Information Center

    Fishel, Laurence A.

    2010-01-01

    Two conventions for preparing dilutions are used in clinical laboratories. The first convention defines an "a:b" dilution as "a" volumes of solution A plus "b" volumes of solution B. The second convention defines an "a:b" dilution as "a" volumes of solution A diluted into a final volume of "b". Use of the incorrect dilution convention could affect…

  1. Dilution Confusion: Conventions for Defining a Dilution

    ERIC Educational Resources Information Center

    Fishel, Laurence A.

    2010-01-01

    Two conventions for preparing dilutions are used in clinical laboratories. The first convention defines an "a:b" dilution as "a" volumes of solution A plus "b" volumes of solution B. The second convention defines an "a:b" dilution as "a" volumes of solution A diluted into a final volume of "b". Use of the incorrect dilution convention could affect…

  2. Effect of helium-neon and infrared laser irradiation on wound healing in rabbits

    SciTech Connect

    Braverman, B.; McCarthy, R.J.; Ivankovich, A.D.; Forde, D.E.; Overfield, M.; Bapna, M.S.

    1989-01-01

    We examined the biostimulating effects of helium-neon laser radiation (HeNe; 632.8 nm), pulsed infrared laser radiation (IR; 904 nm), and the two combined on skin wound healing in New Zealand white rabbits. Seventy-two rabbits received either (1) no exposure, (2) 1.65 J/cm2 HeNe, (3) 8.25 J/cm2 pulsed IR, or (4) both HeNe and IR together to one of two dorsal full-thickness skin wounds, daily, for 21 days. Wound areas were measured photographically at periodic intervals. Tissue samples were analyzed for tensile strength, and histology was done to measure epidermal thickness and cross-sectional collagen area. Significant differences were found in the tensile strength of all laser-treated groups (both the irradiated and nonirradiated lesion) compared to group 1. No differences were found in the rate of wound healing or collagen area. Epidermal growth was greater in the HeNe-lased area compared to unexposed tissue, but the difference was not significant. Thus, laser irradiation at 632.8 nm and 904 nm alone or in combination increased tensile strength during wound healing and may have released tissue factors into the systemic circulation that increased tensile strength on the opposite side as well.

  3. Numerical studies of the surface tension effect of cryogenic liquid helium

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1994-01-01

    The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by both the gravity gradient and jitter accelerations applicable to scientific spacecraft which is eligible to carry out spinning motion and/or slew motion for the purpose of performing scientific observation during the normal spacecraft operation is investigated. An example is given with Gravity Probe-B (GP-B) spacecraft which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics has been based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers, have been derived.

  4. Bactericidal effect of plasma jet with helium flowing through 3% hydrogen peroxide against Enterococcus faecalis.

    PubMed

    Zhou, Xin-Cai; Li, Yu-Lan; Liu, De-Xi; Cao, Ying-Guang; Lu, Xin-Pei

    2016-11-01

    The aim of the present study was to assess the antimicrobial activity of plasma jet with helium (He) flowing through 3% hydrogen peroxide in root canals infected with Enterococcus faecalis. A total of 42 single-rooted anterior teeth were prepared, sterilized, inoculated with an E. faecalis suspension and incubated for 7 days. Next, the teeth were randomly divided into six experimental groups (including groups treated by plasma jet with or without He for different time durations) and one control group treated without plasma. The number of surviving bacteria in each canal was determined by counting the colony forming units (CFU)/ml on nutrient agar plates. The results indicated that statistically significant reduction in CFU/ml (P<0.005) existed for all treatment groups relative to the control group. The greatest reductions in CFU/ml were observed for Group 3 (7.027 log unit reduction) and Group 2 (6.237 log unit reduction), which were treated by plasma jet sterilization with He flowing through 3% hydrogen peroxide for 4 min or for 2 min, respectively. In addition, the reduction in Group 3 was significantly greater compared with that in Group 2 or in the groups treated by plasma jet sterilization without He flowing through 3% hydrogen peroxide for 1, 2 or 4 min. In conclusion, plasma jet with or without He flowing through 3% hydrogen peroxide can effectively sterilized root canals infected with E. faecalis and should be considered as an alternative method for root canal disinfection in endodontic treatments.

  5. Effect of helium-neon laser irradiation on hair follicle growth cycle of Swiss albino mice.

    PubMed

    Shukla, S; Sahu, K; Verma, Y; Rao, K D; Dube, A; Gupta, P K

    2010-01-01

    We report the results of a study carried out to investigate the effect of helium-neon (He-Ne) laser (632.8 nm) irradiation on the hair follicle growth cycle of testosterone-treated and untreated mice. Both histology and optical coherence tomography (OCT) were used for the measurement of hair follicle length and the relative percentage of hair follicles in different growth phases. A positive correlation (R = 0.96) was observed for the lengths of hair follicles measured by both methods. Further, the ratios of the lengths of hair follicles in the anagen and catagen phases obtained by both methods were nearly the same. However, the length of the hair follicles measured by both methods differed by a factor of 1.6, with histology showing smaller lengths. He-Ne laser irradiation (at approximately 1 J/cm(2)) of the skin of both the control and the testosterone-treated mice was observed to lead to a significant increase (p < 0.05) in % anagen, indicating stimulation of hair growth. The study also demonstrates that OCT can be used to monitor the hair follicle growth cycle, and thus hair follicle disorders or treatment efficacy during alopecia.

  6. Effects of adiabatic, relativistic, and quantum electrodynamics interactions on the pair potential and thermophysical properties of helium.

    PubMed

    Cencek, Wojciech; Przybytek, Michał; Komasa, Jacek; Mehl, James B; Jeziorski, Bogumił; Szalewicz, Krzysztof

    2012-06-14

    The adiabatic, relativistic, and quantum electrodynamics (QED) contributions to the pair potential of helium were computed, fitted separately, and applied, together with the nonrelativistic Born-Oppenheimer (BO) potential, in calculations of thermophysical properties of helium and of the properties of the helium dimer. An analysis of the convergence patterns of the calculations with increasing basis set sizes allowed us to estimate the uncertainties of the total interaction energy to be below 50 ppm for interatomic separations R smaller than 4 bohrs and for the distance R = 5.6 bohrs. For other separations, the relative uncertainties are up to an order of magnitude larger (and obviously still larger near R = 4.8 bohrs where the potential crosses zero) and are dominated by the uncertainties of the nonrelativistic BO component. These estimates also include the contributions from the neglected relativistic and QED terms proportional to the fourth and higher powers of the fine-structure constant α. To obtain such high accuracy, it was necessary to employ explicitly correlated Gaussian expansions containing up to 2400 terms for smaller R (all R in the case of a QED component) and optimized orbital bases up to the cardinal number X = 7 for larger R. Near-exact asymptotic constants were used to describe the large-R behavior of all components. The fitted potential, exhibiting the minimum of -10.996 ± 0.004 K at R = 5.608 0 ± 0.000 1 bohr, was used to determine properties of the very weakly bound (4)He(2) dimer and thermophysical properties of gaseous helium. It is shown that the Casimir-Polder retardation effect, increasing the dimer size by about 2 Å relative to the nonrelativistic BO value, is almost completely accounted for by the inclusion of the Breit-interaction and the Araki-Sucher contributions to the potential, of the order α(2) and α(3), respectively. The remaining retardation effect, of the order of α(4) and higher, is practically negligible for the bound

  7. Effects of air transient spark discharge and helium plasma jet on water, bacteria, cells, and biomolecules.

    PubMed

    Hensel, Karol; Kučerová, Katarína; Tarabová, Barbora; Janda, Mário; Machala, Zdenko; Sano, Kaori; Mihai, Cosmin Teodor; Ciorpac, Mitică; Gorgan, Lucian Dragos; Jijie, Roxana; Pohoata, Valentin; Topala, Ionut

    2015-06-06

    Atmospheric pressure DC-driven self-pulsing transient spark (TS) discharge operated in air and pulse-driven dielectric barrier discharge plasma jet (PJ) operated in helium in contact with water solutions were used for inducing chemical effects in water solutions, and the treatment of bacteria (Escherichia coli), mammalian cells (Vero line normal cells, HeLa line cancerous cells), deoxyribonucleic acid (dsDNA), and protein (bovine serum albumin). Two different methods of water solution supply were used in the TS: water electrode system and water spray system. The effects of both TS systems and the PJ were compared, as well as a direct exposure of the solution to the discharge with an indirect exposure to the discharge activated gas flow. The chemical analysis of water solutions was performed by using colorimetric methods of UV-VIS absorption spectrophotometry. The bactericidal effects of the discharges on bacteria were evaluated by standard microbiological plate count method. Viability, apoptosis and cell cycle were assessed in normal and cancerous cells. Viability of cells was evaluated by trypan blue exclusion test, apoptosis by Annexin V-FITC/propidium iodide assay, and cell cycle progression by propidium iodide/RNase test. The effect of the discharges on deoxyribonucleic acid and protein were evaluated by fluorescence and UV absorption spectroscopy. The results of bacterial and mammalian cell viability, apoptosis, and cell cycle clearly show that cold plasma can inactivate bacteria and selectively target cancerous cells, which is very important for possible future development of new plasma therapeutic strategies in biomedicine. The authors found that all investigated bio-effects were stronger with the air TS discharge than with the He PJ, even in indirect exposure.

  8. Effect of contact to the atmosphere and dilution on phosphorus recovery from human urine through struvite formation.

    PubMed

    Liu, Xiaoning; Hu, Zhengyi; Zhu, Chunyou; Wen, Guoqi; Meng, Xianchao; Lu, Jia

    2014-01-01

    Phosphorus (P) in hydrolysed urine can be recovered through struvite formation. In the present study, batch experiments were conducted to investigate the effects of contact to the atmosphere (i.e. open and closed) and dilution [Vurine/(Vurine + Vwater)] (i.e. 100%, 50% and 25%) on P recovery from fresh urine through struvite formation with the addition of magnesium chloride (molar ratios of Mg/P = 1.3 and 2.0) after 32 d of storage. The P loss mainly occurred during the initial stages of precipitation with calcium and magnesium (5 d). The precipitates formed at the bottom of the jars were identified by X-ray diffraction to be struvite, hydroxyapatite and calcite. The results showed that the P recovery efficiency from urine solutions in open jars was lower than that in closed jars. It caused significant ammonia volatilization in open jars, resulting in higher nitrogen loss, lower pH values and lower supersaturation. The P recovery efficiency decreased with dilution, which is related to lower pH and lower supersaturation resulting from water dilution. An increase in the Mg/P ratio from 1.3 to 2.0 enhanced P recovery to some extent in urine solutions with different dilutions. The largest P recovery efficiency was 93.7% and 97.3% at an Mg/P ratio of 1.3 and 2.0 for the 100% urine solutions in closedjars, respectively. Scanning electron microscopy revealed smaller struvite particle sizes at lower dilutions (100% and 50% urine) compared with higher dilutions (25% urine).

  9. Inhibition effects of dilute-acid prehydrolysate of corn stover on enzymatic hydrolysis of Solka Floc.

    PubMed

    Kothari, Urvi D; Lee, Yoon Y

    2011-11-01

    Dilute-acid pretreatment liquor (PL) produced at NREL through a continuous screw-driven reactor was analyzed for sugars and other potential inhibitory components. Their inhibitory effects on enzymatic hydrolysis of Solka Floc were investigated. When the PL was mixed into the enzymatic hydrolysis reactor at 1:1 volume ratio, the glucan and xylan digestibility decreased by 63% and 90%, respectively. The tolerance level of the enzyme for each inhibitor was determined. Of the identified degradation components, acetic acid was found to be the strongest inhibitor for cellulase activity, as it decreased the glucan yield by 10% at 1 g/L. Among the sugars, cellobiose and glucose were found to be strong inhibitors to glucan hydrolysis, whereas xylose is a strong inhibitor to xylan hydrolysis. Xylo-oligomers inhibit xylan digestibility more strongly than the glucan digestibility. Inhibition by the PL was higher than that of the simulated mixture of the identifiable components. This indicates that some of the unidentified degradation components, originated mostly from lignin, are potent inhibitors to the cellulase enzyme. When the PL was added to a simultaneous saccharification and co-fermentation using Escherichia coli KO11, the bioprocess was severely inhibited showing no ethanol formation or cell growth.

  10. Effectiveness of coagulation and acid precipitation processes for the pre-treatment of diluted black liquor.

    PubMed

    Garg, Anurag; Mishra, I M; Chand, S

    2010-08-15

    The effectiveness of coagulation (using aluminium-based chemicals and ferrous sulfate) and acid precipitation (using H(2)SO(4)) processes for the pre-treatment of diluted black liquor obtained from a pulp and paper mill is reported. Commercial alum was found to be the most economical among all the aluminium and ferrous salts used as a coagulant. A maximum removal of chemical oxygen demand (COD) (ca. 63%) and colour reduction (ca. 90%) from the wastewater (COD = 7000 mg l(-1)) at pH 5.0 was obtained with alum. During the acid precipitation process, at pH < 5.0, significant COD reductions (up to 64%) were observed. Solid residue obtained from the alum treatment at a temperature of 95 degrees C showed much better (3 times) settling rate than that for the residue obtained after treatment with the same coagulant at a temperature of 25 degrees C. The settling curves had three parts, namely, hindered, transition and compression zones. Tory plots were used to determine the critical height of suspension-supernatant interface that is used in the design of a clarifier-thickener unit. High heating values and large biomass fraction of the solid residues can encourage the fuel users to use this waste derived sludge as a potential renewable energy source.

  11. Age structure and capital dilution effects in neo-classical growth models.

    PubMed

    Blanchet, D

    1988-01-01

    Economists often over estimate capital dilution effects when applying neoclassical growth models which use age structured population and depreciation of capital stock. This occurs because capital stock is improperly characterized. A standard model which assumes a constant depreciation of capital intimates that a population growth rate equal to a negative constant savings ratio is preferable to any higher growth rate. Growth rates which are lower than a negative constant savings ratio suggest an ever growing capital/labor ratio and an ever growing standard of living, even if people do not save. This is suggested because the natural reduction of the capital stock through depreciation is slower than the population decrease which is simply unrealistic. This model overlooks the fact that low or negative growth rates result in an ageing of the capital stock, and this ageing subsequently results in an increase of the overall rate of capital depreciation. In that overly simplistic model, depreciation was assumed independent of the age of the captial stock. Incorporating depreciation as a variable into a model allows a more symmetric treatment of capital. Using models with heterogenous capital, this article explores what occurs when more than 1 kind of capital good is involved in production and when these various captial goods have different lengths of life. Applying economic models, it also examines what occurs when the length of life of capital may vary. These variations correct the negative impact that population growth can have on per capital production and consumption.

  12. Diversifying forest communities may change Lyme disease risk: extra dimension to the dilution effect in Europe.

    PubMed

    Ruyts, Sanne C; Ampoorter, Evy; Coipan, Elena C; Baeten, Lander; Heylen, Dieter; Sprong, Hein; Matthysen, Erik; Verheyen, Kris

    2016-09-01

    Lyme disease is caused by bacteria of the Borrelia burgdorferi genospecies complex and transmitted by Ixodid ticks. In North America only one pathogenic genospecies occurs, in Europe there are several. According to the dilution effect hypothesis (DEH), formulated in North America, nymphal infection prevalence (NIP) decreases with increasing host diversity since host species differ in transmission potential. We analysed Borrelia infection in nymphs from 94 forest stands in Belgium, which are part of a diversification gradient with a supposedly related increasing host diversity: from pine stands without to oak stands with a shrub layer. We expected changing tree species and forest structure to increase host diversity and decrease NIP. In contrast with the DEH, NIP did not differ between different forest types. Genospecies diversity however, and presumably also host diversity, was higher in oak than in pine stands. Infected nymphs tended to harbour Borrelia afzelii infection more often in pine stands while Borrelia garinii and Borrelia burgdorferi ss. infection appeared to be more prevalent in oak stands. This has important health consequences, since the latter two cause more severe disease manifestations. We show that the DEH must be nuanced for Europe and should consider the response of multiple pathogenic genospecies.

  13. Effect of physical pretreatment on dilute acid hydrolysis of water hyacinth (Eichhornia crassipes).

    PubMed

    Harun, M Y; Dayang Radiah, A B; Zainal Abidin, Z; Yunus, R

    2011-04-01

    Effects of different physical pretreatments on water hyacinth for dilute acid hydrolysis process (121 ± 3 °C, 5% H(2)SO(4), 60 min) were comparatively investigated. Untreated sample had produced 24.69 mg sugar/g dry matter. Steaming (121 ± 3 °C) and boiling (100 ± 3 °C) for 30 min had provided 35.9% and 52.4% higher sugar yield than untreated sample, respectively. The highest sugar yield (132.96 mg sugar/g dry matter) in ultrasonication was obtained at 20 min irradiation using 100% power. The highest sugar production (155.13 mg sugar/g dry matter) was obtained from pulverized samples. Hydrolysis time was reduced when using samples pretreated by drying, mechanical comminution and ultrasonication. In most methods, prolonging the pretreatment period was ineffective and led to sugar degradations. Morphology inspection and thermal analysis had provided evidences of structure disruption that led to higher sugar recovery in hydrolysis process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Image-based correction of the light dilution effect for SO2 camera measurements

    NASA Astrophysics Data System (ADS)

    Campion, Robin; Delgado-Granados, Hugo; Mori, Toshiya

    2015-07-01

    Ultraviolet SO2 cameras are increasingly used in volcanology because of their ability to remotely measure the 2D distribution of SO2 in volcanic plumes, at a high frequency. However, light dilution, i.e., the scattering of ambient photons within the instrument's field of view (FoV) on air parcels located between the plume and the instrument, induces a systematic underestimation of the measurements, whose magnitude increases with distance, SO2 content, atmospheric pressure and turbidity. Here we describe a robust and straightforward method to quantify and correct this effect. We retrieve atmospheric scattering coefficients based on the contrast attenuation between the sky and the increasingly distant slope of the volcanic edifice. We illustrate our method with a case study at Etna volcano, where difference between corrected and uncorrected emission rates amounts to 40% to 80%, and investigate the temporal variations of the scattering coefficient during 1 h of measurements on Etna. We validate the correction method at Popocatépetl volcano by performing measurements of the same plume at different distances from the volcano. Finally, we reported the atmospheric scattering coefficients for several volcanoes at different latitudes and altitudes.

  15. The effect of low-level helium-neon laser on oral wound healing

    PubMed Central

    Sardari, Farimah; Ahrari, Farzaneh

    2016-01-01

    Background: The effectiveness of low power lasers on incisional wound healing, because of conflicting results of previous studies, is uncertain. Therefore, the aim of this study was to evaluate the effects of low-level helium-neon (He-Ne) laser irradiation on wound healing in rat's oral mucosa. Materials and Methods: Sixty-four standardized incisions were carried out on the buccal mucosa of 32 male Wistar divided into four groups of eight animals each. Each rat received two incisions on the opposite sides of the buccal mucosa by a steel scalpel. On the right side (test side), a He-Ne laser (632 nm) was employed on the incision for 40 s. Laser radiation was used just in 1st day, 1st and 2nd day, 1st and 3rd day, and continuous 3 days in groups of A, B, C, and D of rats, respectively. The left side (control side) did not receive any laser. Histological processing and hematoxylin and eosin staining were done on tissue samples after 5 days. Wilcoxon and Kruskal-Wallis tests were used for statistical analysis. Results: Histological analysis showed that the tissue healing after continuous 3 days on the laser irradiated side was better than the control side, but there was no difference between the two sides in each groups (P > 0.05). Conclusion: This study showed that He-Ne laser had no beneficial effects on incisional oral wound healing particularly in 5 days after laser therapy. Future research in the field of laser effects on oral wound healing in human is recommended. PMID:26962312

  16. Density functional theory study of the effect of helium clusters on tritium-containing palladium lattices.

    PubMed

    Das, N K; de Leeuw, N H

    2015-12-02

    Density functional theory (DFT) calculations have been employed to calculate the energetics, structures and migration behaviour of helium in palladium tritides. Increasing the tritium concentration in palladium leads to a decrease in the formation energies of helium clusters, indicating that He clusters can form in the lattices. The calculated results show less lattice expansion in Pd defect-containing lattices compared to the perfect lattice owing to smaller lattice distortions. The lowest energy migration path for helium diffusion is along octahedral-tetrahedral-octahedral sites but the energy barrier increases with increasing tritium concentration. Repulsive interactions occur between Pd d and He s orbitals, suggesting that displacement of the metal atoms in the lattice leads to growth of pressure inside the lattices. This process may change the microstructural properties leading to the degradation of the material.

  17. Effect of low-power helium-neon laser irradiation on 13-week immobilized articular cartilage of rabbits.

    PubMed

    Bayat, Mohammad; Ansari, Anayatallah; Hekmat, Hossien

    2004-09-01

    Influence of low-power (632.8 nm, Helium-Neon, 13 J/cm2, three times a week) laser on 13-week immobilized articular cartilage was examined with rabbits knee model. Number of chondrocytes and depth of articular cartilage of experimental group were significantly higher than those of sham irradiated group. Surface morphology of sham-irradiated group had rough prominences, fibrillation and lacunae but surface morphology of experimental group had more similarities to control group than to sham irradiated group. There were marked differences between ultrastructure features of control group and experimental group in comparison with sham irradiated group. Low-power Helium-Neon laser irradiation on 13-week immobilized knee joints of rabbits neutrilized adverse effects of immobilization on articular cartilage.

  18. The effects of added hydrogen on a helium atmospheric-pressure plasma jet ambient desorption/ionization source.

    PubMed

    Wright, Jonathan P; Heywood, Matthew S; Thurston, Glen K; Farnsworth, Paul B

    2013-03-01

    We present mass spectrometric data demonstrating the effect that hydrogen has on a helium-based dielectric-barrier discharge (DBD) atmospheric-pressure plasma jet used as an ambient desorption/ionization (ADI) source. The addition of 0.9 % hydrogen to the helium support gas in a 35-W plasma jet increased signals for a range of test analytes, with enhancement factors of up to 68, without proportional increases in background levels. The changes in signal levels result from a combination of changes in the desorption kinetics from the surface and increased ion production in the gas phase. The enhancement in ADI-MS performance despite the quenching of key plasma species reported in earlier studies suggests that ionization with a H2/He plasma jet is the result of an alternate mechanism involving the direct generation of ionized hydrogen.

  19. The effect of fusion-relevant helium levels on the mechanical properties of isotopically tailored ferritic alloys

    SciTech Connect

    Hankin, G.L.; Hamilton, M.L.; Gelles, D.S.

    1997-04-01

    The yield and maximum strengths of an irradiated series of isotopically tailored ferritic alloys were evaluated using the shear punch test. The composition of three of the alloys was Fe-12Cr-1.5Ni. Different balances of nickel isotopes were used in each alloy in order to produce different helium levels. A fourth alloy, which contained no nickel, was also irradiated. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys, and as expected, the strength of the alloys decreased with increasing irradiation temperature. Helium itself, up to 75 appm over 7 dpa appears to have little effect on the mechanical properties of the alloys.

  20. The effects of He I λ10830 on helium abundance determinations

    SciTech Connect

    Aver, Erik; Olive, Keith A.; Skillman, Evan D. E-mail: olive@umn.edu

    2015-07-01

    Observations of helium and hydrogen emission lines from metal-poor extragalactic H II regions, combined with estimates of metallicity, provide an independent method for determining the primordial helium abundance, Y{sub p}. Traditionally, the emission lines employed are in the visible wavelength range, and the number of suitable lines is limited. Furthermore, when using these lines, large systematic uncertainties in helium abundance determinations arise due to the degeneracy of physical parameters, such as temperature and density. Recently, Izotov, Thuan, and Guseva (2014) have pioneered adding the He I λ10830 infrared emission line in helium abundance determinations. The strong electron density dependence of He I λ10830 makes it ideal for better constraining density, potentially breaking the degeneracy with temperature. We revisit our analysis of the dataset published by Izotov, Thuan, and Stasi and apos;nska (2007) and incorporate the newly available observations of He I λ10830 by scaling them using the observed-to-theoretical Paschen-gamma ratio. The solutions are better constrained, in particular for electron density, temperature, and the neutral hydrogen fraction, improving the model fit to data, with the result that more spectra now pass screening for quality and reliability, in addition to a standard 95% confidence level cut. Furthermore, the addition of He I λ10830 decreases the uncertainty on the helium abundance for all galaxies, with reductions in the uncertainty ranging from 10–80%. Overall, we find a reduction in the uncertainty on Y{sub p} by over 50%. From a regression to zero metallicity, we determine Y{sub p} = 0.2449 ± 0.0040, consistent with the BBN result, Y{sub p} = 0.2470 ± 0.0002, based on the Planck determination of the baryon density. The dramatic improvement in the uncertainty from incorporating He I λ10830 strongly supports the case for simultaneous (thus not requiring scaling) observations of visible and infrared helium

  1. The effects of He I λ10830 on helium abundance determinations

    NASA Astrophysics Data System (ADS)

    Aver, Erik; Olive, Keith A.; Skillman, Evan D.

    2015-07-01

    Observations of helium and hydrogen emission lines from metal-poor extragalactic H II regions, combined with estimates of metallicity, provide an independent method for determining the primordial helium abundance, Yp. Traditionally, the emission lines employed are in the visible wavelength range, and the number of suitable lines is limited. Furthermore, when using these lines, large systematic uncertainties in helium abundance determinations arise due to the degeneracy of physical parameters, such as temperature and density. Recently, Izotov, Thuan, & Guseva (2014) have pioneered adding the He I λ10830 infrared emission line in helium abundance determinations. The strong electron density dependence of He I λ10830 makes it ideal for better constraining density, potentially breaking the degeneracy with temperature. We revisit our analysis of the dataset published by Izotov, Thuan, & Stasi&aposnska (2007) and incorporate the newly available observations of He I λ10830 by scaling them using the observed-to-theoretical Paschen-gamma ratio. The solutions are better constrained, in particular for electron density, temperature, and the neutral hydrogen fraction, improving the model fit to data, with the result that more spectra now pass screening for quality and reliability, in addition to a standard 95% confidence level cut. Furthermore, the addition of He I λ10830 decreases the uncertainty on the helium abundance for all galaxies, with reductions in the uncertainty ranging from 10-80%. Overall, we find a reduction in the uncertainty on Yp by over 50%. From a regression to zero metallicity, we determine Yp = 0.2449 ± 0.0040, consistent with the BBN result, Yp = 0.2470 ± 0.0002, based on the Planck determination of the baryon density. The dramatic improvement in the uncertainty from incorporating He I λ10830 strongly supports the case for simultaneous (thus not requiring scaling) observations of visible and infrared helium emission line spectra.

  2. Effects of dilution on the properties of nC₆₀.

    PubMed

    Chang, Xiaojun; Vikesland, Peter J

    2013-10-01

    C60 forms colloidally stable nanoparticles (nC60) via extended mixing or solvent exchange. Many studies on the environmental impacts of nC60 use aliquots from a large batch of nC60 suspension and either dilute them or subject them to other modifications under the assumption that the properties of the parent suspension remain stable over time and are unaltered by these manipulations. In the present study, nC60 produced via stirring in the presence of sodium citrate (cit/nC60) was characterized with respect to particle size, surface charge, and morphology following dilution. Counter-intuitively, the results show that the colloidal properties of diluted cit/nC60 are not fixed despite constant solution chemistry and are dependent upon the ratios of [C60] to [Na(+)] and [citrate]. In some cases, diluted nC60 had significantly different morphology. This study suggests that any experiment involving modifications of stock nC60 suspensions must take the altered colloidal properties of the diluted nC60 into consideration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Different approaches to analyze the dipolar interaction effects on diluted and concentrated granular superparamagnetic systems

    NASA Astrophysics Data System (ADS)

    Moscoso-Londoño, O.; Tancredi, P.; Muraca, D.; Mendoza Zélis, P.; Coral, D.; Fernández van Raap, M. B.; Wolff, U.; Neu, V.; Damm, C.; de Oliveira, C. L. P.; Pirota, K. R.; Knobel, M.; Socolovsky, L. M.

    2017-04-01

    Controlled magnetic granular materials with different concentrations of magnetite nanoparticles immersed in a non-conducting polymer matrix were synthesized and, their macroscopic magnetic observables analyzed in order to advance towards a better understanding of the magnetic dipolar interactions and its effects on the obtained magnetic parameters. First, by means of X-ray diffraction, transmission electron microscopy, small angle X-ray scattering and X-ray absorption fine structure an accurate study of the structural properties was carried out. Then, the magnetic properties were analyzed by means of different models, including those that consider the magnetic interactions through long-range dipolar forces as: the Interacting Superparamagnetic Model (ISP) and the Vogel-Fulcher law (V-F). In systems with larger nanoparticle concentrations, magnetic results clearly indicate that the role played by the dipolar interactions affects the magnetic properties, giving rise to obtaining magnetic and structural parameters without physical meaning. Magnetic parameters as the effective anisotropic constant, magnetic moment relaxation time and mean blocking temperature, extracted from the application of the ISP model and V-F Law, were used to simulate the zero-field-cooling (ZFC) and field-cooling curves (FC). A comparative analysis of the simulated, fitted and experimental ZFC/FC curves suggests that the current models depict indeed our dilute granular systems. Notwithstanding, for concentrated samples, the ISP model infers that clustered nanoparticles are being interpreted as single entities of larger magnetic moment and volume, effect that is apparently related to a collective and complex magnetic moment dynamics within the cluster.

  4. EFFECTIVENESS OF USING DILUTE OXALIC ACID TO DISSOLVEHIGH LEVEL WASTE IRON BASED SLUDGE SIMULANT

    SciTech Connect

    Ketusky, E

    2008-07-11

    At the Savannah River Site (SRS), near Aiken South Carolina, there is a crucial need to remove residual quantities of highly radioactive iron-based sludge from large select underground storage tanks (e.g., 19,000 liters of sludge per tank), in order to support tank closure. The use of oxalic acid is planned to dissolve the residual sludge, hence, helping in the removal. Based on rigorous testing, primarily using 4 and 8 wt% oxalic acid solutions, it was concluded that the more concentrated the acid, the greater the amount of residual sludge that would be dissolved; hence, a baseline technology on using 8 wt% oxalic acid was developed. In stark contrast to the baseline technology, reports from other industries suggest that the dissolution will most effectively occur at 1 wt% oxalic acid (i.e., maintaining the pH near 2). The driver for using less oxalic acid is that less (i.e., moles) would decrease the severity of the downstream impacts (i.e., required oxalate solids removal efforts). To determine the initial feasibility of using 1 wt% acid to dissolve > 90% of the sludge solids, about 19,000 liters of representative sludge was modeled using about 530,000 liters of 0 to 8 wt% oxalic acid solutions. With the chemical thermodynamic equilibrium based software results showing that 1 wt% oxalic acid could theoretically work, simulant dissolution testing was initiated. For the dissolution testing, existing simulant was obtained, and an approximate 20 liter test rig was built. Multiple batch dissolutions of both wet and air-dried simulant were performed. Overall, the testing showed that dilute oxalic acid dissolved a greater fraction of the stimulant and resulted in a significantly larger acid effectiveness (i.e., grams of sludge dissolved/mole of acid) than the baseline technology. With the potential effectiveness confirmed via simulant testing, additional testing, including radioactive sludge testing, is planned.

  5. Radiative properties of molecular nitrogen ions produced by helium Penning ionization and argon effects

    NASA Technical Reports Server (NTRS)

    Miller, George, III; Song, Kyo-Dong

    1994-01-01

    The development of hypersonic aerospace vehicles requires a better understanding on the thermal and chemical nonequilibrium kinetics of participating species in shock layers. The computational fluid dynamic (CFD) codes developed for such flowfields overestimate the radiation in the spectral region of 300 - 600 nm. A speculation for this overestimation is that inclusion of Ar, CO2, and H2O at the upper atmosphere flight region makes a significant impact on radiative kinetics of molecular nitrogen ions. To define the effects of minority species on the radiative kinetics of N2(+), an experimental setup was made by using the helium Penning ionization. The vibrational and rotational temperature were measured by mapping the vibrational and rotational distributions of N2(+) emission with high spectroscopic resolution and absolute intensity measurements. Measured vibrational temperatures were in the range from 18,000 to 36,000 K, and rotational temperatures were in the range from 300 to 370 K. The irradiance of 391.44 nm line and rotational and vibrational temperatures were analyzed to define argon and CO2 effects on the N2(+) emission. When Ar or CO2 is injected with N2, the rotational temperature did not change. The irradiances were reduced by 34 percent and 78 percent for the 50 percent of mixture of Ar and CO2, respectively. The vibrational temperatures were increased by 24.1 percent and 82.9 percent for the 50 percent of mixture of Ar and CO2, respectively. It appears that there are no significant effects from small concentrations of Ar and CO2 at the upper atmosphere flight region.

  6. EFFECTS OF METEOROLOGICAL CHANGES ON CONCENTRATIONS OF HELIUM, CARBON DIOXIDE, AND OXYGEN IN SOIL GASES.

    USGS Publications Warehouse

    Hinkle, M.E.; Ryder, J.L.; ,

    1988-01-01

    Samples were collected from a hollow probe at 0. 75-m depth and from a plastic hemisphere on the ground surface. Soil temperature, air temperature, percent humidity, and barometric pressure were also measured. Soil moisture was measured only indirectly as amount of rain or snowfall. Higher concentrations of CO//2 in both the 0. 75-m and surface samples correlated with higher soil and air temperatures, which suggests that CO//2 was produced by bacteria. Lower concentrations of helium in both the 0. 75-m and surface samples correlated with higher soil and air temperatures. Rain and snowfall appear to affect helium concentrations.

  7. Transport of Tank 241-SY-101 Waste Slurry: Effects of Dilution and Temperature on Critical Pipeline Velocity

    SciTech Connect

    KP Recknagle; Y Onishi

    1999-06-15

    This report presents the methods and results of calculations performed to predict the critical velocity and pressure drop required for the two-inch pipeline transfer of solid/liquid waste slurry from underground waste storage Tank 241-SY-101 to Tank 241-SY- 102 at the Hanford Site. The effects of temperature and dilution on the critical velocity were included in the analysis. These analyses show that Tank 241-SY-101 slurry should be diluted with water prior to delivery to Tank 241-SY-102. A dilution ratio of 1:1 is desirable and would allow the waste to be delivered at a critical velocity of 1.5 ft/sec. The system will be operated at a flow velocity of 6 ft/sec or greater therefore, this velocity will be sufficient to maintain a stable slurry delivery through the pipeline. The effect of temperature on the critical velocity is not a limiting factor when the slurry is diluted 1:1 with water. Pressure drop at the critical velocity would be approximately two feet for a 125-ft pipeline (or 250-ft equivalent straight pipeline). At 6 ft/sec, the pressure drop would be 20 feet over a 250-ft equivalent straight pipeline.

  8. Dilute ammonia pretreatment of sorghum and its effectiveness on enzyme hydrolysis and ethanol fermentation.

    PubMed

    Salvi, Deepti A; Aita, Giovanna M; Robert, Diana; Bazan, Victor

    2010-05-01

    A new pretreatment technology using dilute ammonium hydroxide was evaluated for ethanol production on sorghum. Sorghum fibers, ammonia, and water at a ratio of 1:0.14:8 were heated to 160 degrees C and held for 1 h under 140-160 psi pressure. Approximately, 44% lignin and 35% hemicellulose were removed during the process. Hydrolysis of untreated and dilute ammonia pretreated fibers was carried out at 10% dry solids at an enzyme concentration of 60 FPU Spezyme CP and 64 CBU Novozyme 188/g glucan. Cellulose digestibility was higher (84%) for ammonia pretreated sorghum as compared to untreated sorghum (38%). Fermentations with Saccharomyces cerevisiae D(5)A resulted in 24 g ethanol /100 g dry biomass for dilute ammonia pretreated sorghum and 9 g ethanol /100 g dry biomass for untreated sorghum.

  9. The effect of physiological urine dilution on pregnancy test results in complicated early pregnancies.

    PubMed

    Ikomi, A; Matthews, M; Kuan, A M; Henson, G

    1998-04-01

    This study addresses the likelihood of false negative urine pregnancy test results, due to physiological urine dilution as described in some anecdotal reports. In this prospective study 320 pregnancy tests were performed on urine samples of varying concentrations obtained from 40 women, with suspected complications of early pregnancy, who had presented for ultrasound scans. Four different pregnancy tests were used and serum betahCG levels were measured quantitatively. Despite a mean fivefold increase in urine dilution, the pregnancy tests with low betahCG detection limits maintained maximal sensitivity. The detection of betahCG in dilute urine was adversely affected by using pregnancy tests with higher betahCG detection limits and these tests should be used with caution when assessing gynaecological emergencies.

  10. Dispersion serial dilution methods using the gradient diluter device.

    PubMed

    Walling, Leslie; Schulz, Craig; Johnson, Michael

    2012-12-01

    A solute aspirated into a prefilled tube of diluent undergoes a dilution effect known as dispersion. Traditionally the effects of dispersion have been considered a negative consequence of using liquid-filled fixed-tip liquid handlers. We present a novel device and technique that utilizes the effects of dispersion to the benefit of making dilutions. The device known as the Gradient Diluter extends the dilution range of practical serial dilutions to six orders of magnitude in final volumes as low as 10 μL. Presented are the device, dispersion methods, and validation tests using fluorescence detection of sulforhodamine and the high-performance liquid chromatography/ultraviolet detection of furosemide. In addition, a T-cell inhibition assay of a relevant downstream protein is used to demonstrate IC(50) curves made with the Gradient Diluter compare favorably with those generated by hand.

  11. Initial assessment of environmental effects on SiC/SiC composites in helium-cooled nuclear systems

    SciTech Connect

    Contescu, Cristian I

    2013-09-01

    This report summarized the information available in the literature on the chemical reactivity of SiC/SiC composites and of their components in contact with the helium coolant used in HTGR, VHTR and GFR designs. In normal operation conditions, ultra-high purity helium will have chemically controlled impurities (water, oxygen, carbon dioxide, carbon monoxide, methane, hydrogen) that will create a slightly oxidizing gas environment. Little is known from direct experiments on the reactivity of third generation (nuclear grade) SiC/SiC composites in contact with low concentrations of water or oxygen in inert gas, at high temperature. However, there is ample information about the oxidation in dry and moist air of SiC/SiC composites at high temperatures. This information is reviewed first in the next chapters. The emphasis is places on the improvement in material oxidation, thermal, and mechanical properties during three stages of development of SiC fibers and at least two stages of development of the fiber/matrix interphase. The chemical stability of SiC/SiC composites in contact with oxygen or steam at temperatures that may develop in off-normal reactor conditions supports the conclusion that most advanced composites (also known as nuclear grade SiC/SiC composites) have the chemical resistance that would allow them maintain mechanical properties at temperatures up to 1200 1300 oC in the extreme conditions of an air or water ingress accident scenario. Further research is needed to assess the long-term stability of advanced SiC/SiC composites in inert gas (helium) in presence of very low concentrations (traces) of water and oxygen at the temperatures of normal operation of helium-cooled reactors. Another aspect that needs to be investigated is the effect of fast neutron irradiation on the oxidation stability of advanced SiC/SiC composites in normal operation conditions.

  12. Effect of feeding mode and dilution on the performance and microbial community population in anaerobic digestion of food waste.

    PubMed

    Park, Jong-Hun; Kumar, Gopalakrishnan; Yun, Yeo-Myeong; Kwon, Joong-Chun; Kim, Sang-Hyoun

    2017-07-08

    The effect of feeding mode and dilution was studied in anaerobic digestion of food waste. An upflow anaerobic digester with a settler was fed at six different organic loading rates (OLRs) from 4.6 to 8.6kgCOD/m(3)/d for 200days. The highest methane productivity of 2.78LCH4/L/d was achieved at 8.6kgCOD/m(3)/d during continuous feeding of diluted FW. Continuous feeding of diluted food waste showed more stable and efficient performance than stepwise feeding of undiluted food waste. Sharp increase in propionate concentration attributed towards deterioration of the digester performances in stepwise feeding of undiluted food waste. Microbial communities at various OLRs divulged that the microbial distribution in the continuous feeding of diluted food waste was not significantly perturbed despite the increase of OLR up to 8.6kgCOD/m(3)/d, which was contrast to the unstable distribution in stepwise feeding of undiluted food waste at 6.1kgCOD/m(3)/d. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. MD simulations of phase stability of PuGa alloys: Effects of primary radiation defects and helium bubbles

    DOE PAGES

    Dremov, V. V.; Sapozhnikov, F. A.; Ionov, G. V.; ...

    2013-05-14

    We present classical molecular dynamics (MD) with Modified Embedded Atom Model (MEAM) simulations to investigate the role of primary radiation defects and radiogenic helium as factors affecting the phase stability of PuGa alloys in cooling–heating cycles at ambient pressure. The models of PuGa alloys equilibrated at ambient conditions were subjected to cooling–heating cycles in which they were initially cooled down to 100 K and then heated up to 500 K at ambient pressure. The rate of temperature change in the cycles was 10 K/ns. The simulations showed that the initial FCC phase of PuGa alloys undergo polymorphous transition in coolingmore » to a lower symmetry α'-phase. All the alloys undergo direct and reverse polymorphous transitions in the cooling–heating cycles. The alloys containing vacancies shift in both transitions to lower temperatures relative to the defect-free alloys. The radiogenic helium has much less effect on the phase stability compared to that of primary radiation defects (in spite of the fact that helium concentration is twice of that for the primary radiation defects). Lastly, this computational result agrees with experimental data on unconventional stabilization mechanism of PuGa alloys.« less

  14. Effect of helium-neon laser on fast excitatory postsynaptic potential of neurons in the isolated rat superior cervical ganglia

    NASA Astrophysics Data System (ADS)

    Mo, Hua; He, Ping; Mo, Ning

    2004-08-01

    The aim of this study is to further measure the effect of 632.8-nm helium-neon laser on fast excitatory postsynaptic potential (f-EPSP) of postganglionic neurons in isolated rat superior cervical ganglia by means of intracellular recording techniques. The neurons with f-EPSP were irradiated by different power densities (1-5 mW/cm2) laser. Irradiated by the 2-mW/cm2 laser, the amplitude of the f-EPSP could augment (P<0.05, paired t test) and even cause action potential at the end of the first 1-2 minutes, the f-EPSP could descend and last for 3-8 minutes. But the amplitude of the f-EPSP of neurons irradiated by the 5-mW/cm2 laser could depress for the irradiating periods. The results show that: 1) the variation of the amplitude of f-EPSP caused by laser is power density-dependent and time-dependent; 2) there exist the second-order phases in the interaction of the helium-neon laser with neurons. These findings may provide certain evidence in explanation of the mechanisms of clinical helium-neon laser therapy.

  15. MD simulations of phase stability of PuGa alloys: Effects of primary radiation defects and helium bubbles

    SciTech Connect

    Dremov, V. V.; Sapozhnikov, F. A.; Ionov, G. V.; Karavaev, A. V.; Vorobyova, M. A.; Chung, B. W.

    2013-05-14

    We present classical molecular dynamics (MD) with Modified Embedded Atom Model (MEAM) simulations to investigate the role of primary radiation defects and radiogenic helium as factors affecting the phase stability of PuGa alloys in cooling–heating cycles at ambient pressure. The models of PuGa alloys equilibrated at ambient conditions were subjected to cooling–heating cycles in which they were initially cooled down to 100 K and then heated up to 500 K at ambient pressure. The rate of temperature change in the cycles was 10 K/ns. The simulations showed that the initial FCC phase of PuGa alloys undergo polymorphous transition in cooling to a lower symmetry α'-phase. All the alloys undergo direct and reverse polymorphous transitions in the cooling–heating cycles. The alloys containing vacancies shift in both transitions to lower temperatures relative to the defect-free alloys. The radiogenic helium has much less effect on the phase stability compared to that of primary radiation defects (in spite of the fact that helium concentration is twice of that for the primary radiation defects). Lastly, this computational result agrees with experimental data on unconventional stabilization mechanism of PuGa alloys.

  16. Non-local thermodynamic equilibrium effects on isentropic coefficient in argon and helium thermal plasmas

    SciTech Connect

    Sharma, Rohit; Singh, Kuldip

    2014-03-15

    In the present work, two cases of thermal plasma have been considered; the ground state plasma in which all the atoms and ions are assumed to be in the ground state and the excited state plasma in which atoms and ions are distributed over various possible excited states. The variation of Zγ, frozen isentropic coefficient and the isentropic coefficient with degree of ionization and non-equilibrium parameter θ(= T{sub e}/T{sub h}) has been investigated for the ground and excited state helium and argon plasmas at pressures 1 atm, 10 atm, and 100 atm in the temperature range from 6000 K to 60 000 K. For a given value of non-equilibrium parameter, the relationship of Zγ with degree of ionization does not show any dependence on electronically excited states in helium plasma whereas in case of argon plasma this dependence is not appreciable till degree of ionization approaches 2. The minima of frozen isentropic coefficient shifts toward lower temperature with increase of non-equilibrium parameter for both the helium and argon plasmas. The lowering of non-equilibrium parameter decreases the frozen isentropic coefficient more emphatically in helium plasma at high pressures in comparison to argon plasma. The increase of pressure slightly reduces the ionization range over which isentropic coefficient almost remains constant and it does not affect appreciably the dependence of isentropic coefficient on non-equilibrium parameter.

  17. Low frequency anomalies of the effective mass of charged clusters in liquid helium

    NASA Astrophysics Data System (ADS)

    Shikin, V.

    2013-10-01

    The dynamic behavior of charged clusters in liquid helium is discussed in detail. The matter is their added mass which has ideal, Msass, and normal, Mnass, components. The normal component has a number of interesting features of viscous origin. Some of them were found in recent experiments.

  18. Effect of lime on the availability of residual phosphorus and its extractability by dilute acid

    SciTech Connect

    Rhue, R.D.; Hensel, D.R.

    1983-01-01

    The objective of this study was to determine the long-term effects of liming an acid, P-deficient Placid sand (sandy, siliceous, hyperthermic Typic Humaquept) on the availability of residual fertilizer P to potatoes (Solanum tuberosum L.). Dolomitic limestone was applied in November 1977, at rates of 0, 2240, 4480, and 8960 kg/ha in a split-plot design with lime as main plots and P treatments as subplots. Phosphorus was applied at rates of 0, 56, 112, and 168 kg/ha in 1978. In 1979 and 1980, P plots were split with one-half fertilized with 56 kg P/ha and the other one-half not fertilized with P (residual). In 1978, maximum tuber yields and top dry weights occurred at the 2240 kg/ha lime rate which resulted in a soil pH of 5.8. Plant P concentrations were unaffected by lime at any sampling rate. In 1979, availability of residual soil P decreased with lime rates > 2240 kg/ha but not enough to significantly affect yields. However, in 1980, overliming injury was observed for tuber yields at the higher lime rates which was the result of P deficiency. Application of P at planting eliminated the overliming injury with maximum yields occurring in the pH range of 6.0 to 6.5. It appears that liming to pH 6.5 in this study resulted in fertilizer reaction products that were more soluble in dilute acid but less plant available than those formed under more acid conditions. However, the Mehlich I extractant appeared to be a suitable extractant for P on this soil if pH was taken into account when interpreting soil-test P. 23 references, 4 figures, 2 tables.

  19. Micro-mechanical investigation for effects of helium on grain boundary fracture of austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Miura, Terumitsu; Fujii, Katsuhiko; Fukuya, Koji

    2015-02-01

    Effects of helium (He) on grain boundary (GB) fracture of austenitic stainless steel were investigated by micro-tensile tests. Micro-bicrystal tensile specimens were fabricated for non-coincidence site lattice boundaries of He ion-irradiated 316 stainless steel by focused ion beam (FIB) micro-processing. Micro-tensile tests were conducted in a vacuum at room temperature in the FIB system. Specimens containing more than 2 at.% He fractured at GBs. The criteria for brittle fracture occurrence on GBs were: (1) He concentrations higher than 2 at.%; (2) formation of He bubbles on the GBs with less than a 5 nm spacing; and (3) matrix hardening to more than 4.6 GPa (nano-indentation hardness). The fracture stress of GB brittle fracture was lower for a specimen with higher He concentration while the size and areal density of the GB He bubbles were the same. The specimens that contained 10 at.% He and had been annealed at 923 K after irradiation fractured at the GB nominally in a brittle manner; however the inter-bubble matrix at the GB experienced ductile fracture. The annealing caused He bubbles to grow but decreased the areal density so that the spacing of the GB He bubbles widened and the hardness decreased, therefore the fracture mode changed from brittle to ductile. The findings revealed that He promotes GB fracture by weakening the GB strength and hardening the matrix due to the formation of He bubbles both on GBs and in the matrix. In addition, the findings suggested that GB segregated He atoms may have a role in GB fracture.

  20. Bactericidal effect of plasma jet with helium flowing through 3% hydrogen peroxide against Enterococcus faecalis

    PubMed Central

    Zhou, Xin-Cai; Li, Yu-Lan; Liu, De-Xi; Cao, Ying-Guang; Lu, Xin-Pei

    2016-01-01

    The aim of the present study was to assess the antimicrobial activity of plasma jet with helium (He) flowing through 3% hydrogen peroxide in root canals infected with Enterococcus faecalis. A total of 42 single-rooted anterior teeth were prepared, sterilized, inoculated with an E. faecalis suspension and incubated for 7 days. Next, the teeth were randomly divided into six experimental groups (including groups treated by plasma jet with or without He for different time durations) and one control group treated without plasma. The number of surviving bacteria in each canal was determined by counting the colony forming units (CFU)/ml on nutrient agar plates. The results indicated that statistically significant reduction in CFU/ml (P<0.005) existed for all treatment groups relative to the control group. The greatest reductions in CFU/ml were observed for Group 3 (7.027 log unit reduction) and Group 2 (6.237 log unit reduction), which were treated by plasma jet sterilization with He flowing through 3% hydrogen peroxide for 4 min or for 2 min, respectively. In addition, the reduction in Group 3 was significantly greater compared with that in Group 2 or in the groups treated by plasma jet sterilization without He flowing through 3% hydrogen peroxide for 1, 2 or 4 min. In conclusion, plasma jet with or without He flowing through 3% hydrogen peroxide can effectively sterilized root canals infected with E. faecalis and should be considered as an alternative method for root canal disinfection in endodontic treatments. PMID:27882119

  1. Effects of helium-neon laser on the mucopolysaccharide induction in experimental osteoarthritic cartilage.

    PubMed

    Lin, Y-S; Huang, M-H; Chai, C-Y

    2006-04-01

    To investigate the effects of mucopolysaccharide induction after treatment by low power laser for experimental osteoarthritis (OA). Seventy-two rats with three different degrees of papain induced OA over right knee joints were collected for helium-neon (He-Ne) laser treatment. The severity of induced arthritis was measured by 99mTc bone scan and classified into three groups (I-III) by their radioactivity ratios (right to left knee joints). The rats in each group were further divided into study subgroups (Is, IIs, and IIIs) and control subgroups (Ic, IIc, and IIIc) randomly. The arthritic knees in study subgroups received He-Ne laser treatment, and those in controls received sham laser treatment. The changes of arthritic severity after treatment and follow-up 2 months later were measured. The histopathological changes were evaluated through light microscope after disarticulation of sections (H.E. stain), and the changes of mucopolysaccharide density in cartilage matrix were measured by Optimas scanner analyzer after Alcian blue (AB) stain. The densities of mucopolysaccharide induced after treatment in arthritic cartilage were compared and correlated with their histopathological changes. The density of mucopolysaccharide rose at the initial stage of induced arthritis, and decreased progressively in later stages. The densities of mucopolysaccharide in treated rats increased upon complete laser treatment more than those of the controls, which is closely related with the improvement in histopathological findings, but conversely with the changes in arthritic severity. He-Ne laser treatment will enhance the biosynthesis of arthritic cartilage, and results in the improvement of arthritic histopathological changes.

  2. Helium and deuterium irradiation effects in W-Ta composites produced by pulse plasma compaction

    NASA Astrophysics Data System (ADS)

    Dias, M.; Catarino, N.; Nunes, D.; Fortunato, E.; Nogueira, I.; Rosinki, M.; Correia, J. B.; Carvalho, P. A.; Alves, E.

    2017-08-01

    Tungsten-tantalum composites have been envisaged for first-wall components of nuclear fusion reactors; however, changes in their microstructure are expected from severe irradiation with helium and hydrogenic plasma species. In this study, composites were produced from ball milled W powder mixed with 10 at.% Ta fibers through consolidation by pulse plasma compaction. Implantation was carried out at room temperature with He+ (30 keV) or D+ (15 keV) or sequentially with He+ and D+ using ion beams with fluences of 5 × 1021 at/m2. Microstructural changes and deuterium retention in the implanted composites were investigated by scanning electron microscopy, coupled with focused ion beam and energy dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, Rutherford backscattering spectrometry and nuclear reaction analysis. The composite materials consisted of Ta fibers dispersed in a nanostructured W matrix, with Ta2O5 layers at the interfacial regions. The Ta and Ta2O5 surfaces exhibited blisters after He+ implantation and subsequent D+ implantation worsened the blistering behavior of Ta2O5. Swelling was also pronounced in Ta2O5 where large blisters exhibited an internal nanometer-sized fuzz structure. Transmission electron microscopy revealed an extensive presence of dislocations in the metallic phases after the sequential implantation, while a relatively low density of defects was detected in Ta2O5. This behavior may be partially justified by a shielding effect from the blisters and fuzz structure developed progressively during implantation. The tungsten peaks in the X-ray diffractograms were markedly shifted after He+ implantation, and even more so after the sequential implantation, which is in agreement with the increased D retention inferred from nuclear reaction analysis.

  3. Depth matters: Soil pH and dilution effects in the northern Great Plains

    USDA-ARS?s Scientific Manuscript database

    In the northern Great Plans (NGP), surface sampling depths of 0-15.2 cm or 0-20.3 cm are suggested for testing soil characteristics such as pH. However, acidification is often most pronounced near-surface (e.g., <10 cm). Thus, sampling deeper can potentially dilute (increase) pH measurements and the...

  4. Dilution of Fluon Before Trap Surface Treatment Has No Effect on Longhorned Beetle (Coleoptera: Cerambycidae) Captures

    Treesearch

    Jeremy D. Allison; Elizabeth E. Graham; Therese M. Poland; Brian L. Strom

    2016-01-01

    Several studies have observed that trap captures of longhorned beetles (Coleoptera: Cerambycidae) can be increased by treating the surface of intercept traps with a lubricant. In addition to being expensive, these treatments can alter the spectral properties of intercept traps when applied neat. These surface treatments, particularly Fluon, are commonly used diluted as...

  5. Spectrophotometry of Helium Peculiar Stars

    NASA Astrophysics Data System (ADS)

    Shore, Steven N.

    The mechanism for the spectrum and photometric variations of the magnetic helium peculiar stars is not a settled question. For the cooler stars the primary cause appears to be changes, due to surface inhomogeneities, of Si continuous opacity. For the hotter helium rich stars it appears linked to the helium anomaly and its photosoheric distribution. The connection between the helium weak and helium rich stars is not well understood but appears to be linked to effective temperature on the main sequence via a diffusion mechanism. The purpose of this study is to explore the relation between magnetic field strength and configuration, effective temperature and abundance anomaly using groups of matched He weak and He rich stars. It will, using this sample, also study the relation between the UV variations and the broad continuum features known in the optical at 5200 and 6300 A. The constancy of the stellar flux will also be studied, linking this survey with the OAO-2 and TD-1 studies of a few Si stars. A subsidiary goal is the calibration of high dispersion IUE Spectra obtained in the previous programs (APBSA, HRDPB, and HEESS) for the helium rich stars. The photometric observations made with OAO-2, TD-1, ANS, and the COPERNICUS spectra will all serve as links between the helium rich and weak phenomenology.

  6. Methods for evaluation of helium/oxygen delivery through non-rebreather facemasks

    PubMed Central

    2012-01-01

    Background Inhalation of low-density helium/oxygen mixtures has been used both to lower the airway resistance and work of breathing of patients with obstructive lung disease and to transport pharmaceutical aerosols to obstructed lung regions. However, recent clinical investigations have highlighted the potential for entrainment of room air to dilute helium/oxygen mixtures delivered through non-rebreather facemasks, thereby increasing the density of the inhaled gas mixture and limiting intended therapeutic effects. This article describes the development of benchtop methods using face models for evaluating delivery of helium/oxygen mixtures through facemasks. Methods Four face models were used: a flat plate, a glass head manikin, and two face manikins normally used in life support training. A mechanical test lung and ventilator were employed to simulate spontaneous breathing during delivery of 78/22 %vol helium/oxygen through non-rebreather facemasks. Based on comparison of inhaled helium concentrations with available clinical data, one face model was selected for measurements made during delivery of 78/22 or 65/35 %vol helium/oxygen through three different masks as tidal volume varied between 500 and 750 ml, respiratory rate between 14 and 30 breaths/min, the inspiratory/expiratory ratio between 1/2 and 1/1, and the supply gas flow rate between 4 and 15 l/min. Inhaled helium concentrations were measured both with a thermal conductivity analyzer and using a novel flow resistance method. Results Face models borrowed from life support training provided reasonably good agreement with available clinical data. After normalizing for the concentration of helium in the supply gas, no difference was noted in the extent of room air entrainment when delivering 78/22 versus 65/35 %vol helium/oxygen. For a given mask fitted to the face in a reproducible manner, delivered helium concentrations were primarily determined by the ratio of supply gas flow rate to simulated patient

  7. Effects of a helium/oxygen mixture on individuals' lung function and metabolic cost during submaximal exercise for participants with obstructive lung diseases.

    PubMed

    Häussermann, Sabine; Schulze, Anja; Katz, Ira M; Martin, Andrew R; Herpich, Christiane; Hunger, Theresa; Texereau, Joëlle

    2015-01-01

    Helium/oxygen therapies have been studied as a means to reduce the symptoms of obstructive lung diseases with inconclusive results in clinical trials. To better understand this variability in results, an exploratory physiological study was performed comparing the effects of helium/oxygen mixture (78%/22%) to that of medical air. The gas mixtures were administered to healthy, asthmatic, and chronic obstructive pulmonary disease (COPD) participants, both moderate and severe (6 participants in each disease group, a total of 30); at rest and during submaximal cycling exercise with equivalent work rates. Measurements of ventilatory parameters, forced spirometry, and ergospirometry were obtained. There was no statistical difference in ventilatory and cardiac responses to breathing helium/oxygen during submaximal exercise. For asthmatics, but not for the COPD participants, there was a statistically significant benefit in reduced metabolic cost, determined through measurement of oxygen uptake, for the same exercise work rate. However, the individual data show that there were a mixture of responders and nonresponders to helium/oxygen in all of the groups. The inconsistent response to helium/oxygen between individuals is perhaps the key drawback to the more effective and widespread use of helium/oxygen to increase exercise capacity and for other therapeutic applications.

  8. Effects of a helium/oxygen mixture on individuals’ lung function and metabolic cost during submaximal exercise for participants with obstructive lung diseases

    PubMed Central

    Häussermann, Sabine; Schulze, Anja; Katz, Ira M; Martin, Andrew R; Herpich, Christiane; Hunger, Theresa; Texereau, Joëlle

    2015-01-01

    Background Helium/oxygen therapies have been studied as a means to reduce the symptoms of obstructive lung diseases with inconclusive results in clinical trials. To better understand this variability in results, an exploratory physiological study was performed comparing the effects of helium/oxygen mixture (78%/22%) to that of medical air. Methods The gas mixtures were administered to healthy, asthmatic, and chronic obstructive pulmonary disease (COPD) participants, both moderate and severe (6 participants in each disease group, a total of 30); at rest and during submaximal cycling exercise with equivalent work rates. Measurements of ventilatory parameters, forced spirometry, and ergospirometry were obtained. Results There was no statistical difference in ventilatory and cardiac responses to breathing helium/oxygen during submaximal exercise. For asthmatics, but not for the COPD participants, there was a statistically significant benefit in reduced metabolic cost, determined through measurement of oxygen uptake, for the same exercise work rate. However, the individual data show that there were a mixture of responders and nonresponders to helium/oxygen in all of the groups. Conclusion The inconsistent response to helium/oxygen between individuals is perhaps the key drawback to the more effective and widespread use of helium/oxygen to increase exercise capacity and for other therapeutic applications. PMID:26451096

  9. Study of impurity-helium condensates formed by multishell nanoclusters

    NASA Astrophysics Data System (ADS)

    Mao, Shun

    Impurity-helium condensates (IHCs) are porous gel-like materials created by injecting a mixed beam of helium gas and an impurity gas into super fluid 4He. Van der Waals forces lead to the formation of clusters of impurities each surrounded by a thin layer of solid helium. Inside super fluid helium the clusters tend to aggregate into a gel-like structure with wide distribution of pore sizes. Matrix isolation of free radical impurities in IHCs leads to unusually high concentrations of these impurities. Impurity-helium condensates (IHCs) containing nitrogen and krypton atoms immersed in super fluid 4He have been studied via a CW electron spin resonance (ESR) technique. It was found that the addition of krypton atoms to the nitrogen-helium gas mixture used for preparation of IHCs increases efficiency of stabilization of nitrogen atoms. We have achieved high average (5x1019 cm --3) and local (2x1021 cm--3) concentrations of nitrogen atoms in krypton-nitrogen-helium condensates. High concentrations of nitrogen atoms achieved in IHCs provide an important step in the search for magnetic ordering effects at low temperatures. Impurity-helium condensates created by injection of hydrogen (deuterium) atoms and molecules as well as rare gas (RG) atoms (Ne and Kr) into super fluid 4He also have been studied via electron spin resonance (ESR) techniques. Measurements of the ground-state spectroscopic parameters of hydrogen and deuterium atoms show that the nanoclusters have a shell structure. H and D atoms reside in solid molecular layers of H2 and D2 , respectively. By monitoring the recombination of H atoms in the collection of hydrogen-neon nanoclusters, we show that nanoclusters form a gel-like porous structure which enables the H atoms to be transported through the structure via percolation. Observation of percolation in the collection of nanoclusters containing stabilized hydrogen atoms opens new possibilities for a search for macroscopic collective quantum phenomena at

  10. Effect of ethanol, temperature, and gas flow rate on volatile release from aqueous solutions under dynamic headspace dilution conditions.

    PubMed

    Tsachaki, Maroussa; Gady, Anne-Laure; Kalopesas, Michalis; Linforth, Robert S T; Athès, Violaine; Marin, Michele; Taylor, Andrew J

    2008-07-09

    On the basis of a mechanistic model, the overall and liquid mass transfer coefficients of aroma compounds were estimated during aroma release when an inert gas diluted the static headspace over simple ethanol/water solutions (ethanol concentration = 120 mL x L(-1)). Studied for a range of 17 compounds, they were both increased in the ethanol/water solution compared to the water solution, showing a better mass transfer due to the presence of ethanol, additively to partition coefficient variation. Thermal imaging results showed differences in convection of the two systems (water and ethanol/water) arguing for ethanol convection enhancement inside the liquid. The effect of ethanol in the solution on mass transfer coefficients at different temperatures was minor. On the contrary, at different headspace dilution rates, the effect of ethanol in the solution helped to maintain the volatile headspace concentration close to equilibrium concentration, when the headspace was replenished 1-3 times per minute.

  11. Synovial Fluid Response to Extensional Flow: Effects of Dilution and Intermolecular Interactions

    PubMed Central

    Haward, Simon J.

    2014-01-01

    In this study, a microfluidic cross-slot device is used to examine the extensional flow response of diluted porcine synovial fluid (PSF) samples using flow-induced birefringence (FIB) measurements. The PSF sample is diluted to 10× 20× and 30× its original mass in a phosphate-buffered saline and its FIB response measured as a function of the strain rate at the stagnation point of the cross-slots. Equivalent experiments are also carried out using trypsin-treated PSF (t-PSF) in which the protein content is digested away using an enzyme. The results show that, at the synovial fluid concentrations tested, the protein content plays a negligible role in either the fluid's bulk shear or extensional flow behaviour. This helps support the validity of the analysis of synovial fluid HA content, either by microfluidic or by other techniques where the synovial fluid is first diluted, and suggests that the HA and protein content in synovial fluid must be higher than a certain minimum threshold concentration before HA-protein or protein-protein interactions become significant. However a systematic shift in the FIB response as the PSF and t-PSF samples are progressively diluted indicates that HA-HA interactions remain significant at the concentrations tested. These interactions influence FIB-derived macromolecular parameters such as the relaxation time and the molecular weight distribution and therefore must be minimized for the best validity of this method as an analytical technique, in which non-interaction between molecules is assumed. PMID:24651529

  12. Synovial fluid response to extensional flow: effects of dilution and intermolecular interactions.

    PubMed

    Haward, Simon J

    2014-01-01

    In this study, a microfluidic cross-slot device is used to examine the extensional flow response of diluted porcine synovial fluid (PSF) samples using flow-induced birefringence (FIB) measurements. The PSF sample is diluted to 10× 20× and 30× its original mass in a phosphate-buffered saline and its FIB response measured as a function of the strain rate at the stagnation point of the cross-slots. Equivalent experiments are also carried out using trypsin-treated PSF (t-PSF) in which the protein content is digested away using an enzyme. The results show that, at the synovial fluid concentrations tested, the protein content plays a negligible role in either the fluid's bulk shear or extensional flow behaviour. This helps support the validity of the analysis of synovial fluid HA content, either by microfluidic or by other techniques where the synovial fluid is first diluted, and suggests that the HA and protein content in synovial fluid must be higher than a certain minimum threshold concentration before HA-protein or protein-protein interactions become significant. However a systematic shift in the FIB response as the PSF and t-PSF samples are progressively diluted indicates that HA-HA interactions remain significant at the concentrations tested. These interactions influence FIB-derived macromolecular parameters such as the relaxation time and the molecular weight distribution and therefore must be minimized for the best validity of this method as an analytical technique, in which non-interaction between molecules is assumed.

  13. Effect of dilution on compressibility of naproxen in acetonitrile studied by ultrasonic method

    NASA Astrophysics Data System (ADS)

    Marczak, W.; Kowalska, T.; Bucek, M.; Piotrowski, D.; Sajewicz, M.

    2006-11-01

    Naproxen, ibuprofen, and ketoprofen are non-steroidal anti-inflammatory drugs. All of them belong to chiral 2-arylpropionic acids (2-APAs). Chiral compounds may remain in a patient's body as two antimers, even if administered as a single one, due to transenantiomerization. That is dangerous if therapeutic enantiomer has a toxic antipode. Chromatographic data suggest that solutions of S-(+)-naproxen in acetonitrile are stiffer than the pure solvent that favours oscillatory transenantiomerisation. Acoustic and volumetric studies of dilute solutions of naproxen in acetonitrile have been undertaken to verify that supposition. The molar adiabatic compressibility and volume depend linearly on the molar percent of naproxen at temperatures from 298.15 K to 313.15 K. Limiting partial compressibility of naproxen is close to zero and decreases slightly with increasing temperature. Thus, the compressibility of dilute solutions is mainly due to compressibility of acetonitrile, while naproxen is virtually incompressible. The hydrogen-bonded dimers of naproxen probably remain intact, even at infinite dilution.

  14. Study the Effect of SiO2 Based Flux on Dilution in Submerged Arc Welding

    NASA Astrophysics Data System (ADS)

    kumar, Aditya; Maheshwari, Sachin

    2017-08-01

    This paper highlights the method for prediction of dilution in submerged arc welding (SAW). The most important factors of weld bead geometry are governed by the weld dilution which controls the chemical and mechanical properties. Submerged arc welding process is used generally due to its very easy control of process variables, good penetration, high weld quality, and smooth finish. Machining parameters, with suitable weld quality can be achieved with the different composition of the flux in the weld. In the present study Si02-Al2O3-CaO flux system was used. In SiO2 based flux NiO, MnO, MgO were mixed in various proportions. The paper investigates the relationship between the process parameters like voltage, % of flux constituents and dilution with the help of Taguchi’s method. The experiments were designed according to Taguchi L9 orthogonal array, while varying the voltage at two different levels in addition to alloying elements. Then the optimal results conditions were verified by confirmatory experiments.

  15. Effective particle energies for stopping power calculation in radiotherapy treatment planning with protons and helium, carbon, and oxygen ions

    NASA Astrophysics Data System (ADS)

    Inaniwa, T.; Kanematsu, N.

    2016-10-01

    The stopping power ratio (SPR) of body tissues relative to water depends on the particle energy. For simplicity, however, most analytical dose planning systems do not account for SPR variation with particle energy along the beam’s path, but rather assume a constant energy for SPR estimation. The range error due to this simplification could be indispensable depending on the particle species and the assumed energy. This error can be minimized by assuming a suitable energy referred to as an ‘effective energy’ in SPR estimation. To date, however, the effective energy has never been investigated for realistic patient geometries. We investigated the effective energies for proton, helium-, carbon-, and oxygen-ion radiotherapy using volumetric models of the reference male and female phantoms provided by the International Commission on Radiological Protection (ICRP). The range errors were estimated by comparing the particle ranges calculated when particle energy variations were and were not considered. The effective energies per nucleon for protons and helium, carbon, and oxygen ions were 70 MeV, 70 MeV, 131 MeV, and 156 MeV, respectively. Using the determined effective energies, the range errors were reduced to  ⩽0.3 mm for respective particle species. For SPR estimation of multiple particle species, an effective energy of 100 MeV is recommended, with which the range error is  ⩽0.5 mm for all particle species.

  16. Effective regimes of runaway electron beam generation in helium, hydrogen, and nitrogen

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Sorokin, D. A.; Shut'ko, Yu. V.

    2010-04-01

    Runaway electron beam parameters and current-voltage characteristics of discharge in helium, hydrogen, and nitrogen at pressures in the range of several Torr to several hundred Torr have been studied. It is found that the maximum amplitudes of supershort avalanche electron beams (SAEBs) with a pulse full width at half maximum (FWHM) of ˜100 ps are achieved in helium, hydrogen, and nitrogen at a pressure of ˜60, ˜30, and ˜10 Torr, respectively. It is shown that, as the gas pressure is increased in the indicated range, the breakdown voltage of the gas-filled gap decreases, which leads to a decrease in the SAEB current amplitude. At pressures of helium within 20-60 Torr, hydrogen within 10-30 Torr, and nitrogen within 3-10 Torr, the regime of the runaway electron beam generation changes and, by varying the pressure in the gas-filled diode in the indicated intervals, it is possible to smoothly control the current pulse duration (FWHM) from ˜100 to ˜500 ps, while the beam current amplitude increases by a factor of 1.5-3.

  17. Homogeneous nucleation rate measurements of 1-propanol in helium: the effect of carrier gas pressure.

    PubMed

    Brus, David; Zdímal, Vladimír; Stratmann, Frank

    2006-04-28

    Kinetics of homogeneous nucleation in supersaturated vapor of 1-propanol was studied using an upward thermal diffusion cloud chamber. Helium was used as a noncondensable carrier gas and the influence of its pressure on observed nucleation rates was investigated. The isothermal nucleation rates were determined by a photographic method that is independent on any nucleation theory. In this method, the trajectories of growing droplets are recorded using a charge coupled device camera and the distribution of local nucleation rates is determined by image analysis. The nucleation rate measurements of 1-propanol were carried out at four isotherms 260, 270, 280, and 290 K. In addition, the pressure dependence was investigated on the isotherms 290 K (50, 120, and 180 kPa) and 280 K (50 and 120 kPa). The isotherm 270 K was measured at 25 kPa and the isotherm 260 K at 20 kPa. The experiments confirm the earlier observations from several thermal diffusion chamber investigations that the homogeneous nucleation rate of 1-propanol tends to increase with decreasing total pressure in the chamber. In order to reduce the possibility that the observed phenomenon is an experimental artifact, connected with the generally used one-dimensional description of transfer processes in the chamber, a recently developed two-dimensional model of coupled heat, mass, and momentum transfer inside the chamber was used and results of both models were compared. It can be concluded that the implementation of the two-dimensional model does not explain the observed effect. Furthermore the obtained results were compared both to the predictions of the classical theory and to the results of other investigators using different experimental devices. Plotting the experimental data on the so-called Hale plot shows that our data seem to be consistent both internally and also with the data of others. Using the nucleation theorem the critical cluster sizes were obtained from the slopes of the individual isotherms

  18. Dilution Zone Mixing

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1983-01-01

    Studies to characterize dilution zone mixing; experiments on the effects of free-stream turbulence on a jet in crossflow; and the development of an interactive computer code for the analysis of the mixing of jets with a confined crossflow are reviewed.

  19. A NRA study of temperature and heavy ion irradiation effects on helium migration in sintered uranium dioxide

    NASA Astrophysics Data System (ADS)

    Martin, G.; Garcia, P.; Labrim, H.; Sauvage, T.; Carlot, G.; Desgardin, P.; Barthe, M. F.; Piron, J. P.

    2006-10-01

    Helium implanted uranium dioxide sintered samples were studied using nuclear reaction analysis prior to and following heavy ion irradiations and temperature anneals at 800 °C and 1100 °C. The results show that the heavy ion irradiations do not produce measurable long range movement of helium atoms. However, the ion irradiations do affect the behaviour of helium during subsequent temperature anneals. As regards the 800 °C anneal, the reduced mobility of helium in the ion-irradiated samples is interpreted as resulting from enhanced helium atom segregation produced by the ion-irradiation. Conversely at 1100 °C, the initial heavy ion irradiation appears to produce a greater than expected movement of helium within the bulk of the sample which could be an indication of defect assisted helium diffusion. Thermal diffusion coefficients are also reported at 800 °C and 1100 °C based on an analysis using a one-dimensional diffusion model.

  20. Effects of dilute acid pretreatment conditions on enzymatic hydrolysis monomer and oligomer sugar yields for aspen, balsam, and switchgrass.

    PubMed

    Jensen, Jill R; Morinelly, Juan E; Gossen, Kelsey R; Brodeur-Campbell, Michael J; Shonnard, David R

    2010-04-01

    The effects of dilute acid hydrolysis conditions were investigated on total sugar (glucose and xylose) yields after enzymatic hydrolysis with additional analyses on glucose and xylose monomer and oligomer yields from the individual hydrolysis steps for aspen (a hardwood), balsam (a softwood), and switchgrass (a herbaceous energy crop). The results of this study, in the form of measured versus theoretical yields and a severity analysis, show that for aspen and balsam, high dilute acid hydrolysis xylose yields were obtainable at all acid concentrations (0.25-0.75 wt.%) and temperatures (150-175 degrees C) studied as long as reaction time was optimized. Switchgrass shows a relatively stronger dependence on dilute acid hydrolysis acid concentration due to its higher neutralizing mineral content. Maximum total sugar (xylose and glucose; monomer plus oligomer) yields post-enzymatic hydrolysis for aspen, balsam, and switchgrass, were 88.3%, 21.2%, and 97.6%, respectively. In general, highest yields of total sugars (xylose and glucose; monomer plus oligomer) were achieved at combined severity parameter values (log CS) between 2.20 and 2.40 for the biomass species studied.

  1. Effects of plant neighborhoods on plant-herbivore interactions: resource dilution and associational effects.

    PubMed

    Hambäck, Peter A; Inouye, Brian D; Andersson, Petter; Underwood, Nora

    2014-05-01

    Effects of neighboring plants on herbivore damage to a focal plant (associational effects) have been documented in many systems and can lead to either increased or decreased herbivore attack. Mechanistic models that explain the observed variety of herbivore responses to local plant community composition have, however, been lacking. We present a model of herbivore responses to patches that consist of two plant types, where herbivore densities on a focal plant are determined by a combination of patch-finding, within-patch redistribution, and patch-leaving. Our analyses show that the effect of plant neighborhood on herbivores depends both on how plant and herbivore traits combine to affect herbivore movement and on how experimental designs reveal the effects of plant density and plant relative frequency. Associational susceptibility should be the dominant pattern when herbivores have biased landing rates within patches. Other behavioral decision rules lead to mixed responses, but a common pattern is that in mixed patches, one plant type experiences associational resistance while the other plant experiences associational susceptibility. In some cases, the associational effect may shift sign along a gradient of plant frequency, suggesting that future empirical studies should include more than two plant frequencies to detect nonlinearities. Finally, we find that associational susceptibility should be commonly observed in experiments using replacement designs, whereas associational resistance will be the dominant pattern when using additive designs. Consequently, outcomes from one experimental design cannot be directly compared to studies with other designs. Our model can also be translated to other systems with foragers searching for multiple resource types.

  2. Effects of canola oil dilution on anhydrous milk fat crystallization and fractionation behavior.

    PubMed

    Wright, A J; Batte, H D; Marangoni, A G

    2005-06-01

    Blends of anhydrous milk fat (AMF) and canola oil (CO) were cooled from 35 to 5 degrees C at 0.1 degrees C/min, held for 24 h, and centrifuged to separate the liquid and crystalline fractions. The blends' crystallization behaviors and microstructures depended on the level of CO present. Onset and half times of crystallization reflected a slower crystallization mechanism at higher levels of CO dilution. These differences were accompanied by a change in microstructure from large spherulites to smaller particles. The biggest change occurred between the 1:4 and 1:5 blends. Canola oil dilution also influenced the polymorphism of milk fat. Whereas only the beta' polymorph was observed in the crystallized 1:2 blend, the beta polymorph predominated in the 1:8 blend. Some solubilization of AMF solids into CO was observed. This increased gradually with increasing CO concentration. Compositional analysis revealed the exchange of AMF and CO species between the liquid and crystalline fractions. The crystalline fractions were slightly enriched in AMF triacylglycerols, particularly with the more dilute blends (1:7 and 1:8). Large amounts of oil were trapped in the crystalline fractions, particularly for the concentrated AMF:CO blends where the beta' crystals and spherulitic microstructures were observed. Although the solid fat content profiles of the fractionated blends were marginally higher than those of the starting blends, the samples were very soft and oily. This strategy of using CO to fractionate milk fat was limited by the poor separation of solids and liquid during centrifugation.

  3. Effects of water dilution, housing, and food on rat urine collected from the metabolism cage.

    PubMed

    Lee, K M; Reed, L L; Bove, D L; Dill, J A

    1998-10-01

    The objective of the study reported here was to investigate three factors that may affect the amounts of water consumed and urine excreted by a rat in the metabolism cage: water dilution, housing, and food. Young F344/N rats (eight per group) were used for all experiments. Food was withheld from rats before each 16-h urine collection, then rats were transferred into a metabolism cage. For trial A (water dilution), urine was collected from rats supplied with dyed water (0.05%, vol/vol). This was repeated three times over a 2-week period. Dye in water or urine was quantified, using a spectrophotometer. For trial B (housing), rats were individually housed in wire cages for 3 weeks before the first urine collection. Then they were group housed in the solid-bottom cage (four per cage). After 2 weeks of acclimation, urine collection was repeated. For trial C (food), one group of rats was provided with food, the other was not, during urine collection. About 8% of urine samples of small volume (< or = 3 ml) from trial A were contaminated with drinking water up to 13% of volume. The average urine volume associated with individual housing was approximately twice as large as that associated with group housing. When food was provided during urine collection, rats consumed similar amounts of water but excreted significantly smaller amounts of urine than did rats without food. It was concluded that water dilution of a urine sample from a sipper bottle is relatively small; rats individually housed in wire caging before urine collection can consume and excrete a larger quantity of water, compared with rats group housed in solid-bottom cages; and highly variable urine volumes are, in part, associated with lack of access to food during urine collection.

  4. Evolution of long-lived globular cluster stars. III. Effect of the initial helium spread on the position of stars in a synthetic Hertzsprung-Russell diagram

    NASA Astrophysics Data System (ADS)

    Chantereau, W.; Charbonnel, C.; Meynet, G.

    2016-08-01

    Context. Globular clusters host multiple populations of long-lived low-mass stars whose origin remains an open question. Several scenarios have been proposed to explain the associated photometric and spectroscopic peculiarities. They differ, for instance, in the maximum helium enrichment they predict for stars of the second population, which these stars can inherit at birth as the result of the internal pollution of the cluster by different types of stars of the first population. Aims: We present the distribution of helium-rich stars in present-day globular clusters as it is expected in the original framework of the fast-rotating massive stars scenario (FRMS) as first-population polluters. We focus on NGC 6752. Methods: We completed a grid of 330 stellar evolution models for globular cluster low-mass stars computed with different initial chemical compositions corresponding to the predictions of the original FRMS scenario for [Fe/H] = -1.75. Starting from the initial helium-sodium relation that allows reproducing the currently observed distribution of sodium in NGC 6752, we deduce the helium distribution expected in that cluster at ages equal to 9 and 13 Gyr. We distinguish the stars that are moderately enriched in helium from those that are very helium-rich (initial helium mass fraction below and above 0.4, respectively), and compare the predictions of the FRMS framework with other scenarios for globular cluster enrichment. Results: The effect of helium enrichment on the stellar lifetime and evolution reduces the total number of very helium-rich stars that remain in the cluster at 9 and 13 Gyr to only 12% and 10%, respectively, from an initial fraction of 21%. Within this age range, most of the stars still burn their hydrogen in their core, which widens the MS band significantly in effective temperature. The fraction of very helium-rich stars drops in the more advanced evolution phases, where the associated spread in effective temperature strongly decreases. These

  5. The effect of helium-oxygen-assisted mechanical ventilation on chronic obstructive pulmonary disease exacerbation: A systemic review and meta-analysis.

    PubMed

    Wu, Xu; Shao, Chuan; Zhang, Liang; Tu, Jinjing; Xu, Hui; Lin, Zhihui; Xu, Shuguang; Yu, Biyun; Tang, Yaodong; Li, Shanqun

    2017-05-24

    Chronic obstructive pulmonary disease (COPD) is often accompanied by acute exacerbations. Patients of COPD exacerbation suffering from respiratory failure often need the support of mechanical ventilation. Helium-oxygen can be used to reduce airway resistance during mechanical ventilation. The aim of this study is to evaluate the effect of helium-oxygen-assisted mechanical ventilation on COPD exacerbation through a meta-analysis. A comprehensive literature search through databases of Pub Med (1966∼2016), Ovid MEDLINE (1965∼2016), Cochrane EBM (1991∼2016), EMBASE (1974∼2016) and Ovid MEDLINE was performed to identify associated studies. Randomized clinical trials met our inclusion criteria that focus on helium-oxygen-assisted mechanical ventilation on COPD exacerbation were included. The quality of the papers was evaluated after inclusion and information was extracted for meta-analysis. Six articles and 392 patients were included in total. Meta-analysis revealed that helium-oxygen-assisted mechanical ventilation reduced Borg dyspnea scale and increased arterial PH compared with air-oxygen. No statistically significant difference was observed between helium-oxygen and air-oxygen as regards to WOB, PaCO2 , OI, tracheal intubation rates and mortality within hospital. Our study suggests helium-oxygen-assisted mechanical ventilation can help to reduce Borg dyspnea scale. In terms of the tiny change of PH, its clinical benefit is negligible. There is no conclusive evidence indicating the beneficial effect of helium-oxygen-assisted mechanical ventilation on clinical outcomes or prognosis of COPD exacerbation. © 2017 John Wiley & Sons Ltd.

  6. Aspect-ratio effects on the electrorheology of dilute carbon-nanotube suspensions

    NASA Astrophysics Data System (ADS)

    Lin, Chen; Shan, Jerry W.

    2007-11-01

    The electrorheology of a dilute, single-wall-carbon- nanotube(SWNT)/alpha-terpineol suspension under external electric fields was experimentally investigated. The apparent viscosity of the suspension at SWNT volume fraction φ= 1.5 x10-5 was found to more than double at moderate shear rates under a field of strength 160 V/mm. The electrorheological response is interpreted in terms of an electrostatic-polarization model, where the governing parameter is a modified Mason number giving the ratio of viscous to dipole-dipole forces. A scaling analysis suggests that the magnitude of the electrorheological response in the dilute SWNT suspension, which is much higher than conventional electrorheological fluids at comparable volume fractions, is due to the high aspect ratio of the nanotubes. Comparison is made to a suspension of glassy carbon spheres, in which a three- order-of-magnitude-higher volume fraction is required to achieve similar increases in the apparent viscosity under the same conditions.

  7. Porosity and its effect on the digestibility of dilute sulfuric acid pretreated corn stover.

    PubMed

    Ishizawa, Claudia I; Davis, Mark F; Schell, Daniel F; Johnson, David K

    2007-04-04

    Enzyme accessibility has been proposed as a limiting factor in the enzymatic conversion of the cellulose in biomass to glucose. Prior work has shown a strong correlation between porosity, measured as the change in the volume of pores accessible to a cellulase-sized molecule, and the initial digestibility of biomass pretreated by various methods. The goal of this work was to determine if porosity was one of the factors governing the overall enzymatic digestibility of the cellulose in dilute acid pretreated biomass. The porosity of wet pretreated corn stover was determined using the methods of solute exclusion and 1H nuclear magnetic resonance (NMR) thermoporometry. The solute exclusion method identified differences in the accessible pore volume of the pretreated samples compared to untreated corn stover; however, only very small differences in porosity were observed among samples pretreated with a range of severities, giving ethanol yields from 70 to 96%. No correlation was found between the volume accessible to an enzyme-sized molecule (diameter estimated to be 51 A) and the digestibility of the cellulose in dilute acid pretreated corn stover. 1H NMR thermoporometry was used to measure the amount of water in pores ranging from 20 to 200 A. As was the case for the solute exclusion method, a difference was observed in the pore volume of untreated and acid pretreated corn stover, but no significant differences in pore volume were measured for the different pretreated samples.

  8. Phase-matching and dilution effects in two-dimensional femtosecond stimulated Raman spectroscopy.

    PubMed

    Dunlap, Barbara; Wilson, Kristina C; McCamant, David W

    2013-07-25

    We present theoretical and experimental data for the attenuation of the cascade signal in two-dimensional femtosecond stimulated Raman spectroscopy (2D-FSRS). In previous studies, the cascade signal, caused by two third-order interactions, was found to overwhelm the desired fifth-order signal that would measure vibrational anharmonic coupling. Theoretically, it is found that changing the phase-matching conditions and sample concentration would attenuate the cascade signal, while only slightly decreasing the fifth-order signal. By increasing the crossing angle between the Raman pump and probe and the impulsive pump and probe, the phase-matching efficiency of the cascade signal is significantly attenuated, while the fifth-order efficiency remains constant. The dilution experiments take advantage of the difference in the concentration dependence for the fifth-order and cascade signal, in which the fifth-order signal is proportional to concentration and the cascade signal is proportional to concentration squared. Experimentally, it is difficult to see a trend in the data due to instability in signal in the phase-matching experiments and lack of signal at low concentrations in the dilution experiments.

  9. Effect of bombardment with iron ions on the evolution of helium, hydrogen, and deuterium blisters in silicon

    NASA Astrophysics Data System (ADS)

    Reutov, V. F.; Dmitriev, S. N.; Sokhatskii, A. S.; Zaluzhnyi, A. G.

    2017-02-01

    The effect of bombardment with iron ions on the evolution of gas porosity in silicon single crystals has been studied. Gas porosity has been produced by implantation hydrogen, deuterium, and helium ions with energies of 17, 12.5, and 20 keV, respectively, in identical doses of 1 × 1017 cm-2 at room temperature. For such energy of bombarding ions, the ion doping profiles have been formed at the same distance from the irradiated surface of the sample. Then, the samples have been bombarded with iron Fe10+ ions with energy of 150 keV in a dose of 5.9 × 1014 cm-2. Then 30-min isochoric annealing has been carried out with an interval of 50°C in the temperature range of 250-900°C. The samples have been analyzed using optical and electron microscopes. An extremely strong synergetic effect of sequential bombardment of silicon single crystals with gas ions and iron ions at room temperature on the nucleation and growth of gas porosity during postradiation annealing has been observed. For example, it has been shown that the amorphous layer formed in silicon by additional bombardment with iron ions stimulates the evolution of helium blisters, slightly retards the evolution of hydrogen blisters, and completely suppresses the evolution of deuterium blisters. The results of experiments do not provide an adequate explanation of the reason for this difference; additional targeted experiments are required.

  10. Effect of helium/neon laser irradiation on nerve growth factor synthesis and secretion in skeletal muscle cultures.

    PubMed

    Schwartz, Fidi; Brodie, Chaya; Appel, Elana; Kazimirsky, Gila; Shainberg, Asher

    2002-04-01

    Low energy laser irradiation therapy in medicine is widespread but the mechanisms are not fully understood. The aim of the present study was to elucidate the mechanism by which the light might induce therapeutic effects. Skeletal muscle cultures were chosen as a target for light irradiation and nerve growth factor (NGF) was the biochemical marker for analysis. It was found that there is a transient elevation of intracellular calcium in the myotubes immediately after irradiation (P<0.001). Preincubation of the myotubes with either the photosensitizers 5-amino-levulinic acid (5-ALA), or with hematoporphyrin (Hp) enhanced the elevation of cytosolic calcium (P<0.001) after helium/neon irradiation (633 nm) with an energy of 3 J/cm(2). In addition, helium/neon irradiation augmented the level of NGF mRNA fivefold and increased NGF release to the medium of the myotubes. Thus, it is speculated that transient changes in calcium caused by light can modulate NGF release from the myotubes and also affect the nerves innervating the muscle. The NGF is probably responsible for the beneficial effects of low-level light.

  11. Effects of helium-neon laser on levels of stress protein and arthritic histopathology in experimental osteoarthritis.

    PubMed

    Lin, Yueh-Shuang; Huang, Mao-Hsiung; Chai, Chee-Yin; Yang, Rei-Cheng

    2004-10-01

    To investigate the effect of low-power laser therapy on levels of stress proteins (SPs) in experimental arthritis and their relation to the bioeffects on arthritic cartilage repair. A total of 42 rats with similar degrees of induced arthritis evaluated by means of bone scan were divided randomly into two groups. In the treated group, 21 rats received helium-neon laser treatment; in the control group, 21 rats received sham laser treatment. The changes in chondrocytes of SPs were measured by electrophoresis of proteins extracted from chondrocytes of arthritic cartilage at various time periods. The histopathologic changes and the presence of SP of arthritic cartilage were identified by hematoxylin and eosin stain and by immunostains of SP72 antibody individually from frozen sections of arthritic cartilage. SP density increased markedly in rats after laser treatment and was closely related to the repair of arthritic cartilage. Furthermore, the pathohistology of arthritic cartilage improved significantly with the decline of SP levels in the follow-up period. Helium-neon (632 nm) low-power laser can enhance SP production in arthritic chondrocytes. The extragenic production of SP is well correlated with the therapeutic effect of low-power laser in preserving chondrocytes and the repair of arthritic cartilage in rats.

  12. Effects of osmolytes on human brain-type creatine kinase folding in dilute solutions and crowding systems.

    PubMed

    Fan, Yong-Qiang; Lee, Jinhyuk; Oh, Sangho; Liu, Hong-Jian; Li, Chang; Luan, Yu-Shi; Yang, Jun-Mo; Zhou, Hai-Meng; Lü, Zhi-Rong; Wang, Yu-Long

    2012-12-01

    The effects of osmolytes on the unfolding and refolding process of recombinant human brain-type creatine kinase (rHBCK) were comparatively, quantitatively studied in dilute solutions and macromolecular crowding systems (simulated by 100 g/L polyethylene glycol 2000), respectively. The results showed that the osmolytes, including glycerol, sucrose, dimethylsulfoxide, mannitol, inositol, and xylitol, could both protect the rHBCK from denaturation induced by 0.8 M GdnHCl and aid in the refolding of denatured-rHBCK in macromolecular crowding systems. When we examined the effects of sucrose and xylitol on the parameters of residual activity, reaction kinetics and intrinsic fluorescence of rHBCK during unfolding, it was found that the protecting effects of osmolytes in a macromolecular crowding system were more significant compared with those in a dilute solution, which resulted in more residual activities, protected the conformational changes and greatly decreased the rates of both the fast and slow tracks. Regarding the effects of glycerol, sucrose and mannitol on the denatured-rHBCK refolding parameters of refolding yield, reaction kinetics and aggregation, the results indicated that the osmolytes could alleviate the aggregation of rHBCK during refolding in both dilute solutions and macromolecular crowding systems, and the refolding yields and reaction rates under macromolecular crowding environment could be increased by the addition of osmolytes, though higher yields were obtained in the dilute solution. For further insight, osmolyte docking simulations and rHBCK denaturation were conducted successfully and confirmed our experimental results. The predictions based on the docking simulations suggested that the deactivation of guanidine may be blocked by osmolytes because they share common binding sites on rHBCK, and the higher number of interactions with rHBCK by osmolytes than guanidine may be one of the causes of rHBCK refolding. In brief, the additive effects of

  13. Helium and deuterium induced morphology on porous tungsten and effects on D retention

    NASA Astrophysics Data System (ADS)

    Kapat, Aveek; Allain, Jean Paul; Lang, Eric; Hinks, Jonathan; Donnelly, Stephen

    2016-10-01

    Tungsten is the material of choice for plasma facing components in the divertor region of future plasma-burning tokamak fusion reactors due to favorable thermo-mechanical properties. However, refractory metals are limited by possible detrimental ion-induced (He and D) surface morphologies that compromise confinement. Materials with increased defect sink domains could decrease vacancy trapping sites and decrease the probability for early-stage helium bubble formation intra-granularly. Previous work conjectured that an increase in defect sinks such as grain-boundary interfaces could provide increased resistance to helium-bubble formation. Thus higher grain boundary densities could potentially lead to an increased He fluence threshold. Based on the defect dynamics observed in the ultrafine grain tungsten, an internal free surface could also act as a defect sink and thus increases radiation tolerance, namely a material with a high surface-to-volume ratio such as porous tungsten. Moreover, very little is known about porous metals and their potential for increasing tolerance to radiation damage as a plasma-facing interface. Porous tungsten was irradiated in the MIAMI facility at the University of Huddersfield at room and 1200°C temperature with He then with D as well as just with deuterium; all cases were observed with in-situ TEM. The observed defect dynamics as well as deuterium retention are presented. This work is supported by US DOE Contract DE-SC0014267.

  14. Effects of temperature and surface orientation on migration behaviours of helium atoms near tungsten surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoshuang; Wu, Zhangwen; Hou, Qing

    2015-10-01

    Molecular dynamics simulations were performed to study the dependence of migration behaviours of single helium atoms near tungsten surfaces on the surface orientation and temperature. For W{100} and W{110} surfaces, He atoms can quickly escape out near the surface without accumulation even at a temperature of 400 K. The behaviours of helium atoms can be well-described by the theory of continuous diffusion of particles in a semi-infinite medium. For a W{111} surface, the situation is complex. Different types of trap mutations occur within the neighbouring region of the W{111} surface. The trap mutations hinder the escape of He atoms, resulting in their accumulation. The probability of a He atom escaping into vacuum from a trap mutation depends on the type of the trap mutation, and the occurrence probabilities of the different types of trap mutations are dependent on the temperature. This finding suggests that the escape rate of He atoms on the W{111} surface does not show a monotonic dependence on temperature. For instance, the escape rate at T = 1500 K is lower than the rate at T = 1100 K. Our results are useful for understanding the structural evolution and He release on tungsten surfaces and for designing models in other simulation methods beyond molecular dynamics.

  15. Effect of an electric field on superfluid helium scintillation produced by α-particle sources

    NASA Astrophysics Data System (ADS)

    Ito, T. M.; Clayton, S. M.; Ramsey, J.; Karcz, M.; Liu, C.-Y.; Long, J. C.; Reddy, T. G.; Seidel, G. M.

    2012-04-01

    We report a study of the intensity and time dependence of scintillation produced by weak α-particle sources in superfluid helium in the presence of an electric field (0-45 kV/cm) in the temperature range of 0.2 to 1.1 K at the saturated vapor pressure. Both the prompt and the delayed components of the scintillation exhibit a reduction in intensity with the application of an electric field. The reduction in the intensity of the prompt component is well approximated by a linear dependence on the electric field strength with a reduction of 15% at 45 kV/cm. When analyzed using the Kramers theory of columnar recombination, this electric field dependence leads to the conclusion that roughly 40% of the scintillation results from species formed from atoms originally promoted to excited states and 60% from excimers created by ionization and subsequent recombination with the charges initially having a cylindrical Gaussian distribution about the α track of 60 nm radius. The intensity of the delayed component of the scintillation has a stronger dependence on the electric field strength and on temperature. The implications of these data on the mechanisms affecting scintillation in liquid helium are discussed.

  16. Application of Cryocoolers to a Vintage Dilution Refrigerator

    SciTech Connect

    Schmitt, Richard; Smith, Gary; Ruschman, Mark; Beaty, Jim; /Minnesota U.

    2011-06-06

    A dilution refrigerator is required for 50mK detector operation of CDMS (Cryogenic Dark Matter Search). Besides shielding the dilution refrigerator itself, the liquid nitrogen shield and liquid helium bath in the refrigerator cool the detector cryostat heat shields and cool electronics, resulting in significant external heat loads at 80K and at 4K. An Oxford Instruments Kelvinox 400 has served this role for ten years but required daily transfers of liquid nitrogen and liquid helium. Complicating the cryogen supply is the location 800 meters below ground in an RF shielded, class 10000 clean room at Soudan, MN. Nitrogen and helium re-liquefiers using cryocoolers were installed outside the clean room and continuously condense room temperature gas and return the liquids to the dilution refrigerator through a transfer line. This paper will describe the design, installation, controls and performance of liquefaction systems.

  17. Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolong; Tan, Zhenyu; Pan, Jie; Chen, Xinxian

    2016-08-01

    In this work the effects of O2 concentration on the pulsed dielectric barrier discharge in helium-oxygen mixture at atmospheric pressure have been numerically researched by using a one-dimensional fluid model in conjunction with the chosen key species and chemical reactions. The reliability of the used model has been examined by comparing the calculated discharge current with the reported experiments. The present work presents the following significant results. The dominative positive and negative particles are He2+ and O2-, respectively, the densities of the reactive oxygen species (ROS) get their maxima nearly at the central position of the gap, and the density of the ground state O is highest in the ROS. The increase of O2 concentration results in increasingly weak discharge and the time lag of the ignition. For O2 concentrations below 1.1%, the density of O is much higher than other species, the averaged dissipated power density presents an evident increase for small O2 concentration and then the increase becomes weak. In particular, the total density of the reactive oxygen species reaches its maximums at the O2 concentration of about 0.5%. This characteristic further convinces the experimental observation that the O2 concentration of 0.5% is an optimal O2/He ratio in the inactivation of bacteria and biomolecules when radiated by using the plasmas produced in a helium oxygen mixture. supported by the Fundamental Research Funds of Shandong University, China (No. 2016JC016)

  18. Effect of thermal exposure in helium on mechanical properties and microstructure of 316L and P91

    NASA Astrophysics Data System (ADS)

    Kunzova, Klara; Berka, Jan; Siegl, Jan; Hausild, Petr

    2016-04-01

    In this paper, the effects of high temperature exposure in air as well as in impure He on mechanical properties of 316L and P91 steels were investigated. The experimental programme was part of material design of new experimental facility - high temperature helium loop. Some of the specimens were exposed in air at 750 °C for up to 1000 h. Another set of specimens were exposed in impure helium containing 1 ppmv CO2, 2 ppmv O2, 35 ppmv CH4, 250 ppmv CO and 400 ppmv H2 at 750 °C for up to 1000 h. Metalographical analysis, tensile tests, fracture toughness and hardness tests of exposed and non-exposed specimens were carried out. After the exposure both in air and He, the ultimate tensile strength of P91 decreased significantly more than that of 316L. After the exposure in He, the fracture toughness of 316L was reduced to 60% while fracture toughness of P91 showed no significant changes. The hardness of P91 decreased with exposure time in air. The measurement of the hardness of 316L was very scattered the most probably due to the heterogeneities in microstructure, the trend was not possible to evaluate.

  19. Effects of dilute-acid pretreatment conditions on filtration performance of corn stover hydrolyzate

    DOE PAGES

    Sievers, David A.; Kuhn, Erik M.; Tucker, Melvin P.; ...

    2017-06-28

    In this study, the reaction conditions used during dilute-acid pretreatment of lignocellulosic biomass control the carbohydrate digestion yield and also hydrolyzate properties. Depending on the conversion route of interest, solid-liquid separation (SLS) may be required to split the hemicellulose-rich liquor from the cellulose-rich insoluble solids, and slurry properties are important for SLS. Corn stover was pretreated at different reaction conditions and the slurries were assessed for conversion yield and filtration performance. Increasing pretreatment temperature reduced the solids mean particle size and resulted in slower slurry filtration rates when vacuum filtered or pressure filtered. Corn stover pretreated at 165 °C formore » 10 min and with 1% H2SO4 exhibited the highest xylose yield and best filtration performance with a no-wash filtration rate of 80 kg/h m2 and cake permeability of 15 x 10-15.« less

  20. Experimental Insights into Collective Effects in Eukaryotic Cell Proliferation in Dilute Suspensions

    NASA Astrophysics Data System (ADS)

    Franck, Carl; Segota, Igor; Strandburg-Peshkin, Ariana; Zhou, Xiao-Qiao S.; Rachakonda, Archana; Yavitt, Benjamin; Lussenhop, Catherine J.; Lee, Sungsu; Tharratt, Kevin; Deshmukh, Amrish; Sebesta, Elisabeth; Zhang, Myron; Lau, Sharon; Bennedsen, Sarah; Franck, David; Fernando, Viyath; Oh, Junseok

    2013-03-01

    Physicists can look to dilute suspensions of apparently solitary cells in suspension for elegant realizations of multicellular behavior. In contrast to our earlier work (Phys. Rev. E v. 77, 041905 (2008)) with the amoeba Dictyostelium discoideum we are discovering that the vital intercellular communications responsible for the well-known but poorly understood slow to fast transition in a growing culture as a function of time might be due to the passage of chemical messages between transient cell clusters or throughout the entire system as opposed to binary collisions. In considering the observed variation in proliferation rates we have been surprised to discover that for best growth cultures are much more dependent on incubator geometry than previously suspected.

  1. Effect of diluted and preheated oxidizer on the emission of methane flameless combustion

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Ehsan; Salehirad, Saber; Wahid, M. A.; Sies, Mohsin Mohd; Saat, Aminuddin

    2012-06-01

    In combustion process, reduction of emissions often accompanies with output efficiency reduction. It means, by using current combustion technique it is difficult to obtainlow pollution and high level of efficiency in the same time. In new combustion system, low NOxengines and burners are studied particularly. Recently flameless or Moderate and Intensive Low oxygen Dilution (MILD) combustion has received special attention in terms of low harmful emissions and low energy consumption. Behavior of combustion with highly preheated air was analyzed to study the change of combustion regime and the reason for the compatibility of high performance and low NOx production. Sustainability of combustion under low oxygen concentration was examined when; the combustion air temperature was above the self-ignition temperature of the fuel. This paper purposes to analyze the NOx emission quantity in conventional combustion and flameless combustion by Chemical Equilibrium with Applications (CEA) software.

  2. Bursting of dilute emulsion-based liquid sheets driven by a Marangoni effect

    NASA Astrophysics Data System (ADS)

    Ligoure, Christian; Ramos, Laurence; Vernay, Clara; SoftMatter Team

    2015-11-01

    We study the destabilization mechanism of thin liquid sheets expanding in air and show that dilute oil-in-water emulsion-based sheets disintegrate through the nucleation and growth of holes that perforate the sheet. The velocity and thickness fields of the sheet are not perturbed by holes and hole opening follows a Taylor-Culick law. We find that a pre-hole, which widens and thins out the sheet with time, systematically precedes the hole nucleation. The growth dynamics of the pre-hole follows the law theoretically predicted for a liquid spreading on another liquid of higher surface tension due to Marangoni stresses. Classical Marangoni spreading experiments quantitatively corroborate those findings.

  3. Bursting of Dilute Emulsion-Based Liquid Sheets Driven by a Marangoni Effect

    NASA Astrophysics Data System (ADS)

    Vernay, Clara; Ramos, Laurence; Ligoure, Christian

    2015-11-01

    We study the destabilization mechanism of thin liquid sheets expanding in air and show that dilute oil-in-water emulsion-based sheets disintegrate through the nucleation and growth of holes that perforate the sheet. The velocity and thickness fields of the sheet outside the holes are not perturbed by holes, and hole opening follows the Taylor-Culick law. We find that a prehole, which widens and thins out the sheet with time, systematically precedes the hole nucleation. The growth dynamics of the prehole follows the law theoretically predicted for a liquid spreading on another liquid of higher surface tension due to Marangoni stresses. Classical Marangoni spreading experiments quantitatively corroborate our findings.

  4. Bursting of Dilute Emulsion-Based Liquid Sheets Driven by a Marangoni Effect.

    PubMed

    Vernay, Clara; Ramos, Laurence; Ligoure, Christian

    2015-11-06

    We study the destabilization mechanism of thin liquid sheets expanding in air and show that dilute oil-in-water emulsion-based sheets disintegrate through the nucleation and growth of holes that perforate the sheet. The velocity and thickness fields of the sheet outside the holes are not perturbed by holes, and hole opening follows the Taylor-Culick law. We find that a prehole, which widens and thins out the sheet with time, systematically precedes the hole nucleation. The growth dynamics of the prehole follows the law theoretically predicted for a liquid spreading on another liquid of higher surface tension due to Marangoni stresses. Classical Marangoni spreading experiments quantitatively corroborate our findings.

  5. The Averaging Effect of Odorant Mixing as Determined by Air Dilution Sensory Tests: A Case Study on Reduced Sulfur Compounds

    PubMed Central

    Kim, Ki-Hyun

    2011-01-01

    To learn more about the effects of mixing different odorants, a series of air dilution sensory (ADS) tests were conducted using four reduced sulfur compounds [RSC: hydrogen sulfide (H2S), methanethiol (CH3SH), dimethylsulfide (DMS), and dimethyldisulfide (DMDS)] at varying concentration levels. The tests were initially conducted by analyzing samples containing single individual RSCs at a wide range of concentrations. The resulting data were then evaluated to define the empirical relationship for each RSC between the dilution-to-threshold (D/T) ratio and odor intensity (OI) scaling. Based on the relationships defined for each individual RSC, the D/T ratios were estimated for a synthetic mixture of four RSCs. The effect of mixing was then examined by assessing the relative contribution of each RSC to those estimates with the aid of the actually measured D/T values. This stepwise test confirmed that the odor intensity of the synthetic mixture is not governed by the common theoretical basis (e.g., rule of additivity, synergism, or a stronger component model) but is best represented by the averaged contribution of all RSC components. The overall results of this study thus suggest that the mixing phenomenon between odorants with similar chemical properties (like RSC family) can be characterized by the averaging effect of all participants. PMID:22319360

  6. The averaging effect of odorant mixing as determined by air dilution sensory tests: a case study on reduced sulfur compounds.

    PubMed

    Kim, Ki-Hyun

    2011-01-01

    To learn more about the effects of mixing different odorants, a series of air dilution sensory (ADS) tests were conducted using four reduced sulfur compounds [RSC: hydrogen sulfide (H(2)S), methanethiol (CH(3)SH), dimethylsulfide (DMS), and dimethyldisulfide (DMDS)] at varying concentration levels. The tests were initially conducted by analyzing samples containing single individual RSCs at a wide range of concentrations. The resulting data were then evaluated to define the empirical relationship for each RSC between the dilution-to-threshold (D/T) ratio and odor intensity (OI) scaling. Based on the relationships defined for each individual RSC, the D/T ratios were estimated for a synthetic mixture of four RSCs. The effect of mixing was then examined by assessing the relative contribution of each RSC to those estimates with the aid of the actually measured D/T values. This stepwise test confirmed that the odor intensity of the synthetic mixture is not governed by the common theoretical basis (e.g., rule of additivity, synergism, or a stronger component model) but is best represented by the averaged contribution of all RSC components. The overall results of this study thus suggest that the mixing phenomenon between odorants with similar chemical properties (like RSC family) can be characterized by the averaging effect of all participants.

  7. CFD Modeling of Helium Pressurant Effects on Cryogenic Tank Pressure Rise Rates in Normal Gravity

    NASA Technical Reports Server (NTRS)

    Grayson, Gary; Lopez, Alfredo; Chandler, Frank; Hastings, Leon; Hedayat, Ali; Brethour, James

    2007-01-01

    A recently developed computational fluid dynamics modeling capability for cryogenic tanks is used to simulate both self-pressurization from external heating and also depressurization from thermodynamic vent operation. Axisymmetric models using a modified version of the commercially available FLOW-3D software are used to simulate actual physical tests. The models assume an incompressible liquid phase with density that is a function of temperature only. A fully compressible formulation is used for the ullage gas mixture that contains both condensable vapor and a noncondensable gas component. The tests, conducted at the NASA Marshall Space Flight Center, include both liquid hydrogen and nitrogen in tanks with ullage gas mixtures of each liquid's vapor and helium. Pressure and temperature predictions from the model are compared to sensor measurements from the tests and a good agreement is achieved. This further establishes the accuracy of the developed FLOW-3D based modeling approach for cryogenic systems.

  8. The Effect of Dilution on Microsegregation in AWS ER NiCrMo-14 Alloy Welding Claddings

    NASA Astrophysics Data System (ADS)

    Miná, Émerson Mendonça; da Silva, Yuri Cruz; Dille, Jean; Silva, Cleiton Carvalho

    2016-12-01

    Dilution and microsegregation are phenomena inherent to claddings, which, in turn, directly affect their main properties. This study evaluated microsegregation in the fusion zone with different dilution levels. The overlays were welded by the TIG cold wire feed process. Dilution was calculated from the geometric characteristics of the claddings and from the conservation of mass equation using chemical composition measurements. Microsegregation was calculated using energy dispersive X-ray spectroscopy measurements of the dendrites and the chemical composition of the fusion zone. The dilution of the claddings was increased by reducing the wire feed rate. Fe showed potential to be incorporated into the solid phase ( k > 1), and this increased with the increase of dilution. Mo, in turn, was segregated into the liquid phase ( k < 1) and also increased with the increase of dilution. However, Cr and W showed a slight decrease in their partition coefficients ( k) with the increase of dilution.

  9. Effect of lignin content on changes occurring in poplar cellulose ultrastructure during dilute acid pretreatment

    SciTech Connect

    Sun, Qining; Foston, Marcus; Meng, Xianzhi; Sawada, Daisuke; Pingali, Sai Venkatesh; O’Neill, Hugh M.; Li, Hongjia; Wyman, Charles E.; Langan, Paul; Ragauskas, Art J.; Kumar, Rajeev

    2014-10-14

    Obtaining a better understanding of the complex mechanisms occurring during lignocellulosic deconstruction is critical to the continued growth of renewable biofuel production. A key step in bioethanol production is thermochemical pretreatment to reduce plant cell wall recalcitrance for downstream processes. Previous studies of dilute acid pretreatment (DAP) have shown significant changes in cellulose ultrastructure that occur during pretreatment, but there is still a substantial knowledge gap with respect to the influence of lignin on these cellulose ultrastructural changes. This study was designed to assess how the presence of lignin influences DAP-induced changes in cellulose ultrastructure, which might ultimately have large implications with respect to enzymatic deconstruction efforts. Native, untreated hybrid poplar (Populus trichocarpa x Populus deltoids) samples and a partially delignified poplar sample (facilitated by acidic sodium chlorite pulping) were separately pretreated with dilute sulfuric acid (0.10 M) at 160°C for 15 minutes and 35 minutes, respectively . Following extensive characterization, the partially delignified biomass displayed more significant changes in cellulose ultrastructure following DAP than the native untreated biomass. With respect to the native untreated poplar, delignified poplar after DAP (in which approximately 40% lignin removal occurred) experienced: increased cellulose accessibility indicated by increased Simons’ stain (orange dye) adsorption from 21.8 to 72.5 mg/g, decreased cellulose weight-average degree of polymerization (DPw) from 3087 to 294 units, and increased cellulose crystallite size from 2.9 to 4.2 nm. These changes following DAP ultimately increased enzymatic sugar yield from 10 to 80%. We conclude that, overall, the results indicate a strong influence of lignin content on cellulose ultrastructural changes occurring during DAP. With the reduction of lignin content during DAP, the enlargement of

  10. Effect of lignin content on changes occurring in poplar cellulose ultrastructure during dilute acid pretreatment

    DOE PAGES

    Sun, Qining; Foston, Marcus; Meng, Xianzhi; ...

    2014-10-14

    Obtaining a better understanding of the complex mechanisms occurring during lignocellulosic deconstruction is critical to the continued growth of renewable biofuel production. A key step in bioethanol production is thermochemical pretreatment to reduce plant cell wall recalcitrance for downstream processes. Previous studies of dilute acid pretreatment (DAP) have shown significant changes in cellulose ultrastructure that occur during pretreatment, but there is still a substantial knowledge gap with respect to the influence of lignin on these cellulose ultrastructural changes. This study was designed to assess how the presence of lignin influences DAP-induced changes in cellulose ultrastructure, which might ultimately have largemore » implications with respect to enzymatic deconstruction efforts. Native, untreated hybrid poplar (Populus trichocarpa x Populus deltoids) samples and a partially delignified poplar sample (facilitated by acidic sodium chlorite pulping) were separately pretreated with dilute sulfuric acid (0.10 M) at 160°C for 15 minutes and 35 minutes, respectively . Following extensive characterization, the partially delignified biomass displayed more significant changes in cellulose ultrastructure following DAP than the native untreated biomass. With respect to the native untreated poplar, delignified poplar after DAP (in which approximately 40% lignin removal occurred) experienced: increased cellulose accessibility indicated by increased Simons’ stain (orange dye) adsorption from 21.8 to 72.5 mg/g, decreased cellulose weight-average degree of polymerization (DPw) from 3087 to 294 units, and increased cellulose crystallite size from 2.9 to 4.2 nm. These changes following DAP ultimately increased enzymatic sugar yield from 10 to 80%. We conclude that, overall, the results indicate a strong influence of lignin content on cellulose ultrastructural changes occurring during DAP. With the reduction of lignin content during DAP, the enlargement of

  11. Effect of lignin content on changes occurring in poplar cellulose ultrastructure during dilute acid pretreatment.

    PubMed

    Sun, Qining; Foston, Marcus; Meng, Xianzhi; Sawada, Daisuke; Pingali, Sai Venkatesh; O'Neill, Hugh M; Li, Hongjia; Wyman, Charles E; Langan, Paul; Ragauskas, Art J; Kumar, Rajeev

    2014-01-01

    Obtaining a better understanding of the complex mechanisms occurring during lignocellulosic deconstruction is critical to the continued growth of renewable biofuel production. A key step in bioethanol production is thermochemical pretreatment to reduce plant cell wall recalcitrance for downstream processes. Previous studies of dilute acid pretreatment (DAP) have shown significant changes in cellulose ultrastructure that occur during pretreatment, but there is still a substantial knowledge gap with respect to the influence of lignin on these cellulose ultrastructural changes. This study was designed to assess how the presence of lignin influences DAP-induced changes in cellulose ultrastructure, which might ultimately have large implications with respect to enzymatic deconstruction efforts. Native, untreated hybrid poplar (Populus trichocarpa x Populus deltoids) samples and a partially delignified poplar sample (facilitated by acidic sodium chlorite pulping) were separately pretreated with dilute sulfuric acid (0.10 M) at 160°C for 15 minutes and 35 minutes, respectively . Following extensive characterization, the partially delignified biomass displayed more significant changes in cellulose ultrastructure following DAP than the native untreated biomass. With respect to the native untreated poplar, delignified poplar after DAP (in which approximately 40% lignin removal occurred) experienced: increased cellulose accessibility indicated by increased Simons' stain (orange dye) adsorption from 21.8 to 72.5 mg/g, decreased cellulose weight-average degree of polymerization (DPw) from 3087 to 294 units, and increased cellulose crystallite size from 2.9 to 4.2 nm. These changes following DAP ultimately increased enzymatic sugar yield from 10 to 80%. Overall, the results indicate a strong influence of lignin content on cellulose ultrastructural changes occurring during DAP. With the reduction of lignin content during DAP, the enlargement of cellulose microfibril

  12. Thermodynamics of Dilute Solutions.

    ERIC Educational Resources Information Center

    Jancso, Gabor; Fenby, David V.

    1983-01-01

    Discusses principles and definitions related to the thermodynamics of dilute solutions. Topics considered include dilute solution, Gibbs-Duhem equation, reference systems (pure gases and gaseous mixtures, liquid mixtures, dilute solutions), real dilute solutions (focusing on solute and solvent), terminology, standard states, and reference systems.…

  13. Dissipative particle dynamics simulation of dilute polymer solutions—Inertial effects and hydrodynamic interactions

    SciTech Connect

    Zhao, Tongyang; Wang, Xiaogong; Jiang, Lei; Larson, Ronald G.

    2014-07-01

    We examine the accuracy of dissipative particle dynamics (DPD) simulations of polymers in dilute solutions with hydrodynamic interaction (HI), at the theta point, modeled by setting the DPD conservative interaction between beads to zero. We compare the first normal-mode relaxation time extracted from the DPD simulations with theoretical predictions from a normal-mode analysis for theta chains. We characterize the influence of bead inertia within the coil by a ratio L{sub m}/R{sub g}, where L{sub m} is the ballistic distance over which bead inertia is lost, and R{sub g} is the radius of gyration of the polymer coil, while the HI strength per bead h* is determined by the ratio of bead hydrodynamic radius (r{sub H}) to the equilibrium spring length. We show how to adjust h* through the spring length and monomer mass, and how to optimize the accuracy of DPD for fixed h* by increasing the friction coefficient (γ ≥ 9) and by incorporating a nonlinear distance dependence into the frictional interaction. Even with this optimization, DPD simulations exhibit deviations of over 20% from the theoretical normal-mode predictions for high HI strength with h* ≥ 0.20, for chains with as many as 100 beads, which is a larger deviation than is found for Stochastic rotation dynamics simulations for similar chains lengths and values of h*.

  14. Origin of ferromagnetism in ZnO/CoFe multilayers: Diluted magnetic semiconductor or clustering effect?

    SciTech Connect

    Huang, J.C.A.; Hsu, H.S.; Hu, Y.M.; Lee, C.H.; Huang, Y.H.; Lin, M.Z.

    2004-10-25

    Epitaxial growth of (0001) oriented [ZnO(20 A)/Co{sub 0.7}Fe{sub 0.3}(x A)]{sub 25} multilayers (MLs) with nominal thickness x=1, 2 and 5 has been prepared on {alpha}-Al{sub 2}O{sub 3} (0001) substrate by ion-beam sputtering. The magnetic properties over a temperature range of 6-350 K and structures probing by x-ray absorption spectroscopy (XAS) are reported. Above room-temperature ferromagnetism has been observed for x=1 and x=2 MLs, while superparamagnetic behavior dominates for x=5 ML. The field-cooled magnetization-temperature M(T) curves of x=1 and x=5 MLs can be fitted by a standard three-dimensional (3D) spin-wave and a Curie-Weiss model, respectively. For x=2 ML, however, neither a 3D spin-wave nor a Curie-Weiss model, but a combination of the two fits the M-T curve. The XAS studies together with the magnetic measurements further reveal that x=1 sample behaves as a diluted magnetic semiconductor (DMS) ML, while x=2 ML shows a mixed structure consisting of a minor component of DMS and a major component of CoFe clusters. A predominant clustering phase appears for x=5 ML.

  15. Effects of concentration, temperature, humidity, and nitrogen inert dilution on the gasoline vapor explosion.

    PubMed

    Qi, Sheng; Du, Yang; Zhang, Peili; Li, Guoqing; Zhou, Yi; Wang, Bo

    2017-02-05

    This study aims at providing basic information for the explosion-protecting technology in the gasoline storage and transportation process. Experiments were conducted to investigate the explosion parameters under different gasoline vapor concentrations (0.92-2.40%), temperatures (283-343K), relative humidities (35-98%), and oxygen concentrations (12.66-20.32%) in a 20L spherical vessel. Results show that both the maximum overpressure and the rate of pressure rise are quadratic functions of initial gasoline vapor concentration. At constant initial concentration, the maximum overpressure and the rate of pressure rise decrease linearly with the increase of temperature or humidity. When using nitrogen as the dilution, the maximum overpressure and rate of pressure rise respectively show a negative exponential and a linearly relationship with the oxygen concentration. The introduced nitrogen also narrowed the explosive limits. The fuel inertization point is 12.65%. A nonlinear regression formula with 4 variables was obtained, which can be used to quantitatively predict the maximum overpressure at various initial conditions. These results are useful for predicting the explosion pressures of gasoline-air mixtures at various conditions when direct measurements are difficult to achieve. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The role of variability in evaluating ultra high dilution effects: considerations based on plant model experiments.

    PubMed

    Nani, Daniele; Brizzi, Maurizio; Lazzarato, Lisa; Betti, Lucietta

    2007-10-01

    A series of experiments, performed on plant models with ultra high dilutions (UHD) of arsenic trioxide at 45th decimal potency has been reviewed with a particular focus on variability. The working variables considered are: the number of germinated seeds out of a fixed set of 33, the stem length of wheat seedlings and the number of necrotic lesions in tobacco leaf disks inoculated with tobacco mosaic virus (TMV). A thorough comparison between treatment and control group has been proposed, considering the two main sources of variability in each series of experiments: variability within and between experiments. In treated groups, a systematic decrease in variability between-experiments, as well as a general decrease, with very few exceptions, in variability within experiments has been observed with respect to control. Variability is traditionally considered as control parameter of model systems. Our hypothesis, based on experimental evidences, proposes a new role of variability as a target of UHD action. This hypothesis may help interpret unanswered questions that keep rising in basic and clinical research in homeopathy.

  17. Helium-Recycling Plant

    NASA Technical Reports Server (NTRS)

    Cook, Joseph

    1996-01-01

    Proposed system recovers and stores helium gas for reuse. Maintains helium at 99.99-percent purity, preventing water vapor from atmosphere or lubricating oil from pumps from contaminating gas. System takes in gas at nearly constant low back pressure near atmospheric pressure; introduces little or no back pressure into source of helium. Concept also extended to recycling of other gases.

  18. Preparation of liposomes via detergent removal from mixed micelles by dilution. The effect of bilayer composition and process parameters on liposome characteristics.

    PubMed

    Jiskoot, W; Teerlink, T; Beuvery, E C; Crommelin, D J

    1986-10-17

    Liposomes were prepared from mixed micelles by a dilution method. Mixed micellar solutions, containing constant octyl glucoside and egg phosphatidylcholine concentrations and varying amounts of cholesterol and/or a charged compound, were diluted at defined rates. After dilution, the resulting liposome dispersions were sequentially concentrated, washed or dialysed, and filtered. The effect of lipid composition and experimental conditions on physicochemical characteristics was studied. Fairly homogeneous liposome dispersions with mean diameters ranging from 100 to over 200 nm could be obtained. The particle size was dependent on cholesterol content and surface charge, and could be reproducibly controlled by adjustment of the dilution rate. Liposomes with a mean diameter below 100 nm could also be obtained, but were heterodisperse and unstable. The incorporation of charged compounds was monitored by microelectrophoresis. 31P-NMR measurements indicated that the liposomes were unilamellar. Dialysis appeared to be more convenient than washing to remove octyl glucoside.

  19. The effect of chemical abundance oscillations on the pulsational properties of a 5-solarmass hydrogen-helium star

    NASA Astrophysics Data System (ADS)

    Uyaniker, Bulent; Kirbiyik, Halil

    1992-06-01

    A model of a first generation intermediate star of 5 M0, with Z = 0 has been considered. The model is at an advanced stage of its evolution and has a double shell burning. It burns helium in the inner shell, and hydrogen, via CNO cycle, in the outer shell. = ~ P)T and 8T = (~1og~/ôlog T)~ were computed allowing for the oscillations of the relative mass abundance of the reagents in nuclear reactions. Including jig, = (ologe/alogp)~ and ~- = (~ log ~ log T)~ of mean molecular weight and the effect of the oscillations of abundances due to nuclear reactions, stability was studied. Contrary to the results of the static calculations, we found that instability due to the excitation mechanism provided by the high temperature sensitivity of energy generation rate propagates up to the surface. Thus the model in question was found to be unstable against radial adiabatic pulsations, in its fundamental mode

  20. Effects of high temperature aging in an impure helium environment on low temperature embrittlement of Alloy 617 and Haynes 230

    NASA Astrophysics Data System (ADS)

    Kim, Daejong; Sah, Injin; Jang, Changheui

    2010-10-01

    The effects of high temperature environmental damage on low temperature embrittlement of wrought nickel-base superalloys, Alloy 617 and Haynes 230 were evaluated. They were aged in an impure helium environment at 1000 °C for up to 500 h before tensile tested at room temperature. The tensile test results showed that the loss of ductility was associated with the increase in the inter-granular fracture with aging time. For Alloy 617, inter-granular oxidation and coarsening of grain boundary carbides contributed to the embrittlement. The significant loss of ductility in Haynes 230 was only observed after 500 h of aging when the globular intermetallic precipitates were extensively formed and brittle inter-granular cracking began to occur.

  1. Effects of helium implantation on the tensile properties and microstructure of Ni₇₃P₂₇ metallic glass nanostructures

    DOE PAGES

    Liontas, Rachel; Gu, X. Wendy; Fu, Engang; ...

    2014-09-10

    We report fabrication and nanomechanical tension experiments on as-fabricated and helium-implanted ~130 nm diameter Ni₇₃P₂₇ metallic glass nano-cylinders. The nano-cylinders were fabricated by a templated electroplating process and implanted with He⁺ at energies of 50, 100, 150, and 200 keV to create a uniform helium concentration of ~3 at. % throughout the nano-cylinders. Transmission electron microscopy (TEM) imaging and through-focus analysis reveal that the specimens contained ~2 nm helium bubbles distributed uniformly throughout the nano-cylinder volume. In-situ tensile experiments indicate that helium-implanted specimens exhibit enhanced ductility as evidenced by a 2-fold increase in plastic strain over as-fabricated specimens, with nomore » sacrifice in yield and ultimate tensile strengths. This improvement in mechanical properties suggests that metallic glasses may actually exhibit a favorable response to high levels of helium implantation.« less

  2. Effects of helium implantation on the tensile properties and microstructure of Ni₇₃P₂₇ metallic glass nanostructures

    SciTech Connect

    Liontas, Rachel; Gu, X. Wendy; Fu, Engang; Wang, Yongqiang; Li, Nan; Mara, Nathan; Greer, Julia R.

    2014-09-10

    We report fabrication and nanomechanical tension experiments on as-fabricated and helium-implanted ~130 nm diameter Ni₇₃P₂₇ metallic glass nano-cylinders. The nano-cylinders were fabricated by a templated electroplating process and implanted with He⁺ at energies of 50, 100, 150, and 200 keV to create a uniform helium concentration of ~3 at. % throughout the nano-cylinders. Transmission electron microscopy (TEM) imaging and through-focus analysis reveal that the specimens contained ~2 nm helium bubbles distributed uniformly throughout the nano-cylinder volume. In-situ tensile experiments indicate that helium-implanted specimens exhibit enhanced ductility as evidenced by a 2-fold increase in plastic strain over as-fabricated specimens, with no sacrifice in yield and ultimate tensile strengths. This improvement in mechanical properties suggests that metallic glasses may actually exhibit a favorable response to high levels of helium implantation.

  3. Effects of helium implantation on the tensile properties and microstructure of Ni73P27 metallic glass nanostructures.

    PubMed

    Liontas, Rachel; Gu, X Wendy; Fu, Engang; Wang, Yongqiang; Li, Nan; Mara, Nathan; Greer, Julia R

    2014-09-10

    We report fabrication and nanomechanical tension experiments on as-fabricated and helium-implanted ∼130 nm diameter Ni73P27 metallic glass nanocylinders. The nanocylinders were fabricated by a templated electroplating process and implanted with He(+) at energies of 50, 100, 150, and 200 keV to create a uniform helium concentration of ∼3 atom % throughout the nanocylinders. Transmission electron microscopy imaging and through-focus analysis reveal that the specimens contained ∼2 nm helium bubbles distributed uniformly throughout the nanocylinder volume. In situ tensile experiments indicate that helium-implanted specimens exhibit enhanced ductility as evidenced by a 2-fold increase in plastic strain over as-fabricated specimens with no sacrifice in yield and ultimate tensile strengths. This improvement in mechanical properties suggests that metallic glasses may actually exhibit a favorable response to high levels of helium implantation.

  4. Effects of Dilution Systems in Olfactometry on the Recovery of Typical Livestock Odorants Determined by PTR-MS

    PubMed Central

    Kasper, Pernille Lund; Oxbøl, Arne; Hansen, Michael Jørgen

    2017-01-01

    The present study provides an elaborate assessment of the performance of olfactometers in terms of odorant recovery for a selection of odorants emitted from livestock houses. The study includes three different olfactometer dilution systems, which have been in use at accredited odor laboratories. They consist of: (i) a custom-built olfactometer made of glass tubes, (ii) a TO8 olfactometer, and (iii) an Olfacton dilution system based on a mass flow controller. The odorants include hydrogen sulfide, methanethiol, dimethyl sulfide, acetic acid, butanoic acid, propanoic acid, 3-methylbutanoic acid, 4-methylphenol, and trimethylamine. Furthermore, n-butanol, as the reference gas in the European standard for olfactometry, EN13725, was included. All measurements were performed in real time with proton-transfer-reaction mass spectrometry (PTR-MS). The results show that only dimethyl sulfide was almost completely recovered in all cases, while for the remaining compounds, the performance was found to vary significantly (from 0 to 100%) depending on the chemical properties of the compounds, the concentration levels, the pulse duration, and the olfactometer material. To elucidate the latter, the recovery in different locations of the TO8 olfactometer and in tubes of different materials, that is, poly-tetrafluoroethylene (PTFE), perfluoroalkoxy (PFA), stainless steel and SilcoTek-coated steel, were tested. Significant saturation effects were observed when odorants were in contact with stainless steel. PMID:28800120

  5. Effects of Dilution Systems in Olfactometry on the Recovery of Typical Livestock Odorants Determined by PTR-MS.

    PubMed

    Kasper, Pernille Lund; Mannebeck, Dietmar; Oxbøl, Arne; Nygaard, Jens Vinge; Hansen, Michael Jørgen; Feilberg, Anders

    2017-08-11

    The present study provides an elaborate assessment of the performance of olfactometers in terms of odorant recovery for a selection of odorants emitted from livestock houses. The study includes three different olfactometer dilution systems, which have been in use at accredited odor laboratories. They consist of: (i) a custom-built olfactometer made of glass tubes, (ii) a TO8 olfactometer, and (iii) an Olfacton dilution system based on a mass flow controller. The odorants include hydrogen sulfide, methanethiol, dimethyl sulfide, acetic acid, butanoic acid, propanoic acid, 3-methylbutanoic acid, 4-methylphenol, and trimethylamine. Furthermore, n-butanol, as the reference gas in the European standard for olfactometry, EN13725, was included. All measurements were performed in real time with proton-transfer-reaction mass spectrometry (PTR-MS). The results show that only dimethyl sulfide was almost completely recovered in all cases, while for the remaining compounds, the performance was found to vary significantly (from 0 to 100%) depending on the chemical properties of the compounds, the concentration levels, the pulse duration, and the olfactometer material. To elucidate the latter, the recovery in different locations of the TO8 olfactometer and in tubes of different materials, that is, poly-tetrafluoroethylene (PTFE), perfluoroalkoxy (PFA), stainless steel and SilcoTek-coated steel, were tested. Significant saturation effects were observed when odorants were in contact with stainless steel.

  6. Effect of dilute acid pretreatment severity on the bioconversion efficiency of Phalaris aquatica L. lignocellulosic biomass into fermentable sugars.

    PubMed

    Pappas, Ioannis A; Koukoura, Zoi; Tananaki, Chrisoula; Goulas, Christos

    2014-08-01

    The effect of dilute acid pretreatment severity on the bioconversion efficiency of Phalaris aquatica lignocellulosic biomass into fermentable sugar monomers was studied. The pretreatment conditions were expressed in a combined severity factor (CSF), ranged from 0.13 to 1.16. The concentration of xylose and total monomeric sugars released from hemicellulose increased with pretreatment as the CSF increased. Dilute acid pretreatment resulted in about 1.7-fold increase in glucose release relative to the untreated biomass, while CSF was positively correlated with glucose recovery. A maximum glucose yield of 85.05% was observed at high severity values (i.e. CSF 1.16) after 72 h. The total amount of sugars released (i.e. xylose and glucose) was increased with pretreatment severity and a maximum conversion efficiency of 76.1% of structural carbohydrates was obtained at a CSF=1. Our data indicated that Phalaris aquatica L. is an alternative bioethanol feedstock and that hemicellulose removal promotes glucose yield.

  7. Effect of dynamic diffusion of air, nitrogen, and helium gaseous media on the microhardness of ionic crystals with juvenile surfaces

    NASA Astrophysics Data System (ADS)

    Klyavin, O. V.; Fedorov, V. Yu.; Chernov, Yu. M.; Shpeizman, V. V.

    2015-09-01

    The load dependences of the microhardness of surface layers of NaCl and LiF ionic single crystals with juvenile surfaces and surfaces exposed to air for a long time measured in the air, nitrogen, and helium gaseous media have been investigated. It has been found that there is a change in the sign of the derivative of the microhardness as a function of the load for LiF crystals indented in helium and after their aging in air, as well as a weaker effect of the nitrogen and air gaseous media on the studied dependences as compared to NaCl crystals. It has also been found that, after the aging of the surface of NaCl crystals in air, there is a change in the sign of the derivative of the microhardness in the nitrogen and air gaseous media, as well as a pronounced change in the microhardness as a function of the time of aging the samples in air as compared to the weaker effect of the gaseous medium for LiF crystals. The obtained data have been analyzed in terms of the phenomenon of dislocation-dynamic diffusion of particles from the external medium into crystalline materials during their plastic deformation along the nucleating and moving dislocations. It has been shown that this phenomenon affects the microhardness through changes in the intensity of dislocation multiplication upon the formation of indentation rosettes in different gaseous media. The performed investigation of the microhardness of the juvenile surface of NaCl and LiF crystals in different gaseous media has revealed for the first time a different character of dislocation-dynamic diffusion of these media in a "pure" form.

  8. Thermal effects of neutralization therapy and water dilution for acute alkali exposure in canines.

    PubMed

    Homan, C S; Singer, A J; Henry, M C; Thode, H C

    1997-01-01

    To evaluate the change in temperature of the gastric mucosa and lumen contents when a weak acid or water is used to manage acute alkali exposure. A prospective in-vivo canine model was used in a university-based animal laboratory setting. Eighteen adult canines weighing 20-25 kg were placed under a surgical plane of anesthesia and a laparotomy was performed. A gastrotomy was then made later ligation of the distal esophagus and proximal duodenum. Separate mucosa and lumen temperature probes were placed. Then 25 mL of room-temperature (24-26 degrees C) 50% sodium hydroxide (NaOH) was instilled in the gastric lumen. After 5 minutes, each canine was given treatment. Group 1 (n = 10) was treated with 75 mL of room-temperature orange juice. Group 2 (n = 8) was treated with 75 mL of room-temperature water. Continuous mucosa and lumen temperatures were observed and recorded at baseline and at specified intervals for 35 minutes after the alkali insult. Repeated-measures analysis of variance was used to evaluate the overall temperature profile. Signed-rank tests were used to compare the changes in temperature immediately following neutralization treatment. Significant temperature decreases of 1.1 degrees C and 2.1 degrees C were observed for both mucosa (p = 0.002) and lumen (p < 0.001) temperature, respectively, following neutralization therapy with room-temperature orange juice. In the group treated with room-temperature water, significant temperature decreases of 2.1 degrees C for mucosa (p = 0.01) and 2.4 degrees C for lumen (p = 0.01) were observed. Posttreatment temperatures did not exceed baseline for the entire observation period. Neutralization therapy with room-temperature orange juice or water dilution for acute gastric injuries by liquid alkali does not cause a rise in mucosal or intraluminal temperatures in an in-vivo canine model.

  9. Ab initio study of the effects of dilute defects on the local structure of unalloyed δ-plutonium

    SciTech Connect

    Hernandez, Sarah Christine; Kisiel, Elliot Steven; Freibert, Franz Joseph

    2016-11-22

    We used density functional theory to examine the effects impurities and vacancies in the dilute limit in order to explore the effects on the local structure of the unalloyed face centered cubic δ-Pu lattice. The impurities considered are the radioactive daughter U or stabilizers in δ-phase stabilizer Ga. These impurities were placed at various interstitial sites, including octahedral, tetrahedral, and split interstitial along the (100) direction, as well as substitutional lattice sites. Self-interstitials, mono and di-vacancies were also considered. In addition we examined impurity-vacancy complexes at first and second nearest neighboring distances from each other. Radial distribution functions were plotted to gauge the local structural variations around the defect within the lattice and volume change with structural variation quantifies influence on thermodynamics. These local distortions will be discussed in this report.

  10. Induced ferromagnetism in helium bombarded graphite.

    PubMed

    Makarova, Tatiana L; Shelankov, Andrei L; Lyubchik, Svetlana B; Serenkov, Igor T; Sakharov, Vladimir I

    2012-06-01

    Irradiation with helium ions is an effective method for triggering ferromagnetism in graphite. Chemical inertness of helium suggests that local magnetic moment formation is determined solely by the intrinsic carbon defects created during the target damage. Interacting moments are located in two places: in the vicinity of the sample surface and near the point of maximum defect generation.

  11. Dressing effects in the attosecond transient absorption spectra of doubly excited states in helium

    NASA Astrophysics Data System (ADS)

    Argenti, L.; Jiménez-Galán, Á.; Marante, C.; Ott, C.; Pfeifer, T.; Martín, F.

    2015-06-01

    Strong-field manipulation of autoionizing states is a crucial aspect of electronic quantum control. Recent measurements of the attosecond transient absorption spectrum (ATAS) of helium dressed by a few-cycle visible pulse [C. Ott et al., Nature (London) 516, 374 (2014), 10.1038/nature14026] provide evidence of the inversion of Fano profiles. With the support of accurate ab initio calculations that reproduce the results of the latter experiment, here we investigate the new physics that arise from ATAS when the laser intensity is increased. In particular, we show that (i) previously unnoticed signatures of the dark 2 p21S doubly excited state are observed in the experimental spectrum, (ii) inversion of Fano profiles is predicted to be periodic in the laser intensity, and (iii) the ac Stark shift of the higher terms in the s p2,n + autoionizing series exceeds the ponderomotive energy, which is the result of a genuine two-electron contribution to the polarization of the excited atom.

  12. Effect of spray cooling on heat transfer in a two-phase helium flow

    NASA Astrophysics Data System (ADS)

    Perraud, S.; Puech, L.; Thibault, P.; Rousset, B.; Wolf, P. E.

    2013-10-01

    We describe an experimental study of the phenomenon of spray cooling in the case of liquid helium, either normal or superfluid, and its relationship to the heat transfer between an atomized two-phase flow contained in a long pipe, and the pipe walls. This situation is discussed in the context of the cooling of the superconducting magnets of the Large Hadron Collider (LHC). Experiments were conducted in a test loop reproducing the LHC cooling system, in which the vapor velocity and temperature could be varied in a large range. Shear induced atomization results in the generation of a droplet mist which was characterized by optical means. The thickness of the thin liquid film deposited on the walls by the mist was measured using interdigitated capacitors. The cooling power of the mist was measured using thermal probes, and correlated to the local mist density. Analysis of the results shows that superfluidity has only a limited influence on both the film thickness and the mist cooling power. Using a simple model, we show that the phenomenon of spray cooling accounts for the measured non-linearity of the global heat transfer. Finally, we discuss the relevance of our results for cooling the final focus magnets in an upgraded version of the LHC.

  13. Effect of starting microstructure on helium plasma-materials interaction in tungsten

    DOE PAGES

    Wang, Kun; Bannister, Mark E.; Meyer, Fred W.; ...

    2016-11-24

    Here, in a magnetic fusion energy (MFE) device, the plasma-facing materials (PFMs) will be subjected to tremendous fluxes of ions, heat, and neutrons. The response of PFMs to the fusion environment is still not well defined. Tungsten metal is the present candidate of choice for PFM applications such as the divertor in ITER. However, tungsten's microstructure will evolve in service, possibly to include recrystallization. How tungsten's response to plasma exposure evolves with changes in microstructure is presently unknown. In this work, we have exposed hot-worked and recrystallized tungsten to an 80 eV helium ion beam at a temperature of 900more » °C to fluences of 2 × 1023 or 20 × 1023 He/m2. This resulted in a faceted surface structure at the lower fluence or short but well-developed nanofuzz structure at the higher fluence. There was little difference in the hot-rolled or recrystallized material's near-surface (≤50 nm) bubbles at either fluence. At higher fluence and deeper depth, the bubble populations of the hot-rolled and recrystallized were different, the recrystallized being larger and deeper. This may explain previous high-fluence results showing pronounced differences in recrystallized material. The deeper penetration in recrystallized material also implies that grain boundaries are traps, rather than high-diffusivity paths.« less

  14. Effect of starting microstructure on helium plasma-materials interaction in tungsten

    SciTech Connect

    Wang, Kun; Bannister, Mark E.; Meyer, Fred W.; Parish, Chad M.

    2016-11-24

    Here, in a magnetic fusion energy (MFE) device, the plasma-facing materials (PFMs) will be subjected to tremendous fluxes of ions, heat, and neutrons. The response of PFMs to the fusion environment is still not well defined. Tungsten metal is the present candidate of choice for PFM applications such as the divertor in ITER. However, tungsten's microstructure will evolve in service, possibly to include recrystallization. How tungsten's response to plasma exposure evolves with changes in microstructure is presently unknown. In this work, we have exposed hot-worked and recrystallized tungsten to an 80 eV helium ion beam at a temperature of 900 °C to fluences of 2 × 1023 or 20 × 1023 He/m2. This resulted in a faceted surface structure at the lower fluence or short but well-developed nanofuzz structure at the higher fluence. There was little difference in the hot-rolled or recrystallized material's near-surface (≤50 nm) bubbles at either fluence. At higher fluence and deeper depth, the bubble populations of the hot-rolled and recrystallized were different, the recrystallized being larger and deeper. This may explain previous high-fluence results showing pronounced differences in recrystallized material. The deeper penetration in recrystallized material also implies that grain boundaries are traps, rather than high-diffusivity paths.

  15. Effect of sample dilution on matrix effects in pesticide analysis of several matrices by liquid chromatography-high-resolution mass spectrometry.

    PubMed

    Yang, Paul; Chang, James S; Wong, Jon W; Zhang, Kai; Krynitsky, Alexander J; Bromirski, Maciej; Wang, Jian

    2015-06-03

    This study used two LC columns of different adsorbents and liquid chromatography-electrospray ionization-high-resolution mass spectrometry to study the relationship between matrix effects (ME), the LC separations, and elution patterns of pesticides and those of matrix components. Using calibration standards of 381 pesticides at three dilution levels of 1×, 1/10×, and 1/100×, 108 samples were prepared in solvent and five different sample matrices for the study. Results obtained from principal component analysis and slope ratios of calibration curves provided measurements of the ME and showed the 1/100× sample dilution could minimize suppression ME for most pesticides analyzed. Should a pesticide coeluting with matrix components have a peak intensity of 25 times or higher, the suppression for that pesticide would persist even at 1/100× dilution. The number of pesticides had enhancement ME increased with increasing dilution from 1× to 1/100×, with those early eluting, hydrophilic pesticides affected the most.

  16. A possible formation channel for blue hook stars in globular cluster - II. Effects of metallicity, mass ratio, tidal enhancement efficiency and helium abundance

    NASA Astrophysics Data System (ADS)

    Lei, Zhenxin; Zhao, Gang; Zeng, Aihua; Shen, Lihua; Lan, Zhongjian; Jiang, Dengkai; Han, Zhanwen

    2016-12-01

    Employing tidally enhanced stellar wind, we studied in binaries the effects of metallicity, mass ratio of primary to secondary, tidal enhancement efficiency and helium abundance on the formation of blue hook (BHk) stars in globular clusters (GCs). A total of 28 sets of binary models combined with different input parameters are studied. For each set of binary model, we presented a range of initial orbital periods that is needed to produce BHk stars in binaries. All the binary models could produce BHk stars within different range of initial orbital periods. We also compared our results with the observation in the Teff-logg diagram of GC NGC 2808 and ω Cen. Most of the BHk stars in these two GCs locate well in the region predicted by our theoretical models, especially when C/N-enhanced model atmospheres are considered. We found that mass ratio of primary to secondary and tidal enhancement efficiency have little effects on the formation of BHk stars in binaries, while metallicity and helium abundance would play important roles, especially for helium abundance. Specifically, with helium abundance increasing in binary models, the space range of initial orbital periods needed to produce BHk stars becomes obviously wider, regardless of other input parameters adopted. Our results were discussed with recent observations and other theoretical models.

  17. Thermospheric wind effects on the global distribution of helium in the earth's upper atmosphere. Ph.D. Thesis - Michigan Univ., Ann Arbor

    NASA Technical Reports Server (NTRS)

    Reber, C. A.

    1973-01-01

    The momentum and continuity equations for a minor gas are combined with the momentum equation for the major constituents to obtain the time dependent continuity equation for the minor species reflecting a wind field in the background gas. This equation is used to study the distributions of helium and argon at times of low, medium, and high solar activity for a variety of latitudinal-seasonal wind cells. For helium, the exospheric return flow at the higher thermospheric temperatures dominates the distribution to the extent that much larger latitudinal gradients can be maintained during periods of low solar activity than during periods of high activity. By comparison to the exospheric flow, the smoothing effect of horizontal diffusion is almost negligible. The latitudinal variation of helium observed by satellite mass spectrometers can be reproduced by the effect of a wind system of air rising in the summer hemisphere, flowing across the equator with speeds on the order of 100 to 200 m/sec, and descending in the winter hemisphere. Argon, being heavier than the mean mass in the lower thermosphere, reacts oppositely to helium in that it is enhanced in the summer hemisphere and depleted in the winter.

  18. Effects of temperature and pressure on asphaltene particle size distributions in crude oils diluted with n-pentane

    SciTech Connect

    Nielsen, B.B.; Svrcek, W.Y.; Mehrotra, A.K. . Dept. of Chemical and Petroleum Engineering)

    1994-05-01

    The effects of temperature (0--150 C) and pressure (0--5.6 MPa) on the size distribution of asphaltene particles (or agglomerates), formed as a result of diluting the crude oils with n-pentane, were studied using a modified laser particle analyzer. Four crude oils, ranging from an asphaltic condensate to a heavy oil-sand bitumen, were tested in this investigation. The average size of asphaltene agglomerates ranged from 266 to 495 Am. The results suggest that the mean asphaltene particle size increases with pressure and decreases slightly with temperature; however, no trends were evident with the molar mass of crude oils. Although the particle size distributions in most cases were unimodal and described adequately by the log-normal distribution function, bimodal distributions were also identified in certain cases.

  19. Large positive magnetoresistance effects in the dilute magnetic semiconductor (Zn,Mn)Se in the regime of electron hopping

    SciTech Connect

    Jansson, F. Wiemer, M.; Gebhard, F.; Baranovskii, S. D.; Nenashev, A. V.; Petznick, S.; Klar, P. J.; Hetterich, M.

    2014-08-28

    Magnetoresistance in dilute magnetic semiconductors is studied in the hopping transport regime. Measurements performed on Cl-doped Zn{sub 1–x}Mn{sub x}Se with x < 8% are compared with simulation results obtained by a hopping transport model. The energy levels of the Cl donors are affected by the magnetization of Mn atoms in their vicinity via the s-d exchange interaction. Compositional disorder, in particular, the random distribution of magnetic atoms, leads to a magnetic-field induced broadening of the donor energy distribution. As the energy distribution broadens, the electron transport is hindered and a large positive contribution to the magnetoresistance arises. This broadening of the donor energy distribution is largely sufficient to account for the experimentally observed magnetoresistance effects in n-type (Zn,Mn)Se with donor concentrations below the metal–insulator transition.

  20. Effect of dilution of both A- and B- sites on the multiferroic properties of spinal Mott insulators

    NASA Astrophysics Data System (ADS)

    Shahi, Prashant; Singh, Rahul K.; Singh, Rajesh K.; Kumar, Shiv; Tiwari, A.; Tripathi, A.; Saha, J.; Patnaik, S.; Ghosh, A. K.; Chatterjee, Sandip

    2015-07-01

    The structural, magnetic, electrical and transport properties of FeV2O4, by doping Li and Cr ions in A and B sites, respectively, have been studied. Dilution of the A site by Li doping decreases the V-V distances which in effect increases the A-V coupling. This increased coupling enhances the ferrimagnetic ordering temperature and reduces the ferroelectric transition temperature. Furthermore, since Li is non-magnetic the A-V coupling is also decreased. The increase in A-V coupling dominates over the decrease in A-V coupling with Li doping. On the other hand, Cr doping increases the ferrimagnetic ordering temperature but does not alter the ferroelectric transition temperature, which is due to the fact that the polarization originates from the presence of almost non-substituted regions.

  1. Aminopeptidase activity in seminal plasma and effect of dilution rate on rabbit reproductive performance after insemination with an extender supplemented with buserelin acetate.

    PubMed

    Viudes-de-Castro, M P; Mocé, E; Lavara, R; Marco-Jiménez, F; Vicente, J S

    2014-06-01

    Ovulation induction in artificially inseminated rabbits by adding GnRH synthetic analogues in the seminal doses is a welfare-orientated method to induce ovulation in rabbits and could have some advantages in field practice. This study was conducted to determine the effect of male genotype on the aminopeptidase activity in rabbit seminal plasma and the effects of dilution rate of semen on availability and reproductive performance when buserelin acetate is added to the seminal dose. To study the aminopeptidase activity, 12 mature bucks belonging to a paternal line and 12 from a maternal line were used. The bucks from the paternal line were used to study the effect of dilution rate on the availability of buserelin acetate after 2 hours of dilution and on the reproductive performance of the doses after artificial insemination of 389 commercial crossbreed does. Aminopeptidase activity in seminal plasma is dependent on the male genotype. The paternal line resulted 27% more aminopeptidase activity than the maternal line (P < 0.05). On the other hand, semen diluted 1:20 exhibited a marked increase in the availability of buserelin acetate and the fertility in this group was significantly higher than females from dilution rate 1:5 group, which showed similar results to that of the negative control group (does inseminated with semen diluted 1:20 in non-GnRH-supplemented extender). We conclude that the bioavailability of buserelin acetate when added to the seminal dose appears to be determined by the activity of the existing aminopeptidases and is consequently affected by the dilution rate used to prepare the artificial insemination doses. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Effects of Fuel Laminar Flame Speed Compared to Engine Tumble Ratio, Ignition Energy, and Injection Strategy on Lean and EGR Dilute Spark Ignition Combustion

    DOE PAGES

    Kolodziej, Christopher P.; Pamminger, Michael; Sevik, James; ...

    2017-03-28

    Previously we show that fuels with higher laminar flame speed also have increased tolerance to EGR dilution. In this work, the effects of fuel laminar flame speed on both lean and EGR dilute spark ignition combustion stability were examined. Fuels blends of pure components (iso-octane, n-heptane, toluene, ethanol, and methanol) were derived at two levels of laminar flame speed. Each fuel blend was tested in a single-cylinder spark-ignition engine under both lean-out and EGR dilution sweeps until the coefficient of variance of indicated mean effective pressure increased above thresholds of 3% and 5%. The relative importance of fuel laminar flamemore » speed to changes to engine design parameters (spark ignition energy, tumble ratio, and port vs. direct injection) was also assessed. Our results showed that fuel laminar flame speed can have as big an effect on lean or EGR dilute engine operation as engine design parameters, with the largest effects seen during EGR dilute operation and when changes were made to cylinder charge motion.« less

  3. Effect of dynamically charged helium on tensile properties of V-5Ti, V-4Cr-4Ti, and V-3Ti-1Si

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Nowicki, L.; Smith, D.L.

    1996-04-01

    In the Dynamic Helium Charging Experiment (DHCE), helium was produced uniformly in the specimen at linear rates of {approx}0.4 to 4.2 appm He/dpa by the decay of tritium during irradiation to 18-31 dpa at 424-600{degrees}C in the lithium-filled DHCE capsules in the Fast Flux Test Facility. This report presents results of postirradiation tests of tensile properties of V-5Ti, V-4Cr-4Ti, V-3Ti-1Si. The effect of helium on tensile strength and ductility was insignificant after irradiation and testing at >420{degrees}C. Contrary to initial expectation, room temperature ductility of DHCE specimens was higher than that on non-DHCE specimens, whereas strength was lower, indicating that different types of hardening centers are produced during DHCE and non-DHCE irradiation. In strong contrast to results of tritium-trick experiments, in which dense coalescence of helium bubbles is produced on grain boundaries in the absence of displacement damage, no intergranular fracture was observed in any tensile specimens irradiated in the DHCE.

  4. Effects of Time and Storage Conditions on the Chemical and Microbiologic Stability of Diluted Buprenorphine for Injection.

    PubMed

    DenHerder, Johnathan M; Reed, Ralph L; Sargent, Jennifer L; Bobe, Gerd; Stevens, Jan F; Diggs, Helen E

    2017-07-01

    Buprenorphine is a partial μ-opioid agonist used for analgesia. Due to the small size of laboratory rodents, buprenorphine HCl is typically diluted 10- or 20-fold with a sterile diluent, such as saline, for accurate dosing. Protocols for preparing and storing diluted buprenorphine vary by institution, and little published information is available regarding stability and beyond-use dating of specific buprenorphine preparations. The purpose of this study was to determine the chemical and microbiologic stability of diluted buprenorphine stored for a maximum of 180 d. Buprenorphine HCl was diluted 1:10 into sterile bacteriostatic saline by using aseptic technique. Diluted samples were stored in glass vials or plastic syringes, protected from light, and maintained at refrigerated or room temperature for as long as 180 d. Aerobic and anaerobic cultures on all stored samples were negative for bacterial and fungal growth. According to HPLC analysis, diluted buprenorphine stored in glass vials experienced less than 10% loss when stored for 180 d at either refrigerated or room temperature. However, the concentration of buprenorphine stored in syringes declined rapidly to more than 80% loss at room temperature and 28% loss in the refrigerator after 180 d. According to the results of this study, diluted buprenorphine stored in glass vials retains more than 90% of the initial concentration and is microbiologically stable for 180 d. However, our data suggest that, regardless of the duration, storing diluted buprenorphine in plastic syringes is inadvisable.

  5. Dilutions Made Easy.

    ERIC Educational Resources Information Center

    Kamin, Lawrence

    1996-01-01

    Presents problems appropriate for high school and college students that highlight dilution methods. Promotes an understanding of dilution methods in order to prevent the unnecessary waste of chemicals and glassware in biology laboratories. (JRH)

  6. Dilutions Made Easy.

    ERIC Educational Resources Information Center

    Kamin, Lawrence

    1996-01-01

    Presents problems appropriate for high school and college students that highlight dilution methods. Promotes an understanding of dilution methods in order to prevent the unnecessary waste of chemicals and glassware in biology laboratories. (JRH)

  7. The effect on the transmission loss of a double wall panel of using helium gas in the gap

    NASA Technical Reports Server (NTRS)

    Atwal, M. S.; Crocker, M. J.

    1985-01-01

    The possibility of increasing the sound-power transmission loss of a double panel by using helium gas in the gap is investigated. The transmission loss of a panel is defined as ten times the common logarithm of the ratio of the sound power incident on the panel to the sound power transmitted to the space on the other side of the panel. The work is associated with extensive research being done to develop new techniques for predicting the interior noise levels on board high-speed advanced turboprop aircraft and reducing the noise levels with a minimum weight penalty. Helium gas was chosen for its inert properties and its low impedance compared with air. With helium in the gap, the impedance mismatch experienced by the sound wave will be greater than that with air in the gap. It is seen that helium gas in the gap increases the transmission loss of the double panel over a wide range of frequencies.

  8. Dynamic-Stark-effect-induced coherent mixture of virtual paths in laser-dressed helium: energetic electron impact excitation

    NASA Astrophysics Data System (ADS)

    Agueny, Hicham; Makhoute, Abdelkader; Dubois, Alain

    2017-06-01

    We theoretically investigate quantum virtual path interference caused by the dynamic Stark effect in bound-bound electronic transitions. The effect is studied in an intermediate resonant region and in connection with the energetic electron impact excitation of a helium atom embedded in a weak low-frequency laser field. The process under investigation is dealt with via a Born-Floquet approach. Numerical calculations show a resonant feature in laser-assisted cross sections. The latter is found to be sensitive to the intensity of the laser field dressing. We show that this feature is a signature of quantum beats which result from the coherent mixture of different quantum virtual pathways, and that excitation may follow in order to end up with a common final channel. This mixture arises from the dynamic Stark effect, which produces a set of avoided crossings in laser-dressed states. The effect allows one to coherently control quantum virtual path interference by varying the intensity of the laser field dressing. Our findings suggest that the combination of an energetic electron and a weak laser field is a useful tool for the coherent control of nonadiabatic transitions in an intermediate resonant region.

  9. Measurements of the Critical Casimir Effect and Superfluid Density in Saturated Helium-4 Films near T(lambda)

    NASA Astrophysics Data System (ADS)

    Abraham, John Bishoy Sam

    Saturated thick films of 4Helium adsorbed on a copper substrate are studied experimentally. The film thickness is measured with an ultra-sensitive capacitance bridge capable of resolving sub-Angstrom changes in film thickness. Through the use of this capacitance bridge, the critical Casimir effect in the films is studied in the vicinity of the lambda transition. Additionally, the copper substrate assembly is used to generate and detect third sound in the film. Measurements are made of the third sound speed and attenuation in thick film from 1.6 K to the Kosterlitz-Thouless transition in the films. The position of the Kosterlitz-Thouless transition relative to the critical Casimir effect in the films is identifieded. It is discovered that the Kosterlitz-Thouless transition occurs at the beginning of the dip in film thickness due to the critical Casimir effect. When the temperature of the system is swept extremely slowly across the lambda transition, a step in film thickness is observed. This step is possibly a non-universal critical Casimir effect. A model of thermal second sound excitations is developed to describe this new observation.

  10. Paramagnetic Attraction of Impurity-Helium Solids

    NASA Technical Reports Server (NTRS)

    Bernard, E. P.; Boltnev, R. E.; Khmelenko, V. V.; Lee, D. M.

    2003-01-01

    Impurity-helium solids are formed when a mixture of impurity and helium gases enters a volume of superfluid helium. Typical choices of impurity gas are hydrogen deuteride, deuterium, nitrogen, neon and argon, or a mixture of these. These solids consist of individual impurity atoms and molecules as well as clusters of impurity atoms and molecules covered with layers of solidified helium. The clusters have an imperfect crystalline structure and diameters ranging up to 90 angstroms, depending somewhat on the choice of impurity. Immediately following formation the clusters aggregate into loosely connected porous solids that are submerged in and completely permeated by the liquid helium. Im-He solids are extremely effective at stabilizing high concentrations of free radicals, which can be introduced by applying a high power RF dis- charge to the impurity gas mixture just before it strikes the super fluid helium. Average concentrations of 10(exp 19) nitrogen atoms/cc and 5 x 10(exp 18) deuterium atoms/cc can be achieved this way. It shows a typical sample formed from a mixture of atomic and molecular hydrogen and deuterium. It shows typical sample formed from atomic and molecular nitrogen. Much of the stability of Im-He solids is attributed to their very large surface area to volume ratio and their permeation by super fluid helium. Heat resulting from a chance meeting and recombination of free radicals is quickly dissipated by the super fluid helium instead of thermally promoting the diffusion of other nearby free radicals.

  11. Effective equations for the precession dynamics of electron spins and electron-impurity correlations in diluted magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Cygorek, M.; Axt, V. M.

    2015-08-01

    Starting from a quantum kinetic theory for the spin dynamics in diluted magnetic semiconductors, we derive simplified equations that effectively describe the spin transfer between carriers and magnetic impurities for an arbitrary initial impurity magnetization. Taking the Markov limit of these effective equations, we obtain good quantitative agreement with the full quantum kinetic theory for the spin dynamics in bulk systems at high magnetic doping. In contrast, the standard rate description where the carrier-dopant interaction is treated according to Fermi’s golden rule, which involves the assumption of a short memory as well as a perturbative argument, has been shown previously to fail if the impurity magnetization is non-zero. The Markov limit of the effective equations is derived, assuming only a short memory, while higher order terms are still accounted for. These higher order terms represent the precession of the carrier-dopant correlations in the effective magnetic field due to the impurity spins. Numerical calculations show that the Markov limit of our effective equations reproduces the results of the full quantum kinetic theory very well. Furthermore, this limit allows for analytical solutions and for a physically transparent interpretation.

  12. Serial Dilution Simulation Lab

    ERIC Educational Resources Information Center

    Keler, Cynthia; Balutis, Tabitha; Bergen, Kim; Laudenslager, Bryanna; Rubino, Deanna

    2010-01-01

    Serial dilution is often a difficult concept for students to understand. In this short dry lab exercise, students perform serial dilutions using seed beads. This exercise helps students gain skill at performing dilutions without using reagents, bacterial cultures, or viral cultures, while being able to visualize the process.

  13. Serial Dilution Simulation Lab

    ERIC Educational Resources Information Center

    Keler, Cynthia; Balutis, Tabitha; Bergen, Kim; Laudenslager, Bryanna; Rubino, Deanna

    2010-01-01

    Serial dilution is often a difficult concept for students to understand. In this short dry lab exercise, students perform serial dilutions using seed beads. This exercise helps students gain skill at performing dilutions without using reagents, bacterial cultures, or viral cultures, while being able to visualize the process.

  14. Modulation by the Noble Gas Helium of Tissue Plasminogen Activator: Effects in a Rat Model of Thromboembolic Stroke.

    PubMed

    Haelewyn, Benoit; David, Hélène N; Blatteau, Jean-Eric; Vallée, Nicolas; Meckler, Cedric; Risso, Jean-Jacques; Abraini, Jacques H

    2016-06-01

    Helium has been shown to provide neuroprotection in mechanical model of acute ischemic stroke by inducing hypothermia, a condition shown by itself to reduce the thrombolytic and proteolytic properties of tissue plasminogen activator. However, whether or not helium interacts with the thrombolytic drug tissue plasminogen activator, the only approved therapy of acute ischemic stroke still remains unknown. This point is not trivial since previous data have shown the critical importance of the time at which the neuroprotective noble gases xenon and argon should be administered, during or after ischemia, in order not to block tissue plasminogen activator-induced thrombolysis and to obtain neuroprotection and inhibition of tissue plasminogen activator-induced brain hemorrhages. We show that helium of 25-75 vol% inhibits in a concentration-dependent fashion the catalytic and thrombolytic activity of tissue plasminogen activator in vitro and ex vivo. In vivo, in rats subjected to thromboembolic brain ischemia, we found that intraischemic helium at 75 vol% inhibits tissue plasminogen activator-induced thrombolysis and subsequent reduction of ischemic brain damage and that postischemic helium at 75 vol% reduces ischemic brain damage and brain hemorrhages. In a clinical perspective for the treatment of acute ischemic stroke, these data suggest that helium 1) should not be administered before or together with tissue plasminogen activator therapy due to the risk of inhibiting the benefit of tissue plasminogen activator-induced thrombolysis; and 2) could be an efficient neuroprotective agent if given after tissue plasminogen activator-induced reperfusion.

  15. Effect of dilution and operating parameters on ammonia removal from scheduled waste landfill leachate in a lab-scale ammonia stripping reactor

    NASA Astrophysics Data System (ADS)

    Hanira, N. M. L.; Hasfalina, C. M.; Rashid, M.; Luqman, C. A.; Abdullah, A. M.

    2017-06-01

    A lab-scale ammonia stripping reactor was used to treat raw and diluted (1:1) scheduled waste landfill (SWL) leachate containing ammonia-nitrogen (NH3-N). Operating parameters such as air-liquid ratio, hydrated lime [Ca(OH)2] dosage, types of packing materials and packing heights were investigated with central composite design (CCD) of response surface methodology (RSM) was used to optimize the parameters affecting NH3-N removal from the leachate. The percentage removal on turbidity, colour and phosphate were also evaluated in this study. It was observed that the optimal conditions obtained from desirable response (NH3-N removal) for raw leachate were predicted at air-liquid ratio of 70, Ca(OH)2 dosage of 5 gL-1, packing height of 60 cm and types of packing material was number 3 (non-woven polyester) while for diluted leachate these were 70, 6 gL-1, 60 cm and Type 3 (non-woven polyester), respectively. Quadratic RSM predicted the maximum NH3-N removal to be 78% for raw leachate and 81% for diluted leachate at these optimal conditions concurred with the experiment which successfully removed 76% and 80% of NH3-N, respectively. However, higher removal efficiencies of turbidity (97%), colour (88%) and phosphate (93%) was observed in the treatment with diluted leachate compared to raw leachate merely up to 55%, 34% and 49%, respectively. The finding showed that the difference in the removal of NH3-N in diluted and raw SWL leachate was insignificant. However, turbidity, colour and phosphate showed a significant reduction in the diluted leachate during the treatment. The study suggests that the dilution of SWL leachate does not present a significant effect on the removal of ammonia in the stripping reactor.

  16. The Nucleosynthesis of Helium

    NASA Astrophysics Data System (ADS)

    Kneller, James

    2007-04-01

    The large cosmic abundance of Helium - second only to Hydrogen - is a testament to the importance of its formation in the cosmos. Both Helium-3 and Helium-4 emerge from Big Bang Nucleosynthesis in considerable quantities, the synthesis of the isotopes are links in the pp chain and other stellar nucleosynthesis processes, and they are also created during the initial stages of the r-process. The importance of Helium formation in these settings provides us with valuable information upon the environments in which it occurs. We survey the role of the synthesis of Helium in nuclear astrophysics, how its manufacture is affected by many diverse factors, and what we have learnt from observations of Helium abundances.

  17. Evidence of the importance of host habitat use in predicting the dilution effect of wild boar for deer exposure to Anaplasma spp.

    PubMed

    Estrada-Peña, Agustín; Acevedo, Pelayo; Ruiz-Fons, Francisco; Gortázar, Christian; de la Fuente, José

    2008-08-20

    Foci of tick-borne pathogens occur at fine spatial scales, and depend upon a complex arrangement of factors involving climate, host abundance and landscape composition. It has been proposed that the presence of hosts that support tick feeding but not pathogen multiplication may dilute the transmission of the pathogen. However, models need to consider the spatial component to adequately explain how hosts, ticks and pathogens are distributed into the landscape. In this study, a novel, lattice-derived, behavior-based, spatially-explicit model was developed to test how changes in the assumed perception of different landscape elements affect the outcome of the connectivity between patches and therefore the dilution effect. The objective of this study was to explain changes in the exposure rate (ER) of red deer to Anaplasma spp. under different configurations of suitable habitat and landscape fragmentation in the presence of variable densities of the potentially diluting host, wild boar. The model showed that the increase in habitat fragmentation had a deep impact on Habitat Sharing Ratio (HSR), a parameter describing the amount of habitat shared by red deer and wild boar, weighted by the probability of the animals to remain together in the same patch (according to movement rules), the density of ticks and the density of animals at a given vegetation patch, and decreased the dilution effect of wild boar on deer Anaplasma ER. The model was validated with data collected on deer, wild boar and tick densities, climate, landscape composition, host vegetation preferences and deer seropositivity to Anaplasma spp. (as a measure of ER) in 10 study sites in Spain. However, although conditions were appropriate for a dilution effect, empirical results did not show a decrease in deer ER in sites with high wild boar densities. The model showed that the HSR was the most effective parameter to explain the absence of the dilution effect. These results suggest that host habitat usage may

  18. Evidence of the Importance of Host Habitat Use in Predicting the Dilution Effect of Wild Boar for Deer Exposure to Anaplasma spp

    PubMed Central

    Estrada-Peña, Agustín; Acevedo, Pelayo; Ruiz-Fons, Francisco; Gortázar, Christian; de la Fuente, José

    2008-01-01

    Foci of tick-borne pathogens occur at fine spatial scales, and depend upon a complex arrangement of factors involving climate, host abundance and landscape composition. It has been proposed that the presence of hosts that support tick feeding but not pathogen multiplication may dilute the transmission of the pathogen. However, models need to consider the spatial component to adequately explain how hosts, ticks and pathogens are distributed into the landscape. In this study, a novel, lattice-derived, behavior-based, spatially-explicit model was developed to test how changes in the assumed perception of different landscape elements affect the outcome of the connectivity between patches and therefore the dilution effect. The objective of this study was to explain changes in the exposure rate (ER) of red deer to Anaplasma spp. under different configurations of suitable habitat and landscape fragmentation in the presence of variable densities of the potentially diluting host, wild boar. The model showed that the increase in habitat fragmentation had a deep impact on Habitat Sharing Ratio (HSR), a parameter describing the amount of habitat shared by red deer and wild boar, weighted by the probability of the animals to remain together in the same patch (according to movement rules), the density of ticks and the density of animals at a given vegetation patch, and decreased the dilution effect of wild boar on deer Anaplasma ER. The model was validated with data collected on deer, wild boar and tick densities, climate, landscape composition, host vegetation preferences and deer seropositivity to Anaplasma spp. (as a measure of ER) in 10 study sites in Spain. However, although conditions were appropriate for a dilution effect, empirical results did not show a decrease in deer ER in sites with high wild boar densities. The model showed that the HSR was the most effective parameter to explain the absence of the dilution effect. These results suggest that host habitat usage may

  19. Field-effect transistors fabricated from diluted magnetic semiconductor colloidal nanowires.

    PubMed

    Li, Zhen; Du, Ai Jun; Sun, Qiao; Aljada, Muhsen; Zhu, Zhong Hua; Lu, Gao Qing Max

    2012-02-21

    Field-effect transistors (FETs) fabricated from undoped and Co(2+)-doped CdSe colloidal nanowires show typical n-channel transistor behaviour with gate effect. Exposed to microscope light, a 10 times current enhancement is observed in the doped nanowire-based devices due to the significant modification of the electronic structure of CdSe nanowires induced by Co(2+)-doping, which is revealed by theoretical calculations from spin-polarized plane-wave density functional theory.

  20. Dynamic correlation effects in fully differential cross sections for 75-keV proton-impact ionization of helium

    NASA Astrophysics Data System (ADS)

    Niu, Xiaojie; Sun, Shiyan; Wang, Fujun; Jia, Xiangfu

    2017-08-01

    The effect of final-state dynamic correlation is investigated for helium single ionization by 75-keV proton impact analyzing fully differential cross sections (FDCS). The final state is represented by a continuum correlated wave (CCW-PT) function which accounts for the interaction between the projectile and the residual target ion (PT interaction). This continuum correlated wave function partially includes the correlation of electron-projectile and electron-target relative motion as coupling terms of the wave equation. The transition matrix is evaluated using the CCW-PT function and the Born initial state. The analytical expression of the transition matrix has been obtained. We have shown that this series is strongly convergent and analyzed the contribution of their different terms to the FDCS within the perturbation method. Illustrative computations are performed in the scattering plane and in the perpendicular plane. Both the correlation effects and the PT interaction are checked by the preset calculations. Our results are compared with absolute experimental data as well as other theoretical models. We have shown that the dynamic correlation plays an important role in the single ionization of atoms by proton impact at intermediate projectile energies, especially at large transverse momentum transfer. While overall agreement between theory and the experimental data is encouraging, detailed agreement is lacking. The need for more theoretical and experimental work is emphasized.

  1. Effect of initial-state target polarization on the single ionization of helium by 1-keV electron impact

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Yan; Ma, Xiao-Yan; Li, Xia; Miao, Xiang-Yang; Jia, Xiang-Fu

    2012-07-01

    We report new results of triple differential cross sections for the single ionization of helium by 1-KeV electron impact at the ejection energy of 10 eV. Investigations have been made for both the perpendicular plane and the plane perpendicular to the momentum transfer geometries. The present calculation is based on the three-Coulomb wave function. Here we have also incorporated the effect of target polarization in the initial state. A comparison is made between the present calculation with the results of other theoretical methods and a recent experiment [Dürr M, Dimopoulou C, Najjari B, Dorn A, Bartschat K, Bray I, Fursa D V, Chen Z, Madison D H and Ullrich J 2008 Phys. Rev. A 77 032717]. At an impact energy of 1 KeV, the target polarization is found to induce a substantial change of the cross section for the ionization process. We observe that the effect of target polarization plays a dominant role in deciding the shape of triple differential cross sections.

  2. The effect of heat conduction on the rate of chemical reaction in dilute gases

    NASA Astrophysics Data System (ADS)

    Fort, J.; Cukrowski, A. S.

    1997-09-01

    Information statistical theory is used to obtain the second-order terms (similar to those analyzed in the Burnett approximation to the solution of the Boltzmann equation) in the expansion of the nonequilibrium velocity distribution function. These terms are used for the evaluation of the effect of the heat flux on the rate of bimolecular chemical reactions. This effect is shown to be important for reactions characterized by high values of the activation energy. However, very large values of the heat flux would be necessary. The results are compared with those obtained earlier from the square terms calculated from the linearized Boltzmann equation and with recent results due to Nettleton.

  3. Field-effect transistors fabricated from diluted magnetic semiconductor colloidal nanowires

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Du, Ai Jun; Sun, Qiao; Aljada, Muhsen; Zhu, Zhong Hua; Lu, Gao Qing (Max)

    2012-02-01

    Field-effect transistors (FETs) fabricated from undoped and Co2+-doped CdSe colloidal nanowires show typical n-channel transistor behaviour with gate effect. Exposed to microscope light, a 10 times current enhancement is observed in the doped nanowire-based devices due to the significant modification of the electronic structure of CdSe nanowires induced by Co2+-doping, which is revealed by theoretical calculations from spin-polarized plane-wave density functional theory.Field-effect transistors (FETs) fabricated from undoped and Co2+-doped CdSe colloidal nanowires show typical n-channel transistor behaviour with gate effect. Exposed to microscope light, a 10 times current enhancement is observed in the doped nanowire-based devices due to the significant modification of the electronic structure of CdSe nanowires induced by Co2+-doping, which is revealed by theoretical calculations from spin-polarized plane-wave density functional theory. Z. Li gratefully acknowledges the support from Queensland Smart Futures Fellowship, UQ early-career-research grant and UQ new staff research startup grant. Support from the Australian Research Council (through its centres program) to the ARC Centre of Excellence for Functional Nanomaterials is also gratefully acknowledged.

  4. Molecular simulation study of the surface barrier effect. Dilute gas limit

    SciTech Connect

    Ford, D.M.; Glandt, E.D.

    1995-07-20

    The mass transfer resistance associated with penetrating the mouth of a very small pore is evaluated using classical molecular dynamics simulation techniques. The effects of temperature, pore size, and thermal motion of the adsorbent atoms are studied for a slit pore mouth model. Adsorption followed by surface diffusion to the pore mouth makes a significant contribution to the mass transfer when the temperature is low or, equivalently, when the adsorptive potential is strong. Thermal vibrations of the adsorbent atoms have little effect on the adsorption/surface diffusion mechanisms but cause fluctuations in the effective pore mouth area which can significantly affect transport rates. Perhaps the most important observation is that when the pore size approaches the kinetic diameter of the gas molecules, changes of a few percent in the pore size cause order-of-magnitude changes in the resistance. Therefore, it is possible that the surface barrier effect observed in zeolites and carbon molecular sieves is governed by highly localized (single atomic layer) structural details. 19 refs., 7 figs., 1 tab.

  5. Helium diffusion in carbonates

    NASA Astrophysics Data System (ADS)

    Amidon, W. H.; Cherniak, D. J.; Watson, E. B.; Hobbs, D.

    2013-12-01

    The abundance and large grain size of carbonate minerals make them a potentially attractive target for 4He thermochronology and 3He cosmogenic dating, although the diffusive properties of helium in carbonates remain poorly understood. This work characterizes helium diffusion in calcite and dolomite to better understand the crystal-chemical factors controlling He transport and retentivity. Slabs of cleaved natural calcite and dolomite, and polished sections of calcite cut parallel or normal to c, were implanted with 3He at 3 MeV with a dose of 5x1015/cm2. Implanted carbonates were heated in 1-atm furnaces, and 3He distributions following diffusion anneals were profiled with Nuclear Reaction Analysis using the reaction 3He(d,p)4He. For 3He transport normal to cleavage surfaces in calcite, we obtain the following Arrhenius relation over the temperature range 78-300°C: Dcalcite = 9.0x10-9exp(-55 × 6 kJ mol-1/RT) m2sec-1. Diffusion in calcite exhibits marked anisotropy, with diffusion parallel to c about two orders of magnitude slower than diffusion normal to cleavage faces. He diffusivities for transport normal to the c-axis are similar in value to those normal to cleavage surfaces. Our findings are broadly consistent with helium diffusivities from step-heating measurements of calcite by Copeland et al. (2007); these bulk degassing data may reflect varying effects of diffusional anisotropy. Helium diffusion normal to cleavage surfaces in dolomite is significantly slower than diffusion in calcite, and has a much higher activation energy for diffusion. For dolomite, we obtain the following Arrhenius relation for He diffusion over the temperature range 150-400°C: Ddolomite = 9.0x10-8exp(-92 × 9 kJ mol-1/RT) m2sec-1. The role of crystallographic structure in influencing these differences among diffusivities was evaluated using the maximum aperture approach of Cherniak and Watson (2011), in which crystallographic structures are sectioned along possible diffusion

  6. Concentration effects on turbulence in dilute polymer solutions far from walls.

    PubMed

    de Chaumont Quitry, Alexandre; Ouellette, Nicholas T

    2016-06-01

    We report measurements of the modification of turbulence far from any walls by small concentrations of long-chain polymers. We consider a range of statistical properties of the flow, including Eulerian and Lagrangian velocity structure functions, Eulerian acceleration correlation functions, and the relative dispersion of particle pairs. In all cases, we find that the polymer concentration has a strong effect on the extent to which the statistical properties are changed compared to their values in pure water. These effects can be captured by the recently proposed energy flux-balance model (when suitably extended into the time domain for Lagrangian statistics). However, unlike previous measurements, which found that the concentration effect could be completely scaled out, we consistently find that our data collapse onto two different master curves, one for small concentration and one for larger concentration. We suggest that the difference between the two may be related to the onset of interactions among polymer chains, which is likely to be more easily observed at the small Weissenberg numbers we consider here.

  7. Spin-orbit dilution effects on the magnetism of frustrated spinel Ge(Co1-xMgx)2O4

    NASA Astrophysics Data System (ADS)

    Agata, Ryotaro; Takita, Shota; Ishikawa, Takashi; Watanabe, Tadataka

    2015-03-01

    We investigated magnetic properties of spinel oxides Ge(Co1-xMgx)2O4 with x = 0 ~ 0.5 to study the spin-orbit dilution effects on the magnetism of spin-orbit frustrated spinel GeCo2O4. We discovered that the magnetic moment per single Co2+ ion is decreased with increasing nonmagnetic Mg2+ concentration, which indicates the spin-orbit decoupling caused by the spin-orbit dilution. Additionally, small-amount substitution of Mg2+ for Co2+ causes the rapid increase of the positive Weiss temperature indicating the enhancement of ferromagnetic interactions, while the Mg2+ substitution suppresses the antiferromagnetic ordering resulting in the appearance of spin glass behavior. The present results suggest that the spin-orbit dilution causes the spin-orbit decoupling and the reinforcement of ferromagnetic frustration in GeCo2O4.

  8. Seasonal variation of the effect of extremely diluted agitated gibberellic acid (10e-30) on wheat stalk growth: a multiresearcher study.

    PubMed

    Endler, Peter Christian; Matzer, Wolfgang; Reich, Christian; Reischl, Thomas; Hartmann, Anna Maria; Thieves, Karin; Pfleger, Andrea; Hoföcker, Jürgen; Lothaller, Harald; Scherer-Pongratz, Waltraud

    2011-01-01

    The influence of a homeopathic high dilution of gibberellic acid on wheat growth was studied at different seasons of the year. Seedlings were allowed to develop under standardized conditions for 7 days; plants were harvested and stalk lengths were measured. The data obtained confirm previous findings, that ultrahigh diluted potentized gibberellic acid affects stalk growth. Furthermore, the outcome of the study suggests that experiments utilizing the bioassay presented should best be performed in autumn season. In winter and spring, respectively, no reliable effects were found.

  9. Seasonal Variation of the Effect of Extremely Diluted Agitated Gibberellic Acid (10e-30) on Wheat Stalk Growth: A Multiresearcher Study

    PubMed Central

    Endler, Peter Christian; Matzer, Wolfgang; Reich, Christian; Reischl, Thomas; Hartmann, Anna Maria; Thieves, Karin; Pfleger, Andrea; Hofäcker, Jürgen; Lothaller, Harald; Scherer-Pongratz, Waltraud

    2011-01-01

    The influence of a homeopathic high dilution of gibberellic acid on wheat growth was studied at different seasons of the year. Seedlings were allowed to develop under standardized conditions for 7 days; plants were harvested and stalk lengths were measured. The data obtained confirm previous findings, that ultrahigh diluted potentized gibberellic acid affects stalk growth. Furthermore, the outcome of the study suggests that experiments utilizing the bioassay presented should best be performed in autumn season. In winter and spring, respectively, no reliable effects were found. PMID:22125426

  10. Reduced Uncertainties in the Supernova Production of the Gamma Emitting Nuclei 26Al, 44Ti, and 60Fe Using Effective Helium Burning Rates

    NASA Astrophysics Data System (ADS)

    Austin, Sam M.; West, Christopher; Heger, Alexander

    2016-09-01

    Uncertainties in the helium burning reaction rates caused large uncertainties in previous predictions of the production of the gamma emitting nuclei 26Al and (especially) 60Fe in core collapse supernovae. This precluded a meaningful comparison of the predictions with observed gamma ray intensities. We present results using a newly developed effective reaction rate (ERR) for the helium burning reactions to predict the yields of 26Al, 44Ti, and 60Fe. The resulting yield uncertainties using the ERR are much smaller than obtained previously, and smaller than other uncertainties. The yield ratio, 60Fe/26Al, had variations of less than 20 percent and appears to be the most robust observable related to the production of these nuclei. We also estimated the effects of failed supernovae on the yields by using a compactness filter. This substantially reduced the three yields but the ratio, 60Fe/26Al, was little affected. Research supported by US NSF and DOE, and by ARC.

  11. Memory effect in the chain-collapse process in a dilute polymer solution

    NASA Astrophysics Data System (ADS)

    Maki, Yasuyuki; Sasaki, Naoki; Nakata, Mitsuo

    2004-12-01

    The effect of temperature perturbation on a single-chain-collapse process was studied for poly(methyl methacrylate) with the molecular weight Mw=1.05×107 in the mixed solvent of tert-butyl alcohol+water (2.5 vol %). In the chain-collapse process after a quench from the θ temperature to a temperature T1, the temperature was changed from T1 to T2 at the time t1 after the quench and returned to T1 at the time t1+t2. In the three stages at T1, T2, and T1, measurements of the mean-square radius of gyration of polymer chains were carried out by static light scattering and the chain-collapse process was represented by the expansion factor as a function of time. An effect of chain aggregation on the measurements was negligibly small because of the very slow phase separation. For the negative temperature perturbation (T1>T2), the chain-collapse processes observed in the first and third stages were connected smoothly and agreed with the collapse process due to a single-stage quench to T1. A memory of the chain collapse in the first stage at T1 was found to persist into the third stage at the same temperature T1 without being affected by the temperature perturbation of T2 during t2. The memory effect was observed irrespective of the time period of t2. The positive temperature perturbation (T1

  12. Pretreatment of Sugar Beet Pulp with Dilute Sulfurous Acid is Effective for Multipurpose Usage of Carbohydrates.

    PubMed

    Kharina, M; Emelyanov, V; Mokshina, N; Ibragimova, N; Gorshkova, T

    2016-05-01

    Sulfurous acid was used for pretreatment of sugar beet pulp (SBP) in order to achieve high efficiency of both extraction of carbohydrates and subsequent enzymatic hydrolysis of the remaining solids. The main advantage of sulfurous acid usage as pretreatment agent is the possibility of its regeneration. Application of sulfurous acid as hydrolyzing agent in relatively low concentrations (0.6-1.0 %) during a short period of time (10-20 min) and low solid to liquid ratio (1:3, 1:6) allowed effective extraction of carbohydrates from SBP and provided positive effect on subsequent enzymatic hydrolysis. The highest obtained concentration of reducing substances (RS) in hydrolysates was 8.5 %; up to 33.6 % of all carbohydrates present in SBP could be extracted. The major obtained monosaccharides were arabinose and glucose (9.4 and 7.3 g/l, respectively). Pretreatment of SBP with sulfurous acid increased 4.6 times the yield of glucose during subsequent enzymatic hydrolysis of remaining solids with cellulase cocktail, as compared to the untreated SBP. Total yield of glucose during SBP pretreatment and subsequent enzymatic hydrolysis amounted to 89.4 % of the theoretical yield. The approach can be applied directly to the wet SBP. Hydrolysis of sugar beet pulp with sulfurous acid is recommended for obtaining of individual monosaccharides, as well as nutritional media.

  13. Effect of synapse dilution on the memory retrieval in structured attractor neural networks

    NASA Astrophysics Data System (ADS)

    Brunel, N.

    1993-08-01

    We investigate a simple model of structured attractor neural network (ANN). In this network a module codes for the category of the stored information, while another group of neurons codes for the remaining information. The probability distribution of stabilities of the patterns and the prototypes of the categories are calculated, for two different synaptic structures. The stability of the prototypes is shown to increase when the fraction of neurons coding for the category goes down. Then the effect of synapse destruction on the retrieval is studied in two opposite situations : first analytically in sparsely connected networks, then numerically in completely connected ones. In both cases the behaviour of the structured network and that of the usual homogeneous networks are compared. When lesions increase, two transitions are shown to appear in the behaviour of the structured network when one of the patterns is presented to the network. After the first transition the network recognizes the category of the pattern but not the individual pattern. After the second transition the network recognizes nothing. These effects are similar to syndromes caused by lesions in the central visual system, namely prosopagnosia and agnosia. In both types of networks (structured or homogeneous) the stability of the prototype is greater than the stability of individual patterns, however the first transition, for completely connected networks, occurs only when the network is structured.

  14. Experiments in dilution jet mixing effects of multiple rows and non-circular orifices

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Srinivasan, R.; Coleman, E. B.; Meyers, G. D.; White, C. D.

    1985-01-01

    Experimental and empirical model results are presented that extend previous studies of the mixing of single-sided and opposed rows of jets in a confined duct flow to include effects of non-circular orifices and double rows of jets. Analysis of the mean temperature data obtained in this investigation showed that the effects of orifice shape and double rows are significant only in the region close to the injection plane, provided that the orifices are symmetric with respect to the main flow direction. The penetration and mixing of jets from 45-degree slanted slots is slightly less than that from equivalent-area symmetric orifices. The penetration from 2-dimensional slots is similar to that from equivalent-area closely-spaced rows of holes, but the mixing is slower for the 2-D slots. Calculated mean temperature profiles downstream of jets from non-circular and double rows of orifices, made using an extension developed for a previous empirical model, are shown to be in good agreement with the measured distributions.

  15. Optical properties of planar waveguides on ZnWO₄ formed by carbon and helium ion implantation and effects of annealing.

    PubMed

    Zhao, Jin-Hua; Liu, Tao; Guo, Sha-Sha; Guan, Jing; Wang, Xue-Lin

    2010-08-30

    We report on the optical properties of ZnWO(4) planar waveguides created by ion implantation, and the effect annealing has on these structures. Planar optical waveguides in ZnWO(4) crystals are fabricated by 5.0 MeV carbon ion implantation with a fluence of 1 × 10(15) ions/cm(2) or 500 keV helium ion implantation with the a fluence of 1 × 10(16) ions/cm(2). The thermal stability was investigated by 60 minute annealing cycles at different temperatures ranging from 260°C to 550°C in air. The guided modes were measured by a model 2010 prism coupler at wavelengths of 633 nm and 1539 nm. The reflectivity calculation method (RCM) was applied to simulate the refractive index profile in these waveguides. The near-field light intensity profiles were measured using the end-face coupling method. The absorption spectra show that the implantation processes have almost no influence on the visible band absorption.

  16. Effect of trailing edge thickness on the performance of a helium turboexpander used in cryogenic refrigeration and liquefaction cycles

    NASA Astrophysics Data System (ADS)

    Sam, Ashish Alex; Ghosh, Parthasarathi

    2017-02-01

    Turboexpanders in cryogenic refrigeration and liquefaction cycles, which is of radial inflow configuration, constitute stationary and rotating components like nozzle, a rotating wheel and a diffuser. The relative motion between the stationary and rotating components and the interactions of secondary flows and vortices at different stages make the turboexpander flow unsteady. Computational Fluid Dynamics (CFD) analysis of this flow is essential to identify the scope for improvement in efficiency. The trailing edge vortex formed due to the mixing of the pressure and suction side streams is an important phenomenon to analyse, as this leads to efficiency degradation of the machine. Additionally, there are mechanical vibrations and dynamic loading associated with. This flow non-uniformity at the exit should be suppressed as this may affect the pressure recovery process in the diffuser and thereby the turboexpander’s performance. The strength of this vortex depends upon the geometrical parameters like trailing edge shape, thickness etc. In this paper, transient CFD analyses of a cryogenic turboexpander designed for helium refrigeration and liquefaction cycles using Ansys CFX® were performed to investigate the effect of trailing edge thickness on the turboexpander performance and the performance characteristics and the flow patterns were compared to understand the flow characteristics in each case.

  17. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet

    PubMed Central

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T. H.; Kang, Tae-Hong

    2014-01-01

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment. PMID:25319447

  18. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet.

    PubMed

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T H; Kang, Tae-Hong

    2014-10-16

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment.

  19. Comparison of the effectiveness of exposure to low LET helium particles (4He) and gamma rays (137Cs) on the disruption of cognitive performance

    USDA-ARS?s Scientific Manuscript database

    Rats were exposed to either Helium (4He) particles (1000 MeV/n; 0.1 – 10 cGy; head-only) or Cesium 137Cs gamma rays (50 – 400 cGy; whole body) and the effects of irradiation on cognitive performance evaluated. The results indicated that exposure to doses of 4He particles as low as 0.1 cGy disrupted...

  20. The carrier gas pressure effect in a laminar flow diffusion chamber, homogeneous nucleation of n-butanol in helium.

    PubMed

    Hyvärinen, Antti-Pekka; Brus, David; Zdímal, Vladimír; Smolík, Jiri; Kulmala, Markku; Viisanen, Yrjö; Lihavainen, Heikki

    2006-06-14

    Homogeneous nucleation rate isotherms of n-butanol+helium were measured in a laminar flow diffusion chamber at total pressures ranging from 50 to 210 kPa to investigate the effect of carrier gas pressure on nucleation. Nucleation temperatures ranged from 265 to 280 K and the measured nucleation rates were between 10(2) and 10(6) cm(-3) s(-1). The measured nucleation rates decreased as a function of increasing pressure. The pressure effect was strongest at pressures below 100 kPa. This negative carrier gas effect was also temperature dependent. At nucleation temperature of 280 K and at the same saturation ratio, the maximum deviation between nucleation rates measured at 50 and 210 kPa was about three orders of magnitude. At nucleation temperature of 265 K, the effect was negligible. Qualitatively the results resemble those measured in a thermal diffusion cloud chamber. Also the slopes of the isothermal nucleation rates as a function of saturation ratio were different as a function of total pressure, 50 kPa isotherms yielded the steepest slopes, and 210 kPa isotherms the shallowest slopes. Several sources of inaccuracies were considered in the interpretation of the results: uncertainties in the transport properties, nonideal behavior of the vapor-carrier gas mixture, and shortcomings of the used mathematical model. Operation characteristics of the laminar flow diffusion chamber at both under-and over-pressure were determined to verify a correct and stable operation of the device. We conclude that a negative carrier gas pressure effect is seen in the laminar flow diffusion chamber and it cannot be totally explained with the aforementioned reasons.

  1. Effects of SPORL and dilute acid pretreatment on substrate morphology, cell physical and chemical wall structures, and subsequent enzymatic hydrolysis of lodgepole pine

    Treesearch

    Xinping Li; Xiaolin Luo; Kecheng Li; J.Y. Zhu; J. Dennis Fougere; Kimberley Clarke

    2012-01-01

    The effects of pretreatment by dilute acid and sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) on substrate morphology, cell wall physical and chemical structures, along with the subsequent enzymatic hydrolysis of lodgepole pine substrate were investigated. FE-SEM and TEM images of substrate structural morphological changes showed that SPORL...

  2. Isolation and structural characterization of sugarcane bagasse lignin after dilute phosphoric acid plus steam explosion pretreatment and its effect on cellulose hydrolysis

    Treesearch

    Jijiao Zeng; Zhaohui Tong; Letian Wang; J.Y. Zhu; Lonnie Ingram

    2014-01-01

    The structure of lignin after dilute phosphoric acid plus steam explosion pretreatment process of sugarcane bagasse in a pilot scale and the effect of the lignin extracted by ethanol on subsequent cellulose hydrolysis were investigated. The lignin structural changes caused by pretreatment were identified using advanced nondestructive techniques such as gel permeation...

  3. Effects of dilute aqueous NaCl solution on caffeine aggregation

    NASA Astrophysics Data System (ADS)

    Sharma, Bhanita; Paul, Sandip

    2013-11-01

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogen bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl.

  4. Effect of pelleting on the recalcitrance and bioconversion of dilute-acid pretreated corn stover

    SciTech Connect

    Allison E Ray; Amber Hoover; Gary Gresham

    2012-07-01

    Background: Knowledge regarding the performance of densified biomass in biochemical processes is limited. The effects of densification on biochemical conversion are explored here. Methods: Pelleted corn stover samples were generated from bales that were milled to 6.35 mm. Low-solids acid pretreatment and simultaneous saccharification and fermentation were performed to evaluate pretreatment efficacy and ethanol yields achieved for pelleted and ground stover (6.35 mm and 2 mm) samples. Both pelleted and 6.35-mm ground stover were evaluated using a ZipperClave® reactor under high-solids, process-relevant conditions for multiple pretreatment severities (Ro), followed by enzymatic hydrolysis of the washed, pretreated solids. Results: Monomeric xylose yields were significantly higher for pellets (approximately 60%) than for ground formats (approximately 38%). Pellets achieved approximately 84% of theoretical ethanol yield (TEY); ground stover formats had similar profiles, reaching approximately 68% TEY. Pelleting corn stover was not detrimental to pretreatment efficacy for both low- and high-solids conditions, and even enhanced ethanol yields.

  5. Effect of dilution on the spin pairing transition in rhombohedral carbonates

    SciTech Connect

    Lavina, Barbara; Dera, Przemyslaw; Downs, Robert T.; Tschaunera, Oliver; Yange, Wenge; Shebanova, Olga; Shen, Guoyin

    2010-11-12

    The compressibility of an iron-bearing magnesite (Mg{sub 0.87}Fe{sub 0.12}{sup 2+}Ca{sub 0.01}) CO{sub 3} was determined by means of single crystal diffraction up to 64 GPa. Up to 49 GPa the pressure-evolution of the unit cell volume of the solid solution with 12% of Fe{sup 2+} can be described by a third-order Birch-Murnaghan equation of state with parameters V{sub 0} = 281.0(5) {angstrom}{sup 3}, K{sub 0} = 102.8(3) GPa, K{prime}{sub 0} = 5.44. The spin pairing of the Fe{sup 2+} d-electrons occurs between 49 and 52 GPa, as evidenced by a discontinuous volume change. The transition pressure is increased by about 5 GPa compared with the iron end-member; an effect consistent with a cooperative contribution of adjacent clusters to the spin transition. The trend is, however, opposite in the periclase-wustite solid solution. Differences among the two structures, in particular in the Fe-Fe interactions, that might explain the different behavior are discussed.

  6. Effects of dilute aqueous NaCl solution on caffeine aggregation

    SciTech Connect

    Sharma, Bhanita; Paul, Sandip

    2013-11-21

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogen bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl.

  7. Rarefaction effects in dilute granular Poiseuille flow: Knudsen minimum and temperature bimodality

    NASA Astrophysics Data System (ADS)

    Mahajan, Achal; Alam, Meheboob

    2015-11-01

    The gravity-driven flow of smooth inelastic hard-disks through a channel, analog of granular Poiseuille flow, is analysed using event-driven simulations. We find that the variation of the mass-flow rate (Q) with Knudsen number (Kn) can be non-monotonic in the elastic limit (i.e. the restitution coefficient en --> 1) in channels with very smooth walls. The Knudsen minimum effect (i.e. the minimum flow rate occurring at Kn ~ O (1) for the Poiseuille flow of a molecular gas) is found to be absent in a granular gas with en <= 0 . 99 , irrespective of wall roughness. Another rarefaction phenomenon, the bimodality of the temperature profile, with a local minimum at the channel centerline and two symmetric maxima (Tmax) away from the centerline, is studied. We show that the inelastic dissipation is responsible for the onset of temperature bimodality [i.e. the excess temperature, ▵ T = (Tmax /Tmin - 1) ≠ 0 ] near the continuum limit (Kn ~ 0), but the rarefaction being its origin (as in molecular gas) holds beyond Kn ~ O (0 . 1) . The competition between dissipation and rarefaction seems to be responsible for the observed dependence of both mass-flow rate and temperature bimodality on Kn and en . [Alam etal. 2015, JFM (revised)].

  8. Effect of added polymer in free jets of a dilute polymer solution

    NASA Astrophysics Data System (ADS)

    Renoult, Marie-Charlotte; Charpentier, Jean-Baptiste; Crumeyrolle, Olivier; Mutabazi, Innocent

    2016-11-01

    The instability of a free viscoelastic jet is experimentally investigated by extruding an aqueous solution containing five parts per million of Poly(ethylene oxide) into air from a sixty micrometers orifice at relative low speeds. A method of image analysis was developed to quantify the effect of the added polymer on the morphology and the stability of the jet breakup. Three main representations were considered: the area versus perimeter relation for all liquid objects detected on the images, i.e. jets and jet fragments, the equivalent diameter distribution of jet fragments and the standard deviation curve of jets profiles. The former two provide information on the morphology of jet fragments: distinction of two classes, products and residues, and existence of coalescence. The latter gives information on the jet breakup stability: measurement of the growth rate and initial amplitude of the jet instability and detection of beads-on-a-string structures in the jet interface deformation. Experimental results will be presented and compared to theory.

  9. Helium diffusion in the sun

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.; Pinsonneault, M. H.

    1992-01-01

    We calculate improved standard solar models using the new Livermore (OPAL) opacity tables, an accurate (exportable) nuclear energy generation routine which takes account of recent measurements and analyses, and the recent Anders-Grevesse determination of heavy element abundances. We also evaluate directly the effect of the diffusion of helium with respect to hydrogen on the calculated neutrino fluxes, on the primordial solar helium abundance, and on the depth of the convective zone. Helium diffusion increases the predicted event rates by about 0.8 SNU, or 11 percent of the total rate, in the chlorine solar neutrino experiment, by about 3.5 SNU, or 3 percent, in the gallium solar neutrino experiments, and by about 12 percent in the Kamiokande and SNO solar neutrino experiments. The best standard solar model including helium diffusion and the most accurate nuclear parameters, element abundances, and radiative opacity predicts a value of 8.0 SNU +/- 3.0 SNU for the C1-37 experiment and 132 +21/-17 SNU for the Ga - 71 experiment, where the uncertainties include 3 sigma errors for all measured input parameters.

  10. Effects of pollen dilution on infection of Nosema ceranae in honey bees.

    PubMed

    Jack, Cameron J; Uppala, Sai Sree; Lucas, Hannah M; Sagili, Ramesh R

    2016-04-01

    Multiple stressors are currently threatening honey bee health, including pests and pathogens. Among honey bee pathogens, Nosema ceranae is a microsporidian found parasitizing the western honey bee (Apis mellifera) relatively recently. Honey bee colonies are fed pollen or protein substitute during pollen dearth to boost colony growth and immunity against pests and pathogens. Here we hypothesize that N. ceranae intensity and prevalence will be low in bees receiving high pollen diets, and that honey bees on high pollen diets will have higher survival and/or increased longevity. To test this hypothesis we examined the effects of different quantities of pollen on (a) the intensity and prevalence of N. ceranae and (b) longevity and nutritional physiology of bees inoculated with N. ceranae. Significantly higher spore intensities were observed in treatments that received higher pollen quantities (1:0 and 1:1 pollen:cellulose) when compared to treatments that received relatively lower pollen quantities. There were no significant differences in N. ceranae prevalence among different pollen diet treatments. Interestingly, the bees in higher pollen quantity treatments also had significantly higher survival despite higher intensities of N. ceranae. Significantly higher hypopharyngeal gland protein was observed in the control (no Nosema infection, and receiving a diet of 1:0 pollen:cellulose), followed by 1:0 pollen:cellulose treatment that was inoculated with N. ceranae. Here we demonstrate that diet with higher pollen quantity increases N. ceranae intensity, but also enhances the survival or longevity of honey bees. The information from this study could potentially help beekeepers formulate appropriate protein feeding regimens for their colonies to mitigate N. ceranae problems.

  11. Effect of oxygen vacancy on half metallicity in Ni-doped CeO{sub 2} diluted magnetic semiconductor

    SciTech Connect

    Saini, Hardev S. Saini, G. S. S.; Singh, Mukhtiyar; Kashyap, Manish K.

    2015-05-15

    The electronic and magnetic properties of Ni-doped CeO{sub 2} diluted amgentic semiconductor (DMS) including the effect of oxygen vacancy (V{sub o}) with doping concentration, x = 0.125 have been calculated using FPLAPW method based on Density Functional Theory (DFT) as implemented in WIEN2k. In the present supercell approach, the XC potential was constructed using GGA+U formalism in which Coulomb correction is applied to standard GGA functional within the parameterization of Perdew-Burke-Ernzerhof (PBE). We have found that the ground state properties of bulk CeO{sub 2} compound have been modified significantly due to the substitution of Ni-dopant at the cation (Ce) site with/without V{sub O} and realized that the ferromagnetism in CeO{sub 2} remarkably depends on the V{sub o} concentrations. The presence of V{sub o}, in Ni-doped CeO{sub 2}, can leads to strong ferromagnetic coupling between the nearest neighboring Ni-ions and induces a HMF in this compound. Such ferromagnetic exchange coupling is mainly attributed to spin splitting of Ni-d states, via electrons trapped in V{sub o}. The HMF characteristics of Ni-doped CeO{sub 2} including V{sub o} makes it an ideal material for spintronic devices.

  12. The molecular properties of biochar carbon released in dilute acidic solution and its effects on maize seed germination.

    PubMed

    Sun, Jingling; Drosos, Marios; Mazzei, Pierluigi; Savy, Davide; Todisco, Daniele; Vinci, Giovanni; Pan, Genxing; Piccolo, Alessandro

    2017-01-15

    It is not yet clear whether the carbon released from biochar in the soil solution stimulates biological activities. Soluble fractions (AQU) from wheat and maize biochars, whose molecular content was thoroughly characterized by FTIR, (13)C and (1)H NMR, and high-resolution ESI-IT-TOF-MS, were separated in dilute acidic solution to simulate soil rhizospheric conditions and their effects evaluated on maize seeds germination activity. Elongation of maize-seeds coleoptile was significantly promoted by maize biochar AQU, whereas it was inhibited by wheat biochar AQU. Both AQU fractions contained relatively small heterocyclic nitrogen compounds, whose structures were accounted by their spectroscopic properties. Point-of-Zero-Charge (PZC) values and van Krevelen plots of identified masses of soluble components suggested that the dissolved carbon from maize biochar behaved as humic-like supramolecular material capable to adhere to seedlings and deliver bioactive molecules. These findings contribute to understand the biostimulation potential of biochars from crop biomasses when applied in agricultural production. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Random dilution effects in the frustrated spin chain β -CaCr2 -xScxO4

    NASA Astrophysics Data System (ADS)

    Songvilay, M.; Petit, S.; Hardy, V.; Castellan, J. P.; André, G.; Martin, C.; Damay, F.

    2015-02-01

    Random dilution effects in the magnetic zigzag ladder (J1-J2 chain) β -CaC r2 -xS cxO4 have been investigated combining magnetic susceptibility, specific heat measurements, and neutron scattering. The pseudogapped magnetic excitations observed above TN in β -CaC r2O4 (x =0 ) persist up to x =0.3 with an increasing characteristic frequency E0 but vanish for x =0.5 for which a quasielastic signal extending up to 8 meV becomes the characteristic feature of the magnetic spectrum. Magnetic ordering is seen up to x =0.3 with decreased ordering temperature TN and correlation length. The results are interpreted in terms of the progressive confinement of one-dimensional excitations within shorter chains as x increases and emphasize the crucial role of J2 in propagating magnetic excitations. For an average chain length l smaller than ˜16 magnetic atoms, the system breaks apart into a set of disconnected units with the dynamical properties of a spin glass.

  14. Calculation and measurement of helium generation and solid transmutations in Cu-Zn-Ni alloys

    SciTech Connect

    Greenwood, L.R.; Oliver, B.M.; Garner, F.A.; Muroga, T.

    1998-03-01

    A method was recently proposed by Garner and Greenwood that would allow the separation of the effects of solid and gaseous transmutation for Cu-Zn-Ni alloys. Pure copper produces zinc and nickel during neutron irradiation. {sup 63}Cu transmutes to {sup 64}Ni and {sup 64}Zn, in about a 2-to-1 ratio, and {sup 65}Cu transmutes to {sup 66}Zn. The {sup 64}Zn further transmutes to {sup 65}Zn which has been shown to have a high thermal neutron (n,{alpha}) cross-section. Since a three-step reaction sequence is required for natural copper, the amount of helium produced is much smaller than would be produced for the two-step, well-known {sup 58}Ni (n,{gamma}) {sup 59}Ni (n,{alpha}) reaction sequence. The addition of natural Zn and Ni to copper leads to greatly increased helium production in neutron spectra with a significant thermal component. Using a suitable Cu-Zn-Ni alloy matrix and comparative irradiation of thermal neutron-shielded and unshielded specimens, it should be possible to distinguish the separate influences of the solid and gaseous transmutants. Whereas helium generation rates have been previously measured for natural nickel and copper, they have not been measured for natural Zn or Cu-Ni-Zn alloys. The (N,{alpha}) cross section for {sup 65}Zn was inferred from helium measurements made with natural copper. By comparing helium production in Cu and Cu-Zn alloys, this cross section can be determined more accurately. In the current study, both the solid and helium transmutants were measured for Cu, Cu-5Ni, Cu-3.5Zn and Cu-5Ni-2Zn, irradiated in each of two positions in the HFIR JP-23 test. Highly accurate helium measurements were performed on these materials by isotope dilution mass spectrometry using a facility that was recently moved from Rockwell International to PNNL. It is shown that both the helium and solid transmutants for Cu-zn-Ni alloys can be calculated with reasonable certainty, allowing the development of a transmutation experiment as proposed by

  15. Microfluidic serial dilution ladder.

    PubMed

    Ahrar, Siavash; Hwang, Michelle; Duncan, Philip N; Hui, Elliot E

    2014-01-07

    Serial dilution is a fundamental procedure that is common to a large number of laboratory protocols. Automation of serial dilution is thus a valuable component for lab-on-a-chip systems. While a handful of different microfluidic strategies for serial dilution have been reported, approaches based on continuous flow mixing inherently consume larger amounts of sample volume and chip real estate. We employ valve-driven circulatory mixing to address these issues and also introduce a novel device structure to store each stage of the dilution process. The dilution strategy is based on sequentially mixing the rungs of a ladder structure. We demonstrate a 7-stage series of 1 : 1 dilutions with R(2) equal to 0.995 in an active device area of 1 cm(2).

  16. Effect of dilution rate and methanol-glycerol mixed feeding on heterologous Rhizopus oryzae lipase production with Pichia pastoris Mut(+) phenotype in continuous culture.

    PubMed

    Canales, Christian; Altamirano, Claudia; Berrios, Julio

    2015-01-01

    The induction using substrate mixtures is an operational strategy for improving the productivity of heterologous protein production with Pichia pastoris. Glycerol as a cosubstrate allows for growth at a higher specific growth rate, but also has been reported to be repressor of the expression from the AOX1 promoter. Thus, further insights about the effects of glycerol are required for designing the induction stage with mixed substrates. The production of Rhizopus oryzae lipase (ROL) was used as a model system to investigate the application of methanol-glycerol feeding mixtures in fast metabolizing methanol phenotype. Cultures were performed in a simple chemostat system and the response surface methodology was used for the evaluation of both dilution rate and methanol-glycerol feeding composition as experimental factors. Our results indicate that productivity and yield of ROL are strongly affected by dilution rate, with no interaction effect between the involved factors. Productivity showed the highest value around 0.04-0.06 h(-1) , while ROL yield decreased along the whole dilution rate range evaluated (0.03-0.1 h(-1) ). Compared to production level achieved with methanol-only feeding, the highest specific productivity was similar in mixed feeding (0.9 UA g-biomass(-1) h(-1) ), but volumetric productivity was 70% higher. Kinetic analysis showed that these results are explained by the effects of dilution rate on specific methanol uptake rate, instead of a repressor effect caused by glycerol feeding. It is concluded that despite the effect of dilution rate on ROL yield, mixed feeding strategy is a proper process option to be applied to P. pastoris Mut(+) phenotype for heterologous protein production.

  17. Effectiveness of helium-neon laser irradiation on viability and cytotoxicity of diabetic-wounded fibroblast cells.

    PubMed

    Houreld, N N; Abrahamse, H

    2007-12-01

    This study investigated the effectiveness of helium-neon (He-Ne) laser irradiation at increasing intervals on diabetic-induced wounded human skin fibroblast cells (WS1) at a morphological, cellular, and molecular level. The controversies over light therapy can be explained by the differing exposure regimens and models used. No therapeutic window for dosimetry and mechanism of action has been determined at the level of individual cell types, particularly in diabetic cells in vitro. WS1 cells were used to simulate an in vitro wounded diabetic model. The effect of the frequency of He-Ne irradiation (632.8 nm) at a fluence of 5 J/cm(2) was determined by analysis of cell morphology, viability, cytotoxicity, and DNA damage. Cells were irradiated using three different protocols: they were irradiated at 30 min only; irradiated twice, at 30 min and at 24 h; or irradiated twice, at 30 min and at 72 h post-wound induction. A single exposure to 5 J/cm(2) 30 min post-wound induction increased cellular damage. Irradiation of cells at 30 min and at 24 h post-wound induction decreased cellular viability, cytotoxicity, and DNA damage. However, complete wound closure as well as an increase in viability and a decrease in cytotoxicity and DNA damage occurs when cells were irradiated at 30 min and at 72 h post-wound induction. Wounded diabetic WS1 cells irradiated to 5 J/cm(2) showed increased cellular repair when irradiated with adequate time between irradiations, allowing time for cellular response mechanisms to take effect. Therefore, the irradiation interval was shown to play an important role in wound healing in vitro and should be taken into account.

  18. The Effect of Quantum-Mechanical Interference on Precise Measurements of the n = 2 Triplet P Fine Structure of Helium

    SciTech Connect

    Marsman, A.; Horbatsch, M.; Hessels, E. A.

    2015-09-15

    For many decades, improvements in both theory and experiment of the fine structure of the n = 2 triplet P levels of helium have allowed for an increasingly precise determination of the fine-structure constant. Recently, it has been observed that quantum-mechanical interference between neighboring resonances can cause significant shifts, even if such neighboring resonances are separated by thousands of natural widths. The shifts depend in detail on the experimental method used for the measurement, as well as the specific experimental parameters employed. Here, we review how these shifts apply for the most precise measurements of the helium 2{sup 3}P fine-structure intervals.

  19. Role of dissolved gas in optical breakdown of water: differences between effects due to helium and other gases.

    PubMed

    Bunkin, N F; Ninham, B W; Babenko, V A; Suyazov, N V; Sychev, A A

    2010-06-17

    It is shown that water contains defects in the form of heterogeneous optical breakdown centers. Long-living complexes composed of gas and liquid molecules may serve as nuclei for such centers. A new technique for removing dissolved gas from water is developed. It is based on a "helium washing" routine. The structure of helium-washed water is very different from that of water containing dissolved atmospheric gas. It is able to withstand higher optical intensities and temperatures of superheating compared with the nonprocessed ones. The characteristics of plasma spark and values of the breakdown thresholds for processed and nonprocessed samples are given.

  20. Generation of reactive oxygen and nitrogen species and its effects on DNA damage in lung cancer cells exposed to atmospheric pressure helium/oxygen plasma jets

    NASA Astrophysics Data System (ADS)

    Chung, Tae Hun; Joh, Hea Min; Kim, Sun Ja; Choi, Ji Ye; Kang, Tae-Hong

    2016-09-01

    We investigated the effects of the operating parameters on the generation of reactive oxygen and nitrogen species (RONS) in the gas and liquid phases exposed to atmospheric pressure a pulsed-dc helium plasma jets. The densities of reactive species including OH radicals were obtained at the plasma-liquid surface and inside the plasma-treated liquids using ultraviolet absorption spectroscopy and chemical probe method. And the nitrite concentration was detected by Griess assay. The data are very suggestive that there is a strong correlation among the production of RONS in the plasmas and liquids. Exposure of plasma to cancer cells increases the cellular levels of RONS, which has been linked to apoptosis and the damage of cellular proteins, and may also indirectly cause structural damage to DNA. To identify the correlation between the production of RONS in cells and plasmas, various assay analyses were performed on plasma treated human lung cancer cells (A549) cells. In addition, the effect of additive oxygen gas on the plasma-induced oxidative stress in cancer cells was investigated. It was observed that DNA damage was significantly increased with helium/oxygen plasma compared to with pure helium plasma.

  1. Magnesium cluster film synthesis by helium nanodroplets.

    PubMed

    Emery, Samuel B; Rider, Keith B; Little, Brian K; Schrand, Amanda M; Lindsay, C Michael

    2013-08-07

    Atomic and molecular clusters are a unique class of substances with properties that differ greatly from those of the bulk or single atoms due to changes in surface to volume ratio and finite size effects. Here, we demonstrate the ability to create cluster matter films using helium droplet mediated cluster assembly and deposition, a recently developed methodology that condenses atoms or molecules within liquid helium droplets and then gently deposits them onto a surface. In this work, we examine magnesium nanocluster films, which exhibit growth behavior comparable to low-energy cluster beam methods, and demonstrate physical properties and morphology dependent on helium droplet size.

  2. Effects of indirect actions and oxygen on relative biological effectiveness: estimate of DSB induction and conversion induced by gamma rays and helium ions

    PubMed Central

    Tsai, Ju-Ying; Chen, Fang-Hsin; Hsieh, Tsung-Yu; Hsiao, Ya-Yun

    2015-01-01

    Clustered DNA damage other than double-strand breaks (DSBs) can be detrimental to cells and can lead to mutagenesis or cell death. In addition to DSBs induced by ionizing radiation, misrepair of non-DSB clustered damage contributes extra DSBs converted from DNA misrepair via pathways for base excision repair and nucleotide excision repair. This study aimed to quantify the relative biological effectiveness (RBE) when DSB induction and conversion from non-DSB clustered damage misrepair were used as biological endpoints. The results showed that both linear energy transfer (LET) and indirect action had a strong impact on the yields for DSB induction and conversion. RBE values for DSB induction and maximum DSB conversion of helium ions (LET = 120 keV/μm) to 60Co gamma rays were 3.0 and 3.2, respectively. These RBE values increased to 5.8 and 5.6 in the absence of interference of indirect action initiated by addition of 2-M dimethylsulfoxide. DSB conversion was ∼1–4% of the total non-DSB damage due to gamma rays, which was lower than the 10% estimate by experimental measurement. Five to twenty percent of total non-DSB damage due to helium ions was converted into DSBs. Hence, it may be possible to increase the yields of DSBs in cancerous cells through DNA repair pathways, ultimately enhancing cell killing. PMID:25902742

  3. Silicon-Germanium Films Deposited by Low Frequency PE CVD: Effect of H2 and Ar Dilution

    SciTech Connect

    Kosarev, A; Torres, A; Hernandez, Y; Ambrosio, R; Zuniga, C; Felter, T E; Asomoza, R R; Kudriavtsev, Y; Silva-Gonzalez, R; Gomez-Barojas, E; Ilinski, A; Abramov, A S

    2005-09-22

    We have studied structure and electrical properties of Si{sub 1-Y}Ge{sub Y}:H films deposited by low frequency PE CVD over the entire composition range from Y=0 to Y=1. The deposition rate of the films and their structural and electrical properties were measured for various ratios of the germane/silane feed gases and with and without dilution by Ar and by H{sub 2}. Structure and composition was studied by Auger electron spectroscopy (AES), secondary ion mass spectroscopy (SIMS) and Fourier transform infrared (FTIR) spectroscopy. Surface morphology was characterized by atomic force microscopy (AFM). We found: (1) The deposition rate increased with Y maximizing at Y=1 without dilution. (2) The relative rate of Ge and Si incorporation is affected by dilution. (3) Hydrogen preferentially bonds to silicon. (4) Hydrogen content decreases for increasing Y. In addition, optical measurements showed that as Y goes for 0 to 1, the Fermi level moves from mid gap to the conduction band edge, i.e. the films become more n-type. No correlation was found between the pre-exponential and the activation energy of conductivity. The behavior of the conductivity {gamma}-factor suggests a local minimum in the density of states at E {approx} 0.33 eV for the films grown with or without H-dilution and E {approx} 0.25 eV for the films with Ar dilution.

  4. Study of the matrix effects and sample dilution influence on the LC-ESI-MS/MS analysis using four derivatization reagents.

    PubMed

    Oldekop, Maarja-Liisa; Herodes, Koit; Rebane, Riin

    2014-09-15

    For liquid chromatographic analysis of amino acids involving derivatization and mass-spectrometric detection, it becomes more important to evaluate the presence of matrix effects in complex samples. This is somewhat complicated for amino acid analysis where analyte free sample matrix is often unavailable. In this work, matrix effects were investigated using post-column infusion method for 9-fluorenylmethyl chloroformate (FMOC-Cl) derivatives of β-Ala, Gly and Phe and diethyl ethoxymethylenemalonate (DEEMM) derivative of β-Ala. While for DEEMM derivatives, the main signal suppression was due to the borate buffer, in case of FMOC-Cl, other FMOC-derivatives caused signal suppression. Analysis of amino acids in tea and honey with DEEMM, FMOC-Cl, p-N,N,N-trimethylammonioanilyl N'-hydroxysuccinimidyl carbamate iodide (TAHS) and dansyl chloride (DNS) showed that amino acid concentrations found with different reagents do not agree well. Sample dilution experiments indicated that the sample matrix affected the analysis results obtained with DEEMM the least, but with FMOC-Cl, TAHS and DNS, sample dilution had an influence on the results. When sample dilution and extrapolative dilution approach were applied on the latter results, an agreement of amino acid concentrations measured with different reagents was achieved within relative standard deviation (RSD) of 22% for most cases.

  5. The effects of topical tripeptide copper complex and helium-neon laser on wound healing in rabbits.

    PubMed

    Gul, Nihal Y; Topal, Ayse; Cangul, I Taci; Yanik, Kemal

    2008-02-01

    The aim of this study was to compare the clinical and histopathological effects of tripeptide copper complex (TCC) and two different doses of laser application (helium-neon laser, 1 and 3 J cm(-2)) on wound healing with untreated control wounds. Experimental wounds were created on a total of 24 New Zealand white rabbits and topical TCC or laser was applied for 28 days. The wounds were observed daily, and planimetry was performed on days 7, 14, 21 and 28 to measure the unhealed wound area and percentage of total wound healing. Biopsies were taken weekly to evaluate the inflammatory response and the level of neovascularization. The median time for the first observable granulation tissue was shorter (P < 0.05) in the low and high dose laser groups than in the control group (3 and 2.66 vs. 4.5 days), but was not different between the TCC and control groups (4.16 vs. 4.5 days). Filling of the open wound to skin level with granulation tissue was faster (P < 0.05) in the TCC and high dose laser groups than in the control group (14 and 16 vs. 25 days), but was not different between the low dose laser and control groups (23 vs. 25 days). The average time for healing was shorter (P < 0.05) in the TCC and high dose laser groups (29.8 and 30.2 vs. 34.6 days), but was not different between the low dose laser and control groups (33.8 vs. 34.6 days). Histopathologically, wound healing was characterized by a decrease in the neutrophil counts and an increase in neovascularization. The TCC and high dose laser groups had greater neutrophil and vessel counts than in the control group, suggesting a more beneficial effect for wound healing.

  6. The effect of dilution and the use of a post-extraction nucleic acid purification column on the accuracy, precision, and inhibition of environmental DNA samples

    USGS Publications Warehouse

    Mckee, Anna M.; Spear, Stephen F.; Pierson, Todd W.

    2015-01-01

    Isolation of environmental DNA (eDNA) is an increasingly common method for detecting presence and assessing relative abundance of rare or elusive species in aquatic systems via the isolation of DNA from environmental samples and the amplification of species-specific sequences using quantitative PCR (qPCR). Co-extracted substances that inhibit qPCR can lead to inaccurate results and subsequent misinterpretation about a species’ status in the tested system. We tested three treatments (5-fold and 10-fold dilutions, and spin-column purification) for reducing qPCR inhibition from 21 partially and fully inhibited eDNA samples collected from coastal plain wetlands and mountain headwater streams in the southeastern USA. All treatments reduced the concentration of DNA in the samples. However, column purified samples retained the greatest sensitivity. For stream samples, all three treatments effectively reduced qPCR inhibition. However, for wetland samples, the 5-fold dilution was less effective than other treatments. Quantitative PCR results for column purified samples were more precise than the 5-fold and 10-fold dilutions by 2.2× and 3.7×, respectively. Column purified samples consistently underestimated qPCR-based DNA concentrations by approximately 25%, whereas the directional bias in qPCR-based DNA concentration estimates differed between stream and wetland samples for both dilution treatments. While the directional bias of qPCR-based DNA concentration estimates differed among treatments and locations, the magnitude of inaccuracy did not. Our results suggest that 10-fold dilution and column purification effectively reduce qPCR inhibition in mountain headwater stream and coastal plain wetland eDNA samples, and if applied to all samples in a study, column purification may provide the most accurate relative qPCR-based DNA concentrations estimates while retaining the greatest assay sensitivity.

  7. A randomized trial of the effects of the noble gases helium and argon on neuroprotection in a rodent cardiac arrest model.

    PubMed

    Zuercher, Patrick; Springe, Dirk; Grandgirard, Denis; Leib, Stephen L; Grossholz, Marius; Jakob, Stephan; Takala, Jukka; Haenggi, Matthias

    2016-04-04

    The noble gas xenon is considered as a neuroprotective agent, but availability of the gas is limited. Studies on neuroprotection with the abundant noble gases helium and argon demonstrated mixed results, and data regarding neuroprotection after cardiac arrest are scant. We tested the hypothesis that administration of 50% helium or 50% argon for 24 h after resuscitation from cardiac arrest improves clinical and histological outcome in our 8 min rat cardiac arrest model. Forty animals had cardiac arrest induced with intravenous potassium/esmolol and were randomized to post-resuscitation ventilation with either helium/oxygen, argon/oxygen or air/oxygen for 24 h. Eight additional animals without cardiac arrest served as reference, these animals were not randomized and not included into the statistical analysis. Primary outcome was assessment of neuronal damage in histology of the region I of hippocampus proper (CA1) from those animals surviving until day 5. Secondary outcome was evaluation of neurobehavior by daily testing of a Neurodeficit Score (NDS), the Tape Removal Test (TRT), a simple vertical pole test (VPT) and the Open Field Test (OFT). Because of the non-parametric distribution of the data, the histological assessments were compared with the Kruskal-Wallis test. Treatment effect in repeated measured assessments was estimated with a linear regression with clustered robust standard errors (SE), where normality is less important. Twenty-nine out of 40 rats survived until day 5 with significant initial deficits in neurobehavioral, but rapid improvement within all groups randomized to cardiac arrest. There were no statistical significant differences between groups neither in the histological nor in neurobehavioral assessment. The replacement of air with either helium or argon in a 50:50 air/oxygen mixture for 24 h did not improve histological or clinical outcome in rats subjected to 8 min of cardiac arrest.

  8. Use of a novel radiometric method to assess the inhibitory effect of donepezil on acetylcholinesterase activity in minimally diluted tissue samples

    PubMed Central

    Kikuchi, Tatsuya; Okamura, Toshimitsu; Arai, Takuya; Obata, Takayuki; Fukushi, Kiyoshi; Irie, Toshiaki; Shiraishi, Tetsuya

    2010-01-01

    Background and purpose: Cholinesterase inhibitors have been widely used for the treatment of patients with dementia. Monitoring of the cholinesterase activity in the blood is used as an indicator of the effect of the cholinesterase inhibitors in the brain. The selective measurement of cholinesterase with low tissue dilution is preferred for accurate monitoring; however, the methods have not been established. Here, we investigated the effect of tissue dilution on the action of cholinesterase inhibitors using a novel radiometric method with selective substrates, N-[14C]methylpiperidin-4-yl acetate ([14C]MP4A) and (R)-N-[14C]methylpiperidin-3-yl butyrate ([14C]MP3B_R), for AChE and butyrylcholinesterase (BChE) respectively. Experimental approach: We investigated the kinetics of hydrolysis of [14C]-MP4A and [14C]-MP3B_R by cholinesterases, and evaluated the selectivity of [14C]MP4A and [14C]MP3B_R for human AChE and BChE, respectively, compared with traditional substrates. Then, IC50 values of cholinesterase inhibitors in minimally diluted and highly diluted tissues were measured with [14C]MP4A and [14C]MP3B_R. Key results: AChE and BChE activities were selectively measured as the first-order hydrolysis rates of [14C]-MP4A and [14C]MP3B_R respectively. The AChE selectivity of [14C]MP4A was an order of magnitude higher than traditional substrates used for the AChE assay. The IC50 values of specific AChE and BChE inhibitors, donepezil and ethopropazine, in 1.2-fold diluted human whole blood were much higher than those in 120-fold diluted blood. In addition, the IC50 values of donepezil in monkey brain were dramatically decreased as the tissue was diluted. Conclusions and implications: This method would effectively monitor the activity of cholinesterase inhibitors used for therapeutics, pesticides and chemical warfare agents. PMID:20401964

  9. Fission-fusion correlations for swelling and microstructure in stainless steels: effect of the helium-to-displacement-per-atom ratio

    SciTech Connect

    Odette, G.R.; Maziaz, P.J.; Spitznagel, J.A.

    1981-01-01

    The initial irradiated structural materials data base for fusion applications will be developed in fission reactors. Hence, this data may need to be adjusted using physically-based procedures to represent behavior in fusion environments, viz. - fission-fusion correlations. Such correlation should reflect a sound mechanistic understanding, and be verified in facilities which most closely simulate fusion conditions. In this paper we review the effects of only one of a number of potentially significant damage variables, the helium to displacement per atom ratio, on microstructural evolution in austenitic stainless steels. Dual-ion and helium preinjection data are analyzed to provide mechanistic guidance; these results appear to be qualitatively consistent with a more detailed comparison made between fast (EBR-II) and mixed (HFIR) spectrum neutron data for a single heat of 20% cold-worked 316 stainless steel. These two fission environments bound fusion (He/dpa ratios. A model calibrated to the fission reactor data is used to extrapolate to fusion conditions. Both the theory and broad empirical observation suggest that helium to dpa ratios have both a qualitative and quantitative influence on microstructural evolution; and that the very high and low ratios found in HFIR and EBR-II may not result in behavior which brackets intermediate fusion conditions.

  10. Effect of the dilution rate on microbial competition: r-strategist can win over k-strategist at low substrate concentration.

    PubMed

    Winkler, Mari-K H; Boets, Pieter; Hahne, Birk; Goethals, Peter; Volcke, Eveline I P

    2017-01-01

    The conditions present in both in vitro and in vivo ecosystems determine the microbial population harbouring it. One commonly accepted theory is that a species with a high substrate affinity and low growth rate (k-strategist) will win the competition against a second species with a lower substrate affinity and higher growth rate (r-strategist) if both species are subjected to low substrate concentrations. In this study two nitrite oxidizing bacteria (NOB), Nitrospira defluvii (k-strategist) and Nitrobacter vulgaris (r-strategist), were cultivated in a continuous reactor systems. The minimal hydraulic retention time (HRT) required for maintaining the slower growing Nitrospira was first determined. A reactor containing Nitrobacter was set to the same HRT and Nitrospira was injected to evaluate the effect of the dilution rate on the competition between both species. By following the microbial population dynamics with qPCR analysis, it was shown that not only the substrate affinity drives the competition between k- and r-strategists but also the dilution rate. Experimental data and numerical simulations both revealed that the washout of Nitrobacter was significantly delayed at dilution rates close to the μmax of Nitrospira. The competition could be even reverted towards Nitrobacter (r-strategist) despite of low nitrite concentrations and dilution rates lower than the μmax of Nitrospira.

  11. Dilution effect on the formation of amorphous phase in the laser cladded Ni-Fe-B-Si-Nb coatings after laser remelting process

    NASA Astrophysics Data System (ADS)

    Li, Ruifeng; Li, Zhuguo; Huang, Jian; Zhu, Yanyan

    2012-08-01

    Ni-Fe-B-Si-Nb coatings have been deposited on mild steel substrates using high power diode laser cladding. Scanning laser beam at high speeds was followed to remelt the surface of the coatings. Different laser cladding powers in the range of 700-1000 W were used to obtain various dilution ratios in the coating. The dilution effect on the chemical characterization, phase composition and microstructure is analyzed by energy dispersive spectroscopy, X-ray diffraction and scanning-electron microscopy. The microhardness distribution of the coatings after laser processing is also measured. The results reveal that Ni-based amorphous composite coatings have successfully been fabricated on mild steel substrate at low dilution ratio when the cladding power was 700 W, 800 W and 900 W. While at high laser power of 1000 W, no amorphous phase was found. The coatings with low dilution ratio exhibit the highest microhardness of 1200 HV0.5 due to their largest volume fraction of amorphous phase.

  12. Effect of the dilution rate on microbial competition: r-strategist can win over k-strategist at low substrate concentration

    PubMed Central

    Winkler, Mari.-K. H.; Boets, Pieter; Hahne, Birk; Goethals, Peter; Volcke, Eveline I. P.

    2017-01-01

    The conditions present in both in vitro and in vivo ecosystems determine the microbial population harbouring it. One commonly accepted theory is that a species with a high substrate affinity and low growth rate (k-strategist) will win the competition against a second species with a lower substrate affinity and higher growth rate (r-strategist) if both species are subjected to low substrate concentrations. In this study two nitrite oxidizing bacteria (NOB), Nitrospira defluvii (k-strategist) and Nitrobacter vulgaris (r-strategist), were cultivated in a continuous reactor systems. The minimal hydraulic retention time (HRT) required for maintaining the slower growing Nitrospira was first determined. A reactor containing Nitrobacter was set to the same HRT and Nitrospira was injected to evaluate the effect of the dilution rate on the competition between both species. By following the microbial population dynamics with qPCR analysis, it was shown that not only the substrate affinity drives the competition between k- and r-strategists but also the dilution rate. Experimental data and numerical simulations both revealed that the washout of Nitrobacter was significantly delayed at dilution rates close to the μmax of Nitrospira. The competition could be even reverted towards Nitrobacter (r-strategist) despite of low nitrite concentrations and dilution rates lower than the μmax of Nitrospira. PMID:28333960

  13. Diffusion behavior of helium in titanium and the effect of grain boundaries revealed by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Gui-Jun, Cheng; Bao-Qin, Fu; Qing, Hou; Xiao-Song, Zhou; Jun, Wang

    2016-07-01

    The microstructures of titanium (Ti), an attractive tritium (T) storage material, will affect the evolution process of the retained helium (He). Understanding the diffusion behavior of He at the atomic scale is crucial for the mechanism of material degradation. The novel diffusion behavior of He has been reported by molecular dynamics (MD) simulation for the bulk hcp-Ti system and the system with grain boundary (GB). It is observed that the diffusion of He in the bulk hcp-Ti is significantly anisotropic (the diffusion coefficient of the [0001] direction is higher than that of the basal plane), as represented by the different migration energies. Different from convention, the GB accelerates the diffusion of He in one direction but not in the other. It is observed that a twin boundary (TB) can serve as an effective trapped region for He. The TB accelerates diffusion of He in the direction perpendicular to the twinning direction (TD), while it decelerates the diffusion in the TD. This finding is attributable to the change of diffusion path caused by the distortion of the local favorable site for He and the change of its number in the TB region. Project supported by the National Natural Science Foundation of China (Grant No. 51501119), the Scientific Research Starting Foundation for Younger Teachers of Sichuan University, China (Grant No. 2015SCU11058), the National Magnetic Confinement Fusion Science Program of China (Grant No. 2013GB109002), and the Cooperative Research Project “Research of Diffusion Behaviour of He in Grain Boundary of HCP-Titanium”, China.

  14. Scaling laws, transient times and shell effects in helium induced nuclear fission

    SciTech Connect

    Rubehn, T.; Jing, Kexing; Moretto, L.G.; Phair, L.; Tso, Kin; Wozniak, G.J.

    1996-02-01

    Fission excitation functions are analyzed and discussed according to a method which allows one to check the validity of the transition state rate predictions over a large range of excitation energies and a regime of compound nuclei masses characterized by strong shell effects. Once these shell effects are accounted for, no deviation from transition state rates can be observed. Furthermore, shell effects can be determined directly from the experiment by using the above described procedure. In contrast to the standard method, there is no need to include liquid drop model calculations. Finally, plotting the quantity R{sub f} allows one to search for evidence of transition times (discussed in a series of papers): our results set an upper limit of 10{sup {minus}20} seconds.

  15. The effect of operating lights on laminar flow: an experimental study using neutrally buoyant helium bubbles.

    PubMed

    Refaie, R; Rushton, P; McGovern, P; Thompson, D; Serrano-Pedraza, I; Rankin, K S; Reed, M

    2017-08-01

    The interaction between surgical lighting and laminar airflow is poorly understood. We undertook an experiment to identify any effect contemporary surgical lights have on laminar flow and recommend practical strategies to limit any negative effects. Neutrally buoyant bubbles were introduced into the surgical field of a simulated setup for a routine total knee arthroplasty in a laminar flow theatre. Patterns of airflow were observed and the number of bubbles remaining above the surgical field over time identified. Five different lighting configurations were assessed. Data were analysed using simple linear regression after logarithmic transformation. In the absence of surgical lights, laminar airflow was observed, bubbles were cleared rapidly and did not accumulate. If lights were placed above the surgical field laminar airflow was abolished and bubbles rose from the surgical field to the lights then circulated back to the surgical field. The value of the decay parameter (slope) of the two setups differed significantly; no light (b = -1.589) versus one light (b = -0.1273, p < 0.001). Two lights touching (b = -0.1191) above the surgical field had a similar effect to that of a single light (p = 0. 2719). Two lights positioned by arms outstretched had a similar effect (b = -0.1204) to two lights touching (p = 0.998) and one light (p = 0.444). When lights were separated widely (160 cm), laminar airflow was observed but the rate of clearance of the bubbles remained slower (b = -1.1165) than with no lights present (p = 0.004). Surgical lights have a significantly negative effect on laminar airflow. Lights should be positioned as far away as practicable from the surgical field to limit this effect. Cite this article: Bone Joint J 2017;99-B:1061-6. ©2017 The British Editorial Society of Bone & Joint Surgery.

  16. Helium transport and exhaust studies in enhanced confinement regimes in DIII-D

    SciTech Connect

    Wade, M.R.; Hillis, D.L.; Hogan, J.T.; Mahdavi, M.A.; Maingi, R.; West, W.P.; Burrell, K.H.; Finkenthal, D.F.; Gohil, P.; Groebner, R.J.

    1995-02-01

    A better understanding of helium transport in the plasma core and edge in enhanced confinement regimes is now emerging from recent experimental studies on DIII-D. Overall, the results are encouraging. Significant helium exhaust ({tau}*{sub He}/{tau}{sub E} {approximately} 11) has been obtained in a diverted, ELMing H-mode plasma simultaneous with a central source of helium. Detailed analysis of the helium profile evolution indicates that the exhaust rate is limited by the exhaust efficiency of the pump ({approximately}5%) and not by the intrinsic helium transport properties of the plasma. Perturbative helium transport studies using gas puffing have shown that D{sub He}/X{sub eff}{approximately}1 in all confinement regimes studied to date (including H-mode and VH-mode). Furthermore, there is no evidence of preferential accumulation of helium in any of these regimes. However, measurements in the core and pumping plenum show a significant dilution of helium as it flows from the plasma core to the pumping plenum. Such dilution could be the limiting factor in the overall removal rate of helium in a reactor system.

  17. Causes and control of gas precompression effects on the 25-meter helium/air gun

    SciTech Connect

    Boslough, M.B.; Setchell, R.E.; Anderson, M.U.; Lewis, M.R.; Wackerbarth, D.E.

    1989-02-01

    Recent experiments making use of quartz stress gauges and radiation pyrometry on the Sandia 25-meter gas gun have shown that, under certain circumstances, gas becomes trapped between the projectile and target and can generate elevated pressures and temperatures in the target before impact. The presence of high temperature compressed gases can lead to a number of other deleterious effects, including ignition of reactive materials, shorting of triggering pins, and interference with light-emission measurements. We have now shown that the gas precompression effect on the target is due primarily to blowby of compressed driver gases past the projectile. By modifying the design of some projectiles, making a minor change in the breech, and changing the starting position of the projectile in the barrel, we can eliminate any significant gas precompression effects on the target. For applications in which precompression is desired, we have found that this effect can be reproducibly controlled. Possible applications include quasi-isentropic compression, light generation for transmission spectroscopy, and adjustment of conditions for shock-induced chemical reactions. 11 refs., 13 figs., 3 tabs.

  18. Dilution in single pass arc welds

    SciTech Connect

    DuPont, J.N.; Marder, A.R.

    1996-06-01

    A study was conducted on dilution of single pass arc welds of type 308 stainless steel filler metal deposited onto A36 carbon steel by the plasma arc welding (PAW), gas tungsten arc welding (GTAW), gas metal arc welding (GMAW), and submerged arc welding (SAW) processes. Knowledge of the arc and melting efficiency was used in a simple energy balance to develop an expression for dilution as a function of welding variables and thermophysical properties of the filler metal and substrate. Comparison of calculated and experimentally determined dilution values shows the approach provides reasonable predictions of dilution when the melting efficiency can be accurately predicted. The conditions under which such accuracy is obtained are discussed. A diagram is developed from the dilution equation which readily reveals the effect of processing parameters on dilution to aid in parameter optimization.

  19. Dilution effects on combined magnetic and electric dipole interactions: A study of ferromagnetic cobalt nanoparticles with tuneable interactions

    NASA Astrophysics Data System (ADS)

    Hod, M.; Dobroserdova, A.; Samin, S.; Dobbrow, C.; Schmidt, A. M.; Gottlieb, M.; Kantorovich, S.

    2017-08-01

    Improved understanding of complex interactions between nanoparticles will facilitate the control over the ensuing self-assembled structures. In this work, we consider the dynamic changes occurring upon dilution in the self-assembly of a system of ferromagnetic cobalt nanoparticles that combine magnetic, electric, and steric interactions. The systems examined here vary in the strength of the magnetic dipole interactions and the amount of point charges per particle. Scattering techniques are employed for the characterization of the self-assembly aggregates, and zeta-potential measurements are employed for the estimation of surface charges. Our experiments show that for particles with relatively small initial number of surface electric dipoles, an increase in particle concentration results in an increase in diffusion coefficients; whereas for particles with relatively high number of surface dipoles, no effect is observed upon concentration changes. We attribute these changes to a shift in the adsorption/desorption equilibrium of the tri-n-octylphosphine oxide (TOPO) molecules on the particle surface. We put forward an explanation, based on the combination of two theoretical models. One predicts that the growing concentration of electric dipoles, stemming from the addition of tri-n-octylphosphine oxide (TOPO) as co-surfactant during particle synthesis, on the surface of the particles results in the overall repulsive interaction. Secondly, using density functional theory, we explain that the observed behaviour of the diffusion coefficient can be treated as a result of the concentration dependent nanoparticle self-assembly: additional repulsion leads to the reduction in self-assembled aggregate size despite the shorter average interparticle distances, and as such provides the growth of the diffusion coefficient.

  20. The Effects of Buoyancy and Dilution on the Structure and Lift-Off of Coflow Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Walsh, Kevin T.; Long, Marshall B.; Smooke, Mitchell D.

    1999-01-01

    The ability to predict the coupled effects of complex transport phenomena with detailed chemical kinetics in diffusion flames is critical in the modeling of turbulent reacting flows and in understanding the processes by which soot formation and radiative transfer take place. In addition, an understanding of those factors that affect flame extinction in diffusion flames is critical in the suppression of fires and in improving engine efficiency. A goal of this work is to bring to microgravity flame studies the detailed experimental and numerical tools that have been used to study ground-based systems. This will lead to a more detailed understanding of the interaction of convection, diffusion and chemistry in a nonbuoyant environment. To better understand these phenomena, experimental and computational studies of a coflow laminar diffusion flame have been carried out. To date, these studies have focused on a single set of flow conditions, in which a nitrogen-diluted methane fuel stream (65% methane by volume) was surrounded by an air coflow, with exit velocities matched at 35 cm/s. Of particular interest is the change in flame shape due to the absence of buoyant forces, as well as the amount of diluent in the fuel stream and the coflow velocity. As a sensitive marker of changes in the flame shape, the number densities of excited-state CH (A(exp 2 delta) denoted CH*), and excited-state OH (A(exp 2 sigma, denoted OH*) are measured. CH* and OH* number densities are deconvoluted from line-of-sight chemiluminescence measurements made on the NASA KC135 reduced-gravity aircraft. Measured signal levels are calibrated, post-flight, with Rayleigh scattering. In extending the study to microgravity conditions, improvements to the computational model have been made and new calculations performed for a range of gravity conditions. In addition, modifications to the experimental approach were required as a consequence of the constraints imposed by existing microgravity facilities

  1. Effects of helium on ductile-brittle transition behavior of reduced-activation ferritic steels after high-concentration helium implantation at high temperature

    NASA Astrophysics Data System (ADS)

    Hasegawa, A.; Ejiri, M.; Nogami, S.; Ishiga, M.; Kasada, R.; Kimura, A.; Abe, K.; Jitsukawa, S.

    2009-04-01

    The effects of He on the fracture behavior of reduced-activation ferritic/martensitic steels, including oxide dispersion-strengthened (ODS) steels and F82H, was determined by characterizing the microstructural evolution in and fracture behavior of these steels after He implantation up to 1000 appm at around 550 °C. He implantation was carried out by a cyclotron with a beam of 50 MeV α-particles. In the case of F82H, the ductile-to-brittle transition temperature (DBTT) increase induced by He implantation was about 70 °C and the grain boundary fracture surface was only observed in the He-implanted area of all the ruptured specimens in brittle manner. By contrast, no DBTT shift or fracture mode change was observed in He-implanted 9Cr-ODS and 14Cr-ODS steels. Microstructural characterization suggested that the difference in the bubble formation behavior of F82H and ODS steels might be attributed to the grain boundary rupture of He-implanted F82H.

  2. Heat capacity of helium in cylindrical environments

    NASA Astrophysics Data System (ADS)

    Gatica, S. M.; Hernández, E. S.; Szybisz, L.

    2003-10-01

    We perform a systematic investigation of the structure, elementary, and phonon excitations of quantum fluid 4He adsorbed in the interior of carbon nanotubes. We show that the helium fluid inside the cylinder behaves exactly as in planar films on a graphite substrate, presenting the same kind of layering transition. This tendency is confirmed by the behavior of a single 3He impurity diluted into adsorbed 4He. We also present a simple description of the lowest excitation modes of the adsorbed fluid and compute the low-temperature contribution of the phonon spectrum to the specific heat, which displays the dimensionality characteristics reported in previous works.

  3. Effects of dilution and centrifugation on the survival of spermatozoa and the structure of motile sperm cell subpopulations in refrigerated Catalonian donkey semen.

    PubMed

    Miró, J; Taberner, E; Rivera, M; Peña, A; Medrano, A; Rigau, T; Peñalba, A

    2009-11-01

    The aim of this work was to study the effects of dilution and centrifugation (i.e., two methods of reducing the influence of the seminal plasma) on the survival of spermatozoa and the structure of motile sperm cell subpopulations in refrigerated Catalonian donkey (Equus asinus) semen. Fifty ejaculates from nine Catalonian jackasses were collected. Gel-free semen was diluted 1:1, 1:5 or 1:10 with Kenney extender. Another sample of semen was diluted 1:5, centrifuged, and then resuspended with Kenney extender until a final dilution of 25x10(6) sperm/ml was achieved (C). After 24 h, 48 h or 72 h of refrigerated storage at 5 degrees C, aliquots of these semen samples were incubated at 37 degrees C for 5 min. The percentage of viable sperm was determined by staining with eosin-nigrosin. The motility characteristics of the spermatozoa were examined using the CASA system (Microptic, Barcelona, Spain). At 24h, more surviving spermatozoa were seen in the more diluted and in the centrifuged semen samples (1:1 48.71%; 1:5 56.58%, 1:10 62.65%; C 72.40%). These differences were maintained at 48 h (1:1 34.31%, 1:5 40.56%, 1:10 48.52%, C 66.30%). After 72 h, only the C samples showed a survival rate of above 25%. The four known donkey motile sperm subpopulations were maintained by refrigeration. However, the percentage of motile sperms in each subpopulation changed with dilution. Only the centrifuged samples, and only at 24h, showed exactly the same motile sperm subpopulation proportions as recorded for fresh sperm. However, the 1:10 dilutions at 24 and 48 h, and the centrifuged semen at 48 h, showed few variations compared to fresh sperm. These results show that the elimination of seminal plasma increases the survival of spermatozoa and the maintenance of motility patterns. The initial sperm concentration had a significant (P<0.05) influence on centrifugation efficacy, but did not influence the number of spermatozoa damaged by centrifugation. In contrast, the percentage of live

  4. A Parasitic Effect in Neutral Particle Diagnostic Using a Helium Probing Beam

    NASA Astrophysics Data System (ADS)

    Tobita, Kenji; Kusama, Yoshinori; Itoh, Takao; Nemoto, Masahiro; Takeuchi, Hiroshi; Tsukahara, Yoshimitsu

    1990-04-01

    This paper describes the characteristic and the physical picture of a parasitic disturbance, which can occur because of the drift motion of probing beam ions trapped at the plasma edge, in active neutral particle measurements for magnetically confined fusion devices. In the JT-60 experiments, the disturbance is observed under the condition in which a neutral particle analyzer views the high recycling region, i.e., the divertor, and the occurrence of the parasitic effect is substantially dependent on the safety factor at the plasma boundary. Also discussed are the validity of our interpretation and some measures for avoiding the disturbance.

  5. Noncavitating Pump For Liquid Helium

    NASA Technical Reports Server (NTRS)

    Hasenbein, Robert; Izenson, Michael; Swift, Walter; Sixsmith, Herbert

    1996-01-01

    Immersion pump features high efficiency in cryogenic service. Simple and reliable centrifugal pump transfers liquid helium with mass-transfer efficiency of 99 percent. Liquid helium drawn into pump by helical inducer, which pressurizes helium slightly to prevent cavitation when liquid enters impeller. Impeller then pressurizes liquid. Purpose of pump to transfer liquid helium from supply to receiver vessel, or to provide liquid helium flow for testing and experimentation.

  6. Analysis of therapeutic effectiveness and prognostic factor on argon-helium cryoablation combined with transcatheter arterial chemoembolization for the treatment of advanced hepatocellular carcinoma.

    PubMed